Sample records for irradiation inhibits vascular

  1. Enhanced susceptibility of irradiated tumor vessels to vascular endothelial growth factor receptor tyrosine kinase inhibition.

    PubMed

    Zips, Daniel; Eicheler, Wolfgang; Geyer, Peter; Hessel, Franziska; Dörfler, Annegret; Thames, Howard D; Haberey, Martin; Baumann, Michael

    2005-06-15

    Previous experiments with PTK787/ZK222584, a specific inhibitor of vascular endothelial growth factor receptor (VEGFR) tyrosine kinases, using irradiated human FaDu squamous cell carcinoma in nude mice, suggested that radiation-damaged tumor vessels are more sensitive to VEGFR inhibition. To test this hypothesis, the tumor transplantation site (i.e., the right hind leg of nude mice) was irradiated 10 days before transplantation of FaDu to induce radiation damage in the host tissue. FaDu tumors vascularized by radiation-damaged blood vessels appeared later, grew at a slower rate, and showed more necrosis and a smaller vessel area per central tumor section than controls. PTK787/ZK222584 at a daily dose of 50 mg/kg body weight had no impact on growth of control tumors. In contrast, tumors vascularized by radiation-damaged vessels responded to PTK787/ZK222584 with longer latency and slower growth rate than controls, and a trend toward further increase in necrosis, indicating that irradiated tumor vessels are more susceptible to VEGFR inhibition than unirradiated vessels. Although not proving causality, expression analysis of VEGF and VEGFR2 shows that enhanced sensitivity of irradiated vessels to a specific inhibitor of VEGFR tyrosine kinases correlates with increased expression of the molecular target.

  2. Poly(ADP-ribose) polymerase inhibition combined with irradiation: A dual treatment concept to prevent neointimal hyperplasia after endarterectomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beller, Carsten J.; Kosse, Jens; Radovits, Tamas

    2006-11-01

    Purpose: In a rat model of endarterectomy we investigated the potential role of the peroxynitrite-poly(ADP-ribose) polymerase (PARP) pathway in neointima formation and the effects of irradiation, pharmacologic inhibition of PARP, or combined pharmacologic inhibition of PARP and irradiation on vascular remodeling. Methods and Materials: Carotid endarterectomy was performed by incision of the left carotid artery with removal of intima in Sprague-Dawley rats. Six groups were studied: sham-operated rats (n = 10), control endarterectomized rats (n = 10), or endarterectomized rats irradiated with 15 Gy (n = 10), or treated with PARP inhibitor, INO-1001 (5 mg/kg/day) (n = 10), or withmore » combined treatment with INO-1001 and irradiation with 5 Gy (n = 10) or with 15 Gy (n = 10). After 21 days, neointima formation and vascular remodeling were assessed. Results: Neointima formation after endarterectomy was inhibited by postoperative irradiation with 15 Gy and was attenuated by PARP inhibition. However, in parallel to inhibition of neointimal hyperplasia, activation of the peroxynitrite-PARP pathway in the outer vessel wall layers was triggered by postoperative irradiation. Combined pharmacologic PARP inhibition and irradiation with 15 Gy significantly reduced both neointimal hyperplasia and activation of the peroxynitrite-PARP pathway in the outer vessel wall layers. Combination of PARP inhibition and irradiation with 5 Gy was less effective than both PARP inhibition or irradiation with 15 Gy alone. Conclusions: We conclude, that combined PARP inhibition and irradiation with 15 Gy may be a new dual strategy for prevention of restenosis after surgical vessel reconstruction: combining the strong antiproliferative effect of irradiation and ameliorating irradiation-induced side effects caused by excessive PARP activation.« less

  3. Hypothermia Inhibits Endothelium-Independent Vascular Contractility via Rho-kinase Inhibition

    PubMed Central

    Chung, Yoon Hee; Oh, Keon Woong; Kim, Sung Tae; Park, Eon Sub; Je, Hyun Dong; Yoon, Hyuk-Jun; Sohn, Uy Dong; Jeong, Ji Hoon; La, Hyen-Oh

    2018-01-01

    The present study was undertaken to investigate the influence of hypothermia on endothelium-independent vascular smooth muscle contractility and to determine the mechanism underlying the relaxation. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Hypothermia significantly inhibited fluoride-, thromboxane A2-, phenylephrine-, and phorbol ester-induced vascular contractions regardless of endothelial nitric oxide synthesis, suggesting that another pathway had a direct effect on vascular smooth muscle. Hypothermia significantly inhibited the fluoride-induced increase in pMYPT1 level and phorbol ester-induced increase in pERK1/2 level, suggesting inhibition of Rho-kinase and MEK activity and subsequent phosphorylation of MYPT1 and ERK1/2. These results suggest that the relaxing effect of moderate hypothermia on agonist-induced vascular contraction regardless of endothelial function involves inhibition of Rho-kinase and MEK activities. PMID:28208012

  4. Irradiation inhibits vascular anastomotic stenosis in a canine model.

    PubMed

    Saito, Takeshi; Iguchi, Atsushi; Tabayashi, Koichi

    2009-08-01

    The graft patency rate after coronary artery bypass grafting (CABG) correlates with anastomotic stenosis. Intracoronary radiation therapy is effective for preventing restenosis after percutaneous coronary intervention (PCI). We postulated that intracoronary radiation therapy could prevent anastomotic stenosis and tested this hypothesis in an animal model. Femoral arteries and veins of beagle dogs were harvested, and composite arterioarterial and arteriovenous grafts were prepared. After external irradiation of the anastomotic sites, these composite grafts were transplanted into femoral arteries. Histomorphometric and immunohistological analyses of the anastomotic sites were performed. The study groups consisted of controls and animals exposed to 10 Gy, 20 Gy, and 30 Gy (n = 5, in each group). In the artery graft model, the ratio of negative remodeling was significantly increased in all groups exposed to >or=10 Gy. The ratio of neointimal hyperplasia was significantly decreased in all groups exposed to >or=10 Gy. Cell density of anti-alpha-actin antibody-positive cells and anti-proliferating cell nuclear antigen (PCNA) antibody-positive cells was highest in the adventitial layer, and the density decreased as the dosage increased. Experimental results were almost the same in the vein graft models as in the artery graft models. With double immunohistostaining, the anti-PCNA antibody-positive cells expressed alpha-actin. Irradiation can inhibit anastomotic stenosis in a canine model. Adventitia is a factor in the creation of stenosis, and irradiation appears to target the adventitia. We speculate that there might be a possible role for intracoronary irradiation in the future to prevent anastomotic stenosis.

  5. Pattern of Bone Generation after Irradiation in Vascularized Tissue Engineered Constructs.

    PubMed

    Eweida, Ahmad; Fathi, Ibrahim; Eltawila, Ahmed M; Elsherif, Ahmad M; Elkerm, Yasser; Harhaus, Leila; Kneser, Ulrich; Sakr, Mahmoud F

    2018-02-01

     Regenerative medicine modalities provide promising alternatives to conventional reconstruction techniques but are still deficient after malignant tumor excision or irradiation due to defective vascularization.  We investigated the pattern of bone formation in axially vascularized tissue engineering constructs (AVTECs) after irradiation in a study that mimics the clinical scenario after head and neck cancer. Heterotopic bone generation was induced in a subcutaneously implanted AVTEC in the thigh of six male New Zealand rabbits. The tissue construct was made up of Nanobone (Artoss GmbH; Rostock, Germany) granules mixed with autogenous bone marrow and 80 μL of bone morphogenic protein-2 at a concentration of 1.5 μg/μL. An arteriovenous loop was created microsurgically between the saphenous vessels and implanted in the core of the construct to induce axial vascularization. The constructs were subjected to external beam irradiation on postoperative day 20 with a single dose of 15 Gy. The constructs were removed 20 days after irradiation and subjected to histological and immunohistochemical analysis for vascularization, bone formation, apoptosis, and cellular proliferation.  The vascularized constructs showed homogenous vascularization and bone formation both in their central and peripheral regions. Although vascularity, proliferation, and apoptosis were similar between central and peripheral regions of the constructs, significantly more bone was formed in the central regions of the constructs.  The study shows for the first time the pattern of bone formation in AVTECs after irradiation using doses comparable to those applied after head and neck cancer. Axial vascularization probably enhances the osteoinductive properties in the central regions of AVTECs after irradiation. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  6. THE VASCULAR PATHOPHYSIOLOGY OF AN IRRADIATED GRAFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rubin, P.; Casarett, G.; Grise, J.W.

    1960-06-01

    The difference in the vascularization of grafted and normal skin forms a reasonable basis for explaining the differences in the radiation reactions of these structures. The radioisotope half time of disappearance following subcutaneous injection is an index of vascular integrity of the graft and serves as a parameter to predict its radioresponsiveness. In developing a concept of the spectrum of reactions of grafted skin to ionizing irradiation, knowledge of the radiopathologic changes in capillaries must be utilized with knowledge of the histophysiology of the vascularity of an autograft. (auth)

  7. GPER inhibits diabetes-mediated RhoA activation to prevent vascular endothelial dysfunction.

    PubMed

    Li, Zilin; Cheng, Liang; Liang, Hongliang; Duan, Weixun; Hu, Jing; Zhi, Weiwei; Yang, Jinbao; Liu, Zhenhua; Zhao, Minggao; Liu, Jincheng

    2016-02-01

    The effect of estrogen receptors on diabetes-induced vascular dysfunction is critical, but ambiguous. Individuals with diabetic vascular disease may require estrogen receptor-specific targeted therapy in the future. The G protein-coupled estrogen receptor (GPER) has beneficial effects on vascular function. However, its fundamental mechanisms are unclear. The RhoA/Rho-kinase pathway contributes to diabetic vascular complications, whereas estrogen can suppress Rho-kinase function. Thus, we assumed that GPER inhibits diabetes-mediated RhoA activation to prevent vascular dysfunction. We further investigated the underlying mechanisms involved in this process. Vascular endothelial cells and ex vivo cultured ovariectomized (OVX) C57BL/6 mouse aortae were treated with high glucose (HG) alone or in combination with GPER agonist (G1). G1 treatment was also administered to OVX db/db mice for 8 weeks. An ex-vivo isovolumic myograph was used to analyze the endothelium-dependent vasodilation and endothelium-independent contraction of mouse aortae. Apoptosis, oxidative stress, and inflammation were attenuated in G1-pretreated vascular endothelial cells. G1 significantly decreased the phosphorylation of inhibitory endothelial nitric oxide (NO) synthase residue threonine 495 (eNOS Thr495), inhibited RhoA expression, and increased NO production. Additionally, G1 rescued the impaired endothelium-dependent relaxation and inhibited RhoA activation in the thoracic aorta of OVX db/db mice and ex-vivo cultured OVX C57BL/6 mouse aortae treated with HG. Estrogens acting via GPER could protect vascular endothelium, and GPER activation might elicit ERα-independent effect to inhibit RhoA/Rho-kinase pathway. Additionally, GPER activation might reduce vascular smooth muscle contraction by inhibiting RhoA activation. Thus, the results of the present study suggest a new therapeutic paradigm for end-stage vascular dysfunction by inhibiting RhoA/Rho-kinase pathway via GPER activation. Copyright

  8. Thalidomide Ameliorates Inflammation and Vascular Injury but Aggravates Tubular Damage in the Irradiated Mouse Kidney

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scharpfenecker, Marion, E-mail: m.scharpfenecker@nki.nl; Floot, Ben; Russell, Nicola S.

    Purpose: The late side effects of kidney irradiation include vascular damage and fibrosis, which are promoted by an irradiation-induced inflammatory response. We therefore treated kidney-irradiated mice with the anti-inflammatory and angiogenesis-modulating drug thalidomide in an attempt to prevent the development of late normal tissue damage and radiation nephropathy in the mouse kidney. Methods and Materials: Kidneys of C57Bl/6 mice were irradiated with a single dose of 14 Gy. Starting from week 16 after irradiation, the mice were fed with thalidomide-containing chow (100 mg/kg body weight/day). Gene expression and kidney histology were analyzed at 40 weeks and blood samples at 10, 20, 30, andmore » 40 weeks after irradiation. Results: Thalidomide improved the vascular structure and vessel perfusion after irradiation, associated with a normalization of pericyte coverage. The drug also reduced infiltration of inflammatory cells but could not suppress the development of fibrosis. Irradiation-induced changes in hematocrit and blood urea nitrogen levels were not rescued by thalidomide. Moreover, thalidomide worsened tubular damage after irradiation and also negatively affected basal tubular function. Conclusions: Thalidomide improved the inflammatory and vascular side effects of kidney irradiation but could not reverse tubular toxicity, which probably prevented preservation of kidney function.« less

  9. A cannabinoid quinone inhibits angiogenesis by targeting vascular endothelial cells.

    PubMed

    Kogan, Natalya M; Blázquez, Cristina; Alvarez, Luis; Gallily, Ruth; Schlesinger, Michael; Guzmán, Manuel; Mechoulam, Raphael

    2006-07-01

    Recent findings on the inhibition of angiogenesis and vascular endothelial cell proliferation by anthracycline antibiotics, which contain a quinone moiety, make this type of compound a very promising lead in cancer research/therapy. We have reported that a new cannabinoid anticancer quinone, cannabidiol hydroxyquinone (HU-331), is highly effective against tumor xenografts in nude mice. For evaluation of the antiangiogenic action of cannabinoid quinones, collagen-embedded rat aortic ring assay was used. The ability of cannabinoids to cause endothelial cell apoptosis was assayed by TUNEL staining and flow cytometry analysis. To examine the genes and pathways targeted by HU-331 in vascular endothelial cells, human cDNA microarrays and polymerase chain reaction were used. Immunostaining with anti-CD31 of tumors grown in nude mice served to indicate inhibition of tumor angiogenesis. HU-331 was found to be strongly antiangiogenic, significantly inhibiting angiogenesis at concentrations as low as 300 nM. HU-331 inhibited angiogenesis by directly inducing apoptosis of vascular endothelial cells without changing the expression of pro- and antiangiogenic cytokines and their receptors. A significant decrease in the total area occupied by vessels in HU-331-treated tumors was also observed. These data lead us to consider HU-331 to have high potential as a new antiangiogenic and anticancer drug.

  10. Inhibition of Human Vascular NADPH Oxidase by Apocynin Derived Oligophenols

    PubMed Central

    Mora-Pale, Mauricio; Weïwer, Michel; Yu, Jingjing; Linhardt, Robert J.; Dordick, Jonathan S.

    2009-01-01

    Enzymatic oxidation of apocynin, which may mimic in vivo metabolism, affords a large number of oligomers (apocynin oxidation products, AOP) that inhibit vascular NADPH oxidase. In vitro studies of NADPH oxidase activity were performed to identify active inhibitors, resulting in a trimer hydroxylated quinone (IIIHyQ) that inhibited NADPH oxidase with an IC50 = 31 nM. Apocynin itself possessed minimal inhibitory activity. NADPH oxidase is believed to be inhibited through prevention of the interaction between two NADPH oxidase subunits, p47phox and p22phox. To that end, while apocynin was unable to block the interaction of his-tagged p47phox with a surface immobilized biotinalyted p22phox peptide, the IIIHyQ product strongly interfered with this interaction (apparent IC50 = 1.6 μM). These results provide evidence that peroxidase-catalyzed AOP, which consist of oligomeric phenols and quinones, inhibit critical interactions that are involved in the assembly and activation of human vascular NADPH oxidase. PMID:19523836

  11. Vinpocetine suppresses pathological vascular remodeling by inhibiting vascular smooth muscle cell proliferation and migration.

    PubMed

    Cai, Yujun; Knight, Walter E; Guo, Shujie; Li, Jian-Dong; Knight, Peter A; Yan, Chen

    2012-11-01

    Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders.

  12. Vinpocetine Suppresses Pathological Vascular Remodeling by Inhibiting Vascular Smooth Muscle Cell Proliferation and Migration

    PubMed Central

    Cai, Yujun; Knight, Walter E.; Guo, Shujie; Li, Jian-Dong; Knight, Peter A.

    2012-01-01

    Abnormal vascular smooth muscle cell (SMC) activation is associated with various vascular disorders such as atherosclerosis, in-stent restenosis, vein graft disease, and transplantation-associated vasculopathy. Vinpocetine, a derivative of the alkaloid vincamine, has long been used as a cerebral blood flow enhancer for treating cognitive impairment. However, its role in pathological vascular remodeling remains unexplored. Herein, we show that systemic administration of vinpocetine significantly reduced neointimal formation in carotid arteries after ligation injury. Vinpocetine also markedly decreased spontaneous remodeling of human saphenous vein explants in ex vivo culture. In cultured SMCs, vinpocetine dose-dependently suppressed cell proliferation and caused G1-phase cell cycle arrest, which is associated with a decrease in cyclin D1 and an increase in p27Kip1 levels. In addition, vinpocetine dose-dependently inhibited platelet-derived growth factor (PDGF)-stimulated SMC migration as determined by the two-dimensional migration assays and three-dimensional aortic medial explant invasive assay. Moreover, vinpocetine significantly reduced PDGF-induced type I collagen and fibronectin expression. It is noteworthy that PDGF-stimulated phosphorylation of extracellular signal-regulated kinases 1/2 (ERK1/2), but not protein kinase B, was specifically inhibited by vinpocetine. Vinpocetine powerfully attenuated intracellular reactive oxidative species (ROS) production, which largely mediates the inhibitory effects of vinpocetine on ERK1/2 activation and SMC growth. Taken together, our results reveal a novel function of vinpocetine in attenuating neointimal hyperplasia and pathological vascular remodeling, at least partially through suppressing ROS production and ERK1/2 activation in SMCs. Given the safety profile of vinpocetine, this study provides insight into the therapeutic potential of vinpocetine in proliferative vascular disorders. PMID:22915768

  13. Radiosensitization of Human Vascular Endothelial Cells Through Hsp90 Inhibition With 17-N-Allilamino-17-Demethoxygeldanamycin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kabakov, Alexander E.; Makarova, Yulia M.; Malyutina, Yana V.

    Purpose: In addition to invasive tumor cells, endothelial cells (ECs) of the tumor vasculature are an important target for anticancer radiotherapy. The purpose of the present work is to investigate how 17-N-allilamino-17-demethoxygeldanamycin (17AAG), known as an anticancer drug inhibiting heat shock protein 90 (Hsp90), modifies radiation responses of human vascular ECs. Methods and Materials: The ECs cultured from human umbilical veins were exposed to {gamma}-irradiation, whereas some EC samples were pretreated with growth factors and/or 17AAG. Postirradiation cell death/survival and morphogenesis were assessed by means of terminal deoxynucleotidyl transferase biotin-deoxyuridine triphosphate nick end labeling or annexin V staining and clonogenicmore » and tube-formation assays. The 17AAG-affected expression and phosphorylation of radioresistance-related proteins were probed by means of immunoblotting. Dominant negative or constitutively activated Akt was transiently expressed in ECs to manipulate Akt activity. Results: It was found that nanomolar concentrations of 17AAG sensitize ECs to relatively low doses (2-6 Gy) of {gamma}-irradiation and abolish the radioprotective effects of vascular endothelial growth factor and basic fibroblast growth factor. The drug-induced radiosensitization of ECs seems to be caused by prevention of Hsp90-dependent phosphorylation (activation) of Akt that results in blocking the radioprotective phosphatidylinositol 3-kinase/Akt pathway. Conclusions: Clinically achievable concentrations of 17AAG can decrease the radioresistance intrinsic to vascular ECs and minimize the radioprotection conferred upon them by tumor-derived growth factors. These findings characterize 17AAG as a promising radiosensitizer for the tumor vasculature.« less

  14. Optimal dye concentration and irradiance for laser-assisted vascular anastomosis.

    PubMed

    Ren, Zhen; Xie, Hua; Lagerquist, Kathryn A; Burke, Allen; Prahl, Scott; Gregory, Kenton W; Furnary, Anthony P

    2004-04-01

    This investigation was done in order to find optimal indocyanine green (ICG) concentration and energy irradiance in laser vascular welding. Many studies have shown that laser tissue welding with albumin solder/ICG may be an effective technique in surgical reconstruction. However, there are few reports regarding optimal laser settings and concentrations of ICG within the albumin solder in laser-assisted vascular anastomosis. Porcine carotid artery strips (n = 120) were welded in end-to-end by diode laser with 50% albumin solder of 0.01, 0.1, and 1.0 mM ICG at irradiance of 27.7, 56.7, and 76.9 W/cm(2), respectively. Temperature was measured by inserting thermocouples outside and inside the vessel. Tensile strength and histology were studied. Temperature and strength of the anastomosis significantly decreased (all p < 0.05) with increasing ICG concentration at 56.7 W/cm(2). Histological study showed minimal thermal injury limited to adventitia and no appreciable difference between all groups. ICG concentration within solder is the most important factor affecting both vascular temperature and tensile strength. The optimal balance between strength and minimal thermal injury may be achieved primarily at 56.7 W/cm(2) and 0.01 mM ICG.

  15. Urea immunoliposome inhibits human vascular endothelial cell proliferation for hemangioma treatment

    PubMed Central

    2013-01-01

    Background Urea injection has been used in hemangioma treatment as sclerotherapy. It shrinks vascular endothelial cells and induces degeneration, necrosis, and fibrosis. However, this treatment still has disadvantages, such as lacking targeting and difficulty in controlling the urea dosage. Thus, we designed a urea immunoliposome to improve the efficiency of treatment. Methods The urea liposome was prepared by reverse phase evaporation. Furthermore, the urea immunoliposome was generated by coupling the urea liposome with a vascular endothelial growth factor receptor (VEGFR) monoclonal antibody using the glutaraldehyde cross-linking method. The influence of the urea immunoliposome on cultured human hemangioma vascular endothelial cells was observed preliminarily. Results Urea immunoliposomes showed typical liposome morphology under a transmission electron microscope, with an encapsulation percentage of 54.4% and a coupling rate of 36.84% for anti-VEGFR. Treatment with the urea immunoliposome significantly inhibited the proliferation of hemangioma vascular endothelial cells (HVECs) in a time- and dose-dependent manner. Conclusions The urea immunoliposome that we developed distinctly and persistently inhibited the proliferation of HVECs and is expected to be used in clinical hemangioma treatment. PMID:24266957

  16. S1P1 inhibits sprouting angiogenesis during vascular development.

    PubMed

    Ben Shoham, Adi; Malkinson, Guy; Krief, Sharon; Shwartz, Yulia; Ely, Yona; Ferrara, Napoleone; Yaniv, Karina; Zelzer, Elazar

    2012-10-01

    Coordination between the vascular system and forming organs is essential for proper embryonic development. The vasculature expands by sprouting angiogenesis, during which tip cells form filopodia that incorporate into capillary loops. Although several molecules, such as vascular endothelial growth factor A (Vegfa), are known to induce sprouting, the mechanism that terminates this process to ensure neovessel stability is still unknown. Sphingosine-1-phosphate receptor 1 (S1P(1)) has been shown to mediate interaction between endothelial and mural cells during vascular maturation. In vitro studies have identified S1P(1) as a pro-angiogenic factor. Here, we show that S1P(1) acts as an endothelial cell (EC)-autonomous negative regulator of sprouting angiogenesis during vascular development. Severe aberrations in vessel size and excessive sprouting found in limbs of S1P(1)-null mouse embryos before vessel maturation imply a previously unknown, mural cell-independent role for S1P(1) as an anti-angiogenic factor. A similar phenotype observed when S1P(1) expression was blocked specifically in ECs indicates that the effect of S1P(1) on sprouting is EC-autonomous. Comparable vascular abnormalities in S1p(1) knockdown zebrafish embryos suggest cross-species evolutionary conservation of this mechanism. Finally, genetic interaction between S1P(1) and Vegfa suggests that these factors interplay to regulate vascular development, as Vegfa promotes sprouting whereas S1P(1) inhibits it to prevent excessive sprouting and fusion of neovessels. More broadly, because S1P, the ligand of S1P(1), is blood-borne, our findings suggest a new mode of regulation of angiogenesis, whereby blood flow closes a negative feedback loop that inhibits sprouting angiogenesis once the vascular bed is established and functional.

  17. The effects of different schedules of total-body irradiation in heterotopic vascularized bone transplantation. An experimental study in the Lewis rat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonzalez del Pino, J.; Benito, M.; Randolph, M.A.

    1990-12-01

    To evaluate the effects of irradiation on heterotopically placed vascularized knee isografts, a single dose of 10 Gy of total-body irradiation was given to Lewis donor rats. Irradiation was delivered either 2 or 6 days prior to harvesting or subsequent transplantation, and evaluated at 1, 2, and 4 weeks after grafting. Irradiation caused endothelial depopulation of the graft artery, although vascular pedicle patency was maintained throughout the study. Bone graft viability and mineralization were normal. Dramatic changes in the bone marrow were seen that included an increase of its fat content (P less than 0.001), and a concomitant decrease inmore » bone marrow-derived immunocompetent cells. These changes were more prominent in recipients of grafts from day -6 irradiated donor rats. Total-body irradiation did not prejudice the use of vascularized bone grafts, and exhibited an associated immunosuppresant effect over the vascular endothelium and bone marrow. This may be a further rational conditioning procedure to avoid recipient manipulation in vascularized bone allotransplantation.« less

  18. Iron ion irradiation increases promotes adhesion of monocytic cells to arterial vascular endothelium

    NASA Astrophysics Data System (ADS)

    Kucik, Dennis; Khaled, Saman; Gupta, Kiran; Wu, Xing; Yu, Tao; Chang, Polly; Kabarowski, Janusz

    Radiation causes inflammation, and chronic, low-level vascular inflammation is a risk factor for atherosclerosis. Consistent with this, exposure to radiation from a variety of sources is associated with increased risk of heart disease and stroke. Part of the inflammatory response to radiation is a change in the adhesiveness of the endothelial cells that line the blood vessels, triggering inappropriate accumulation of leukocytes, leading to later, damaging effects of inflammation. Although some studies have been done on the effects of gamma irradiation on vascular endothelium, the response of endothelium to heavy ion radiation likely to be encountered in prolonged space flight has not been determined. We investigated how irradiation of aortic endothelial cells with iron ions affects adhesiveness of cultured aortic endothelial cells for monocytic cells and the consequences of this for development of atherosclerosis. Aortic endothelial cells were irradiated with 600 MeV iron ions at Brookhaven National Laboratory and adhesion-related changes were measured. Cells remained viable for at least 72 hours, and were even able to repair acute damage to cell junctions. We found that iron ion irradiation altered expression levels of specific endothelial cell adhesion molecules. Further, these changes had functional consequences. Using a flow chamber adhesion assay to measure adhesion of monocytic cells to endothelial cells under physiological shear stress, we found that adhesivity of vascular endothelium was enhanced in as little as 24 hours after irradiation. Further, the radiation dose dependence was not monotonic, suggesting that it was not simply the result of endothelial cell damage. We also irradiated aortic arches and carotid arteries of Apolipoprotein-E-deficient mice. Histologic analysis of these mice will be conducted to determine whether effects of radiation on endothelial adhesiveness result in consequences for development of atherosclerosis. (Supported by NSBRI

  19. Epigenetic regulation of vascular smooth muscle cell proliferation and neointima formation by histone deacetylase inhibition.

    PubMed

    Findeisen, Hannes M; Gizard, Florence; Zhao, Yue; Qing, Hua; Heywood, Elizabeth B; Jones, Karrie L; Cohn, Dianne; Bruemmer, Dennis

    2011-04-01

    Proliferation of smooth muscle cells (SMC) in response to vascular injury is central to neointimal vascular remodeling. There is accumulating evidence that histone acetylation constitutes a major epigenetic modification for the transcriptional control of proliferative gene expression; however, the physiological role of histone acetylation for proliferative vascular disease remains elusive. In the present study, we investigated the role of histone deacetylase (HDAC) inhibition in SMC proliferation and neointimal remodeling. We demonstrate that mitogens induce transcription of HDAC 1, 2, and 3 in SMC. Short interfering RNA-mediated knockdown of either HDAC 1, 2, or 3 and pharmacological inhibition of HDAC prevented mitogen-induced SMC proliferation. The mechanisms underlying this reduction of SMC proliferation by HDAC inhibition involve a growth arrest in the G(1) phase of the cell cycle that is due to an inhibition of retinoblastoma protein phosphorylation. HDAC inhibition resulted in a transcriptional and posttranscriptional regulation of the cyclin-dependent kinase inhibitors p21(Cip1) and p27(Kip). Furthermore, HDAC inhibition repressed mitogen-induced cyclin D1 mRNA expression and cyclin D1 promoter activity. As a result of this differential cell cycle-regulatory gene expression by HDAC inhibition, the retinoblastoma protein retains a transcriptional repression of its downstream target genes required for S phase entry. Finally, we provide evidence that these observations are applicable in vivo by demonstrating that HDAC inhibition decreased neointima formation and expression of cyclin D1 in a murine model of vascular injury. These findings identify HDAC as a critical component of a transcriptional cascade regulating SMC proliferation and suggest that HDAC might play a pivotal role in the development of proliferative vascular diseases, including atherosclerosis and in-stent restenosis.

  20. Epigenetic Regulation of Vascular Smooth Muscle Cell Proliferation and Neointima Formation by Histone Deacetylase Inhibition

    PubMed Central

    Findeisen, Hannes M.; Gizard, Florence; Zhao, Yue; Qing, Hua; Heywood, Elizabeth B.; Jones, Karrie L.; Cohn, Dianne; Bruemmer, Dennis

    2011-01-01

    Objective Proliferation of smooth muscle cells (SMC) in response to vascular injury is central to neointimal vascular remodeling. There is accumulating evidence that histone acetylation constitutes a major epigenetic modification for the transcriptional control of proliferative gene expression; however, the physiological role of histone acetylation for proliferative vascular disease remains elusive. Methods and Results In the present study, we investigated the role of histone deacetylase (HDAC) inhibition in SMC proliferation and neointimal remodeling. We demonstrate that mitogens induce transcription of HDAC 1, 2 and 3 in SMC. siRNA-mediated knock-down of either HDAC 1, 2 or 3 and pharmacologic inhibition of HDAC prevented mitogen-induced SMC proliferation. The mechanisms underlying this reduction of SMC proliferation by HDAC inhibition involve a growth arrest in the G1-phase of the cell cycle due to an inhibition of retinoblastoma protein phosphorylation. HDAC inhibition resulted in a transcriptional and posttranscriptional regulation of the cyclin-dependent kinase inhibitors p21Cip1 and p27Kip. Furthermore, HDAC inhibition repressed mitogen-induced cyclin D1 mRNA expression and cyclin D1 promoter activity. As a result of this differential cell cycle-regulatory gene expression by HDAC inhibition, the retinoblastoma protein retains a transcriptional repression of its downstream target genes required for S phase entry. Finally, we provide evidence that these observations are applicable in vivo by demonstrating that HDAC inhibition decreased neointima formation and expression of cyclin D1 in a murine model of vascular injury. Conclusion These findings identify HDAC as a critical component of a transcriptional cascade regulating SMC proliferation and suggest that HDAC might play a pivotal role in the development of proliferative vascular diseases, including atherosclerosis and in-stent restenosis. PMID:21233448

  1. Synchrotron microbeam irradiation induces neutrophil infiltration, thrombocyte attachment and selective vascular damage in vivo

    PubMed Central

    Brönnimann, Daniel; Bouchet, Audrey; Schneider, Christoph; Potez, Marine; Serduc, Raphaël; Bräuer-Krisch, Elke; Graber, Werner; von Gunten, Stephan; Laissue, Jean Albert; Djonov, Valentin

    2016-01-01

    Our goal was the visualizing the vascular damage and acute inflammatory response to micro- and minibeam irradiation in vivo. Microbeam (MRT) and minibeam radiation therapies (MBRT) are tumor treatment approaches of potential clinical relevance, both consisting of parallel X-ray beams and allowing the delivery of thousands of Grays within tumors. We compared the effects of microbeams (25–100 μm wide) and minibeams (200–800 μm wide) on vasculature, inflammation and surrounding tissue changes during zebrafish caudal fin regeneration in vivo. Microbeam irradiation triggered an acute inflammatory response restricted to the regenerating tissue. Six hours post irradiation (6 hpi), it was infiltrated by neutrophils and fli1a+ thrombocytes adhered to the cell wall locally in the beam path. The mature tissue was not affected by microbeam irradiation. In contrast, minibeam irradiation efficiently damaged the immature tissue at 6 hpi and damaged both the mature and immature tissue at 48 hpi. We demonstrate that vascular damage, inflammatory processes and cellular toxicity depend on the beam width and the stage of tissue maturation. Minibeam irradiation did not differentiate between mature and immature tissue. In contrast, all irradiation-induced effects of the microbeams were restricted to the rapidly growing immature tissue, indicating that microbeam irradiation could be a promising tumor treatment tool. PMID:27640676

  2. Synchrotron microbeam irradiation induces neutrophil infiltration, thrombocyte attachment and selective vascular damage in vivo.

    PubMed

    Brönnimann, Daniel; Bouchet, Audrey; Schneider, Christoph; Potez, Marine; Serduc, Raphaël; Bräuer-Krisch, Elke; Graber, Werner; von Gunten, Stephan; Laissue, Jean Albert; Djonov, Valentin

    2016-09-19

    Our goal was the visualizing the vascular damage and acute inflammatory response to micro- and minibeam irradiation in vivo. Microbeam (MRT) and minibeam radiation therapies (MBRT) are tumor treatment approaches of potential clinical relevance, both consisting of parallel X-ray beams and allowing the delivery of thousands of Grays within tumors. We compared the effects of microbeams (25-100 μm wide) and minibeams (200-800 μm wide) on vasculature, inflammation and surrounding tissue changes during zebrafish caudal fin regeneration in vivo. Microbeam irradiation triggered an acute inflammatory response restricted to the regenerating tissue. Six hours post irradiation (6 hpi), it was infiltrated by neutrophils and fli1a(+) thrombocytes adhered to the cell wall locally in the beam path. The mature tissue was not affected by microbeam irradiation. In contrast, minibeam irradiation efficiently damaged the immature tissue at 6 hpi and damaged both the mature and immature tissue at 48 hpi. We demonstrate that vascular damage, inflammatory processes and cellular toxicity depend on the beam width and the stage of tissue maturation. Minibeam irradiation did not differentiate between mature and immature tissue. In contrast, all irradiation-induced effects of the microbeams were restricted to the rapidly growing immature tissue, indicating that microbeam irradiation could be a promising tumor treatment tool.

  3. Inhibition of coronary blood flow by a vascular waterfall mechanism.

    PubMed

    Downey, J M; Kirk, E S

    1975-06-01

    The mechanism whereby systole inhibits coronary blood flow was examined. A branch of the left coronary artery was maximally dilated with an adenosine infusion, and the pressure-flow relationship was obtained for beating and arrested states. The pressure-flow curve for the arrested state was shifted toward higher pressures and in the range of pressures above peak ventricular pressure was linear and parallel to that for the arrested state. Below this range the curve for the beating state converged toward that for the arrested state and was convex to the pressure axis. These results were compared with a model of the coronary vasculature that consisted of numerous parallel channels, each responding to local intramyocardial pressure by forming vascular waterfalls. When intramyocardial pressure in the model was assigned values from zero at the epicardium to peak ventricular pressure at the endocardium, pressure-flow curves similar to the experimental ones resulted. Thus, we conclude that systole inhibits coronary perfusion by the formation of vascular waterfalls and that the intramyocardial pressures responsible for this inhibition do not significantly exceed peak ventricular pressure.

  4. Blood vessel damage correlated with irradiance for in vivo vascular targeted photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Zhang, Jinde; Tan, Zou; Niu, Xiangyu; Lin, Linsheng; Lin, Huiyun; Li, Buhong

    2016-10-01

    Vascular targeted photodynamic therapy (V-PDT) has been widely utilized for the prevention or treatment of vascular-related diseases, including age-related macular degeneration, port-wine stains and prostate cancer. In order to quantitative assessment the blood vessel damage during V-PDT, nude mice were implanted with Titanium dorsal skin window chambers for in vivo V-PDT studies. For treatments, various irradiances including 50, 75, 100 and 200 mW/cm2 provided by a 532 nm semiconductor laser were performed with the same total light dose of 30 J/cm2 after the mice were intravenously injection of Rose Bengal for 25 mg/Kg body weight. Laser speckle imaging and microscope were used to monitor blood flow dynamics and vessel constriction during and after V-PDT, respectively. The V-PDT induced vessel damages between different groups were compared. The results show that significant difference in blood vessel damage was found between the lower irradiances (50, 75 and 100 mW/cm2) and higher irradiance (200 mW/cm2), and the blood vessel damage induced by V-PDT is positively correlated with irradiance. This study implies that the optimization of irradiance is required for enhancing V-PDT therapeutic efficiency.

  5. Treatment with pyrophosphate inhibits uremic vascular calcification

    PubMed Central

    O’Neill, W. Charles; Lomashvili, Koba A.; Malluche, Hartmut H.; Faugere, Marie-Claude; Riser, Bruce L.

    2011-01-01

    Pyrophosphate, which may be deficient in advanced renal failure, is a potent inhibitor of vascular calcification. To explore its use as a potential therapeutic, we injected exogenous pyrophosphate subcutaneously or intraperitoneally in normal rats and found that their plasma pyrophosphate concentrations peaked within 15 min. There was a single exponential decay with a half-life of 33 min. The kinetics were indistinguishable between the two routes of administration or in anephric rats. The effect of daily intraperitoneal pyrophosphate injections on uremic vascular calcification was then tested in rats fed a high-phosphate diet containing adenine for 28 days to induce uremia. Although the incidence of aortic calcification varied and was not altered by pyrophosphate, the calcium content of calcified aortas was significantly reduced by 70%. Studies were repeated in uremic rats given calcitriol to produce more consistent aortic calcification and treated with sodium pyrophosphate delivered intraperitoneally in a larger volume of glucose-containing solution to prolong plasma pyrophosphate levels. This maneuver significantly reduced both the incidence and amount of calcification. Quantitative histomorphometry of bone samples after double-labeling with calcein indicated that there was no effect of pyrophosphate on the rates of bone formation or mineralization. Thus, exogenous pyrophosphate can inhibit uremic vascular calcification without producing adverse effects on bone. PMID:21124302

  6. Treatment with pyrophosphate inhibits uremic vascular calcification.

    PubMed

    O'Neill, W Charles; Lomashvili, Koba A; Malluche, Hartmut H; Faugere, Marie-Claude; Riser, Bruce L

    2011-03-01

    Pyrophosphate, which may be deficient in advanced renal failure, is a potent inhibitor of vascular calcification. To explore its use as a potential therapeutic, we injected exogenous pyrophosphate subcutaneously or intraperitoneally in normal rats and found that their plasma pyrophosphate concentrations peaked within 15 min. There was a single exponential decay with a half-life of 33 min. The kinetics were indistinguishable between the two routes of administration or in anephric rats. The effect of daily intraperitoneal pyrophosphate injections on uremic vascular calcification was then tested in rats fed a high-phosphate diet containing adenine for 28 days to induce uremia. Although the incidence of aortic calcification varied and was not altered by pyrophosphate, the calcium content of calcified aortas was significantly reduced by 70%. Studies were repeated in uremic rats given calcitriol to produce more consistent aortic calcification and treated with sodium pyrophosphate delivered intraperitoneally in a larger volume of glucose-containing solution to prolong plasma pyrophosphate levels. This maneuver significantly reduced both the incidence and amount of calcification. Quantitative histomorphometry of bone samples after double-labeling with calcein indicated that there was no effect of pyrophosphate on the rates of bone formation or mineralization. Thus, exogenous pyrophosphate can inhibit uremic vascular calcification without producing adverse effects on bone.

  7. Febuxostat Inhibition of Endothelial-Bound XO: Implications for Targeting Vascular ROS Production

    PubMed Central

    Malik, Umair Z.; Hundley, Nicholas J.; Romero, Guillermo; Radi, Rafael; Freeman, Bruce A.; Tarpey, Margaret M.; Kelley, Eric E.

    2011-01-01

    Xanthine oxidase (XO) is a critical source of reactive oxygen species (ROS) that contribute to vascular inflammation. Binding of XO to vascular endothelial cell glycosaminoglycans (GAGs) results in significant resistance to inhibition by traditional pyrazolopyrimidine-based inhibitors such as allopurinol. Therefore, we compared the extent of XO inhibition (free and GAG-bound) by allopurinol to febuxostat, a newly approved nonpurine XO-specific inhibitor. In solution, febuxostat was 1000 fold more potent than allopurinol inhibition of XO-dependent uric acid formation (IC50 = 1.8 nM vs. 2.9 μM). Association of XO with heparin-Sepharose 6B (HS6B-XO) had minimal effect on inhibition of uric acid formation by febuxostat (IC50 = 4.4 nM) while further limiting the effect of allopurinol (IC50 = 64 μM). Kinetic analysis of febuxostat inhibition revealed Ki values of 0.96 nM (free) and 0.92 nM (HS6B-XO), confirming equivalent inhibition for both free and GAG-immobilized enzyme. When XO was bound to endothelial cell GAGs, complete enzyme inhibition was observed with 25 nM febuxostat, while no more than 80% inhibition was seen with either allopurinol or oxypurinol, even at concentrations above those tolerated clinically. The superior potency for inhibition of endothelium-associated XO is predictive of a significant role for febuxostat in investigating pathological states where XO-derived ROS are contributive and traditional XO inhibitors are only slightly effective. PMID:21554948

  8. HZE ⁵⁶Fe-ion irradiation induces endothelial dysfunction in rat aorta: role of xanthine oxidase.

    PubMed

    Soucy, Kevin G; Lim, Hyun Kyo; Kim, Jae Hyung; Oh, Young; Attarzadeh, David O; Sevinc, Baris; Kuo, Maggie M; Shoukas, Artin A; Vazquez, Marcelo E; Berkowitz, Dan E

    2011-10-01

    Ionizing radiation has been implicated in the development of significant cardiovascular complications. Since radiation exposure is associated with space exploration, astronauts are potentially at increased risk of accelerated cardiovascular disease. This study investigated the effect of high atomic number, high-energy (HZE) iron-ion radiation on vascular and endothelial function as a model of space radiation. Rats were exposed to a single whole-body dose of iron-ion radiation at doses of 0, 0.5 or 1 Gy. In vivo aortic stiffness and ex vivo aortic tension responses were measured 6 and 8 months after exposure as indicators of chronic vascular injury. Rats exposed to 1 Gy iron ions demonstrated significantly increased aortic stiffness, as measured by pulse wave velocity. Aortic rings from irradiated rats exhibited impaired endothelial-dependent relaxation consistent with endothelial dysfunction. Acute xanthine oxidase (XO) inhibition or reactive oxygen species (ROS) scavenging restored endothelial-dependent responses to normal. In addition, XO activity was significantly elevated in rat aorta 4 months after whole-body irradiation. Furthermore, XO inhibition, initiated immediately after radiation exposure and continued until euthanasia, completely inhibited radiation-dependent XO activation. ROS production was elevated after 1 Gy irradiation while production of nitric oxide (NO) was significantly impaired. XO inhibition restored NO and ROS production. Finally, dietary XO inhibition preserved normal endothelial function and vascular stiffness after radiation exposure. These results demonstrate that radiation induced XO-dependent ROS production and nitroso-redox imbalance, leading to chronic vascular dysfunction. As a result, XO is a potential target for radioprotection. Enhancing the understanding of vascular radiation injury could lead to the development of effective methods to ameliorate radiation-induced vascular damage.

  9. New insight into mitochondrial changes in vascular endothelial cells irradiated by gamma ray.

    PubMed

    Hu, Shunying; Gao, Yajing; Zhou, Hao; Kong, Fanxuan; Xiao, Fengjun; Zhou, Pingkun; Chen, Yundai

    2017-05-01

    To investigate alterations of mitochondria in irradiated endothelial cells to further elucidate the mechanism underlying radiation-induced heart disease. Experiments were performed using human umbilical vein endothelial cells (HUVECs). HUVECs were irradiated with single gamma ray dose of 0, 5, 10 and 20 Gy, respectively. Apoptosis was assessed by flow cytometry at 24, 48 and 72 h post-irradiation, respectively. The intracellular reactive oxygen species (ROS) was measured with 2',7'-dichlorofluorescein-diacetate (DCFH-DA) at 24 h post-irradiation. Mitochondrial membrane potential (ΔΨm) by JC-1 and the opening of mitochondrial permeability transition pore (mPTP) by a calcein-cobalt quenching method were detected at 24 h post-irradiation in order to measure changes of mitochondria induced by gamma ray irradiation. Gamma ray irradiation increased HUVECs apoptosis in a dose-dependent and time-dependent manner. Irradiation also promoted ROS production in HUVECs in a dose-dependent manner. At 24 h post-irradiation, the results showed that irradiation decreases ΔΨm, however, paradoxically, flow cytometry showed green fluorescence instensity higher in irradiated HUVECs than in control HUVECs in an irradiation dose-dependent manner which indicated gamma ray irradiation inhibited mPTP opening in HUVECs. Gamma ray irradiation induces apoptosis and ROS production of endothelial cells, and decreases ΔΨm meanwhile contradictorily inhibiting the opening of mPTP.

  10. MicroRNA-24 regulates vascular remodeling via inhibiting PDGF-BB pathway in diabetic rat model.

    PubMed

    Yang, Jian; Zeng, Ping; Yang, Jun; Liu, Xiaowen; Ding, Jiawang; Wang, Huibo; Chen, Lihua

    2018-06-15

    Hyperglycemia is the high risk factor of vascular remodeling induced by angioplasty, and neointimal hyperplasia is strongly implicated in the pathogenesis of vascular remodeling caused by carotid artery balloon injury. Studies have shown that MicroRNA 24 (miR-24) plays an important role in angiocardiopathy, However, the role of miR-24 is far from thorough research. In this study, we investigate whether up-regulation of miR-24 by using miR-24 recombinant adenovirus (Ad-miR-24-GFP) can inhibit PDGF-BB signaling pathway and attenuate vascular remodeling in the diabetic rat model. Male Sprague-Dawley rats (n = 60) were randomly divided into 5 groups and fed with high sugar and high fat diet (Sham, Saline, Scramble, Ad-miR-24 groups), or ordinary diet (Control group). The front four groups were treated with streptozotocin (STZ) four weeks later and the blood glucose level was closely monitored. After the successful establishment of diabetic rats, the external carotid artery was injured by pressuring balloon 1.5 after internal carotid artery ligation, then the blood vessels were harvested 14 days later and indexes were detected including the following: HE staining for the level of vascular intima thickness, immunohistochemical detection for PCNA and P27 to test the proliferative degree of vascular smooth muscle cells (VSMCs), qRT-PCR for the level of miR-24, RAS,PDGF-R, western blot for the protein levels of JNK1/2, p- JNK1/2, ERK1/2, p-ERK1/2, RAS, PDGF-R, AP-1,P27 and PCNA. Serological detection was conducted for TNF-α, IL-6, IL-8. The delivery of Ad-miR-24 into balloon injury site has significantly increased the level of miR-24. Up-regulation of miR-24 could regulate vascular remodeling effectively, lower the level of inflammatory factors, inhibit the expression of mRNA and protein levels of JNK1/2, ERK1/2, RAS, PDGF-R, AP-1, P27, PCNA. miR-24 can inhibit the expression of AP-1 via the inhibition of PDGF-BB signaling pathway, thus inhibit VSMCs proliferation

  11. Inhibition of intimal thickening after vascular injury with a cocktail of vascular endothelial growth factor and cyclic Arg-Gly-Asp peptide.

    PubMed

    Li, Yue; McRobb, Lucinda S; Khachigian, Levon M

    2016-10-01

    Percutaneous coronary intervention is widely used for the treatment of coronary artery disease; however, significant challenges such as restenosis remain. Key to solving these problems is to inhibit smooth muscle cell activation while enhancing re-endothelialization. Early growth response-1 (Egr-1) is a transcription factor that regulates vascular smooth muscle cell (SMC) proliferation and migration through its control of an array of downstream genes. A "cocktail" of vascular endothelial growth factor (VEGF)-A, VEGF-D and cyclic RGD was tested for its ability to inhibit neointima formation and accelerate re-endothelialization following balloon injury to carotid arteries of rats. In vitro, the cocktail stimulated endothelial cell growth yet inhibited smooth muscle cell growth. In vivo, cocktail-treated injured arteries exhibited reduced intimal thickening by >50% (P<0.05). It increased both re-endothelialization and endothelial nitric oxide synthase (NOS) expression. Cocktail reduced Egr-1 expression, an effect blocked by the NOS inhibitor L-N(G)-nitroarginine methyl ester (L-NAME) that also prevented cocktail inhibition of neointima inhibition. This combination may potentially be useful for the treatment of restenosis with concomitant stimulation of revascularization. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Gold Nanoparticles and Microwave Irradiation Inhibit Beta-Amyloid Amyloidogenesis

    NASA Astrophysics Data System (ADS)

    Araya, Eyleen; Olmedo, Ivonne; Bastus, Neus G.; Guerrero, Simón; Puntes, Víctor F.; Giralt, Ernest; Kogan, Marcelo J.

    2008-11-01

    Peptide-Gold nanoparticles selectively attached to β-amyloid protein (Aβ) amyloidogenic aggregates were irradiated with microwave. This treatment produces dramatic effects on the Aβ aggregates, inhibiting both the amyloidogenesis and the restoration of the amyloidogenic potential. This novel approach offers a new strategy to inhibit, locally and remotely, the amyloidogenic process, which could have application in Alzheimer’s disease therapy. We have studied the irradiation effect on the amyloidogenic process in the presence of conjugates peptide-nanoparticle by transmission electronic microscopy observations and by Thioflavine T assays to quantify the amount of fibrils in suspension. The amyloidogenic aggregates rather than the amyloid fibrils seem to be better targets for the treatment of the disease. Our results could contribute to the development of a new therapeutic strategy to inhibit the amyloidogenic process in Alzheimer’s disease.

  13. Wnt inhibition promotes vascular specification of embryonic cardiac progenitors

    PubMed Central

    Reichman, David E.; Park, Laura; Man, Limor; Redmond, David; Chao, Kenny; Harvey, Richard P.; Taketo, Makoto M.; Rosenwaks, Zev

    2018-01-01

    ABSTRACT Several studies have demonstrated a multiphasic role for Wnt signaling during embryonic cardiogenesis and developed protocols that enrich for cardiac derivatives during in vitro differentiation of human pluripotent stem cells (hPSCs). However, few studies have investigated the role of Wnt signaling in the specification of cardiac progenitor cells (CPCs) toward downstream fates. Using transgenic mice and hPSCs, we tracked endothelial cells (ECs) that originated from CPCs expressing NKX2.5. Analysis of EC-fated CPCs at discrete phenotypic milestones during hPSC differentiation identified reduced Wnt activity as a hallmark of EC specification, and the enforced activation or inhibition of Wnt reduced or increased, respectively, the degree of vascular commitment within the CPC population during both hPSC differentiation and mouse embryogenesis. Wnt5a, which has been shown to exert an inhibitory influence on Wnt signaling during cardiac development, was dynamically expressed during vascular commitment of hPSC-derived CPCs, and ectopic Wnt5a promoted vascular specification of hPSC-derived and mouse embryonic CPCs. PMID:29217753

  14. Early changes in vascular reactivity in response to 56Fe irradiation in ApoE-/- mice

    NASA Astrophysics Data System (ADS)

    White, C. Roger; Yu, Tao; Gupta, Kiran; Babitz, Stephen K.; Black, Leland L.; Kabarowski, Janusz H.; Kucik, Dennis F.

    2015-03-01

    Epidemiological studies have established that radiation from a number of terrestrial sources increases the risk of atherosclerosis. The accelerated heavy ions in the galacto-cosmic radiation (GCR) that astronauts will encounter on in space, however, interact very differently with tissues than most types of terrestrial radiation, so the health consequences of exposure on deep-space missions are not clear. We demonstrated earlier that 56Fe, an important component of cosmic radiation, accelerates atherosclerotic plaque development. In the present study, we examined an earlier, pro-atherogenic event that might be predictive of later atherosclerotic disease. Decreased endothelium-dependent vasodilation is a prominent manifestation of vascular dysfunction that is thought to predispose humans to the development of structural vascular changes that precede the development of atherosclerotic plaques. To test the effect of heavy-ion radiation on endothelium-dependent vasodilation, we used the same ApoE-/- mouse model in which we previously demonstrated the pro-atherogenic effect of 56Fe on plaque development. Ten week old male ApoE mice (an age at which there is little atherosclerotic plaque in the descending aorta) were exposed to 2.6 Gy 56Fe. The mice were then fed a normal diet and housed under standard conditions. At 4-5 weeks post-irradiation, aortic rings were isolated and endothelial-dependent relaxation was measured. Relaxation in response to acetylcholine was significantly impaired in irradiated mice compared to age-matched, un-irradiated mice. This decrease in vascular reactivity following 56Fe irradiation occurred eight weeks prior to the development of statistically significant exacerbation of aortic plaque formation and may contribute to the formation of later atherosclerotic lesions.

  15. Developmental inhibition of gamma irradiation on the peach fruit moth Carposina sasakii (Lepidoptera: Carposinidae)

    NASA Astrophysics Data System (ADS)

    Ryu, Jihoon; Ahn, Jun-Young; Sik Lee, Seung; Lee, Ju-Woon; Lee, Kyeong-Yeoll

    2015-01-01

    Ionizing irradiation is a useful technique for disinfestation under plant quarantine as well as post-harvest management. Effects of gamma irradiation treatment were tested on different developmental events of Carposina sasakii, which is a serious pest of various orchard crops. Apple fruits infested by C. sasakii were irradiated by gamma rays ranging from 0 to 300 Gy. Inhibition rates were determined on behavioral events related to development, including larval exit from apples, cocoon formation, adult eclosion, and oviposition. Failure rates of all these developmental events increased with increasing doses of irradiation. Rates of larval exit from apples and cocoon formation decreased to 13.2% and 1.7%, respectively, at 300 Gy. However, the adult eclosion rate decreased to 5.4% at 100 Gy and was completely inhibited at doses greater than 150 Gy. LD99 values for the inhibition of cocoon formation and adult emergence was estimated into 313.4 and 191.0 Gy. Furthermore, adults developed from irradiated larvae completely failed to lay eggs. Thus, irradiation of infested apples at doses of 200 Gy and higher completely inhibited the next generation of C. sasakii. Our results suggest that gamma irradiation treatment would be a promising technique for the control of C. sasakii.

  16. In Vivo Imaging Reveals Significant Tumor Vascular Dysfunction and Increased Tumor Hypoxia-Inducible Factor-1α Expression Induced by High Single-Dose Irradiation in a Pancreatic Tumor Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeda, Azusa; Department of Medical Biophysics, University of Toronto, Toronto, Ontario; Chen, Yonghong

    Purpose: To investigate the effect of high-dose irradiation on pancreatic tumor vasculature and microenvironment using in vivo imaging techniques. Methods and Materials: A BxPC3 pancreatic tumor xenograft was established in a dorsal skinfold window chamber model and a subcutaneous hind leg model. Tumors were irradiated with a single dose of 4, 12, or 24 Gy. The dorsal skinfold window chamber model was used to assess tumor response, vascular function and permeability, platelet and leukocyte adhesion to the vascular endothelium, and tumor hypoxia for up to 14 days after 24-Gy irradiation. The hind leg model was used to monitor tumor size, hypoxia, and vascularitymore » for up to 65 days after 24-Gy irradiation. Tumors were assessed histologically to validate in vivo observations. Results: In vivo fluorescence imaging revealed temporary vascular dysfunction in tumors irradiated with a single dose of 4 to 24 Gy, but most significantly with a single dose of 24 Gy. Vascular functional recovery was observed by 14 days after irradiation in a dose-dependent manner. Furthermore, irradiation with 24 Gy caused platelet and leukocyte adhesion to the vascular endothelium within hours to days after irradiation. Vascular permeability was significantly higher in irradiated tumors compared with nonirradiated controls 14 days after irradiation. This observation corresponded with increased expression of hypoxia-inducible factor-1α in irradiated tumors. In the hind leg model, irradiation with a single dose of 24 Gy led to tumor growth delay, followed by tumor regrowth. Conclusions: Irradiation of the BxPC3 tumors with a single dose of 24 Gy caused transient vascular dysfunction and increased expression of hypoxia-inducible factor-1α. Such biological changes may impact tumor response to high single-dose and hypofractionated irradiation, and further investigations are needed to better understand the clinical outcomes of stereotactic body radiation therapy.« less

  17. Amlodipine Inhibits Vascular Cell Senescence and Protects Against Atherogenesis Through the Mechanism Independent of Calcium Channel Blockade.

    PubMed

    Kayamori, Hiromi; Shimizu, Ippei; Yoshida, Yohko; Hayashi, Yuka; Suda, Masayoshi; Ikegami, Ryutaro; Katsuumi, Goro; Wakasugi, Takayuki; Minamino, Tohru

    2018-05-30

    Vascular cells have a finite lifespan and eventually enter irreversible growth arrest called cellular senescence. We have previously suggested that vascular cell senescence contributes to the pathogenesis of human atherosclerosis. Amlodipine is a mixture of two enantiomers, one of which (S- enantiomer) has L-type channel blocking activity, while the other (R+ enantiomer) shows ~1000-fold weaker channel blocking activity than S- enantiomer and has other unknown effects. It has been reported that amlodipine inhibits the progression of atherosclerosis in humans, but the molecular mechanism of this beneficial effect remains unknown. Apolipoprotein E-deficient mice on a high-fat diet were treated with amlodipine, its R+ enantiomer or vehicle for eight weeks. Compared with vehicle treatment, both amlodipine and the R+ enantiomer significantly reduced the number of senescent vascular cells and inhibited plaque formation to a similar extent. Expression of the pro-inflammatory molecule interleukin-1β was markedly upregulated in vehicle-treated mice, but was inhibited to a similar extent by treatment with amlodipine or the R+ enantiomer. Likewise, activation of p53 (a critical inducer of senescence) was markedly suppressed by treatment with amlodipine or the R+ enantiomer. These results suggest that amlodipine inhibits vascular cell senescence and protects against atherogenesis at least partly by a mechanism that is independent of calcium channel blockade.

  18. Inhibition of EGFR nuclear shuttling decreases irradiation resistance in HeLa cells.

    PubMed

    Wei, Hong; Zhu, Zijie; Lu, Longtao

    2017-01-01

    Cervical cancer is a leading cause of mortality in women worldwide. The resistance to irradiation at the advanced stage is the main reason for the poor prognosis and high mortality. This work aims to elucidate the molecular mechanism underlying the radio-resistance. In this study, we determined the pEGFR-T654 and pDNA-PK-T2609 expression level changes in irradiated HeLa cells treated with T654 peptide, a nuclear localization signal (NLS) inhibitor, to inhibit EGFR nuclear transport. Cell viability, cell cycle and migratory capacity were analyzed. Xenograft animal model was used to evaluate the effect of EGFR nuclear transport inhibition on the tumor growth in vivo. The enhanced translocation of nuclear EGFR in the irradiated HeLa cells correlated with the increasing level of pEGFR-T654 and pDNA-PK-T2609. Inhibition of EGFR nuclear translocation by NLS peptide inhibitor attenuated DNA damage repair in the irradiated HeLa cells, decreased cell viability and promoted cell death through arrest at G0 phase. NLS peptide inhibitor impaired the migratory capacity of irradiated HeLa cells, and negatively affected tumorigenesis in xenograft mice. This work puts forward a potential molecular mechanism of the irradiation resistance in cervical cancer cells, providing a promising direction towards an efficient therapy of cervical cancer.

  19. Inhibition of FOXO1/3 promotes vascular calcification.

    PubMed

    Deng, Liang; Huang, Lu; Sun, Yong; Heath, Jack M; Wu, Hui; Chen, Yabing

    2015-01-01

    Vascular calcification is a characteristic feature of atherosclerosis, diabetes mellitus, and end-stage renal disease. We have demonstrated that activation of protein kinase B (AKT) upregulates runt-related transcription factor 2 (Runx2), a key osteogenic transcription factor that is crucial for calcification of vascular smooth muscle cells (VSMC). Using mice with SMC-specific deletion of phosphatase and tensin homolog (PTEN), a major negative regulator of AKT, the present studies uncovered a novel molecular mechanism underlying PTEN/AKT/FOXO (forkhead box O)-mediated Runx2 upregulation and VSMC calcification. SMC-specific PTEN deletion mice were generated by crossing PTEN floxed mice with SM22α-Cre transgenic mice. The PTEN deletion resulted in sustained activation of AKT that upregulated Runx2 and promoted VSMC calcification in vitro and arterial calcification ex vivo. Runx2 knockdown did not affect proliferation but blocked calcification of the PTEN-deficient VSMC, suggesting that PTEN deletion promotes Runx2-depedent VSMC calcification that is independent of proliferation. At the molecular level, PTEN deficiency increased the amount of Runx2 post-transcriptionally by inhibiting Runx2 ubiquitination. AKT activation increased phosphorylation of FOXO1/3 that led to nuclear exclusion of FOXO1/3. FOXO1/3 knockdown in VSMC phenocopied the PTEN deficiency, demonstrating a novel function of FOXO1/3, as a downstream signaling of PTEN/AKT, in regulating Runx2 ubiquitination and VSMC calcification. Using heterozygous SMC-specific PTEN-deficient mice and atherogenic ApoE(-/-) mice, we further demonstrated AKT activation, FOXO phosphorylation, and Runx2 ubiquitination in vascular calcification in vivo. Our studies have determined a new causative effect of SMC-specific PTEN deficiency on vascular calcification and demonstrated that FOXO1/3 plays a crucial role in PTEN/AKT-modulated Runx2 ubiquitination and VSMC calcification. © 2014 American Heart Association, Inc.

  20. Very low dose gamma irradiation stimulates gaseous exchange and carboxylation efficiency, but inhibits vascular sap flow in groundnut (Arachis hypogaea L.).

    PubMed

    Ahuja, Sumedha; Singh, Bhupinder; Gupta, Vijay Kumar; Singhal, R K; Venu Babu, P

    2014-02-01

    An experiment was carried out to determine the effect of low dose gamma radiation on germination, plant growth, nitrogen and carbon fixation and carbon flow and release characteristics of groundnut. Dry seeds of groundnut variety Trombay groundnut 37A (TG 37A), a radio mutant type developed by Bhabha Atomic Research Centre (BARC), Mumbai, India, were subjected to the pre-sowing treatment of gamma radiation within low to high dose physiological range, i.e., 0.0, 0.0082, 0.0164. 0.0328, 0.0656, 0.1312, 5, 25, 100, 500 Gray (Gy) from a cobalt source ((60)Co). Observations were recorded for the radiation effect on percentage germination, vigour, gas exchange attributes such as photosynthetic rate, stomatal conductance and transpiration rate, chlorophyll content, root exudation in terms of (14)C release, vascular sap flow rate and activities of rate defining carbon and nitrogen assimilating enzymes such as ribulose-1,5-bisphosphate carboxylase (rubisco) and nitrate reductase (NR). Seed germination was increased by 10-25% at the lower doses up to 5 Gy while the improvement in plant vigour in the same dose range was much higher (22-84%) than the unirradiated control. For radiation exposure above 5 Gy, a dose-dependent decline in germination and plant vigour was measured. No significant effect was observed on the photosynthesis at radiation exposure below 5 Gy but above 5 Gy dose there was a decline in the photosynthetic rate. Stomatal conductance and transpiration rate, however, were only inhibited at a high dose of 500 Gy. Leaf rubisco activity and NR activities remained unaffected at all the investigated doses of gamma irradiation. Mean root exudation and sap flow rate of the irradiated plants, irrespective of the dose, was reduced over the unirradiated control more so in a dose-dependent manner. Results indicated that a very low dose of gamma radiation, in centigray to gray range, did not pose any threat and in fact stimulated metabolic functions in such a way to aid

  1. Direct endothelial junction restoration results in significant tumor vascular normalization and metastasis inhibition in mice

    PubMed Central

    Agrawal, Vijayendra; Maharjan, Sony; Kim, Kyeojin; Kim, Nam-Jung; Son, Jimin; Lee, Keunho; Choi, Hyun-Jung; Rho, Seung-Sik; Ahn, Sunjoo; Won, Moo-Ho; Ha, Sang-Jun; Koh, Gou Young; Kim, Young-Myeong; Suh, Young-Ger; Kwon, Young-Guen

    2014-01-01

    Tumor blood vessels are leaky and immature, which causes inadequate blood supply to tumor tissues resulting in hypoxic microenvironment and promotes metastasis. Here we have explored tumor vessel modulating activity of Sac-1004, a recently developed molecule in our lab, which directly potentiates VE-cadherin-mediated endothelial cell junction. Sac-1004 could enhance vascular junction integrity in tumor vessels and thereby inhibit vascular leakage and enhance vascular perfusion. Improved perfusion enabled Sac-1004 to have synergistic anti-tumor effect on cisplatin-mediated apoptosis of tumor cells. Interestingly, characteristics of normalized blood vessels namely reduced hypoxia, improved pericyte coverage and decreased basement membrane thickness were readily observed in tumors treated with Sac-1004. Remarkably, Sac-1004 was also able to inhibit lung and lymph node metastasis in MMTV and B16BL6 tumor models. This was in correlation with a reduction in epithelial-to-mesenchymal transition of tumor cells with considerable diminution in expression of related transcription factors. Moreover, cancer stem cell population dropped substantially in Sac-1004 treated tumor tissues. Taken together, our results showed that direct restoration of vascular junction could be a significant strategy to induce normalization of tumor blood vessels and reduce metastasis. PMID:24811731

  2. Losartan Inhibits Vascular Calcification by Suppressing the BMP2 and Runx2 Expression in Rats In Vivo.

    PubMed

    Li, Mincai; Wu, Panfeng; Shao, Juan; Ke, Zhiqiang; Li, Dan; Wu, Jiliang

    2016-04-01

    The blockade of renin-angiotensin II system has been shown to reduce morbidity and mortality in hypertension, atherosclerosis, diabetes and chronic kidney disease. Since vascular calcification (VC) is commonly found in these diseases, the aim of this study was to examine whether or not losartan, a widely used angiotensin II receptor blockers, inhibits VC in rats in vivo. A rat model of VC was generated by treating rats with a combination of warfarin and vitamin K1. Two weeks after the treatments, the rats were treated with vehicle or without losartan (100 ng/kg/day) for 2 weeks. At the end of the experiments, aortic arteries were isolated for the examination of calcification morphology, mRNA and protein expression of BMP2 and Runx2, and osteoblast differentiation. Warfarin and vitamin K instigated vascular remodeling with calcified plaques in the aortic arteries in rats. Losartan significantly attenuated warfarin- and vitamin K-induced vascular injury and calcification. Consistently, losartan suppressed the levels of mRNA and protein expression of BMP2 and Runx2, two key factors for VC. Further, vascular calcified lesion areas expressed angiotensin II 1 receptor (AT1R). Finally, losartan treatment significantly inhibited apoptosis in vascular smooth muscle cell (VSMC) in rat arteries. We conclude that losartan suppresses VC by lowering the expression of AT1R, Runx2 and BMP2, and by inhibiting the apoptosis of VSMC in rat aortic arteries.

  3. Retrospective Study on Laser Treatment of Oral Vascular Lesions Using the "Leopard Technique": The Multiple Spot Irradiation Technique with a Single-Pulsed Wave.

    PubMed

    Miyazaki, Hidetaka; Ohshiro, Takafumi; Romeo, Umberto; Noguchi, Tadahide; Maruoka, Yutaka; Gaimari, Gianfranco; Tomov, Georgi; Wada, Yoshitaka; Tanaka, Kae; Ohshiro, Toshio; Asamura, Shinichi

    2018-06-01

    This study aimed to retrospectively evaluate the efficacy and safety of laser treatment of oral vascular lesions using the multiple spot irradiation technique with a single-pulsed wave. In laser therapy for vascular lesions, heat accumulation induced by excessive irradiation can cause adverse events postoperatively, including ulcer formation, resultant scarring, and severe pain. To prevent heat accumulation and side effects, we have applied a multiple pulsed spot irradiation technique, the so-called "leopard technique" (LT) to oral vascular lesions. This approach was originally proposed for laser treatment of nevi. It can avoid thermal concentration at the same spot and spare the epithelium, which promotes smooth healing. The goal of the study was to evaluate this procedure and treatment outcomes. The subjects were 46 patients with 47 oral vascular lesions treated with the LT using a Nd:YAG laser (1064 nm), including 24 thick lesions treated using a combination of the LT and intralesional photocoagulation. All treatment outcomes were satisfactory without serious complications such as deep ulcer formation, scarring, bleeding, or severe swelling. Laser therapy with the LT is a promising less-invasive treatment for oral vascular lesions.

  4. Proton beam irradiation inhibits the migration of melanoma cells.

    PubMed

    Jasińska-Konior, Katarzyna; Pochylczuk, Katarzyna; Czajka, Elżbieta; Michalik, Marta; Romanowska-Dixon, Bożena; Swakoń, Jan; Urbańska, Krystyna; Elas, Martyna

    2017-01-01

    In recent years experimental data have indicated that low-energy proton beam radiation might induce a difference in cellular migration in comparison to photons. We therefore set out to compare the effect of proton beam irradiation and X-rays on the survival and long-term migratory properties of two cell lines: uveal melanoma Mel270 and skin melanoma BLM. Cells treated with either proton beam or X-rays were analyzed for their survival using clonogenic assay and MTT test. Long-term migratory properties were assessed with time-lapse monitoring of individual cell movements, wound test and transpore migration, while the expression of the related proteins was measured with western blot. Exposure to proton beam and X-rays led to similar survival but the quality of the cell colonies was markedly different. More paraclones with a low proliferative activity and fewer highly-proliferative holoclones were found after proton beam irradiation in comparison to X-rays. At 20 or 40 days post-irradiation, migratory capacity was decreased more by proton beam than by X-rays. The beta-1-integrin level was decreased in Mel270 cells after both types of radiation, while vimentin, a marker of EMT, was increased in BLM cells only. We conclude that proton beam irradiation induced long-term inhibition of cellular motility, as well as changes in the level of beta-1 integrin and vimentin. If confirmed, the change in the quality, but not in the number of colonies after proton beam irradiation might favor tumor growth inhibition after fractionated proton therapy.

  5. Inhibition of leptin-induced vascular extracellular matrix remodelling by adiponectin.

    PubMed

    Zhang, Zhi; Wang, Fang; Wang, Bing-Jian; Chu, Guang; Cao, Qunan; Sun, Bao-Gui; Dai, Qiu-Yan

    2014-10-01

    Vascular extracellular matrix (ECM) remodelling, which is the result of disruption in the balance of ECM synthesis and degradation, induces vessel fibrosis and thereby leads to hypertension. Leptin is known to promote tissue fibrosis, while adiponectin has recently been demonstrated to be anti-fibrogenic in tissue fibrosis. In this study, we aimed to evaluate the leptin-antagonist function of adiponectin and to further elucidate the mechanisms through which adiponectin dampens leptin signalling in vascular smooth muscle cells, thus preventing excess ECM production, in our already established 3D co-culture vessel models. Our 3D co-culture vessel model, which mimics true blood vessels, is composed of vascular endothelial cells, vascular smooth muscle cells and collagen type I. We validated the profibrogenic effects of leptin and analysed matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitor of metalloproteinase 1 (TIMP1) and collagen types II/IV secretion in 3D vessel models. The protective/inhibitory effects of adiponectin were re-analysed by inhibiting adiponectin receptor 1 (AdipoR) and AdipoR2 expression in endothelial cells using RNAi technology. In the 3D vessel models, adiponectin blocked the leptin-stimulated secretion of collagen types II/IV and TIMP1 while significantly increasing MMP2/9 activity. In endothelial cells, adiponectin induced phosphorylation of AMPK, thereby suppressing leptin-mediated STAT3 phosphorylation through induction of SOCS3 in smooth muscle cells. Our findings indicate that adiponectin disrupted the leptin-induced vascular ECM remodelling via AdipoR1 and enhanced AMPK signalling in endothelial cells, which, in turn, promoted SOCS3 up-regulation in smooth muscle cells to repress leptin-stimulated phosphorylation of STAT3. © 2014 The authors.

  6. Inhibition of leptin-induced vascular extracellular matrix remodelling by adiponectin

    PubMed Central

    Zhang, Zhi; Wang, Fang; Wang, Bing-jian; Chu, Guang; Cao, Qunan; Sun, Bao-Gui; Dai, Qiu-Yan

    2014-01-01

    Vascular extracellular matrix (ECM) remodelling, which is the result of disruption in the balance of ECM synthesis and degradation, induces vessel fibrosis and thereby leads to hypertension. Leptin is known to promote tissue fibrosis, while adiponectin has recently been demonstrated to be anti-fibrogenic in tissue fibrosis. In this study, we aimed to evaluate the leptin-antagonist function of adiponectin and to further elucidate the mechanisms through which adiponectin dampens leptin signalling in vascular smooth muscle cells, thus preventing excess ECM production, in our already established 3D co-culture vessel models. Our 3D co-culture vessel model, which mimics true blood vessels, is composed of vascular endothelial cells, vascular smooth muscle cells and collagen type I. We validated the profibrogenic effects of leptin and analysed matrix metalloproteinase 2 (MMP2), MMP9, tissue inhibitor of metalloproteinase 1 (TIMP1) and collagen types II/IV secretion in 3D vessel models. The protective/inhibitory effects of adiponectin were re-analysed by inhibiting adiponectin receptor 1 (AdipoR) and AdipoR2 expression in endothelial cells using RNAi technology. In the 3D vessel models, adiponectin blocked the leptin-stimulated secretion of collagen types II/IV and TIMP1 while significantly increasing MMP2/9 activity. In endothelial cells, adiponectin induced phosphorylation of AMPK, thereby suppressing leptin-mediated STAT3 phosphorylation through induction of SOCS3 in smooth muscle cells. Our findings indicate that adiponectin disrupted the leptin-induced vascular ECM remodelling via AdipoR1 and enhanced AMPK signalling in endothelial cells, which, in turn, promoted SOCS3 up-regulation in smooth muscle cells to repress leptin-stimulated phosphorylation of STAT3. PMID:24982243

  7. EphrinA1 Inhibits Vascular Endothelial Growth Factor-Induced Intracellular Signaling and Suppresses Retinal Neovascularization and Blood-Retinal Barrier Breakdown

    PubMed Central

    Ojima, Tomonari; Takagi, Hitoshi; Suzuma, Kiyoshi; Oh, Hideyasu; Suzuma, Izumi; Ohashi, Hirokazu; Watanabe, Daisuke; Suganami, Eri; Murakami, Tomoaki; Kurimoto, Masafumi; Honda, Yoshihito; Yoshimura, Nagahisa

    2006-01-01

    The Eph receptor/ephrin system is a recently discovered regulator of vascular development during embryogenesis. Activation of EphA2, one of the Eph receptors, reportedly suppresses cell proliferation and adhesion in a wide range of cell types, including vascular endothelial cells. Vascular endothelial growth factor (VEGF) plays a primary role in both pathological angiogenesis and abnormal vascular leakage in diabetic retinopathy. In the study described herein, we demonstrated that EphA2 stimulation by ephrinA1 in cultured bovine retinal endothelial cells inhibits VEGF-induced VEGFR2 receptor phosphorylation and its downstream signaling cascades, including PKC (protein kinase C)-ERK (extracellular signal-regulated kinase) 1/2 and Akt. This inhibition resulted in the reduction of VEGF-induced angiogenic cell activity, including migration, tube formation, and cellular proliferation. These inhibitory effects were further confirmed in animal models. Intraocular injection of ephrinA1 suppressed ischemic retinal neovascularization in a dose-dependent manner in a mouse model. At a dose of 125 ng/eye, the inhibition was 36.0 ± 14.9% (P < 0.001). EphrinA1 also inhibited VEGF-induced retinal vascular permeability in a rat model by 46.0 ± 10.0% (P < 0.05). These findings suggest a novel therapeutic potential for EphA2/ephrinA1 in the treatment of neovascularization and vasopermeability abnormalities in diabetic retinopathy. PMID:16400034

  8. Periadventitial Application of Rapamycin-Loaded Nanoparticles Produces Sustained Inhibition of Vascular Restenosis

    PubMed Central

    Guo, Lian-Wang; Si, Yi; Zhu, Men; Pilla, Srikanth; Liu, Bo; Gong, Shaoqin; Kent, K. Craig

    2014-01-01

    Open vascular reconstructions frequently fail due to the development of recurrent disease or intimal hyperplasia (IH). This paper reports a novel drug delivery method using a rapamycin-loaded poly(lactide-co-glycolide) (PLGA) nanoparticles (NPs)/pluronic gel system that can be applied periadventitially around the carotid artery immediately following the open surgery. In vitro studies revealed that rapamycin dispersed in pluronic gel was rapidly released over 3 days whereas release of rapamycin from rapamycin-loaded PLGA NPs embedded in pluronic gel was more gradual over 4 weeks. In cultured rat vascular smooth muscle cells (SMCs), rapamycin-loaded NPs produced durable (14 days versus 3 days for free rapamycin) inhibition of phosphorylation of S6 kinase (S6K1), a downstream target in the mTOR pathway. In a rat balloon injury model, periadventitial delivery of rapamycin-loaded NPs produced inhibition of phospho-S6K1 14 days after balloon injury. Immunostaining revealed that rapamycin-loaded NPs reduced SMC proliferation at both 14 and 28 days whereas rapamycin alone suppressed proliferation at day 14 only. Moreover, rapamycin-loaded NPs sustainably suppressed IH for at least 28 days following treatment, whereas rapamycin alone produced suppression on day 14 with rebound of IH by day 28. Since rapamycin, PLGA, and pluronic gel have all been approved by the FDA for other human therapies, this drug delivery method could potentially be translated into human use quickly to prevent failure of open vascular reconstructions. PMID:24586612

  9. Nicotinamide Inhibits Vasculogenic Mimicry, an Alternative Vascularization Pathway Observed in Highly Aggressive Melanoma

    PubMed Central

    Shalmon, Bruria; Kubi, Adva; Treves, Avraham J.; Shapira-Frommer, Ronnie; Avivi, Camilla; Ortenberg, Rona; Ben-Ami, Eytan; Schachter, Jacob; Besser, Michal J.; Markel, Gal

    2013-01-01

    Vasculogenic mimicry (VM) describes functional vascular channels composed only of tumor cells and its presence predicts poor prognosis in melanoma patients. Inhibition of this alternative vascularization pathway might be of clinical importance, especially as several anti-angiogenic therapies targeting endothelial cells are largely ineffective in melanoma. We show the presence of VM structures histologically in a series of human melanoma lesions and demonstrate that cell cultures derived from these lesions form tubes in 3D cultures ex vivo. We tested the ability of nicotinamide, the amide form of vitamin B3 (niacin), which acts as an epigenetic gene regulator through unique cellular pathways, to modify VM. Nicotinamide effectively inhibited the formation of VM structures and destroyed already formed ones, in a dose-dependent manner. Remarkably, VM formation capacity remained suppressed even one month after the complete withdrawal of Nicotimamid. The inhibitory effect of nicotinamide on VM formation could be at least partially explained by a nicotinamide-driven downregulation of vascular endothelial cadherin (VE-Cadherin), which is known to have a central role in VM. Further major changes in the expression profile of hundreds of genes, most of them clustered in biologically-relevant clusters, were observed. In addition, nicotinamide significantly inhibited melanoma cell proliferation, but had an opposite effect on their invasion capacity. Cell cycle analysis indicated moderate changes in apoptotic indices. Therefore, nicotinamide could be further used to unravel new biological mechanisms that drive VM and tumor progression. Targeting VM, especially in combination with anti-angiogenic strategies, is expected to be synergistic and might yield substantial anti neoplastic effects in a variety of malignancies. PMID:23451174

  10. Sulforaphane inhibits restenosis by suppressing inflammation and the proliferation of vascular smooth muscle cells.

    PubMed

    Kwon, Jin-Sook; Joung, Hosouk; Kim, Yong Sook; Shim, Young-Sun; Ahn, Youngkeun; Jeong, Myung Ho; Kee, Hae Jin

    2012-11-01

    Sulforaphane, a naturally occurring organosulfur compound in broccoli, has chemopreventive properties in cancer. However, the effects of sulforaphane in vascular diseases have not been examined. We therefore aimed to investigate the effects of sulforaphane on vascular smooth muscle cell (VSMC) proliferation and neointimal formation and the related mechanisms. The expression of vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) was examined in VSMCs. The nuclear translocation of nuclear factor-κB (NF-κB) and GATA6 expression was examined in VSMCs and in a carotid artery injury model by Western blot and immunohistochemistry. We also investigated whether local delivery of sulforaphane affected neointimal formation. Sulforaphane inhibited the mRNA and protein expression of VCAM-1 induced by tumor necrosis factor (TNF)-α in VSMCs. Treatment of VSMCs with sulforaphane blocked TNF-α-induced IκBα degradation and NF-κB p65 and GATA6 expression. Furthermore, NF-κB p65 and GATA6 expression were reduced in sulforaphane-treated carotid injury sections. Notably, binding of GATA6 to the VCAM-1 promoter was dramatically reduced by sulforaphane. The MTT, BrdU incorporation, and in vitro scratch assays revealed that the proliferation and migration of VSMCs were reduced by sulforaphane. Furthermore, local administration of sulforaphane significantly reduced neointima formation 14 days after vascular injury in rats. Our results indicate that sulforaphane inhibits neointima formation via targeting of adhesion molecules through the suppression of NF-κB/GATA6. Furthermore, sulforaphane regulates migration and proliferation in VSMCs. Sulforaphane may be a potential therapeutic agent for preventing restenosis after vascular injury. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Protocatechuic aldehyde inhibits migration and proliferation of vascular smooth muscle cells and intravascular thrombosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Chang Yoon; Endocrinology, Brain Korea 21 Project for Medical Science, Institute of Endocrine Research, and Severance Integrative Research Institute for Cerebral and Cardiovascular Disease, Yonsei University College of Medicine, Seoul; Ku, Cheol Ryong

    2012-06-22

    Highlights: Black-Right-Pointing-Pointer Protocatechuic aldehyde (PCA) inhibits ROS production in VSMCs. Black-Right-Pointing-Pointer PCA inhibits proliferation and migration in PDGF-induced VSMCs. Black-Right-Pointing-Pointer PCA has anti-platelet effects in ex vivo rat whole blood. Black-Right-Pointing-Pointer We report the potential therapeutic role of PCA in atherosclerosis. -- Abstract: The migration and proliferation of vascular smooth muscle cells (VSMCs) and formation of intravascular thrombosis play crucial roles in the development of atherosclerotic lesions. This study examined the effects of protocatechuic aldehyde (PCA), a compound isolated from the aqueous extract of the root of Salvia miltiorrhiza, an herb used in traditional Chinese medicine to treat a varietymore » of vascular diseases, on the migration and proliferation of VSMCs and platelets due to platelet-derived growth factor (PDGF). DNA 5-bromo-2 Prime -deoxy-uridine (BrdU) incorporation and wound-healing assays indicated that PCA significantly attenuated PDGF-induced proliferation and migration of VSMCs at a pharmacologically relevant concentration (100 {mu}M). On a molecular level, we observed down-regulation of the phosphatidylinositol 3-kinase (PI3K)/Akt and the mitogen-activated protein kinase (MAPK) pathways, both of which regulate key enzymes associated with migration and proliferation. We also found that PCA induced S-phase arrest of the VSMC cell cycle and suppressed cyclin D2 expression. In addition, PCA inhibited PDGF-BB-stimulated reactive oxygen species production in VSMCs, indicating that PCA's antioxidant properties may contribute to its suppression of PDGF-induced migration and proliferation in VSMCs. Finally, PCA exhibited an anti-thrombotic effect related to its inhibition of platelet aggregation, confirmed with an aggregometer. Together, these findings suggest a potential therapeutic role of PCA in the treatment of atherosclerosis and angioplasty-induced vascular

  12. Peptidylarginine deiminase inhibition reduces vascular damage and modulates innate immune responses in murine models of atherosclerosis.

    PubMed

    Knight, Jason S; Luo, Wei; O'Dell, Alexander A; Yalavarthi, Srilakshmi; Zhao, Wenpu; Subramanian, Venkataraman; Guo, Chiao; Grenn, Robert C; Thompson, Paul R; Eitzman, Daniel T; Kaplan, Mariana J

    2014-03-14

    Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-α-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Apolipoprotein-E (Apoe)(-/-) mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-α in diseased arteries. Apoe(-/-) mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-α expression. Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses.

  13. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curtis, Brandon M.; Leix, Kyle Alexander; Ji, Yajing

    Highlights: • Multipotent vascular stem cells (MVSCs) proliferate and differentiate. • Nitric oxide inhibits proliferation of MVSCs. • Nitric oxide inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs). • Smooth muscle cells (SMCs) neither de-differentiate nor proliferate. - Abstract: Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to suchmore » injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well.« less

  15. The use of Intravenous Laser Blood Irradiation (ILBI) at 630–640 nm to prevent vascular diseases and to increase life expectancy

    PubMed Central

    2015-01-01

    Background and Aims: The mortality rate from vascular diseases is one of the highest. The use of Intravenous Laser Blood Irradiation (ILBI) within the last 30 years has demonstrated high efficacy in the treatment of vascular, cardiac and other systemic diseases. Rationale: Laser energy at 630-640 nanometers is arguably the most effective for irradiation of blood and the vascular wall. Photons at this wavelength are absorbed by oxygen, improve microcirculation, can change the viscosity of the blood and affect vascular endothelium. Conclusions: In summary, more than 25 years of experience of using laser energy at 630-640 nm has shown that this waveband directly influences the parameters of all cells in the blood, blood plasma, the coagulation process and all the structural components of the vascular wall. Additionally, ILBI directly or indirectly affects the cells of the immune system, hormones, and exchange processes in an organism, thereby not only improving the function of the vascular system, but also the other systems of an organism. It can finally lead to lower the incidence and number of vascular diseases, and indirectly to the reduction of the number of diseases in other organs and even systemically, thus helping to prolong the lifespan. PMID:25941421

  16. TW-01, a piperazinedione-derived compound, inhibits Ras-mediated cell proliferation and angioplasty-induced vascular restenosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Chao-Feng

    Purpose: Vascular smooth muscle cell (VSMC) proliferation plays a critical role in the pathogenesis of atherosclerosis and restenosis. This study investigated piperazinedione derived compound TW-01-mediated inhibitory effects on VSMC proliferation and intimal hyperplasia. Methods: Cell proliferation was determined using [{sup 3}H]-thymidine incorporation and MTT assay; cell cycle distribution was measured using flow cytometry; proteins and mRNA expression were determined using western blotting and RT-PCR analyses; DNA binding activity of nuclear factor-κB (NF-κB), as measured using enzyme-linked immunosorbent assays (ELISA); in vivo effects of TW-01 were determined using balloon angioplasty in the rat. Results: TW-01 significantly inhibited cell proliferation. At themore » concentrations used, no cytotoxic effects were observed. Three predominant signaling pathways were inhibited by TW-01: (a) extracellular signal-regulated kinase (ERK)1/2 mitogen-activated protein kinase (MAPK) activation and its downstream effectors of c-fos, c-jun, and c-myc; (b) DNA binding activity of nuclear factor-κB (NF-κB); and, (c) Akt/protein kinase B (PKB) and cell cycle progression. Furthermore, TW-01 also inhibited Ras activation, a shared upstream event of each of these signaling cascades. In vascular injury studies, oral administration of TW-01 significantly suppressed intimal hyperplasia induced by balloon angioplasty. Conclusion: The present study suggests that TW-01 might be a potential candidate for atherosclerosis treatment. - Highlights: • TW-01significantly inhibits vascular smooth muscle cell proliferation. • TW-01 inhibits ERK, Akt and Ras pathway and DNA binding activity of NF-κB. • TW-01 significantly suppresses intimal hyperplasia induced by balloon angioplasty. • TW-01 might be a potential candidate for atherosclerosis treatment.« less

  17. Inhibition of Flowering of Xanthium pensylvanicum Wallr. by Prolonged Irradiation with Far Red

    PubMed Central

    Mancinelli, Alberto L.; Downs, Robert J.

    1967-01-01

    Interrupting each long night with a prolonged period of far red radiant energy resulted in the inhibition of floral initiation in cocklebur. Irradiations inducing different relative levels of PFR from 1 to 2% to 80% had about the same effect under 4-hour photoperiods. The lower levels of PFR induced by continuous far red irradiation were not as effective as the higher levels induced by red under 8 and 12-hours photoperiods. The critical PFR level required to induce inhibition of flowering seems to increase with increasing photoperiods. PMID:16656490

  18. Peptidylarginine Deiminase Inhibition Reduces Vascular Damage and Modulates Innate Immune Responses in Murine Models of Atherosclerosis

    PubMed Central

    Knight, Jason S.; Luo, Wei; O’Dell, Alexander A.; Yalavarthi, Srilakshmi; Zhao, Wenpu; Subramanian, Venkataraman; Guo, Chiao; Grenn, Robert C.; Thompson, Paul R.; Eitzman, Daniel T.; Kaplan, Mariana J.

    2014-01-01

    Rationale Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-α-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. Objective To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Methods and Results Apolipoprotein-E (Apoe)−/− mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-α in diseased arteries. Apoe−/− mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-α expression. Conclusions Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses. PMID:24425713

  19. Activation of Nrf2 Attenuates Pulmonary Vascular Remodeling via Inhibiting Endothelial-to-Mesenchymal Transition: an Insight from a Plant Polyphenol

    PubMed Central

    Chen, Yucai; Yuan, Tianyi; Zhang, Huifang; Yan, Yu; Wang, Danshu; Fang, Lianhua; Lu, Yang; Du, Guanhua

    2017-01-01

    The endothelial-to-mesenchymal transition (EndMT) has been demonstrated to be involved in pulmonary vascular remodeling. It is partly attributed to oxidative and inflammatory stresses in endothelial cells. In current study, we conducted a series of experiments to clarify the effect of salvianolic acid A (SAA), a kind of polyphenol compound, in the process of EndMT in human pulmonary arterial endothelial cells and in vivo therapeutic efficacy on vascular remodeling in monocrotaline (MCT)-induced EndMT. EndMT was induced by TGFβ1 in human pulmonary arterial endothelial cells (HPAECs). SAA significantly attenuated EndMT, simultaneously inhibited cell migration and reactive oxygen species (ROS) formation. In MCT-induced pulmonary arterial hypertension (PAH) model, SAA improved vascular function, decreased TGFβ1 level and inhibited inflammation. Mechanistically, SAA stimulated Nrf2 translocation and subsequent heme oxygenase-1 (HO-1) up-regulation. The effect of SAA on EndMT in vitro was abolished by ZnPP, a HO-1 inhibitor. In conclusion, this study indicates a deleterious impact of oxidative stress on EndMT. Polyphenol antioxidant treatment may provide an adjunctive action to alleviate pulmonary vascular remodeling via inhibiting EndMT. PMID:28924387

  20. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karki, Rajendra; Department of Oriental Medicine Resources, Mokpo National University; Kim, Seong-Bin

    Background: Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. Methods: The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by westernmore » blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. Results: VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Conclusions: Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. General significance: This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. - Highlights: • Magnolol strongly inhibited migration of VSMCs. • Magnolol inhibited stress fibers formation. • MLC20 phosphorylation was also inhibited by magnolol. • Anti

  1. Vascular endothelial growth factor (VEGF) inhibition--a critical review.

    PubMed

    Moreira, Irina Sousa; Fernandes, Pedro Alexandrino; Ramos, Maria João

    2007-03-01

    Angiogenesis, or formation of new blood capillaries from preexisting vessels, plays both beneficial and damaging roles in the organism. It is a result of a complex balance of positive and negative regulators, and vascular endothelial growth factor (VEGF) is one of the most important pro-angiogenic factors involved in tumor angiogenesis. VEGF increases vascular permeability, which might facilitate tumor dissemination via the circulation causing a greater delivery of oxygen and nutrients; it recruits circulating endothelial precursor cells, and acts as a survival factor for immature tumor blood vessels. The endotheliotropic activities of VEGF are mediated through the VEGF-specific tyrosine-kinase receptors: VEGFR-1, VEGFR-2 and VEGFR-3. VEGF and its receptors play a central role in tumor angiogenesis, and therefore the blockade of this pathway is a promising therapeutic strategy for inhibiting angiogenesis and tumor growth. A number of different strategies to inhibit VEGF signal transduction are in development and they include the development of humanized neutralizing anti-VEGF monoclonal antibodies, receptor antagonists, soluble receptors, antagonistic VEGF mutants, and inhibitors of VEGF receptor function. These agents can be divided in two broad classes, namely agents designed to target the VEGF activity and agents designed to target the surface receptor function. The main purpose of this review is to summarize all the available information regarding the importance of the pro-angiogenic factor VEGF in cancer therapy. After an overview of the VEGF family and their respective receptors, we shall focus our attention on the different VEGF-inhibitors existent nowadays. Agents based upon anti-VEGF therapy have provided solid proofs about their success, and therefore we believe that a critical review is of the utmost importance to help researchers in their future work.

  2. Low-power laser irradiation inhibits amyloid beta-induced cell apoptosis

    NASA Astrophysics Data System (ADS)

    Zhang, Heng; Wu, Shengnan

    2011-03-01

    The deposition and accumulation of amyloid-β-peptide (Aβ) in the brain are considered a pathological hallmark of Alzheimer's disease(AD). Apoptosis is a contributing pathophysiological mechanism of AD. Low-power laser irradiation (LPLI), a non-damage physical therapy, which has been used clinically for decades of years, is shown to promote cell proliferation and prevent apoptosis. Recently, low-power laser irradiation (LPLI) has been applied to moderate AD. In this study, Rat pheochromocytoma (PC12) cells were treated with amyloid beta 25-35 (Aβ25-35) for induction of apoptosis before LPLI treatment. We measured cell viability with CCK-8 according to the manufacture's protocol, the cell viability assays show that low fluence of LPLI (2 J/cm2 ) could inhibit the cells apoptosis. Then using statistical analysis of proportion of apoptotic cells by flow cytometry based on Annexin V-FITC/PI, the assays also reveal that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis. Taken together, we demonstrated that low fluence of LPLI (2 J/cm2 ) could inhibit the Aβ-induced cell apoptosis, these results directly point to a therapeutic strategy for the treatment of AD through LPLI.

  3. Pulsed low-dose irradiation of orthotopic glioblastoma multiforme (GBM) in a pre-clinical model: effects on vascularization and tumor control.

    PubMed

    Dilworth, Joshua T; Krueger, Sarah A; Dabjan, Mohamad; Grills, Inga S; Torma, John; Wilson, George D; Marples, Brian

    2013-07-01

    To compare dose-escalated pulsed low-dose radiation therapy (PLRT) and standard radiation therapy (SRT). Intracranial U87MG GBM tumors were established in nude mice. Animals received whole brain irradiation with daily 2-Gy fractions given continuously (SRT) or in ten 0.2-Gy pulses separated by 3-min intervals (PLRT). Tumor response was evaluated using weekly CT and [(18)F]-FDG-PET scans. Brain tissue was subjected to immunohistochemistry and cytokine bead array to assess tumor and normal tissue effects. Median survival for untreated animals was 18 (SE±0.5) days. A significant difference in median survival was seen between SRT (29±1.8days) and PLRT (34.2±1.9days). Compared to SRT, PLRT resulted in a 31% (p<0.01), 38% (p<0.01), and 53% (p=0.01) reduction in normalized tumor volume and a 48% (p<0.01), 51% (p<0.01), and 70% (p<0.01) reduction in tumor growth rate following the administration of 10Gy, 20Gy, and 30Gy, respectively. Compared to untreated tumors, PLRT resulted in similar tumor vascular density, while SRT produced a 40% reduction in tumor vascular density (p=0.05). Compared to SRT, PLRT was associated with a 28% reduction in degenerating neurons in the surrounding brain parenchyma (p=0.05). Compared to SRT, PLRT resulted in greater inhibition of tumor growth and improved survival, which may be attributable to preservation of vascular density. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  4. Inhibitive Effects of Quercetin on Myeloperoxidase-Dependent Hypochlorous Acid Formation and Vascular Endothelial Injury.

    PubMed

    Lu, Naihao; Sui, Yinhua; Tian, Rong; Peng, Yi-Yuan

    2018-05-16

    Myeloperoxidase (MPO) from activated neutrophils plays important roles in multiple human inflammatory diseases by catalyzing the formation of powerful oxidant hypochlorous acid (HOCl). As a major flavonoid in the human diet, quercetin has been suggested to act as antioxidant and anti-inflammatory agent in vitro and in vivo. In this study, we showed that quercetin inhibited MPO-mediated HOCl formation (75.0 ± 6.2% for 10 μM quercetin versus 100 ± 5.2% for control group, P < 0.01) and cytotoxicity to endothelial cells in vitro, while this flavonoid was nontoxic to endothelial cell cultures ( P > 0.05, all cases). Moreover, quercetin inhibited HOCl generation by stimulated neutrophils (a rich source of MPO) and protected endothelial cells from neutrophils-induced injury. Furthermore, quercetin could inhibit HOCl-induced endothelial dysfunction such as loss of cell viability, and decrease of nitric oxide formation in endothelial cells ( P < 0.05, all cases). Consistent with these in vitro data, quercetin attenuated lipopolysaccharide-induced endothelial dysfunction and increase of MPO activity in mouse aortas, while this flavonoid could protect against HOCl-mediated endothelial dysfunction in isolated aortas ( P < 0.05). Therefore, it was proposed that quercetin attenuated endothelial injury in inflammatory vasculature via inhibition of vascular-bound MPO-mediated HOCl formation or scavenging of HOCl. These data indicate that quercetin is a nontoxic inhibitor of MPO activity and MPO/neutrophils-induced cytotoxicity in endothelial cells and may be useful for targeting MPO-dependent vascular disease and inflammation.

  5. Downregulation of Pygopus 2 inhibits vascular mimicry in glioma U251 cells by suppressing the canonical Wnt signaling pathway

    PubMed Central

    WANG, HAIDONG; FU, JIANHUA; XU, DIANSHUANG; XU, WEIWEI; WANG, SHIYONG; ZHANG, LIU; XIANG, YONGSHENG

    2016-01-01

    Gliomas are the most common type of malignant primary brain tumor, and the Wnt signaling pathway is associated with glioma malignancy. Pygopus protein plays an important role in developmental brain patterning, and has been identified to be a component of the Wnt signaling pathway. In the present study, the Pygopus 2 (Pygo2) protein was examined in 80 glioma tissue samples. Short hairpin (sh)RNA-Pygo2 was transfected into glioma U251 cells, and the cell proliferation, colony formation and bromodeoxyuridine (BrdU) incorporation were analyzed. Western blot analysis and reverse transcription-polymerase chain reaction were used to detect the expression of Pygo2. A vascular mimicry assay was performed to examine the vascular mimicry of U251 cells. A luciferase reporter assay was used to detect the β-catenin/Wnt system. The cyclin D1 protein was also detected using western blot analysis. The results demonstrated that inhibition of the expression of Pygo2 significantly triggered the decrease of cell proliferation, colony formation and BrdU incorporation compared with the cells treated with scramble control shRNA (shRNA-Scr). shRNA-Pygo2 transfection was found to inhibit vascular-mimicry and block the Wnt signaling pathway compared to the cells transfected with shRNA-Scr. The transfection of shRNA-Pygo2 also decreased the expression of the Wnt target gene cyclin D1. In conclusion, shRNA-Pygo2 suppressed glioma cell proliferation effectively and inhibited vascular mimicry by inhibiting the expression of cyclin D1 in the canonical Wnt/β-catenin pathway in brain glioma cells. PMID:26870266

  6. Magnolol inhibits migration of vascular smooth muscle cells via cytoskeletal remodeling pathway to attenuate neointima formation.

    PubMed

    Karki, Rajendra; Kim, Seong-Bin; Kim, Dong-Wook

    2013-12-10

    Increased proliferation and migration of vascular smooth muscle cells (VSMCs) contribute importantly to the formation of both atherosclerotic and restenotic lesions. The objective of this study was to investigate the effect of magnolol on VSMC migration. The proteolytic activity of matrix metalloproteinases (MMPs) in tumor necrosis factor alpha (TNF-α) stimulated VSMCs was performed by gelatin zymography. VSMC migration was assessed by wound healing and Boyden chamber methods. Collagen induced VSMC adhesion was determined by spectrofluorimeter and stress fibers formation was evaluated by fluorescence microscope. The expression of signaling molecules involved in stress fibers formation was determined by western blot. The phosphorylation of myosin light chain (MLC20) was determined by urea-glycerol polyacrylamide gel electrophoresis. Immunohistochemistry was performed to determine the expression of β1-integrin and collagen type I in the injured carotid arteries of rats on day 35 after vascular injury. VSMC migration was strongly inhibited by magnolol without affecting MMPs expression. Also, magnolol inhibited β1-integrin expression, FAK phosphorylation and RhoA and Cdc42 activation to inhibit the collagen induced stress fibers formation. Moreover, magnolol inhibited the phosphorylation of MLC20. Our in vivo results showed that magnolol inhibited β1-integrin expression, collagen type I deposition and FAK phosphorylation in injured carotid arteries without affecting MMP-2 activity. Magnolol inhibited VSMC migration via inhibition of cytoskeletal remodeling pathway to attenuate neointima formation. This study provides a rationale for further evaluation of magnolol for the management of atherosclerosis and restenosis. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.

  7. Autologous Bone Marrow Mesenchymal Stem Cells Improve the Quality and Stability of Vascularized Flap Surgery of Irradiated Skin in Pigs.

