DOE Office of Scientific and Technical Information (OSTI.GOV)
Wirth, Brian; Morgan, Dane; Kaoumi, Djamel
2013-12-01
The in-service degradation of reactor core materials is related to underlying changes in the irradiated microstructure. During reactor operation, structural components and cladding experience displacement of atoms by collisions with neutrons at temperatures at which the radiation-induced defects are mobile, leading to microstructure evolution under irradiation that can degrade material properties. At the doses and temperatures relevant to fast reactor operation, the microstructure evolves by dislocation loop formation and growth, microchemistry changes due to radiation-induced segregation, radiation-induced precipitation, destabilization of the existing precipitate structure, and in some cases, void formation and growth. These processes do not occur independently; rather, theirmore » evolution is highly interlinked. Radiationinduced segregation of Cr and existing chromium carbide coverage in irradiated alloy T91 track each other closely. The radiation-induced precipitation of Ni-Si precipitates and RIS of Ni and Si in alloys T91 and HCM12A are likely related. Neither the evolution of these processes nor their coupling is understood under the conditions required for materials performance in fast reactors (temperature range 300-600°C and doses beyond 200 dpa). Further, predictive modeling is not yet possible as models for microstructure evolution must be developed along with experiments to characterize these key processes and provide tools for extrapolation. To extend the range of operation of nuclear fuel cladding and structural materials in advanced nuclear energy and transmutation systems to that required for the fast reactor, the irradiation-induced evolution of the microstructure, microchemistry, and the associated mechanical properties at relevant temperatures and doses must be understood. Predictive modeling relies on an understanding of the physical processes and also on the development of microstructure and microchemical models to describe their evolution under irradiation. This project will focus on modeling microstructural and microchemical evolution of irradiated alloys by performing detailed modeling of such microstructure evolution processes coupled with well-designed in situ experiments that can provide validation and benchmarking to the computer codes. The broad scientific and technical objectives of this proposal are to evaluate the microstructure and microchemical evolution in advanced ferritic/martensitic and oxide dispersion strengthened (ODS) alloys for cladding and duct reactor materials under long-term and elevated temperature irradiation, leading to improved ability to model structural materials performance and lifetime. Specifically, we propose four research thrusts, namely Thrust 1: Identify the formation mechanism and evolution for dislocation loops with Burgers vector of a<100> and determine whether the defect microstructure (predominately dislocation loop/dislocation density) saturates at high dose. Thrust 2: Identify whether a threshold irradiation temperature or dose exists for the nucleation of growing voids that mark the beginning of irradiation-induced swelling, and begin to probe the limits of thermal stability of the tempered Martensitic structure under irradiation. Thrust 3: Evaluate the stability of nanometer sized Y- Ti-O based oxide dispersion strengthened (ODS) particles at high fluence/temperature. Thrust 4: Evaluate the extent to which precipitates form and/or dissolve as a function of irradiation temperature and dose, and how these changes are driven by radiation induced segregation and microchemical evolutions and determined by the initial microstructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang; Sun, Xin
Complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field (PF) method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the PF method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiated nuclearmore » materials are reviewed. The review shows that 1) FP models can correctly describe important phenomena such as spatial dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; 2) The PF method can qualitatively and quantitatively simulate 2-D and 3-D microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and 3) The FP method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the PF method, as applied to irradiation effects in nuclear materials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang; Sun, Xin
Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less
Li, Yulan; Hu, Shenyang; Sun, Xin; ...
2017-04-14
Here, complex microstructure changes occur in nuclear fuel and structural materials due to the extreme environments of intense irradiation and high temperature. This paper evaluates the role of the phase field method in predicting the microstructure evolution of irradiated nuclear materials and the impact on their mechanical, thermal, and magnetic properties. The paper starts with an overview of the important physical mechanisms of defect evolution and the significant gaps in simulating microstructure evolution in irradiated nuclear materials. Then, the phase field method is introduced as a powerful and predictive tool and its applications to microstructure and property evolution in irradiatedmore » nuclear materials are reviewed. The review shows that (1) Phase field models can correctly describe important phenomena such as spatial-dependent generation, migration, and recombination of defects, radiation-induced dissolution, the Soret effect, strong interfacial energy anisotropy, and elastic interaction; (2) The phase field method can qualitatively and quantitatively simulate two-dimensional and three-dimensional microstructure evolution, including radiation-induced segregation, second phase nucleation, void migration, void and gas bubble superlattice formation, interstitial loop evolution, hydrate formation, and grain growth, and (3) The Phase field method correctly predicts the relationships between microstructures and properties. The final section is dedicated to a discussion of the strengths and limitations of the phase field method, as applied to irradiation effects in nuclear materials.« less
Jeong, G. Y.; Kim, Yeon Soo; Jamison, L. M.; ...
2017-02-20
U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes such as deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling caused by a combination of fuel particle swelling and interaction layer growth. Five miniplates with well-recorded fabrication data and irradiation conditions were selected, and their PIE data was analyzed. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. Using the simulation results shear stress, effective stress and hydrostatic stress exerted on both themore » fuel particles and the Al matrix were determined. The effects of fabrication and irradiation variables on stress-induced microstructural evolutions, such as pore growth in the interaction layers and Al matrix rupture, were investigated. The observed microstructural changes were consistent with the calculated stress distribution in the meat.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeong, G. Y.; Kim, Yeon Soo; Jamison, L. M.
U-Mo/Al dispersion fuel irradiated to high burnup at high power (high fission rate) exhibited microstructural changes such as deformation of the fuel particles, pore growth, and rupture of the Al matrix. The driving force for these microstructural changes was meat swelling caused by a combination of fuel particle swelling and interaction layer growth. Five miniplates with well-recorded fabrication data and irradiation conditions were selected, and their PIE data was analyzed. ABAQUS finite element analysis (FEA) was utilized to simulate the microstructural evolution of the plates. Using the simulation results shear stress, effective stress and hydrostatic stress exerted on both themore » fuel particles and the Al matrix were determined. The effects of fabrication and irradiation variables on stress-induced microstructural evolutions, such as pore growth in the interaction layers and Al matrix rupture, were investigated. The observed microstructural changes were consistent with the calculated stress distribution in the meat.« less
The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels
NASA Astrophysics Data System (ADS)
Getto, E.; Vancoevering, G.; Was, G. S.
2017-02-01
Understanding the void swelling and phase evolution of reactor structural materials at very high damage levels is essential to maintaining safety and longevity of components in Gen IV fast reactors. A combination of ion irradiation and modeling was utilized to understand the microstructure evolution of ferritic-martensitic alloy HT9 at high dpa. Self-ion irradiation experiments were performed on alloy HT9 to determine the co-evolution of voids, dislocations and precipitates up to 650 dpa at 460 °C. Modeling of microstructure evolution was conducted using the modified Radiation Induced Microstructure Evolution (RIME) model, which utilizes a mean field rate theory approach with grouped cluster dynamics. Irradiations were performed with 5 MeV raster-scanned Fe2+ ions on samples pre-implanted with 10 atom parts per million He. The swelling, dislocation and precipitate evolution at very high dpa was determined using Analytical Electron Microscopy in Scanning Transmission Electron Microscopy (STEM) mode. Experimental results were then interpreted using the RIME model. A microstructure consisting only of dislocations and voids is insufficient to account for the swelling evolution observed experimentally at high damage levels in a complicated microstructure such as irradiated alloy HT9. G phase was found to have a minimal effect on either void or dislocation evolution. M2X played two roles; a variable biased sink for defects, and as a vehicle for removal of carbon from solution, thus promoting void growth. When accounting for all microstructure interactions, swelling at high damage levels is a dynamic process that continues to respond to other changes in the microstructure as long as they occur.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Stoller, Roger E.; Field, Kevin G.
Extension of light water reactors' useful life will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), which will lead to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants, were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6–120 dpa at 275–375°C were either generated from thismore » work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher radiation doses.« less
Tan, Lizhen; Stoller, Roger E.; Field, Kevin G.; ...
2015-12-11
Extension of light water reactors' useful life will expose austenitic internal core components to irradiation damage levels beyond 100 displacements per atom (dpa), which will lead to profound microstructural evolution and consequent degradation of macroscopic properties. Microstructural evolution, including Frank loops, cavities, precipitates, and segregation at boundaries and the resultant radiation hardening in type 304 and 316 stainless steel (SS) variants, were studied in this work via experimental characterization and multiple simulation methods. Experimental data for up to 40 heats of type 304SS and 316SS variants irradiated in different reactors to 0.6–120 dpa at 275–375°C were either generated from thismore » work or collected from literature reports. These experimental data were then combined with models of Frank loop and cavity evolution, computational thermodynamics and precipitation, and ab initio and rate theory integrated radiation-induced segregation models to provide insights into microstructural evolution and degradation at higher radiation doses.« less
Wirth, Brian D.; Hu, Xunxiang; Kohnert, Aaron; ...
2015-03-02
Exposure of metallic structural materials to irradiation environments results in significant microstructural evolution, property changes, and performance degradation, which limits the extended operation of current generation light water reactors and restricts the design of advanced fission and fusion reactors. Further, it is well recognized that these irradiation effects are a classic example of inherently multiscale phenomena and that the mix of radiation-induced features formed and the corresponding property degradation depend on a wide range of material and irradiation variables. This inherently multiscale evolution emphasizes the importance of closely integrating models with high-resolution experimental characterization of the evolving radiation-damaged microstructure. Lastly,more » this article provides a review of recent models of the defect microstructure evolution in irradiated body-centered cubic materials, which provide good agreement with experimental measurements, and presents some outstanding challenges, which will require coordinated high-resolution characterization and modeling to resolve.« less
Microstructural examination of V-(3-6%)Cr-(3-5%)Ti irradiated in the ATR-A1 experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelles, D.S.
Microstructural examination results are reported for four heats of V-(3-6%)Cr-(3-5%)Ti irradiated in the ATR-A1 experiment to {approximately}4 dpa at {approximately}200 and 300 C to provide an understanding of the microstructural evolution that may be associated with degradation of mechanical properties. Fine precipitates were observed in high density intermixed with small defect clusters for all conditions examined following the irradiation. The irradiation-induced precipitation does not appear to be affected by preirradiation heat treatment or composition.
Effect of heavy ion irradiation on microstructural evolution in CF8 cast austenitic stainless steel
Chen, Wei-Ying; Li, Meimei; Kirk, Marquis A.; ...
2015-08-21
The microstructural evolution in ferrite and austenitic in cast austenitic stainless steel (CASS) CF8, as received or thermally aged at 400 °C for 10,000 h, was followed under TEM with in situ irradiation of 1 MeV Kr ions at 300 and 350 °C to a fluence of 1.9 × 10 15 ions/cm 2 (~3 dpa) at the IVEM-Tandem Facility. For the unaged CF8, the irradiation-induced dislocation loops appeared at a much lower dose in the austenite than in the ferrite. At the end dose, the austenite formed a well-developed dislocation network microstructure, while the ferrite exhibited an extended dislocation structuremore » as line segments. Compared to the unaged CF8, the aged specimen appeared to have lower rate of damage accumulation. The rate of microstructural evolution under irradiation in the ferrite was significantly lower in the aged specimen than in the unaged. Finally, we attributed this difference to the different initial microstructures in the unaged and aged specimens, which implies that thermal aging and irradiation are not independent but interconnected damage processes.« less
Li, Nan; Demkowicz, Michael J.; Mara, Nathan A.
2017-09-12
In this paper, we summarize recent work on helium (He) interaction with various heterophase boundaries under high temperature irradiation. We categorize the ion-affected material beneath the He-implanted surface into three regions of depth, based on the He/vacancy ratio. The differing defect structures in these three regions lead to the distinct temperature sensitivity of He-induced microstructure evolution. The effect of He bubbles or voids on material mechanical performance is explored. Finally, overall design guidelines for developing materials where He-induced damage can be mitigated in materials are discussed.
Irradiation Induced Microstructure Evolution in Nanostructured Materials: A Review
Liu, Wenbo; Ji, Yanzhou; Tan, Pengkang; Zang, Hang; He, Chaohui; Yun, Di; Zhang, Chi; Yang, Zhigang
2016-01-01
Nanostructured (NS) materials may have different irradiation resistance from their coarse-grained (CG) counterparts. In this review, we focus on the effect of grain boundaries (GBs)/interfaces on irradiation induced microstructure evolution and the irradiation tolerance of NS materials under irradiation. The features of void denuded zones (VDZs) and the unusual behavior of void formation near GBs/interfaces in metals due to the interactions between GBs/interfaces and irradiation-produced point defects are systematically reviewed. Some experimental results and calculation results show that NS materials have enhanced irradiation resistance, due to their extremely small grain sizes and large volume fractions of GBs/interfaces, which could absorb and annihilate the mobile defects produced during irradiation. However, there is also literature reporting reduced irradiation resistance or even amorphization of NS materials at a lower irradiation dose compared with their bulk counterparts, since the GBs are also characterized by excess energy (compared to that of single crystal materials) which could provide a shift in the total free energy that will lead to the amorphization process. The competition of these two effects leads to the different irradiation tolerance of NS materials. The irradiation-induced grain growth is dominated by irradiation temperature, dose, ion flux, character of GBs/interface and nanoprecipitates, although the decrease of grain sizes under irradiation is also observed in some experiments. PMID:28787902
Microstructural evolution of neutron-irradiated T91 and NF616 to ~4.3 dpa at 469 °C
Tan, Lizhen; Kim, B. K.; Yang, Ying; ...
2017-05-30
Ferritic-martensitic steels such as T91 and NF616 are candidate materials for several nuclear applications. Here, this study evaluates radiation resistance of T91 and NF616 by examining their microstructural evolutions and hardening after the samples were irradiated in the Advanced Test Reactor to ~4.3 displacements per atom (dpa) at an as-run temperature of 469 °C. In general, this irradiation did not result in significant difference in the radiation-induced microstructures between the two steels. Compared to NF616, T91 had a higher number density of dislocation loops and a lower level of radiation-induced segregation, together with a slightly higher radiation-hardening. Unlike dislocation loopsmore » developed in both steels, radiation-induced cavities were only observed in T91 but remained small with sub-10 nm sizes. Lastly, other than the relatively stable M 23C 6, a new phase (likely Sigma phase) was observed in T91 and radiation-enhanced MX → Z phase transformation was identified in NF616. Laves phase was not observed in the samples.« less
Mesoscale modeling of solute precipitation and radiation damage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Schwen, Daniel; Ke, Huibin
2015-09-01
This report summarizes the low length scale effort during FY 2014 in developing mesoscale capabilities for microstructure evolution in reactor pressure vessels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation-induced defect accumulation and irradiation-enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering-scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development of mesoscale capabilities for defect accumulationmore » and solute precipitation are summarized. Atomic-scale efforts that supply information for the mesoscale capabilities are also included.« less
NASA Astrophysics Data System (ADS)
Ulmer, Christopher J.; Motta, Arthur T.
2017-11-01
The development of TEM-visible damage in materials under irradiation at cryogenic temperatures cannot be explained using classical rate theory modeling with thermally activated reactions since at low temperatures thermal reaction rates are too low. Although point defect mobility approaches zero at low temperature, the thermal spikes induced by displacement cascades enable some atom mobility as it cools. In this work a model is developed to calculate "athermal" reaction rates from the atomic mobility within the irradiation-induced thermal spikes, including both displacement cascades and electronic stopping. The athermal reaction rates are added to a simple rate theory cluster dynamics model to allow for the simulation of microstructure evolution during irradiation at cryogenic temperatures. The rate theory model is applied to in-situ irradiation of ZrC and compares well at cryogenic temperatures. The results show that the addition of the thermal spike model makes it possible to rationalize microstructure evolution in the low temperature regime.
Investigation on demagnetization of Nd2Fe14B permanent magnets induced by irradiation
NASA Astrophysics Data System (ADS)
Li, Zhefu; Jia, Yanyan; Liu, Renduo; Xu, Yuhai; Wang, Guanghong; Xia, Xiaobin
2017-12-01
Nd2Fe14B is an important component of insertion devices, which are used in synchrotron radiation sources, and could be demagnetized by irradiation. In the present study, the Monte Carlo code FLUKA was used to analyze the irradiation field of Nd2Fe14B, and it was confirmed that the main demagnetization particle was neutron. Nd2Fe14B permanent magnet samples were irradiated by Ar ions at different doses to simulate neutron irradiation damage. The hysteresis loops were measured using a vibrating sample magnetometer, and the microstructure evolutions were characterized by transmission electron microscopy. Moreover, the relationship between them was discussed. The results indicate that the decrease in saturated magnetization is caused by the changes in microstructure. The evolution of single crystals into an amorphous structure is the reason for the demagnetization phenomenon of Nd2Fe14B permanent magnets when considering its microscopic structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Idrees, Yasir; Francis, Elisabeth M.; Yao, Zhongwen
2015-05-14
We report here the microstructural changes occurring in the zirconium alloy Excel (Zr-3.5 wt% Sn-0.8Nb-0.8Mo-0.2Fe) during heavy ion irradiation. In situ irradiation experiments were conducted at reactor operating temperatures on two Zr Excel alloy microstructures with different states of alloying elements, with the states achieved by different solution heat treatments. In the first case, the alloying elements were mostly concentrated in the beta (beta) phase, whereas, in the second case, large Zr-3(Mo,Nb,Fe)(4) secondary phase precipitates (SPPs) were grown in the alpha (alpha) phase by long term aging. The heavy ion induced damage and resultant compositional changes were examined using transmissionmore » electron microscopy (TEM) in combination with scanning transmission electron microscope (STEM)-energy dispersive x-ray spectroscopy (EDS) mapping. Significant differences were seen in microstructural evolution between the two different microstructures that were irradiated under similar conditions. Nucleation and growth of < c >-component loops and their dependence on the alloying elements are a major focus of the current investigation. It was observed that the < c >-component loops nucleate readily at 100, 300, and 400 degrees C after a threshold incubation dose (TID), which varies with irradiation temperature and the state of alloying elements. It was found that the TID for the formation of < c >-component loops increases with decrease in irradiation temperature. Alloying elements that are present in the form of SPPs increase the TID compared to when they are in the beta phase solid solution. Dose and temperature dependence of loop size and density are presented. Radiation induced redistribution and clustering of alloying elements (Sn, Mo, and Fe) have been observed and related to the formation of < c >-component loops. It has been shown that at the higher temperature tests, irradiation induced dissolution of precipitates occurs whereas irradiation induced amorphization occurs at 100 degrees C. Furthermore, dose and temperature seem to be the main factors governing the dissolution of SPPs and redistribution of alloying elements, which in turn controls the nucleation and growth of < c >-component loops. The correlation between the microstructural evolution and microchemistry has been found by EDS and is discussed in detail.« less
Lower Length Scale Model Development for Embrittlement of Reactor Presure Vessel Steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yongfeng; Schwen, Daniel; Chakraborty, Pritam
2016-09-01
This report summarizes the lower-length-scale effort during FY 2016 in developing mesoscale capabilities for microstructure evolution, plasticity and fracture in reactor pressure vessel steels. During operation, reactor pressure vessels are subject to hardening and embrittlement caused by irradiation induced defect accumulation and irradiation enhanced solute precipitation. Both defect production and solute precipitation start from the atomic scale, and manifest their eventual effects as degradation in engineering scale properties. To predict the property degradation, multiscale modeling and simulation are needed to deal with the microstructure evolution, and to link the microstructure feature to material properties. In this report, the development ofmore » mesoscale capabilities for defect accumulation and solute precipitation are summarized. A crystal plasticity model to capture defect-dislocation interaction and a damage model for cleavage micro-crack propagation is also provided.« less
Simulated Fission Gas Behavior in Silicide Fuel at LWR Conditions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Mo, Kun; Yacout, Abdellatif
As a promising candidate for the accident tolerant fuel (ATF) used in light water reactors (LWRs), the fuel performance of uranium silicide (U 3Si 2) at LWR conditions needs to be well-understood. However, existing experimental post-irradiation examination (PIE) data are limited to the research reactor conditions, which involve lower fuel temperature compared to LWR conditions. This lack of appropriate experimental data significantly affects the development of fuel performance codes that can precisely predict the microstructure evolution and property degradation at LWR conditions, and therefore evaluate the qualification of U 3Si 2 as an AFT for LWRs. Considering the high cost,more » long timescale, and restrictive access of the in-pile irradiation experiments, this study aims to utilize ion irradiation to simulate the inpile behavior of the U 3Si 2 fuel. Both in situ TEM ion irradiation and ex situ high-energy ATLAS ion irradiation experiments were employed to simulate different types of microstructure modifications in U 3Si 2. Multiple PIE techniques were used or will be used to quantitatively analyze the microstructure evolution induced by ion irradiation so as to provide valuable reference for the development of fuel performance code prior to the availability of the in-pile irradiation data.« less
Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum
NASA Astrophysics Data System (ADS)
Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; Garrison, Lauren M.; Hu, Xunxiang; Snead, Lance L.; Katoh, Yutai
2017-07-01
Microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ∼90-800 °C to 0.03-4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ∼90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ∼1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- and Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Snead, Lance; Contescu, Christian I.; Byun, Thak Sang
2016-08-01
The nuclear graphite, IG-110, was irradiated with and without a compressive load of 5 MPa at ~400 *C up to 9.3E25 n/m2 (E > 0.1 MeV). Following irradiation physical properties were studied to compare the effect of graphite irradiation on microstructure developed under compression and in stress-free conditions. Properties included: dimensional change, thermal conductivity, dynamic modulus, and CTE. The effect of stress on open internal porosity was determined through nitrogen adsorption. The IG-110 graphite experienced irradiation-induced creep that is differentiated from irradiation-induced swelling. Irradiation under stress resulted in somewhat greater thermal conductivity and coefficient of thermal expansion. While a significantmore » increase in dynamic modulus occurs, no differentiation between materials irradiated with and without compressive stress was observed. Nitrogen adsorption analysis suggests a difference in pore evolution in the 0.3e40 nm range for graphite irradiated with and without stress, but this evolution is seen to be a small contributor to the overall dimensional change.« less
Snead, Lance L.; Contescu, C. I.; Byun, T. S.; ...
2016-04-23
The nuclear graphite, IG-110, was irradiated with and without a compressive load of 5 MPa at ~400 C up to 9.3x10 25 n/m 2 (E>0.1 MeV.) Following irradiation physical properties were studied to compare the effect of graphite irradiation on microstructure developed under compression and in stress-free condition. Properties included: dimensional change, thermal conductivity, dynamic modulus, and CTE. The effect of stress on open internal porosity was determined through nitrogen adsorption. The IG-110 graphite experienced irradiation-induced creep that is differentiated from irradiation-induced swelling. Irradiation under stress resulted in somewhat greater thermal conductivity and coefficient of thermal expansion. While a significantmore » increase in dynamic modulus occurs, no differentiation between materials irradiated with and without compressive stress was observed. Nitrogen adsorption analysis suggests a difference in pore evolution in the 0.3-40 nm range for graphite irradiated with and without stress, but this evolution is seen to be a small contributor to the overall dimensional change.« less
Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; ...
2016-01-01
The tungsten plasma-facing components of fusion reactors will experience an extreme environment including high temperature, intense particle fluxes of gas atoms, high-energy neutron irradiation, and significant cyclic stress loading. Irradiation-induced defect accumulation resulting in severe thermo-mechanical property degradation is expected. For this reason, and because of the lack of relevant fusion neutron sources, the fundamentals of tungsten radiation damage must be understood through coordinated mixed-spectrum fission reactor irradiation experiments and modeling. In this study, high-purity (110) single-crystal tungsten was examined by positron annihilation spectroscopy and transmission electron microscopy following low-temperature (~90 °C) and low-dose (0.006 and 0.03 dpa) mixed-spectrum neutronmore » irradiation and subsequent isochronal annealing at 400, 500, 650, 800, 1000, 1150, and 1300 °C. The results provide insights into microstructural and defect evolution, thus identifying the mechanisms of different annealing behavior. Following 1 h annealing, ex situ characterization of vacancy defects using positron lifetime spectroscopy and coincidence Doppler broadening was performed. The vacancy cluster size distributions indicated intense vacancy clustering at 400 °C with significant damage recovery around 1000 °C. Coincidence Doppler broadening measurements confirm the trend of the vacancy defect evolution, and the S–W plots indicate that only a single type of vacancy cluster is present. Furthermore, transmission electron microscopy observations at selected annealing conditions provide supplemental information on dislocation loop populations and visible void formation. This microstructural information is consistent with the measured irradiation-induced hardening at each annealing stage. This provides insight into tungsten hardening and embrittlement due to irradiation-induced matrix defects.« less
In situ TEM of radiation effects in complex ceramics.
Lian, Jie; Wang, L M; Sun, Kai; Ewing, Rodney C
2009-03-01
In situ transmission electron microscopy (TEM) has been extensively applied to study radiation effects in a wide variety of materials, such as metals, ceramics and semiconductors and is an indispensable tool in obtaining a fundamental understanding of energetic beam-matter interactions, damage events, and materials' behavior under intense radiation environments. In this article, in situ TEM observations of radiation effects in complex ceramics (e.g., oxides, silicates, and phosphates) subjected to energetic ion and electron irradiations have been summarized with a focus on irradiation-induced microstructural evolution, changes in microchemistry, and the formation of nanostructures. New results for in situ TEM observation of radiation effects in pyrochlore, A(2)B(2)O(7), and zircon, ZrSiO(4), subjected to multiple beam irradiations are presented, and the effects of simultaneous irradiations of alpha-decay and beta-decay on the microstructural evolution of potential nuclear waste forms are discussed. Furthermore, in situ TEM results of radiation effects in a sodium borosilicate glass subjected to electron-beam exposure are introduced to highlight the important applications of advanced analytical TEM techniques, including Z-contrast imaging, energy filtered TEM (EFTEM), and electron energy loss spectroscopy (EELS), in studying radiation effects in materials microstructural evolution and microchemical changes. By combining ex situ TEM and advanced analytical TEM techniques with in situ TEM observations under energetic beam irradiations, one can obtain invaluable information on the phase stability and response behaviors of materials under a wide range of irradiation conditions. (c) 2009 Wiley-Liss, Inc.
Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum
Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun; ...
2017-04-13
Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less
Microstructural evolution of pure tungsten neutron irradiated with a mixed energy spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyanagi, Takaaki; Kumar, N. A. P. Kiran; Hwang, Taehyun
Here, microstructures of single-crystal bulk tungsten (W) and polycrystalline W foil with a strong grain texture were investigated using transmission electron microscopy following neutron irradiation at ~90–800 °C to 0.03–4.6 displacements per atom (dpa) in the High Flux Isotope Reactor with a mixed energy spectrum. The dominant irradiation defects were dislocation loops and small clusters at ~90 °C. Additional voids were formed in W irradiated at above 460 °C. Voids and precipitates involving transmutation rhenium and osmium were the dominant defects at more than ~1 dpa. We found a new phenomenon of microstructural evolution in irradiated polycrystalline W: Re- andmore » Os-rich precipitation along grain boundaries. Comparison of results between this study and previous studies using different irradiation facilities revealed that the microstructural evolution of pure W is highly dependent on the neutron energy spectrum in addition to the irradiation temperature and dose.« less
Microstructural evolution in fast-neutron-irradiated austenitic stainless steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoller, R.E.
1987-12-01
The present work has focused on the specific problem of fast-neutron-induced radiation damage to austenitic stainless steels. These steels are used as structural materials in current fast fission reactors and are proposed for use in future fusion reactors. Two primary components of the radiation damage are atomic displacements (in units of displacements per atom, or dpa) and the generation of helium by nuclear transmutation reactions. The radiation environment can be characterized by the ratio of helium to displacement production, the so-called He/dpa ratio. Radiation damage is evidenced microscopically by a complex microstructural evolution and macroscopically by density changes and alteredmore » mechanical properties. The purpose of this work was to provide additional understanding about mechanisms that determine microstructural evolution in current fast reactor environments and to identify the sensitivity of this evolution to changes in the He/dpa ratio. This latter sensitivity is of interest because the He/dpa ratio in a fusion reactor first wall will be about 30 times that in fast reactor fuel cladding. The approach followed in the present work was to use a combination of theoretical and experimental analysis. The experimental component of the work primarily involved the examination by transmission electron microscopy of specimens of a model austenitic alloy that had been irradiated in the Oak Ridge Research Reactor. A major aspect of the theoretical work was the development of a comprehensive model of microstructural evolution. This included explicit models for the evolution of the major extended defects observed in neutron irradiated steels: cavities, Frank faulted loops and the dislocation network. 340 refs., 95 figs., 18 tabs.« less
A phase field model for segregation and precipitation induced by irradiation in alloys
NASA Astrophysics Data System (ADS)
Badillo, A.; Bellon, P.; Averback, R. S.
2015-04-01
A phase field model is introduced to model the evolution of multicomponent alloys under irradiation, including radiation-induced segregation and precipitation. The thermodynamic and kinetic components of this model are derived using a mean-field model. The mobility coefficient and the contribution of chemical heterogeneity to free energy are rescaled by the cell size used in the phase field model, yielding microstructural evolutions that are independent of the cell size. A new treatment is proposed for point defect clusters, using a mixed discrete-continuous approach to capture the stochastic character of defect cluster production in displacement cascades, while retaining the efficient modeling of the fate of these clusters using diffusion equations. The model is tested on unary and binary alloy systems using two-dimensional simulations. In a unary system, the evolution of point defects under irradiation is studied in the presence of defect clusters, either pre-existing ones or those created by irradiation, and compared with rate theory calculations. Binary alloys with zero and positive heats of mixing are then studied to investigate the effect of point defect clustering on radiation-induced segregation and precipitation in undersaturated solid solutions. Lastly, irradiation conditions and alloy parameters leading to irradiation-induced homogeneous precipitation are investigated. The results are discussed in the context of experimental results reported for Ni-Si and Al-Zn undersaturated solid solutions subjected to irradiation.
Microstructural evolution of neutron irradiated 3C-SiC
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric
The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.
Microstructural evolution of neutron irradiated 3C-SiC
Sprouster, David J.; Koyanagi, Takaaki; Dooryhee, Eric; ...
2017-03-18
The microstructural response of neutron irradiated 3C-SiC have been investigated over a wide irradiation temperature and fluence range via qualitative and quantitative synchrotron-based X-ray diffraction characterization. Here, we identify several neutron fluence- and irradiation temperature-dependent changes in the microstructure, and directly highlight the specific defects introduced through the course of irradiation. By quantifying the microstructure, we aim to develop a more detailed understanding of the radiation response of SiC. Such studies are important to build mechanistic models of material performance and to understand the susceptibility of various microstructures to radiation damage for advanced energy applications.
NASA Astrophysics Data System (ADS)
Okuniewski, Maria Ann
Ferritic-martensitic steels have been identified as candidate structural materials for Generation IV reactors, fusion systems, and accelerator driven systems (ADS). These steels have been selected because of their superior radiation resistance to void swelling, irradiation creep, and helium (He) and hydrogen (H) embrittlement at higher temperatures (T/Tm > 0.4). In fusion and ADS reactors the structural materials will be subjected to irradiation damage, as well as the introduction of He and H. The He and H can be introduced via (n,alpha) and (n,p) threshold reactions, respectively. Also protons can be directly implanted from the beam in an ADS. In fusion and ADS environments the He generation is approximately 10 appm/dpa and 150 appm/dpa. The H generation is approximately three to ten times higher than He production in ADS environments. The impact of these large generation rates of He and H impurities on microstructural evolution during irradiation is not well understood. The irradiation-induced microstructural evolution and its relationship to mechanical properties in body-centered cubic (bcc) iron (Fe) with and without He was systematically investigated. The bcc Fe was selected as a simplified material to serve as a basis for a reactor structural material that was exposed to varying He-to-damage ratios to simulate fusion (10 appm/dpa) and ADS (150 appm/dpa) environments. Through utilizing relatively pure, single crystal, bcc Fe, microstructural and mechanical properties effects from alloying elements can be reduced, if not eliminated. Ion irradiations were carried out at two temperature regimes (300 and 450°C). A coordinated group of experiments and simulations were carried out. Following specimen irradiations, the resultant microstructure and mechanical properties were evaluated with both non-destructive and destructive experimental techniques. The experimental techniques included positron annihilation spectroscopy (PAS), specifically, Doppler broadening spectroscopy (DBS) and positron annihilation lifetime spectroscopy (PALS); in-situ and ex-situ transmission electron microscopy (TEM), nanoindentation, and atomic force microscopy (AFM). Kinetic lattice Monte Carlo (KLMC) was selected as the modeling technique since it has the capability of producing mesoscale results that can be directly compared to the length and time scales of the experimental work. ATomic SUPerposition (ATSUP) was utilized to calculate positron lifetimes and W parameters in Fe as a function of vacancy concentration. The results of the experiments and simulations were directly compared and related. The major findings included: (1) A link was established between the irradiated microstructure and its impact on mechanical properties. This was achieved through the quantitative evaluation of the ex-situ TEM defect analyses and the relationship of nanohardness to yield strength. The microstructural results from KMC modeling were also related to the mechanical properties through the Dispersed Barrier Model. (2) KMC was identified as a complementary technique for microstructural evaluation since it resulted in a distribution of defects that were not visible via TEM, however they are known to be present based on the PAS results. (3) PAS results and KMC simulations were compared with ATSUP calculations to quantify defect size versus positron lifetime.
Microstructural evolution of NF709 (20Cr–25Ni–1.5MoNbTiN) under neutron irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kim, Byoungkoo; Tan, Lizhen; Xu, C.
In this study, because of its superior creep and corrosion resistance as compared with general austenitic stainless steels, NF709 has emerged as a candidate structural material for advanced nuclear reactors. To obtain fundamental information about the radiation resistance of this material, this study examined the microstructural evolution of NF709 subjected to neutron irradiation to 3 displacements per atom at 500 °C. Transmission electron microscopy, scanning electron microscopy, and high-energy x-ray diffraction were employed to characterize radiation-induced segregation, Frank loops, voids, as well as the formation and reduction of precipitates. Radiation hardening of ~76% was estimated by nanoindentation, approximately consistent withmore » the calculation according to the dispersed barrier-hardening model, suggesting Frank loops as the primary hardening source.« less
Microstructural evolution of NF709 (20Cr–25Ni–1.5MoNbTiN) under neutron irradiation
Kim, Byoungkoo; Tan, Lizhen; Xu, C.; ...
2015-12-30
In this study, because of its superior creep and corrosion resistance as compared with general austenitic stainless steels, NF709 has emerged as a candidate structural material for advanced nuclear reactors. To obtain fundamental information about the radiation resistance of this material, this study examined the microstructural evolution of NF709 subjected to neutron irradiation to 3 displacements per atom at 500 °C. Transmission electron microscopy, scanning electron microscopy, and high-energy x-ray diffraction were employed to characterize radiation-induced segregation, Frank loops, voids, as well as the formation and reduction of precipitates. Radiation hardening of ~76% was estimated by nanoindentation, approximately consistent withmore » the calculation according to the dispersed barrier-hardening model, suggesting Frank loops as the primary hardening source.« less
NASA Astrophysics Data System (ADS)
Dickerson, Clayton A.
The materials TiC and TiN have been identified as potential candidate materials for advanced coated nuclear fuel components for the gas-cooled fast reactor (GFR). While a number of their thermal and mechanical properties have been studied, little is known about how these ceramics respond to particle irradiation. The goal of this study was to investigate the radiation effects in TiC and TiN by analyzing the irradiated microstructures and mechanical properties. Irradiations of TiC and TiN were conducted with 2.6 MeV protons at the University of Wisconsin -- Madison to simulate proposed conditions expected in a reactor. Each material was subjected to three incident proton fluences resulting in doses of ˜0.2 dpa to ˜1 dpa at three temperatures, 600°C, 800°C, and 900°C. Post irradiation examination included microstructural analysis via TEM, lattice parameter determinations with XRD, and mechanical property measurements with micro indentation hardness and fracture toughness tests. The predominant irradiation induced aggregate defects found by high resolution TEM and diffraction contrast TEM in both irradiated TiC and TiN were interstitial faulted dislocation loops. Only circular loops were identified in TiC while both circular and triangular loops were present in TiN. The influences on the microstructural evolution from a high inherent density of dislocations and high porosity were also determined. The strains resulting from the development of the defective microstructures were measured with XRD and shown to be highly dependent on the density of dislocation loops. Maximum strains for the irradiated samples were on the order of 0.5%. Measurements of the fracture toughness of Tic samples were made by ion milling the surface of the samples to create micro cantilever beams which were subsequently fractured by nano indentation. The formation of high densities of dislocation loops in the irradiated samples was found to significantly decrease the material's fracture toughness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Yulan; Hu, Shenyang Y.; Sun, Xin
2011-06-15
Microstructure evolution kinetics in irradiated materials has strongly spatial correlation. For example, void and second phases prefer to nucleate and grow at pre-existing defects such as dislocations, grain boundaries, and cracks. Inhomogeneous microstructure evolution results in inhomogeneity of microstructure and thermo-mechanical properties. Therefore, the simulation capability for predicting three dimensional (3-D) microstructure evolution kinetics and its subsequent impact on material properties and performance is crucial for scientific design of advanced nuclear materials and optimal operation conditions in order to reduce uncertainty in operational and safety margins. Very recently the meso-scale phase-field (PF) method has been used to predict gas bubblemore » evolution, void swelling, void lattice formation and void migration in irradiated materials,. Although most results of phase-field simulations are qualitative due to the lake of accurate thermodynamic and kinetic properties of defects, possible missing of important kinetic properties and processes, and the capability of current codes and computers for large time and length scale modeling, the simulations demonstrate that PF method is a promising simulation tool for predicting 3-D heterogeneous microstructure and property evolution, and providing microstructure evolution kinetics for higher scale level simulations of microstructure and property evolution such as mean field methods. This report consists of two parts. In part I, we will present a new phase-field model for predicting interstitial loop growth kinetics in irradiated materials. The effect of defect (vacancy/interstitial) generation, diffusion and recombination, sink strength, long-range elastic interaction, inhomogeneous and anisotropic mobility on microstructure evolution kinetics is taken into account in the model. The model is used to study the effect of elastic interaction on interstitial loop growth kinetics, the interstitial flux, and sink strength of interstitial loop for interstitials. In part II, we present a generic phase field model and discuss the thermodynamic and kinetic properties in phase-field models including the reaction kinetics of radiation defects and local free energy of irradiated materials. In particular, a two-sublattice thermodynamic model is suggested to describe the local free energy of alloys with irradiated defects. Fe-Cr alloy is taken as an example to explain the required thermodynamic and kinetic properties for quantitative phase-field modeling. Finally the great challenges in phase-field modeling will be discussed.« less
NASA Astrophysics Data System (ADS)
Liu, W. B.; Ji, Y. Z.; Tan, P. K.; Zhang, C.; He, C. H.; Yang, Z. G.
2016-10-01
Severe plastic deformation, intense single-beam He-ion irradiation and post-irradiation annealing were performed on a nanostructured reduced activation ferritic/martensitic (RAFM) steel to investigate the effect of grain boundaries (GBs) on its microstructure evolution during these processes. A surface layer with a depth-dependent nanocrystalline (NC) microstructure was prepared in the RAFM steel using surface mechanical attrition treatment (SMAT). Microstructure evolution after helium (He) irradiation (24.8 dpa) at room temperature and after post-irradiation annealing was investigated using Transmission Electron Microscopy (TEM). Experimental observation shows that GBs play an important role during both the irradiation and the post-irradiation annealing process. He bubbles are preferentially trapped at GBs/interfaces during irradiation and cavities with large sizes are also preferentially trapped at GBs/interfaces during post-irradiation annealing, but void denuded zones (VDZs) near GBs could not be unambiguously observed. Compared with cavities at GBs and within larger grains, cavities with smaller size and higher density are found in smaller grains. The average size of cavities increases rapidly with the increase of time during post-irradiation annealing at 823 K. Cavities with a large size are observed just after annealing for 5 min, although many of the cavities with small sizes also exist after annealing for 240 min. The potential mechanism of cavity growth behavior during post-irradiation annealing is also discussed.
NASA Astrophysics Data System (ADS)
Alsagabi, Sultan
The 9Cr-2W ferritic-martensitic steel (i.e. Grade 92 steel) possesses excellent mechanical and thermophysical properties; therefore, it has been considered to suit more challenging applications where high temperature strength and creep-rupture properties are required. The high temperature deformation mechanism was investigated through a set of tensile testing at elevated temperatures. Hence, the threshold stress concept was applied to elucidate the operating high temperature deformation mechanism. It was identified as the high temperature climb of edge dislocations due to the particle-dislocation interactions and the appropriate constitutive equation was developed. In addition, the microstructural evolution at room and elevated temperatures was investigated. For instance, the microstructural evolution under loading was more pronounced and carbide precipitation showed more coarsening tendency. The growth of these carbide precipitates, by removing W and Mo from matrix, significantly deteriorates the solid solution strengthening. The MX type carbonitrides exhibited better coarsening resistance. To better understand the thermal microstructural stability, long tempering schedules up to 1000 hours was conducted at 560, 660 and 760°C after normalizing the steel. Still, the coarsening rate of M23C 6 carbides was higher than the MX-type particles. Moreover, the Laves phase particles were detected after tempering the steel for long periods before they dissolve back into the matrix at high temperature (i.e. 720°C). The influence of the tempering temperature and time was studied for Grade 92 steel via Hollomon-Jaffe parameter. Finally, the irradiation performance of Grade 92 steel was evaluated to examine the feasibility of its eventual reactor use. To that end, Grade 92 steel was irradiated with iron (Fe2+) ions to 10, 50 and 100 dpa at 30 and 500°C. Overall, the irradiated samples showed some irradiation-induced hardening which was more noticeable at 30°C. Additionally, irradiation-induced defect clusters and dislocation loops were observed and the irradiated samples did not show any bubble or void.
NASA Astrophysics Data System (ADS)
Tsay, K. V.; Maksimkin, O. P.; Turubarova, L. G.; Rofman, O. V.; Garner, F. A.
2013-08-01
Transmission electron microscopy and microhardness measurements were used to examine changes in microstructure and associated strengthening induced in austenitic stainless steel 12Cr18Ni9Ti irradiated to ˜0.001 and ˜5 dpa in the WWR-K reactor before and after being subjected to post-irradiation isochronal annealing. The relatively low values of irradiation temperature and dpa rate (˜80 °C and ˜1.2 × 10-8 dpa/s) experienced by this steel allowed characterization of defect microstructures over a wide range of defect ensembles, all at constant composition, produced first by irradiation and then by annealing at temperatures between 450 and 1050 °C. It was shown that the dispersed barrier hardening model with commonly accepted physical properties successfully predicted the observed hardening. It was also observed that when TiC precipitates form at higher annealing temperatures, the alloy does not change in hardness, reflecting a balance between precipitate-hardening and matrix-softening due to removal of solute-strengthening elements titanium and carbon. Such matrix-softening is not often considered in other studies, especially where the contribution of precipitates to hardening is a second-order effect.
Microstructural evolution of ion-irradiated sol–gel-derived thin films
Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; ...
2017-07-17
In this paper, the effects of ion irradiation on the microstructural evolution of sol–gel-derived silica-based thin films were examined by combining the results from Fourier transform infrared, Raman, and X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and elastic recoil detection. Variations in the chemical composition, density, and structure of the constituent phases and interfaces were studied, and the results were used to propose a microstructural model for the irradiated films. It was discovered that the microstructure of the films after ion irradiation and decomposition of the starting organic materials consisted of isolated hydrogenated amorphous carbon clusters within an amorphous and carbon-incorporatedmore » silica network. A decrease in the bond angle of Si–O–Si bonds in amorphous silica network along with an increase in the concentration of carbon-rich SiO x C y tetrahedra were the major structural changes caused by ion irradiation. Finally, in addition, hydrogen release from free carbon clusters was observed with increasing ion energy and fluence.« less
Modeling property evolution of container materials used in nuclear waste storage
NASA Astrophysics Data System (ADS)
Li, Dongsheng; Garmestani, Hamid; Khaleel, Moe; Sun, Xin
2010-03-01
Container materials under irradiation for a long time will raise high energy in the structure to generate critical structural damage. This study investigated what kind of mesoscale microstructure will be more resistant to radiation damage. Mechanical properties evolution during irradiation was modeled using statistical continuum mechanics. Preliminary results also showed how to achieve the desired microstructure with higher resistance to radiation.
NASA Astrophysics Data System (ADS)
Kumar, Manish; Kulriya, P. K.; Pivin, J. C.; Avasthi, D. K.