    PubMed

    Linard, Christine; Brachet, Michel; Strup-Perrot, Carine; L'homme, Bruno; Busson, Elodie; Squiban, Claire; Holler, Valerie; Bonneau, Michel; Lataillade, Jean-Jacques; Bey, Eric; Benderitter, Marc

    2018-05-18

    Cutaneous radiation syndrome has severe long-term health consequences. Because it causes an unpredictable course of inflammatory waves, conventional surgical treatment is ineffective and often leads to a fibronecrotic process. Data about the long-term stability of healed wounds, with neither inflammation nor resumption of fibrosis, are lacking. In this study, we investigated the effect of injections of local autologous bone marrow-derived mesenchymal stromal cells (BM-MSCs), combined with plastic surgery for skin necrosis, in a large-animal model. Three months after irradiation overexposure to the rump, minipigs were divided into three groups: one group treated by simple excision of the necrotic tissue, the second by vascularized-flap surgery, and the third by vascularized-flap surgery and local autologous BM-MSC injections. Three additional injections of the BM-MSCs were performed weekly for 3 weeks. The quality of cutaneous wound healing was examined 1 year post-treatment. The necrotic tissue excision induced a pathologic scar characterized by myofibroblasts, excessive collagen-1 deposits, and inadequate vascular density. The vascularized-flap surgery alone was accompanied by inadequate production of extracellular matrix (ECM) proteins (decorin, fibronectin); the low col1/col3 ratio, associated with persistent inflammatory nodules, and the loss of vascularization both attested to continued immaturity of the ECM. BM-MSC therapy combined with vascularized-flap surgery provided mature wound healing characterized by a col1/col3 ratio and decorin and fibronectin expression that were all similar to that of nonirradiated skin, with no inflammation, and vascular stability. In this preclinical model, vascularized flap surgery successfully and lastingly remodeled irradiated skin only when combined with BM-MSC therapy. Stem Cells Translational Medicine 2018. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of Alpha

  8. Inhibition of STAT3 phosphorylation by sulforaphane reduces adhesion molecule expression in vascular endothelial cell.

    PubMed

    Cho, Young S; Kim, Chan H; Ha, Tae S; Ahn, Hee Y

    2015-11-18

    Intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule 1 (VCAM-1) play key roles in the initiation of vascular inflammation. In this study, we explored whether sulforaphane, a dietary phytochemical, can inhibit the expression of ICAM-1 and VCAM-1 in human umbilical vein endothelial cells (HUVEC) stimulated with lipopolysaccharide (LPS), and the mechanisms involved. Sulforaphane prevented the LPS-mediated increase in ICAM-1 and VCAM-1 expression, (P < 0.01) in HUVEC. Sulforaphane also prevented the LPS-mediated increase in the phosphorylation of signal transducer and activator of transcription 3 (STAT3) (P < 0.01). Stattic, a STAT3 inhibitor, reduced the LPS-induced expression of ICAM-1 and VCAM-1, and STAT3 phosphorylation (P < 0.01). STAT3 small interfering RNA treatment reduced the LPS-induced expression of ICAM-1, VCAM-1, and STAT3 (P < 0.01). Sulforaphane reduced LPS-mediated THP-1 monocyte adhesion to HUVEC (P < 0.01). In C57BL/6 mice, injection of LPS increased aortic ICAM-1 and VCAM-1 expression, and this effect was prevented by sulforaphane. These data provide insight into the mechanism through which sulforaphane partly reduces the expression of ICAM-1 and VCAM-1 on the vascular wall by inhibiting STAT3 phosphorylation.

  9. Inhibition of Aldehyde Dehydrogenase-Activity Expands Multipotent Myeloid Progenitor Cells with Vascular Regenerative Function.

    PubMed

    Cooper, Tyler T; Sherman, Stephen E; Kuljanin, Miljan; Bell, Gillian I; Lajoie, Gilles A; Hess, David A

    2018-05-01

    Blood-derived progenitor cell transplantation holds potential for the treatment of severe vascular diseases. Human umbilical cord blood (UCB)-derived hematopoietic progenitor cells purified using high aldehyde dehydrogenase (ALDH hi ) activity demonstrate pro-angiogenic functions following intramuscular (i.m.) transplantation into immunodeficient mice with hind-limb ischemia. Unfortunately, UCB ALDH hi cells are rare and prolonged ex vivo expansion leads to loss of high ALDH-activity and diminished vascular regenerative function. ALDH-activity generates retinoic acid, a potent driver of hematopoietic differentiation, creating a paradoxical challenge to expand UCB ALDH hi cells while limiting differentiation and retaining pro-angiogenic functions. We investigated whether inhibition of ALDH-activity during ex vivo expansion of UCB ALDH hi cells would prevent differentiation and expand progeny that retained pro-angiogenic functions after transplantation into non-obese diabetic/severe combined immunodeficient mice with femoral artery ligation-induced unilateral hind-limb ischemia. Human UCB ALDH hi cells were cultured under serum-free conditions for 9 days, with or without the reversible ALDH-inhibitor, diethylaminobenzaldehyde (DEAB). Although total cell numbers were increased >70-fold, the frequency of cells that retained ALDH hi /CD34+ phenotype was significantly diminished under basal conditions. In contrast, DEAB-inhibition increased total ALDH hi /CD34+ cell number by ≥10-fold, reduced differentiation marker (CD38) expression, and enhanced the retention of multipotent colony-forming cells in vitro. Proteomic analysis revealed that DEAB-treated cells upregulated anti-apoptotic protein expression and diminished production of proteins implicated with megakaryocyte differentiation. The i.m. transplantation of DEAB-treated cells into mice with hind-limb ischemia stimulated endothelial cell proliferation and augmented recovery of hind-limb perfusion. DEAB-inhibition

  10. SIRT1 inhibits NADPH oxidase activation and protects endothelial function in the rat aorta: implications for vascular aging.

    PubMed

    Zarzuelo, María José; López-Sepúlveda, Rocío; Sánchez, Manuel; Romero, Miguel; Gómez-Guzmán, Manuel; Ungvary, Zoltan; Pérez-Vizcaíno, Francisco; Jiménez, Rosario; Duarte, Juan

    2013-05-01

    Vascular aging is characterized by up-regulation of NADPH oxidase, oxidative stress and endothelial dysfunction. Previous studies demonstrate that the activity of the evolutionarily conserved NAD(+)-dependent deacetylase SIRT1 declines with age and that pharmacological activators of SIRT1 confer significant anti-aging cardiovascular effects. To determine whether dysregulation of SIRT1 promotes NADPH oxidase-dependent production of reactive oxygen species (ROS) and impairs endothelial function we assessed the effects of three structurally different inhibitors of SIRT1 (nicotinamide, sirtinol, EX527) in aorta segments isolated from young Wistar rats. Inhibition of SIRT1 induced endothelial dysfunction, as shown by the significantly reduced relaxation to the endothelium-dependent vasodilators acetylcholine and the calcium ionophore A23187. Endothelial dysfunction induced by SIRT1 inhibition was prevented by treatment of the vessels with the NADPH oxidase inhibitor apocynin or superoxide dismutase. Inhibition of SIRT1 significantly increased vascular superoxide production, enhanced NADPH oxidase activity, and mRNA expression of its subunits p22(phox) and NOX4, which were prevented by resveratrol. Peroxisome proliferator-activated receptor-α (PPARα) activation mimicked the effects of resveratrol while PPARα inhibition prevented the effects of this SIRT1 activator. SIRT1 co-precipitated with PPARα and nicotinamide increased the acetylation of the PPARα coactivator PGC-1α, which was suppressed by resveratrol. In conclusion, impaired activity of SIRT1 induces endothelial dysfunction and up-regulates NADPH oxidase-derived ROS production in the vascular wall, mimicking the vascular aging phenotype. Moreover, a new mechanism for controlling endothelial function after SIRT1 activation involves a decreased PGC-1α acetylation and the subsequent PPARα activation, resulting in both decreased NADPH oxidase-driven ROS production and NO inactivation. Copyright © 2013

  11. Increased leukocyte adhesion to vascular endothelium in preeclampsia is inhibited by antioxidants.

    PubMed

    Ryu, Seongho; Huppmann, Alison R; Sambangi, Nirmala; Takacs, Peter; Kauma, Scott W

    2007-04-01

    To test the hypothesis that plasma from women with preeclampsia increases leukocyte adhesion to vascular endothelial cells and that antioxidants inhibit this effect. Plasma from 12 women with severe preeclampsia and 12 with normal pregnancy was tested in an in vitro leukocyte-endothelium adhesion assay in the presence or absence of vitamin E, vitamin C, or N-acetylcysteine. Preeclamptic plasma significantly increased monocyte (U937 cells) and T-cell (Jurkat) adhesion to human umbilical vein (HUVEC) and microvascular endothelial cells, compared with normal pregnant plasma. The antioxidants vitamin E, vitamin C, and N-acetylcysteine significantly inhibited monocyte adhesion to HUVEC in the presence of preeclamptic but not normal pregnant plasma. Increased adhesion in response to preeclamptic plasma was not mediated through a protein kinase C (PKC) mechanism, because the PKC inhibitor bisindolylmaleimide I had no effect on adhesion in the presence of preeclamptic plasma. Severe preeclampsia is associated with increased leukocyte-endothelium adhesion and clinically useful antioxidants can inhibit this effect.

  12. Loxoprofen sodium suppresses mouse tumor growth by inhibiting vascular endothelial growth factor.

    PubMed

    Kanda, Akio; Ebihara, Satoru; Takahashi, Hidenori; Sasaki, Hidetada

    2003-01-01

    There is increasing evidence to suggest the anti-tumor effects of non-steroidal anti-inflammatory drugs (NSAIDs). In this study it was shown that the most popular NSAID in Japan, loxoprofen sodium (LOX), inhibited in vivo growth of implanted Lewis lung carcinoma (LLC), whereas LOX did not affect the proliferation and viability of LLC cells in vitro. Intratumoral vessel density in LOX-treated mice was significantly lower than that of mice without treatment. Intratumoral expressions of vascular endothelial growth factor (VEGF) mRNA were attenuated by the LOX treatment. LOX suppressed both intratumoral and systemic VEGF protein in LLC-implanted mice. LOX also inhibited tubular formation of primary cultured human umbilical vein endothelial cells, presumably due to the inhibition of VEGF. In patients with advanced non-small cell lung cancer, LOX medication (120 mg/day) for a week significantly decreased the plasma VEGF level. These results suggest that LOX may have potent anti-cancer effects in patients with advanced NSCLC.

  13. Far-infrared protects vascular endothelial cells from advanced glycation end products-induced injury via PLZF-mediated autophagy in diabetic mice

    PubMed Central

    Chen, Cheng-Hsien; Chen, Tso-Hsiao; Wu, Mei-Yi; Chou, Tz-Chong; Chen, Jia-Rung; Wei, Meng-Jun; Lee, San-Liang; Hong, Li-Yu; Zheng, Cai-Mei; Chiu, I-Jen; Lin, Yuh-Feng; Hsu, Ching-Min; Hsu, Yung-Ho

    2017-01-01

    The accumulation of advanced glycation end products (AGEs) in diabetic patients induces vascular endothelial injury. Promyelocytic leukemia zinc finger protein (PLZF) is a transcription factor that can be activated by low-temperature far-infrared (FIR) irradiation to exert beneficial effects on the vascular endothelium. In the present study, we investigated the influence of FIR-induced PLZF activation on AGE-induced endothelial injury both in vitro and in vivo. FIR irradiation inhibited AGE-induced apoptosis in human umbilical vein endothelial cells (HUVECs). PLZF activation increased the expression of phosphatidylinositol-3 kinases (PI3K), which are important kinases in the autophagic signaling pathway. FIR-induced PLZF activation led to autophagy in HUVEC, which was mediated through the upregulation of PI3K. Immunofluorescence staining showed that AGEs were engulfed by HUVECs and localized to lysosomes. FIR-induced autophagy promoted AGEs degradation in HUVECs. In nicotinamide/streptozotocin-induced diabetic mice, FIR therapy reduced serum AGEs and AGEs deposition at the vascular endothelium. FIR therapy also reduced diabetes-induced inflammatory markers in the vascular endothelium and improved vascular endothelial function. These protective effects of FIR therapy were not found in PLZF-knockout mice. Our data suggest that FIR-induced PLZF activation in vascular endothelial cells protects the vascular endothelium in diabetic mice from AGE-induced injury. PMID:28071754

  14. A butyrolactone derivative suppressed lipopolysaccharide-induced autophagic injury through inhibiting the autoregulatory loop of p8 and p53 in vascular endothelial cells.

    PubMed

    Meng, Ning; Zhao, Jing; Su, Le; Zhao, Baoxiang; Zhang, Yun; Zhang, Shangli; Miao, Junying

    2012-02-01

    Lipopolysaccharide (LPS)-induced vascular endothelial cell (VEC) dysfunction is an important contributing factor in vascular diseases. Recently, we found that LPS impaired VEC by inducing autophagy. Our previous researches showed that a butyrolactone derivative, 3-benzyl-5-((2-nitrophenoxy) methyl)-dihydrofuran-2(3H)-one (3BDO) selectively protected VEC function. The objective of the present study is to investigate whether and how 3BDO inhibits LPS-induced VEC autophagic injury. Our results showed that LPS induced autophagy and led to increase of reactive oxygen species (ROS) and decrease of mitochondrial membrane potential (MMP) in Human umbilical vein vascular endothelial cells (HUVECs). Furthermore, LPS significantly increased p8 and p53 protein levels and the nuclear translocation of p53. All of these effects of LPS on HUVECs were strongly inhibited by 3BDO. Importantly, the ROS scavenger N-acetylcysteine (NAC) could inhibited LPS-induced autophagy and knockdown of p8 by RNA interference inhibited the autophagy, p53 protein level increase, the translocation of p53 into nuclei and the ROS level increase induced by LPS in HUVECs. The data suggested that 3BDO inhibited LPS-induced autophagy in HUVECs through inhibiting the ROS overproduction, the increase of p8 and p53 expression and the nuclear translocation of p53. Our findings provide a potential tool for understanding the mechanism underlying LPS-induced autophagy in HUVECs and open the door to a novel therapeutic drug for LPS-induced vascular diseases. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Roscovitine attenuates intimal hyperplasia via inhibiting NF-κB and STAT3 activation induced by TNF-α in vascular smooth muscle cells.

    PubMed

    He, Ming; Wang, Chao; Sun, Jia-Huan; Liu, Yu; Wang, Hong; Zhao, Jing-Shan; Li, Yun-Feng; Chang, Hong; Hou, Jian-Ming; Song, Jun-Na; Li, Ai-Ying; Ji, En-Sheng

    2017-08-01

    Roscovitine is a selective CDK inhibitor originally designed as anti-cancer agent, which has also been shown to inhibit proliferation in vascular smooth muscle cells (VSMCs). However, its effect on vascular remodeling and its mechanism of action remain unknown. In our study, we created a new intimal hyperplasia model in male Sprague-Dawley rats by trypsin digestion method, which cause to vascular injury as well as the model of rat carotid balloon angioplasty. Roscovitine administration led to a significant reduction in neointimal formation and VSMCs proliferation after injury in rats. Western blot analysis revealed that, in response to vascular injury, TNF-α stimulation induced p65 and STAT3 phosphorylation and promoted translocation of these molecules into the nucleus. p65 can physically associate with STAT3 and bind to TNF-α-regulated target promoters, such as MCP-1 and ICAM-1, to initiate gene transcription. Roscovitine can interrupt activation of NF-κB and reduce expression of TNF-α-induced proinflammatory gene, thus inhibiting intimal hyperplasia. These findings provide a novel mechanism to explain the roscovitine-mediated inhibition of intimal hyperplasia induced by proinflammatory pathways. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Bilirubin Inhibits Neointima Formation and Vascular Smooth Muscle Cell Proliferation and Migration

    PubMed Central

    Peyton, Kelly J.; Shebib, Ahmad R.; Azam, Mohammad A.; Liu, Xiao-ming; Tulis, David A.; Durante, William

    2012-01-01

    Bilirubin is a heme metabolite generated by the concerted action of the enzymes heme oxygenase and biliverdin reductase. Although long considered a toxic byproduct of heme catabolism, recent preclinical, and clinical studies indicate the bilirubin exerts beneficial effects in the circulation. In the present study, we determined whether local administration of bilirubin attenuates neointima formation following injury of rat carotid arteries. In addition, the ability of bilirubin to regulate the proliferation and migration of human arterial smooth muscle cells (SMCs) was investigated. Local perivascular administration of bilirubin immediately following balloon injury of rat carotid arteries significantly attenuated neointima formation. Bilirubin-mediated inhibition of neointimal thickening was associated with a significant decrease in ERK activity and cyclin D1 and A protein expression, and an increase in p21 and p53 protein expression in injured blood vessels. Treatment of human aortic SMCs with bilirubin inhibited proliferation and migration in a concentration-dependent manner without affecting cell viability. In addition, bilirubin resulted in a concentration-dependent increase in the percentage of cells in the G0/G1 phase of the cell cycle and this was paralleled by a decrease in the fraction of cells in the S and G2M phases of the cell cycle. Finally, bilirubin had no effect on mitochondrial function and ATP content of vascular SMCs. In conclusion, these studies demonstrate that bilirubin inhibits neointima formation after arterial injury and this is associated with alterations in the expression of cell cycle regulatory proteins. Furthermore, bilirubin blocks proliferation and migration of human arterial SMCs and arrests SMCs in the G0/G1 phase of the cell cycle. Bilirubin represents an attractive therapeutic agent in treating occlusive vascular disease. PMID:22470341

  17. Suppression of complement regulatory protein C1 inhibitor in vascular endothelial activation by inhibiting vascular cell adhesion molecule-1 action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Haimou; Qin, Gangjian; Liang, Gang

    Increased expression of adhesion molecules by activated endothelium is a critical feature of vascular inflammation associated with the several diseases such as endotoxin shock and sepsis/septic shock. Our data demonstrated complement regulatory protein C1 inhibitor (C1INH) prevents endothelial cell injury. We hypothesized that C1INH has the ability of an anti-endothelial activation associated with suppression of expression of adhesion molecule(s). C1INH blocked leukocyte adhesion to endothelial cell monolayer in both static assay and flow conditions. In inflammatory condition, C1INH reduced vascular cell adhesion molecule (VCAM-1) expression associated with its cytoplasmic mRNA destabilization and nuclear transcription level. Studies exploring the underlying mechanismmore » of C1INH-mediated suppression in VCAM-1 expression were related to reduction of NF-{kappa}B activation and nuclear translocation in an I{kappa}B{alpha}-dependent manner. The inhibitory effects were associated with reduction of inhibitor I{kappa}B kinase activity and stabilization of the NF-{kappa}B inhibitor I{kappa}B. These findings indicate a novel role for C1INH in inhibition of vascular endothelial activation. These observations could provide the basis for new therapeutic application of C1INH to target inflammatory processes in different pathologic situations.« less

  18. Possible mechanisms of vascular relaxation induced by pulsed-UV laser.

    PubMed

    Morimoto, Y; Arai, T; Matsuo, H; Kikuchi, M

    1998-09-01

    This study was designed to examine the mechanism of vasorelaxation induced by pulsed-UV laser. Luminal diameters of rat femoral arteries were measured prior to and following krypton-fluoride excimer laser irradiation of 248 nm in wavelength. The diameter was enlarged to 1.3 times the preirradiated size at 1 or 10 Hz irradiation when the fluence was over 2.0 mJ/pulse/mm2, while the diameter reached 1.8 times at 100 Hz with a fluence of 0.8 mJ/pulse/mm2. Vasorelaxation by the 100 Hz irradiation was inhibited when the artery was pretreated with methylene blue but was enhanced with superoxide dismutase. Pathological analysis revealed an ablation crater and vacuole formation in the vessel at 1 or 10 Hz irradiation, but these changes were not remarkable in the 100 Hz-exposed sample. These findings suggest that vasorelaxation induced by the pulsed UV irradiation at 1 or 10 Hz results from structural alteration of vascular smooth muscle by the ablation crater or vacuolization. On the other hand, a possible mechanism of vasorelaxation at the 100 Hz irradiation is partially related to nitric oxide.

  19. 3,3′Diindolylmethane Suppresses Vascular Smooth Muscle Cell Phenotypic Modulation and Inhibits Neointima Formation after Carotid Injury

    PubMed Central

    Guan, Hongjing; Zhu, Lihua; Fu, Mingyue; Yang, Da; Tian, Song; Guo, Yuanyuan; Cui, Changping; Wang, Lang; Jiang, Hong

    2012-01-01

    Background 3, 3′diindolylmethane (DIM), a natural phytochemical, has shown inhibitory effects on the growth and migration of a variety of cancer cells; however, whether DIM has similar effects on vascular smooth muscle cells (VSMCs) remains unknown. The purpose of this study was to assess the effects of DIM on the proliferation and migration of cultured VSMCs and neointima formation in a carotid injury model, as well as the related cell signaling mechanisms. Methodology/Principal Findings DIM dose-dependently inhibited the platelet-derived growth factor (PDGF)-BB-induced proliferation of VSMCs without cell cytotoxicity. This inhibition was caused by a G0/G1 phase cell cycle arrest demonstrated by fluorescence-activated cell-sorting analysis. We also showed that DIM-induced growth inhibition was associated with the inhibition of the expression of cyclin D1 and cyclin-dependent kinase (CDK) 4/6 as well as an increase in p27Kip1 levels in PDGF-stimulated VSMCs. Moreover, DIM was also found to modulate migration of VSMCs and smooth muscle-specific contractile marker expression. Mechanistically, DIM negatively modulated PDGF-BB-induced phosphorylation of PDGF-recptorβ (PDGF-Rβ) and the activities of downstream signaling molecules including Akt/glycogen synthase kinase(GSK)3β, extracellular signal-regulated kinase1/2 (ERK1/2), and signal transducers and activators of transcription 3 (STAT3). Our in vivo studies using a mouse carotid arterial injury model revealed that treatment with 150 mg/kg DIM resulted in significant reduction of the neointima/media ratio and proliferating cell nuclear antigen (PCNA)-positive cells, without affecting apoptosis of vascular cells and reendothelialization. Infiltration of inflammatory cells was also inhibited by DIM administration. Conclusion These results demonstrate that DIM can suppress the phenotypic modulation of VSMCs and neointima hyperplasia after vascular injury. These beneficial effects on VSMCs were at least partly

  20. Dopamine induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages in rat C6 glioma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qin, Tian; Wang, Chenlong; Chen, Xuewei

    Dopamine (DA), a monoamine catecholamine neurotransmitter with antiangiogenic activity, stabilizes tumor vessels in colon, prostate and ovarian cancers, thus increases chemotherapeutic efficacy. Here, in the rat C6 glioma models, we investigated the vascular normalization effects of DA and its mechanisms of action. DA (25, 50 mg/kg) inhibited tumor growth, while a precursor of DA (levodopa) prolonged the survival time of rats bearing orthotopic C6 glioma. DA improved tumor perfusion, with significant effects from day 3, and a higher level at days 5 to 7. In addition, DA decreased microvessel density and hypoxia-inducible factor-1α expression in tumor tissues, while increasing themore » coverage of pericyte. Conversely, an antagonist of dopamine receptor 2 (DR2) (eticlopride) but not DR1 (butaclamol) abrogated DA-induced tumor regression and vascular normalization. Furthermore, DA improved the delivery and efficacy of temozolomide therapy. Importantly, DA increased representative M1 markers (iNOS, CXCL9, etc.), while decreasing M2 markers (CD206, arginase-1, etc.). Depletion of macrophages by clodronate or zoledronic acid attenuated the effects of DA. Notably, DA treatment induced M2-to-M1 polarization in RAW264.7 cells and mouse peritoneal macrophages, and enhanced the migration of pericyte-like cells (10T1/2), which was reversed by eticlopride or DR2-siRNA. Such changes were accompanied by the downregulation of VEGF/VEGFR2 signaling. In summary, DA induces growth inhibition and vascular normalization through reprogramming M2-polarized macrophages. Thus, targeting the tumor microvasculature by DA represents a promising strategy for human glioma therapy. - Highlights: • Dopamine induces tumor growth inhibition and vascular normalization in rat C6 glioma. • Dopamine switches macrophage phenotype from M2 to M1. • Dopamine-induced vascular normalization is mediated by macrophage polarization. • Dopamine is a promising agent targeting the microvasculature in

  1. Reconstruction of severe anophthalmic orbits and atresic eye sockets after enucleation and irradiation of retinoblastoma by vascular anastomosed free dorsalis pedis flaps' transplantation.

    PubMed

    Bi, Xiaoping; Fan, Xianqun; Zhou, Huifang; Shi, Wodong; Xiao, Caiwen; Lin, Min; Li, Zhenkang

    2011-05-01

    Retinoblastoma is a common malignant intraocular tumor in childhood, and most patients require enucleation or exenteration even with irradiation. Severe anophthalmic orbits and atresic eye sockets are not rare. We conducted a retrospective study to evaluate the results of surgical management of reconstruction of severe anophthalmic orbits and atresic eye sockets with vascular anastomosed free dorsalis pedis flap transplantation. There were 5 patients (5 eyes) who underwent reconstructive surgery of severe anophthalmic orbits and atresic eye sockets after enucleation and irradiation of retinoblastoma in our hospital during the 3 years. All patients had enucleation and irradiation immediately after the retinoblastoma was diagnosed and had never worn artificial eyes because of the atresic eye sockets. Vascular anastomosed free dorsalis pedis flaps, whose dimensions were typically 6.5 × 5.5 cm(2), were transplanted to reconstruct the severe anophthalmic orbits and atresic eye sockets. The donor sites were covered by free abdominal skin flaps. All the vascular anastomosed free dorsalis pedis flaps were valid after more than 6 months of follow-up. And then all the 5 patients underwent secondary autogenous dermal fat implantation to augment the supraorbital area depression. After the 2-stage reconstruction surgery, the dimensions of the eye sockets were adequate, and all patients were able to wear their prosthesis and had a satisfactory cosmetic result. Implantation of alloplastic materials is not recommended because of insufficient blood supply of the irradiated orbital area.

  2. MicroRNA expression profile and functional analysis reveal their roles in contact inhibition and its disruption switch of rat vascular smooth muscle cells.

    PubMed

    Sun, Ye-Ying; Qin, Shan-Shan; Cheng, Yun-Hui; Wang, Chao-Yun; Liu, Xiao-Jun; Liu, Ying; Zhang, Xiu-Li; Zhang, Wendy; Zhan, Jia-Xin; Shao, Shuai; Bian, Wei-Hua; Luo, Bi-Hui; Lu, Dong-Feng; Yang, Jian; Wang, Chun-Hua; Zhang, Chun-Xiang

    2018-05-01

    Contact inhibition and its disruption of vascular smooth muscle cells (VSMCs) are important cellular events in vascular diseases. But the underlying molecular mechanisms are unclear. In this study we investigated the roles of microRNAs (miRNAs) in the contact inhibition and its disruption of VSMCs and the molecular mechanisms involved. Rat VSMCs were seeded at 30% or 90% confluence. MiRNA expression profiles in contact-inhibited confluent VSMCs (90% confluence) and non-contact-inhibited low-density VSMCs (30% confluence) were determined. We found that multiple miRNAs were differentially expressed between the two groups. Among them, miR-145 was significantly increased in contact-inhibited VSMCs. Serum could disrupt the contact inhibition as shown by the elicited proliferation of confluent VSMCs. The contact inhibition disruption accompanied with a down-regulation of miR-145. Serum-induced contact inhibition disruption of VSMCs was blocked by overexpression of miR-145. Moreover, downregulation of miR-145 was sufficient to disrupt the contact inhibition of VSMCs. The downregulation of miR-145 in serum-induced contact inhibition disruption was related to the activation PI3-kinase/Akt pathway, which was blocked by the PI3-kinase inhibitor LY294002. KLF5, a target gene of miR-145, was identified to be involved in miR-145-mediated effect on VSMC contact inhibition disruption, as it could be inhibited by knockdown of KLF5. In summary, our results show that multiple miRNAs are differentially expressed in contact-inhibited VSMCs and in non-contact-inhibited VSMCs. Among them, miR-145 is a critical gene in contact inhibition and its disruption of VSMCs. PI3-kinase/Akt/miR-145/KLF5 is a critical signaling pathway in serum-induced contact inhibition disruption. Targeting of miRNAs related to the contact inhibition of VSMCs may represent a novel therapeutic approach for vascular diseases.

  3. Bisdemethoxycurcumin inhibits PDGF-induced vascular smooth muscle cell motility and proliferation

    PubMed Central

    Hua, Yinan; Dolence, Julia; Ramanan, Shalini; Ren, Jun; Nair, Sreejayan

    2013-01-01

    Scope A key event in the development of plaque in the arteries is the migration and proliferation of smooth muscle cells (SMCs) from the media to the intima of the blood vessel. This study was conducted to evaluate the effects of bisdemethoxycurcumin, a naturally occurring structural analog of curcumin, on PDGF-stimulated migration and proliferation of SMCs. Methods and results Demethoxycurcumin were synthesized by condensing vanillin and 4-hydroxybenzaldehyde. SMCs isolated from adult rat aorta were stimulated with PDGF in the presence or absence of curcumin or bisdemethoxycurcumin following which cell migration and proliferation were assessed by monolayer wound healing assay and [3H]-thymidine incorporation respectively. PDGF-induced phosphorylation of PDGF-receptor-β and its downstream effector Akt were assessed by Western blotting. Intracellular reactive oxygen species (ROS) was assessed using the fluorescent dye DCFDA. Bisdemethoxycurcumin elicited a concentration-dependent inhibition of PDGF-stimulated phosphorylation of PDGFR-β, Akt and Erk as well as the PDGF-stimulated SMC migration and proliferation. Bisdemethoxycurcumin was more potent than curcumin in inhibiting migration and proliferation and suppressing PDGF-signaling in SMCs. Both compounds were equipotent in inhibiting PDGF-stimulated intracellular ROS-generation. Conclusion Bisdemethoxycurcumin may be of potential use in the prevention or treatment of vascular disease. PMID:23554078

  4. Overexpression of mutated IkappaBalpha inhibits vascular smooth muscle cell proliferation and intimal hyperplasia formation.

    PubMed

    Zuckerbraun, Brian S; McCloskey, Carol A; Mahidhara, Raja S; Kim, Peter K M; Taylor, Bradley S; Tzeng, Edith

    2003-10-01

    Vascular injury and inflammation are associated with elaboration of a number of cytokines that signal through multiple pathways to act as smooth muscle cell (SMC) mitogens. Activation of the nuclear factor-kappa B (NF-kappaB) transcription factor is essential for SMC proliferation in vitro and is activated by vascular injury in vivo. Activation of NF-kappaB is controlled by several upstream regulators, including the inhibitors of kappa B (IkappaB). These proteins bind to and keep NF-kappaB inactivated. The purpose of this study was to determine whether adenoviral gene transfer of a mutated IkappaBalpha super-repressor (AdIkappaBalphaSR) could inhibit development of intimal hyperplasia in vivo and to investigate how over-expression of this construct influences in vitro SMC proliferation and cell cycle regulatory proteins. A rat carotid injury model was used to study prevention of intimal hyperplasia. Arteries were assayed 14 days after injury and infection with AdIkappaBalphaSR or adenoviral beta-galactosidase (AdLacZ). Untreated SMC or SMC infected with AdLacZ or AdIkappaBalphaSR were stimulated with 10% fetal bovine serum, interleukin-1beta, or tumor necrosis factor-alpha. Electrophoretic mobility shift assays were used to assay for NF-kappaB activation. Protein levels of IkappaBalpha and cyclin-dependent kinase inhibitors p21(Cip1/Waf1) and p27(Kip1) were determined with Western blot analysis. Proliferation was measured with (3)H-thymidine incorporation assays. AdIkappaBalphaSR inhibited the development of intimal hyperplasia by 49% (P <.05). Infection with AdIkappaBalphaSR significantly suppressed in vitro SMC proliferation when stimulated with serum, interleukin 1, or tumor necrosis factor alpha, and did not result in cell death. Inhibition of proliferation was associated with increased p21(Cip1/Waf1) and p27(Kip1) protein levels. Gene transfer of IkappaBalpha super-repressor inhibited development of intimal hyperplasia in vivo and SMC proliferation in vitro

  5. Propofol-induced increase in vascular capacitance is due to inhibition of sympathetic vasoconstrictive activity.

    PubMed

    Hoka, S; Yamaura, K; Takenaka, T; Takahashi, S

    1998-12-01

    Venodilation is thought to be one of the mechanisms underlying propofol-induced hypotension. The purpose of this study is to test two hypotheses: (1) propofol increases systemic vascular capacitance, and (2) the capacitance change produced by propofol is a result of an inhibition of sympathetic vasoconstrictor activity. In 33 Wistar rats previously anesthetized with urethane and ketamine, vascular capacitance was examined before and after propofol infusion by measuring mean circulatory filling pressure (Pmcf). The Pmcf was measured during a brief period of circulatory arrest produced by inflating an indwelling balloon in the right atrium. Rats were assigned into four groups: an intact group, a sympathetic nervous system (SNS)-block group produced by hexamethonium infusion, a SNS-block + noradrenaline (NA) group, and a hypovolemic group. The Pmcf was measured at a control state and 2 min after a bolus administration of 2, 10, and 20 mg/kg of propofol. The mean arterial pressure (MAP) was decreased by propofol dose-dependently in intact, hypovolemic, and SNS-block groups, but the decrease in MAP was less in the SNS-block group (-25%) than in the intact (-50%) and hypovolemic (-61%) groups. In the SNS-block + NA group, MAP decreased only at 20 mg/kg of propofol (-18%). The Pmcf decreased in intact and hypovolemic groups in a dose-dependent fashion but was unchanged in the SNS-block and SNS-block + NA groups. The results have provided two principal findings: (1) propofol decreases Pmcf dose-dependently, and (2) the decrease in Pmcf by propofol is elicited only when the sympathetic nervous system is intact, suggesting that propofol increases systemic vascular capacitance as a result of an inhibition of sympathetic nervous system.

  6. Slow and sustained nitric oxide releasing compounds inhibit multipotent vascular stem cell proliferation and differentiation without causing cell death.

    PubMed

    Curtis, Brandon M; Leix, Kyle Alexander; Ji, Yajing; Glaves, Richard Samuel Elliot; Ash, David E; Mohanty, Dillip K

    2014-07-18

    Atherosclerosis is the leading cause of cerebral and myocardial infarction. It is believed that neointimal growth common in the later stages of atherosclerosis is a result of vascular smooth muscle cell (SMC) de-differentiation in response to endothelial injury. However, the claims of the SMC de-differentiation theory have not been substantiated by monitoring the fate of mature SMCs in response to such injuries. A recent study suggests that atherosclerosis is a consequence of multipotent vascular stem cell (MVSC) differentiation. Nitric oxide (NO) is a well-known mediator against atherosclerosis, in part because of its inhibitory effect on SMC proliferation. Using three different NO-donors, we have investigated the effects of NO on MVSC proliferation. Results indicate that NO inhibits MVSC proliferation in a concentration dependent manner. A slow and sustained delivery of NO proved to inhibit proliferation without causing cell death. On the other hand, larger, single-burst NO concentrations, inhibits proliferation, with concurrent significant cell death. Furthermore, our results indicate that endogenously produced NO inhibits MVSC differentiation to mesenchymal-like stem cells (MSCs) and subsequently to SMC as well. Published by Elsevier Inc.

  7. Inhibiting the Aurora B Kinase Potently Suppresses Repopulation During Fractionated Irradiation of Human Lung Cancer Cell Lines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sak, Ali, E-mail: ali.sak@uni-due.de; Stuschke, Martin; Groneberg, Michael

    2012-10-01

    Purpose: The use of molecular-targeted agents during radiotherapy of non-small-cell lung cancer (NSCLC) is a promising strategy to inhibit repopulation, thereby improving therapeutic outcome. We assessed the combined effectiveness of inhibiting Aurora B kinase and irradiation on human NSCLC cell lines in vitro. Methods and Materials: NSCLC cell lines were exposed to concentrations of AZD1152-hydroxyquinazoline pyrazol anilide (AZD1152-HQPA) inhibiting colony formation by 50% (IC50{sub clone}) in combination with single dose irradiation or different fractionation schedules using multiple 2-Gy fractions per day up to total doses of 4-40 Gy. The total irradiation dose required to control growth of 50% of themore » plaque monolayers (TCD50) was determined. Apoptosis, G2/M progression, and polyploidization were also analyzed. Results: TCD50 values after single dose irradiation were similar for the H460 and H661 cell lines with 11.4 {+-} 0.2 Gy and 10.7 {+-} 0.3 Gy, respectively. Fractionated irradiation using 3 Multiplication-Sign 2 Gy/day, 2 Multiplication-Sign 2 Gy/day, and 1 Multiplication-Sign 2 Gy/day schedules significantly increased TCD50 values for both cell lines grown as plaque monolayers with increasing radiation treatment time. This could be explained by a repopulation effect per day that counteracts 75 {+-} 8% and 27 {+-} 6% of the effect of a 2-Gy fraction in H460 and H661 cells, respectively. AZD1152-HQPA treatment concomitant to radiotherapy significantly decreased the daily repopulation effect (H460: 28 {+-} 5%, H661: 10 {+-} 4% of a 2-Gy fraction per day). Treatment with IC50{sub clone} AZD1152-HPQA did not induce apoptosis, prolong radiation-induced G2 arrest, or delay cell cycle progression before the spindle check point. However, polyploidization was detected, especially in cell lines without functional p53. Conclusions: Inhibition of Aurora B kinase with low AZD1152-HQPA concentrations during irradiation of NSCLC cell lines affects repopulation

  8. The suppression of bromodomain and extra‐terminal domain inhibits vascular inflammation by blocking NF‐κB and MAPK activation

    PubMed Central

    Huang, Mingcheng; Zeng, Shan; Zou, Yaoyao; Shi, Maohua; Qiu, Qian; Xiao, Youjun; Chen, Guoqiang; Yang, Xiuyan; Liang, Liuqin

    2016-01-01

    Background and Purpose There is increasing evidence indicating that bromodomain and extra‐terminal domain (BET) proteins play a critical role in the regulation of immune and inflammatory responses; however, their contribution to vascular inflammation has not yet been elucidated. In this study, we investigated the effect of inhibiting BET bromodomain on vascular inflammation and the underlying mechanisms. Experimental Approach HUVECs were isolated from fresh umbilical cords. JQ1, a specific BET bromodomain inhibitor, and Brd shRNA were used to evaluate the regulation of the BET proteins in vascular inflammation. Leukocyte adhesion to HUVECs was measure by an adhesion assay. Western blot or immunohistochemical analysis was used to detect the protein expression. Real‐time PCR was used to evaluate mRNA expression. Leukocyte accumulation in vivo was determined by an acute lung inflammation model. Key Results BET bromodomain inhibition suppressed the expression of adhesion molecules induced by TNF‐α‐ or LPS, including ICAM‐1, VCAM‐1 and E‐selectin, and inhibited leukocyte adhesion to activated HUVEC monolayers. Treatment with JQ1 also attenuated the LPS‐induced accumulation of leukocytes and expression of endothelial adhesion molecules in the acute lung inflammation model in vivo. Furthermore, BET bromodomain inhibition reduced the activity of p38 and JNK MAPKs and NF‐κB in TNF‐α‐stimulated HUVECs. TNF‐α‐induced NF‐κB activation was also blocked by inhibitors of p38 (SB203580) or JNK (SP600125). Conclusions and Implications BET bromodomain is important for regulating endothelial inflammation. Strategies targeting endothelial BET bromodomain may provide a new therapeutic approach for controlling inflammatory‐related diseases. PMID:27774624

  9. Resveratrol protects vascular endothelial cells from high glucose-induced apoptosis through inhibition of NADPH oxidase activation-driven oxidative stress.

    PubMed

    Chen, Feng; Qian, Li-Hua; Deng, Bo; Liu, Zhi-Min; Zhao, Ying; Le, Ying-Ying

    2013-09-01

    Hyperglycemia-induced oxidative stress has been implicated in diabetic vascular complications in which NADPH oxidase is a major source of reactive oxygen species (ROS) generation. Resveratrol is a naturally occurring polyphenol, which has vasoprotective effects in diabetic animal models and inhibits high glucose (HG)-induced oxidative stress in endothelial cells. We aimed to examine whether HG-induced NADPH oxidase activation and ROS production contribute to glucotoxicity to endothelial cells and the effect of resveratrol on glucotoxicity. Using a murine brain microvascular endothelial cell line bEnd3, we found that NADPH oxidase inhibitor (apocynin) and resveratrol both inhibited HG-induced endothelial cell apoptosis. HG-induced elevation of NADPH oxidase activity and production of ROS were inhibited by apocynin, suggesting that HG induces endothelial cell apoptosis through NADPH oxidase-mediated ROS production. Mechanistic studies revealed that HG upregulated NADPH oxidase subunit Nox1 but not Nox2, Nox4, and p22(phox) expression through NF-κB activation, which resulted in elevation of NADPH oxidase activity and consequent ROS production. Resveratrol prevented HG-induced endothelial cell apoptosis through inhibiting HG-induced NF-κB activation, NADPH oxidase activity elevation, and ROS production. HG induces endothelial cell apoptosis through NF-κB/NADPH oxidase/ROS pathway, which was inhibited by resveratrol. Our findings provide new potential therapeutic targets against brain vascular complications of diabetes. © 2013 John Wiley & Sons Ltd.

  10. Gallic acid inhibits vascular calcification through the blockade of BMP2-Smad1/5/8 signaling pathway.

    PubMed

    Kee, Hae Jin; Cho, Soo-Na; Kim, Gwi Ran; Choi, Sin Young; Ryu, Yuhee; Kim, In Kyeom; Hong, Young Joon; Park, Hyung Wook; Ahn, Youngkeun; Cho, Jeong Gwan; Park, Jong Chun; Jeong, Myung Ho

    2014-11-01

    Vascular calcification is associated with increased risk of morbidity and mortality in patients with cardiovascular diseases, chronic kidney diseases, and diabetes. Gallic acid, a natural compound found in gallnut and green tea, is known to be antifungal, antioxidant, and anticancer. Here we investigated the effect of gallic acid on vascular smooth muscle cell (VSMC) calcification and the underlying mechanism. Gallic acid inhibited inorganic phosphate-induced osteoblast differentiation markers as well as calcification phenotypes (as determined by calcium deposition, Alizarin Red, and Von Kossa staining). Knockdown of BMP2 or Noggin blocked phosphate-induced calcification. Gallic acid suppressed phosphorylation of Smad1/5/8 protein induced by inorganic phosphate. Taken together, we suggest that gallic acid acts as a novel therapeutic agent of vascular calcification by mediating BMP2-Smad1/5/8 signaling pathway. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Caries inhibition in vital teeth using 9.6-μm CO2-laser irradiation

    NASA Astrophysics Data System (ADS)

    Rechmann, Peter; Fried, Daniel; Le, Charles Q.; Nelson, Gerald; Rapozo-Hilo, Marcia; Rechmann, Beate M. T.; Featherstone, John D. B.

    2011-07-01

    The aim of this study was to test the hypothesis that in a short-term clinical pilot trial short-pulsed 9.6 μm CO2-laser irradiation significantly inhibits demineralization in vivo. Twenty-four subjects scheduled for extraction of bicuspids for orthodontic reasons (age 14.9 +/- 2.2 years) were recruited. Orthodontic brackets were placed on bicuspids (Transbond XT, 3M). An area next to the bracket was irradiated with a CO2-laser (Pulse System Inc, Los Alamos, New Mexico), wavelength 9.6 μm, pulse duration 20 μs, pulse repetition rate 20 Hz, beam diameter 1100 μm, average fluence 4.1 +/- 0.3J/cm2, 20 laser pulses per spot. An adjacent nonirradiated area served as control. Bicuspids were extracted after four and twelve weeks, respectively, for a quantitative assessment of demineralization by cross-sectional microhardness testing. For the 4-week arm the mean relative mineral loss ΔZ (vol% × μm) for the laser treated enamel was 402 +/- 85 (mean +/- SE), while the control showed significantly higher mineral loss (ΔZ 738 +/- 131; P = 0.04, t-test). The difference was even larger after twelve weeks (laser arm ΔZ 135 +/- 98; control 1067 +/- 254; P = 0.002). The laser treatment produced 46% demineralization inhibition for the 4-week and a marked 87% inhibition for the 12-week arm. This study shows, for the first time in vivo, that the short-pulsed 9.6 μm CO2-laser irradiation successfully inhibits demineralization of tooth enamel in humans.

  12. Carbon Ion Irradiation Inhibits Glioma Cell Migration Through Downregulation of Integrin Expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rieken, Stefan, E-mail: Stefan.Rieken@med.uni-heidelberg.de; Habermehl, Daniel; Wuerth, Lena

    2012-05-01

    Purpose: To investigate the effect of carbon ion irradiation on glioma cell migration. Methods and Materials: U87 and Ln229 glioma cells were irradiated with photons and carbon ions. Migration was analyzed 24 h after irradiation. Fluorescence-activated cell sorting analysis was performed in order to quantify surface expression of integrins. Results: Single photon doses of 2 Gy and 10 Gy enhanced {alpha}{sub {nu}}{beta}{sub 3} and {alpha}{sub {nu}}{beta}{sub 5} integrin expression and caused tumor cell hypermigration on both vitronectin (Vn) and fibronectin (Fn). Compared to integrin expression in unirradiated cells, carbon ion irradiation caused decreased integrin expression and inhibited cell migration onmore » both Vn and Fn. Conclusion: Photon radiotherapy (RT) enhances the risk of tumor cell migration and subsequently promotes locoregional spread via photon induction of integrin expression. In contrast to photon RT, carbon ion RT causes decreased integrin expression and suppresses glioma cell migration on both Vn and Fn, thus promising improved local control.« less

  13. Increased activity of vascular adenosine deaminase in atherosclerosis and therapeutic potential of its inhibition.

    PubMed

    Kutryb-Zajac, Barbara; Mateuszuk, Lukasz; Zukowska, Paulina; Jasztal, Agnieszka; Zabielska, Magdalena A; Toczek, Marta; Jablonska, Patrycja; Zakrzewska, Agnieszka; Sitek, Barbara; Rogowski, Jan; Lango, Romuald; Slominska, Ewa M; Chlopicki, Stefan; Smolenski, Ryszard T

    2016-11-01

    Extracellular nucleotides and adenosine that are formed or degraded by membrane-bound ecto-enzymes could affect atherosclerosis by regulating the inflammation and thrombosis. This study aimed to evaluate a relation between ecto-enzymes that convert extracellular adenosine triphosphate to adenine dinucleotide phosphate, adenosine monophosphate, adenosine, and inosine on the surface of the vessel wall with the severity or progression of experimental and clinical atherosclerosis. Furthermore, we tested whether the inhibition of adenosine deaminase will block the development of experimental atherosclerosis. Vascular activities of ecto-nucleoside triphosphate diphosphohydrolase 1, ecto-5'-nucleotidase, and ecto-adenosine deaminase (eADA) were measured in aortas of apolipoprotein E-/- low density lipoprotein receptor (ApoE-/-LDLR-/-) and wild-type mice as well as in human aortas. Plaques were analysed in the entire aorta, aortic root, and brachiocephalic artery by Oil-Red O and Orcein Martius Scarlet Blue staining and vascular accumulation of macrophages. The cellular location of ecto-enzymes was analysed by immunofluorescence. The effect of eADA inhibition on atherosclerosis progression was studied by a 2-month deoxycoformycin treatment of ApoE-/-LDLR-/- mice. The vascular eADA activity prominently increased in ApoE-/-LDLR-/- mice when compared with wild type already at the age of 1 month and progressed along atherosclerosis development, reaching a 10-fold difference at 10 months. The activity of eADA correlated with atherosclerotic changes in human aortas. High abundance of eADA in atherosclerotic vessels originated from activated endothelial cells and macrophages. There were no changes in ecto-nucleoside triphosphate diphosphohydrolase 1 activity, whereas ecto-5'-nucleotidase was moderately decreased in ApoE-/-LDLR-/- mice. Deoxycoformycin treatment attenuated plaque development in aortic root and brachiocephalic artery of ApoE-/-LDLR-/- mice, suppressed vascular

  14. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression.

    PubMed

    Jang, Min A; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae

    2017-01-01

    α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1-10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538-234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression.

  15. Thread Embedding Acupuncture Inhibits Ultraviolet B Irradiation-Induced Skin Photoaging in Hairless Mice.

    PubMed

    Kim, Yoon-Jung; Kim, Ha-Neui; Shin, Mi-Sook; Choi, Byung-Tae

    2015-01-01

    Thread embedding acupuncture (TEA) is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB) irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P = 0.001 versus UV) in UVB irradiated mice and also inhibited degradation of collagen fibers (P = 0.010 versus normal) by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9). Western blot data showed that activation of c-Jun N-terminal kinase (JNK) induced by UVB (P = 0.002 versus normal group) was significantly inhibited by TEA treatment (P = 0.005 versus UV) with subsequent alleviation of MMP-9 activation (P = 0.048 versus UV). These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging.

  16. Thread Embedding Acupuncture Inhibits Ultraviolet B Irradiation-Induced Skin Photoaging in Hairless Mice

    PubMed Central

    Kim, Yoon-Jung; Kim, Ha-Neui; Shin, Mi-Sook; Choi, Byung-Tae

    2015-01-01

    Thread embedding acupuncture (TEA) is an acupuncture treatment applied to many diseases in Korean medical clinics because of its therapeutic effects by continuous stimulation to tissues. It has recently been used to enhance facial skin appearance and antiaging, but data from evidence-based medicine are limited. To investigate whether TEA therapy can inhibit skin photoaging by ultraviolet B (UVB) irradiation, we performed analyses for histology, histopathology, in situ zymography and western blot analysis in HR-1 hairless mice. TEA treatment resulted in decreased wrinkle formation and skin thickness (Epidermis; P = 0.001 versus UV) in UVB irradiated mice and also inhibited degradation of collagen fibers (P = 0.010 versus normal) by inhibiting proteolytic activity of gelatinase matrix-metalloproteinase-9 (MMP-9). Western blot data showed that activation of c-Jun N-terminal kinase (JNK) induced by UVB (P = 0.002 versus normal group) was significantly inhibited by TEA treatment (P = 0.005 versus UV) with subsequent alleviation of MMP-9 activation (P = 0.048 versus UV). These results suggest that TEA treatment can have anti-photoaging effects on UVB-induced skin damage by maintenance of collagen density through regulation of expression of MMP-9 and related JNK signaling. Therefore, TEA therapy may have potential roles as an alternative treatment for protection against skin damage from aging. PMID:26185518

  17. Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness.

    PubMed

    Galaup, Ariane; Cazes, Aurelie; Le Jan, Sebastien; Philippe, Josette; Connault, Elisabeth; Le Coz, Emmanuelle; Mekid, Halima; Mir, Lluis M; Opolon, Paule; Corvol, Pierre; Monnot, Catherine; Germain, Stephane

    2006-12-05

    Angiopoietin-like 4 (ANGPTL4), a secreted protein of the angiopoietin-like family, is induced by hypoxia in both tumor and endothelial cells as well as in hypoxic perinecrotic areas of numerous cancers. Here, we investigated whether ANGPTL4 might affect tumor growth as well as metastasis. Metastatic 3LL cells were therefore xenografted into control mice and mice in which ANGPTL4 was expressed by using in vivo DNA electrotransfer. Whereas primary tumors grew at a similar rate in both groups, 3LL cells metastasized less efficiently to the lungs of mice that expressed ANGPTL4. Fewer 3LL emboli were observed in primary tumors, suggesting that intravasation of 3LL cells was inhibited by ANGPTL4. Furthermore, melanoma B16F0 cells injected into the retro-orbital sinus also metastasized less efficiently in mice expressing ANGPTL4. Although B16F0 cells were observed in lung vessels, they rarely invaded the parenchyma, suggesting that ANGPTL4 affects extravasation. In addition, recombinant B16F0 cells that overexpress ANGPTL4 were generated, showing a lower capacity for in vitro migration, invasion, and adhesion than control cells. Expression of ANGPTL4 induced reorganization of the actin cytoskeleton through inhibition of actin stress fiber formation and vinculin localization at focal contacts. Together, these results show that ANGPTL4, through its action on both vascular and tumor compartments, prevents the metastatic process by inhibiting vascular activity as well as tumor cell motility and invasiveness.

  18. Angiopoietin-like 4 prevents metastasis through inhibition of vascular permeability and tumor cell motility and invasiveness

    PubMed Central

    Galaup, Ariane; Cazes, Aurelie; Le Jan, Sebastien; Philippe, Josette; Connault, Elisabeth; Le Coz, Emmanuelle; Mekid, Halima; Mir, Lluis M.; Opolon, Paule; Corvol, Pierre; Monnot, Catherine; Germain, Stephane

    2006-01-01

    Angiopoietin-like 4 (ANGPTL4), a secreted protein of the angiopoietin-like family, is induced by hypoxia in both tumor and endothelial cells as well as in hypoxic perinecrotic areas of numerous cancers. Here, we investigated whether ANGPTL4 might affect tumor growth as well as metastasis. Metastatic 3LL cells were therefore xenografted into control mice and mice in which ANGPTL4 was expressed by using in vivo DNA electrotransfer. Whereas primary tumors grew at a similar rate in both groups, 3LL cells metastasized less efficiently to the lungs of mice that expressed ANGPTL4. Fewer 3LL emboli were observed in primary tumors, suggesting that intravasation of 3LL cells was inhibited by ANGPTL4. Furthermore, melanoma B16F0 cells injected into the retro-orbital sinus also metastasized less efficiently in mice expressing ANGPTL4. Although B16F0 cells were observed in lung vessels, they rarely invaded the parenchyma, suggesting that ANGPTL4 affects extravasation. In addition, recombinant B16F0 cells that overexpress ANGPTL4 were generated, showing a lower capacity for in vitro migration, invasion, and adhesion than control cells. Expression of ANGPTL4 induced reorganization of the actin cytoskeleton through inhibition of actin stress fiber formation and vinculin localization at focal contacts. Together, these results show that ANGPTL4, through its action on both vascular and tumor compartments, prevents the metastatic process by inhibiting vascular activity as well as tumor cell motility and invasiveness. PMID:17130448

  19. Synthetic E-selectin prevents postoperative vascular restenosis by inhibiting nuclear factor κB in rats

    PubMed Central

    Liu, Jiangang; Liu, Zhongjie; Hu, Xiaohui; Zhang, Yuan; Zhang, Shiming

    2018-01-01

    During the development of postoperative vascular restenosis, the aberrant proliferation of vascular smooth muscle cells (VSMCs) is a critical event resulting in intimal hyperplasia. Inflammatory responses involving the activation of nuclear factor (NF)-κB are among the major molecular processes underlying restenosis. The present study aimed to investigate the roles of NF-κB in VSMC proliferation and restenosis following vascular anastomosis, as well as to evaluate the potential of synthetic E-selectin to downregulate NF-κB and thus inhibit vascular hyperplasia. A total of 72 adult male Sprague-Dawley rats were randomly assigned to three groups: Control, operation and treatment groups. Rats in the operation and treatment groups received longitudinal incisions in the right carotid arteries, which were closed using interrupted sutures. Following vascular anastomosis, synthetic E-selectin (10 mg/kg), or an equal volume of saline, was immediately injected into the right femoral vein of rats in the treatment and operation groups, respectively. Following surgery, the mRNA and protein expression levels of NF-κB at the site of anastomosis, the levels of tumor necrosis factor-α and interleukin-6 in the serum, NF-κB binding activity, and the presence of proliferating cell nuclear antigen (PCNA)-positive cells were evaluated by western blotting, reverse transcription-quantitative polymerase chain reaction, ELISA, electrophoretic mobility shift assay and immunofluorescence staining. The present results demonstrated that following treatment with synthetic E-selectin, the levels of NF-κB and the inflammatory response, as well as the presence of PCNA-positive cells, were significantly reduced (P<0.01). In conclusion, the results of the present study suggested that synthetic E-selectin may exert anti-inflammatory and anti-restenotic effects following vascular anastomosis in vivo. PMID:29393453

  20. Vascular Disruption in Combination with mTOR Inhibition in Renal Cell Carcinoma

    PubMed Central

    Ellis, Leigh; Shah, Preeti; Hammers, Hans; Lehet, Kristin; Sotomayor, Paula; Azabdaftari, Gissou; Seshadri, Mukund; Pili, Roberto

    2013-01-01

    Renal cell carcinoma (RCC) is an angiogenesis-dependent and hypoxia-driven malignancy. As a result, there has been an increased interest in the use of antiangiogenic agents for the management of RCC in patients. However, the activity of tumor-vascular disrupting agents (tumor-VDA) has not been extensively examined against RCC. In this study, we investigated the therapeutic efficacy of the tumor-VDA ASA404 (DMXAA, 5,6-dimethylxanthenone-4-acetic acid, or vadimezan) in combination with the mTOR inhibitor everolimus (RAD001) against RCC. In vitro studies were carried out using human umbilical vein endothelial cells and in vivo studies using orthotopic RENCA tumors and immunohistochemical patient tumor-derived RCC xenografts. MRI was used to characterize the vascular response of orthotopic RENCA xenografts to combination treatment. Therapeutic efficacy was determined by tumor growth measurements and histopathologic evaluation. ASA404/everolimus combination resulted in enhanced inhibition of endothelial cell sprouting in the 3-dimensional spheroid assay. MRI of orthotopic RENCA xenografts revealed an early increase in permeability 4 hours posttreatment with ASA404, but not with everolimus. Twenty-four hours after treatment, a significant reduction in blood volume was observed with combination treatment. Correlative CD31/NG2 staining of tumor sections confirmed marked vascular damage following combination therapy. Histologic sections showed extensive necrosis and a reduction in the viable rim following combination treatment compared with VDA treatment alone. These results show the potential of combining tumor-VDAs with mTOR inhibitors in RCC. Further investigation into this novel combination strategy is warranted. PMID:22084164

  1. Application of a Novel Murine Ear Vein Model to Evaluate the Effects of a Vascular Radioprotectant on Radiation-Induced Vascular Permeability and Leukocyte Adhesion.

    PubMed

    Ashcraft, Kathleen A; Choudhury, Kingshuk Roy; Birer, Sam R; Hendargo, Hansford C; Patel, Pranalee; Eichenbaum, Gary; Dewhirst, Mark W

    2018-04-19

    Vascular injury after radiation exposure contributes to multiple types of tissue injury through a cascade of events. Some of the earliest consequences of radiation damage include increased vascular permeability and promotion of inflammation, which is partially manifested by increased leukocyte-endothelial (L/E) interactions. We describe herein a novel intravital imaging method to evaluate L/E interactions, as a function of shear stress, and vascular permeability at multiple time points after local irradiation to the ear. This model permitted analysis of quiescent vasculature that was not perturbed by any surgical manipulation prior to imaging. To evaluate the effects of radiation on vascular integrity, fluorescent dextran was injected intravenously and its extravasation in the extravascular space surrounding the ear vasculature was measured at days 3 and 7 after 6 Gy irradiation. The vascular permeability rate increased approximately twofold at both days 3 and 7 postirradiation ( P < 0.05). Leukocyte rolling, which is indicative of L/E interactions, was significantly increased in mice at 24 h postirradiation compared to that of nonirradiated mice. To assess our model, as a means for assessing vascular radioprotectants, we treated additional cohorts of mice with a thrombopoietin mimetic, TPOm (RWJ-800088). In addition to stimulating platelet formation, thrombopoietin can protect vasculature after several forms of injury. Thus, we hypothesized that TPOm would reduce vascular permeability and L/E adhesion after localized irradiation to the ear vasculature of mice. If TPOm reduced these consequences of radiation, it would validate the utility of our intravital imaging method. TPOm reduced radiation-induced vascular leakage to control levels at day 7. Furthermore, L/E cell interactions were also reduced in irradiated mice treated with TPOm, compared with mice receiving irradiation alone, particularly at high shear stress ( P = 0.03, Kruskal-Wallis). We conclude that the

  2. Nrf2/Keap1 system regulates vascular smooth muscle cell apoptosis for vascular homeostasis: role in neointimal formation after vascular injury

    PubMed Central

    Ashino, Takashi; Yamamoto, Masayuki; Numazawa, Satoshi

    2016-01-01

    Abnormal increases in vascular smooth muscle cells (VSMCs) in the intimal region after a vascular injury is a key event in developing neointimal hyperplasia. To maintain vascular function, proliferation and apoptosis of VSMCs is tightly controlled during vascular remodeling. NF-E2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) system, a key component of the oxidative stress response that acts in maintaining homeostasis, plays an important role in neointimal hyperplasia after a vascular injury; however, the role of Nrf2/Keap1 in VSMC apoptosis has not been clarified. Here we report that 14 days after arterial injury in mice, TUNEL-positive VSMCs are detected in both the neointimal and medial layers. These layers contain cells expressing high levels of Nrf2 but low Keap1 expression. In VSMCs, Keap1 depletion induces features of apoptosis, such as positive TUNEL staining and annexin V binding. These changes are associated with an increased expression of nuclear Nrf2. Simultaneous Nrf2 depletion inhibits Keap1 depletion-induced apoptosis. At 14 days after the vascular injury, Nrf2-deficient mice demonstrated fewer TUNEL-positive cells and increased neointimal formation in the neointimal and medial areas. The results suggest that the Nrf2/Keap1 system regulates VSMC apoptosis during neointimal formation, thereby inhibiting neointimal hyperplasia after a vascular injury. PMID:27198574

  3. The Renin-Angiotensin-Aldosterone System in Vascular Inflammation and Remodeling

    PubMed Central

    Pacurari, Maricica; Kafoury, Ramzi; Tchounwou, Paul B.; Ndebele, Kenneth

    2014-01-01

    The RAAS through its physiological effectors plays a key role in promoting and maintaining inflammation. Inflammation is an important mechanism in the development and progression of CVD such as hypertension and atherosclerosis. In addition to its main role in regulating blood pressure and its role in hypertension, RAAS has proinflammatory and profibrotic effects at cellular and molecular levels. Blocking RAAS provides beneficial effects for the treatment of cardiovascular and renal diseases. Evidence shows that inhibition of RAAS positively influences vascular remodeling thus improving CVD outcomes. The beneficial vascular effects of RAAS inhibition are likely due to decreasing vascular inflammation, oxidative stress, endothelial dysfunction, and positive effects on regeneration of endothelial progenitor cells. Inflammatory factors such as ICAM-1, VCAM-1, TNFα, IL-6, and CRP have key roles in mediating vascular inflammation and blocking RAAS negatively modulates the levels of these inflammatory molecules. Some of these inflammatory markers are clinically associated with CVD events. More studies are required to establish long-term effects of RAAS inhibition on vascular inflammation, vascular cells regeneration, and CVD clinical outcomes. This review presents important information on RAAS's role on vascular inflammation, vascular cells responses to RAAS, and inhibition of RAAS signaling in the context of vascular inflammation, vascular remodeling, and vascular inflammation-associated CVD. Nevertheless, the review also equates the need to rethink and rediscover new RAAS inhibitors. PMID:24804145

  4. PPARδ agonist GW501516 inhibits PDGF-stimulated pulmonary arterial smooth muscle cell function related to pathological vascular remodeling.

    PubMed

    Liu, Guangjie; Li, Xuan; Li, Yan; Tang, Xin; Xu, Jie; Li, Ran; Hao, Peng; Sun, Yongchang

    2013-01-01

    Pulmonary arterial hypertension (PAH) is a severe and progressive disease, a key feature of which is pulmonary vascular remodeling. Growth factors, cytokines, and lipid mediators are involved in this remodeling process. Recent reports suggest that the peroxisome proliferator-activated receptors (PPARs) play important roles in the regulation of cell growth and differentiation as well as tissue wounding and repair. In this study, we examined the role of PPAR δ in the regulation of proliferation, migration, collagen synthesis, and chemokine production in human pulmonary arterial smooth muscle cells (HPASMCs). The data showed that PPAR δ was the most abundant isoform in HPASMCs. PPAR δ was upregulated in HPASMCs treated with PDGF, which is the major mediator in pulmonary vascular remodeling. Activation of PPAR δ by GW501516, a specific PPAR δ ligand, significantly inhibited PDGF-induced proliferation in HPASMCs. The inhibitory effect of GW501516 on HPASMCs was associated with decreased expression of cyclin D1, cyclin D3, CDK2, and CDK4 as well as increased expression of the cell cycle inhibitory genes G0S2 and P27(kip1). Pretreatment of HPASMCs with GW501516 significantly inhibited PDGF-induced cell migration and collagen synthesis. GW501516 also significantly attenuated TNF-mediated expression of MCP-1. These results suggest that PPAR δ may be a potential therapeutic target against the progression of vascular remodeling in PAH.

  5. PPARδ Agonist GW501516 Inhibits PDGF-Stimulated Pulmonary Arterial Smooth Muscle Cell Function Related to Pathological Vascular Remodeling

    PubMed Central

    Liu, Guangjie; Li, Xuan; Li, Yan; Tang, Xin; Xu, Jie; Li, Ran; Hao, Peng; Sun, Yongchang

    2013-01-01

    Pulmonary arterial hypertension (PAH) is a severe and progressive disease, a key feature of which is pulmonary vascular remodeling. Growth factors, cytokines, and lipid mediators are involved in this remodeling process. Recent reports suggest that the peroxisome proliferator-activated receptors (PPARs) play important roles in the regulation of cell growth and differentiation as well as tissue wounding and repair. In this study, we examined the role of PPARδ in the regulation of proliferation, migration, collagen synthesis, and chemokine production in human pulmonary arterial smooth muscle cells (HPASMCs). The data showed that PPARδ was the most abundant isoform in HPASMCs. PPARδ was upregulated in HPASMCs treated with PDGF, which is the major mediator in pulmonary vascular remodeling. Activation of PPARδ by GW501516, a specific PPARδ ligand, significantly inhibited PDGF-induced proliferation in HPASMCs. The inhibitory effect of GW501516 on HPASMCs was associated with decreased expression of cyclin D1, cyclin D3, CDK2, and CDK4 as well as increased expression of the cell cycle inhibitory genes G0S2 and P27kip1. Pretreatment of HPASMCs with GW501516 significantly inhibited PDGF-induced cell migration and collagen synthesis. GW501516 also significantly attenuated TNF-mediated expression of MCP-1. These results suggest that PPARδ may be a potential therapeutic target against the progression of vascular remodeling in PAH. PMID:23607100

  6. α-Iso-Cubebene Inhibits PDGF-Induced Vascular Smooth Muscle Cell Proliferation by Suppressing Osteopontin Expression

    PubMed Central

    Jang, Min A.; Lee, Seung Jin; Baek, Seung Eun; Park, So Youn; Choi, Young Whan; Kim, Chi Dae

    2017-01-01

    α-Iso-cubebene (ICB) is a dibenzocyclooctadiene lignin contained in Schisandra chinensis (SC), a well-known medicinal herb that ameliorates cardiovascular symptoms. Thus, we examined the effect of ICB on vascular smooth muscle cell (VSMC) proliferation, a key feature of diverse vascular diseases. When VSMCs primary cultured from rat thoracic aorta were stimulated with PDGF (1–10 ng/ml), cell proliferation and osteopontin (OPN) expression were concomitantly up-regulated, but these effects were attenuated when cells were treated with MPIIIB10, a neutralizing monoclonal antibody for OPN. In aortic tissues exposed to PDGF, sprouting VSMC numbers increased, which was attenuated in tissues from OPN-deficient mice. Furthermore, VSMC proliferation and OPN expression induced by PDGF were attenuated dose-dependently by ICB (10 or 30 μg/ml). Reporter assays conducted using OPN promoter-luciferase constructs showed that the promoter region 538–234 bp of the transcription start site was responsible for transcriptional activity enhancement by PDGF, which was significantly inhibited by ICB. Putative binding sites for AP-1 and C/EBPβ in the indicated promoter region were suggested by TF Search, and increased binding of AP-1 and C/EBPβ in PDGF-treated VSMCs was demonstrated using a ChIP assay. The increased bindings of AP-1 and C/EBPβ into OPN promoter were attenuated by ICB. Moreover, the PDGF-induced expression of OPN was markedly attenuated in VSMCs transfected with siRNA for AP-1 and C/EBPβ. These results indicate that ICB inhibit VSMC proliferation by inhibiting the AP-1 and C/EBPβ signaling pathways and thus downregulating OPN expression. PMID:28114367

  7. Inhibition of Vascular Endothelial Growth Factor Receptor Signal Transduction Blocks Follicle Progression but Does Not Necessarily Disrupt Vascular Development in Perinatal Rat Ovaries1

    PubMed Central

    McFee, Renee M.; Artac, Robin A.; McFee, Ryann M.; Clopton, Debra T.; Smith, Robyn A. Longfellow; Rozell, Timothy G.; Cupp, Andrea S.

    2009-01-01

    We hypothesized that vascular endothelial growth factor A (VEGFA) angiogenic isoforms and their receptors, FLT1 and KDR, regulate follicular progression in the perinatal rat ovary. Each VEGFA angiogenic isoform has unique functions (based on its exons) that affect diffusibility, cell migration, branching, and development of large vessels. The Vegfa angiogenic isoforms (Vegfa_120, Vegfa_164, and Vegfa_188) were detected in developing rat ovaries, and quantitative RT-PCR determined that Vegfa_120 and Vegfa_164 mRNA was more abundant after birth, while Vegfa_188 mRNA was highest at Embryonic Day 16. VEGFA and its receptors were localized to pregranulosa and granulosa cells of all follicle stages and to theca cells of advanced-stage follicles. To determine the role of VEGFA in developing ovaries, Postnatal Day 3/4 rat ovaries were cultured with 8 μM VEGFR-TKI, a tyrosine kinase inhibitor that blocks FLT1 and KDR. Ovaries treated with VEGFR-TKI had vascular development reduced by 94% (P < 0.0001), with more primordial follicles (stage 0), fewer early primary, transitional, and secondary follicles (stages 1, 3, and 4, respectively), and greater total follicle numbers compared with control ovaries (P < 0.005). V1, an inhibitor specific for KDR, was utilized to determine the effects of only KDR inhibition. Treatment with 30 μM V1 had no effect on vascular density; however, treated ovaries had fewer early primary, transitional, and secondary follicles and more primary follicles (stage 2) compared with control ovaries (P < 0.05). We conclude that VEGFA may be involved in primordial follicle activation and in follicle maturation and survival, which are regulated through vascular-dependent and vascular-independent mechanisms. PMID:19605787

  8. Compound C Inhibits Vascular Smooth Muscle Cell Proliferation and Migration in an AMP-Activated Protein Kinase-Independent Fashion

    PubMed Central

    Peyton, Kelly J.; Yu, Yajie; Yates, Benjamin; Shebib, Ahmad R.; Liu, Xiao-ming; Wang, Hong

    2011-01-01

    6-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a] pyrimidine (compound C) is a cell-permeable pyrrazolopyrimidine derivative that acts as a potent inhibitor of AMP-activated protein kinase (AMPK). Although compound C is often used to determine the role of AMPK in various physiological processes, it also evokes AMPK-independent actions. In the present study, we investigated whether compound C influences vascular smooth muscle cell (SMC) function through the AMPK pathway. Treatment of rat aortic SMCs with compound C (0.02–10 μM) inhibited vascular SMC proliferation and migration in a concentration-dependent fashion. These actions of compound C were not mimicked or affected by silencing AMPKα expression or infecting SMCs with an adenovirus expressing a dominant-negative mutant of AMPK. In contrast, the pharmacological activator of AMPK 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside inhibited the proliferation and migration of SMCs in a manner that was strictly dependent on AMPK activity. Flow cytometry experiments revealed that compound C arrested SMCs in the G0/G1 phase of the cell cycle, and this was associated with a decrease in cyclin D1 and cyclin A protein expression and retinoblastoma protein phosphorylation and an increase in p21 protein expression. Finally, local perivascular delivery of compound C immediately after balloon injury of rat carotid arteries markedly attenuated neointima formation. These studies identify compound C as a novel AMPK-independent regulator of vascular SMC function that exerts inhibitory effects on SMC proliferation and migration and neointima formation after arterial injury. Compound C represents a potentially new therapeutic agent in treating and preventing occlusive vascular disease. PMID:21566210

  9. Compound C inhibits vascular smooth muscle cell proliferation and migration in an AMP-activated protein kinase-independent fashion.

    PubMed

    Peyton, Kelly J; Yu, Yajie; Yates, Benjamin; Shebib, Ahmad R; Liu, Xiao-ming; Wang, Hong; Durante, William

    2011-08-01

    6-[4-(2-Piperidin-1-yl-ethoxy)-phenyl]-3-pyridin-4-yl-pyrazolo[1,5-a] pyrimidine (compound C) is a cell-permeable pyrrazolopyrimidine derivative that acts as a potent inhibitor of AMP-activated protein kinase (AMPK). Although compound C is often used to determine the role of AMPK in various physiological processes, it also evokes AMPK-independent actions. In the present study, we investigated whether compound C influences vascular smooth muscle cell (SMC) function through the AMPK pathway. Treatment of rat aortic SMCs with compound C (0.02-10 μM) inhibited vascular SMC proliferation and migration in a concentration-dependent fashion. These actions of compound C were not mimicked or affected by silencing AMPKα expression or infecting SMCs with an adenovirus expressing a dominant-negative mutant of AMPK. In contrast, the pharmacological activator of AMPK 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside inhibited the proliferation and migration of SMCs in a manner that was strictly dependent on AMPK activity. Flow cytometry experiments revealed that compound C arrested SMCs in the G(0)/G(1) phase of the cell cycle, and this was associated with a decrease in cyclin D1 and cyclin A protein expression and retinoblastoma protein phosphorylation and an increase in p21 protein expression. Finally, local perivascular delivery of compound C immediately after balloon injury of rat carotid arteries markedly attenuated neointima formation. These studies identify compound C as a novel AMPK-independent regulator of vascular SMC function that exerts inhibitory effects on SMC proliferation and migration and neointima formation after arterial injury. Compound C represents a potentially new therapeutic agent in treating and preventing occlusive vascular disease.

  10. Luteolin Inhibits Human Prostate Tumor Growth by Suppressing Vascular Endothelial Growth Factor Receptor 2-Mediated Angiogenesis

    PubMed Central

    Pratheeshkumar, Poyil; Son, Young-Ok; Budhraja, Amit; Wang, Xin; Ding, Songze; Wang, Lei; Hitron, Andrew; Lee, Jeong-Chae; Kim, Donghern; Divya, Sasidharan Padmaja; Chen, Gang; Zhang, Zhuo; Luo, Jia; Shi, Xianglin

    2012-01-01

    Angiogenesis, the formation of new blood vessels from pre-existing vascular beds, is essential for tumor growth, invasion, and metastasis. Luteolin is a common dietary flavonoid found in fruits and vegetables. We studied the antiangiogenic activity of luteolin using in vitro, ex vivo, and in vivo models. In vitro studies using rat aortic ring assay showed that luteolin at non-toxic concentrations significantly inhibited microvessel sprouting and proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Luteolin also inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM) and matrigel plug assay. Gelatin zymographic analysis demonstrated the inhibitory effect of luteolin on the activation of matrix metalloproteinases MMP-2 and MMP-9. Western blot analysis showed that luteolin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 in HUVECs. Proinflammatory cytokines such as IL-1β, IL-6, IL-8, and TNF-α level were significantly reduced by the treatment of luteolin in PC-3 cells. Luteolin (10 mg/kg/d) significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that luteolin inhibited tumorigenesis by targeting angiogenesis. CD31 and CD34 immunohistochemical staining further revealed that the microvessel density could be remarkably suppressed by luteolin. Moreover, luteolin reduced cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, ERK, mTOR, P70S6K, MMP-2, and MMP-9 expressions. Taken together, our findings demonstrate that luteolin inhibits human prostate tumor growth by suppressing vascular endothelial growth factor receptor 2-mediated angiogenesis. PMID:23300633

  11. Chronic treatment with fluoxetine modulates vascular adrenergic responses by inhibition of pre- and post-synaptic mechanisms.

    PubMed

    Pereira, Camila A; Rodrigues, Fernanda L; Ruginsk, Silvia G; Zanotto, Camila Z; Rodrigues, José A; Duarte, Diego A; Costa-Neto, Claudio M; Resstel, Leonardo B; Carneiro, Fernando S; Tostes, Rita C

    2017-04-05

    Fluoxetine, a serotonin reuptake inhibitor (SSRI), has other effects in addition to blocking serotonin reuptake, including changes in the vasomotor tone. Whereas many studies focused on the acute effects of fluoxetine in the vasculature, its chronic effects are still limited. In the present study, we tested the hypothesis that chronic fluoxetine treatment modulates adrenergic vascular responses by interfering with post- and pre-synaptic mechanisms. Wistar rats were treated with vehicle (water) or chronic fluoxetine (10mg/kg/day) for 21 days. Blood pressure (BP) and heart rate were measured. Vascular reactivity was evaluated in perfused mesenteric arterial beds (MAB) and in mesenteric resistance arteries. Protein expression by western blot analysis or immunohistochemistry, β-arrestin recruitment by BRET and calcium influx by FLIPR assay. Fluoxetine treatment decreased phenylephrine (PE)-induced, but not electrical-field stimulation (EFS)-induced vasoconstriction. Fluoxetine-treated rats exhibited increased KCl-induced vasoconstriction, which was abolished by prazosin. Desipramine, an inhibitor of norepinephrine (NA) reuptake, increased EFS-induced vasoconstrictor response in vehicle-treated, but not in fluoxetine-treated rats. Chronic treatment did not alter vascular expression of α 1 adrenoceptor, phosphorylation of PKCα or ERK 1/2 and RhoA. On the other hand, vascular contractions to calcium (Ca 2+ ) as well as Ca 2+ influx in mesenteric arteries were increased, while intracellular Ca 2+ storage was decreased by the chronic treatment with fluoxetine. In vitro, fluoxetine decreased vascular contractions to PE, EFS and Ca 2+ , but did not change β-arrestin activity. In conclusion, chronic treatment with fluoxetine decreases sympathetic-mediated vascular responses by mechanisms that involve inhibition of NA release/reuptake and decreased Ca 2+ stores. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Consistent platelet inhibition during long-term maintenance-dose clopidogrel therapy among 359 compliant outpatients with documented vascular disease.

    PubMed

    Serebruany, Victor L; Malinin, Alex I; Atar, Dan; Hanley, Dan F

    2007-03-01

    Numerous reports have dichotomized responses after clopidogrel therapy using varying definitions and platelet tests in patients immediately after acute vascular events; however, no large study has assessed platelet characteristics in outpatients receiving long-term treatment for more than 30 days with the maintenance dose (75 mg/d) of clopidogrel. The aim of this study was to describe the responses of ex vivo measures of platelet aggregation and activation to long-term clopidogrel therapy in a large population of outpatients after coronary stenting or ischemic stroke. We conducted a secondary post hoc analysis of a data set represented by presumably compliant patients after coronary stenting (n = 237) or a documented ischemic stroke (n = 122) treated with clopidogrel-and-aspirin combination antiplatelet therapy. The mean duration of treatment was 5.8 months (range 1-21 months). Every patient exhibited a significant inhibition of adenosine diphosphate-induced platelet aggregation (mean 52.9%, range 36%-70%) as compared with the preclopidogrel measures. Inhibition of aggregation strongly correlated with a diminished expression of PECAM-1 (platelet/endothelial cell adhesion molecule 1, r = 0.75), glycoprotein IIb/IIIa (r = 0.62), and PAR-1 (protease-activated receptor 1, r = 0.71). None of the patients developed hyporesponsiveness (reduction from the baseline <15%) or profound inhibition (residual platelet activity <10%). In contrast to the wide variability of responses that exists in the acute setting, long-term therapy with clopidogrel leads to consistent and much less variable platelet inhibition. Lack of nonresponse and profound inhibition with clopidogrel allow for the maintenance of a delicate balance between proven efficacy and acceptable bleeding risks for long-term secondary prevention in outpatients after acute vascular events.

  13. Interleukin-24 attenuates β-glycerophosphate-induced calcification of vascular smooth muscle cells by inhibiting apoptosis, the expression of calcification and osteoblastic markers, and the Wnt/β-catenin pathway.

    PubMed

    Lee, Ki-Mo; Kang, Haeng-A; Park, Min; Lee, Hwa-Youn; Choi, Ha-Rim; Yun, Chul-Ho; Oh, Jae-Wook; Kang, Hyung-Sik

    2012-11-09

    Vascular calcification is a hallmark of cardiovascular disease. Interleukin-24 (IL-24) has been known to suppress tumor progression in a variety of human cancers. However, the role of IL-24 in the pathophysiology of diseases other than cancer is unclear. We investigated the role of IL-24 in vascular calcification. IL-24 was applied to a β-glycerophosphate (β-GP)-induced rat vascular smooth muscle cell (VSMC) calcification model. In this study, IL-24 significantly inhibited β-GP-induced VSMC calcification, as determined by von Kossa staining and calcium content. The inhibitory effect of IL-24 on VSMC calcification was due to the suppression of β-GP-induced apoptosis and expression of calcification and osteoblastic markers. In addition, IL-24 abrogated β-GP-induced activation of the Wnt/β-catenin pathway, which plays a key role in the pathogenesis of vascular calcification. The specificity of IL-24 for the inhibition of VSMC calcification was confirmed by using a neutralizing antibody to IL-24. Our results suggest that IL-24 inhibits β-GP-induced VSMC calcification by inhibiting apoptosis, the expression of calcification and osteoblastic markers, and the Wnt/ β-catenin pathway. Our study may provide a novel mechanism of action of IL-24 in cardiovascular disease and indicates that IL-24 is a potential therapeutic agent in VSMC calcification. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Inhibition of Vascular c-Jun N-Terminal Kinase 2 Improves Obesity-Induced Endothelial Dysfunction After Roux-en-Y Gastric Bypass.

    PubMed

    Doytcheva, Petia; Bächler, Thomas; Tarasco, Erika; Marzolla, Vincenzo; Engeli, Michael; Pellegrini, Giovanni; Stivala, Simona; Rohrer, Lucia; Tona, Francesco; Camici, Giovanni G; Vanhoutte, Paul M; Matter, Christian M; Lutz, Thomas A; Lüscher, Thomas F; Osto, Elena

    2017-11-14

    Roux-en-Y gastric bypass (RYGB) reduces obesity-associated comorbidities and cardiovascular mortality. RYGB improves endothelial dysfunction, reducing c-Jun N-terminal kinase (JNK) vascular phosphorylation. JNK activation links obesity with insulin resistance and endothelial dysfunction. Herein, we examined whether JNK1 or JNK2 mediates obesity-induced endothelial dysfunction and if pharmacological JNK inhibition can mimic RYGB vascular benefits. After 7 weeks of a high-fat high-cholesterol diet, obese rats underwent RYGB or sham surgery; sham-operated ad libitum-fed rats received, for 8 days, either the control peptide D-TAT or the JNK peptide inhibitor D-JNKi-1 (20 mg/kg per day subcutaneous). JNK peptide inhibitor D-JNKi-1 treatment improved endothelial vasorelaxation in response to insulin and glucagon-like peptide-1, as observed after RYGB. Obesity increased aortic phosphorylation of JNK2, but not of JNK1. RYGB and JNK peptide inhibitor D-JNKi-1 treatment blunted aortic JNK2 phosphorylation via activation of glucagon-like peptide-1-mediated signaling. The inhibitory phosphorylation of insulin receptor substrate-1 was reduced, whereas the protein kinase B/endothelial NO synthase pathway was increased and oxidative stress was decreased, resulting in improved vascular NO bioavailability. Decreased aortic JNK2 phosphorylation after RYGB rapidly improves obesity-induced endothelial dysfunction. Pharmacological JNK inhibition mimics the endothelial protective effects of RYGB. These findings highlight the therapeutic potential of novel strategies targeting vascular JNK2 against the severe cardiovascular disease associated with obesity. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  15. The Hippo pathway mediates inhibition of vascular smooth muscle cell proliferation by cAMP.

    PubMed

    Kimura, Tomomi E; Duggirala, Aparna; Smith, Madeleine C; White, Stephen; Sala-Newby, Graciela B; Newby, Andrew C; Bond, Mark

    2016-01-01

    Inhibition of vascular smooth muscle cell (VSMC) proliferation by intracellular cAMP prevents excessive neointima formation and hence angioplasty restenosis and vein-graft failure. These protective effects are mediated via actin-cytoskeleton remodelling and subsequent regulation of gene expression by mechanisms that are incompletely understood. Here we investigated the role of components of the growth-regulatory Hippo pathway, specifically the transcription factor TEAD and its co-factors YAP and TAZ in VSMC. Elevation of cAMP using forskolin, dibutyryl-cAMP or the physiological agonists, Cicaprost or adenosine, significantly increased phosphorylation and nuclear export YAP and TAZ and inhibited TEAD-luciferase report gene activity. Similar effects were obtained by inhibiting RhoA activity with C3-transferase, its downstream kinase, ROCK, with Y27632, or actin-polymerisation with Latrunculin-B. Conversely, expression of constitutively-active RhoA reversed the inhibitory effects of forskolin on TEAD-luciferase. Forskolin significantly inhibited the mRNA expression of the pro-mitogenic genes, CCN1, CTGF, c-MYC and TGFB2 and this was reversed by expression of constitutively-active YAP or TAZ phospho-mutants. Inhibition of YAP and TAZ function with RNAi or Verteporfin significantly reduced VSMC proliferation. Furthermore, the anti-mitogenic effects of forskolin were reversed by overexpression of constitutively-active YAP or TAZ. Taken together, these data demonstrate that cAMP-induced actin-cytoskeleton remodelling inhibits YAP/TAZ-TEAD dependent expression of pro-mitogenic genes in VSMC. This mechanism contributes novel insight into the anti-mitogenic effects of cAMP in VSMC and suggests a new target for intervention. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling.

    PubMed

    Lu, Ming; Luo, Ying; Hu, Pengfei; Dou, Liping; Huang, Shuwei

    2018-01-01

    Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway. Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway.

  17. R59949, a diacylglycerol kinase inhibitor, inhibits inducible nitric oxide production through decreasing transplasmalemmal L-arginine uptake in vascular smooth muscle cells.

    PubMed

    Shimomura, Tomoko; Nakano, Tomoyuki; Goto, Kaoru; Wakabayashi, Ichiro

    2017-02-01

    Although diacylglycerol kinase (DGK) is known to be expressed in vascular smooth muscle cell, its functional significance remains to be clarified. We hypothesized that DGK is involved in the pathway of cytokine-induced nitric oxide (NO) production in vascular smooth muscle cells. The purpose of this study was to investigate the effects of R59949, a diacylglycerol kinase inhibitor, on inducible nitric oxide production in vascular smooth muscle cell. Cultured rat aortic smooth muscle cells (RASMCs) were used to elucidate the effects of R59949 on basal and interleukin-1β (IL-1β)-induced NO production. The effects of R59949 on protein and mRNA expression of induced nitric oxide synthase (iNOS) and on transplasmalemmal L-arginine uptake were also evaluated using RASMCs. Treatment of RASMCs with R59949 (10 μM) inhibited IL-1β (10 ng/ml)-induced NO production but not basal NO production. Neither protein nor mRNA expression level of iNOS after stimulation with IL-1β was significantly affected by R59949. Estimated enzymatic activities of iNOS in RASMCs were comparable in the absence and presence of R59949. Stimulation of RASMCs with IL-1β caused a marked increase in transplasmalemmal L-arginine uptake into RASMCs. L-Arginine uptake in the presence of IL-1β was markedly inhibited by R59949, while basal L-arginine uptake was not significantly affected by R59949. Both IL-1β-induced NO production and L-arginine uptake were abolished in the presence of cycloheximide (1 μM). The results indicate that R59949 inhibits inducible NO production through decreasing transplasmalemmal L-arginine uptake. DGK is suggested to be involved in cytokine-stimulated L-arginine transport and regulate its intracellular concentration in vascular smooth muscle cell.

  18. Olive oil compounds inhibit vascular endothelial growth factor receptor-2 phosphorylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamy, Sylvie, E-mail: lamy.sylvie@uqam.ca; Ouanouki, Amira; Béliveau, Richard

    Vascular endothelial growth factor (VEGF) triggers crucial signaling processes that regulate tumor angiogenesis and, therefore, represents an attractive target for the development of novel anticancer therapeutics. Several epidemiological studies have confirmed that abundant consumption of foods from plant origin is associated with reduced risk of developing cancers. In the Mediterranean basin, the consumption of extra virgin olive oil is an important constituent of the diet. Compared to other vegetable oils, the presence of several phenolic antioxidants in olive oil is believed to prevent the occurrence of a variety of pathological processes, such as cancer. While the strong antioxidant potential ofmore » these molecules is well characterized, their antiangiogenic activities remain unknown. The aim of this study is to investigate whether tyrosol (Tyr), hydroxytyrosol (HT), taxifolin (Tax), oleuropein (OL) and oleic acid (OA), five compounds contained in extra virgin olive oil, can affect in vitro angiogenesis. We found that HT, Tax and OA were the most potent angiogenesis inhibitors through their inhibitory effect on specific autophosphorylation sites of VEGFR-2 (Tyr951, Tyr1059, Tyr1175 and Tyr1214) leading to the inhibition of endothelial cell (EC) signaling. Inhibition of VEGFR-2 by these olive oil compounds significantly reduced VEGF-induced EC proliferation and migration as well as their morphogenic differentiation into capillary-like tubular structures in Matrigel. Our study demonstrates that HT, Tax and OA are novel and potent inhibitors of the VEGFR-2 signaling pathway. These findings emphasize the chemopreventive properties of olive oil and highlight the importance of nutrition in cancer prevention. - Highlights: • We investigated five compounds contained in extra virgin olive oil on angiogenesis. • Hydroxytyrosol, taxifolin and oleic acid are the best angiogenesis inhibitors. • Olive oil compounds affect endothelial cell functions essential for

  19. Magnesium Inhibits Wnt/β-Catenin Activity and Reverses the Osteogenic Transformation of Vascular Smooth Muscle Cells

    PubMed Central

    Montes de Oca, Addy; Guerrero, Fatima; Martinez-Moreno, Julio M.; Madueño, Juan A.; Herencia, Carmen; Peralta, Alan; Almaden, Yolanda; Lopez, Ignacio; Aguilera-Tejero, Escolastico; Gundlach, Kristina; Büchel, Janine; Peter, Mirjam E.; Passlick-Deetjen, Jutta; Rodriguez, Mariano; Muñoz-Castañeda, Juan R.

    2014-01-01

    Magnesium reduces vascular smooth muscle cell (VSMC) calcification in vitro but the mechanism has not been revealed so far. This work used only slightly increased magnesium levels and aimed at determining: a) whether inhibition of magnesium transport into the cell influences VSMC calcification, b) whether Wnt/β-catenin signaling, a key mediator of osteogenic differentiation, is modified by magnesium and c) whether magnesium can influence already established vascular calcification. Human VSMC incubated with high phosphate (3.3 mM) and moderately elevated magnesium (1.4 mM) significantly reduced VSMC calcification and expression of the osteogenic transcription factors Cbfa-1 and osterix, and up-regulated expression of the natural calcification inhibitors matrix Gla protein (MGP) and osteoprotegerin (OPG). The protective effects of magnesium on calcification and expression of osteogenic markers were no longer observed in VSMC cultured with an inhibitor of cellular magnesium transport (2-aminoethoxy-diphenylborate [2-APB]). High phosphate induced activation of Wnt/β-catenin pathway as demonstrated by the translocation of β-catenin into the nucleus, increased expression of the frizzled-3 gene, and downregulation of Dkk-1 gene, a specific antagonist of the Wnt/β-catenin signaling pathway. The addition of magnesium however inhibited phosphate-induced activation of Wnt/β-catenin signaling pathway. Furthermore, TRPM7 silencing using siRNA resulted in activation of Wnt/β-catenin signaling pathway. Additional experiments were performed to test the ability of magnesium to halt the progression of already established VSMC calcification in vitro. The delayed addition of magnesium decreased calcium content, down-regulated Cbfa-1 and osterix and up-regulated MGP and OPG, when compared with a control group. This effect was not observed when 2-APB was added. In conclusion, magnesium transport through the cell membrane is important to inhibit VSMC calcification in vitro

  20. The PPARα/p16INK4a Pathway inhibits Vascular Smooth Muscle Cell Proliferation by repressing Cell Cycle-dependent Telomerase Activation

    PubMed Central

    Gizard, Florence; Nomiyama, Takashi; Zhao, Yue; Findeisen, Hannes M.; Heywood, Elizabeth B.; Jones, Karrie L.; Staels, Bart; Bruemmer, Dennis

    2009-01-01

    Peroxisome Proliferator-Activated Receptor (PPAR) α, the molecular target for fibrates used to treat dyslipidemia, exerts pleiotropic effects on vascular cells. In vascular smooth muscle cells (VSMCs), we have previously demonstrated that PPARα activation suppresses G1→S cell cycle progression by targeting the cyclin-dependent kinase inhibitor p16INK4a (p16). In the present study, we demonstrate that this inhibition of VSMC proliferation by PPARα is mediated through a p16-dependent suppression of telomerase activity, which has been implicated in key cellular functions including proliferation. PPARα activation inhibited mitogen-induced telomerase activity by repressing the catalytic subunit telomerase reverse transcriptase (TERT) through negative cross-talk with an E2F-1-dependent trans-activation of the TERT promoter. This trans-repression involved the recruitment of the retinoblastoma (RB) family proteins p107 and p130 to the TERT promoter resulting in impaired E2F-1 binding, an effect which was dependent on p16. The inhibition of cell proliferation by PPARα activation was lost in VSMC following TERT overexpression or knock-down, pointing to a key role of telomerase as a target for the antiproliferative effects of PPARα. Finally, we demonstrate that PPARα agonists suppress telomerase activation during the proliferative response following vascular injury indicating that these findings are applicable in vivo. In concert, these results demonstrate that the anti-proliferative effects of PPARα in VSMCs depend on the suppression of telomerase activity by targeting the p16/RB/E2F transcriptional cascade. PMID:18818403

  1. HO-1 and CO decrease platelet-derived growth factor-induced vascular smooth muscle cell migration via inhibition of Nox1

    PubMed Central

    Rodriguez, Andres I.; Gangopadhyay, Archana; Kelley, Eric E.; Pagano, Patrick J.; Zuckerbraun, Brian S.; Bauer, Philip M.

    2009-01-01

    Objective Heme oxygenase-1 (HO-1), via its enzymatic degradation products, exhibits cell and tissue protective effects in models of vascular injury and disease. The migration of vascular smooth muscle cells (VSMC) from the medial to the intimal layer of blood vessels plays an integral role in the development of a neointima in these models. Despite this, there are no studies addressing the effect of increased HO-1 expression on VSMC migration. Results and Methods The effects of increased HO-1 expression as well as biliverdin, bilirubin, and carbon monoxide (CO), were studied in in vitro models of VSMC migration. Induction of HO-1 or CO, but not biliverdin or bilirubin, inhibited VSMC migration. This effect was mediated by the inhibition of Nox1 as determined by a range of approaches including detection of intracellular superoxide, NADPH oxidase activity measurements, and siRNA experiments. Furthermore, CO decreased PDGF-stimulated, redox-sensitive signaling pathways. Conclusion Herein we demonstrate that increased HO-1 expression and CO decreases PDGF-stimulated VSMC migration via inhibition of Nox1 enzymatic activity. These studies reveal a novel mechanism by which HO-1 and CO may mediate their beneficial effects in arterial inflammation and injury. PMID:19875720

  2. Triamcinolone Acetonide Selectively Inhibits Angiogenesis in Small Blood Vessels and Decreases Vessel Diameter within the Vascular Tree

    NASA Technical Reports Server (NTRS)

    McKay, Terri L.; Gredeon, Dan J.; Vickerman, Mary B.; Hylton, alan G.; Ribita, Daniela; Olar, Harry H.; Kaiser, Peter K.; Parsons-Wingerter, Patricia

    2007-01-01

    The steroid triamcinolone acetonide (TA) is a potent anti-angiogenesis drug used to treat retinal vascular diseases that include diabetic retinopathy, vascular occlusions and choroidal neovascularization. To quantify the effects of TA on branching morphology within the angiogenic microvascular tree of the chorioallantoic membrane (CAM) of quail embryos. Increasing concentrations of TA (0-16 ng/ml) were applied topically on embryonic day 7 (E7) to the chorioallantoic membrane (CAM) of quail embryos cultured in Petri dishes, and incubated for an additional 24 or 48 hours until fixation. Binary (black/white) microscopic images of arterial end points were quantified by VESGEN software (for Generational Analysis of Vessel Branching) to obtain major vascular parameters that include vessel diameter (Dv), fractal dimension (Df), tortuosity (Tv) and densities of vessel area, length, number and branch point (Av, Lv, Nv and Brv). For assessment of specific changes in vascular morphology induced by TA, the VESGEN software automatically segmented the vascular tree into branching generations (G1...G10) according to changes in vessel diameter and branching. Vessel density decreased significantly up to 34% as the function of increasing concentration of TA according to Av, Lv, Brv, Nv and Df. TA selectively inhibited the growth of new, small vessels, because Lv decreased from 13.14plus or minus 0.61 cm/cm2 for controls to 8.012 plus or minus 0.82 cm/cm2 at 16 ng TA/ml in smaller branching generations (G7-G10), and for Nv from 473.83 plus or minus 29.85 cm(-)2 to 302.32 plus or minus 33.09 cm-()2. In contrast, vessel diameter (Dv) decreased throughout the vascular tree (G1-G10).

  3. Rosuvastatin prevents angiotensin II-induced vascular changes by inhibition of NAD(P)H oxidase and COX-1

    PubMed Central

    Colucci, Rocchina; Fornai, Matteo; Duranti, Emiliano; Antonioli, Luca; Rugani, Ilaria; Aydinoglu, Fatma; Ippolito, Chiara; Segnani, Cristina; Bernardini, Nunzia; Taddei, Stefano; Blandizzi, Corrado; Virdis, Agostino

    2013-01-01

    Background and Purpose NAD(P)H oxidase and COX-1 participate in vascular damage induced by angiotensin II. We investigated the effect of rosuvastatin on endothelial dysfunction, vascular remodelling, changes in extracellular matrix components and mechanical properties of small mesenteric arteries from angiotensin II-infused rats. Experimental Approach Male rats received angiotensin II (120 ng·kg−1·min−1, subcutaneously) for 14 days with or without rosuvastatin (10 mg·kg−1·day−1, oral gavage) or vehicle. Vascular functions and morphological parameters were assessed by pressurized myography. Key Results In angiotensin II-infused rats, ACh-induced relaxation was attenuated compared with controls, less sensitive to L-NAME, enhanced by SC-560 (COX-1 inhibitor) or SQ-29548 (prostanoid TP receptor antagonist), and normalized by the antioxidant ascorbic acid or NAD(P)H oxidase inhibitors. After rosuvastatin, relaxations to ACh were normalized, fully sensitive to L-NAME, and no longer affected by SC-560, SQ-29548 or NAD(P)H oxidase inhibitors. Angiotensin II enhanced intravascular superoxide generation, eutrophic remodelling, collagen and fibronectin depositions, and decreased elastin content, resulting in increased vessel stiffness. All these changes were prevented by rosuvastatin. Angiotensin II increased phosphorylation of NAD(P)H oxidase subunit p47phox and its binding to subunit p67phox, effects inhibited by rosuvastatin. Rosuvastatin down-regulated vascular Nox4/NAD(P)H isoform and COX-1 expression, attenuated the vascular release of 6-keto-PGF1α, and enhanced copper/zinc-superoxide dismutase expression. Conclusion and Implications Rosuvastatin prevents angiotensin II-induced alterations in resistance arteries in terms of function, structure, mechanics and composition. These effects depend on restoration of NO availability, prevention of NAD(P)H oxidase-derived oxidant excess, reversal of COX-1 induction and its prostanoid production, and stimulation of

  4. Ketamine, a Clinically Used Anesthetic, Inhibits Vascular Smooth Muscle Cell Proliferation via PP2A-Activated PI3K/Akt/ERK Inhibition

    PubMed Central

    Chang, Yi; Li, Jiun-Yi; Jayakumar, Thanasekaran; Hung, Shou-Huang; Lee, Wei-Cheng; Manubolu, Manjunath; Sheu, Joen-Rong; Hsu, Ming-Jen

    2017-01-01

    Abnormal proliferation of vascular smooth muscle cells (VSMCs) gives rise to major pathological processes involved in the development of cardiovascular diseases. The use of anti-proliferative agents for VSMCs offers potential for the treatment of vascular disorders. Intravenous anesthetics are firmly established to have direct effects on VSMCs, resulting in modulation of blood pressure. Ketamine has been used for many years in the intensive care unit (ICU) for sedation, and has recently been considered for adjunctive therapy. In the present study, we investigated the effects of ketamine on platelet-derived growth factor BB (PDGF-BB)-induced VSMC proliferation and the associated mechanism. Ketamine concentration-dependently inhibited PDGF-BB-induced VSMC proliferation without cytotoxicity, and phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated protein kinase (ERK) inhibitors, LY294002 and PD98059, respectively, have similar inhibitory effects. Ketamine was shown to attenuate PI3K, Akt, and ERK1/2 phosphorylation induced by PDGF-BB. Okadaic acid, a selective protein phosphatase 2A (PP2A) inhibitor, significantly reversed ketamine-mediated PDGF-BB-induced PI3K, Akt, and ERK1/2 phosphorylation; a transfected protein phosphatse 2a (pp2a) siRNA reversed Akt and ERK1/2 phosphorylation; and 3-O-Methyl-sphingomyeline (3-OME), an inhibitor of sphingomyelinase, also significantly reversed ERK1/2 phosphorylation. Moreover, ketamine alone significantly inhibited tyrosine phosphorylation and demethylation of PP2A in a concentration-dependent manner. In addition, the pp2a siRNA potently reversed the ketamine-activated catalytic subunit (PP2A-C) of PP2A. These results provide evidence of an anti-proliferating effect of ketamine in VSMCs, showing activation of PP2A blocks PI3K, Akt, and ERK phosphorylation that subsequently inhibits the proliferation of VSMCs. Thus, ketamine may be considered a potential effective therapeutic agent for reducing atherosclerotic

  5. Ketamine, a Clinically Used Anesthetic, Inhibits Vascular Smooth Muscle Cell Proliferation via PP2A-Activated PI3K/Akt/ERK Inhibition.