2011-02-01
Ag:ZrO2 nanocomposite films have been synthesized by a sol-gel dip coating process at room temperature, followed by irradiation using swift heavy ions. The effect of electronic energy loss and fluences on the evolution and consequently on the tailoring of plasmonic properties of films has been studied. The optical study exhibits that color of films converts from transparent in pristine form into shiny yellow when films are irradiated by 100 MeV Ag ions at a fluence of 3×1012 ions/cm2. However, irradiation by 120 MeV O ions up to the fluence of 1 × 1014 ions/cm2 does not induce any coloration in films. The coloration is attributed to the evolution of plasmonic feature resulting in a surface plasmon resonance (SPR) induced absorption peak in the visible region. Increase in fluence from 3 × 1012 to 6 × 1013 ions/cm2 of 100 MeV Ag ions induces a redshift in SPR induced peak position from 434 to 487 nm. Microstructural studies confirms the conversion of Ag2O3 (in pristine films) into cubic phase of metallic Ag and the increase of average size of particles with the increasing fluence up to 6 × 1013 ions/cm2. Further increase in fluence leads to the dissolution of Ag atoms in the ZrO2 matrix.
Microstructural evolution of neutron-irradiated Ni-Si and Ni-Al alloys
NASA Astrophysics Data System (ADS)
Takahashi, H.; Garner, F. A.
1992-10-01
Additions of silicon and aluminum suppress the neutron-induced swelling of pure nickel but to different degrees. Silicon is much more effective initially when compared to aluminum on a per atom basis but silicon exhibits a nonmonotonic influence on swelling with increasing concentration. Silicon tends to segregate toward grain boundaries while aluminum segregates away from these boundaries. Whereas the formation of the Ni 3Si phase is frequently observed in charged particle irradiation experiments conducted at much higher displacement rates, it did not occur during neutron irradiation in this study. Precipitation also did not occur in Ni-5Al during neutron irradiation, nor has it been reported to occur during ion irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tan, Lizhen; Kim, B. K.; Yang, Ying
Ferritic-martensitic steels such as T91 and NF616 are candidate materials for several nuclear applications. Here, this study evaluates radiation resistance of T91 and NF616 by examining their microstructural evolutions and hardening after the samples were irradiated in the Advanced Test Reactor to ~4.3 displacements per atom (dpa) at an as-run temperature of 469 °C. In general, this irradiation did not result in significant difference in the radiation-induced microstructures between the two steels. Compared to NF616, T91 had a higher number density of dislocation loops and a lower level of radiation-induced segregation, together with a slightly higher radiation-hardening. Unlike dislocation loopsmore » developed in both steels, radiation-induced cavities were only observed in T91 but remained small with sub-10 nm sizes. Lastly, other than the relatively stable M 23C 6, a new phase (likely Sigma phase) was observed in T91 and radiation-enhanced MX → Z phase transformation was identified in NF616. Laves phase was not observed in the samples.« less
NASA Astrophysics Data System (ADS)
Lu, Fengyuan
Material design at the nanometer scale is an effective strategy for developing advanced materails with enhanced radiation tolerance for advanced nuclear energy systems as high densities of surfaces and interfaces of the nanostructured materials may behave as effective sinks for defect recovery. However, nanostructured materials may not be intrinsically radiation tolerant, and the interplay among the factors of crystal size, temperature, chemical composition, surface energy and radiation conditions may eventually determine material radiation behaviors. Therefore, it is necessary to understand the radiation effects of nanostructured materials and the underlying physics for the design of advanced nanostructured nuclear materials. The main objective of this doctoral thesis is to study the behavior of nanostructured oxides and nitrides used as fuel matrix and waste forms under extreme radiation conditions with the focus of phase transformation, microstructural evolution and damage mechanisms. Radiation experiments were performed using energetic ion beam techniques to simulate radiation damage resulting from energetic neutrons, alpha-decay events and fission fragments, and various experimental approaches were employed to characterize materials’ microstructural evolution and phase stability upon intense radiation environments including transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy. Thermal annealing experiments indicated that nanostructured ZrO2 phase stability is strongly affected by the grain size. Radiation results on nanostructured ZrO2 indicated that thermodynamically unstable or metastable high temperature phases can be induced by energetic beam irradiation at room temperature. Various phase transformation among different polymorphs of monoclinic, tetragonal and amorphous states can be induced, and different mechanisms are responsible for structural transformations including oxygen vacancies accumulation upon displacive damage, radiation-assistant recrystallization and thermal spike by ionization radiation. The radiation response of nanosized pyrochlores indicated that the radiation tolerance of nanoceramics is highly dependent on the composition and size. Nanosized tantalate pyrochlores KxLnyTa2O 7-v (Ln = Gd, Y, Lu) with the average grain size around 10 - 15 nm are highly sensitive to radiation-induced amorphization. The pyrochlore A to B site ionic radius ratio rA/rB is crucial in determining the radiation tolerance of pyrochlores, and a minimum rA/rB of 1.605 exists for the occurring of radiation induced amorphization. The interplay among chemical compositions, structural deviation and grain size eventually determines the phase stability and structural transformation processes of tantalate pyrochlores under intense radiation environments. ZrN shows extremely high phase stability under both displacive ion irradiation and ionizing swift heavy ion irradiation. However, a contraction in lattice constant up to ~ 1.42 % can be induced in nanocrystalline ZrN irradiated with displacive ion beams. In contrast, the strongly ionizing swift heavy ions cannot induce any lattice contraction. Such lattice contractions may be due to a negative strain field in the ZrN nanograins related to N vacancies built up upon displacive radiation. Ion irradiations also lead to the formation of orthorhombic ZrSi phase at the interface between ZrN and Si substrate, resulting from atom mixing and precipitation upon ion irradiations. The fundamental knowledge provides critical data for assessing and quantifying nanostructured ceramics as fuel matrix and waste forms utilized in the extreme environments of advanced nuclear energy systems. Further possibilities are being pursued in manipulating microstructure at the nano-scale, controlling phase stability and tailoring the physical properties of materials for various important engineering applications.
High Fidelity Ion Beam Simulation of High Dose Neutron Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Was, Gary; Wirth, Brian; Motta, Athur
The objective of this proposal is to demonstrate the capability to predict the evolution of microstructure and properties of structural materials in-reactor and at high doses, using ion irradiation as a surrogate for reactor irradiations. “Properties” includes both physical properties (irradiated microstructure) and the mechanical properties of the material. Demonstration of the capability to predict properties has two components. One is ion irradiation of a set of alloys to yield an irradiated microstructure and corresponding mechanical behavior that are substantially the same as results from neutron exposure in the appropriate reactor environment. Second is the capability to predict the irradiatedmore » microstructure and corresponding mechanical behavior on the basis of improved models, validated against both ion and reactor irradiations and verified against ion irradiations. Taken together, achievement of these objectives will yield an enhanced capability for simulating the behavior of materials in reactor irradiations.« less
OBJECT KINETIC MONTE CARLO SIMULATIONS OF MICROSTRUCTURE EVOLUTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.
2013-09-30
The objective is to report the development of the flexible object kinetic Monte Carlo (OKMC) simulation code KSOME (kinetic simulation of microstructure evolution) which can be used to simulate microstructure evolution of complex systems under irradiation. In this report we briefly describe the capabilities of KSOME and present preliminary results for short term annealing of single cascades in tungsten at various primary-knock-on atom (PKA) energies and temperatures.
The co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels
NASA Astrophysics Data System (ADS)
Getto, Elizabeth Margaret
The objective of this study was to understand the co-evolution of microstructure features in self-ion irradiated HT9 at very high damage levels. HT9 (heat 84425) was pre-implanted with 10 atom parts per million helium and then irradiated with 5 MeV Fe++ in the temperature range of 440-480°C to 188 dpa. A damage dependence study from 75 to 650 dpa was performed at the peak swelling temperature of 460°C. The swelling, dislocation and precipitate evolution was determined using Analytic Electron Microscopes in both Conventional Transmission electron microscopy (CTEM) and Scanning Transmission Electron Microscopy (STEM) modes. Void swelling reached a nominally linear rate of 0.03%/dpa from 188 to 650 dpa at 460°C. G phase precipitates were observed by 75 dpa and grew linearly up to 650 dpa. M 2X was observed by 250 dpa and peaked in volume fraction at 450 dpa. Dislocation loop evolution was observed up to 650 dpa including a step change in diameter between 375 and 450 dpa; which correlated with nucleation and growth of M2X. The experimental results were interpreted using a rate theory model, the Radiation Induced Microstructure Evolution (RIME), in the damage range from 188 to 650 dpa. A simple system of voids and dislocations was modeled in which the dislocations measured from experiment were used as input, or the dislocations were allowed to evolve dynamically, resulting in swelling that was overestimated by 63% relative to that observed experimentally. G phase had limited effect on the void or dislocation behavior. The behavior of M2X within the microstructure was characterized as a direct effect as a coherent sink, and as an indirect effect in consuming carbon from the matrix, which had the largest impact on both void and dislocation behavior. A slowly monotonically increasing swelling rate was observed both experimentally and computationally, with swelling rates of ˜0.025%/dpa and ˜0.036%/dpa before and after 450 dpa. The agreement in void behavior between experiment and model when all effects (loops, network, G phase, M2X formation and growth, and removal of carbon) are accounted for demonstrates the importance of characterizing the evolution of the full microstructure over a large dpa range.
Multi-modal STEM-based tomography of HT-9 irradiated in FFTF
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Eftink, Benjamin Paul; Saleh, Tarik A.
Under irradiation, point defects and defect clusters can agglomerate to form extended two and three dimensional (2D/3D) defects. The formation of defects can be synergistic in nature with one defect or defect-type influencing the formation and/or evolution of another. The resul is a need exists to perform advanced characterization where microstructures are accurately reproduced in 3D. Here, HT-9 neutron irradiated in the FFTF was used to evaluate the ability of multi-tilt STEM-based tomography to reproduce the fine-scale radiation-induced microstructure. High-efficiency STEM-EDS was used to provide both structural and chemical information during the 3D reconstruction. The results show similar results tomore » a previous two-tilt tomography study on the same material; the α' phase is denuded around the Ni-Si-Mn rich G-phase and cavities. It is concluded both tomography reconstruction techniques are readily viable and could add significant value to the advanced characterization capabilities for irradiated materials.« less
NASA Astrophysics Data System (ADS)
Chen, L.; Yuan, W.; Nan, S.; Du, X.; Zhang, D. F.; Lv, P.; Peng, H. B.; Wang, T. S.
2016-03-01
Radiation effects on the mechanical properties of sodium aluminoborosilicate glass induced by 4 MeV Kr, 5 MeV Xe ions and 1.2 MeV electrons have been investigated by nano-indentation measurements. Raman and electron paramagnetic resonance (EPR) spectroscopies were used to characterize the microstructure evolution of electron irradiated samples. The nano-indentation results indicated that the mean hardness was reduced by 12.8%, and the mean reduced Young modulus was increased by 3.5% after heavy ion irradiation. Both the hardness and reduced Young modulus variations reached stabilization when the nuclear deposited energy was around 3 × 1021 keVnucl/cm3. Although decreases of hardness (about 6.6%) and reduced Young modulus (about 3.1%) were also observed when the deposited electronic energy reached approximately 1.5 × 1022 keVelec/cm3 after electron irradiation, the results still emphasized that the nuclear energy deposition is the major factor for the evolution in the hardness and modulus of the sodium aluminoborosilicate glass under ion irradiation, rather than a synergy process of the electronic and nuclear energy depositions.
Ion-irradiation-induced microstructural modifications in ferritic/martensitic steel T91
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Xiang; Miao, Yinbin; Li, Meimei
In this paper, in situ transmission electron microscopy investigations were carried out to study the microstructural evolution of ferritic/martensitic steel T91 under 1 MeV Krypton ion irradiation up to 4.2 x 10(15) ions/cm(2) at 573 K, 673 K, and 773 K. At 573 K, grown-in defects are strongly modified by black dot loops, and dislocation networks together with black-dot loops were observed after irradiation. At 673 K and 773 K, grown-in defects are only partially modified by dislocation loops; isolated loops and dislocation segments were commonly found after irradiation. Post irradiation examination indicates that at 4.2 x 1015 ions/cm(2), aboutmore » 51% of the loops were a(0)/2 < 111 > type for the 673 K irradiation, and the dominant loop type was a(0)< 100 > for the 773 K irradiation. Finally, a dispersed barrier hardening model was employed to estimate the change in yield strength, and the calculated ion data were found to follow the similar trend as the existing neutron data with an offset of 100-150 MPa. (C) 2017 Elsevier B.V. All rights reserved.« less
Taniguchi, Yoichi; Aoki, Akira; Mizutani, Koji; Takeuchi, Yasuo; Ichinose, Shizuko; Takasaki, Aristeo Atsushi; Schwarz, Frank; Izumi, Yuichi
2013-07-01
Er:YAG laser (ErL) irradiation has been reported to be effective for treating peri-implant disease. The present study seeks to evaluate morphological and elemental changes induced on microstructured surfaces of dental endosseous implants by high-pulse-repetition-rate ErL irradiation and to determine the optimal irradiation conditions for debriding contaminated microstructured surfaces. In experiment 1, dual acid-etched microstructured implants were irradiated by ErL (pulse energy, 30-50 mJ/pulse; repetition rate, 30 Hz) with and without water spray and for used and unused contact tips. Experiment 2 compared the ErL treatment with conventional mechanical treatments (metal/plastic curettes and ultrasonic scalers). In experiment 3, five commercially available microstructures were irradiated by ErL light (pulse energy, 30-50 mJ/pulse; pulse repetition rate, 30 Hz) while spraying water. In experiment 4, contaminated microstructured surfaces of three failed implants were debrided by ErL irradiation. After the experiments, all treated surfaces were assessed by stereomicroscopy, scanning electron microscopy (SEM), and/or energy-dispersive X-ray spectroscopy (EDS). The stereomicroscopy, SEM, and EDS results demonstrate that, unlike mechanical treatments, ErL irradiation at 30 mJ/pulse and 30 Hz with water spray induced no color or morphological changes to the microstructures except for the anodized implant surface, which was easily damaged. The optimized irradiation parameters effectively removed calcified deposits from contaminated titanium microstructures without causing substantial thermal damage. ErL irradiation at pulse energies below 30 mJ/pulse (10.6 J/cm(2)/pulse) and 30 Hz with water spray in near-contact mode seems to cause no damage and to be effective for debriding microstructured surfaces (except for anodized microstructures).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xie, Q.R.; Zhang, J., E-mail: zhangjian@xmu.edu.cn; Dong, X.N.
Polycrystalline pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} pellets were irradiated with 600 keV Kr{sup 3+} at room temperature and 723 K to a fluence of 4×10{sup 15} ions/cm{sup 2}, corresponding to an average ballistic damage dose of 10 displacements per atom in the peak damage region. Irradiation-induced microstructural evolution was examined by grazing incidence X-ray diffraction, and cross-sectional transmission electron microscopy. Incomplete amorphization was observed in the sample irradiated at room temperature due to the formation of nano-crystal which has the identical structure of pyrochlore, and the formation of nano-crystal is attributed to the mechanism of epitaxial recrystallization. However, an orderedmore » pyrochlore phase to a swelling disordered fluorite phase transformation is occurred for the Lu{sub 2}Ti{sub 2}O{sub 7} sample irradiated at 723 K, which is due to the disordering of metal cations and anion vacancies. - Graphical Abstract: Polycrystalline pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} pellets were irradiated with 600 keV Kr{sup 3+} to a fluence of 4×10{sup 15} ions/cm{sup 2} at room temperature and 723 K, Incomplete amorphization was observed in the sample irradiated at room temperature due to the formation of nano-crystal. However, an ordered pyrochlore phase to a swelling disordered fluorite phase transformation is occurred for the Lu{sub 2}Ti{sub 2}O{sub 7} sample irradiated at 723 K, which is due to the disordering of metal cations and anion vacancies. - Highlights: Pyrochlore Lu{sub 2}Ti{sub 2}O{sub 7} pellets were irradiated by heavy ions at RT and 723 K. At RT irradiation, ~75% of amorphization was achieved. The nano-crystals were formed in the damage layer at RT irradiation. The formed nano-crystals enhanced the radiation tolerance of Lu{sub 2}Ti{sub 2}O{sub 7}. A pyrochlore to fluorite phase transformation was observed at 723 K irradiation.« less
Self-ion emulation of high dose neutron irradiated microstructure in stainless steels
NASA Astrophysics Data System (ADS)
Jiao, Z.; Michalicka, J.; Was, G. S.
2018-04-01
Solution-annealed 304L stainless steel (SS) was irradiated to 130 dpa at 380 °C, and to 15 dpa at 500 °C and 600 °C, and cold-worked 316 SS (CW 316 SS) was irradiated to 130 dpa at 380 °C using 5 MeV Fe++/Ni++ to produce microstructures and radiation-induced segregation (RIS) for comparison with that from neutron irradiation at 320 °C to 46 dpa in the BOR60 reactor. For the 304L SS alloy, self-ion irradiation at 380 °C produced a dislocation loop microstructure that was comparable to that by neutron irradiation. No voids were observed in either the 380 °C self-ion irradiation or the neutron irradiation conditions. Irradiation at 600 °C produced the best match to radiation-induced segregation of Cr and Ni with the neutron irradiation, consistent with the prediction of a large temperature shift by Mansur's invariant relations for RIS. For the CW 316 SS alloy irradiated to 130 dpa at 380 °C, both the irradiated microstructure (dislocation loops, precipitates and voids) and RIS reasonably matched the neutron-irradiated sample. The smaller temperature shift for RIS in CW 316 SS was likely due to the high sink (dislocation) density induced by the cold work. A single self-ion irradiation condition at a dose rate ∼1000× that in reactor does not match both dislocation loops and RIS in solution-annealed 304L SS. However, a single irradiation temperature produced a reasonable match with both the dislocation/precipitate microstructure and RIS in CW 316 SS, indicating that sink density is a critical factor in determining the temperature shift for self-ion irradiations.
Understanding the Irradiation Behavior of Zirconium Carbide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Motta, Arthur; Sridharan, Kumar; Morgan, Dane
2013-10-11
Zirconium carbide (ZrC) is being considered for utilization in high-temperature gas-cooled reactor fuels in deep-burn TRISO fuel. Zirconium carbide possesses a cubic B1-type crystal structure with a high melting point, exceptional hardness, and good thermal and electrical conductivities. The use of ZrC as part of the TRISO fuel requires a thorough understanding of its irradiation response. However, the radiation effects on ZrC are still poorly understood. The majority of the existing research is focused on the radiation damage phenomena at higher temperatures (>450{degree}C) where many fundamental aspects of defect production and kinetics cannot be easily distinguished. Little is known aboutmore » basic defect formation, clustering, and evolution of ZrC under irradiation, although some atomistic simulation and phenomenological studies have been performed. Such detailed information is needed to construct a model describing the microstructural evolution in fast-neutron irradiated materials that will be of great technological importance for the development of ZrC-based fuel. The goal of the proposed project is to gain fundamental understanding of the radiation-induced defect formation in zirconium carbide and irradiation response by using a combination of state-of-the-art experimental methods and atomistic modeling. This project will combine (1) in situ ion irradiation at a specialized facility at a national laboratory, (2) controlled temperature proton irradiation on bulk samples, and (3) atomistic modeling to gain a fundamental understanding of defect formation in ZrC. The proposed project will cover the irradiation temperatures from cryogenic temperature to as high as 800{degree}C, and dose ranges from 0.1 to 100 dpa. The examination of this wide range of temperatures and doses allows us to obtain an experimental data set that can be effectively used to exercise and benchmark the computer calculations of defect properties. Combining the examination of radiation-induced microstructures mapped spatially and temporally, microstructural evolution during post-irradiation annealing, and atomistic modeling of defect formation and transport energetics will provide new, critical understanding about property changes in ZrC. The behavior of materials under irradiation is determined by the balance between damage production, defect clustering, and lattice response. In order to predict those effects at high temperatures so targeted testing can be expanded and extrapolated beyond the known database, it is necessary to determine the defect energetics and mobilities as these control damage accumulation and annealing. In particular, low-temperature irradiations are invaluable for determining the regions of defect mobility. Computer simulation techniques are particularly useful for identifying basic defect properties, especially if closely coupled with a well-constructed and complete experimental database. The close coupling of calculation and experiment in this project will provide mutual benchmarking and allow us to glean a deeper understanding of the irradiation response of ZrC, which can then be applied to the prediction of its behavior in reactor conditions.« less
Luo, Fangfang; Song, Juan; Hu, Xiao; Sun, Haiyi; Lin, Geng; Pan, Huaihai; Cheng, Ya; Liu, Li; Qiu, Jianrong; Zhao, Quanzhong; Xu, Zhizhan
2011-06-01
We report the formation of inverted microstructures inside glasses after femtosecond laser irradiation by tuning the refractive index contrast between the immersion liquid and the glass sample. By using water as well as 1-bromonaphthalene as immersion liquids, microstructures with similar shape but opposite directions are induced after femtosecond laser irradiation. Interestingly, the elemental distribution in the induced structures is also inverted. The simulation of laser intensity distribution along the laser propagation direction indicates that the interfacial spherical aberration effect is responsible for the inversion of microstructures and elemental distribution. © 2011 Optical Society of America
NASA Astrophysics Data System (ADS)
Yang, Yong; Chen, Yiren; Huang, Yina; Allen, Todd; Rao, Appajosula
Reactor internal components are subjected to neutron irradiation in light water reactors, and with the aging of nuclear power plants around the world, irradiation-induced material degradations are of concern for reactor internals. Irradiation-induced defects resulting from displacement damage are critical for understanding degradation in structural materials. In the present work, microstructural changes due to irradiation in austenitic stainless steels and cast steels were characterized using transmission electron microscopy. The specimens were irradiated in the BOR-60 reactor, a fast breeder reactor, up to 40 dpa at 320°C. The dose rate was approximately 9.4x10-7 dpa/s. Void swelling and irradiation defects were analyzed for these specimens. A high density of faulted loops dominated the irradiated-altered microstructures. Along with previous TEM results, a dose dependence of the defect structure was established at 320°C.
NASA Astrophysics Data System (ADS)
de los Reyes, Massey; Voskoboinikov, Roman; Kirk, Marquis A.; Huang, Hefei; Lumpkin, Greg; Bhattacharyya, Dhriti
2016-06-01
A candidate Nisbnd Mosbnd Crsbnd Fe alloy (GH3535) for application as a structural material in a molten salt nuclear reactor was irradiated with 1 MeV Kr2+ ions (723 K, max dose of 100 dpa) at the IVEM-Tandem facility. The evolution of defects like dislocation loops and vacancy- and self-interstitial clusters was examined in-situ. For obtaining a deeper insight into the true nature of these defects, the irradiated sample was further analysed under a TEM post-facto. The results show that there is a range of different types of defects formed under irradiation. Interaction of radiation defects with each other and with pre-existing defects, e.g., linear dislocations, leads to the formation of complex microstructures. Molecular dynamics simulations used to obtain a greater understanding of these defect transformations showed that the interaction between linear dislocations and radiation induced dislocation loops could form faulted structures that explain the fringed contrast of these defects observed in TEM.
Role of Grain Boundaries under Long-Time Radiation
NASA Astrophysics Data System (ADS)
Zhu, Yichao; Luo, Jing; Guo, Xu; Xiang, Yang; Chapman, Stephen Jonathan
2018-06-01
Materials containing a high proportion of grain boundaries offer significant potential for the development of radiation-resistant structural materials. However, a proper understanding of the connection between the radiation-induced microstructural behavior of a grain boundary and its impact at long natural time scales is still missing. In this Letter, point defect absorption at interfaces is summarized by a jump Robin-type condition at a coarse-grained level, wherein the role of interface microstructure is effectively taken into account. Then a concise formula linking the sink strength of a polycrystalline aggregate with its grain size is introduced and is well compared with experimental observation. Based on the derived model, a coarse-grained formulation incorporating the coupled evolution of grain boundaries and point defects is proposed, so as to underpin the study of long-time morphological evolution of grains induced by irradiation. Our simulation results suggest that the presence of point defect sources within a grain further accelerates its shrinking process, and radiation tends to trigger the extension of twin boundary sections.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Bergquist, Alex G.; Nozawa, Takashi; Shih, Chunghao Phillip
Over the past decade, significant progress has been made in the development of silicon carbide (SiC) composites, composed of near-stoichiometric SiC fibers embedded in a crystalline SiC matrix, to the point that such materials can now be considered nuclear grade. Recent neutron irradiation studies of Hi-Nicalon Type S SiC composites showed excellent radiation response at damage levels of 30-40 dpa at temperatures of 300-800 °C. However, more recent studies of these same fiber composites irradiated to damage levels of >70 dpa at similar temperatures showed a marked decrease in ultimate flexural strength, particularly at 300 °C. Here, electron microscopy ismore » used to analyze the microstructural evolution of these irradiated composites in order to investigate the cause of the degradation. While minimal changes were observed in Hi-Nicalon Type S SiC composites irradiated at 800 °C, substantial microstructural evolution is observed in those irradiated at 300° C. Furthermore, carbonaceous particles in the fibers grew by 25% compared to the virgin case, and severe cracking occurred at interphase layers.« less
NASA Astrophysics Data System (ADS)
Zheng, Zhongcheng; Gao, Ning; Tang, Rui; Yu, Yanxia; Zhang, Weiping; Shen, Zhenyu; Long, Yunxiang; Wei, Yaxia; Guo, Liping
2017-10-01
It has been found that under certain conditions, hydrogen retention would be strongly enhanced in irradiated austenitic stainless steels. To investigate the effect of the retained hydrogen on the defect microstructure, AL-6XN stainless steel specimens were irradiated with low energy (100 keV) H2+ so that high concentration of hydrogen was injected into the specimens while considerable displacement damage dose (up to 7 dpa) was also achieved. Irradiation induced dislocation loops and voids were characterised by transmission electron microscopy. For specimens irradiated to 7 dpa at 290 °C, dislocation loops with high number density were found and the void swelling was observed. At 380 °C, most of dislocation loops were unfaulted and tangled at 7 dpa, and the void swellings were observed at 5 dpa and above. Combining the data from low dose in previous work to high dose, four stages of dislocation loops evolution with hydrogen retention were suggested. Finally, molecular dynamics simulation was made to elucidate the division of large dislocation loops under irradiation.
Structural changes of Ti3SiC2 induced by helium irradiation with different doses
NASA Astrophysics Data System (ADS)
Zhang, Hongliang; Su, Ranran; Shi, Liqun; O'Connor, Daryl J.; Wen, Haiming
2018-03-01
In this study, the microstructure changes of Ti3SiC2 MAX phase material induced by helium irradiation and evolution with a sequence of different helium irradiation doses of 5 × 1015, 1 × 1016, 5 × 1016 and 1 × 1017 cm-2 at room temperature (RT) were characterized with grazing incidence X-ray diffraction (GIXRD) and Raman spectra analysis. The irradiation damage process of Ti3SiC2 can be roughly divided into three stages according to the level of helium irradiation dose: (1) for a low damage dose, only crystal and damaged Ti3SiC2 exit; (2) at a higher irradiation dose, there is some damaged TiC phase additionally; (3) with a much higher irradiation dose, crystal TiC phase could be found inside the samples as well. Moreover, the 450 °C 5 × 1016 cm-2 helium irradiation on Ti3SiC2 has confirmed that Ti3SiC2 has much higher irradiation tolerance at higher temperature, which implies that Ti3SiC2 could be a potential future structural and fuel coating material working at high temperature environments.
The natural aging of austenitic stainless steels irradiated with fast neutrons
NASA Astrophysics Data System (ADS)
Rofman, O. V.; Maksimkin, O. P.; Tsay, K. V.; Koyanbayev, Ye. T.; Short, M. P.
2018-02-01
Much of today's research in nuclear materials relies heavily on archived, historical specimens, as neutron irradiation facilities become ever more scarce. These materials are subject to many processes of stress- and irradiation-induced microstructural evolution, including those during and after irradiation. The latter of these, referring to specimens "naturally aged" in ambient laboratory conditions, receives far less attention. The long and slow set of rare defect migration and interaction events during natural aging can significantly change material properties over decadal timescales. This paper presents the results of natural aging carried out over 15 years on austenitic stainless steels from a BN-350 fast breeder reactor, each with its own irradiation, stress state, and natural aging history. Natural aging is shown to significantly reduce hardness in these steels by 10-25% and partially alleviate stress-induced hardening over this timescale, showing that materials evolve back towards equilibrium even at such a low temperature. The results in this study have significant implications to any nuclear materials research program which uses historical specimens from previous irradiations, challenging the commonly held assumption that materials "on the shelf" do not evolve.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennett, C. A.; So, K. P.; Kushima, A.
Irradiation-induced void swelling remains a major challenge to nuclear reactor operation. Swelling may take years to initiate and often results in rapid material property degradation once started. Alloy development for advanced nuclear systems will require rapid characterization of the swelling breakaway dose in new alloys, yet this capability does not yet exist. In this paper, we demonstrate that transient grating spectroscopy (TGS) can detect void swelling in single crystal copper via changes in surface acoustic wave (SAW) velocity. Scanning transmission electron microscopy (STEM) links the TGS-observed changes with void swelling-induced microstructural evolution. Finally, these results are considered in the contextmore » of previous work to suggest that in situ TGS will be able to rapidly determine when new bulk materials begin void swelling, shortening alloy development and testing times.« less
Dennett, C. A.; So, K. P.; Kushima, A.; ...
2017-12-20
Irradiation-induced void swelling remains a major challenge to nuclear reactor operation. Swelling may take years to initiate and often results in rapid material property degradation once started. Alloy development for advanced nuclear systems will require rapid characterization of the swelling breakaway dose in new alloys, yet this capability does not yet exist. In this paper, we demonstrate that transient grating spectroscopy (TGS) can detect void swelling in single crystal copper via changes in surface acoustic wave (SAW) velocity. Scanning transmission electron microscopy (STEM) links the TGS-observed changes with void swelling-induced microstructural evolution. Finally, these results are considered in the contextmore » of previous work to suggest that in situ TGS will be able to rapidly determine when new bulk materials begin void swelling, shortening alloy development and testing times.« less
Accelerated Irradiations for High Dose Microstructures in Fast Reactor Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Zhijie
The objective of this project is to determine the extent to which high dose rate, self-ion irradiation can be used as an accelerated irradiation tool to understand microstructure evolution at high doses and temperatures relevant to advanced fast reactors. We will accomplish the goal by evaluating phase stability and swelling of F-M alloys relevant to SFR systems at very high dose by combining experiment and modeling in an effort to obtain a quantitative description of the processes at high and low damage rates.
Atomic scale modeling of defect production and microstructure evolution in irradiated metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Diaz de la Rubia, T.; Soneda, N.; Shimomura, Y.
1997-04-01
Irradiation effects in materials depend in a complex way on the form of the as-produced primary damage state and its spatial and temporal evolution. Thus, while collision cascades produce defects on a time scale of tens of picosecond, diffusion occurs over much longer time scales, of the order of seconds, and microstructure evolution over even longer time scales. In this report the authors present work aimed at describing damage production and evolution in metals across all the relevant time and length scales. They discuss results of molecular dynamics simulations of displacement cascades in Fe and V. They show that interstitialmore » clusters are produced in cascades above 5 keV, but not vacancy clusters. Next, they discuss the development of a kinetic Monte Carlo model that enables calculations of damage evolution over much longer time scales (1000`s of s) than the picosecond lifetime of the cascade. They demonstrate the applicability of the method by presenting predictions on the fraction of freely migrating defects in {alpha}Fe during irradiation at 600 K.« less
NASA Astrophysics Data System (ADS)
Bai, Xian-Ming; Ke, Huibin; Zhang, Yongfeng; Spencer, Benjamin W.
2017-11-01
Neutron irradiation in light water reactors can induce precipitation of nanometer sized Cu clusters in reactor pressure vessel steels. The Cu precipitates impede dislocation gliding, leading to an increase in yield strength (hardening) and an upward shift of ductile-to-brittle transition temperature (embrittlement). In this work, cluster dynamics modeling is used to model the entire Cu precipitation process (nucleation, growth, and coarsening) in a Fe-0.3at.%Cu alloy under neutron irradiation at 300°C based on the homogenous nucleation mechanism. The evolution of the Cu cluster number density and mean radius predicted by the modeling agrees well with experimental data reported in literature for the same alloy under the same irradiation conditions. The predicted precipitation kinetics is used as input for a dispersed barrier hardening model to correlate the microstructural evolution with the radiation hardening and embrittlement in this alloy. The predicted radiation hardening agrees well with the mechanical test results in the literature. Limitations of the model and areas for future improvement are also discussed in this work.
Microstructural evolution of CANDU spacer material Inconel X-750 under in situ ion irradiation
NASA Astrophysics Data System (ADS)
Zhang, He Ken; Yao, Zhongwen; Judge, Colin; Griffiths, Malcolm
2013-11-01
Work on Inconel®Inconel® is a registered trademark of Special Metals Corporation that refers to a family of austenitic nickel-chromium-based superalloys.1 X-750 spacers removed from CANDU®CANDU® is a registered trademark of Atomic Energy of Canada Limited standing for ''CANada Deuterium Uranium''.2 reactors has shown that they become embrittled and there is development of many small cavities within the metal matrix and along grain boundaries. In order to emulate the neutron irradiation induced microstructural changes, heavy ion irradiations (1 MeV Kr2+ ions) were performed while observing the damage evolution using an intermediate voltage electron microscope (IVEM) operating at 200 kV. The irradiations were carried out at various temperatures 60-400 °C. The principal strengthening phase, γ‧, was disordered at low doses (˜0.06 dpa) during the irradiation. M23C6 carbides were found to be stable up to 5.4 dpa. Lattice defects consisted mostly of stacking fault tetrahedras (SFTs), 1/2<1 1 0> perfect loops and small 1/3<1 1 1> faulted Frank loops. The ratio of SFT number density to loop number density for each irradiation condition was found to be neither temperature nor dose dependent. Under the operation of the ion beam the SFT production was very rapid, with no evidence for further growth once formed, indicating that they probably formed as a result of cascade collapse in a single cascade. The number density of the defects was found to saturate at low dose (˜0.68 dpa). No cavities were observed regardless of the irradiation temperature between 60 °C and 400 °C for doses up to 5.4 dpa. In contrast, cavities have been observed after neutron irradiation in the same material at similar doses and temperatures indicating that helium, produce during neutron irradiation, may be essential for the nucleation and growth of cavities.
Radiation response of oxide-dispersion-strengthened alloy MA956 after self-ion irradiation
NASA Astrophysics Data System (ADS)
Chen, Tianyi; Kim, Hyosim; Gigax, Jonathan G.; Chen, Di; Wei, Chao-Chen; Garner, F. A.; Shao, Lin
2017-10-01
We studied the radiation-induced microstructural evolution of an oxide-dispersion-strengthened (ODS) ferritic alloy, MA956, to 180 dpa using 3.5 MeV Fe2+ ions. Post-irradiation examination showed that voids formed rather early and almost exclusively at the particle-matrix interfaces. Surprisingly, voids formed even in the injected interstitial zone. Comparisons with studies on other ODS alloys with smaller and largely coherent dispersoids irradiated at similar conditions revealed that the larger and not completely coherent oxide particles in MA956 serve as defect collectors which promote nucleation of voids at their interface. The interface configuration, which is related to particle type, crystal structure and size, is one of the important factors determining the defect-sink properties of particle-matrix interfaces.
TEM characterization of irradiated microstructure of Fe-9%Cr ODS and ferritic-martensitic alloys
NASA Astrophysics Data System (ADS)
Swenson, M. J.; Wharry, J. P.
2018-04-01
The objective of this study is to evaluate the effects of irradiation dose and dose rate on defect cluster (i.e. dislocation loops and voids) evolution in a model Fe-9%Cr oxide dispersion strengthened steel and commercial ferritic-martensitic steels HCM12A and HT9. Complimentary irradiations using Fe2+ ions, protons, or neutrons to doses ranging from 1 to 100 displacements per atom (dpa) at 500 °C are conducted on each alloy. The irradiated microstructures are characterized using transmission electron microscopy (TEM). Dislocation loops exhibit limited growth after 1 dpa upon Fe2+ and proton irradiation, while any voids observed are small and sparse. The average size and number density of loops are statistically invariant between Fe2+, proton, and neutron irradiated specimens at otherwise fixed irradiation conditions of ∼3 dpa, 500 °C. Therefore, we conclude that higher dose rate charged particle irradiations can reproduce the neutron irradiated loop microstructure with temperature shift governed by the invariance theory; this temperature shift is ∼0 °C for the high sink strength alloys studied herein.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stubbins, James; Heuser, Brent; Hosemann, Peter
This final technical report summarizes the research performed during October 2014 and December 2017, with a focus on investigating the radiation-induced microstructural and mechanical property modifications in optimized advanced alloys for sodium-cooled fast reactor (SFR) structural applications. To accomplish these objectives, the radiation responses of several different advanced alloys, including austenitic steel Alloy 709 (A709) and 316H, and ferritic/ martensitic Fe–9Cr steels T91 and G92, were investigated using a combination of microstructure characterizations and nanoindentation measurements. Different types of irradiation, including ex situ bulk ion irradiation and in situ transmission electron microscopy (TEM) ion irradiation, were employed in this study.more » Radiation-induced dislocations, precipitates, and voids were characterized by TEM. Scanning transmission electron microscopy with energy dispersive X-ray spectroscopy (STEM-EDS) and/or atom probe tomography (APT) were used to study radiation-induced segregation and precipitation. Nanoindentation was used for hardness measurements to study irradiation hardening. Austenitic A709 and 316H was bulk-irradiated by 3.5 MeV Fe ++ ions to up to 150 peak dpa at 400, 500, and 600°. Compared to neutron-irradiated stainless steel (SS) 316, the Frank loop density of ion-irradiated A709 shows similar dose dependence at 400°, but very different temperature dependence. Due to the noticeable difference in the initial microstructure of A709 and 316H, no systematic comparison on the Frank loops in A709 vs 316H was made. It would be helpful that future ion irradiation study on 316 stainless steel could be conducted to directly compare the temperature dependence of Frank loop density in ion-irradiated 316 SS with that in neutron-irradiated 316 SS. In addition, future neutron irradiation on A709 at 400–600° at relative high dose (≥10 dpa) can be carried out to compare with ion-irradiated A709. The radiation-induced segregation (RIS) of Ni and Si was observed in both A709 and 316H in all irradiated conditions and was found at various sinks: line dislocations, dislocation loops, void surfaces, carbide-matrix interfaces, etc. Radiation also induced the formation of Ni,Si-rich precipitates. As suggested in a previous study on neutron-irradiated 316 stainless steel, one possible consequence of the significant RIS of Si is that the enrichment at defect sinks depletes the silicon in the matrix, which can lead to enhanced void nucleation rate. The enrichment of Ni and Si is accompanied by the depletion of Cr at defect sinks, which could also affect the corrosion resistance. Radiation-induced change in the orientation relationship of pre-existing MX precipitates was observed at 600°. It is believed that this change is associated with the network dislocations formed under irradiation. The underlying mechanism is still not well understood. This change could be a positive indication that the MX precipitates can survive high density network dislocations. It would be helpful if neutron irradiation at similar dose conditions could be carried out to verify that this effect is not unique for ion irradiation. Intragranular Cr-rich carbides with a core-shell structure, i.e. Cr-rich carbide core and Ni,Si-rich shell was found at 500° and 600° in the highest dose (150 peak dpa) specimens. Coarse voids (30 nm in diameter) were only commonly found at 500° in the 50 and 150 peak dpa specimens in regions less than 750 nm in depth. The highest swelling for A709 irradiated to 50 and 150 peak dpa at 500° is about 0.44% and 0.37%, respectively. Due to the choice of 100 degree temperature intervals, this study did not attempt to precisely identify peak void swelling conditions, merely the range of irradiation temperatures where this could be a concern. It is known high-dose ion irradiation can significantly suppress void nucleation. Future neutron irradiation in the 500–600° range (without considering the temperature shift) is needed to determine the onset of accelerated void swelling (possibly at lower dose).« less
NASA Astrophysics Data System (ADS)
Long, Fei
Zirconium alloys have been widely used in the CANDU (CANada Deuterium Uranium) reactor as core structural materials. Alloy such as Zircaloy-2 has been used for calandria tubes; fuel cladding; the pressure tube is manufactured from alloy Zr-2.5Nb. During in-reactor service, these alloys are exposed to a high flux of fast neutron at elevated temperatures. It is important to understand the effect of temperature and irradiation on the deformation mechanism of zirconium alloys. Aiming to provide experimental guidance for future modeling predictions on the properties of zirconium alloys this thesis describes the result of an investigation of the change of slip and twinning modes in Zircaloy-2 and Zr-2.5Nb as a function of temperature and irradiation. The aim is to provide scientific fundamentals and experimental evidences for future industry modeling in processing technique design, and in-reactor property change prediction of zirconium components. In situ neutron diffraction mechanical tests carried out on alloy Zircaloy-2 at three temperatures: 100¢ªC, 300¢ªC, and 500¢ªC, and described in Chapter 3. The evolution of the lattice strain of individual grain families in the loading and Poisson's directions during deformation, which probes the operation of slip and twinning modes at different stress levels, are described. By using the same type of in situ neutron diffraction technique, tests on Zr-2.5Nb pressure tube material samples, in either the fast-neutron irradiated or un-irradiated condition, are reported in Chapter 4. In Chapter 5, the measurement of dislocation density by means of line profile analysis of neutron diffraction patterns, as well as TEM observations of the dislocation microstructural evolution, is described. In Chapter 6 a hot-rolled Zr-2.5Nb with a larger grain size compared with the pressure tubing was used to study the development of dislocation microstructures with increasing plastic strain. In Chapter 7, in situ loading of heavy ion irradiated hot-rolled Zr-2.5Nb alloy is described, providing evidence for the interaction between moving dislocations and irradiation induced loops. Chapter 8 gives the effect on the dislocation structure of different levels of compressive strains along two directions in the hot-rolled Zr-2.5Nb alloy. By using high resolution neutron diffraction and TEM observations, the evolution of type and dislocation densities, as well as changes of dislocation microstructure with plastic strain were characterized.
NASA Astrophysics Data System (ADS)
Ni, Kai; Ma, Qian; Wan, Hao; Yang, Bin; Ge, Junjie; Zhang, Lingyu; Si, Naichao
2018-02-01
The evolution of microstructure for 7075 aluminum alloys with 50 Kev helium ions irradiation were studied by using optical microscopy (OM), scanning electron microscopy (SEM), x-ray diffraction (XRD) and transmission electron microscopy (TEM). The fluences of 1 × 1015, 1 × 1016 and 1 × 1017 ions cm-2 were selected, and irradiation experiments were conducted at room temperatures. The transmission process of He+ ions was simulated by using SRIM software, including distribution of ion ranges, energy losses and atomic displacements. Experimental results show that irradiated pits and micro-cracks were observed on irradiation sample surface, and the size of constituent particles (not including Mg2Si) decreased with the increasing dose. The x-ray diffraction results of the pair of peaks is better resolved in irradiated samples might indicate that the stressed structure consequence due to crystal defects (vacancies and interstitials) after He+ implantation. TEM observation indicated that the density of MgZn2 phase was significantly reduced after helium ion irradiation which is harmful to strength. Besides, the development of compressive stress produced a large amount of dislocation defects in the 1015 ions cm-2 sample. Moreover, higher fluence irradiation produced more dislocations in sample. At fluence of 1016 ions cm-2, dislocation wall formed by dislocation slip and aggregation in the interior of grains, leading to the refinement of these grains. As fluence increased to 1017 ions cm-2, dislocation loops were observed in pinned dislocation. Moreover, dislocation as effective defect sink, irradiation-induced vacancy defects aggregated to these sinks, and resulted in the formation of helium bubbles in dislocation.
Radiation-induced amorphization of Langasite La3Ga5SiO14
NASA Astrophysics Data System (ADS)
Yao, Tiankai; Lu, Fengyuan; Zhang, Haifeng; Gong, Bowen; Ji, Wei; Zuo, Lei; Lian, Jie
2018-03-01
Single crystals of Langasite La3Ga5SiO14 (LGS) were irradiated by 1 MeV Kr2+ ions at temperature range from 298 to 898 K in order to simulate the damage effect of neutron radiation on Langasite, a candidate sensor material proposed as high temperature and pressure sensors in nuclear reactors. The microstructure evolution of LGS as functions of irradiation dose and temperature was followed by in-situ TEM observation through electron diffraction pattern. LGS is found to be sensitive to ion beam irradiation-induced amorphization from displacive heavy ions with a low critical dose of ∼0.5 ± 0.2 dpa (neutron fluence of (1.6 ± 0.6) × 1019 neutrons/cm2) at room temperature. The critical amorphization temperature, Tc, is determined to be 910 ± 10 K. Under simultaneous ionizing electron (300 keV, 45 nA) and displacive heavy ion irradiations (1-MeV Kr2+ and flux of 6.25 × 1011 ions/cm2·s), LGS displayed greater stability of crystal structure against amorphization, possibly due to the electron radiation-induced recovery of displacive damage by heavy ions.