    PubMed

    Chang, Yi; Li, Jiun-Yi; Jayakumar, Thanasekaran; Hung, Shou-Huang; Lee, Wei-Cheng; Manubolu, Manjunath; Sheu, Joen-Rong; Hsu, Ming-Jen

    2017-11-27

    Abnormal proliferation of vascular smooth muscle cells (VSMCs) gives rise to major pathological processes involved in the development of cardiovascular diseases. The use of anti-proliferative agents for VSMCs offers potential for the treatment of vascular disorders. Intravenous anesthetics are firmly established to have direct effects on VSMCs, resulting in modulation of blood pressure. Ketamine has been used for many years in the intensive care unit (ICU) for sedation, and has recently been considered for adjunctive therapy. In the present study, we investigated the effects of ketamine on platelet-derived growth factor BB (PDGF-BB)-induced VSMC proliferation and the associated mechanism. Ketamine concentration-dependently inhibited PDGF-BB-induced VSMC proliferation without cytotoxicity, and phosphatidylinositol 3-kinase (PI3K) and extracellular signal-regulated protein kinase (ERK) inhibitors, LY294002 and PD98059, respectively, have similar inhibitory effects. Ketamine was shown to attenuate PI3K, Akt, and ERK1/2 phosphorylation induced by PDGF-BB. Okadaic acid, a selective protein phosphatase 2A (PP2A) inhibitor, significantly reversed ketamine-mediated PDGF-BB-induced PI3K, Akt, and ERK1/2 phosphorylation; a transfected protein phosphatse 2a ( pp2a ) siRNA reversed Akt and ERK1/2 phosphorylation; and 3-O-Methyl-sphingomyeline (3-OME), an inhibitor of sphingomyelinase, also significantly reversed ERK1/2 phosphorylation. Moreover, ketamine alone significantly inhibited tyrosine phosphorylation and demethylation of PP2A in a concentration-dependent manner. In addition, the pp2a siRNA potently reversed the ketamine-activated catalytic subunit (PP2A-C) of PP2A. These results provide evidence of an anti-proliferating effect of ketamine in VSMCs, showing activation of PP2A blocks PI3K, Akt, and ERK phosphorylation that subsequently inhibits the proliferation of VSMCs. Thus, ketamine may be considered a potential effective therapeutic agent for reducing

  6. Effects of cryogen spray cooling and high radiant exposures on selective vascular injury during laser irradiation of human skin.

    PubMed

    Tunnell, James W; Chang, David W; Johnston, Carol; Torres, Jorge H; Patrick, Charles W; Miller, Michael J; Thomsen, Sharon L; Anvari, Bahman

    2003-06-01

    Increasing radiant exposure offers a means to increase treatment efficacy during laser-mediated treatment of vascular lesions, such as port-wine stains; however, excessive radiant exposure decreases selective vascular injury due to increased heat generation within the epidermis and collateral damage to perivascular collagen. To determine if cryogen spray cooling could be used to maintain selective vascular injury (ie, prevent epidermal and perivascular collagen damage) when using high radiant exposures (16-30 J/cm2). Observational study. Academic hospital and research laboratory. Twenty women with normal abdominal skin (skin phototypes I-VI). Skin was irradiated with a pulsed dye laser (wavelength = 585 nm; pulse duration = 1.5 milliseconds; 5-mm-diameter spot) using various radiant exposures (8-30 J/cm2) without and with cryogen spray cooling (50- to 300-millisecond cryogen spurts). Hematoxylin-eosin-stained histologic sections from each irradiated site were examined for the degree of epidermal damage, maximum depth of red blood cell coagulation, and percentage of vessels containing perivascular collagen coagulation. Long cryogen spurt durations (>200 milliseconds) protected the epidermis in light-skinned individuals (skin phototypes I-IV) at the highest radiant exposure (30 J/cm2); however, epidermal protection could not be achieved in dark-skinned individuals (skin phototypes V-VI) even at the lowest radiant exposure (8 J/cm2). The red blood cell coagulation depth increased with increasing radiant exposure (to >2.5 mm for skin phototypes I-IV and to approximately 1.2 mm for skin phototypes V-VI). In addition, long cryogen spurt durations (>200 milliseconds) prevented perivascular collagen coagulation in all skin types. Cryogen spurt durations much longer than those currently used in therapy (>200 milliseconds) may be clinically useful for protecting the epidermis and perivascular tissues when using high radiant exposures during cutaneous laser therapies

  7. Drinking citrus fruit juice inhibits vascular remodeling in cuff-induced vascular injury mouse model.

    PubMed

    Ohnishi, Arika; Asayama, Rie; Mogi, Masaki; Nakaoka, Hirotomo; Kan-No, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Iwanami, Jun; Horiuchi, Masatsugu

    2015-01-01

    Citrus fruits are thought to have inhibitory effects on oxidative stress, thereby attenuating the onset and progression of cancer and cardiovascular disease; however, there are few reports assessing their effect on vascular remodeling. Here, we investigated the effect of drinking the juice of two different citrus fruits on vascular neointima formation using a cuff-induced vascular injury mouse model. Male C57BL6 mice were divided into five groups as follows: 1) Control (water) (C), 2) 10% Citrus unshiu (CU) juice (CU10), 3) 40% CU juice (CU40), 4) 10% Citrus iyo (CI) juice (CI10), and 5) 40% CI juice (CI40). After drinking them for 2 weeks from 8 weeks of age, cuff injury was induced by polyethylene cuff placement around the femoral artery. Neointima formation was significantly attenuated in CU40, CI10 and CI40 compared with C; however, no remarkable preventive effect was observed in CU10. The increases in levels of various inflammatory markers including cytokines such as monocyte chemotactic protein-1, interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in response to vascular injury did not differ significantly between C, CU10 and CI10. The increases in cell proliferation and superoxide anion production were markedly attenuated in CI10, but not in CU10 compared with C. The increase in phosphorylated ERK expression was markedly attenuated both in CU10 and CI10 without significant difference between CU10 and CI10. Accumulation of immune cells did not differ between CU10 and CI10. These results indicate that drinking citrus fruit juice attenuates vascular remodeling partly via a reduction of oxidative stress. Interestingly, the preventive efficacy on neointima formation was stronger in CI than in CU at least in part due to more prominent inhibitory effects on oxidative stress by CI.

  8. Drinking Citrus Fruit Juice Inhibits Vascular Remodeling in Cuff-Induced Vascular Injury Mouse Model

    PubMed Central

    Ohnishi, Arika; Asayama, Rie; Mogi, Masaki; Nakaoka, Hirotomo; Kan-no, Harumi; Tsukuda, Kana; Chisaka, Toshiyuki; Wang, Xiao-Li; Bai, Hui-Yu; Shan, Bao-Shuai; Kukida, Masayoshi; Iwanami, Jun; Horiuchi, Masatsugu

    2015-01-01

    Citrus fruits are thought to have inhibitory effects on oxidative stress, thereby attenuating the onset and progression of cancer and cardiovascular disease; however, there are few reports assessing their effect on vascular remodeling. Here, we investigated the effect of drinking the juice of two different citrus fruits on vascular neointima formation using a cuff-induced vascular injury mouse model. Male C57BL6 mice were divided into five groups as follows: 1) Control (water) (C), 2) 10% Citrus unshiu (CU) juice (CU10), 3) 40% CU juice (CU40), 4) 10% Citrus iyo (CI) juice (CI10), and 5) 40% CI juice (CI40). After drinking them for 2 weeks from 8 weeks of age, cuff injury was induced by polyethylene cuff placement around the femoral artery. Neointima formation was significantly attenuated in CU40, CI10 and CI40 compared with C; however, no remarkable preventive effect was observed in CU10. The increases in levels of various inflammatory markers including cytokines such as monocyte chemotactic protein-1, interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α in response to vascular injury did not differ significantly between C, CU10 and CI10. The increases in cell proliferation and superoxide anion production were markedly attenuated in CI10, but not in CU10 compared with C. The increase in phosphorylated ERK expression was markedly attenuated both in CU10 and CI10 without significant difference between CU10 and CI10. Accumulation of immune cells did not differ between CU10 and CI10. These results indicate that drinking citrus fruit juice attenuates vascular remodeling partly via a reduction of oxidative stress. Interestingly, the preventive efficacy on neointima formation was stronger in CI than in CU at least in part due to more prominent inhibitory effects on oxidative stress by CI. PMID:25692290

  9. Effects of low intensity laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes

    NASA Astrophysics Data System (ADS)

    Xiong, Guoxin; Xiong, Leilei; Li, Xinzhong

    2016-09-01

    To investigate the effects of low intensity semiconductor laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes, a method using a high-fat diet and low-dose intraperitoneal injections of streptozotocin established a type 2 diabetes mellitus rat model. Model rats were randomly divided into a laser acupoint irradiation group, rosiglitazone control group, and placebo group; each group had 10 rats. In addition, 10 normal male rats were selected for the normal control group. The Housanli, Neiting and Yishu acupoints of the rats in the laser acupoint irradiation group were irradiated with a 10 mW semiconductor laser; each point was irradiated for 15 min, once every 2 d over 28 d, for a total of 14 episodes of irradiation. The rosiglitazone group rats were given rosiglitazone (0.2 mg kg-1) intragastrically; the placebo group rats were given 0.9% brine (0.2 mg kg-1) intragastrically, once daily, for four consecutive weeks. The change of fasting blood glucose was determined before and after each treatment. The islet beta-cell apoptosis was determined. The islet beta-cell apoptosis rates of the laser acupoint irradiation group and the rosiglitazone group were significantly lower than the rate of the placebo group. Even though the rate was lower in the laser acupoint irradiation group than in the rosiglitazone group, there was no significant difference between them. It is shown that acupoint irradiation with a semiconductor laser can effectively inhibit islet beta-cell apoptosis in rats with type 2 diabetes.

  10. Tanshinone IIA inhibits AGEs-induced proliferation and migration of cultured vascular smooth muscle cells by suppressing ERK1/2 MAPK signaling

    PubMed Central

    Lu, Ming; Luo, Ying; Hu, Pengfei; Dou, Liping; Huang, Shuwei

    2018-01-01

    Objective(s): Vascular smooth muscle cells (VSMCs) play a key role in the pathogenesis of diabetic vascular disease. Our current study sought to explore the effects of tanshinone IIA on the proliferation and migration of VSMCs induced by advanced glycation end products (AGEs). Materials and Methods: In this study, we examined the effects of tanshinone IIA by cell proliferation assay and cell migration assay. And we explored the underlying mechanism by Western blotting. Results: AGEs significantly induced the proliferation and migration of VSMCs, but treatment with tanshinone IIA attenuated these effects. AGEs could increase the activity of the ERK1/2 and p38 pathways but not the JNK pathway. Treatment with tanshinone IIA inhibited the AGEs-induced activation of the ERK1/2 pathway but not the p38 pathway. Conclusion: Tanshinone IIA inhibits AGEs-induced proliferation and migration of VSMCs by suppressing the ERK1/2 MAPK signaling pathway. PMID:29372041

  11. NS-398, a selective COX-2 inhibitor, inhibits proliferation of IL-1{beta}-stimulated vascular smooth muscle cells by induction of {eta}{omicron}-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Hyoung Chul; Kim, Hee Sun; Lee, Kwang Youn

    2008-11-28

    We investigated whether NS-398, a selective inhibitor of COX-2, induces HO-1 in IL-1{beta}-stimulated vascular smooth muscle cells (VSMC). NS-398 reduced the production of PGE{sub 2} without modulation of expression of COX-2 in IL-1{beta}-stimulated VSMC. NS-398 increased HO-1 mRNA and protein in a dose-dependent manner, but inhibited proliferation of IL-1{beta}-stimulated VSMC. Furthermore, SnPPIX, a HO-1 inhibitor, reversed the effects of NS-398 on PGE{sub 2} production, suggesting that COX-2 activity can be affected by HO-1. Hemin, a HO-1 inducer, also reduced the production of PGE{sub 2} and proliferation of IL-1{beta}-stimulated VSMC. CORM-2, a CO-releasing molecule, but not bilirubin inhibited proliferation of IL-1{beta}-stimulatedmore » VSMC. NS-398 inhibited proliferation of IL-1{beta}-stimulated VSMC in a HbO{sub 2}-sensitive manner. In conclusion, NS-398 inhibits proliferation of IL-1{beta}-stimulated VSMC by HO-1-derived CO. Thus, NS-398 may facilitate the healing process of vessels in vascular inflammatory disorders such as atherosclerosis.« less

  12. An Antagonistic Vascular Endothelial Growth Factor (VEGF) Variant Inhibits VEGF-Stimulated Receptor Autophosphorylation and Proliferation of Human Endothelial Cells

    NASA Astrophysics Data System (ADS)

    Siemeister, Gerhard; Schirner, Michael; Reusch, Petra; Barleon, Bernhard; Marme, Dieter; Martiny-Baron, Georg

    1998-04-01

    Vascular endothelial growth factor (VEGF) is a potent mitogen with a unique specificity for endothelial cells and a key mediator of aberrant endothelial cell proliferation and vascular permeability in a variety of human pathological situations, such as tumor angiogenesis, diabetic retinopathy, rheumatoid arthritis, or psoriasis. VEGF is a symmetric homodimeric molecule with two receptor binding interfaces lying on each pole of the molecule. Herein we report on the construction and recombinant expression of an asymmetric heterodimeric VEGF variant with an intact receptor binding interface at one pole and a mutant receptor binding interface at the second pole of the dimer. This VEGF variant binds to VEGF receptors but fails to induce receptor activation. In competition experiments, the heterodimeric VEGF variant antagonizes VEGF-stimulated receptor autophosphorylation and proliferation of endothelial cells. A 15-fold excess of the heterodimer was sufficient to inhibit VEGF-stimulated endothelial cell proliferation by 50%, and a 100-fold excess resulted in an almost complete inhibition. By using a rational approach that is based on the structure of VEGF, we have shown the feasibility to construct a VEGF variant that acts as an VEGF antagonist.

  13. Silencing heat shock protein 27 (HSP27) inhibits the proliferation and migration of vascular smooth muscle cells in vitro.

    PubMed

    Huang, Jie; Xie, Liang-di; Luo, Li; Zheng, Su-Li; Wang, Hua-Jun; Xu, Chang-Sheng

    2014-05-01

    The objective of this study was to examine the role of heat shock protein 27 (HSP27) in proliferation and migration of vascular smooth muscle cells (VSMCs). Three complementary DNA sequences targeting rat HSP27 gene were designed, synthesized, and subcloned into lentiviral vector. The interfering efficiency was detected by reverse transcriptase-polymerase chain reaction and Western blot. Methyl thiazolyl tetrazolium bromide assay was used for examining cell proliferation. F-actin polymerization was detected by FITC-Phalloidin staining using confocal microscopy. Modified Boyden chamber technique was used to assess VSMCs migration. The recombinant lentivirus containing RNAi targeting HSP27 gene significantly inhibited expression of HSP27 at both mRNA and protein levels. The interfering efficiencies of pNL-HSP27-EGFP-1, pNL-HSP27-EGFP-2, and pNL-HSP27-EGFP-3 were 71 %, 77 %, and 43 %, respectively. Reorganization of actin stimulated by PDGF-BB was markedly blocked by pretreatment with pNL-HSP27-EGFP-2. Proliferation and migration rates of VSMCs induced by PDGF-BB were inhibited by 30.8 % and 45.6 %, respectively, by pNL-HSP27-EGFP-2 (all P < 0.01). To conclude, these data indicate that HSP27 may regulate the proliferation, actin reorganization, and the migration of VSMCs. RNAi targeting at HSP27 may be a potential approach for inhibition of cell migration involved in pathogenesis of proliferative vascular diseases.

  14. Inhibition of the AMP-activated protein kinase-α2 accentuates agonist-induced vascular smooth muscle contraction and high blood pressure in mice.

    PubMed

    Wang, Shuangxi; Liang, Bin; Viollet, Benoit; Zou, Ming-Hui

    2011-05-01

    The aim of the present study was to determine the effects and molecular mechanisms by which AMP-activated protein kinase (AMPK) regulates smooth muscle contraction and blood pressure in mice. In cultured human vascular smooth muscle cells, we observed that activation of AMPK by 5-aminoimidazole-4-carboxamide 1-β-d-ribofuranoside inhibited agonist-induced phosphorylation of myosin light chain (MLC) and myosin phosphatase targeting subunit 1 (MYPT1). Conversely, AMPK inhibition with pharmacological or genetic means potentiated agonist-induced the phosphorylation of MLC and MYPT1, whereas it inhibited both Ras homolog gene family member A and Rho-associated kinase activity. In addition, AMPK activation or Rho-associated kinase inhibition with Y27632 abolished agonist-induced phosphorylation of MLC and MYPT1. Gene silencing of p190-guanosine triphosphatase-activating protein abolished the effects of AMPK activation on MLC, MYPT1, and Ras homolog gene family member A in human smooth muscle cells. Ex vivo analyses revealed that agonist-induced contractions of the mesenteric artery and aortas were stronger in both AMPKα1(-/-) and AMPKα2(-/-) knockout mice than in wild-type mice. Inhibition of Rho-associated kinase with Y27632 normalized agonist-induced contractions of AMPKα1(-/-) and AMPKα2(-/-) vessels. AMPKα2(-/-) mice had higher blood pressure along with decreased serine phosphorylation of p190-guanosine triphosphatase-activating protein. Finally, inhibition of the Ras homolog gene family member A/Rho-associated kinase pathway with Y27632, which suppressed MYPT1 and MLC phosphorylation, lowered blood pressure in AMPKα2(-/-) mice. In conclusion, AMPK decreases vascular smooth muscle cell contractility by inhibiting p190-GTP-activating protein-dependent Ras homolog gene family member A activation, indicating that AMPK may be a new therapeutic target in lowering high blood pressure.

  15. Role of contact inhibition in the regulation of receptor-mediated uptake of low density lipoprotein in cultured vascular endothelial cells.

    PubMed Central

    Vlodavsky, I; Fielding, P E; Fielding, C J; Gospodarowicz, D

    1978-01-01

    Bovine vascular endothelial cells during logarithmic growth bind, internalize, and degrade low density lipoprotein (LDL) via a receptor-mediated pathway. However, contact-inhibited (confluent) monolayers bind but do not internalize LDL. This is in contrast to aortic smooth muscle cells or endothelial cells that have lost the property of contact inhibition. These cells internalize and degrade LDL at both high and low cell densities. The LDL receptors of smooth muscle and sparse endothelial cells down-regulate in response to LDL. In contrast, normal endothelial cells at confluency show little response. When contact inhibition in endothelial monolayers was locally released by wounding, and LDL was present, only cells released from contact inhibition accumulated LDL cholesterol. In smooth muscle cells under the same conditions, the entire culture interiorized lipid. It thus appears that in endothelial cells, unlike smooth muscle cells, contact inhibition is the major factor regulating cellular uptake of LDL cholesteryl ester. Reversal of contact inhibition by wounding provides a mechanism by which the endothelium could be the primary initiator of the atherosclerotic plaque. Images PMID:203937

  16. Inducible nitric oxide synthase and vascular injury.

    PubMed

    Kibbe, M; Billiar, T; Tzeng, E

    1999-08-15

    The role nitric oxide (NO) plays in the cardiovascular system is complex and diverse. Even more controversial is the role that the inducible NO synthase enzyme (iNOS) serves in mediating different aspects of cardiovascular pathophysiology. Following arterial injury, NO has been shown to serve many vasoprotective roles, including inhibition of platelet aggregation and adherence to the site of injury, inhibition of leukocyte adherence, inhibition of vascular smooth muscle cell (VSMC) proliferation and migration, and stimulation of endothelial cell (EC) growth. These properties function together to preserve a normal vascular environment following injury. In this review, we discuss what is known about the involvement of iNOS in the vascular injury response. Additionally, we discuss the beneficial role of iNOS gene transfer to the vasculature in preventing the development of neointimal thickening. Lastly, the pathophysiology of transplant vasculopathy is discussed as well as the role of iNOS in this setting.

  17. Overexpression of Mitofusin 2 inhibited oxidized low-density lipoprotein induced vascular smooth muscle cell proliferation and reduced atherosclerotic lesion formation in rabbit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo Yanhong; Chen Kuanghueih; Gao Wei

    2007-11-16

    Our previous studies have implies that Mitofusin 2 (Mfn2), which was progressively reduced in arteries from ApoE{sup -/-} mice during the development of atherosclerosis, may take part in pathogenesis of atherosclerosis. In this study, we found that overexpression of Mfn2 inhibited oxidized low-density lipoprotein or serum induced vascular smooth muscle cell proliferation by down-regulation of Akt and ERK phosphorylation. Then we investigated the in vivo role of Mfn2 on the development of atherosclerosis in rabbits using adenovirus expressing Mitofusin 2 gene (AdMfn2). By morphometric analysis we found overexpression of Mfn2 inhibited atherosclerotic lesion formation and intima/media ratio by 66.7% andmore » 74.6%, respectively, compared with control group. These results suggest that local Mfn2 treatment suppresses the development of atherosclerosis in vivo in part by attenuating the smooth muscle cell proliferation induced by lipid deposition and vascular injury.« less

  18. The reversal of pulmonary vascular remodeling through inhibition of p38 MAPK-alpha: a potential novel anti-inflammatory strategy in pulmonary hypertension

    PubMed Central

    Martin, Damien H.; Wadsworth, Roger; Bryson, Gareth; Fisher, Andrew J.; Welsh, David J.; Peacock, Andrew J.

    2015-01-01

    The p38 mitogen-activated protein kinase (MAPK) system is increasingly recognized as an important inflammatory pathway in systemic vascular disease but its role in pulmonary vascular disease is unclear. Previous in vitro studies suggest p38 MAPKα is critical in the proliferation of pulmonary artery fibroblasts, an important step in the pathogenesis of pulmonary vascular remodeling (PVremod). In this study the role of the p38 MAPK pathway was investigated in both in vitro and in vivo models of pulmonary hypertension and human disease. Pharmacological inhibition of p38 MAPKα in both chronic hypoxic and monocrotaline rodent models of pulmonary hypertension prevented and reversed the pulmonary hypertensive phenotype. Furthermore, with the use of a novel and clinically available p38 MAPKα antagonist, reversal of pulmonary hypertension was obtained in both experimental models. Increased expression of phosphorylated p38 MAPK and p38 MAPKα was observed in the pulmonary vasculature from patients with idiopathic pulmonary arterial hypertension, suggesting a role for activation of this pathway in the PVremod A reduction of IL-6 levels in serum and lung tissue was found in the drug-treated animals, suggesting a potential mechanism for this reversal in PVremod. This study suggests that the p38 MAPK and the α-isoform plays a pathogenic role in both human disease and rodent models of pulmonary hypertension potentially mediated through IL-6. Selective inhibition of this pathway may provide a novel therapeutic approach that targets both remodeling and inflammatory pathways in pulmonary vascular disease. PMID:26024891

  19. Transgenic overexpression of uncoupling protein 2 attenuates salt-induced vascular dysfunction by inhibition of oxidative stress.

    PubMed

    Ma, Shuangtao; Wang, Qiang; Zhang, Yan; Yang, Dachun; Li, De; Tang, Bing; Yang, Yongjian

    2014-03-01

    Ablation of uncoupling protein 2 (UCP2) has been involved in the enhancement of salt sensitivity associated with increased superoxide level and decreased nitric oxide (NO) bioavailability. However, the role of overexpression of UCP2 in salt-induced vascular dysfunction remains elusive. UCP2 transgenic (TG) and wild-type (WT) mice were placed on either a normal-salt (NS, 0.5%) or a high-salt (HS, 8%) diet for 12 weeks. Blood pressure (BP) and hypotensive responses were measured, and the vascular tone, superoxide level, and NO bioavailability in aortas were measured in each group. The TG mice had increased expression and function of UCP2 in vascular smooth muscle cells. The acetylcholine (ACh)- and nitroglycerin (NTG)-induced hypotensive responses and aortic relaxations were significantly blunted in WT mice fed with an HS diet compared with an NS diet. These harmful effects were prevented in UCP2 TG mice. The impairments of ACh- and NTG-induced relaxation in aorta were inhibited by the endothelial NO synthase (eNOS) inhibitor L-NAME and mitochondrial antioxidant MitoQ, respectively. The HS intake led to a significant increase in superoxide production and a comparable decrease in NO bioavailability in aortas, and these effects were blunted in UCP2 TG mice. The expression of UCP2 was slightly increased in the HS group. However, the expression and phosphorylation of eNOS were not affected by an HS diet and overexpression of UCP2. These findings suggest that overexpression of UCP2 can ameliorate salt-induced vascular dysfunction. This beneficial effect of UCP2 is mediated by decreased superoxide and reserved NO bioavailability.

  20. Protective Role of Sodium-Glucose Co-Transporter 2 Inhibition Against Vascular Complications in Diabetes.

    PubMed

    Yamagishi, Sho-ichi; Matsui, Takanori

    2016-04-01

    Diabetic micro- and macroangiopathy are devastating vascular complications that could account for disabilities and high mortality rate in patients with diabetes. Indeed, diabetic nephropathy and retinopathy are the leading causes of end-stage renal failure and acquired blindness, respectively, and atherosclerotic cardiovascular diseases (CVD) accounts for about 60% of death in diabetic subjects. As a result, the average life span of diabetic patients is about 10-15 years shorter than that of non-diabetic subjects. Furthermore, tight blood glucose control might have no more than a marginal impact on CVD in general and on all-cause mortality in particular in diabetes. Therefore, therapeutic strategies that target vascular complications in diabetes need to be developed. Recently, selective inhibition of sodium-glucose co-transporter 2 (SGLT2) has been proposed as a potential therapeutic target for the treatment of patients with diabetes because of low risk of hypoglycemia and no weight gain. Because 90% of glucose filtered by the glomerulus is reabsorbed by a low-affinity/high-capacity SGLT2 expressed in the S1 and S2 segments of the proximal tubule, blockade of SGLT2 promotes urinary glucose excretion and as a result improves hyperglycemia in an insulin-independent manner. Moreover, we have shown that SGLT2-mediated glucose overload to tubular cells could elicit inflammatory and pro-apoptotic reactions in this cell, being directly involved in diabetic nephropathy. In addition, several clinical studies have also shown that SGLT2 inhibitors could reduce blood pressure, body weight, and serum uric acid levels and ameliorate cardiovascular risk in patients with diabetes. This review summarizes the pathophysiological role of SGLT2 in vascular complications in diabetes and its potential therapeutic interventions.

  1. A sustained release formulation of novel quininib-hyaluronan microneedles inhibits angiogenesis and retinal vascular permeability in vivo.

    PubMed

    Galvin, Orla; Srivastava, Akshay; Carroll, Oliver; Kulkarni, Rajiv; Dykes, Steve; Vickers, Steven; Dickinson, Keith; Reynolds, Alison L; Kilty, Claire; Redmond, Gareth; Jones, Rob; Cheetham, Sharon; Pandit, Abhay; Kennedy, Breandán N

    2016-07-10

    Pathologic neovascularisation and ocular permeability are hallmarks of proliferative diabetic retinopathy and age-related macular degeneration. Current pharmacologic interventions targeting VEGF are effective in only 30-60% of patients and require multiple intraocular injections associated with iatrogenic infection. Thus, our goal is to develop novel small molecule drugs that are VEGF-independent are amenable to sustained ocular-release, and which reduce retinal angiogenesis and retinal vascular permeability. Here, the anti-angiogenic drug quininib was formulated into hyaluronan (HA) microneedles whose safety and efficacy was evaluated in vivo. Quininib-HA microneedles were formulated via desolvation from quininib-HA solution and subsequent cross-linking with 4-arm-PEG-amine prior to freeze-drying. Scanning electron microscopy revealed hollow needle-shaped particle ultrastructure, with a zeta potential of -35.5mV determined by electrophoretic light scattering. The incorporation efficiency and pharmacokinetic profile of quininib released in vitro from the microneedles was quantified by HPLC. Quininib incorporation into these microneedles was 90%. In vitro, 20% quininib was released over 4months; or in the presence of increasing concentrations of hyaluronidase, 60% incorporated quininib was released over 4months. Zebrafish hyaloid vasculature assays demonstrated quininib released from these microneedles significantly (p<0.0001) inhibited ocular developmental angiogenesis compared to control. Sustained amelioration of retinal vascular permeability (RVP) was demonstrated using a bespoke cysteinyl leukotriene induced rodent model. Quininib-HA microparticles significantly inhibited RVP in Brown Norway rats one month after administration compared to neat quininib control (p=0.0071). In summary, quininib-HA microneedles allow for sustained release of quininib; are safe in vivo and quininib released from these microneedles effectively inhibits angiogenesis and RVP in vivo

  2. High-power helium-neon laser irradiation inhibits the growth of traumatic scars in vitro and in vivo.

    PubMed

    Shu, Bin; Ni, Guo-Xin; Zhang, Lian-Yang; Li, Xiang-Ping; Jiang, Wan-Ling; Zhang, Li-Qun

    2013-05-01

    This study explored the inhibitory effect of the high-power helium-neon (He-Ne) laser on the growth of scars post trauma. For the in vitro study, human wound fibroblasts were exposed to the high-power He-Ne laser for 30 min, once per day with different power densities (10, 50, 100, and 150 mW/cm(2)). After 3 days of repeated irradiation with the He-Ne laser, fibroblast proliferation and collagen synthesis were evaluated. For in vivo evaluation, a wounded animal model of hypertrophic scar formation was established. At postoperative day 21, the high-power He-Ne laser irradiation (output power 120 mW, 6 mm in diameter, 30 min each session, every other day) was performed on 20 scars. At postoperative day 35, the hydroxyproline content, apoptosis rate, PCNA protein expression and FADD mRNA level were assessed. The in vitro study showed that the irradiation group that received the power densities of 100 and 150 mW/cm(2) showed decreases in the cell proliferation index, increases in the percentage of cells in the G0/G1 phase, and decreases in collagen synthesis and type I procollagen gene expression. In the in vivo animal studies, regions exposed to He-Ne irradiation showed a significant decrease in scar thickness as well as decreases in hydroxyproline levels and PCNA protein expression. Results from the in vitro and in vivo studies suggest that repeated irradiation with a He-Ne laser at certain power densities inhibits fibroblast proliferation and collagen synthesis, thereby inhibits the growth of hypertrophic scars.

  3. Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo

    NASA Astrophysics Data System (ADS)

    Kim, K. Jin; Li, Bing; Winer, Jane; Armanini, Mark; Gillett, Nancy; Phillips, Heidi S.; Ferrara, Napoleone

    1993-04-01

    THE development of new blood vessels (angiogenesis) is required for many physiological processes including embryogenesis, wound healing and corpus luteum formation1,2. Blood vessel neoformation is also important in the pathogenesis of many disorders1-5, particularly rapid growth and metastasis of solid tumours3-5. There are several potential mediators of tumour angiogenesis, including basic and acidic fibroblast growth factors, tumour necrosis factor-α and transforming factors-α and -β 1,2. But it is unclear whether any of these agents actually mediates angiogenesis and tumour growth in vivo. Vascular endothelial growth factor (VEGF) is an endothelial cell-specific mitogen and an angiogenesis inducer released by a variety of tumour cells and expressed in human tumours in situ. To test whether VEGF may be a tumour angiogenesis factor in vivo, we injected human rhabdomyosar-coma, glioblastoma multiforme or leiomyosarcoma cell lines into nude mice. We report here that treatment with a monoclonal antibody specific for VEGF inhibited the growth of the tumours, but had no effect on the growth rate of the tumour cells In vitro. The density of vessels was decreased in the antibody-treated tumours. These findings demonstrate that inhibition of the action of an angiogenic factor spontaneously produced by tumour cells may suppress tumour growth in vivo.

  4. Inhibition of thrombin receptor signaling on α-smooth muscle actin(+) CD34(+) progenitors leads to repair after murine immune vascular injury.

    PubMed

    Chen, Daxin; Shrivastava, Seema; Ma, Liang; Tham, El-Li; Abrahams, Joel; Coe, J David; Scott, Diane; Lechler, Robert I; McVey, John H; Dorling, Anthony

    2012-01-01

    The goal of this study was to use mice expressing human tissue factor pathway inhibitor (TFPI) on α-smooth muscle actin (α-SMA)(+) cells as recipients of allogeneic aortas to gain insights into the cellular mechanisms of intimal hyperplasia (IH). BALB/c aortas (H-2(d)) transplanted into α-TFPI-transgenic (Tg) mice (H-2(b)) regenerated a quiescent endothelium in contrast to progressive IH seen in C57BL/6 wild-type (WT) mice even though both developed aggressive anti-H-2(d) alloresponses, indicating similar vascular injuries. Adoptively transferred Tg CD34(+) (but not CD34(-)) cells inhibited IH in WT recipients, indicating the phenotype of α-TFPI-Tg mice was due to these cells. Compared with syngeneic controls, endogenous CD34(+) cells were mobilized in significant numbers after allogeneic transplantation, the majority showing sustained expression of tissue factor and protease-activated receptor-1 (PAR-1). In WT, most were CD45(+) myeloid progenitors coexpressing CD31, vascular endothelial growth factor receptor-2 and E-selectin; 10% of these cells coexpressed α-SMA and were recruited to the neointima. In contrast, the α-SMA(+) human TFPI(+) CD34(+) cells recruited in Tg recipients were from a CD45(-) lineage. WT CD34(+) cells incubated with a PAR-1 antagonist or taken from PAR-1-deficient mice inhibited IH as Tg cells did. Specific inhibition of thrombin generation or PAR-1 signaling on α-SMA(+) CD34(+) cells inhibits IH and promotes regenerative repair despite ongoing immune-mediated damage.

  5. Therapeutic effect of apatinib-loaded nanoparticles on diabetes-induced retinal vascular leakage.

    PubMed

    Jeong, Ji Hoon; Nguyen, Hong Khanh; Lee, Jung Eun; Suh, Wonhee

    2016-01-01

    Apatinib, a novel and selective inhibitor of vascular endothelial growth factor (VEGF) receptor 2, has been demonstrated recently to exhibit anticancer efficacy by inhibiting the VEGF signaling pathway. Given the importance of VEGF in retinal vascular leakage, the present study was designed to investigate whether apatinib-loaded polymeric nanoparticles inhibit VEGF-mediated retinal vascular hyperpermeability and block diabetes-induced retinal vascular leakage. For the delivery of water-insoluble apatinib, the drug was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro paracellular permeability and transendothelial electric resistance assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles significantly inhibited VEGF-induced endothelial hyperpermeability in human retinal microvascular endothelial cells. In addition, they substantially reduced the VEGF-induced junctional loss and internalization of vascular endothelial-cadherin, a major component of endothelial junction complexes. In vivo intravitreal injection of Apa-HSA-PEG nanoparticles in mice blocked VEGF-induced retinal vascular leakage. These in vitro and in vivo data indicated that Apa-HSA-PEG nanoparticles efficiently blocked VEGF-induced breakdown of the blood-retinal barrier. In vivo experiments with streptozotocin-induced diabetic mice showed that an intravitreal injection of Apa-HSA-PEG nanoparticles substantially inhibited diabetes-induced retinal vascular leakage. These results demonstrated, for the first time, that apatinib-loaded nanoparticles may be a promising therapeutic agent for the prevention and treatment of diabetes-induced retinal vascular disorders.

  6. Therapeutic effect of apatinib-loaded nanoparticles on diabetes-induced retinal vascular leakage

    PubMed Central

    Jeong, Ji Hoon; Nguyen, Hong Khanh; Lee, Jung Eun; Suh, Wonhee

    2016-01-01

    Apatinib, a novel and selective inhibitor of vascular endothelial growth factor (VEGF) receptor 2, has been demonstrated recently to exhibit anticancer efficacy by inhibiting the VEGF signaling pathway. Given the importance of VEGF in retinal vascular leakage, the present study was designed to investigate whether apatinib-loaded polymeric nanoparticles inhibit VEGF-mediated retinal vascular hyperpermeability and block diabetes-induced retinal vascular leakage. For the delivery of water-insoluble apatinib, the drug was encapsulated in nanoparticles composed of human serum albumin (HSA)-conjugated polyethylene glycol (PEG). In vitro paracellular permeability and transendothelial electric resistance assays showed that apatinib-loaded HSA-PEG (Apa-HSA-PEG) nanoparticles significantly inhibited VEGF-induced endothelial hyperpermeability in human retinal microvascular endothelial cells. In addition, they substantially reduced the VEGF-induced junctional loss and internalization of vascular endothelial-cadherin, a major component of endothelial junction complexes. In vivo intravitreal injection of Apa-HSA-PEG nanoparticles in mice blocked VEGF-induced retinal vascular leakage. These in vitro and in vivo data indicated that Apa-HSA-PEG nanoparticles efficiently blocked VEGF-induced breakdown of the blood–retinal barrier. In vivo experiments with streptozotocin-induced diabetic mice showed that an intravitreal injection of Apa-HSA-PEG nanoparticles substantially inhibited diabetes-induced retinal vascular leakage. These results demonstrated, for the first time, that apatinib-loaded nanoparticles may be a promising therapeutic agent for the prevention and treatment of diabetes-induced retinal vascular disorders. PMID:27462154

  7. Activation of PPARδ counteracts angiotensin II-induced ROS generation by inhibiting rac1 translocation in vascular smooth muscle cells.

    PubMed

    Lee, Hanna; Ham, Sun Ah; Kim, Min Young; Kim, Jae-Hwan; Paek, Kyung Shin; Kang, Eun Sil; Kim, Hyo Jung; Hwang, Jung Seok; Yoo, Taesik; Park, Chankyu; Kim, Jin-Hoi; Lim, Dae-Seog; Han, Chang Woo; Seo, Han Geuk

    2012-07-01

    Angiotensin II (Ang II)-mediated modification of the redox milieu of vascular smooth muscle cells (VSMCs) has been implicated in several pathophysiological processes, including cell proliferation, migration and differentiation. In this study, we demonstrate that the peroxisome proliferator-activated receptor (PPAR) δ counteracts Ang II-induced production of reactive oxygen species (ROS) in VSMCs. Activation of PPARδ by GW501516, a specific ligand for PPARδ, significantly reduced Ang II-induced ROS generation in VSMCs. This effect was, however, reversed in the presence of small interfering (si)RNA against PPARδ. The marked increase in ROS levels induced by Ang II was also eliminated by the inhibition of phosphatidylinositol 3-kinase (PI3K) but not of protein kinase C, suggesting the involvement of the PI3K/Akt signalling pathway in this process. Accordingly, ablation of Akt with siRNA further enhanced the inhibitory effects of GW501516 in Ang II-induced superoxide production. Ligand-activated PPARδ also blocked Ang II-induced translocation of Rac1 to the cell membrane, inhibiting the activation of NADPH oxidases and consequently ROS generation. These results indicate that ligand-activated PPARδ plays an important role in the cellular response to oxidative stress by decreasing ROS generated by Ang II in vascular cells.

  8. ARTERIAL HYPERTENSION AND IRRADIATION DAMAGE TO THE NERVOUS SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asscher, A.W.; Anson, S.G.

    1962-12-29

    On the basis of previous studies it appeared that irradiation damage to the nervous system might be more severe and more easily produced in hypertensive than in normotensive subjects. This hypothesis was investigated by studying the frequency of neurological complications and vascular lesions in the spinal cord after x irradiation of the cord in hypertensive and normotensive rats. Two weeks before irradiation of the spinal cord, a clip was applied to the right renal artery of the animals to produce hypertension. Single doses of 1500, 2000, or 3000 r were administered to the spinal cord in the cervical and uppermore » thoracic region of hypertensive rats (systolic blood pressure higher than 145 mm Hg) and normotensive rats. After 1500 r to spinal cord, no abnormalities were noted in the normotensive controls during the period of observation. Some hypertensive animaIs showed transient abnormalities of gait, and during the following week died suddenly. Those remaining died unexpectedly 35-259 days after irradiation without apparent preceding neurological manifestations, although acute vascular lesions were found in the irradiated regions of the spinal cord. The normotensive controls of the 2000-r group showed no abnormalities of gait or of tail sensation, but the hypertensive rats died 67-243 days after irradiation, and ntaxic episodes preceding these unexpected deaths in one animal. Ristologically, the irradiated segments of the cords showed multiple focal acute vascular necrosis. The smaller arteries in irradiated segments of the cords showed hyaline thickening; some of the smaller vessels were widely dilated and filled with blood, and their walls were necrotic. The white matter of the irradiated parts of these cords showed numerous holes (status spongiosus) in the lateral and dorsal columns. The anterior-horn cells in the irradiated zones were swollen, their nuclei pyknotic and cytoplasm devoid of Nissl granules. No abnormalities, besides thickening of the

  9. Activation of peroxisome proliferator-activated receptor δ inhibits angiotensin II-induced activation of matrix metalloproteinase-2 in vascular smooth muscle cells.

    PubMed

    Ham, Sun Ah; Lee, Hanna; Hwang, Jung Seok; Kang, Eun Sil; Yoo, Taesik; Paek, Kyung Shin; Do, Jeong Tae; Park, Chankyu; Oh, Jae-Wook; Kim, Jin-Hoi; Han, Chang Woo; Seo, Han Geuk

    2014-01-01

    We investigated the role of peroxisome proliferator-activated receptor (PPAR) δ on angiotensin (Ang) II-induced activation of matrix metalloproteinase (MMP)-2 in vascular smooth muscle cells (VSMCs). Activation of PPARδ by GW501516, a specific ligand for PPARδ, attenuated Ang II-induced activation of MMP-2 in a concentration-dependent manner. GW501516 also inhibited the generation of reactive oxygen species in VSMCs treated with Ang II. A marked increase in the mRNA levels of tissue inhibitor of metalloproteinase (TIMP)-2 and -3, endogenous antagonists of MMPs, was also observed in GW501516-treated VSMCs. These effects were markedly reduced in the presence of siRNAs against PPARδ, indicating that the effects of GW501516 are PPARδ dependent. Among the protein kinases inhibited by GW501516, suppression of phosphatidylinositol 3-kinase/Akt signaling was shown to have the greatest effect on activation of MMP-2 in VSMCs treated with Ang II. Concomitantly, GW501516-mediated inhibition of MMP-2 activation in VSMCs treated with Ang II was associated with the suppression of cell migration to levels approaching those in cells not exposed to Ang II. Thus, activation of PPARδ confers resistance to Ang II-induced degradation of the extracellular matrix by upregulating expression of its endogenous inhibitor TIMP and thereby modulating cellular responses to Ang II in vascular cells. © 2014 S. Karger AG, Basel.

  10. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells

    PubMed Central

    Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification. PMID:27589055

  11. Vinpocetine Attenuates the Osteoblastic Differentiation of Vascular Smooth Muscle Cells.

    PubMed

    Ma, Yun-Yun; Sun, Lin; Chen, Xiu-Juan; Wang, Na; Yi, Peng-Fei; Song, Min; Zhang, Bo; Wang, Yu-Zhong; Liang, Qiu-Hua

    2016-01-01

    Vascular calcification is an active process of osteoblastic differentiation of vascular smooth muscle cells; however, its definite mechanism remains unknown. Vinpocetine, a derivative of the alkaloid vincamine, has been demonstrated to inhibit the high glucose-induced proliferation of vascular smooth muscle cells; however, it remains unknown whether vinpocetine can affect the osteoblastic differentiation of vascular smooth muscle cells. We hereby investigated the effect of vinpocetine on vascular calcification using a beta-glycerophosphate-induced cell model. Our results showed that vinpocetine significantly reduced the osteoblast-like phenotypes of vascular smooth muscle cells including ALP activity, osteocalcin, collagen type I, Runx2 and BMP-2 expression as well as the formation of mineralized nodule. Vinpocetine, binding to translocation protein, induced phosphorylation of extracellular signal-related kinase and Akt and thus inhibited the translocation of nuclear factor-kappa B into the nucleus. Silencing of translocator protein significantly attenuated the inhibitory effect of vinpocetine on osteoblastic differentiation of vascular smooth muscle cells. Taken together, vinpocetine may be a promising candidate for the clinical therapy of vascular calcification.

  12. Vitamin K2 inhibits rat vascular smooth muscle cell calcification by restoring the Gas6/Axl/Akt anti-apoptotic pathway.

    PubMed

    Qiu, Cuiting; Zheng, Haijun; Tao, Huiren; Yu, Wenjun; Jiang, Xiaoyu; Li, Aiqin; Jin, Hui; Lv, Anlin; Li, Huan

    2017-09-01

    Vascular calcification is associated with cardiovascular disease as a complication of hypertension, hyperlipidemia, diabetes mellitus, and chronic kidney disease. Vitamin K2 (VK2) delays vascular calcification by an unclear mechanism. Moreover, apoptosis modulates vascular smooth muscle cell (VSMC) calcification. This paper aimed to study VK2-modified VSMC calcification and survival cell signaling mediated by growth arrest-specific gene 6 (Gas6) and its tyrosine kinase receptor Axl. Primary-cultured VSMCs were dose-dependently treated with VK2 in the presence of calcification medium for 8 days, or pre-treated for 1 h with/without the Axl inhibitor R428 (2 μmol/L) or the caspase inhibitor Z-VAD-fmk (20 μmol/L) followed by treatment with VK2 (10 μmol/L) or rmGas6 (200 nmol/L) in calcification medium for 8 days. Calcium deposition was determined by the o-cresolphthalein complexone assay and Alizarin Red S staining. Apoptosis was determined by TUNEL and flow cytometry using Annexin V-FITC and propidium iodide staining. Western blotting detected the expressions of Axl, Gas6, p-Akt, Akt, and Bcl2. VK2 significantly inhibited CaCl 2 - and β-sodium glycerophosphate (β-GP)-induced VSMC calcification and apoptosis, which was dependent on restored Gas6 expression and activated downstream signaling by Axl, p-Akt, and Bcl2. Z-VAD-fmk significantly inhibited CaCl 2 - and β-GP-induced VSMC calcification and apoptosis. Augmented recombinant mouse Gas6 protein (rmGas6) expression significantly reduced VSMC calcification and apoptosis. Furthermore, the Gas6/Axl interaction was inhibited by R428, which abolished the preventive effect of VK2 on CaCl 2 - and β-GP-induced apoptosis and calcification. These results suggest that Gas6 is critical in VK2-mediated functions that attenuate CaCl 2 - and β-GP-induced VSMC calcification by blocking apoptosis.

  13. Piperlongumine inhibits atherosclerotic plaque formation and vascular smooth muscle cell proliferation by suppressing PDGF receptor signaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Son, Dong Ju; Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA; Kim, Soo Yeon

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer Anti-atherogenic effect of PL was examined using partial carotid ligation model in ApoE KO mice. Black-Right-Pointing-Pointer PL prevented atherosclerotic plaque development, VSMCs proliferation, and NF-{kappa}B activation. Black-Right-Pointing-Pointer Piperlongumine reduced vascular smooth muscle cell activation through PDGF-R{beta} and NF-{kappa}B-signaling. Black-Right-Pointing-Pointer PL may serve as a new therapeutic molecule for atherosclerosis treatment. -- Abstract: Piperlongumine (piplartine, PL) is an alkaloid found in the long pepper (Piper longum L.) and has well-documented anti-platelet aggregation, anti-inflammatory, and anti-cancer properties; however, the role of PL in prevention of atherosclerosis is unknown. We evaluated the anti-atherosclerotic potential of PL in an in vivo murinemore » model of accelerated atherosclerosis and defined its mechanism of action in aortic vascular smooth muscle cells (VSMCs) in vitro. Local treatment with PL significantly reduced atherosclerotic plaque formation as well as proliferation and nuclear factor-kappa B (NF-{kappa}B) activation in an in vivo setting. PL treatment in VSMCs in vitro showed inhibition of migration and platelet-derived growth factor BB (PDGF-BB)-induced proliferation to the in vivo findings. We further identified that PL inhibited PDGF-BB-induced PDGF receptor beta activation and suppressed downstream signaling molecules such as phospholipase C{gamma}1, extracellular signal-regulated kinases 1 and 2 and Akt. Lastly, PL significantly attenuated activation of NF-{kappa}B-a downstream transcriptional regulator in PDGF receptor signaling, in response to PDGF-BB stimulation. In conclusion, our findings demonstrate a novel, therapeutic mechanism by which PL suppresses atherosclerosis plaque formation in vivo.« less

  14. Inhibition of Ultraviolet B-Induced Expression of the Proinflammatory Cytokines TNF-α and VEGF in the Cornea by Fucoxanthin Treatment in a Rat Model.

    PubMed

    Chen, Shiu-Jau; Lee, Ching-Ju; Lin, Tzer-Bin; Liu, Hsiang-Jui; Huang, Shuan-Yu; Chen, Jia-Zeng; Tseng, Kuang-Wen

    2016-01-07

    Ultraviolet B (UVB) irradiation is the most common cause of radiation damage to the eyeball and is a risk factor for human corneal damage. We determined the protective effect of fucoxanthin, which is a carotenoid found in common edible seaweed, on ocular tissues against oxidative UVB-induced corneal injury. The experimental rats were intravenously injected with fucoxanthin at doses of 0.5, 5 mg/kg body weight/day or with a vehicle before UVB irradiation. Lissamine green for corneal surface staining showed that UVB irradiation caused serious damage on the corneal surface, including severe epithelial exfoliation and deteriorated epithelial smoothness. Histopathological lesion examination revealed that levels of proinflammatory cytokines, including tumor necrosis factor-α (TNF-α) and vascular endothelial growth factor (VEGF), significantly increased. However, pretreatment with fucoxanthin inhibited UVB radiation-induced corneal disorders including evident preservation of corneal surface smoothness, downregulation of proinflammatory cytokine expression, and decrease of infiltrated polymorphonuclear leukocytes from UVB-induced damage. Moreover, significant preservation of the epithelial integrity and inhibition of stromal swelling were also observed after UVB irradiation in fucoxanthin-treated groups. Pretreatment with fucoxanthin may protect against UVB radiation-induced corneal disorders by inhibiting expression of proinflammatory factors, TNF-α, and VEGF and by blocking polymorphonuclear leukocyte infiltration.

  15. Metformin inhibits inflammatory response via AMPK-PTEN pathway in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Sun Ae; Choi, Hyoung Chul, E-mail: hcchoi@med.yu.ac.kr

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer PTEN was induced by metformin and inhibited by compound C and AMPK siRNA. Black-Right-Pointing-Pointer Metformin suppressed TNF-{alpha}-induced COX-2 and iNOS mRNA expression. Black-Right-Pointing-Pointer Compound C and bpv (pic) increased iNOS and COX-2 protein expression. Black-Right-Pointing-Pointer NF-{kappa}B activation was restored by inhibiting AMPK and PTEN. Black-Right-Pointing-Pointer AMPK and PTEN regulated TNF-{alpha}-induced ROS production in VSMCs. -- Abstract: Atherosclerosis is a chronic inflammation of the coronary arteries. Vascular smooth muscle cells (VSMCs) stimulated by cytokines and chemokines accelerate the inflammatory response and migrate to the injured endothelium during the progression of atherosclerosis. Activation of AMP activated protein kinase (AMPK), amore » key sensor maintaining metabolic homeostasis, suppresses the inflammatory response. However, how AMPK regulates the inflammatory response is poorly understood. To identify the mechanism of this response, we focused on phosphatase and tensin homolog (PTEN), which is a negative regulator of inflammation. We investigated that activation of AMPK-induced PTEN expression and suppression of the inflammatory response through the AMPK-PTEN pathway in VSMCs. We treated with the well-known AMPK activator metformin to induce PTEN expression. PTEN was induced by metformin (2 mM) and inhibited by compound C (10 {mu}M) and AMPK siRNA. Tumor necrosis factor-alpha (TNF-{alpha}) was used to induce inflammation. The inflammatory response was confirmed by cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS) expression, and activation of nuclear factor (NF)-{kappa}B. Metformin suppressed COX-2 and iNOS mRNA and protein expression dose dependently. Treatment with compound C and bpv (pic) in the presence of metformin, iNOS and COX-2 protein expression increased. NF-{kappa}B activation decreased in response to metformin and was restored by inhibiting

  16. Role of Nitric Oxide Isoforms in Vascular and Alveolar Development and Lung Injury in Vascular Endothelial Growth Factor Overexpressing Neonatal Mice Lungs.

    PubMed

    Syed, Mansoor A; Choo-Wing, Rayman; Homer, Robert J; Bhandari, Vineet

    2016-01-01

    The role of vascular endothelial growth factor (VEGF)-induced 3 different nitric oxide synthase (NOS) isoforms in lung development and injury in the newborn (NB) lung are not known. We hypothesized that VEGF-induced specific NOS pathways are critical regulators of lung development and injury. We studied NB wild type (WT), lung epithelial cell-targeted VEGF165 doxycycline-inducible overexpressing transgenic (VEGFTG), VEGFTG treated with a NOS1 inhibitor (L-NIO), VEGFTG x NOS2-/- and VEGFTG x NOS3+/- mice in room air (RA) for 7 postnatal (PN) days. Lung morphometry (chord length), vascular markers (Ang1, Ang2, Notch2, vWF, CD31 and VE-cadherin), cell proliferation (Ki67), vascular permeability, injury and oxidative stress markers (hemosiderin, nitrotyrosine and 8-OHdG) were evaluated. VEGF overexpression in RA led to increased chord length and vascular markers at PN7, which were significantly decreased to control values in VEGFTG x NOS2-/- and VEGFTG x NOS3+/- lungs. However, we found no noticeable effect on chord length and vascular markers in the VEGFTG / NOS1 inhibited group. In the NB VEGFTG mouse model, we found VEGF-induced vascular permeability in the NB murine lung was partially dependent on NOS2 and NOS3-signaling pathways. In addition, the inhibition of NOS2 and NOS3 resulted in a significant decrease in VEGF-induced hemosiderin, nitrotyrosine- and 8-OHdG positive cells at PN7. NOS1 inhibition had no significant effect. Our data showed that the complete absence of NOS2 and partial deficiency of NOS3 confers protection against VEGF-induced pathologic lung vascular and alveolar developmental changes, as well as injury markers. Inhibition of NOS1 does not have any modulating role on VEGF-induced changes in the NB lung. Overall, our data suggests that there is a significant differential regulation in the NOS-mediated effects of VEGF overexpression in the developing mouse lung.

  17. CO2 laser irradiation enhances CaF2 formation and inhibits lesion progression on demineralized dental enamel-in vitro study.

    PubMed

    Zancopé, Bruna R; Rodrigues, Lívia P; Parisotto, Thais M; Steiner-Oliveira, Carolina; Rodrigues, Lidiany K A; Nobre-dos-Santos, Marinês

    2016-04-01

    This study evaluated if Carbon dioxide (CO2) (λ 10.6 μm) laser irradiation combined with acidulated phosphate fluoride gel application (APF gel) enhances "CaF2" uptake by demineralized enamel specimens (DES) and inhibits enamel lesion progression. Thus, two studies were conducted and DES were subjected to APF gel combined or not with CO2 laser irradiation (11.3 or 20.0 J/cm(2), 0.4 or 0.7 W) performed before, during, or after APF gel application. In study 1, 165 DES were allocated to 11 groups. Fluoride as "CaF2 like material" formed on enamel was determined in 100 DES (n = 10/group), and the surface morphologies of 50 specimens were evaluated by scanning electron microscopy (SEM) before and after "CaF2" extraction. In study 2, 165 DES (11 groups, n = 15), subjected to the same treatments as in study 1, were further subjected to a pH-cycling model to simulate a high cariogenic challenge. The progression of demineralization in DES was evaluated by cross-sectional microhardness and polarized light microscopy analyses. Laser at 11.3 J/cm(2) applied during APF gel application increased "CaF2" uptake on enamel surface. Laser irradiation and APF gel alone arrested the lesion progression compared with the control (p < 0.05). Areas of melting, fusion, and cracks were observed. CO2 laser irradiation, combined with a single APF application enhanced "CaF2" uptake on enamel surface and a synergistic effect was found. However, regarding the inhibition of caries lesion progression, no synergistic effect could be demonstrated. In conclusion, the results have shown that irradiation with specific laser parameters significantly enhanced CaF2 uptake by demineralized enamel and inhibited lesion progression.

  18. Caffeine's Vascular Mechanisms of Action

    PubMed Central

    Echeverri, Darío; Montes, Félix R.; Cabrera, Mariana; Galán, Angélica; Prieto, Angélica

    2010-01-01

    Caffeine is the most widely consumed stimulating substance in the world. It is found in coffee, tea, soft drinks, chocolate, and many medications. Caffeine is a xanthine with various effects and mechanisms of action in vascular tissue. In endothelial cells, it increases intracellular calcium stimulating the production of nitric oxide through the expression of the endothelial nitric oxide synthase enzyme. Nitric oxide is diffused to the vascular smooth muscle cell to produce vasodilation. In vascular smooth muscle cells its effect is predominantly a competitive inhibition of phosphodiesterase, producing an accumulation of cAMP and vasodilation. In addition, it blocks the adenosine receptors present in the vascular tissue to produce vasoconstriction. In this paper the main mechanisms of action of caffeine on the vascular tissue are described, in which it is shown that caffeine has some cardiovascular properties and effects which could be considered beneficial. PMID:21188209

  19. Antisense oligodeoxynucleotide inhibits vascular endothelial growth factor expression in U937 foam cells.

    PubMed

    Yang, Peng-Yuan; Rui, Yao-Cheng; Jin, You-Xin; Li, Tie-Jun; Qiu, Yan; Zhang, Li; Wang, Jie-Song

    2003-06-01

    To study the expression of vascular endothelial growth factor (VEGF) induced by oxidized low density liporotein (ox-LDL) and the inhibitory effects of antisense oligodeoxynucleotide (asODN) on the levels of VEGF protein and mRNA in the U937 foam cells. U937 cells were incubated with ox-LDL 80 mg/L for 48 h, then, the foam cells were treated with asODN (0, 5, 10, and 20 micromol/L). The VEGF concentration in the media was determined by ELISA. The VEGF protein expression level in cells was measured by immuohistochemistry; the positive ratio detected by a morphometrical analysis system was used as the amount of the VEGF expression level. The VEGF mRNA level was examined by Northern blotting. After U937 cells were incubated with ox-LDL, VEGF expression level increased greatly both in the cells and in the media. asODN markedly inhibited the increase of VEGF. After treatment with asODN 20 micromol/L, the VEGF protein concentration in the media decreased by 45.0%, the VEGF positive ratio detected by immuohistochemistry in cells decreased by 64.9%, and the VEGF mRNA level decreased by 47.1%. The expression of VEGF in U937 foam cells was strong. asODN inhibited VEGF expression significantly in U937 foam cells in vitro.

  20. PPARdelta inhibits IL-1beta-stimulated proliferation and migration of vascular smooth muscle cells via up-regulation of IL-1Ra.

    PubMed

    Kim, H J; Kim, M Y; Hwang, J S; Kim, H J; Lee, J H; Chang, K C; Kim, J-H; Han, C W; Kim, J-H; Seo, H G

    2010-06-01

    Activation of peroxisome proliferator-activated receptor (PPAR) delta by GW501516, a specific PPARdelta ligand, significantly inhibited interleukin (IL)-1beta-induced proliferation and migration of vascular smooth muscle cells (VSMCs). This effect of GW501516 was dependent on transforming growth factor-beta, and was mediated through the up-regulation of IL-1 receptor antagonist. The inhibitory effect of GW501516 on VSMC proliferation was associated with cell cycle arrest at the G1 to S phase transition, which was accompanied by the induction of p21 and p53 along with decreased cyclin-dependent kinase 4 expression. Inhibition of cell migration by GW501516 was associated with the down-regulation of matrix metalloproteinase (MMP)-2 and MMP-9 in IL-1beta-treated VSMCs. Inhibition of extracellular signal-regulated kinase significantly reduced the GW501516-mediated inhibition of IL-1beta-stimulated VSMC proliferation. These results suggest that PPARdelta plays an important role in the pathophysiology of diseases associated with the proliferation and migration of VSMCs.

  1. Vitisin B, a resveratrol tetramer, inhibits migration through inhibition of PDGF signaling and enhancement of cell adhesiveness in cultured vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ong, Eng-Thaim; Hwang, Tsong-Long; Huang, Yu-Ling

    2011-10-15

    Vascular smooth muscle cells (VSMCs) play an important role in normal vessel formation and in the development and progression of cardiovascular diseases. Grape plants contain resveratrol monomer and oligomers and drinking of wine made from grape has been linked to 'French Paradox'. In this study we evaluated the effect of vitisin B, a resveratrol tetramer, on VSMC behaviors. Vitisin B inhibited basal and PDGF-induced VSMC migration. Strikingly, it did not inhibit VSMC proliferation but inversely enhanced cell cycle progression and proliferation. Among the tested resveratrol oligomers, vitisin B showed an excellent inhibitory activity and selectivity on PDGF signaling. The anti-migratorymore » effect by vitisin B was due to direct inhibition on PDGF signaling but was independent of interference with PDGF binding to VSMCs. Moreover, the enhanced VSMC adhesiveness to matrix contributed to the anti-migratory effect by vitisin B. Fluorescence microscopy revealed an enhanced reorganization of actin cytoskeleton and redistribution of activated focal adhesion proteins from cytosol to the peripheral edge of the cell membrane. This was confirmed by the observation that enhanced adhesiveness was repressed by the Src inhibitor. Finally, among the effects elicited by vitisin B, only the inhibitory effect toward basal migration was partially through estrogen receptor activation. We have demonstrated here that a resveratrol tetramer exhibited dual but opposite actions on VSMCs, one is to inhibit VSMC migration and the other is to promote VSMC proliferation. The anti-migratory effect was through a potent inhibition on PDGF signaling and novel enhancement on cell adhesion. - Highlights: > Several resveratrol oligomers from grape plants are examined on VSMC behaviors. > Tetraoligomer vitisin B shows excellent inhibitory activity and selectivity. > It exerts dual but opposing actions: anti-migratory and pro-proliferative effects. > The anti-migratory effect results from anti

  2. O-Linked β-N-Acetylglucosamine Modification of A20 Enhances the Inhibition of NF-κB (Nuclear Factor-κB) Activation and Elicits Vascular Protection After Acute Endoluminal Arterial Injury.

    PubMed

    Yao, Dan; Xu, Lijuan; Xu, Oufan; Li, Rujun; Chen, Mingxing; Shen, Hui; Zhu, Huajiang; Zhang, Fengyi; Yao, Deshang; Chen, Yiu-Fai; Oparil, Suzanne; Zhang, Zhengang; Gong, Kaizheng

    2018-06-01

    Recently, we have demonstrated that acute glucosamine-induced augmentation of protein O-linked β-N-acetylglucosamine (O-GlcNAc) levels inhibits inflammation in isolated vascular smooth muscle cells and neointimal formation in a rat model of carotid injury by interfering with NF-κB (nuclear factor-κB) signaling. However, the specific molecular target for O-GlcNAcylation that is responsible for glucosamine-induced vascular protection remains unclear. In this study, we test the hypothesis that increased A20 (also known as TNFAIP3 [tumor necrosis factor α-induced protein 3]) O-GlcNAcylation is required for glucosamine-mediated inhibition of inflammation and vascular protection. In cultured rat vascular smooth muscle cells, both glucosamine and the selective O-linked N-acetylglucosaminidase inhibitor thiamet G significantly increased A20 O-GlcNAcylation. Thiamet G treatment did not increase A20 protein expression but did significantly enhance binding to TAX1BP1 (Tax1-binding protein 1), a key regulatory protein for A20 activity. Adenovirus-mediated A20 overexpression further enhanced the effects of thiamet G on prevention of TNF-α (tumor necrosis factor-α)-induced IκB (inhibitor of κB) degradation, p65 phosphorylation, and increases in DNA-binding activity. A20 overexpression enhanced the inhibitory effects of thiamet G on TNF-α-induced proinflammatory cytokine expression and vascular smooth muscle cell migration and proliferation, whereas silencing endogenous A20 by transfection of specific A20 shRNA significantly attenuated these inhibitory effects. In balloon-injured rat carotid arteries, glucosamine treatment markedly inhibited neointimal formation and p65 activation compared with vehicle treatment. Adenoviral delivery of A20 shRNA to the injured arteries dramatically reduced balloon injury-induced A20 expression and inflammatory response compared with scramble shRNA and completely abolished the vascular protection of glucosamine. These results suggest that

  3. Nitrogen Can Alleviate the Inhibition of Photosynthesis Caused by High Temperature Stress under Both Steady-State and Flecked Irradiance.

    PubMed

    Huang, Guanjun; Zhang, Qiangqiang; Wei, Xinghai; Peng, Shaobing; Li, Yong

    2017-01-01

    Nitrogen is one of the most important elements for plants and is closely related to photosynthesis. High temperature stress significantly inhibits photosynthesis under both steady-state and flecked irradiance. However, it is not known whether nitrogen can affect the decrease in photosynthesis caused by high temperature, especially under flecked irradiance. In the present study, a pot experiment was conducted under two nitrogen (N) supplies with rice plants, and the steady-state and dynamic photosynthesis rates were measured under 28 and 40°C. High temperature significantly increased leaf hydraulic conductance ( K leaf ) under high N supply (HN) but not under low N supply (LN). The increased K leaf maintained a constant leaf water potential (Ψ leaf ) and steady-state stomatal conductance ( g s,sat ) under HN, while the Ψ leaf and g s,sat significantly decreased under high temperature in LN conditions. This resulted in a more severe decrease in steady-state photosynthesis ( A sat ) under high temperature in the LN conditions. After shifting from low to high light, high temperature significantly delayed the recovery of photosynthesis, which resulted in more carbon loss under flecked irradiance. These effects were obtained under HN to a lesser extent than under LN supply. Therefore, it is concluded that nitrogen can alleviate the inhibition of photosynthesis caused by high temperature stress under both steady-state and flecked irradiance.

  4. Selective irradiation of the vascular endothelium has no effect on the survival of murine intestinal crypt stem cells

    PubMed Central

    Schuller, Bradley W.; Binns, Peter J.; Riley, Kent J.; Ma, Ling; Hawthorne, M. Frederick; Coderre, Jeffrey A.

    2006-01-01

    The possible role of vascular endothelial cell damage in the loss of intestinal crypt stem cells and the subsequent development of the gastrointestinal (GI) syndrome is addressed. Mice received whole-body epithermal neutron irradiation at a dose rate of 0.57 ± 0.04 Gy·min−1. An additional dose was selectively targeted to endothelial cells from the short-ranged (5–9 μm) particles released from neutron capture reactions in 10B confined to the blood by incorporation into liposomes 70–90 nm in diameter. Different liposome formulations produced 45 ± 7 or 118 ± 12 μg/g 10B in the blood at the time of neutron irradiation, which resulted in total absorbed dose rates in the endothelial cells of 1.08 ± 0.09 or 1.90 ± 0.16 Gy·min−1, respectively. At 3.5 d after irradiation, the intestinal crypt microcolony assay showed that the 2- to 3-fold increased doses to the microvasculature, relative to the nonspecific whole-body neutron beam doses, caused no additional crypt stem cell loss beyond that produced by the neutron beam alone. The threshold dose for death from the GI syndrome after neutron-beam-only irradiation was 9.0 ± 0.6 Gy. There were no deaths from the GI syndrome, despite calculated absorbed doses to endothelial cells as high as 27.7 Gy, in the groups that received neutron beam doses of <9.0 Gy with boronated liposomes in the blood. These data indicate that endothelial cell damage is not causative in the loss of intestinal crypt stem cells and the eventual development of the GI syndrome. PMID:16505359

  5. Selective irradiation of the vascular endothelium has no effect on the survival of murine intestinal crypt stem cells

    NASA Astrophysics Data System (ADS)

    Schuller, Bradley W.; Binns, Peter J.; Riley, Kent J.; Ma, Ling; Hawthorne, M. Frederick; Coderre, Jeffrey A.

    2006-03-01

    The possible role of vascular endothelial cell damage in the loss of intestinal crypt stem cells and the subsequent development of the gastrointestinal (GI) syndrome is addressed. Mice received whole-body epithermal neutron irradiation at a dose rate of 0.57 ± 0.04 Gy·min-1. An additional dose was selectively targeted to endothelial cells from the short-ranged (5-9 μm) particles released from neutron capture reactions in 10B confined to the blood by incorporation into liposomes 70-90 nm in diameter. Different liposome formulations produced 45 ± 7 or 118 ± 12 μg/g 10B in the blood at the time of neutron irradiation, which resulted in total absorbed dose rates in the endothelial cells of 1.08 ± 0.09 or 1.90 ± 0.16 Gy·min-1, respectively. At 3.5 d after irradiation, the intestinal crypt microcolony assay showed that the 2- to 3-fold increased doses to the microvasculature, relative to the nonspecific whole-body neutron beam doses, caused no additional crypt stem cell loss beyond that produced by the neutron beam alone. The threshold dose for death from the GI syndrome after neutron-beam-only irradiation was 9.0 ± 0.6 Gy. There were no deaths from the GI syndrome, despite calculated absorbed doses to endothelial cells as high as 27.7 Gy, in the groups that received neutron beam doses of <9.0 Gy with boronated liposomes in the blood. These data indicate that endothelial cell damage is not causative in the loss of intestinal crypt stem cells and the eventual development of the GI syndrome. gastrointestinal syndrome | boron | liposomes | neutron capture

  6. Localized CT-Guided Irradiation Inhibits Neurogenesis in Specific Regions of the Adult Mouse Brain

    PubMed Central

    Ford, E. C.; Achanta, P.; Purger, D.; Armour, M.; Reyes, J.; Fong, J.; Kleinberg, L.; Redmond, K.; Wong, J.; Jang, M. H.; Jun, H.; Song, H-J.; Quinones-Hinojosa, A.

    2011-01-01

    Radiation is used in the study of neurogenesis in the adult mouse both as a model for patients undergoing radiation therapy for CNS malignancies and as a tool to interrupt neurogenesis. We describe the use of a dedicated CT-guided precision device to irradiate specific sub-regions of the adult mouse brain. Improved CT visualization was accomplished with intrathecal injection of iodinated contrast agent, which enhances the lateral ventricles. T2-weighted MRI images were also used for target localization. Visualization of delivered beams (10 Gy) in tissue was accomplished with immunohistochemical staining for the protein γ-H2AX, a marker of DNA double-strand breaks. γ-H2AX stains showed that the lateral ventricle wall could be targeted with an accuracy of 0.19 mm (n = 10). In the hippocampus, γ-H2AX staining showed that the dentate gyrus can be irradiated unilaterally with a localized arc treatment. This resulted in a significant decrease of proliferative neural progenitor cells as measured by Ki-67 staining (P < 0.001) while leaving the contralateral side intact. Two months after localized irradiation, neurogenesis was significantly inhibited in the irradiated region as seen with EdU/NeuN double labeling (P < 0.001). Localized radiation in the rodent brain is a promising new tool for the study of neurogenesis. PMID:21449714

  7. Statin therapy exacerbates alcohol-induced constriction of cerebral arteries via modulation of ethanol-induced BK channel inhibition in vascular smooth muscle.

    PubMed

    Simakova, Maria N; Bisen, Shivantika; Dopico, Alex M; Bukiya, Anna N

    2017-12-01

    Statins constitute the most commonly prescribed drugs to decrease cholesterol (CLR). CLR is an important modulator of alcohol-induced cerebral artery constriction (AICAC). Using rats on a high CLR diet (2% CLR) we set to determine whether atorvastatin administration (10mg/kg daily for 18-23weeks) modified AICAC. Middle cerebral arteries were pressurized in vitro at 60mmHg and AICAC was evoked by 50mM ethanol, that is within the range of blood alcohol detected in humans following moderate-to-heavy drinking. AICAC was evident in high CLR+atorvastatin group but not in high CLR diet+placebo. Statin exacerbation of AICAC persisted in de-endothelialized arteries, and was blunted by CLR enrichment in vitro. Fluorescence imaging of filipin-stained arteries showed that atorvastatin decreased vascular smooth muscle (VSM) CLR when compared to placebo, this difference being reduced by CLR enrichment in vitro. Voltage- and calcium-gated potassium channels of large conductance (BK) are known VSM targets of ethanol, with their beta1 subunit being necessary for ethanol-induced channel inhibition and resulting AICAC. Ethanol-induced BK inhibition in excised membrane patches from freshly isolated myocytes was exacerbated in the high CLR diet+atorvastatin group when compared to high CLR diet+placebo. Unexpectedly, atorvastatin decreased the amount and function of BK beta1 subunit as documented by immunofluorescence imaging and functional patch-clamp studies. Atorvastatin exacerbation of ethanol-induced BK inhibition disappeared upon artery CLR enrichment in vitro. Our study demonstrates for the first time statin's ability to exacerbate the vascular effect of a widely consumed drug of abuse, this exacerbation being driven by statin modulation of ethanol-induced BK channel inhibition in the VSM via CLR-mediated mechanism. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Active immunotherapy for mouse breast cancer with irradiated whole-cell vaccine expressing VEGFR2.

    PubMed

    Yan, Heng-Xiu; Cheng, Ping; Wei, Hai-Yan; Shen, Guo-Bo; Fu, Li-Xin; Ni, Jie; Wu, Yang; Wei, Yu-Quan

    2013-04-01

    As tumor-associated antigens are not well characterized for the majority of human tumors, polyvalent vaccines prepared with whole-tumor antigens are an attractive approach for tumor vaccination. Vascular endothelial growth factor receptor-2 (VEGFR2), as a model antigen with which to explore the feasibility of immunotherapy, has shown great promise as a tumor vaccine. However, the efficacy of immunotherapy is often not ideal when used alone. In this study, we explored the therapeutic efficacy of an irradiated AdVEGFR2-infected cell vaccine-based immunotherapy in the weakly immunogenic and highly metastatic 4T1 murine mammary cancer model. An adenovirus encoding the VEGFR2 gene (AdVEGFR2) was constructed. Lethally irradiated, virus-infected 4T1 cells were used as vaccines. Vaccination with lethally irradiated AdVEGFR2-infected 4T1 cells inhibited subsequent tumor growth and pulmonary metastasis compared with challenge inoculations. Angiogenesis was inhibited, and the number of CD8+ T lymphocytes was increased within the tumors. Antitumor activity was also caused by the adoptive transfer of isolated spleen lymphocytes. In vitro, the expression of HMGB1 and HSP70 in the AdVEGFR2‑infected 4T1 cells was increased, and was involved in the activation of tumor antigen-specific T-cell immunity. Our results indicate that the immunotherapy based on irradiated AdVEGFR2-infected whole-cancer cell vaccines may be a potentially effective strategy for 4T1 cancer treatment.

  9. Corynoxeine isolated from the hook of Uncaria rhynchophylla inhibits rat aortic vascular smooth muscle cell proliferation through the blocking of extracellular signal regulated kinase 1/2 phosphorylation.

    PubMed

    Kim, Tack-Joong; Lee, Ju-Hyun; Lee, Jung-Jin; Yu, Ji-Yeon; Hwang, Bang-Yeon; Ye, Sang-Kyu; Shujuan, Li; Gao, Li; Pyo, Myoung-Yun; Yun, Yeo-Pyo

    2008-11-01

    The proliferation of vascular smooth muscle cells (VSMCs) induced by injury to the intima of arteries is an important etiologic factor in vascular proliferative disorders such as atherosclerosis and restenosis. Uncaria rhynchophylla is traditional Chinese herb that has been applied to the treatment of convulsive disorders, such as epilepsy, in China. In the present study, we examined whether corynoxeine exerts inhibitory effects on platelet-derived growth factor (PDGF)-BB-induced rat aortic VSMC proliferation and the possible mechanism of such effects. Pre-treatment of VSMCs with corynoxeine (5-50 microM) for 24 h resulted in significant decreases in cell number without any cytotoxicity; the inhibition percentages were 25.0+/-12.5, 63.0+/-27.5 and 88.0+/-12.5% at 5, 20 and 50 microM, respectively. Also, corynoxeine significantly inhibited the 50 ng/ml PDGF-BB-induced DNA synthesis of VSMCs in a concentration-dependent manner without any cytotoxicity; the inhibitions were 32.8+/-11.0, 51.8+/-8.0 and 76.9+/-7.4% at concentrations of 5, 20 and 50 microM, respectively. Pre-incubation of VSMCs with corynoxeine significantly inhibited PDGF-BB-induced extracellular signal-regulated kinase 1/2 (ERK1/2) activation, whereas corynoxeine had no effects on mitogen-activated protein kinase (MAPK/ERK)-activating kinase 1 and 2 (MEK1/2), Akt, or phospholipase C (PLC)gamma1 activation or on PDGF receptor beta (PDGF-Rbeta) phosphorylation. These results suggest that corynoxeine is a potent ERK1/2 inhibitor of key PDGF-BB-induced VSMC proliferation and may be useful in the prevention and treatment of vascular diseases and restenosis after angioplasty.

  10. Sulforaphane inhibits PDGF-induced proliferation of rat aortic vascular smooth muscle cell by up-regulation of p53 leading to G1/S cell cycle arrest.

    PubMed

    Yoo, Su-Hyang; Lim, Yong; Kim, Seung-Jung; Yoo, Kyu-Dong; Yoo, Hwan-Soo; Hong, Jin-Tae; Lee, Mi-Yea; Yun, Yeo-Pyo

    2013-01-01

    Vascular diseases such as atherosclerosis and restenosis artery angioplasty are associated with vascular smooth muscle cell (VSMC) proliferation and intimal thickening arterial walls. In the present study, we investigated the inhibitory effects of sulforaphane, an isothiocyanate produced in cruciferous vegetables, on VSMC proliferation and neointimal formation in a rat carotid artery injury model. Sulforaphane at the concentrations of 0.5, 1.0, and 2.0 μM significantly inhibited platelet-derived growth factor (PDGF)-BB-induced VSMC proliferation in a concentration-dependent manner, determined by cell count. The IC50 value of sulforaphane-inhibited VSMC proliferation was 0.8 μM. Sulforaphane increased the cyclin-dependent kinase inhibitor p21 and p53 levels, while it decreased CDK2 and cyclin E expression. The effects of sulforaphane on vascular thickening were determined 14 days after the injury to the rat carotid artery. The angiographic mean luminary diameters of the group treated with 2 and 4 μM sulforaphane were 0.25±0.1 and 0.09±0.1 mm², respectively, while the value of the control groups was 0.40±0.1 mm², indicating that sulforaphane may inhibit neointimal formation. The expression of PCNA, maker for cell cycle arrest, was decreased, while that of p53 and p21 was increased, which showed the same pattern as one in in-vitro study. These results suggest that sulforaphane-inhibited VSMC proliferation may occur through the G1/S cell cycle arrest by up-regulation of p53 signaling pathway, and then lead to the decreased neointimal hyperplasia thickening. Thus, sulforaphane may be a promising candidate for the therapy of atherosclerosis and post-angiography restenosis. © 2013.

  11. Gingerol Inhibits Serum-Induced Vascular Smooth Muscle Cell Proliferation and Injury-Induced Neointimal Hyperplasia by Suppressing p38 MAPK Activation.

    PubMed

    Jain, Manish; Singh, Ankita; Singh, Vishal; Maurya, Preeti; Barthwal, Manoj Kumar

    2016-03-01

    Gingerol inhibits growth of cancerous cells; however, its role in vascular smooth muscle cell (VSMC) proliferation is not known. The present study investigated the effect of gingerol on VSMC proliferation in cell culture and during neointima formation after balloon injury. Rat VSMCs or carotid arteries were harvested at 15 minutes, 30 minutes, 1, 6, 12, and 24 hours of fetal bovine serum (FBS; 10%) stimulation or balloon injury, respectively. Gingerol prevented FBS (10%)-induced proliferation of VSMCs in a dose-dependent manner (50 μmol/L-400 μmol/L). The FBS-induced proliferating cell nuclear antigen (PCNA) upregulation and p27(Kip1) downregulation were also attenuated in gingerol (200 μmol/L) pretreated cells. Fetal bovine serum-induced p38 mitogen-activated protein kinase (MAPK) activation, PCNA upregulation, and p27(Kip1) downregulation were abrogated in gingerol (200 μmol/L) and p38 MAPK inhibitor (SB203580, 10 μmol/L) pretreated cells. Balloon injury induced time-dependent p38 MAPK activation in the carotid artery. Pretreatment with gingerol (200 μmol/L) significantly attenuated injury-induced p38 MAPK activation, PCNA upregulation, and p27(Kip1) downregulation. After 14 days of balloon injury, intimal thickening, neointimal proliferation, and endothelial dysfunction were significantly prevented in gingerol pretreated arteries. In isolated organ bath studies, gingerol (30 nmol/L-300 μmol/L) inhibited phenylephrine-induced contractions and induced dose-dependent relaxation of rat thoracic aortic rings in a partially endothelium-dependent manner. Gingerol prevented FBS-induced VSMC proliferation and balloon injury-induced neointima formation by regulating p38 MAPK. Vasodilator effect of gingerol observed in the thoracic aorta was partially endothelium dependent. Gingerol is thus proposed as an attractive agent for modulating VSMC proliferation, vascular reactivity, and progression of vascular proliferative diseases. © The Author(s) 2015.

  12. Phosphorylation of GATA-6 is required for vascular smooth muscle cell differentiation after mTORC1 inhibition

    PubMed Central

    Xie, Yi; Jin, Yu; Merenick, Bethany L.; Ding, Min; Fetalvero, Kristina M.; Wagner, Robert J.; Mai, Alice; Gleim, Scott; Tucker, David; Birnbaum, Morris J.; Ballif, Bryan A.; Luciano, Amelia K.; Sessa, William C.; Rzucidlo, Eva M.; Powell, Richard J.; Hou, Lin; Zhao, Hongyu; Hwa, John; Yu, Jun; Martin, Kathleen A.

    2015-01-01

    Vascular smooth muscle cells (VSMCs) undergo transcriptionally regulated reversible differentiation in growing and injured blood vessels. This de-differentiation also contributes to VSMC hyperplasia following vascular injury, including that caused by angioplasty and stenting. Stents provide mechanical support and can contain and release rapamycin, an inhibitor of the mammalian target of rapamycin complex 1 (mTORC1). Rapamycin suppresses VSMC hyperplasia and promotes VSMC differentiation. We report that rapamycin-induced differentiation of VSMCs required the transcription factor GATA-6. Inhibition of mTORC1 stabilized GATA-6 and promoted the nuclear accumulation of GATA-6, its binding to DNA, and its transactivation of promoters encoding contractile proteins and inhibitors of proliferation. These effects were mediated by phosphorylation of GATA-6 at Ser290, potentially by Akt2, a kinase that is activated in VSMCs when mTORC1 is inhibited. Rapamycin induced phosphorylation of GATA-6 in wild-type mice, but not in Akt2−/− mice. Intimal hyperplasia after arterial injury was greater in Akt2−/− mice than in wild-type mice, and the exacerbated response in Akt2−/− mice was rescued to a greater extent by local overexpression of the wild-type or phosphomimetic (S290D) mutant GATA-6 than by that of the phosphorylation-deficient (S290A) mutant. Our data indicated that GATA-6 and Akt2 are involved in the mTORC1-mediated regulation of VSMC proliferation and differentiation. Identifying the downstream transcriptional targets of mTORC1 may provide cell type-specific drug targets to combat cardiovascular diseases associated with excessive proliferation of VSMCs. PMID:25969542

  13. Indigo naturalis and its component tryptanthrin exert anti-angiogenic effect by arresting cell cycle and inhibiting Akt and FAK signaling in human vascular endothelial cells.

    PubMed

    Chang, Hsin-Ning; Huang, Sheng-Teng; Yeh, Yuan-Chieh; Wang, Hsin-Shih; Wang, Tzu-Hao; Wu, Yi-Hong; Pang, Jong-Hwei S

    2015-11-04

    Indigo naturalis has been used to treat inflammatory diseases and dermatosis, including psoriasis, since thousands of years in China. It has been proven effective in our previous clinical studies on treating psoriasis, but the active component and the mechanism of how indigo naturalis working still needs to be clarified. Since the dysregulated angiogenesis is known to play an important role in the pathogenesis of psoriasis, the anti-angiogenic effect of indigo naturalis and tryptanthrin, a pure component of indigo naturalis, was investigated. The in vivo angiogenesis was studied by chick chorioallantoic membrane assay. The in vitro studies were performed using human vascular endothelial cells. Cell viability was determined by MTT assay. Cell cycle distribution was revealed by flow cytometry. The cellular messenger (m)RNA or protein expression level was analyzed by real-time RT-PCR or Western blot, respectively. Transwell filter migration assay and matrix gel-induced tube formation method were applied to examine the angiogenic potential. Indigo naturalis significantly inhibited the in vivo vascular endothelial growth factor (VEGF)-induced angiogenesis, as well as tryptanthrin. In vitro studies confirmed that indigo naturalis and tryptanthrin reduced the number of viable vascular endothelial cells. Tryptanthrin resulted in a cell cycle arrest and dose-dependently decreased the expressions of cyclin A, cyclin B, cyclin dependent kinase(CDK) 1 and 2, but not cyclin D and cyclin E, at both the mRNA and protein levels. The migration and tube formation of vascular endothelial cells were significantly inhibited by tryptanthrin in a dose-dependent manner. Result also showed that tryptanthrin could reduce the phosphorylated levels of both protein kinase B (PKB or Akt) and focal adhesion kinase (FAK). All together, these results demonstrated the anti-angiogenic effect of tryptanthrin, the acting component of indigo naturalis and revealed the underlying mechanism by inhibiting

  14. (S)-[6]-Gingerol inhibits TGF-β-stimulated biglycan synthesis but not glycosaminoglycan hyperelongation in human vascular smooth muscle cells.

    PubMed

    Kamato, Danielle; Babaahmadi Rezaei, Hossein; Getachew, Robel; Thach, Lyna; Guidone, Daniel; Osman, Narin; Roufogalis, Basil; Duke, Colin C; Tran, Van Hoan; Zheng, Wenhua; Little, Peter J

    2013-07-01

    (S)-[6]-Gingerol is under investigation for a variety of therapeutic uses. Transforming growth factor (TGF)-β stimulates proteoglycan synthesis, leading to increased binding of low-density lipoproteins, which is the initiating step in atherosclerosis. We evaluated the effects of (S)-[6]-gingerol on these TGF-β-mediated proteoglycan changes to explore its potential as an anti-atherosclerotic agent. Purified (S)-[6]-gingerol was assessed for its effects on proteoglycan synthesis by [(35) S]-sulfate incorporation into glycosaminoglycan chains and [(35) S]-Met/Cys incorporation into proteoglycans and total proteins in human vascular smooth muscle cells. Biglycan level was assessed by real-time quantitative polymerase chain reactions and the effects of (S)-[6]-gingerol on TGF-β signalling by assessment of the phosphorylation of Smads and Akt by western blotting. (S)-[6]-Gingerol concentration-dependently inhibited TGF-β-stimulated proteoglycan core protein synthesis, and this was not secondary to inhibition of total protein synthesis. (S)-[6]-Gingerol inhibited biglycan mRNA expression. (S)-[6]-Gingerol did not inhibit TGF-β-stimulated glycosaminoglycan hyperelongation or phosphorylation of Smad 2, in either the carboxy terminal or linker region, or Akt phosphorylation. The activity of (S)-[6]-gingerol to inhibit TGF-β-stimulated biglycan synthesis suggests a potential role for ginger in the prevention of atherosclerosis or other lipid-binding diseases. The signalling studies indicate a novel site of action of (S)-[6]-gingerol in inhibiting TGF-β responses. © 2013 Royal Pharmaceutical Society.

  15. Davallia bilabiata inhibits TNF-α-induced adhesion molecules and chemokines by suppressing IKK/NF-kappa B pathway in vascular endothelial cells.

    PubMed

    Yang, Rong-Chi; Chang, Cheng-Chieh; Sheen, Jer-Ming; Wu, Hsiao-Ting; Pang, Jong-Hwei S; Huang, Sheng-Teng

    2014-01-01

    Davallia bilabiata (D. bilabiata) is also called GuSuiBu in Taiwan and is used as a substitute for Drynaria fortunei J. Sm. It is often used for trauma and bone repair. The inhibitory effect of D. bilabiata on inflammatory activity has not been reported. In the present study, we aimed to study the mechanism of anti-inflammation of D. bilabiata on the adhesion of leukocytes to vascular endothelial cells. The results showed that D. bilabiata, at concentrations without cytotoxic effect, inhibited the adhesion of monocytes (THP-1) to the TNF-α-stimulated human umbilical vascular endothelial cells (HUVECs). D. bilabiata suppressed the expression of the adhesion molecules ICAM, VCAM, and E-selectin at both the mRNA and protein level. In addition, both of the TNF-α-induced mRNA and protein expression of chemokines including fractalkine/CX3CL1, MCP-1 and RANTES as well as the level of secreted soluble fractalkine were decreased by D. bilabiata. We also verified that D. bilabiata inhibited the TNF-α-induced nuclear translocation of NF-κB through the inhibitory process on the TNF-α-activated phosphorylation of IKKα, IKKβ, IκB and NF-κB. All together, we concluded that the D. bilabiata affected the canonical pathway of TNF-α-induced NF-κB activation and down-regulated cell adhesion molecules and chemokine expression through inhibition of the NF-κB/IκBα/IKK signaling pathway. These findings strongly indicated that D. bilabiata might be a promising alternative/adjunct treatment for inflammatory diseases, such as rheumatoid arthritis and osteoarthritis.

  16. Clopidogrel inhibits angiogenesis of gastric ulcer healing via downregulation of vascular endothelial growth factor receptor 2.

    PubMed

    Luo, Jiing-Chyuan; Peng, Yen-Ling; Chen, Tseng-Shing; Huo, Teh-Ia; Hou, Ming-Chih; Huang, Hui-Chun; Lin, Han-Chieh; Lee, Fa-Yauh

    2016-09-01

    Although clopidogrel does not cause gastric mucosal injury, it does not prevent peptic ulcer recurrence in high-risk patients. We explored whether clopidogrel delays gastric ulcer healing via inhibiting angiogenesis and to elucidate the possible mechanisms. Gastric ulcers were induced in Sprague Dawley rats, and ulcer healing and angiogenesis of ulcer margin were compared between clopidogrel-treated rats and controls. The expressions of the proangiogenic growth factors and their receptors including basic fibroblast growth factor (bFGF), bFGF receptor (FGFR), vascular endothelial growth factor (VEGF), VEGFR1, VEGFR2, platelet-derived growth factor (PDGF)A, PDGFB, PDGFR A, PDGFR B, and phosphorylated form of mitogenic activated protein kinase pathways over the ulcer margin were compared via western blot and reverse transcription polymerase chain reaction. In vitro, human umbilical vein endothelial cells (HUVECs) were used to elucidate how clopidogrel inhibited growth factors-stimulated HUVEC proliferation. The ulcer sizes were significantly larger and the angiogenesis of ulcer margin was significantly diminished in the clopidogrel (2 and 10 mg/kg/d) treated groups. Ulcer induction markedly increased the expression of phosphorylated form of extracellular signal-regulated kinase (pERK), FGFR2, VEGF, VEGFR2, and PDGFRA when compared with those of normal mucosa. Clopidogrel treatment significantly decreased pERK, FGFR2, VEGF, VEGFR2, and PDGFRA expression at the ulcer margin when compared with those of the respective control group. In vitro, clopidogrel (10(-6)M) inhibited VEGF-stimulated (20 ng/mL) HUVEC proliferation, at least, via downregulation of VEGFR2 and pERK. Clopidogrel inhibits the angiogenesis of gastric ulcer healing at least partially by the inhibition of the VEGF-VEGFR2-ERK signal transduction pathway. Copyright © 2015. Published by Elsevier B.V.

  17. Human Herpesvirus-8-Transformed Endothelial Cells Have Functionally Activated Vascular Endothelial Growth Factor/Vascular Endothelial Growth Factor Receptor

    PubMed Central

    Masood, Rizwan; Cesarman, Ethel; Smith, D. Lynne; Gill, Parkash S.; Flore, Ornella

    2002-01-01

    Kaposi’s sarcoma is a vascular tumor commonly associated with human immunodeficiency virus (HIV)-1 and human herpesvirus (HHV-8) also known as Kaposi’s sarcoma-associated herpesvirus. The principal features of this tumor are abnormal proliferation of vascular structures lined with spindle-shaped endothelial cells. HHV-8 may transform a subpopulation of endothelial cells in vitro via viral and cellular gene expression. We hypothesized that among the cellular genes, vascular endothelial growth factors (VEGFs) and their cognate receptors may be involved in viral-mediated transformation. We have shown that HHV-8-transformed endothelial cells (EC-HHV-8) express higher levels of VEGF, VEGF-C, VEGF-D, and PlGF in addition to VEGF receptors-1, -2, and -3. Furthermore, antibodies to VEGF receptor-2 inhibited cell proliferation and viability. Similarly, inhibition of VEGF gene expression with antisense oligonucleotides inhibited EC-HHV-8 cell proliferation/viability. The growth and viability of primary endothelial cells and a fibroblast cell line however were unaffected by either the VEGF receptor-2 antibody or the VEGF antisense oligodeoxynucleotides. VEGF and VEGF receptors are thus induced in EC-HHV-8 and participate in the transformation. Inhibitors of VEGF may thus modulate the disease process during development and progression. PMID:11786394

  18. Inhibition of Epidermal Growth Factor Receptor and Vascular Endothelial Growth Factor Receptor Phosphorylation on Tumor-Associated Endothelial Cells Leads to Treatment of Orthotopic Human Colon Cancer in Nude Mice1

    PubMed Central

    Sasaki, Takamitsu; Kitadai, Yasuhiko; Nakamura, Toru; Kim, Jang-Seong; Tsan, Rachel Z; Kuwai, Toshio; Langley, Robert R; Fan, Dominic; Kim, Sun-Jin; Fidler, Isaiah J

    2007-01-01

    The purpose of our study was to determine whether the dual inhibition of epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) signaling pathways in tumor-associated endothelial cells can inhibit the progressive growth of human colon carcinoma in the cecum of nude mice. SW620CE2 human colon cancer cells growing in culture and orthotopically in the cecum of nude mice expressed a high level of transforming growth factor alpha (TGF-α) and vascular endothelial growth factor (VEGF) but were negative for EGFR, human epidermal growth factor receptor 2 (HER2), and VEGFR. Double immunofluorescence staining revealed that tumor-associated endothelial cells expressed EGFR, VEGFR2, phosphorylated EGFR (pEGFR), and phosphorylated VEGFR (pVEGFR). Treatment of mice with either 7H-pyrrolo [2,3-d]-pyrimidine lead scaffold (AEE788; an inhibitor of EGFR and VEGFR tyrosine kinase) or CPT-11 as single agents significantly inhibited the growth of cecal tumors (P < .01); this decrease was even more pronounced with AEE788 combined with CPT-11 (P < .001). AEE788 alone or combined with CPT-11 also inhibited the expression of pEGFR and pVEGFR on tumor-associated endothelial cells, significantly decreased vascularization and tumor cell proliferation, and increased the level of apoptosis in both tumor-associated endothelial cells and tumor cells. These data demonstrate that targeting EGFR and VEGFR signaling on tumor-associated endothelial cells provides a viable approach for the treatment of colon cancer. PMID:18084614

  19. Potentiation of the vascular response to kinins by inhibition of myocardial kininases.

    PubMed

    Dendorfer, A; Wolfrum, S; Schäfer, U; Stewart, J M; Inamura, N; Dominiak, P

    2000-01-01

    Inhibitors of angiotensin I-converting enzyme (ACE) are very efficacious in the potentiation of the actions of bradykinin (BK) and are able to provoke a B(2) receptor-mediated vasodilation even after desensitization of this receptor. Because this activity cannot be easily explained only by an inhibition of kinin degradation, direct interactions of ACE inhibitors with the B(2) receptor or its signal transduction have been hypothesized. To clarify the significance of degradation-independent potentiation, we studied the vasodilatory effects of BK and 2 degradation-resistant B(2) receptor agonists in the isolated rat heart, a model in which ACE and aminopeptidase P (APP) contribute equally to the degradation of BK. Coronary vasodilation to BK and to a peptidic (B6014) and a nonpeptidic (FR190997) degradation-resistant B(2) agonist was assessed in the presence or absence of the ACE inhibitor ramiprilat, the APP inhibitor mercaptoethanol, or both. Ramiprilat or mercaptoethanol induced leftward shifts in the BK dose-response curve (EC(50)=3.4 nmol/L) by a factor of 4.6 or 4.9, respectively. Combined inhibition of ACE and APP reduced the EC(50) of BK to 0.18 nmol/L (ie, by a factor of 19) but potentiated the activity of B6014 (EC(50)=1.9 nmol/L) only weakly without altering that of FR190997 (EC(50)=0.34 nmol/L). Desensitization of B(2) receptors was induced by the administration of BK (0.2 micromol/L) or FR190997 (0.1 micromol/L) for 30 minutes; the vascular reactivity to ramiprilat or increasing doses of BK was tested thereafter. After desensitization with BK, but not FR190997, an additional application of ramiprilat provoked a B(2) receptor-mediated vasodilation. High BK concentrations were still effective at the desensitized receptor. The process of desensitization was not altered by ramiprilat. These results show that in this model, all potentiating actions of ACE inhibitors on kinin-induced vasodilation are exclusively related to the reduction in BK breakdown and are

  20. The inhibition of inducible nitric oxide synthase and oxidative stress by agmatine attenuates vascular dysfunction in rat acute endotoxemic model.

    PubMed

    El-Awady, Mohammed S; Nader, Manar A; Sharawy, Maha H

    2017-10-01

    Vascular dysfunction leading to hypotension is a major complication in patients with septic shock. Inducible nitric oxide synthase (iNOS) together with oxidative stress play an important role in development of vascular dysfunction in sepsis. Searching for an endogenous, safe and yet effective remedy was the chief goal for this study. The current study investigated the effect of agmatine (AGM), an endogenous metabolite of l-arginine, on sepsis-induced vascular dysfunction induced by lipopolysaccharides (LPS) in rats. AGM pretreatment (10mg/kg, i.v.) 1h before LPS (5mg/kg, i.v.) prevented the LPS-induced mortality and elevations in serum creatine kinase-MB isoenzyme (CK-MB) activity, lactate dehydrogenase (LDH) activity, C-reactive protein (CRP) level and total nitrite/nitrate (NOx) level after 24h from LPS injection. The elevation in aortic lipid peroxidation illustrated by increased malondialdehyde (MDA) content and the decrease in aortic glutathione (GSH) and superoxide dismutase (SOD) were also ameliorated by AGM. Additionally, AGM prevented LPS-induced elevation in mRNA expression of iNOS, while endothelial NOS (eNOS) mRNA was not affected. Furthermore AGM prevented the impaired aortic contraction to KCl and phenylephrine (PE) and endothelium-dependent relaxation to acetylcholine (ACh) without affecting endothelium-independent relaxation to sodium nitroprusside (SNP). AGM may represent a potential endogenous therapeutic candidate for sepsis-induced vascular dysfunction through its inhibiting effect on iNOS expression and oxidative stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Gamma irradiation preserves immunosuppressive potential and inhibits clonogenic capacity of human bone marrow-derived mesenchymal stromal cells

    PubMed Central

    de Andrade, Ana Valéria Gouveia; Riewaldt, Julia; Wehner, Rebekka; Schmitz, Marc; Odendahl, Marcus; Bornhäuser, Martin; Tonn, Torsten

    2014-01-01

    Mesenchymal stromal cells (MSCs) are promising candidates for the treatment of graft-versus-host and autoimmune diseases. Here, by virtue of their immunosuppressive effects, they are discussed to exhibit inhibitory actions on various immune effector cells, including T lymphocytes that promote the underlying pathology. While it becomes apparent that MSCs exhibit their therapeutic effect in a transient manner, they are usually transplanted from third party donors into heavily immunocompromised patients. However, little is known about potential late complications of persisting third party MSCs in these patients. We therefore analysed the effect of gamma irradiation on the potency and proliferation of MSCs to elucidate an irradiation dose, which would allow inhibition of MSC proliferation while at the same time preserving their immunosuppressive function. Bone marrow-derived MSCs (BM-MSCs) were gamma-irradiated at increasing doses of 5, 10 and 30 Gy and subsequently assessed by colony formation unit (CFU)-assay, Annexin V-staining and in a mixed lymphocyte reaction, to assess colony growth, apoptosis and the immunosuppressive capacity, respectively. Complete loss of proliferative capacity measured by colony formation was observed after irradiation with a dose equal to or greater than 10 Gy. No significant decrease of viable cells was detected, as compared to non-irradiated BM-MSCs. Notably, irradiated BM-MSCs remained highly immunosuppressive in vitro for at least 5 days after irradiation. Gamma irradiation does not impair the immunosuppressive capacity of BM-MSCs in vitro and thus might increase the safety of MSC-based cell products in clinical applications. PMID:24655362

  2. Drug packaging and delivery using perfluorocarbon nanoparticles for targeted inhibition of vascular smooth muscle cells

    PubMed Central

    Zhou, Zhao-xiong; Zhang, Bai-gen; Zhang, Hao; Huang, Xiao-zhong; Hu, Ya-li; Sun, Li; Wang, Xiao-min; Zhang, Ji-wei

    2009-01-01

    Aim: To investigate the in vitro release profile of drugs encapsulated within perfluorocarbon (PFC) nanoparticles (NPs) and their ability to inhibit the activity of vascular smooth muscle cells (SMCs). Methods: Dexamethasone phosphate (DxP) or dexamethasone acetate (DxA) was encapsulated into PFC nanoparticles using a high-pressure homogenous method. The morphology and size of the NPs were examined using scanning electron microscopy (SEM) and a laser particle size analyzer. Drug loading and in vitro release were assessed by high-performance liquid chromatography (HPLC). The impact of NP capsules on SMC proliferation, migration and apoptosis in vitro was assessed using cell counting kit-8, transwell cell migration and flow cytometry assays. Results: The sizes of DxP-NPs and DxA-NPs were 224±6 nm and 236±9 nm, respectively. The encapsulation efficiency (EE) of DxP-NPs was 66.4%±1.0%, with an initial release rate of 77.2%, whereas the EE of DxA-NPs was 95.3%±1.3%, with an initial release rate of 23.6%. Both of the NP-coated drugs could be released over 7 d. Human umbilical artery SMCs were harvested and cultured for four to six passages. Compared to free DxP, SMCs treated with tissue factor (TF)-directed DxP-NPs showed significant differences in the inhibition of proliferation, migration and apoptosis (P<0.05). Conclusion: The results collectively suggest that PFC nanoparticles will be beneficial for targeted drug delivery because of the sustained drug release and effective inhibition of SMC proliferation and migration. PMID:19890365

  3. Activation of PPAR alpha by fenofibrate inhibits apoptosis in vascular adventitial fibroblasts partly through SIRT1-mediated deacetylation of FoxO1.

    PubMed

    Wang, Wei-Rong; Liu, En-Qi; Zhang, Ji-Ye; Li, Yan-Xiang; Yang, Xiao-Feng; He, Yan-Hao; Zhang, Wei; Jing, Ting; Lin, Rong

    2015-10-15

    Recent studies demonstrated that the ligand-activated transcription factor peroxisome proliferator-activated receptorα (PPARα) acts in association with histone deacetylase sirtuin 1 (SIRT1) in the regulation of metabolism and inflammation involved in cardiovascular diseases. PPARα activation also participates in the modulation of cell apoptosis. Our previous study found that SIRT1 inhibits the apoptosis of vascular adventitial fibroblasts (VAFs). However, whether the role of PPARα in apoptosis of VAFs is mediated by SIRT1 remains unknown. In this study, we aimed to determine the effect of PPARα agonist fenofibrate on cell apoptosis and SIRT1 expression and related mechanisms in ApoE(-/-) mice and VAFs in vitro. We found that fenofibrate inhibited cell apoptosis in vascular adventitia and up-regulated SIRT1 expression in aorta of ApoE(-/-) mice. Moreover, SIRT1 activator resveratrol (RSV) further enhanced these effects of fenofibrate. In vitro study showed that activation of PPARα by fenofibrate inhibited TNF-α-induced cell apoptosis and cell cycle arrest in VAFs. Meanwhile, fenofibrate up-regulated SIRT1 expression and inhibited SIRT1 translocation from nucleus to cytoplasm in VAFs stimulated with TNF-α. Moreover, the effects of fenofibrate on cell apoptosis and SIRT1 expression in VAFs were reversed by PPARα antagonist GW6471. Importantly, treatment of VAFs with SIRT1 siRNA or pcDNA3.1(+)-SIRT1 showed that the inhibitory effect of fenofibrate on cell apoptosis in VAFs through SIRT1. On the other hand, knockdown of FoxO1 decreased cell apoptosis of VAFs compared with fenofibrate group. Overexpression of FoxO1 increased cell apoptosis of VAFs compared with fenofibrate group. Further study found that fenofibrate decreased the expression of acetylated-FoxO1 in TNF-α-stimulated VAFs, which was abolished by SIRT1 knockdown. Taken together, these findings indicate that activation of PPARα by fenofibrate inhibits cell apoptosis in VAFs partly through the SIRT1

  4. Naringin suppress chondrosarcoma migration through inhibition vascular adhesion molecule-1 expression by modulating miR-126.

    PubMed

    Tan, Tzu-Wei; Chou, Ying-Erh; Yang, Wei-Hung; Hsu, Chin-Jung; Fong, Yi-Chin; Tang, Chih-Hsin

    2014-09-01

    Chondrosarcoma, a primary malignant bone cancer, has a potent capacity to invade locally and cause distant metastasis, especially to the lungs. Patients diagnosed with it have poor prognosis. Naringin, polymethoxylated flavonoid commonly found in citrus fruits, has anti-oxidant, anti-inflammatory and anti-tumor activity; whether naringin regulates migration of chondrosarcoma is largely unknown. Here we report that naringin does not expedite apoptosis in human chondrosarcoma. By contrast, at noncytotoxic concentrations, naringin suppressed migration and invasion of chondrosarcoma cells. Vascular cell adhesion molecule-1 (VCAM-1) of the immunoglobulin superfamily is linked with metastasis; we found incubation of chondrosarcoma cells with naringin reducing mRNA transcription for, and cell surface expression of, VCAM-1. We also observed that naringin enhancing miR-126 expression, and miR-126 inhibitor reversed the naringin-inhibited cell motility and VCAM-1 expression. Therefore, naringin inhibits migration and invasion of human chondrosarcoma via down-regulation of VCAM-1 by increasing miR-126. Thus, naringin may be a novel anti-migration agent for the treatment of migration in chondrosarcoma. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Transforming Growth Factor β Inhibits Platelet Derived Growth Factor-Induced Vascular Smooth Muscle Cell Proliferation via Akt-Independent, Smad-Mediated Cyclin D1 Downregulation

    PubMed Central

    Martin-Garrido, Abel; Williams, Holly C.; Lee, Minyoung; Seidel-Rogol, Bonnie; Ci, Xinpei; Dong, Jin-Tang; Lassègue, Bernard; Martín, Alejandra San; Griendling, Kathy K.

    2013-01-01

    In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle. PMID:24236150

  6. Transforming growth factor β inhibits platelet derived growth factor-induced vascular smooth muscle cell proliferation via Akt-independent, Smad-mediated cyclin D1 downregulation.

    PubMed

    Martin-Garrido, Abel; Williams, Holly C; Lee, Minyoung; Seidel-Rogol, Bonnie; Ci, Xinpei; Dong, Jin-Tang; Lassègue, Bernard; Martín, Alejandra San; Griendling, Kathy K

    2013-01-01

    In adult tissue, vascular smooth muscle cells (VSMCs) exist in a differentiated phenotype, which is defined by the expression of contractile proteins and lack of proliferation. After vascular injury, VSMC adopt a synthetic phenotype associated with proliferation, migration and matrix secretion. The transition between phenotypes is a consequence of the extracellular environment, and in particular, is regulated by agonists such as the pro-differentiating cytokine transforming growth factor β (TGFβ) and the pro-proliferative cytokine platelet derived growth factor (PDGF). In this study, we investigated the interplay between TGFβ and PDGF with respect to their ability to regulate VSMC proliferation. Stimulation of human aortic VSMC with TGFβ completely blocked proliferation induced by all isoforms of PDGF, as measured by DNA synthesis and total cell number. Mechanistically, PDGF-induced Cyclin D1 mRNA and protein expression was inhibited by TGFβ. TGFβ had no effect on PDGF activation of its receptor and ERK1/2, but inhibited Akt activation. However, constitutively active Akt did not reverse the inhibitory effect of TGFβ on Cyclin D1 expression even though inhibition of the proteasome blocked the effect of TGFβ. siRNA against Smad4 completely reversed the inhibitory effect of TGFβ on PDGF-induced Cyclin D1 expression and restored proliferation in response to PDGF. Moreover, siRNA against KLF5 prevented Cyclin D1 upregulation by PDGF and overexpression of KLF5 partially reversed TGFβ-induced inhibition of Cyclin D1 expression. Taken together, our results demonstrate that KLF5 is required for PDGF-induced Cyclin D1 expression, which is inhibited by TGFβ via a Smad dependent mechanism, resulting in arrest of VSMCs in the G1 phase of the cell cycle.

  7. VEGFR tyrosine kinase inhibitor II (VRI) induced vascular insufficiency in zebrafish as a model for studying vascular toxicity and vascular preservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Shang; Dang, Yuan Ye; Oi Lam Che, Ginny

    In ischemic disorders such as chronic wounds and myocardial ischemia, there is inadequate tissue perfusion due to vascular insufficiency. Besides, it has been observed that prolonged use of anti-angiogenic agents in cancer therapy produces cardiovascular toxicity caused by impaired vessel integrity and regeneration. In the present study, we used VEGFR tyrosine kinase inhibitor II (VRI) to chemically induce vascular insufficiency in zebrafish in vivo and human umbilical vein endothelial cells (HUVEC) in vitro to further study the mechanisms of vascular morphogenesis in these pathological conditions. We also explored the possibility of treating vascular insufficiency by enhancing vascular regeneration and repairmore » with pharmacological intervention. We observed that pretreatment of VRI induced blood vessel loss in developing zebrafish by inhibiting angiogenesis and increasing endothelial cell apoptosis, accompanied by down-regulation of kdr, kdrl and flt-1 genes expression. The VRI-induced blood vessel loss in zebrafish could be restored by post-treatment of calycosin, a cardiovascular protective isoflavone. Similarly, VRI induced cytotoxicity and apoptosis in HUVEC which could be rescued by calycosin post-treatment. Further investigation of the underlying mechanisms showed that the PI3K/AKT/Bad cell survival pathway was a main contributor of the vascular regenerative effect of calycosin. These findings indicated that the cardiovascular toxicity in anti-angiogenic therapy was mainly caused by insufficient endothelial cell survival, suggesting its essential role in vascular integrity, repair and regeneration. In addition, we showed that VRI-induced blood vessel loss in zebrafish represented a simple and effective in vivo model for studying vascular insufficiency and evaluating cancer drug vascular toxicities. - Highlights: • In vivo VRI model • Rescue effects of calycosin • Calycosin EC survival pathways.« less

  8. 17β-Estradiol inhibits TNF-α-induced proliferation and migration of vascular smooth muscle cells via suppression of TRAIL.

    PubMed

    Li, Hengchang; Cheng, Yang; Simoncini, Tommaso; Xu, Shiyuan

    2016-07-01

    Atherosclerosis is an inflammatory disease and involves migration of vascular smooth muscle cells (VSMCs). Estrogen inhibits VSMCs migration, while the underlying mechanism remains to be revealed. Recent years, there is emerging evidence showing that TNF-related apoptosis-inducing ligand (TRAIL) increases proliferation and migration of VSMCs. In this study, we investigated the regulatory effect of estrogen on TRAIL expression in VSMCs. TNF-α greatly enhanced TRAIL protein expression and stimulated VSMCs proliferation and migration. This effect was partially inhibited by the addition of TRAIL neutralizing antibody, suggesting that TRAIL is important in TNF-α-induced migration. 17β-estradiol (E2) inhibited TRAIL expression under TNF-α stimulation in a time- and concentration-dependent manner. This effect was was mimicked by ERα agonist 4',4″,4‴-(4-propyl-[1H]-pyrazole-1,3,5-triyl) trisphenol (PPT), but not ERβ agonist 2,3-bis-(4-hydroxyphenyl)-propionitrile (DPN), indicating that ERα is involved in this action. TNF-α led to nuclear factor kappa B (NF-κB) p65 phosphorylation and the inhibitor pyrrolidine dithiocarbama (PDTC) inhibited TRAIL expression, suggesting that NF-κB signaling is crucial for TARIL production. E2 suppressed p65 phosphorylation in VSMCs and the overexpression of p65 subunit reversed the inhibitory effect of E2 on TRAIL expression and cell proliferation and migration. Taken together, our results indicate that E2 inhibits VSMCs proliferation and migration by downregulation of TRAIL expression via suppression of NF-κB pathway.

  9. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia.

    PubMed

    Ola, Roxana; Dubrac, Alexandre; Han, Jinah; Zhang, Feng; Fang, Jennifer S; Larrivée, Bruno; Lee, Monica; Urarte, Ana A; Kraehling, Jan R; Genet, Gael; Hirschi, Karen K; Sessa, William C; Canals, Francesc V; Graupera, Mariona; Yan, Minhong; Young, Lawrence H; Oh, Paul S; Eichmann, Anne

    2016-11-29

    Activin receptor-like kinase 1 (ALK1) is an endothelial serine-threonine kinase receptor for bone morphogenetic proteins (BMPs) 9 and 10. Inactivating mutations in the ALK1 gene cause hereditary haemorrhagic telangiectasia type 2 (HHT2), a disabling disease characterized by excessive angiogenesis with arteriovenous malformations (AVMs). Here we show that inducible, endothelial-specific homozygous Alk1 inactivation and BMP9/10 ligand blockade both lead to AVM formation in postnatal retinal vessels and internal organs including the gastrointestinal (GI) tract in mice. VEGF and PI3K/AKT signalling are increased on Alk1 deletion and BMP9/10 ligand blockade. Genetic deletion of the signal-transducing Vegfr2 receptor prevents excessive angiogenesis but does not fully revert AVM formation. In contrast, pharmacological PI3K inhibition efficiently prevents AVM formation and reverts established AVMs. Thus, Alk1 deletion leads to increased endothelial PI3K pathway activation that may be a novel target for the treatment of vascular lesions in HHT2.

  10. Application of gamma irradiation for inhibition of food allergy

    NASA Astrophysics Data System (ADS)

    Byun, Myung-Woo; Lee, Ju-Woon; Yook, Hong-Sun; Jo, Cheorun; Kim, Hee-Yun

    2002-03-01

    This study was carried out to evaluate the application of food irradiation technology as a method for reducing food allergy. Milk β-lactoglobulin, chicken egg albumin, and shrimp tropomyosin were used as model food allergens for experiments on allergenic and molecular properties by gamma irradiation. The amount of intact allergens in an irradiated solution was reduced by gamma irradiation depending upon the dose. These results showed that epitopes on the allergens were structurally altered by radiation treatment and that the irradiation technology can be applied to reduce allergenicity of allergic foods.

  11. LDL-Induced Impairment of Human Vascular Smooth Muscle Cells Repair Function Is Reversed by HMG-CoA Reductase Inhibition

    PubMed Central

    Padró, Teresa; Lugano, Roberta; García-Arguinzonis, Maisa; Badimon, Lina

    2012-01-01

    Growing human atherosclerotic plaques show a progressive loss of vascular smooth muscle cells (VSMC) becoming soft and vulnerable. Lipid loaded-VSMC show impaired vascular repair function and motility due to changes in cytoskeleton proteins involved in cell-migration. Clinical benefits of statins reducing coronary events have been related to repopulation of vulnerable plaques with VSMC. Here, we investigated whether HMG-CoA reductase inhibition with rosuvastatin can reverse the effects induced by atherogenic concentrations of LDL either in the native (nLDL) form or modified by aggregation (agLDL) on human VSMC motility. Using a model of wound repair, we showed that treatment of human coronary VSMC with rosuvastatin significantly prevented (and reversed) the inhibitory effect of nLDL and agLDL in the repair of the cell depleted areas. In addition, rosuvastatin significantly abolished the agLDL-induced dephosphorylation of myosin regulatory light chain as demonstrated by 2DE-electrophoresis and mass spectrometry. Besides, confocal microscopy showed that rosuvastatin enhances actin-cytoskeleton reorganization during lipid-loaded-VSMC attachment and spreading. The effects of rosuvastatin on actin-cytoskeleton dynamics and cell migration were dependent on ROCK-signalling. Furthermore, rosuvastatin caused a significant increase in RhoA-GTP in the cytosol of VSMC. Taken together, our study demonstrated that inhibition of HMG-CoA reductase restores the migratory capacity and repair function of VSMC that is impaired by native and aggregated LDL. This mechanism may contribute to the stabilization of lipid-rich atherosclerotic plaques afforded by statins. PMID:22719992

  12. Irradiation combined with SU5416: Microvascular changes and growth delay in a human xenograft glioblastoma tumor line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schuuring, Janneke; Department of Neurology, Groene Hart Hospital, Gouda; Bussink, Johan

    Purpose: The combination of irradiation and the antiangiogenic compound SU5416 was tested and compared with irradiation alone in a human glioblastoma tumor line xenografted in nude mice. The aim of this study was to monitor microenvironmental changes and growth delay. Methods and materials: A human glioblastoma xenograft tumor line was implanted in nude mice. Irradiations consisted of 10 Gy or 20 Gy with and without SU5416. Several microenvironmental parameters (tumor cell hypoxia, tumor blood perfusion, vascular volume, and microvascular density) were analyzed after imunohistochemical staining. Tumor growth delay was monitored for up to 200 days after treatment. Results: SU5416, whenmore » combined with irradiation, has an additive effect over treatment with irradiation alone. Analysis of the tumor microenvironment showed a decreased vascular density during treatment with SU5416. In tumors regrowing after reaching only a partial remission, vascular characteristics normalized shortly after cessation of SU5416. However, in tumors regrowing after reaching a complete remission, permanent microenvironmental changes and an increase of tumor necrosis with a subsequent slower tumor regrowth was found. Conclusions: Permanent vascular changes were seen after combined treatment resulting in complete remission. Antiangiogenic treatment with SU5416 when combined with irradiation has an additive effect over treatment with irradiation or antiangiogenic treatment alone.« less

  13. Identification of a Novel Hybridization from Isosorbide 5-Mononitrate and Bardoxolone Methyl with Dual Activities of Pulmonary Vasodilation and Vascular Remodeling Inhibition on Pulmonary Arterial Hypertension Rats.

    PubMed

    Cheng, Yusheng; Gong, Yan; Qian, Shuai; Mou, Yi; Li, Hanrui; Chen, Xijing; Kong, Hui; Xie, Weiping; Wang, Hong; Zhang, Yihua; Huang, Zhangjian

    2018-02-22

    Given the clinical therapeutic efficacy of oral-dosed bardoxolone methyl (1) and the selective vasodilatory effect caused by inhalation of nitric oxide (NO) on pulmonary arterial hypertension (PAH) patients, a new hybrid (CDDO-NO, 2) from 1 and NO donor isosorbide 5-mononitrate (3) was designed and synthesized. This hybrid could liberate 1 and NO in the lungs of rats after trachea injection. Significantly, 2 lowered mean pulmonary artery pressure (mPAP) and right ventricular systolic pressure (RVSP), decreased right ventricular hypertrophy (RVH), and attenuated pulmonary artery medial thickness (PAMT) and vascular muscularization in monocrotaline (MCT)-induced PAH rats. Meanwhile, 2 inhibited overproliferation of perivascular cells and diminished macrophage infiltration and oxidative stress by inactivation of NOX4. In addition, 2 markedly reduced cardiac hypertrophy and fibrosis in the PAH rats. Overall, 2 exhibited potent dual activities of pulmonary vasodilation and vascular remodeling inhibition, suggesting that it may be a promising agent for PAH intervention.

  14. Gamma irradiation reduces the immunological toxicity of doxorubicin, anticancer drug

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Hun; Sung, Nak-Yun; Raghavendran, H. Balaji; Yoon, Yohan; Song, Beom-Seok; Choi, Jong-il; Yoo, Young-Choon; Byun, Myung-Woo; Hwang, Young-Jeong; Lee, Ju-Woon

    2009-07-01

    Doxorubicin (DOX) is a widely used anticancer agent, but exhibits some immunological toxicity to patients during chemotherapy. The present study was conducted to evaluate the effect of gamma irradiation on the immunological response and the inhibition activity on in vivo tumor mass of DOX. The results showed that DOX irradiated at 10 and 20 kGy reduce the inhibition of mouse peritoneal macrophage proliferation and induce the release of cytokines (TNF-α and IL-6) when compared with non-irradiated DOX. The cytotoxicity against human breast (MCF-7), murine colon adenocarcinoma (Colon 26) and human monocytic (THP-1) tumor cell were not significantly different between non-irradiated and irradiated DOX ( P<0.05). In vivo study on the tumor mass inhibition, gamma-irradiated DOX showed a considerable inhibition of tumor mass and this effect was statistically non-significant as compared with non-irradiated DOX. In conclusion, gamma irradiation could be regarded as a potential method for reducing the immunological toxicity of DOX. Further researches is needed to reveal the formation and activity of radiolysis products by gamma irradiation.

  15. Transcriptional up-regulation of antioxidant genes by PPARδ inhibits angiotensin II-induced premature senescence in vascular smooth muscle cells.

    PubMed

    Kim, Hyo Jung; Ham, Sun Ah; Paek, Kyung Shin; Hwang, Jung Seok; Jung, Si Young; Kim, Min Young; Jin, Hanna; Kang, Eun Sil; Woo, Im Sun; Kim, Hye Jung; Lee, Jae Heun; Chang, Ki Churl; Han, Chang Woo; Seo, Han Geuk

    2011-03-25

    This study evaluated peroxisome proliferator-activated receptor (PPAR) δ as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPARδ by GW501516, a specific agonist of PPARδ, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPARδ suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPARδ-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Uric acid promotes vascular stiffness, maladaptive inflammatory responses and proteinuria in western diet fed mice.

    PubMed

    Aroor, Annayya R; Jia, Guanghong; Habibi, Javad; Sun, Zhe; Ramirez-Perez, Francisco I; Brady, Barron; Chen, Dongqing; Martinez-Lemus, Luis A; Manrique, Camila; Nistala, Ravi; Whaley-Connell, Adam T; Demarco, Vincent G; Meininger, Gerald A; Sowers, James R

    2017-09-01

    Aortic vascular stiffness has been implicated in the development of cardiovascular disease (CVD) and chronic kidney disease (CKD) in obese individuals. However, the mechanism promoting these adverse effects are unclear. In this context, promotion of obesity through consumption of a western diet (WD) high in fat and fructose leads to excess circulating uric acid. There is accumulating data implicating elevated uric acid in the promotion of CVD and CKD. Accordingly, we hypothesized that xanthine oxidase(XO) inhibition with allopurinol would prevent a rise in vascular stiffness and proteinuria in a translationally relevant model of WD-induced obesity. Four-week-old C57BL6/J male mice were fed a WD with excess fat (46%) and fructose (17.5%) with or without allopurinol (125mg/L in drinking water) for 16weeks. Aortic endothelial and extracellular matrix/vascular smooth muscle stiffness was evaluated by atomic force microscopy. Aortic XO activity, 3-nitrotyrosine (3-NT) and aortic endothelial sodium channel (EnNaC) expression were evaluated along with aortic expression of inflammatory markers. In the kidney, expression of toll like receptor 4 (TLR4) and fibronectin were assessed along with evaluation of proteinuria. XO inhibition significantly attenuated WD-induced increases in plasma uric acid, vascular XO activity and oxidative stress, in concert with reductions in proteinuria. Further, XO inhibition prevented WD-induced increases in aortic EnNaC expression and associated endothelial and subendothelial stiffness. XO inhibition also reduced vascular pro-inflammatory and maladaptive immune responses induced by consumption of a WD. XO inhibition also decreased WD-induced increases in renal TLR4 and fibronectin that associated proteinuria. Consumption of a WD leads to elevations in plasma uric acid, increased vascular XO activity, oxidative stress, vascular stiffness, and proteinuria all of which are attenuated with allopurinol administration. Copyright © 2017 Elsevier Inc

  17. The dependence of leaf hydraulic conductance on irradiance during HPFM measurements: any role for stomatal response?

    PubMed

    Tyree, Melvin T; Nardini, Andrea; Salleo, Sebastiano; Sack, Lawren; El Omari, Bouchra

    2005-02-01

    This paper examines the dependence of whole leaf hydraulic conductance to liquid water (K(L)) on irradiance when measured with a high pressure flowmeter (HPFM). During HPFM measurements, water is perfused into leaves faster than it evaporates hence water infiltrates leaf air spaces and must pass through stomates in the liquid state. Since stomates open and close under high versus low irradiance, respectively, the possibility exists that K(L) might change with irradiance if stomates close tightly enough to restrict water movement. However, the dependence of K(L) on irradiance could be due to a direct effect of irradiance on the hydraulic properties of other tissues in the leaf. In the present study, K(L) increased with irradiance for 6 of the 11 species tested. Whole leaf conductance to water vapour, g(L), was used as a proxy for stomatal aperture and the time-course of changes in K(L) and g(L) was studied during the transition from low to high irradiance and from high to low irradiance. Experiments showed that in some species K(L) changes were not paralleled by g(L) changes. Measurements were also done after perfusion of leaves with ABA which inhibited the g(L) response to irradiance. These leaves showed the same K(L) response to irradiance as control leaves. These experimental results and theoretical calculations suggest that the irradiance dependence of K(L) is more consistent with an effect on extravascular (and/or vascular) tissues rather than stomatal aperture. Irradiance-mediated stimulation of aquaporins or hydrogel effects in leaf tracheids may be involved.

  18. Vascular retraction driven by matrix softening

    NASA Astrophysics Data System (ADS)

    Valentine, Megan

    We recently discovered we can directly apply physical forces and monitor the downstream responses in a living organism in real time through manipulation of the blood vessels of a marine organism called, Botryllus schlosseri. The extracellular matrix (ECM) plays a key role in regulating vascular growth and homeostasis in Botryllus,a basal chordate which has a large, transparent extracorporeal vascular network that can encompass areas >100 cm2. We have determined that lysyl oxidase 1 (LOX1), which is responsible for cross-linking collagen, is expressed in all vascular cells and is critically important for vascular maintenance. Inhibition of LOX1 activity in vivo by the addition of a specific inhibitor, ß-aminopropionitrile (BAPN), caused a rapid, global regression of the entire vascular bed, with some vessels regressing >10 mm within 16 hrs. In this talk, I will discuss the molecular and cellular origins of this systemic remodeling event, which hinges upon the ability of the vascular cells to sense and respond to mechanical signals, while introducing this exciting new model system for studies of biological physics and mechanobiology. Collaborators: Anthony DeTomaso, Delany Rodriguez, Aimal Khankhel (UCSB).

  19. Alleviative effect of grape seed proanthocyanidin extract on small artery vascular remodeling in spontaneous hypertensive rats via inhibition of collagen hyperplasia.

    PubMed

    Liang, Ying; Gao, Haiqing; Wang, Jian; Wang, Quanzhen; Zhao, Shaohua; Zhang, Jun; Qiu, Jie

    2017-05-01

    Vascular remodeling is a primary contributor to the initiation and development of hypertension, which has a pathological association with subsequent multi-organ damage. Grape seed proanthocyanidin extracts (GSPE) exhibit protective cardiovascular effects, resulting from their anti‑oxidant and anti‑inflammatory properties. However, the function and mechanism underlying the effect of GSPE on small artery remodeling remain to be elucidated. The present study investigated the effect of GSPE on vascular remodeling in the mesenteric small arteries of spontaneous hypertensive rats (SHR). Parameters associated with hypertension, including systolic blood pressure, oxidative stress, morphological and ultrastructural alteration of vessels, deposition of collagen and transforming growth factor (TGF)-β1, were analyzed. The results revealed that GSPE alleviated hypertension-induced hypertrophic vascular remodeling in the small arteries of SHR, which was independent of blood pressure. GSPE decreased oxidative stress associated with hypertension in SHR and suppressed the increased expression of TGF‑β1, which blocked the translocation and differentiation of adventitia fibroblasts and eventually inhibited collagen hyperplasia in the blood vessel. The inhibitory effect of GSPE on small artery remodeling was achieved via its suppressive effect on oxidant production and the subsequent intercellular and intracellular cascades. The findings of the present study supported the potential therapeutic value of GSPE for the treatment of hypertension.

  20. Inhibition of vascular smooth muscle cell proliferation and migration in vitro and neointimal hyperplasia in vivo by adenoviral-mediated atrial natriuretic peptide delivery.

    PubMed

    Larifla, Laurent; Déprez, Isabelle; Pham, Isabelle; Rideau, Dominique; Louzier, Vanessa; Adam, Micheline; Eloit, Marc; Foucan, Lydia; Adnot, Serge; Teiger, Emmanuel

    2012-07-01

    Vascular smooth muscle cell (VSMC) proliferation and migration are important components of the remodeling process in atherosclerosis or following angioplasty. Atrial natriuretic peptide (ANP) inhibits the growth of VSMCs in vitro but this effect has not been proven in vivo. In the present study, we examined the effects of local overexpression of ANP following gene transfer on in vitro VSMC proliferation and migration and in vivo neointimal formation in a rat carotid artery model of vascular injury. ANP gene transfer was performed using a recombinant adenovirus containing the ANP cDNA controlled by the Rous sarcoma virus (RSV) long terminal repeat (Ad-RSV-ANP). A recombinant adenovirus expressing the RSV-controlled β-galactosidase gene (Ad-RSV-β-gal) was used as the control. Rat VSMC culture was used for in vitro studies. In the in vivo experiments, carotid arteries were analyzed after balloon injury and local infusion of the viral solution. VSMCs transfected by Ad-RSV-ANP produced a significant amount of ANP detected by immunoreactive assay and accumulated about 6.5 times more cGMP than the viral control. VSMC proliferation stimulated with 10% fetal calf serum was reduced by 31% and migration by 25%. Fourteen days after injury, neointimal formation and the intima/media ratio were reduced by 25% and 28%, respectively, in the Ad-RSV-ANP-treated group compared to the control group. The present study demonstrates the efficacy of recombinant adenovirus Ad-RSV-ANP with respect to inhibiting rat VSMC proliferation and migration. Our findings also provide evidence that ANP is implicated in the modulation of vascular remodeling following endothelial injury. Copyright © 2012 John Wiley & Sons, Ltd.

  1. The Inhibitory Effect of Shikonin on the Agonist-Induced Regulation of Vascular Contractility

    PubMed Central

    Je, Hyun Dong; Kim, Hyeong-Dong; La, Hyen-Oh

    2015-01-01

    Shikonin, a natural flavonoid found in the roots of Lithospermum erythrorhizon, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of shikonin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Shikonin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, shikonin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and the inhibition of MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of shikonin on agonist-induced vascular contraction regardless of endothelial function. PMID:25995821

  2. CHANGES IN THE PHYSICAL THERMOREGULATION FOLLOWING SINGLE GENERAL IRRADIATION OF RABBITS OF X RAYS IN THE DOSE OF 1000 r (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondratieva, I.N.

    1958-07-01

    Pronoumced disturbance of the physical thermoregulation is noted within 24 to 45 hours after irradiation. and respiratory reactions. From the 2nd to the 9th day there is an umstable reestablishment of the physical thermoregulation. However, the respiratory component of this thermoregulation is, as a rule, less than its initial value. An acute depression of the physical thermoregulation is noted again 2 to 8 days before the death of the animals. Depression of the vascular amd respiratory reactioms soon after irradiation are probably caused by the inhibition of the spinal centers, which is connected with excitation of the brain. Further changesmore » in the physical thermoregulation depend on tbe conidition of the property of the correcting central nervous system. (tr-auth)« less

  3. PDE4 inhibition reduces neointima formation and inhibits VCAM-1 expression and histone methylation in an Epac-dependent manner.

    PubMed

    Lehrke, Michael; Kahles, Florian; Makowska, Anna; Tilstam, Pathricia V; Diebold, Sebastian; Marx, Judith; Stöhr, Robert; Hess, Katharina; Endorf, Elizabeth B; Bruemmer, Dennis; Marx, Nikolaus; Findeisen, Hannes M

    2015-04-01

    Phosphodiesterase 4 (PDE4) activity mediates cAMP-dependent smooth muscle cell (SMC) activation following vascular injury. In this study we have investigated the effects of specific PDE4 inhibition with roflumilast on SMC proliferation and inflammatory activation in vitro and neointima formation following guide wire-induced injury of the femoral artery in mice in vivo. In vitro, roflumilast did not affect SMC proliferation, but diminished TNF-α induced expression of the vascular cell adhesion molecule 1 (VCAM-1). Specific activation of the cAMP effector Epac, but not PKA activation mimicked the effects of roflumilast on VCAM-1 expression. Consistently, the reduction of VCAM-1 expression was rescued following inhibition of Epac. TNF-α induced NFκB p65 translocation and VCAM-1 promoter activity were not altered by roflumilast in SMCs. However, roflumilast treatment and Epac activation repressed the induction of the activating epigenetic histone mark H3K4me2 at the VCAM-1 promoter, while PKA activation showed no effect. Furthermore, HDAC inhibition blocked the inhibitory effect of roflumilast on VCAM-1 expression. Both, roflumilast and Epac activation reduced monocyte adhesion to SMCs in vitro. Finally, roflumilast treatment attenuated femoral artery intima-media ratio by more than 50% after 4weeks. In summary, PDE4 inhibition regulates VCAM-1 through a novel Epac-dependent mechanism, which involves regulatory epigenetic components and reduces neointima formation following vascular injury. PDE4 inhibition and Epac activation might represent novel approaches for the treatment of vascular diseases, including atherosclerosis and in-stent restenosis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Taspine downregulates VEGF expression and inhibits proliferation of vascular endothelial cells through PI3 kinase and MAP kinase signaling pathways.

    PubMed

    Zhao, Jing; Zhao, Le; Chen, Wei; He, Langchong; Li, Xu

    2008-01-01

    Taspine is an active component isolated from Radix et Rhizoma Leonticis with inhibiting tumor angiogenic properties. The molecular mechanism(s) of taspine on tumor angiogenic inhibition have not been well documented. The aim of this study was to elucidate in detail the effects of taspine on genetic expressions of VEGF in human umbilical vein endothelial cells, and on VEGFR2-mediated intracellular signaling of human umbilical vein endothelial cells. The genetic expression of vascular endothelial growth factor (VEGF) in the human umbilical vein endothelial cells (HUVECs) treated with taspine in vitro was measured by the ELISA and RT-PCR methods. The effects of taspine on cell proliferation of HUVECs and HUVECs induced by VEGF165 were considered by using MTT assay. And also, a western blot was used to detect Akt and Erk1/2 expressions and their phosphorylation levels in HUVECs treated with taspine. Our results show that VEGF protein and mRNA expressions in the cells treated with taspine were significantly decreased. Taspine also significantly inhibited cell proliferation of HUVECs induced by VEGF165. HUVECs treated with taspine showed decreased Akt and Erk1/2 activities.

  5. Decreasing Irradiated Rat Lung Volume Changes Dose-Limiting Toxicity From Early to Late Effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veen, Sonja J. van der; Faber, Hette; Ghobadi, Ghazaleh

    2016-01-01

    Purpose: Technological developments in radiation therapy result in smaller irradiated volumes of normal tissue. Because the risk of radiation therapy-induced toxicity generally depends on irradiated volume, changing volume could change the dose-limiting toxicity of a treatment. Recently, in our rat model, we found that early radiation-induced lung dysfunction (RILD) was closely related to irradiated volume dependent vascular remodeling besides inflammation. The exact relationship between early and late RILD is still unknown. Therefore, in this preclinical study we investigated the dose-volume relationship of late RILD, assessed its dependence on early and late pathologies and studied if decreasing irradiated volume changed themore » dose-limiting toxicity. Methods and Materials: A volume of 25%, 32%, 50%, 63%, 88%, or 100% of the rat lung was irradiated using protons. Until 26 weeks after irradiation, respiratory rates were measured. Macrovascular remodeling, pulmonary inflammation, and fibrosis were assessed at 26 weeks after irradiation. For all endpoints dose-volume response curves were made. These results were compared to our previously published early lung effects. Results: Early vascular remodeling and inflammation correlated significantly with early RILD. Late RILD correlated with inflammation and fibrosis, but not with vascular remodeling. In contrast to the early effects, late vascular remodeling, inflammation and fibrosis showed a primarily dose but not volume dependence. Comparison of respiratory rate increases early and late after irradiation for the different dose-distributions indicated that with decreasing irradiated volumes, the dose-limiting toxicity changed from early to late RILD. Conclusions: In our rat model, different pathologies underlie early and late RILD with different dose-volume dependencies. Consequently, the dose-limiting toxicity changed from early to late dysfunction when the irradiated volume was reduced. In patients, early and

  6. Activating transcription factor 4 regulates stearate-induced vascular calcification.

    PubMed

    Masuda, Masashi; Ting, Tabitha C; Levi, Moshe; Saunders, Sommer J; Miyazaki-Anzai, Shinobu; Miyazaki, Makoto

    2012-08-01

    Previously, we reported that stearate, a saturated fatty acid, promotes osteoblastic differentiation and mineralization of vascular smooth muscle cells (VSMC). In this study, we examined the molecular mechanisms by which stearate promotes vascular calcification. ATF4 is a pivotal transcription factor in osteoblastogenesis and endoplasmic reticulum (ER) stress. Increased stearate by either supplementation of exogenous stearic acid or inhibition of stearoyl-CoA desaturase (SCD) by CAY10566 induced ATF4 mRNA, phosphorylated ATF4 protein, and total ATF4 protein. Induction occurred through activation of the PERK-eIF2α pathway, along with increased osteoblastic differentiation and mineralization of VSMCs. Either stearate or the SCD inhibitor but not oleate or other fatty acid treatments also increased ER stress as determined by the expression of p-eIF2α, CHOP, and the spliced form of XBP-1, which were directly correlated with ER stearate levels. ATF4 knockdown by lentiviral ATF4 shRNA blocked osteoblastic differentiation and mineralization induced by stearate and SCD inhibition. Conversely, treatment of VSMCs with an adenovirus containing ATF4 induced vascular calcification. Our results demonstrated that activation of ATF4 mediates vascular calcification induced by stearate.

  7. Activating transcription factor 4 regulates stearate-induced vascular calcification

    PubMed Central

    Masuda, Masashi; Ting, Tabitha C.; Levi, Moshe; Saunders, Sommer J.; Miyazaki-Anzai, Shinobu; Miyazaki, Makoto

    2012-01-01

    Previously, we reported that stearate, a saturated fatty acid, promotes osteoblastic differentiation and mineralization of vascular smooth muscle cells (VSMC). In this study, we examined the molecular mechanisms by which stearate promotes vascular calcification. ATF4 is a pivotal transcription factor in osteoblastogenesis and endoplasmic reticulum (ER) stress. Increased stearate by either supplementation of exogenous stearic acid or inhibition of stearoyl-CoA desaturase (SCD) by CAY10566 induced ATF4 mRNA, phosphorylated ATF4 protein, and total ATF4 protein. Induction occurred through activation of the PERK-eIF2α pathway, along with increased osteoblastic differentiation and mineralization of VSMCs. Either stearate or the SCD inhibitor but not oleate or other fatty acid treatments also increased ER stress as determined by the expression of p-eIF2α, CHOP, and the spliced form of XBP-1, which were directly correlated with ER stearate levels. ATF4 knockdown by lentiviral ATF4 shRNA blocked osteoblastic differentiation and mineralization induced by stearate and SCD inhibition. Conversely, treatment of VSMCs with an adenovirus containing ATF4 induced vascular calcification. Our results demonstrated that activation of ATF4 mediates vascular calcification induced by stearate. PMID:22628618

  8. Effects Of Continuous Argon Laser Irradiation On Canine And Autopsied Human Cardiac Tissue

    NASA Astrophysics Data System (ADS)

    Ben-Shachar, Giora; Sivakoff, Mark; Bernard, Steven L.; Dahms, Beverly B.; Riemenschneider, Thomas A.

    1984-10-01

    In eight human formalin preserved cardiac specimens, various cardiac and vascular obstructions were relieved by argon laser irradiation. Interatrial communication was also produced by a transar'rial approach in a live dog. In-vivo fresh canine cardiac tissues required power density of at feast 80, 90, and 110 watts/cm2 for vaporization of myocardial, vascular and valvular tissues respectively. The fiber tip to tissue distance (effective irradiation distance) for effective vaporization was less than I mm for vascular and valvular tissues and less than 4 mm for myocardium. Light microscopy showed four zones of histological damage common to all tissues - central crater surrounded by layers of charring, vacuolization and coagulation necorsis. Myocardium showed additionally a layer of normal appearing muscle cells (skip area) surrounded by a peripheral coagulation halo. Laser irradiation effects on valvular tissue showed the most lateral extension of coagulation necrosis. It is concluded that palliation and treatment of certain congenital heart defects by laser irradiation is anatomi-cally feasible and may be safe for in vivo application when low power output and short exposure time are used from a very short irradiation distance.

  9. Protective effect of Schizandrin B against damage of UVB irradiated skin cells depend on inhibition of inflammatory pathways.

    PubMed

    Gao, Chenguang; Chen, Hong; Niu, Cong; Hu, Jie; Cao, Bo

    2017-01-02

    Schizandrin B is extracted from Schisandra chinensis (Turcz.) Baill. This study evaluated the photoprotective effect of Schizandrin B on oxidative stress injury of the skin caused by UVB-irradiation and the molecular mechanism of the photoprotective effect of Schizandrin B, and we firstly found that Schizandrin B could block Cox-2, IL-6 and IL-18 signal pathway to protect damage of skin cells given by UVB-irradiation. In the research, we found that Schizandrin B can attenuate the UVB-induced toxicity on keratinocytes and dermal fibroblasts in human body, and can outstandingly eliminated intracellular ROS produced by UVB-irradiation. These results demonstrate that Schizandrin B can regulate the function of decreasing intracellular SOD's activity and increasing the expression level of MDA in HaCaT cells result from the guidance of UVB, and it markedly reduced the production of inflammatory factors such as Cox-2, IL-6 or IL-18, decreased the expression level of MMP-1, and interdicted degradation process of collagens in UVB-radiated cells. Therefore, skin keratinocytes can be effectively protected from UVB-radiated damage by Schizandrin B, and UVB-irradiation caused inflammatory responses can be inhibited by attenuating process of ROS generating.

  10. Betaine inhibits vascularization via suppression of Akt in the retinas of streptozotocin-induced hyperglycemic rats

    PubMed Central

    KIM, YOUNG-GIUN; LIM, HYUNG-HO; LEE, SUH-HA; SHIN, MAL-SOON; KIM, CHANG-JU; YANG, HYEON JEONG

    2015-01-01

    Diabetic retinopathy is a severe microvascular complication amongst patients with diabetes, and is the primary cause of visual loss through neovascularization. Betaine is one of the components of Fructus Lycii. In the present study, the effects of betaine on the expression levels of vascular endothelial growth factor (VEGF) and hypoxia-inducible factor (HIF)-1α in association with the Akt pathway were investigated in the retinas of streptozotocin (STZ)-induced diabetic rats using western blot and immunohistochemical analyses. The results of the present study revealed that the expression levels of VEGF, HIF-1α, and Akt were increased in the retinas of the STZ-induced diabetic rats. Betaine treatment attenuated this increase in VEGF and HIF-1α expression via suppression of diabetes-induced Akt activation in the retinas of the diabetic rats. The results suggested that betaine may potentially be used to delay the onset of complications associated with diabetic retinopathy via inhibition of retinal neovascularization in patients with diabetes. PMID:25891515

  11. Cleaved high-molecular-weight kininogen inhibits neointima formation following vascular injury.

    PubMed

    Daniel, Jan-Marcus; Reich, Fabian; Dutzmann, Jochen; Weisheit, Simona; Teske, Rebecca; Gündüz, Dursun; Bauersachs, Johann; Preissner, Klaus T; Sedding, Daniel G

    2015-08-31

    Cleaved high-molecular-weight kininogen (HKa) or its peptide domain 5 (D5) alone exert anti-adhesive properties in vitro related to impeding integrin-mediated cellular interactions. However, the anti-adhesive effects of HKa in vivo remain elusive. In this study, we investigated the effects of HKa on leukocyte recruitment and neointima formation following wire-induced injury of the femoral artery in C57BL/6 mice. Local application of HKa significantly reduced the accumulation of monocytes and also reduced neointimal lesion size 14 days after injury. Moreover, C57BL/6 mice transplanted with bone marrow from transgenic mice expressing enhanced green fluorescence protein (eGFP) showed a significantly reduced accumulation of eGFP+-cells at the arterial injury site and decreased neointimal lesion size after local application of HKa or the polypeptide D5 alone. A differentiation of accumulating eGFP+-cells into highly specific smooth muscle cells (SMC) was not detected in any group. In contrast, application of HKa significantly reduced the proliferation of locally derived neointimal cells. In vitro, HKa and D5 potently inhibited the adhesion of SMC to vitronectin, thus impairing their proliferation, migration, and survival rates. In conclusion, application of HKa or D5 decreases the inflammatory response to vascular injury and exerts direct effects on SMC by impeding the binding of integrins to extracellular matrix components. Therefore, HKa and D5 may hold promise as novel therapeutic substances to prevent neointima formation.

  12. 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine inhibits the proliferation and migration of vascular smooth muscle cells by suppressing ERK and Akt pathways.

    PubMed

    Seo, Hyang-Hee; Kim, Sang Woo; Lee, Chang Youn; Lim, Kyu Hee; Lee, Jiyun; Lim, Soyeon; Lee, Seahyoung; Hwang, Ki-Chul

    2017-03-05

    Excessive vascular smooth muscle cell (VSMC) proliferation and migration after vascular injury significantly contributes to the development of occlusive vascular disease. Therefore, inhibiting the proliferation and migration of VSMCs is a validated therapeutic modality for occlusive vascular disease such as atherosclerosis and restenosis. In the present study, we screened chemical compounds for their anti-proliferative effects on VSMCs using multiple approaches, such as MTT assays, wound healing assays, and trans-well migration assays. Our data indicate that 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine, a lymphocyte-specific protein tyrosine kinase (Lck) inhibitor, significantly inhibited both VSMC proliferation and migration. 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine suppresses VSMC proliferation and migration via down-regulating the protein kinase B (Akt) and extracellular signal regulated kinase (ERK) pathways, and it significantly decreased the expression of proliferating cell nuclear antigen (PCNA) and cyclin D1 and, the phosphorylation of retinoblastoma protein (pRb). Additionally, 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d] pyrimidin-4-ylamine suppressed the migration of VSMCs from endothelium-removed aortic rings, as well as neointima formation following rat carotid balloon injury. The present study identified 7-cyclopentyl-5-(4-phenoxyphenyl)-7H-pyrrolo[2,3-d]pyrimidin-4-ylamine as a potent VSMC proliferation and migration inhibitor and warrants further studies to elucidate its more detailed molecular mechanisms, such as its primary target, and to further validate its in vivo efficacy as a therapeutic agent for pathologic vascular conditions, such as restenosis and atherosclerosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. miR-34a is a common link in both HIV- and antiretroviral therapy-induced vascular aging.

    PubMed

    Zhan, Jiaxin; Qin, Shanshan; Lu, Lili; Hu, Xiamin; Zhou, Jun; Sun, Yeying; Yang, Jian; Liu, Ying; Wang, Zunzhe; Tan, Ning; Chen, Jiyan; Zhang, Chunxiang

    2016-11-26

    Both HIV and antiretroviral therapy could induce vascular aging with unclear mechanisms. In this study, via microarray analysis, we identified, for the first time, that miR-34a expression was significantly increased in both HIV-infected, and antiretroviral agents-treated vessels and vascular endothelial cells (ECs) from these vessels. In cultured ECs, miR-34a expression was significantly increased by HIV-Tat protein and by the antiretroviral agents, lopinavir/ritonavir. Both HIV-Tat protein and antiretroviral agents could induce EC senescence, which was inhibited by miR-34a inhibition. In contrast, EC senescence was exacerbated by miR-34a overexpression. In addition, the vascular ECs isolated from miR-34a knockout mice were resistant to HIV and antiretroviral agents-mediated senescence. In vivo, miR-34a expression in mouse vascular walls and their ECs was increased by antiretroviral therapy and by HIV-1 Tat transgenic approach. miR-34a inhibition could effectively inhibit both HIV-Tat protein and antiretroviral therapy-induced vascular aging in mice. The increased miR-34a was induced via p53, whereas Sirt1 was a downstream target gene of miR-34a in both HIV-Tat protein and antiretroviral agents-treated ECs and vessels. The study has demonstrated that miR-34a is a common link in both HIV and antiretroviral therapy-mediated vascular aging.

  14. Antagonism of CD11b with neutrophil inhibitory factor (NIF) inhibits vascular lesions in diabetic retinopathy.

    PubMed

    Veenstra, Alexander A; Tang, Jie; Kern, Timothy S

    2013-01-01

    Leukocytes and proteins that govern leukocyte adhesion to endothelial cells play a causal role in retinal abnormalities characteristic of the early stages of diabetic retinopathy, including diabetes-induced degeneration of retinal capillaries. Leukocyte integrin αmβ2 (CD11b/CD18, MAC1), a protein mediating adhesion, has been shown to mediate damage to endothelial cells by activated leukocytes in vitro. We hypothesized that Neutrophil Inhibitory Factor (NIF), a selective antagonist of integrin αmβ2, would inhibit the diabetes-induced degeneration of retinal capillaries by inhibiting the excessive interaction between leukocytes and retinal endothelial cells in diabetes. Wild type animals and transgenic animals expressing NIF were made diabetic with streptozotocin and assessed for diabetes-induced retinal vascular abnormalities and leukocyte activation. To assess if the leukocyte blocking therapy compromised the immune system, animals were challenged with bacteria. Retinal superoxide production, leukostasis and leukocyte superoxide production were increased in wild type mice diabetic for 10 weeks, as was the ability of leukocytes isolated from diabetic animals to kill retinal endothelial cells in vitro. Retinal capillary degeneration was significantly increased in wild type mice diabetic 40 weeks. In contrast, mice expressing NIF did not develop any of these abnormalities, with the exception that non-diabetic and diabetic mice expressing NIF generated greater amounts of superoxide than did similar mice not expressing NIF. Importantly, NIF did not significantly impair the ability of mice to clear an opportunistic bacterial challenge, suggesting that NIF did not compromise immune surveillance. We conclude that antagonism of CD11b (integrin αmβ2) by NIF is sufficient to inhibit early stages of diabetic retinopathy, while not compromising the basic immune response.

  15. Defibrotide modulates prostaglandin production in the rat mesenteric vascular bed.

    PubMed

    Peredo, H A

    2002-10-01

    Defibrotide 1 microM, a polydeoxyribonucleotide extracted from mammalian organs, reduced the contractile responses to noradrenaline (NA) in the rat isolated and perfused mesenteric vascular bed, in intact as well as in de-endothelialized preparations. Defibrotide was without effect on the acetylcholine-induced relaxations of U-46619-precontracted mesenteric vascular beds. Moreover, defibrotide increased 6-keto prostaglandin (PG) F(2alpha) (stable metabolite of prostacyclin) release sixfold in the presence, but not in the absence of the endothelium, with no modification on the release of other prostanoids. Defibrotide also inhibited the NA-induced increase in PGF(2alpha) release, in both intact and de-endothelialized mesenteric vascular beds. In conclusion, the present results show that defibrotide modulates PG production in the mesenteric bed and that the observed inhibition of the contractile responses should be due to the impairment of the NA-induced increase in PGF(2alpha) release.

  16. Hypoxia-Inducible Factor Pathway Inhibition Resolves Tumor Hypoxia and Improves Local Tumor Control After Single-Dose Irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helbig, Linda; Department of Radiation Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden; Koi, Lydia

    2014-01-01

    Purpose: To study the effects of BAY-84-7296, a novel orally bioavailable inhibitor of mitochondrial complex I and hypoxia-inducible factor 1 (HIF-1) activity, on hypoxia, microenvironment, and radiation response of tumors. Methods and Materials: UT-SCC-5 and UT-SCC-14 human squamous cell carcinomas were transplanted subcutaneously in nude mice. When tumors reached 4 mm in diameter BAY-84-7296 (Bayer Pharma AG) or carrier was daily administered to the animals. At 7 mm tumors were either excised for Western blot and immunohistologic investigations or were irradiated with single doses. After irradiation animals were randomized to receive BAY-84-7296 maintenance or carrier. Local tumor control was evaluatedmore » 150 days after irradiation, and the dose to control 50% of tumors (TCD{sub 50}) was calculated. Results: BAY-84-7296 decreased nuclear HIF-1α expression. Daily administration of inhibitor for approximately 2 weeks resulted in a marked decrease of pimonidazole hypoxic fraction in UT-SCC-5 (0.5% vs 21%, P<.0001) and in UT-SCC-14 (0.3% vs 19%, P<.0001). This decrease was accompanied by a significant increase in fraction of perfused vessels in UT-SCC-14 but not in UT-SCC-5. Bromodeoxyuridine and Ki67 labeling indices were significantly reduced only in UT-SCC-5. No significant changes were observed in vascular area or necrosis. BAY-84-7296 before single-dose irradiation significantly decreased TCD{sub 50}, with an enhancement ratio of 1.37 (95% confidence interval [CI] 1.13-1.72) in UT-SCC-5 and of 1.55 (95% CI 1.26-1.94) in UT-SCC-14. BAY-84-7296 maintenance after irradiation did not further decrease TCD{sub 50}. Conclusions: BAY-84-7296 resulted in a marked decrease in tumor hypoxia and substantially reduced radioresistance of tumor cells with the capacity to cause a local recurrence after irradiation. The data suggest that reduction of cellular hypoxia tolerance by BAY-84-7296 may represent the primary biological mechanism underlying the observed enhancement

  17. D-series resolvin attenuates vascular smooth muscle cell activation and neointimal hyperplasia following vascular injury

    PubMed Central

    Miyahara, Takuya; Runge, Sara; Chatterjee, Anuran; Chen, Mian; Mottola, Giorgio; Fitzgerald, Jonathan M.; Serhan, Charles N.; Conte, Michael S.

    2013-01-01

    Recent evidence suggests that specialized lipid mediators derived from polyunsaturated fatty acids control resolution of inflammation, but little is known about resolution pathways in vascular injury. We sought to determine the actions of D-series resolvin (RvD) on vascular smooth muscle cell (VSMC) phenotype and vascular injury. Human VSMCs were treated with RvD1 and RvD2, and phenotype was assessed by proliferation, migration, monocyte adhesion, superoxide production, and gene expression assays. A rabbit model of arterial angioplasty with local delivery of RvD2 (10 nM vs. vehicle control) was employed to examine effects on vascular injury in vivo. Local generation of proresolving lipid mediators (LC-MS/MS) and expression of RvD receptors in the vessel wall were assessed. RvD1 and RvD2 produced dose-dependent inhibition of VSMC proliferation, migration, monocyte adhesion, superoxide production, and proinflammatory gene expression (IC50≈0.1–1 nM). In balloon-injured rabbit arteries, cell proliferation (51%) and leukocyte recruitment (41%) were reduced at 3 d, and neointimal hyperplasia was attenuated (29%) at 28 d by RvD2. We demonstrate endogenous biosynthesis of proresolving lipid mediators and expression of receptors for RvD1 in the artery wall. RvDs broadly reduce VSMC responses and modulate vascular injury, suggesting that local activation of resolution mechanisms expedites vascular homeostasis.—Miyahara, T., Runge, S., Chatterjee, A., Chen, M., Mottola, G., Fitzgerald, J. M., Serhan, C. N., Conte, M. S. D-series resolvin attenuates vascular smooth muscle cell activation and neointimal hyperplasia following vascular injury. PMID:23407709

  18. Antioxidant Biomarkers from Vanda coerulea Stems Reduce Irradiated HaCaT PGE-2 Production as a Result of COX-2 Inhibition

    PubMed Central

    Simmler, Charlotte; Antheaume, Cyril; Lobstein, Annelise

    2010-01-01

    Background In our investigations towards the isolation of potentially biologically active constituents from Orchidaceae, we carried out phytochemical and biological analyses of Vanda species. A preliminary biological screening revealed that Vanda coerulea (Griff. ex. Lindl) crude hydro-alcoholic stem extract displayed the best DPPH /•OH radical scavenging activity and in vitro inhibition of type 2 prostaglandin (PGE-2) release from UVB (60 mJ/cm2) irradiated HaCaT keratinocytes. Principal Findings Bio-guided fractionation and phytochemical analysis led to the isolation of five stilbenoids: imbricatin (1) methoxycoelonin (2) gigantol (3) flavidin (4) and coelonin (5). Stilbenoids (1–3) were the most concentrated in crude hydro-alcoholic stem extract and were considered as Vanda coerulea stem biomarkers. Dihydro-phenanthropyran (1) and dihydro-phenanthrene (2) displayed the best DPPH/•OH radical scavenging activities as well as HaCaT intracellular antioxidant properties (using DCFH-DA probe: IC50 8.8 µM and 9.4 µM, respectively) compared to bibenzyle (3) (IC50 20.6 µM). In turn, the latter showed a constant inhibition of PGE-2 production, stronger than stilbenoids (1) and (2) (IC50 12.2 µM and 19.3 µM, respectively). Western blot analysis revealed that stilbenoids (1–3) inhibited COX-2 expression at 23 µM. Interestingly, stilbenoids (1) and (2) but not (3) were able to inhibit human recombinant COX-2 activity. Conclusions Major antioxidant stilbenoids (1–3) from Vanda coerulea stems displayed an inhibition of UVB-induced COX-2 expression. Imbricatin (1) and methoxycoelonin (2) were also able to inhibit COX-2 activity in a concentration-dependent manner thereby reducing PGE-2 production from irradiated HaCaT cells. Our studies suggest that stilbenoids (1–3) could be potentially used for skin protection against the damage caused by UVB exposure. PMID:21060890

  19. Tristetraprolin Inhibits Ras-dependent Tumor Vascularization by Inducing Vascular Endothelial Growth Factor mRNA Degradation

    PubMed Central

    Essafi-Benkhadir, Khadija; Onesto, Cercina; Stebe, Emmanuelle; Moroni, Christoph

    2007-01-01

    Vascular endothelial growth factor (VEGF) is one of the most important regulators of physiological and pathological angiogenesis. Constitutive activation of the extracellular signal-regulated kinase (ERK) pathway and overexpression of VEGF are common denominators of tumors from different origins. We have established a new link between these two fundamental observations converging on VEGF mRNA stability. In this complex phenomenon, tristetraprolin (TTP), an adenylate and uridylate-rich element-associated protein that binds to VEGF mRNA 3′-untranslated region, plays a key role by inducing VEGF mRNA degradation, thus maintaining basal VEGF mRNA amounts in normal cells. ERKs activation results in the accumulation of TTP mRNA. However, ERKs reduce the VEGF mRNA-destabilizing effect of TTP, leading to an increase in VEGF expression that favors the angiogenic switch. Moreover, TTP decreases RasVal12-dependent VEGF expression and development of vascularized tumors in nude mice. As a consequence, TTP might represent a novel antiangiogenic and antitumor agent acting through its destabilizing activity on VEGF mRNA. Determination of TTP and ERKs status would provide useful information for the evaluation of the angiogenic potential in human tumors. PMID:17855506

  20. Gefitinib Radiosensitizes Stem-Like Glioma Cells: Inhibition of Epidermal Growth Factor Receptor-Akt-DNA-PK Signaling, Accompanied by Inhibition of DNA Double-Strand Break Repair

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Khong Bee, E-mail: dmskkb@nccs.com.sg; Zhu Congju; Wong Yinling

    Purpose: We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Methods and Materials: Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, {gamma}-H{sub 2}AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival,more » {gamma}-H{sub 2}AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Results: Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G{sub 2}/M arrest and increased {gamma}-H{sub 2}AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased {gamma}-H{sub 2}AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Conclusions: Stem-like gliomaspheres are

  1. Gefitinib radiosensitizes stem-like glioma cells: inhibition of epidermal growth factor receptor-Akt-DNA-PK signaling, accompanied by inhibition of DNA double-strand break repair.

    PubMed

    Kang, Khong Bee; Zhu, Congju; Wong, Yin Ling; Gao, Qiuhan; Ty, Albert; Wong, Meng Cheong

    2012-05-01

    We compared radiosensitivity of brain tumor stem cells (BTSCs) with matched nonstem glioma cells, and determined whether gefitinib enhanced BTSC radiosensitivity by inhibiting epidermal growth factor receptor (EGFR)-Akt-DNA-dependent protein kinase (DNA-PK) signaling, followed by enhanced DNA double-stand breaks (DSBs) and inhibition of DSB repair. Radiosensitivity of stem-like gliomaspheres and nonstem glioma cells (obtained at patient neurosurgical resection) were evaluated by clonogenic assays, γ-H(2)AX immunostaining and cell cycle distribution. Survival of irradiated and nonirradiated NOD-SCID mice intracranially implanted with stem-like gliomaspheres were monitored. Glioma cells treated with gefitinib, irradiation, or both were assayed for clonogenic survival, γ-H(2)AX immunostaining, DNA-PKcs expression, and phosphorylation of EGFR and Akt. Stem-like gliomaspheres displayed BTSC characteristics of self-renewal; differentiation into lineages of neurons, oligodendrocytes, and astrocytes; and initiation of glioma growth in NOD-SCID mice. Irradiation dose-dependently reduced clonogenic survival, induced G(2)/M arrest and increased γ-H(2)AX immunostaining of nonstem glioma cells, but not stem-like gliomaspheres. There was no difference in survival of irradiated and nonirradiated mice implanted with stem-like gliomaspheres. The addition of gefitinib significantly inhibited clonogenic survival, increased γ-H(2)AX immunostaining, and reduced DNA-PKcs expression of irradiated stem-like gliomaspheres, without affecting irradiated-nonstem glioma cells. Gefitinib alone, and when combined with irradiation, inhibited phosphorylation of EGFR (Y1068 and Y1045) and Akt (S473) in stem-like gliomaspheres. In nonstem glioma cells, gefitinib alone inhibited EGFR Y1068 phosphorylation, with further inhibition by combined gefitinib and irradiation. Stem-like gliomaspheres are resistant to irradiation-induced cytotoxicity, G(2)/M arrest, and DNA DSBs, compared with nonstem

  2. Quantification of rat retinal growth and vascular population changes after single and split doses of proton irradiation: translational study using stereology methods

    NASA Technical Reports Server (NTRS)

    Mao, Xiao W.; Archambeau, John O.; Kubinova, Lucie; Boyle, Soames; Petersen, Georgia; Grove, Roger; Nelson, G. A. (Principal Investigator)

    2003-01-01

    This study quantified architectural and population changes in the rat retinal vasculature after proton irradiation using stereology. A 100 MeV conformal proton beam delivered 8, 14, 20 and 28 Gy as single and split doses to the whole eye. The vascular networks were prepared from retinal digests. Stereological methods were used to obtain the area of the retina and unbiased estimates of microvessel/artery/vein endothelial, pericyte and smooth muscle population, and vessel length. The retinal area increased progressively in the unirradiated, age-matched controls and in the retinas irradiated with 8 and 14 Gy, indicating uniform progressive retinal growth. No growth occurred after 20 and 28 Gy. Regression analysis of total endothelial cell number in all vessels (arteries, veins and capillaries) after irradiation documented a progressive time- and dose-dependent cell loss occurring over 15 to 24 months. The difference from controls was significant (P<0.01) after 28 Gy given in single and split doses and after 20 Gy given as a split dose (P<0.05). Total vessel length in microvessel was significantly shortened at 20 and 28 Gy compared to that of controls (P<0.05). No evident dose recovery was observed in the endothelial populations after split doses. At 10 Gy, the rate of endothelial cell loss, a dose parameter used to characterize the time- and dose-dependent loss of the endothelial population, was doubled.

  3. A novel taspine analog, HMQ1611, inhibits growth of non-small cell lung cancer by inhibiting angiogenesis

    PubMed Central

    LU, WEN; DAI, BINGLING; MA, WEINA; ZHANG, YANMIN

    2012-01-01

    In the present study, we investigated the antitumor activity of HMQ1611, a novel synthetic taspine derivative, in vivo and evaluated associated potential antiangiogenesis mechanisms. The proliferation of A549 cells was examined by WST-1 assay in vitro. Tube formation and lung tissue vessel models were used to observe the antiangiogenic activity of HMQ1611. In addition, vascular enodthelial growth factor (VEGF) secretion and KDR kinase activities were measured by ELISA and the HTRF®KinEASE™-TK assay. In vivo, the antitumor activity was assessed by implantation of A549 cells in athymic mice. The results showed that HMQ1611 inhibited A549 cell proliferation and VEGF secretion, while it significantly inhibited tube formation and tissue vascularization. Furthermore, HMQ1611 inhibited A549 xenograft tumor growth. In conclusion, the results of our study suggest that HMQ1611 has latent properties for the inhibition of angiogenesis which are involved in its antitumor activity. PMID:23162661

  4. A novel taspine analog, HMQ1611, inhibits growth of non-small cell lung cancer by inhibiting angiogenesis.

    PubMed

    Lu, Wen; Dai, Bingling; Ma, Weina; Zhang, Yanmin

    2012-11-01

    In the present study, we investigated the antitumor activity of HMQ1611, a novel synthetic taspine derivative, in vivo and evaluated associated potential antiangiogenesis mechanisms. The proliferation of A549 cells was examined by WST-1 assay in vitro. Tube formation and lung tissue vessel models were used to observe the antiangiogenic activity of HMQ1611. In addition, vascular enodthelial growth factor (VEGF) secretion and KDR kinase activities were measured by ELISA and the HTRF(®)KinEASE(™)-TK assay. In vivo, the antitumor activity was assessed by implantation of A549 cells in athymic mice. The results showed that HMQ1611 inhibited A549 cell proliferation and VEGF secretion, while it significantly inhibited tube formation and tissue vascularization. Furthermore, HMQ1611 inhibited A549 xenograft tumor growth. In conclusion, the results of our study suggest that HMQ1611 has latent properties for the inhibition of angiogenesis which are involved in its antitumor activity.

  5. Src inhibitor reduces permeability without disturbing vascularization and prevents bone destruction in steroid-associated osteonecrotic lesions in rabbits.

    PubMed

    He, Yi-Xin; Liu, Jin; Guo, Baosheng; Wang, Yi-Xiang; Pan, Xiaohua; Li, Defang; Tang, Tao; Chen, Yang; Peng, Songlin; Bian, Zhaoxiang; Liang, Zicai; Zhang, Bao-Ting; Lu, Aiping; Zhang, Ge

    2015-03-09

    To examine the therapeutic effect of Src inhibitor on the VEGF mediating vascular hyperpermeability and bone destruction within steroid-associated osteonecrotic lesions in rabbits. Rabbits with high risk for progress to destructive repair in steroid-associated osteonecrosis were selected according to our published protocol. The selected rabbits were systemically administrated with either Anti-VEGF antibody (Anti-VEGF Group) or Src inhibitor (Src-Inhibition Group) or VEGF (VEGF-Supplement Group) or a combination of VEGF and Src inhibitor (Supplement &Inhibition Group) or control vehicle (Control Group) for 4 weeks. At 0, 2 and 4 weeks after administration, in vivo dynamic MRI, micro-CT based-angiography, histomorphometry and immunoblotting were employed to evaluate the vascular and skeletal events in different groups. The incidence of the destructive repair in the Anti-VEGF Group, Src-Inhibition Group and Supplement &Inhibition Group was all significantly lower than that in the Control Group. The angiogenesis was promoted in VEGF-Supplement Group, Src-Inhibition Group and Supplement &Inhibition Group, while the hyperpermeability was inhibited in Anti-VEGF Group, Src-Inhibition Group and Supplement &Inhibition Group. The trabecular structure was improved in Src-Inhibition Group and Supplement &Inhibition Group. Src inhibitor could reduce permeability without disturbing vascularization and prevent destructive repair in steroid-associated osteonecrosis.

  6. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons.

    PubMed

    Fortuna, Vitor; Pardanaud, Luc; Brunet, Isabelle; Ola, Roxana; Ristori, Emma; Santoro, Massimo M; Nicoli, Stefania; Eichmann, Anne

    2015-06-23

    The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  7. Inhibition of mTOR by apigenin in UVB-irradiated keratinocytes: A new implication of skin cancer prevention.

    PubMed

    Bridgeman, Bryan B; Wang, Pu; Ye, Boping; Pelling, Jill C; Volpert, Olga V; Tong, Xin

    2016-05-01

    Ultraviolet B (UVB) radiation is the major environmental risk factor for developing skin cancer, the most common cancer worldwide, which is characterized by aberrant activation of Akt/mTOR (mammalian target of rapamycin). Importantly, the link between UV irradiation and mTOR signaling has not been fully established. Apigenin is a naturally occurring flavonoid that has been shown to inhibit UV-induced skin cancer. Previously, we have demonstrated that apigenin activates AMP-activated protein kinase (AMPK), which leads to suppression of basal mTOR activity in cultured keratinocytes. Here, we demonstrated that apigenin inhibited UVB-induced mTOR activation, cell proliferation and cell cycle progression in mouse skin and in mouse epidermal keratinocytes. Interestingly, UVB induced mTOR signaling via PI3K/Akt pathway, however, the inhibition of UVB-induced mTOR signaling by apigenin was not Akt-dependent. Instead, it was driven by AMPK activation. In addition, mTOR inhibition by apigenin in keratinocytes enhanced autophagy, which was responsible, at least in part, for the decreased proliferation in keratinocytes. In contrast, apigenin did not alter UVB-induced apoptosis. Taken together, our results indicate the important role of mTOR inhibition in UVB protection by apigenin, and provide a new target and strategy for better prevention of UV-induced skin cancer. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Anti-VEGF aptamer (pegaptanib) therapy for ocular vascular diseases.

    PubMed

    Ng, Eugene W M; Adamis, Anthony P

    2006-10-01

    Vascular endothelial growth factor (VEGF) is a central regulator of both physiological and pathological angiogenesis. Pegaptanib, a 28-nucleotide RNA aptamer specific for the VEGF(165) isoform, binds to it in the extracellular space, leaving other isoforms unaffected, and inhibits such key VEGF actions as promotion of endothelial cell proliferation and survival, and vascular permeability. Pegaptanib already has been examined as a treatment for two diseases associated with ocular neovascularization, age-related macular degeneration (AMD) and diabetic macular edema (DME). Preclinical studies have shown that VEGF(165) alone mediates pathological ocular neovascularization and that its inactivation by pegaptanib inhibits the choroidal neovascularization observed in patients with neovascular AMD. In contrast, physiological vascularization, which is supported by the VEGF(121) isoform, is unaffected by this inactivation of VEGF(165). In addition, animal model studies have shown that intravitreous injection of pegaptanib can inhibit the breakdown of the blood-retinal barrier characteristic of diabetes and even can reverse this damage to some degree. These preclinical findings formed the basis for randomized controlled trials examining the efficacy of pegaptanib as a therapy for AMD and DME. The VEGF Inhibition Study in Ocular Neovascularization (VISION) trial comprising two replicate, pivotal phase 3 studies, demonstrated that intravitreous injection of pegaptanib resulted in significant clinical benefit, compared with sham injection, for all prespecified clinical end points, irrespective of patient demographics or angiographic subtype, and led to pegaptanib's approval as a treatment for AMD. A phase 2 trial has provided support for the efficacy of intravitreous pegaptanib in the treatment of DME.

  9. Model development and experimental validation for analyzing initial transients of irradiation of tissues during thermal therapy using short pulse lasers.

    PubMed

    Ganguly, Mohit; Miller, Stephanie; Mitra, Kunal

    2015-11-01

    Short pulse lasers with pulse durations in the range of nanoseconds and shorter are effective in the targeted delivery of heat energy for precise tissue heating and ablation. This photothermal therapy is useful where the removal of cancerous tissue sections is required. The objective of this paper is to use finite element modeling to demonstrate the differences in the thermal response of skin tissue to short-pulse and continuous wave laser irradiation in the initial stages of the irradiation. Models have been developed to validate the temperature distribution and heat affected zone during laser irradiation of excised rat skin samples and live anesthetized mouse tissue. Excised rat skin samples and live anesthetized mice were subjected to Nd:YAG pulsed laser (1,064 nm, 500 ns) irradiation of varying powers. A thermal camera was used to measure the rise in surface temperature as a result of the laser irradiation. Histological analyses of the heat affected zone created in the tissue samples due to the temperature rise were performed. The thermal interaction of the laser with the tissue was quantified by measuring the thermal dose delivered by the laser. Finite element geometries of three-dimensional tissue sections for continuum and vascular models were developed using COMSOL Multiphysics. Blood flow was incorporated into the vascular model to mimic the presence of discrete blood vessels and contrasted with the continuum model without blood perfusion. The temperature rises predicted by the continuum and the vascular models agreed with the temperature rises observed at the surface of the excised rat tissue samples and live anesthetized mice due to laser irradiation respectively. The vascular model developed was able to predict the cooling produced by the blood vessels in the region where the vessels were present. The temperature rise in the continuum model due to pulsed laser irradiation was higher than that due to continuous wave (CW) laser irradiation in the

  10. Sulforaphane suppresses vascular adhesion molecule-1 expression in TNF-α-stimulated mouse vascular smooth muscle cells: involvement of the MAPK, NF-κB and AP-1 signaling pathways.

    PubMed

    Kim, Ji-Yun; Park, Hye-Jin; Um, Sung Hee; Sohn, Eun-Hwa; Kim, Byung-Oh; Moon, Eun-Yi; Rhee, Dong-Kwon; Pyo, Suhkneung

    2012-01-01

    Atherosclerosis is a long-term inflammatory disease of the arterial wall. Increased expression of the cell adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) is associated with increased proliferation of vascular smooth muscle cells (VSMCs), leading to increased neointima or atherosclerotic lesion formation. Therefore, the functional inhibition of adhesion molecules could be a critical therapeutic target of inflammatory disease. In the present study, we investigate the effect of sulforaphane on the expression of VCAM-1 induced by TNF-α in cultured mouse vascular smooth muscle cell lines. Pretreatment of VSMCs for 2h with sulforaphane (1-5μg/ml) dose-dependently inhibited TNF-α-induced adhesion of THP-1 monocytic cells and protein expression of VCAM-1. Sulforaphane also suppressed TNF-α-induced production of intracellular reactive oxygen species (ROS) and activation of p38, ERK and JNK. Furthermore, sulforaphane inhibited NK-κB and AP-1 activation induced by TNF-α. Sulforaphane inhibited TNF-α-induced ΙκΒ kinase activation, subsequent degradation of ΙκΒα and nuclear translocation of p65 NF-κB and decreased c-Jun and c-Fos protein level. This study suggests that sulforaphane inhibits the adhesive capacity of VSMC and downregulates the TNF-α-mediated induction of VCAM-1 in VSMC by inhibiting the MAPK, NF-κB and AP-1 signaling pathways and intracellular ROS production. Thus, sulforaphane may have beneficial effects to suppress inflammation within the atherosclerotic lesion. Copyright © 2011 Elsevier Inc. All rights reserved.

  11. Antagonism of CD11b with Neutrophil Inhibitory Factor (NIF) Inhibits Vascular Lesions in Diabetic Retinopathy

    PubMed Central

    Veenstra, Alexander A.; Tang, Jie; Kern, Timothy S.

    2013-01-01

    Leukocytes and proteins that govern leukocyte adhesion to endothelial cells play a causal role in retinal abnormalities characteristic of the early stages of diabetic retinopathy, including diabetes-induced degeneration of retinal capillaries. Leukocyte integrin αmβ2 (CD11b/CD18, MAC1), a protein mediating adhesion, has been shown to mediate damage to endothelial cells by activated leukocytes in vitro. We hypothesized that Neutrophil Inhibitory Factor (NIF), a selective antagonist of integrin αmβ2, would inhibit the diabetes-induced degeneration of retinal capillaries by inhibiting the excessive interaction between leukocytes and retinal endothelial cells in diabetes. Wild type animals and transgenic animals expressing NIF were made diabetic with streptozotocin and assessed for diabetes-induced retinal vascular abnormalities and leukocyte activation. To assess if the leukocyte blocking therapy compromised the immune system, animals were challenged with bacteria. Retinal superoxide production, leukostasis and leukocyte superoxide production were increased in wild type mice diabetic for 10 weeks, as was the ability of leukocytes isolated from diabetic animals to kill retinal endothelial cells in vitro. Retinal capillary degeneration was significantly increased in wild type mice diabetic 40 weeks. In contrast, mice expressing NIF did not develop any of these abnormalities, with the exception that non-diabetic and diabetic mice expressing NIF generated greater amounts of superoxide than did similar mice not expressing NIF. Importantly, NIF did not significantly impair the ability of mice to clear an opportunistic bacterial challenge, suggesting that NIF did not compromise immune surveillance. We conclude that antagonism of CD11b (integrin αmβ2) by NIF is sufficient to inhibit early stages of diabetic retinopathy, while not compromising the basic immune response. PMID:24205223

  12. Modified rice bran hemicellulose inhibits vascular endothelial growth factor-induced angiogenesis in vitro via VEGFR2 and its downstream signaling pathways

    PubMed Central

    ZHU, Xia; OKUBO, Aya; IGARI, Naoki; NINOMIYA, Kentaro; EGASHIRA, Yukari

    2016-01-01

    Angiogenesis is implicated in diverse pathological conditions such as cancer, rheumatoid arthritis, psoriasis, atherosclerosis, and retinal neovascularization. In the present study, we investigated the effects of modified rice bran hemicellulose (MRBH), a water-soluble hemicellulose preparation from rice bran treated with shiitake enzymes, on vascular endothelial growth factor (VEGF)-induced angiogenesis in vitro and its mechanism. We found that MRBH significantly inhibited VEGF-induced tube formation in human umbilical vein endothelial cells (HUVECs) co-cultured with human dermal fibroblasts. We also observed that MRBH dose-dependently suppressed the VEGF-induced proliferation and migration of HUVECs. Furthermore, examination of the anti-angiogenic mechanism indicated that MRBH reduced not only VEGF-induced activation of VEGF receptor 2 but also of the downstream signaling proteins Akt, extracellular signal-regulated protein kinase 1/2, and p38 mitogen-activated protein kinase. These findings suggest that MRBH has in vitro anti-angiogenic effects that are partially mediated through the inhibition of VEGF signaling. PMID:28439487

  13. Evaluation of vascular effects after photodynamic and photothermal therapies using benzoporphyrin derivative monoacid ring A on a rodent dorsal skinfold model

    NASA Astrophysics Data System (ADS)

    Smith, Tia K.; Choi, Bernard; Ramirez-San-Juan, Julio C.; Nelson, John S.; Kelly, Kristen M.

    2005-04-01

    Background and Objectives: Pulsed dye laser (PDL) irradiation is the standard clinical treatment for vascular lesions. However, PDL treatment of port wine stain birthmarks (PWS) is variable and unpredictable. Photodynamic therapy (PDT) using benzoporphyrin derivative monoacid ring A (BPD) and yellow light may induce substantial vascular effects and potentially offer a more effective treatment. In this study, we utilize a rodent dorsal skinfold model to evaluate the vascular effects of BPD-PDT at 576 nm as compared to PDL. Study Design/Materials and Methods: A dorsal skinfold window was created on the backs of female Sprague-Dawley rats, allowing epidermal and subdermal irradiation and subdermal imaging. One mg/kg BPD was administered intravenously via a jugular venous catheter. Study groups were: control (no BPD, no light), PDL (585 nm, τp 1.5 ms, 10 J/cm2), and PDT (BPD + continuous wave irradiation (CW) at 576nm, τp 16 min, 96 J/cm2). Vessels were imaged and assessed for damage using laser speckle imaging (LSI) before, immediately after, and 18 hours post-intervention. Results: Epidermal irradiation was accomplished without blistering, scabbing or ulceration. PDL and PDT resulted in similar reductions in vascular perfusion 18 hours post-intervention (34.6% and 33.4%, respectively). Conclusions: BPD-PDT can achieve safe and selective vascular effects and may offer an alternative therapeutic option for treatment of hypervascular skin lesions including PWS birthmarks.

  14. Monitoring Sunitinib-Induced Vascular Effects to Optimize Radiotherapy Combined with Soy Isoflavones in Murine Xenograft Tumor1

    PubMed Central

    Hillman, Gilda Gali; Singh-Gupta, Vinita; Al-Bashir, Areen K; Yunker, Christopher K; Joiner, Michael C; Sarkar, Fazlul H; Abrams, Judith; Haacke, E Mark

    2011-01-01

    Using dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to monitor vascular changes induced by sunitinib within a murine xenograft kidney tumor, we previously determined a dose that caused only partial destruction of blood vessels leading to “normalization” of tumor vasculature and improved blood flow. In the current study, kidney tumors were treated with this dose of sunitinib to modify the tumor microenvironment and enhance the effect of kidney tumor irradiation. The addition of soy isoflavones to this combined antiangiogenic and radiotherapy approach was investigated based on our studies demonstrating that soy isoflavones can potentiate the radiation effect on the tumors and act as antioxidants to protect normal tissues from treatment-induced toxicity. DCE-MRI was used to monitor vascular changes induced by sunitinib and schedule radiation when the uptake and washout of the contrast agent indicated regularization of blood flow. The combination of sunitinib with tumor irradiation and soy isoflavones significantly inhibited the growth and invasion of established kidney tumors and caused marked aberrations in the morphology of residual tumor cells. DCE-MRI studies demonstrated that the three modalities, sunitinib, radiation, and soy isoflavones, also exerted antiangiogenic effects resulting in increased uptake and clearance of the contrast agent. Interestingly, DCE-MRI and histologic observations of the normal contralateral kidneys suggest that soy could protect the vasculature of normal tissue from the adverse effects of sunitinib. An antiangiogenic approach that only partially destroys inefficient vessels could potentially increase the efficacy and delivery of cytotoxic therapies and radiotherapy for unresectable primary renal cell carcinoma tumors and metastatic disease. PMID:21461174

  15. The BK(Ca) channels deficiency as a possible reason for radiation-induced vascular hypercontractility.

    PubMed

    Kyrychenko, Sergii; Tishkin, Sergey; Dosenko, Victor; Ivanova, Irina; Novokhatska, Tatiana; Soloviev, Anatoly

    2012-01-01

    It is likely that large-conductance Ca²⁺-activated K⁺ (BK(Ca)) channels channelopathy tightly involved in vascular malfunctions and arterial hypertension development. In the present study, we compared the results of siRNAs-induced α-BK(Ca) gene silencing and vascular abnormalities produced by whole-body ionized irradiation in rats. The experimental design comprised RT-PCR and patch clamp technique, thoracic aorta smooth muscle (SM) contractile recordings and arterial blood pressure (BP) measurements on the 30th day after whole body irradiation (6Gy) and following siRNAs KCNMA1 gene silencing in vivo. The expression profile of BK(Ca) mRNA transcripts in SM was significantly decreased in siRNAs-treated rats in a manner similar to irradiated SM. In contrast, the mRNA levels of K(v) and K(ATP) were significantly increased while L-type calcium channels mRNA transcripts demonstrated tendency to increment. The SMCs obtained from irradiated animals and after KCNMA1 gene silencing showed a significant decrease in total K⁺ current density amplitude. Paxilline (500 nM)-sensitive components of outward current were significantly decreased in both irradiated and gene silencing SMCs. KCNMA1 gene silencing increased SM sensitivity to norepinephrine while Ach-induced relaxation had decreased. The silencing of KCNMA1 had no significant effect on BP while radiation produced sustained arterial hypertension. Therefore, radiation alters the form and function of the BK(Ca) channel and this type of channelopathy may contribute to related vascular abnormalities. Nevertheless, it is unlikely that BK(Ca) can operate as a crucial factor for radiation-induced arterial hypertension. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Endothelium-Independent Effect of Fisetin on the Agonist-Induced Regulation of Vascular Contractility

    PubMed Central

    Je, Hyun Dong; Sohn, Uy Dong; La, Hyen-Oh

    2016-01-01

    Fisetin, a natural flavonoid found in a variety of vegetables and fruits, has been shown to possess many biological functions. The present study was undertaken to investigate the influence of fisetin on vascular smooth muscle contractility and to determine the mechanism involved. Denuded aortic rings from male rats were used and isometric contractions were recorded and combined with molecular experiments. Fisetin significantly relaxed fluoride-, thromboxane A2- or phorbol ester-induced vascular contraction suggesting as a possible anti-hypertensive on the agonist-induced vascular contraction regardless of endothelial nitric oxide synthesis. Furthermore, fisetin significantly inhibited fluoride-induced increases in pMYPT1 levels and phorbol ester-induced increases in pERK1/2 levels suggesting the mechanism involving the inhibition of Rho-kinase activity and the subsequent phosphorylation of MYPT1 and MEK activity and the subsequent phosphorylation of ERK1/2. This study provides evidence regarding the mechanism underlying the relaxation effect of fisetin on agonist-induced vascular contraction regardless of endothelial function. PMID:26759702

  17. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson's disease dementia.

    PubMed

    Kandiah, Nagaendran; Pai, Ming-Chyi; Senanarong, Vorapun; Looi, Irene; Ampil, Encarnita; Park, Kyung Won; Karanam, Ananda Krishna; Christopher, Stephen

    2017-01-01

    Several studies have demonstrated clinical benefits of sustained cholinesterase inhibition with rivastigmine in Alzheimer's disease (AD) and Parkinson's disease dementia (PDD). Unlike donepezil and galantamine that selectively inhibit acetylcholinesterase (AChE; EC 3.1.1.7), rivastigmine is a unique cholinesterase inhibitor with both AChE and butyrylcholinesterase (BuChE; EC 3.1.1.8) inhibitory activity. Rivastigmine is also available as transdermal patch that has been approved by the US Food and Drug Administration for the treatment of mild, moderate, and severe AD as well as mild-to-moderate PDD. In this review, we explore the role of BuChE inhibition in addition to AChE inhibition with rivastigmine in the outcomes of cognition, global function, behavioral symptoms, and activities of daily living. Additionally, we review the evidence supporting the use of dual AChE-BuChE inhibitory activity of rivastigmine as a therapeutic strategy in the treatment of neurological disorders, with a focus on the role of rivastigmine in subcortical dementias such as vascular dementia (VaD) and PDD. Toward this objective, we performed a literature search in PubMed and Ovid with limits to articles published in the English language before June 2016. The available evidence from the literature suggests that the dual inhibition of AChE and BuChE may afford additional therapeutic potential of rivastigmine in subcortical dementias (subcortical VaD and PDD) with benefits on cognition and behavioral symptoms. Rivastigmine was found to specifically benefit executive dysfunction frequently observed in subcortical dementias; however, large randomized clinical studies are warranted to support these observations.

  18. Protective effects of estrogen against vascular calcification via estrogen receptor α-dependent growth arrest-specific gene 6 transactivation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nanao-Hamai, Michiko; Son, Bo-Kyung; Institute of Gerontology, The University of Tokyo, Tokyo

    Vascular calcification is one of the major complications of cardiovascular disease and is an independent risk factor for myocardial infarction and cardiac death. Postmenopausal women have a higher prevalence of vascular calcification compared with premenopausal women, suggesting protective effects of estrogen (E2). However, the underlying mechanisms of its beneficial effects remain unclear. In the present study, we examined the inhibitory effects of E2 on vascular smooth muscle cell (VSMC) calcification, and found that growth arrest-specific gene 6 (Gas6), a crucial molecule in vascular calcification, is transactivated by estrogen receptor α (ERα) in response to E2. In human aortic smooth musclemore » cells, physiological levels of E2 inhibited inorganic phosphate (Pi)-induced calcification in a concentration-dependent manner. This inhibitory effect was significantly abolished by MPP, an ERα-selective antagonist, and ERα siRNA, but not by PHTPP, an ERβ-selective antagonist, and ERβ siRNA, implicating an ERα-dependent action. Apoptosis, an essential process for Pi-induced VSMC calcification, was inhibited by E2 in a concentration-dependent manner and further, MPP abolished this inhibition. Mechanistically, E2 restored the inhibited expression of Gas6 and phospho-Akt in Pi-induced apoptosis through ERα. Furthermore, E2 significantly activated Gas6 transcription, and MPP abrogated this E2-dependent Gas6 transactivation. E2-BSA failed to activate Gas6 transcription and to inhibit Ca deposition in VSMC, suggesting beneficial actions of genomic signaling by E2/nuclear ERα. Taken together, these results indicate that E2 exerts inhibitory effects on VSMC apoptosis and calcification through ERα-mediated Gas6 transactivation. These findings indicate a potential therapeutic strategy for the prevention of vascular calcification, especially in postmenopausal women. - Highlights: • E2 inhibits Pi-induced calcification in vascular smooth muscles cells. • E2

  19. Electrical and mechanical responses to inhibition of cell respiration in vascular smooth muscle of the rat portal vein.

    PubMed

    Ekmehag, B L

    1989-09-01

    Metabolic regulation of contractility in vascular smooth muscle was studied in the spontaneously active rat portal vein using respiratory depression by cyanide (0.2-2.0 mM) as a model for tissue hypoxia. Intracellular recordings of electrical activity were done with concomitant registration of force development. Average membrane potential in the absence of cyanide was -61 +/- 1 mV (n = 27). Addition of cyanide to normal Krebs solution resulted in a reduction of force amplitude and the number of action potentials per burst, with a relatively more pronounced effect on the mechanical activity. At moderate levels of inhibition of force amplitude the frequency of spontaneous bursts of action potentials transiently increased concomitant with a slight depolarization, but after prolonged (15-20 min) exposure to cyanide the membrane repolarized to the level prior to cyanide addition and the burst frequency decreased to be equal to or lower than that in the absence of cyanide. Higher concentrations of cyanide totally inhibited spontaneous mechanical and electrical activity. In contrast to the results with glucose, it was found that when beta-hydroxybutyrate was used as substrate the addition of 2 mM cyanide led to a marked hyperpolarization (13 +/- 1 mV) after total inhibition of spontaneous activity. The hyperpolarization was not prevented by administration of 4-aminopyridine (2.5 mM) or tetraethylammonium (4-6 mM) prior to the addition of cyanide. To investigate the effects of increased metabolic demand on the relation between force and membrane potential in cyanide-treated muscle, high-K+ (40 mM) contractures were studied. Contractures were associated with depolarization of 34 +/- 3 mV (n = 5). 1 mM cyanide reduced the amplitude of the contractures to about 9% of control with a moderate reduction in the amount of depolarization (28 +/- 1 mV, n = 5). It is concluded that the decrease of mechanical activity during respiratory inhibition may partly reflect a reduction in the

  20. Investigation of the effects of head irradiation with gamma rays and protons on startle and pre-pulse inhibition behavior in mice.

    PubMed

    Haerich, Paul; Eggers, Cara; Pecaut, Michael J

    2012-05-01

    With the increased international emphasis on manned space exploration, there is a growing need to understand the impact of the spaceflight environment on health and behavior. One particularly important aspect of this environment is low-dose radiation. In the present studies, we first characterized the γ- and proton-irradiation dose effect on acoustic startle and pre-pulse inhibition behaviors in mice exposed to 0-5 Gy brain-localized irradiation, and assessed these effects 2 days later. Subsequently, we used 2 Gy to assess the time course of γ- and proton-radiation effects on startle reactivity 0-8 days after exposure. Exposures targeted the brain to minimize the impact of peripheral inflammation-induced sickness behavior. The effects of radiation on startle were subtle and acute. Radiation reduced the startle response at 2 and 5 Gy. Following a 2-Gy exposure, the response reached a minimum at the 2-day point. Proton and γ-ray exposures did not differ in their impact on startle. We found there were no effects of radiation on pre-pulse inhibition of the startle response.

  1. Re-expression of pro-fibrotic, embryonic preserved mediators in irradiated arterial vessels of the head and neck region.

    PubMed

    Möbius, Patrick; Preidl, Raimund H M; Weber, Manuel; Amann, Kerstin; Neukam, Friedrich W; Wehrhan, Falk

    2017-11-01

    Surgical treatment of head and neck malignancies frequently includes microvascular free tissue transfer. Preoperative radiotherapy increases postoperative fibrosis-related complications up to transplant loss. Fibrogenesis is associated with re-expression of embryonic preserved tissue developmental mediators: osteopontin (OPN), regulated by sex-determining region Y‑box 9 (Sox9), and homeobox A9 (HoxA9) play important roles in pathologic tissue remodeling and are upregulated in atherosclerotic vascular lesions; dickkopf-1 (DKK1) inhibits pro-fibrotic and atherogenic Wnt signaling. We evaluated the influence of irradiation on expression of these mediators in arteries of the head and neck region. DKK1, HoxA9, OPN, and Sox9 expression was examined immunohistochemically in 24 irradiated and 24 nonirradiated arteries of the lower head and neck region. The ratio of positive cells to total cell number (labeling index) in the investigated vessel walls was assessed semiquantitatively. DKK1 expression was significantly decreased, whereas HoxA9, OPN, and Sox9 expression were significantly increased in irradiated compared to nonirradiated arterial vessels. Preoperative radiotherapy induces re-expression of embryonic preserved mediators in arterial vessels and may thus contribute to enhanced activation of pro-fibrotic downstream signaling leading to media hypertrophy and intima degeneration comparable to fibrotic development steps in atherosclerosis. These histopathological changes may be promoted by HoxA9-, OPN-, and Sox9-related inflammation and vascular remodeling, supported by downregulation of anti-fibrotic DKK1. Future pharmaceutical strategies targeting these vessel alterations, e. g., bisphosphonates, might reduce postoperative complications in free tissue transfer.

  2. Inhibition of vascular smooth muscle growth via signaling crosstalk between AMP-activated protein kinase and cAMP-dependent protein kinase

    PubMed Central

    Stone, Joshua D.; Narine, Avinash; Tulis, David A.

    2012-01-01

    Abnormal vascular smooth muscle (VSM) growth is central in the pathophysiology of vascular disease yet fully effective therapies to curb this growth are lacking. Recent findings from our lab and others support growth control of VSM by adenosine monophosphate (AMP)-based approaches including the metabolic sensor AMP-activated protein kinase (AMPK) and cAMP-dependent protein kinase (PKA). Molecular crosstalk between AMPK and PKA has been previously suggested, yet the extent to which this occurs and its biological significance in VSM remain unclear. Considering their common AMP backbone and similar signaling characteristics, we hypothesized that crosstalk exists between AMPK and PKA in the regulation of VSM growth. Using rat primary VSM cells (VSMC), the AMPK agonist AICAR increased AMPK activity and phosphorylation of the catalytic Thr172 site on AMPK. Interestingly, AICAR also phosphorylated a suspected PKA-inhibitory Ser485 site on AMPK, and these cumulative events were reversed by the PKA inhibitor PKI suggesting possible PKA-mediated regulation of AMPK. AICAR also increased PKA activity in a reversible fashion. The cAMP stimulator forskolin increased PKA activity and completely ameliorated Ser/Thr protein phosphatase-2C activity, suggesting a potential mechanism of AMPK modulation by PKA since inhibition of PKA by PKI reduced AMPK activity. Functionally, AMPK inhibited serum-stimulated cell cycle progression and cellular proliferation; however, PKA failed to do so. Moreover, AMPK and PKA reduced PDGF-β-stimulated VSMC migration. Collectively, these results show that AMPK is capable of reducing VSM growth in both anti-proliferative and anti-migratory fashion. Furthermore, these data suggest that AMPK may be modulated by PKA and that positive feedback may exist between these two systems. These findings reveal a discrete nexus between AMPK and PKA in VSM and provide basis for metabolically-directed targets in reducing pathologic VSM growth. PMID:23112775

  3. A substance P antagonist inhibits vagally induced increase in vascular permeability and bronchial smooth muscle contraction in the guinea pig

    PubMed Central

    Lundberg, J. M.; Saria, A.; Brodin, E.; Rosell, S.; Folkers, K.

    1983-01-01

    Electrical stimulation of the cervical vagus nerve in anesthetized guinea pigs induced a rapid increase in respiratory insufflation pressure, suggesting increased airway resistance. After intravenous administration of a substance P (SP) antagonist, [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP, the insufflation pressure response to vagal stimulation was reduced by 78% while the cardiovascular effects were unchanged. Histamine receptor-blocking agents were used to inhibit the effects of histamine release induced by the SP-antagonist. [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP also reduced the increase in insufflation pressure caused by intravenous SP or capsaicin. The long-lasting noncholinergic contraction of the main and hilus bronchi induced by field stimulation in vitro, as well as the contractile effects of SP and capsaicin, were also blocked by the SP antagonist. The cholinergic contractions and the noncholinergic tracheal relaxation on field stimulation in vitro were, however, not blocked by the antagonist. Vagal stimulation in vivo also increased vascular permeability in the respiratory tract and esophagus, causing a subepithelial edema as indicated by Evans blue extravasation. Previous treatment with [D-Arg1,D-Pro2,D-Trp7,9,Leu11]SP inhibited the permeability increase induced by both vagus nerve stimulation and exogenous SP. SP release from vagal sensory nerves was indirectly shown by reduction in the bronchial levels of SP after nerve stimulation in vivo. The data suggest that a major portion of the vagally or capsaicin-induced increase in smooth muscle tone is caused by SP release from sensory neurons. In addition, activation of vagal SP-containing sensory nerves induces local edema. Tracheobronchial afferent SP-containing C fibers may thus exert local control of smooth muscle tone and vascular permeability in normal and pathophysiological conditions. Images PMID:6189120

  4. Inhibition of MMP-2 gene expression with small interfering RNA in rabbit vascular smooth muscle cells.

    PubMed

    Hlawaty, Hanna; San Juan, Aurélie; Jacob, Marie-Paule; Vranckx, Roger; Letourneur, Didier; Feldman, Laurent J

    2007-12-01

    Matrix metalloproteinase-2 (MMP-2) is constitutively expressed in vascular smooth muscle cells (VSMCs). Using small interfering RNA (siRNA), we evaluated the effect of MMP-2 inhibition in VSMCs in vitro and ex vivo. Rabbit VSMCs were transfected in vitro with 50 nmol/l MMP-2 siRNA or scramble siRNA. Flow cytometry and confocal microscopy showed cellular uptake of siRNA in approximately 80% of VSMCs. MMP-2 mRNA levels evaluated by real-time RT-PCR, pro-MMP-2 activity from conditioned culture media evaluated by gelatin zymography, and VSMC migration were reduced by 44 +/- 19%, 43 +/- 14%, and 36 +/- 14%, respectively, in MMP-2 siRNA-transfected compared with scramble siRNA-transfected VSMCs (P < 0.005 for all). Ex vivo MMP-2 siRNA transfection was performed 2 wk after balloon injury of hypercholesterolemic rabbit carotid arteries. Fluorescence microscopy showed circumferential siRNA uptake in neointimal cells. Gelatin zymography of carotid artery culture medium demonstrated a significant decrease of pro-MMP-2 activity in MMP-2 siRNA-transfected compared with scramble siRNA-transfected arteries (P < 0.01). Overall, our results demonstrate that in vitro MMP-2 siRNA transfection in VSMCs markedly inhibits MMP-2 gene expression and VSMC migration and that ex vivo delivery of MMP-2 siRNA in balloon-injured arteries reduces pro-MMP-2 activity in neointimal cells, suggesting that siRNA could be used to modify arterial biology in vivo.

  5. Graph analysis of cell clusters forming vascular networks

    NASA Astrophysics Data System (ADS)

    Alves, A. P.; Mesquita, O. N.; Gómez-Gardeñes, J.; Agero, U.

    2018-03-01

    This manuscript describes the experimental observation of vasculogenesis in chick embryos by means of network analysis. The formation of the vascular network was observed in the area opaca of embryos from 40 to 55 h of development. In the area opaca endothelial cell clusters self-organize as a primitive and approximately regular network of capillaries. The process was observed by bright-field microscopy in control embryos and in embryos treated with Bevacizumab (Avastin), an antibody that inhibits the signalling of the vascular endothelial growth factor (VEGF). The sequence of images of the vascular growth were thresholded, and used to quantify the forming network in control and Avastin-treated embryos. This characterization is made by measuring vessels density, number of cell clusters and the largest cluster density. From the original images, the topology of the vascular network was extracted and characterized by means of the usual network metrics such as: the degree distribution, average clustering coefficient, average short path length and assortativity, among others. This analysis allows to monitor how the largest connected cluster of the vascular network evolves in time and provides with quantitative evidence of the disruptive effects that Avastin has on the tree structure of vascular networks.

  6. Inhibition of tumor angiogenesis and tumor growth by the DSL domain of human Delta-like 1 targeted to vascular endothelial cells.

    PubMed

    Zhao, Xing-Cheng; Dou, Guo-Rui; Wang, Li; Liang, Liang; Tian, Deng-Mei; Cao, Xiu-Li; Qin, Hong-Yan; Wang, Chun-Mei; Zhang, Ping; Han, Hua

    2013-07-01

    The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of new drug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD) motif targeting endothelial cells (ECs). We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2(+) perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.

  7. Continuous Low-dose-rate Irradiation of Iodine-125 Seeds Inhibiting Perineural Invasion in Pancreatic Cancer.

    PubMed

    Lu, Zheng; Dong, Teng-Hui; Si, Pei-Ren; Shen, Wei; Bi, Yi-Liang; Min, Min; Chen, Xin; Liu, Yan

    2016-10-20

    Perineural invasion (PNI) is a histopathological characteristic of pancreatic cancer (PanCa). The aim of this study was to observe the treatment effect of continuous low-dose-rate (CLDR) irradiation to PNI and assess the PNI-related pain relief caused by iodine-125 ( 125 I) seed implantation. The in vitro PNI model established by co-culture with dorsal root ganglion (DRG) and cancer cells was interfered under 2 and 4 Gy of 125 I seeds CLDR irradiation. The orthotopic models of PNI were established, and 125 I seeds were implanted in tumor. The PNI-related molecules were analyzed. In 30 patients with panCa, the pain relief was assessed using a visual analog scale (VAS). Pain intensity was measured before and 1 week, 2 weeks, and 1, 3, and 6 months after 125 I seed implantation. The co-culture of DRG and PanCa cells could promote the growth of PanCa cells and DRG neurites. In co-culture groups, the increased number of DRG neurites and pancreatic cells in radiation group was significantly less. In orthotopic models, the PNI-positive rate in radiation and control group was 3/11 and 7/11; meanwhile, the degrees of PNI between radiation and control groups was significant difference (P < 0.05). At week 2, the mean VAS pain score in patients decreased by 50% and significantly improved than the score at baseline (P < 0.05). The pain scores were lower in all patients, and the pain-relieving effect was retained about 3 months. The CLDR irradiation could inhibit PNI of PanCa with the value of further study. The CLDR irradiation could do great favor in preventing local recurrence and alleviating pain.

  8. A combination of low-dose bevacizumab and imatinib enhances vascular normalisation without inducing extracellular matrix deposition.

    PubMed

    Schiffmann, L M; Brunold, M; Liwschitz, M; Goede, V; Loges, S; Wroblewski, M; Quaas, A; Alakus, H; Stippel, D; Bruns, C J; Hallek, M; Kashkar, H; Hacker, U T; Coutelle, O

    2017-02-28

    Vascular endothelial growth factor (VEGF)-targeting drugs normalise the tumour vasculature and improve access for chemotherapy. However, excessive VEGF inhibition fails to improve clinical outcome, and successive treatment cycles lead to incremental extracellular matrix (ECM) deposition, which limits perfusion and drug delivery. We show here, that low-dose VEGF inhibition augmented with PDGF-R inhibition leads to superior vascular normalisation without incremental ECM deposition thus maintaining access for therapy. Collagen IV expression was analysed in response to VEGF inhibition in liver metastasis of colorectal cancer (CRC) patients, in syngeneic (Panc02) and xenograft tumours of human colorectal cancer cells (LS174T). The xenograft tumours were treated with low (0.5 mg kg -1 body weight) or high (5 mg kg -1 body weight) doses of the anti-VEGF antibody bevacizumab with or without the tyrosine kinase inhibitor imatinib. Changes in tumour growth, and vascular parameters, including microvessel density, pericyte coverage, leakiness, hypoxia, perfusion, fraction of vessels with an open lumen, and type IV collagen deposition were compared. ECM deposition was increased after standard VEGF inhibition in patients and tumour models. In contrast, treatment with low-dose bevacizumab and imatinib produced similar growth inhibition without inducing detrimental collagen IV deposition, leading to superior vascular normalisation, reduced leakiness, improved oxygenation, more open vessels that permit perfusion and access for therapy. Low-dose bevacizumab augmented by imatinib selects a mature, highly normalised and well perfused tumour vasculature without inducing incremental ECM deposition that normally limits the effectiveness of VEGF targeting drugs.