Gamma radiation effects on siloxane-based additive manufactured structures
NASA Astrophysics Data System (ADS)
Schmalzer, Andrew M.; Cady, Carl M.; Geller, Drew; Ortiz-Acosta, Denisse; Zocco, Adam T.; Stull, Jamie; Labouriau, Andrea
2017-01-01
Siloxane-basedadditive manufactured structures prepared by the direct ink write (DIW) technology were exposed to ionizing irradiation in order to gauge radiolysis effects on structure-property relationships. These well-defined 3-D structures were subjected to moderate doses of gamma irradiation in an inert atmosphere and characterized by a suite of experimental methods. Changes in thermal, chemical, microstructure, and mechanical properties were evaluated by DSC, TGA, FT-IR, mass spectroscopy, EPR, solvent swelling, SEM, and uniaxial compressive load techniques. Our results demonstrated that 3-D structures made from aromatic-free siloxane resins exhibited hardening after being exposed to gamma radiation. This effect was accompanied by gas evolution, decreasing in crystallization levels, decreasing in solvent swelling and damage to the microstructure. Furthermore, long-lived radiation-induced radicals were not detected by EPR methods. Our results are consistent with cross-link formation being the dominant degradation mechanism over chain scission reactions. On the other hand, 3-D structures made from high phenyl content siloxane resins showed little radiation damage as evidenced by low off gassing.
NASA Astrophysics Data System (ADS)
Tang, Jun; Hong, Mengqing; Wang, Yongqiang; Qin, Wenjing; Ren, Feng; Dong, Lan; Wang, Hui; Hu, Lulu; Cai, Guangxu; Jiang, Changzhong
2018-03-01
High-performance radiation tolerance materials are crucial for the success of future advanced nuclear reactors. In this paper, we present a further investigation that the "vein-like" nanochannel films can enhance radiation tolerance under ion irradiation at high temperature and post-irradiation annealing. The chromium nitride (CrN) nanochannel films with different nanochannel densities and the compact CrN film are chosen as a model system for these studies. Microstructural evolution of these films were investigated using Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Elastic Recoil Detection (ERD) and Grazing Incidence X-ray Diffraction (GIXRD). Under the high fluence He+ ion irradiation at 500 °C, small He bubbles with low bubble densities are observed in the irradiated nanochannel CrN films, while the aligned large He bubbles, blistering and texture reconstruction are found in the irradiated compact CrN film. For the heavy Ar2+ ion irradiation at 500 °C, the microstructure of the nanochannel CrN RT film is more stable than that of the compact CrN film due to the effective releasing of defects via the nanochannel structure. Under the He+ ion irradiation and subsequent annealing, compared with the compact film, the nanochannel films have excellent performance for the suppression of He bubble growth and possess the strong microstructural stability. Basing on the analysis on the sizes and number densities of bubbles as well as the concentrations of He retained in the nanochannel CrN films and the compact CrN film under different experimental conditions, potential mechanism for the enhanced radiation tolerance are discussed. Nanochannels play a crucial role on the release of He/defects under ion irradiation. We conclude that the tailored "vein-like" nanochannel structure may be used as advanced radiation tolerance materials for future nuclear reactors.
NASA Astrophysics Data System (ADS)
Gonderman, S.; Tripathi, J. K.; Sizyuk, T.; Hassanein, A.
2017-08-01
Tungsten (W) has been selected as the divertor material in ITER based on its promising thermal and mechanical properties. Despite these advantages, continued investigation has revealed W to undergo extreme surface morphology evolution in response to relevant fusion operating conditions. These complications spur the need for further exploration of W and other innovative plasma facing components (PFCs) for future fusion devices. Recent literature has shown that alloying of W with other refractory metals, such as tantalum (Ta), results in the enhancement of key PFC properties including, but not limited to, ductility, hydrogen isotope retention, and helium ion (He+) radiation tolerance. In the present study, pure W and W-Ta alloys are exposed to simultaneous and sequential low energy, He+ and deuterium (D+) ion beam irradiations at high (1223 K) and low (523 K) temperatures. The goal of this study is to cultivate a complete understanding of the synergistic effects induced by dual and sequential ion irradiation on W and W-Ta alloy surface morphology evolution. For the dual ion beam experiments, W and W-Ta samples were subjected to four different He+: D+ ion ratios (100% He+, 60% D+ + 40% He+, 90% D+ + 10% He+ and 100% D+) having a total constant He+ fluence of 6 × 1024 ion m-2. The W and W-Ta samples both exhibit the expected damaged surfaces under the 100% He+ irradiation, but as the ratio of D+/He+ ions increases there is a clear suppression of the surface morphology at high temperatures. This observation is supported by the sequential experiments, which show a similar suppression of surface morphology when W and W-Ta samples are first exposed to low energy He+ irradiation and then exposed to subsequent low energy D+ irradiation at high temperatures. Interestingly, this morphology suppression is not observed at low temperatures, implying there is a D-W interaction mechanism which is dependent on temperature that is driving the suppression of the microstructure evolution in both the pure W and W-Ta alloys. Minor irradiation tolerance enhancement in the performance of the W-Ta samples is also observed.
Bufford, D. C.; Abdeljawad, F. F.; Foiles, S. M.; ...
2015-11-09
Here, nanostructuring has been proposed as a method to enhance radiation tolerance, but many metallic systems are rejected due to significant concerns regarding long term grain boundary and interface stability. This work utilized recent advancements in transmission electron microscopy (TEM) to quantitatively characterize the grain size, texture, and individual grain boundary character in a nanocrystalline gold model system before and after in situ TEM ion irradiation with 10 MeV Si. The initial experimental measurements were fed into a mesoscale phase field model, which incorporates the role of irradiation-induced thermal events on boundary properties, to directly compare the observed and simulatedmore » grain growth with varied parameters. The observed microstructure evolution deviated subtly from previously reported normal grain growth in which some boundaries remained essentially static. In broader terms, the combined experimental and modeling techniques presented herein provide future avenues to enhance quantification and prediction of the thermal, mechanical, or radiation stability of grain boundaries in nanostructured crystalline systems.« less
Bagchi, Sharmistha; Lalla, N P
2008-06-11
The present study reports the cross-sectional transmission electron microscopic investigations of swift heavy ion-irradiation induced nano-size recrystallization of Ni in a nearly immiscible W/Ni multilayer structure. Multilayer structures (MLS) of [W(25 Å)/Ni(25 Å)](10BL) were grown on Si-(100) substrate by the ion-beam sputtering technique. The as-synthesized MLS were subjected to 120 MeV-Au(9+) ion-irradiation to a fluence of ∼5 × 10(13) ions cm(-2). Wide-angle x-ray diffraction studies of pristine as well as irradiated W/Ni multilayers show deterioration of the superlattice structure, whereas x-ray reflectivity (XRR) measurement reveals a nearly unaffected microstructure after irradiation. Analysis of the XRR data using 'Parratt's formalism' does show a significant increase of W/Ni interface roughness. Cross-sectional transmission electron microscopy (TEM) studies carried out in diffraction and imaging modes (including bright-field and dark-field imaging), show that at high irradiation dose the intralayer microstructure of Ni becomes nano-crystalline (1-2 nm). During these irradiation induced changes of the intralayer microstructure, the interlayer definition of the W and Ni layers still remains intact. The observed nano-recrystallization of Ni has been attributed to competition between low miscibility of the W/Ni interface and the ion-beam induced mixing kinetics.
Evaluation of damage induced by high irradiation levels on α-Ni-Ni3Si eutectic structure
NASA Astrophysics Data System (ADS)
Camacho Olguin, Carlos Alberto; Garcia-Borquez, Arturo; González-Rodríguez, Carlos Alberto; Loran-Juanico, Jose Antonio; Cruz-Mejía, Hector
2015-06-01
Diluted alloys of the binary system Ni-Si have been used as target of beam of ions, electrons, neutrons and so on because in this kind of alloy occurs transformations order-disorder, when the temperature is raised. This fact has permitted to evaluate the phenomena associated with the damage induced by irradiation (DII). The results of these works have been employed to understand the behavior under irradiation of complex alloys and to evaluate the reliability of the results of mathematical simulation of the evolution of the DII. The interest in the alloy system Ni-Si has been reborn due to the necessity of developing materials, which have better resistance against the corrosion on more aggressive environments such as those generated on the nuclear power plants or those that exist out of the Earth's atmosphere. Now, a growing interest to use concentrated alloys of this binary system on diverse fields of the materials science has been taking place because up to determined concentration of silicon, a regular eutectic is formed, and this fact opens the possibility to develop lamellar composite material by directional solidification. However, nowadays, there is a lack of fundamental knowledge about the behavior of this type of lamellar structure under aggressive environments, like those mentioned before. Hence, the task of this work is to evaluate the effect that has the irradiation over the microstructure of the concentrated alloy Ni22at%Si. The dendritic region of the hypereutectic alloy consists of an intermetallic phase Ni3Si, whereas the interdendritic region is formed by the alternation of lamellas of solid solution α-Ni and intermetallic phase Ni3Si. Such kind of microstructure has the advantage to get information of the DII over different phases individually, and at the same time, about of the microstructure influence over the global damage in the alloy. The hypereutectic Ni22at%Si alloy was irradiated perpendicularly to its surface, with 3.66 MeV - Ni ions up to 380 dpa at 650°C in a Tandetron linear accelerator. The level of irradiation dose was chosen similar to the irradiation conditions of the next-generation nuclear reactors. The theoretical maximum depth of the DII (maximum depth of damage (MDD)) was calculated as 1.35 µm using the SRIM-2013 program; the laminar microstructure of the eutectic was simulated using the lattice parameters of the eutectic before irradiation. The experimental MDD was 1.47 µm, as determined through transmission electron microscope (TEM) images and the DII was characterized using µX-ray diffraction and TEM. The elimination of cubic phase of the intermetallic Ni3Si, the suppression of lamellae of the α-Ni phase, the generation of dislocation loops and lines, all of these changes generated by the irradiation are clear evidences that the DII was severe. Based on theoretical and experimental evidence, we propose that the amount of phases, alternate of lamellae with different chemical concentrations of silicon and lamellae spatial distribution have a direct relation with the severe evolution of the DII.
Radiation tolerance of neutron-irradiated model Fe-Cr-Al alloys
Field, Kevin G.; Hu, Xunxiang; Littrell, Kenneth C.; ...
2015-07-14
The Fe Cr Al alloy system has the potential to form an important class of enhanced accident-tolerant cladding materials in the nuclear power industry owing to the alloy system's higher oxidation resistance in high-temperature steam environments compared with traditional zirconium-based alloys. However, radiation tolerance of Fe Cr Al alloys has not been fully established. In this study, a series of Fe Cr Al alloys with 10 18 wt % Cr and 2.9 4.9 wt % Al were neutron irradiated at 382 C to 1.8 dpa to investigate the irradiation-induced microstructural and mechanical property evolution as a function of alloy composition.more » Dislocation loops with Burgers vector of a/2 111 and a 100 were detected and quantified. Results indicate precipitation of Cr-rich is primarily dependent on the bulk chromium composition. Mechanical testing of sub-size-irradiated tensile specimens indicates the hardening response seen after irradiation is dependent on the bulk chromium composition. Furthermore, a structure property relationship was developed; it indicated that the change in yield strength after irradiation is caused by the formation of these radiation-induced defects and is dominated by the large number density of Cr-rich α' precipitates at sufficiently high chromium contents after irradiation.« less
Effect of solute atom concentration on vacancy cluster formation in neutron-irradiated Ni alloys
NASA Astrophysics Data System (ADS)
Sato, Koichi; Itoh, Daiki; Yoshiie, Toshimasa; Xu, Qiu; Taniguchi, Akihiro; Toyama, Takeshi
2011-10-01
The dependence of microstructural evolution on solute atom concentration in Ni alloys was investigated by positron annihilation lifetime measurements. The positron annihilation lifetimes in pure Ni, Ni-0.05 at.%Si, Ni-0.05 at.%Sn, Ni-Cu, and Ni-Ge alloys were about 400 ps even at a low irradiation dose of 3 × 10 -4 dpa, indicating the presence of microvoids in these alloys. The size of vacancy clusters in Ni-Si and Ni-Sn alloys decreased with an increase in the solute atom concentration at irradiation doses less than 0.1 dpa; vacancy clusters started to grow at an irradiation dose of about 0.1 dpa. In Ni-2 at.%Si, irradiation-induced segregation was detected by positron annihilation coincidence Doppler broadening measurements. This segregation suppressed one-dimensional (1-D) motion of the interstitial clusters and promoted mutual annihilation of point defects. The frequency and mean free path of the 1-D motion depended on the solute atom concentration and the amount of segregation.
Studies on the effects of helium on the microstructural evolution of V-3.8Cr-3.9Ti
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doraiswamy, N.; Kestel, B.; Alexander, D.E.
1997-04-01
The favorable physical and mechanical properties of V-3.8Cr-3.9Ti (wt.%), when subjected to neutron irradiation, has lead to considerable attention being focused on it for use in fusion reactor structural applications. However, there is limited data on the effects of helium on physical and mechanical properties of this alloy. Understanding these effects are important since helium will be generated by direct {alpha}-injection or transmutation reactions in the fusion environment, typically at a rate of {approx}5 appm He/dpa. Helium has been shown to cause substantial embrittlement, even at room temperature in vanadium and its alloys. Recent simulations of the fusion environment usingmore » the Dynamic Helium Charging Experiments (DHCE) have also indicated that the mechanical properties of vanadium alloys are altered by the presence of helium in post irradiation tests performed at room temperature. While the strengths were lower, room temperature ductilities of the DHCE specimens were higher than those of non-DHCE specimens. These changes have been attributed to the formation of different types of hardening centers in these alloys due to He trapping. Independent thermal desorption experiments suggest that these hardening centers may be associated with helium-vacancy-X (where X = O, N, and C) complexes. These complexes are stable below 290{degrees}C and persist at room temperature. However, there has been no direct microstructural evidence correlating the complexes with irradiation effects. An examination of the irradiation induced microstructure in samples preimplanted with He to different levels would enable such a correlation.« less
NASA Astrophysics Data System (ADS)
Wan, Hao; Si, Naichao; Wang, Quan; Zhao, Zhenjiang
2018-02-01
Morphology variation, composition alteration and microstructure changes in 1060 aluminum irradiated with 50 keV helium ions were characterized by field emission scanning electron microscopy (FESEM) equipped with x-ray elemental scanning, 3D measuring laser microscope and transmission electron microscope (TEM). The results show that, helium ions irradiation induced surface damage and Si-rich aggregates in the surfaces of irradiated samples. Increasing the dose of irradiation, more damages and Si-rich aggregates would be produced. Besides, defects such as dislocations, dislocation loops and dislocation walls were the primary defects in the ion implanted layer. The forming of surface damages were related with preferentially sputtering of Al component. While irradiation-enhanced diffusion and irradiation-induced segregation resulted in the aggregation of impurity atoms. And the aggregation ability of impurity atoms were discussed based on the atomic radius, displacement energy, lattice binding energy and surface binding energy.
Slurry erosion induced surface nanocrystallization of bulk metallic glass
NASA Astrophysics Data System (ADS)
Ji, Xiulin; Wu, Jili; Pi, Jinghong; Cheng, Jiangbo; Shan, Yiping; Zhang, Yingtao
2018-05-01
Microstructure evolution and phase transformation of metallic glasses (MGs) could occur under heating condition or mechanical deformation. The cross-section of as-cast Zr55Cu30Ni5Al10 MG rod was impacted by the solid particles when subjected to erosion in slurry flow. The surface microstructure was observed by XRD before and after slurry erosion. And the stress-driven de-vitrification increases with the increase of erosion time. A microstructure evolution layer with 1-2 μm thickness was formed on the topmost eroded surface. And a short range atomic ordering prevails in the microstructure evolution layer with crystalline size around 2-3 nm embedded in the amorphous matrix. The XPS analysis reveals that most of the metal elements in the MG surface, except for Cu, were oxidized. And a composite layer with ZrO2 and Al2O3 phases were formed in the topmost surface after slurry erosion. The cooling rate during solidification of MG has a strong influence on the slurry erosion induced nanocrystallization. And a lower cooling rate favors the surface nanocrystallization because of lower activation energy and thermo-stability. Finally, the slurry erosion induced surface nanocrystallization and microstructure evolution result in surface hardening and strengthening. Moreover, the microstructure evolution mechanisms were discussed and it is related to the cooling rate of solidification and the impact-induced temperature rise, as well as the combined effects of the impact-induced plastic flow, inter-diffusion and oxidation of the metal elements.
Neutron irradiation effects in Fe and Fe-Cr at 300 °C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Wei-Ying; Miao, Yinbin; Gan, Jian
2016-06-01
Fe and Fe-Cr (Cr = 10–16 at.%) specimens were neutron-irradiated at 300 °C to 0.01, 0.1 and 1 dpa. The TEM observations indicated that the Cr significantly reduced the mobility of dislocation loops and suppressed vacancy clustering, leading to distinct damage microstructures between Fe and Fe-Cr. Irradiation-induced dislocation loops in Fe were heterogeneously observed in the vicinity of grown-in dislocations, whereas the loop distribution observed in Fe-Cr is much more uniform. Voids were observed in the irradiated Fe samples, but not in irradiated Fe-Cr samples. Increasing Cr content in Fe-Cr results in a higher density, and a smaller size ofmore » irradiation-induced dislocation loops. Orowan mechanism was used to correlate the observed microstructure and hardening, which showed that the hardening in Fe-Cr can be attributed to the formation of dislocation loops and α' precipitates.« less
Ag+12 ion induced modifications of structural and optical properties of ZnO-PMMA nanocomposite films
NASA Astrophysics Data System (ADS)
Sharma, Sarla; Vyas, Rishi; Vijay, Y. K.
2013-02-01
The influence of swift heavy ion (SHI) irradiation on structural and photoluminescence (PL) properties of ZnO-PMMA nanocomposite films, prepared by solution casting method, was studied. The ZnO-PMMA nanocomposite films were irradiated using 120 MeV Ag+12 ions at different fluences varying from 1×1011 to 1×1013 ions/cm2. The intensity of the X-ray diffraction peaks is increased at the high fluence, without evolution of any new peak. A shift in absorption edge (i.e. shift in optical band gap) towards higher wavelength was observed after irradiation and PL from ZnO-PMMA nanocomposite films is found to increase up to a critical fluence and then found to be suppressed for higher fluence (1×1012 ion/cm2). The change in photoluminescence after irradiation can be attributed to the change in microstructure of PMMA matrix as well as the agglomeration of ZnO nanoparticles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shojaee, S. A.; Qi, Y.; Wang, Y. Q.
In this paper, the effects of ion irradiation on the microstructural evolution of sol–gel-derived silica-based thin films were examined by combining the results from Fourier transform infrared, Raman, and X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and elastic recoil detection. Variations in the chemical composition, density, and structure of the constituent phases and interfaces were studied, and the results were used to propose a microstructural model for the irradiated films. It was discovered that the microstructure of the films after ion irradiation and decomposition of the starting organic materials consisted of isolated hydrogenated amorphous carbon clusters within an amorphous and carbon-incorporatedmore » silica network. A decrease in the bond angle of Si–O–Si bonds in amorphous silica network along with an increase in the concentration of carbon-rich SiO x C y tetrahedra were the major structural changes caused by ion irradiation. Finally, in addition, hydrogen release from free carbon clusters was observed with increasing ion energy and fluence.« less
Microstructure evolution of recrystallized Zircaloy-4 under charged particles irradiation
NASA Astrophysics Data System (ADS)
Gaumé, M.; Onimus, F.; Dupuy, L.; Tissot, O.; Bachelet, C.; Mompiou, F.
2017-11-01
Recrystallized zirconium alloys are used as nuclear fuel cladding tubes of Pressurized Water Reactors. During operation, these alloys are submitted to fast neutron irradiation which leads to their in-reactor deformation and to a change of their mechanical properties. These phenomena are directly related to the microstructure evolution under irradiation and especially to the formation of -type dislocation loops. In the present work, the radiation damage evolution in recrystallized Zircaloy-4 has been studied using charged particles irradiation. The loop nucleation and growth kinetics, and also the helical climb of linear dislocations, were observed in-situ using a High Voltage Electron Microscope (HVEM) under 1 MeV electron irradiation at 673 and 723 K. In addition, 600 keV Zr+ ion irradiations were conducted at the same temperature. Transmission Electron Microscopy (TEM) characterizations have been performed after both types of irradiations, and show dislocation loops with a Burgers vector belonging to planes close to { 10 1 bar 0 } first order prismatic planes. The nature of the loops has been characterized. Only interstitial dislocation loops have been observed after ion irradiation at 723 K. However, after electron irradiation conducted at 673 and 723 K, both interstitial and vacancy loops were observed, the proportion of interstitial loops increasing as the temperature is increased. The loop growth kinetics analysis shows that as the temperature increases, the loop number density decreases and the loop growth rate tends to increase. An increase of the flux leads to an increase of the loop number density and a decrease of the loop growth rate. The results are compared to previous works and discussed in the light of point defects diffusion.
Irradiation hardening of pure tungsten exposed to neutron irradiation
Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto; ...
2016-08-26
In this paper, pure tungsten samples have been neutron irradiated in HFIR at 90–850 °C to 0.03–2.2 dpa. A dispersed barrier hardening model informed by the available microstructure data has been used to predict the hardness. Comparison of the model predictions and the measured Vickers hardness reveals the dominant hardening contribution at various irradiation conditions. For tungsten samples irradiated in HFIR, the results indicate that voids and dislocation loops contributed to the hardness increase in the low dose region (<0.3 dpa), while the formation of intermetallic second phase precipitation, resulting from transmutation, dominates the radiation-induced strengthening beginning with a relativelymore » modest dose (>0.6 dpa). Finally, the precipitate contribution is most pronounced for the HFIR irradiations, whereas the radiation-induced defect cluster microstructure can rationalize the entirety of the hardness increase observed in tungsten irradiated in the fast neutron spectrum of Joyo and the mixed neutron spectrum of JMTR.« less
NASA Astrophysics Data System (ADS)
Tanigawa, Hiroyasu; Katoh, Yutai; Kohyama, Akira
1995-08-01
Effects of applied stress on early stages of interstitial type Frank loop evolution were investigated by both numerical calculation and irradiation experiments. The final objective of this research is to propose a comprehensive model of complex stress effects on microstructural evolution under various conditions. In the experimental part of this work, the microstructural analysis revealed that the differences in resolved normal stress caused those in the nucleation rates of Frank loops on {111} crystallographic family planes, and that with increasing external applied stress the total nucleation rate of Frank loops was increased. A numerical calculation was carried out primarily to evaluate the validity of models of stress effects on nucleation processes of Frank loop evolution. The calculation stands on rate equuations which describe evolution of point defects, small points defect clusters and Frank loops. The rate equations of Frank loop evolution were formulated for {111} planes, considering effects of resolved normal stress to clustering processes of small point defects and growth processes of Frank loops, separately. The experimental results and the predictions from the numerical calculation qualitatively coincided well with each other.
NASA Astrophysics Data System (ADS)
Pan, A. F.; Wang, W. J.; Mei, X. S.; Zheng, B. X.; Yan, Z. X.
2016-11-01
This study reported on the formation of sub-5-μm microstructures covered on titanium by cracks growth under 10-ns laser radiation at the wavelength of 532 nm and its induced light modification for production of nanostructures. The electric field intensity and laser power density absorbed by commercial pure titanium were computed to investigate the self-trapping introduced by cracks and the effect of surface morphology on laser propagation characteristics. It is found that nanostructures can form at the surface with the curvature radius below 20 μm. Meanwhile, variable laser fluences were applied to explore the evolution of cracks on commercial pure titanium with or without melt as spot overlap number increased. Experimental study was first performed at the peak laser fluence of 1.063 J/cm2 to investigate the microstructures induced only by cracks growth. The results demonstrated that angular microstructures with size between 1.68 μm and 4.74 μm was obtained and no nanostructure covered. Then, at the peak laser fluence of 2.126 J/cm2, there were some nanostructures covered on the melt-induced curved microstructured surface. However, surface molten material submerged in the most of cracks at the spot overlap number of 744, where the old cracks disappeared. The results indicated that there was too much molten material and melting time at the peak laser fluence of 2.126 J/cm2, which was not suitable for obtainment of perfect micro-nano structures. On this basis, peak laser fluence was reduced down to 1.595 J/cm2 and the sharp sub-5 μm microstructures with nanostructures covered was obtained at spot overlap number of 3720.
NASA Astrophysics Data System (ADS)
Castin, N.; Bonny, G.; Bakaev, A.; Ortiz, C. J.; Sand, A. E.; Terentyev, D.
2018-03-01
We upgrade our object kinetic Monte Carlo (OKMC) model, aimed at describing the microstructural evolution in tungsten (W) under neutron and ion irradiation. Two main improvements are proposed based on recently published atomistic data: (a) interstitial carbon impurities, and their interaction with radiation-induced defects (point defect clusters and loops), are more accurately parameterized thanks to ab initio findings; (b) W transmutation to rhenium (Re) upon neutron irradiation, impacting the diffusivity of radiation defects, is included, also relying on recent atomistic data. These essential amendments highly improve the portability of our OKMC model, providing a description for the formation of SIA-type loops under different irradiation conditions. The model is applied to simulate neutron and ion irradiation in pure W samples, in a wide range of fluxes and temperatures. We demonstrate that it performs a realistic prediction of the population of TEM-visible voids and loops, as compared to experimental evidence. The impact of the transmutation of W to Re, and of carbon trapping, is assessed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Xunxiang; Koyanagi, Takaaki; Fukuda, Makoto
In this paper, pure tungsten samples have been neutron irradiated in HFIR at 90–850 °C to 0.03–2.2 dpa. A dispersed barrier hardening model informed by the available microstructure data has been used to predict the hardness. Comparison of the model predictions and the measured Vickers hardness reveals the dominant hardening contribution at various irradiation conditions. For tungsten samples irradiated in HFIR, the results indicate that voids and dislocation loops contributed to the hardness increase in the low dose region (<0.3 dpa), while the formation of intermetallic second phase precipitation, resulting from transmutation, dominates the radiation-induced strengthening beginning with a relativelymore » modest dose (>0.6 dpa). Finally, the precipitate contribution is most pronounced for the HFIR irradiations, whereas the radiation-induced defect cluster microstructure can rationalize the entirety of the hardness increase observed in tungsten irradiated in the fast neutron spectrum of Joyo and the mixed neutron spectrum of JMTR.« less
NASA Astrophysics Data System (ADS)
Marsh, Jonathan; Zhang, Yang; Verma, Devendra; Biswas, Sudipta; Haque, Aman; Tomar, Vikas
2015-12-01
Zirconium alloys for nuclear applications with different microstructures were produced by manufacturing processes such as chipping, rolling and annealing. The two Zr samples, rolled and rolled-annealed were subjected to different levels of irradiation, 1 keV and 100 eV, to study the effect of irradiation dosages. The effect of microstructure and irradiation on the mechanical properties (reduced modulus, hardness, indentation yield strength) was analyzed with nanoindentation experiments, which were carried out in the temperature range of 25°C to 450°C to investigate temperature dependence. An indentation size effect analysis was performed and the mechanical properties were also corrected for the oxidation effects at high temperatures. The irradiation-induced hardness was observed, with rolled samples exhibiting higher increase compared to rolled and annealed samples. The relevant material parameters of the Anand viscoplastic model were determined for Zr samples containing different level of irradiation to account for viscoplasticity at high temperatures. The effect of the microstructure and irradiation on the stress-strain curve along with the influence of temperature on the mechanisms of irradiation creep such as formation of vacancies and interstitials is presented. The yield strength of irradiated samples was found to be higher than the unirradiated samples which also showed a decreasing trend with the temperature.
A dual-phase microstructural approach to damage and fracture of Ti3SiC2/SiC joints
NASA Astrophysics Data System (ADS)
Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.
2018-02-01
The microcracking mechanisms responsible for Ti3SiC2/SiC joint damage observed at the macroscopic scale after neutron irradiation experiments are investigated in detail. A dual-phase microstructural approach to damage and fracture of Ti3SiC2/SiC joints is developed that uses a finely discretized two-phase domain based on a digital image of an actual microstructure involving embedded Ti3SiC2 and SiC phases. The behaviors of SiC and Ti3SiC2 in the domain are described by the continuum damage mechanics (CDM) model reported in Nguyen et al., J. Nucl. Mater., 2017, 495:504-515. This CDM model describes microcracking damage in brittle ceramics caused by thermomechanical loading and irradiation-induced swelling. The dual-phase microstructural model is applied to predict the microcracking mechanisms occurring in a typical Ti3SiC2/SiC joint subjected to heating to 800 °C followed by irradiation-induced swelling at this temperature and cooling to room temperature after the applied swelling has reached the maximum swelling levels observed in the experiments for SiC and Ti3SiC2. The model predicts minor damage of the joint after heating but significant microcracking in the SiC phase and along the boundaries between SiC and Ti3SiC2 as well as along the bonding joint during irradiation-induced swelling and cooling to room temperature. These predictions qualitatively agree with the limited experimental observations of joint damage at this irradiation temperature.
Puppulin, Leonardo; Zhu, Wenliang; Sugano, Nobuhiko
2014-01-01
Three types of commercially available ultra-high molecular weight polyethylene (UHMWPE) acetabular cups currently used in total hip arthroplasty have been studied by means of Raman micro-spectroscopy to unfold the microstructural modification induced by the oxidative degradation after accelerated aging with and without lipid absorption. The three investigated materials were produced by three different manufacturing procedures, as follows: irradiation followed by remelting, one-step irradiation followed by annealing, 3-step irradiation and annealing. Clear microstructural differences were observed in terms of phase contents (i.e. amorphous, crystalline and intermediate phase fraction). The three-step annealed material showed the highest crystallinity fraction in the bulk, while the remelted polyethylene is clearly characterized by the lowest content of crystalline phase and the highest content of amorphous phase. After accelerated aging either with or without lipids, the amount of amorphous phase decreased in all the samples as a consequence of the oxidation-induced recrystallization. The most remarkable variations of phase contents were detected in the remelted and in the single-step annealed materials. The presence of lipids triggered oxidative degradation especially in the remelted polyethylene. Such experimental evidence might be explained by the highest amount of amorphous phase in which lipids can be absorbed prior to accelerated aging. The results of these spectroscopic characterizations help to rationalize the complex effect of different irradiation and post-irradiation treatments on the UHMWPE microstructure and gives useful information on how significantly any single step of the manufacturing procedures might affect the oxidative degradation of the polymer. PMID:25179830
He implantation induced microstructure- and hardness-modification of the intermetallic γ-TiAl
NASA Astrophysics Data System (ADS)
Pouchon, Manuel A.; Chen, Jiachao; Hoffelner, Wolfgang
2009-05-01
TiAl is a well known high temperature material with good creep properties. It is investigated as a potential structural material for Generation IV high temperature gas cooled nuclear reactors. The tests are performed with the ABB-2 (Ti-rich TiAl with 2 at.% W) developed by ASEA Brown Boveri Ltd. (ABB). Thin samples are irradiated throughout with 24 MeV 4He2+ ions; the irradiated material is then investigated towards its microstructure and its hardness. The microstructure is studied by transmission electron microscopy and the hardness is investigated using a micro-hardness tester and a nano-indenter. Different effects can be identified. From room to moderate irradiation temperatures, the radiation induced hardening of the material slowly vanishes until the material completely recovers at about 943 K. Beyond this temperature, He-bubble formation seems to harden the material again, until beyond 1200 K a steep increase in hardening is detected. This effect can be correlated with bubbles being identified in the micrographs. The results are consistent and give strong indications to a microstructural development as a function of temperature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Shenyang; Lavender, Curt A.; Joshi, Vineet V.
Recrystallization plays an important role in swelling kinetics of irradiated metallic nuclear fuels. This talk will present a three-dimensional microstructure-dependent swelling model by integrating the evolution of intra-and inter- granular gas bubbles, dislocation loop density, and recrystallization.
Stewart, James A.; Kohnert, Aaron A.; Capolungo, Laurent; ...
2018-03-06
The complexity of radiation effects in a material’s microstructure makes developing predictive models a difficult task. In principle, a complete list of all possible reactions between defect species being considered can be used to elucidate damage evolution mechanisms and its associated impact on microstructure evolution. However, a central limitation is that many models use a limited and incomplete catalog of defect energetics and associated reactions. Even for a given model, estimating its input parameters remains a challenge, especially for complex material systems. Here, we present a computational analysis to identify the extent to which defect accumulation, energetics, and irradiation conditionsmore » can be determined via forward and reverse regression models constructed and trained from large data sets produced by cluster dynamics simulations. A global sensitivity analysis, via Sobol’ indices, concisely characterizes parameter sensitivity and demonstrates how this can be connected to variability in defect evolution. Based on this analysis and depending on the definition of what constitutes the input and output spaces, forward and reverse regression models are constructed and allow for the direct calculation of defect accumulation, defect energetics, and irradiation conditions. Here, this computational analysis, exercised on a simplified cluster dynamics model, demonstrates the ability to design predictive surrogate and reduced-order models, and provides guidelines for improving model predictions within the context of forward and reverse engineering of mathematical models for radiation effects in a materials’ microstructure.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, James A.; Kohnert, Aaron A.; Capolungo, Laurent
The complexity of radiation effects in a material’s microstructure makes developing predictive models a difficult task. In principle, a complete list of all possible reactions between defect species being considered can be used to elucidate damage evolution mechanisms and its associated impact on microstructure evolution. However, a central limitation is that many models use a limited and incomplete catalog of defect energetics and associated reactions. Even for a given model, estimating its input parameters remains a challenge, especially for complex material systems. Here, we present a computational analysis to identify the extent to which defect accumulation, energetics, and irradiation conditionsmore » can be determined via forward and reverse regression models constructed and trained from large data sets produced by cluster dynamics simulations. A global sensitivity analysis, via Sobol’ indices, concisely characterizes parameter sensitivity and demonstrates how this can be connected to variability in defect evolution. Based on this analysis and depending on the definition of what constitutes the input and output spaces, forward and reverse regression models are constructed and allow for the direct calculation of defect accumulation, defect energetics, and irradiation conditions. Here, this computational analysis, exercised on a simplified cluster dynamics model, demonstrates the ability to design predictive surrogate and reduced-order models, and provides guidelines for improving model predictions within the context of forward and reverse engineering of mathematical models for radiation effects in a materials’ microstructure.« less
NASA Astrophysics Data System (ADS)
Lang, Lin; Tian, Zean; Xiao, Shifang; Deng, Huiqiu; Ao, Bingyun; Chen, Piheng; Hu, Wangyu
2017-02-01
Molecular dynamics simulations have been performed to investigate the structural evolution of Cu64.5Zr35.5 metallic glasses under irradiation. The largest standard cluster analysis (LSCA) method was used to quantify the microstructure within the collision cascade regions. It is found that the majority of clusters within the collision cascade regions are full and defective icosahedrons. Not only the smaller structures (common neighbor subcluster) but also primary clusters greatly changed during the collision cascades; while most of these radiation damages self-recover quickly in the following quench states. These findings indicate the Cu-Zr metallic glasses have excellent irradiation-resistance properties.
Solute redistribution and phase stability at FeCr/TiO 2–x interfaces under ion irradiation
Xu, Y.; Aguiar, J. A.; Yadav, S. K.; ...
2015-02-26
Cr diffusion in trilayer thin films of 100 nm Fe–18Cr/125 nm TiO 2–x/100 nm Fe–18Cr deposited on MgO substrates at 500 °C was studied by either annealing at 500 °C or Ni 3+ ion irradiation at 500 °C. Microchemistry and microstructure evolution at the metal/oxide interfaces were investigated using (high-resolution) transmission electron microscopy, energy-dispersive X-ray spectroscopy and electron energy loss spectroscopy. Diffusion of Cr into the O-deficient TiO 2 layer, with negligible segregation to the FeCr/TiO 2–x interface itself, was observed under both annealing and irradiation. Cr diffusion into TiO 2–x was enhanced in ion-irradiated samples as compared to annealed.more » Irradiation-induced voids and amorphization of TiO 2–x was also observed. The experimental results are rationalized using first-principles calculations that suggest an energetic preference for substituting Ti with Cr in sub-stoichiometric TiO 2. Furthermore, the implications of these results on the irradiation stability of oxide-dispersed ferritic alloys are discussed.« less
NASA Astrophysics Data System (ADS)
Kumar, Ashish; Singh, R.; Kumar, Parmod; Singh, Udai B.; Asokan, K.; Karaseov, Platon A.; Titov, Andrei I.; Kanjilal, D.
2018-04-01
A systematic investigation of radiation hardness of Schottky barrier diodes and GaN epitaxial layers is carried out by employing in-situ electrical resistivity and cross sectional transmission electron microscopy (XTEM) microstructure measurements. The change in the current transport mechanism of Au/n-GaN Schottky barrier diodes due to irradiation is reported. The role of irradiation temperature and ion type was also investigated. Creation of damage is studied in low and medium electron energy loss regimes by selecting different ions, Ag (200 MeV) and O (100 MeV) at various fluences at two irradiation temperatures (80 K and 300 K). GaN resistivity increases up to 6 orders of magnitude under heavy Ag ions. Light O ion irradiation has a much lower influence on sheet resistance. The presence of isolated defect clusters in irradiated GaN epilayers is evident in XTEM investigation which is explained on the basis of the thermal spike model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nandipati, Giridhar; Setyawan, Wahyu; Heinisch, Howard L.
2014-06-30
The objective of the work is to implement a first-passage time (FPT) approach to deal with very fast 1D diffusing SIA clusters in KSOME (kinetic simulations of microstructural evolution) [1] to achieve longer time-scales during irradiation damage simulations. The goal is to develop FPT-KSOME, which has the same flexibility as KSOME.
Modelling irradiation-induced softening in BCC iron by crystal plasticity approach
NASA Astrophysics Data System (ADS)
Xiao, Xiazi; Terentyev, Dmitry; Yu, Long; Song, Dingkun; Bakaev, A.; Duan, Huiling
2015-11-01
Crystal plasticity model (CPM) for BCC iron to account for radiation-induced strain softening is proposed. CPM is based on the plastically-driven and thermally-activated removal of dislocation loops. Atomistic simulations are applied to parameterize dislocation-defect interactions. Combining experimental microstructures, defect-hardening/absorption rules from atomistic simulations, and CPM fitted to properties of non-irradiated iron, the model achieves a good agreement with experimental data regarding radiation-induced strain softening and flow stress increase under neutron irradiation.
Microstructural evolution of laser-exposed silicon targets in SF6 atmospheres
NASA Astrophysics Data System (ADS)
Fowlkes, J. D.; Pedraza, A. J.; Lowndes, D. H.
2000-09-01
The microstructures formed at the surface of silicon during pulsed-laser irradiation in SF6-rich atmospheres consist of an array of microholes surrounded by microcones. It is shown that there is a dynamic interplay between the formation of microholes and microcones. Fluorine produced by the laser-induced decomposition of SF6 is most likely responsible for the etching/ablation process. It is proposed that silicon-rich molecules and clusters that form in and are ejected from the continually deepening microholes sustain the axial and lateral growth of the microcones. The laser-melted layer at the tip and sides of the cones efficiently collects the silicon-rich products formed upon ablation. The total and partial pressures of SF6 in the chamber play a major role in cone development, a clear indication that it is the laser-generated plasma that controls the growth of these cones.
A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.
We investigate the microcracking mechanisms responsible for Ti 3SiC 2/SiC joint damage observed at the macroscopic scale after neutron irradiation experiments in detail. A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints is developed that uses a finely discretized two-phase domain based on a digital image of an actual microstructure involving embedded Ti 3SiC 2 and SiC phases. The behaviors of SiC and Ti 3SiC 2 in the domain are described by the continuum damage mechanics (CDM) model reported in Nguyen et al., J. Nucl. Mater., 2017, 495:504–515. This CDM model describes microcracking damage in brittlemore » ceramics caused by thermomechanical loading and irradiation-induced swelling. The dual-phase microstructural model is applied to predict the microcracking mechanisms occurring in a typical Ti 3SiC 2/SiC joint subjected to heating to 800 °C followed by irradiation-induced swelling at this temperature and cooling to room temperature after the applied swelling has reached the maximum swelling levels observed in the experiments for SiC and Ti 3SiC 2. The model predicts minor damage of the joint after heating but significant microcracking in the SiC phase and along the boundaries between SiC and Ti 3SiC 2 as well as along the bonding joint during irradiation-induced swelling and cooling to room temperature. Our predictions qualitatively agree with the limited experimental observations of joint damage at this irradiation temperature.« less
A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints
Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.
2017-12-05
We investigate the microcracking mechanisms responsible for Ti 3SiC 2/SiC joint damage observed at the macroscopic scale after neutron irradiation experiments in detail. A dual-phase microstructural approach to damage and fracture of Ti 3SiC 2/SiC joints is developed that uses a finely discretized two-phase domain based on a digital image of an actual microstructure involving embedded Ti 3SiC 2 and SiC phases. The behaviors of SiC and Ti 3SiC 2 in the domain are described by the continuum damage mechanics (CDM) model reported in Nguyen et al., J. Nucl. Mater., 2017, 495:504–515. This CDM model describes microcracking damage in brittlemore » ceramics caused by thermomechanical loading and irradiation-induced swelling. The dual-phase microstructural model is applied to predict the microcracking mechanisms occurring in a typical Ti 3SiC 2/SiC joint subjected to heating to 800 °C followed by irradiation-induced swelling at this temperature and cooling to room temperature after the applied swelling has reached the maximum swelling levels observed in the experiments for SiC and Ti 3SiC 2. The model predicts minor damage of the joint after heating but significant microcracking in the SiC phase and along the boundaries between SiC and Ti 3SiC 2 as well as along the bonding joint during irradiation-induced swelling and cooling to room temperature. Our predictions qualitatively agree with the limited experimental observations of joint damage at this irradiation temperature.« less
Microstructure evolution of T91 irradiated in the BOR60 fast reactor
NASA Astrophysics Data System (ADS)
Jiao, Z.; Taller, S.; Field, K.; Yeli, G.; Moody, M. P.; Was, G. S.
2018-06-01
Microstructures of T91 neutron irradiated in the BOR60 reactor at five temperatures between 376 °C and 524 °C to doses between 15.4 and 35.1 dpa were characterized using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and atom probe tomography (APT). Type a<100> dislocation loops were observed at 376-415 °C and network dislocations dominated at 460 °C and 524 °C. Cavities appeared in a bimodal distribution with a high density of small bubbles less than 2 nm at irradiation temperatures between 376 °C and 415 °C. Small bubbles were also observed at 460 °C and 524 °C but cavities greater than 2 nm were absent. Enrichment of Cr, Ni, and Si at the grain boundary was observed at all irradiation temperatures. Radiation-induced segregation (RIS) of Cr, Ni and Si appeared to saturate at 17.1 dpa and 376 °C. The temperature dependence of RIS of Cr, Ni and Si at the grain boundary, which showed a peak Cr enrichment temperature of 460 °C and a lower peak Ni and Si enrichment temperature of ∼400 °C, was consistent with observations of RIS of Cr in proton irradiated T91, suggesting that the same RIS mechanism may also apply to BOR60 irradiated T91. G-phase and Cu-rich precipitates were observed at 376-415 °C but were absent at 460 °C and 524 °C. The absence of G-phase at 524 °C could be related to the minimal segregation of Ni and Si in that condition.
Microstructure evolution of T91 irradiated in the BOR60 fast reactor
Jiao, Z.; Taller, S.; Field, K.; ...
2018-03-14
In this paper, microstructures of T91 neutron irradiated in the BOR60 reactor at five temperatures between 376 °C and 524 °C to doses between 15.4 and 35.1 dpa were characterized using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and atom probe tomography (APT). Type a<100> dislocation loops were observed at 376–415 °C and network dislocations dominated at 460 °C and 524 °C. Cavities appeared in a bimodal distribution with a high density of small bubbles less than 2 nm at irradiation temperatures between 376 °C and 415 °C. Small bubbles were also observed at 460 °C and 524more » °C but cavities greater than 2 nm were absent. Enrichment of Cr, Ni, and Si at the grain boundary was observed at all irradiation temperatures. Radiation-induced segregation (RIS) of Cr, Ni and Si appeared to saturate at 17.1 dpa and 376 °C. The temperature dependence of RIS of Cr, Ni and Si at the grain boundary, which showed a peak Cr enrichment temperature of 460 °C and a lower peak Ni and Si enrichment temperature of ~400 °C, was consistent with observations of RIS of Cr in proton irradiated T91, suggesting that the same RIS mechanism may also apply to BOR60 irradiated T91. G-phase and Cu-rich precipitates were observed at 376–415 °C but were absent at 460 °C and 524 °C. Finally, the absence of G-phase at 524 °C could be related to the minimal segregation of Ni and Si in that condition.« less
Microstructure evolution of T91 irradiated in the BOR60 fast reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Z.; Taller, S.; Field, K.
In this paper, microstructures of T91 neutron irradiated in the BOR60 reactor at five temperatures between 376 °C and 524 °C to doses between 15.4 and 35.1 dpa were characterized using transmission electron microscopy (TEM), scanning transmission electron microscopy (STEM), and atom probe tomography (APT). Type a<100> dislocation loops were observed at 376–415 °C and network dislocations dominated at 460 °C and 524 °C. Cavities appeared in a bimodal distribution with a high density of small bubbles less than 2 nm at irradiation temperatures between 376 °C and 415 °C. Small bubbles were also observed at 460 °C and 524more » °C but cavities greater than 2 nm were absent. Enrichment of Cr, Ni, and Si at the grain boundary was observed at all irradiation temperatures. Radiation-induced segregation (RIS) of Cr, Ni and Si appeared to saturate at 17.1 dpa and 376 °C. The temperature dependence of RIS of Cr, Ni and Si at the grain boundary, which showed a peak Cr enrichment temperature of 460 °C and a lower peak Ni and Si enrichment temperature of ~400 °C, was consistent with observations of RIS of Cr in proton irradiated T91, suggesting that the same RIS mechanism may also apply to BOR60 irradiated T91. G-phase and Cu-rich precipitates were observed at 376–415 °C but were absent at 460 °C and 524 °C. Finally, the absence of G-phase at 524 °C could be related to the minimal segregation of Ni and Si in that condition.« less
NASA Astrophysics Data System (ADS)
Gupta, J.; Hure, J.; Tanguy, B.; Laffont, L.; Lafont, M.-C.; Andrieu, E.
2018-04-01
Irradiation Assisted Stress Corrosion Cracking (IASCC) is a complex phenomenon of degradation which can have a significant influence on maintenance time and cost of core internals of a Pressurized Water Reactor (PWR). Hence, it is an issue of concern, especially in the context of lifetime extension of PWRs. Proton irradiation is generally used as a representative alternative of neutron irradiation to improve the current understanding of the mechanisms involved in IASCC. This study assesses the possibility of using heavy ions irradiation to evaluate IASCC mechanisms by comparing the irradiation induced modifications (in microstructure and mechanical properties) and cracking susceptibility of SA 304 L after both type of irradiations: Fe irradiation at 450 °C and proton irradiation at 350 °C. Irradiation-induced defects are characterized and quantified along with nano-hardness measurements, showing a correlation between irradiation hardening and density of Frank loops that is well captured by Orowan's formula. Both irradiations (iron and proton) increase the susceptibility of SA 304 L to intergranular cracking on subjection to Constant Extension Rate Tensile tests (CERT) in simulated nominal PWR primary water environment at 340 °C. For these conditions, cracking susceptibility is found to be quantitatively similar for both irradiations, despite significant differences in hardening and degree of localization.
Stability Study of the RERTR Fuel Microstructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian Gan; Dennis Keiser; Brandon Miller
2014-04-01
The irradiation stability of the interaction phases at the interface of fuel and Al alloy matrix as well as the stability of the fission gas bubble superlattice is believed to be very important to the U-Mo fuel performance. In this paper the recent result from TEM characterization of Kr ion irradiated U-10Mo-5Zr alloy will be discussed. The focus will be on the phase stability of Mo2-Zr, a dominated second phase developed at the interface of U-10Mo and the Zr barrier in a monolithic fuel plate from fuel fabrication. The Kr ion irradiations were conducted at a temperature of 200 degreesmore » C to an ion fluence of 2.0E+16 ions/cm2. To investigate the thermal stability of the fission gas bubble superlattice, a key microstructural feature in both irradiated dispersion U-7Mo fuel and monolithic U-10Mo fuel, a FIB-TEM sample of the irradiated U-10Mo fuel (3.53E+21 fission/cm3) was used for a TEM in-situ heating experiment. The preliminary result showed extraordinary thermal stability of the fission gas bubble superlattice. The implication of the TEM observation from these two experiments on the fuel microstructural evolution under irradiation will be discussed.« less
PROGRESS IN THE STUDY OF ION IRRADIATION IN TUNGSTEN
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Weilin; Kruska, Karen; Henager, Charles H.
2017-02-27
The experimental study intends to generate data to validate the theoretical predictions on defect accumulation and recovery, as well as to investigate microstructural evolution and transmutant precipitation in mono- and poly-crystalline tungsten using ion implantation.
Effect of irradiation temperature on microstructure of ferritic-martensitic ODS steel
NASA Astrophysics Data System (ADS)
Klimenkov, M.; Lindau, R.; Jäntsch, U.; Möslang, A.
2017-09-01
The EUROFER-ODS alloy with 0.5% Y2O3 was neutron irradiated with doses up to 16.2 dpa at 250 °C, 350 °C and 450 °C. The radiation induced changes in the microstructure (e.g. dislocation loops and voids) were investigated using transmission electron microscopy (TEM). The number density of radiation induced defects was found to be significantly lower than in EUROFER 97 irradiated at the same conditions. It was found that the appearance and extent of radiation damage strongly depend not only on the irradiation temperature but also on the local number density and size distribution of ODS particles. The higher number density of dislocation loops and voids was found in the local areas with low number density of ODS particles. The interstitial loops with Burgers vector of both ½<111> and <100> types were detected by imaging using different diffraction conditions.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Loeffler, M. J.; Dukes, C. A.; Keller, L. P.; Baragiola, R. A.
2016-01-01
The use of pulsed laser irradiation to simulate the short duration, high-energy conditions characteristic of micrometeorite impacts is now an established approach in experimental space weathering studies. The laser generates both melt and vapor deposits that contain nanophase metallic Fe (npFe(sup 0)) grains with size distributions and optical properties similar to those in natural impact-generated melt and vapor deposits. There remains uncertainty, however, about how well lasers simulate the mechanical work and internal (thermal) energy partitioning that occurs in actual impacts. We are currently engaged in making a direct comparison between the products of laser irradiation and experimental/natural hypervelocity impacts. An initial step reported here is to use analytical SEM and TEM is to attain a better understanding of how the microstructure and composition of laser deposits evolve over multiple cycles of pulsed laser irradiation.
NASA Astrophysics Data System (ADS)
Dong, Y.; Sencer, B. H.; Garner, F. A.; Marquis, E. A.
2015-12-01
AISI 304 stainless steel was irradiated at 416 °C and 450 °C at a 4.4 × 10-9 and 3.05 × 10-7 dpa/s to ∼0.4 and ∼28 dpa, respectively, in the reflector of the EBR-II fast reactor. Both unirradiated and irradiated conditions were examined using standard and scanning transmission electron microscopy, energy dispersive spectroscopy, and atom probe tomography on very small specimens produced by focused ion beam milling. These results are compared with previous electron microscopy examination of 3 mm disks from essentially the same material. By comparing a very low dose specimen with a much higher dose specimen, both derived from a single reactor assembly, it has been demonstrated that the coupled microstructural and microchemical evolution of dislocation loops and other sinks begins very early, with elemental segregation producing at these sinks what appears to be measurable precursors to fully formed precipitates found at higher doses. The nature of these sinks and their possible precursors are examined in detail.
Aydogan, E.; Maloy, S. A.; Anderoglu, O.; ...
2017-06-06
In this research, innovative thermal spray deposition (Process I) and conventional hot extrusion processing (Process II) methods have been used to produce thin walled tubing (~0.5 mm wall thickness) out of 14YWT, a nanostructured ferritic alloy. The effects of processing methods on the microstructure, mechanical properties and irradiation response have been investigated by using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and, micro- and nano-hardness techniques. It has been found that these two processes have a significant effect on the microstructure and mechanical properties of the as-fabricated 14YWT tubes. Even though both processing methods yield the formation of variousmore » size Y-Ti-O particles, the conventional hot extrusion method results in a microstructure with smaller, homogenously distributed nano-oxides (NOs, Y-Ti-O particles < 5 nm) with higher density. Therefore, Process II tubes exhibit twice the hardness of Process I tubes. It has also been found that these two tremendously different initial microstructures strongly affect irradiation response in these tubes under extremely high dose ion irradiations up to 1100 peak dpa at 450 °C. The finer, denser and homogenously distributed NOs in the Process II tube result in a reduction in swelling by two orders of magnitude. On the other hand, inhomogeneity of the initial microstructure in the Process I tube leads to large variations in both swelling and irradiation induced hardening. Moreover, hardening mechanisms before and after irradiation were measured and compared with detailed calculations. In conclusion, this study clearly indicates the crucial effect of initial microstructure on radiation response of 14YWT alloys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aydogan, E.; Maloy, S. A.; Anderoglu, O.
In this research, innovative thermal spray deposition (Process I) and conventional hot extrusion processing (Process II) methods have been used to produce thin walled tubing (~0.5 mm wall thickness) out of 14YWT, a nanostructured ferritic alloy. The effects of processing methods on the microstructure, mechanical properties and irradiation response have been investigated by using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and, micro- and nano-hardness techniques. It has been found that these two processes have a significant effect on the microstructure and mechanical properties of the as-fabricated 14YWT tubes. Even though both processing methods yield the formation of variousmore » size Y-Ti-O particles, the conventional hot extrusion method results in a microstructure with smaller, homogenously distributed nano-oxides (NOs, Y-Ti-O particles < 5 nm) with higher density. Therefore, Process II tubes exhibit twice the hardness of Process I tubes. It has also been found that these two tremendously different initial microstructures strongly affect irradiation response in these tubes under extremely high dose ion irradiations up to 1100 peak dpa at 450 °C. The finer, denser and homogenously distributed NOs in the Process II tube result in a reduction in swelling by two orders of magnitude. On the other hand, inhomogeneity of the initial microstructure in the Process I tube leads to large variations in both swelling and irradiation induced hardening. Moreover, hardening mechanisms before and after irradiation were measured and compared with detailed calculations. In conclusion, this study clearly indicates the crucial effect of initial microstructure on radiation response of 14YWT alloys.« less
NASA Astrophysics Data System (ADS)
Jin, Hyung-Ha; Ko, Eunsol; Lim, Sangyeob; Kwon, Junhyun; Shin, Chansun
2017-09-01
We investigated the microstructural and hardness changes in austenitic stainless steel after Fe ion irradiation at 400, 300, and 200 °C using transmission electron microscopy (TEM) and nanoindentation. The size of the Frank loops increased and the density decreased with increasing irradiation temperature. Radiation-induced segregation (RIS) was detected across high-angle grain boundaries, and the degree of RIS increases with increasing irradiation temperature. Ni-Si clusters were observed using high-resolution TEM in the sample irradiated at 400 °C. The results of this work are compared with the literature data of self-ion and proton irradiation at comparable temperatures and damage levels on stainless steels with a similar material composition with this study. Despite the differences in dose rate, alloy composition and incident ion energy, the irradiation temperature dependence of RIS and the size and density of radiation defects followed the same trends, and were very comparable in magnitude.
NASA Astrophysics Data System (ADS)
Liu, B. H.; Teo, H. W.; Mo, Z. H.; Mai, Z. H.; Lam, J.; Xue, J. M.; Zhao, Y. Z.; Tan, P. K.
2017-01-01
Using in situ transmission electron microscopy (TEM), we studied boron diffusion and segregation in CoFeB/SiO2 nanostructured thin film stacks. We also investigated how these phenomena affected the phase and microstructure of CoFeB thin films under electron beam irradiation at 300 kV. A unique phase transformation was observed in CoFeB thin films under high-dose electron irradiation, from a polycrystalline Co3Fe to a unilateral amorphous phase of Co3Fe and nanocrystalline FexCo23-xB6. The unilateral amorphization of the Co3Fe film showed an electron-dose-rate sensitivity with a threshold dose rate. Detailed in situ TEM studies revealed that the unilateral amorphization of the Co3Fe film arose from boron segregation at the bottom of the Co3Fe thin film induced by radiation-enhanced diffusion of boron atoms that were displaced by electron knock-on effects. The radiation-induced nanocrystallization of FexCo23-xB6 was also found to be dose-rate sensitive with a higher electron beam current leading to earlier nucleation and more rapid grain growth. The nanocrystallization of FexCo23-xB6 occurred preferentially at the CoFeB/SiO2 interface. Kinetic studies by in situ TEM revealed the surface crystallization and diffusion-controlled nucleation and grain growth mechanisms. The radiation-enhanced atomic diffusivity and high-concentration of radiation-induced point defects at the Co3Fe/SiO2 interface enhanced the local short-range ordering of Fe, Co, and B atoms, favoring nucleation and grain growth of FexCo23-xB6 at the interface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsuneda, H.; Matsukawa, S.; Takayanagi, S.
The healing mechanism of bone fractures by low intensity pulse ultrasound is yet to be fully understood. There have been many discussions regarding how the high frequency dynamic stress can stimulate numerous cell types through various pathways. As one possible initial process of this mechanism, we focus on the piezoelectricity of bone and demonstrate that bone can generate electrical potentials by ultrasound irradiation in the MHz range. We have fabricated ultrasonic bone transducers using bovine cortical bone as the piezoelectric device. The ultrasonically induced electrical potentials in the transducers change as a function of time during immersed ultrasonic pulse measurementsmore » and become stable when the bone is fully wet. In addition, the magnitude of the induced electrical potentials changes owing to the microstructure in the cortical bone. The potentials of transducers with haversian structure bone are higher than those of plexiform structure bone, which informs about the effects of bone microstructure on the piezoelectricity.« less
NASA Astrophysics Data System (ADS)
Tsuneda, H.; Matsukawa, S.; Takayanagi, S.; Mizuno, K.; Yanagitani, T.; Matsukawa, M.
2015-02-01
The healing mechanism of bone fractures by low intensity pulse ultrasound is yet to be fully understood. There have been many discussions regarding how the high frequency dynamic stress can stimulate numerous cell types through various pathways. As one possible initial process of this mechanism, we focus on the piezoelectricity of bone and demonstrate that bone can generate electrical potentials by ultrasound irradiation in the MHz range. We have fabricated ultrasonic bone transducers using bovine cortical bone as the piezoelectric device. The ultrasonically induced electrical potentials in the transducers change as a function of time during immersed ultrasonic pulse measurements and become stable when the bone is fully wet. In addition, the magnitude of the induced electrical potentials changes owing to the microstructure in the cortical bone. The potentials of transducers with haversian structure bone are higher than those of plexiform structure bone, which informs about the effects of bone microstructure on the piezoelectricity.
Effect of gamma irradiation on high temperature hardness of low-density polyethylene
NASA Astrophysics Data System (ADS)
Chen, Pei-Yun; Yang, Fuqian; Lee, Sanboh
2015-11-01
Gamma irradiation can cause the change of microstructure and molecular structure of polymer, resulting in the change of mechanical properties of polymers. Using the hardness measurement, the effect of gamma irradiation on the high temperature hardness of low-density polyethylene (LDPE) was investigated. The gamma irradiation caused the increase in the melting point, the enthalpy of fusion, and the portion of crystallinity of LDPE. The Vickers hardness of the irradiated LDPE increases with increasing the irradiation dose, annealing temperature, and annealing time. The activation energy for the rate process controlling the reaction between defects linearly decreases with the irradiation dose. The process controlling the hardness evolution in LDPE is endothermic because LDPE is semi-crystalline.
NASA Astrophysics Data System (ADS)
Renault Laborne, Alexandra; Gavoille, Pierre; Malaplate, Joël; Pokor, Cédric; Tanguy, Benoît
2015-05-01
Annealed specimens of type 304L and 316 stainless steel and cold-worked 316 specimens were irradiated in the Phénix reactor in the temperature range 381-394 °C and to different damage doses up to 39 dpa. The microstructure and microchemistry of both 304L and 316 have been examined using the combination of the different techniques of TEM to establish the void swelling and precipitation behavior under neutron irradiation. TEM observations are compared with results of measurements of immersion density and thermo-electric power obtained on the same irradiated stainless steels. The similarities and differences in their behavior on different scales are used to understand the factors in terms of the chemical composition and metallurgical state of steels, affecting the precipitation under irradiation and the swelling behavior. Irradiation induces the formation of some precipitate phases (e.g., M6C and M23C6-type carbides, and γ'- and G-phases), Frank loops and cavities. According to the metallurgical state and chemical composition of the steel, the amount of each type of radiation-induced defects is not the same, affecting their density and thermo-electric power.
Microstructural defects in He-irradiated polycrystalline α-SiC at 1000 °C
NASA Astrophysics Data System (ADS)
Han, Wentuo; Li, Bingsheng
2018-06-01
In order to investigate the effect of the high-temperature irradiation on microstructural evolutions of the polycrystalline SiC, an ion irradiation at 1000 °C with the 500 keV He2+ was imposed to the α-SiC. The platelets, He bubbles, dislocation loops, and particularly, their interaction with the stacking fault and grain boundaries were focused on and characterized by the cross-sectional transmission electron microscopy (XTEM). The platelets expectably exhibit a dominant plane of (0001), while planes of (01-10) and (10-16) are also found. Inside the platelet, the over-pressurized bubbles exist and remarkably cause a strong-strain zone surrounding the platelet. The disparate roles between the grain boundaries and stacking faults in interacting with the bubbles and loops are found. The results are compared with the previous weighty findings and discussed.
Qiu, Wenbin; Jie, Hyunseock; Patel, Dipak; Lu, Yao; Luzin, Vladimir; Devred, Arnaud; Somer, Mehmet; Shahabuddin, Mohammed; Kim, Jung Ho; Ma, Zongqing; Dou, Shi Xue; Hossain, Md. Shahriar Al
2016-01-01
Superconducting wires are widely used in fabricating magnetic coils in fusion reactors. In consideration of the stability of 11B against neutron irradiation and lower induced radio-activation properties, MgB2 superconductor with 11B serving as boron source is an alternative candidate to be used in fusion reactor with severe irradiation environment. In present work, a batch of monofilament isotopic Mg11B2 wires with amorphous 11B powder as precursor were fabricated using powder-in-tube (PIT) process at different sintering temperature, and the evolution of their microstructure and corresponding superconducting properties was systemically investigated. Accordingly, the best transport critical current density (Jc) = 2 × 104 A/cm2 was obtained at 4.2 K and 5 T, which is even comparable to multi-filament Mg11B2 isotope wires reported in other work. Surprisingly, transport Jc vanished in our wire which was heat-treated at excessively high temperature (800 °C). Combined with microstructure observation, it was found that lots of big interconnected microcracks and voids that can isolate the MgB2 grains formed in this whole sample, resulting in significant deterioration in inter-grain connectivity. The results can be a constructive guide in fabricating Mg11B2 wires to be used as magnet coils in fusion reactor systems such as ITER-type tokamak magnet. PMID:27824144
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ubic, Rick; Butt, Darryl; Windes, William
2014-03-13
An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarlymore » characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qu, Jianmin
Understanding of reactor material behavior in extreme environments is vital not only to the development of new materials for the next generation nuclear reactors, but also to the extension of the operating lifetimes of the current fleet of nuclear reactors. To this end, this project conducted a suite of unique experimental techniques, augmented by a mesoscale computational framework, to understand and predict the long-term effects of irradiation, temperature, and stress on material microstructures and their macroscopic behavior. The experimental techniques and computational tools were demonstrated on two distinctive types of reactor materials, namely, Zr alloys and high-Cr martensitic steels. Thesemore » materials are chosen as the test beds because they are the archetypes of high-performance reactor materials (cladding, wrappers, ducts, pressure vessel, piping, etc.). To fill the knowledge gaps, and to meet the technology needs, a suite of innovative in situ transmission electron microscopy (TEM) characterization techniques (heating, heavy ion irradiation, He implantation, quantitative small-scale mechanical testing, and various combinations thereof) were developed and used to elucidate and map the fundamental mechanisms of microstructure evolution in both Zr and Cr alloys for a wide range environmental boundary conditions in the thermal-mechanical-irradiation input space. Knowledge gained from the experimental observations of the active mechanisms and the role of local microstructural defects on the response of the material has been incorporated into a mathematically rigorous and comprehensive three-dimensional mesoscale framework capable of accounting for the compositional variation, microstructural evolution and localized deformation (radiation damage) to predict aging and degradation of key reactor materials operating in extreme environments. Predictions from this mesoscale framework were compared with the in situ TEM observations to validate the model.« less
A Rate-Theory-Phase-Field Model of Irradiation-Induced Recrystallization in UMo Nuclear Fuels
NASA Astrophysics Data System (ADS)
Hu, Shenyang; Joshi, Vineet; Lavender, Curt A.
2017-12-01
In this work, we developed a recrystallization model to study the effect of microstructures and radiation conditions on recrystallization kinetics in UMo fuels. The model integrates the rate theory of intragranular gas bubble and interstitial loop evolutions and a phase-field model of recrystallization zone evolution. A first passage method is employed to describe one-dimensional diffusion of interstitials with a diffusivity value several orders of magnitude larger than that of fission gas xenons. With the model, the effect of grain sizes on recrystallization kinetics is simulated. The results show that (1) recrystallization in large grains starts earlier than that in small grains, (2) the recrystallization kinetics (recrystallization volume fraction) decrease as the grain size increases, (3) the predicted recrystallization kinetics are consistent with the experimental results, and (4) the recrystallization kinetics can be described by the modified Avrami equation, but the parameters of the Avrami equation strongly depend on the grain size.
NASA Astrophysics Data System (ADS)
Jiao, Z.; Hesterberg, J.; Was, G. S.
2018-03-01
Post-irradiation annealing was performed on a 304L SS that was irradiated to 5.9 dpa in the Barsebäck 1 BWR reactor. Evolution of dislocation loops, radiation-induced solute clusters and radiation-induced segregation at the grain boundary was investigated following thermal annealing at 500 °C and 550 °C up to 20 h. Dislocation loops, Ni-Si and Al-Cu clusters, and enrichment of Ni, Si and depletion of Cr at the grain boundary were observed in the as-irradiated condition. Dislocation loop size did not change significantly after annealing at 550 °C for 5 h but the loop number density decreased considerably and loops mostly disappeared after annealing at 550 °C for 20 h. The average size of Ni-Si and Al-Cu clusters increased while the number density decreased with annealing. The increase in cluster size was due to diffusion of solutes rather than cluster coarsening. Significant volume fractions of Ni-Si and Al-Cu clusters still remained after annealing at 550 °C for 20 h. Substantial recovery of Cr and Ni at the grain boundary was observed after annealing at 550 °C for 5 h but neither Cr nor Ni was fully recovered after 20 h. Annihilation of dislocation loops, driven by the thermal vacancy concentration gradient caused by the strain field and stacking fault associated with the loops appeared to be faster than annihilation of solute clusters and recovery of Ni and Si at the grain boundary, both of which are driven by the solute concentration gradients.
Effect of point defects on the amorphization of metallic alloys during ion implantation. [NiTi
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pedraza, D.F.; Mansur, L.K.
1985-01-01
A theoretical model of radiation-induced amorphization of ordered intermetallic compounds is developed. The mechanism is proposed to be the buildup of lattice defects to very high concentrations, which destabilizes the crystalline structure. Because simple point defects do not normally reach such levels during irradiation, a new defect complex containing a vacancy and an interstitial is hypothesized. Crucial properties of the complex are that the interstitial sees a local chemical environment similar to that of an atom in the ordered lattice, that the formation of the complex prevents mutual recombination and that the complex is immobile. The evolution of a disordermore » based on complexes is not accompanied by like point defect aggregation. The latter leads to the development of a sink microstructure in alloys that do not become amorphous. For electron irradiation, the complexes form by diffusional encounters. For ion irradiation, complexes are also formed directly in cascades. The possibility of direct amorphization in cascades is also included. Calculations for the compound NiTi show reasonable agreement with measured amorphization kinetics.« less
Sun, C.; Kirk, M.; Li, M.; ...
2015-06-14
Nickel superalloys with cubic L12 structured γ' (Ni 3(Al, Ti)) precipitates exhibit high strength at high temperatures and excellent corrosion resistance when exposed to water. Unlike prior studies on irradiation damage of other Ni-based superalloys, our study on Rene N4 involves much larger γ' precipitates, ~450 nm in size, a size regime where the irradiation-induced disordering and dissolution kinetics and the corresponding mechanical property evolution are unknown. Under heavy ion irradiation at room temperature, the submicron-sized γ' precipitates were fully disordered at ~0.3 dpa and only later partially dissolved after 75 dpa irradiation. Nanoindentation experiments indicate that the mechanical propertiesmore » of the alloy change significantly, with a dramatic decrease in hardness, with irradiation dose. Three contributions to the change in hardness were examined: defect clusters, disordering and dissolution. Moreover, the generation of defect clusters in the matrix and precipitates slightly increased the indentation hardness, while disordering of the submicron-sized γ' precipitates resulted in a dramatic decrease in the total hardness, which decreased further during the early stages of the intermixing between γ' precipitates and matrix (<18 dpa). As a result, controlling the long-range-ordering and chemical intermixing can be used to tailor the mechanical properties of Ni-based superalloys under irradiation.« less
NASA Astrophysics Data System (ADS)
Gu, Hongan; Dai, Ye; Wang, Haodong; Yan, Xiaona; Ma, Guohong
2017-12-01
In this paper, a femtosecond laser line-scanning irradiation was used to induce the periodic surface microstructure on HgCdTe crystal. Low spatial frequency laser induced periodic surface structures of 650-770 nm and high spatial frequency laser induced periodic surface structures of 152-246 nm were respectively found with different scanning speeds. The evolution process from low spatial frequency laser induced periodic surface structures to high spatial frequency laser induced periodic surface structures is characterized by scanning electron microscope. Their spatial periods deduced by using a two-dimensional Fourier transformation partly agree with the predictions of the Sipe-Drude theory. Confocal micro-Raman spectral show that the atomic arrangement of induced low spatial frequency laser-induced structures are basically consistent with the crystal in the central area of laser-scanning line, however a new peak at 164 cm-1 for the CdTe-like mode becomes evident due to the Hg vaporization when strong laser ablation happens. The obtained surface periodic ripples may have applications in fabricating advanced infrared detector.
Understanding self ion damage in FCC Ni-Cr-Fe based alloy using X-ray diffraction techniques
NASA Astrophysics Data System (ADS)
Halder Banerjee, R.; Sengupta, P.; Chatterjee, A.; Mishra, S. C.; Bhukta, A.; Satyam, P. V.; Samajdar, I.; Dey, G. K.
2018-04-01
Using X-ray diffraction line profile analysis (XRDLPA) approach the radiation response of FCC Ni-Cr-Fe based alloy 690 to 1.5 and 3 MeV Ni2+ ion damage was quantified in terms of its microstructural parameters. These microstructural parameters viz. average domain size, microstrain and dislocation density were found to vary anisotropically with fluence. The anisotropic behaviour is mainly attributable to presence of twins in pre-irradiated microstructure. After irradiation, surface roughness increases as a function of fluence attributable to change in surface and sub-surface morphology caused by displacement cascade, defects and sputtered atoms created by incident energetic ion. The radiation hardening in case of 1.5 MeV Ni2+ irradiated specimens too is a consequence of the increase in dislocation density formed by interaction of radiation induced defects with pre-existing dislocations. At highest fluence there is an initiation of saturation.
Patra, Anirban; McDowell, David L.
2016-03-25
We use a continuum crystal plasticity framework to study the effect of microstructure and mesoscopic factors on dislocation channeling and flow localization in an irradiated model bcc alloy. For simulated dislocation channeling characteristics we correlate the dislocation and defect densities in the substructure, local Schmid factor, and stress triaxiality, in terms of their temporal and spatial evolution. A metric is introduced to assess the propensity for localization and is correlated to the grain-level Schmid factor. We also found that localization generally takes place in grains with a local Schmid factor in the range 0.42 or higher. Surface slip step heightsmore » are computed at free surfaces and compared to relevant experiments.« less
Dramatic reduction of void swelling by helium in ion-irradiated high purity α-iron
Bhattacharya, Arunodaya; Meslin, Estelle; Henry, Jean; ...
2018-04-11
Effect of helium on void swelling was studied in high-purity α-iron, irradiated using energetic self-ions to 157 displacements per atom (dpa) at 773 K, with and without helium co-implantation up to 17 atomic parts-per-million (appm) He/dpa. Helium is known to enhance cavity formation in metals in irradiation environments, leading to early void swelling onset. In this study, microstructure characterization by transmission electron microscopy revealed compelling evidence of dramatic swelling reduction by helium co-implantation, achieved primarily by cavity size reduction. In conclusion, a comprehensive understanding of helium induced cavity microstructure development is discussed using sink strength ratios of dislocations and cavities.
Dose dependence of helium bubble formation in nano-engineered SiC at 700 °C
Chen, Chien -Hung; Zhang, Yanwen; Wang, Yongqiang; ...
2016-02-03
Knowledge of radiation-induced helium bubble nucleation and growth in SiC is essential for applications in fusion and fission environments. Here we report the evolution of microstructure in nano-engineered (NE) 3C SiC, pre-implanted with helium, under heavy ion irradiation at 700 °C up to doses of 30 displacements per atom (dpa). Elastic recoil detection analysis confirms that the as-implanted helium depth profile does not change under irradiation to 30 dpa at 700 °C. While the helium bubble size distribution becomes narrower with increasing dose, the average size of bubbles remains unchanged and the density of bubbles increases somewhat with dose. Thesemore » results are consistent with a long helium bubble incubation process under continued irradiation at 700 °C up to 30 dpa, similar to that reported under dual and triple beam irradiation at much higher temperatures. The formation of bubbles at this low temperature is enhanced by the nano-layered stacking fault structure in the NE SiC, which enhances point defect mobility parallel to the stacking faults. Here, this stacking fault structure is stable at 700 °C up to 30 dpa and suppresses the formation of dislocation loops normally observed under these irradiation conditions.« less
Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki; ...
2016-07-02
We performed a neutron irradiation to single crystal pure tungsten in the mixed spectrum High Flux Isotope Reactor (HFIR). In order to investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ~90–~800 °C and fast neutron fluences were 0.02–9.00 × 10 25 n/m 2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. Moreover, the hardness and microstructuremore » changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 10 25 n/m 2 (E > 0.1 MeV). Finally, irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 10 25 n/m 2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuda, Makoto; Kiran Kumar, N. A. P.; Koyanagi, Takaaki
We performed a neutron irradiation to single crystal pure tungsten in the mixed spectrum High Flux Isotope Reactor (HFIR). In order to investigate the influences of neutron energy spectrum, the microstructure and irradiation hardening were compared with previous data obtained from the irradiation campaigns in the mixed spectrum Japan Material Testing Reactor (JMTR) and the sodium-cooled fast reactor Joyo. The irradiation temperatures were in the range of ~90–~800 °C and fast neutron fluences were 0.02–9.00 × 10 25 n/m 2 (E > 0.1 MeV). Post irradiation evaluation included Vickers hardness measurements and transmission electron microscopy. Moreover, the hardness and microstructuremore » changes exhibited a clear dependence on the neutron energy spectrum. The hardness appeared to increase with increasing thermal neutron flux when fast fluence exceeds 1 × 10 25 n/m 2 (E > 0.1 MeV). Finally, irradiation induced precipitates considered to be χ- and σ-phases were observed in samples irradiated to >1 × 10 25 n/m 2 (E > 0.1 MeV), which were pronounced at high dose and due to the very high thermal neutron flux of HFIR. Although the irradiation hardening mainly caused by defects clusters in a low dose regime, the transmutation-induced precipitation appeared to impose additional significant hardening of the tungsten.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yamaguchi, Akinobu, E-mail: yamaguti@lasti.u-hyogo.ac.jp, E-mail: utsumi@lasti.u-hyogo.ac.jp; Kido, Hideki; Utsumi, Yuichi, E-mail: yamaguti@lasti.u-hyogo.ac.jp, E-mail: utsumi@lasti.u-hyogo.ac.jp
2016-02-01
We developed a process for micromachining polytetrafluoroethylene (PTFE): anisotropic pyrochemical microetching induced by synchrotron X-ray irradiation. X-ray irradiation was performed at room temperature. Upon heating, the irradiated PTFE substrates exhibited high-precision features. Both the X-ray diffraction peak and Raman signal from the irradiated areas of the substrate decreased with increasing irradiation dose. The etching mechanism is speculated as follows: X-ray irradiation caused chain scission, which decreased the number-average degree of polymerization. The melting temperature of irradiated PTFE decreased as the polymer chain length decreased, enabling the treated regions to melt at a lower temperature. The anisotropic pyrochemical etching process enabledmore » the fabrication of PTFE microstructures with higher precision than simultaneously heating and irradiating the sample.« less
Crystal plasticity assisted prediction on the yield locus evolution and forming limit curves
NASA Astrophysics Data System (ADS)
Lian, Junhe; Liu, Wenqi; Shen, Fuhui; Münstermann, Sebastian
2017-10-01
The aim of this study is to predict the plastic anisotropy evolution and its associated forming limit curves of bcc steels purely based on their microstructural features by establishing an integrated multiscale modelling approach. Crystal plasticity models are employed to describe the micro deformation mechanism and correlate the microstructure with mechanical behaviour on micro and mesoscale. Virtual laboratory is performed considering the statistical information of the microstructure, which serves as the input for the phenomenological plasticity model on the macroscale. For both scales, the microstructure evolution induced evolving features, such as the anisotropic hardening, r-value and yield locus evolution are seamlessly integrated. The predicted plasticity behaviour by the numerical simulations are compared with experiments. These evolutionary features of the material deformation behaviour are eventually considered for the prediction of formability.
Microstructural development under irradiation in European ODS ferritic/martensitic steels
NASA Astrophysics Data System (ADS)
Schäublin, R.; Ramar, A.; Baluc, N.; de Castro, V.; Monge, M. A.; Leguey, T.; Schmid, N.; Bonjour, C.
2006-06-01
Oxide dispersion strengthened steels based on the ferritic/martensitic steel EUROFER97 are promising candidates for a fusion reactor because of their improved high temperature mechanical properties and their potential higher radiation resistance relative to the base material. Several EUROFER97 based ODS F/M steels are investigated in this study. There are the Plansee ODS steels containing 0.3 wt% yttria, and the CRPP ODS steels, whose production route is described in detail. The reinforcing particles represent 0.3-0.5% weight and are composed of yttria. The effect of 0.3 wt% Ti addition is studied. ODS steel samples have been irradiated with 590 MeV protons to 0.3 and 1.0 dpa at room temperature and 350 °C. Microstructure is investigated by transmission electron microscopy and mechanical properties are assessed by tensile and Charpy tests. While the Plansee ODS presents a ferritic structure, the CRPP ODS material presents a tempered martensitic microstructure and a uniform distribution of the yttria particles. Both materials provide a yield stress higher than the base material, but with reduced elongation and brittle behaviour. Ti additions improve elongation at high temperatures. After irradiation, mechanical properties of the material are only slightly altered with an increase in the yield strength, but without significant decrease in the total elongation, relative to the base material. Samples irradiated at room temperature present radiation induced defects in the form of blacks dots with a size range from 2 to 3 nm, while after irradiation at 350 °C irradiation induced a0<1 0 0>{1 0 0} dislocation loops are clearly visible along with nanocavities. The dispersed yttria particles with an average size of 6-8 nm are found to be stable for all irradiation conditions. The density of the defects and the dispersoid are measured and found to be about 2.3 × 10 22 m -3 and 6.2 × 10 22 m -3, respectively. The weak impact of irradiation on mechanical properties of ODS F/M steel is thus explained by a lower density of irradiation induced defects relative to the density of reinforcing particles.
Microstructure formation on liquid metal surface under pulsed action
NASA Astrophysics Data System (ADS)
Genin, D. E.; Beloplotov, D. V.; Panchenko, A. N.; Tarasenko, V. F.
2018-04-01
Experimental study and theoretical analysis of growth of microstructures (microtowers) on liquid metals by fs laser pulses have been carried out. Theoretical analysis has been performed on the basis of the two-temperature model. Compared to ns laser pulses, in fs irradiation regimes the heat-affected zone is strongly localized resulting in much larger temperatures and temperature gradients. In the experimental irradiation regimes, the surface temperature of liquid metals studied may reach or even exceed a critical level that culminates in phase explosion or direct atomization of a metal surface layer. However, before explosive ablation starts, a stress wave with an amplitude up to several GPa is formed which demolishes oxide covering. Moreover, at high laser fluences laser-induced breakdown is developed in oxide layer covering the metal surface that leads to destruction/ablation of oxide without damaging metal underneath. An overall scenario of microstructure growth with fs laser pulses is similar to that obtained for ns irradiation regimes though the growth threshold is lower due to smaller heat-conduction losses. Also we managed to obtain microstructures formation by the action of spark discharge.
Barashev, A. V.; Golubov, S. I.; Stoller, R. E.
2015-06-01
We studied the radiation growth of zirconium using a reaction–diffusion model which takes into account intra-cascade clustering of self-interstitial atoms and one-dimensional diffusion of interstitial clusters. The observed dose dependence of strain rates is accounted for by accumulation of sessile dislocation loops during irradiation. Moreover, the computational model developed and fitted to available experimental data is applied to study deformation of Zr single crystals under irradiation up to hundred dpa. Finally, the effect of cold work and the reasons for negative prismatic strains and co-existence of vacancy and interstitial loops are elucidated.
NASA Astrophysics Data System (ADS)
Hug, E.; Prasath Babu, R.; Monnet, I.; Etienne, A.; Moisy, F.; Pralong, V.; Enikeev, N.; Abramova, M.; Sauvage, X.; Radiguet, B.
2017-01-01
The influence of grain size and irradiation defects on the mechanical behavior and the corrosion resistance of a 316 stainless steel have been investigated. Nanostructured samples were obtained by severe plastic deformation using high pressure torsion. Both coarse grain and nanostructured samples were irradiated with 10 MeV 56Fe5+ ions. Microstructures were characterized using transmission electron microscopy and atom probe tomography. Surface mechanical properties were evaluated thanks to hardness measurements and the corrosion resistance was studied in chloride environment. Nanostructuration by high pressure torsion followed by annealing leads to enrichment in chromium at grain boundaries. However, irradiation of nanostructured samples implies a chromium depletion of the same order than depicted in coarse grain specimens but without metallurgical damage like segregated dislocation loops or clusters. Potentiodynamic polarization tests highlight a definitive deterioration of the corrosion resistance of coarse grain steel with irradiation. Downsizing the grain to a few hundred of nanometers enhances the corrosion resistance of irradiated samples, despite the fact that the hardness of nanocrystalline austenitic steel is only weakly affected by irradiation. These new experimental results are discussed in the basis of couplings between mechanical and electrical properties of the passivated layer thanks to impedance spectroscopy measurements, hardness properties of the surfaces and local microstructure evolutions.
Allen, Todd R.; Kaoumi, Djamel; Wharry, Janelle P.; ...
2015-05-20
Designing materials for performance in high-radiation fields can be accelerated through a carefully chosen combination of advanced multiscale modeling paired with appropriate experimental validation. Here, the studies reported in this work, the combined efforts of six universities working together as the Consortium on Cladding and Structural Materials, use that approach to focus on improving the scientific basis for the response of ferritic–martensitic steels to irradiation. A combination of modern modeling techniques with controlled experimentation has specifically focused on improving the understanding of radiation-induced segregation, precipitate formation and growth under radiation, the stability of oxide nanoclusters, and the development of dislocationmore » networks under radiation. Experimental studies use both model and commercial alloys, irradiated with both ion beams and neutrons. Lastly, transmission electron microscopy and atom probe are combined with both first-principles and rate theory approaches to advance the understanding of ferritic–martensitic steels.« less
Jin, Ke; Guo, Wei; Lu, Chenyang; ...
2016-12-01
Understanding alloying effects on the irradiation response of structural materials is pivotal in nuclear engineering. In order to systematically explore the effects of Fe concentration on the irradiation-induced defect evolution and hardening in face-centered cubic Ni-Fe binary solid solution alloys, single crystalline Ni-xFe (x = 0–60 at%) alloys have been grown and irradiated with 1.5 MeV Ni ions. The irradiations have been performed over a wide range of fluences from 3 × 10 13 to 3 × 10 16 cm -2 at room temperature. Ion channeling technique has shown reduced damage accumulation with increasing Fe concentration in the low fluencemore » regime, which is consistent to the results from molecular dynamic simulations. We did not observe any irradiation-induced compositional segregation in atom probe tomography within the detection limit, even in the samples irradiated with high fluence Ni ions. Transmission electron microscopy analyses have further demonstrated that the defect size significantly decreases with increasing Fe concentration, indicating a delay in defect evolution. Furthermore, irradiation induced hardening has been measured by nanoindentation tests. Ni and the Ni-Fe alloys have largely different initial hardness, but they all follow a similar trend for the increase of hardness as a function of irradiation fluence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Ke; Guo, Wei; Lu, Chenyang
Understanding alloying effects on the irradiation response of structural materials is pivotal in nuclear engineering. In order to systematically explore the effects of Fe concentration on the irradiation-induced defect evolution and hardening in face-centered cubic Ni-Fe binary solid solution alloys, single crystalline Ni-xFe (x = 0–60 at%) alloys have been grown and irradiated with 1.5 MeV Ni ions. The irradiations have been performed over a wide range of fluences from 3 × 10 13 to 3 × 10 16 cm -2 at room temperature. Ion channeling technique has shown reduced damage accumulation with increasing Fe concentration in the low fluencemore » regime, which is consistent to the results from molecular dynamic simulations. We did not observe any irradiation-induced compositional segregation in atom probe tomography within the detection limit, even in the samples irradiated with high fluence Ni ions. Transmission electron microscopy analyses have further demonstrated that the defect size significantly decreases with increasing Fe concentration, indicating a delay in defect evolution. Furthermore, irradiation induced hardening has been measured by nanoindentation tests. Ni and the Ni-Fe alloys have largely different initial hardness, but they all follow a similar trend for the increase of hardness as a function of irradiation fluence.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bhattacharya, Arunodaya; Meslin, Estelle; Henry, Jean
Effect of helium on void swelling was studied in high-purity α-iron, irradiated using energetic self-ions to 157 displacements per atom (dpa) at 773 K, with and without helium co-implantation up to 17 atomic parts-per-million (appm) He/dpa. Helium is known to enhance cavity formation in metals in irradiation environments, leading to early void swelling onset. In this study, microstructure characterization by transmission electron microscopy revealed compelling evidence of dramatic swelling reduction by helium co-implantation, achieved primarily by cavity size reduction. In conclusion, a comprehensive understanding of helium induced cavity microstructure development is discussed using sink strength ratios of dislocations and cavities.
Zhang, Yanwen; Stocks, George Malcolm; Jin, Ke; ...
2015-10-28
A long-standing objective in materials research is to understand how energy is dissipated in both the electronic and atomic subsystems in irradiated materials, and how related non-equilibrium processes may affect defect dynamics and microstructure evolution. Here we show that alloy complexity in concentrated solid solution alloys having both an increasing number of principal elements and altered concentrations of specific elements can lead to substantial reduction in the electron mean free path and thermal conductivity, which has a significant impact on energy dissipation and consequentially on defect evolution during ion irradiation. Enhanced radiation resistance with increasing complexity from pure nickel tomore » binary and to more complex quaternary solid solutions is observed under ion irradiation up to an average damage level of 1 displacement per atom. Understanding how materials properties can be tailored by alloy complexity and their influence on defect dynamics may pave the way for new principles for the design of radiation tolerant structural alloys.« less
Radiation Tolerance of Controlled Fusion Welds in High Temperature Oxidation Resistant FeCrAl Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gussev, Maxim N.; Field, Kevin G.
High temperature oxidation resistant iron-chromium-aluminum (FeCrAl) alloys are candidate alloys for nuclear applications due to their exceptional performance during off-normal conditions such as a loss-of-coolant accident (LOCA) compared to currently deployed zirconium-based claddings [1]. A series of studies have been completed to determine the weldability of the FeCrAl alloy class and investigate the weldment performance in the as-received (non-irradiated) state [2,3]. These initial studies have shown the general effects of composition and microstructure on the weldability of FeCrAl alloys. Given this, limited details on the radiation tolerance of FeCrAl alloys and their weldments exist. Here, the highest priority candidate FeCrAlmore » alloys and their weldments have been investigated after irradiation to enable a better understanding of FeCrAl alloy weldment performance within a high-intensity neutron field. The alloys examined include C35M (Fe-13%Cr-5% Al) and variants with aluminum (+2%) or titanium carbide (+1%) additions. Two different sub-sized tensile geometries, SS-J type and SS-2E (or SS-mini), were neutron irradiated in the High Flux Isotope Reactor to 1.8-1.9 displacements per atom (dpa) in the temperature range of 195°C to 559°C. Post irradiation examination of the candidate alloys was completed and included uniaxial tensile tests coupled with digital image correlation (DIC), scanning electron microscopy-electron back scattered diffraction analysis (SEM-EBSD), and SEM-based fractography. In addition to weldment testing, non-welded parent material was examined as a direct comparison between welded and non-welded specimen performance. Both welded and non-welded specimens showed a high degree of radiation-induced hardening near irradiation temperatures of 200°C, moderate radiation-induced hardening near temperatures of 360°C, and almost no radiation-induced hardening at elevated temperatures near 550°C. Additionally, low-temperature irradiations showed the non-welded specimens to exhibit strain-induced softening (decrease in the true stress level) with increasing plastic strain during tensile testing. Fracture for the weldments was found to occur exclusively within the fusion zone. The mechanical performance of the weldment was speculated to be directly linked to variances in the radiation-induced microstructure including the formation of dislocation loops and precipitation of the Cr-rich α' phase. The localized microstructural variation within the weldments, including grain size, was determined to play a significant role in the radiation-induced microstructure. The results summarized within highlight the need for additional data on the radiation tolerance of weldments as the mechanical performance of the fusion zone was shown to be the limiting factor in the overall performance of the weldments.« less
Cross section TEM characterization of high-energy-Xe-irradiated U-Mo
Ye, B.; Jamison, L.; Miao, Y.; ...