  9. Modulation of 11β-hydroxysteroid dehydrogenase as a strategy to reduce vascular inflammation.

    PubMed

    Hadoke, Patrick W F; Kipari, Tiina; Seckl, Jonathan R; Chapman, Karen E

    2013-05-01

    Atherosclerosis is a chronic inflammatory disease in which initial vascular damage leads to extensive macrophage and lymphocyte infiltration. Although acutely glucocorticoids suppress inflammation, chronic glucocorticoid excess worsens atherosclerosis, possibly by exacerbating systemic cardiovascular risk factors. However, glucocorticoid action within the lesion may reduce neointimal proliferation and inflammation. Glucocorticoid levels within cells do not necessarily reflect circulating levels due to pre-receptor metabolism by 11β-hydroxysteroid dehydrogenases (11β-HSDs). 11β-HSD2 converts active glucocorticoids into inert 11-keto forms. 11β-HSD1 catalyses the reverse reaction, regenerating active glucocorticoids. 11β-HSD2-deficiency/inhibition causes hypertension, whereas deficiency/inhibition of 11β-HSD1 generates a cardioprotective lipid profile and improves glycemic control. Importantly, 11β-HSD1-deficiency/inhibition is atheroprotective, whereas 11β-HSD2-deficiency accelerates atherosclerosis. These effects are largely independent of systemic risk factors, reflecting modulation of glucocorticoid action and inflammation within the vasculature. Here, we consider whether evidence linking the 11β-HSDs to vascular inflammation suggests these isozymes are potential therapeutic targets in vascular injury and atherosclerosis.

  10. Magnolol suppresses vascular endothelial growth factor-induced angiogenesis by inhibiting Ras-dependent mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt signaling pathways.

    PubMed

    Kim, Ki Mo; Kim, No Soo; Kim, Jinhee; Park, Jong-Shik; Yi, Jin Mu; Lee, Jun; Bang, Ok-Sun

    2013-01-01

    Magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, has been reported to possess anticancer activity. Recent studies have also demonstrated that magnolol inhibits cell growth and induces the apoptosis of cancer cells. However, the effects of magnolol on vascular endothelial growth factor (VEGF)-induced angiogenesis in endothelial cells have not been studied. In the present study, we have used human umbilical vein endothelial cells (HUVECs) to investigate the antiangiogenic effect and molecular mechanism of magnolol. Magnolol inhibited the VEGF-induced proliferation, chemotactic motility and tube formation of HUVECs in vitro as well as the vessel sprouting of the aorta ex vivo. Furthermore, magnolol inhibited VEGF-induced Ras activation and subsequently suppressed extracellular signal-regulated kinase (ERK), phosphatidylinositol-3-kinase (PI3K)/Akt and p38, but not Src and focal adhesion kinase (FAK). Interestingly, the knockdown of Ras by short interfering RNA produced inhibitory effects that were similar to the effects of magnolol on VEGF-induced angiogenic signaling events, such as ERK and Akt/eNOS activation, and resulted in the inhibition of proliferation, migration, and vessel sprouting in HUVECs. In combination, these results demonstrate that magnolol is an inhibitor of angiogenesis and suggest that this compound could be a potential candidate in the treatment of angiogenesis-related diseases.

  11. Non-invasive optical modulation of local vascular permeability

    NASA Astrophysics Data System (ADS)

    Choi, Myunghwan; Choi, Chulhee

    2011-03-01

    For a systemically administered drug to act, it first needs to cross the vascular wall. This step represents a bottleneck for drug development, especially in the brain or retina, where tight junctions between endothelial cells form physiological barriers. Here, we demonstrate that femtosecond pulsed laser irradiation focused on the blood vessel wall induces transient permeabilization of plasma. Nonlinear absorption of the pulsed laser enabled the noninvasive modulation of vascular permeability with high spatial selectivity in three dimensions. By combining this method with systemic injection, we could locally deliver molecular probes in various tissues, such as brain cortex, meninges, ear, striated muscle, and bone. We suggest this method as a novel delivery tool for molecular probes or drugs.

  12. Preparation of arginine-glycine-aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization.

    PubMed

    Chang, Che-Yi; Wang, Ming-Chen; Miyagawa, Takuya; Chen, Zhi-Yu; Lin, Feng-Huei; Chen, Ko-Hua; Liu, Guei-Sheung; Tseng, Ching-Li

    2017-01-01

    Neovascularization (NV) of the cornea can disrupt visual function, causing ocular diseases, including blindness. Therefore, treatment of corneal NV has a high public health impact. Epigalloccatechin-3-gallate (EGCG), presenting antiangiogenesis effects, was chosen as an inhibitor to treat human vascular endothelial cells for corneal NV treatment. An arginine-glycine-aspartic acid (RGD) peptide-hyaluronic acid (HA)-conjugated complex coating on the gelatin/EGCG self-assembly nanoparticles (GEH-RGD NPs) was synthesized for targeting the α v β 3 integrin on human umbilical vein endothelial cells (HUVECs) in this study, and a corneal NV mouse model was used to evaluate the therapeutic effect of this nanomedicine used as eyedrops. HA-RGD conjugation via COOH and amine groups was confirmed by 1 H-nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The average diameter of GEH-RGD NPs was 168.87±22.5 nm with positive charge (19.7±2 mV), with an EGCG-loading efficiency up to 95%. Images of GEH-RGD NPs acquired from transmission electron microscopy showed a spherical shape and shell structure of about 200 nm. A slow-release pattern was observed in the nanoformulation at about 30% after 30 hours. Surface plasmon resonance confirmed that GEH-RGD NPs specifically bound to the integrin α v β 3 . In vitro cell-viability assay showed that GEH-RGD efficiently inhibited HUVEC proliferation at low EGCG concentrations (20 μg/mL) when compared with EGCG or non-RGD-modified NPs. Furthermore, GEH-RGD NPs significantly inhibited HUVEC migration down to 58%, lasting for 24 hours. In the corneal NV mouse model, fewer and thinner vessels were observed in the alkali-burned cornea after treatment with GEH-RGD NP eyedrops. Overall, this study indicates that GEH-RGD NPs were successfully developed and synthesized as an inhibitor of vascular endothelial cells with specific targeting capacity. Moreover, they can be used in eyedrops to inhibit angiogenesis in corneal NV

  13. Preparation of arginine–glycine–aspartic acid-modified biopolymeric nanoparticles containing epigalloccatechin-3-gallate for targeting vascular endothelial cells to inhibit corneal neovascularization

    PubMed Central

    Chang, Che-Yi; Wang, Ming-Chen; Miyagawa, Takuya; Chen, Zhi-Yu; Lin, Feng-Huei; Chen, Ko-Hua; Liu, Guei-Sheung; Tseng, Ching-Li

    2017-01-01

    Neovascularization (NV) of the cornea can disrupt visual function, causing ocular diseases, including blindness. Therefore, treatment of corneal NV has a high public health impact. Epigalloccatechin-3-gallate (EGCG), presenting antiangiogenesis effects, was chosen as an inhibitor to treat human vascular endothelial cells for corneal NV treatment. An arginine–glycine–aspartic acid (RGD) peptide–hyaluronic acid (HA)-conjugated complex coating on the gelatin/EGCG self-assembly nanoparticles (GEH-RGD NPs) was synthesized for targeting the αvβ3 integrin on human umbilical vein endothelial cells (HUVECs) in this study, and a corneal NV mouse model was used to evaluate the therapeutic effect of this nanomedicine used as eyedrops. HA-RGD conjugation via COOH and amine groups was confirmed by 1H-nuclear magnetic resonance and Fourier-transform infrared spectroscopy. The average diameter of GEH-RGD NPs was 168.87±22.5 nm with positive charge (19.7±2 mV), with an EGCG-loading efficiency up to 95%. Images of GEH-RGD NPs acquired from transmission electron microscopy showed a spherical shape and shell structure of about 200 nm. A slow-release pattern was observed in the nanoformulation at about 30% after 30 hours. Surface plasmon resonance confirmed that GEH-RGD NPs specifically bound to the integrin αvβ3. In vitro cell-viability assay showed that GEH-RGD efficiently inhibited HUVEC proliferation at low EGCG concentrations (20 μg/mL) when compared with EGCG or non-RGD-modified NPs. Furthermore, GEH-RGD NPs significantly inhibited HUVEC migration down to 58%, lasting for 24 hours. In the corneal NV mouse model, fewer and thinner vessels were observed in the alkali-burned cornea after treatment with GEH-RGD NP eyedrops. Overall, this study indicates that GEH-RGD NPs were successfully developed and synthesized as an inhibitor of vascular endothelial cells with specific targeting capacity. Moreover, they can be used in eyedrops to inhibit angiogenesis in corneal NV

  14. Physiological activity of irradiated green tea polyphenol on the human skin.

    PubMed

    An, Bong-Jeun; Kwak, Jae-Hoon; Son, Jun-Ho; Park, Jung-Mi; Lee, Jin-Young; Park, Tae Soon; Kim, So-Yeun; Kim, Yeoung-Sun; Jo, Cheorun; Byun, Myung-Woo

    2005-01-01

    Physiological activity of irradiated green tea polyphenol on the human skin was investigated for further industrial application. The green tea polyphenol was separated and irradiated at 40 kGy by y-ray. For an anti-wrinkle effect, the collagenase inhibition effect was higher in the irradiated sample (65.3%) than that of the non-irradiated control (56.8%) at 200 ppm of the concentration (p < 0.05). Collagen biosynthesis rates using a human fibroblast were 19.4% and 16.3% in the irradiated and the non-irradiated polyphenols, respectively. The tyrosinase inhibition effect, which is related to the skin-whitening effect, showed a 45.2% and 42.9% in the irradiated and the non-irradiated polyphenols, respectively, at a 100 ppm level. A higher than 90% growth inhibition on skin cancer cells (SK-MEL-2 and G361) was demonstrated in both the irradiated and the non-irradiated polyphenols. Thus, the irradiation of green tea polyphenol did not change and even increased its anti-wrinkle, skin-whitening and anticancer effects on the human skin. The results indicated that irradiated green tea polyphenol can be used as a natural ingredient with excellent physiological functions for the human skin through cosmetic or food composition.

  15. X-ray radiation and development inhibition of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)

    NASA Astrophysics Data System (ADS)

    Kim, Junheon; Jung, Soon-Oh; Jang, Sin Ae; Kim, Jeongmin; Park, Chung Gyoo

    2015-10-01

    Effect of X-ray radiation on the development inhibition was evaluated for all stages of the life cycle of Helicoverpa armigera to determine a radiation dose for potential quarantine treatment against the insect. ED99 values for inhibition of hatching, pupation, and adult emergence from irradiated eggs were 413, 210, and 154 Gy, respectively. ED99 values for inhibition of pupation and adult emergence from irradiated larvae were 221 and 167 Gy, respectively. Pupa was the most tolerant to X-ray radiation. ED99 value for inhibition of adult emergence from irradiated pupae was as high as 2310 Gy, whereas that for inhibition of F1 egg hatching was only 66 Gy. ED99 value for inhibition of hatching of F1 eggs which were laid by irradiated adults was estimated to 194 Gy. X-ray irradiation against H. armigera is recommended as an alternative method to methyl bromide fumigation for phytosanitary treatments during quarantine. X-ray radiation dose of 200 Gy is proposed as a potential quarantine treatment dose for H. armigera eggs and larvae.

  16. [Acute hepatic vascular complications].

    PubMed

    Ochs, A

    2011-07-01

    Acute hepatic vascular complications are rare. Acute portal vein thrombosis (PVT) and the Budd-Chiari syndrome (BSC) are the leading causes. Coagulopathy and local factors are present in up to 80% of cases. Diagnosis is established by colour-coded Doppler sonography, contrast-enhanced computed tomography or magnetic resonance imaging. Patients with acute PVT present with abdominal pain and disturbed intestinal motility. In the absence of cirrhosis anticoagulation with heparin is established followed by oral anticoagulation. In severe cases, surgical thrombectomy or transjugular thrombolysis with stent shunt may be necessary. Acute or fulminant BCS may require emergency liver transplantation or a transjugular intrahepatic portosystemic stent shunt, if patients present with acute liver failure. Milder cases receive anticoagulation for thrombolysis of occluded hepatic veins. Sinusoidal obstruction syndrome (SOS) is diagnosed after total body irradiation or chemotherapy, the term SOS replacing the former veno-occlusive disease. The treatment of congenital vascular malformations, complications in the setting of OLTX as well as patients with hepatic involvement of hereditary hemorrhagic telangiectasia requires significant expertise in a multidisciplinary approach.

  17. Novel Role of Copper Transport Protein Antioxidant-1 in Neointimal Formation Following Vascular Injury

    PubMed Central

    Kohno, Takashi; Urao, Norifumi; Ashino, Takashi; Sudhahar, Varadarajan; McKinney, Ronald D.; Hamakubo, Takao; Iwanari, Hiroko; Ushio-Fukai, Masuko; Fukai, Tohru

    2013-01-01

    Objective Vascular smooth muscle cell (VSMC) migration is critically important for neointimal formation following vascular injury and atherosclerosis lesion formation. Copper (Cu) chelator inhibits neointimal formation, and we previously demonstrated that Cu transport protein Antioxidant-1 (Atox1) is involved in Cu-induced cell growth. However, role of Atox1 in VSMC migration and neointimal formation after vascular injury is unknown. Approach and Results Here we show that Atox1 expression is upregulated in injured vessel, and it is colocalized with the Cu transporter ATP7A, one of downstream targets of Atox1, mainly in neointimal VSMCs at day 14 after wire injury. Atox1−/− mice show inhibition of neointimal formation and extracellular matrix expansion, which is associated with a decreased VSMCs accumulation within neointima and lysyl oxidase activity. Mechanistically, in cultured VSMC, Atox1 depletion with siRNA inhibits platelet-derived growth factor (PDGF)-induced Cu-dependent VSMC migration by preventing translocation of ATP7A and small G protein Rac1 to the leading edge as well as Cu- and Rac1-dependent lamellipodia formation. Furthermore, Atox1−/− mice show decreased perivascular macrophage infiltration in wire-injured vessels as well as thioglycollate-induced peritoneal macrophage recruitment. Conclusions Atox1 is involved in neointimal formation after vascular injury through promoting VSMC migration and inflammatory cell recruitment in injured vessels. Thus, Atox1 is a potential therapeutic target for VSMC migration and inflammation-related vascular diseases. PMID:23349186

  18. Novel role of copper transport protein antioxidant-1 in neointimal formation after vascular injury.

    PubMed

    Kohno, Takashi; Urao, Norifumi; Ashino, Takashi; Sudhahar, Varadarajan; McKinney, Ronald D; Hamakubo, Takao; Iwanari, Hiroko; Ushio-Fukai, Masuko; Fukai, Tohru

    2013-04-01

    Vascular smooth muscle cell (VSMC) migration is critically important for neointimal formation after vascular injury and atherosclerosis lesion formation. Copper (Cu) chelator inhibits neointimal formation, and we previously demonstrated that Cu transport protein antioxidant-1 (Atox1) is involved in Cu-induced cell growth. However, role of Atox1 in VSMC migration and neointimal formation after vascular injury is unknown. Here, we show that Atox1 expression is upregulated in injured vessel, and it is colocalized with the Cu transporter ATP7A, one of the downstream targets of Atox1, mainly in neointimal VSMCs at day 14 after wire injury. Atox1(-/-) mice show inhibition of neointimal formation and extracellular matrix expansion, which is associated with a decreased VSMCs accumulation within neointima and lysyl oxidase activity. Mechanistically, in cultured VSMC, Atox1 depletion with siRNA inhibits platelet-derived growth factor-induced Cu-dependent VSMC migration by preventing translocation of ATP7A and small G protein Rac1 to the leading edge, as well as Cu- and Rac1-dependent lamellipodia formation. Furthermore, Atox1(-/-) mice show decreased perivascular macrophage infiltration in wire-injured vessels, as well as thioglycollate-induced peritoneal macrophage recruitment. Atox1 is involved in neointimal formation after vascular injury through promoting VSMC migration and inflammatory cell recruitment in injured vessels. Thus, Atox1 is a potential therapeutic target for VSMC migration and inflammation-related vascular diseases.

  19. Arginase inhibition reduces interleukin-1β-stimulated vascular smooth muscle cell proliferation by increasing nitric oxide synthase-dependent nitric oxide production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Jeongyeon; Ryoo, Sungwoo, E-mail: ryoosw08@kangwon.ac.kr

    2013-06-07

    Highlights: •Arginase inhibition suppressed proliferation of IL-1β-stimulated VSMCs in dose-dependent manner. •NO production from IL-1β-induced iNOS expression was augmented by arginase inhibition, reducing VSMC proliferation. •Incubation with cGMP analogues abolished IL-1β-dependent proliferation of VSMCs. -- Abstract: We investigated whether arginase inhibition suppressed interleukin (IL)-1β-stimulated proliferation in vascular smooth muscle cells (VSMCs) and the possible mechanisms involved. IL-1β stimulation increased VSMC proliferation, while the arginase inhibitor BEC and transfection of the antisense (AS) oligonucleotide against arginase I decreased VSMC proliferation and was associated with increased protein content of the cell cycle regulator p21Waf1/Cip1. IL-1β incubation induced inducible nitric oxide synthase (iNOS)more » mRNA expression and protein levels in a dose-dependent manner, but did not affect arginase I and II expression. Consistent with this data, IL-1β stimulation resulted in increase in NO production that was significantly augmented by arginase inhibition. The specific iNOS inhibitor 1400W abolished IL-1β-mediated NO production and further accentuated IL-1β-stimulated cell proliferation. Incubation with NO donors GSNO and DETA/NO in the presence of IL-1β abolished VSMCs proliferation and increased p21Waf1/Cip1 protein content. Furthermore, incubation with the cGMP analogue 8-Br-cGMP prevented IL-1β-induced VSMCs proliferation. In conclusion, arginase inhibition augmented iNOS-dependent NO production that resulted in suppression of IL-1β-induced VSMCs proliferation in a cGMP-dependent manner.« less

  20. Resveratrol, a polyphenolic compound found in wine, inhibits tissue factor expression in vascular cells : A possible mechanism for the cardiovascular benefits associated with moderate consumption of wine.

    PubMed

    Pendurthi, U R; Williams, J T; Rao, L V

    1999-02-01

    A number of studies suggest that moderate consumption of red wine may be more effective than other alcoholic beverages in decreasing the risk of coronary heart disease mortality. The phytochemical resveratrol found in wine, derived from grapes, has been thought to be responsible for cardiovascular benefits associated with wine consumption because it was shown to have antioxidant and antiplatelet activities. In the present investigation, we examined the effect of resveratrol on induction of tissue factor (TF) expression in vascular cells that were exposed to pathophysiological stimuli. The data presented herein show that resveratrol, in a dose-dependent manner, inhibited the expression of TF in endothelial cells stimulated with a variety of agonists, including interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNFalpha) and lipopolysaccharide (LPS). A similar inhibition of TF induction was also seen in LPS stimulated monocytes that were pretreated with resveratrol before their stimulation with LPS. In addition, resveratrol was shown to inhibit the LPS-induced expression of TNFalpha mRNA in endothelial cells and of TNFalpha and IL-1beta mRNA in monocytes. Nuclear run-on analysis in endothelial cells showed that resveratrol inhibited TF expression at the level of transcription. However, resveratrol did not significantly alter the binding of the transcription factors c-Fos/c-Jun and c-Rel/p65, the transcription factors required for the induction of TF promoter in both endothelial cells and monocytes. Similarly, resveratrol had no significant effect on the binding of NF-kappaB in endothelial cells stimulated with IL-1beta, TNFalpha, and LPS. Overall, our data show that resveratrol could effectively suppress the aberrant expression of TF and cytokines in vascular cells, but it requires further investigation to understand how resveratrol exerts its inhibitory effect.

  1. Dual-Energy Micro-Computed Tomography Imaging of Radiation-Induced Vascular Changes in Primary Mouse Sarcomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moding, Everett J.; Clark, Darin P.; Qi, Yi

    2013-04-01

    Purpose: To evaluate the effects of radiation therapy on primary tumor vasculature using dual-energy (DE) micro-computed tomography (micro-CT). Methods and Materials: Primary sarcomas were generated with mutant Kras and p53. Unirradiated tumors were compared with tumors irradiated with 20 Gy. A liposomal-iodinated contrast agent was administered 1 day after treatment, and mice were imaged immediately after injection (day 1) and 3 days later (day 4) with DE micro-CT. CT-derived tumor sizes were used to assess tumor growth. After DE decomposition, iodine maps were used to assess tumor fractional blood volume (FBV) at day 1 and tumor vascular permeability at daymore » 4. For comparison, tumor vascularity and vascular permeability were also evaluated histologically by use of CD31 immunofluorescence and fluorescently-labeled dextrans. Results: Radiation treatment significantly decreased tumor growth from day 1 to day 4 (P<.05). There was a positive correlation between CT measurement of tumor FBV on day 1 and extravasated iodine on day 4 with microvascular density (MVD) on day 4 (R{sup 2}=0.53) and dextran accumulation (R{sup 2}=0.63) on day 4, respectively. Despite no change in MVD measured by histology, tumor FBV significantly increased after irradiation as measured by DE micro-CT (0.070 vs 0.091, P<.05). Both dextran and liposomal-iodine accumulation in tumors increased significantly after irradiation, with dextran fractional area increasing 5.2-fold and liposomal-iodine concentration increasing 4.0-fold. Conclusions: DE micro-CT is an effective tool for noninvasive assessment of vascular changes in primary tumors. Tumor blood volume and vascular permeability increased after a single therapeutic dose of radiation treatment.« less

  2. Arginase Inhibition Suppresses Native Low-Density Lipoprotein-Stimulated Vascular Smooth Muscle Cell Proliferation by NADPH Oxidase Inactivation.

    PubMed

    Koo, Bon Hyeock; Yi, Bong Gu; Wang, Wi Kwang; Ko, In Young; Hoe, Kwang Lae; Kwon, Young Guen; Won, Moo Ho; Kim, Young Myeong; Lim, Hyun Kyo; Ryoo, Sungwoo

    2018-05-01

    Vascular smooth muscle cell (VSMC) proliferation induced by native low-density lipoprotein (nLDL) stimulation is dependent on superoxide production from activated NADPH oxidase. The present study aimed to investigate whether the novel arginase inhibitor limonin could suppress nLDL-induced VSMC proliferation and to examine related mechanisms. Isolated VSMCs from rat aortas were treated with nLDL, and cell proliferation was measured by WST-1 and BrdU assays. NADPH oxidase activation was evaluated by lucigenin-induced chemiluminescence, and phosphorylation of protein kinase C (PKC) βII and extracellular signal-regulated kinase (ERK) 1/2 was determined by western blot analysis. Mitochondrial reactive oxygen species (ROS) generation was assessed using MitoSOX-red, and intracellular L-arginine concentrations were determined by high-performance liquid chromatography (HPLC) in the presence or absence of limonin. Limonin inhibited arginase I and II activity in the uncompetitive mode, and prevented nLDL-induced VSMC proliferation in a p21Waf1/Cip1-dependent manner without affecting arginase protein levels. Limonin blocked PKCβII phosphorylation, but not ERK1/2 phosphorylation, and translocation of p47phox to the membrane was decreased, as was superoxide production in nLDL-stimulated VSMCs. Moreover, mitochondrial ROS generation was increased by nLDL stimulation and blocked by preincubation with limonin. Mitochondrial ROS production was responsible for the phosphorylation of PKCβII. HPLC analysis showed that arginase inhibition with limonin increases intracellular L-arginine concentrations, but decreases polyamine concentrations. L-Arginine treatment prevented PKCβII phosphorylation without affecting ERK1/2 phosphorylation. Increased L-arginine levels following limonin-dependent arginase inhibition prohibited NADPH oxidase activation in a PKCβII-dependent manner, and blocked nLDL-stimulated VSMC proliferation. © Copyright: Yonsei University College of Medicine 2018.

  3. Arginase Inhibition Suppresses Native Low-Density Lipoprotein-Stimulated Vascular Smooth Muscle Cell Proliferation by NADPH Oxidase Inactivation

    PubMed Central

    Wang, Wi-Kwang; Ko, In-Young; Hoe, Kwang-Lae; Kwon, Young-Guen; Won, Moo-Ho; Kim, Young-Myeong

    2018-01-01

    Purpose Vascular smooth muscle cell (VSMC) proliferation induced by native low-density lipoprotein (nLDL) stimulation is dependent on superoxide production from activated NADPH oxidase. The present study aimed to investigate whether the novel arginase inhibitor limonin could suppress nLDL-induced VSMC proliferation and to examine related mechanisms. Materials and Methods Isolated VSMCs from rat aortas were treated with nLDL, and cell proliferation was measured by WST-1 and BrdU assays. NADPH oxidase activation was evaluated by lucigenin-induced chemiluminescence, and phosphorylation of protein kinase C (PKC) βII and extracellular signal-regulated kinase (ERK) 1/2 was determined by western blot analysis. Mitochondrial reactive oxygen species (ROS) generation was assessed using MitoSOX-red, and intracellular L-arginine concentrations were determined by high-performance liquid chromatography (HPLC) in the presence or absence of limonin. Results Limonin inhibited arginase I and II activity in the uncompetitive mode, and prevented nLDL-induced VSMC proliferation in a p21Waf1/Cip1-dependent manner without affecting arginase protein levels. Limonin blocked PKCβII phosphorylation, but not ERK1/2 phosphorylation, and translocation of p47phox to the membrane was decreased, as was superoxide production in nLDL-stimulated VSMCs. Moreover, mitochondrial ROS generation was increased by nLDL stimulation and blocked by preincubation with limonin. Mitochondrial ROS production was responsible for the phosphorylation of PKCβII. HPLC analysis showed that arginase inhibition with limonin increases intracellular L-arginine concentrations, but decreases polyamine concentrations. L-Arginine treatment prevented PKCβII phosphorylation without affecting ERK1/2 phosphorylation. Conclusion Increased L-arginine levels following limonin-dependent arginase inhibition prohibited NADPH oxidase activation in a PKCβII-dependent manner, and blocked nLDL-stimulated VSMC proliferation. PMID

  4. Dietary potassium regulates vascular calcification and arterial stiffness.

    PubMed

    Sun, Yong; Byon, Chang Hyun; Yang, Youfeng; Bradley, Wayne E; Dell'Italia, Louis J; Sanders, Paul W; Agarwal, Anupam; Wu, Hui; Chen, Yabing

    2017-10-05

    Vascular calcification is a risk factor that predicts adverse cardiovascular complications of several diseases including atherosclerosis. Reduced dietary potassium intake has been linked to cardiovascular diseases such as hypertension and incidental stroke, although the underlying molecular mechanisms remain largely unknown. Using the ApoE-deficient mouse model, we demonstrated for the first time to our knowledge that reduced dietary potassium (0.3%) promoted atherosclerotic vascular calcification and increased aortic stiffness, compared with normal (0.7%) potassium-fed mice. In contrast, increased dietary potassium (2.1%) attenuated vascular calcification and aortic stiffness. Mechanistically, reduction in the potassium concentration to the lower limit of the physiological range increased intracellular calcium, which activated a cAMP response element-binding protein (CREB) signal that subsequently enhanced autophagy and promoted vascular smooth muscle cell (VSMC) calcification. Inhibition of calcium signals and knockdown of either CREB or ATG7, an autophagy regulator, attenuated VSMC calcification induced by low potassium. Consistently, elevated autophagy and CREB signaling were demonstrated in the calcified arteries from low potassium diet-fed mice as well as aortic arteries exposed to low potassium ex vivo. These studies established a potentially novel causative role of dietary potassium intake in regulating atherosclerotic vascular calcification and stiffness, and uncovered mechanisms that offer opportunities to develop therapeutic strategies to control vascular disease.

  5. Mapping of nodal disease in locally advanced prostate cancer: Rethinking the clinical target volume for pelvic nodal irradiation based on vascular rather than bony anatomy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shih, Helen A.; Harisinghani, Mukesh; Zietman, Anthony L.

    2005-11-15

    Purpose: Toxicity from pelvic irradiation could be reduced if fields were limited to likely areas of nodal involvement rather than using the standard 'four-field box.' We employed a novel magnetic resonance lymphangiographic technique to highlight the likely sites of occult nodal metastasis from prostate cancer. Methods and Materials: Eighteen prostate cancer patients with pathologically confirmed node-positive disease had a total of 69 pathologic nodes identifiable by lymphotropic nanoparticle-enhanced MRI and semiquantitative nodal analysis. Fourteen of these nodes were in the para-aortic region, and 55 were in the pelvis. The position of each of these malignant nodes was mapped to amore » common template based on its relation to skeletal or vascular anatomy. Results: Relative to skeletal anatomy, nodes covered a diffuse volume from the mid lumbar spine to the superior pubic ramus and along the sacrum and pelvic side walls. In contrast, the nodal metastases mapped much more tightly relative to the large pelvic vessels. A proposed pelvic clinical target volume to encompass the region at greatest risk of containing occult nodal metastases would include a 2.0-cm radial expansion volume around the distal common iliac and proximal external and internal iliac vessels that would encompass 94.5% of the pelvic nodes at risk as defined by our node-positive prostate cancer patient cohort. Conclusions: Nodal metastases from prostate cancer are largely localized along the major pelvic vasculature. Defining nodal radiation treatment portals based on vascular rather than bony anatomy may allow for a significant decrease in normal pelvic tissue irradiation and its associated toxicities.« less

  6. Glycogen synthase kinase 3beta inhibition enhances repair of DNA double-strand breaks in irradiated hippocampal neurons.

    PubMed

    Yang, Eddy S; Nowsheen, Somaira; Wang, Tong; Thotala, Dinesh K; Xia, Fen

    2011-05-01

    Prevention of cranial radiation-induced morbidity following the treatment of primary and metastatic brain cancers, including long-term neurocognitive deficiencies, remains challenging. Previously, we have shown that inhibition of glycogen synthase kinase 3β (GSK3β) results in protection of hippocampal neurons from radiation (IR)-induced apoptosis and attenuation of neurocognitive dysfunction resulting from cranial IR. In this study, we examined whether regulation of the repair of IR-induced DNA damage is one of the mechanisms involved in the radioprotective effects of neurons by inhibition of GSK3β. Specifically, this study showed that inhibition of GSK3β accelerated double strand-break (DSB) repair efficiency in irradiated mouse hippocampal neurons, as assessed by the neutral comet assay. This coincided with attenuation of IR-induced γ-H2AX foci, a well characterized in situ marker of DSBs. To confirm the effect of GSK3 activity on the efficacy of DSB repair, we further demonstrated that biochemical or genetic inhibition of GSK3 activity resulted in enhanced capacity in nonhomologous end-joining-mediated repair of DSBs in hippocampal neurons. Importantly, none of these effects were observed in malignant glioma cells. Taken together, these results suggested that enhanced repair of IR-induced DNA damage may be a novel mechanism by which inhibition of GSK3β specifically protects hippocampal neurons from IR-induced apoptosis. Furthermore, these findings warrant future investigations of the molecular mechanisms underlying the role of GSK3β in the DSB repair of normal neurons and the potential clinical application of neuroprotection with GSK3β inhibitors during cranial IR.

  7. Imaging-guided preclinical trials of vascular targeting in prostate cancer

    NASA Astrophysics Data System (ADS)

    Kalmuk, James

    Purpose: Prostate cancer is the most common non-cutaneous malignancy in American men and is characterized by dependence on androgens (Testosterone/Dihydrotestosterone) for growth and survival. Although reduction of serum testosterone levels by surgical or chemical castration transiently inhibits neoplastic growth, tumor adaptation to castrate levels of androgens results in the generation of castration-resistant prostate cancer (CRPC). Progression to CRPC following androgen deprivation therapy (ADT) has been associated with changes in vascular morphology and increased angiogenesis. Based on this knowledge, we hypothesized that targeting tumor vasculature in combination with ADT would result in enhanced therapeutic efficacy against prostate cancer. Methods: To test this hypothesis, we examined the therapeutic activity of a tumor-vascular disrupting agent (tumor-VDA), EPC2407 (Crolibulin(TM)), alone and in combination with ADT in a murine model of prostate cancer (Myc-CaP). A non-invasive multimodality imaging approach based on magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and ultrasound (US) was utilized to characterize tumor response to therapy and to guide preclinical trial design. Imaging results were correlated with histopathologic (H&E) and immunohistochemical (CD31) assessment as well as tumor growth inhibition and survival analyses. Results: Our imaging techniques were able to capture an acute reduction (within 24 hours) in tumor perfusion following castration and VDA monotherapy. BLI revealed onset of recurrent disease 5-7 days post castration prior to visible tumor regrowth suggestive of vascular recovery. Administration of VDA beginning 1 week post castration for 3 weeks resulted in sustained vascular suppression, inhibition of tumor regrowth, and conferred a more pronounced survival benefit compared to either monotherapy. Conclusion: The high mortality rate associated with CRPC underscores the need for investigating novel treatment

  8. Flavonoids from the leaves of Carya cathayensis Sarg. inhibit vascular endothelial growth factor-induced angiogenesis.

    PubMed

    Tian, Sha-Sha; Jiang, Fu-Sheng; Zhang, Kun; Zhu, Xue-Xin; Jin, Bo; Lu, Jin-Jian; Ding, Zhi-Shan

    2014-01-01

    The total flavonoids (TFs) were isolated from the leaves of Carya cathayensis Sarg. (LCC), a well-known Chinese medicinal herb commercially cultivated in Tianmu Mountain district, a cross area of Zhejiang and Anhui provinces in China. Five flavonoids, i.e. cardamonin, pinostrobin chalcone (PC), wogonin, chrysin, and pinocembrin were the main components of the TFs. The TFs and these pure compounds suppressed vascular endothelial growth factor (VEGF)-induced angiogenesis as detected in the mouse aortic ring assay, and cardamonin showed the best effect among them. To further elucidate the mechanisms for suppressing angiogenesis of these flavonoids, assays of VEGF-induced proliferation and migration in human umbilical vein endothelial cells (HUVECs) were performed. The TFs, cardamonin, pinocembrin, and chrysin obviously suppressed both VEGF-induced HUVEC proliferation and migration. However, PC and wogonin not only slightly inhibited VEGF-induced proliferation but also remarkably suppressed those of migration in HUVECs. Our further study showed that cardamonin decreased the phosphorylation of ERK and AKT induced by VEGF with a dose-dependent manner in HUVECs. Our findings indicate that the TFs and these pure flavonoids may become potential preventive and/or therapeutic agents against angiogenesis-related diseases. © 2013.

  9. Involvement of glutathione/glutathione S-transferase antioxidant system in butyrate-inhibited vascular smooth muscle cell proliferation.

    PubMed

    Ranganna, Kasturi; Mathew, Omana P; Yatsu, Frank M; Yousefipour, Zivar; Hayes, Barbara E; Milton, Shirlette G

    2007-11-01

    Vascular smooth muscle cell (VSMC) proliferation is an important etiological factor in vascular proliferative diseases such as primary atherosclerosis, hypertension, arterial and in-stent restenosis, and transplant vasculopathy. Our studies established that butyrate, a bacterial fermentation product of dietary fiber and a chromatin modulator, is a potent inhibitor of VSMC proliferation. The cardiovascular health benefits of a high-fiber diet, the principle source of butyrate in the body, have been known for a long time, however, very little is known about the antiatherogenic potential of butyrate. Because oxidative stress plays an important role in the pathogenesis of atherosclerosis, we examined involvement of the glutathione/glutathione S-transferase (GST) antioxidant system in butyrate's inhibition of VSMC proliferation. Treatment of proliferating VSMCs with butyrate leads to the induction of several GSTs. Interestingly, our study also demonstrated the nuclear localization of GST-P1 (GST-7-7), which is considered to be a cytosolic protein; this was demonstrated using immunostaining and was corroborated by western blotting. Also, the butyrate-induced antiproliferative action, and the induction of GST-P1 and its nuclear localization are downregulated when butyrate is withdrawn. Furthermore, assessment of intracellular glutathione levels reveals their augmentation by butyrate. Conversely, butyrate treatment reduces the levels of reactive oxygen species in VSMCs. Collectively, the butyrate-treatment-related increase in glutathione content, the reduction in reactive oxygen species, the upregulation of GST and the nuclear localization of GST-P1 in growth-arrested VSMCs imply that butyrate's antiproliferative action involves modulation of the cellular redox state. Thus, induction of the glutathione/GST antioxidant system appears to have other regulatory role(s) besides detoxification and regulation of the cellular redox state, for example, cell-cycle control and cell

  10. Ankyrin-G Inhibits Endocytosis of Cadherin Dimers.

    PubMed

    Cadwell, Chantel M; Jenkins, Paul M; Bennett, Vann; Kowalczyk, Andrew P

    2016-01-08

    Dynamic regulation of endothelial cell adhesion is central to vascular development and maintenance. Furthermore, altered endothelial adhesion is implicated in numerous diseases. Therefore, normal vascular patterning and maintenance require tight regulation of endothelial cell adhesion dynamics. However, the mechanisms that control junctional plasticity are not fully understood. Vascular endothelial cadherin (VE-cadherin) is an adhesive protein found in adherens junctions of endothelial cells. VE-cadherin mediates adhesion through trans interactions formed by its extracellular domain. Trans binding is followed by cis interactions that laterally cluster the cadherin in junctions. VE-cadherin is linked to the actin cytoskeleton through cytoplasmic interactions with β- and α-catenin, which serve to increase adhesive strength. Furthermore, p120-catenin binds to the cytoplasmic tail of cadherin and stabilizes it at the plasma membrane. Here we report that induced cis dimerization of VE-cadherin inhibits endocytosis independent of both p120 binding and trans interactions. However, we find that ankyrin-G, a protein that links membrane proteins to the spectrin-actin cytoskeleton, associates with VE-cadherin and inhibits its endocytosis. Ankyrin-G inhibits VE-cadherin endocytosis independent of p120 binding. We propose a model in which ankyrin-G associates with and inhibits the endocytosis of VE-cadherin cis dimers. Our findings support a novel mechanism for regulation of VE-cadherin endocytosis through ankyrin association with cadherin engaged in lateral interactions. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Plant Photosynthesis-Irradiance Curve Responses to Pollution Show Non-Competitive Inhibited Michaelis Kinetics

    PubMed Central

    Lin, Maozi; Wang, Zhiwei; He, Lingchao; Xu, Kang; Cheng, Dongliang; Wang, Genxuan

    2015-01-01

    Photosynthesis-irradiance (PI) curves are extensively used in field and laboratory research to evaluate the photon-use efficiency of plants. However, most existing models for PI curves focus on the relationship between the photosynthetic rate (Pn) and photosynthetically active radiation (PAR), and do not take account of the influence of environmental factors on the curve. In the present study, we used a new non-competitive inhibited Michaelis-Menten model (NIMM) to predict the co-variation of Pn, PAR, and the relative pollution index (I). We then evaluated the model with published data and our own experimental data. The results indicate that the Pn of plants decreased with increasing I in the environment and, as predicted, were all fitted well by the NIMM model. Therefore, our model provides a robust basis to evaluate and understand the influence of environmental pollution on plant photosynthesis. PMID:26561863

  12. c-Met–mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma

    PubMed Central

    Huang, Menggui; Liu, Tianrun; Ma, Peihong; Mitteer, R. Alan; Zhang, Zhenting; Kim, Hyun Jun; Yeo, Eujin; Zhang, Duo; Cai, Peiqiang; Li, Chunsheng; Zhang, Lin; Zhao, Botao; Roccograndi, Laura; O’Rourke, Donald M.; Dahmane, Nadia; Gong, Yanqing; Koumenis, Constantinos

    2016-01-01

    Aberrant vascularization is a hallmark of cancer progression and treatment resistance. Here, we have shown that endothelial cell (EC) plasticity drives aberrant vascularization and chemoresistance in glioblastoma multiforme (GBM). By utilizing human patient specimens, as well as allograft and genetic murine GBM models, we revealed that a robust endothelial plasticity in GBM allows acquisition of fibroblast transformation (also known as endothelial mesenchymal transition [Endo-MT]), which is characterized by EC expression of fibroblast markers, and determined that a prominent population of GBM-associated fibroblast-like cells have EC origin. Tumor ECs acquired the mesenchymal gene signature without the loss of EC functions, leading to enhanced cell proliferation and migration, as well as vessel permeability. Furthermore, we identified a c-Met/ETS-1/matrix metalloproteinase–14 (MMP-14) axis that controls VE-cadherin degradation, Endo-MT, and vascular abnormality. Pharmacological c-Met inhibition induced vessel normalization in patient tumor–derived ECs. Finally, EC-specific KO of Met inhibited vascular transformation, normalized blood vessels, and reduced intratumoral hypoxia, culminating in suppressed tumor growth and prolonged survival in GBM-bearing mice after temozolomide treatment. Together, these findings illustrate a mechanism that controls aberrant tumor vascularization and suggest that targeting Endo-MT may offer selective and efficient strategies for antivascular and vessel normalization therapies in GBM, and possibly other malignant tumors. PMID:27043280

  13. Resveratrol inhibits proteinase-activated receptor-2-induced release of soluble vascular endothelial growth factor receptor-1 from human endothelial cells

    PubMed Central

    Al-Ani, Bahjat

    2013-01-01

    We recently reported that (i) activation of the proinflammatory receptor, proteinase-activated receptor-2 (PAR-2) caused the release of an important biomarker in preeclampsia, soluble vascular endothelial growth factor receptor-1 (sVEGFR-1, also known as sFlt-1) from human umbilical vein endothelial cells (HUVECs), and (ii) that the anti-oxidant and anti-inflammatory agent, resveratrol, is capable of inhibiting the proinflammatory cytokine-induced sVEGFR-1 release from human placenta. Based on these findings and because PAR-2 is upregulated by proinflammatory cytokines, we sought to determine whether resveratrol can inhibit PAR-2-induced sVEGFR-1 release. PAR-2 expressing cells, HUVECs and human embryonic kidney cells (HEK-293) transfected with a human VEGFR-1 promoter-luciferase reporter construct were incubated with PAR-2-activating peptide and/or resveratrol. Cell supernatants were assayed for sVEGFR-1 by enzyme-linked immunosorbent assay (ELISA), and VEGFR-1 promoter-luciferase assay was performed on the harvested cell lysates. Preincubation of HEK-293 cells with resveratrol significantly inhibited PAR-2-induced VEGFR-1 promoter activity without affecting cell viability as assessed by MTT assay. The addition of resveratrol also blocked PAR-2-mediated sVEGFR-1 release from HUVECs. The present study demonstrates that resveratrol suppressed both VEGFR-1 promoter activity and sVEGFR-1 protein release induced by PAR-2 activation, which further endorses our recent findings of a potential therapeutic role for resveratrol in preeclampsia. PMID:26933402

  14. Transcriptional up-regulation of antioxidant genes by PPAR{delta} inhibits angiotensin II-induced premature senescence in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Hyo Jung; Ham, Sun Ah; Paek, Kyung Shin

    2011-03-25

    Research highlights: {yields} Activation of PPAR{delta} by GW501516 significantly inhibited Ang II-induced premature senescence in hVSMCs. {yields} Agonist-activated PPAR{delta} suppressed generation of Ang II-triggered ROS with a concomitant reduction in DNA damage. {yields} GW501516 up-regulated expression of antioxidant genes, such as GPx1, Trx1, Mn-SOD and HO-1. {yields} Knock-down of these antioxidant genes abolished the effects of GW501516 on ROS production and premature senescence. -- Abstract: This study evaluated peroxisome proliferator-activated receptor (PPAR) {delta} as a potential target for therapeutic intervention in Ang II-induced senescence in human vascular smooth muscle cells (hVSMCs). Activation of PPAR{delta} by GW501516, a specific agonist ofmore » PPAR{delta}, significantly inhibited the Ang II-induced premature senescence of hVSMCs. Agonist-activated PPAR{delta} suppressed the generation of Ang II-triggered reactive oxygen species (ROS) with a concomitant reduction in DNA damage. Notably, GW501516 up-regulated the expression of antioxidant genes, such as glutathione peroxidase 1, thioredoxin 1, manganese superoxide dismutase and heme oxygenase 1. siRNA-mediated down-regulation of these antioxidant genes almost completely abolished the effects of GW501516 on ROS production and premature senescence in hVSMCs treated with Ang II. Taken together, the enhanced transcription of antioxidant genes is responsible for the PPAR{delta}-mediated inhibition of premature senescence through sequestration of ROS in hVSMCs treated with Ang II.« less

  15. Protein Kinase C as Regulator of Vascular Smooth Muscle Function and Potential Target in Vascular Disorders.

    PubMed

    Ringvold, H C; Khalil, R A

    2017-01-01

    Vascular smooth muscle (VSM) plays an important role in maintaining vascular tone. In addition to Ca 2+ -dependent myosin light chain (MLC) phosphorylation, protein kinase C (PKC) is a major regulator of VSM function. PKC is a family of conventional Ca 2+ -dependent α, β, and γ, novel Ca 2+ -independent δ, ɛ, θ, and η, and atypical ξ, and ι/λ isoforms. Inactive PKC is mainly cytosolic, and upon activation it undergoes phosphorylation, maturation, and translocation to the surface membrane, the nucleus, endoplasmic reticulum, and other cell organelles; a process facilitated by scaffold proteins such as RACKs. Activated PKC phosphorylates different substrates including ion channels, pumps, and nuclear proteins. PKC also phosphorylates CPI-17 leading to inhibition of MLC phosphatase, increased MLC phosphorylation, and enhanced VSM contraction. PKC could also initiate a cascade of protein kinases leading to phosphorylation of the actin-binding proteins calponin and caldesmon, increased actin-myosin interaction, and VSM contraction. Increased PKC activity has been associated with vascular disorders including ischemia-reperfusion injury, coronary artery disease, hypertension, and diabetic vasculopathy. PKC inhibitors could test the role of PKC in different systems and could reduce PKC hyperactivity in vascular disorders. First-generation PKC inhibitors such as staurosporine and chelerythrine are not very specific. Isoform-specific PKC inhibitors such as ruboxistaurin have been tested in clinical trials. Target delivery of PKC pseudosubstrate inhibitory peptides and PKC siRNA may be useful in localized vascular disease. Further studies of PKC and its role in VSM should help design isoform-specific PKC modulators that are experimentally potent and clinically safe to target PKC in vascular disease. © 2017 Elsevier Inc. All rights reserved.

  16. Vascular effects of wine polyphenols.

    PubMed

    Dell'Agli, Mario; Buscialà, Alessandra; Bosisio, Enrica

    2004-09-01

    Moderate consumption of red wine has been putatively associated with lowering the risk of developing coronary heart disease. This beneficial effect is mainly attributed to the occurrence of polyphenol compounds such as anthocyanosides (ACs), catechins, proanthocyanidins (PAs), stilbenes and other phenolics in red wine. This review focuses on the vascular effects of red wine polyphenols (RWPs), with emphasis on anthocyanosides and proanthocyanidins. From in vitro studies, the effect of red wine polyphenols on the vascular tone is thought to be due to short- and long-term mechanisms. NO-mediated vasorelaxation represents the short-term response to wine polyphenols, which exert the effect by increasing the influx of extracellular Ca(2+), and the mobilization of intracellular Ca(2+) in endothelial cells. Polyphenolic compounds may also have long-term properties, as they increase endothelial NO synthase expression acting on the promoter activity. In addition, they decrease the expression of adhesion molecules and growth factors, involved in migration and proliferation of vascular smooth muscle cells. Moreover, they inhibit platelet aggregation. However, a paucity of data as regards the bioavailability and metabolism of these compounds in human studies is a limiting factor to proving their efficacy in vivo.

  17. Carbon Ion Radiation Inhibits Glioma and Endothelial Cell Migration Induced by Secreted VEGF

    PubMed Central

    Liu, Yang; Liu, Yuanyuan; Sun, Chao; Gan, Lu; Zhang, Luwei; Mao, Aihong; Du, Yuting; Zhou, Rong; Zhang, Hong

    2014-01-01

    This study evaluated the effects of carbon ion and X-ray radiation and the tumor microenvironment on the migration of glioma and endothelial cells, a key process in tumorigenesis and angiogenesis during cancer progression. C6 glioma and human microvascular endothelial cells were treated with conditioned medium from cultures of glioma cells irradiated at a range of doses and the migration of both cell types, tube formation by endothelial cells, as well as the expression and secretion of migration-related proteins were evaluated. Exposure to X-ray radiation-conditioned medium induced dose-dependent increases in cell migration and tube formation, which were accompanied by an upregulation of vascular endothelial growth factor (VEGF) and matrix metalloproteinase (MMP)-2 and -9 expression. However, glioma cells treated with conditioned medium of cells irradiated at a carbon ion dose of 4.0 Gy showed a marked decrease in migratory potential and VEGF secretion relative to non-irradiated cells. The application of recombinant VEGF165 stimulated migration in glioma and endothelial cells, which was associated with increased FAK phosphorylation at Tyr861, suggesting that the suppression of cell migration by carbon ion radiation could be via VEGF-activated FAK signaling. Taken together, these findings indicate that carbon ion may be superior to X-ray radiation for inhibiting tumorigenesis and angiogenesis through modulation of VEGF level in the glioma microenvironment. PMID:24893038

  18. Forskolin modifies retinal vascular development in Mrp4-knockout mice.

    PubMed

    Matsumiya, Wataru; Kusuhara, Sentaro; Hayashibe, Keiko; Maruyama, Kazuichi; Kusuhara, Hiroyuki; Tagami, Mizuki; Schuetz, John D; Negi, Akira

    2012-12-07

    Multidrug resistance protein 4 (MRP4) effluxes a wide variety of endogenous compounds, including cyclic adenosine monophosphate (cAMP), and is exclusively expressed in vascular endothelial cells (ECs) of the retina. This study aimed to investigate the role of MRP4 in retinal vascular development. The retinal vascular phenotype of Mrp4(-/-) mice was examined by whole-mount immunohistochemistry at P3, P6, and P14. The retinas from P6 pups that received an intraperitoneal injection of either solvent control or forskolin, an inducer of intracellular cAMP formation, at P4 and P5 were analyzed in terms of their vascular formation (vascular length, vascular branching, vascular density, and the number of tip cells), cell proliferation and apoptosis, and vessel stability. The Mrp4(-/-) mice exhibited no overt abnormalities in the development of the retinal vasculature, but retinal vascular development in the Mrp4(-/-) mice was suppressed in response to forskolin administration. There was a significant decrease in the vascular length, vascular branching, and vascular density, and inhibited tip cell formation at the vascular front. The forskolin-treated Mrp4(-/-) mice showed an increased number of Ki67-positive and cleaved caspase 3-positive ECs, a significant decrease in the amount of pericyte coverage, and a reduced number of empty sleeves. In pups exposed to hyperoxia (75% oxygen) from P7 to P12, the Mrp4(-/-) mice showed a significant increase in the unvascularized retinal area. Mrp4(-/-) mice exhibited suppressed retinal vascular development in response to forskolin treatment. Thus, Mrp4 might have protective roles in retinal vascular development by regulating the intracellular cAMP level.

  19. Rivastigmine: the advantages of dual inhibition of acetylcholinesterase and butyrylcholinesterase and its role in subcortical vascular dementia and Parkinson’s disease dementia

    PubMed Central

    Kandiah, Nagaendran; Pai, Ming-Chyi; Senanarong, Vorapun; Looi, Irene; Ampil, Encarnita; Park, Kyung Won; Karanam, Ananda Krishna; Christopher, Stephen

    2017-01-01

    Several studies have demonstrated clinical benefits of sustained cholinesterase inhibition with rivastigmine in Alzheimer’s disease (AD) and Parkinson’s disease dementia (PDD). Unlike donepezil and galantamine that selectively inhibit acetylcholinesterase (AChE; EC 3.1.1.7), rivastigmine is a unique cholinesterase inhibitor with both AChE and butyrylcholinesterase (BuChE; EC 3.1.1.8) inhibitory activity. Rivastigmine is also available as transdermal patch that has been approved by the US Food and Drug Administration for the treatment of mild, moderate, and severe AD as well as mild-to-moderate PDD. In this review, we explore the role of BuChE inhibition in addition to AChE inhibition with rivastigmine in the outcomes of cognition, global function, behavioral symptoms, and activities of daily living. Additionally, we review the evidence supporting the use of dual AChE−BuChE inhibitory activity of rivastigmine as a therapeutic strategy in the treatment of neurological disorders, with a focus on the role of rivastigmine in subcortical dementias such as vascular dementia (VaD) and PDD. Toward this objective, we performed a literature search in PubMed and Ovid with limits to articles published in the English language before June 2016. The available evidence from the literature suggests that the dual inhibition of AChE and BuChE may afford additional therapeutic potential of rivastigmine in subcortical dementias (subcortical VaD and PDD) with benefits on cognition and behavioral symptoms. Rivastigmine was found to specifically benefit executive dysfunction frequently observed in subcortical dementias; however, large randomized clinical studies are warranted to support these observations. PMID:28458525

  20. Trivalent chromium inhibits TSP-1 expression, proliferation, and O-GlcNAc signaling in vascular smooth muscle cells in response to high glucose in vitro.

    PubMed

    Ganguly, Rituparna; Sahu, Soumyadip; Chavez, Ronaldo J; Raman, Priya

    2015-01-15

    Trivalent chromium (Cr(3+)) is a mineral nutrient reported to have beneficial effects in glycemic and cardiovascular health. In vitro and in vivo studies suggest that Cr(3+) supplementation reduces the atherogenic potential and lowers the risk of vascular inflammation in diabetes. However, effects of Cr(3+) in vascular cells under conditions of hyperglycemia, characteristic of diabetes, remain unknown. In the present study we show that a therapeutically relevant concentration of Cr(3+) (100 nM) significantly downregulates a potent proatherogenic matricellular protein, thrombospondin-1 (TSP-1), in human aortic smooth muscle cells (HASMC) stimulated with high glucose in vitro. Promoter-reporter assays reveal that this downregulation of TSP-1 expression by Cr(3+) occurs at the level of transcription. The inhibitory effects of Cr(3+) on TSP-1 were accompanied by significant reductions in O-glycosylation of cytoplasmic and nuclear proteins. Using Western blotting and immunofluorescence studies, we demonstrate that reduced protein O-glycosylation by Cr(3+) is mediated via inhibition of glutamine: fructose 6-phosphate amidotransferase, a rate-limiting enzyme of the hexosamine pathway, and O-linked N-acetylglucosamine (O-GlcNAc) transferase, a distal enzyme in the pathway that controls intracellular protein O-glycosylation. Additionally, we found that Cr(3+) attenuates reactive oxygen species formation in glucose-stimulated HASMC, suggesting an antioxidant effect. Finally, we report an antiproliferative effect of Cr(3+) that is specific for high glucose and conditions triggering elevated protein O-glycosylation. Taken together, these findings provide the first cellular evidence for a novel role of Cr(3+) to modulate aberrant vascular smooth muscle cell function associated with hyperglycemia-induced vascular complications. Copyright © 2015 the American Physiological Society.

  1. Myricetin inhibits UVB-induced angiogenesis by regulating PI-3 kinase in vivo

    PubMed Central

    Jung, Sung Keun; Lee, Ki Won; Byun, Sanguine; Lee, Eun Jung; Kim, Jong-Eun; Bode, Ann M.; Dong, Zigang

    2010-01-01

    Myricetin is one of the principal phytochemicals in onions, berries and red wine. Previous studies showed that myricetin exhibits potent anticancer and chemopreventive effects. The present study examined the effect of myricetin on ultraviolet (UV) B-induced angiogenesis in an SKH-1 hairless mouse skin tumorigenesis model. Topical treatment with myricetin inhibited repetitive UVB-induced neovascularization in SKH-1 hairless mouse skin. The induction of vascular endothelial growth factor, matrix metalloproteinase (MMP)-9 and MMP-13 expression by chronic UVB irradiation was significantly suppressed by myricetin treatment. Immunohistochemical and western blot analyses revealed that myricetin inhibited UVB-induced hypoxia inducible factor-1α expression in mouse skin. Western blot analysis and kinase assay data revealed that myricetin suppressed UVB-induced phosphatidylinositol-3 (PI-3) kinase activity and subsequently attenuated the UVB-induced phosphorylation of Akt/p70S6K in mouse skin lysates. A pull-down assay revealed the direct binding of PI-3 kinase and myricetin in mouse skin lysates. Our results indicate that myricetin suppresses UVB-induced angiogenesis by regulating PI-3 kinase activity in vivo in mouse skin. PMID:20008033

  2. Melatonin prevents human pancreatic carcinoma cell PANC-1-induced human umbilical vein endothelial cell proliferation and migration by inhibiting vascular endothelial growth factor expression.

    PubMed

    Cui, Peilin; Yu, Minghua; Peng, Xingchun; Dong, Lv; Yang, Zhaoxu

    2012-03-01

    Melatonin is an important natural oncostatic agent, and our previous studies have found its inhibitory action on tumor angiogenesis, but the mechanism remains unclear. It is well known that vascular endothelial growth factor (VEGF) plays key roles in tumor angiogenesis and has become an important target for antitumor therapy. Pancreatic cancer is a representative of the most highly vascularized and angiogenic solid tumors, which responds poorly to chemotherapy and radiation. Thus, seeking new treatment strategies targeting which have anti-angiogenic capability is urgent in clinical practice. In this study, a co-culture system between human umbilical vein endothelial cells (HUVECs) and pancreatic carcinoma cells (PANC-1) was used to investigate the direct effect of melatonin on the tumor angiogenesis and its possible action on VEGF expression. We found HUVECs exhibited an increased cell proliferation and cell migration when co-cultured with PANC-1 cells, but the process was prevented when melatonin added to the incubation medium. Melatonin at concentrations of 1 μm and 1 mm inhibited the cell proliferation and migration of HUVECs and also decreased both the VEGF protein secreted to the cultured medium and the protein produced by the PANC-1 cells. In addition, the VEGF mRNA expression was also down-regulated by melatonin. Taken together, our present study shows that melatonin at pharmacological concentrations inhibited the elevated cell proliferation and cell migration of HUVECs stimulated by co-culturing them with PANC-1 cells; this was associated with a suppression of VEGF expression in PANC-1 cells. © 2011 John Wiley & Sons A/S.

  3. Endothelial progenitor cells bind and inhibit platelet function and thrombus formation.

    PubMed

    Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye

    2009-12-01

    Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride-induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Peripheral blood mononuclear cell-derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential roles in regulating platelet function and

  4. Dietary potassium regulates vascular calcification and arterial stiffness

    PubMed Central

    Sun, Yong; Byon, Chang Hyun; Yang, Youfeng; Bradley, Wayne E.; Dell’Italia, Louis J.; Agarwal, Anupam; Wu, Hui

    2017-01-01

    Vascular calcification is a risk factor that predicts adverse cardiovascular complications of several diseases including atherosclerosis. Reduced dietary potassium intake has been linked to cardiovascular diseases such as hypertension and incidental stroke, although the underlying molecular mechanisms remain largely unknown. Using the ApoE-deficient mouse model, we demonstrated for the first time to our knowledge that reduced dietary potassium (0.3%) promoted atherosclerotic vascular calcification and increased aortic stiffness, compared with normal (0.7%) potassium–fed mice. In contrast, increased dietary potassium (2.1%) attenuated vascular calcification and aortic stiffness. Mechanistically, reduction in the potassium concentration to the lower limit of the physiological range increased intracellular calcium, which activated a cAMP response element–binding protein (CREB) signal that subsequently enhanced autophagy and promoted vascular smooth muscle cell (VSMC) calcification. Inhibition of calcium signals and knockdown of either CREB or ATG7, an autophagy regulator, attenuated VSMC calcification induced by low potassium. Consistently, elevated autophagy and CREB signaling were demonstrated in the calcified arteries from low potassium diet–fed mice as well as aortic arteries exposed to low potassium ex vivo. These studies established a potentially novel causative role of dietary potassium intake in regulating atherosclerotic vascular calcification and stiffness, and uncovered mechanisms that offer opportunities to develop therapeutic strategies to control vascular disease. PMID:28978809

  5. Tolerance to Vascularized Composite Allografts in Canine Mixed Hematopoietic Chimeras

    PubMed Central

    Mathes, David W.; Hwang, Billanna; Graves, Scott S.; Edwards, James; Chang, Jeff; Storer, Barry E.; Butts-Miwongtum, Tiffany; Sale, George E.; Nash, Richard A.; Storb, Rainer.

    2012-01-01

    Background Mixed donor-host chimerism, established through hematopoietic cell transplantation (HCT), is a highly reproducible strategy for the induction of tolerance towards solid organs. Here, we ask whether a nonmyeloablative conditioning regimen establishing mixed donor-host chimerism leads to tolerance of highly antigenic vascularized composite allografts. Methods Stable mixed chimerism was established in dogs given a sublethal dose (1–2 Gy) total body irradiation before and a short course of immunosuppression after dog leukocyte antigen-identical marrow transplantation. Vascularized composite allografts from marrow donors were performed after a median of 36 (range 4-54) months after HCT. Results All marrow recipients maintained mixed donor-host hematopoietic chimerism and accepted composite tissue grafts for periods ranging between 52 and 90 weeks; in turn, marrow donors rejected vascularized composite allografts from their respective marrow recipients within 18–29 days. Biopsies of muscle and skin of vascularized composite allografts from mixed chimeras showed few infiltrating cells compared to extensive infiltrates in biopsies of vascularized composite allografts from marrow donors. Elevated levels of CD3+ FoxP3+ T-regulatory cells were found in skin and muscle of vascularized composite allografts of mixed chimeras compared to normal tissues. In mixed chimeras, increased numbers of T-regulatory cells were found in draining compared to non-draining lymph nodes of vascularized composite allografts. Conclusion These data suggest that nonmyeloablative HCT may form the basis for future clinical applications of solid organ transplantation and that T-regulatory cells may function towards maintenance of the vascularized composite allograft. PMID:22082819

  6. Distinctions in manifestation of the hemorrhagic syndrome related to chronic, long-term and acute irradiation. [Rats;. gamma. rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arlashchenko, N.I.; Gorlov, V.G.; Maksimova, E.N.

    Two phenomena, decrease in strength of the vascular wall and decreased amount of thrombocytes in blood, must coincide for manifestation of the hemorrhagic syndrome. Either almost simultaneous injury to the vascular wall and thrombocyte function (with acute irradiation) or dissociation of these two processes (with long-term irradiation) may be observed, depending on the radiation dose. Chronic exposure at low (subliminal) dose rates does not elicit hemorrhagic manifestations or death of rats due to pathological bleeding.

  7. Tumoral and Choroidal Vascularization

    PubMed Central

    Jost, Maud; Maillard, Catherine; Lecomte, Julie; Lambert, Vincent; Tjwa, Marc; Blaise, Pierre; Alvarez Gonzalez, Maria-Luz; Bajou, Khalid; Blacher, Silvia; Motte, Patrick; Humblet, Chantal; Defresne, Marie Paule; Thiry, Marc; Frankenne, Francis; Gothot, André; Carmeliet, Peter; Rakic, Jean-Marie; Foidart, Jean-Michel; Noël, Agnès

    2007-01-01

    An adequate balance between serine proteases and their plasminogen activator inhibitor-1 (PAI-1) is critical for pathological angiogenesis. PAI-1 deficiency in mice is associated with impaired choroidal neovascularization (CNV) and tumoral angiogenesis. In the present work, we demonstrate unexpected differences in the contribution of bone marrow (BM)-derived cells in these two processes regulated by PAI-1. PAI-1−/− mice grafted with BM-derived from wild-type mice were able to support laser-induced CNV formation but not skin carcinoma vascularization. Engraftment of irradiated wild-type mice with PAI-1−/− BM prevented CNV formation, demonstrating the crucial role of PAI-1 delivered by BM-derived cells. In contrast, the transient infiltration of tumor transplants by local PAI-1-producing host cells rather than by BM cells was sufficient to rescue tumor growth and angiogenesis in PAI-1-deficient mice. These data identify PAI-1 as a molecular determinant of a local permissive soil for tumor angiogenesis. Altogether, the present study demonstrates that different cellular mechanisms contribute to PAI-1-regulated tumoral and CNV. PAI-1 contributes to BM-dependent choroidal vascularization and to BM-independent tumor growth and angiogenesis. PMID:17717143

  8. Acute effects of pulsed-laser irradiation on the arterial wall

    NASA Astrophysics Data System (ADS)

    Nakamura, Fumitaka; Kvasnicka, Jan; Lu, Hanjiang; Geschwind, Herbert J.; Levame, Micheline; Bousbaa, Hassan; Lange, Francoise

    1992-08-01

    Pulsed laser coronary angioplasty with an excimer or a holmium-yttrium-aluminum-garnet (Ho:YAG) laser may become an alternative treatment for patients with coronary artery disease. However, little is known about its acute consequences on the normal arterial wall. This study was designed to examine the acute histologic consequences of these two pulsed lasers on the arterial wall of normal iliac arteries in rabbits. Irradiation with each laser was performed in 15 normal iliac sites on eight male New Zealand white rabbits. The excimer laser was operated at 308 nm, 25 Hz, 50 mJ/mm2/pulse, and 135 nsec/pulse and the Ho:YAG laser was operated at 2.1 micrometers , 3/5 Hz, 400 mJ/pulse, and 250 microsecond(s) ec/pulse. The excimer and Ho:YAG laser were coupled into a multifiber wire-guided catheter of 1.4 and 1.5 mm diameter, respectively. The sites irradiated with excimer or Ho:YAG laser had the same kinds of histologic features, consisting of exfoliation of the endothelium, disorganization of internal elastic lamina, localized necrosis of vascular smooth muscle cells, and fissures in the medial layer. However, the sites irradiated with excimer laser had lower grading scores than those irradiated with Ho:YAG laser (p < 0.05). Laser irradiation with excimer or Ho:YAG laser of normal arteries results in localized mechanical vascular injury.

  9. Molecular mechanisms for vascular complications of targeted cancer therapies.

    PubMed

    Gopal, Srila; Miller, Kenneth B; Jaffe, Iris Z

    2016-10-01

    Molecularly targeted anti-cancer therapies have revolutionized cancer treatment by improving both quality of life and survival in cancer patients. However, many of these drugs are associated with cardiovascular toxicities that are sometimes dose-limiting. Moreover, the long-term cardiovascular consequences of these drugs, some of which are used chronically, are not yet known. Although the scope and mechanisms of the cardiac toxicities are better defined, the mechanisms for vascular toxicities are only beginning to be elucidated. This review summarizes what is known about the vascular adverse events associated with three classes of novel anti-cancer therapies: vascular endothelial growth factor (VEGF) inhibitors, breakpoint cluster-Abelson (BCR-ABL) kinase inhibitors used to treat chronic myelogenous leukaemia (CML) and immunomodulatory agents (IMiDs) used in myeloma therapeutics. Three of the best described vascular toxicities are reviewed including hypertension, increased risk of acute cardiovascular ischaemic events and arteriovenous thrombosis. The available data regarding the mechanism by which each therapy causes vascular complication are summarized. When data are limited, potential mechanisms are inferred from the known effects of inhibiting each target on vascular cell function and disease. Enhanced understanding of the molecular mechanisms of vascular side effects of targeted cancer therapy is necessary to effectively manage cancer patients and to design safer targeted cancer therapies for the future. © 2016 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  10. Vascular ATP-sensitive potassium channels are over-expressed and partially regulated by nitric oxide in experimental septic shock.

    PubMed

    Collin, Solène; Sennoun, Nacira; Dron, Anne-Gaëlle; de la Bourdonnaye, Mathilde; Montemont, Chantal; Asfar, Pierre; Lacolley, Patrick; Meziani, Ferhat; Levy, Bruno

    2011-05-01

    To study the activation and expression of vascular (aorta and small mesenteric arteries) potassium channels during septic shock with or without modulation of the NO pathway. Septic shock was induced in rats by peritonitis. Selective inhibitors of vascular K(ATP) (PNU-37883A) or BK(Ca) [iberiotoxin (IbTX)] channels were used to demonstrate their involvement in vascular hyporeactivity. Vascular response to phenylephrine was measured on aorta and small mesenteric arteries mounted on a wire myograph. Vascular expression of potassium channels was studied by PCR and Western blot, in the presence or absence of 1400W, an inducible NO synthase (iNOS) inhibitor. Aortic activation of the transcriptional factor nuclear factor-kappaB (NF-κB) was assessed by electrophoretic mobility shift assay. Arterial pressure as well as in vivo and ex vivo vascular reactivity were reduced by sepsis and improved by PNU-37883A but not by IbTX. Sepsis was associated with an up-regulation of mRNA and protein expression of vascular K(ATP) channels, while expression of vascular BK(Ca) channels remained unchanged. Selective iNOS inhibition blunted the sepsis-induced increase in aortic NO, decreased NF-κB activation, and down-regulated vascular K(ATP) channel expression. Vascular K(ATP) but not BK(Ca) channels are activated, over-expressed, and partially regulated by NO via NF-κB activation during septic shock. Their selective inhibition restores arterial pressure and vascular reactivity and decreases lactate concentration. The present data suggest that selective vascular K(ATP) channel inhibitors offer potential therapeutic perspectives for septic shock.

  11. Endothelial dysfunction impairs vascular neurotransmission in tail arteries.

    PubMed

    Sousa, Joana B; Fresco, Paula; Diniz, Carmen

    2015-01-01

    The present study intends to clarify if endothelium dysfunction impairs vascular sympathetic neurotransmission. Electrically-evoked tritium overflow (100 pulses/5 Hz) was evaluated in arteries (intact and denuded) or exhibiting some degree of endothelium dysfunction (spontaneously hypertensive arteries), pre-incubated with [(3)H]-noradrenaline in the presence of enzymes (nitric oxide synthase (NOS); nicotinamide adenine dinucleotide phosphate (NADPH) oxidase; xanthine oxidase; cyclooxygenase; adenosine kinase) inhibitors and a nucleoside transporter inhibitor. Inhibition of endothelial nitric oxide synthase with L-NIO dihydrochloride reduced tritium overflow in intact arteries whereas inhibition of neuronal nitric oxide synthase with Nω-Propyl-L-arginine hydrochloride was devoid of effect showing that only endothelial nitric oxide synthase is involved in vascular sympathetic neuromodulation. Inhibition of enzymes involved in reactive oxygen species or prostaglandins production with apocynin and allopurinol or indomethacin, respectively, failed to alter tritium overflow. A facilitation or reduction of tritium overflow was observed in the presence of 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) or of 5-iodotubericidin, respectively, but only in intact arteries. These effects can be ascribed to a tonic inhibitory effect mediated by A1 receptors. In denuded and hypertensive arteries, 7-(2-phenylethyl)-5-amino-2-(2-furyl)-pyrazolo-[4,3-e]-1,2,4-triazolo[1,5-c] pyrimidine (SCH 58261) reduced tritium overflow, suggesting the occurrence of a tonic activation of A2A receptors. When endogenous adenosine bioavailability was increased by the nucleoside transporter inhibitor, S-(4-Nitrobenzyl)-6-thioinosine, tritium overflow increased in intact, denuded and hypertensive arteries. Among the endothelium-derived substances studied that could alter vascular sympathetic transmission only adenosine/adenosine receptor mediated mechanisms were clearly impaired by endothelium injury

  12. Forskolin Modifies Retinal Vascular Development in Mrp4-Knockout Mice

    PubMed Central

    Matsumiya, Wataru; Kusuhara, Sentaro; Hayashibe, Keiko; Maruyama, Kazuichi; Kusuhara, Hiroyuki; Tagami, Mizuki; Schuetz, John D.; Negi, Akira

    2012-01-01

    Purpose. Multidrug resistance protein 4 (MRP4) effluxes a wide variety of endogenous compounds, including cyclic adenosine monophosphate (cAMP), and is exclusively expressed in vascular endothelial cells (ECs) of the retina. This study aimed to investigate the role of MRP4 in retinal vascular development. Methods. The retinal vascular phenotype of Mrp4−/− mice was examined by whole-mount immunohistochemistry at P3, P6, and P14. The retinas from P6 pups that received an intraperitoneal injection of either solvent control or forskolin, an inducer of intracellular cAMP formation, at P4 and P5 were analyzed in terms of their vascular formation (vascular length, vascular branching, vascular density, and the number of tip cells), cell proliferation and apoptosis, and vessel stability. Results. The Mrp4−/− mice exhibited no overt abnormalities in the development of the retinal vasculature, but retinal vascular development in the Mrp4−/− mice was suppressed in response to forskolin administration. There was a significant decrease in the vascular length, vascular branching, and vascular density, and inhibited tip cell formation at the vascular front. The forskolin-treated Mrp4−/− mice showed an increased number of Ki67-positive and cleaved caspase 3–positive ECs, a significant decrease in the amount of pericyte coverage, and a reduced number of empty sleeves. In pups exposed to hyperoxia (75% oxygen) from P7 to P12, the Mrp4−/− mice showed a significant increase in the unvascularized retinal area. Conclusions. Mrp4−/− mice exhibited suppressed retinal vascular development in response to forskolin treatment. Thus, Mrp4 might have protective roles in retinal vascular development by regulating the intracellular cAMP level. PMID:23154460

  13. The imperatorin derivative OW1, a new vasoactive compound, inhibits VSMC proliferation and extracellular matrix hyperplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Nan; Zhang, Yu; Wang, Tao

    Chronic hypertension induces vascular remodeling. The most important factor for hypertension treatment is reducing the risk of cardiovascular disease. OW1 is a novel imperatorin derivative that exhibits vasodilative activity and antihypertensive effects in two-kidney one-clip (2K1C) renovascular hypertensive rats. It also inhibited vascular remodeling of the thoracic aorta in a previous study. Here, the inhibitory effects and mechanisms of OW1 on arterial vascular remodeling were investigated in vitro and in 2K1C hypertensive rats in vivo. OW1 (20 μM, 10 μM, 5 μM) inhibited Ang II-induced vascular smooth muscle cells (VSMCs) proliferation and ROS generation in vitro. OW1 also reversed themore » Ang II-mediated inhibition of α-SMA levels and stimulation of OPN levels. Histology results showed that treatment of 2K1C hypertensive rats with OW1 (20, 40, and 80 mg/kg per day, respectively for 5 weeks) in vivo significantly decreased the number of VSMCs, the aortic cross-sectional area (CSA), the media to lumen (M/L) ratio, and the content of collagen I and III in the mesenteric artery. Western blot results also revealed that OW1 stimulated the expression of α-SMA and inhibited the expression of collagen I and III on the thoracic aorta of 2K1C hypertensive rats. In mechanistic studies, OW1 acted as an ACE inhibitor and affected calcium channels. The suppression of MMP expression and the MAPK pathway may account for the effects of OW1 on vascular remodeling. OW1 attenuated vascular remodeling in vitro and in vivo. It could be a novel candidate for hypertension intervention. - Highlights: • OW1, an imperatorin derivative, attenuates vascular remodeling caused by hypertension. • OW1 inhibits VSMC proliferation and media layer hypertrophy. • OW1 acts as an ACE inhibitor and affects calcium channels. • Suppression of MMPs expression and MAPK pathway may account for the effects of OW1 on vascular remodeling.« less

  14. Sodium valproate, a histone deacetylase inhibitor, modulates the vascular endothelial growth inhibitor-mediated cell death in human osteosarcoma and vascular endothelial cells.

    PubMed

    Yamanegi, Koji; Kawabe, Mutsuki; Futani, Hiroyuki; Nishiura, Hiroshi; Yamada, Naoko; Kato-Kogoe, Nahoko; Kishimoto, Hiromitsu; Yoshiya, Shinichi; Nakasho, Keiji

    2015-05-01

    The level of vascular endothelial growth inhibitor (VEGI) has been reported to be negatively associated with neovascularization in malignant tumors. The soluble form of VEGI is a potent anti-angiogenic factor due to its effects in inhibiting endothelial cell proliferation. This inhibition is mediated by death receptor 3 (DR3), which contains a death domain in its cytoplasmic tail capable of inducing apoptosis that can be subsequently blocked by decoy receptor 3 (DcR3). We investigated the effects of sodium valproate (VPA) and trichostatin A (TSA), histone deacetylase inhibitors, on the expression of VEGI and its related receptors in human osteosarcoma (OS) cell lines and human microvascular endothelial (HMVE) cells. Consequently, treatment with VPA and TSA increased the VEGI and DR3 expression levels without inducing DcR3 production in the OS cell lines. In contrast, the effect on the HMVE cells was limited, with no evidence of growth inhibition or an increase in the DR3 and DcR3 expression. However, VPA-induced soluble VEGI in the OS cell culture medium markedly inhibited the vascular tube formation of HMVE cells, while VEGI overexpression resulted in enhanced OS cell death. Taken together, the HDAC inhibitor has anti-angiogenesis and antitumor activities that mediate soluble VEGI/DR3-induced apoptosis via both autocrine and paracrine pathways. This study indicates that the HDAC inhibitor may be exploited as a therapeutic strategy modulating the soluble VEGI/DR3 pathway in osteosarcoma patients.

  15. Role of magnolol in the proliferation of vascular smooth muscle cells.

    PubMed

    Wu, L; Zou, H; Xia, W; Dong, Q; Wang, L

    2015-05-01

    Proliferation of vascular smooth muscle cells (VSMCs) contributes to the development of vascular remodeling. Recently, magnolol has been reported to have a potential role in regulating tumor necrosis factor α-induced proliferation of VSMCs. However, the role of magnolol in platelet-derived growth factor (PDGF)-induced proliferation of VSMCs remains unknown. Our purpose was to elucidate the effect of magnolol on the proliferation of VSMCs induced by PDGF-BB and to investigate the underlying molecular mechanisms. Our data demonstrated that magnolol inhibited rat VSMC proliferation and DNA synthesis stimulated by 20 ng/ml PDGF-BB without causing cell cytotoxicity. Flow cytometric analysis showed that magnolol inhibited S-phase entry of VSMCs. We also demonstrated that magnolol caused this effect by inhibiting the mRNA and protein expression of cyclin D1, cyclin E, and cyclin-dependent kinases 2 and 4 in PDGF-BB-stimulated VSMCs. Further analysis showed that the inhibitory effect of magnolol on the proliferation of VSMCs was associated with the inhibition of the PDGF-BB-stimulated production of intracellular reactive oxygen species (ROS) and Ras, MEK, and ERK1/2 activation. These results demonstrate that magnolol can block the proliferation of VSMCs through inhibition of intracellular ROS production and Ras-MEK-ERK1/2 pathways. Magnolol, therefore, has a potential application in preventing atherosclerosis and restenosis.

  16. Vascular smooth muscle cell contractile protein expression is increased through protein kinase G-dependent and -independent pathways by glucose-6-phosphate dehydrogenase inhibition and deficiency.

    PubMed

    Chettimada, Sukrutha; Joshi, Sachindra Raj; Dhagia, Vidhi; Aiezza, Alessandro; Lincoln, Thomas M; Gupte, Rakhee; Miano, Joseph M; Gupte, Sachin A

    2016-10-01

    Homeostatic control of vascular smooth muscle cell (VSMC) differentiation is critical for contractile activity and regulation of blood flow. Recently, we reported that precontracted blood vessels are relaxed and the phenotype of VSMC is regulated from a synthetic to contractile state by glucose-6-phosphate dehydrogenase (G6PD) inhibition. In the current study, we investigated whether the increase in the expression of VSMC contractile proteins by inhibition and knockdown of G6PD is mediated through a protein kinase G (PKG)-dependent pathway and whether it regulates blood pressure. We found that the expression of VSMC-restricted contractile proteins, myocardin (MYOCD), and miR-1 and miR-143 are increased by G6PD inhibition or knockdown. Importantly, RNA-sequence analysis of aortic tissue from G6PD-deficient mice revealed uniform increases in VSMC-restricted genes, particularly those regulated by the MYOCD-serum response factor (SRF) switch. Conversely, expression of Krüppel-like factor 4 (KLF4) is decreased by G6PD inhibition. Interestingly, the G6PD inhibition-induced expression of miR-1 and contractile proteins was blocked by Rp-β-phenyl-1,N 2 -etheno-8-bromo-guanosine-3',5'-cyclic monophosphorothioate, a PKG inhibitor. On the other hand, MYOCD and miR-143 levels are increased by G6PD inhibition through a PKG-independent manner. Furthermore, blood pressure was lower in the G6PD-deficient compared with wild-type mice. Therefore, our results suggest that the expression of VSMC contractile proteins induced by G6PD inhibition occurs via PKG1α-dependent and -independent pathways. Copyright © 2016 the American Physiological Society.

  17. Reduced VEGF production, angiogenesis, and vascular regrowth contribute to the antitumor properties of dual mTORC1/mTORC2 inhibitors

    PubMed Central

    Falcon, Beverly L.; Barr, Sharon; Gokhale, Prafulla C.; Chou, Jeyling; Fogarty, Jennifer; Depeille, Philippe; Miglarese, Mark; Epstein, David M.; McDonald, Donald M.

    2011-01-01

    The mammalian target of rapamycin (mTOR) pathway is implicated widely in cancer pathophysiology. Dual inhibition of the mTOR kinase complexes mTORC1 and mTORC2 decreases tumor xenograft growth in vivo and VEGF secretion in vitro, but the relationship between these two effects are unclear. In this study, we examined the effects of mTORC1/2 dual inhibition on VEGF production, tumor angiogenesis, vascular regression, and vascular regrowth, and we compared the effects of dual inhibition to mTORC1 inhibition alone. ATP-competitive inhibitors OSI-027 and OXA-01 targeted both mTORC1 and mTORC2 signaling in vitro and in vivo, unlike rapamycin which only inhibited mTORC1 signaling. OXA-01 reduced VEGF production in tumors in a manner associated with decreased vessel sprouting but little vascular regression. In contrast, rapamycin exerted less effect on tumoral production of VEGF. Treatment with the selective VEGFR inhibitor OSI-930 reduced vessel sprouting and caused substantial vascular regression in tumors. However, following discontinuation of OSI-930 administration tumor regrowth could be slowed by OXA-01 treatment. Combining dual inhibitors of mTORC1 and mTORC2 with a VEGFR2 inhibitor decreased tumor growth more than either inhibitor alone. Together, these results indicate that dual inhibition of mTORC1/2 exerts anti-angiogenic and anti-tumoral effects that are even more efficacious when combined with a VEGFR antagonist. PMID:21363918

  18. Pharmacologic ATM but not ATR kinase inhibition abrogates p21-dependent G1 arrest and promotes gastrointestinal syndrome after total body irradiation.

    PubMed

    Vendetti, Frank P; Leibowitz, Brian J; Barnes, Jennifer; Schamus, Sandy; Kiesel, Brian F; Abberbock, Shira; Conrads, Thomas; Clump, David Andy; Cadogan, Elaine; O'Connor, Mark J; Yu, Jian; Beumer, Jan H; Bakkenist, Christopher J

    2017-02-01

    We show that ATM kinase inhibition using AZ31 prior to 9 or 9.25 Gy total body irradiation (TBI) reduced median time to moribund in mice to 8 days. ATR kinase inhibition using AZD6738 prior to TBI did not reduce median time to moribund. The striking finding associated with ATM inhibition prior to TBI was increased crypt loss within the intestine epithelium. ATM inhibition reduced upregulation of p21, an inhibitor of cyclin-dependent kinases, and blocked G1 arrest after TBI thereby increasing the number of S phase cells in crypts in wild-type but not Cdkn1a(p21 CIP/WAF1 )-/- mice. In contrast, ATR inhibition increased upregulation of p21 after TBI. Thus, ATM activity is essential for p21-dependent arrest while ATR inhibition may potentiate arrest in crypt cells after TBI. Nevertheless, ATM inhibition reduced median time to moribund in Cdkn1a(p21 CIP/WAF1 )-/- mice after TBI. ATM inhibition also increased cell death in crypts at 4 h in Cdkn1a(p21 CIP/WAF1 )-/-, earlier than at 24 h in wild-type mice after TBI. In contrast, ATR inhibition decreased cell death in crypts in Cdkn1a(p21 CIP/WAF1 )-/- mice at 4 h after TBI. We conclude that ATM activity is essential for p21-dependent and p21-independent mechanisms that radioprotect intestinal crypts and that ATM inhibition promotes GI syndrome after TBI.

  19. X IRRADIATION AND THE SECONDARY RESPONSE TO TETANUS TOXOID IN MICE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crook, J.C.; Ford, C.E.

    1962-04-01

    In 1952 it was recommended that wounded soldiers who had been actively immunized should be given a dose of tetanus toxoid and not tetanus antiserum as had been the practice previously. However, in the event of nuclear warfare, wounded soldiers might be exposed to irradiation, which would be detrimental to toxoid treatment since irradiation inhibits antibody formation. To investigate the problem, male PCT mice were immunized with two doses of tetanus toxoid at a 8- week interval, and their immune response to the second dose was tested by challenge with tetanus toxin 14 days later. Whole-body x irradiation with 35more » days before the second dose of toxoid to 7 days after. The criterion of inhibition of immune response was the percentage of deaths and paralyzed survivals occurring on the eighth day. The secondary response to tetanus toxoid was shown to be radiosensitive and to depend largely on the dose of radiation; a dose of 500 rad produced approximates 50% inhibition. Radiation given from 35 days to 1 day before the second dose of tetanus toxoid prcduced most inhibition; when given 2 days after the second dose it was less effective, and it was ineffective when given 5 or 7 days after. In the 200-rad experiment there was no evidence of inhibition at all. It is concluded that the wounded soldier should receive a booster dose of tetanus toxoid as soon as possible after wounding and probable irradiation from an atomic weapon. If a delay of a day or two occurred, the irradiated soldier might be at a stage of marked inhibition of his secondary response. If it is assumed that these findings are capable of extrapolation to man, he would not be capable of responding fully to any active immunizing procedures for a period of a few weeks at least after irradiation. (BBB)« less

  20. Endothelial Progenitor Cells Bind and Inhibit Platelet Function and Thrombus Formation

    PubMed Central

    Abou-Saleh, Haissam; Yacoub, Daniel; Théorêt, Jean-François; Gillis, Marc-Antoine; Neagoe, Paul-Eduard; Labarthe, Benoit; Théroux, Pierre; Sirois, Martin G.; Tabrizian, Maryam; Thorin, Eric; Merhi, Yahye

    2013-01-01

    Background Interactions of endothelial progenitor cells (EPCs) with vascular and blood cells contribute to vascular homeostasis. Although platelets promote the homing of EPCs to sites of vascular injury and their differentiation into endothelial cells, the functional consequences of such interactions on platelets remain unknown. Herein, we addressed the interactions between EPCs and platelets and their impact on platelet function and thrombus formation. Methods and Results Cultured on fibronectin in conditioned media, human peripheral blood mononuclear cells differentiated, within 10 days of culture, into EPCs, which uptake acetylated low-density lipoprotein, bind ulex-lectin, lack monocyte/leukocyte markers (CD14, P-selectin glycoprotein ligand-1, L-selectin), express progenitor/endothelial markers (CD34, vascular endothelial growth factor receptor-2, von Willebrand factor, and vascular endothelial cadherin), and proliferate in culture. These EPCs bound activated platelets via CD62P and inhibited its translocation, glycoprotein IIb/IIIa activation, aggregation, and adhesion to collagen, mainly via prostacyclin secretion. Indeed, this was associated with upregulation of cyclooxygenase-2 and inducible nitric oxide synthase. However, the effects on platelets in vitro were reversed by cyclooxygenase and cyclooxygenase-2 inhibition but not by nitric oxide or inducible nitric oxide synthase inhibition. Moreover, in a ferric chloride–induced murine arterial thrombosis model, injection of EPCs led to their incorporation into sites of injury and impaired thrombus formation, leading to an incomplete occlusion with 50% residual flow. Conclusions Peripheral blood mononuclear cell– derived EPCs bind platelets via CD62P and inhibit platelet activation, aggregation, adhesion to collagen, and thrombus formation, predominantly via upregulation of cyclooxygenase-2 and secretion of prostacyclin. These findings add new insights into the biology of EPCs and define their potential

  1. Blue light does not inhibit nodulation in Sesbania rostrata.

    PubMed

    Shimomura, Aya; Arima, Susumu; Hayashi, Makoto; Maymon, Maskit; Hirsch, Ann M; Suzuki, Akihiro

    2017-01-02

    Earlier, we reported that root nodulation was inhibited by blue light irradiation of Lotus japonicus. Because some legumes do not establish nodules exclusively on underground roots, we investigated whether nodule formation in Sesbania rostrata, which forms both root and "stem" nodules following inoculation with Azorhizobium caulinodans, is inhibited by blue light as are L. japonicus nodules. We found that neither S. rostrata nodulation nor nitrogen fixation was inhibited by blue light exposure. Moreover, although A. caulinodans proliferation was not affected by blue light irradiation, bacterial survival was decreased. Therefore, blue light appears to impose different responses depending on the legume-rhizobial symbiosis.

  2. Suppressive effects of lysozyme on polyphosphate-mediated vascular inflammatory responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Jiwoo; Ku, Sae-Kwang; Lee, Suyeon

    Lysozyme, found in relatively high concentration in blood, saliva, tears, and milk, protects us from the ever-present danger of bacterial infection. Previous studies have reported proinflammatory responses of endothelial cells to the release of polyphosphate(PolyP). In this study, we examined the anti-inflammatory responses and mechanisms of lysozyme and its effects on PolyP-induced septic activities in human umbilical vein endothelial cells (HUVECs) and mice. The survival rates, septic biomarker levels, behavior of human neutrophils, and vascular permeability were determined in PolyP-activated HUVECs and mice. Lysozyme suppressed the PolyP-mediated vascular barrier permeability, upregulation of inflammatory biomarkers, adhesion/migration of leukocytes, and activation and/ormore » production of nuclear factor-κB, tumor necrosis factor-α, and interleukin-6. Furthermore, lysozyme demonstrated protective effects on PolyP-mediated lethal death and the levels of the related septic biomarkers. Therefore, these results indicated the therapeutic potential of lysozyme on various systemic inflammatory diseases, such as sepsis or septic shock. -- Highlights: •PolyP is shown to be an important mediator of vascular inflammation. •Lysozyme inhibited PolyP-mediated hyperpermeability. •Lysozyme inhibited PolyP-mediated septic response. •Lysozyme reduced PolyP-induced septic mortality.« less

  3. Effects of Gingko biloba extract (EGb 761) on vascular smooth muscle cell calcification induced by β-glycerophosphate.

    PubMed

    Li, En-Gang; Tian, Jun; Xu, Zhong-Hua

    2016-01-01

    To investigate the effects of Gingko biloba extract (EGb 761) on calcification induced by β-glycerophosphate in rat aortic vascular smooth muscle cells. Rat aortic vascular smooth muscle cells were cultured with various concentrations of EGb 761 and β-glycerophosphate for 7 days. Calcium content in the cells, alkaline phosphatase activity, cell protein content, NF-κB activation, and reactive oxygen species production were assayed, respectively. The calcium depositions of vascular smooth muscle cells of the β-glycerophosphate group were significantly higher than those of the control group (p < 0.01), and were inhibited by EGb 761 in a concentration-dependent manner (p < 0.05). Data showed β-glycerophosphate induced the enhanced expression of alkaline phosphatase, up-regulated the NF-κB activity and increased reactive oxygen species production of vascular smooth muscle cells while these decreased when administrated with EGb 761(p < 0.05). EGb 761 significantly reduced deposition of calcium induced by β-glycerophosphate in rat aortic vascular smooth muscle cells. It not only reduced the deposition of calcium, but also inhibited osteogenic transdifferentiation, which may be associated with decreasing expression of alkaline phosphatase, down-regulating the NF-κB activity, and reducing reactive oxygen species production of vascular smooth muscle cells, and may have the potential to serve as a role for vascular calcification in clinical situations.

  4. Inhibition of the Induced Formation of Tryptophanase in Escherichia coli by Near-Ultraviolet Radiation

    PubMed Central

    Swenson, P. A.; Setlow, R. B.

    1970-01-01

    Induced formation of tryptophanase in Escherichia coli B/r is temporarily inhibited by near-ultraviolet (UV) irradiation. The inhibition is greater when irradiation is at 5 C than when at room temperature. Hence, the inhibition is the result of a photochemical, rather than photoenzymatic, alteration of some cellular component. The action spectrum has a peak in the region of 334 nm and is similar to that for growth delay. However, inhibition of tryptophanase formation is more sensitive to near-UV irradiation than are growth, respiration, and the induced formation of β-galactosidase. Thus, for tryptophanase the lack of formation cannot be due to general inhibition of metabolism. Pyridoxal phosphate absorbs in the near-UV region of the spectrum and is a cofactor for tryptophanase, but this enzyme in induced cells is not inactivated by near UV-radiations. An experiment in which toluene-treated suspensions from irradiated and unirradiated cells were mixed showed that irradiation does not cause the formation of an inhibitor of tryptophanase activity. The possibility remains that the absorption of radiant energy by pyridoxal phosphate interferes with the synthesis of tryptophanase. PMID:4914082

  5. Bioprinting for vascular and vascularized tissue biofabrication.

    PubMed

    Datta, Pallab; Ayan, Bugra; Ozbolat, Ibrahim T

    2017-03-15

    Bioprinting is a promising technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision. Bioprinting enables the deposition of various biologics including growth factors, cells, genes, neo-tissues and extra-cellular matrix-like hydrogels. Benefits of bioprinting have started to make a mark in the fields of tissue engineering, regenerative medicine and pharmaceutics. Specifically, in the field of tissue engineering, the creation of vascularized tissue constructs has remained a principal challenge till date. However, given the myriad advantages over other biofabrication methods, it becomes organic to expect that bioprinting can provide a viable solution for the vascularization problem, and facilitate the clinical translation of tissue engineered constructs. This article provides a comprehensive account of bioprinting of vascular and vascularized tissue constructs. The review is structured as introducing the scope of bioprinting in tissue engineering applications, key vascular anatomical features and then a thorough coverage of 3D bioprinting using extrusion-, droplet- and laser-based bioprinting for fabrication of vascular tissue constructs. The review then provides the reader with the use of bioprinting for obtaining thick vascularized tissues using sacrificial bioink materials. Current challenges are discussed, a comparative evaluation of different bioprinting modalities is presented and future prospects are provided to the reader. Biofabrication of living tissues and organs at the clinically-relevant volumes vitally depends on the integration of vascular network. Despite the great progress in traditional biofabrication approaches, building perfusable hierarchical vascular network is a major challenge. Bioprinting is an emerging technology to fabricate design-specific tissue constructs due to its ability to create complex, heterocellular structures with anatomical precision

  6. Taiwanese native plants inhibit matrix metalloproteinase-9 activity after ultraviolet B irradiation.

    PubMed

    Lee, Yueh-Lun; Lee, Mei-Hsien; Chang, Hsiu-Ju; Huang, Po-Yuan; Huang, I-Jen; Cheng, Kur-Ta; Leu, Sy-Jye

    2009-03-06

    Medicinal plants have long been used as a source of therapeutic agents. They are thought to be important anti-aging ingredients in prophylactic medicines. The aim of this study was to screen extracts from Taiwanese plant materials for phenolic contents and measure the corresponding matrix metalloproteinase-9 (MMP-9) activity. We extracted biological ingredients from eight plants native to Taiwan (Alnus formosana, Diospyros discolor, Eriobotrya deflex, Machilus japonica, Pyrrosia polydactylis, Pyrus taiwanensis, Vitis adstricta, Vitis thunbergii). Total phenolic content was measured using the Folin-Ciocalteu method. MMP-9 activities were measured by gelatin zymography. The extracted yields of plants ranged from 3.7 % to 16.9 %. The total phenolic contents ranged from 25.4 to 36.8 mg GAE/g dry material. All of these extracts (except Vitis adstricta Hance) were shown to inhibit MMP-9 activity of WS-1 cell after ultraviolet B irradiation. These findings suggest that total phenolic content may influence MMP-9 activity and that some of the plants with higher phenolic content exhibited various biological activities that could serve as potent inhibitors of the ageing process in the skin. This property might be useful in the production of cosmetics.

  7. Interleukin-35 Inhibits Endothelial Cell Activation by Suppressing MAPK-AP-1 Pathway.

    PubMed

    Sha, Xiaojin; Meng, Shu; Li, Xinyuan; Xi, Hang; Maddaloni, Massimo; Pascual, David W; Shan, Huimin; Jiang, Xiaohua; Wang, Hong; Yang, Xiao-feng

    2015-07-31

    Vascular response is an essential pathological mechanism underlying various inflammatory diseases. This study determines whether IL-35, a novel responsive anti-inflammatory cytokine, inhibits vascular response in acute inflammation. Using a mouse model of LPS-induced acute inflammation and plasma samples from sepsis patients, we found that IL-35 was induced in the plasma of mice after LPS injection as well as in the plasma of sepsis patients. In addition, IL-35 decreased LPS-induced proinflammatory cytokines and chemokines in the plasma of mice. Furthermore, IL-35 inhibited leukocyte adhesion to the endothelium in the vessels of lung and cremaster muscle and decreased the numbers of inflammatory cells in bronchoalveolar lavage fluid. Mechanistically, IL-35 inhibited the LPS-induced up-regulation of endothelial cell (EC) adhesion molecule VCAM-1 through IL-35 receptors gp130 and IL-12Rβ2 via inhibition of the MAPK-activator protein-1 (AP-1) signaling pathway. We also found that IL-27, which shares the EBI3 subunit with IL-35, promoted LPS-induced VCAM-1 in human aortic ECs and that EBI3-deficient mice had similar vascular response to LPS when compared with that of WT mice. These results demonstrated for the first time that inflammation-induced IL-35 inhibits LPS-induced EC activation by suppressing MAPK-AP1-mediated VCAM-1 expression and attenuates LPS-induced secretion of proinflammatory cytokines/chemokines. Our results provide insight into the control of vascular inflammation by IL-35 and suggest that IL-35 is an attractive novel therapeutic reagent for sepsis and cardiovascular diseases. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  8. Photoacoustic discrimination of vascular and pigmented lesions using classical and Bayesian methods

    NASA Astrophysics Data System (ADS)

    Swearingen, Jennifer A.; Holan, Scott H.; Feldman, Mary M.; Viator, John A.

    2010-01-01

    Discrimination of pigmented and vascular lesions in skin can be difficult due to factors such as size, subungual location, and the nature of lesions containing both melanin and vascularity. Misdiagnosis may lead to precancerous or cancerous lesions not receiving proper medical care. To aid in the rapid and accurate diagnosis of such pathologies, we develop a photoacoustic system to determine the nature of skin lesions in vivo. By irradiating skin with two laser wavelengths, 422 and 530 nm, we induce photoacoustic responses, and the relative response at these two wavelengths indicates whether the lesion is pigmented or vascular. This response is due to the distinct absorption spectrum of melanin and hemoglobin. In particular, pigmented lesions have ratios of photoacoustic amplitudes of approximately 1.4 to 1 at the two wavelengths, while vascular lesions have ratios of about 4.0 to 1. Furthermore, we consider two statistical methods for conducting classification of lesions: standard multivariate analysis classification techniques and a Bayesian-model-based approach. We study 15 human subjects with eight vascular and seven pigmented lesions. Using the classical method, we achieve a perfect classification rate, while the Bayesian approach has an error rate of 20%.

  9. Arf Suppresses Hepatic Vascular Neoplasia in a Carcinogen-Exposed Murine Model

    PubMed Central

    Busch, Stephanie E; Gurley, Kay E; Moser, Russell D; Kemp, Christopher J

    2013-01-01

    Hepatic haemangiosarcoma is a deadly malignancy whose aetiology remains poorly understood. Inactivation of the CDKN2A locus, which houses the ARF and p16INK4a tumour suppressor genes, is a common event in haemangiosarcoma patients, but the precise role of ARF in vascular tumourigenesis is unknown. To determine the extent to which ARF suppresses vascular neoplasia, we examined the incidence of hepatic vascular lesions in Arf-deficient mice exposed to the carcinogen urethane (i.p. 1 mg/g). Loss of Arf resulted in elevated morbidity and increased the incidence of both haemangiomas and incipient haemangiosarcomas. Suppression of vascular lesion development by ARF was heavily dependent on both Arf gene-dosage and the genetic strain of the mouse. Trp53-deficient mice also developed hepatic vascular lesions after exposure to urethane, suggesting that ARF signals through a p53-dependent pathway to inhibit the development of hepatic haemangiosarcoma. Our findings provide strong evidence that inactivation of Arf is a causative event in vascular neoplasia and suggest that the ARF pathway may be a novel molecular target for therapeutic intervention in haemangiosarcoma patients. PMID:22430984

  10. Baicalein attenuates vinorelbine-induced vascular endothelial cell injury and chemotherapeutic phlebitis in rabbits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Gang-Feng

    Chemotherapy is one of the major strategies for cancer treatment. Several antineoplastic drugs including vinorelbine (VRB) are commonly intravenously infused and liable to cause serious phlebitis. The therapeutic drugs for preventing this complication are limited. In this study, the mechanism of baicalein (BCN) was investigated on VRB-induced phlebitis in vivo and vascular endothelial cell injury in vitro. Treatment with BCN obviously attenuated vascular endothelial cell loss, edema, inflammatory cell infiltration and blood clots, and reduced the serum levels of TNF-α, IL-1β, IL-6 and ICAM-1 in the rabbit model of phlebitis induced by intravenous injection of VRB compared with vehicle. Furthermore » tests in vitro demonstrated that BCN lessened VRB-induced endothelial cell apoptosis, decreased intracellular ROS levels, suppressed phosphorylation of p38 and eventually inhibited activation of NF-κB signaling pathway. And these effects could be reversed by p38 agonist P79350. These results suggested that BCN exerted the protective effects against VRB-induced endothelial disruption in the rabbit model of phlebitis via inhibition of intracellular ROS generation and inactivation of p38/NF-κB pathway, leading to the decreased production of pro-inflammatory cytokines. Thus, BCN could be used as a potential agent for the treatment of phlebitis. - Highlights: • Baicalein attenuated vinorelbine-induced vascular endothelial cell apoptosis. • Baicalein inhibited vinorelbine-induced oxidative stress in HUVECs. • Baicalein inhibited activation of p38/NF-κB signaling. • Baicalein attenuated vinorelbine-induced phlebitis and inflammation in rabbits.« less

  11. A novel mechanism for the Ca(2+)-sensitizing effect of protein kinase C on vascular smooth muscle: inhibition of myosin light chain phosphatase

    PubMed Central

    1994-01-01

    Mechanisms of Ca2+ sensitization of both myosin light chain (MLC) phosphorylation and force development by protein kinase C (PKC) were studied in permeabilized tonic smooth muscle obtained from the rabbit femoral artery. For comparison, the Ca2+ sensitizing effect of guanosine 5'-O-(gamma-thiotriphosphate) (GTP gamma S) was examined, which had been previously shown to inhibit MLC phosphatase in phasic vascular smooth muscle. We now report that PKC activators (phorbol esters, short chain synthetic diacylglycerols and a diacylglycerol kinase inhibitor) and GTP gamma S significantly increase both MLC phosphorylation and force development at constant [Ca2+]. Major phosphorylation site occurring in the presence of phorbol-12,13- dibutyrate (PDBu) or GTP gamma S at constant [Ca2+] is the same serine residue (Ser-19) as that phosphorylated by MLC kinase in response to increased Ca2+ concentrations. In an ATP- and Ca(2+)-free solution containing 1-(5-chloronaphthalene-1-sulfonyl)-1H-hexahydro-1,4- diazepine (ML-9), to avoid the kinase activity, both PDBu and GTP gamma S significantly decreased the rate of MLC dephosphorylation to half its control value. However, PDBu inhibited the relaxation rate more than did GTP gamma S. In the presence of microcystin-LR to inhibit the phosphatase activity, neither PDBu nor GTP gamma S affected MLC phosphorylation and force development. These results indicate that PKC, like activation of GTP binding protein, increases Ca2+ sensitivity of both MLC phosphorylation and force production through inhibition of MLC phosphatase. PMID:7807049

  12. Vascular Effects of Estrogenic Menopausal Hormone Therapy

    PubMed Central

    Reslan, Ossama M.; Khalil, Raouf A.