2017-03-09
U-Mo alloys irradiated with 84 MeV Xe ions to various doses were characterized with transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques. The TEM thin foils were prepared perpendicular to the irradiated surface to allow a direct observation of the entire region modified by ions. Furthermore, depth-selective microstructural information was revealed. Varied irradiation-induced phenomena such as gas bubble formation, phase reversal, and recrystallization were observed at different ion penetration depths in U-Mo.
Crystal plasticity modeling of irradiation growth in Zircaloy-2
Patra, Anirban; Tome, Carlos; Golubov, Stanislav I.
2017-05-10
A reaction-diffusion based mean field rate theory model is implemented in the viscoplastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. A novel scheme is proposed to model the evolution (both number density and radius) of irradiation-induced dislocation loops that can be informed directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behavior of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture, and external stress onmore » the coupled irradiation growth and creep behavior are also studied.« less
Crystal plasticity modeling of irradiation growth in Zircaloy-2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patra, Anirban; Tome, Carlos; Golubov, Stanislav I.
A reaction-diffusion based mean field rate theory model is implemented in the viscoplastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. A novel scheme is proposed to model the evolution (both number density and radius) of irradiation-induced dislocation loops that can be informed directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behavior of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture, and external stress onmore » the coupled irradiation growth and creep behavior are also studied.« less
NASA Astrophysics Data System (ADS)
Hong-Chen, Zhang; Hai, Liu; Hui-Jie, Xue; Wen-Qiang, Qiao; Shi-Yu, He
2012-11-01
In this paper, effects of 160 keV electron irradiated "Panda" type Polarization-Maintaining optical fiber at 1310 nm are investigated by us. Attenuation coefficient induced in optical fiber by electron beams at 1310 nm increases with increase in electron fluence. Electron irradiation-induced damage mechanism are studied by means of CASINO simulation program, the X-ray photoelectron spectroscopy (XPS), electron spin resonance spectrometer (EPR) and Fourier transform infrared spectroscopy (FTIR). The results show that Si-OH impurity defect concentration is the main reason of increasing attenuation coefficient at 1310 nm.
Compact synchrotron radiation depth lithography facility
NASA Astrophysics Data System (ADS)
Knüppel, O.; Kadereit, D.; Neff, B.; Hormes, J.
1992-01-01
X-ray depth lithography allows the fabrication of plastic microstructures with heights of up to 1 mm but with the smallest possible lateral dimensions of about 1 μm. A resist is irradiated with ``white'' synchrotron radiation through a mask that is partially covered with x-ray absorbing microstructures. The plastic microstructure is then obtained by a subsequent chemical development of the irradiated resist. In order to irradiate a reasonably large resist area, the mask and the resist have to be ``scanned'' across the vertically thin beam of the synchrotron radiation. A flexible, nonexpensive and compact scanner apparatus has been built for x-ray depth lithography at the beamline BN1 at ELSA (the 3.5 GeV Electron Stretcher and Accelerator at the Physikalisches Institut of Bonn University). Measurements with an electronic water level showed that the apparatus limits the scanner-induced structure precision to not more than 0.02 μm. The whole apparatus is installed in a vacuum chamber thus allowing lithography under different process gases and pressures.
Cavity nucleation and growth in dual beam irradiated 316L industrial austenitic stainless steel
NASA Astrophysics Data System (ADS)
Jublot-Leclerc, S.; Li, X.; Legras, L.; Fortuna, F.; Gentils, A.
2017-10-01
Thin foils of 316L were simultaneously ion irradiated and He implanted in situ in a Transmission Electron Microscope at elevated temperatures. The resulting microstructure is carefully investigated in comparison with previous single ion irradiation experiments with a focus on the nucleation and growth of cavities. Helium is found to strongly enhance the nucleation of cavities in dual beam experiments. On the contrary, it does not induce more nucleation when implanted consecutively to an in situ ion irradiation but rather the growth of cavities by absorption at existing cavities, which shows the importance of synergistic effects and He injection mode on the microstructural changes. In both dual beam and single beam experiments, the characteristics of the populations of cavities, either stabilized by He or O atoms, are in qualitative agreement with the predictions of rate theory models for cavity growth. The evolutions of cavity population as a function of irradiation conditions can be reasonably well explained by the concept of relative sink strength of cavities and dislocations and the resulting partitioning of defects at sinks, or conversely recombination when either of the sinks dominates. The dislocations whose presence is a prerequisite to cavity growth in rate theory models are not observed in all studied conditions. In this case, the net influx of vacancies to cavities necessary to their growth and conversion to voids is believed to result from free surface effects, and possibly also segregation of elements close to the cavity surface. In any studied condition, the measured swelling is low, which is ascribed to the dilution of gaseous atoms among a high density of cavities as well as a high rate of point defect recombination and loss at traps. This high rate of recombination enhanced when dislocations are absent appears to result in the formation of overpressurized He bubbles.
Embrittlement and Flow Localization in Reactor Structural Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xianglin Wu; Xiao Pan; James Stubbins
2006-10-06
Many reactor components and structural members are made from metal alloys due, in large part, to their strength and ability to resist brittle fracture by plastic deformation. However, brittle fracture can occur when structural material cannot undergo extensive, or even limited, plastic deformation due to irradiation exposure. Certain irradiation conditions lead to the development of a damage microstructure where plastic flow is limited to very small volumes or regions of material, as opposed to the general plastic flow in unexposed materials. This process is referred to as flow localization or plastic instability. The true stress at the onset of neckingmore » is a constant regardless of the irradiation level. It is called 'critical stress' and this critical stress has strong temperature dependence. Interrupted tensile testes of 316L SS have been performed to investigate the microstructure evolution and competing mechanism between mechanic twinning and planar slip which are believed to be the controlling mechanism for flow localization. Deformation twinning is the major contribution of strain hardening and good ductility for low temperatures, and the activation of twinning system is determined by the critical twinning stress. Phases transform and texture analyses are also discussed in this study. Finite element analysis is carried out to complement the microstructural analysis and for the prediction of materaials performance with and without stress concentration and irradiation.« less
NASA Astrophysics Data System (ADS)
Castin, N.; Bakaev, A.; Bonny, G.; Sand, A. E.; Malerba, L.; Terentyev, D.
2017-09-01
We propose an object kinetic Monte Carlo (OKMC) model for describing the microstructural evolution in pure tungsten under neutron irradiation. We here focus on low doses (under 1 dpa), and we neglect transmutation in first approximation. The emphasis is mainly centred on an adequate description of neutron irradiation, the subsequent introduction of primary defects, and their thermal diffusion properties. Besides grain boundaries and the dislocation network, our model includes the contribution of carbon impurities, which are shown to have a strong influence on the onset of void swelling. Our parametric study analyses the quality of our model in detail, and confronts its predictions with experimental microstructural observations with satisfactory agreement. We highlight the importance for an accurate determination of the dissolved carbon content in the tungsten matrix, and we advocate for an accurate description of atomic collision cascades, in light of the sensitivity of our results with respect to correlated recombination.
NASA Astrophysics Data System (ADS)
Matsushima, U.; Graf, W.; Zabler, S.; Manke, I.; Dawson, M.; Choinka, G.; Hilger, A.; Herppich, W. B.
2013-01-01
Synchrotron X-ray computer microtomography was used to analyze the microstructure of rose peduncles. Samples from three rose cultivars, differing in anatomy, were scanned to study the relation between tissue structure and peduncles mechanical strength. Additionally, chlorophyll fluorescence imaging and conventional light microscopy was applied to quantify possible irradiation-induced damage to plant physiology and tissue structure. The spatial resolution of synchrotron X-ray computer microtomography was sufficiently high to investigate the complex tissues of intact rose peduncles without the necessity of any preparation. However, synchrotron X-radiation induces two different types of damage on irradiated tissues. First, within a few hours after first X-ray exposure, there is a direct physical destruction of cell walls. In addition, a slow and delayed destruction of chlorophyll and, consequently, of photosynthetic activity occurred within hours/ days after the exposure. The results indicate that synchrotron X-ray computer microtomography is well suited for three-dimensional visualization of the microstructure of rose peduncles. However, in its current technique, synchrotron X-ray computer microtomography is not really non-destructive but induce tissue damage. Hence, this technique needs further optimization before it can be applied for time-series investigations of living plant materials
Helium bubbles aggravated defects production in self-irradiated copper
NASA Astrophysics Data System (ADS)
Wu, FengChao; Zhu, YinBo; Wu, Qiang; Li, XinZhu; Wang, Pei; Wu, HengAn
2017-12-01
Under the environment of high radiation, materials used in fission and fusion reactors will internally accumulate numerous lattice defects and bubbles. With extensive studies focused on bubble resolution under irradiation, the mutually effects between helium bubbles and displacement cascades in irradiated materials remain unaddressed. Therefore, the defects production and microstructure evolution under self-irradiation events in vicinity of helium bubbles are investigated by preforming large scale molecular dynamics simulations in single-crystal copper. When subjected to displacement cascades, distinguished bubble resolution categories dependent on bubble size are observed. With the existence of bubbles, radiation damage is aggravated with the increasing bubble size, represented as the promotion of point defects and dislocations. The atomic mechanisms of heterogeneous dislocation structures are attributed to different helium-vacancy cluster modes, transforming from the resolved gas trapped with vacancies to the biased absorption of vacancies by the over-pressured bubble. In both cases, helium impedes the recombination of point defects, leading to the accelerated formation of interstitial loops. The results and insight obtained here might contribute to understand the underlying mechanism of transmutant solute on the long-term evolution of irradiated materials.
Report on the Synchrotron Characterization of U-Mo and U-Zr Alloys and the Modeling Results
DOE Office of Scientific and Technical Information (OSTI.GOV)
Okuniewski, Maria A.; Ganapathy, Varsha; Hamilton, Brenden
2016-09-01
ABSTRACT Uranium-molybdenum (U-Mo) and uranium-zirconium (U-Zr) are two promising fuel candidates for nuclear transmutation reactors which burn long-lived minor actinides and fission products within fast spectrum reactors. The objectives of this research are centered on understanding the early stages of fuel performance through the examination of the irradiation induced microstructural changes in U-Zr and U-Mo alloys subjected to low neutron fluences. Specimens that were analyzed include those that were previously irradiated in the Advanced Test Reactor at INL. This most recent work has focused on a sub-set of the irradiated specimens, specifically U-Zr and U-Mo alloys that were irradiated tomore » 0.01 dpa at temperatures ranging from (150-800oC). These specimens were analyzed with two types of synchrotron techniques, including X-ray absorption fine structure and X-ray diffraction. These techniques provide non-destructive microstructural analysis, including phase identification and quantitation, lattice parameters, crystallite sizes, as well as bonding, structure, and chemistry. Preliminary research has shown changes in the phase fractions, crystallite sizes, and lattice parameters as a function of irradiation and temperature. Future data analyses will continue to explore these microstructural changes.« less
NASA Astrophysics Data System (ADS)
Song, Hui; Dai, Ye; Song, Juan; Ma, Hongliang; Yan, Xiaona; Ma, Guohong
2017-04-01
In this paper, we report a non-reciprocal writing process for inducing asymmetric microstructure using a femtosecond laser with tilted pulse fronts in fused silica. The shape of the induced microstructure at the focus closely depends on the laser scan direction. An elongated end is observed as a kind of structural difference between the written lines with two reverse scans along + x and - x, which further leads to a birefringence intensity difference. We also find a bifurcation in the head region of the induced microstructure between the written lines along x and y. That process results from the focal intensity distortion caused by the pulse front tilt by comparing the simulated intensity distribution with the experimental results. The current results demonstrate that the pulse front tilt not only affects the free electron excitation at the focus but also further distorts the shape of the induced microstructure during a high-energy femtosecond laser irradiation. These results offer a route to fabricate optical elements by changing the spatiotemporal characteristics of ultrashort pulses.
Irradiation creep of candidate materials for advanced nuclear plants
NASA Astrophysics Data System (ADS)
Chen, J.; Jung, P.; Hoffelner, W.
2013-10-01
In the present paper, irradiation creep results of an intermetallic TiAl alloy and two ferritic oxide dispersion strengthened (ODS) steels are summarized. In situ irradiation creep measurements were performed using homogeneous implantation with α- and p-particles to maximum doses of 0.8 dpa at displacement damage rates of 2-8 × 10-6 dpa/s. The strains of miniaturized flat dog-bone specimens were monitored under uniaxial tensile stresses ranging from 20 to 400 MPa at temperatures of 573, 673 and 773 K, respectively. The effects of material composition, ODS particle size, and bombarding particle on the irradiation creep compliance was studied and results are compared to literature data. Evolution of microstructure during helium implantation was investigated in detail by TEM and is discussed with respect to irradiation creep models.
Low temperature neutron irradiation effects on microstructure and tensile properties of molybdenum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Meimei; Eldrup, M.; Byun, Thak Sang
2008-01-01
Polycrystalline molybdenum was irradiated in the hydraulic tube facility at the High Flux Isotope Reactor to doses ranging from 7.2 x 10{sup -5} to 0.28 dpa at {approx} 80 C. As-irradiated microstructure was characterized by room-temperature electrical resistivity measurements, transmission electron microscopy (TEM) and positron annihilation spectroscopy (PAS). Tensile tests were carried out between -50 and 100 C over the strain rate range 1 x 10{sup -5} to 1 x 10{sup -2} s{sup -1}. Fractography was performed by scanning electron microscopy (SEM), and the deformation microstructure was examined by TEM after tensile testing. Irradiation-induced defects became visible by TEM atmore » {approx}0.001 dpa. Both their density and mean size increased with increasing dose. Submicroscopic three-dimensional cavities were detected by PAS even at {approx}0.0001 dpa. The cavity density increased with increasing dose, while their mean size and size distribution was relatively insensitive to neutron dose. It is suggested that the formation of visible dislocation loops was predominantly a nucleation and growth process, while in-cascade vacancy clustering may be significant in Mo. Neutron irradiation reduced the temperature and strain rate dependence of the yield stress, leading to radiation softening in Mo at lower doses. Irradiation had practically no influence on the magnitude and the temperature and strain rate dependence of the plastic instability stress.« less
NASA Astrophysics Data System (ADS)
Kato, Takahiko; Nakata, Kiyotomo; Masaoka, Isao; Takahashi, Heishichiro; Takeyama, Taro; Ohnuki, Soumei; Osanai, Hisashi
1984-05-01
The microstructural development for Inconel X-750, N1-13 at%A1, and Ni-11.5 at%Si alloys during irradiation was investigated. These alloys were previously heat-treated at temperatures of 723-1073 K, and γ' precipitates were produced. Irradiation was performed in a high voltage electron microscope (1000 kV) in the temperature range 673-823 K. In the case of solution-treated Inconel, interstitial dislocation loops were formed initially, while voids were nucleated after longer times. When the Inconel specimen containing a high number density of small γ' was irradiated, dislocation loops were formed in both the matrix and precipitate-matrix interface. The loops formed on the interface scarcely grew during irradiation. On the other hand, for the Ni-Al alloy fine γ' nucleated during irradiation, the large γ' precipitated by pre-aging, dissolved. A similar resolution process was also observed in Ni-Si alloy. Furthermore, in the Ni-Si alloy precipitates of γ' formed preferentially at interstitial dislocation loops and both specimen surfaces.
Formation and evolution of ripples on ion-irradiated semiconductor surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, M.; Wu, J. H.; Ye, W.
We have examined the formation and evolution of ripples on focused-ion-beam (FIB) irradiated compound semiconductor surfaces. Using initially normal-incidence Ga{sup +} FIB irradiation of InSb, we tuned the local beam incidence angle (θ{sub eff}) by varying the pitch and/or dwell time. For single-pass FIB irradiation, increasing θ{sub eff} induces morphological evolution from pits and islands to ripples to featureless surfaces. Multiple-pass FIB irradiation of the rippled surfaces at a fixed θ{sub eff} leads to island formation on the ripple crests, followed by nanorod (NR) growth. This ripple-NR transition provides an alternative approach for achieving dense arrays of NRs.
Ion irradiation induced defect evolution in Ni and Ni-based FCC equiatomic binary alloys
Jin, Ke; Zhang, Yanwen; Bei, Hongbin
2015-09-09
In order to explore the chemical effects on radiation response of alloys with multi-principal elements, defect evolution under Au ion irradiation was investigated in the elemental Ni, equiatomic NiCo and NiFe alloys. Single crystals were successfully grown in an optical floating zone furnace and their (100) surfaces were irradiated with 3 MeV Au ions at fluences ranging from 1 × 10 13 to 5 × 10 15 ions cm –2 at room temperature. The irradiation-induced defect evolution was analyzed by using ion channeling technique. Experiment shows that NiFe is more irradiation-resistant than NiCo and pure Ni at low fluences. Withmore » continuously increasing the ion fluences, damage level is eventually saturated for all materials but at different dose levels. The saturation level in pure Ni appears at relatively lower irradiation fluence than the alloys, suggesting that damage accumulation slows down in the alloys. Here, under high-fluence irradiations, pure Ni has wider damage ranges than the alloys, indicating that defects in pure Ni have high mobility.« less
NASA Astrophysics Data System (ADS)
Gali, Olufisayo A.
Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were determined to include grain boundary sliding which induced the cracks at the surface and subsurface of the alloy, magnesium diffusion to free surfaces, crack propagation from shear stresses and the shear strains inducing the nanocrystalline grain structure, the formation of shingles by the shear deformation of micro-wedges induced by the work roll grooves, and the deformation of this oxide covered micro-wedges inducing the rolled-in oxides. Magnesium diffusion to free surfaces was identified as inducing crack healing due to the formation of MgO within cracks and was responsible for the oxide decorated grain boundaries. An examination of the roll coating revealed a complex layered microstructure that was induced through tribo-chemical and mechanical entrapment mechanisms. The microstructure of the roll coating suggested that the work roll material and the rolled aluminum alloy were essential in determining its composition and structure. Subsequent hot forming processes revealed the rich oxide-layer of the near-surface microstructure was beneficial for reducing the coefficient of friction during tribological contact with the steel die. Damage to the microstructure include cracks induced from grain boundary sliding of near-surface grains and the formation of oxide fibres within cracks of the near-surface deformed layers.
NASA Astrophysics Data System (ADS)
Chen, J.; Pouchon, M. A.; Kimura, A.; Jung, P.; Hoffelner, W.
2009-04-01
An advanced oxide dispersion strengthened (ODS) ferritic steel with very fine oxide particles has been homogeneously implanted with helium under uniaxial tensile stresses from 20 to 250 MPa to a maximum dose of about 0.38 dpa (1650 appm-He) with displacement damage rates of 4.4 × 10 -6 dpa/s at temperatures of 573 and 773 K. The samples were in the form of miniaturized dog-bones, where during the helium implantation the straining and the electrical resistance were monitored simultaneously. Creep compliances were measured to be 4.0 × 10 -6 and 11 × 10 -6 dpa -1 MPa -1 at 573 and 773 K, respectively. The resistivity of ODS steel samples decreased with dose, indicating segregation and/or precipitation. Evolution of microstructure during helium implantation was studied in detail by TEM. The effects of ODS particle size on irradiation creep and microstructural changes was investigated by comparing the results from the present advanced ODS (K1) to a commercial ODS ferritic steels (PM2000) with much bigger oxide particles.
NASA Astrophysics Data System (ADS)
Durand, N.; Badawi, K. F.; Goudeau, P.; Naudon, A.
1994-01-01
The influence of the irradiation dose upon the residual stresses in 1 000 Å tungsten thin films has been studied by two different techniques. Results show a relaxation of the strong initial compressive stresses σ=- 4,5 GPa) in virgin samples when the irradiation dose increases. The existence of a relaxation threshold is also clearly evidenced, it indicates a strong correlation between the thin film microstructure (point defects, grain size) and the relaxation phenomenon, and consequently, the residual stresses. Nous avons étudié, par deux méthodes différentes, l'évolution des contraintes résiduelles dans des couches minces de 1 000 Å de W en fonction de la dose d'irradiation. Ces expériences mettent en évidence une relaxation des fortes contraintes de compression (σ=- 4,5 GPa) observées dans les échantillons vierges quand la dose de l'irradiation augmente. Notre étude montre par ailleurs, l'existence d'un seuil de relaxation et relie de façon indiscutable, la microstructure de la couche mince (défauts ponctuels, taille de grains) au phénomène de relaxation, donc aux contraintes elles-mêmes.
Radiation-induced changes in electrical conductivity and structure of BaPbO3 after γ-irradiation
NASA Astrophysics Data System (ADS)
Shan, Qing; Cai, Pingkun; Zhang, Xinlei; Li, Jiatong; Chu, Shengnan; Jia, Wenbao
2015-11-01
Several barium plumbate (BaPbO3) solid samples, made from PbO and BaCO3 powder by chemistry liquid-phase coprecipitation, were investigated before and after γ-irradiation. The solid samples were irradiated by a 60Co γ-irradiation source whose dose rate is about 0.7 kGy per hour. The irradiation times were 0, 72, 144, 216, 288 and 360 h. Then, the four-probe method, X-ray diffraction (XRD), scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS) were used to indicate the changes in electrical conductivity and microstructure of BaPbO3 after γ-irradiation. The XRD results indicated that the content of PbO was reduced as the irradiation dose was increased and eventually vanished from the surface of samples. However, there was no new obvious substance phase found from the XRD atlas. It seems that the PbO transformed into nearly amorphous Pb5O8. The conjecture could be proved by the results of annealing experiment and SEM. The XPS results seem to show that the microstructure of BaPbO3 was slightly changed.
Clustered vacancies in ZnO: chemical aspects and consequences on physical properties
NASA Astrophysics Data System (ADS)
Pal, S.; Gogurla, N.; Das, Avishek; Singha, S. S.; Kumar, Pravin; Kanjilal, D.; Singha, A.; Chattopadhyay, S.; Jana, D.; Sarkar, A.
2018-03-01
The chemical nature of point defects, their segregation, cluster or complex formation in ZnO is an important area of investigation. The evolution of a defective state with MeV Ar ion irradiation fluence 1 × 1014 and 1 × 1016 ions cm-2 has been monitored here using x-ray photoelectron spectroscopy (XPS), photoluminescence (PL) and Raman spectroscopy. The XPS study shows the presence of oxygen vacancies (V O) in Ar irradiated ZnO. Zn(LMM) Auger spectra clearly identifies a transition involving metallic zinc in the irradiated samples. An intense PL emission from interstitial Zn (I Zn)-related shallow donor bound excitons (DBX) is visible in the 10 K spectra for all samples. Although overall PL is largely reduced with irradiation disorder, DBX intensity is increased for the highest fluence irradiated sample. The Raman study indicates damage in both the zinc and oxygen sub-lattice by an energetic ion beam. Representative Raman modes from defect complexes involving V O, I Zn and I O are visible after irradiation with intermediate fluence. A further increase of fluence shows, to some extent, a homogenization of disorder. A huge reduction of resistance is also noted for this sample. Certainly, high irradiation fluence induces a qualitative modification of the conventional (and highly resistive) grain boundary (GB) structure of granular ZnO. A low resistive path, involving I Zn related shallow donors, across the GB can be presumed to explain resistance reduction. Open volumes (V Zn and V O) agglomerate more and more with increasing irradiation fluence and are finally transformed to voids. The results as a whole have been elucidated with a model which emphasizes the possible evolution of a new defect microstructure that is distinctively different from the GB-related disorder. Based on the model, qualitative explanations of commonly observed radiation hardness, colouration and ferromagnetism in disordered ZnO have been put forward. A coherent scenario on disorder accumulation in ZnO has been presented, which we believe will guide further discussion on this topic.
Leonard, Keith J.; Bei, Hongbin; Zinkle, Steven J.; ...
2016-05-13
In recent years, high entropy alloys (HEAs) have attracted significant attention due to their excellent mechanical properties and good corrosion resistance, making them potential candidates for high temperature fission and fusion structural applications. However there is very little known about their radiation resistance, particularly at elevated temperatures relevant for energy applications. In the present study, a single phase (face centered cubic) concentrated solid solution alloy of composition 27%Fe-28%Ni-27%Mn-18%Cr was irradiated with 3 or 5.8 MeV Ni ions at temperatures ranging from room temperature to 700 °C and midrange doses from 0.03 to 10 displacements per atom (dpa). Transmission electron microscopymore » (TEM), scanning transmission electron microscopy with energy dispersive x-ray spectrometry (STEM/EDS) and X-ray diffraction (XRD) were used to characterize the radiation defects and microstructural changes. Irradiation at higher temperatures showed evidence of relatively sluggish solute diffusion with limited solute depletion or enrichment at grain boundaries. The main microstructural feature at all temperatures was high-density small dislocation loops. Voids were not observed at any irradiation condition. Nano-indentation tests on specimens irradiated at room temperature showed a rapid increase in hardness ~35% and ~80% higher than the unirradiated value at 0.03 and 0.3 dpa midrange doses, respectively. The irradiation-induced hardening was less pronounced for 500 °C irradiations (<20% increase after 3 dpa). Overall, the examined HEA material exhibits superior radiation resistance compared to conventional single phase Fe-Cr-Ni austenitic alloys such as stainless steels. Furthermore, the present study provides insight on the fundamental irradiation behavior of a single phase HEA material over a broad range of irradiation temperatures.« less
Domain, C; Olsson, P; Becquart, C S; Legris, A; Guillemoles, J F
2008-02-13
Ab initio density functional theory calculations are carried out in order to predict the evolution of structural materials under aggressive working conditions such as cases with exposure to corrosion and irradiation, as well as to predict and investigate the properties of functional materials for photovoltaic energy applications. Structural metallic materials used in nuclear facilities are subjected to irradiation which induces the creation of large amounts of point defects. These defects interact with each other as well as with the different elements constituting the alloys, which leads to modifications of the microstructure and the mechanical properties. VASP (Vienna Ab initio Simulation Package) has been used to determine the properties of point defect clusters and also those of extended defects such as dislocations. The resulting quantities, such as interaction energies and migration energies, are used in larger scale simulation methods in order to build predictive tools. For photovoltaic energy applications, ab initio calculations are used in order to search for new semiconductors and possible element substitutions for existing ones in order to improve their efficiency.
Nanoscale Morphology Evolution Under Ion Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, Michael J.
We showed that the half-century-old paradigm of morphological instability under irradiation due to the curvature-dependence of the sputter yield, can account neither for the phase diagram nor the amplification or decay rates that we measure in the simplest possible experimental system -- an elemental semiconductor with an amorphous surface under noble-gas ion irradiation; We showed that a model of pattern formation based on the impact-induced redistribution of atoms that do not get sputtered away explains our experimental observations; We developed a first-principles, parameter-free approach for predicting morphology evolution, starting with molecular dynamics simulations of single ion impacts, lasting picoseconds, andmore » upscaling through a rigorous crater-function formalism to develop a partial differential equation that predicts morphology evolution on time scales more than twelve orders of magnitude longer than can be covered by the molecular dynamics; We performed the first quantitative comparison of the contributions to morphological instability from sputter removal and from impact-induced redistribution of atoms that are removed, and showed that the former is negligible compared to the latter; We established a new paradigm for impact-induced morphology evolution based on crater functions that incorporate both redistribution and sputter effects; and We developed a model of nanopore closure by irradiation-induced stress and irradiationenhanced fluidity, for the near-surface irradiation regime in which nuclear stopping predominates, and showed that it explains many aspects of pore closure kinetics that we measure experimentally.« less
Phase field model of the nanoscale evolution during the explosive crystallization phenomenon
NASA Astrophysics Data System (ADS)
Lombardo, S. F.; Boninelli, S.; Cristiano, F.; Deretzis, I.; Grimaldi, M. G.; Huet, K.; Napolitani, E.; La Magna, A.
2018-03-01
Explosive crystallization is a well known phenomenon occurring due to the thermodynamic instability of strongly under-cooled liquids, which is particularly relevant in pulsed laser annealing processes of amorphous semiconductor materials due to the globally exothermic amorphous-to-liquid-to-crystal transition pathway. In spite of the assessed understanding of this phenomenon, quantitative predictions of the material kinetics promoted by explosive crystallization are hardly achieved due to the lack of a consistent model able to simulate the concurrent kinetics of the amorphous-liquid and liquid-crystal interfaces. Here, we propose a multi-well phase-field model specifically suited for the simulation of explosive crystallization induced by pulsed laser irradiation in the nanosecond time scale. The numerical implementation of the model is robust despite the discontinuous jumps of the interface speed induced by the phenomenon. The predictive potential of the simulations is demonstrated by means of comparisons of the modelling predictions with experimental data in terms of in situ reflectivity measurements and ex-situ micro-structural and chemical characterization.
NASA Astrophysics Data System (ADS)
Krishna, R.; Jones, A. N.; McDermott, L.; Marsden, B. J.
2015-12-01
Nuclear graphite components are produced from polycrystalline artificial graphite manufacture from a binder and filler coke with approximately 20% porosity. During the operational lifetime, nuclear graphite moderator components are subjected to fast neutron irradiation which contributes to the change of material and physical properties such as thermal expansion co-efficient, young's modulus and dimensional change. These changes are directly driven by irradiation-induced changes to the crystal structure as reflected through the bulk microstructure. It is therefore of critical importance that these irradiation changes and there implication on component property changes are fully understood. This work examines a range of irradiated graphite samples removed from the British Experimental Pile Zero (BEPO) reactor; a low temperature, low fluence, air-cooled Materials Test Reactor which operated in the UK. Raman spectroscopy and high-resolution transmission electron microscopy (HRTEM) have been employed to characterise the effect of increased irradiation fluence on graphite microstructure and understand low temperature irradiation damage processes. HRTEM confirms the structural damage of the crystal lattice caused by irradiation attributed to a high number of defects generation with the accumulation of dislocation interactions at nano-scale range. Irradiation-induced crystal defects, lattice parameters and crystallite size compared to virgin nuclear graphite are characterised using selected area diffraction (SAD) patterns in TEM and Raman Spectroscopy. The consolidated 'D'peak in the Raman spectra confirms the formation of in-plane point defects and reflected as disordered regions in the lattice. The reduced intensity and broadened peaks of 'G' and 'D' in the Raman and HRTEM results confirm the appearance of turbulence and disordering of the basal planes whilst maintaining their coherent layered graphite structure.
NASA Astrophysics Data System (ADS)
Wang, Haizhen; Yi, Xiaoyang; Zhu, Yingying; Yin, Yongkui; Gao, Yuan; Cai, Wei; Gao, Zhiyong
2017-10-01
The element distribution and surface microstructure in NiTi shape memory alloys exposed to 3 MeV proton irradiation were investigated. Redistribution of the alloying element and a clearly visible multilayer structure consisting of three layers were observed on the surface of NiTi shape memory alloys after proton irradiation. The outermost layer consists primarily of a columnar-like TiH2 phase with a tetragonal structure, and the internal layer is primarily comprised of a bcc austenite phase. In addition, the Ti2Ni phase, with an fcc structure, serves as the transition layer between the outermost and internal layer. The above-mentioned phenomenon is attributed to the preferential sputtering of high energy protons and segregation induced by irradiation.
NASA Astrophysics Data System (ADS)
Jin, Hyung-Ha; Lim, Sangyeob; Kwon, Junhyun
2017-10-01
Microstructural changes in austenitic stainless steel caused by hydrogen ion irradiation were investigated using transmission electron microscopy (TEM). It has been confirmed that the irradiation induced the formation of martensite along the grain boundary; the martensite phase exhibited a crystal orientation relationship with the adjacent austenite phase. The results of this study also indicate that the concentration of Cr in the martensite phase is lower compared to that in the austenite matrix. The TEM results showed the development of asymmetric radiation-induced segregation (RIS) near the grain boundary, which leads to local changes in the chemical composition such as reduction of Cr near the grain boundary. The asymmetric RIS serves as a prerequisite for the formation of the martensite under hydrogen irradiation.
NASA Astrophysics Data System (ADS)
Wang, Wei; Zeng, Weidong; Liu, Yantao; Xie, Guoxin; Liang, Xiaobo
2018-01-01
Microstructural evolution, tensile and creep behavior of Ti-22Al-25Nb (at.%) orthorhombic alloy with three typical microstructures were investigated. The three typical microstructures were obtained by different solution and age treatment temperatures and analyzed by the BSE technique. The tensile strengths of the alloy at room temperature and 650 °C were investigated. The creep behaviors of the three typical microstructures were also studied at 650 °C/150 MPa for 100 h in air. The phase transformation mechanisms in creep deformation were also found. The experimental results showed that the formations of the three typical microstructures were decided by the isothermal forging and heat treatment. It was supposed that the high-temperature solution treatment might be dominant for the volume fraction and diameter of the equiaxed particles. While the double age treatment would lead to lamellar O phases. Due to grain refinement strengthening, the equiaxed microstructure presented the best tensile strength and ductility. The fully lamellar microstructure had the best creep resistance than that of other microstructures. In this paper, the phenomenon of creep-induced α 2 phase decomposition was occurred during creep deformation of the equiaxed microstructure.
Wilder-Smith, P; Arrastia, A M; Schell, M J; Liaw, L H; Grill, G; Berns, M W
1995-12-01
Effects of ND:YAG laser irradiation on untreated and root planed tooth roots were investigated to determine whether a cleaning effect and/or removal of smear layer could be achieved without concomitant microstructural or thermal damage. Sixty (60) healthy extracted teeth were either untreated, irradiated only, root planed only, or irradiated and root planed. Intra-pulpal and surface temperatures were monitored during irradiation, then SEM was performed. Smear layer elimination was achieved without inducing hard tissue microstructural damage at 5W, using pulse durations and intervals of 0.1 s, a fluence of 0.77 J/cm2, and a total energy density of approximately 700 J/cm2. However, these results were not consistent in all samples. At these parameters, intra-pulpal temperature increases of 9 to 22 degrees C and surface temperature increases of 18 to 36 degrees C were recorded. Thus, despite their effectiveness for smear layer removal, these parameters may not be appropriate for clinical use as an adjunct to conventional periodontal therapy.
Annealing effect on microstructural recovery in 316L and A533B
NASA Astrophysics Data System (ADS)
Hashimoto, N.; Goto, S.; Inoue, S.; Suzuki, E.
2017-11-01
An austenitic model alloy (316L) and a low alloy steel (A533B) were exposed to constant or fluctuating temperature after electron irradiation to a cumulative damage level of 1 displacement per atom. 316L model alloy was exposed to LWR operating temperature during electron irradiation, and were exposed to a higher temperature at a high heating and cooling rates. The annealing experiment after irradiation to 316L resulted in the change in irradiation-induced microstructure; both the size and the number density of Frank loop and black dots were decreased, while the volume fraction of void was increased. In the case of A533B, the aging experiment after electron irradiation resulted in the shrinkage or the disappearance of black dots and the growth of dislocation loops. It is suggested that during annealing and/or aging at a high temperature the excess vacancies could be provided and flew into each defect feature, resulting in that interstitial type feature could be diminished, while vacancy type increased in volume fraction if exists.
Defect structures induced by high-energy displacement cascades in γ uranium
DOE Office of Scientific and Technical Information (OSTI.GOV)
Miao, Yinbin; Beeler, Benjamin; Deo, Chaitanya
Displacement cascade simulations were conducted for the c uranium system based on molecular dynamics. A recently developed modified embedded atom method (MEAM) potential was employed to replicate the atomic interactions while an embedded atom method (EAM) potential was adopted to help characterize the defect structures induced by the displacement cascades. The atomic displacement process was studied by providing primary knock-on atoms (PKAs) with kinetic energies from 1 keV to 50 keV. The influence of the PKA incident direction was examined. The defect structures were analyzed after the systems were fully relaxed. The states of the self-interstitial atoms (SIAs) were categorizedmore » into various types of dumbbells, the crowdion, and the octahedral interstitial. The voids were determined to have a polyhedral shape with {110} facets. The size distribution of the voids was also obtained. The results of this study not only expand the knowledge of the microstructural evolution in irradiated c uranium, but also provide valuable references for the radiation-induced defects in uranium alloy fuels.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Y. Huang; B.R. Maier; T.R. Allen
2014-10-01
Zirconium carbide (ZrC) is being considered for utilization in deep burn TRISO fuel particles for hightemperature, gas-cooled reactors. Zirconium carbide has a cubic B1 type crystal structure along with a very high melting point (3420 ?C), exceptional hardness and good thermal and electrical conductivities. Understanding the ZrC irradiation response is crucial for establishing ZrC as an alternative component in TRISO fuel. Until now, very few studies on irradiation effects on ZrC have been released and fundamental aspects of defect evolution and kinetics are not well understood although some atomistic simulations and phenomenological studies have been performed. This work was carriedmore » out to understand the damage evolution in float-zone refined ZrC with different stoichiometries. Proton irradiations at 800 ?C up to doses of 3 dpa were performed on ZrCx (where x ranges from 0.9 to 1.2) to investigate the damage evolution. The irradiation-induced defects, such as density of dislocation loops, at different stoichiometries and doses which were characterized by transmission electron microscopy (TEM) is presented and discussed.« less
Displacement Cascade Damage Production in Metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoller, Roger E; Malerba, Lorenzo; Nordlund, Kai
Radiation-induced changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as wellmore » as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.« less
NASA Astrophysics Data System (ADS)
Mieszczynski, C.; Kuri, G.; Degueldre, C.; Martin, M.; Bertsch, J.; Borca, C. N.; Grolimund, D.; Delafoy, Ch.; Simoni, E.
2014-01-01
Microstructural changes in a set of commercial grade UO2 fuel samples have been investigated using synchrotron based micro-focused X-ray fluorescence (μ-XRF) and X-ray diffraction (μ-XRD) techniques. The results are associated with conventional UO2 materials and relatively larger grain chromia-doped UO2 fuels, irradiated in a commercial light water reactor plant (average burn-up: 40 MW d kg-1). The lattice parameters of UO2 in fresh and irradiated specimens have been measured and compared with theoretical predictions. In the pristine state, the doped fuel has a somewhat smaller lattice parameter than the standard UO2 as a result of chromia doping. Increase in micro-strain and lattice parameter in irradiated materials is highlighted. All irradiated samples behave in a similar manner with UO2 lattice expansion occurring upon irradiation, where any Cr induced effect seems insignificant and accumulated lattice defects prevail. Elastic strain energy densities in the irradiated fuels are also evaluated based on the UO2 crystal lattice strain and non-uniform strain. The μ-XRD patterns further allow the evaluation of the crystalline domain size and sub-grain formation at different locations of the irradiated UO2 pellets.
NASA Astrophysics Data System (ADS)
Krsjak, Vladimir; Dai, Yong
2015-10-01
This paper presents the use of an internal 44Ti/44Sc radioisotope source for a direct microstructural characterization of ferritic/martensitic (f/m) steels after irradiation in targets of spallation neutron sources. Gamma spectroscopy measurements show a production of ∼1MBq of 44Ti per 1 g of f/m steels irradiated at 1 dpa (displaced per atom) in the mixed proton-neutron spectrum at the Swiss spallation neutron source (SINQ). In the decay chain 44Ti → 44Sc → 44Ca, positrons are produced together with prompt gamma rays which enable the application of different positron annihilation spectroscopy (PAS) analyses, including lifetime and Doppler broadening spectroscopy. Due to the high production yield, long half-life and relatively high energy of positrons of 44Ti, this methodology opens up new potential for simple, effective and inexpensive characterization of radiation induced defects in f/m steels irradiated in a spallation target.
NASA Astrophysics Data System (ADS)
Zhu, Te; Jin, Shuoxue; Zhang, Peng; Song, Ligang; Lian, Xiangyu; Fan, Ping; Zhang, Qiaoli; Yuan, Daqing; Wu, Haibiao; Yu, Runsheng; Cao, Xingzhong; Xu, Qiu; Wang, Baoyi
2018-07-01
The formation of helium bubble precursors, i.e., helium-vacancy complexes, was investigated for Fe9Cr alloy, which was uniformly irradiated by using 100 keV helium ions with fluences up to 5 × 1016 ions/cm2 at RT, 523, 623, 723, and 873 K. Helium-irradiation-induced microstructures in the alloy were probed by positron annihilation technique. The results show that the ratio of helium atom to vacancy (m/n) in the irradiation induced HemVn clusters is affected by the irradiation temperature. Irradiated at room temperature, there is a coexistence of large amounts of HemV1 and mono-vacancies in the sample. However, the overpressured HemVn (m > n) clusters or helium bubbles are easily formed by the helium-filled vacancy clusters (HemV1 and HemVn (m ≈ n)) absorbing helium atoms when irradiated at 523 K and 823 K. The results also show that void swelling of the alloy is the largest under 723 K irradiation.
NASA Astrophysics Data System (ADS)
Wang, P. P.; Xu, C.; Fu, E. G.; Du, J. L.; Gao, Y.; Wang, X. J.; Qiu, Y. H.
2018-05-01
Sputtering-deposited Cu/V multilayer films with the individual layer thickness varying from 2.5 nm to 100 nm were irradiated by 1 MeV helium (He) ion at the fluence of 6 ×1016 ions ·cm-2 at room temperature. The resistivity of Cu/V multilayer films after ion irradiation was evaluated as a function of individual layer thickness at 300 K and compared with their resistivity before ion irradiation. The results show that the resistivity change before and after ion irradiation is largely determined by the interface structure, grain boundary and radiation induced defects. A model amended based on the model used in describing the resistivity of as-deposited Cu/V multilayer films was proposed to describe the resistivity of ion irradiated Cu/V multilayer films by considering the point defects induced by ion irradiation, the effect of interface absorption on defects and the effect of interface microstructure in the multilayer films.
Crystal plasticity modeling of irradiation growth in Zircaloy-2
NASA Astrophysics Data System (ADS)
Patra, Anirban; Tomé, Carlos N.; Golubov, Stanislav I.
2017-08-01
A physically based reaction-diffusion model is implemented in the visco-plastic self-consistent (VPSC) crystal plasticity framework to simulate irradiation growth in hcp Zr and its alloys. The reaction-diffusion model accounts for the defects produced by the cascade of displaced atoms, their diffusion to lattice sinks and the contribution to crystallographic strain at the level of single crystals. The VPSC framework accounts for intergranular interactions and irradiation creep, and calculates the strain in the polycrystalline ensemble. A novel scheme is proposed to model the simultaneous evolution of both, number density and radius, of irradiation-induced dislocation loops directly from experimental data of dislocation density evolution during irradiation. This framework is used to predict the irradiation growth behaviour of cold-worked Zircaloy-2 and trends compared to available experimental data. The role of internal stresses in inducing irradiation creep is discussed. Effects of grain size, texture and external stress on the coupled irradiation growth and creep behaviour are also studied and compared with available experimental data.
NASA Astrophysics Data System (ADS)
Chi, Se-Hwan; Kim, Gen-Chan
2008-10-01
Three million electron volt C + irradiation effects on the microstructure (crystallinity, crystal size), mechanical properties (hardness, Young's modulus) and oxidation of IG-110 (petroleum coke) and IG-430 (pitch coke) nuclear graphites were compared based on the materials characteristics (degree of graphitization (DOG), density, porosity, type of coke, Mrozowski cracks) of the grades and the ion-irradiation conditions. The specimens were irradiated up to ˜19 dpa at room temperature. Differences in the as-received microstructure were examined by Raman spectroscopy, X-ray diffraction (XRD), optical microscope (OM) and transmission electron microscope (TEM). The ion-induced changes in the microstructure, mechanical properties and oxidation characteristics were examined by the Raman spectroscopy, microhardness and Young's modulus measurements, and scanning electron microscope (SEM). Results of the as-received microstructure condition show that the DOG of the grades appeared the same at 0.837. The size of Mrozowski cracks appeared larger in the IG-110 of the higher open and total porosity than the IG-430. After an irradiation, the changes in the crystallinity and the crystallite size, both estimated by the Raman spectrum parameters, appeared large for the IG-430 and the IG-110, respectively. The hardness had increased after an irradiation, but, the hardness increasing behaviors were reversed at around 14 dpa. Thus, the IG-430 showed a higher increase before 14 dpa, but the IG-110 showed a higher increase after 14 dpa. No-clear differences in the increase of the Young's modulus were observed between the grades mainly due to a scattering in the measurements results. The IG-110 showed a higher oxidation rate than the IG-430 both before and after an irradiation. Besides the density and porosity, a possible contribution of the well-developed Mrozowski cracks in the IG-110 was noted for the observation. All the comparisons show that, even when the differences between the grades are not large, the results of the oxidation and hardness test show a higher irradiation sensitivity for the IG-110. The similar irradiation sensitivities between the grades were attributed to the same degree of graphitization (DOG) of the grades.
NASA Astrophysics Data System (ADS)
Jamali, Safa; McKinley, Gareth H.; Armstrong, Robert C.
2017-01-01
We identify the sequence of microstructural changes that characterize the evolution of an attractive particulate gel under flow and discuss their implications on macroscopic rheology. Dissipative particle dynamics is used to monitor shear-driven evolution of a fabric tensor constructed from the ensemble spatial configuration of individual attractive constituents within the gel. By decomposing this tensor into isotropic and nonisotropic components we show that the average coordination number correlates directly with the flow curve of the shear stress versus shear rate, consistent with theoretical predictions for attractive systems. We show that the evolution in nonisotropic local particle rearrangements are primarily responsible for stress overshoots (strain-hardening) at the inception of steady shear flow and also lead, at larger times and longer scales, to microstructural localization phenomena such as shear banding flow-induced structure formation in the vorticity direction.
NASA Astrophysics Data System (ADS)
Qin, Wenjing; Wang, Yongqiang; Tang, Ming; Ren, Feng; Fu, Qiang; Cai, Guangxu; Dong, Lan; Hu, Lulu; Wei, Guo; Jiang, Changzhong
2018-04-01
Plasma facing materials (PFMs) face one of the most serious challenges in fusion reactors, including unprecedented harsh environment such as 14.1 MeV neutron and transmutation gas irradiation at high temperature. Tungsten (W) is considered to be one of the most promising PFM, however, virtually insolubility of helium (He) in W causes new material issues such as He bubbles and W "fuzz" microstructure. In our previous studies, we presented a new strategy using nanochannel structure designed in the W film to increase the releasing of He atoms and thus to minimize the He nucleation and "fuzz" formation behavior. In this work, we report the further study on the diffusion of He atoms in the nanochannel W films irradiated at a high temperature of 600 °C. More specifically, the temperature influences on the formation and growth of He bubbles, the lattice swelling, and the mechanical properties of the nanochannel W films were investigated. Compared with the bulk W, the nanochannel W films possessed smaller bubble size and lower bubble areal density, indicating that noticeable amounts of He atoms have been released out along the nanochannels during the high temperature irradiations. Thus, with lower He concentration in the nanochannel W films, the formation of the bubble superlattice is delayed, which suppresses the lattice swelling and reduces hardening. These aspects indicate the nanochannel W films have better radiation resistance even at high temperature irradiations.
Effects of irradiation on the microstructure of U-7Mo dispersion fuel with Al-2Si matrix
NASA Astrophysics Data System (ADS)
Keiser, Dennis D.; Jue, Jan-Fong; Robinson, Adam B.; Medvedev, Pavel; Gan, Jian; Miller, Brandon D.; Wachs, Daniel M.; Moore, Glenn A.; Clark, Curtis R.; Meyer, Mitchell K.; Ross Finlay, M.
2012-06-01
The Reduced Enrichment for Research and Test Reactor (RERTR) program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt.% Si added to the matrix, fuel plates were tested to moderate burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fission rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, and high fission rate) was performed in the RERTR-9A, RERTR-9B, and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth during irradiation of the fuel/matrix interaction (FMI) layer created during fabrication; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation, more Si diffuses from the matrix to the FMI layer/matrix interface; and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Linyun; Mei, Zhi-Gang; Yacout, Abdellatif M.
We have developed a mesoscale phase-field model for studying the effect of recrystallization on the gas-bubble-driven swelling in irradiated U-Mo alloy fuel. The model can simulate the microstructural evolution of the intergranular gas bubbles on the grain boundaries as well as the recrystallization process. Our simulation results show that the intergranular gas-bubble-induced fuel swelling exhibits two stages: slow swelling kinetics before recrystallization and rapid swelling kinetics with recrystallization. We observe that the recrystallization can significantly expedite the formation and growth of gas bubbles at high fission densities. The reason is that the recrystallization process increases the nucleation probability of gasmore » bubbles and reduces the diffusion time of fission gases from grain interior to grain boundaries by increasing the grain boundary area and decreasing the diffusion distance. The simulated gas bubble shape, size distribution, and density on the grain boundaries are consistent with experimental measurements. We investigate the effect of the recrystallization on the gas-bubble-driven fuel swelling in UMo through varying the initial grain size and grain aspect ratio. We conclude that the initial microstructure of fuel, such as grain size and grain aspect ratio, can be used to effectively control the recrystallization and therefore reduce the swelling in U-Mo fuel.« less
Genesis of femtosecond-induced nanostructures on solid surfaces.
Varlamova, Olga; Martens, Christian; Ratzke, Markus; Reif, Juergen
2014-11-01
The start and evolution of the formation of laser-induced periodic surface structures (LIPSS, ripples) are investigated. The important role of irradiation dose (fluence×number of pulses) for the properties of the generated structures is demonstrated. It is shown how, with an increasing dose, the structures evolve from random surface modification to regular sub-wavelength ripples, then coalesce to broader LIPSS and finally form more complex shapes when ablation produces deep craters. First experiments are presented following this evolution in one single irradiated spot.
Study of grain structure evolution during annealing of a twin-roll-cast Mg alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, A.; Department of Metallurgical Engineering and Materials Science, IIT Bombay; Department of Materials Engineering, Monash University
2016-04-15
The evolution of microstructure under static annealing was studied for mid-thickness section of a twin-roll-cast (TRC) magnesium alloy. Annealing was performed at 300 °C and 500 °C for different times. Microstructural evolution was quantitatively analyzed, from optical micrographs, using grain path envelope analysis. Additional information from electron backscatter diffraction (EBSD) was used for addressing the possible mechanism(s). It was found that the TRC structure had a bimodal grain size, which was preserved even after annealing at 300 °C. However, the annealing at 500 °C led to a unimodal grain size. This difference in the grain size distribution created a contrastingmore » behavior in the normalized standard deviations. This was primarily attributed to a competition between recovery and recrystallization, and their respective dominance at 300° and 500 °C. A deformation induced recrystallization recovery (DIRR) model was proposed. The proposed model could successfully address the experimental microstructural evolution. - Highlights: • Annealing of twin roll cast (TRC) magnesium alloy was done at temperatures of 300 °C and 500 °C. • TRC had bimodal structure. Bimodality preserved for annealing at 300 °C. Annealing at 500 °C led to unimodal structure. • Grain evolution was described based on the competition between recovery and recrystallization. • Deformation induced recrystallization recovery (DIRR) mechanistic model was developed.« less
NASA Astrophysics Data System (ADS)
Zhang, Chuanchao; Liao, Wei; Zhang, Lijuan; Jiang, Xiaolong; Chen, Jing; Wang, Haijun; Luan, Xiaoyu; Yuan, Xiaodong
2018-06-01
A simple and convenient means to self-organize large-area uniform periodic microstructures on fused silica by using multiple raster scans of microsecond CO2 laser pulses with beam spot overlapping at normal incidence is presented, which is based on laser-induced periodic surface structures (LIPSS) attributed to the interference between surface phonon polaritons and incident CO2 laser. The evolution of fused silica surface morphologies with increasing raster scans indicates that the period of microstructures changed from 10.6 μm to 9 μm and the profiles of microstructures changed from a sinusoidal curve to a half-sinusoidal shape. Numerical simulation results suggest that the formation of the half-sinusoidal profile is due to the exponential relationship between evaporation rate and surface temperature inducing by the intensive interference between surface phonon polaritons and incident laser. The fabricated uniform periodic microstructures show excellent structural color effect in both forward-diffraction and back-diffraction.
Evolution of thermo-physical properties and annealing of fast neutron irradiated boron carbide
NASA Astrophysics Data System (ADS)
Gosset, Dominique; Kryger, Bernard; Bonal, Jean-Pierre; Verdeau, Caroline; Froment, Karine
2018-03-01
Boron carbide is widely used as a neutron absorber in most nuclear reactors, in particular in fast neutron ones. The irradiation leads to a large helium production (up to 1022/cm3) together with a strong decrease of the thermal conductivity. In this paper, we have performed thermal diffusivity measurements and X-ray diffraction analyses on boron carbide samples coming from control rods of the French Phenix LMFBR reactor. The burnups range from 1021 to 8.1021/cm3. We first confirm the strong decrease of the thermal conductivity at the low burnup, together with high microstructural modifications: swelling, large micro-strains, high defects density, and disordered-like material conductivity. We observe the microstructural parameters are highly anisotropic, with high micro-strains and flattened coherent diffracting domains along the (00l) direction of the hexagonal structure. Performing heat treatments up to high temperature (2200 °C) allows us to observe the material thermal conductivity and microstructure restoration. It then appears the thermal conductivity healing is correlated to the micro-strain relaxation. We then assume the defects responsible for most of the damage are the helium bubbles and the associated stress fields.
In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects
Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana; Senor, David; Steckbeck, Mackenzie; Davis, Justin; Doyle, Barney; Buller, Daniel
2017-01-01
Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2. PMID:28961199
In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Caitlin; Bufford, Daniel; Muntifering, Brittany
Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I3TEM) offers the unique ability to observe microstructural changes due tomore » irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. This work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO2.« less
Irradiation effects on multilayered W/ZrO2 film under 4 MeV Au ions
NASA Astrophysics Data System (ADS)
Wang, Hongwei; Gao, Yuan; Fu, Engang; Yang, Tengfei; Xue, Jianming; Yan, Sha; Chu, Paul K.; Wang, Yugang
2014-12-01
Irradiation induced structural changes in multilayered W/ZrO2 nanocomposites with periodic bilayer thicknesses of (7/14 nm) and (70/140 nm) were investigated following Au+ ion irradiation. The samples were irradiated by 4 MeV Au ions with fluences ranging from 6 × 1014 to 1 × 1016 ions/cm2. The immiscible W/ZrO2 interfaces remained unchanged without intermixing of the layers upon the irradiation. No voids were observed in the samples with different periodic layer thicknesses. The XRD and XTEM studies reveal thickness dependent microstructural changes in the samples. W and ZrO2 grains in the thinner (7/14 nm) bilayer sample exhibit significant resistance to grain growth compared to the thicker (70/140 nm) bilayer sample as well as a W monolayer film. The high fraction of flat interfaces as well as grain boundaries in multilayer films plays a role in suppressing ion irradiation-induced grain growth and void formation.
Structural responses of metallic glasses under neutron irradiation.
Yang, L; Li, H Y; Wang, P W; Wu, S Y; Guo, G Q; Liao, B; Guo, Q L; Fan, X Q; Huang, P; Lou, H B; Guo, F M; Zeng, Q S; Sun, T; Ren, Y; Chen, L Y
2017-12-01
Seeking nuclear materials that possess a high resistance to particle irradiation damage is a long-standing issue. Permanent defects, induced by irradiation, are primary structural changes, the accumulation of which will lead to structural damage and performance degradation in crystalline materials served in nuclear plants. In this work, structural responses of neutron irradiation in metallic glasses (MGs) have been investigated by making a series of experimental measurements, coupled with simulations in ZrCu amorphous alloys. It is found that, compared with crystalline alloys, MGs have some specific structural responses to neutron irradiation. Although neutron irradiation can induce transient vacancy-like defects in MGs, they are fully annihilated after structural relaxation by rearrangement of free volumes. In addition, the rearrangement of free volumes depends strongly on constituent elements. In particular, the change in free volumes occurs around the Zr atoms, rather than the Cu centers. This implies that there is a feasible strategy for identifying glassy materials with high structural stability against neutron irradiation by tailoring the microstructures, the systems, or the compositions in alloys. This work will shed light on the development of materials with high irradiation resistance.
Predicting neutron damage using TEM with in situ ion irradiation and computer modeling
NASA Astrophysics Data System (ADS)
Kirk, Marquis A.; Li, Meimei; Xu, Donghua; Wirth, Brian D.
2018-01-01
We have constructed a computer model of irradiation defect production closely coordinated with TEM and in situ ion irradiation of Molybdenum at 80 °C over a range of dose, dose rate and foil thickness. We have reexamined our previous ion irradiation data to assign appropriate error and uncertainty based on more recent work. The spatially dependent cascade cluster dynamics model is updated with recent Molecular Dynamics results for cascades in Mo. After a careful assignment of both ion and neutron irradiation dose values in dpa, TEM data are compared for both ion and neutron irradiated Mo from the same source material. Using the computer model of defect formation and evolution based on the in situ ion irradiation of thin foils, the defect microstructure, consisting of densities and sizes of dislocation loops, is predicted for neutron irradiation of bulk material at 80 °C and compared with experiment. Reasonable agreement between model prediction and experimental data demonstrates a promising direction in understanding and predicting neutron damage using a closely coordinated program of in situ ion irradiation experiment and computer simulation.
Bavrina, A P; Monich, V A; Malinovskaya, S L; Yakovleva, E I; Bugrova, M L; Lazukin, V F
2015-05-01
Effects of successive exposure to ionizing irradiation and low-intensity broadband red light on electrical activity of the heart and myocardium microstructure were studied in rats. Lowintensity red light corrected some ECG parameters, in particular, it normalized QT and QTc intervals and voltage of R and T waves. Changes in ECG parameters were followed by alterations in microstructure of muscle fi laments in the myocardium of treatment group animals comparing to control group.
Depth profiling of ion-induced damage in D9 alloy using X-ray diffraction
NASA Astrophysics Data System (ADS)
Dey, S.; Gayathri, N.; Mukherjee, P.
2018-04-01
The ion-induced depthwise damage profile in 35 MeV α-irradiated D9 alloy samples with doses of 5 × 1015 He2+/cm2, 6.4 × 1016 He2+/cm2 and 2 × 1017 He2+/cm2 has been assessed using X-ray diffraction technique. The microstructural characterisation has been done along the depth from beyond the stopping region (peak damage region) to the homogeneous damage region (surface) as simulated from SRIM. The parameters such as domain size and microstrain have been evaluated using two different X-ray diffraction line profile analysis techniques. The results indicate that at low dose the damage profile shows a prominent variation as a function of depth but, with increasing dose, it becomes more homogeneous along the depth. This suggests that enhanced defect diffusion and their annihilation in pre-existing and newly formed sinks play a significant role in deciding the final microstructure of the irradiated sample as a function of depth.
El-Atwani, O.; Hinks, J. A.; Greaves, G.; Gonderman, S.; Qiu, T.; Efe, M.; Allain, J. P.
2014-01-01
The accumulation of defects, and in particular He bubbles, can have significant implications for the performance of materials exposed to the plasma in magnetic-confinement nuclear fusion reactors. Some of the most promising candidates for deployment into such environments are nanocrystalline materials as the engineering of grain boundary density offers the possibility of tailoring their radiation resistance properties. In order to investigate the microstructural evolution of ultrafine- and nanocrystalline-grained tungsten under conditions similar to those in a reactor, a transmission electron microscopy study with in situ 2 keV He+ ion irradiation at 950°C has been completed. A dynamic and complex evolution in the microstructure was observed including the formation of defect clusters, dislocations and bubbles. Nanocrystalline grains with dimensions less than around 60 nm demonstrated lower bubble density and greater bubble size than larger nanocrystalline (60–100 nm) and ultrafine (100–500 nm) grains. In grains over 100 nm, uniform distributions of bubbles and defects were formed. At higher fluences, large faceted bubbles were observed on the grain boundaries, especially on those of nanocrystalline grains, indicating the important role grain boundaries can play in trapping He and thus in giving rise to the enhanced radiation tolerance of nanocrystalline materials. PMID:24796578
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xu, Chi; Chen, Wei-Ying; Zhang, Xuan
Microstructural changes resulted from neutron irradiation and post-irradiation annealing in a high-temperature ultra-fine precipitate strengthened (HT-UPS) stainless steel were characterized using transmission electron microscopy (TEM) and atom probe tomography (APT). Three HT-UPS samples were neutron-irradiated to 3 dpa at 500 °C, and after irradiation, two of them were annealed for 1 h at 600 °C and 700 °C, respectively. Frank dislocation loops were the dominant defect structure in both the as-irradiated and 600 °C post-irradiation-annealed (PIAed) samples, and the loop sizes and densities were similar in these two samples. Unfaulted dislocation loops were observed in the 700 °C PIAed sample, and the loop density was greatly reducedmore » in comparison with that in the as-irradiated sample. Nano-sized MX precipitates were observed under TEM in the 700 °C PIAed sample, but not in the 600 °C PIAed or the as-irradiated samples. The titanium-rich clusters were identified in all three samples using APT. The post-irradiation annealing (PIA) caused the growth of the Ti-rich clusters with a stronger effect at 700 °C than at 600 °C. The irradiation caused elemental segregations at the grain boundary and the grain interior, and the grain boundary segregation behavior is consistent with observations in other irradiated austenitic steels. APT results showed that PIA reduced the magnitude of irradiation induced segregations.« less
Microstructural Characterization of Irradiated U0.7ZrH1.6 Using Ultrasonic Techniques
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramuhalli, Pradeep; Jacob, Richard E.; MacFarlan, Paul J.
In recent years, there has been an increased level of effort to understand the changes in microstructure that occur due to irradiation of nuclear fuel. The primary driver for this increased effort is the potential for designing new fuels that are safer and more reliable, in turn enabling new and improved reactor technologies. Much of the data on microstructural change in irradiated fuels is generated through a host of post irradiation examination techniques such as optical microscopy (OM), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) to determine grain structure, porosity, crack geometry, etc. in irradiated fuels. Such “traditional”more » examination techniques were recently used to characterize a novel new fuel consisting of U0.17ZrH1.6 pellets bonded to zircaloy-2 cladded with lead-bismuth eutectic before and after irradiation. However, alternative methods such as ultrasonic inspection can provide an opportunity for nondestructively assessing microstructure in both in-pile and post-irradiation examinations. In this paper, we briefly describe initial results of ultrasonic examination of the U0.17ZrH1.6 pellets (unirradiated and irradiated), in a post-irradiation examination study. Data indicate some correlation with microstructural changes due to irradiation; however, it is not clear what the specific microstructural changes are that are influencing the ultrasonic measurements. Interestingly, specimens with nominally identical burnup show differences in ultrasonic signatures, indicating apparent microstructural differences between these specimens. A summary of the experimental study, preliminary data and findings are presented in this short paper. Additional details of the analysis will be included in the presentation.« less
Evolution of microstructure and residual stress during annealing of austenitic and ferritic steels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wawszczak, R.; Baczmański, A., E-mail: Andrzej.Baczmanski@fis.agh.edu.pl; Marciszko, M.
2016-02-15
In this work the recovery and recrystallization processes occurring in ferritic and austenitic steels were studied. To determine the evolution of residual stresses during material annealing the nonlinear sin{sup 2}ψ diffraction method was used and an important relaxation of the macrostresses as well as the microstresses was found in the cold rolled samples subjected to heat treatment. Such relaxation occurs at the beginning of recovery, when any changes of microstructure cannot be detected using other experimental techniques. Stress evolution in the annealed steel samples was correlated with the progress of recovery process, which significantly depends on the value of stackingmore » fault energy. - Highlights: • X-ray diffraction was used to determine the first order and second order stresses. • Diffraction data were analyzed using scale transition elastoplastic models model. • Stress relaxation in annealed ferritic and austenitic steels was correlated with evolution of microstructure. • Influence of stacking fault energy on thermally induced processes was discussed.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, Ba Nghiep; Henager, Charles H.; Kurtz, Richard J.
This work developed a continuum damage mechanics model that incorporates thermal expansion combined with irradiation-induced swelling effects to study the origin of cracking observed in recent irradiation experiments. Micromechanical modeling using an Eshelby-Mori-Tanaka approach was used to compute the thermoelastic properties of the Ti3SiC2/SiC joint needed for the model. In addition, a microstructural dual-phase Ti3SiC2/SiC model was developed to determine irradiation-induced swelling of the composite joint at a given temperature resulting from differential swelling of SiC and the Ti3SiC2 MAX phase. Three cases for the miniature torsion hourglass (THG) specimens containing a Ti3SiC2/SiC joint were analyzed corresponding to three irradiationmore » temperatures: 800oC, 500oC, and 400oC.« less
Bombardment-induced segregation and redistribution
NASA Astrophysics Data System (ADS)
Lam, N. Q.; Wiedersich, H.
During ion bombardment, a number of processes can alter the compositional distribution and microstructure in near-surface regions of alloys. The relative importance of each process depends principally on the target composition, temperature, and ion characteristics. In addition to displacement mixing leading to a randomization of atomic locations, and preferential loss of alloying elements by sputtering, which are dominant at relatively low temperatures, several thermally-activated processes, including radiation-enhanced diffusion, radiation-induced segregation and Gibbsian adsorption, also play important roles. At elevated temperatures, nonequilibrium point defects induced by ion impacts become mobile and tend to anneal out by recombination and diffusion to extended sinks, such as dislocations, grain boundaries and free surfaces. The high defect concentrations, far exceeding the thermodynamic equilibrium values, can enhance diffusion-controlled processes, while persistent defect fluxes, originating from the spatial non-uniformity in defect production and annihilation, give rise to local redistribution of alloy constituents because of radiation-induced segregation. Moreover, when the alloy is maintained at high temperature, Gibbsian adsorption, driven by the reduction in free energy of the system, occurs even without irradiation; it involves a compositional perturbation in a few atom layers near the alloy surface. The combination of these processes leads to the complex development of a compositionally-modified layer in the subsurface region. Considerable progress has been made recently in identifying and understanding the relative contributions from the individual processes under various irradiation conditions. In the present paper, selected examples of these different phenomena and their synergistic effects on the evolution of the near-surface compositions of alloys during sputtering and ion implantation at elevated temperatures are discussed.
Freely-migrating-defect production during irradiation at elevated temperatures
NASA Astrophysics Data System (ADS)
Hashimoto, T.; Rehn, L. E.; Okamoto, P. R.
1988-12-01
Radiation-induced segregation in a Cu-1 at. % Au alloy was investigated using in situ Rutherford backscattering spectrometry. The amount of Au atom depletion in the near surface region was measured as a function of dose during irradiation at 350 °C with four ions of substantially different masses. Relative efficiencies for producing freely migrating defects were evaluated for 1.8-MeV 1H, 4He, 20Ne, and 84Kr ions by determining beam current densities that gave similar radiation-induced segregation rates. Irradiations with primary knock-on atom median energies of 1.7, 13, and 79 keV yielded relative efficiencies of 53, 7, and 6 %, respectively, compared to the irradiation with a 0.83-keV median energy. Despite quite different defect and host alloy properties, the relative efficiencies for producing freely migrating defects determined in Cu-Au are remarkably similar to those found previously in Ni-Si alloys. Hence, the reported efficiencies appear to offer a reliable basis for making quantitative correlations of microstructural changes induced in different alloy systems by a wide variety of irradiation particles.
Song, Wenwen; Bleck, Wolfgang
2017-01-01
The quantitative characterization of the microstructure evolution in high-Mn steel during deformation is of great importance to understanding its strain-hardening behavior. In the current study, in situ high-energy synchrotron X-ray diffraction was employed to characterize the microstructure evolution in a Fe-17Mn-1.5Al-0.3C steel during a tensile test. The microstructure at different engineering strain levels—in terms of ε-martensite and α’-martensite volume fractions, the stacking fault probability, and the twin fault probability—was analyzed by the Rietveld refinement method. The Fe-17Mn-1.5Al-0.3C steel exhibits a high ultimate tensile strength with a superior uniform elongation and a high strain-hardening rate. The remaining high strain-hardening rate at the strain level about 0.025 to 0.35 results from ε-martensite dominant transformation-induced-plasticity (TRIP) effect. The increase in the strain-hardening rate at the strain level around 0.35 to 0.43 is attributed to the synergetic α’-martensite dominant TRIP and twinning-induced-plasticity (TWIP) effects. An evaluation of the stacking fault energy (SFE) of the Fe-17Mn-1.5Al-0.3C steel by the synchrotron measurements shows good agreement with the thermodynamic calculation of the SFE. PMID:28946692
Ma, Yan; Song, Wenwen; Bleck, Wolfgang
2017-09-25
The quantitative characterization of the microstructure evolution in high-Mn steel during deformation is of great importance to understanding its strain-hardening behavior. In the current study, in situ high-energy synchrotron X-ray diffraction was employed to characterize the microstructure evolution in a Fe-17Mn-1.5Al-0.3C steel during a tensile test. The microstructure at different engineering strain levels-in terms of ε-martensite and α'-martensite volume fractions, the stacking fault probability, and the twin fault probability-was analyzed by the Rietveld refinement method. The Fe-17Mn-1.5Al-0.3C steel exhibits a high ultimate tensile strength with a superior uniform elongation and a high strain-hardening rate. The remaining high strain-hardening rate at the strain level about 0.025 to 0.35 results from ε-martensite dominant transformation-induced-plasticity (TRIP) effect. The increase in the strain-hardening rate at the strain level around 0.35 to 0.43 is attributed to the synergetic α'-martensite dominant TRIP and twinning-induced-plasticity (TWIP) effects. An evaluation of the stacking fault energy (SFE) of the Fe-17Mn-1.5Al-0.3C steel by the synchrotron measurements shows good agreement with the thermodynamic calculation of the SFE.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stanley, Eugene; Liu, Li
In this project, we target at three primary objectives: (1) Molecular Dynamics (MD) code development for Fe-Cr alloys, which can be utilized to provide thermodynamic and kinetic properties as inputs in mesoscale Phase Field (PF) simulations; (2) validation and implementation of the MD code to explain thermal ageing and radiation damage; and (3) an integrated modeling platform for MD and PF simulations. These two simulation tools, MD and PF, will ultimately be merged to understand and quantify the kinetics and mechanisms of microstructure and property evolution of Fe-Cr alloys under various thermal and irradiation environments
Microstructure investigations of U3Si2 implanted by high-energy Xe ions at 600 °C
NASA Astrophysics Data System (ADS)
Miao, Yinbin; Harp, Jason; Mo, Kun; Kim, Yeon Soo; Zhu, Shaofei; Yacout, Abdellatif M.
2018-05-01
The microstructure investigations on a high-energy Xe-implanted U3Si2 pellet were performed. The promising accident tolerant fuel (ATF) candidate, U3Si2, was irradiated by 84 MeV Xe ions at 600 °C at Argonne Tandem Linac Accelerator System (ATLAS). The characterizations of the Xe implanted sample were conducted using advanced transmission electron microscopy (TEM) techniques. An oxidation layer was observed on the sample surface after irradiation under the ∼10-5 Pa vacuum. The study on the oxidation layer not only unveils the readily oxidation behavior of U3Si2 under high-temperature irradiation conditions, but also develops an understanding of its oxidation mechanism. Intragranular Xe bubbles with bimodal size distribution were observed within the Xe deposition region of the sample induced by 84 MeV Xe ion implantation. At the irradiation temperature of 600 °C, the gaseous swelling strain contributed by intragranular bubbles was found to be insignificant, indicating an acceptable fission gas behavior of U3Si2 as a light water reactor (LWR) fuel operating at such a temperature.
NASA Astrophysics Data System (ADS)
Song, Peng; Morrall, Daniel; Zhang, Zhexian; Yabuuchi, Kiyohiro; Kimura, Akihiko
2018-04-01
In order to investigate the effects of oxide particles on radiation response such as hardness change and microstructural evolution, three types of oxide dispersion strengthened (ODS) ferritic steels (named Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS), mostly strengthened by Y-Ti-O, Y-Al-O and Y-Zr-O dispersoids, respectively, were simultaneously irradiated with iron and helium ions at 550 °C up to a damage of 30 dpa and a corresponding helium (He) concentration of ∼3500 appm to a depth of 1000-1300 nm. A single iron ion beam irradiation was also performed for reference. Transmission electron microscopy revealed that after the dual ion irradiation helium bubbles of 2.8, 6.6 and 4.5 nm in mean diameter with the corresponding number densities of 1.1 × 1023, 2.7 × 1022 and 3.6 × 1022 m-3 were observed in Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS, respectively, while no such bubbles were observed after single ion irradiation. About 80% of intragranular He bubbles were adjacent to oxide particles in the ODS ferritic steels. Although the high number density He bubbles were observed in the ODS steels, the void swelling in Y-Ti-ODS, Y-Al-ODS and Y-Al-Zr-ODS was still small and estimated to be 0.13%, 0.53% and 0.20%, respectively. The excellent swelling resistance is dominantly attributed to the high sink strength of oxide particles that depends on the morphology of particle dispersion rather than the crystal structure of the particles. In contrast, no dislocation loops were produced in any of the irradiated steels. Nanoindentation measurements showed that no irradiation hardening but softening was found in the ODS ferritic steels, which was probably due to irradiation induced dislocation recovery. The helium bubbles in high number density never contributed to the irradiation hardening of the ODS steels at these irradiation conditions.
Microstructural evolution and micromechanical properties of gamma-irradiated Au ball bonds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yusoff, Wan Yusmawati Wan, E-mail: yusmawati@upnm.edu.my; Ismail, Roslina, E-mail: roslina.ismail@ukm.my; Jalar, Azman, E-mail: azmn@ukm.my
2014-07-01
The effect of gamma radiation on the mechanical and structural properties of gold ball bonds was investigated. Gold wires from thermosonic wire bonding were exposed to gamma rays from a Cobalt-60 source at a low dose (5 Gy). The load–depth curve of nanoindentation for the irradiated gold wire bond has an apparent staircase shape during loading compared to the as-received sample. The hardness of the specimens calculated from the nanoindentation shows an increase in value from 0.91 to 1.09 GPa for specimens after exposure. The reduced elastic modulus for irradiated specimens significantly increased as well, with values from 75.18 tomore » 98.55 GPa. The change in intrinsic properties due to gamma radiation was investigated using dual-focused ion beam and high-resolution transmission electron microscope analysis. The dual-focused ion beam and high-resolution transmission electron microscope images confirmed the changes in grain structure and the presence of dislocations. The scanning electron microscope micrographs of focused ion beam cross sections showed that the grain structure of the gold became elongated and smaller after exposure to gamma rays. Meanwhile, high-resolution transmission electron microscopy provided evidence that gamma radiation induced dislocation of the atomic arrangement. - Highlights: • Nanoindentation technique provides a detailed characterisation of Au ball bond. • P–h curve of irradiated Au ball bond shows an apparent pop-in event. • Hardness and reduced modulus increased after exposure. • Elongated and smaller grain structure in irradiated specimens • Prevalent presence of dislocations in the atomic arrangement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana
Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I 3TEM) offers the unique ability to observe microstructural changes duemore » to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. As a result, this work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO 2.« less
Structure and radiation effect of Er-stuffed pyrochlore Er2(Ti2-xErx)O7-x/2 (x = 0-0.667)
NASA Astrophysics Data System (ADS)
Yang, D. Y.; Xu, C. P.; Fu, E. G.; Wen, J.; Liu, C. G.; Zhang, K. Q.; Wang, Y. Q.; Li, Y. H.
2015-08-01
Er-stuffed pyrochlore series Er2(Ti2-xErx)O7-x/2 (x = 0, 0.162, 0.286, 0.424 and 0.667) were synthesized using conventional ceramic processing procedures. The structure of Er2(Ti2-xErx)O7-x/2 is effectively tailored by the Er stuffing level (x). In order to study the radiation effect of Er-stuffed pyrochlores, irradiation experiments were performed with 400 keV Ne2+ ions to fluences ranging from 5 × 1014 to 3.0 × 1015 ions/cm2 at cryogenic condition. Irradiation induced microstructural evolution was examined using a grazing incidence X-ray diffraction technique. It is found that the irradiated layer of Er2(Ti2-xErx)O7-x/2 undergoes significant lattice disordering and swelling at fluences of ⩽1.5 × 1015 ions/cm2 and amorphization at fluences of ⩾1.5 × 1015 ions/cm2. The radiation effect depends strongly on the chemical compositions of the samples. Both the lattice swelling percentage and the amorphous fraction decrease with increasing x. The experimental results are discussed in the context of cation antisite defect. The defect formation energy which varies as a function of x is responsible for the difference in the structural behaviors of Er2(Ti2-xErx)O7-x/2 under 400 keV Ne2+ ion irradiation.
Field-Induced Disorder and Carrier Localization in Molecular Organic Transistors
NASA Astrophysics Data System (ADS)
Ando, M.; Minakata, T.; Duffy, C.; Sirringhaus, H.
2009-06-01
We propose a "field-induced polymorphous disorder" model to explain bias-stress instability in molecular organic thin-film transistors, based on the experimental results showing the strong correlation between the micro-structural change in semiconductor layer composed of penrtacene molecules and the threshold voltage (Vth) shift due to electron trapping in a reversible manner under the successive bias-stress, thermal annealing, and light irradiation.
Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching.
Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff
2017-03-27
The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures.
Damage Evolution in Complex-Phase and Dual-Phase Steels during Edge Stretching
Pathak, Nikky; Butcher, Cliff; Worswick, Michael James; Bellhouse, Erika; Gao, Jeff
2017-01-01
The role of microstructural damage in controlling the edge stretchability of Complex-Phase (CP) and Dual-Phase (DP) steels was evaluated using hole tension experiments. The experiments considered a tensile specimen with a hole at the center of specimen that is either sheared (sheared edge condition) or drilled and then reamed (reamed edge condition). The damage mechanism and accumulation in the CP and DP steels were systematically characterized by interrupting the hole tension tests at different strain levels using scanning electron microscope (SEM) analysis and optical microscopy. Martensite cracking and decohesion of ferrite-martensite interfaces are the dominant nucleation mechanisms in the DP780. The primary source of void nucleation in the CP800 is nucleation at TiN particles, with secondary void formation at martensite/bainite interfaces near the failure strain. The rate of damage evolution is considerably higher for the sheared edge in contrast with the reamed edge since the shearing process alters the microstructure in the shear affected zone (SAZ) by introducing work-hardening and initial damage behind the sheared edge. The CP microstructures were shown to be less prone to shear-induced damage than the DP materials resulting in much higher sheared edge formability. Microstructural damage in the CP and DP steels was characterized to understand the interaction between microstructure, damage evolution and edge formability during edge stretching. An analytical model for void evolution and coalescence was developed and applied to predict the damage rate in these rather diverse microstructures. PMID:28772707
Crystal Plasticity Model of Reactor Pressure Vessel Embrittlement in GRIZZLY
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Pritam; Biner, Suleyman Bulent; Zhang, Yongfeng
2015-07-01
The integrity of reactor pressure vessels (RPVs) is of utmost importance to ensure safe operation of nuclear reactors under extended lifetime. Microstructure-scale models at various length and time scales, coupled concurrently or through homogenization methods, can play a crucial role in understanding and quantifying irradiation-induced defect production, growth and their influence on mechanical behavior of RPV steels. A multi-scale approach, involving atomistic, meso- and engineering-scale models, is currently being pursued within the GRIZZLY project to understand and quantify irradiation-induced embrittlement of RPV steels. Within this framework, a dislocation-density based crystal plasticity model has been developed in GRIZZLY that captures themore » effect of irradiation-induced defects on the flow stress behavior and is presented in this report. The present formulation accounts for the interaction between self-interstitial loops and matrix dislocations. The model predictions have been validated with experiments and dislocation dynamics simulation.« less
In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana
Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I 3TEM) offers the unique ability to observe microstructural changes duemore » to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. As a result, this work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO 2.« less
In Situ TEM Multi-Beam Ion Irradiation as a Technique for Elucidating Synergistic Radiation Effects
Taylor, Caitlin Anne; Bufford, Daniel Charles; Muntifering, Brittany Rana; ...
2017-09-29
Materials designed for nuclear reactors undergo microstructural changes resulting from a combination of several environmental factors, including neutron irradiation damage, gas accumulation and elevated temperatures. Typical ion beam irradiation experiments designed for simulating a neutron irradiation environment involve irradiating the sample with a single ion beam and subsequent characterization of the resulting microstructure, often by transmission electron microscopy (TEM). This method does not allow for examination of microstructural effects due to simultaneous gas accumulation and displacement cascade damage, which occurs in a reactor. Sandia’s in situ ion irradiation TEM (I 3TEM) offers the unique ability to observe microstructural changes duemore » to irradiation damage caused by concurrent multi-beam ion irradiation in real time. This allows for time-dependent microstructure analysis. A plethora of additional in situ stages can be coupled with these experiments, e.g., for more accurately simulating defect kinetics at elevated reactor temperatures. As a result, this work outlines experiments showing synergistic effects in Au using in situ ion irradiation with various combinations of helium, deuterium and Au ions, as well as some initial work on materials utilized in tritium-producing burnable absorber rods (TPBARs): zirconium alloys and LiAlO 2.« less
NASA Astrophysics Data System (ADS)
Naghizadeh, Meysam; Mirzadeh, Hamed
2018-03-01
Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.
NASA Astrophysics Data System (ADS)
Naghizadeh, Meysam; Mirzadeh, Hamed
2018-06-01
Microstructural evolutions during reversion annealing of a plastically deformed AISI 316 stainless steel were investigated and three distinct stages were identified: the reversion of strain-induced martensite to austenite, the primary recrystallization of the retained austenite, and the grain growth process. It was found that the slow kinetics of recrystallization at lower annealing temperatures inhibit the formation of an equiaxed microstructure and might effectively impair the usefulness of this thermomechanical treatment for the objective of grain refinement. By comparing the behavior of AISI 316 and 304 alloys, it was found that the mentioned slow kinetics is related to the retardation effect of solute Mo in the former alloy. At high reversion annealing temperature, however, an equiaxed austenitic microstructure was achieved quickly in AISI 316 stainless steel due to the temperature dependency of retardation effect of molybdenum, which allowed the process of recrystallization to happen easily. Conclusively, this work can shed some light on the issues of this efficient grain refining approach for microstructural control of austenitic stainless steels.
Effects of Irradiation on the Microstructure of U-7Mo Dispersion Fuel with Al-2Si Matrix
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dennis D. Keiser, Jr.; Jan-Fong Jue; Adam B. Robinson
2012-06-01
The Reduced Enrichment for Research and Test Reactor program is developing low-enriched uranium U-Mo dispersion fuels for application in research and test reactors around the world. As part of this development, fuel plates have been irradiated in the Advanced Test Reactor and then characterized using optical metallography (OM) and scanning electron microscopy (SEM) to determine the as-irradiated microstructure. To demonstrate the irradiation performance of U-7Mo dispersion fuel plates with 2 wt% Si added to the matrix, fuel plates were tested to medium burnups at intermediate fission rates as part of the RERTR-6 experiment. Further testing was performed to higher fissionmore » rates as part of the RERTR-7A experiment, and very aggressive testing (high temperature, high fission density, high fission rate) was performed in the RERTR-9A, RERTR-9B and AFIP-1 experiments. As-irradiated microstructures were compared to those observed after fabrication to determine the effects of irradiation on the microstructure. Based on comparison of the microstructural characterization results for each irradiated sample, some general conclusions can be drawn about how the microstructure evolves during irradiation: there is growth of the fuel/matrix interaction layer (FMI), which was present in the samples to some degree after fabrication, during irradiation; Si diffuses from the FMI layer to deeper depths in the U-7Mo particles as the irradiation conditions are made more aggressive; lowering of the Si content in the FMI layer results in an increase in the size of the fission gas bubbles; as the FMI layer grows during irradiation more Si diffuses from the matrix to the FMI layer/matrix interface, and interlinking of fission gas bubbles in the fuel plate microstructure that may indicate breakaway swelling is not observed.« less
Structural evolution of zirconium carbide under ion irradiation
NASA Astrophysics Data System (ADS)
Gosset, D.; Dollé, M.; Simeone, D.; Baldinozzi, G.; Thomé, L.
2008-02-01
Zirconium carbide is one of the candidate materials to be used for some fuel components of the high temperature nuclear reactors planned in the frame of the Gen-IV project. Few data exist regarding its behaviour under irradiation. We have irradiated ZrC samples at room temperature with slow heavy ions (4 MeV Au, fluence from 10 11 to 5 × 10 15 cm -2) in order to simulate neutron irradiations. Grazing incidence X-Ray diffraction (GIXRD) and transmission electron microscopy (TEM) analysis have been performed in order to study the microstructural evolution of the material versus ion fluence. A high sensitivity to oxidation is observed with the formation of zirconia precipitates during the ion irradiations. Three damage stages are observed. At low fluence (<10 12 cm -2), low modifications are observed. At intermediate fluence, high micro-strains appear together with small faulted dislocation loops. At the highest fluence (>10 14 cm -2), the micro-strains saturate and the loops coalesce to form a dense dislocation network. No other structural modification is observed. The material shows a moderate cell parameter increase, corresponding to a 0.6 vol.% swelling, which saturates around 10 14 ions/cm 2, i.e., a few Zr dpa. As a result, in spite of a strong covalent bonding component, ZrC seems to have a behaviour under irradiation close to cubic metals.
Wang, Jing; Toloczko, Mychailo B.; Kruska, Karen; ...
2017-11-17
Accelerator-based ion beam irradiation techniques have been used to study radiation effects in materials for decades. Although carbon contamination induced by ion beams in target materials is a well-known issue in some material systems, it has not been fully characterized nor quantified for studies in ferritic/martensitic (F/M) steels that are candidate materials for applications such as core structural components in advanced nuclear reactors. It is an especially important issue for this class of material because of the strong effect of carbon level on precipitate formation. In this paper, the ability to quantify carbon contamination using three common techniques, namely time-of-flightmore » secondary ion mass spectroscopy (ToF-SIMS), atom probe tomography (APT), and transmission electron microscopy (TEM) is compared. Their effectiveness and shortcomings in determining carbon contamination are presented and discussed. The corresponding microstructural changes related to carbon contamination in ion irradiated F/M steels are also presented and briefly discussed.« less
NASA Astrophysics Data System (ADS)
Timokhina, I. B.; Hodgson, P. D.; Pereloma, E. V.
2003-08-01
Thermomechanical processing simulations were performed using a hot-torsion machine, in order to develop a comprehensive understanding of the effect of severe deformation in the recrystallized and nonrecrystallized austenite regions on the microstructural evolution and mechanical properties of the 0.2 wt pct C-1.55 wt pct Mn-1.5 wt pct Si transformation-induced plasticity (TRIP) steel. The deformation schedule affected all constituents (polygonal ferrite, bainite in different morphologies, retained austenite, and martensite) of the multiphased TRIP steel microstructure. The complex relationships between the volume fraction of the retained austenite, the morphology and distribution of all phases present in the microstructure, and the mechanical properties of TRIP steel were revealed. The bainite morphology had a more pronounced effect on the mechanical behavior than the refinement of the microstructure. The improvement of the mechanical properties of TRIP steel was achieved by variation of the volume fraction of the retained austenite rather than the overall refinement of the microstructure.
Direct printing of microstructures by femtosecond laser excitation of nanocrystals in solution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shou, Wan; Pan, Heng, E-mail: hp5c7@mst.edu
2016-05-23
We report direct printing of micro/sub-micron structures by femtosecond laser excitation of semiconductor nanocrystals (NCs) in solution. Laser excitation with moderate intensity (10{sup 11}–10{sup 12} W/cm{sup 2}) induces 2D and 3D deposition of CdTe nanocrystals in aqueous solution, which can be applied for direct printing of microstructures. It is believed that laser irradiation induces charge formation on nanocrystals leading to deposition. Furthermore, it is demonstrated that the charged nanocrystals can respond to external electrical bias, enabling a printing approach based on selective laser induced electrophoretic deposition. Finally, energy dispersive X-ray analysis of deposited structures shows oxidation occurs and deposited structure mainlymore » consists of Cd{sub x}O.« less
Irradiation-induced damage evolution in concentrated Ni-based alloys
Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou; ...
2017-06-06
Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less
Irradiation-induced damage evolution in concentrated Ni-based alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Velisa, Gihan; Ullah, Mohammad Wali; Xue, Haizhou
Understanding the effects of chemical complexity from the number, type and concentration of alloying elements in single-phase concentred solid-solution alloys (SP-CSAs) on defect dynamics and microstructure evolution is pivotal for developing next-generation radiation-tolerant structural alloys. A specially chosen set of SP-CSAs with different chemical complexity (Ni 80Fe 20, Ni 80Cr 20 and Ni 40Fe 40Cr 20) are investigated using 1.5 MeV Mn ions over a wide fluence range, from 2 × 10 13 to 1 × 10 16 ions cm –2 at room temperature. Based on an integrated study of Rutherford backscattering spectroscopy in channeling geometry and molecular dynamics simulations,more » the results demonstrate that Ni 40Fe 40Cr 20 is more radiation tolerant than Ni 80Fe 20, Ni 80Cr 20 and elemental Ni in the low fluence regime. While chemical complexity of this set of SP-CSAs is clearly demonstrated to affect defect evolution through suppressed defect production and enhanced recombination at early stages, the effect of the mixed ferro- and anti-ferromagnetic interactions is not the only controlling factor responsible for the improved radiation performance. As a result, the observed strong alloying effect on defect evolution is attributed to the altered defect migration mobilities of defect clusters in these alloys, an intrinsic characteristic of the complex energy landscapes in CSAs.« less
Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren
To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 10more » 19 n/cm 2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10 -9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.« less
Irradiation response of delta ferrite in as-cast and thermally aged cast stainless steel
Li, Zhangbo; Lo, Wei-Yang; Chen, Yiren; ...