    2011-01-01

    Cardiovascular disease (CVD) is more common in men and postmenopausal women (Post-MW) than premenopausal women (Pre-MW). Despite recent advances in preventive measures, the incidence of CVD in women has shown a rise that matched the increase in the Post-MW population. The increased incidence of CVD in Post-MW has been related to the decline in estrogen levels, and hence suggested vascular benefits of endogenous estrogen. Experimental studies have identified estrogen receptor ERα, ERβ and a novel estrogen binding membrane protein GPR30 (GPER) in blood vessels of humans and experimental animals. The interaction of estrogen with vascular ERs mediates both genomic and non-genomic effects. Estrogen promotes endothelium-dependent relaxation by increasing nitric oxide, prostacyclin, and hyperpolarizing factor. Estrogen also inhibits the mechanisms of vascular smooth muscle (VSM) contraction including [Ca2+]i, protein kinase C and Rho-kinase. Additional effects of estrogen on the vascular cytoskeleton, extracellular matrix, lipid profile and the vascular inflammatory response have been reported. In addition to the experimental evidence in animal models and vascular cells, initial observational studies in women using menopausal hormonal therapy (MHT) have suggested that estrogen may protect against CVD. However, randomized clinical trials (RCTs) such as the Heart and Estrogen/progestin Replacement Study (HERS) and the Women’s Health Initiative (WHI), which examined the effects of conjugated equine estrogens (CEE) in older women with established CVD (HERS) or without overt CVD (WHI), failed to demonstrate protective vascular effects of estrogen treatment. Despite the initial set-back from the results of MHT RCTs, growing evidence now supports the ‘timing hypothesis’, which suggests that MHT could increase the risk of CVD if started late after menopause, but may produce beneficial cardiovascular effects in younger women during the perimenopausal period. The choice of

  13. Down-Regulation of Protein Kinase C-ε by Prolonged Incubation with PMA Inhibits the Proliferation of Vascular Smooth Muscle Cells.

    PubMed

    Zhou, Huixuan; Wang, Yan; Zhou, Quanhong; Wu, Bin; Wang, Aizhong; Jiang, Wei; Wang, Li

    2016-01-01

    Phorbol myristate acetate (PMA) exerts a pleiotropic effect on the growth and differentiation of various cells. Protein kinase Cs (PKCs) plays a central role in mediating the effects of PMA on cells. The present study investigated whether the down-regulation of protein kinase C-ε (PKC-ε) is involved in the inhibition of vascular smooth muscle cell (VSMC) proliferation caused by prolonged PMA incubation. Using cell counting, Cell Counting Kit-8 (CCK-8) and EdU incorporation assay on VSMCs, we evaluated the inhibitory effects of prolonged incubation of PMA, of lentiviruses carrying the short-hairpin RNAs (shRNA) of PKC-ε and of the PKC-ε inhibitor peptide on the proliferation and viability of cells. The effect of PKC-ε down-regulation on growth of rat breast cancer SHZ-88 cells was also measured. The prolonged incubation of VSMCs with PMA for up to 72 hours resulted in attenuated cell growth rates in a time-dependent manner. The expression of PKC-ε, as assessed by Western blotting, was also decreased accordingly. Notably, the number of EdU-positive cells and the cell viability of VSMCs were decreased by shRNA of PKC-ε and the PKC-ε inhibitor peptide, respectively. The proliferation of rat breast cancer SHZ-88 cells was also attenuated by lentivirus-induced shRNA silencing of PKC-ε. Prolonged incubation of PMA can inhibit the expression of PKC-ε. The effect results in the inhibition of VSMC proliferation. PKC-ε silencing can also attenuate breast cancer cell growth, suggesting that PKC-ε may be a potential target for anti-cancer drugs. © 2016 The Author(s) Published by S. Karger AG, Basel.

  14. MicroRNA-34b/c inhibits aldosterone-induced vascular smooth muscle cell calcification via a SATB2/Runx2 pathway.

    PubMed

    Hao, Jianbing; Zhang, Lei; Cong, Guangting; Ren, Liansheng; Hao, Lirong

    2016-12-01

    Increasing evidence shows that aldosterone and specific microRNAs (miRs) contribute to vascular smooth muscle cell (VSMC) calcification. In this study, we aim to explore the mechanistic links between miR-34b/c and aldosterone in VSMC calcification. VSMC calcification models were established both in vitro and in vivo. First, the levels of aldosterone, miR-34b/c and special AT-rich sequence-binding protein 2 (SATB2) were measured. Then, miR-34b/c mimics or inhibitors were transfected into VSMCs to evaluate the function of miR-34b/c. Luciferase reporter assays were used to demonstrate whether SATB2 was a direct target of miR-34b/c. Aldosterone and SATB2 were found to be markedly upregulated during VSMC calcification, whereas miR-34b/c expression was downregulated. Treatment with the mineralocorticoid receptor (MR) antagonist eplerenone inhibited VSMC calcification. In aldosterone-induced VSMC calcification, miR-34b/c levels were downregulated and SATB2 protein was upregulated. Furthermore, miR-34b/c overexpression alleviated aldosterone-induced VSMC calcification as well as inhibited the expression of SATB2 protein, whereas miR-34b/c inhibition markedly enhanced VSMC calcification and upregulated SATB2 protein. In addition, luciferase reporter assays showed that SATB2 is a direct target of miR-34b/c in VSMCs. Overexpression of SATB2 induced Runx2 overproduction and VSMC calcification. Therefore, miR-34b/c participates in aldosterone-induced VSMC calcification via a SATB2/Runx2 pathway. As miR-34b/c appears to be a negative regulator, it has potential as a therapeutic target of VSMC calcification.

  15. Laser speckle contrast imaging: monitoring blood flow dynamics and vascular structure of photodynamic therapy

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Zhou, Sibo; Zhang, Zhihong; Luo, Qingming

    2005-01-01

    Laser speckle contrast imaging (LSCI) is a noninvasive optical image technique that has been developed for imaging in vivo blood flow dynamics and vascular structure with high spatial and temporal resolution. It records the full-field spatio-temporal characteristics of microcirculation in real time without the need of laser beam flying. In this paper applications of this technique for monitoring changes of blood flow and vascular structure following photodynamic therapy (PDT) in vivo model were demonstrated. In this study, an in vivo model of chick chorioallantoic membrane (CAM) at embryo age (EA) of 10~13 days, was observed following PDT irradiated by a power tunable laser diode (λ = 656.5 nm). Laser intensity incident on the treatment site was maintained at 40 mW/cm2 and photosensitizer of Pyropheophorbide Acid (Pyro-Acid) was used. CAM was adopted in PDT since it is a transparent in vivo model and the irradiated lights of laser can penetrate tumor with greater depth. The laser delivered through fiber bundle to the treatment site in PDT also acted as the coherent light source of LSCI. This study shows that LSCI can be used to assess the efficacy of peripheral vessels damage of tumor in PDT by monitoring changes of blood flow and vascular structure.

  16. INFLUENCE OF X-IRRADIATION UPON ACTIVITY OF CHOLINESTERASE IN LIVER AND SERUM. PARTS I-III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ioroi, M.

    1960-01-01

    The activity of cholinesterase in the liver, studied in rabbits and rats, was more inhibited when the liver was irradiated by a single x-ray dose than by fractionated doses. With l00, 300, and 600 r of whole-body irradiation, the activity of cholinesterase in the liver was stimulated; meanwhile in serum it was inhibited. With l000 and 2000 r, the activities in both serum and liver were severely inhibited. WWhen the diencephalon and spinal cord were irradiated with fractionated doses (l50 r twice a week), the activity of cholinesterase in both liver and serum showed no appreciable change. When whole-body irradiationmore » (l00 r per day) was given, the activity of cholinesterase in both liver and serum was somewhat stimulated. After liver irradiation (200 r per day; total dose 4000 r) the activity of cholinesterase in both liver and serum was inhibited. In patients who showed high activity of cholinesterase in serum before x-ray therapy, the activity was slightly inhibited after x-ray treatment, and patients who showed low activity before therapy were slightly stimulated after x irradiation. (Abstr. Japan Med., l: No. 13, l96l)« less

  17. Nestin upregulation characterizes vascular remodeling secondary to hypertension in the rat.

    PubMed

    Tardif, Kim; Hertig, Vanessa; Duquette, Natacha; Villeneuve, Louis; El-Hamamsy, Ismail; Tanguay, Jean-François; Calderone, Angelino

    2015-05-15

    Proliferation and hypertrophy of vascular smooth muscle cells represent hallmark features of vessel remodeling secondary to hypertension. The intermediate filament protein nestin was recently identified in vascular smooth muscle cells and in other cell types directly participated in proliferation. The present study tested the hypothesis that vessel remodeling secondary to hypertension was characterized by nestin upregulation in vascular smooth muscle cells. Two weeks after suprarenal abdominal aorta constriction of adult male Sprague-Dawley rats, elevated mean arterial pressure increased the media area and thickness of the carotid artery and aorta and concomitantly upregulated nestin protein levels. In the normal adult rat carotid artery, nestin immunoreactivity was observed in a subpopulation of vascular smooth muscle cells, and the density significantly increased following suprarenal abdominal aorta constriction. Filamentous nestin was detected in cultured rat carotid artery- and aorta-derived vascular smooth muscle cells and an analogous paradigm observed in human aorta-derived vascular smooth muscle cells. ANG II and EGF treatment of vascular smooth muscle cells stimulated DNA and protein synthesis and increased nestin protein levels. Lentiviral short-hairpin RNA-mediated nestin depletion of carotid artery-derived vascular smooth muscle cells inhibited peptide growth factor-stimulated DNA synthesis, whereas protein synthesis remained intact. These data have demonstrated that vessel remodeling secondary to hypertension was characterized in part by nestin upregulation in vascular smooth muscle cells. The selective role of nestin in peptide growth factor-stimulated DNA synthesis has revealed that the proliferative and hypertrophic responses of vascular smooth muscle cells were mediated by divergent signaling events. Copyright © 2015 the American Physiological Society.

  18. Overexpression of membrane sialic acid-specific sialidase Neu3 inhibits matrix metalloproteinase-9 expression in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Sung-Kwon; Cho, Seung-Hak; Kim, Kyung-Woon

    2007-05-11

    The ganglioside-specific sialidase Neu3 has been suggested to participate in cell growth, migration, and differentiation. Recent reports suggest that sialidase may be involved in intimal thickening, an early stage in the development of atherosclerosis. However, the role of the Neu3 gene in vascular smooth muscle cells (VSMC) responses has not yet been elucidated. To determine whether a Neu3 is able to modulate VSMC growth, the effect of overexpression of the Neu3 gene on cell proliferation was examined. However, the results show that the overexpression of this gene has no effect on DNA synthesis and ERK phosphorylation in cultured VSMC inmore » the presence of TNF-{alpha}. Because atherogenic effects need not be limited to proliferation, we decided to examine whether Neu3 exerted inhibitory effects on matrix metalloproteinase-9 (MMP-9) activity in TNF-{alpha}-induced VSMC. The expression of the Neu3 gene led to the inhibition of TNF-{alpha}-induced matrix metalloproteinase-9 (MMP-9) expression in VSMC as determined by zymography and immunoblot. Furthermore, Neu3 gene expression strongly decreased MMP-9 promoter activity in response to TNF-{alpha}. This inhibition was characterized by the down-regulation of MMP-9, which was transcriptionally regulated at NF-{kappa}B and activation protein-1 (AP-1) sites in the MMP-9 promoter. These findings suggest that the Neu3 gene represents a physiological modulator of VSMC responses that may contribute to plaque instability in atherosclerosis.« less

  19. Relationship of oxygen dose to angiogenesis induction in irradiated tissue

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marx, R.E.; Ehler, W.J.; Tayapongsak, P.

    1990-11-01

    This study was accomplished in an irradiated rabbit model to assess the angiogenic properties of normobaric oxygen and hyperbaric oxygen as compared with air-breathing controls. Results indicated that normobaric oxygen had no angiogenic properties above normal revascularization of irradiated tissue than did air-breathing controls (p = 0.89). Hyperbaric oxygen demonstrated an eight- to ninefold increased vascular density over both normobaric oxygen and air-breathing controls (p = 0.001). Irradiated tissue develops a hypovascular-hypocellular-hypoxic tissue that does not revascularize spontaneously. Results failed to demonstrate an angiogenic effect of normobaric oxygen. It is suggested that oxygen in this sense is a drug requiringmore » hyperbaric pressures to generate therapeutic effects on chronically hypovascular irradiated tissue.« less

  20. Detection and description of various stores of nitric oxide store in vascular wall.

    PubMed

    Vlasova, M A; Vanin, A F; Muller, B; Smirin, B V; Malyshev, I Yu; Manukhina, E B

    2003-09-01

    We analyzed the possibility of the existence of various NO pools in the vascular wall. Incubation of isolated rat aorta with dinitrosyl iron complex (NO donor) led to the formation of NO stores in the vascular wall detected by vascular relaxation response induced by diethyldithiocarbamate and N-acetylcysteine. Comparison of the effects of successive application of diethyldithiocarbamate and N-acetylcysteine revealed two NO pools (one pool responded to both agents, while other responded only to N-acetylcysteine). Inhibition of guanylate cyclase with methylene blue abolished the response to diethyldithiocarbamate, while the reaction to N-acetylcysteine decreased by the value, corresponding to diethyldithiocarbamate-dependent relaxation. It is hypothesized that in the vascular wall NO is stored in the form protein-bound dinitrosyl iron complexes and S-nitrosothiols in hydrophilic and hydrophobic cell compartments.

  1. Vascular endothelial growth factor modified macrophages transdifferentiate into endothelial-like cells and decrease foam cell formation.

    PubMed

    Yan, Dan; He, Yujuan; Dai, Jun; Yang, Lili; Wang, Xiaoyan; Ruan, Qiurong

    2017-06-30

    Macrophages are largely involved in the whole process of atherosclerosis from an initiation lesion to an advanced lesion. Endothelial disruption is the initial step and macrophage-derived foam cells are the hallmark of atherosclerosis. Promotion of vascular integrity and inhibition of foam cell formation are two important strategies for preventing atherosclerosis. How can we inhibit even the reverse negative role of macrophages in atherosclerosis? The present study was performed to investigate if overexpressing endogenous human vascular endothelial growth factor (VEGF) could facilitate transdifferentiation of macrophages into endothelial-like cells (ELCs) and inhibit foam cell formation. We demonstrated that VEGF-modified macrophages which stably overexpressed human VEGF (hVEGF 165 ) displayed a high capability to alter their phenotype and function into ELCs in vitro Exogenous VEGF could not replace endogenous VEGF to induce the transdifferentiation of macrophages into ELCs in vitro We further showed that VEGF-modified macrophages significantly decreased cytoplasmic lipid accumulation after treatment with oxidized LDL (ox-LDL). Moreover, down-regulation of CD36 expression in these cells was probably one of the mechanisms of reduction in foam cell formation. Our results provided the in vitro proof of VEGF-modified macrophages as atheroprotective therapeutic cells by both promotion of vascular repair and inhibition of foam cell formation. © 2017 The Author(s).

  2. Kinetic separation of phototropism from blue-light inhibition of stem elongation

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1985-01-01

    These experiments tested the hypothesis that phototropic bending arises when a light gradient across the stem differentially inhibits cell elongation because of direct inhibition of cell elongation by light (the Blaauw hypothesis). Continuous irradiation of dark-grown cucumber seedlings (Cucumis sativus L.) with unilateral blue light inhibited hypocotyl elongation within 30 s, but did not induce phototropic curvature until 4.5 h after the start of irradiation. Marking experiments showed that curvature began simultaneously at the top and bottom of the growing region. In situ measurements of the light gradient across the stem with a glass fiber optic indicated that a 5- to 6-fold difference in fluence rate was established on the two sides of the stem. The light gradient established at the start of irradiation was the same as that after 6 h of irradiation. Changes in gravitropic responsiveness during this period were also ruled out. Calculations show that the light gradient should have caused curvature which would be detectable within 30 to 60 min and which would extrapolate to the start of irradiation--if the Blaauw hypothesis were correct. The long lag for phototropism in this case indicates that rapid inhibition of cell elongation by blue light does not cause the asymmetrical growth of phototropism. Rather, phototropism is superimposed upon this separate light growth response.

  3. The role of vitamin K in vascular calcification of patients with chronic kidney disease.

    PubMed

    Wuyts, Julie; Dhondt, Annemieke

    2016-12-01

    Patients with chronic kidney disease (CKD) are prone to vascular calcification. Pathogenetic mechanisms of vascular calcifications have been broadly studied and discussed such as the role of hyperphosphatemia, hypercalcemia, parathormone, and vitamin D. In recent years, new insights have been gained pointing to vitamin K as a main actor. It has been discovered that vitamin K is an essential cofactor for the activation of matrix Gla protein (MGP), a calcification inhibitor in the vessel wall. Patients with CKD often suffer from vitamin K deficiency, resulting in low active MGP and eventually a lack of inhibition of vascular calcification. Vitamin K supplementation and switching warfarin to new oral anticoagulants are potential treatments. In addition, MGP may have a role as a non-invasive biomarker for vascular calcification.

  4. [Activity induced by androsterone and hemisuccinate of androsterone on perfusion pressure and vascular resistance].

    PubMed

    Figueroa, Lauro; Díaz, Francisco; Camacho, Abelardo; Díaz, Eliseo; Marvin, Rolando

    2009-12-01

    Few data exist with respect to the effects of androsterone and their derivatives at cardiovascular level. In addition, the molecular mechanisms and cellular site of action of these androgens are still unclear. An evaluation was conducted on the effects induced by androsterone and hemisuccinate of androsterone on perfusion pressure and vascular resistance. The effects of both androsterone and hemisuccinate of androsterone on the perfusion pressure and vascular resistance in isolated rat hearts (Langendorff model) were evaluated. The results showed that: (1) the hemisuccinate of androsterone [10(-9) M] increases the perfusion pressure and vascular resistance in comparison with the androsterone [10(-9) M]; (2) the effect of androsterone-derivative [10(-9) M-10(-5) M] on perfusion pressure not was inhibited by indometacin [10(-6) M]; (3) nifedipine [10(-6) M] blocks the effects exerted by hemisuccinate of androsterone [10(-9) M-10(-5) M] on perfusion pressure; and (4) the effect of androsterone-derivative [10(-9) M-10(-5) M] on perfusion pressure in presence of flutamide [10(-6) M] was inhibited. The effects induced by androsterone and hemisuccinate of androsterone on the perfusion pressure and resistance vascular probably involve the interaction of steroid-receptor androgenic and, indirectly, activation of the calcium channel to induce variations in the perfusion pressure.

  5. Targeted delivery of human iPS-ECs overexpressing IL-8 receptors inhibits neointimal and inflammatory responses to vascular injury in the rat.

    PubMed

    Giordano, Samantha; Zhao, Xiangmin; Xing, Daisy; Hage, Fadi; Oparil, Suzanne; Cooke, John P; Lee, Jieun; Nakayama, Karina H; Huang, Ngan F; Chen, Yiu-Fai

    2016-03-15

    Interleukin-8 (IL8) is highly expressed by injured arteries in a variety of diseases and is a chemoattractant for neutrophils which express IL8 receptors IL8RA and RB (IL8RA/B) on their membranes. Neutrophils interact with the damaged endothelium and initiate an inflammatory cascade at the site of injury. We have generated a novel translational targeted cell therapy for acute vascular injury using adenoviral vectors to overexpress IL8RA/B and green fluorescent protein (GFP) on the surface of endothelial cells (ECs) derived from human induced pluripotent stem cells (HiPS-IL8RA/B-ECs). We hypothesize that HiPS-IL8RA/B-ECs transfused intravenously into rats with balloon injury of the carotid artery will target to the injured site and compete with neutrophils, thus inhibiting inflammation and neointima formation. Young adult male Sprague-Dawley rats underwent balloon injury of the right carotid artery and received intravenous transfusion of saline vehicle, 1.5 × 10(6) HiPS-ECs, 1.5 × 10(6) HiPS-Null-ECs, or 1.5 × 10(6) HiPS-IL8RA/B-ECs immediately after endoluminal injury. Tissue distribution of HiPS-IL8RA/B-ECs was analyzed by a novel GFP DNA qPCR method. Cytokine and chemokine expression and leukocyte infiltration were measured in injured and uninjured arteries at 24 h postinjury by ELISA and immunohistochemistry, respectively. Neointimal, medial areas, and reendothelialization were measured 14 days postinjury. HiPS-IL8RA/B-ECs homed to injured arteries, inhibited inflammatory mediator expression and inflammatory cell infiltration, accelerated reendothelialization, and attenuated neointima formation after endoluminal injury while control HiPS-ECs and HiPS-Null-ECs did not. HiPS-IL8RA/B-ECs transfused into rats with endoluminal carotid artery injury target to the injured artery and provide a novel strategy to treat vascular injury.

  6. Targeted delivery of human iPS-ECs overexpressing IL-8 receptors inhibits neointimal and inflammatory responses to vascular injury in the rat

    PubMed Central

    Giordano, Samantha; Zhao, Xiangmin; Xing, Daisy; Hage, Fadi; Oparil, Suzanne; Cooke, John P.; Lee, Jieun; Nakayama, Karina H.; Huang, Ngan F.

    2016-01-01

    Interleukin-8 (IL8) is highly expressed by injured arteries in a variety of diseases and is a chemoattractant for neutrophils which express IL8 receptors IL8RA and RB (IL8RA/B) on their membranes. Neutrophils interact with the damaged endothelium and initiate an inflammatory cascade at the site of injury. We have generated a novel translational targeted cell therapy for acute vascular injury using adenoviral vectors to overexpress IL8RA/B and green fluorescent protein (GFP) on the surface of endothelial cells (ECs) derived from human induced pluripotent stem cells (HiPS-IL8RA/B-ECs). We hypothesize that HiPS-IL8RA/B-ECs transfused intravenously into rats with balloon injury of the carotid artery will target to the injured site and compete with neutrophils, thus inhibiting inflammation and neointima formation. Young adult male Sprague-Dawley rats underwent balloon injury of the right carotid artery and received intravenous transfusion of saline vehicle, 1.5 × 106 HiPS-ECs, 1.5 × 106 HiPS-Null-ECs, or 1.5 × 106 HiPS-IL8RA/B-ECs immediately after endoluminal injury. Tissue distribution of HiPS-IL8RA/B-ECs was analyzed by a novel GFP DNA qPCR method. Cytokine and chemokine expression and leukocyte infiltration were measured in injured and uninjured arteries at 24 h postinjury by ELISA and immunohistochemistry, respectively. Neointimal, medial areas, and reendothelialization were measured 14 days postinjury. HiPS-IL8RA/B-ECs homed to injured arteries, inhibited inflammatory mediator expression and inflammatory cell infiltration, accelerated reendothelialization, and attenuated neointima formation after endoluminal injury while control HiPS-ECs and HiPS-Null-ECs did not. HiPS-IL8RA/B-ECs transfused into rats with endoluminal carotid artery injury target to the injured artery and provide a novel strategy to treat vascular injury. PMID:26801304

  7. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels playedmore » a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.« less

  8. Fibronectin Deposition Participates in Extracellular Matrix Assembly and Vascular Morphogenesis

    PubMed Central

    Hielscher, Abigail; Ellis, Kim; Qiu, Connie; Porterfield, Josh; Gerecht, Sharon

    2016-01-01

    The extracellular matrix (ECM) has been demonstrated to facilitate angiogenesis. In particular, fibronectin has been documented to activate endothelial cells, resulting in their transition from a quiescent state to an active state in which the cells exhibit enhanced migration and proliferation. The goal of this study is to examine the role of polymerized fibronectin during vascular tubulogenesis using a 3 dimensional (3D) cell-derived de-cellularized matrix. A fibronectin-rich 3D de-cellularized ECM was used as a scaffold to study vascular morphogenesis of endothelial cells (ECs). Confocal analyses of several matrix proteins reveal high intra- and extra-cellular deposition of fibronectin in formed vascular structures. Using a small peptide inhibitor of fibronectin polymerization, we demonstrate that inhibition of fibronectin fibrillogenesis in ECs cultured atop de-cellularized ECM resulted in decreased vascular morphogenesis. Further, immunofluorescence and ultrastructural analyses reveal decreased expression of stromal matrix proteins in the absence of polymerized fibronectin with high co-localization of matrix proteins found in association with polymerized fibronectin. Evaluating vascular kinetics, live cell imaging showed that migration, migration velocity, and mean square displacement, are disrupted in structures grown in the absence of polymerized fibronectin. Additionally, vascular organization failed to occur in the absence of a polymerized fibronectin matrix. Consistent with these observations, we tested vascular morphogenesis following the disruption of EC adhesion to polymerized fibronectin, demonstrating that block of integrins α5β1 and αvβ3, abrogated vascular morphogenesis. Overall, fibronectin deposition in a 3D cell-derived de-cellularized ECM appears to be imperative for matrix assembly and vascular morphogenesis. PMID:26811931

  9. Emodin Inhibits Homocysteine-Induced C-Reactive Protein Generation in Vascular Smooth Muscle Cells by Regulating PPARγ Expression and ROS-ERK1/2/p38 Signal Pathway

    PubMed Central

    Pang, Xiaoming; Liu, Juntian; Li, Yuxia; Zhao, Jingjing; Zhang, Xiaolu

    2015-01-01

    Atherosclerosis is an inflammatory disease. As an inflammatory molecule, C-reactive protein (CRP) plays a direct role in atherogenesis. It is known that the elevated plasma homocysteine (Hcy) level is an independent risk factor for atherosclerosis. We previously reported that Hcy produces a pro-inflammatory effect by inducing CRP expression in vascular smooth muscle cells (VSMCs). In the present study, we observed effect of emodin on Hcy-induced CRP expression in rat VSMCs and molecular mechanisms. The in vitro results showed that pretreatment of VSMCs with emodin inhibited Hcy-induced mRNA and protein expression of CRP in a concentration-dependent manner. The in vivo experiments displayed that emodin not only inhibited CRP expression in the vessel walls in mRNA and protein levels, but also reduced the circulating CRP level in hyperhomocysteinemic rats. Further study revealed that emodin diminished Hcy-stimulated generation of reactive oxygen species (ROS), attenuated Hcy-activated phosphorylation of ERK1/2 and p38, and upregulated Hcy-inhibited expression of peroxisome proliferator-activated receptor gamma (PPARγ) in VSMCs. These demonstrate that emodin is able to inhibit Hcy-induced CRP generation in VSMCs, which is related to interfering with ROS-ERK1/2/p38 signal pathway and upregulating PPARγ expression. The present study provides new evidence for the anti-inflammatory and anti-atherosclerotic effects of emodin. PMID:26131983

  10. Mitochondrial Cyclophilin D in Vascular Oxidative Stress and Hypertension.

    PubMed

    Itani, Hana A; Dikalova, Anna E; McMaster, William G; Nazarewicz, Rafal R; Bikineyeva, Alfiya T; Harrison, David G; Dikalov, Sergey I

    2016-06-01

    Vascular superoxide (O˙2 (-)) and inflammation contribute to hypertension. The mitochondria are an important source of O˙2 (-); however, the regulation of mitochondrial O˙2 (-) and the antihypertensive potential of targeting the mitochondria remain poorly defined. Angiotensin II and inflammatory cytokines, such as interleukin 17A and tumor necrosis factor-α (TNFα) significantly contribute to hypertension. We hypothesized that angiotensin II and cytokines co-operatively induce cyclophilin D (CypD)-dependent mitochondrial O˙2 (-) production in hypertension. We tested whether CypD inhibition attenuates endothelial oxidative stress and reduces hypertension. CypD depletion in CypD(-/-) mice prevents overproduction of mitochondrial O˙2 (-) in angiotensin II-infused mice, attenuates hypertension by 20 mm Hg, and improves vascular relaxation compared with wild-type C57Bl/6J mice. Treatment of hypertensive mice with the specific CypD inhibitor Sanglifehrin A reduces blood pressure by 28 mm Hg, inhibits production of mitochondrial O˙2 (-) by 40%, and improves vascular relaxation. Angiotensin II-induced hypertension was associated with CypD redox activation by S-glutathionylation, and expression of the mitochondria-targeted H2O2 scavenger, catalase, abolished CypD S-glutathionylation, prevented stimulation mitochondrial O˙2 (-), and attenuated hypertension. The functional role of cytokine-angiotensin II interplay was confirmed by co-operative stimulation of mitochondrial O˙2 (-) by 3-fold in cultured endothelial cells and impairment of aortic relaxation incubated with combination of angiotensin II, interleukin 17A, and tumor necrosis factor-α which was prevented by CypD depletion or expression of mitochondria-targeted SOD2 and catalase. These data support a novel role of CypD in hypertension and demonstrate that targeting CypD decreases mitochondrial O˙2 (-), improves vascular relaxation, and reduces hypertension. © 2016 American Heart Association, Inc.

  11. Atomic Layer Deposition of a Silver Nanolayer on Advanced Titanium Orthopedic Implants Inhibits Bacterial Colonization and Supports Vascularized de Novo Bone Ingrowth.

    PubMed

    Devlin-Mullin, Aine; Todd, Naomi M; Golrokhi, Zahra; Geng, Hua; Konerding, Moritz A; Ternan, Nigel G; Hunt, John A; Potter, Richard J; Sutcliffe, Chris; Jones, Eric; Lee, Peter D; Mitchell, Christopher A

    2017-06-01

    Joint replacement surgery is associated with significant morbidity and mortality following infection with either methicillin-resistant Staphylococcus aureus (MRSA) or Staphylococcus epidermidis. These organisms have strong biofilm-forming capability in deep wounds and on prosthetic surfaces, with 10 3 -10 4 microbes resulting in clinically significant infections. To inhibit biofilm formation, we developed 3D titanium structures using selective laser melting and then coated them with a silver nanolayer using atomic layer deposition. On bare titanium scaffolds, S. epidermidis growth was slow but on silver-coated implants there were significant further reductions in both bacterial recovery (p < 0.0001) and biofilm formation (p < 0.001). MRSA growth was similarly slow on bare titanium scaffolds and not further affected by silver coating. Ultrastructural examination and viability assays using either human bone or endothelial cells, demonstrated strong adherence and growth on titanium-only or silver-coated implants. Histological, X-ray computed microtomographic, and ultrastructural analyses revealed that silver-coated titanium scaffolds implanted into 2.5 mm defects in rat tibia promoted robust vascularization and conspicuous bone ingrowth. We conclude that nanolayer silver of titanium implants significantly reduces pathogenic biofilm formation in vitro, facilitates vascularization and osseointegration in vivo making this a promising technique for clinical orthopedic applications. © 2017 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The intermediate-conductance Ca2+ -activated K+ channel (KCa3.1) in vascular disease.

    PubMed

    Tharp, D L; Bowles, D K

    2009-01-01

    The intermediate-conductance Ca(2+)-activated K(+) channel (K(Ca)3.1) was first described by Gardos in erythrocytes and later confirmed to play a significant role in T-cell activation and the immune response. More recently, K(Ca)3.1 has been characterized in numerous cell types which contribute to the development of vascular disease, such as T-cells, B-cells, endothelial cells, fibroblasts, macrophages, and dedifferentiated smooth muscle cells (SMCs). Physiologically, K(Ca)3.1 has been demonstrated to play a role in acetylcholine and endothelium-derived hyperpolarizing factor (EDHF) induced hyperpolarization, and thus control of blood pressure. Pathophysiologically, K(Ca)3.1 contributes to proliferation of T-cells, B-cells, fibroblasts, and vascular SMCs, as well as the migration of SMCs and macrophages and platelet coagulation. Recent studies have indicated that blockade of K(Ca)3.1, by specific blockers such as TRAM-34, could prove to be an effective treatment for vascular disease by inhibiting T-cell activation as well as preventing proliferation and migration of macrophages, endothelial cells, and SMCs. This vasculoprotective potential of K(Ca)3.1 inhibition has been confirmed in both rodent and swine models of restenosis. In this review, we will discuss the physiological and pathophysiological role of K(Ca)3.1 in cells closely associated with vascular biology, and the effect of K(Ca)3.1 blockers on the initiation and progression of vascular disease.

  13. Vascular endothelial growth factor expression and inhibition in uveal melanoma cell lines

    PubMed Central

    Logan, Patrick; Burnier, Julia; Burnier, Miguel N.

    2013-01-01

    Background: Uveal melanoma (UM) is a disease that affects approximately five people per million in the United States. This disease metastasises predominantly to the liver, and treatment options following the clinical detection of these sequelae are limited. Vascular endothelial growth factor-A (VEGF-A) is the primary activator of tumour angiogenesis and functions by binding to VEGF-Receptor 2 (VEGF-R2) and is often required for tumour growth beyond 2–3 mm. The purpose of this study was to investigate the expression of VEGF-A and the primary VEGF-R2 in three UM cell lines. Furthermore, we investigated the effects of VEGF-A inhibition on receptor activation and production of other cytokines. Finally, the effects of VEGF-A inhibition on the proliferation, migration, and invasion in the cell lines were ascertained. Materials: Three UM cell lines (92.1, OCM-1, and UW-1) were incubated with and without the addition of 100 μg/mL of bevacizumab. VEGF-A expression under both conditions was determined by sandwich enzyme-linked immunosorbent assay (ELISA), and phosphorylated VEGF-R2 expression was determined using western blot. The effects of VEGF-A inhibition on 20 cytokines (IL-1a, IL-2, IL-5, IL-8, IL-12p70, GM-CSF, IFNy, CCL3, MMP-9, TNF-a, IL-1b, IL-4, IL-6, IL-10, IL-13, GRO, MCP-1, MIP-1b, and RANTES) were determined using a multiplex sandwich ELISA. Proliferation rates before and after treatment were evaluated via sulforhodamine B assay, and migration and invasion assays implementing the Boyden chamber technique, the latter with artificial extracellular matrix, were used to assess their respective abilities. The Student’s t-test was used to compare changes in cytokine expression following VEGF-A inhibition. Analysis of variance was used to compare changes in the functional abilities of three uveal melanoma cell lines following VEGF-A inhibition. A P-value < 0.05 was considered statistically significant. Results: All three cell lines produced copious amounts of

  14. Canonical WNT signaling components in vascular development and barrier formation.

    PubMed

    Zhou, Yulian; Wang, Yanshu; Tischfield, Max; Williams, John; Smallwood, Philip M; Rattner, Amir; Taketo, Makoto M; Nathans, Jeremy

    2014-09-01

    Canonical WNT signaling is required for proper vascularization of the CNS during embryonic development. Here, we used mice with targeted mutations in genes encoding canonical WNT pathway members to evaluate the exact contribution of these components in CNS vascular development and in specification of the blood-brain barrier (BBB) and blood-retina barrier (BRB). We determined that vasculature in various CNS regions is differentially sensitive to perturbations in canonical WNT signaling. The closely related WNT signaling coreceptors LDL receptor-related protein 5 (LRP5) and LRP6 had redundant functions in brain vascular development and barrier maintenance; however, loss of LRP5 alone dramatically altered development of the retinal vasculature. The BBB in the cerebellum and pons/interpeduncular nuclei was highly sensitive to decrements in canonical WNT signaling, and WNT signaling was required to maintain plasticity of barrier properties in mature CNS vasculature. Brain and retinal vascular defects resulting from ablation of Norrin/Frizzled4 signaling were ameliorated by stabilizing β-catenin, while inhibition of β-catenin-dependent transcription recapitulated the vascular development and barrier defects associated with loss of receptor, coreceptor, or ligand, indicating that Norrin/Frizzled4 signaling acts predominantly through β-catenin-dependent transcriptional regulation. Together, these data strongly support a model in which identical or nearly identical canonical WNT signaling mechanisms mediate neural tube and retinal vascularization and maintain the BBB and BRB.

  15. Lysyl oxidase propeptide inhibits smooth muscle cell signaling and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hurtado, Paola A.; Vora, Siddharth; Sume, Siddika Selva

    2008-02-01

    Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression.more » In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-{alpha}-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology.« less

  16. Saturated phosphatidic acids mediate saturated fatty acid-induced vascular calcification and lipotoxicity.

    PubMed

    Masuda, Masashi; Miyazaki-Anzai, Shinobu; Keenan, Audrey L; Okamura, Kayo; Kendrick, Jessica; Chonchol, Michel; Offermanns, Stefan; Ntambi, James M; Kuro-O, Makoto; Miyazaki, Makoto

    2015-10-26

    Recent evidence indicates that saturated fatty acid-induced (SFA-induced) lipotoxicity contributes to the pathogenesis of cardiovascular and metabolic diseases; however, the molecular mechanisms that underlie SFA-induced lipotoxicity remain unclear. Here, we have shown that repression of stearoyl-CoA desaturase (SCD) enzymes, which regulate the intracellular balance of SFAs and unsaturated FAs, and the subsequent accumulation of SFAs in vascular smooth muscle cells (VSMCs), are characteristic events in the development of vascular calcification. We evaluated whether SMC-specific inhibition of SCD and the resulting SFA accumulation plays a causative role in the pathogenesis of vascular calcification and generated mice with SMC-specific deletion of both Scd1 and Scd2. Mice lacking both SCD1 and SCD2 in SMCs displayed severe vascular calcification with increased ER stress. Moreover, we employed shRNA library screening and radiolabeling approaches, as well as in vitro and in vivo lipidomic analysis, and determined that fully saturated phosphatidic acids such as 1,2-distearoyl-PA (18:0/18:0-PA) mediate SFA-induced lipotoxicity and vascular calcification. Together, these results identify a key lipogenic pathway in SMCs that mediates vascular calcification.

  17. Sustained 35-GHz radiofrequency irradiation induces circulatory failure.

    PubMed

    Frei, M R; Ryan, K L; Berger, R E; Jauchem, J R

    1995-10-01

    The objective of this study was to determine the thermal distribution and concomitant cardiovascular changes produced by whole-body exposure of ketamine-anesthetized rats to radiofrequency radiation of millimeter wave (MMW) length. Rats (n = 13) were implanted with a flow probe on the superior mesenteric artery and with a catheter in the carotid artery for the measurement of arterial blood pressure. Temperature was measured at five sites: left (Tsl) and right subcutaneous (sides toward and away From the MMW source, respectively), colonic (Tc), tympanic, and tail. The animals were exposed until death to MMW (35 GHz) at a power density that resulted in a whole-body specific absorption rate of 13 W/kg. During irradiation, the Tsl increase was significantly greater than the Tc increase. Heart rate increased throughout irradiation. Mean arterial pressure (MAP) as well maintained until Tsl reached 42 degrees C, at which point MAP declined until death. Mesenteric vascular resistance tended to increase during the early stages of irradiation but began to decrease at Tsl > or = 41 degrees C. The declines in both mesenteric vascular resistance and MAP began at Tc < 37.5 degrees C; death occurred at Tc = 40.3 +/- .3 degrees C and Tsl = 48.0 +/- .4 degrees C. These data indicate that circulatory failure and subsequent death may occur when skin temperature is rapidly elevated, even in the presence of relatively normal Tc.

  18. Orphan nuclear receptor Nur77 is a novel negative regulator of endothelin-1 expression in vascular endothelial cells.

    PubMed

    Qin, Qing; Chen, Ming; Yi, Bing; You, Xiaohua; Yang, Ping; Sun, Jianxin

    2014-12-01

    Endothelin-1 (ET-1) produced by vascular endothelial cells plays essential roles in the regulation of vascular tone and development of cardiovascular diseases. The objective of this study is to identify novel regulators implicated in the regulation of ET-1 expression in vascular endothelial cells (ECs). By using quantitative real-time PCR (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA), we show that either ectopic expression of orphan nuclear receptor Nur77 or pharmacological activation of Nur77 by 6-mercaptopurine (6-MP) substantially inhibits ET-1 expression in human umbilical vein endothelial cells (HUVECs), under both basal and thrombin-stimulated conditions. Furthermore, thrombin-stimulated ET expression is significantly augmented in both Nur77 knockdown ECs and aort from Nur77 knockout mice, suggesting that Nur77 is a negative regulator of ET-1 expression. Inhibition of ET-1 expression by Nur77 occurs at gene transcriptional levels, since Nur77 potently inhibits ET-1 promoter activity, without affecting ET-1 mRNA stability. As shown in electrophoretic mobility shift assay (EMSA), Nur77 overexpression markedly inhibits both basal and thrombin-stimulated transcriptional activity of AP-1. Mechanistically, we demonstrate that Nur77 specially interacts with c-Jun and inhibits AP-1 dependent c-Jun promoter activity, which leads to a decreased expression of c-Jun, a critical component involved in both AP-1 transcriptional activity and ET-1 expression in ECs. These findings demonstrate that Nur77 is a novel negative regulator of ET-1 expression in vascular ECs through an inhibitory interaction with the c-Jun/AP-1 pathway. Activation of Nur77 may represent a useful therapeutic strategy for preventing certain cardiovascular diseases, such as atherosclerosis and pulmonary artery hypertension. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Vasostatin-2 inhibits cell proliferation and adhesion in vascular smooth muscle cells, which are associated with the progression of atherosclerosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hou, Jianghong, E-mail: jianghonghou@163.com; Xue, Xiaolin; Li, Junnong

    2016-01-22

    Recently, the serum expression level of vasostatin-2 was found to be reduced and is being studied as an important indicator to assess the presence and severity of coronary artery disease; the functional properties of vasostatin-2 and its relationship with the development of atherosclerosis remains unclear. In this study, we attempted to detect the expression of vasostatin-2 and its impact on human vascular smooth muscle cells (VSMCs). Quantitative real-time PCR (qRT-PCR) and western blot were used to assess the expression level of vasostatin-2 in VSMCs between those from atherosclerosis and disease-free donors; we found that vasostatin-2 was significantly down-regulated in atherosclerosismore » patient tissues and cell lines. In addition, the over-expression of vasostatin-2 apparently inhibits cell proliferation and migration in VSMCs. Gain-of-function in vitro experiments further show that vasostatin-2 over-expression significantly inhibits inflammatory cytokines release in VSMCs. In addition, cell adhesion experimental analysis showed that soluble adhesion molecules (sICAM-1, sVCAM-1) had decreased expression when vasostatin-2 was over-expressed in VSMCs. Therefore, our results indicate that vasostatin-2 is an atherosclerosis-related factor that can inhibit cell proliferation, inflammatory response and cell adhesion in VSMCs. Taken together, our results indicate that vasostatin-2 could serve as a potential diagnostic biomarker and therapeutic option for human atherosclerosis in the near future. - Highlights: • Vasostatin-2 levels were down-regulated in atherosclerosis patient tissues and VSMCs. • Ectopic expression of vasostatin-2 directly affects cell proliferation and migration in vitro. • Ectopic expression of vasostatin-2 protein affects pro-inflammatory cytokines release in VSMCs. • Ectopic expression of vasostatin-2 protein affects cell adhesion in VSMCs.« less

  20. Potential of carboxymethyl cellulose coating and low dose gamma irradiation to maintain storage quality, inhibit fungal growth and extend shelf-life of cherry fruit.

    PubMed

    Hussain, P R; Rather, S A; Suradkar, P; Parveen, S; Mir, M A; Shafi, F

    2016-07-01

    Carboxymethyl cellulose (CMC) coatings alone and in combination with gamma irradiation was tested for maintaining the storage quality, inhibiting fungal incidence and extending shelf-life of cherry fruit. Two commercial cherry varieties viz. Misri and Double after harvest at commercial maturity were coated with CMC at levels 0.5-1.0 % w/v and gamma irradiated at 1.2 kGy. The treated fruit including control was stored under ambient (temperature 25 ± 2 °C, RH 70 %) and refrigerated (temperature 3 ± 1 °C, RH 80 %) conditions for evaluation of various physico-chemical parameters. Fruits were evaluated after every 3 and 7 days under ambient and refrigerated conditions. CMC coating alone at levels 0.5 and 0.75 % w/v was not found effective with respect to mold growth inhibition under either of the two conditions. Individual treatment of CMC coating at 1.0 % w/v and 1.2 kGy irradiation proved helpful in delaying the onset of mold growth up to 5 and 8 days of ambient storage. During post-refrigerated storage at 25 ± 2 °C, RH 70 %, irradiation alone at 1.2 kGy gave further 4 days extension in shelf-life of cherry varieties following 28 days of refrigeration. All combinatory treatments of CMC coating and irradiation proved beneficial in maintaining the storage quality as well as delaying the decaying of cherry fruit during post-refrigerated storage at 25 ± 2 °C, RH 70 % but, combination of CMC at 1.0 % w/v and 1.2 kGy irradiation was found significantly ( p  ≤ 0.05) superior to all other treatments in maintaining the storage quality and delaying the decaying of cherry fruit. The above combinatory treatment besides maintaining storage quality resulted in extension of 6 days in shelf life of cherry varieties during post-refrigerated storage at 25 ± 2 °C, RH 80 % following 28 days of refrigeration. Above Combination treatment gave a maximum of 2.3 and 1.5 log reduction in yeast and mold count of cherry fruits after 9 and 28

  1. The regulation of vascular endothelial growth factor-induced microvascular permeability requires Rac and reactive oxygen species.

    PubMed

    Monaghan-Benson, Elizabeth; Burridge, Keith

    2009-09-18

    Vascular permeability is a complex process involving the coordinated regulation of multiple signaling pathways in the endothelial cell. It has long been documented that vascular endothelial growth factor (VEGF) greatly enhances microvascular permeability; however, the molecular mechanisms controlling VEGF-induced permeability remain unknown. Treatment of microvascular endothelial cells with VEGF led to an increase in reactive oxygen species (ROS) production. ROS are required for VEGF-induced permeability as treatment with the free radical scavenger, N-acetylcysteine, inhibited this effect. Additionally, treatment with VEGF caused ROS-dependent tyrosine phosphorylation of both vascular-endothelial (VE)-cadherin and beta-catenin. Rac1 was required for the VEGF-induced increase in permeability and adherens junction protein phosphorylation. Knockdown of Rac1 inhibited VEGF-induced ROS production consistent with Rac lying upstream of ROS in this pathway. Collectively, these data suggest that VEGF leads to a Rac-mediated generation of ROS, which, in turn, elevates the tyrosine phosphorylation of VE-cadherin and beta-catenin, ultimately regulating adherens junction integrity.

  2. Vector-based RNA interference against vascular endothelial growth factor-A significantly limits vascularization and growth of prostate cancer in vivo.

    PubMed

    Wannenes, Francesca; Ciafré, Silvia Anna; Niola, Francesco; Frajese, Gaetano; Farace, Maria Giulia

    2005-12-01

    RNA interference technology is emerging as a very potent tool to obtain a cellular knockdown of a desired gene. In this work we used vector-based RNA interference to inhibit vascular endothelial growth factor (VEGF) expression in prostate cancer in vitro and in vivo. We demonstrated that transduction with a plasmid carrying a small interfering RNA targeting all isoforms of VEGF, dramatically impairs the expression of this growth factor in the human prostate cancer cell line PC3. As a consequence, PC3 cells loose their ability to induce one of the fundamental steps of angiogenesis, namely the formation of a tube-like network in vitro. Most importantly, our "therapeutic" vector is able to impair tumor growth rate and vascularization in vivo. We show that a single injection of naked plasmid in developing neoplastic mass significantly decreases microvessel density in an androgen-refractory prostate xenograft and is able to sustain a long-term slowing down of tumor growth. In conclusion, our results confirm the basic role of VEGF in the angiogenic development of prostate carcinoma, and suggest that the use of our vector-based RNA interference approach to inhibit angiogenesis could be an effective tool in view of future gene therapy applications for prostate cancer.

  3. Vascular Anomalies (Part I): Classification and Diagnostics of Vascular Anomalies.

    PubMed

    Sadick, Maliha; Müller-Wille, René; Wildgruber, Moritz; Wohlgemuth, Walter A

    2018-06-06

    Vascular anomalies are a diagnostic and therapeutic challenge. They require dedicated interdisciplinary management. Optimal patient care relies on integral medical evaluation and a classification system established by experts in the field, to provide a better understanding of these complex vascular entities.  A dedicated classification system according to the International Society for the Study of Vascular Anomalies (ISSVA) and the German Interdisciplinary Society of Vascular Anomalies (DiGGefA) is presented. The vast spectrum of diagnostic modalities, ranging from ultrasound with color Doppler, conventional X-ray, CT with 4 D imaging and MRI as well as catheter angiography for appropriate assessment is discussed.  Congenital vascular anomalies are comprised of vascular tumors, based on endothelial cell proliferation and vascular malformations with underlying mesenchymal and angiogenetic disorder. Vascular tumors tend to regress with patient's age, vascular malformations increase in size and are subdivided into capillary, venous, lymphatic, arterio-venous and combined malformations, depending on their dominant vasculature. According to their appearance, venous malformations are the most common representative of vascular anomalies (70 %), followed by lymphatic malformations (12 %), arterio-venous malformations (8 %), combined malformation syndromes (6 %) and capillary malformations (4 %).  The aim is to provide an overview of the current classification system and diagnostic characterization of vascular anomalies in order to facilitate interdisciplinary management of vascular anomalies.   · Vascular anomalies are comprised of vascular tumors and vascular malformations, both considered to be rare diseases.. · Appropriate treatment depends on correct classification and diagnosis of vascular anomalies, which is based on established national and international classification systems, recommendations and guidelines.. · In the classification

  4. [Vascular effect of extract from mulberry leaves and underlying mechanism].

    PubMed

    Xia, Man-Li; Gao, Qin; Zhou, Xin-Mei; Qian, Ling-Bo; Shen, Zhong-Hua; Jiang, Hui-di; Xia, Qiang

    2007-01-01

    To investigate the vascular activity of extract from mulberry leaves (EML) on rat thoracic aorta and the underlying mechanism. Isolated thoracic rings of Sprague-Dawley rats were mounted on the organ bath and the tension of the vessel was recorded. (1) EML produced a concentration-dependent vasorelaxation of aorta preconstricted by high K(+) (60 mmol/L) or 10(-6) mol/L phenylephrine (PE) in endothelium-intact and endothelium-denuded arteries. (2) EML at EC(50) concentration reduced the calcium dose-response curve. (3) After incubation of aorta with verapamil, EML induced vasocontraction of aorta preconstricted by PE, which was abolished by ruthenium red. The vascular effect of EML is biphasic, the vasorelaxation is greater than the vasocontraction. The vasorelaxation induced by EML may be mediated by inhibition of voltage-and receptor-dependent calcium channels in vascular smooth muscle cells, while the vasocontraction is via activation of ryanodine receptor in endoplasmic reticulum.

  5. Gαs Relays Sphingosine-1-Phosphate Receptor 1 Signaling to Stabilize Vascular Endothelial-Cadherin at Endothelial Junctions to Control Mouse Embryonic Vascular Integrity.

    PubMed

    Shao, Ximing; Liu, Ke; Fan, Yi; Ding, Zhihao; Chen, Min; Zhu, Minyan; Weinstein, Lee S; Li, Hongchang; Li, Huashun

    2015-11-20

    Sphingosine-1-phosphate receptor 1 (S1PR1), a G protein-coupled receptor (GPCR), controls vascular stability by stabilizing vascular endothelial (VE)-cadherin junctional localization and inhibiting vascular endothelial growth factor receptor 2 (VEGFR2) signaling. However, the molecular mechanisms that link S1PR1 signaling to intracellular effectors remain unknown. In this study, we demonstrate that the heterotrimeric G protein subfamily member Gαs, encoded by GNAS, acts as a relay mediator of S1PR1 signaling to control vascular integrity by stabilizing VE-cadherin at endothelial junctions. The endothelial cell-specific deletion of Gαs in mice causes early embryonic lethality with massive hemorrhage and a disorganized vasculature. The immunostaining results revealed that Gαs deletion remarkably reduces the junctional localization of VE-cadherin, whereas the mural cell coverage of the vessels is not impaired. In addition, we found that Gαs depletion blocks the S1PR1-activation induced VE-cadherin stabilization at junctions, supporting that Gαs acts downstream of S1PR1 signaling. Thus, our results demonstrate that Gαs is an essential mediator to relay S1PR1 signaling and maintain vascular integrity. Copyright © 2015 Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, and Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  6. Conditional Müllercell ablation causes independent neuronal and vascular pathologies in a novel transgenic model.

    PubMed

    Shen, Weiyong; Fruttiger, Marcus; Zhu, Ling; Chung, Sook H; Barnett, Nigel L; Kirk, Joshua K; Lee, SoRa; Coorey, Nathan J; Killingsworth, Murray; Sherman, Larry S; Gillies, Mark C

    2012-11-07

    Müller cells are the major glia of the retina that serve numerous functions essential to retinal homeostasis, yet the contribution of Müller glial dysfunction to retinal diseases remains largely unknown. We have developed a transgenic model using a portion of the regulatory region of the retinaldehyde binding protein 1 gene for conditional Müller cell ablation and the consequences of primary Müller cell dysfunction have been studied in adult mice. We found that selective ablation of Müller cells led to photoreceptor apoptosis, vascular telangiectasis, blood-retinal barrier breakdown and, later, intraretinal neovascularization. These changes were accompanied by impaired retinal function and an imbalance between vascular endothelial growth factor-A (VEGF-A) and pigment epithelium-derived factor. Intravitreal injection of ciliary neurotrophic factor inhibited photoreceptor injury but had no effect on the vasculopathy. Conversely, inhibition of VEGF-A activity attenuated vascular leak but did not protect photoreceptors. Our findings show that Müller glial deficiency may be an important upstream cause of retinal neuronal and vascular pathologies in retinal diseases. Combined neuroprotective and anti-angiogenic therapies may be required to treat Müller cell deficiency in retinal diseases and in other parts of the CNS associated with glial dysfunction.

  7. Inhibition of Growth and Metastasis of Ovarian Carcinoma by Administering a Drug Capable of Interfering with Vascular Endothelial Growth Factor Activity

    PubMed Central

    Mu, Jie; Abe, Yoshiko; Tsutsui, Tateki; Yamamoto, Norihiko; Tai, Xu‐Guang; Niwa, Ohtsura; Tsujimura, Takahiro; Sato, Bunzo; Terano, Hiroshi; Hamaoka, Toshiyuki

    1996-01-01

    The present study investigates the relationship between in vivo growth/metastasis of tumor cells and their capacity to produce the vascular endothelial growth factor (VEGF), as well as the regulation of tumor growth/metastasis using an angiogenesis‐inhibitory drug. Two cloned tumor cell lines designated OV‐LM and OV‐HM were isolated from a murine ovarian carcinoma OV2944. OV‐LM and OV‐HM cells grew in cultures at comparable rates. However, when transplanted s.c. into syngeneic mice, OV‐HM exhibited a faster growth rate and a much higher incidence of metastasis to lymph nodes and lung. Histologically, intense neovascularization was detected in sections of OV‐HM but not of OV‐LM tumor. OV‐HM and OV‐LM tumor cells obtained from in vitro cultures expressed high and low levels of VEGF mRNA, respectively. A difference in VEGF mRNA expression was much more clearly observed between RNAs prepared from fresh OV‐HM and OV‐LM tumor masses: RNA from OV‐HM contained larger amounts of VEGF mRNA, whereas RNA from OV‐LM exhibited only marginal levels of VEGF mRNA. An angiogenesis‐inhibitory drug, FR118487 inhibited the VEGF‐mediated in vitro growth of endothelial cells but did not affect the expression in vitro of VEGF mRNA by OV‐HM tumor cells. Intraperitoneal injections of FR118487 into mice bearing OV‐HM tumors resulted in: (i) a subsequent growth inhibition of primary tumors; (ii) a marked decrease in neovascularization inside tumor masses expressing comparable levels of VEGF mRNA to those detected in control OV‐HM masses; and (iii) almost complete inhibition of metastasis to lymph nodes and lung. These results indicate that growth/metastasis of tumor cells correlates with their VEGF‐producing capacity and that an angiogenesis inhibitor, FR118487, inhibits tumor growth and metastasis through mechanism(s) including the suppression of VEGF function in vivo. PMID:8878460

  8. Carotid artery disease following external cervical irradiation.

    PubMed Central

    Elerding, S C; Fernandez, R N; Grotta, J C; Lindberg, R D; Causay, L C; McMurtrey, M J

    1981-01-01

    A retrospective study of 910 patients surviving at least five years after cervical irradiation for Hodgkin's disease, non-Hodgkin's lymphoma, or primary head an neck neoplasms showed the incidence of stroke following cervical irradiation was 63 of 910 patients (6.3%) during a mean period of observation of nine years. This represents a trend toward an increased risk for this population observed over the same period of time (p = 0.39). A prospective study of 118 similar patients currently living five years after cervical radiotherapy was performed to determine the incidence of carotid artery disease occurring as a consequence of neck irradiation. Abnormal carotid phonangiograms (CPA) were found in 25% of the patients and abnormal oculoplethysmographs (OPG) were found in 17%. These studies represent significant carotid lesions that are not expected in such a population. It is concluded that the carotid stenoses demonstrated are most likely a consequence of prior irradiation. Patients that are five-year survivors of cervical irradiation should have noninvasive vascular laboratory studies performed as part of their routine follow-up examinations in order to detect these carotid lesions while they are occult. PMID:7294930

  9. [Mechanism of losartan suppressing vascular calcification in rat aortic artery].

    PubMed

    Shao, Juan; Wu, Panfeng; Wu, Jiliang; Li, Mincai

    2016-08-01

    Objective To investigate the effect of the angiotensin II receptor 1 (AT1R) blocker losartan on vascular calcification in rat aortic artery and explore the underlying mechanisms. Methods SD rats were divided randomly into control group, vascular calcification model group and treatment group. Vascular calcification models were made by subcutaneous injection of warfarin plus vitamin K1 for two weeks. Rats in the treatment group were subcutaneously injected with losartan (10 mg/kg) at the end of the first week and consecutively for one week. We observed the morphological changes by HE staining and the calcium deposition by Alizarin red staining in the artery vascular wall. The mRNA expressions of bone morphogenetic protein 2 (BMP2) and Runt-related transcription factor 2 (RUNX2) were analyzed by reverse transcription PCR. The BMP2 and RUNX2 protein expressions were determined by Western blotting. The apoptosis of smooth muscle cells (SMCs) were detected by TUNEL. The AT1R expression was tested by fluorescent immunohistochemistry. Results The aortic vascular calcification was induced by warfarin and vitamin K1. Compared with the vascular calcification model group, the mRNA and protein expressions of BMP2 and RUNX2 were significantly downregulated in the aorta in the losartan treatment group. Furthermore, the apoptosis of SMCs and the AT1R expression obviously decreased. Conclusion AT1R blocker losartan inhibits the apoptosis of SMCs and reduces AT1R expression; it downregulates the BMP2 and RUNX2 expressions in the vascular calcification process.

  10. 2′,3′-cAMP, 3′-AMP, and 2′-AMP inhibit human aortic and coronary vascular smooth muscle cell proliferation via A2B receptors

    PubMed Central

    Ren, Jin; Gillespie, Delbert G.

    2011-01-01

    Rat vascular smooth muscle cells (VSMCs) from renal microvessels metabolize 2′,3′-cAMP to 2′-AMP and 3′-AMP, and these AMPs are converted to adenosine that inhibits microvascular VSMC proliferation via A2B receptors. The goal of this study was to test whether this mechanism also exists in VSMCs from conduit arteries and whether it is similarly expressed in human vs. rat VSMCs. Incubation of rat and human aortic VSMCs with 2′,3′-cAMP concentration-dependently increased levels of 2′-AMP and 3′-AMP in the medium, with a similar absolute increase in 2′-AMP vs. 3′-AMP. In contrast, in human coronary VSMCs, 2′,3′-cAMP increased 2′-AMP levels yet had little effect on 3′-AMP levels. In all cell types, 2′,3′-cAMP increased levels of adenosine, but not 5′-AMP, and 2′,3′-AMP inhibited cell proliferation. Antagonism of A2B receptors (MRS-1754), but not A1 (1,3-dipropyl-8-cyclopentylxanthine), A2A (SCH-58261), or A3 (VUF-5574) receptors, attenuated the antiproliferative effects of 2′,3′-cAMP. In all cell types, 2′-AMP, 3′-AMP, and 5′-AMP increased adenosine levels, and inhibition of ecto-5′-nucleotidase blocked this effect of 5′-AMP but not that of 2′-AMP nor 3′-AMP. Also, 2′-AMP, 3′-AMP, and 5′-AMP, like 2′,3′-cAMP, exerted antiproliferative effects that were abolished by antagonism of A2B receptors with MRS-1754. In conclusion, VSMCs from conduit arteries metabolize 2′,3′-cAMP to AMPs, which are metabolized to adenosine. In rat and human aortic VSMCs, both 2′-AMP and 3′-AMP are involved in this process, whereas, in human coronary VSMCs, 2′,3′-cAMP is mainly converted to 2′-AMP. Because adenosine inhibits VSMC proliferation via A2B receptors, local vascular production of 2′,3′-cAMP may protect conduit arteries from atherosclerosis. PMID:21622827

  11. Inhibition of vascular endothelial growth factor A and hypoxia-inducible factor 1α maximizes the effects of radiation in sarcoma mouse models through destruction of tumor vasculature.

    PubMed

    Lee, Hae-June; Yoon, Changhwan; Park, Do Joong; Kim, Yeo-Jung; Schmidt, Benjamin; Lee, Yoon-Jin; Tap, William D; Eisinger-Mathason, T S Karin; Choy, Edwin; Kirsch, David G; Simon, M Celeste; Yoon, Sam S

    2015-03-01

    To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. In both mouse models, any monotherapy or bimodality therapy resulted in tumor growth beyond 250 mm(3) within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm(3) for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Intermedin Enlarges the Vascular Lumen by Inducing the Quiescent Endothelial Cell Proliferation.

    PubMed

    Wang, Li-Jun; Xiao, Fei; Kong, Ling-Miao; Wang, De-Nian; Li, Hong-Yu; Wei, Yong-Gang; Tan, Chun; Zhao, Huan; Zhang, Ting; Cao, Gui-Qun; Zhang, Kang; Wei, Yu-Quan; Yang, Han-Shuo; Zhang, Wei

    2018-02-01

    Intermedin plays an important role in vascular remodeling and significantly improves blood perfusion, but the precise mechanism remains unclear. Herein, we aimed to define whether vascular lumen enlargement is responsible for the intermedin-increased blood perfusion and explore the underlying cellular and molecular mechanisms. To study the role of intermedin, we generated the IMD-KO ( Adm2 -/- ) mice using CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeat-associated 9) system. Intermedin significantly promoted vascular lumen enlargement in vitro (fibrin beads assay) and in vivo (murine retinas), which contributed to the improved blood perfusion in both physiological (retinal) and pathological (tumor) angiogenic models. We designed experiments to calculate the endothelial cell (EC) size and found that the lumen enlargement is because of EC proliferation but not because of a change in cell shape. ECs that construct vessel walls are considered quiescent cells because they are in a state of contact inhibition and show reduced responsiveness to VEGF (vascular endothelial growth factor). Using immunoprecipitation, Western blot assay, and fluorescent microscopy, we found that intermedin induced the formation of a signaling complex containing CRLR (calcitonin receptor-like receptor)/β-arr1 (β-arrestin1)/Src in ECs and promoted it internalizing into cytoplasm in a clathrin-dependent manner to activate downstream ERK1/2 (extracellular signal-regulated kinase 1/2). Importantly, this effect was not abrogated by cell-cell contacts of ECs. Through this mechanism, intermedin could reactivate the quiescent ECs to proliferate, resulting in continuous lumen expanding and a more effective blood perfusion. Our findings suggest a novel mechanism that may explain how quiescent ECs overcome the contact inhibition and regain the ability to proliferate for continuous vascular lumen enlargement. © 2017 American

  13. Experimental anticancer therapy with vascular-disruptive peptide and liposome-entrapped chemotherapeutic agent.

    PubMed

    Sochanik, Aleksander; Mitrus, Iwona; Smolarczyk, Ryszard; Cichoń, Tomasz; Snietura, Mirosław; Czaja, Maria; Szala, Stanisław

    2010-06-01

    Vasculature is essential for the sustained growth of solid tumors and metastases. Tumor cells surviving vascular-disruptive therapeutic intervention (especially those present at the tumor rim) can contribute to tumor regrowth. The aim was to strengthen, by carrier-mediated delivery of a chemotherapeutic, the curative effects of a bifunctional anti-vascular oligopeptide capable of inducing vascular shutdown and tumor shrinkage. For the in vitro experiments and animal therapy, ACDCRGDCFC-GG-(D)(KLAKLAK)(2) peptide (900 microM in D-PBSA, i.e. Dulbecco's PBS without Ca(2+) and Mg(2+)) and size-calibrated, passively or actively targeted liposomes based on distearoylphosphatidylcholine, cholesterol, and N-carbamoyl-methoxypolyethyleneglycol coupled to distearoylphosphatidylethanolamine (PEG-DSPE) and containing gradient-entrapped doxorubicin were used. The KB (human nasopharyngeal carcinoma) cell line overexpressing folate receptors was used in the fluorescence studies of liposomal uptake. The B16-F10 melanoma cell line was used for confirming, by flow cytometry and confocal microscopy, doxorubicin intracellular transfer as well as to induce experimental tumors in C57BL/6 mice. Animal therapy was achieved with injections of vascular-disrupting peptide, doxorubicin-loaded liposomes, or alternating combined therapy. The results (tumor growth inhibition and survival) were compared using the Mann-Whitney U test and the log-rank test. Necrosis in H&E-stained tumor sections was assessed microscopically by pathologists. Treatment of C57BL/6 mice bearing B16-F10 experimental tumors with a combination of vascular-disruptive peptide and doxorubicin-carrying pegylated liposomes (either passively targeted liposomes (PTL) or folate receptor targeted) gave better therapeutic effects when tumor development was re-challenged with a second cycle of combined therapy. Marked inhibition of tumor growth and a statistically significant extension of the lifespan of the treated mice were

  14. Vascular barrier protective effects of baicalin, baicalein and wogonin in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kwak, Soyoung; Ku, Sae-Kwang; Han, Min-Su

    Inhibition of high mobility group box 1 (HMGB1) protein and restoration of endothelial integrity is emerging as an attractive therapeutic strategy in the management of sepsis. Here, three structurally related polyphenols found in the Chinese herb Huang Qui, baicalin (BCL), baicalein (BCN), and wogonin (WGN), were examined for their effects on lipopolysaccharide (LPS)- or cecal ligation and puncture (CLP)-mediated release of HMGB1 and on modulation of HMGB1-mediated inflammatory responses. According to our data, BCL, BCN, and WGN inhibited the release of HMGB1 and down-regulated HMGB1-dependent inflammatory responses in human endothelial cells. BCL, BCN, and WGN also inhibited HMGB1-mediated hyperpermeability andmore » leukocyte migration in mice. In addition, treatment with BCL, BCN, and WGN reduced CLP-induced release of HMGB1 and sepsis-related mortality and pulmonary injury in mice. These results indicate that BCL, BCN, and WGN could be candidate therapeutic agents for various severe vascular inflammatory diseases owing to their inhibition of the HMGB1 signaling pathway. - Highlights: • HMGB1 is an inflammatory mediator for vascular inflammation. • Baicalin, baicalein and wogonin inhibited HMGB1-induced hyperpermeability in vitro and in vivo. • Baicalin, baicalein and wogonin inhibited HMGB1-mediated inflammatory responses. • Baicalin, baicalein and wogonin suppressed the activation of NF-κB and ERK1/2 and production of TNF-α and IL-6. • Baicalin, baicalein and wogonin prevent CLP-induced septic mortality.« less

  15. Calcitriol accelerates vascular calcification irrespective of vitamin K status in a rat model of CKD with hyperphosphatemia and secondary hyperparathyroidism.

    PubMed

    McCabe, Kristin M; Zelt, Jason G; Kaufmann, Martin; Laverty, Kimberly; Ward, Emilie; Barron, Henry; Jones, Glenville; Adams, Michael A; Holden, Rachel M

    2018-06-14

    Patients with chronic kidney disease have a markedly increased risk for developing cardiovascular disease. Non-traditional risk factors, such as increased phosphate retention, and deficiencies in vitamins D and K metabolism, likely play key roles in the development of vascular calcification during CKD progression. Calcitriol (1,25-(OH)2-D3) is a key transcriptional regulator of Matrix Gla protein (MGP), a vitamin K dependent protein that inhibits vascular calcification. The objective of this study was to determine if calcitriol treatment could inhibit the development of vascular calcification and if this inhibition was dependent on vitamin K status in a rat model of CKD. Rats were treated with dietary adenine (0.25%) to induce CKD, with either 0, 20 or 80 ng/kg of calcitriol with low or high dietary vitamin K1 (0.2 or 100 mg/kg) for 7 weeks. Calcitriol at both low (20 ng/kg) and moderate (80 ng/kg) doses increased the severity of vascular calcification and, contrary to our hypothesis, this was unaffected by high dietary vitamin K1. Calcitriol had a dose-dependent effect on: (i) lowering serum PTH, (ii) increasing serum calcium and (iii) increasing serum FGF-23. Calcitriol treatment significantly increased aortic expression of the calcification genes Runx2 and Pit-1. This data also implicates impaired vitamin D catabolism in CKD, which may contribute to the development of calcitriol toxicity and increased vascular calcification. The present findings demonstrate that in an adenine-induced rat model of CKD, calcitriol treatment at doses as low as 20 ng/kg can increase the severity of vascular calcification regardless of vitamin K status. The American Society for Pharmacology and Experimental Therapeutics.

  16. Studies of vascular acting photosensitizer Tookad for the photodynamic therapy of prostate cancer

    NASA Astrophysics Data System (ADS)

    Huang, Zheng; Chen, Qun; Blanc, Dominique; Hetzel, Fred W.

    2005-01-01

    In this pre-clinical study, photodynamic therapy (PDT) mediated with a vascular acting photosensitizer Tookad (palladium-bacteriopheophorbide) is investigated as an alternative treatment modality for the ablation of prostate cancer. Canine prostate was used as the animal model. PDT was performed by interstitially irradiating the surgically exposed prostates with a diode laser (763 nm) to activate the IV infused photosensitizer. The effects of drug dose, drug-light interval, and light fluence rate on PDT efficacy were evaluated. The prostates and adjacent tissues were harvested at one-week post PDT and subjected to histopathological examination. The dogs recovered well with little or no urethral complications. Urinalysis showed trace blood. Histological examination showed minimal damage to the prostatic urethra. These indicated that the urethra was well preserved. PDT induced prostate lesions were characterized by marked hemorrhagic necrosis with a clear demarcation. Maximum lesion volume of ~3 cm3 could be achieved with a single 1-cm diffuser fiber at a dose level of 1 mg/kg and 200 J/cm, suggesting the therapy is very effective in ablating prostatic tissue. PDT induced lesion could reach the capsule layers but adjacent tissues were well preserved. The novel photosensitizer is a vascular drug and cleared rapidly from the circulation. Light irradiation can be performed during drug infusion thereby eliminating waiting time. The novel vascular acting photosensitizer Tookad-mediated PDT could provide an effective alternative to treat prostate cancer.

  17. Particular applications of food irradiation fresh produce

    NASA Astrophysics Data System (ADS)

    Prakash, Anuradha

    2016-12-01

    On fresh fruits and vegetables, irradiation at low and medium dose levels can effectively reduce microbial counts which can enhance safety, inhibit sprouting to extend shelf-life, and eliminate or sterilize insect pests which can serve to facilitate trade between countries. At the dose levels used for these purposes, the impact on quality is negligible. Despite the fact that regulations in many countries allow the use of irradiation for fresh produce, the technology remains under-utilized, even in the light of an increase in produce related disease outbreaks and the economic benefits of extended shelf life and reduced food waste. Putative concerns about consumer acceptance particularly for produce that is labeled as irradiated have deterred many companies from using irradiation and retailers to carry irradiated produce. This section highlights the commercial use of irradiation for fresh produce, other than phytosanitary irradiation which is covered in supplementary sections.

  18. γ-Oryzanol reduces adhesion molecule expression in vascular endothelial cells via suppression of nuclear factor-κB activation.

    PubMed

    Sakai, Satoshi; Murata, Takahisa; Tsubosaka, Yoshiki; Ushio, Hideki; Hori, Masatoshi; Ozaki, Hiroshi

    2012-04-04

    γ-Oryzanol (γ-ORZ) is a mixture of phytosteryl ferulates purified from rice bran oil. In this study, we examined whether γ-ORZ represents a suppressive effect on the lipopolysaccharide (LPS)-induced adhesion molecule expression on vascular endothelium. Treatment with LPS elevated the mRNA expression of vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1), and E-selectin in bovine aortic endothelial cells (BAECs). Pretreatment with γ-ORZ dose-dependently decreased the LPS-mediated expression of these genes. Western blotting also revealed that pretreatment with γ-ORZ dose-dependently inhibited LPS-induced VCAM-1 expression in human umbilical vein endothelial cells. Consistently, pretreatment with γ-ORZ dose-dependently reduced LPS-induced U937 monocyte adhesion to BAECs. In immunofluorescence, LPS caused nuclear factor-κB (NF-κB) nuclear translocation in 40% of BAECs, which indicates NF-κB activation. Pretreatment with γ-ORZ, as well as its components (cycloartenyl ferulate, ferulic acid, or cycloartenol), dose-dependently inhibited LPS-mediated NF-κB activation. Collectively, our results suggested that γ-ORZ reduced LPS-mediated adhesion molecule expression through NF-κB inhibition in vascular endothelium.

  19. SGLT2 inhibition via dapagliflozin improves generalized vascular dysfunction and alters the gut microbiota in type 2 diabetic mice.

    PubMed

    Lee, Dustin M; Battson, Micah L; Jarrell, Dillon K; Hou, Shuofei; Ecton, Kayl E; Weir, Tiffany L; Gentile, Christopher L

    2018-04-27

    Type 2 diabetes (T2D) is associated with generalized vascular dysfunction characterized by increases in large artery stiffness, endothelial dysfunction, and vascular smooth muscle dysfunction. Sodium glucose cotransporter 2 inhibitors (SGLT2i) represent the most recently approved class of oral medications for the treatment of T2D, and have been shown to reduce cardiovascular and overall mortality. Although it is currently unclear how SGLT2i decrease cardiovascular risk, an improvement in vascular function is one potential mechanism. The aim of the current study was to examine if dapagliflozin, a widely prescribed STLT2i, improves generalized vascular dysfunction in type 2 diabetic mice. In light of several studies demonstrating a bi-directional relation between orally ingested medications and the gut microbiota, a secondary aim was to determine the effects of dapagliflozin on the gut microbiota. Male diabetic mice (Db, n = 24) and control littermates (Con; n = 23) were randomized to receive either a standard diet or a standard diet containing dapagliflozin (60 mg dapagliflozin/kg diet; 0.006%) for 8 weeks. Arterial stiffness was assessed by aortic pulse wave velocity; endothelial function and vascular smooth muscle dysfunction were assessed by dilatory responses to acetylcholine and sodium nitroprusside, respectively. Compared to untreated diabetic mice, diabetic mice treated with dapagliflozin displayed significantly lower arterial stiffness (Db = 469 cm/s vs. Db + dapa = 435 cm/s, p < 0.05), and improvements in endothelial dysfunction (area under the curve [AUC] Db = 57.2 vs. Db + dapa = 117.0, p < 0.05) and vascular smooth muscle dysfunction (AUC, Db = 201.7 vs. Db + dapa = 285.5, p < 0.05). These vascular improvements were accompanied by reductions in hyperglycemia and circulating markers of inflammation. The microbiota of Db and Con mice were distinctly different, and dapagliflozin treatment was

  20. Peptide bioregulators inhibit apoptosis.

    PubMed

    Khavinson, V K; Kvetnoii, I M

    2000-12-01

    The effects of peptide bioregulators epithalon and vilon on the dynamics of irradiation-induced apoptotic death of spleen lymphocytes in rats indicate that these agents inhibit physiologically programmed cell death. The antiapoptotic effect of vilon was more pronounced, which corroborates the concept on tissue-specific effect of peptide bioregulators.

  1. Vascular smooth muscle cell polyploidy and cardiomyocyte hypertrophy due to chronic NOS inhibition in vivo.

    PubMed

    Devlin, A M; Brosnan, M J; Graham, D; Morton, J J; McPhaden, A R; McIntyre, M; Hamilton, C A; Reid, J L; Dominiczak, A F

    1998-01-01

    To assess the vascular and cardiac response to NO (nitric oxide) synthase (NOS) blockade in vivo, Wistar-Kyoto rats (WKY) were treated for 3 wk with NG-nitro-L-arginine methyl ester (L-NAME; 10 mg.kg-1.day-1). L-NAME treatment induced hypertension that was associated with increased plasma renin activity. Flow cytometry cell cycle DNA analysis showed that aortic vascular smooth muscle cells (VSMC) from L-NAME-treated WKY had a significantly higher polyploid population compared with WKY controls. Using organ bath experiments, we have shown that aortic rings from L-NAME-treated WKY have an increased contractile response to phenylephrine and impaired relaxation to carbachol compared with control rings. NOS blockade in vivo caused a significant increase in cardiac and left ventricular hypertrophy. Northern mRNA analysis of the myocardium showed that L-NAME treatment caused reexpression of the fetal skeletal alpha-actin isoform without alterations in collagen type I expression, a pattern indicating true hypertrophy of the cardiomyocytes. These studies provide further insight to confirm that NO deficiency in vivo results in the development of vascular and cardiac hypertrophy.

  2. Studies in fat grafting: Part III. Fat grafting irradiated tissue--improved skin quality and decreased fat graft retention.

    PubMed

    Garza, Rebecca M; Paik, Kevin J; Chung, Michael T; Duscher, Dominik; Gurtner, Geoffrey C; Longaker, Michael T; Wan, Derrick C

    2014-08-01

    Following radiation therapy, skin becomes fibrotic and can present a difficult problem for reconstructive surgeons. There is an increasing belief that fat grafting under irradiated skin can reverse the damage caused by radiation. The present study evaluated the effect of fat grafting on irradiated skin, along with fat graft quality and retention rates in irradiated tissue. Nine adult Crl:NU-Foxn1 CD-1 mice underwent 30-Gy external beam irradiation of the scalp. Four weeks after irradiation, scalp skin from irradiated and nonirradiated mice was harvested and compared histologically for dermal thickness, collagen content, and vascular density. Human fat grafts were then injected in the subcutaneous plane of the scalp. Skin assessment was performed in the irradiated group at 2 and 8 weeks after grafting, and fat graft retention was measured at baseline and every 2 weeks up to 8 weeks after grafting using micro-computed tomography. Finally, fat graft samples were explanted at 8 weeks, and quality scoring was performed. Fat grafting resulted in decreased dermal thickness, decreased collagen content, and increased vascular density in irradiated skin. Computed tomographic analysis revealed significantly decreased fat graft survival in the irradiated group compared with the nonirradiated group. Histologic scoring of explanted fat grafts demonstrated no difference in quality between the irradiated and nonirradiated groups. Fat grafting attenuates dermal collagen deposition and vessel depletion characteristic of radiation fibrosis. Although fat graft retention rates are significantly lower in irradiated than in nonirradiated tissue, the quality of retained fat between the groups is similar.

  3. [Aspects of vascular physiology in clinical and vascular surgical practice: basic principles of vascular mechanics].

    PubMed

    Nocke, H; Meyer, F; Lessmann, V

    2014-10-01

    To be able to evaluate properly a vascular problem, basic concepts of vascular physiology need to be considered, as they have been taught in physiology for a long time. This article deals with selected definitions and laws of passive vascular mechanics, subdivided into parameters of vascular filling and parameters of vascular flow. PARAMETERS OF VASCULAR FILLING: During vascular filling the transmural pressure distends the vascular wall until it is balanced by the wall tension. The extent of this distension up to the point of balance depends on the elasticity of the wall. Transmural pressure, wall tension and elasticity are defined, and their respective importance is described by clinical examples, e.g. aneurysm and varix. PARAMETERS OF VASCULAR FLOW: The vascular flow can be divided into stationary and pulsating components. Both components are relevant for the bloodstream. Since the blood flow is directed in the circuit, it can be understood in first approximation as stationary ("direct current").The direct current model uses only the average values of the pulsating variables. The great advantage of the direct current model is that it can be described with simple laws, which are not valid without reservation, but often allow a first theoretical approach to a vascular problem: Ohm's law, driving pressure, flow resistance, Hagen-Poiseuille law, wall shear stress, law of continuity, Bernoulli's equation and Reynold's number are described and associated with clinical examples.The heart is a pressure-suction pump and produces a pulsating flow, the pulse. The pulse runs with pulse wave velocity, which is much larger than the blood flow velocity, through the arterial vascular system. During propagation, the pulse has to overcome the wave resistance (impedance). Wherever the wave resistance changes, e.g., at vascular bifurcations and in the periphery, it comes to reflections. The incident (forward) and reflected (backward) waves are superimposed to yield the resulting

  4. Cobalt chloride attenuates hypobaric hypoxia induced vascular leakage in rat brain: Molecular mechanisms of action of cobalt chloride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalpana, S.; Dhananjay, S.; Anju, B.

    2008-09-15

    This study reports the efficacy of cobalt preconditioning in preventing hypobaric hypoxia induced vascular leakage (an indicator of cerebral edema) using male Sprague-Dawley rats as model system. Exposure of animals to hypobaric hypoxia led to a significant increase in vascular leakage, reactive oxygen species (ROS), nitric oxide (NO), and vascular endothelial growth factor (VEGF) levels. There was a marked increase in Nuclear Factor {kappa}B (NF{kappa}B) DNA binding activity and levels of pro-inflammatory cytokines such as Monocyte chemoattractant protein (MCP-1), Interferon-{gamma} (IFN-{gamma}), Interleukin-1 (IL-1), and Tumor Necrosis Factor-{alpha} (TNF-{alpha}) and cell adhesion molecules such as Vascular Cell Adhesion Molecule-1 (VCAM-1), andmore » P-selectin. Chemical preconditioning by cobalt for 7 days (12.5 mg Co/kg b.w., oral) significantly attenuated cerebral vascular leakage and the expression of inflammatory mediators induced by hypoxia. Administration of NF{kappa}B inhibitor, curcumin (50 mg/kg b.w.; i.p.) appreciably inhibited hypoxia induced vascular leakage indicating the involvement of NF{kappa}B in causing vascular leakage. Interestingly, cobalt when administered at 12.5 mg Co/kg b.w. (i.p.), 1 h before hypoxia could not prevent the vascular leakage indicating that cobalt per se did not have an effect on NF{kappa}B. The lower levels of NF{kappa}B observed in the brains of cobalt administered animals might be due to higher levels of antioxidant and anti-inflammatory proteins (hemeoxygenase-1 and metallothionein). To conclude cobalt preconditioning inhibited hypobaric hypoxia induced cerebral vascular leakage by lowering NF{kappa}B DNA binding activity and its regulated pro-inflammatory mediators. This is contemplated to be mediated by cobalt induced reduction in ROS/NO and increase in HO-1 and MT.« less

  5. RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and vascular remodeling via the JNK pathway and vimentin cytoskeleton.

    PubMed

    Tang, Lian; Dai, Fan; Liu, Yan; Yu, Xiaoqiang; Huang, Chao; Wang, Yuqin; Yao, Wenjuan

    2018-05-20

    The RhoA/ROCK signaling pathway regulates cell morphology, adhesion, proliferation, and migration. In this study, we investigated the regulatory role of RhoA/ROCK signaling on PDGF-BB-mediated smooth muscle phenotypic modulation and vascular remodeling and clarified the molecular mechanisms behind these effects. PDGF-BB treatment induced the activation of RhoA, ROCK, PDGF-Rβ, and the expression of PDGF-Rβ in HA-VSMCs (human aortic vascular smooth muscle cells). PDGF-Rβ inhibition and RhoA suppression blocked PDGF-BB-induced RhoA activation and ROCK induction. In addition, PDGF-BB-mediated cell proliferation and migration were suppressed by PDGF-Rβ inhibition, RhoA suppression, and ROCK inhibition, suggesting that PDGF-BB promotes phenotypic modulation of HA-VSMCs by activating the RhoA/ROCK pathway via the PDGF receptor. Moreover, suppressing both ROCK1 and ROCK2 blocked cell cycle progression from G0/G1 to S phase by decreasing the transcription and protein expression of cyclin D1, CDK2, and CDK4 via JNK/c-Jun pathway, thus reducing cell proliferation in PDGF-BB-treated HA-VSMCs. ROCK1 deletion, rather than ROCK2 suppression, significantly inhibited PDGF-BB-induced migration by reducing the expression of vimentin and preventing the remodeling of vimentin and phospho-vimentin. Furthermore, ROCK1 deletion suppressed vimentin by inhibiting the phosphorylation of Smad2/3 and the nuclear translocation of Smad4. These findings suggested that ROCK1 and ROCK2 might play different roles in PDGF-BB-mediated cell proliferation and migration in HA-VSMCs. In addition, PDGF-BB and its receptor participated in neointima formation and vascular remodeling by promoting cell cycle protein expression via the JNK pathway and enhancing vimentin expression in a rat balloon injury model; effects that were inhibited by treatment with fasudil. Together, the results of this study reveal a novel mechanism through which RhoA/ROCK signaling regulates smooth muscle phenotypic modulation and

  6. Creatinine metabolite, HMH (5-hydroxy-1-methylhydantoin; NZ-419), modulates bradykinin-induced changes in vascular smooth muscle cells.

    PubMed

    Ienaga, Kazuharu; Sohn, Mimi; Naiki, Mitsuru; Jaffa, Ayad A

    2014-06-01

    A creatinine metabolite, 5-hydroxy-1-methylhydantoin (HMH: NZ-419), a hydroxyl radical scavenger, has previously been shown to confer renoprotection by inhibiting the progression of chronic kidney disease in rats. In the current study, we demonstrate that HMH modulates the effects of glucose and bradykinin (BK) in vascular smooth muscle cell (VSMC). HMH a novel anti-oxidant drug completely suppressed the expression of B2-kinin receptors (B2KR) in response to high glucose (25 mM) stimulation in VSMC and was also shown to attenuate the effects of BK on VSMC remodeling. HMH inhibited the BK-induced increase in MAPK phosphorylation and attenuated the increase in connective tissue growth factor (CTGF) protein levels in VSMC. These findings suggest that HMH may confer vascular protection against high glucose concentrations and BK-stimulation to ameliorate vascular injury and remodeling through its anti-oxidant properties.

  7. Additive Manufacturing of Vascular Grafts and Vascularized Tissue Constructs.

    PubMed

    Elomaa, Laura; Yang, Yunzhi Peter

    2017-10-01

    There is a great need for engineered vascular grafts among patients with cardiovascular diseases who are in need of bypass therapy and lack autologous healthy blood vessels. In addition, because of the severe worldwide shortage of organ donors, there is an increasing need for engineered vascularized tissue constructs as an alternative to organ transplants. Additive manufacturing (AM) offers great advantages and flexibility of fabrication of cell-laden, multimaterial, and anatomically shaped vascular grafts and vascularized tissue constructs. Various inkjet-, extrusion-, and photocrosslinking-based AM techniques have been applied to the fabrication of both self-standing vascular grafts and porous, vascularized tissue constructs. This review discusses the state-of-the-art research on the use of AM for vascular applications and the key criteria for biomaterials in the AM of both acellular and cellular constructs. We envision that new smart printing materials that can adapt to their environment and encourage rapid endothelialization and remodeling will be the key factor in the future for the successful AM of personalized and dynamic vascular tissue applications.

  8. Theileria parva: effects of irradiation on a culture of parasitized bovine lymphoid cells. [Gamma radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvin, A.D.; Brown, C.G.D.; Stagg, D.A.

    1975-01-01

    Aliquots of a culture of Theileria parva-infected bovine lymphoid cells were irradiated at 0, 300, 600, 900, and 1200 rads. The short-term effects of irradiation were evaluated on examination of Giemsa-stained smears and on autoradiography of cells labeled with (/sup 3/H)thymidine. Irradiation inhibited cell division but parasite division did not appear to be inhibited and macroschizont nuclear particles increased in number, frequently to several hundred per schizont. There was no evidence of an increased percentage switch from macro- to microschizont. Apparently viable cells were still present in all cultures 4 days after irradiation.

  9. Sildenafil Increases Sympathetically Mediated Vascular Tone in Humans

    PubMed Central

    2013-01-01

    BACKGROUND Sildenafil, a selective phosphodiesterase-type-5 (PDE-5) inhibitor, produces vasodilation that improves erectile dysfunction and pulmonary hypertension. Sildenafil could also cause baroreflex sympathetic activation that would enhance vascular tone and oppose direct vasodilation. We tested the hypothesis that sildenafil administration increases sympathetically mediated vascular tone in healthy middle-aged men. METHODS We randomized 9 healthy, middle-aged, male volunteers (mean age 45±2 years) in a double-blind, crossover fashion to receive a single oral dose of sildenafil 100mg or placebo on 2 separate study days. Hemodynamics and forearm blood flow responses were measured at baseline, at 30 and 45 minutes after study drug administration, and then during intra-arterial infusions of vasoactive drugs. After sildenafil and placebo administration, intrabrachial medications were infused to test forearm alpha receptor sensitivity (norepinephrine), cyclic-AMP–mediated vasodilation (isoproterenol), and sympathetically mediated vascular tone (phentolamine) (adenosine was a control vasodilator). Blood samples were taken before and 60 minutes after study drug administration and at the end of the intrabrachial infusions for measurement of plasma norepinephrine concentrations. RESULTS Forearm vascular responses to norepinephrine, isoproterenol, and adenosine were not different after placebo and sildenafil administration. Percentage reduction in forearm vascular resistance during phentolamine was significantly lower after sildenafil than placebo (−73% ± 3% vs −63% ± 3%; P = 0.0002). Sildenafil significantly increased plasma norepinephrine compared with placebo 60 minutes after study drug administration and at the end of the study session (P = 0.02). CONCLUSIONS Sildenafil increased sympathetically mediated vascular tone in middle-aged healthy men. Alpha-adrenergic–mediated vasoconstriction may offset vasodilation during PDE-5 inhibition and may explain the

  10. Vascular Access Port Implantation and Serial Blood Sampling in a Gottingen Minipig (Sus scrofa domestica) Model of Acute Radiation Injury

    PubMed Central

    Moroni, Maria; Coolbaugh, Thea V; Mitchell, Jennifer M; Lombardini, Eric; Moccia, Krinon D; Shelton, Larry J; Nagy, Vitaly; Whitnall, Mark H

    2011-01-01

    Threats of nuclear and other radiologic exposures have been increasing, but no countermeasure for acute radiation syndrome has been approved by regulatory authorities. Because of their similarity to humans in regard to physiology and anatomy, we are characterizing Gottingen minipigs as a model to aid the development of radiation countermeasures. Irradiated minipigs exhibit immunosuppression, severe thrombocytopenia, vascular leakage, and acute inflammation. These complications render serial acquisition of blood samples problematic. Vascular access ports (VAP) facilitate serial sampling, but their use often is complicated by infections and fibrin deposition. We demonstrate here the successful use of VAP for multiple blood samplings in irradiated minipigs. Device design and limited postoperative prophylactic antimicrobial therapy before irradiation were key to obtaining serial sampling, reducing swelling, and eliminating infection and skin necrosis at the implantation site. Modifications of previous protocols included the use of polydioxanone sutures instead of silk; eliminating chronic port access; single-use, sterile, antireflux prefilled syringes for flushing; strict aseptic weekly maintenance of the device, and acclimating animals to reduce stress. VAP remained functional in 19 of 20 irradiated animals for as long as 3 mo. The remaining VAP failed due to a small leak in the catheter, leading to clot formation. VAP-related sepsis occurred in 2 minipigs. Blood sampling did not cause detectable stress in nonanesthetized sham-irradiated animals, according to leukograms and clinical signs. PMID:21333166

  11. Protective role of sulphoraphane against vascular complications in diabetes.

    PubMed

    Yamagishi, Sho-Ichi; Matsui, Takanori

    2016-10-01

    Context Diabetes is a global health challenge. Although large prospective clinical trials have shown that intensive control of blood glucose or blood pressure reduces the risk for development and progression of vascular complications in diabetes, a substantial number of diabetic patients still experience renal failure and cardiovascular events, which could account for disabilities and high mortality rate in these subjects. Objective Sulphoraphane is a naturally occurring isothiocyanate found in widely consumed cruciferous vegetables, such as broccoli, cabbage and Brussels sprouts, and an inducer of phase II antioxidant and detoxification enzymes with anticancer properties. We reviewed here the protective role of sulphoraphane against diabetic vascular complications. Methods In this review, literature searches were undertaken in Medline and in CrossRef. Non-English language articles were excluded. Keywords [sulphoraphane and (diabetes, diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, diabetic complications, vascular, cardiomyocytes, heart or glycation)] have been used to select the articles. Results There is accumulating evidence that sulphoraphane exerts beneficial effects on vascular damage in both cell culture and diabetic animal models via antioxidative properties. Furthermore, we have recently found that sulphoraphane inhibits in vitro formation of advanced glycation end products (AGEs), suppresses the AGE-induced inflammatory reactions in rat aorta by reducing receptor for AGEs (RAGE) expression and decreases serum levels of AGEs in humans. Conclusion These findings suggest that blockade of oxidative stress and/or the AGE-RAGE axis by sulphoraphane may be a novel therapeutic strategy for preventing vascular complications in diabetes.

  12. Chronic Embolic Pulmonary Hypertension Caused by Pulmonary Embolism and Vascular Endothelial Growth Factor Inhibition.

    PubMed

    Neto-Neves, Evandro M; Brown, Mary B; Zaretskaia, Maria V; Rezania, Samin; Goodwill, Adam G; McCarthy, Brian P; Persohn, Scott A; Territo, Paul R; Kline, Jeffrey A

    2017-04-01

    Our understanding of the pathophysiological basis of chronic thromboembolic pulmonary hypertension (CTEPH) will be accelerated by an animal model that replicates the phenotype of human CTEPH. Sprague-Dawley rats were administered a combination of a single dose each of plastic microspheres and vascular endothelial growth factor receptor antagonist in polystyrene microspheres (PE) + tyrosine kinase inhibitor SU5416 (SU) group. Shams received volume-matched saline; PE and SU groups received only microspheres or SU5416, respectively. PE + SU rats exhibited sustained pulmonary hypertension (62 ± 13 and 53 ± 14 mmHg at 3 and 6 weeks, respectively) with reduction of the ventriculoarterial coupling in vivo coincident with a large decrement in peak rate of oxygen consumption during aerobic exercise, respectively. PE + SU produced right ventricular hypokinesis, dilation, and hypertrophy observed on echocardiography, and 40% reduction in right ventricular contractile function in isolated perfused hearts. High-resolution computed tomographic pulmonary angiography and Ki-67 immunohistochemistry revealed abundant lung neovascularization and cellular proliferation in PE that was distinctly absent in the PE + SU group. We present a novel rodent model to reproduce much of the known phenotype of CTEPH, including the pivotal pathophysiological role of impaired vascular endothelial growth factor-dependent vascular remodeling. This model may reveal a better pathophysiological understanding of how PE transitions to CTEPH in human treatments. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  13. Endothelial RSPO3 Controls Vascular Stability and Pruning through Non-canonical WNT/Ca(2+)/NFAT Signaling.

    PubMed

    Scholz, Beate; Korn, Claudia; Wojtarowicz, Jessica; Mogler, Carolin; Augustin, Iris; Boutros, Michael; Niehrs, Christof; Augustin, Hellmut G

    2016-01-11

    The WNT signaling enhancer R-spondin3 (RSPO3) is prominently expressed in the vasculature. Correspondingly, embryonic lethality of Rspo3-deficient mice is caused by vessel remodeling defects. Yet the mechanisms underlying vascular RSPO3 function remain elusive. Inducible endothelial Rspo3 deletion (Rspo3-iECKO) resulted in perturbed developmental and tumor vascular remodeling. Endothelial cell apoptosis and vascular pruning led to reduced microvessel density in Rspo3-iECKO mice. Rspo3-iECKO mice strikingly phenocopied the non-canonical WNT signaling-induced vascular defects of mice deleted for the WNT secretion factor Evi/Wls. An endothelial screen for RSPO3 and EVI/WLS co-regulated genes identified Rnf213, Usp18, and Trim30α. RNF213 targets filamin A and NFAT1 for proteasomal degradation attenuating non-canonical WNT/Ca(2+) signaling. Likewise, USP18 and TRIM5α inhibited NFAT1 activation. Consequently, NFAT protein levels were decreased in endothelial cells of Rspo3-iECKO mice and pharmacological NFAT inhibition phenocopied Rspo3-iECKO mice. The data identify endothelial RSPO3-driven non-canonical WNT/Ca(2+)/NFAT signaling as a critical maintenance pathway of the remodeling vasculature. Copyright © 2016 Elsevier Inc. All rights reserved.

  14. Antiangiogenic activity of vitexicarpine in experimentally induced hepatocellular carcinoma: Impact on vascular endothelial growth factor pathway.

    PubMed

    Hassoun, Shimaa M; Abdel-Rahman, Noha; Eladl, Entsar I; El-Shishtawy, Mamdouh M

    2017-06-01

    Angiogenesis plays important roles in progression of hepatocellular carcinoma. The antiangiogenic mechanisms of vitexicarpine are not fully defined. Therefore, we conducted the following study to evaluate the antiangiogenic mechanism and antitumor activity of vitexicarpine in vivo model of hepatocellular carcinoma through modulation of vascular endothelial growth factor signaling pathway. Hepatocellular carcinoma was induced in Sprague Dawley rats by thioacetamide. Hepatocellular carcinoma was assessed by measuring serum alpha-fetoprotein and investigating liver sections stained with hematoxylin/eosin. Hepatocellular carcinoma rats were injected with vitexicarpine (150 mg/kg) for 2 weeks. Hepatic vascular endothelial growth factor was measured by enzyme-linked immunosorbent assay. Protein and expression of hepatic phospho-Ser473-AKT (p-AKT) and phospho-Tyr419-Src (p-Src) were determined. The apoptotic pathway was evaluated by assessment of protein expression of caspase-3. Vitexicarpine increased rats' survival time and decreased serum alpha-fetoprotein as well as it ameliorated fibrosis and massive hepatic tissue breakdown. It attenuated hepatocellular carcinoma-induced protein and gene expression of vascular endothelial growth factor, p-AKT, p-Src, and caspase-3. In conclusion, this study suggests that vitexicarpine possesses both antiangiogenic and antitumor activities through inhibition of vascular endothelial growth factor, p-AKT/AKT, and p-Src with subsequent inhibition of apoptotic pathway.

  15. Conditional Müller cell ablation causes independent neuronal and vascular pathologies in a novel transgenic model

    PubMed Central

    Shen, Weiyong; Fruttiger, Marcus; Zhu, Ling; Chung, Sook H.; Barnett, Nigel L.; Kirk, Joshua K.; Lee, SoRa; Coorey, Nathan J.; Killingsworth, Murray; Sherman, Larry S.; Gillies, Mark C.