2015-08-08
To enable the life extension of Light Water Reactors (LWRs) beyond 60 years, it is critical to gain adequate knowledge for making conclusive predictions to assure the integrity of duplex stainless steel reactor components, e.g. primary pressure boundary and reactor vessel internal. Microstructural changes in the ferrite of thermally aged, neutron irradiated only, and neutron irradiated after being thermally aged cast austenitic stainless steels (CASS) were investigated using atom probe tomography. The thermal aging was performed at 400 °C for 10,000 h and the irradiation was conducted in the Halden reactor at ~315 °C to 0.08 dpa (5.6 × 10more » 19 n/cm 2 E > 1 MeV). Low dose neutron irradiation at a dose rate of 5 × 10 -9 dpa/s was found to induce spinod,al decomposition in the ferrite of as-cast microstructure, and further to enhance the spinodal decomposition in the thermally aged cast alloys. Regarding the G-phase precipitates, the neutron irradiation dramatically increases the precipitate size, and alters the composition of the precipitates with increased, Mn, Ni, Si and Mo and reduced Fe and Cr contents. Lastly, The results have shown that low dose neutron irradiation can further accelerate the degradation of ferrite in a duplex stainless steel at the LWR relevant condition.« less
NASA Astrophysics Data System (ADS)
Wilder-Smith, Petra B. B.; Arrastia-Jitosho, Anna-Marie A.; Grill, G.; Liaw, Lih-Huei L.; Berns, Michael W.
1995-05-01
Plaque, calculus and altered cementum removal by scaling and root planing is a fundamental procedure in periodontal treatment. However, the residual smear layer contains cytotoxic and inflammatory mediators which adversely affect healing. Chemical smear layer removal is also problematic. In previous investigations effective smear layer removal was achieved using long pulsed irradiation at 1.06 (mu) . However, laser irradiation was not adequate as an alternative to scaling and root planing procedures and concurrent temperature rises exceeded thermal thresholds for pulpal and periodontal safety. It was the aim of this study to determine whether nanosecond pulsed irradiation at 1.06 (mu) could be used as an alternative or an adjunct to scaling and root planing. Sixty freshly extracted teeth were divided as follows: 5 control, 5 root planed only, 25 irradiated only, 25 root planed and irradiated. Irradiation was performed at fluences of 0.5 - 2.7 J/cm2, total energy densities of 12 - 300 J/cm2, frequencies of 2 - 10 Hz using the Medlite (Continuum) laser. Irradiation-induced thermal events were recorded using a thermocouple within the root canal and a thermal camera to monitor surface temperatures. SEM demonstrated effective smear layer removal with minimal microstructural effects. Surface temperatures increased minimally (< 3 C) at all parameters, intrapulpal temperature rises remained below 4 C at 2 and 5 Hz, F < 0.5 J/cm2. Without prior scaling and root planing, laser effects did not provide an adequately clean root surface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun
2015-02-11
The relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a function of the applied strains.more » The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less
NASA Astrophysics Data System (ADS)
Vanorio, T.
2016-12-01
Monitoring chemo-mechanical processes geophysically — e.g., fluid disposal or storage, thermal and chemical stimulation of reservoirs, or natural fluids simply entering a new system in the subsurface— raises numerous concerns because of the likelihood of fluid-rock chemical interactions and our limited ability to decipher the geophysical signature of coupled processes. One of the missing links is coupling the evolution of porosity, permeability, and velocity of rocks together with reactive transport, since rocks deform and their microstructure evolves, as a result of chemical reactions under stress. This study describes recent advances in rock-physics experiments to understand the effects of dissolution-induced compaction on acoustic velocity, porosity, and permeability. Data observation includes time-lapse experiments and imaging tracking transport and elastic properties, the rock microstructure, and the pH and chemical composition of the fluid permeating the rock. Results show that the removal of high surface area, mineral phases such as microcrystalline calcite and clay appears to be mostly responsible for dissolution-induced compaction. Nevertheless, it is the original rock microstructure and its response to stress that ultimately defines how solution-transfer and rock compaction feed back upon each other. This work has a dual aim: understanding the mechanisms underlying permanent modifications to the rock microstructure and providing a richer set of experimental information to inform the formulation of new simulations and rock modeling.
Takagi, Toru; Aoki, Akira; Ichinose, Shizuko; Taniguchi, Yoichi; Tachikawa, Noriko; Shinoki, Takeshi; Meinzer, Walter; Sculean, Anton; Izumi, Yuichi
2018-03-13
Recently, the occurrence of peri-implantitis has been increasing. However, a suitable method to debride the contaminated surface of titanium implants has not been established. The aim of this study was to investigate the morphological changes of the microstructured fixture surface after erbium laser irradiation, and to clarify the effects of the erbium lasers when used to remove calcified deposits from implant fixture surfaces. In experiment 1, sandblasted, large grit, acid etched surface implants were treated with Er:YAG laser or Er,Cr:YSGG laser at 30-60 mJ/pulse and 20 Hz with water spray. In experiments 2 and 3, the effects of erbium lasers used to remove calcified deposits (artificially prepared deposits on virgin implants and natural calculus on failed implants) were investigated and compared with mechanical debridement using either a titanium curette or cotton pellets. After the various debridement methods, all specimens were analyzed by stereomicroscopy (SM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Stereomicroscopy and SEM showed that erbium lasers with optimal irradiation parameters did not have an effect on titanium microstructures. Compared to mechanical debridement, erbium lasers were more capable of removing calcified deposits on the microstructured surface without surface alteration using a non-contact sweeping irradiation at 40 mJ/pulse (ED 14.2 J/cm 2 /pulse) and 20 Hz with water spray. These results indicate that Er:YAG and Er,Cr:YSGG lasers are more advantageous in removing calcified deposits on the microstructured surface of titanium implants without inducing damage, compared to mechanical therapy by cotton pellet or titanium curette. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
NASA Astrophysics Data System (ADS)
Maksimkin, O. P.; Tsay, K. V.; Garner, F. A.
2015-12-01
A hexagonal shroud containing a standard in-core fueled subassembly from the BN-350 reactor was examined after reaching 59 dpa maximum, followed by long-term storage underwater. Specimens were derived from both mid-face and rib-corner positions. It was shown that there were complex spatial variations in void swelling, mechanical properties, microhardness, radiation-induced magnetism as well as corrosion while underwater. The spatial variations arose from two major sources. The first source was variations in height associated with variations in dpa rate and irradiation temperature. The second source was shown to be spatial variations in starting microstructure arising primarily from a higher level of initial deformation and hardness in the rib-corners of the hexagonal shroud. With irradiation the differences in microhardness between the two regions disappeared, but void swelling in the rib areas was larger than at mid-face positions. The swelling enhancement at the corners is thought to arise primarily from the combined effect of temper annealing at a temperature known to remove carbon from the matrix before irradiation, and the influence of higher deformed microstructures to accelerate recrystallization, possibly with assistance from localized residual stresses. Swelling was relatively low at the bottom low-temperature end of the shroud, but increased on the upper end of the assembly, reflecting primarily a transition between a precipitation regime involving titanium carbide to one involving nickel-rich and silicon-rich G-phase.
Proton irradiation study of GFR candidate ceramics
NASA Astrophysics Data System (ADS)
Gan, Jian; Yang, Yong; Dickson, Clayton; Allen, Todd
2009-06-01
This work investigated the microstructural response of SiC, ZrC and ZrN irradiated with 2.6 MeV protons at 800 °C to a fluence of 2.75 × 10 19 protons/cm 2, corresponding to 0.71-1.8 displacement per atom (dpa), depending on the material. The change of lattice constant evaluated using HOLZ patterns is not observed. In comparison to Kr ion irradiation at 800 °C to 10 dpa from the previous studies, the proton irradiated ZrC and ZrN at 1.8 dpa show less irradiation damage to the lattice structure. The proton irradiated ZrC exhibits faulted loops which are not observed in the Kr ion irradiated sample. ZrN shows the least microstructural change from proton irradiation. The microstructure of 6H-SiC irradiated to 0.71 dpa consists of black dot defects at high density.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stoller, Roger E; Nordlund, Kai; Melerba, L
The processes that give rise to changes in the microstructure and the physical and mechanical properties of materials exposed to energetic particles are initiated by essentially elastic collisions between atoms in what has been called an atomic displacement cascade. The formation and evolution of this primary radiation damage mechanism are described to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the primary variables cascade energy and irradiation temperature are discussed, along with a range of secondary factors that can influence damage formation.Radiation-inducedmore » changes in microstructure and mechanical properties in structural materials are the result of a complex set of physical processes initiated by the collision between an energetic particle (neutron or ion) and an atom in the lattice. This primary damage event is called an atomic displacement cascade. The simplest description of a displacement cascade is to view it as a series of many billiard-ball-like elastic collisions among the atoms in the material. This chapter describes the formation and evolution of this primary radiation damage mechanism to provide an overview of how stable defects are formed by displacement cascades, as well as the nature and morphology of the defects themselves. The impact of the relevant variables such as cascade energy and irradiation temperature is discussed, and defect formation in different materials is compared.« less
Amorphization of the interaction products in U-Mo/Al dispersion fuel during irradiation
NASA Astrophysics Data System (ADS)
Ryu, Ho Jin; Kim, Yeon Soo; Hofman, G. L.
2009-04-01
The microstructures of the product resulting from interaction between U-Mo fuel particles and the Al matrix in U-Mo/Al dispersion fuel are discussed. We analyzed the available characterization results for the Al matrix dispersion fuels from both the out-of-pile and in-pile tests and examined the difference between these results. The morphology of pores that form in the interaction products during irradiation is similar to the porosity previously observed in irradiation-induced amorphized uranium compounds. The available diffraction studies for the interaction products formed in both the out-of-pile and in-pile tests are analyzed. We have concluded that the interaction products in the U-Mo/Al dispersion fuel are formed as an amorphous state or become amorphous during irradiation, depending on the irradiation conditions.
NASA Astrophysics Data System (ADS)
Chong, Y. F.; Pey, K. L.; Wee, A. T. S.; Thompson, M. O.; Tung, C. H.; See, A.
2002-11-01
In this letter, we report on the complex solidification structures formed during laser irradiation of a titanium nitride/titanium/polycrystalline silicon/silicon dioxide/silicon film stack. Due to enhanced optical coupling, the titanium nitride/titanium capping layer increases the melt depth of polycrystalline silicon by more than a factor of 2. It is found that the titanium atoms diffuse through the entire polycrystalline silicon layer during irradiation. Contrary to the expected polycrystalline silicon growth, distinct regions of polycrystalline and amorphous silicon are formed instead. Possible mechanisms for the formation of these microstructures are proposed.
Surface micro-structuring of silicon by excimer-laser irradiation in reactive atmospheres
NASA Astrophysics Data System (ADS)
Pedraza, A. J.; Fowlkes, J. D.; Jesse, S.; Mao, C.; Lowndes, D. H.
2000-12-01
The formation mechanisms of cones and columns by pulsed-laser irradiation in reactive atmospheres were studied using scanning electron microscopy and profilometry. Deep etching takes place in SF6- and O2- rich atmospheres and consequently, silicon-containing molecules and clusters are released. Transport of silicon from the etched/ablated regions to the tip of columns and cones and to the side of the cones is required because both structures, columns and cones, protrude above the initial surface. The laser-induced micro-structure is influenced not only by the nature but also by the partial pressure of the reactive gas in the atmosphere. Irradiation in Ar following cone formation in SF6 produced no additional growth but rather melting and resolidification. Subsequent irradiation using again a SF6 atmosphere lead to cone restructuring and growth resumption. Thus the effects of etching plus re-deposition that produce column/cone formation and growth are clearly separated from the effects of just melting. On the other hand, irradiation continued in air after first performed in SF6 resulted in: (a) an intense etching of the cones and a tendency to transform them into columns; (b) growth of new columns on top of the existing cones and (c) filamentary nano-structures coating the sides of the columns and cones.
Texture evolution and mechanical behaviour of irradiated face-centred cubic metals
NASA Astrophysics Data System (ADS)
Chen, L. R.; Xiao, X. Z.; Yu, L.; Chu, H. J.; Duan, H. L.
2018-02-01
A physically based theoretical model is proposed to investigate the mechanical behaviour and crystallographic texture evolution of irradiated face-centred cubic metals. This model is capable of capturing the main features of irradiated polycrystalline materials including irradiation hardening, post-yield softening and plasticity localization. Numerical results show a good agreement with experimental data for both unirradiated and irradiated stress-strain relationships. The study of crystallographic texture reveals that the initial randomly distributed texture of unirradiated metals under tensile loading can evolve into a mixture of [111] and [100] textures. Regarding the irradiated case, crystallographic texture develops in a different way, and an extra part of [110] texture evolves into [100] and [111] textures. Thus, [100] and [111] textures become dominant more quickly compared with those of the unirradiated case for the reason that [100] and [111]-oriented crystals have higher strength, and their plastic deformation behaviours are more active than other oriented crystals. It can be concluded that irradiation-induced defects can affect both the mechanical behaviour and texture evolution of metals, both of which are closely related to irradiation hardening.
NASA Astrophysics Data System (ADS)
Hu, Yu; Shi, Yonghua; Shen, Xiaoqin; Wang, Zhongmin
2018-05-01
A recently developed promising material, 2101 lean duplex stainless steel, represents an alternative to 304 austenite stainless steel. In this work, multi-pass 2101 weld joints were fabricated using the flux-cored arc welding method in a hyperbaric chamber. The pressure varied from 0 to 0.75 MPa. The evolution of the welding process and microstructure was investigated. γ 2 formation in the reheated zones of the WM and HAZ was not uniform. The closer the reheated zone is to the subsequent heat source, the greater the γ 2 formation in the reheated zone. Sufficient primary austenite transformation inhibited Cr2N precipitation and the subsequent intragranular γ 2 formation in the reheated weld passes of the 0.45 MPa weld metal. The localized corrosion resistance of each zone of the 0.45 MPa DSS joint was measured using non-destructive double-loop electrochemical potentiokinetic reactivation tests. The localized corrosion was induced by γ 2 and Cr2N. The root region of the 0.45 MPa weld metal underwent two subsequent welding thermal cycles, which induced increased γ 2 formation and lower resistance to corrosion because of the decreased pitting resistance value of γ 2. The correlation between microstructure evolution and the distribution of selective corrosion was determined.
Influence of laser irradiation on deposition characteristics of cold sprayed Stellite-6 coatings
NASA Astrophysics Data System (ADS)
Li, Bo; Jin, Yan; Yao, Jianhua; Li, Zhihong; Zhang, Qunli; Zhang, Xin
2018-03-01
Depositing hard materials such as Stellite-6 solely by cold spray (CS) is challengeable due to limited ability of plastic deformation. In this study, the deposition of Stellite-6 powder was achieved by supersonic laser deposition (SLD) which combines CS with synchronous laser irradiation. The surface morphology, deposition efficiency, track shape of Stellite-6 coatings produced over a range of laser irradiation temperatures were examined so as to reveal the effects of varying laser energy inputting on the deposition process of high strength material. The microstructure, phase composition and wear/corrosion resistant properties of the as-deposited Stellite-6 coatings were also investigated. The experimental results demonstrate that the surface flatness and deposition efficiency increase with laser irradiation temperature due to the softening effect induced by laser heating. The as-deposited Stellite-6 tracks show asymmetric shapes which are influenced by the relative configuration of powder stream and laser beam. The SLD coatings can preserve the original microstructure and phase of the feedstock material due to relatively low laser energy inputting, which result in the superior wear/corrosion resistant properties as compared to the counterpart prepared by laser cladding.
Heavy-section steel irradiation program. Semiannual progress report, October 1996--March 1997
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosseel, T.M.
1998-02-01
Maintaining the integrity of the reactor pressure vessel (RPV) in a light-water-cooled nuclear power plant is crucial in preventing and controlling severe accidents that have the potential for major contamination release. Because the RPV is the only key safety-related component of the plant for which a redundant backup system does not exist, it is imperative to fully understand the degree of irradiation-induced degradation of the RPV`s fracture resistance that occurs during service. For this reason, the Heavy-Section Steel Irradiation (HSSI) Program has been established. Its primary goal is to provide a thorough, quantitative assessment of the effects of neutron irradiationmore » on the material behavior and, in particular, the fracture toughness properties of typical pressure-vessel steels as they relate to light-water RPV integrity. Effects of specimen size; material chemistry; product form and microstructure; irradiation fluence, flux, temperature, and spectrum; and postirradiation annealing are being examined on a wide range of fracture properties. The HSSI Program is arranged into eight tasks: (1) program management, (2) irradiation effects in engineering materials, (3) annealing, (4) microstructural analysis of radiation effects, (5) in-service irradiated and aged material evaluations, (6) fracture toughness curve shift method, (7) special technical assistance, and (8) foreign research interactions. The work is performed by the Oak Ridge National Laboratory.« less
Microscale mechanical characterization of materials for extreme environments
NASA Astrophysics Data System (ADS)
Ozerinc, Sezer
Nanocrystalline metals are promising materials for applications that require outstanding strength and stability in extreme environments. Further improvements in the desirable mechanical properties of these materials require a better understanding of the relationship between their microstructure and grain boundary deformation behavior. Previous molecular dynamics simulations suggested that solute additions to grain boundaries can enhance the strength of nanocrystalline metals, but there has been a lack of experimental studies investigating this prediction. This dissertation presents mechanical and microstructural characterization of nanocrystalline Cu alloys and demonstrate that addition of Nb solutes to grain boundaries greatly enhances the strength of Cu. The measured hardness of Cu90Nb10 alloy is 5.6 GPa which is more than double the hardness of nanocrystalline pure Cu. Microstructural characterization through transmission electron microscopy and energy-dispersive X-ray spectroscopy on these alloys indicates a strong correlation between the grain boundary composition and the hardness. Variation of measured hardness with measured grain boundary composition is in very good agreement with previous molecular dynamics simulation predictions. The results of this work provide experimental evidence that grain boundary doping enhances the strength of nanocrystalline Cu far beyond that predicted by classical Hall-Petch strengthening and decreasing grain boundary energy through solute additions is the key to reaching theoretical strength in nanocrystalline metals. Irradiation induced creep is a deformation mechanism that takes place under combined stress and particle bombardment. Effective characterization of this phenomenon on nanostructured materials is crucial for the assessment of their potential use in next generation nuclear power plants. Direct measurements of irradiation induced creep under MeV-heavy ion bombardment have not been feasible until recently due to the requirements of micron-sized specimens, muN-level force sensitivity, and nm-level displacement sensitivity. A recently developed mechanical characterization technique, micropillar compression, has enabled the testing of miniaturized specimens; however, there has been no demonstration of the application of this technique to irradiation induced creep measurements. This dissertation presents the development of an in situ measurement apparatus for compression testing of micron-sized cylindrical specimens under MeV-heavy ion bombardment. The apparatus has a force resolution of 1 muN and a displacement resolution of 1 nm. The apparatus measured irradiation induced creep in four different amorphous materials and the findings clarified the significance of different creep mechanisms in these materials. In amorphous metals and amorphous Si, the measured irradiation induced fluidity is ≈ 3 dpa-1GPa-1 (dpa: displacements per atom). The measured fluidity is in excellent agreement with previous molecular dynamics simulation predictions, providing experimental evidence for point defect mediated plastic flow under ion bombardment. For amorphous SiO2, stress relaxation through thermal spikes further contribute to the creep response, resulting in higher fluidities up to ≈ 83 dpa-1GPa -1. Finally, this dissertation presents the further development of the creep testing apparatus for high temperature measurements. The apparatus demonstrated good thermal and mechanical stability and measured irradiation induced creep of nanocrystalline Cu at 200°C. Resulting irradiation induced fluidity is ≈ 10% of the fluidity of the amorphous metals, in agreement with previous measurements on free-standing films. Understanding the creep behavior of nanostructured metals under heavy ion bombardment at elevated temperatures is important for identifying the governing creep mechanisms in these materials. The developed apparatus provides a new and effective method of accelerated mechanical characterization of such promising materials for their potential use in future nuclear applications.
Effect of Repetition Rate on Femtosecond Laser-Induced Homogenous Microstructures
Biswas, Sanchari; Karthikeyan, Adya; Kietzig, Anne-Marie
2016-01-01
We report on the effect of repetition rate on the formation and surface texture of the laser induced homogenous microstructures. Different microstructures were micromachined on copper (Cu) and titanium (Ti) using femtosecond pulses at 1 and 10 kHz. We studied the effect of the repetition rate on structure formation by comparing the threshold accumulated pulse (FΣpulse) values and the effect on the surface texture through lacunarity analysis. Machining both metals at low FΣpulse resulted in microstructures with higher lacunarity at 10 kHz compared to 1 kHz. On increasing FΣpulse, the microstructures showed higher lacunarity at 1 kHz. The effect of the repetition rate on the threshold FΣpulse values were, however, considerably different on the two metals. With an increase in repetition rate, we observed a decrease in the threshold FΣpulse on Cu, while on Ti we observed an increase. These differences were successfully allied to the respective material characteristics and the resulting melt dynamics. While machining Ti at 10 kHz, the melt layer induced by one laser pulse persists until the next pulse arrives, acting as a dielectric for the subsequent pulse, thereby increasing FΣpulse. However, on Cu, the melt layer quickly resolidifies and no such dielectric like phase is observed. Our study contributes to the current knowledge on the effect of the repetition rate as an irradiation parameter. PMID:28774143
NASA Astrophysics Data System (ADS)
Li, Xiaowei; Xie, Qian; Jiang, Lan; Han, Weina; Wang, Qingsong; Wang, Andong; Hu, Jie; Lu, Yongfeng
2017-05-01
In this study, silicon micro/nanostructures of controlled size and shape are fabricated by chemical-etching-assisted femtosecond laser single-pulse irradiation, which is a flexible, high-throughput method. The pulse fluence is altered to create various laser printing patterns for the etching mask, resulting in the sequential evolution of three distinct surface micro/nanostructures, namely, ring-like microstructures, flat-top pillar microstructures, and spike nanostructures. The characterized diameter of micro/nanostructures reveals that they can be flexibly tuned from the micrometer (˜2 μm) to nanometer (˜313 nm) scales by varying the laser pulse fluence in a wide range. Micro-Raman spectroscopy and transmission electron microscopy are utilized to demonstrate that the phase state changes from single-crystalline silicon (c-Si) to amorphous silicon (a-Si) after single-pulse femtosecond laser irradiation. This amorphous layer with a lower etching rate then acts as a mask in the wet etching process. Meanwhile, the on-the-fly punching technique enables the efficient fabrication of large-area patterned surfaces on the centimeter scale. This study presents a highly efficient method of controllably manufacturing silicon micro/nanostructures with different single-pulse patterns, which has promising applications in the photonic, solar cell, and sensors fields.
NASA Astrophysics Data System (ADS)
Wang, Jing; Hu, Zhaoyi; Li, Rui; Liu, Xiongjun; Xu, Chuan; Wang, Hui; Wu, Yuan; Fu, Engang; Lu, Zhaoping
2018-05-01
In this work, effects of Au ion irradiation on microstructure and surface-enhanced Raman scattering (SERS) performance of nanoporous copper (NPC) were investigated. It is found that the microstructure of NPC could be tailored by the ion irradiation dose, i.e., the pore size decreases while the ligament size significantly coarsens with the increase of the irradiation dose. In addition, the SERS enhancement for rhodamine 6G molecules was improved by Au ions irradiation at an appropriate dose. The underlying mechanism of the increase of SERS enhancement resulted from ion irradiation was discussed. Our findings could provide a new way to tune nanoporosity of nanoporous metals and improve their SERS performance.
Wang, Jing; Hu, Zhaoyi; Li, Rui; Liu, Xiongjun; Xu, Chuan; Wang, Hui; Wu, Yuan; Fu, Engang; Lu, Zhaoping
2018-05-04
In this work, effects of Au ion irradiation on microstructure and surface-enhanced Raman scattering (SERS) performance of nanoporous copper (NPC) were investigated. It is found that the microstructure of NPC could be tailored by the ion irradiation dose, i.e., the pore size decreases while the ligament size significantly coarsens with the increase of the irradiation dose. In addition, the SERS enhancement for rhodamine 6G molecules was improved by Au ions irradiation at an appropriate dose. The underlying mechanism of the increase of SERS enhancement resulted from ion irradiation was discussed. Our findings could provide a new way to tune nanoporosity of nanoporous metals and improve their SERS performance.
NASA Astrophysics Data System (ADS)
Jang, Jae-Myeong; Kim, Sung-Joon; Kang, Nam Hyun; Cho, Kyung-Mox; Suh, Dong-Woo
2009-12-01
The effects of annealing conditions on microstructural evolution and mechanical properties have been investigated in low carbon, manganese TRIP (Mn TRIP) steel based on a 0.12C-6Mn-0.5Si-3Al alloy system. The microstructure of cold-rolled sheet subjected to annealing at 760 °C to 800 °C for 30 s to 1800 s consists of a recrystallized ferrite matrix and fine-grained austenite with a phase fraction of 25 % to 35 %. Variation of the annealing conditions remarkably influenced the characteristics of constituent phases and thus affected the tensile strength and elongation. Optimization of microstructural parameters such as grain size and fraction of constituent phases, which control the yield strength, overall work hardening, and the kinetics of strain-induced martensite formation, is thus critical for obtaining an exceptional mechanical balance of the alloy.
NASA Astrophysics Data System (ADS)
Khan, Imran; Huang, Shengli; Wu, Chenxu
2017-12-01
The structural transformation of multi-walled carbon nanotubes (MWCNT) under electron beam (e-beam) irradiation at room temperature is studied, with respect to a novel passivation effect due to gold nanoparticles (Au NPs). MWCNT structural evolution induced by energetic e-beam irradiation leads to faster shrinkage, as revealed via in situ transmission electron microscopy, while MWCNT surface modification with Au NPs (Au-MWCNT) slows down the shrinkage by impeding the structural evolution process for a prolonged time under the same irradiation conditions. The new relationship between MWCNT and Au-MWCNT shrinking radii and irradiation time illustrates that the MWCNT shrinkage rate is faster than either theoretical predictions or the same process in Au-MWCNTs. As compared with the outer surface energy (positive curvature), the inner surface energy (negative curvature) of the MWCNT contributes more to the athermal evaporation of tube wall atoms, leading to structural instability and shrinkage under e-beam irradiation. Conversely, Au NPs possess only outer surface energy (positive curvature) compared with the MWCNT. Their presence on MWCNT surfaces retards the dynamics of MWCNT structural evolution by slowing down the evaporation process of carbon atoms, thus restricting Au-MWCNT shrinkage. Au NP interaction and growth evolves athermally on MWCNT surfaces, exhibits increase in their size, and indicates the association of this mechanism with the coalescence induced by e-beam activated electronic excitations. Despite their growth, Au NPs show extreme structural stability, and remain crystalline under prolonged irradiation. It is proposed that the surface energy of MWCNTs and Au NPs, together with e-beam activated soft modes or lattice instability effects, predominantly govern all the above varieties of structural evolution.
NASA Astrophysics Data System (ADS)
Cai, Zhihui; Ding, Hua; Ying, Zhengyan; Misra, R. D. K.
2014-04-01
The microstructural evolution following tensile deformation of a hot-rolled and heat treated Fe-8Mn-4Al-0.2C steel was studied. Quenching in the range of 750-800 °C followed by tempering at 200 °C led to a ferrite-austenite mixed microstructure that was characterized by excellent combination of tensile strength of 800-1000 MPa and elongation of 30-40%, and a three-stage work hardening behavior. During the tensile deformation, the retained austenite transformed into martensite and delayed the onset of necking, thus leading to a higher ductility via the transformation-induced plasticity (TRIP) effect. The improvement of elongation is attributed to diffusion of carbon from δ-ferrite to austenite during tempering, which improves the stability of austenite, thus contributing to enhanced tensile ductility.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Briggs, Samuel A.; Edmondson, Philip
2015-09-18
This report details the findings of post-radiation mechanical testing and microstructural characterization performed on a series of model and commercial FeCrAl alloys to assist with the development of a cladding technology with enhanced accident tolerance. The samples investigated include model alloys with simple ferritic grain structure and two commercial alloys with minor solute additions. These samples were irradiated in the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to nominal doses of 7.0 dpa near or at Light Water Reactor (LWR) relevant temperatures (300-400 C). Characterization included a suite of techniques including small angle neutron scatteringmore » (SANS), atom probe tomography (APT), and transmission based electron microscopy techniques. Mechanical testing included tensile tests at room temperature on sub-sized tensile specimens. The goal of this work was to conduct detailed characterization and mechanical testing to begin establishing empirical and/or theoretical structure-property relationships for radiation-induced hardening and embrittlement in the FeCrAl alloy class. Development of such relationships will provide insight on the performance of FeCrAl alloys in an irradiation environment and will enable further development of the alloy class for applications within a LWR environment. A particular focus was made on establishing trends, including composition and radiation dose. The report highlights in detail the pertinent findings based on this work. This report shows that radiation hardening in the alloys is primarily composition dependent due to the phase separation in the high-Cr FeCrAl alloys. Other radiation induced/enhanced microstructural features were less dependent on composition and when observed at low number densities, were not a significant contributor to the observed mechanical responses. Pre-existing microstructure in the alloys was found to be important, with grain boundaries and pre-existing dislocation networks acting as defect sinks, resulting in variations in the observed microstructures after irradiation. Dose trends were also observed, with increasing radiation dose promoting changes in the size and number density of the Cr-rich α' precipitates. Based on the microstructural analysis, performed tensile testing, and prior knowledge from FeCr literature it was hypothesized that the formation of the Cr-rich α' precipitates could lead to significant radiation-induced embrittlement in the alloys, and this could be composition dependent, a result which would mirror the trends observed for radiation-induced hardening. Due to the limited database on embrittlement in the FeCrAl alloy class after irradiation, a series of radiation experiments have been implemented. The overarching point of view within this report is the radiation tolerance of FeCrAl is complex, with many mechanisms and factors to be considered at once. Further development of the FeCrAl alloy class for enhanced accident tolerant applications requires detailed, single (or at least limited) variable experiments to fully comprehend and predict the performance of this alloy in LWRs. This report has been submitted as fulfillment of milestone M2FT-15OR0202321 titled, Summary report on the effect of composition on the irradiation embrittlement of Gen 1 ATF FeCrAl for the Department of Energy Office of Nuclear Energy, Advanced Fuel Campaign of the Fuel Cycle R&D program.« less
NASA Astrophysics Data System (ADS)
Kong, H.; Chao, Q.; Cai, M. H.; Pavlina, E. J.; Rolfe, B.; Hodgson, P. D.; Beladi, H.
2018-02-01
The present study investigated the microstructure evolution and mechanical behavior in a low carbon CMnSiAl transformation-induced plasticity (TRIP) steel, which was subjected to a partial austenitization at 1183 K (910 °C) followed by one-step quenching and partitioning (Q&P) treatment at different isothermal holding temperatures of [533 K to 593 K (260 °C to 320 °C)]. This thermal treatment led to the formation of a multi-phase microstructure consisting of ferrite, tempered martensite, bainitic ferrite, fresh martensite, and retained austenite, offering a superior work-hardening behavior compared with the dual-phase microstructure (i.e., ferrite and martensite) formed after partial austenitization followed by water quenching. The carbon enrichment in retained austenite was related to not only the carbon partitioning during the isothermal holding process, but also the carbon enrichment during the partial austenitization and rapid cooling processes, which has broadened our knowledge of carbon partitioning mechanism in conventional Q&P process.
Chromosome damage evolution after low and high LET irradiation
NASA Astrophysics Data System (ADS)
Andreev, Sergey; Eidelman, Yuri
Ionizing radiation induces DNA and chromatin lesions which are converted to chromosome lesions detected in the first post-irradiation mitosis by classic cytogenetic techniques as chromosomal aberrations (CAs). These techniques allow to monitor also delayed aberrations observed after many cell generations post-irradiation - the manifestation of chromosomal instability phenotype (CIN). The problem discussed is how to predict time evolution from initial to delayed DNA/chromosome damage. To address this question, in the present work a mechanistic model of CIN is elaborated which integrates pathways of (*) DNA damage induction and its conversion to chromosome lesions (aberrations), (**) lesion transmission and generation through cell cycles. Delayed aberrations in subsequent cycles are formed in the model owing to two pathways, DNA damage generation de novo as well as CA transmission from previous cycles. DNA damage generation rate is assumed to consist of bystander and non-bystander components. Bystander signals impact all cells roughly equally, whereas non-bystander DSB generation rate differs for the descendants of unirradiated and irradiated cells. Monte Carlo simulation of processes underlying CIN allows to predict the time evolution of initial radiation-induced damage - kinetics curve for delayed unstable aberrations (dicentrics) together with dose response and RBE as a function of time after high vs low LET irradiation. The experimental data for radiation-induced CIN in TK6 lymphoblastoid cells and human lymphocytes irradiated with low (gamma) and high (Fe, C) LET radiation are analyzed on the basis of the proposed model. One of the conclusions is that without bystander signaling, just taking into account the initial DNA damage and non-bystander DSB generation, it is impossible to describe the available experimental data for high-LET-induced CIN. The exact contribution of bystander effects for high vs low LET remains unknown, but the relative contribution may be assessed at large times after initial acute irradiation. RBE for delayed aberrations depends on LET, time and cell line, which probably reflects a genetic background for bystander component. The proposed modeling approach creates a basis for integration of complex network of bystander/inflammatory signaling in systems-level platform for quantification of radiation induced CIN.
Accumulation of dislocation loops in the α phase of Zr Excel alloy under heavy ion irradiation
NASA Astrophysics Data System (ADS)
Yu, Hongbing; Yao, Zhongwen; Idrees, Yasir; Zhang, He K.; Kirk, Mark A.; Daymond, Mark R.
2017-08-01
In-situ heavy ion irradiations were performed on the high Sn content Zr alloy 'Excel', measuring type dislocation loop accumulation up to irradiation damage doses of 10 dpa at a range of temperatures. The high content of Sn, which diffuses slowly, and the thin foil geometry of the sample provide a unique opportunity to study an extreme case where displacement cascades dominate the loop formation and evolution. The dynamic observation of dislocation loop evolution under irradiation at 200 °C reveals that type dislocation loops can form at very low dose (0.0025 dpa). The size of the dislocation loops increases slightly with irradiation damage dose. The mechanism controlling loop growth in this study is different from that in neutron irradiation; in this study, larger dislocation loops can condense directly from the interaction of displacement cascades and the high concentration of point defects in the matrix. The size of the dislocation loop is dependent on the point defect concentration in the matrix. A negative correlation between the irradiation temperature and the dislocation loop size was observed. A comparison between cascade dominated loop evolution (this study), diffusion dominated loop evolution (electron irradiation) and neutron irradiation suggests that heavy ion irradiation alone may not be enough to accurately reproduce neutron irradiation induced loop structures. An alternative method is proposed in this paper. The effects of Sn on the displacement cascades, defect yield, and the diffusion behavior of point defects are established.
Irradiation resistance of silicon carbide joint at light water reactor–relevant temperature
Koyanagi, T.; Katoh, Y.; Kiggans, J. O.; ...
2017-03-10
We fabricated and irradiated monolithic silicon carbide (SiC) to SiC plate joints with neutrons at 270–310 °C to 8.7 dpa for SiC. The joining methods included solid state diffusion bonding using titanium and molybdenum interlayers, SiC nanopowder sintering, reaction sintering with a Ti-Si-C system, and hybrid processing of polymer pyrolysis and chemical vapor infiltration (CVI). All the irradiated joints exhibited apparent shear strength of more than 84 MPa on average. Significant irradiation-induced cracking was found in the bonding layers of the Ti and Mo diffusion bonds and Ti-Si-C reaction sintered bond. Furthermore, the SiC-based bonding layers of the SiC nanopowdermore » sintered and hybrid polymer pyrolysis and CVI joints all showed stable microstructure following the irradiation.« less
Li, Jin; Fan, Cuncai; Ding, Jie; ...
2017-01-03
High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. We show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studiesmore » show dose-rate-dependent diffusivity of defect clusters. Our study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Sarla; Vijay, Y. K.; Vyas, Rishi
The influence of swift heavy ion (SHI) irradiation on structural and photoluminescence (PL) properties of ZnO-PMMA nanocomposite films, prepared by solution casting method, was studied. The ZnO-PMMA nanocomposite films were irradiated using 120 MeV Ag{sup +12} ions at different fluences varying from 1 Multiplication-Sign 10{sup 11} to 1 Multiplication-Sign 10{sup 13} ions/cm{sup 2}. The intensity of the X-ray diffraction peaks is increased at the high fluence, without evolution of any new peak. A shift in absorption edge (i.e. shift in optical band gap) towards higher wavelength was observed after irradiation and PL from ZnO-PMMA nanocomposite films is found to increasemore » up to a critical fluence and then found to be suppressed for higher fluence (1 Multiplication-Sign 10{sup 12} ion/cm{sup 2}). The change in photoluminescence after irradiation can be attributed to the change in microstructure of PMMA matrix as well as the agglomeration of ZnO nanoparticles.« less
Fractography evolution in accelerated aging of UHMWPE after gamma irradiation in air.
Medel, F; Gómez-Barrena, E; García-Alvarez, F; Ríos, R; Gracia-Villa, L; Puértolas, J A
2004-01-01
We studied the fracture surface evolution of ultra high molecular weight polyethylene (UHMWPE) specimens, manufactured from GUR 1050 compression moulded sheets, after gamma sterilisation in air followed by different aging times after thermal treatment at 120 degrees C. Degradation profiles were obtained by FTIR and DSC measurements after 0, 7, 14, 24 and 36h aging. We observed by SEM the morphology patterns at these aging times, in surface fractographies after uniaxial tensile test of standardised samples. The results pointed out clear differences between short and long aging times. At shorter times, 7h, the behaviour was similar to non-degraded UHMWPE, exhibiting ductile behaviour. At longer times, 24-36h, this thermal protocol provided a highly degraded zone in the subsurface, similar to the white band found after gamma irradiation in air followed by natural aging, although closer to the surface, at 150-200mum. The microstructure of this oxidation zone, similarly found in gamma irradiated samples shelf-aged for 6-7 years, although with different distribution of microvoids, was formed by fibrils, associated with embrittlement of the oxidised UHMWPE. In addition, the evolution of the oxidation index, the enthalpy content, the mechanical parameters, and the depth of the oxidation front deduced from the fractographies versus aging time showed that a changing behaviour in the degradation rate appeared at intermediate aging times.
Evolution of microstructure and surface topography of gold thin films under thermal annealing
NASA Astrophysics Data System (ADS)
Dash, P.; Rath, H.; Dash, B. N.; Mallick, P.; Basu, T.; Som, T.; Singh, U. P.; Mishra, N. C.
2012-07-01
In the present study, we probe into evolution of microstructure and surface morphology of gold thin films of 10 to 50 nm thickness deposited on Si (100) substrate by thermal evaporation method. These films were annealed at 250°C under vacuum. The as-deposited and annealed films were characterized by glancing angle X-Ray diffraction (GAXRD) and atomic force microscopy (AFM), techniques. XRD indicated improvement of crystallinity up to 2 hours of annealing and degradation of the same thereafter. In agreement with XRD result, the grain size distribution histogram obtained from AFM indicated grain growth with annealing time up to 2 hours and saturation or decrease of grain size thereafter. The observed result is explained by the occurrence of two competing phenomena like roughening induced grain growth and smoothening induced inhibition of grain growth with increasing annealing time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yun, Di; Miao, Yinbin; Xu, Ruqing
2016-04-01
Microbeam X-ray diffraction experiments were conducted at beam line 34-ID of the Advanced Photon Source (APS) on fission fragment energy Xe heavy ion irradiated single crystal Molybdenum (Mo). Lattice strain measurements were obtained with a depth resolution of 0.7 mu m, which is critical in resolving the peculiar heterogeneity of irradiation damage associated with heavy ion irradiation. Q-space diffraction peak shift measurements were correlated with lattice strain induced by the ion irradiations. Transmission electron microscopy (TEM) characterizations were performed on the as-irradiated materials as well. Nanometer sized Xe bubble microstructures were observed via TEM. Molecular Dynamics (MD) simulations were performedmore » to help interpret the lattice strain measurement results from the experiment. This study showed that the irradiation effects by fission fragment energy Xe ion irradiations can be collaboratively understood with the depth resolved X-ray diffraction and TEM measurements under the assistance of MD simulations. (c) 2015 Elsevier B.V. All rights reserved.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luce, F. P.; Azevedo, G. de M.; Baptista, D. L.
The formation and time resolved behavior of individual Pb nanoparticles embedded in silica have been studied by in-situ transmission electron microscopy observations at high temperatures (400–1100 °C) and under 200 keV electron irradiation. It is shown that under such extreme conditions, nanoparticles can migrate at long distances presenting a Brownian-like behavior and eventually coalesce. The particle migration phenomenon is discussed considering the influence of the thermal energy and the electron irradiation effects on the atomic diffusion process which is shown to control particle migration. These results and comparison with ex-situ experiments tackle the stability and the microstructure evolution of nanoparticles systems undermore » extreme conditions. It elucidates on the effects of energetic particle irradiation-annealing treatments either as a tool or as a detrimental issue that could hamper their long-term applications in radiation-harsh environments such as in space or nuclear sectors.« less
Cakmak, Ercan; Choo, Hahn; Kang, Jun-Yun; ...
2015-02-11
Here we report that the relationships between the martensitic phase transformation kinetics, texture evolution, and the microstructure development in the parent austenite phase were studied for a 304L stainless steel that exhibits the transformation-induced plasticity effect under biaxial loading conditions at ambient temperature. The applied loading paths included: pure torsion, simultaneous biaxial torsion/tension, simultaneous biaxial torsion/compression, and stepwise loading of tension followed by torsion (i.e., first loading by uniaxial tension and then by pure torsion in sequence). Synchrotron X-ray and electron backscatter diffraction techniques were used to measure the evolution of the phase fractions, textures, and microstructures as a functionmore » of the applied strains. The influence of loading character and path on the changes in martensitic phase transformation kinetics is discussed in the context of (1) texture-transformation relationship and the preferred transformation of grains belonging to certain texture components over the others, (2) effects of axial strains on shear band evolutions, and (3) volume changes associated with martensitic transformation.« less
NASA Astrophysics Data System (ADS)
Kuleshova, E. A.; Gurovich, B. A.; Bukina, Z. V.; Frolov, A. S.; Maltsev, D. A.; Krikun, E. V.; Zhurko, D. A.; Zhuchkov, G. M.
2017-07-01
This work summarizes and analyzes our recent research results on the effect of irradiation temperature within the range of (50-400)°C on microstructure and properties of 15Kh2NMFAA class 1 steel (VVER-1000 reactor pressure vessel (RPV) base metal). The paper considers the influence of accelerated irradiation with different temperature up to different fluences on the carbide and irradiation-induced phases, radiation defects, yield strength changes and critical brittleness temperature shift (ΔTK) as well as on changes of the fraction of brittle intergranular fracture and segregation processes in the steel. Low temperature irradiation resulted solely in formation of radiation defects - dislocation loops of high number density, the latter increased with increase in irradiation temperature while their size decreased. In this regard high embrittlement rate observed at low temperature irradiation is only due to the hardening mechanism of radiation embrittlement. Accelerated irradiation at VVER-1000 RPV operating temperature (∼300 °C) caused formation of radiation-induced precipitates and dislocation loops, as well as some increase in phosphorus grain boundary segregation. The observed ΔTK shift being within the regulatory curve for VVER-1000 RPV base metal is due to both hardening and non-hardening mechanisms of radiation embrittlement. Irradiation at elevated temperature caused more intense phosphorus grain boundary segregation, but no formation of radiation-induced precipitates or dislocation loops in contrast to irradiation at 300 °C. Carbide transformations observed only after irradiation at 400 °C caused increase in yield strength and, along with a contribution of the non-hardening mechanism, resulted in the lowest ΔTK shift in the studied range of irradiation temperature and fluence.