    2014-01-01

    Müller cells are the major glia of the retina that serve numerous functions essential to retinal homeostasis, yet the contribution of Müller glial dysfunction to retinal diseases remains largely unknown. We have developed a transgenic model using a portion of the regulatory region of the retinaldehyde binding protein 1 gene for conditional Müller cell ablation and the consequences of primary Müller cell dysfunction have been studied in adult mice. We found that selective ablation of Müller cells led to photoreceptor apoptosis, vascular telangiectasis, blood-retinal barrier breakdown and, later, intraretinal neovascularization. These changes were accompanied by impaired retinal function and an imbalance between vascular endothelial growth factor-A (VEGF-A) and pigment epithelium derived factor. Intravitreal injection of cilliary neurotrophic factor inhibited photoreceptor injury but had no effect on the vasculopathy. Conversely, inhibition of VEGF-A activity attenuated vascular leak but did not protect photoreceptors. Our findings show that Müller glial deficiency may be an important upstream cause of retinal neuronal and vascular pathologies in retinal diseases. Combined neuroprotective and anti-angiogenic therapies may be required to treat Müller cell deficiency in retinal diseases and in other parts of the central nervous system associated with glial dysfunction. PMID:23136411

  16. Exercise training improves vascular mitochondrial function

    PubMed Central

    Park, Song-Young; Rossman, Matthew J.; Gifford, Jayson R.; Bharath, Leena P.; Bauersachs, Johann; Richardson, Russell S.; Abel, E. Dale; Symons, J. David

    2016-01-01

    Exercise training is recognized to improve cardiac and skeletal muscle mitochondrial respiratory capacity; however, the impact of chronic exercise on vascular mitochondrial respiratory function is unknown. We hypothesized that exercise training concomitantly increases both vascular mitochondrial respiratory capacity and vascular function. Arteries from both sedentary (SED) and swim-trained (EX, 5 wk) mice were compared in terms of mitochondrial respiratory function, mitochondrial content, markers of mitochondrial biogenesis, redox balance, nitric oxide (NO) signaling, and vessel function. Mitochondrial complex I and complex I + II state 3 respiration and the respiratory control ratio (complex I + II state 3 respiration/complex I state 2 respiration) were greater in vessels from EX relative to SED mice, despite similar levels of arterial citrate synthase activity and mitochondrial DNA content. Furthermore, compared with the SED mice, arteries from EX mice displayed elevated transcript levels of peroxisome proliferative activated receptor-γ coactivator-1α and the downstream targets cytochrome c oxidase subunit IV isoform 1, isocitrate dehydrogenase (Idh) 2, and Idh3a, increased manganese superoxide dismutase protein expression, increased endothelial NO synthase phosphorylation (Ser1177), and suppressed reactive oxygen species generation (all P < 0.05). Although there were no differences in EX and SED mice concerning endothelium-dependent and endothelium-independent vasorelaxation, phenylephrine-induced vasocontraction was blunted in vessels from EX compared with SED mice, and this effect was normalized by NOS inhibition. These training-induced increases in vascular mitochondrial respiratory capacity and evidence of improved redox balance, which may, at least in part, be attributable to elevated NO bioavailability, have the potential to protect against age- and disease-related challenges to arterial function. PMID:26825520

  17. Simultaneous Inhibition of EGFR and PI3K Enhances Radiosensitivity in Human Breast Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li Ping; Zhang Qing; Torossian, Artour

    2012-07-01

    Purpose: Mutations in the epidermal growth factor receptor (EGFR)/phosphoinositide 3-kinase (PI3K)/Akt signaling transduction pathway are common in cancer. This pathway is imperative to the radiosensitivity of cancer cells. We aimed to investigate the radiosensitizing effects of the simultaneous inhibition of EGFR and PI3K in breast cancer cells. Methods and Materials: MCF-7 cell lines with low expression of EGFR and wild-type PTEN and MDA-MB-468 cell lines with high expression of EGFR and mutant PTEN were used. The radiosensitizing effects by the inhibition of EGFR with AG1478 and/or PI3K with Ly294002 were determined by colony formation assay, Western blot was used tomore » investigate the effects on downstream signaling. Flow cytometry was used for apoptosis and cell cycle analysis. Mice-bearing xenografts of MDA-MB-468 breast cancer cells were also used to observe the radiosensitizing effect. Results: Simultaneous inhibition of EGFR and PI3K greatly enhanced radiosensitizing effect in MDA-MB-468 in terms of apoptosis and mitotic death, either inhibition of EGFR or PI3K alone could enhance radiosensitivity with a dose-modifying factor (DMF{sub SF2}) of 1.311 and 1.437, radiosensitizing effect was further enhanced by simultaneous inhibition of EGFR and PI3K with a DMF{sub SF2} at 2.698. DNA flow cytometric analysis indicated that dual inhibition combined with irradiation significantly induced G0/G1 phase arrest in MDA-MB-468 cells. The expression of phosphor-Akt and phosphor-Erk1/2 (induced by irradiation and PI3K inhibitor) were fully attenuated by simultaneous treatment with both inhibitors in combination with irradiation. In addition, dual inhibition combined with irradiation induced dramatic tumor growth delay in MDA-MB-468 xenografts. Conclusions: Our study indicated that simultaneous inhibition of EGFR and PI3K could further sensitize the cancer cells to irradiation compared to the single inhibitor with irradiation in vitro and in vivo. The approach may

  18. Shifts in bryophyte carbon isotope ratio across an elevation × soil age matrix on Mauna Loa, Hawaii: do bryophytes behave like vascular plants?

    PubMed

    Waite, Mashuri; Sack, Lawren

    2011-05-01

    The carbon isotope ratio (δ(13)C) of vascular plant leaf tissue is determined by isotope discrimination, primarily mediated by stomatal and mesophyll diffusion resistances and by photosynthetic rate. These effects lead to predictable trends in leaf δ(13)C across natural gradients of elevation, irradiance and nutrient supply. Less is known about shifts in δ(13)C for bryophytes at landscape scale, as bryophytes lack stomata in the dominant gametophyte phase, and thus lack active control over CO(2) diffusion. Twelve bryophyte species were sampled across a matrix of elevation and soil ages on Mauna Loa, Hawaii Island. We tested hypotheses based on previous findings for vascular plants, which tend to have less negative δ(13)C at higher elevations or irradiances, and for leaves with higher leaf mass per area (LMA). Across the matrix, bryophytes spanned the range of δ(13)C values typical of C(3) vascular plants. Bryophytes were remarkably similar to vascular plants in exhibiting less negative δ(13)C with increasing elevation, and with lower overstory cover; additionally δ(13)C was related to bryophyte canopy projected mass per area, a trait analogous to LMA in vascular plants, also correlated negatively with overstory cover. The similarity of responses of δ(13)C in bryophytes and vascular plants to environmental factors, despite differing morphologies and diffusion pathways, points to a strong direct role of photosynthetic rate in determining δ(13)C variation at the landscape scale.

  19. Extracellular acidosis and very low [Na+ ] inhibit NBCn1- and NHE1-mediated net acid extrusion from mouse vascular smooth muscle cells.

    PubMed

    Bonde, L; Boedtkjer, E

    2017-10-01

    The electroneutral Na + , HCO3- cotransporter NBCn1 and Na + /H + exchanger NHE1 regulate acid-base balance in vascular smooth muscle cells (VSMCs) and modify artery function and structure. Pathological conditions - notably ischaemia - can dramatically perturb intracellular (i) and extracellular (o) pH and [Na + ]. We examined effects of low [Na + ] o and pH o on NBCn1 and NHE1 activity in VSMCs of small arteries. We measured pH i by 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein-based fluorescence microscopy of mouse mesenteric arteries and induced intracellular acidification by NH4+ prepulse technique. NBCn1 activity - defined as Na + -dependent, amiloride-insensitive net base uptake with CO 2 /HCO3- present - was inhibited equally when pH o decreased from 7.4 (22 mm HCO3-/5% CO 2 ) by metabolic (pH o 7.1/11 mm HCO3-: 22 ± 8%; pH o 6.8/5.5 mm HCO3-: 61 ± 7%) or respiratory (pH o 7.1/10% CO 2 : 35 ± 11%; pH o 6.8/20% CO 2 : 56 ± 7%) acidosis. Extracellular acidosis more prominently inhibited NHE1 activity - defined as Na + -dependent net acid extrusion without CO 2 /HCO3- present - at both pH o 7.1 (45 ± 9%) and 6.8 (85 ± 5%). Independently of pH o , lowering [Na + ] o from 140 to 70 mm reduced NBCn1 and NHE1 activity <20% whereas transport activities declined markedly (25-50%) when [Na + ] o was reduced to 35 mm. Steady-state pH i decreased more during respiratory (ΔpH i /ΔpH o  = 71 ± 4%) than metabolic (ΔpH i /ΔpH o  = 30 ± 7%) acidosis. Extracellular acidification inhibits NBCn1 and NHE1 activity in VSMCs. NBCn1 is equivalently inhibited when pCO 2 is raised or [HCO3-] o decreased. Lowering [Na + ] o inhibits NBCn1 and NHE1 markedly only below the typical physiological and pathophysiological range. We propose that inhibition of Na + -dependent net acid extrusion at low pH o protects against cellular Na + overload at the cost of intracellular acidification. © 2017 Scandinavian Physiological Society. Published by

  20. HTB140 melanoma cells under proton irradiation and/or alkylating agents

    NASA Astrophysics Data System (ADS)

    Korićanac, L.; Petrović, I.; Privitera, G.; Cuttone, G.; Ristić-Fira, A.

    2007-09-01

    Chemoresistance is a major problem in the treatment of malignant melanoma. The mainstay of treatment for melanoma is the DNA-alkylating agent dacarbazine (DTIC). Fotemustine (FM), a member of the chloroethylnitrosourea group of alkylating agents, has also demonstrated significant antitumor effects in malignant melanoma. However, the intrinsic and acquired resistance of melanoma limits the clinical application of these drugs. Melanomas are also extremely radioresistant. With the objective of enhancing growth inhibition of melanoma cells, combined treatments of FM or DTIC with proton irradiation have been investigated. These effects were studied on HTB140 melanoma cell viability and proliferation. Cells exposed to treatment with FM and protons have shown inhibition of cell growth and significant reduction of proliferation capacity compared to single irradiation or drug treatment. Treatment with DTIC and protons has shown improved growth inhibition compared to appropriate single drug treatment, while the effects of single proton irradiation have been the most pronounced.

  1. The bone morphogenic protein inhibitor, noggin, reduces glycemia and vascular inflammation in db/db mice

    PubMed Central

    Koga, Mitsuhisa; Engberding, Niels; Dikalova, Anna E.; Chang, Kyung Hwa; Seidel-Rogol, Bonnie; Long, James S.; Lassègue, Bernard; Jo, Hanjoong

    2013-01-01

    Vascular diseases frequently accompany diabetes mellitus. Based on the current understanding of atherosclerosis as an inflammatory disorder of the vascular wall, it has been speculated that diabetes may accelerate atherosclerosis by inducing a proinflammatory milieu in the vasculature. ANG II and bone morphogenic proteins (BMPs) have been implicated in vascular inflammation. We evaluated the effect of angiotensin receptor blockade by valsartan and BMP inhibition by noggin on markers of vascular inflammation in a mouse model of diabetes. Noggin had no effect on blood pressure but decreased serum glucose levels, whereas valsartan significantly decreased blood pressure, but not serum glucose. Both inhibitors reduced reactive oxygen species production in the aorta. Additionally, noggin and valsartan diminish gene transcription and protein expression of various inflammatory molecules in the vascular wall. These observations indicate that although both inhibitors block superoxide production and have similar effects on inflammatory gene expression, glycemia and blood pressure may represent a secondary target differentially affected by noggin and valsartan. Our data clearly identify the BMP pathway as a potentially potent therapeutic target in diabetic inflammatory vascular disease. PMID:23812391

  2. Effects of carbon ion beam irradiation on the shoot regeneration from in vitro axillary bud explants of the Impatiens hawkeri

    NASA Astrophysics Data System (ADS)

    Zhou, Libin; Zhou, Libin; Li, Wenjian; Li, Ping; Dong, Xicun; Qu, Ying; Ma, Shuang; Li, Qiang

    Accelerated ion beams is an excellent mutagen in plant breeding which can induce higher mutation frequencies and wider mutation spectrum than those of low linear energy transfer (LET) irradiations, such as X-rays (Okamura et al. 2003, Yamaguchi et al. 2003). Mutation breeding operation of two Saintpaulia ionahta cultivars using the method combining plant tissue culture technique and carbon ion beam irradiations were set out at Institute of Modern Physics from 2005 (Zhou et al. 2006). The effects of 960 MeV carbon ion beam and 8 MeV X-ray irradiations on regenerated shoots of Impatiens hawkeri from another kind of explants named in vitro axillary buds explants were studied recently. The biology endpoints in this study included relative number of roots (RNR), relative length of roots (RLR), relative height of shoots (RHS), relative number of nodes (RNN), survival fraction (SF) and morphology changes in the regenerated shoots. The experimental results showed that carbon ion beams inhibited the root and stem developments of axillary bud explants more severely than X-rays did. And the 50% lethal dose (LD50 ) is about 23.3 Gy for the carbon ion beam and 49.1 Gy for the X-rays, respectively. Relative biological effectiveness (RBE) of Impatiens hawkeri with respect to X-rays according to 50% SF was about two. Secondly, the percentage of shoots regenerated with malformed shoots including curliness, carnification, nicks in all Impatiens hawkeri axillary bud explants irradiated with carbon ion beam at 20 Gy accounted for 55.6%, while the highest number for the 40 Gy X-ray irradiation was 40%. Last, many regenerated shoots whose vascular bundle fused together were obtained only from explants irradiated with carbon ion beams. Based on the results above, it can be concluded that the effect of mutation induction by carbon ion beam irradiation on the axillary explants of Impatiens hawkeri is better than that by X-ray irradiation; and the optimal mutagenic dose varies from 20 Gy

  3. Testosterone Deficiency Accelerates Neuronal and Vascular Aging of SAMP8 Mice: Protective Role of eNOS and SIRT1

    PubMed Central

    Ota, Hidetaka; Akishita, Masahiro; Akiyoshi, Takuyu; Kahyo, Tomoaki; Setou, Mitsutoshi; Ogawa, Sumito; Iijima, Katsuya; Eto, Masato; Ouchi, Yasuyoshi

    2012-01-01

    Oxidative stress and atherosclerosis-related vascular disorders are risk factors for cognitive decline with aging. In a small clinical study in men, testosterone improved cognitive function; however, it is unknown how testosterone ameliorates the pathogenesis of cognitive decline with aging. Here, we investigated whether the cognitive decline in senescence-accelerated mouse prone 8 (SAMP8), which exhibits cognitive impairment and hypogonadism, could be reversed by testosterone, and the mechanism by which testosterone inhibits cognitive decline. We found that treatment with testosterone ameliorated cognitive function and inhibited senescence of hippocampal vascular endothelial cells of SAMP8. Notably, SAMP8 showed enhancement of oxidative stress in the hippocampus. We observed that an NAD+-dependent deacetylase, SIRT1, played an important role in the protective effect of testosterone against oxidative stress-induced endothelial senescence. Testosterone increased eNOS activity and subsequently induced SIRT1 expression. SIRT1 inhibited endothelial senescence via up-regulation of eNOS. Finally, we showed, using co-culture system, that senescent endothelial cells promoted neuronal senescence through humoral factors. Our results suggest a critical role of testosterone and SIRT1 in the prevention of vascular and neuronal aging. PMID:22238626

  4. Inhibition of tracheal vascular extravasation by liposome-encapsulated albuterol in rats.

    PubMed

    Zhang, W; Guo, L; Nadel, J A; Papahadjopoulos, D

    1998-03-01

    To develop a liposome-based system for systemic delivery of anti-inflammatory drugs to airways and other inflamed tissues. Postcapillary venular gap junctions open during airway inflammation and allow fluid accumulation and permit molecules (e.g. complement, kininogen) to enter tissues, initiating inflammatory cascades. Beta-adrenergic agonists prevent inflammatory plasma extravasation, but because of their deleterious side effects, they are not used intravenously. When sterically stabilized "stealth" liposomes are injected i.v., they remain in the circulation for long periods. Inflammatory mediators [e.g., substance P(SP)] open postcapillary venular gaps and allow liposomes and their contents to be deposited selectively in the inflamed tissue. We hypothesized that liposomes encapsulating a beta-adrenergic agonist, such as albuterol, would deposit selectively in inflamed airway tissue, where the drug would slowly leak out of the liposomes, resulting in closure of the gaps, thus preventing subsequent inflammatory extravasation. To test this hypothesis, we delivered albuterol-loaded liposomes i.v. in rats. Then we injected SP to open the venular gaps and allow accumulation of the drug-loaded liposomes in airway tissue. We examined whether this treatment resulted in inhibition of subsequent plasma extravasation induced by SP. The results indicate that liposome-encapsulated albuterol inhibits subsequent extravasation, presumably by leaking out of liposomes in airway tissue. This inhibition occurs for prolonged periods of time and with limited side effects compared to the effect of free albuterol. We conclude that liposomes loaded with appropriate drugs, by migrating to inflamed tissue and subsequently inhibiting inflammatory cascades, may be of therapeutic value in inflammatory diseases.

  5. Circulating plasma vascular endothelial growth factor and microvascular complications of type 1 diabetes mellitus: the influence of ACE inhibition.

    PubMed

    Chaturvedi, N; Fuller, J H; Pokras, F; Rottiers, R; Papazoglou, N; Aiello, L P

    2001-04-01

    To determine whether circulating plasma vascular endothelial growth factor (VEGF) is elevated in the presence of diabetic microvascular complications, and whether the impact of angiotensin-converting enzyme (ACE) inhibitors on these complications can be accounted for by changes in circulating VEGF. Samples (299/354 of those with retinal photographs) from the EUCLID placebo-controlled clinical trial of the ACE inhibitor lisinopril in mainly normoalbuminuric non-hypertensive Type 1 diabetic patients were used. Albumin excretion rate (AER) was measured 6 monthly. Geometric mean VEGF levels by baseline retinopathy status, change in retinopathy over 2 years, and by treatment with lisinopril were calculated. No significant correlation was observed between VEGF at baseline and age, diabetes duration, glycaemic control, blood pressure, smoking, fibrinogen and von Willebrand factor. Mean VEGF concentration at baseline was 11.5 (95% confidence interval 6.0--27.9) pg/ml in those without retinopathy, 12.9 (6.0--38.9) pg/ml in those with non-proliferative retinopathy, and 16.1 (8.1--33.5) pg/ml in those with proliferative retinopathy (P = 0.06 for trend). Baseline VEGF was 15.2 pg/ml in those who progressed by at least one level of retinopathy by 2 years compared to 11.8 pg/ml in those who did not (P = 0.3). VEGF levels were not altered by lisinopril treatment. Results were similar for AER. Circulating plasma VEGF concentration is not strongly correlated with risk factor status or microvascular disease in Type 1 diabetes, nor is it affected by ACE inhibition. Changes in circulating VEGF cannot account for the beneficial effect of ACE inhibition on retinopathy.

  6. Effect of Alpha-Particle Irradiation on Brain Glycogen in the Rat

    NASA Technical Reports Server (NTRS)

    Wolfe, L. S.; Klatzo, Igor; Miquel, Jaime; Tobias, Cornelius; Haymaker, Webb

    1962-01-01

    The studies of Klatzo, Miquel, Tobias and Haymaker (1961) have shown that one of the earliest and most sensitive indications of the effects of alpha-particle irradiation on rat bran is the appearance of glycogen granules mainly in the neuroglia of the exposed area of the brain. Periodic acid-Schiff (PAS) positive, alpha-amylase soluble granules were demonstrated within 12 hr after irradiation, preceding by approximately 36 hr the first microscopically detectable vascular permeability disturbances, as shown by the fluorescein labeled serum protein technique. These studies suggested that the injurious effects of alpha-particle energy were on cellular elements primarily, according to the physical properties and distribution of the radiation in the tissue, and that the vascular permeability disturbances played a secondary role in pathogenesis. The purpose of this study was to correlate the histochemical observations on glycogen with a quantitative assessment of the glycogen in the irradiated brain tissue. It is felt that such a study may contribute to the understanding of radiation injury at the molecular level. A practical aspect of this problem is that the information on biological radiation effects due to accelerated particles from the cyclotron source, is employed in this study, is applicable to radiation from cosmic particles both in free space and entrapped in the Van Allen belts.

  7. Vaccination with vascular progenitor cells derived from induced pluripotent stem cells elicits antitumor immunity targeting vascular and tumor cells.

    PubMed

    Koido, Shigeo; Ito, Masaki; Sagawa, Yukiko; Okamoto, Masato; Hayashi, Kazumi; Nagasaki, Eijiro; Kan, Shin; Komita, Hideo; Kamata, Yuko; Homma, Sadamu

    2014-05-01

    Vaccination of BALB/c mice with dendritic cells (DCs) loaded with the lysate of induced vascular progenitor (iVP) cells derived from murine-induced pluripotent stem (iPS) cells significantly suppressed the tumor of CMS-4 fibrosarcomas and prolonged the survival of CMS-4-inoculated mice. This prophylactic antitumor activity was more potent than that of immunization with DCs loaded with iPS cells or CMS-4 tumor cells. Tumors developed slowly in mice vaccinated with DCs loaded with iVP cells (DC/iVP) and exhibited a limited vascular bed. Immunohistochemistry and a tomato-lectin perfusion study demonstrated that the tumors that developed in the iVP-immunized mice showed a marked decrease in tumor vasculature. Immunization with DC/iVP induced a potent suppressive effect on vascular-rich CMS-4 tumors, a weaker effect on BNL tumors with moderate vasculature, and nearly no effect on C26 tumors with poor vasculature. Treatment of DC/iVP-immunized mice with a monoclonal antibody against CD4 or CD8, but not anti-asialo GM1, inhibited the antitumor activity. CD8(+) T cells from DC/iVP-vaccinated mice showed significant cytotoxic activity against murine endothelial cells and CMS-4 cells, whereas CD8(+) T cells from DC/iPS-vaccinated mice did not. DNA microarray analysis showed that the products of 29 vasculature-associated genes shared between genes upregulated by differentiation from iPS cells into iVP cells and genes shared by iVP cells and isolated Flk-1(+) vascular cells in CMS-4 tumor tissue might be possible targets in the immune response. These results suggest that iVP cells from iPS cells could be used as a cancer vaccine targeting tumor vascular cells and tumor cells.

  8. Conditioned medium from bone marrow-derived mesenchymal stem cells inhibits vascular calcification through blockade of the BMP2-Smad1/5/8 signaling pathway.

    PubMed

    Wang, Shuangshuang; Hu, Siwang; Wang, Jian; Liu, Yahui; Zhao, Ruochi; Tong, Maoqing; Cui, Hanbin; Wu, Nan; Chen, Xiaomin

    2018-06-13

    Arterial calcification is associated with cardiovascular disease as a complication of advanced atherosclerosis and is a significant contributor to cardiovascular morbidity and mortality. Osteoblastic differentiation of vascular smooth muscle cells (VSMCs) plays an important role in arterial calcification and is characterized by cellular necrosis, inflammation, and lipoprotein and phospholipid complexes, especially in atherosclerotic calcification. The conditioned medium from bone marrow-derived mesenchymal stem cells (MSC-CM) is well known as a rich source of autologous cytokines and is universally used for tissue regeneration in current clinical medicine. Here, we demonstrate that MSC-CM inhibits beta-glycerophosphate (β-GP)-induced vascular calcification through blockade of the bone morphogenetic protein-2 (BMP2)-Smad1/5/8 signaling pathway. VSMC calcification was induced by β-GP followed by treatment with MSC-CM. Mineral deposition was assessed by Alizarin Red S staining. Intracellular calcium content was determined colorimetrically by the o-cresolphthalein complexone method and alkaline phosphatase (ALP) activity was measured by the para-nitrophenyl phosphate method. Expression of BMP2, BMPR1A, BMPR1B, BMPR2, msh homeobox 2 (Msx2), Runt-related transcription factor 2 (Runx2), and osteocalcin (OC), representative osteoblastic markers, was assessed using real-time polymerase chain reaction analysis while the protein expression of BMP2, Runx2, and phosphorylated Smad1/5/8 was detected by western blot analysis. Our data demonstrated that MSC-CM inhibits osteoblastic differentiation and mineralization of VSMCs as evidenced by decreased calcium content, ALP activity, and decreased expression of BMP-2, Runx2, Msx2, and OC. MSC-CM suppressed the expression of phosphorylated Smad1/5/8 and the β-GP-induced translocation from the cytoplasm to the nucleus. Further study demonstrated that human recombinant BMP-2 overcame the suppression of VSMC calcification by MSC

  9. Inhibitory Effects of Hydrogen on Proliferation and Migration of Vascular Smooth Muscle Cells via Down-Regulation of Mitogen/Activated Protein Kinase and Ezrin-Radixin-Moesin Signaling Pathways.

    PubMed

    Zhang, Ya-Xing; Xu, Jing-Ting; You, Xin-Chao; Wang, Chen; Zhou, Ke-Wen; Li, Ping; Sun, Peng; Wang, Ling; Wang, Ting-Huai

    2016-02-29

    Molecular hydrogen (H₂) has recently attracted considerable attention for the prevention of oxidative stress-related vascular diseases. The purpose of this study is to evaluate the effects of hydrogen on proliferation and migration of vascular smooth muscle cells (VSMCs) stimulated by angiotensin II (Ang II) in vitro, and on vascular hypertrophy induced by abdominal aortic coarctation (AAC) in vivo. Hydrogen-rich medium (0.6~0.9 ppm) was added 30 min before 10⁻⁷ M Ang II administration, then the proliferation and migration index were determined 24 h after Ang II stimulation. Hydrogen gas (99.999%) was given by intraperitoneal injection at the dose of 1 ml/100 g/day consecutively for one week before AAC and lasted for 6 weeks in vivo. Hydrogen inhibited proliferation and migration of VSMCs with Ang II stimulation in vitro, and improved the vascular hypertrophy induced by AAC in vivo. Treatment with hydrogen reduced Ang II- or AAC-induced oxidative stress, which was reflected by diminishing the induction of reactive oxygen species (ROS) in Ang II-stimulated VSMCs, inhibiting the levels of 3-nitrotyrosine (3-NT) in vascular and serum malondialdehyde (MDA). Hydrogen treatment also blocked Ang II-induced phosphorylation of the extracellular signal-regulated kinase1/2 (ERK1/2), p38 MAPK, c-Jun NH₂-terminal kinase (JNK) and the ezrin/radixin/moesin (ERM) in vitro. Taken together, our studies indicate that hydrogen prevents AAC-induced vascular hypertrophy in vivo, and inhibits Ang II-induced proliferation and migration of VSMCs in vitro possibly by targeting ROS-dependent ERK1/2, p38 MAPK, JNK and ERM signaling. It provides the molecular basis of hydrogen on inhibiting the abnormal proliferation and migration of VSMCs and improving vascular remodeling diseases.

  10. Curcumin inhibits VEGF-mediated angiogenesis in human intestinal microvascular endothelial cells through COX-2 and MAPK inhibition.

    PubMed

    Binion, D G; Otterson, M F; Rafiee, P

    2008-11-01

    Angiogenesis, the growth of new blood vessels, is a critical homeostatic mechanism which regulates vascular populations in response to physiological requirements and pathophysiological demand, including chronic inflammation and cancer. The importance of angiogenesis in gastrointestinal chronic inflammation and cancer has been defined, as antiangiogenic therapy has demonstrated benefit in models of inflammatory bowel disease and colon cancer treatment. Curcumin is a natural product undergoing evaluation for the treatment of chronic inflammation, including inflammatory bowel disease (IBD). The effect of curcumin on human intestinal angiogenesis is not defined. The antiangiogenic effect of curcumin on in vitro angiogenesis was examined using primary cultures of human intestinal microvascular endothelial cells (HIMECs), stimulated with vascular endothelial growth factor (VEGF). Curcumin inhibited proliferation, cell migration and tube formation in HIMECs induced by VEGF. Activation of HIMECs by VEGF resulted in enhanced expression of cyclo-oxygenase-2 (COX-2) mRNA, protein and prostaglandin E(2) (PGE(2)) production. Pretreatment of HIMECs with 10 microM curcumin as well as 1 microM NS398, a selective inhibitor of COX-2, resulted in inhibition of COX-2 at the mRNA and protein level and PGE(2) production. Similarly COX-2 expression in HIMECs was significantly inhibited by Jun N-terminal kinase (JNK; SP600125) and p38 mitogen-activated protein kinase (MAPK; SB203580) inhibitors and was reduced by p44/42 MAPK inhibitor (PD098059). Taken together, these data demonstrate an important role for COX-2 in the regulation of angiogenesis in HIMECs via MAPKs. Moreover, curcumin inhibits microvascular endothelial cell angiogenesis through inhibition of COX-2 expression and PGE(2) production, suggesting that this natural product possesses antiangiogenic properties, which warrants further investigation as adjuvant treatment of IBD and cancer.

  11. Cafestol Inhibits Cyclic-Strain-Induced Interleukin-8, Intercellular Adhesion Molecule-1, and Monocyte Chemoattractant Protein-1 Production in Vascular Endothelial Cells

    PubMed Central

    Hao, Wen-Rui; Sung, Li-Chin; Chen, Chun-Chao; Chen, Jin-Jer

    2018-01-01

    Moderate coffee consumption is inversely associated with cardiovascular disease mortality; however, mechanisms underlying this causal effect remain unclear. Cafestol, a diterpene found in coffee, has various properties, including an anti-inflammatory property. This study investigated the effect of cafestol on cyclic-strain-induced inflammatory molecule secretion in vascular endothelial cells. Cells were cultured under static or cyclic strain conditions, and the secretion of inflammatory molecules was determined using enzyme-linked immunosorbent assay. The effects of cafestol on mitogen-activated protein kinases (MAPK), heme oxygenase-1 (HO-1), and sirtuin 1 (Sirt1) signaling pathways were examined using Western blotting and specific inhibitors. Cafestol attenuated cyclic-strain-stimulated intercellular adhesion molecule-1 (ICAM-1), monocyte chemoattractant protein- (MCP-) 1, and interleukin- (IL-) 8 secretion. Cafestol inhibited the cyclic-strain-induced phosphorylation of extracellular signal-regulated kinase and p38 MAPK. By contrast, cafestol upregulated cyclic-strain-induced HO-1 and Sirt1 expression. The addition of zinc protoporphyrin IX, sirtinol, or Sirt1 silencing (transfected with Sirt1 siRNA) significantly attenuated cafestol-mediated modulatory effects on cyclic-strain-stimulated ICAM-1, MCP-1, and IL-8 secretion. This is the first study to report that cafestol inhibited cyclic-strain-induced inflammatory molecule secretion, possibly through the activation of HO-1 and Sirt1 in endothelial cells. The results provide valuable insights into molecular pathways that may contribute to the effects of cafestol. PMID:29854096

  12. Angiogenesis for tumor vascular normalization of Endostar on hepatoma 22 tumor-bearing mice is involved in the immune response.

    PubMed

    Xu, Qingyu; Gu, Junfei; Lv, You; Yuan, Jiarui; Yang, Nan; Chen, Juan; Wang, Chunfei; Hou, Xuefeng; Jia, Xiaobin; Feng, Liang; Yin, Guowen

    2018-03-01

    Tumor vascular normalization involved in immune response is beneficial to the chemotherapy of tumors. Recombinant human endostatin (Endostar), an angiogenesis inhibitor, has been demonstrated to be effective in hepatocellular cancer (HCC). However, its vascular normalization in HCC and the role of the immune response in angiogenesis were unclear. In the present study, effects of Endostar on tumor vascular normalization were evaluated in hepatoma 22 (H22) tumor-bearing mice. Endostar was able to inhibit the proliferation and infiltration of tumor cells and improve α-fetoprotein, tumor necrosis factor-α and cyclic adenosine 5'-phosphate levels in the serum of H22-bearing mice, as well as the protein expression levels of the immune factors interferon-γ and cluster of differentiation (CD)86 in liver tissue. Endostar also exhibited more marked downregulation of the levels of vascular endothelial growth factor, CD31, matrix metalloproteinase (MMP)-2, MMP-9 and interleukin-17 during day 3-9 treatment, resulting in short-term normalization of tumor blood vessels. The period of vascular normalization was 3-9 days. The results of the present study demonstrated that Endostar was able to induce the period of vascular normalization, contributing to a more efficacious means of HCC treatment combined with other chemotherapy, and this effect was associated with the immune response. It may be concluded that Endostar inhibited immunity-associated angiogenesis behaviors of vascular endothelial cells in response to HCC. The results of the present study provided more reasonable possibility for the combination therapy of Endostar for the treatment of HCC.

  13. High-throughput identification of small molecules that affect human embryonic vascular development

    PubMed Central

    Vazão, Helena; Rosa, Susana; Barata, Tânia; Costa, Ricardo; Pitrez, Patrícia R.; Honório, Inês; de Vries, Margreet R.; Papatsenko, Dimitri; Benedito, Rui; Saris, Daniel; Khademhosseini, Ali; Quax, Paul H. A.; Pereira, Carlos F.; Mercader, Nadia; Ferreira, Lino

    2017-01-01

    Birth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach yields low-throughput and limited mechanistic information regarding the biological pathways and potential adverse consequences in humans. To develop a screening platform for molecules that affect human embryonic development based on endothelial cells (ECs) derived from human pluripotent stem cells, we differentiated human pluripotent stem cells into embryonic ECs and induced their maturation under arterial flow conditions. These cells were then used to screen compounds that specifically affect embryonic vasculature. Using this platform, we have identified two compounds that have higher inhibitory effect in embryonic than postnatal ECs. One of them was fluphenazine (an antipsychotic), which inhibits calmodulin kinase II. The other compound was pyrrolopyrimidine (an antiinflammatory agent), which inhibits vascular endothelial growth factor receptor 2 (VEGFR2), decreases EC viability, induces an inflammatory response, and disrupts preformed vascular networks. The vascular effect of the pyrrolopyrimidine was further validated in prenatal vs. adult mouse ECs and in embryonic and adult zebrafish. We developed a platform based on human pluripotent stem cell-derived ECs for drug screening, which may open new avenues of research for the study and modulation of embryonic vasculature. PMID:28348206

  14. High-throughput identification of small molecules that affect human embryonic vascular development.

    PubMed

    Vazão, Helena; Rosa, Susana; Barata, Tânia; Costa, Ricardo; Pitrez, Patrícia R; Honório, Inês; de Vries, Margreet R; Papatsenko, Dimitri; Benedito, Rui; Saris, Daniel; Khademhosseini, Ali; Quax, Paul H A; Pereira, Carlos F; Mercader, Nadia; Fernandes, Hugo; Ferreira, Lino

    2017-04-11

    Birth defects, which are in part caused by exposure to environmental chemicals and pharmaceutical drugs, affect 1 in every 33 babies born in the United States each year. The current standard to screen drugs that affect embryonic development is based on prenatal animal testing; however, this approach yields low-throughput and limited mechanistic information regarding the biological pathways and potential adverse consequences in humans. To develop a screening platform for molecules that affect human embryonic development based on endothelial cells (ECs) derived from human pluripotent stem cells, we differentiated human pluripotent stem cells into embryonic ECs and induced their maturation under arterial flow conditions. These cells were then used to screen compounds that specifically affect embryonic vasculature. Using this platform, we have identified two compounds that have higher inhibitory effect in embryonic than postnatal ECs. One of them was fluphenazine (an antipsychotic), which inhibits calmodulin kinase II. The other compound was pyrrolopyrimidine (an antiinflammatory agent), which inhibits vascular endothelial growth factor receptor 2 (VEGFR2), decreases EC viability, induces an inflammatory response, and disrupts preformed vascular networks. The vascular effect of the pyrrolopyrimidine was further validated in prenatal vs. adult mouse ECs and in embryonic and adult zebrafish. We developed a platform based on human pluripotent stem cell-derived ECs for drug screening, which may open new avenues of research for the study and modulation of embryonic vasculature.

  15. Inhibitory effect of gamma irradiation and its application for control of postharvest green mold decay of Satsuma mandarins.

    PubMed

    Jeong, Rae-Dong; Chu, Eun-Hee; Lee, Gun Woong; Cho, Chuloh; Park, Hae-Jun

    2016-10-03

    Gamma irradiation has been shown to be effective for the control of postharvest fungi in vitro, but little is known regarding antifungal action, responses to gamma irradiation, and its application to fresh produce. Gamma irradiation was evaluated for its in vitro and in vivo antifungal activity against Penicillium digitatum on Satsuma mandarin fruits. Green mold was inhibited in a dose-dependent manner. Gamma irradiation showed a complete inhibition of spore germination, germ tube elongation, and mycelial growth of P. digitatum, particularly at 1.0kGy. To further investigate the mechanisms by which gamma irradiation inhibits fungal growth, the membrane integrity and cellular leakage of conidia were tested, indicating that gamma irradiation results in the loss of plasma membrane integrity, causing the release of intracellular contents such as soluble proteins. In vivo assays demonstrated that established doses can completely inhibit the growth of fungal pathogens, but such high doses cause severe fruit damage. Thus, to eliminate the negative impact on fruit quality, gamma irradiation at lower doses was evaluated for inhibition of P. digitatum, in combination with a chlorine donor, sodium dichloro-s-triazinetrione (NaDCC). Interestingly, only a combined treatment with 0.4kGy of gamma irradiation and 10ppm of NaDCC exhibited significant synergistic antifungal activity against green mold decay. The mechanisms by which the combined treatment decreased the green mold decay of mandarin fruits can be directly associated with the disruption of cell membrane of the fungal pathogen, which resulted in a loss of cytoplasmic material from the hyphae. These findings suggest that a synergistic effect of combining treatment with gamma irradiation with NaDCC has potential as an antifungal approach to reduce the severity of green mold in mandarin fruits. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. In vivo adenylate cyclase activity in ultraviolet- and gamma-irradiated Escherichia coli.

    PubMed

    Chatterjee, A; Bhattacharya, A K

    1988-06-01

    The incorporation of [14C]adenine into the cyclic AMP fraction by whole cells of Escherichia coli B/r was taken as a measure of the in vivo adenylate cyclase activity. This activity was significantly inhibited by irradiation of the cells either with 60Co gamma-rays or with UV light from a germicidal lamp, suggesting inhibition of cyclic AMP synthesis. The incubation of cells after irradiation with lower doses (50-100 Gy) of gamma-rays produced a significant increase of in vivo adenylate cyclase activity, whereas there was no significant change after higher doses (150 Gy and above). Dark incubation of cells after irradiation with UV light (54 J m-2) led to recovery of enzyme activity to the level measured in unirradiated cells. Thus it appears that the catabolite repression of L-arabinose isomerase induced by UV light, as well as gamma-irradiation, is due to reduced cyclic AMP synthesis in irradiated cells.

  17. PARP-1 inhibition alleviates diabetic cardiac complications in experimental animals.

    PubMed

    Zakaria, Esraa M; El-Bassossy, Hany M; El-Maraghy, Nabila N; Ahmed, Ahmed F; Ali, Abdelmoneim A

    2016-11-15

    Cardiovascular complications are the major causes of mortality among diabetic population. Poly(ADP-ribose) polymerase-1 enzyme (PARP-1) is activated by oxidative stress leading to cellular damage. We investigated the implication of PARP-1 in diabetic cardiac complications. Type 2 diabetes was induced in rats by high fructose-high fat diet and low streptozotocin dose. PARP inhibitor 4-aminobenzamide (4-AB) was administered daily for ten weeks after diabetes induction. At the end of study, surface ECG, blood pressure and vascular reactivity were studied. PARP-1 activity, reduced glutathione (GSH) and nitrite contents were assessed in heart muscle. Fasting glucose, fructosamine, insulin, and tumor necrosis factor alpha (TNF-α) levels were measured in serum. Finally, histological examination and collagen deposition detection in rat ventricular and aortic sections were carried out. Hearts isolated from diabetic animals showed increased PARP-1 enzyme activity compared to control animals while significantly reduced by 4-AB administration. PARP-1 inhibition by 4-AB alleviated cardiac ischemia in diabetic animals as indicated by ECG changes. PARP-1 inhibition also reduced cardiac inflammation in diabetic animals as evidenced by histopathological changes. In addition, 4-AB administration improved the elevated blood pressure and the associated exaggerated vascular contractility, endothelial destruction and vascular inflammation seen in diabetic animals. Moreover, PARP-1 inhibition decreased serum levels of TNF-α and cardiac nitrite but increased cardiac GSH contents in diabetic animals. However, PARP-1 inhibition did not significantly affect the developed hyperglycemia. Our findings prove that PARP-1 enzyme plays an important role in diabetic cardiac complications through combining inflammation, oxidative stress, and fibrosis mechanisms. Copyright © 2016. Published by Elsevier B.V.

  18. Effect of electron beam irradiation on developmental stages of Helicoverpa armigera Hübner (Lepidoptera: Noctuidae)

    NASA Astrophysics Data System (ADS)

    Kim, Junheon; Chung, Soon-Oh; Jang, Sin Ae; Jang, Miyeon; Park, Chung Gyoo

    2015-07-01

    Helicoverpa armigera Hübner (Lepidoptera: Noctuidae), is an economically important and polyphagous pest, which harms various kinds of food crops and important agricultural plants, such as cotton and paprika. Effects of electron beam irradiation at six dose levels between 50 and 350 Gy on the egg (24-48 h old), the larval (4-5th instar), and the pupal (7-d old for female, 5-d old for male) development, and on the adult (1-d old) reproduction were tested to identify a potential quarantine treatment dose. Increased doses of irradiation on eggs decreased egg hatchability, pupation and adult emergence and increased larval period. ED99 values for inhibition of hatching, pupation and emergence were 460.6, 236.9 and 197.8 Gy, respectively. When larvae were irradiated with more than 280 Gy, no larvae could develop into pupae. ED99 values for inhibition of pupation and adult emergence were 265.6 and 189.6 Gy, respectively. Even though the irradiation on pupa did not completely inhibit adult emergence, most of the pupae emerged to deformed adults. When adults were irradiated, fecundity was not affected. However, F1 egg hatching was completely inhibited at the dose of 350 Gy. ED99 value for inhibition of adult emergence was estimated at 366.5 Gy. Our results suggest that electron beam irradiation could be recommendable as an alternative to MB and as a phytosanitary treatment for quarantine. A treatment dose of less than or equal to 220 Gy is suggested as a potential quarantine treatment to H. armigera egg for prevention of pupation and to larva for prevention of adult emerge.

  19. Vascular response of ruthenium tetraamines in aortic ring from normotensive rats.

    PubMed

    Conceição-Vertamatti, Ana Gabriela; Ramos, Luiz Alberto Ferreira; Calandreli, Ivy; Chiba, Aline Nunes; Franco, Douglas Wagner; Tfouni, Elia; Grassi-Kassisse, Dora Maria

    2015-03-01

    Ruthenium (Ru) tetraamines are being increasingly used as nitric oxide (NO) carriers. In this context, pharmacological studies have become highly relevant to better understand the mechanism of action involved. To evaluate the vascular response of the tetraamines trans-[Ru(II)(NH3)4(Py)(NO)](3+), trans-[Ru(II)(Cl)(NO) (cyclan)](PF6)2, and trans-[Ru(II)(NH3)4(4-acPy)(NO)](3+). Aortic rings were contracted with noradrenaline (10(-6) M). After voltage stabilization, a single concentration (10(-6) M) of the compounds was added to the assay medium. The responses were recorded during 120 min. Vascular integrity was assessed functionally using acetylcholine at 10(-6) M and sodium nitroprusside at 10(-6) M as well as by histological examination. Histological analysis confirmed the presence or absence of endothelial cells in those tissues. All tetraamine complexes altered the contractile response induced by norepinephrine, resulting in increased tone followed by relaxation. In rings with endothelium, the inhibition of endothelial NO caused a reduction of the contractile effect caused by pyridine NO. No significant responses were observed in rings with endothelium after treatment with cyclan NO. In contrast, in rings without endothelium, the inhibition of guanylate cyclase significantly reduced the contractile response caused by the pyridine NO and cyclan NO complexes, and both complexes caused a relaxing effect. The results indicate that the vascular effect of the evaluated complexes involved a decrease in the vascular tone induced by norepinephrine (10(-6) M) at the end of the incubation period in aortic rings with and without endothelium, indicating the slow release of NO from these complexes and suggesting that the ligands promoted chemical stability to the molecule. Moreover, we demonstrated that the association of Ru with NO is more stable when the ligands pyridine and cyclan are used in the formulation of the compound.

  20. Platelet Activating Factor Contributes to Vascular Leak in Acute Dengue Infection

    PubMed Central

    Jeewandara, Chandima; Gomes, Laksiri; Wickramasinghe, N.; Gutowska-Owsiak, Danuta; Waithe, Dominic; Paranavitane, S. A.; Shyamali, N. L. A.; Ogg, Graham S.; Malavige, Gathsaurie Neelika

    2015-01-01

    Background Although plasma leakage is the hallmark of severe dengue infections, the factors that cause increased vascular permeability have not been identified. As platelet activating factor (PAF) is associated with an increase in vascular permeability in other diseases, we set out to investigate its role in acute dengue infection. Materials and Methods PAF levels were initially assessed in 25 patients with acute dengue infection to determine if they were increased in acute dengue. For investigation of the kinetics of PAF, serial PAF values were assessed in 36 patients. The effect of dengue serum on tight junction protein ZO-1 was determined by using human endothelial cell lines (HUVECs). The effect of dengue serum on and trans-endothelial resistance (TEER) was also measured on HUVECs. Results PAF levels were significantly higher in patients with acute dengue (n = 25; p = 0.001) when compared to healthy individuals (n = 12). In further investigation of the kinetics of PAF in serial blood samples of patients (n = 36), PAF levels rose just before the onset of the critical phase. PAF levels were significantly higher in patients with evidence of vascular leak throughout the course of the illness when compared to those with milder disease. Serum from patients with dengue significantly down-regulated expression of tight junction protein, ZO-1 (p = 0.004), HUVECs. This was significantly inhibited (p = 0.004) by use of a PAF receptor (PAFR) blocker. Serum from dengue patients also significantly reduced TEER and this reduction was also significantly (p = 0.02) inhibited by prior incubation with the PAFR blocker. Conclusion Our results suggest the PAF is likely to be playing a significant role in inducing vascular leak in acute dengue infection which offers a potential target for therapeutic intervention. PMID:25646838

  1. Airways and vascular smooth muscles relaxant activities of Gaultheria trichophylla.

    PubMed

    Alam, Fiaz; Saqib, Qazi Najumus; Shah, Abdul Jabbar

    2017-01-01

    The aim of this experimental work was to explore the potential pharmacological activities of Gaultheria trichophylla Royle in hyperactive respiratory and vascular conditions. Gaultheria trichophylla was extracted with solvents, phytochemical detection tests were performed, and rabbit trachea and aorta strips were used to evaluate its effects on airways and vascular smooth muscles. Qualitative phytochemical tests showed the presence of flavonoids, alkaloids, anthraquinones, saponins, terpenoids, and condensed tannins. The methanol extract caused inhibition (EC 50 values of 3.12 mg/mL) of carbachol (1 μM) and partial relaxation of K + (80 mM) caused contractions in tracheal strips. The chloroform extract was comparatively more potent against carbachol than K+ induced contraction with EC 50 values of 0.64 and 2.26 mg/mL, respectively. However, the n-hexane extract showed more potency against K + than cabachol induced contractions, as in case with verapamil, with EC 50 values of 0.61 and 6.58 mg/mL, respectively. In isolated prepared trachea, the extracts displaced the carbachol concentration response curves and maximum response was suppressed. In rabbit aorta preparations, methanol and n-hexane extracts partially relaxed phenylephrine (1 μM) and K + induced vasoconstrictions. However, the chloroform extract inhibited phenylephrine induced contractions and exhibited a vasoconstrictor effect at lower concentrations and a relaxant effect at higher concentrations against K + precontractions. The data indicates that, in addition to others, the extracts of G .trichophylla possess verapamil like Ca ++ channel blocking components which explain the possible role of this plant in respiratory and vascular conditions.

  2. A newly synthesized Ligustrazine stilbene derivative inhibits PDGF-BB induced vascular smooth muscle cell phenotypic switch and proliferation via delaying cell cycle progression.

    PubMed

    Peng, Chunlian; Zhang, Siming; Liu, Haixin; Jiao, Yanxiao; Su, Guifa; Zhu, Yan

    2017-11-05

    Vascular Smooth muscle cells (VSMCs) possess remarkable phenotype plasticity that allows it to rapidly adapt to fluctuating environmental cues, including the period of development and progression of vascular diseases such as atherosclerosis and restenosis subsequent to vein grafting or coronary intervention. Although VSMC phenotypic switch is an attractive target, there is no effective drug so far. Using rat aortic VSMCs, we investigate the effects of Ligustrazine and its synthetic derivatives on platelet-derived growth factor-BB (PDGF-BB) induced proliferation and phenotypic switch by a cell image-based screening of 60 Ligustrazine stilbene derivatives. We showed that one of the Ligustrazine stilbene derivatives TMP-C 4a markedly inhibited PDGF-BB-induced VSMCs proliferation in a time and dose-dependent manner, which is more potent than Ligustrazine. Stimulation of contractile VSMCs with PDGF-BB significantly reduced the contractile marker protein α-smooth muscle actin expression and increased the synthetic marker proteins osteopontin expression. However, TMP-C 4a effectively reversed this phenotypic switch, which was accompanied by a decreased expression of Matrix metalloproteinase 2 and 9 (MMP2 and MMP9) and cell cycle related proteins, including cyclin D1 and CDK4. In conclusion, the present study showed that a new Ligustrazine stilbene derivative TMP-C 4a suppressed PDGF-induced VSMC proliferation and phenotypic switch, indicating that it has a potential to become a promising therapeutic agent for treating VSMC-related atherosclerosis and restenosis. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Knockdown of Nrf2 Inhibits the Angiogenesis of Rat Cardiac Micro-vascular Endothelial Cells under Hypoxic Conditions

    PubMed Central

    Kuang, Lihong; Feng, Jian; He, Guoxiang; Jing, Tao

    2013-01-01

    Angiogenesis plays an important role in myocardial repair after myocardial infarction (MI). Cardiac micro-vascular endothelial cells (CMECs) are important participants in myocardial angiogenesis processes. Recent studies have revealed that Nuclear factor-erythroid 2-related factor 2 (Nrf2), a master transcription factor of endogenous anti-oxidative defense systems, exerts cardio-protection in the cardiovascular system. However, the role of Nrf2 in the process of myocardial angiogenesis and corresponding mechanisms are not fully understood. Thus, the present study investigated the role of Nrf2 in the angiogenesis of rat CMECs to hypoxia. Trans-well assay, three-dimensional Matrigel assay were used to determine cell migration and vascular tube formation. Real-time RT-PCR, ELISA and Western blot were measured mRNA and protein expression. Here, we report that the mRNA and protein expression of Nrf2 and heme oxygenase-1(HO-1) were temporarily upregulated under hypoxic condition. Furthermore, knock down of Nrf2 significantly suppressed the migration and vascular tube formation of rat CMECs to hypoxia, Nrf2 knockdown also significantly decreased HO-1 and vascular endothelial growth factor (VEGF) expression at 48 h after transfection under hypoxic condition. Finally, transfection of CMECs with the Nrf2 over-expressing lentiviral vector upregulated HO-1 expression with a concomitant increase in cell migration and vascular tube formation induced by hypoxia, and this effect was greatly attenuated in the presence of ZnPP (a HO-1 inhibitor). Taken together, these results suggest that Nrf2 may mediate the angiogenesis of CMECs under hypoxic condition, and HO-1 is involved in regulating the angiogenesis of CMECs through Nrf2. Therefore, Nrf2 is a potent regulator of hypoxia-condition mediated angiogenesis in CMECs, which may provide a therapeutic strategy for myocardial repair after MI. PMID:23904790

  4. Vascular cell adhesion molecule-1 (VCAM-1) gene transcription and expression are regulated through an antioxidant-sensitive mechanism in human vascular endothelial cells.

    PubMed Central

    Marui, N; Offermann, M K; Swerlick, R; Kunsch, C; Rosen, C A; Ahmad, M; Alexander, R W; Medford, R M

    1993-01-01

    Oxidative stress and expression of the vascular cell adhesion molecule-1 (VCAM-1) on vascular endothelial cells are early features in the pathogenesis of atherosclerosis and other inflammatory diseases. Regulation of VCAM-1 gene expression may be coupled to oxidative stress through specific reduction-oxidation (redox) sensitive transcriptional or posttranscriptional regulatory factors. In cultured human umbilical vein endothelial (HUVE) cells, the cytokine interleukin 1 beta (IL-1 beta) activated VCAM-1 gene expression through a mechanism that was repressed approximately 90% by the antioxidants pyrrolidine dithiocarbamate (PDTC) and N-acetylcysteine (NAC). Furthermore, PDTC selectively inhibited the induction of VCAM-1, but not intercellular adhesion molecule-1 (ICAM-1), mRNA and protein accumulation by the cytokine tumor necrosis factor-alpha (TNF alpha) as well as the noncytokines bacterial endotoxin lipopolysaccharide (LPS) and double-stranded RNA, poly(I:C) (PIC). PDTC also markedly attenuated TNF alpha induction of VCAM-1-mediated cellular adhesion. In a distinct pattern, PDTC partially inhibited E-selectin gene expression in response to TNF alpha but not to LPS, IL-1 beta, or PIC. TNF alpha and LPS-mediated transcriptional activation of the human VCAM-1 promoter through NF-kappa B-like DNA enhancer elements and associated NF-kappa B-like DNA binding proteins was inhibited by PDTC. These studies suggest a molecular linkage between an antioxidant sensitive transcriptional regulatory mechanism and VCAM-1 gene expression that expands on the notion of oxidative stress as an important regulatory signal in the pathogenesis of atherosclerosis. Images PMID:7691889

  5. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset.

    PubMed

    Gualde, N; Goodwin, J S

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less [3H]thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced [3H]thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), and OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.

  6. [Vascular Lesions of Vocal Folds - Part 2: Perpendicular Vascular Lesions].

    PubMed

    Arens, C; Glanz, H; Voigt-Zimmermann, S

    2015-11-01

    The present work aims at a systematic pathogenetic description of perpendicular vascular changes in the vocal folds. Unlike longitudinal vascular changes, like ectasia and meander, perpendicular vascular changes can be observed in bening lesions. They predominantly occur as typical vascular loops in exophytic lesions, especially in recurrent respiratory papillomatosis (RRP), pre-cancerous and cancerous diseases of the larynx and vocal folds. Neoangiogenesis is caused by an epithelial growth stimulus in the early phase of cancerous genesis. In RRP the VVC impress by a single, long vessel loop with a narrow angle turning point in the each single papilla of the papilloma. In pre- and cancerous lesions the vascular loop is located directly underneath the epithelium. During progressive tumor growth, vascular loops develop an increasingly irregular, convoluted, spirally shape. The arrangement of the vascular loops is primarily still symmetrical. In the preliminary stage of tumor development occurs by neoangiogenesis to a microvascular compression. In advanced vocal fold carcinoma the regular vascular vocal fold structure is destroyed. The various stages of tumor growth are also characterized by typical primary epithelial and secondary connective tissue changes. The characteristic triad of vascular, epithelial and connective tissue changes therefore plays an important role in differential diagnosis. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Hydroxy-oleic acid, but not oleic acid, inhibits vascular responsiveness in isolated aortic tissue

    EPA Science Inventory

    Oleic acid (OA) and other fatty acids can become abundant in circulation after air pollution exposure as endogenously released lipolysis byproducts or by entering the body as a component of air pollution. Vascular damage has been observed with OA infusion, but it is not yet estab...

  8. RESULTS OF THE CANADIAN POTATO IRRADIATION PROGRAM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hetherington, C.H.; MacQueen, K.F.

    1963-01-01

    Results of test irradiations of potatoes in Canada between October 1961 and March 1962 are reviewed. Completely effective sprout inhibition was obtained in all cases. Radiation treatment was observed to be more effective than other methods. A lower dosage level would probably be satisfactory on a commercial basis. There was no internal sprouting and irradiated potatoes remained firmer than controls. Some dry rot was present in both control and treated potatoes. Irradiated potatoes were found to be more resistant to light greening. The quality of chips, instant mashed potatoes, frozen French fries, and fresh boilers produced from irradiated potatoes wasmore » found to be good. Implications and plans for commercialization of the process are discussed. (H.M.G.)« less

  9. Breast Angiosarcoma: Case Series and Expression of Vascular Endothelial Growth Factor

    PubMed Central

    Brar, Rondeep; West, Robert; Witten, Daniela; Raman, Bhargav; Jacobs, Charlotte; Ganjoo, Kristen

    2009-01-01

    Purpose Angiosarcoma of the breast is a rare, malignant tumor for which little is known regarding prognostic indicators and optimal therapeutic regimens. To address this issue, we performed a retrospective analysis of breast angiosarcoma cases seen at Stanford University along with immunohistochemical analysis for markers of angiogenesis. Methods Breast angiosarcoma cases seen between 1980 and 2008 were examined. Viable tissue blocks were analyzed for expression of vascular endothelial growth factor and its receptors. Results A total of 16 cases were identified. Data was collected regarding epidemiology, treatment, response rates, disease-free survival, and the use of various imaging modalities. Five tissue blocks remained viable for immunohistochemical analysis. Vascular endothelial growth factor-A was positively expressed in 3 of these samples. Conclusion Angiosarcoma of the breast is an aggressive malignancy with a propensity for both local recurrence and distant metastases. Angiogenesis inhibition may represent a novel therapeutic modality in this rare, vascular malignancy. PMID:20737044

  10. Mechanisms underlying caloric restriction and life span regulation: implications for vascular aging

    PubMed Central

    Ungvari, Zoltan; Parrado-Fernandez, Cristina; Csiszar, Anna; de Cabo, Rafael

    2008-01-01

    This review focuses on the emerging evidence that attenuation of the production of reactive oxygen species (ROS) and inhibition of inflammatory pathways play a central role in the anti-aging cardiovascular effects of caloric restriction (CR). Particular emphasis is placed on the potential role of the plasma membrane redox system in CR-induced pathways responsible for sensing oxidative stress and increasing cellular oxidative stress resistance. We propose that CR increases bioavailability of NO, decreases vascular ROS generation, activates the Nrf2/ARE pathway inducing ROS detoxification systems, exerts anti-inflammatory effects and, thereby, suppresses initiation/progression of vascular disease that accompany aging. PMID:18340017

  11. Regeneration of Murine Hair Follicles is Inhibited by Low-Dose-Rate Gamma Irradiation.

    PubMed

    Sugaya, Kimihiko; Hirobe, Tomohisa; Ishihara, Yoshie; Inoue, Sonoe

    2016-10-01

    To determine whether the effects of low-dose-rate gamma (γ) irradiation are identifiable in the regeneration of murine hair follicles, we irradiated whole bodies of C57BL/10JHir mice in the first telogen phase of the hair cycle with 137 Cs γ-rays. The mice were examined for effects on hair follicles, including number, morphology, and pigmentation in the second anagen phase. Effects of γ-radiation on melanocyte stem cells were also investigated by the indirect immunolabeling of tyrosinase-related protein 2 (TRP2). Irradiated skin showed a decrease in hair follicle density and the induction of curved hair follicles along with the presence of white hairs and hypopigmented hair bulbs. There was a small, but not significant, change in the number of TRP2-positive melanocyte stem cells in the hair bulge region of the irradiated skin. These results suggest that low-dose rate γ-irradiation does not deplete melanocyte stem cells, but can damage stem cells and progenitors for both keratinocytes and melanocytes, thereby affecting the structure and pigmentation of regenerated hair follicles in the 2 nd anagen phase.

  12. Plasma membrane calcium ATPase isoform 4 inhibits vascular endothelial growth factor-mediated angiogenesis through interaction with calcineurin.

    PubMed

    Baggott, Rhiannon R; Alfranca, Arantzazu; López-Maderuelo, Dolores; Mohamed, Tamer M A; Escolano, Amelia; Oller, Jorge; Ornes, Beatriz C; Kurusamy, Sathishkumar; Rowther, Farjana B; Brown, James E; Oceandy, Delvac; Cartwright, Elizabeth J; Wang, Weiguang; Gómez-del Arco, Pablo; Martínez-Martínez, Sara; Neyses, Ludwig; Redondo, Juan Miguel; Armesilla, Angel Luis

    2014-10-01

    Vascular endothelial growth factor (VEGF) has been identified as a crucial regulator of physiological and pathological angiogenesis. Among the intracellular signaling pathways triggered by VEGF, activation of the calcineurin/nuclear factor of activated T cells (NFAT) signaling axis has emerged as a critical mediator of angiogenic processes. We and others previously reported a novel role for the plasma membrane calcium ATPase (PMCA) as an endogenous inhibitor of the calcineurin/NFAT pathway, via interaction with calcineurin, in cardiomyocytes and breast cancer cells. However, the functional significance of the PMCA/calcineurin interaction in endothelial pathophysiology has not been addressed thus far. Using in vitro and in vivo assays, we here demonstrate that the interaction between PMCA4 and calcineurin in VEGF-stimulated endothelial cells leads to downregulation of the calcineurin/NFAT pathway and to a significant reduction in the subsequent expression of the NFAT-dependent, VEGF-activated, proangiogenic genes RCAN1.4 and Cox-2. PMCA4-dependent inhibition of calcineurin signaling translates into a reduction in endothelial cell motility and blood vessel formation that ultimately impairs in vivo angiogenesis by VEGF. Given the importance of the calcineurin/NFAT pathway in the regulation of pathological angiogenesis, targeted modulation of PMCA4 functionality might open novel therapeutic avenues to promote or attenuate new vessel formation in diseases that occur with angiogenesis. © 2014 American Heart Association, Inc.

  13. Near-Infrared Irradiation Increases Length of Axial Pattern Flap Survival in Rats.

    PubMed

    Yasunaga, Yoshichika; Matsuo, Kiyoshi; Tanaka, Yohei; Yuzuriha, Shunsuke

    2017-01-01

    Objective: We previously reported that near-infrared irradiation nonthermally induces long-lasting vasodilation of the subdermal plexus by causing apoptosis of vascular smooth muscle cells. To clarify the possible application of near-infrared irradiation to prevent skin flap necrosis, we evaluated the length of axial pattern flap survival in rats by near-infrared irradiation. Methods: A bilaterally symmetric island skin flap was elevated under the panniculus carnosus on the rat dorsum. Half of the flap was subjected to near-infrared irradiation just before flap elevation with a device that simulates solar radiation, which has a specialized contact cooling apparatus to avoid thermal effects. The length of flap survival of the near-infrared irradiated side was measured 7 days after flap elevation and compared with the nonirradiated side. Results: The irradiated side showed elongation of flap survival compared with the nonirradiated side (73.3 ± 11.7 mm vs 67.3 ± 14.9 mm, respectively, P = .03). Conclusions: Near-infrared irradiation increases the survival length of axial pattern flaps in rats.

  14. Gene therapy using genetically modified lymphocytes targeting VEGFR-2 inhibits the growth of vascularized syngenic tumors in mice.

    PubMed

    Chinnasamy, Dhanalakshmi; Yu, Zhiya; Theoret, Marc R; Zhao, Yangbing; Shrimali, Rajeev K; Morgan, Richard A; Feldman, Steven A; Restifo, Nicholas P; Rosenberg, Steven A

    2010-11-01

    Immunotherapies based on adoptive cell transfer are highly effective in the treatment of metastatic melanoma, but the use of this approach in other cancer histologies has been hampered by the identification of appropriate target molecules. Immunologic approaches targeting tumor vasculature provide a means for the therapy of multiple solid tumor types. We developed a method to target tumor vasculature, using genetically redirected syngeneic or autologous T cells. Mouse and human T cells were engineered to express a chimeric antigen receptor (CAR) targeted against VEGFR-2, which is overexpressed in tumor vasculature and is responsible for VEGF-mediated tumor progression and metastasis. Mouse and human T cells expressing the relevant VEGFR-2 CARs mediated specific immune responses against VEGFR-2 protein as well as VEGFR-2-expressing cells in vitro. A single dose of VEGFR-2 CAR-engineered mouse T cells plus exogenous IL-2 significantly inhibited the growth of 5 different types of established, vascularized syngeneic tumors in 2 different strains of mice and prolonged the survival of mice. T cells transduced with VEGFR-2 CAR showed durable and increased tumor infiltration, correlating with their antitumor effect. This approach provides a potential method for the gene therapy of a variety of human cancers.

  15. Phytochemical genistein in the regulation of vascular function: new insights.

    PubMed

    Si, Hongwei; Liu, Dongmin

    2007-01-01

    Genistein, a natural bioactive compound derived from legumes, has drawn wide attention during the last decade because of its potentially beneficial effects on some human degenerative diseases. It has a weak estrogenic effect and is a well-known non-specific tyrosine kinase inhibitor at pharmacological doses. Epidemiological studies show that genistein intake is inversely associated with the risk of cardiovascular diseases. Data from animal and in vitro studies suggest a protective role of genistein in cardiovascular events. However, the mechanisms of the genistein action on vascular protective effects are unclear. Past extensive studies exploring its hypolipidemic effect resulted in contradictory data. Genistein also is a relatively poor antioxidant. However, genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis. Recent studies found that genistein exerts a novel non-genomic action by targeting on important signaling molecules in vascular endothelial cells (ECs). Genistein rapidly activates endothelial nitric oxide synthase and production of nitric oxide in ECs. This genistein effect is novel since it is independent of its known effects, but mediated by the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cascade. Further studies demonstrated that genistein directly stimulates the plasma membrane-associated adenylate cyclases, leading to activation of the cAMP signaling pathway. In addition, genistein activates peroxisome proliferator-activated receptors, ligand-activated nuclear receptors important to normal vascular function. Furthermore, genistein reduces reactive oxygen species (ROS) by attenuating the expression of ROS-producing enzymes. These new findings reveal the novel roles for genistein in the regulation of vascular function and provide a basis for further

  16. Anti-Angiogenic/Vascular Effects of the mTOR Inhibitor Everolimus Are Not Detectable by FDG/FLT-PET1

    PubMed Central

    Honer, Michael; Ebenhan, Thomas; Allegrini, Peter R; Ametamey, Simon M; Becquet, Mike; Cannet, Catherine; Lane, Heidi A; O'Reilly, Terence M; Schubiger, Pius A; Sticker-Jantscheff, Melanie; Stumm, Michael; McSheehy, Paul MJ

    2010-01-01

    Noninvasive functional imaging of tumors can provide valuable early-response biomarkers, in particular, for targeted chemotherapy. Using various experimental tumor models, we have investigated the ability of positron emission tomography (PET) measurements of 2-deoxy-2-[18F]fluoro-glucose (FDG) and 3′-deoxy-3′-[18F]fluorothymidine (FLT) to detect response to the allosteric mammalian target of rapamycin (mTOR) inhibitor everolimus. Tumor models were declared sensitive (murine melanoma B16/BL6 and human lung H596) or relatively insensitive (human colon HCT116 and cervical KB31), according to the IC50 values (concentration inhibiting cell growth by 50%) for inhibition of proliferation in vitro (<10 nM and >1 µM, respectively). Everolimus strongly inhibited growth of the sensitive models in vivo but also significantly inhibited growth of the insensitive models, an effect attributable to its known anti-angiogenic/vascular properties. However, although tumor FDG and FLT uptake was significantly reduced in the sensitive models, it was not affected in the insensitive models, suggesting that endothelial-directed effects could not be detected by these PET tracers. Consistent with this hypothesis, in a well-vascularized orthotopic rat mammary tumor model, other antiangiogenic agents also failed to affect FDG uptake, despite inhibiting tumor growth. In contrast, the cytotoxic patupilone, a microtubule stabilizer, blocked tumor growth, and markedly reduced FDG uptake. These results suggest that FDG/FLT-PET may not be a suitable method for early markers of response to antiangiogenic agents and mTOR inhibitors in which anti-angiogenic/vascular effects predominate because the method could provide false-negative responses. These conclusions warrant clinical testing. PMID:20689768

  17. Inhibition of Vascular Endothelial Growth Factor A and Hypoxia-Inducible Factor 1α Maximizes the Effects of Radiation in Sarcoma Mouse Models Through Destruction of Tumor Vasculature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hae-June; Division of Radiation Effects, Korea Institute of Radiological and Medical Sciences, Seoul; Yoon, Changhwan

    Purpose: To examine the addition of genetic or pharmacologic inhibition of hypoxia-inducible factor 1α (HIF-1α) to radiation therapy (RT) and vascular endothelial growth factor A (VEGF-A) inhibition (ie trimodality therapy) for soft-tissue sarcoma. Methods and Materials: Hypoxia-inducible factor 1α was inhibited using short hairpin RNA or low metronomic doses of doxorubicin, which blocks HIF-1α binding to DNA. Trimodality therapy was examined in a mouse xenograft model and a genetically engineered mouse model of sarcoma, as well as in vitro in tumor endothelial cells (ECs) and 4 sarcoma cell lines. Results: In both mouse models, any monotherapy or bimodality therapy resulted in tumormore » growth beyond 250 mm{sup 3} within the 12-day treatment period, but trimodality therapy with RT, VEGF-A inhibition, and HIF-1α inhibition kept tumors at <250 mm{sup 3} for up to 30 days. Trimodality therapy on tumors reduced HIF-1α activity as measured by expression of nuclear HIF-1α by 87% to 95% compared with RT alone, and cytoplasmic carbonic anhydrase 9 by 79% to 82%. Trimodality therapy also increased EC-specific apoptosis 2- to 4-fold more than RT alone and reduced microvessel density by 75% to 82%. When tumor ECs were treated in vitro with trimodality therapy under hypoxia, there were significant decreases in proliferation and colony formation and increases in DNA damage (as measured by Comet assay and γH2AX expression) and apoptosis (as measured by cleaved caspase 3 expression). Trimodality therapy had much less pronounced effects when 4 sarcoma cell lines were examined in these same assays. Conclusions: Inhibition of HIF-1α is highly effective when combined with RT and VEGF-A inhibition in blocking sarcoma growth by maximizing DNA damage and apoptosis in tumor ECs, leading to loss of tumor vasculature.« less

  18. Copper chelation by tetrathiomolybdate inhibits lipopolysaccharide-induced inflammatory responses in vivo

    PubMed Central

    Wei, Hao; Beckman, Joseph S.; Zhang, Wei-Jian

    2011-01-01

    Redox-active transition metal ions, such as iron and copper, may play an important role in vascular inflammation, which is an etiologic factor in atherosclerotic vascular diseases. In this study, we investigated whether tetrathiomolybdate (TTM), a highly specific copper chelator, can act as an anti-inflammatory agent, preventing lipopolysaccharide (LPS)-induced inflammatory responses in vivo. Female C57BL/6N mice were daily gavaged with TTM (30 mg/kg body wt) or vehicle control. After 3 wk, animals were injected intraperitoneally with 50 μg LPS or saline buffer and killed 3 h later. Treatment with TTM reduced serum ceruloplasmin activity by 43%, a surrogate marker of bioavailable copper, in the absence of detectable hepatotoxicity. The concentrations of both copper and molybdenum increased in various tissues, whereas the copper-to-molybdenum ratio decreased, consistent with reduced copper bioavailability. TTM treatment did not have a significant effect on superoxide dismutase activity in heart and liver. Furthermore, TTM significantly inhibited LPS-induced inflammatory gene transcription in aorta and heart, including vascular and intercellular adhesion molecule-1 (VCAM-1 and ICAM-1, respectively), monocyte chemotactic protein-1 (MCP-1), interleukin-6, and tumor necrosis factor (TNF)-α (ANOVA, P < 0.05); consistently, protein levels of VCAM-1, ICAM-1, and MCP-1 in heart were also significantly lower in TTM-treated animals. Similar inhibitory effects of TTM were observed on activation of nuclear factor-κB (NF-κB) and activator protein-1 (AP-1) in heart and lungs. Finally, TTM significantly inhibited LPS-induced increases of serum levels of soluble ICAM-1, MCP-1, and TNF-α (ANOVA, P < 0.05). These data indicate that copper chelation with TTM inhibits LPS-induced inflammatory responses in aorta and other tissues of mice, most likely by inhibiting activation of the redox-sensitive transcription factors, NF-κB and AP-1. Therefore, copper appears to play an

  19. Retinal vascular changes are a marker for cerebral vascular diseases

    PubMed Central

    Moss, Heather E.

    2016-01-01

    The retinal circulation is a potential marker of cerebral vascular disease because it shares origin and drainage with the intracranial circulation and because it can be directly visualized using ophthalmoscopy. Cross sectional and cohort studies have demonstrated associations between chronic retinal and cerebral vascular disease, acute retinal and cerebral vascular disease and chronic retinal vascular disease and acute cerebral vascular disease. In particular, certain qualitative features of retinopathy, retinal artery occlusion and increased retinal vein caliber are associated with concurrent and future cerebrovascular events. These associations persist after accounting for confounding variables known to be disease-causing in both circulations, which supports the potential use of retinal vasculature findings to stratify individuals with regards to cerebral vascular disease risk. PMID:26008809

  20. VEGF-B is dispensable for blood vessel growth but critical for their survival, and VEGF-B targeting inhibits pathological angiogenesis

    PubMed Central

    Zhang, Fan; Tang, Zhongshu; Hou, Xu; Lennartsson, Johan; Li, Yang; Koch, Alexander W.; Scotney, Pierre; Lee, Chunsik; Arjunan, Pachiappan; Dong, Lijin; Kumar, Anil; Rissanen, Tuomas T.; Wang, Bin; Nagai, Nobuo; Fons, Pierre; Fariss, Robert; Zhang, Yongqing; Wawrousek, Eric; Tansey, Ginger; Raber, James; Fong, Guo-Hua; Ding, Hao; Greenberg, David A.; Becker, Kevin G.; Herbert, Jean-Marc; Nash, Andrew; Yla-Herttuala, Seppo; Cao, Yihai; Watts, Ryan J.; Li, Xuri

    2009-01-01

    VEGF-B, a homolog of VEGF discovered a long time ago, has not been considered an important target in antiangiogenic therapy. Instead, it has received little attention from the field. In this study, using different animal models and multiple types of vascular cells, we revealed that although VEGF-B is dispensable for blood vessel growth, it is critical for their survival. Importantly, the survival effect of VEGF-B is not only on vascular endothelial cells, but also on pericytes, smooth muscle cells, and vascular stem/progenitor cells. In vivo, VEGF-B targeting inhibited both choroidal and retinal neovascularization. Mechanistically, we found that the vascular survival effect of VEGF-B is achieved by regulating the expression of many vascular prosurvival genes via both NP-1 and VEGFR-1. Our work thus indicates that the function of VEGF-B in the vascular system is to act as a “survival,” rather than an “angiogenic” factor and that VEGF-B inhibition may offer new therapeutic opportunities to treat neovascular diseases. PMID:19369214

  1. Reduction of In-Stent Restenosis by Cholesteryl Ester Transfer Protein Inhibition.

    PubMed

    Wu, Ben J; Li, Yue; Ong, Kwok L; Sun, Yidan; Shrestha, Sudichhya; Hou, Liming; Johns, Douglas; Barter, Philip J; Rye, Kerry-Anne

    2017-12-01

    Angioplasty and stent implantation, the most common treatment for atherosclerotic lesions, have a significant failure rate because of restenosis. This study asks whether increasing plasma high-density lipoprotein (HDL) levels by inhibiting cholesteryl ester transfer protein activity with the anacetrapib analog, des-fluoro-anacetrapib, prevents stent-induced neointimal hyperplasia. New Zealand White rabbits received normal chow or chow supplemented with 0.14% (wt/wt) des-fluoro-anacetrapib for 6 weeks. Iliac artery endothelial denudation and bare metal steel stent deployment were performed after 2 weeks of des-fluoro-anacetrapib treatment. The animals were euthanized 4 weeks poststent deployment. Relative to control, dietary supplementation with des-fluoro-anacetrapib reduced plasma cholesteryl ester transfer protein activity and increased plasma apolipoprotein A-I and HDL cholesterol levels by 53±6.3% and 120±19%, respectively. Non-HDL cholesterol levels were unaffected. Des-fluoro-anacetrapib treatment reduced the intimal area of the stented arteries by 43±5.6% ( P <0.001), the media area was unchanged, and the arterial lumen area increased by 12±2.4% ( P <0.05). Des-fluoro-anacetrapib treatment inhibited vascular smooth muscle cell proliferation by 41±4.5% ( P <0.001). Incubation of isolated HDLs from des-fluoro-anacetrapib-treated animals with human aortic smooth muscle cells at apolipoprotein A-I concentrations comparable to their plasma levels inhibited cell proliferation and migration. These effects were dependent on scavenger receptor-B1, the adaptor protein PDZ domain-containing protein 1, and phosphatidylinositol-3-kinase/Akt activation. HDLs from des-fluoro-anacetrapib-treated animals also inhibited proinflammatory cytokine-induced human aortic smooth muscle cell proliferation and stent-induced vascular inflammation. Inhibiting cholesteryl ester transfer protein activity in New Zealand White rabbits with iliac artery balloon injury and stent

  2. Role of Endogenous Sulfur Dioxide in Regulating Vascular Structural Remodeling in Hypertension

    PubMed Central

    Chen, Selena; Tang, Chaoshu

    2016-01-01

    Sulfur dioxide (SO2), an emerging gasotransmitter, was discovered to be endogenously generated in the cardiovascular system. Recently, the physiological effects of endogenous SO2 were confirmed. Vascular structural remodeling (VSR), an important pathological change in many cardiovascular diseases, plays a crucial role in the pathogenesis of the diseases. Here, the authors reviewed the research progress of endogenous SO2 in regulating VSR by searching the relevant data from PubMed and Medline. In spontaneously hypertensive rats (SHRs) and pulmonary hypertensive rats, SO2/aspartate aminotransferase (AAT) pathway was significantly altered. SO2 inhibited vascular smooth muscle cell (VSMC) proliferation, promoted apoptosis, inhibited the synthesis of extracellular collagen but promoted its degradation, and enhanced antioxidative capacity, thereby playing a significant role in attenuating VSR. However, the detailed mechanisms needed to be further explored. Further studies in this field would be important for the better understanding of the pathogenesis of systemic hypertension and pulmonary hypertension. Also, clinical trials are needed to demonstrate if SO2 would be a potential therapeutic target in cardiovascular diseases. PMID:27721913

  3. β2-Glycoprotein I Inhibits Vascular Endothelial Growth Factor-Induced Angiogenesis by Suppressing the Phosphorylation of Extracellular Signal-Regulated Kinase 1/2, Akt, and Endothelial Nitric Oxide Synthase

    PubMed Central

    Chiu, Wen-Chin; Chiou, Tzeon-Jye; Chung, Meng-Ju; Chiang, An-Na

    2016-01-01

    Angiogenesis is the process of new blood vessel formation, and it plays a key role in various physiological and pathological conditions. The β2-glycoprotein I (β2-GPI) is a plasma glycoprotein with multiple biological functions, some of which remain to be elucidated. This study aimed to identify the contribution of 2-GPI on the angiogenesis induced by vascular endothelial growth factor (VEGF), a pro-angiogenic factor that may regulate endothelial remodeling, and its underlying mechanism. Our results revealed that β2-GPI dose-dependently decreased the VEGF-induced increase in endothelial cell proliferation, using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and the bromodeoxyuridine (BrdU) incorporation assays. Furthermore, incubation with both β2-GPI and deglycosylated β2-GPI inhibited the VEGF-induced tube formation. Our results suggest that the carbohydrate residues of β2-GPI do not participate in the function of anti-angiogenesis. Using in vivo Matrigel plug and angioreactor assays, we show that β2-GPI remarkably inhibited the VEGF-induced angiogenesis at a physiological concentration. Moreover, β2-GPI inhibited the VEGF-induced phosphorylation of extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and endothelial nitric oxide synthase (eNOS). In summary, our in vitro and in vivo data reveal for the first time that β2-GPI inhibits the VEGF-induced angiogenesis and highlights the potential for β2-GPI in anti-angiogenic therapy. PMID:27579889

  4. Anti-inflammatory effect of 635 nm irradiations on in vitro direct/indirect irradiation model.

    PubMed

    Lim, WonBong; Choi, Hongran; Kim, Jisun; Kim, Sangwoo; Jeon, SangMi; Zheng, Hui; Kim, DoMan; Ko, Youngjong; Kim, Donghwi; Sohn, HongMoon; Kim, OkJoon

    2015-02-01

    Low-level laser therapy (LLLT) has been promoted for its beneficial effects on tissue healing and pain relief. As during laser treatment it is possible to irradiate only a small area of the surface body or wound and, correspondingly, of a very small volume of the circulating blood, it is necessary to explain how its photomodification can lead to a wide spectrum of therapeutic effects. To establish the experimental model for indirect irradiation, irradiation with 635 nm was performed on immortalized human gingival fibroblasts (IGFs) in the presence of Porphyromonas gingivalis lipopolysaccharides (LPS). The irradiated medium was transferred to non-irradiated IGFs which were compared with direct irradiated IGFs. The protein expressions were assessed by Western blot, and prostaglandin E2 (PGE2 ) was measured using an enzyme-linked immunoassay. Reactive oxygen species (ROS) were measured by DCF-DA; cytokine profiles were assessed using a human inflammation antibody array. Cyclooxygenase-2 (COX-2) protein expression and PGE2 production were significantly increased in the LPS-treated group and decreased in both direct and indirect irradiated IGFs. Unlike direct irradiated IGFs, ROS level in indirect irradiated IGFs was decreased by time-dependent manners. There were significant differences of released granulocyte colony-stimulating factor (G-CSF), regulated on activated normal T-cell expressed and secreted (RANTES), and I-TAC level observed compared with direct and indirect irradiated IGFs. In addition, in the indirect irradiation group, phosphorylations of C-Raf and Erk1/2 increased significantly compared with the direct irradiation group. Thus, we suggest that not only direct exposure with 635 nm light, but also indirect exposure with 635 nm light can inhibit activation of pro-inflammatory mediators and may be clinically useful as an anti-inflammatory tool. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Vascular endothelial growth factor signaling regulates the segregation of artery and vein via ERK activity during vascular development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Se-Hee; Schmitt, Christopher E.; Woolls, Melissa J.

    Highlights: ► VEGF-A signaling regulates the segregation of axial vessels. ► VEGF-A signaling is mediated by PKC and ERK in this process. ► Ectopic activation of ERK is sufficient to rescue defects in vessel segregation. -- Abstract: Segregation of two axial vessels, the dorsal aorta and caudal vein, is one of the earliest patterning events occur during development of vasculature. Despite the importance of this process and recent advances in our understanding on vascular patterning during development, molecular mechanisms that coordinate the segregation of axial vessels remain largely elusive. In this report, we find that vascular endothelial growth factor-A (Vegf-A)more » signaling regulates the segregation of dorsal aorta and axial vein during development. Inhibition of Vegf-A pathway components including ligand Vegf-A and its cognate receptor Kdrl, caused failure in segregation of axial vessels in zebrafish embryos. Similarly, chemical inhibition of Mitogen-activated protein kinase kinase (Map2k1)/Extracellular-signal-regulated kinases (Erk) and phosphatidylinositol 3-kinases (PI3 K), which are downstream effectors of Vegf-A signaling pathway, led to the fusion of two axial vessels. Moreover, we find that restoring Erk activity by over-expression of constitutively active MEK in embryos with a reduced level of Vegf-A signaling can rescue the defects in axial vessel segregation. Taken together, our data show that segregation of axial vessels requires the function of Vegf-A signaling, and Erk may function as the major downstream effector in this process.« less

  6. Inhibition of dipeptidyl peptidase 4 regulates microvascular endothelial growth induced by inflammatory cytokines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takasawa, Wataru; Ohnuma, Kei; Hatano, Ryo

    2010-10-08

    Research highlights: {yields} TNF-{alpha} or IL-1{beta} induces EC proliferation with reduction of CD26 expression. {yields} CD26 siRNA or DPP-4 inhibition enhances TNF-{alpha} or IL-1{beta}-induced EC proliferation. {yields} Loss of CD26/DPP-4 enhances aortic sprouting induced by TNF-{alpha} or IL-1{beta}. {yields} Capillary formation induced by TNF-{alpha} or IL-1{beta} is enahced in the CD26{sup -/-} mice. -- Abstract: CD26/DPP-4 is abundantly expressed on capillary of inflamed lesion as well as effector T cells. Recently, CD26/dipeptidyl peptidase 4 (DPP-4) inhibition has been used as a novel oral therapeutic approach for patients with type 2 diabetes. While accumulating data indicate that vascular inflammation is amore » key feature of both micro- and macro-vascular complications in diabetes, the direct role of CD26/DPP-4 in endothelial biology is to be elucidated. We herein showed that proinflammatory cytokines such as tumor necrosis factor or interleukin-1 reduce expression of CD26 on microvascular endothelial cells, and that genetical or pharmacological inhibition of CD26/DPP-4 enhances endothelial growth both in vitro and in vivo. With DPP-4 inhibitors being used widely in the treatment of type 2 diabetes, our data strongly suggest that DPP-4 inhibition plays a pivotal role in endothelial growth and may have a potential role in the recovery of local circulation following diabetic vascular complications.« less

  7. Peroxisome proliferator-activated receptor (PPAR)-gamma expression in human vascular smooth muscle cells: inhibition of growth, migration, and c-fos expression by the peroxisome proliferator-activated receptor (PPAR)-gamma activator troglitazone.

    PubMed

    Benson, S; Wu, J; Padmanabhan, S; Kurtz, T W; Pershadsingh, H A

    2000-01-01

    This study was conducted to determine whether cultured human coronary artery and aorta vascular smooth muscle (VSM) cells express the nuclear transcription factor peroxisome proliferator-activated receptor-gamma (PPARgamma); whether the thiazolidinedione troglitazone, a ligand for PPARgamma, would inhibit c-fos expression by these cells; and whether troglitazone would inhibit proliferation and migration induced in these cells by mitogenic growth factors. Using immunoblotting and reverse-transcriptase polymerase chain reaction (RT-PCR) techniques, we show that both human aorta and coronary artery VSM cell lines expressed PPARgamma protein and mRNA for both PPARgamma isoforms, PPARgamma1 and PPARgamma2. Immunocytochemical staining localized the PPARgamma protein primarily within the nucleus. Troglitazone inhibited basic fibroblast growth factor and platelet-derived growth factor-BB induced DNA synthesis in a dose-dependent manner and downregulated the growth-factor-induced expression of c-fos. Troglitazone also inhibited the migration of coronary artery VSM cells along a platelet-derived growth factor-BB concentration gradient. These findings demonstrate for the first time the expression and nuclear localization of PPARgamma in human coronary artery and aorta VSM cells. The data also suggest that the downregulation of c-fos expression, growth-factor-induced proliferation, and migration by VSM may, in part, be mediated by activation of the PPARgamma receptor.

  8. Involvement of proteinase activated receptor-2 in the vascular response to sphingosine 1-phosphate.

    PubMed

    Roviezzo, Fiorentina; De Angelis, Antonella; De Gruttola, Luana; Bertolino, Antonio; Sullo, Nikol; Brancaleone, Vincenzo; Bucci, Mariarosaria; De Palma, Raffaele; Urbanek, Konrad; D'Agostino, Bruno; Ianaro, Angela; Sorrentino, Raffaella; Cirino, Giuseppe

    2014-04-01

    S1P (sphingosine 1-phosphate) represents one of the key latest additions to the list of vasoactive substances that modulate vascular tone. PAR-2 (proteinase activated receptor-2) has been shown to be involved in cardiovascular function. In the present study, we investigated the involvement of PAR-2 in S1P-induced effect on vascular tone. The present study has been performed by using isolated mouse aortas. Both S1P and PAR-2 agonists induced endothelium-dependent vasorelaxation. L-NAME (N(G)-nitro-L-arginine methyl ester) and wortmannin abrogated the S1P-induced vasorelaxatioin, while significantly inhibiting the PAR-2-mediated effect. Either ENMD1068, a PAR-2 antagonist, or gabexate, a serine protease inhibitor, significantly inhibited S1P-induced vasorelaxation. Aortic tissues harvested from mice overexpressing PAR-2 displayed a significant increase in vascular response to S1P as opposed to PAR-2-null mice. Immunoprecipitation and immunofluorescence studies demonstrated that S1P(1) interacted with PAR-2 and co-localized with PAR-2 on the vascular endothelial surface. Furthermore, S1P administration to vascular tissues triggered PAR-2 mobilization from the plasma membrane to the perinuclear area; S1P-induced translocation of PAR-2 was abrogated when aortic rings were pre-treated with ENMD1068 or when caveolae dysfunction occurred. Similarly, experiments performed in cultured endothelial cells (human umbilical vein endothelial cells) showed a co-localization of S1P(1) and PAR2, as well as the ability of S1P to induce PAR-2 trafficking. Our results suggest that S1P induces endothelium-dependent vasorelaxation mainly through S1P(1) and involves PAR-2 transactivation.

  9. Treating vascular lesions.

    PubMed

    Astner, Susanne; Anderson, R Rox

    2005-01-01

    The treatment of acquired vascular lesions is one of the most commonly requested and performed cutaneous laser procedures. Furthermore, every year, 40,000 children are born in the United States each with congenital vascular lesions and malformations. Laser treatment of vascular lesion is based on the principle of selective photothermolysis, conceived in the 1980s. A variety of different lasers and light sources have since been used in the treatment of vascular lesions: lasers with wavelengths between green and yellow, near infrared lasers, and broadband light sources. Despite limitations, this remains the treatment of choice today. This publication addresses acquired and congenital vascular lesions as different entities and proposes a separation of vascular lesions into those that can easily be treated from those where clearance is difficult. Different treatment modalities and the various endpoints of individual vascular lesions will be discussed.

  10. Cell sheet engineering using the stromal vascular fraction of adipose tissue as a vascularization strategy.

    PubMed

    Costa, Marina; Cerqueira, Mariana T; Santos, Tírcia C; Sampaio-Marques, Belém; Ludovico, Paula; Marques, Alexandra P; Pirraco, Rogério P; Reis, Rui L

    2017-06-01

    Current vascularization strategies for Tissue Engineering constructs, in particular cell sheet-based, are limited by time-consuming and expensive endothelial cell isolation and/or by the complexity of using extrinsic growth factors. Herein, we propose an alternative strategy using angiogenic cell sheets (CS) obtained from the stromal vascular fraction (SVF) of adipose tissue that can be incorporated into more complex constructs. Cells from the SVF were cultured in normoxic and hypoxic conditions for up to 8days in the absence of extrinsic growth factors. Immunocytochemistry against CD31 and CD146 revealed spontaneous organization in capillary-like structures, more complex after hypoxic conditioning. Inhibition of HIF-1α pathway hindered capillary-like structure formation in SVF cells cultured in hypoxia, suggesting a role of HIF-1α. Moreover, hypoxic SVF cells showed a trend for increased secretion of angiogenic factors, which was reflected in increased network formation by endothelial cells cultured on matrigel using that conditioned medium. In vivo implantation of SVF CS in a mouse hind limb ischemia model revealed that hypoxia-conditioned CS led to improved restoration of blood flow. Both in vitro and in vivo data suggest that SVF CS can be used as simple and cost-efficient tools to promote functional vascularization of TE constructs. Neovascularization after implantation is a major obstacle for producing clinically viable cell sheet-based tissue engineered constructs. Strategies using endothelial cells and extrinsic angiogenic growth factors are expensive and time consuming and may raise concerns of tumorigenicity. In this manuscript, we describe a simplified approach using angiogenic cell sheets fabricated from the stromal vascular fraction of adipose tissue. The strong angiogenic behavior of these cell sheets, achieved without the use of external growth factors, was further stimulated by low oxygen culture. When implanted in an in vivo model of hind limb

  11. Inhibition of hydrogen sulfide on the proliferation of vascular smooth muscle cells involved in the modulation of calcium sensing receptor in high homocysteine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yuwen; Wang, Xiyao; Liang, Xiaohui

    Hyperhomocysteinemia induces the proliferation of vascular smooth muscle cells (VSMCs). Hydrogen sulfide (H{sub 2}S) inhibits the phenotype switch of VSMCs and calcium-sensing receptor (CaSR) regulated the production of endogenous H{sub 2}S. However, whether CaSR inhibits the proliferation of VSMCs by regulating the endogenous cystathionine-gamma-lyase (CSE, a major enzyme that produces H{sub 2}S) pathway in high homocysteine (HHcy) has not been previously investigated. The intracellular calcium concentration, the concentration of H{sub 2}S, the cell viability, the proliferation and the expression of proteins of cultured VSMCs from rat thoracic aortas were measured, respectively. The results showed that the [Ca{sup 2+}]{sub i} andmore » the expression of p-CaMK and CSE increased upon treatment with CaSR agonist. In HHcy, the H{sub 2}S concentration decrease, the proliferation and migration rate increased, the expression of Cyclin D1, PCNA, Osteopontin and p-Erk1/2 increased while the α-SM actin, P21{sup Cip/WAK−1} and Calponin decreased. The CaSR agonist or exogenous H{sub 2}S significantly reversed the changes of VSMCs caused by HHcy. In conclusion, our results demonstrated that CaSR regulate the endogenous CSE/H{sub 2}S is related to the PLC-IP{sub 3} receptor and CaM signal pathways which inhibit the proliferation of VSMCs, and the latter is involved in the Erk1/2 dependent signal pathway in high homocysteine. - Highlights: • CaSR activation increased the production of endogenous H{sub 2}S in high homocysteine VSMCs. • CaSR modulated the CSE/H{sub 2}S are related to the PLC-IP{sub 3}R and Ca{sup 2+}-CaM signal pathways. • Inhibition of H{sub 2}S on the proliferation of VSMCs is involved in the Erk1/2 pathway. • Explore the potential roles of CaSR in regulating VSMCs proliferation in high homocysteine.« less

  12. Hydrogen-Rich Medium Attenuated Lipopolysaccharide-Induced Monocyte-Endothelial Cell Adhesion and Vascular Endothelial Permeability via Rho-Associated Coiled-Coil Protein Kinase.

    PubMed

    Xie, Keliang; Wang, Weina; Chen, Hongguang; Han, Huanzhi; Liu, Daquan; Wang, Guolin; Yu, Yonghao

    2015-07-01

    Sepsis is the leading cause of death in critically ill patients. In recent years, molecular hydrogen, as an effective free radical scavenger, has been shown a selective antioxidant and anti-inflammatory effect, and it is beneficial in the treatment of sepsis. Rho-associated coiled-coil protein kinase (ROCK) participates in junction between normal cells, and regulates vascular endothelial permeability. In this study, we used lipopolysaccharide to stimulate vascular endothelial cells and explored the effects of hydrogen-rich medium on the regulation of adhesion of monocytes to endothelial cells and vascular endothelial permeability. We found that hydrogen-rich medium could inhibit adhesion of monocytes to endothelial cells and decrease levels of adhesion molecules, whereas the levels of transepithelial/endothelial electrical resistance values and the expression of vascular endothelial cadherin were increased after hydrogen-rich medium treatment. Moreover, hydrogen-rich medium could lessen the expression of ROCK, as a similar effect of its inhibitor Y-27632. In addition, hydrogen-rich medium could also inhibit adhesion of polymorphonuclear neutrophils to endothelial cells. In conclusion, hydrogen-rich medium could regulate adhesion of monocytes/polymorphonuclear neutrophils to endothelial cells and vascular endothelial permeability, and this effect might be related to the decreased expression of ROCK protein.

  13. [Vascular lesions of vocal folds--part 1: horizontal vascular lesions].

    PubMed

    Voigt-Zimmermann, S; Arens, C

    2014-12-01

    In recent decades, the endoscopic methods and technologies for laryngeal examination have improved so much that not only epithelial changes, but also vascular changes are recognizable at earlier stages. When comparing newer and older literature, the associated increasingly differentiated descriptions of such visible vascular changes of the vocal folds lead to terminological blurring and shifts of meaning. This complicates the technical-scientific discourse. The aim of the present work is a theoretical and conceptual clarification of early vascular changes of vocal folds. Horizontal changes of benigne vascular diseases, e. g. vessel ectasia, meander, increasing number and branching of vessels, change of direction may develop in to manifest vascular lesions, like varicosis, polyps and in case of ruptures to haemorrhages of vocal folds. These beginning and reversible vascular changes, when early detected and discussed basing on etiological knowledge, may lead to more differentiated prognostic statements and adequate therapeutic decisions, e. g. phonosurgery, functional voice therapy, voice hygiene and voice rest. Vertical vascular changes, like vessel loops, occur primarily in laryngeal papilloma, pre-cancerous and cancerous changes of the vocal folds. Already in small cancerous lesions of the vocal folds the vascular architecture is completely destroyed. © Georg Thieme Verlag KG Stuttgart · New York.

  14. Vascular targets for cannabinoids: animal and human studies

    PubMed Central

    Stanley, Christopher; O'Sullivan, Saoirse E

    2014-01-01

    Application of cannabinoids and endocannabinoids to perfused vascular beds or individual isolated arteries results in changes in vascular resistance. In most cases, the result is vasorelaxation, although vasoconstrictor responses are also observed. Cannabinoids also modulate the actions of vasoactive compounds including acetylcholine, methoxamine, angiotensin II and U46619 (thromboxane mimetic). Numerous mechanisms of action have been proposed including receptor activation, potassium channel activation, calcium channel inhibition and the production of vasoactive mediators such as calcitonin gene-related peptide, prostanoids, NO, endothelial-derived hyperpolarizing factor and hydrogen peroxide. The purpose of this review is to examine the evidence for the range of receptors now known to be activated by cannabinoids. Direct activation by cannabinoids of CB1, CBe, TRPV1 (and potentially other TRP channels) and PPARs in the vasculature has been observed. A potential role for CB2, GPR55 and 5-HT1A has also been identified in some studies. Indirectly, activation of prostanoid receptors (TP, IP, EP1 and EP4) and the CGRP receptor is involved in the vascular responses to cannabinoids. The majority of this evidence has been obtained through animal research, but recent work has confirmed some of these targets in human arteries. Vascular responses to cannabinoids are enhanced in hypertension and cirrhosis, but are reduced in obesity and diabetes, both due to changes in the target sites of action. Much further work is required to establish the extent of vascular actions of cannabinoids and the application of this research in physiological and pathophysiological situations. Linked ArticlesThis article is part of a themed section on Cannabinoids 2013. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-6 PMID:24329566

  15. UAP56 is an important mediator of Angiotensin II/platelet derived growth factor induced vascular smooth muscle cell DNA synthesis and proliferation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sahni, Abha; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555; Wang, Nadan

    2013-02-15

    Highlights: ► Knockdown of UAP56 inhibits Angiotensin II/PDGF induced vascular smooth muscle cell proliferation. ► UAP56 is a positive regulator of E2F transcriptional activation. ► UAP56 is present in the vessel wall of low flow carotid arteries. -- Abstract: Angiotensin (Ang) II and platelet-derived growth factor (PDGF) are important mediators of pathologic vascular smooth muscle cell (VSMC) proliferation. Identifying downstream mediators of Ang II and PDGF signaling may provide insights for therapies to improve vascular proliferative diseases. We have previously demonstrated that breakpoint cluster region (Bcr) is an important mediator of Ang II/PDGF signaling in VSMC. We have recently reportedmore » that the DExD/H box protein UAP56 is an interacting partner of Bcr in regulating VSMC DNA synthesis. We hypothesized that UAP56 itself is an important regulator of VSMC proliferation. In this report we demonstrate that knockdown of UAP56 inhibits Ang II/PDGF induced VSMC DNA synthesis and proliferation, and inhibits E2F transcriptional activity. In addition, we demonstrate that UAP56 is present in the vessel wall of low-flow carotid arteries. These findings suggest that UAP56 is a regulator of VSMC proliferation and identify UAP56 as a target for preventing vascular proliferative disease.« less

  16. Hydrogen Peroxide Inhibits Cytochrome P450 Epoxygenases

    PubMed Central

    Larsen, Brandon T.; Gutterman, David D.; Sato, Atsushi; Toyama, Kazuyoshi; Campbell, William B.; Zeldin, Darryl C.; Manthati, Vijay L.; Falck, John R.; Miura, Hiroto

    2008-01-01

    The cytochrome P450 epoxygenase (CYP)-derived metabolites of arachidonic acid the epoxyeicosatrienoic acids (EETs) and hydrogen peroxide (H2O2) both function as endothelium-derived hyperpolarizing factors (EDHFs) in the human coronary microcirculation. However, the relative importance of and potential interactions between these 2 vasodilators remain unexplored. We identified a novel inhibitory interaction between CYPs and H2O2 in human coronary arterioles, where EDHF-mediated vasodilatory mechanisms are prominent. Bradykinin induced vascular superoxide and H2O2 production in an endothelium-dependent manner and elicited a concentration-dependent dilation that was reduced by catalase but not by 14,15-epoxyeicosa-5(Z)-enoic acid (EEZE), 6-(2-propargyloxyphenyl)hexanoic acid, sulfaphenazole, or iberiotoxin. However, in the presence of catalase, an inhibitory effect of these compounds was unmasked. In a tandem-bioassay preparation, application of bradykinin to endothelium-intact donor vessels elicited dilation of downstream endothelium-denuded detectors that was partially inhibited by donor-applied catalase but not by detector-applied EEZE; however, EEZE significantly inhibited dilation in the presence of catalase. EET production by human recombinant CYP 2C9 and 2J2, 2 major epoxygenase isozymes expressed in human coronary arterioles, was directly inhibited in a concentration-dependent fashion by H2O2 in vitro, as observed by high-performance liquid chromatography (HPLC); however, EETs were not directly sensitive to oxidative modification. H2O2 inhibited dilation to arachidonic acid but not to 11,12-EET. These findings suggest that an inhibitory interaction exists between 2 EDHFs in the human coronary microcirculation. CYP epoxygenases are directly inhibited by H2O2, and this interaction may modulate vascular EET bioavailability. PMID:17975109

  17. High expression of ubiquitin-specific peptidase 39 is associated with the development of vascular remodeling

    PubMed Central

    He, Shuai; Zhong, Wei; Yin, Li; Wang, Yifei; Qiu, Zhibing; Song, Gang

    2017-01-01

    Vascular remodeling is the primary cause underlying the failure of angioplasty surgeries, including vascular stenting, transplant vasculopathy and vein grafts. Multiple restenosis-associated proteins and genes have been identified to account for this. In the present study, the functions of ubiquitin-specific peptidase 39 (USP39) were investigated in the context of two vascular remodeling models (a mouse common carotid artery ligation and a pig bilateral saphenous vein-carotid artery interposition graft). USP39 has previously been observed to be upregulated in ligated arteries, and this result was confirmed in the pig vein graft model. In addition, Transwell assay results demonstrated that vascular smooth muscle cell (VSMC) migration was suppressed by lentiviral vector-mediated downregulation of USP39 and enhanced by upregulation of USP39. Furthermore, knockdown of USP39 inhibited VSMC cell proliferation and the expression of cyclin D1 and cyclin-dependent kinase 4, as analyzed via cell counting, MTT assay and western blotting. These results suggest that USP39 may represent a novel therapeutic target for treating vascular injury and preventing vein-graft failure. PMID:28447728

  18. Beneficial effect of mechanical stimulation on the regenerative potential of muscle-derived stem cells is lost by inhibiting vascular endothelial growth factor.

    PubMed

    Beckman, Sarah A; Chen, William C W; Tang, Ying; Proto, Jonathan D; Mlakar, Logan; Wang, Bing; Huard, Johnny

    2013-08-01

    We previously reported that mechanical stimulation increased the effectiveness of muscle-derived stem cells (MDSCs) for tissue repair. The objective of this study was to determine the importance of vascular endothelial growth factor (VEGF) on mechanically stimulated MDSCs in a murine model of muscle regeneration. MDSCs were transduced with retroviral vectors encoding the LacZ reporter gene (lacZ-MDSCs), the soluble VEGF receptor Flt1 (sFlt1-MDSCs), or a short hairpin RNA (shRNA) targeting messenger RNA of VEGF (shRNA_VEGF MDSCs). Cells were subjected to 24 hours of mechanical cyclic strain and immediately transplanted into the gastrocnemius muscles of mdx/scid mice. Two weeks after transplantation, angiogenesis, fibrosis, and regeneration were analyzed. There was an increase in angiogenesis in the muscles transplanted with mechanically stimulated lacZ-MDSCs compared with nonstimulated lacZ-MDSCs, sFlt1-MDSCs, and shRNA _VEGF MDSCs. Dystrophin-positive myofiber regeneration was significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. In vitro proliferation of MDSCs was not decreased by inhibition of VEGF; however, differentiation into myotubes and adhesion to collagen were significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. The beneficial effects of mechanical stimulation on MDSC-mediated muscle repair are lost by inhibiting VEGF.

  19. Beneficial Effect of Mechanical Stimulation on the Regenerative Potential of Muscle-Derived Stem Cells Is Lost by Inhibiting Vascular Endothelial Growth Factor

    PubMed Central

    Beckman, Sarah A.; Chen, William C.W.; Tang, Ying; Proto, Jonathan D.; Mlakar, Logan; Wang, Bing; Huard, Johnny

    2016-01-01

    Objective We previously reported that mechanical stimulation increased the effectiveness of muscle-derived stem cells (MDSCs) for tissue repair. The objective of this study was to determine the importance of vascular endothelial growth factor (VEGF) on mechanically stimulated MDSCs in a murine model of muscle regeneration. Approach and Results MDSCs were transduced with retroviral vectors encoding the LacZ reporter gene (lacZ-MDSCs), the soluble VEGF receptor Flt1 (sFlt1-MDSCs), or a short hairpin RNA (shRNA) targeting messenger RNA of VEGF (shRNA_VEGF MDSCs). Cells were subjected to 24 hours of mechanical cyclic strain and immediately transplanted into the gastrocnemius muscles of mdx/scid mice. Two weeks after transplantation, angiogenesis, fibrosis, and regeneration were analyzed. There was an increase in angiogenesis in the muscles transplanted with mechanically stimulated lacZMDSCs compared with nonstimulated lacZ-MDSCs, sFlt1-MDSCs, and shRNA _VEGF MDSCs. Dystrophin-positive myofiber regeneration was significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. In vitro proliferation of MDSCs was not decreased by inhibition of VEGF; however, differentiation into myotubes and adhesion to collagen were significantly lower in the shRNA_VEGF-MDSC group compared with the lacZ-MDSC and sFlt1-MDSC groups. Conclusions The beneficial effects of mechanical stimulation on MDSC-mediated muscle repair are lost by inhibiting VEGF. PMID:23723372

  20. Treatment planning and delivery of shell dose distribution for precision irradiation

    NASA Astrophysics Data System (ADS)

    Matinfar, Mohammad; Iyer, Santosh; Ford, Eric; Wong, John; Kazanzides, Peter

    2010-02-01

    The motivation for shell dose irradiation is to deliver a high therapeutic dose to the surrounding supplying blood-vessels of a lesion. Our approach's main utility is in enabling laboratory experiments to test the much disputed hypothesis about tumor vascular damage. That is, at high doses, tumor control is driven by damage to the tumor vascular supply and not the damage to the tumor cells themselves. There is new evidence that bone marrow derived cells can reconstitute tumor blood vessels in mice after irradiation. Shell dosimetry is also of interest to study the effect of radiation on neurogenic stem cells that reside in small niche surface of the mouse ventricles, a generalized form of shell. The type of surface that we are considering as a shell is a sphere which is created by intersection of cylinders. The results are then extended to create the contours of different organ shapes. Specifically, we present a routine to identify the 3-D structure of a mouse brain, project it into 2-D contours and convert the contours into trajectories that can be executed by our platform. We use the Small Animal Radiation Research Platform (SARRP) to demonstrate the dose delivery procedure. The SARRP is a portable system for precision irradiation with beam sizes down to 0.5 mm and optimally planned radiation with on-board cone-beam CT guidance.

  1. Inhibition of angiogenesis: a novel antitumor mechanism of the herbal compound arctigenin.

    PubMed

    Gu, Yuan; Scheuer, Claudia; Feng, Dilu; Menger, Michael D; Laschke, Matthias W

    2013-09-01

    Arctigenin, a functional ingredient of several traditional Chinese herbs, has been reported to have potential antitumor activity. However, its mechanisms of action are still not well elucidated. Because the establishment and metastatic spread of tumors is crucially dependent on angiogenesis, here we investigated whether arctigenin inhibits tumor growth by disturbing blood vessel formation. For this purpose, human dermal microvascular endothelial cells were exposed to different arctigenin doses to study their viability, proliferation, protein expression, migration, and tube formation compared with vehicle-treated controls. In addition, arctigenin action on vascular sprouting was analyzed in an aortic ring assay. Furthermore, we studied direct arctigenin effects on CT26.WT colon carcinoma cells. Spheroids of these tumor cells were transplanted into the dorsal skinfold chamber of arctigenin-treated and vehicle-treated BALB/c mice for the in-vivo analysis of tumor vascularization and growth by intravital fluorescence microscopy, histology, and immunohistochemistry. We found that noncytotoxic doses of arctigenin dose dependently reduced the proliferation of human dermal microvascular endothelial cells without affecting their migratory and tube-forming capacity. Arctigenin treatment also resulted in a decreased cellular expression of phosphorylated serine/threonine protein kinase AKT, vascular endothelial growth factor receptor 2, and proliferating cell nuclear antigen and inhibited vascular sprouting from aortic rings. In addition, proliferation, but not secretion of vascular endothelial growth factor, was decreased in arctigenin-treated tumor cells. Finally, arctigenin suppressed the vascularization and growth of engrafting CT26.WT tumors in the dorsal skinfold chamber model. Taken together, these results show for the first time an antiangiogenic action of arctigenin, which may contribute considerably toward its antitumor activity.

  2. Study of Behavior of Some Varieties of Belgian Potatoes Subjected to Gamma Irradiation; ETUDE DU COMPORTEMENT DE QUELQUES VARIETES BELGES DE POMMES DE TERRE SOUMISES A L'IRRADIATION GAMMA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirchmann, R.; De Proost, M.; Demalsy, P.

    1962-07-01

    Different varieties of potatoes were irradiated with doses between 5000 and 20000 rads and stored at two different temperatures. Irradiation has a grent influence on the weight loss of the potatoes during storage; the degree of sprout inhibition depends on the variety of the potatoes. The glutathione content and the oxygen consumption of potatoes are influenced by irradiation. The greatest effect of irradiation on the chemical composition concerns the starch; an increase in sugar content is observed. The culinary properties of potatoes are not changed by irradiation. (auth)

  3. Antiangiogenic and Antitumor Effects of Src Inhibition in Ovarian Carcinoma

    PubMed Central

    Han, Liz Y.; Landen, Charles N.; Trevino, Jose G.; Halder, Jyotsnabaran; Lin, Yvonne G.; Kamat, Aparna A.; Kim, Tae-Jin; Merritt, William M.; Coleman, Robert L.; Gershenson, David M.; Shakespeare, William C.; Wang, Yihan; Sundaramoorth, Raji; Metcalf, Chester A.; Dalgarno, David C.; Sawyer, Tomi K.; Gallick, Gary E.; Sood, Anil K.

    2011-01-01

    Src, a nonreceptor tyrosine kinase, is a key mediator for multiple signaling pathways that regulate critical cellular functions and is often aberrantly activated in a number of solid tumors, including ovarian carcinoma. The purpose of this study was to determine the role of activated Src inhibition on tumor growth in an orthotopic murine model of ovarian carcinoma. In vitro studies on HeyA8 and SKOV3ip1 cell lines revealed that Src inhibition by the Src-selective inhibitor, AP23846, occurred within 1 hour and responded in a dose-dependent manner. Furthermore, Src inhibition enhanced the cytotoxicity of docetaxel in both chemosensitive and chemoresistant ovarian cancer cell lines, HeyA8 and HeyA8-MDR, respectively. In vivo, Src inhibition by AP23994, an orally bioavailable analogue of AP23846, significantly decreased tumor burden in HeyA8 (P = 0.02), SKOV3ip1 (P = 0.01), as well as HeyA8-MDR (P < 0.03) relative to the untreated controls. However, the greatest effect on tumor reduction was observed in combination therapy with docetaxel (P < 0.001, P = 0.002, and P = 0.01, for the above models, respectively). Proliferating cell nuclear antigen staining showed that Src inhibition alone (P = 0.02) and in combination with docetaxel (P = 0.007) significantly reduced tumor proliferation. In addition, Src inhibition alone and in combination with docetaxel significantly down-regulated tumoral production of vascular endothelial growth factor and interleukin 8, whereas combination therapy decreased the microvessel density (P = 0.02) and significantly affected vascular permeability (P < 0.05). In summary, Src inhibition with AP23994 has potent antiangiogenic effects and significantly reduces tumor burden in preclinical ovarian cancer models. Thus, Src inhibition may be an attractive therapeutic approach for patients with ovarian carcinoma. PMID:16951177

  4. Robo4 maintains vessel integrity and inhibits angiogenesis by interacting with UNC5B.

    PubMed

    Koch, Alexander W; Mathivet, Thomas; Larrivée, Bruno; Tong, Raymond K; Kowalski, Joe; Pibouin-Fragner, Laurence; Bouvrée, Karine; Stawicki, Scott; Nicholes, Katrina; Rathore, Nisha; Scales, Suzie J; Luis, Elizabeth; del Toro, Raquel; Freitas, Catarina; Bréant, Christiane; Michaud, Annie; Corvol, Pierre; Thomas, Jean-Léon; Wu, Yan; Peale, Franklin; Watts, Ryan J; Tessier-Lavigne, Marc; Bagri, Anil; Eichmann, Anne

    2011-01-18

    Robo4 is an endothelial cell-specific member of the Roundabout axon guidance receptor family. To identify Robo4 binding partners, we performed a protein-protein interaction screen with the Robo4 extracellular domain. We find that Robo4 specifically binds to UNC5B, a vascular Netrin receptor, revealing unexpected interactions between two endothelial guidance receptors. We show that Robo4 maintains vessel integrity by activating UNC5B, which inhibits signaling downstream of vascular endothelial growth factor (VEGF). Function-blocking monoclonal antibodies against Robo4 and UNC5B increase angiogenesis and disrupt vessel integrity. Soluble Robo4 protein inhibits VEGF-induced vessel permeability and rescues barrier defects in Robo4(-/-) mice, but not in mice treated with anti-UNC5B. Thus, Robo4-UNC5B signaling maintains vascular integrity by counteracting VEGF signaling in endothelial cells, identifying a novel function of guidance receptor interactions in the vasculature. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Targeting NCK-Mediated Endothelial Cell Front-Rear Polarity Inhibits Neo-Vascularization

    PubMed Central

    Dubrac, Alexandre; Genet, Gael; Ola, Roxana; Zhang, Feng; Pibouin-Fragner, Laurence; Han, Jinah; Zhang, Jiasheng; Thomas, Jean-Léon; Chedotal, Alain; Schwartz, Martin A.; Eichmann, Anne

    2015-01-01

    Background Sprouting angiogenesis is a key process driving blood vessel growth in ischemic tissues and an important drug target in a number of diseases, including wet macular degeneration and wound healing. Endothelial cells forming the sprout must develop front-rear polarity to allow sprout extension. The adaptor proteins Nck1 and 2 are known regulators of cytoskeletal dynamics and polarity, but their function in angiogenesis is poorly understood. Here we show that the Nck adaptors are required for endothelial cell front-rear polarity and migration downstream of the angiogenic growth factors VEGF-A and Slit2. Methods and Results Mice carrying inducible, endothelial-specific Nck1/2 deletions fail to develop front-rear polarized vessel sprouts and exhibit severe angiogenesis defects in the postnatal retina and during embryonic development. Inactivation of NCK1 and 2 inhibits polarity by preventing Cdc42 and Pak2 activation by VEGF-A and Slit2. Mechanistically, NCK binding to ROBO1 is required for both Slit2 and VEGF induced front-rear polarity. Selective inhibition of polarized endothelial cell migration by targeting Nck1/2 prevents hypersprouting induced by Notch or Bmp signaling inhibition, as well as pathological ocular neovascularization and wound healing. Conclusions These data reveal a novel signal integration mechanism involving NCK1/2, ROBO1/2 and VEGFR2 that controls endothelial cell front-rear polarity during sprouting angiogenesis. PMID:26659946

  6. Effect of irradiation on human T-cell proliferation: low dose irradiation stimulates mitogen-induced proliferation and function of the suppressor/cytotoxic T-cell subset

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gualde, N.; Goodwin, J.S.

    1984-04-01

    Unfractionated human T cells exposed to 10-50 rad of X irradiation incorporated less (/sup 3/H)thymidine than nonirradiated T cells when subsequently cultured with PHA or Con A. The cytotoxic/suppressor T-cell subset, isolated as either OKT8(+) or OKT4(-) cells, demonstrated significantly enhanced (/sup 3/H)thymidine incorporation in PHA- or Con A-stimulated cultures after exposure to 10-50 rad, compared to unirradiated cells, while the proliferation of the OKT4(+) helper/inducer subset was inhibited by low dose irradiation. It has been previously reported that approximately 30% of the cytotoxic/suppressor subset also stains with OKM1. When the cytotoxic/suppressor subset was further subdivided into OKT4(-), OKM1(+), andmore » OKT4(-), OKM1(-) cells, proliferation of the OKT4(-), OKM1(+) population was inhibited by exposure to 25 rad while proliferation of the OKT4(-), OKM1(-) population was stimulated. The increase in proliferation of the cytotoxic/suppressor T-cell subset after low dose irradiation is paralleled by an increase in suppressor activity of these cells. T cells exposed to 25 rad and then cultured with Con A for 48 hr caused greater inhibition of IgG production when added to fresh autologous lymphocytes stimulated by pokeweed mitogen than did unirradiated cells. Thus, low dose irradiation enhances both the proliferation and function of the human suppressor T-cell subset.« less

  7. Irradiated KHYG-1 retains cytotoxicity: potential for adoptive immunotherapy with a natural killer cell line.

    PubMed

    Suck, G; Branch, D R; Keating, A

    2006-05-01

    To evaluate gamma-irradiation on KHYG-1, a highly cytotoxic natural killer (NK) cell line and potential candidate for cancer immunotherapy. The NK cell line KHYG-1 was irradiated at 1 gray (Gy) to 50 Gy with gamma-irradiation, and evaluated for cell proliferation, cell survival, and cytotoxicity against tumor targets. We showed that a dose of at least 10 Gy was sufficient to inhibit proliferation of KHYG-1 within the first day but not its cytolytic activity. While 50 Gy had an apoptotic effect in the first hours after irradiation, the killing of K562 and HL60 targets was not different from non-irradiated cells but was reduced for the Ph + myeloid leukemia lines, EM-2 and EM-3. gamma-irradiation (at least 10 Gy) of KHYG-1 inhibits cell proliferation but does not diminish its enhanced cytolytic activity against several tumor targets. This study suggests that KHYG-1 may be a feasible immunotherapeutic agent in the treatment of cancers.

  8. Vascular Cognitive Impairment.

    PubMed

    Dichgans, Martin; Leys, Didier

    2017-02-03

    Cerebrovascular disease typically manifests with stroke, cognitive impairment, or both. Vascular cognitive impairment refers to all forms of cognitive disorder associated with cerebrovascular disease, regardless of the specific mechanisms involved. It encompasses the full range of cognitive deficits from mild cognitive impairment to dementia. In principle, any of the multiple causes of clinical stroke can cause vascular cognitive impairment. Recent work further highlights a role of microinfarcts, microhemorrhages, strategic white matter tracts, loss of microstructural tissue integrity, and secondary neurodegeneration. Vascular brain injury results in loss of structural and functional connectivity and, hence, compromise of functional networks within the brain. Vascular cognitive impairment is common both after stroke and in stroke-free individuals presenting to dementia clinics, and vascular pathology frequently coexists with neurodegenerative pathology, resulting in mixed forms of mild cognitive impairment or dementia. Vascular dementia is now recognized as the second most common form of dementia after Alzheimer's disease, and there is increasing awareness that targeting vascular risk may help to prevent dementia, even of the Alzheimer type. Recent advances in neuroimaging, neuropathology, epidemiology, and genetics have led to a deeper understanding of how vascular disease affects cognition. These new findings provide an opportunity for the present reappraisal of vascular cognitive impairment. We further briefly address current therapeutic concepts. © 2017 American Heart Association, Inc.

  9. Changes in the vascular tissue of fresh Hass avocados treated with cobalt 60

    NASA Astrophysics Data System (ADS)

    Arevalo, Lourdes; Bustos, Ma. Emilia; Saucedo, Cresenciano

    2002-03-01

    This research was based on fresh avocado fruit treated with gamma rays at quarantine doses and stored at room temperature. The effects of irradiation were analyzed and measured by three different types of studies: histological, biochemical and physiological. Histological studies were focused on the effect of Cobalt 60 gamma rays in the mesocarp of avocado irradiated at three different doses; 150, 250, and 350 Gy. Damage was observed principally in the parenchyma tissue where the cell membrane was plazmolized and a red color was observed due to the development of phenol compounds. Another important effect was an increase in the size of xylem and phloem cells in the vascular tissue even at the minimum dose of 150 Gy. The biochemical and the physiological studies were done on avocado fruit irradiated at 100 and 150 Gy. An increase in L-phenilalanine ammonialyase activity was observed and therefore, an increase in the concentration of phenol compounds. These changes were not perceived by panelists in a sensorial test. Irradiated fruits were accepted by panelists as well as control fruit as regards parameters of taste, internal color and external color. These results demonstrate the feasibility of using irradiation to disinfest avocado fruit using a minimum dose of 100 Gy.

  10. Branding of vascular surgery.

    PubMed

    Perler, Bruce A

    2008-03-01

    The Society for Vascular Surgery surveyed primary care physicians (PCPs) to understand how PCPs make referral decisions for their patients with peripheral vascular disease. Responses were received from 250 PCPs in 44 states. More than 80% of the respondents characterized their experiences with vascular surgeons as positive or very positive. PCPs perceive that vascular surgeons perform "invasive" procedures and refer patients with the most severe vascular disease to vascular surgeons but were more than twice as likely to refer patients to cardiologists, believing they are better able to perform minimally invasive procedures. Nevertheless, PCPs are receptive to the notion of increasing referrals to vascular surgeons. A successful branding campaign will require considerable education of referring physicians about the totality of traditional vascular and endovascular care increasingly provided by the contemporary vascular surgical practice and will be most effective at the local grassroots level.

  11. Study of antioxidative effects and anti-inflammatory effects in mice due to low-dose X-irradiation or radon inhalation

    PubMed Central

    Kataoka, Takahiro

    2013-01-01

    Low-dose irradiation induces various stimulating effects, especially activation of the biological defense system including antioxidative and immune functions. Oxidative stress induced by reactive oxygen species (ROS) can cause cell damage and death and can induce many types of diseases. This paper reviews new insights into inhibition of ROS-related diseases with low-dose irradiation or radon inhalation. X-irradiation (0.5 Gy) before or after carbon tetrachloride (CCl4) treatment inhibits hepatopathy in mice. X-irradiation (0.5 Gy) before ischemia-reperfusion injury or cold-induced brain injury also inhibits edema. These findings suggest that low-dose X-irradiation has antioxidative effects due to blocking the damage induced by free radicals or ROS. Moreover, radon inhalation increases superoxide dismutase activity in many organs and inhibits CCl4-induced hepatic and renal damage and streptozotocin-induced type I diabetes. These findings suggest that radon inhalation also has antioxidative effects. This antioxidative effect against CCl4-induced hepatopathy is comparable to treatment with ascorbic acid (vitamin C) at a dose of 500 mg/kg weight, or α-tocopherol (vitamin E) treatment at a dose of 300 mg/kg weight, and is due to activation of antioxidative functions. In addition, radon inhalation inhibits carrageenan-induced inflammatory paw edema, suggesting that radon inhalation has anti-inflammatory effects. Furthermore, radon inhalation inhibits formalin-induced inflammatory pain and chronic constriction injury-induced neuropathic pain, suggesting that radon inhalation relieves pain. Thus, low-dose irradiation very likely activates the defense systems in the body, and therefore, contributes to preventing or reducing ROS-related injuries, which are thought to involve peroxidation. PMID:23420683

  12. Study of antioxidative effects and anti-inflammatory effects in mice due to low-dose X-irradiation or radon inhalation.

    PubMed

    Kataoka, Takahiro

    2013-07-01

    Low-dose irradiation induces various stimulating effects, especially activation of the biological defense system including antioxidative and immune functions. Oxidative stress induced by reactive oxygen species (ROS) can cause cell damage and death and can induce many types of diseases. This paper reviews new insights into inhibition of ROS-related diseases with low-dose irradiation or radon inhalation. X-irradiation (0.5 Gy) before or after carbon tetrachloride (CCl4) treatment inhibits hepatopathy in mice. X-irradiation (0.5 Gy) before ischemia-reperfusion injury or cold-induced brain injury also inhibits edema. These findings suggest that low-dose X-irradiation has antioxidative effects due to blocking the damage induced by free radicals or ROS. Moreover, radon inhalation increases superoxide dismutase activity in many organs and inhibits CCl4-induced hepatic and renal damage and streptozotocin-induced type I diabetes. These findings suggest that radon inhalation also has antioxidative effects. This antioxidative effect against CCl4-induced hepatopathy is comparable to treatment with ascorbic acid (vitamin C) at a dose of 500 mg/kg weight, or α-tocopherol (vitamin E) treatment at a dose of 300 mg/kg weight, and is due to activation of antioxidative functions. In addition, radon inhalation inhibits carrageenan-induced inflammatory paw edema, suggesting that radon inhalation has anti-inflammatory effects. Furthermore, radon inhalation inhibits formalin-induced inflammatory pain and chronic constriction injury-induced neuropathic pain, suggesting that radon inhalation relieves pain. Thus, low-dose irradiation very likely activates the defense systems in the body, and therefore, contributes to preventing or reducing ROS-related injuries, which are thought to involve peroxidation.

  13. Inhibition of endoplasmic reticulum stress improves coronary artery function in type 2 diabetic mice.

    PubMed

    Choi, Soo-Kyoung; Lim, Mihwa; Yeon, Soo-In; Lee, Young-Ho

    2016-06-01

    What is the central question of this study? Endoplasmic reticulum (ER) stress has been reported to be involved in type 2 diabetes; however, the role of exacerbated ER stress in vascular dysfunction in type 2 diabetes remains unknown. What is the main finding and its importance? The main findings of this study are that ER stress is increased in the coronary arteries in type 2 diabetes, and inhibition of ER stress using taurine-conjugated ursodeoxycholic acid improves vascular function, which is associated with normalization of the myogenic response and endothelium-dependent relaxation. Vascular dysfunction is a major complication in type 2 diabetes. Although endoplasmic reticulum (ER) stress has been suggested to be a contributory factor in cardiovascular diseases, the relationship between ER stress and vascular dysfunction in type 2 diabetes remains unclear. Thus, in the present study, we examined whether ER stress contributes to coronary artery dysfunction and whether inhibition of ER stress ameliorates vascular function in type 2 diabetes. Type 2 diabetic mice and their control counterparts were treated with an ER stress inhibitor (taurine-conjugated ursodeoxycholic acid, 150 mg kg(-1)  day(-1) , by i.p. injection) for 2 weeks or not treated. The myogenic response and endothelium-dependent relaxation were measured in pressurized coronary arteries. In type 2 diabetic mice, blood glucose and body weight were elevated compared with control mice. The myogenic response was potentiated and endothelium-dependent relaxation impaired in coronary arteries from the type 2 diabetic mice. Interestingly, treatment with the ER stress inhibitor normalized the myogenic responses and endothelium-dependent relaxation. These data were associated with an increase in ER stress marker expression or phosphorylation (IRE1-XBP-1 and PERK-eIF2α) in type 2 diabetic mice, which were reduced by treatment with the ER stress inhibitor. Inhibition of ER stress normalizes the myogenic

  14. Anti-angiogenic and vascular disrupting effects of C9, a new microtubule-depolymerizing agent

    PubMed Central

    Ren, Xuan; Dai, Mei; Lin, Li-Ping; Li, Pui-Kai; Ding, Jian

    2009-01-01

    Background and purpose: The critical role of blood supply in the growth of solid tumours makes blood vessels an ideal target for anti-tumour drug discovery. The anti-angiogenic and vascular disrupting activities of C9, a newly synthesized microtubule-depolymerizing agent, were investigated with several in vitro and in vivo models. Possible mechanisms involved in its activity were also assessed. Experimental approach: Microtubule-depolymerizing actions were assessed by surface plasmon resonance binding, competitive inhibition and cytoskeleton immunofluorescence. Anti-angiogenic and vascular disrupting activities were tested on proliferation, migration, tube formation with human umbilical vein endothelial cells, and in rat aortic ring, chick chorioallantoic membrane and Matrigel plug assays. Western blots and Rho activation assays were employed to examine the role of Raf-MEK-ERK (mitogen-activated ERK kinase, extracellular signal-regulated kinase) and Rho/Rho kinase signalling. Key results: C9 inhibited proliferation, migration and tube formation of endothelial cells and inhibited angiogenesis in aortic ring and chick chorioallantoic membrane assays. C9 induced disassembly of microtubules in endothelial cells and down-regulated Raf-MEK-ERK signalling activated by pro-angiogenic factors. In addition, C9 disrupted capillary-like networks and newly formed vessels in vitro and rapidly decreased perfusion of neovasculature in vivo. Endothelial cell contraction and membrane blebbing induced by C9 in neovasculature was dependent on the Rho/Rho kinase pathway. Conclusions and implications: Anti-angiogenic and vascular disruption by C9 was associated with changes in morphology and function of endothelial cells, involving the Raf-MEK-ERK and Rho/Rho kinase signalling pathways. These findings strongly suggest that C9 is a new microtubule-binding agent that could effectively target tumour vasculature. PMID:19302593

  15. Central role of endogenous Toll-like receptor-2 activation in regulating inflammation, reactive oxygen species production, and subsequent neointimal formation after vascular injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shishido, Tetsuro; Nozaki, Naoki; Takahashi, Hiroki

    2006-07-14

    Background: It is now evident that inflammation after vascular injury has significant impact on the restenosis after revascularization procedures such as angioplasty, stenting, and bypass grafting. However, the mechanisms that regulate inflammation and repair after vascular injury are incompletely understood. Here, we report that vascular injury-mediated cytokine expression, reactive oxygen species (ROS) production, as well as subsequent neointimal formation requires Toll-like receptor-2 (TLR-2) mediated signaling pathway in vivo. Methods and results: Vascular injury was induced by cuff-placement around the femoral artery in non-transgenic littermates (NLC) and TLR-2 knockout (TLR-2KO) mice. After cuff-placement in NLC mice, expression of TLR-2 was significantlymore » increased in both smooth muscle medial layer and adventitia. Interestingly, we found that inflammatory genes expression such as tumor necrosis factor-{alpha}, interleukin-1{beta} (IL-1{beta}), IL-6, and monocyte chemoattractant protein-1 were markedly decreased in TLR-2KO mice compared with NLC mice. In addition, ROS production after vascular injury was attenuated in TLR-2KO mice compared with NLC mice. Since we observed the significant role of endogenous TLR-2 activation in regulating inflammatory responses and ROS production after vascular injury, we determined whether inhibition of endogenous TLR-2 activation can inhibit neointimal proliferation after vascular injury. Neointimal hyperplasia was markedly suppressed in TLR-2KO mice compared with WT mice at both 2 and 4 weeks after vascular injury. Conclusions: These findings suggested that endogenous TLR-2 activation might play a central role in the regulation of vascular inflammation as well as subsequent neointimal formation in injured vessels.« less

  16. The effect of the K+ agonist nicorandil on peripheral vascular resistance.

    PubMed

    Brodmann, Marianne; Lischnig, Ulrike; Lueger, Andreas; Stark, Gerhard; Pilger, Ernst

    2006-07-28

    The vasoactive effect of nicorandil on coronary arteries is well known. Nicorandil exerts its vasodilatory effect through a dual mechanism of action: involving on the one hand cyclic guanosine monophosphate (c GMP) as a nitrovasodilatator, and on the other hand, acting as a potassium channel opener. To address the question if nicorandil works in peripheral arteries, its effect on peripheral vascular resistance was evaluated in isolated perfused guinea pig hind limbs. A catheter was inserted via the distal aorta and common iliac artery. Perfusion pressure was monitored under constant perfusion with Tyrode's solution, therefore changes in perfusion pressure represent changes in vascular resistance. After stabilization precontraction of the peripheral vascular bed was achieved with noradrenaline 3 microM and nicorandil was added in concentrations of 1, 10 and 100 microM. The effect of nicorandil (1, 10 and 100 microM) was tested in the presence of L-NAME and glybenclamide. A significant reduction of vascular peripheral resistance was already achieved at a concentration of 1 microM nicorandil (30.3+/-6.1%, mean S.E.M., p < 0.001). At a concentration of 100 microM nicorandil the reduction of peripheral vascular resistance was 94.4+/-16.4%. Peripheral vascular resistance was less but nearly comparable reduced by nicorandil (100 microM) if the endothelial NO effect was inhibited by L-NAME (58.6+/-18.6%) or if the ATP-dependent potassium channels were blocked by glybenclamide (56.4+/-14.6%). In peripheral arteries the nitrovasodilator effect of nicorandil is nearly comparable to the potassium agonistic effect, and the concentration, which is necessary to reduce peripheral vascular resistance significantly, is comparable with dosages necessary for reduction of coronary resistance.

  17. A pro-inflammatory role of deubiquitinating enzyme cylindromatosis (CYLD) in vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Shuai; Department of Cell Biology and Anatomy, University of South Carolina School of Medicine, Columbia, SC 29208; Lv, Jiaju

    2012-03-30

    Highlights: Black-Right-Pointing-Pointer Cyld deficiency suppresses pro-inflammatory phenotypic switch of VSMCs. Black-Right-Pointing-Pointer Cyld deficiency inhibits MAPK rather than NF-kB activity in inflamed VSMCs. Black-Right-Pointing-Pointer CYLD is up-regulated in the coronary artery with neointimal hyperplasia. -- Abstract: CYLD, a deubiquitinating enzyme (DUB), is a critical regulator of diverse cellular processes, ranging from proliferation and differentiation to inflammatory responses, via regulating multiple key signaling cascades such as nuclear factor kappa B (NF-{kappa}B) pathway. CYLD has been shown to inhibit vascular lesion formation presumably through suppressing NF-{kappa}B activity in vascular cells. However, herein we report a novel role of CYLD in mediating pro-inflammatory responsesmore » in vascular smooth muscle cells (VSMCs) via a mechanism independent of NF-{kappa}B activity. Adenoviral knockdown of Cyld inhibited basal and the tumor necrosis factor alpha (TNF{alpha})-induced mRNA expression of pro-inflammatory cytokines including monocyte chemotactic protein-1 (Mcp-1), intercellular adhesion molecule (Icam-1) and interleukin-6 (Il-6) in rat adult aortic SMCs (RASMCs). The CYLD deficiency led to increases in the basal NF-{kappa}B transcriptional activity in RASMCs; however, did not affect the TNF{alpha}-induced NF-{kappa}B activity. Intriguingly, the TNF{alpha}-induced I{kappa}B phosphorylation was enhanced in the CYLD deficient RASMCs. While knocking down of Cyld decreased slightly the basal expression levels of I{kappa}B{alpha} and I{kappa}B{beta} proteins, it did not alter the kinetics of TNF{alpha}-induced I{kappa}B protein degradation in RASMCs. These results indicate that CYLD suppresses the basal NF-{kappa}B activity and TNF{alpha}-induced I{kappa}B kinase activation without affecting TNF{alpha}-induced NF-{kappa}B activity in VSMCs. In addition, knocking down of Cyld suppressed TNF{alpha}-induced activation of mitogen activated

  18. Scanning electron microscopy observation of vascularization around hydroxyapatite using vascular corrosion casts.

    PubMed

    Chang, C S; Su, C Y; Lin, T C

    1999-01-01

    An intimate relationship exists between the regenerative response of the vascular and osseous elements following hydroxyapatite (HA) implantation. In order to fully comprehend the 3-dimensional vascular architecture around HA, dense HA particles were implanted into the tibiae of dogs. Following healing periods of 2 weeks, 1 month, and 3 months, the tibiae were prepared by the corrosion cast technique. Under scanning electron microscopy (SEM) observation, the characteristic vascular morphology of the HA-implanted cavity was successfully demonstrated. The initial vascularization began in the form of loose sinusoidal capillaries. Many sinusoids formed a complex network by anastomosing with each other. The newly formed vessels extended centripetally from the peripheral cavity wall and from the periosteal surface. Under greater magnification, the tapered vascular sprouting was shown to project into the space that was previously occupied by an HA particle. The presence of vascular sprouting is clearly an important indicator of angiogenesis. Increasing vascularization was demonstrated with time. The presence of vessels in the Haversian's canal indicated the more established vascularization. Almost full vascularization of the HA-implanted cavity was seen 3 months after implantation. The vascular organizational layout of the cavity was also clearly shown in the fractured transverse-sectioned sample. In the control without HA implantation, the central region of the cavity showed a hollow pattern in the initial stage. The vascularization looked like it was collapsing and not fully filling the cavity. However, remarkable differences of the final vascular pattern could not be found between the study and control group after 3-month implantation. The study provides the time-lapsed 3-dimensional vascular changes of the HA-implanted cavity, as well as the value of the corrosion cast technique in examining the bony circulation. Copyright 1999 John Wiley & Sons, Inc.

  19. Status of food irradiation in the world

    NASA Astrophysics Data System (ADS)

    Kume, Tamikazu; Furuta, Masakazu; Todoriki, Setsuko; Uenoyama, Naoki; Kobayashi, Yasuhiko

    2009-03-01

    The status of food irradiation in the world in 2005 was investigated using published data, a questionnaire survey and direct visits. The results showed that the quantity of irradiated foods in the world in 2005 was 405,000 ton and comprised 1,86,000 ton (46%) for disinfection of spices and dry vegetables, 82,000 ton (20%) for disinfestation of grains and fruits, 32,000 ton (8%) for disinfection of meat and fish, 88,000 ton (22%) for sprout inhibition of garlic and potato, and 17,000 ton (4%) of other food items that included health foods, mushroom, honey, etc. Commercial food irradiation is increasing significantly in Asia, but decreasing in EU.

  20. Nafazatrom (Bay g-6575), an antithrombotic and antimetastatic agent, inhibits 15-hydroxyprostaglandin dehydrogenase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wong, P.Y.; Chao, P.H.; McGiff, J.C.

    1982-12-01

    Nafazatrom (Bay g-6575) is a potent antithrombotic agent which has been suggested to stimulate prostacyclin (PGI2) release from the vascular wall. This study demonstrates that nafazatrom inhibits 15-hydroxyprostaglandin dehydrogenase (15-OH PGDH) of bovine lung and vascular wall. As 15-OH PGDH, the key prostaglandin (PG) catabolizing enzyme, inactivates PGI2 as well as PGE2 and PGF2 alpha, inhibition of this enzyme can result in increased levels of PGI2. Nafazatrom, in the micromolar range, inhibits the metabolism of PGs by 15-OH PGDH in a dose-dependent manner. The IC50 for inhibition of 15-OH PGDH was estimated to be 18.5 microM when (/sup 3/H)PGF2 alphamore » was used as substrate. We also estimated nafazatrom-induced changes in PGI2 degradation by lung 15-OH PGDH using the more stable methyl ester (ME) of PGI2 (PGI2-ME) which resists spontaneous degradation. Nafazatrom also inhibited catabolism by 15-OH PGDH of (/sup 3/H)PGI2-ME to (/sup 3/H)6,15-diketo-PGF1 alpha ME. These results suggest that the inhibitory action of nafazatrom on 15-OH PGDH contributes to its antithrombotic effect by prolonging the biological half-life of PGI2.« less

  1. Hydroxy-oleic acid, but not oleic acid, inhibits pharmacologic vascular responsiveness in isolated aortic tissue

    EPA Science Inventory

    Oleic acid (OA) and other fatty acids can become abundant in the systemic circulation after air pollution exposure as endogenously released lipolysis byproducts or by entering the body as a component of air pollution. Vascular damage has been observed with OA infusion, but it is ...

  2. Extract of Punica granatum inhibits skin photoaging induced by UVB irradiation.

    PubMed

    Park, Hye Min; Moon, Eunjung; Kim, Ae-Jung; Kim, Mi Hyun; Lee, Sanghee; Lee, Jung Bok; Park, Yong Kon; Jung, Hyuk-Sang; Kim, Yoon-Bum; Kim, Sun Yeou

    2010-03-01

    Punica granatum (pomegranate) is kind of a fruit consumed fresh or in beverage. It has been widely used in traditional medicine in various parts of the world. In this study, we examined the efficacy of a Punica granatum (PG) extract in protecting skin against UVB-induced damage using cultured human skin fibroblasts. A Korean red PG sample was used, and its effects classified according to if the PG source originated from the rind, seed and fruit. The polyphenol content of PG, which is known to prevent other adverse cutaneous effects of UV irradiation, was measured by GC-MS. The protective effects of PG on UVB-induced skin photoaging were examined by determining the level of procollagen type I and MMP-1 after UVB irradiation. Based on the GC-MS quantitative analysis, catechin, quercetin, kaempferol, and equol were the predominant compounds detected in PG. In the changes of expression of procollagen type I and MMP-1 in UV irradiated human skin fibroblasts treated PG, especially extract prepared from rind, the synthesis of collagen was increased and the expression of MMP-1 was decreased. The major polyphenols in PG, particularly catechin, play a significant role in its photoprotective effects on UVB-induced skin damage.

  3. Extract from Periostracum cicadae Inhibits Oxidative Stress and Inflammation Induced by Ultraviolet B Irradiation on HaCaT Keratinocytes

    PubMed Central

    Tsen, Jen-Horng; Yen, Hsuan; Yang, Ting-Ya

    2017-01-01

    Periostracum cicadae is widely used for the treatment of skin diseases such as eczema, pruritus, and itching. The current study sought to evaluate the effect of P. cicadae extract on ultraviolet B (UVB) irradiation and identify the mechanisms involved. Photodamage-protective activity of P. cicadae extracts against oxidative challenge was screened using HaCaT keratinocytes. P. cicadae extracts did not affect cell viability but decreased reactive oxygen species (ROS) production. The extract attenuates the expression of interleukin-6 (IL-6), matrix metalloproteinase-2 (MMP-2), and MMP-9 in UVB-treated HaCaT cells. Also, P. cicadae abrogated UVB-induced activation of NF-κB, p53, and activator protein-1 (AP-1). The downmodulation of IL-6 by P. cicadae was inhibited by the p38 inhibitor (SB203580) or JNK inhibitor (SP600125). Moreover, the extract attenuated the expression of NF-κB and induced thrombomodulin in keratinocytes and thereby effectively downregulated inflammatory responses in the skin. The nuclear accumulation and expression of NF-E2-related factor (Nrf2) were increased by P. cicadae treatment. Furthermore, treatment with P. cicadae remarkably ameliorated the skin's structural damage induced by irradiation. This study demonstrates that P. cicadae may protect skin cells against oxidative insult by modulating ROS concentration, IL-6, MMPs generation, antioxidant enzymes activity, and cell signaling pathways. PMID:28465707

  4. Concurrent anti-vascular therapy and chemotherapy in solid tumors using drug-loaded acoustic nanodroplet vaporization.

    PubMed

    Ho, Yi-Ju; Yeh, Chih-Kuang

    2017-02-01

    Drug-loaded nanodroplets (NDs) can be converted into gas bubbles through ultrasound (US) stimulation, termed acoustic droplet vaporization (ADV), which provides a potential strategy to simultaneously induce vascular disruption and release drugs for combined physical anti-vascular therapy and chemotherapy. Doxorubicin-loaded NDs (DOX-NDs) with a mean size of 214nm containing 2.48mg DOX/mL were used in this study. High-speed images displayed bubble formation and cell debris, demonstrating the reduction in cell viability after ADV. Intravital imaging provided direct visualization of disrupted tumor vessels (vessel size <30μm), the extravasation distance was 12μm in the DOX-NDs group and increased over 100μm in the DOX-NDs+US group. Solid tumor perfusion on US imaging was significantly reduced to 23% after DOX-NDs vaporization, but gradually recovered to 41%, especially at the tumor periphery after 24h. Histological images of the DOX-NDs+US group revealed tissue necrosis, a large amount of drug extravasation, vascular disruption, and immune cell infiltration at the tumor center. Tumor sizes decreased 22%, 36%, and 68% for NDs+US, DOX-NDs, and DOX-NDs+US, respectively, to prolong the survival of tumor-bearing mice. Therefore, this study demonstrates that the combination of physical anti-vascular therapy and chemotherapy with DOX-NDs vaporization promotes uniform treatment to improve therapeutic efficacy. Tumor vasculature plays an important role for tumor cell proliferation by transporting oxygen and nutrients. Previous studies combined anti-vascular therapy and drug release to inhibit tumor growth by ultrasound-stimulated microbubble destruction or acoustic droplet vaporization. Although the efficacy of combined therapy has been demonstrated; the relative spatial distribution of vascular disruption, drug delivery, and accompanied immune responses within solid tumors was not discussed clearly. Herein, our study used drug-loaded nanodroplets to combined physical anti-vascular

  5. The effect of ATM kinase inhibition on the initial response of human dental pulp and periodontal ligament mesenchymal stem cells to ionizing radiation.

    PubMed

    Cmielova, Jana; Havelek, Radim; Kohlerova, Renata; Soukup, Tomas; Bruckova, Lenka; Suchanek, Jakub; Vavrova, Jirina; Mokry, Jaroslav; Rezacova, Martina

    2013-07-01

    This study evaluates early changes in human mesenchymal stem cells (MSC) isolated from dental pulp and periodontal ligament after γ-irradiation and the effect of ataxia-telangiectasia mutated (ATM) inhibition. MSC were irradiated with 2 and 20 Gy by (60)Co. For ATM inhibition, specific inhibitor KU55933 was used. DNA damage was measured by Comet assay and γH2AX detection. Cell cycle distribution and proteins responding to DNA damage were analyzed 2-72 h after the irradiation. The irradiation of MSC causes an increase in γH2AX; the phosphorylation was ATM-dependent. Irradiation activates ATM kinase, and the level of p53 protein is increased due to its phosphorylation on serine15. While this phosphorylation of p53 is ATM-dependent in MSC, the increase in p53 was not prevented by ATM inhibition. A similar trend was observed for Chk1 and Chk2. The increase in p21 is greater without ATM inhibition. ATM inhibition also does not fully abrogate the accumulation of irradiated MSC in the G2-phase of the cell-cycle. In irradiated MSC, double-strand breaks are tagged quickly by γH2AX in an ATM-dependent manner. Although phosphorylations of p53(ser15), Chk1(ser345) and Chk2(thr68) are ATM-dependent, the overall amount of these proteins increases when ATM is inhibited. In both types of MSC, ATM-independent mechanisms for cell-cycle arrest in the G2-phase are triggered.

  6. A natural protective mechanism against hyperglycaemia in vascular endothelial and smooth-muscle cells: role of glucose and 12-hydroxyeicosatetraenoic acid.

    PubMed Central

    Alpert, Evgenia; Gruzman, Arie; Totary, Hanan; Kaiser, Nurit; Reich, Reuven; Sasson, Shlomo

    2002-01-01

    Bovine aortic endothelial and smooth-muscle cells down-regulate the rate of glucose transport in the face of hyperglycaemia, thus providing protection against deleterious effects of increased intracellular glucose levels. When exposed to high glucose concentrations these cells reduced the mRNA and protein content of their typical glucose transporter, GLUT-1, as well as its plasma-membrane abundance. Inhibition of the lipoxygenase (LO) pathway, and particularly 12-LO, reversed this glucose-induced down-regulatory process and restored the rate of hexose transport to the level seen in vascular cells exposed to normal glucose levels. This reversal was accompanied by increased levels of GLUT-1 mRNA and protein, as well as of its plasma-membrane content. Exposure of the vascular cells to elevated glucose concentrations increased by 2-3-fold the levels of cell-associated and secreted 12-hydroxyeicosatetraenoic acid (12-HETE), the product of 12-LO. Inhibition of 15- and 5-LO, cyclo-oxygenases 1 and 2, and eicosanoid-producing cytochrome P450 did not modify the hexose-transport system in vascular cells. These results suggest a role for HETEs in the autoregulation of hexose transport in vascular cells. 8-Iso prostaglandin F(2alpha), a non-enzymic oxidation product of arachidonic acid, had no effect on the hexose-transport system in vascular cells exposed to hyperglycaemic conditions. Taken together, these findings show that hyperglycaemia increases the production rate of 12-HETE, which in turn mediates the down-regulation of GLUT-1 expression and the glucose-transport system in vascular endothelial and smooth-muscle cells. PMID:11853550

  7. Metrics of Cellular and Vascular Infiltration of Human Acellular Dermal Matrix in Ventral Hernia Repairs

    PubMed Central

    Campbell, Kristin Turza; Burns, Nadja K.; Ensor, Joe; Butler, Charles E.

    2012-01-01

    Background Human acellular dermal matrix (HADM) is used for ventral hernia repair, as it resists infection and remodels via surrounding tissue. However, the tissue source and impact of basement membrane (BM) on cell and vessel infiltration have not been determined. We hypothesized that musculofascia would be the primary tissue source of cells and vessels infiltrating into HADM and the BM would inhibit infiltration. Methods Fifty-six guinea pigs underwent inlay HADM ventral hernia repair with the BM oriented toward or away from the peritoneum. At postoperative weeks 1, 2, or 4, repair sites were completely excised. Histologic and immunohistochemical analyses were performed to quantify cell and vessel density within repair-site zones, including interface (lateral, beneath musculofascia) and center (beneath subcutaneous fat) zones. Cell and vessel quantities were compared as functions of zone, BM orientation, and time. Results Cellular and vascular infiltration increased over time universally. The interface demonstrated greater mean cell density than the center (weeks 1 and 2, p=0.01, p<0.0001). Cell density was greater with the BM oriented toward the peritoneum at week 4 (p=0.02). The interface zone had greater mean vessel density than the center zone at week 4 (p<0.0001). Orienting the BM toward the peritoneum increased vessel density at week 4 (p=0.0004). Conclusion Cellular and vascular infiltration into HADM for ventral hernia repairs was greater from musculofascia than subcutaneous and the BM inhibited cellular and vascular. HADM should be placed adjacent to the best vascularizing tissue to improve fibrovascular incorporation. PMID:22456361

  8. Quantitative analysis of vascular parameters for micro-CT imaging of vascular networks with multi-resolution.

    PubMed

    Zhao, Fengjun; Liang, Jimin; Chen, Xueli; Liu, Junting; Chen, Dongmei; Yang, Xiang; Tian, Jie

    2016-03-01

    Previous studies showed that all the vascular parameters from both the morphological and topological parameters were affected with the altering of imaging resolutions. However, neither the sensitivity analysis of the vascular parameters at multiple resolutions nor the distinguishability estimation of vascular parameters from different data groups has been discussed. In this paper, we proposed a quantitative analysis method of vascular parameters for vascular networks of multi-resolution, by analyzing the sensitivity of vascular parameters at multiple resolutions and estimating the distinguishability of vascular parameters from different data groups. Combining the sensitivity and distinguishability, we designed a hybrid formulation to estimate the integrated performance of vascular parameters in a multi-resolution framework. Among the vascular parameters, degree of anisotropy and junction degree were two insensitive parameters that were nearly irrelevant with resolution degradation; vascular area, connectivity density, vascular length, vascular junction and segment number were five parameters that could better distinguish the vascular networks from different groups and abide by the ground truth. Vascular area, connectivity density, vascular length and segment number not only were insensitive to multi-resolution but could also better distinguish vascular networks from different groups, which provided guidance for the quantification of the vascular networks in multi-resolution frameworks.

  9. Synthesis of Creatine in X-irradiated Rats

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nerurkar, M. K.; Sahasrabudhe, M. B.

    1960-01-01

    BS>Synthesis and excretion of creatine and creatinine in total-body x- irradiated (600 n) rats were investigated. Irradiated rats exhibited a marked creatinuria, whereas creatinine excretion was only slightly increased in comparison to that of non-irradiated control animals. The increased creatine excretion after irradiation was ascribed to accelerated synthesis in the liver and greater release from the muscle. In vitro studies on the synthesis of creatine in liver homogenates revealed that the synthetic activity decreased immediately after irradiation but at later intervals showed a marked rise. The immediate fall in the creatine synthesis was not due to decreased availability of ATPmore » or glutathione. Administration of nicotinamide to animals, to inhibit the new creatine synthesis in the liver. indicated that although the creatine formation in the liver of x-irradiated rats was elevated. it could not account for more than a small fraction of the creatinuria observed. Most of the urinary creatine originated from the muscle, probably because of the impaired reconversion of creatine to phosphocreatine. Since the muscle ATP-creatine transphosphorylase activity was not affected by irradiation, it is suggested that the mobilization of muscle creatine to cause creatinuria is probably due to the diminution of glycolysis in the muscle of irradiated animals.« less

  10. Targeted modulation of reactive oxygen species in the vascular endothelium.

    PubMed

    Shuvaev, Vladimir V; Muzykantov, Vladimir R

    2011-07-15

    'Endothelial cells lining vascular luminal surface represent an important site of signaling and injurious effects of reactive oxygen species (ROS) produced by other cells and endothelium itself in ischemia, inflammation and other pathological conditions. Targeted delivery of ROS modulating enzymes conjugated with antibodies to endothelial surface molecules (vascular immunotargeting) provides site-specific interventions in the endothelial ROS, unattainable by other formulations including PEG-modified enzymes. Targeting of ROS generating enzymes (e.g., glucose oxidase) provides ROS- and site-specific models of endothelial oxidative stress, whereas targeting of antioxidant enzymes SOD and catalase offers site-specific quenching of superoxide anion and H(2)O(2). These targeted antioxidant interventions help to clarify specific role of endothelial ROS in vascular and pulmonary pathologies and provide basis for design of targeted therapeutics for treatment of these pathologies. In particular, antibody/catalase conjugates alleviate acute lung ischemia/reperfusion injury, whereas antibody/SOD conjugates inhibit ROS-mediated vasoconstriction and inflammatory endothelial signaling. Encapsulation in protease-resistant, ROS-permeable carriers targeted to endothelium prolongs protective effects of antioxidant enzymes, further diversifying the means for targeted modulation of endothelial ROS. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Low intensity 635 nm diode laser irradiation inhibits fibroblast-myofibroblast transition reducing TRPC1 channel expression/activity: New perspectives for tissue fibrosis treatment.

    PubMed

    Sassoli, Chiara; Chellini, Flaminia; Squecco, Roberta; Tani, Alessia; Idrizaj, Eglantina; Nosi, Daniele; Giannelli, Marco; Zecchi-Orlandini, Sandra

    2016-03-01

    Low-level laser therapy (LLLT) or photobiomodulation therapy is emerging as a promising new therapeutic option for fibrosis in different damaged and/or diseased organs. However, the anti-fibrotic potential of this treatment needs to be elucidated and the cellular and molecular targets of the laser clarified. Here, we investigated the effects of a low intensity 635 ± 5 nm diode laser irradiation on fibroblast-myofibroblast transition, a key event in the onset of fibrosis, and elucidated some of the underlying molecular mechanisms. NIH/3T3 fibroblasts were cultured in a low serum medium in the presence of transforming growth factor (TGF)-β1 and irradiated with a 635 ± 5 nm diode laser (continuous wave, 89 mW, 0.3 J/cm(2) ). Fibroblast-myofibroblast differentiation was assayed by morphological, biochemical, and electrophysiological approaches. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 and of Tissue inhibitor of MMPs, namely TIMP-1 and TIMP-2, after laser exposure was also evaluated by confocal immunofluorescence analyses. Moreover, the effect of the diode laser on transient receptor potential canonical channel (TRPC) 1/stretch-activated channel (SAC) expression and activity and on TGF-β1/Smad3 signaling was investigated. Diode laser treatment inhibited TGF-β1-induced fibroblast-myofibroblast transition as judged by reduction of stress fibers formation, α-smooth muscle actin (sma) and type-1 collagen expression and by changes in electrophysiological properties such as resting membrane potential, cell capacitance and inwardly rectifying K(+) currents. In addition, the irradiation up-regulated the expression of MMP-2 and MMP-9 and downregulated that of TIMP-1 and TIMP-2 in TGF-β1-treated cells. This laser effect was shown to involve TRPC1/SAC channel functionality. Finally, diode laser stimulation and TRPC1 functionality negatively affected fibroblast-myofibroblast transition by interfering with TGF-β1 signaling, namely reducing the

  12. Vascular ring

    MedlinePlus

    ... with aberrant subclavian and left ligamentum ateriosus; Congenital heart defect - vascular ring; Birth defect heart - vascular ring ... accounts for less than 1% of all congenital heart problems. The condition occurs as often in males ...

  13. Macrophages control vascular stem/progenitor cell plasticity through tumor necrosis factor-α-mediated nuclear factor-κB activation.

    PubMed

    Wong, Mei Mei; Chen, Yikuan; Margariti, Andriani; Winkler, Bernhard; Campagnolo, Paola; Potter, Claire; Hu, Yanhua; Xu, Qingbo

    2014-03-01

    Vascular lineage differentiation of stem/progenitor cells can contribute to both tissue repair and exacerbation of vascular diseases such as in vein grafts. The role of macrophages in controlling vascular progenitor differentiation is largely unknown and may play an important role in graft development. This study aims to identify the role of macrophages in vascular stem/progenitor cell differentiation and thereafter elucidate the mechanisms that are involved in the macrophage- mediated process. We provide in vitro evidence that macrophages can induce endothelial cell (EC) differentiation of the stem/progenitor cells while simultaneously inhibiting their smooth muscle cell differentiation. Mechanistically, both effects were mediated by macrophage-derived tumor necrosis factor-α (TNF-α) via TNF-α receptor 1 and canonical nuclear factor-κB activation. Although the overexpression of p65 enhanced EC (or attenuated smooth muscle cell) differentiation, p65 or TNF-α receptor 1 knockdown using lentiviral short hairpin RNA inhibited EC (or rescued smooth muscle cell) differentiation in response to TNF-α. Furthermore, TNF-α-mediated EC differentiation was driven by direct binding of nuclear factor-κB (p65) to specific VE-cadherin promoter sequences. Subsequent experiments using an ex vivo decellularized vessel scaffold confirmed an increase in the number of ECs and reduction in smooth muscle cell marker expression in the presence of TNF-α. The lack of TNF-α in a knockout mouse model of vein graft decreased endothelialization and significantly increased thrombosis formation. Our study highlights the role of macrophages in directing vascular stem/progenitor cell lineage commitment through TNF-α-mediated TNF-α receptor 1 and nuclear factor-κB activation that is likely required for endothelial repair in vascular diseases such as vein graft.

  14. Microparticle Shedding by Erythrocytes, Monocytes and Vascular Smooth Muscular Cells Is Reduced by Aspirin in Diabetic Patients.

    PubMed

    Chiva-Blanch, Gemma; Suades, Rosa; Padró, Teresa; Vilahur, Gemma; Peña, Esther; Ybarra, Juan; Pou, Jose M; Badimon, Lina

    2016-07-01

    Diabetes mellitus is associated with an enhanced risk for cardiovascular disease and its prevalence is increasing. Diabetes induces metabolic stress on blood and vascular cells, promoting platelet activation and vascular dysfunction. The level of vascular cell activation can be measured by the number and phenotype of microparticles found in the circulation. The aim of this study was to investigate the effect of a platelet-inhibitory dose of aspirin on the number and type of microparticles shed to the circulation. Forty-three diabetic patients were enrolled in the study and received a daily dose of 100mg of aspirin for 10 days to cover the average platelet life-span in the circulation. Before and after the intervention period, circulating microparticles were characterized and quantified by flow cytometry. Type 1 diabetic patients had about twice the number of tissue factor-positive circulating microparticles (derived both from platelets and monocytes) and endothelial-derived E-selectin positive microparticles than type 2 diabetic patients. Aspirin therapy significantly inhibited platelets since cyclooxygenase 1 derived thromboxane generation levels were reduced by 99%. Microparticles derived from erythrocytes, activated monocytes, and smooth muscle cells were significantly reduced after 10 days of aspirin administration. These results indicate that: a) vascular and blood cells in type 1 diabetic patients are exposed to more sustained stress shown by their specific microparticle origin and levels; b) aspirin therapy inhibits vascular wall cell activation and microparticle shedding, and c) the effects of aspirin are similar in type 1 and 2 diabetes. Copyright © 2016 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  15. Interaction with caveolin-1 modulates vascular ATP-sensitive potassium (KATP) channel activity

    PubMed Central

    Davies, Lowri M; Purves, Gregor I; Barrett-Jolley, Richard; Dart, Caroline

    2010-01-01

    ATP-sensitive potassium channels (KATP channels) of arterial smooth muscle are important regulators of arterial tone, and hence blood flow, in response to vasoactive transmitters. Recent biochemical and electron microscopic evidence suggests that these channels localise to small vesicular invaginations of the plasma membrane, known as caveolae, and interact with the caveolae-associated protein, caveolin. Here we report that interaction with caveolin functionally regulates the activity of the vascular subtype of KATP channel, Kir6.1/SUR2B. Pinacidil-evoked recombinant whole-cell Kir6.1/SUR2B currents recorded in HEK293 cells stably expressing caveolin-1 (69.6 ± 8.3 pA pF−1, n= 8) were found to be significantly smaller than currents recorded in caveolin-null cells (179.7 ± 35.9 pA pF−1, n= 6; P < 0.05) indicating that interaction with caveolin may inhibit channel activity. Inclusion in the pipette-filling solution of a peptide corresponding to the scaffolding domain of caveolin-1 had a similar inhibitory effect on whole-cell Kir6.1/SUR2B currents as co-expression with full-length caveolin-1, while a scrambled version of the same peptide had no effect. Interestingly, intracellular dialysis of vascular smooth muscle cells with the caveolin-1 scaffolding domain peptide (SDP) also caused inhibition of pinacidil-evoked native whole-cell KATP currents, indicating that a significant proportion of vascular KATP channels are susceptible to block by exogenously applied SDP. In cell-attached recordings of Kir6.1/SUR2B single channel activity, the presence of caveolin-1 significantly reduced channel open probability (from 0.05 ± 0.01 to 0.005 ± 0.001; P < 0.05) and the amount of time spent in a relatively long-lived open state. These changes in kinetic behaviour can be explained by a caveolin-induced shift in the channel's sensitivity to its physiological regulator MgADP. Our findings thus suggest that interaction with caveolin-1 suppresses vascular-type KATP channel

  16. Geraniol Suppresses Angiogenesis by Downregulating Vascular Endothelial Growth Factor (VEGF)/VEGFR-2 Signaling.

    PubMed

    Wittig, Christine; Scheuer, Claudia; Parakenings, Julia; Menger, Michael D; Laschke, Matthias W

    2015-01-01

    Geraniol exerts several direct pharmacological effects on tumor cells and, thus, has been suggested as a promising anti-cancer compound. Because vascularization is a major precondition for tumor growth, we analyzed in this study the anti-angiogenic action of geraniol. In vitro, geraniol reduced the migratory activity of endothelial-like eEND2 cells. Western blot analyses further revealed that geraniol downregulates proliferating cell nuclear antigen (PCNA) and upregulates cleaved caspase-3 (Casp-3) expression in eEND2 cells. Moreover, geraniol blocked vascular endothelial growth factor (VEGF)/VEGFR-2 signal transduction, resulting in a suppression of downstream AKT and ERK signaling pathways. In addition, geraniol significantly reduced vascular sprout formation in a rat aortic ring assay. In vivo, geraniol inhibited the vascularization of CT26 tumors in dorsal skinfold chambers of BALB/c mice, which was associated with a smaller tumor size when compared to vehicle-treated controls. Immunohistochemical analyses confirmed a decreased number of Ki67-positive cells and CD31-positive microvessels with reduced VEGFR-2 expression within geraniol-treated tumors. Taken together, these findings indicate that geraniol targets multiple angiogenic mechanisms and, therefore, is an attractive candidate for the anti-angiogenic treatment of tumors.

  17. A peptide inhibitor of the urokinase/urokinase receptor system inhibits alteration of the blood-retinal barrier in diabetes.

    PubMed

    Navaratna, Deepti; Menicucci, Gina; Maestas, Joann; Srinivasan, Ramprasad; McGuire, Paul; Das, Arup

    2008-09-01

    One of the major complications of diabetes is the alteration of the blood-retinal barrier, leading to retinal edema and consequent vision loss. The aim of this study was to evaluate the role of the urokinase plasminogen activator (uPA)/uPA receptor (uPAR) system in the regulation of retinal vascular permeability. Biochemical, molecular, and histological techniques were used to examine the role of uPA and uPAR in the regulation of retinal vascular permeability in diabetic rats and cultured retinal endothelial cells. The increased retinal vascular permeability in diabetic rats was associated with a decrease in vascular endothelial (VE) -cadherin expression in retinal vessels. Treatment with the uPA/uPAR-inhibiting peptide (A6) was shown to reduce diabetes-induced permeability and the loss of VE-cadherin. The increased permeability of cultured cells in response to advanced glycation end products (AGEs) was significantly inhibited with A6. Treatment of endothelial cells with specific matrix metalloproteinases or AGEs resulted in loss of VE-cadherin from the cell surface, which could be inhibited by A6. uPA/uPAR physically interacts with AGEs/receptor for advanced glycation end products on the cell surface and regulates its activity. uPA and its receptor uPAR play important roles in the alteration of the blood-retinal barrier through proteolytic degradation of VE-cadherin. The ability of A6 to block retinal vascular permeability in diabetes suggests a potential therapeutic approach for the treatment of diabetic macular edema.

  18. Dissociation of VE-PTP from VE-cadherin is required for leukocyte extravasation and for VEGF-induced vascular permeability in vivo

    PubMed Central

    Broermann, Andre; Winderlich, Mark; Block, Helena; Frye, Maike; Rossaint, Jan; Zarbock, Alexander; Cagna, Giuseppe; Linnepe, Ruth; Schulte, Dörte; Nottebaum, Astrid Fee

    2011-01-01

    We have recently shown that vascular endothelial protein tyrosine phosphatase (VE-PTP), an endothelial membrane protein, associates with VE-cadherin and is required for optimal VE-cadherin function and endothelial cell contact integrity. The dissociation of VE-PTP from VE-cadherin is triggered by vascular endothelial growth factor (VEGF) and by the binding of leukocytes to endothelial cells in vitro, suggesting that this dissociation is a prerequisite for the destabilization of endothelial cell contacts. Here, we show that VE-cadherin/VE-PTP dissociation also occurs in vivo in response to LPS stimulation of the lung or systemic VEGF stimulation. To show that this dissociation is indeed necessary in vivo for leukocyte extravasation and VEGF-induced vascular permeability, we generated knock-in mice expressing the fusion proteins VE-cadherin-FK 506 binding protein and VE-PTP-FRB* under the control of the endogenous VE-cadherin promoter, thus replacing endogenous VE-cadherin. The additional domains in both fusion proteins allow the heterodimeric complex to be stabilized by a chemical compound (rapalog). We found that intravenous application of the rapalog strongly inhibited VEGF-induced (skin) and LPS-induced (lung) vascular permeability and inhibited neutrophil extravasation in the IL-1β inflamed cremaster and the LPS-inflamed lung. We conclude that the dissociation of VE-PTP from VE-cadherin is indeed required in vivo for the opening of endothelial cell contacts during induction of vascular permeability and leukocyte extravasation. PMID:22025303

  19. Evidence that simulated microgravity may alter the vascular nonreceptor tyrosine kinase second messenger pathway

    NASA Technical Reports Server (NTRS)

    Kahwaji, C. I.; Sheibani, S.; Han, S.; Siu, W. O.; Kaka, A. H.; Fathy, T. M.; el-Abbadi, N. H.; Purdy, R. E.

    2000-01-01

    Simulated microgravity (hind limb unweighting; HU) reduces maximal contractile capacity to norepinephrine (NE) but not 5-hydroxytryptamine (5-HT) in the rat abdominal aorta of male Wistar rats. Our earlier study showed that voltage-operated calcium channels, the MAPK pathway [1], and vasoconstrictive prostaglandins contribute to the NE-induced contraction of control (C) but not HU, aorta rings. Genistein, a general tyrosine kinase inhibitor, caused a significant reduction in vascular contractility in C but not HU arteries. The present study explored the role of protein kinase C (PKC) and extracellular receptor-activated kinase 1 and 2 (ERK1/2) in the HU-induced vascular hyporesponsiveness to NE. Microgravity was simulated in Wistar rats by 20 day HU. The abdominal aorta was removed from control and HU rats, cut into 3 mm rings, and mounted in tissue baths to measure isometric contraction. Protein levels were determined using Western blot analysis. PD98059, a selective MAPKK inhibitor, caused a marked inhibition of NE-induced contraction in both C and HU arteries. Calphostin C, a PKC inhibitor, completely abolished the contractile response to NE in both C and HU tissues. Phosphorylated (activated) ERK1/2 protein mass was greater in C, compared to HU, aortas, and was reduced by genistein only in C tissues. MAPK total protein levels in the rat aorta were increased in the HU-treated, compared to C, animals. These results indicate that PKC represents an early transduction step in the contractile response to NE in the rat abdominal aorta. That inhibition of the step immediately before activation of MAPK reduced contraction in both C and HU tissues, while general tyrosine kinase inhibition with genistein blocked only the control responses, suggests that a nonreceptor tyrosine kinase may be involved in HU-induced vascular hyporesponsiveness to NE.

  20. Effect of preoperative antiplatelet drugs on vascular prostacyclin synthesis.

    PubMed

    Karwande, S V; Weksler, B B; Gay, W A; Subramanian, V A

    1987-03-01

    Patients undergoing aortocoronary bypass using autogenous saphenous veins were randomly divided into three comparable groups. Group 1 (n = 10) acted as a control, Group 2 (n = 14) received 80 mg of aspirin at midnight before the operation, and Group 3 (n = 12) received 80 mg of aspirin and 75 mg of dipyridamole at midnight and an additional 75-mg dose of dipyridamole at 6 AM. The purpose was to determine which regimen would maximally inhibit platelet function without depressing vascular prostacyclin synthesis. Serum thromboxane A2, saphenous vein wall and aortic wall prostacyclin, platelet aggregation, and bleeding time were measured in all patients. None was restarted on a regimen of aspirin or dipyridamole postoperatively. Aspirin alone and in combination with dipyridamole significantly inhibited thromboxane A2 and platelet aggregation in all treated patients but spared venous prostacyclin synthesis. Aortic prostacyclin synthesis was partially inhibited in both treated groups. Chest tube drainage was comparable in all three groups. These results indicate that the combination of aspirin and dipyridamole offers no measurable advantage over aspirin alone in the perioperative period.

  1. Potassium Inhibits Dietary Salt-Induced Transforming Growth Factor-β Production

    PubMed Central

    Ying, Wei-Zhong; Aaron, Kristal; Wang, Pei-Xuan; Sanders, Paul W.

    2009-01-01

    Human and animal studies demonstrate an untoward effect of excess dietary NaCl (salt) intake on cardiovascular function and life span. The endothelium in particular augments the production of transforming growth factor (TGF)-β, a fibrogenic growth factor, in response to excess dietary salt intake. This study explored the initiating mechanism that regulates salt-induced endothelial cell production of TGF-β. Male Sprague-Dawley rats were given diets containing different amounts of NaCl and potassium for 4 days. A bioassay for TGF-β demonstrated increased (35.2%) amounts of active TGF-β in the medium of aortic ring segments from rats on the high-salt diet compared with rats maintained on a 0.3% NaCl diet. Inhibition of the large-conductance, calcium-activated potassium channel inhibited dietary salt-induced vascular production of TGF-β but did not affect production of TGF-β by ring segments from rats on the low-salt diet. Immunohistochemical and Western analyses demonstrated the α subunit of the calcium-activated potassium channel in endothelial cells. Increasing medium [K+] inhibited production of dietary salt-induced vascular production levels of total and active TGF-β but did not alter TGF-β production by aortic rings from rats on the 0.3% NaCl diet. Increasing dietary potassium content decreased urinary active TGF-β in animals receiving the high-salt diet but did not change urinary active TGF-β in animals receiving the low-salt diet. The findings demonstrated an interesting interaction between the dietary intake of potassium and excess NaCl and further showed the fundamental role of the endothelial calcium-activated potassium channel in the vascular response to excess salt intake. PMID:19738156

  2. Modulation of VEGF-induced retinal vascular permeability by peroxisome proliferator-activated receptor-β/δ.

    PubMed

    Suarez, Sandra; McCollum, Gary W; Bretz, Colin A; Yang, Rong; Capozzi, Megan E; Penn, John S

    2014-11-18

    Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability contributes to diabetic macular edema (DME), a serious vision-threatening condition. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) antagonist/reverse agonist, GSK0660, inhibits VEGF-induced human retinal microvascular endothelial cell (HRMEC) proliferation, tubulogenesis, and oxygen-induced retinal vasculopathy in newborn rats. These VEGF-induced HRMEC behaviors and VEGF-induced disruption of endothelial cell junctional complexes may well share molecular signaling events. Thus, we sought to examine the role of PPARβ/δ in VEGF-induced retinal hyperpermeability. Transendothelial electrical resistance (TEER) measurements were performed on HRMEC monolayers to assess permeability. Claudin-1/Claudin-5 localization in HRMEC monolayers was determined by immunocytochemistry. Extracellular signal-regulated protein kinases 1 and 2 (Erk 1/2) phosphorylation, VEGF receptor 1 (VEGFR1) and R2 were assayed by Western blot analysis. Expression of VEGFR1 and R2 was measured by quantitative RT-PCR. Last, retinal vascular permeability was assayed in vivo by Evans blue extravasation. Human retinal microvascular endothelial cell monolayers treated with VEGF for 24 hours showed decreased TEER values that were completely reversed by the highest concentration of GSK0660 (10 μM) and PPARβ/δ-directed siRNA (20 μM). In HRMEC treated with VEGF, GSK0660 stabilized tight-junctions as evidenced by Claudin-1 staining, reduced phosphorylation of Erk1/2, and reduced VEGFR1/2 expression. Peroxisome proliferator-activated receptor β/δ siRNA had a similar effect on VEGFR expression and Claudin-1, supporting the specificity of GSK0660 in our experiments. Last, GSK0660 significantly inhibited VEGF-induced retinal vascular permeability and reduced retinal VEGFR1and R2 levels in C57BL/6 mice. These data suggest a protective effect for PPARβ/δ antagonism against VEGF-induced vascular permeability

  3. Modulation of VEGF-Induced Retinal Vascular Permeability by Peroxisome Proliferator-Activated Receptor-β/δ

    PubMed Central

    Suarez, Sandra; McCollum, Gary W.; Bretz, Colin A.; Yang, Rong; Capozzi, Megan E.; Penn, John S.

    2014-01-01

    Purpose. Vascular endothelial growth factor (VEGF)-induced retinal vascular permeability contributes to diabetic macular edema (DME), a serious vision-threatening condition. Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) antagonist/reverse agonist, GSK0660, inhibits VEGF-induced human retinal microvascular endothelial cell (HRMEC) proliferation, tubulogenesis, and oxygen-induced retinal vasculopathy in newborn rats. These VEGF-induced HRMEC behaviors and VEGF-induced disruption of endothelial cell junctional complexes may well share molecular signaling events. Thus, we sought to examine the role of PPARβ/δ in VEGF-induced retinal hyperpermeability. Methods. Transendothelial electrical resistance (TEER) measurements were performed on HRMEC monolayers to assess permeability. Claudin-1/Claudin-5 localization in HRMEC monolayers was determined by immunocytochemistry. Extracellular signal-regulated protein kinases 1 and 2 (Erk 1/2) phosphorylation, VEGF receptor 1 (VEGFR1) and R2 were assayed by Western blot analysis. Expression of VEGFR1 and R2 was measured by quantitative RT-PCR. Last, retinal vascular permeability was assayed in vivo by Evans blue extravasation. Results. Human retinal microvascular endothelial cell monolayers treated with VEGF for 24 hours showed decreased TEER values that were completely reversed by the highest concentration of GSK0660 (10 μM) and PPARβ/δ-directed siRNA (20 μM). In HRMEC treated with VEGF, GSK0660 stabilized tight-junctions as evidenced by Claudin-1 staining, reduced phosphorylation of Erk1/2, and reduced VEGFR1/2 expression. Peroxisome proliferator-activated receptor β/δ siRNA had a similar effect on VEGFR expression and Claudin-1, supporting the specificity of GSK0660 in our experiments. Last, GSK0660 significantly inhibited VEGF-induced retinal vascular permeability and reduced retinal VEGFR1and R2 levels in C57BL/6 mice. Conclusions. These data suggest a protective effect for PPARβ/δ antagonism against

  4. Magnolol attenuates neointima formation by inducing cell cycle arrest via inhibition of ERK1/2 and NF-kappaB activation in vascular smooth muscle cells.

    PubMed

    Karki, Rajendra; Ho, Oak-Min; Kim, Dong-Wook

    2013-03-01

    Endovascular injury induces switching of contractile phenotype of vascular smooth muscle cells (VSMCs) to synthetic phenotype, thereby causing proliferation of VSMCs leading to intimal thickening. The purpose of this study was to assess the effect of magnolol on the proliferation of VSMCs in vitro and neointima formation in vivo, as well as the related cell signaling mechanisms. Tumor necrosis factor alpha (TNF-alpha) induced proliferation ofVSMCs was assessed using colorimetric assay. Cell cycle progression and mRNA expression of cell cycle associated molecules were determined by flow cytometry and reverse transcription polymerase chain reaction (RT-PCR) respectively. The signaling molecules such as ERK1/2,JNK, P38 and NF-kappaB were determined by Western blot analysis. In addition, rat carotid artery balloon injury model was performed to assess the effect of magnolol on neointima formation in vivo. Oral administration of magnolol significantly inhibited intimal area and intimal/medial ratio (I/M). Our in vitro assays revealed magnolol dose dependently induced cell cycle arrest at G0/G1. Also, magnolol inhibited mRNA and protein expression of cyclin D1, cyclin E, CDK4 and CDK2 in vitro and in vivo. The cell cycle arrest was associated with inhibition of ERK1/2 phosphorylation and NF-kappaB translocation. Magnolol suppressed proliferation of VSMCs in vitro and attenuated neointima formation in vivo by inducing cell cycle arrest at G0/G1 through modulation of cyclin D1, cyclin E, CDK4 and CDK2 expression. Thus, the results suggest that magnolol could be a potential therapeutic candidate for the prevention of restenosis and atherosclerosis.

  5. L-carnitine protects against testicular dysfunction caused by gamma irradiation in mice.

    PubMed

    Ahmed, Mohamed Mohamed; Ibrahim, Zein Shaban; Alkafafy, Mohamed; El-Shazly, Samir Ahmed

    2014-07-01

    This study was conducted on mice to evaluate the radioprotective role of L-carnitine against γ-ray irradiation-induced testicular damage. Adult male mice were exposed to whole body irradiation at a total dose of 1 Gy. Radiation exposure was continued 24 h a day (0.1 Gy/day) throughout the 10 days exposure period either in the absence and/or presence of L-carnitine at an i.p. dose of 10 mg/kg body weight/day. Results revealed that γ-rays irradiation suppressed the expression of ABP and CYP450SCC mRNA, whereas treatment with L-carnitine prior and throughout γ-rays irradiation exposure inhibited this suppression. Treatment with γ-ray irradiation or L-carnitine down-regulated expression of aromatase mRNA. With combined treatment, L-carnitine significantly normalized aromatase expression. γ-Ray irradiation up-regulated expression of FasL and Cyclin D2 mRNA, while L-carnitine inhibited these up-regulations. Results also showed that γ-ray-irradiation up-regulated TNF-α, IL1-β and IFN-γ mRNA expressions compared to either controls or the L-carnitine treated group. Moreover, γ-irradiation greatly reduced serum testosterone levels, while L-carnitine, either alone or in combination with irradiation, significantly increased serum testosterone levels compared to controls. In addition, γ-irradiation induced high levels of sperm abnormalities (43%) which were decreased to 12% in the presence of L-carnitine. In parallel with these findings, histological examination showed that γ-irradiation induced severe tubular degenerative changes, which were reduced by L-carnitine pre-treatment. These results clarified the immunostimulatory effects of L-carnitine and its radioprotective role against testicular injury. Copyright © 2014 Elsevier GmbH. All rights reserved.

  6. Disruption of TGF-β signaling in smooth muscle cell prevents flow-induced vascular remodeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fu; Chambon, Pierre; Tellides, George

    Highlights: • TGF-β signaling in SMC contributes to the flow-induced vascular remodeling. • Disruption of TGF-β signaling in SMC can prevent this process. • Targeting SM-specific Tgfbr2 could be a novel therapeutic strategy for vascular remodeling. - Abstract: Transforming growth factor-β (TGF-β) signaling has been prominently implicated in the pathogenesis of vascular remodeling, especially the initiation and progression of flow-induced vascular remodeling. Smooth muscle cells (SMCs) are the principal resident cells in arterial wall and are critical for arterial remodeling. However, the role of TGF-β signaling in SMC for flow-induced vascular remodeling remains unknown. Therefore, the goal of our studymore » was to determine the effect of TGF-β pathway in SMC for vascular remodeling, by using a genetical smooth muscle-specific (SM-specific) TGF-β type II receptor (Tgfbr2) deletion mice model. Mice deficient in the expression of Tgfbr2 (MyhCre.Tgfbr2{sup f/f}) and their corresponding wild-type background mice (MyhCre.Tgfbr2{sup WT/WT}) underwent partial ligation of left common carotid artery for 1, 2, or 4 weeks. Then the carotid arteries were harvested and indicated that the disruption of Tgfbr2 in SMC provided prominent inhibition of vascular remodeling. And the thickening of carotid media, proliferation of SMC, infiltration of macrophage, and expression of matrix metalloproteinase (MMP) were all significantly attenuated in Tgfbr2 disruption mice. Our study demonstrated, for the first time, that the TGF-β signaling in SMC plays an essential role in flow-induced vascular remodeling and disruption can prevent this process.« less

  7. Identification of irradiated wheat by germination test, DNA comet assay and electron spin resonance

    NASA Astrophysics Data System (ADS)

    Barros, Adilson C.; Freund, Maria Teresa L.; Villavicencio, Ana Lúcia C. H.; Delincée, Henry; Arthur, Valter

    2002-03-01

    In several countries, there has been an increase in the use of radiation for food processing thus improving the quality and sanitary conditions, inhibiting pathogenic microorganisms, delaying the natural aging process and so extending product lifetime. The need to develop analytical methods to detect these irradiated products is also increasing. The goal of this research was to identify wheat irradiated using different radiation doses. Seeds were irradiated with a gamma 60Co source (Gammacell 220 GC) in the Centro de Energia Nuclear na Agricultura and the Instituto de Pesquisas Energéticas e Nucleares. Dose rate used were 1.6 and 5.8kGy/h. Applied doses were 0.0, 0.10, 0.25, 0.50, 0.75, 1.0, and 2.0kGy. After irradiation, seeds were analysed over a 6 month period. Three different detection methods were employed to determine how irradiation had modified the samples. Screening methods consisted of a germination test measuring the inhibition of shooting and rooting and analysis of DNA fragmentation. The method of electron spin resonance spectroscopy allowed a better dosimetric evaluation. These techniques make the identification of irradiated wheat with different doses possible.

  8. Fluorocopolymer-coated nitinol self-expanding paclitaxel-eluting stent: pharmacokinetics and vascular biology responses in a porcine iliofemoral model.

    PubMed

    Hou, Dongming; Huibregtse, Barbara A; Eppihimer, Michael; Stoffregen, William; Kocur, Gordon; Hitzman, Cory; Stejskal, Elizabeth; Heil, John; Dawkins, Keith D

    2016-08-20

    Our aim was to evaluate arterial responses to paclitaxel and a novel fluorocopolymer-coated nitinol low-dose paclitaxel-eluting stent (FP-PES). Human smooth muscle cell (SMC) migration was assessed after exposure to paclitaxel in vitro. For pharmacokinetics and vascular response, FP-PES or bare metal stents (BMS) were implanted in porcine iliofemoral arteries. Paclitaxel significantly inhibited human coronary and femoral artery SMC migration at doses as low as 1 pM. Inhibition was significantly greater for femoral compared with coronary artery SMCs from 1 pM to 1 μM. Pharmacokinetics showed consistent paclitaxel release from FP-PES over the study duration. The peak arterial wall paclitaxel level was 3.7 ng/mg at 10 days, with levels decreasing to 50% of peak at 60 days and 10% at 180 days. Paclitaxel was not detected in blood or remote organs. Arteriogram and histomorphometry analyses showed FP-PES significantly inhibits neointimal proliferation versus BMS at 30 and 90 days. Re-endothelialisation scores were not different between groups. Paclitaxel affected femoral artery SMC migration at lower concentrations and to a greater degree than it did coronary artery SMCs. The novel FP-PES used in this preclinical study demonstrated a vascular healing response similar to BMS, while significantly inhibiting neointimal formation up to 90 days.

  9. Multimodal imaging guided preclinical trials of vascular targeting in prostate cancer

    PubMed Central

    Kalmuk, James; Folaron, Margaret; Buchinger, Julian; Pili, Roberto; Seshadri, Mukund

    2015-01-01

    The high mortality rate associated with castration-resistant prostate cancer (CRPC) underscores the need for improving therapeutic options for this patient population. The purpose of this study was to examine the potential of vascular targeting in prostate cancer. Experimental studies were carried out in subcutaneous and orthotopic Myc-CaP prostate tumors implanted into male FVB mice to examine the efficacy of a novel microtubule targeted vascular disrupting agent (VDA), EPC2407 (Crolibulin™). A non-invasive multimodality imaging approach based on magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and ultrasound (US) was utilized to guide preclinical trial design and monitor tumor response to therapy. Imaging results were correlated with histopathologic assessment, tumor growth and survival analysis. Contrast-enhanced MRI revealed potent antivascular activity of EPC2407 against subcutaneous and orthotopic Myc-CaP tumors. Longitudinal BLI of Myc-CaP tumors expressing luciferase under the androgen response element (Myc-CaP/ARE-luc) revealed changes in AR signaling and reduction in intratumoral delivery of luciferin substrate following castration suggestive of reduced blood flow. This reduction in blood flow was validated by US and MRI. Combination treatment resulted in sustained vascular suppression, inhibition of tumor regrowth and conferred a survival benefit in both models. These results demonstrate the therapeutic potential of vascular targeting in combination with androgen deprivation against prostate cancer. PMID:26203773

  10. Circular Noncoding RNA HIPK3 Mediates Retinal Vascular Dysfunction in Diabetes Mellitus.

    PubMed

    Shan, Kun; Liu, Chang; Liu, Bai-Hui; Chen, Xue; Dong, Rui; Liu, Xin; Zhang, Yang-Yang; Liu, Ban; Zhang, Shu-Jie; Wang, Jia-Jian; Zhang, Sheng-Hai; Wu, Ji-Hong; Zhao, Chen; Yan, Biao

    2017-10-24

    The vascular complications of diabetes mellitus are the major causes of morbidity and mortality among people with diabetes. Circular RNAs are a class of endogenous noncoding RNAs that regulate gene expression in eukaryotes. In this study, we investigated the role of circular RNA in retinal vascular dysfunction induced by diabetes mellitus. Quantitative polymerase chain reactions, Sanger sequencing, and Northern blots were conducted to detect circular HIPK3 (circHIPK3) expression pattern on diabetes mellitus-related stresses. MTT (3-[4,5-dimethythiazol-2-yl]-2,5-diphenyl tetrazolium bromide) assays, EdU (5-ethynyl-2'-deoxyuridine) incorporation assays, Transwell migration assays, and Matrigel assays were conducted to detect the role of circHIPK3 in retinal endothelial cell function in vitro. Retinal trypsin digestion, vascular permeability assays, and ELISA assays were conducted to detect the role of circHIPK3 in retinal vascular dysfunction in vivo. Bioinformatics analysis, luciferase activity assays, RNA pull-down assays, and in vitro studies were conducted to reveal the mechanism of circHIPK3-mediated retinal vascular dysfunction. circHIPK3 expression was significantly upregulated in diabetic retinas and retinal endothelial cells following stressors related to diabetes mellitus. circHIPK3 silencing or overexpressing circHIPK3 changed retinal endothelial cell viability, proliferation, migration, and tube formation in vitro. circHIPK3 silencing in vivo alleviated retinal vascular dysfunction, as shown by decreased retinal acellular capillaries, vascular leakage, and inflammation. circHIPK3 acted as an endogenous miR-30a-3p sponge to sequester and inhibit miR-30a-3p activity, which led to increased vascular endothelial growth factor-C, FZD4, and WNT2 expression. Ectopic expression of miR-30a-3p mimicked the effect of circHIPK3 silencing on vascular endothelial phenotypes in vivo and in vitro. The circular RNA circHIPK3 plays a role in diabetic retinopathy by

  11. MiR-29-mediated elastin down-regulation contributes to inorganic phosphorus-induced osteoblastic differentiation in vascular smooth muscle cells.

    PubMed

    Sudo, Ryo; Sato, Fumiaki; Azechi, Takuya; Wachi, Hiroshi

    2015-12-01

    Vascular calcification increases the risk of cardiovascular mortality. We previously reported that expression of elastin decreases with progression of inorganic phosphorus (Pi)-induced vascular smooth muscle cell (VSMC) calcification. However, the regulatory mechanisms of elastin mRNA expression during vascular calcification remain unclear. MicroRNA-29 family members (miR-29a, b and c) are reported to mediate elastin mRNA expression. Therefore, we aimed to determine the effect of miR-29 on elastin expression and Pi-induced vascular calcification. Calcification of human VSMCs was induced by Pi and evaluated measuring calcium deposition. Pi stimulation promoted Ca deposition and suppressed elastin expression in VSMCs. Knockdown of elastin expression by shRNA also promoted Pi-induced VSMC calcification. Elastin pre-mRNA measurements indicated that Pi stimulation suppressed elastin expression without changing transcriptional activity. Conversely, Pi stimulation increased miR-29a and miR-29b expression. Inhibition of miR-29 recovered elastin expression and suppressed calcification in Pi-treated VSMCs. Furthermore, over-expression of miR-29b promoted Pi-induced VSMC calcification. RT-qPCR analysis showed knockdown of elastin expression in VSMCs induced expression of osteoblast-related genes, similar to Pi stimulation, and recovery of elastin expression by miR-29 inhibition reduced their expression. Our study shows that miR-29-mediated suppression of elastin expression in VSMCs plays a pivotal role in osteoblastic differentiation leading to vascular calcification. © 2015 The Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  12. The unidirectional hypoxia-activated prodrug OCT1002 inhibits growth and vascular development in castrate-resistant prostate tumors.

    PubMed

    Nesbitt, Heather; Worthington, Jenny; Errington, Rachel J; Patterson, Laurence H; Smith, Paul J; McKeown, Stephanie R; McKenna, Declan J

    2017-11-01

    OCT1002 is a unidirectional hypoxia-activated prodrug (uHAP) OCT1002 that can target hypoxic tumor cells. Hypoxia is a common feature in prostate tumors and is known to drive disease progression and metastasis. It is, therefore, a rational therapeutic strategy to directly target hypoxic tumor cells in an attempt to improve treatment for this disease. Here we tested OCT1002 alone and in combination with standard-of-care agents in hypoxic models of castrate-resistant prostate cancer (CRPC). The effect of OCT1002 on tumor growth and vasculature was measured using murine PC3 xenograft and dorsal skin fold (DSF) window chamber models. The effects of abiraterone, docetaxel, and cabazitaxel, both singly and in combination with OCT1002, were also compared. The hypoxia-targeting ability of OCT1002 effectively controls PC3 tumor growth. The effect was evident for at least 42 days after exposure to a single dose (30 mg/kg) and was comparable to, or better than, drugs currently used in the clinic. In DSF experiments OCT1002 caused vascular collapse in the PC3 tumors and inhibited the revascularization seen in controls. In this model OCT1002 also enhanced the anti-tumor effects of abiraterone, cabazitaxel, and docetaxel; an effect which was accompanied by a more prolonged reduction in tumor vasculature density. These studies provide the first evidence that OCT1002 can be an effective agent in treating hypoxic, castrate-resistant prostate tumors, either singly or in combination with established chemotherapeutics for prostate cancer. © 2017 Wiley Periodicals, Inc.

  13. Cytoplasmic Irradiation Induces Metabolic Shift in Human Small Airway Epithelial Cells via Activation of Pim-1 Kinase.

    PubMed

    Wu, Jinhua; Zhang, Qin; Wuu, Yen-Ruh; Zou, Sirui; Hei, Tom K

    2017-04-01

    The unique cellular and molecular consequences of cytoplasmic damage caused by ionizing radiation were studied using a precision microbeam irradiator. Our results indicated that targeted cytoplasmic irradiation induced metabolic shift from an oxidative to glycolytic phenotype in human small airway epithelial cells (SAE). At 24 h postirradiation, there was an increase in the mRNA expression level of key glycolytic enzymes as well as lactate secretion in SAE cells. Using RNA-sequencing analysis to compare genes that were responsive to cytoplasmic versus nuclear irradiation, we found a glycolysis related gene, Pim-1, was significantly upregulated only in cytoplasmic irradiated SAE cells. Inhibition of Pim-1 activity using the selective pharmaceutic inhibitor Smi-4a significantly reduced the level of lactate production and glucose uptake after cytoplasmic irradiation. In addition, Pim-1 also inhibited AMPK activity, which is a well-characterized negative regulator of glycolysis. Distinct from the glycolysis induced by cytoplasmic irradiation, targeted nuclear irradiation also induced a transient and minimal increase in glycolysis that correlated with increased expression of Hif-1α. In an effort to explore the underline mechanism, we found that inhibition of mitochondria fission using the cell-permeable inhibitor mdivi-1 suppressed the induction of Pim-1, thus confirming Pim-1 upregulation as a downstream effect of mitochondrial dysfunction. Our data show and, for the first time, that cytoplasmic irradiation mediate expression level of Pim-1, which lead to glycolytic shift in SAE cells. Additionally, since glycolysis is frequently linked to cancer cell metabolism, our findings further suggest a role of cytoplasmic damage in promoting neoplastic changes.

  14. Cytoplasmic Irradiation Induces Metabolic Shift in Human Small Airway Epithelial Cells via Activation of Pim-1 Kinase

    PubMed Central

    Wu, Jinhua; Zhang, Qin; Wuu, Yen-Ruh; Zou, Sirui; Hei, Tom K.

    2017-01-01

    The unique cellular and molecular consequences of cytoplasmic damage caused by ionizing radiation were studied using a precision microbeam irradiator. Our results indicated that targeted cytoplasmic irradiation induced metabolic shift from an oxidative to glycolytic phenotype in human small airway epithelial cells (SAE). At 24 h postirradiation, there was an increase in the mRNA expression level of key glycolytic enzymes as well as lactate secretion in SAE cells. Using RNA-sequencing analysis to compare genes that were responsive to cytoplasmic versus nuclear irradiation, we found a glycolysis related gene, Pim-1, was significantly upregulated only in cytoplasmic irradiated SAE cells. Inhibition of Pim-1 activity using the selective pharmaceutic inhibitor Smi-4a significantly reduced the level of lactate production and glucose uptake after cytoplasmic irradiation. In addition, Pim-1 also inhibited AMPK activity, which is a well-characterized negative regulator of glycolysis. Distinct from the glycolysis induced by cytoplasmic irradiation, targeted nuclear irradiation also induced a transient and minimal increase in glycolysis that correlated with increased expression of Hif-1α. In an effort to explore the underline mechanism, we found that inhibition of mitochondria fission using the cell-permeable inhibitor mdivi-1 suppressed the induction of Pim-1, thus confirming Pim-1 upregulation as a downstream effect of mitochondrial dysfunction. Our data show and, for the first time, that cytoplasmic irradiation mediate expression level of Pim-1, which lead to glycolytic shift in SAE cells. Additionally, since glycolysis is frequently linked to cancer cell metabolism, our findings further suggest a role of cytoplasmic damage in promoting neoplastic changes. PMID:28170315

  15. 2011 Vascular Research Initiatives Conference: basic foundations of translational research in vascular disease.

    PubMed

    Ziegler, Kenneth R; Dardik, Alan

    2011-07-01

    The Vascular Research Initiatives Conference (VRIC) is an annual conference organized by the Society for Vascular Surgery (SVS). The 2011 VRIC was held in Chicago (IL, USA) to precede and coincide with the first day of the meeting of the Council on Arteriosclerosis, Thrombosis and Vascular Biology (ATVB) of the American Heart Association. The event is designed to present world class vascular research results, encourage collaboration between vascular surgeons and basic scientists in related disciplines, as well as to stimulate interest in research among aspiring academic vascular surgeons. The 2011 VRIC featured plenary sessions addressing peripheral arterial disease, vascular endothelium and thrombosis, aneurysms, and stem cells and tissue engineering. Recipients of the SVS partner grants with the National Institutes of Health K08 awardees presented their progress reports, and keynote addresses were given by Linda Graham and Frank LoGerfo.

  16. Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33 secreted from impaired vessels in the skin compared to fractionated irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Eun-Jung, E-mail: forejs2@yuhs.ac; Kim, Jun Won, E-mail: JUNWON@yuhs.ac; Yoo, Hyun, E-mail: gochunghee@yuhs.ac

    We have revealed in a porcine skin injury model that eosinophil recruitment was dose-dependently enhanced by a single high-dose irradiation. In this study, we investigated the underlying mechanism of eosinophil-associated skin fibrosis and the effect of high-dose-per-fraction radiation. The dorsal skin of a mini-pig was divided into two sections containing 4-cm{sup 2} fields that were irradiated with 30 Gy in a single fraction or 5 fractions and biopsied regularly over 14 weeks. Eosinophil-related Th2 cytokines such as interleukin (IL)-4, IL-5, and C–C motif chemokine-11 (CCL11/eotaxin) were evaluated by quantitative real-time PCR. RNA-sequencing using 30 Gy-irradiated mouse skin and functional assays in amore » co-culture system of THP-1 and irradiated-human umbilical vein endothelial cells (HUVECs) were performed to investigate the mechanism of eosinophil-mediated radiation fibrosis. Single high-dose-per-fraction irradiation caused pronounced eosinophil accumulation, increased profibrotic factors collagen and transforming growth factor-β, enhanced production of eosinophil-related cytokines including IL-4, IL-5, CCL11, IL-13, and IL-33, and reduced vessels compared with 5-fraction irradiation. IL-33 notably increased in pig and mouse skin vessels after single high-dose irradiation of 30 Gy, as well as in irradiated HUVECs following 12 Gy. Blocking IL-33 suppressed the migration ability of THP-1 cells and cytokine secretion in a co-culture system of THP-1 cells and irradiated HUVECs. Hence, high-dose-per-fraction irradiation appears to enhance eosinophil-mediated fibrotic responses, and IL-33 may be a key molecule operating in eosinophil-mediated fibrosis in high-dose-per fraction irradiated skin. - Highlights: • Single high-dose irradiation aggravates eosinophil-mediated fibrosis through IL-33. • Vascular endothelial cells damaged by high-dose radiation secrete IL-33. • Blocking IL-33 suppressed migration of inflammatory cells and cytokine secretion

  17. Metrics of cellular and vascular infiltration of human acellular dermal matrix in ventral hernia repairs.

    PubMed

    Campbell, Kristin Turza; Burns, Nadja K; Ensor, Joe; Butler, Charles E

    2012-04-01

    Human acellular dermal matrix is used for ventral hernia repair, as it resists infection and remodels by means of surrounding tissue. However, the tissue source and impact of basement membrane on cell and vessel infiltration have not been determined. The authors hypothesized that musculofascia would be the primary tissue source of cells and vessels infiltrating into human acellular dermal matrix and that the basement membrane would inhibit infiltration. Fifty-six guinea pigs underwent inlay human acellular dermal matrix ventral hernia repair with the basement membrane oriented toward or away from the peritoneum. At postoperative weeks 1, 2, or 4, repair sites were completely excised. Histologic and immunohistochemical analyses were performed to quantify cell and vessel density within repair-site zones, including interface (lateral, beneath musculofascia) and center (beneath subcutaneous fat) zones. Cell and vessel quantities were compared as functions of zone, basement membrane orientation, and time. Cellular and vascular infiltration increased over time universally. The interface demonstrated greater mean cell density than the center (weeks 1 and 2, p = 0.01 and p < 0.0001, respectively). Cell density was greater with the basement membrane oriented toward the peritoneum at week 4 (p = 0.02). The interface zone had greater mean vessel density than the center zone at week 4 (p < 0.0001). Orienting the basement membrane toward the peritoneum increased vessel density at week 4 (p = 0.0004). Cellular and vascular infiltration into human acellular dermal matrix for ventral hernia repairs was greater from musculofascia than from subcutaneous fat, and the basement membrane inhibited cellular and vascular infiltration. Human acellular dermal matrix should be placed adjacent to the best vascularizing tissue to improve fibrovascular incorporation.

  18. Cyanidin-3-glucoside attenuates angiotensin II-induced oxidative stress and inflammation in vascular endothelial cells.

    PubMed

    Sivasinprasasn, Sivanan; Pantan, Rungusa; Thummayot, Sarinthorn; Tocharus, Jiraporn; Suksamrarn, Apichart; Tocharus, Chainarong

    2016-10-28

    Angiotensin II (Ang II) causes oxidative stress and vascular inflammation, leading to vascular endothelial cell dysfunction, and is associated with the development of inflammatory cardiovascular diseases such as atherosclerosis. Therefore, interventions of oxidative stress and inflammation may contribute to the reduction of cardiovascular diseases. Cyanidin-3-glucoside (C3G) plays a role in the prevention of oxidative damage in several diseases. Here, we investigated the effect of C3G on Ang II-induced oxidative stress and vascular inflammation in human endothelial cells (EA.hy926). C3G dose-dependently suppressed the free radicals and inhibited the nuclear factor-kappa B (NF-κB) signaling pathway by protecting the degradation of inhibitor of kappa B-alpha (IκB-α), inhibiting the expression and translocation of NF-κB into the nucleus through the down-regulation of NF-κB p65 and reducing the expression of inducible nitric oxide synthase (iNOS). Pretreatment with C3G not only prohibited the NF-κB signaling pathway but also promoted the activity of the nuclear erythroid-related factor 2 (Nrf2) signaling pathway through the upregulation of endogenous antioxidant enzymes. Particularly, we observed that C3G significantly enhanced the production of superoxide dismutase (SOD) and induced the expression of heme oxygenase (HO-1). Our findings confirm that C3G can protect against vascular endothelial cell inflammation induced by AngII. C3G may represent a promising dietary supplement for the prevention of inflammation, thereby decreasing the risk for the development of atherosclerosis. Copyright © 2016. Published by Elsevier Ireland Ltd.

  19. Hydrogen-rich saline attenuates vascular smooth muscle cell proliferation and neointimal hyperplasia by inhibiting reactive oxygen species production and inactivating the Ras-ERK1/2-MEK1/2 and Akt pathways.

    PubMed

    Chen, Yali; Jiang, Jinyao; Miao, Huibing; Chen, Xingjuan; Sun, Xuejun; Li, Yongjun

    2013-03-01

    Hydrogen-rich saline has been reported to prevent neointimal hyperplasia induced by carotid balloon injury. The purpose of the present study was to further investigate the molecular mechanisms underlying this phenomenon. Daily injection of a hydrogen-rich saline solution (HRSS) in rats was employed to study the effect of hydrogen on balloon injury-induced neointimal hyperplasia and the neointima/media ratio was assessed. HRSS significantly decreased the neointima area and neointima/media ratio in a dose-dependent manner. In vitro effects of hydrogen on fetal bovine serum (FBS)-induced vascular smooth muscle cell (VSMC) proliferation were also investigated. Hydrogen-rich medium (HRM) inhibited rat VSMC proliferation and migration induced by 10% FBS. FBS-induced reactive oxygen species (ROS) production and activation of intracellular Ras, MEK1/2, ERK1/2, proliferative cell nuclear antigen (PCNA), Akt were significantly inhibited by HRM. In addition, HRM blocked FBS-induced progression from the G0/G1 to the S-phase and increased the apoptosis rate of VSMCs. These results showed that hydrogen-rich saline was able to attenuate FBS-induced VSMC proliferation and neointimal hyperplasia by inhibiting ROS production and inactivating the Ras-ERK1/2-MEK1/2 and Akt pathways. Thus, HRSS may have potential therapeutic relevance for the prevention of human restenosis.

  20. Effects of the nonsugar fraction of brown sugar on chronic ultraviolet B irradiation-induced photoaging in melanin-possessing hairless mice.

    PubMed

    Sumiyoshi, Maho; Hayashi, Teruaki; Kimura, Yoshiyuki

    2009-04-01

    Brown sugar has been used traditionally for the treatment of skin trouble as a component of soaps or lotions. Symptoms of aging including wrinkles and pigmentation develop earlier in sun-exposed skin than unexposed skin, a phenomenon referred to as photoaging. Ultraviolet B (UVB) radiation is one of the most important environmental factors influencing photoaging. The aim of this study was to clarify whether the nonsugar fraction of brown sugar prevents chronic UVB-induced aging of the skin using melanin-possessing hairless mice. The nonsugar fraction (1% or 3% solution, 50 mul/mouse) was applied topically to the dorsal region every day for 19 weeks. Both solutions prevented an increase in skin thickness and reduction in skin elasticity caused by the UVB. The 3% solution also prevented wrinkles and melanin pigmentation as well as increases in the diameter and length of skin blood vessels. Increases in the expression of matrix metalloproteinase-2 (MMP-2) and vascular endothelial growth factor (VEGF) in UVB-irradiated skin was inhibited by the nonsugar fraction. Prevention of UVB-induced aging of the skin by topical application of the nonsugar fraction of brown sugar may be due to inhibition of increases in MMP-2 and VEGF expression.