Phase formation and microstructure of gamma irradiated Bi-2223 Superconductor
NASA Astrophysics Data System (ADS)
‘Atiqah Mohiju, Zaahidah; Alieya Adnan, Natasha; Hamid, Nasri A.; Abdullah, Yusof
2018-01-01
The Bi-2223 superconductor has been synthesized using the conventional solid state reaction method. The effect of gamma irradiation on phase formation and microstructure of high-temperature Bi-2223 superconductor ceramic was investigated. The bulk samples sample were palletized with 7 tons pressure of hydraulic press machine and sintered at 840°C for 48 hours. The gamma irradiation was performed at the Nuclear Malaysian Agency with dose of 50 kGray at room temperature. Structure characterization using X-ray diffraction (XRD) showed that the patterns for all the samples demonstrate well-defined peaks all of which could be indexed on the basis of a Bi-2223 phase structure. However, for irradiated sample, it showed reduction in the peak intensity indicating a decrease in the content of the Bi-2223 superconducting phase. The effect of gamma (γ) irradiation on surface morphology and its composites has also been investigated by scanning electron microscope (SEM) and the micrograph shows that the grains are distributed randomly with poorly connected inter and intra-grain microstructure. This shows that the morphology of the Bi-2223 superconductor is very sensitive to gamma irradiation. The effect on the phase formation and microstructure of non-irradiated and gamma irradiated of Bi-2223 superconductor is compared and evaluated.
Microstructural stability of a self-ion irradiated lanthana-bearing nanostructured ferritic steel
NASA Astrophysics Data System (ADS)
Pasebani, Somayeh; Charit, Indrajit; Burns, Jatuporn; Alsagabi, Sultan; Butt, Darryl P.; Cole, James I.; Price, Lloyd M.; Shao, Lin
2015-07-01
Thermally stable nanofeatures with high number density are expected to impart excellent high temperature strength and irradiation stability in nanostructured ferritic steels (NFSs) which have potential applications in advanced nuclear reactors. A lanthana-bearing NFS (14LMT) developed via mechanical alloying and spark plasma sintering was used in this study. The sintered samples were irradiated by Fe2+ ions to 10, 50 and 100 dpa at 30 °C and 500 °C. Microstructural and mechanical characteristics of the irradiated samples were studied using different microscopy techniques and nanoindentation, respectively. Overall morphology and number density of the nanofeatures remained unchanged after irradiation. Average radius of nanofeatures in the irradiated sample (100 dpa at 500 °C) was slightly reduced. A notable level of irradiation hardening and enhanced dislocation activity occurred after ion irradiation except at 30 °C and ⩾50 dpa. Other microstructural features like grain boundaries and high density of dislocations also provided defect sinks to assist in defect removal.
Surface modification of LiNbO3 and KTa1-xNbxO3 crystals irradiated by intense pulsed ion beam
NASA Astrophysics Data System (ADS)
Cui, Xiaojun; Shen, Jie; Zhong, Haowen; Zhang, Jie; Yu, Xiao; Liang, Guoying; Qu, Miao; Yan, Sha; Zhang, Xiaofu; Le, Xiaoyun
2017-10-01
In this work, we studied the surface modification of LiNbO3 and KTa1-xNbxO3 irradiated by intense pulsed ion beam, which was mainly composed of H+ (70%) and Cn+ (30%) at an acceleration voltage of about 450 kV. The surface morphologies, microstructural evolution and elemental analysis of the sample surfaces after IPIB irradiation have been analyzed by scanning electron microscope, atomic force microscope, X-ray diffraction and energy dispersive spectrometer techniques, respectively. The results show that the surface morphologies have significant difference impacted by the irradiation effect. Regular gully damages range from 200 to 400 nm in depth appeared in LiNbO3 under 2 J/cm2 energy density for 1 pulse, block cracking appeared in KTa1-xNbxO3 at the same condition. Surface of the crystals have melted and were darkened with the increasing number up to 5 pulses. Crystal lattice arrangement is believed to be the dominant reason for the different experimental results irradiated by intense pulsed ion beam.
NASA Astrophysics Data System (ADS)
Barati, M.; Arbab Chirani, S.; Kadkhodaei, M.; Saint-Sulpice, L.; Calloch, S.
2017-02-01
The behaviors of shape memory alloys (SMAs) strongly depend on the presence of different phases: austenite, thermally-induced martensite and stress-induced martensite. Consequently, it is important to know the phase volume fraction of each phases and their evolution during thermomechanical loadings. In this work, a three-phase proportioning method based on electric resistivity variation of a CuAlBe SMA is proposed. Simple thermomechanical loadings (i. e. pseudoplasticity and pseudoelasticity), one-way shape memory effect, recovery stress, assisted two-way memory effect at different level of stress and cyclic pseudoelasticity tests are investigated. Based on the electric resistivity results, during each loading path, evolution of the microstructure is determined. The origin of residual strain observed during the considered thermomechanical loadings is discussed. A special attention is paid to two-way shape memory effect generated after considered cyclic loadings and its relation with the developed residual strain. These results permit to identify and to validate the macroscopic models of SMAs behaviors.
Watve, Apurva; Gupta, Mamta; Khushu, Subash; Rana, Poonam
2018-06-01
Radiation-induced white matter changes are well known and vastly studied. However, radiation-induced gray matter alterations are still a research question. In the present study, these changes were assessed in a longitudinal manner using Diffusion Tensor Imaging (DTI) and further compared for cranial and whole body radiation exposure. Male mice (C57BL/6) were irradiated with cranial or whole body radiation followed by DTI study at 7T animal MRI system during predose, subacute and early delayed phases of radiation sickness. Fractional anisotropy (FA) and mean diffusivity (MD) values were obtained from brain's gray matter regions. Decreased FA with increased MD was observed prominently in animals exposed to cranial radiation showing most changes at 8 months post irradiation. However, whole body radiation induced FA changes were mostly observed at 1 month post irradiation as compared to controls. The differential response after whole body and cranial irradiation observed in the study depicts that radiation exposure of 5 Gy could induce permanent alterations in gray matter regions prominently as observed in Caudoputamen region at all the time points. Thus, our study has bolstered the role of DTI to probe microstructural changes in gray matter regions of brain after radiation exposure.
Microstructural analysis of the thermal annealing of ice-Ih using EBSD
NASA Astrophysics Data System (ADS)
Hidas, Károly; Tommasi, Andréa; Mainprice, David; Chauve, Thomas; Barou, Fabrice; Montagnat, Maurine
2017-04-01
Rocks deformed in the middle crust and deeper in the Earth typically remain at high temperature for extended time spans after the cessation of deformation. This results in annealing of the deformation microstructure by a series of thermally activated, diffusion-based processes, namely: recovery and static recrystallization, which may also modify the crystal preferred orientation (CPO) or texture. Understanding the effects of annealing on the microstructure and CPO is therefore of utmost importance for the interpretation of the microstructures and for the estimation of the anisotropy of physical properties of lower crustal and mantle rocks. Ice-Ih -the typical form of water ice on the Earth's surface, with hexagonal crystal symmetry- deforms essentially by glide of dislocations on the basal plane [1], thus it has high viscoplastic anisotropy, which induces strong heterogeneity of stresses and strains at both the intra- and intergranular scales [2-3]. This behavior makes ice-Ih an excellent analog material for silicate minerals that compose the Earth. In situ observations of the evolution of the microstructures and CPO during annealing enable the study of the interplay between the various physical processes involved in annealing (recovery, nucleation, grain growth). They also allow the analysis of the impact of the preexisting deformation microstructures on the microstructural and CPO evolution during annealing. Here we studied the evolution of the microstructure of ice-Ih during static recrystallization by stepwise annealing experiments. We alternated thermal annealing and electron backscatter diffraction (EBSD) analyses on polycrystalline columnar ice-Ih pre-deformed in uniaxial compression at temperature of -7 °C to strains of 3.0-5.2. Annealing experiments were carried out at -5 °C and -2 °C up to a maximum of 3.25 days, typically in 5-6 steps. EBSD crystal orientation maps obtained after each annealing step permit the description of microstructural changes. Decrease in average intragranular misorientation at the sample scale and modification of the misorientation across subgrain boundaries provide evidence for recovery from the earliest stages of annealing. This evolution is similar for all studied samples irrespective of their initial strain or annealing temperature. After an incubation period up to 2 hours, recovery is accompanied by recrystallization (nucleation and grain boundary migration). Grain growth proceeds at the expense of domains with high intra-granular misorientations and its kinetics fits the parabolic growth law. Deformation-induced microstructures (tilt boundaries and kink bands) are stable features during early stages of static recrystallization and locally slow down grain boundary migration, pinning grain growth. REFERENCES 1. Duval, P., Ashby, M.F., Anderman, I., 1983. Rate-controlling processes in the creep of polycrystalline ice. Journal of Physical Chemistry 87, 4066-4074. 2. Grennerat, F., Montagnat, M., Castelnau, O., Vacher, P., Moulinec, H., Suquet, P., Duval, P., 2012. Experimental characterization of the intragranular strain field in columnar ice during transient creep. Acta Materialia 60, 3655-3666. 3. Chauve, T., Montagnat, M., Vacher, P., 2015. Strain field evolution during dynamic recrystallization nucleation: A case study on ice. Acta Materialia 101, 116-124. Funding: Research leading to these results was funded by the EU-FP7 Marie Curie postdoctoral grant PIEF-GA-2012-327226 to K.H.
NASA Astrophysics Data System (ADS)
Haidemenopoulos, G. N.; Constantinou, M.; Kamoutsi, H.; Krizan, D.; Bellas, I.; Koutsokeras, L.; Constantinides, G.
2018-06-01
X-ray diffraction analysis, magnetic force microscopy, and the saturation magnetization method have been employed to study the evolution of the percentage and size of retained austenite (RA) particles during strain-induced transformation in a transformation-induced plasticity (TRIP) steel. A low-alloy TRIP-700 steel with nominal composition Fe-0.2C-0.34Si-1.99Mn-1Al (mass%) was subjected to interrupted tensile testing at strain levels of 0-22% and the microstructure subsequently studied. The results of the three experimental techniques were in very good agreement regarding the estimated austenite volume fraction and its evolution with strain. Furthermore, this multitechnique approach revealed that the average particle size of RA reduced as the applied strain was increased, suggesting that larger particles are less stable and more susceptible to strain-induced phase transformation. Such experimentally determined evolution of the austenite size with strain could serve as an input to kinetic models that aim to predict the strain-induced transformation in low-alloy TRIP steels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kapoor, K.; Saratchandran, N.; Muralidharan, K.
1999-02-01
Pressurized heavy water reactors (PHWR) use zirconium-base alloys for their low neutron-absorption cross section, good mechanical strength, low irradiation creep, and high corrosion resistance in reactor atmospheres. Starting with identical ingots, billets having different microstructures were obtained by three different processing methods for fabrication of Zr-2.5 wt%Nb pressure tubes., The billets were further processed by hot extrusion and cold Pilger tube reducing to the finished product. Microstructural characterization was done at each stage of processing. The effects of the initial billet microstructure on the intermediate and final microstructure and mechanical property results were determined. It was found that the structuremore » at each stage and the final mechanical properties depend strongly on the initial billet microstructure. The structure at the final stage consists of elongated alpha zirconium grains with a network of metastable beta zirconium phase. Some of this metastable phase transforms into stable beta niobium during thermomechanical processing. Billets with quenched structure resulted in less beta niobium at the final stage. The air cooled billets resulted in a large amount of beta niobium. The tensile properties, especially the percentage elongation, were found to vary for the different methods. Higher percentage elongation was observed for billets having quenched structure. Extrusion and forging did not produce any characteristic differences in the properties. The results were used to select a process flow sheet which yields the desired mechanical properties with suitable microstructure in the final product.« less
Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering.
Bachmann, Maja D; Nair, Nityan; Flicker, Felix; Ilan, Roni; Meng, Tobias; Ghimire, Nirmal J; Bauer, Eric D; Ronning, Filip; Analytis, James G; Moll, Philip J W
2017-05-01
By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and, moreover, practical applications in phase-coherent devices and quantum applications have been proposed. Proximity-induced superconductivity promises to allow these experiments on nonsuperconducting Weyl semimetals. We show a new route to reliably fabricate superconducting microstructures from the nonsuperconducting Weyl semimetal NbAs under ion irradiation. The significant difference in the surface binding energy of Nb and As leads to a natural enrichment of Nb at the surface during ion milling, forming a superconducting surface layer ( T c ~ 3.5 K). Being formed from the target crystal itself, the ideal contact between the superconductor and the bulk may enable an effective gapping of the Weyl nodes in the bulk because of the proximity effect. Simple ion irradiation may thus serve as a powerful tool for the fabrication of topological quantum devices from monoarsenides, even on an industrial scale.
Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering
Bachmann, Maja D.; Nair, Nityan; Flicker, Felix; Ilan, Roni; Meng, Tobias; Ghimire, Nirmal J.; Bauer, Eric D.; Ronning, Filip; Analytis, James G.; Moll, Philip J. W.
2017-01-01
By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and, moreover, practical applications in phase-coherent devices and quantum applications have been proposed. Proximity-induced superconductivity promises to allow these experiments on nonsuperconducting Weyl semimetals. We show a new route to reliably fabricate superconducting microstructures from the nonsuperconducting Weyl semimetal NbAs under ion irradiation. The significant difference in the surface binding energy of Nb and As leads to a natural enrichment of Nb at the surface during ion milling, forming a superconducting surface layer (Tc ~ 3.5 K). Being formed from the target crystal itself, the ideal contact between the superconductor and the bulk may enable an effective gapping of the Weyl nodes in the bulk because of the proximity effect. Simple ion irradiation may thus serve as a powerful tool for the fabrication of topological quantum devices from monoarsenides, even on an industrial scale. PMID:28560340
Femtosecond laser-induced microstructures on Ti substrates for reduced cell adhesion
NASA Astrophysics Data System (ADS)
Heitz, J.; Plamadeala, C.; Muck, M.; Armbruster, O.; Baumgartner, W.; Weth, A.; Steinwender, C.; Blessberger, H.; Kellermair, J.; Kirner, S. V.; Krüger, J.; Bonse, J.; Guntner, A. S.; Hassel, A. W.
2017-12-01
Miniaturized pacemakers with a surface consisting of a Ti alloy may have to be removed after several years from their implantation site in the heart and shall, therefore, not be completely overgrown by cells or tissue. A method to avoid this may be to create at the surface by laser-ablation self-organized sharp conical spikes, which provide too little surface for cells (i.e., fibroblasts) to grow on. For this purpose, Ti-alloy substrates were irradiated in the air by 790 nm Ti:sapphire femtosecond laser pulses at fluences above the ablation threshold. The laser irradiation resulted in pronounced microstructure formation with hierarchical surface morphologies. Murine fibroblasts were seeded onto the laser-patterned surface and the coverage by cells was evaluated after 3-21 days of cultivation by means of scanning electron microscopy. Compared to flat surfaces, the cell density on the microstructures was significantly lower, the coverage was incomplete, and the cells had a clearly different morphology. The best results regarding suppression of cell growth were obtained on spike structures which were additionally electrochemically oxidized under acidic conditions. Cell cultivation with additional shear stress could reduce further the number of adherent cells.
NASA Astrophysics Data System (ADS)
Hackett, Micah Jeremiah
The objective of this thesis is to quantify the effect of oversized solutes on radiation-induced segregation in austenitic stainless steels and to determine the mechanism of this effect. Zr or Hf additions to austenitic stainless steels demonstrated a reduction in radiation-induced segregation of Cr and Ni at the grain boundary after proton irradiation at 400°C and 500°C to low doses, but the solute effect disappeared at higher doses. Rate theory modeling of RIS was extended to incorporate a solute-vacancy trapping mechanism to predict the effect of solutes on RIS. The model showed that RIS is most sensitive to the solute-vacancy binding energy. First principles calculations were used to determine a binding energy of 1.08 eV for Zr and 0.71 eV for Hf. Model and experiment agreed in showing suppression of Cr depletion at doses of 3 dpa at 400°C and 1 dpa at 500°C, and experimental results were consistent with the model in showing greater effectiveness of Zr relative to Hf due to a larger binding energy. The dislocation loop microstructure was measured at 400°C, 3 and 7 dpa, and a significant decrease in loop density and total loop line length in the oversized solute alloys relative to the reference alloys. The loop microstructure results were consistent with RIS results by confirming enhanced recombination of point defects by solute-vacancy trapping. Increases in RIS with dose indicated a loss of solute effectiveness, which was consistent with an observed increase in loop line length from 3 to 7 dpa. The loss of solute effectiveness at high dose is attributed to a loss of oversized solute from the matrix due to coarsening of carbide precipitates. X-ray diffraction identified a microstructure with ZrC or HfC precipitates prior to irradiation. Precipitate coarsening was identified as the most likely mechanism for the loss of solute effectiveness on RIS by the following: (1) diffusion analysis suggested significant solute diffusion by the vacancy flux to precipitate surfaces on the time scales of proton irradiations, and (2) atom probe measurements confirmed the loss of oversized solute in solution as a function of irradiation dose. RIS measurements and subsequent analyses were consistent with the solute-vacancy trapping process as the mechanism for enhanced recombination and suppression of RIS.
Evolution of irradiation-induced strain in an equiatomic NiFe alloy
Ullah, Mohammad W.; Zhang, Yanwen; Sellami, Neila; ...
2017-07-10
Here, we investigate the formation and accumulation of irradiation-induced atomic strain in an equiatomic NiFe concentrated solid-solution alloy using both atomistic simulations and x-ray diffraction (XRD) analysis of irradiated samples. Experimentally, the irradiations are performed using 1.5 MeV Ni ions to fluences ranging from 1 × 10 13 to 1 × 10 14 cm -2. The irradiation simulations are carried out by overlapping 5 keV Ni recoils cascades up to a total of 300 recoils. An increase of volumetric strain is observed at low dose, which is associated with production of point defects and small clusters. A relaxation of strainmore » occurs at higher doses, when large defect clusters, like dislocation loops, dominate.« less
NASA Astrophysics Data System (ADS)
Song, Hong-Lian; Yu, Xiao-Fei; Huang, Qing; Qiao, Mei; Wang, Tie-Jun; Zhang, Jing; Liu, Yong; Liu, Peng; Zhu, Zi-Hua; Wang, Xue-Lin
2017-09-01
Ion irradiation has been a popular method to modify properties of different kinds of materials. Ion-irradiated crystals have been studied for years, but the effects on microstructure and optical properties during irradiation process are still controversial. In this paper, we used 6 MeV C ions with a fluence of 1 × 1015 ion/cm2 irradiated Y2SiO5 (YSO) crystal at room temperature, and discussed the influence of C ion irradiation on the microstructure, mechanical and optical properties of YSO crystal by Rutherford backscattering/channeling analyzes (RBS/C), X-ray diffraction patterns (XRD), Raman, nano-indentation test, transmission and absorption spectroscopy, the prism coupling and the end-facet coupling experiments. We also used the secondary ion mass spectrometry (SIMS) to analyze the elements distribution along sputtering depth. 6 MeV C ions with a fluence of 1 × 1015 ion/cm2 irradiated caused the deformation of YSO structure and also influenced the spectral properties and lattice vibrations.
Role of isostaticity and load-bearing microstructure in the elasticity of yielded colloidal gels.
Hsiao, Lilian C; Newman, Richmond S; Glotzer, Sharon C; Solomon, Michael J
2012-10-02
We report a simple correlation between microstructure and strain-dependent elasticity in colloidal gels by visualizing the evolution of cluster structure in high strain-rate flows. We control the initial gel microstructure by inducing different levels of isotropic depletion attraction between particles suspended in refractive index matched solvents. Contrary to previous ideas from mode coupling and micromechanical treatments, our studies show that bond breakage occurs mainly due to the erosion of rigid clusters that persist far beyond the yield strain. This rigidity contributes to gel elasticity even when the sample is fully fluidized; the origin of the elasticity is the slow Brownian relaxation of rigid, hydrodynamically interacting clusters. We find a power-law scaling of the elastic modulus with the stress-bearing volume fraction that is valid over a range of volume fractions and gelation conditions. These results provide a conceptual framework to quantitatively connect the flow-induced microstructure of soft materials to their nonlinear rheology.
Influence of thermal and radiation effects on microstructural and mechanical properties of Nb-1Zr
NASA Astrophysics Data System (ADS)
Leonard, Keith J.; Busby, Jeremy T.; Zinkle, Steven J.
2011-07-01
The microstructural changes and corresponding effects on mechanical properties, electrical resistivity and density of Nb-1Zr were examined following neutron irradiation up to 1.8 dpa at temperatures of 1073, 1223 and 1373 K and compared with material thermally aged for similar exposure times of ˜1100 h. Thermally driven changes in the development of intragranular and grain boundary precipitate phases showed a greater influence on mechanical and physical properties compared to irradiation-induced defects for the examined conditions. Initial formation of the zirconium oxide precipitates was identified as cubic structured plates following a Baker-Nutting orientation relationship to the β-Nb matrix, with particles developing a monoclinic structure on further growth. Tensile properties of the Nb-1Zr samples showed increased strength and reduced elongation following aging and irradiation below 1373 K, with the largest tensile and hardness increases following aging at 1098 K. Tensile properties at 1373 K for the aged and irradiated samples were similar to that of the as-annealed material. Total elongation was lower in the aged material due to a strain hardening response, rather than a weak strain softening observed in the irradiated materials due in part to an irregular distribution of the precipitates in the irradiated materials. Though intergranular fracture surfaces were observed on the 1248 K aged tensile specimens, the aged and irradiated material showed uniform elongations >3% and total elongation >12% for all conditions tested. Cavity formation was observed in material irradiated to 0.9 dpa at 1073 and 1223 K. However, since void densities were estimated to be below 3 × 10 17 m -3 these voids contributed little to either mechanical strengthening of the material or measured density changes.
Proton irradiation effects on beryllium – A macroscopic assessment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong
Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting itsmore » lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.« less
Proton irradiation effects on beryllium – A macroscopic assessment
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; ...
2016-07-01
Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting itsmore » lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This study focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.« less
Proton irradiation effects on beryllium - A macroscopic assessment
NASA Astrophysics Data System (ADS)
Simos, Nikolaos; Elbakhshwan, Mohamed; Zhong, Zhong; Camino, Fernando
2016-10-01
Beryllium, due to its excellent neutron multiplication and moderation properties, in conjunction with its good thermal properties, is under consideration for use as plasma facing material in fusion reactors and as a very effective neutron reflector in fission reactors. While it is characterized by unique combination of structural, chemical, atomic number, and neutron absorption cross section it suffers, however, from irradiation generated transmutation gases such as helium and tritium which exhibit low solubility leading to supersaturation of the Be matrix and tend to precipitate into bubbles that coalesce and induce swelling and embrittlement thus degrading the metal and limiting its lifetime. Utilization of beryllium as a pion production low-Z target in high power proton accelerators has been sought both for its low Z and good thermal properties in an effort to mitigate thermos-mechanical shock that is expected to be induced under the multi-MW power demand. To assess irradiation-induced changes in the thermal and mechanical properties of Beryllium, a study focusing on proton irradiation damage effects has been undertaken using 200 MeV protons from the Brookhaven National Laboratory Linac and followed by a multi-faceted post-irradiation analysis that included the thermal and volumetric stability of irradiated beryllium, the stress-strain behavior and its ductility loss as a function of proton fluence and the effects of proton irradiation on the microstructure using synchrotron X-ray diffraction. The mimicking of high temperature irradiation of Beryllium via high temperature annealing schemes has been conducted as part of the post-irradiation study. This paper focuses on the thermal stability and mechanical property changes of the proton irradiated beryllium and presents results of the macroscopic property changes of Beryllium deduced from thermal and mechanical tests.
Emulation of reactor irradiation damage using ion beams
Was, G. S.; Jiao, Z.; Getto, E.; ...
2014-06-14
The continued operation of existing light water nuclear reactors and the development of advanced nuclear reactor depend heavily on understanding how damage by radiation to levels degrades materials that serve as the structural components in reactor cores. The first high dose ion irradiation experiments on a ferritic-martensitic steel showing that ion irradiation closely emulates the full radiation damage microstructure created in-reactor are described. Ferritic-martensitic alloy HT9 (heat 84425) in the form of a hexagonal fuel bundle duct (ACO-3) accumulated 155 dpa at an average temperature of 443°C in the Fast Flux Test Facility (FFTF). Using invariance theory as a guide,more » irradiation of the same heat was conducted using self-ions (Fe++) at 5 MeV at a temperature of 460°C and to a dose of 188 displacements per atom. The void swelling was nearly identical between the two irradiation and the size and density of precipitates and loops following ion irradiation are within a factor of two of those for neutron irradiation. The level of agreement across all of the principal microstructure changes between ion and reactor irradiation establishes the capability of tailoring ion irradiation to emulate the reactor-irradiated microstructure.« less
Laser marking on soda-lime glass by laser-induced backside wet etching with two-beam interference
NASA Astrophysics Data System (ADS)
Nakazumi, Tomoka; Sato, Tadatake; Narazaki, Aiko; Niino, Hiroyuki
2016-09-01
For crack-free marking of glass materials, a beam-scanning laser-induced backside wet etching (LIBWE) process by a beam spot with a fine periodic structure was examined. The fine periodic structure was produced within a beam spot by means of a Mach-Zehnder interferometer incorporated to the optical setup for the beam-scanning LIBWE. A fine structure with a period of 9 µm was observed within the microstructures with a diameter of ca. 40 µm fabricated by a laser shot under double-beam irradiation, and they could be homogeneously fabricated within an area of 800 × 800 µm. The area filled with the microstructures, including fine periodic structures, could be observed in high contrast under a diffuse, on-axis illumination that was used in commercial QR code readers.
Biomimetic Superhydrophobic Hollowed-Out Pyramid Surface Based on Self-Assembly.
Luo, Weipeng; Yu, Bin; Xiao, Dingbang; Zhang, Meng; Wu, Xuezhong; Li, Guoxi
2018-05-16
In this paper, we present a periodic hollowed-out pyramid microstructure with excellent superhydrophobicity. In our approach, T-topping pillars and capillary-induced self-assembly methods were combined with the photolithography process to fabricate a hollowed-out pyramid structure. First, a wideband ultraviolet source without a filter was used to fabricate the T-topping pillars during the exposure process; then, the evaporation-induced assembly collapsed the pillars and formed the hollowed-out pyramid structure. Scanning electron microscopy images showed the microstructures of the prepared surface. The contact angle of the surface was 154°. The surface showed excellent high temperature and ultraviolet irradiation tolerance, and the contact angle of the surface barely changed when the temperature dropped. This excellent environmental durability of our superhydrophobic surface has potential applications for self-cleaning and friction drag reduction under water.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Jin; Fan, Cuncai; Ding, Jie
High energy particle radiations induce severe microstructural damage in metallic materials. Nanoporous materials with a giant surface-to-volume ratio may alleviate radiation damage in irradiated metallic materials as free surface are defect sinks. We show, by using in situ Kr ion irradiation in a transmission electron microscope at room temperature, that nanoporous Au indeed has significantly improved radiation tolerance comparing with coarse-grained, fully dense Au. In situ studies show that nanopores can absorb and eliminate a large number of radiation-induced defect clusters. Meanwhile, nanopores shrink (self-heal) during radiation, and their shrinkage rate is pore size dependent. Furthermore, the in situ studiesmore » show dose-rate-dependent diffusivity of defect clusters. Our study sheds light on the design of radiation-tolerant nanoporous metallic materials for advanced nuclear reactor applications.« less
Kurokawa, Kazuhiro; Makita, Shuichi; Yasuno, Yoshiaki
2016-01-01
To enable an objective evaluation of photocoagulation, we characterize thermal tissue changes induced by laser irradiation with different laser parameters using optical coherence tomography (OCT). Spectral-domain OCT with a newly developed image processing method was used to monitor the thermal changes of ex vivo porcine retina. A sequence of OCT B-scans was obtained at the same retinal position simultaneously with the photocoagulation. Cross-sectional tissue displacement maps with respect to an OCT image taken before laser irradiation were computed for images taken before, during, and after laser irradiation, by using a correlation-based custom algorithm. Cross-sectional correlation maps (OCT correlation maps) were also computed from an OCT image taken before laser irradiation as a base-line to visualize alterations of tissue microstructure induced by laser irradiation. By systematically controlling laser power and exposure times, tissue displacements and structural changes of 200 retinal regions of 10 porcine eyes were characterized. Thermal tissue changes were characterized by B-scan images, OCT correlation maps, and tissue displacement maps. Larger tissue deformation was induced with higher laser power and shorter exposure time, while the same total laser energy (10 mJ) was applied. The measured tissue displacements revealed the complicated dynamics of tissue displacements. Three types of dynamics were observed; lateral expansion, lateral constriction, and a type showing more complicated dynamics. The results demonstrated the ability of this OCT-based method to evaluate retinal changes induced by laser irradiation. This evaluation could lead to further understanding of thermal effects, and increasing reproducibility of photocoagulation therapy.
Zheng, Ce; Auger, Maria A.; Moody, Michael P.; ...
2017-04-24
In this study, Ferritic/Martensitic (F/M) HT9 steel was irradiated to 20 displacements per atom (dpa) at 600 nm depth at 420 and 440 °C, and to 1, 10 and 20 dpa at 600 nm depth at 470 °C using 5 MeV Fe++ ions. The characterization was conducted using ChemiSTEM and Atom Probe Tomography (APT), with a focus on radiation induced segregation and precipitation. Ni and/or Si segregation at defect sinks (grain boundaries, dislocation lines, carbide/matrix interfaces) together with Ni, Si, Mn rich G-phase precipitation were observed in self-ion irradiated HT9 except in very low dose case (1 dpa at 470more » °C). Some G-phase precipitates were found to nucleate heterogeneously at defect sinks where Ni and/or Si segregated. In contrast to what was previously reported in the literature for neutron irradiated HT9, no Cr-rich α' phase, χ-phases, η phase and voids were found in self-ion irradiated HT9. The difference of observed microstructures is probably due to the difference of irradiation dose rate between ion irradiation and neutron irradiation. In addition, the average size and number density of G-phase precipitates were found to be sensitive to both irradiation temperature and dose. With the same irradiation dose, the average size of G-phase increased whereas the number density decreased with increasing irradiation temperature. Within the same irradiation temperature, the average size increased with increasing irradiation dose.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasudevamurthy, Gokul; Katoh, Yutai; Hunn, John D
2010-09-01
Zirconium carbide is a candidate to either replace or supplement silicon carbide as a coating material in TRISO fuel particles for high temperature gas-cooled reactor fuels. Six sets of ZrC coated surrogate microsphere samples, fabricated by the Japan Atomic Energy Agency using the fluidized bed chemical vapor deposition method, were irradiated in the High Flux Isotope Reactor at the Oak Ridge National Laboratory. These developmental samples available for the irradiation experiment were in conditions of either as-fabricated coated particles or particles that had been heat-treated to simulate the fuel compacting process. Five sets of samples were composed of nominally stoichiometricmore » compositions, with the sixth being richer in carbon (C/Zr = 1.4). The samples were irradiated at 800 and 1250 C with fast neutron fluences of 2 and 6 dpa. Post-irradiation, the samples were retrieved from the irradiation capsules followed by microstructural examination performed at the Oak Ridge National Laboratory's Low Activation Materials Development and Analysis Laboratory. This work was supported by the US Department of Energy Office of Nuclear Energy's Advanced Gas Reactor program as part of International Nuclear Energy Research Initiative collaboration with Japan. This report includes progress from that INERI collaboration, as well as results of some follow-up examination of the irradiated specimens. Post-irradiation examination items included microstructural characterization, and nanoindentation hardness/modulus measurements. The examinations revealed grain size enhancement and softening as the primary effects of both heat-treatment and irradiation in stoichiometric ZrC with a non-layered, homogeneous grain structure, raising serious concerns on the mechanical suitability of these particular developmental coatings as a replacement for SiC in TRISO fuel. Samples with either free carbon or carbon-rich layers dispersed in the ZrC coatings experienced negligible grain size enhancement during both heat treatment and irradiation. However, these samples experienced irradiation induced softening similar to stoichiometric ZrC samples.« less
Günther, J; Brenne, F; Droste, M; Wendler, M; Volkova, O; Biermann, H; Niendorf, T
2018-01-22
Electron Beam Melting (EBM) is a powder-bed additive manufacturing technology enabling the production of complex metallic parts with generally good mechanical properties. However, the performance of powder-bed based additively manufactured materials is governed by multiple factors that are difficult to control. Alloys that solidify in cubic crystal structures are usually affected by strong anisotropy due to the formation of columnar grains of preferred orientation. Moreover, processing induced defects and porosity detrimentally influence static and cyclic mechanical properties. The current study presents results on processing of a metastable austenitic CrMnNi steel by EBM. Due to multiple phase transformations induced by intrinsic heat-treatment in the layer-wise EBM process the material develops a fine-grained microstructure almost without a preferred crystallographic grain orientation. The deformation-induced phase transformation yields high damage tolerance and, thus, excellent mechanical properties less sensitive to process-induced inhomogeneities. Various scan strategies were applied to evaluate the width of an appropriate process window in terms of microstructure evolution, porosity and change of chemical composition.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Yinkai; Cheng, Tian -Le; Wen, You -Hai
Microstructure evolution plays an important role in the performance degradation of SOFC electrodes. In this work, we propose a much improved phase field model to simulate the microstructure evolution in the electrodes of solid oxide fuel cell. We demonstrate that the tunability of the interfacial energy in this model has been significantly enhanced. Parameters are set to fit for the interfacial energies of a typical Ni-YSZ anode, an LSM-YSZ cathode and an artificial reference electrode, respectively. The contact angles at various triple junctions and the microstructure evolutions in two dimensions are calibrated to verify the model. As a demonstration ofmore » the capabilities of the model, three dimensional microstructure evolutions are simulated applying the model to the three different electrodes. The time evolutions of grain size and triple phase boundary density are analyzed. In addition, a recently proposed bound charge successive approximation algorithm is employed to calculate the effective conductivity of the electrodes during microstructure evolution. Furthermore, the effective conductivity of all electrodes are found to decrease during the microstructure evolution, which is attributed to the increased tortuosity and the loss of percolated volume fraction of the electrode phase.« less
Lei, Yinkai; Cheng, Tian -Le; Wen, You -Hai
2017-02-13
Microstructure evolution plays an important role in the performance degradation of SOFC electrodes. In this work, we propose a much improved phase field model to simulate the microstructure evolution in the electrodes of solid oxide fuel cell. We demonstrate that the tunability of the interfacial energy in this model has been significantly enhanced. Parameters are set to fit for the interfacial energies of a typical Ni-YSZ anode, an LSM-YSZ cathode and an artificial reference electrode, respectively. The contact angles at various triple junctions and the microstructure evolutions in two dimensions are calibrated to verify the model. As a demonstration ofmore » the capabilities of the model, three dimensional microstructure evolutions are simulated applying the model to the three different electrodes. The time evolutions of grain size and triple phase boundary density are analyzed. In addition, a recently proposed bound charge successive approximation algorithm is employed to calculate the effective conductivity of the electrodes during microstructure evolution. Furthermore, the effective conductivity of all electrodes are found to decrease during the microstructure evolution, which is attributed to the increased tortuosity and the loss of percolated volume fraction of the electrode phase.« less
Progress In Developing An In-Pile Acoustically Telemetered Sensor Infrastructure
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, James A.; Garrett, Steven L.; Heibel, Michael D.
2016-09-01
A salient grand challenge for a number of Department of Energy programs such as Fuels Cycle Research and Development ( includes Accident Tolerant Fuel research and the Transient Reactor Test Facility Restart experiments), Light Water Sustainability, and Advanced Reactor Technologies is to enhance our fundamental understanding of fuel and materials behavior under irradiation. Robust and accurate in-pile measurements will be instrumental to develop and validate a computationally predictive multi-scale understanding of nuclear fuel and materials. This sensing technology will enable the linking of fundamental micro-structural evolution mechanisms to the macroscopic degradation of fuels and materials. The in situ sensors andmore » measurement systems will monitor local environmental parameters as well as characterize microstructure evolution during irradiation. One of the major road blocks in developing practical robust, and cost effective in-pile sensor systems, are instrument leads. If a wireless telemetry infrastructure can be developed for in-pile use, in-core measurements would become more attractive and effective. Thus to be successful in accomplishing effective in-pile sensing and microstructure characterization an interdisciplinary measurement infrastructure needs to be developed in parallel with key sensing technology. For the discussion in this research, infrastructure is defined as systems, technology, techniques, and algorithms that may be necessary in the delivery of beneficial and robust data from in-pile devices. The architecture of a system’s infrastructure determines how well it operates and how flexible it is to meet future requirements. The limiting path for the effective deployment of the salient sensing technology will not be the sensors themselves but the infrastructure that is necessary to communicate data from in-pile to the outside world in a non-intrusive and reliable manner. This article gives a high level overview of a promising telemetry infrastructure based on acoustic wireless transmission of data that is being developed and tested by the INL, Penn State and Westinghouse.« less
Chen, Hong-Bing; Zhao, Yan; Shen, Peng; Wang, Jun-Sheng; Huang, Wei; Schiraldi, David A
2015-09-16
Facile fabrication of mechanically strong poly(vinyl alcohol) (PVOH)/clay aerogel composites through a combination of increasing polymer molecular weights and gamma irradiation-cross-linking is reported herein. The aerogels produced from high polymer molecular weights exhibit significantly increased compressive moduli, similar to the effect of irradiation-induced cross-linking. The required irradiation dose for fabricating strong PVOH composite aerogels with dense microstructure decreased with increasing polymer molecular weight. Neither thermal stability nor flammability was significantly changed by altering the polymer molecular weight or by modest gamma irradiation, but they were highly dependent upon the polymer/clay ratio in the aerogel. Optimization of the mechanical, thermal, and flammability properties of these composite aerogels could therefore be obtained by using relatively low levels of polymer, with very high polymer molecular weight, or lower molecular weight coupled with moderate gamma irradiation. The facile preparation of strong, low flammability aerogels is an alternative to traditional polymer foams in applications where fire safety is important.
NASA Astrophysics Data System (ADS)
Kumar, Ashwani; Nayak, C.; Rajput, P.; Mishra, R. K.; Bhattacharyya, D.; Kaushik, C. P.; Tomar, B. S.
2016-12-01
Gamma radiation induced changes in local structure around the probe atom (Hafnium) were investigated in sodium barium borosilicate (NBS) glass, used for immobilization of high level liquid waste generated from the reprocessing plant at Trombay, Mumbai. The (NBS) glass was doped with 181Hf as a probe for time differential perturbed angular correlation (TDPAC) spectroscopy studies, while for studies using extended X-ray absorption fine structure (EXAFS) spectroscopy, the same was doped with 0.5 and 2 % (mole %) hafnium oxide. The irradiated as well as un-irradiated glass samples were studied by TDPAC and EXAFS techniques to obtain information about the changes (if any) around the probe atom due to gamma irradiation. TDPAC spectra of unirradiated and irradiated glasses were similar and reminescent of amorphous materials, indicating negligible effect of gamma radiation on the microstructure around Hafnium probe atom, though the quaqdrupole interaction frequency ( ω Q) and asymmetry parameter ( η) did show a marginal decrease in the irradiated glass compared to that in the unirradiated glass. EXAFS measurements showed a slight decrease in the Hf-O bond distance upon gamma irradiation of Hf doped NBS glass indicating densification of the glass matrix, while the cordination number around hafnium remains unchanged.
Dissecting the mechanism of martensitic transformation via atomic-scale observations.
Yang, Xu-Sheng; Sun, Sheng; Wu, Xiao-Lei; Ma, Evan; Zhang, Tong-Yi
2014-08-21
Martensitic transformation plays a pivotal role in the microstructural evolution and plasticity of many engineering materials. However, so far the underlying atomic processes that accomplish the displacive transformation have been obscured by the difficulty in directly observing key microstructural signatures on atomic scale. To resolve this long-standing problem, here we examine an AISI 304 austenitic stainless steel that has a strain/microstructure-gradient induced by surface mechanical attrition, which allowed us to capture in one sample all the key interphase regions generated during the γ(fcc) → ε(hcp) → α'(bcc) transition, a prototypical case of deformation induced martensitic transformation (DIMT). High-resolution transmission electron microscopy (HRTEM) observations confirm the crucial role of partial dislocations, and reveal tell-tale features including the lattice rotation of the α' martensite inclusion, the transition lattices at the ε/α' interfaces that cater the shears, and the excess reverse shear-shuffling induced γ necks in the ε martensite plates. These direct observations verify for the first time the 50-year-old Bogers-Burgers-Olson-Cohen (BBOC) model, and enrich our understanding of DIMT mechanisms. Our findings have implications for improved microstructural control in metals and alloys.
Dissecting the Mechanism of Martensitic Transformation via Atomic-Scale Observations
Yang, Xu-Sheng; Sun, Sheng; Wu, Xiao-Lei; Ma, Evan; Zhang, Tong-Yi
2014-01-01
Martensitic transformation plays a pivotal role in the microstructural evolution and plasticity of many engineering materials. However, so far the underlying atomic processes that accomplish the displacive transformation have been obscured by the difficulty in directly observing key microstructural signatures on atomic scale. To resolve this long-standing problem, here we examine an AISI 304 austenitic stainless steel that has a strain/microstructure-gradient induced by surface mechanical attrition, which allowed us to capture in one sample all the key interphase regions generated during the γ(fcc) → ε(hcp) → α′(bcc) transition, a prototypical case of deformation induced martensitic transformation (DIMT). High-resolution transmission electron microscopy (HRTEM) observations confirm the crucial role of partial dislocations, and reveal tell-tale features including the lattice rotation of the α′ martensite inclusion, the transition lattices at the ε/α′ interfaces that cater the shears, and the excess reverse shear-shuffling induced γ necks in the ε martensite plates. These direct observations verify for the first time the 50-year-old Bogers-Burgers-Olson-Cohen (BBOC) model, and enrich our understanding of DIMT mechanisms. Our findings have implications for improved microstructural control in metals and alloys. PMID:25142283
Koyanagi, Takaaki; Nozawa, Takashi; Katoh, Yutai; ...
2017-12-20
For the development of silicon carbide (SiC) materials for next-generation nuclear structural applications, degradation of material properties under intense neutron irradiation is a critical feasibility issue. This paper evaluated the mechanical properties and microstructure of a chemical vapor infiltrated SiC matrix composite, reinforced with a multi-layer SiC/pyrolytic carbon–coated Hi-Nicalon TM Type S SiC fiber, following neutron irradiation at 319 and 629 °C to ~100 displacements per atom. Both the proportional limit stress and ultimate flexural strength were significantly degraded as a result of irradiation at both temperatures. After irradiation at 319 °C, the quasi-ductile fracture behavior of the nonirradiated compositemore » became brittle, a result that was explained by a loss of functionality of the fiber/matrix interface associated with the disappearance of the interphase due to irradiation. Finally, the specimens irradiated at 629 °C showed increased apparent failure strain because the fiber/matrix interphase was weakened by irradiation-induced partial debonding.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Koyanagi, Takaaki; Nozawa, Takashi; Katoh, Yutai
For the development of silicon carbide (SiC) materials for next-generation nuclear structural applications, degradation of material properties under intense neutron irradiation is a critical feasibility issue. This paper evaluated the mechanical properties and microstructure of a chemical vapor infiltrated SiC matrix composite, reinforced with a multi-layer SiC/pyrolytic carbon–coated Hi-Nicalon TM Type S SiC fiber, following neutron irradiation at 319 and 629 °C to ~100 displacements per atom. Both the proportional limit stress and ultimate flexural strength were significantly degraded as a result of irradiation at both temperatures. After irradiation at 319 °C, the quasi-ductile fracture behavior of the nonirradiated compositemore » became brittle, a result that was explained by a loss of functionality of the fiber/matrix interface associated with the disappearance of the interphase due to irradiation. Finally, the specimens irradiated at 629 °C showed increased apparent failure strain because the fiber/matrix interphase was weakened by irradiation-induced partial debonding.« less
Effect of Ar{sup +} ion irradiation on the microstructure of pyrolytic carbon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Shanglei; Zhang, Dongsheng; Yang, Xinmei
2015-03-21
Pyrolytic carbon (PyC) coatings prepared by chemical vapor deposition were irradiated by 300 keV Ar{sup +} ions. Then, atomic force microscopy, synchrotron-based grazing incidence X-ray diffraction, Raman spectroscopy, X-ray photoemission spectroscopy, and transmission electron microscopy were employed to study how Ar{sup +} irradiation affects the microstructure of PyC, including the microstructural damage mechanisms and physics driving these phenomena. The 300 keV Ar{sup +} ion irradiation deteriorated the structure along the c-axis, which increased the interlayer spacing between graphene layers. With increasing irradiation dose, the density of defect states on the surface of PyC coating increases, and the basal planes gradually loses theirmore » initial ordering resulting in breaks in the lattice and turbulence at the peak damage dose reaches 1.58 displacement per atom (dpa). Surprisingly, the PyC becomes more textured as it becomes richer in structural defects with increasing irradiation dose.« less
Deformation mechanisms and grain size evolution in the Bohemian granulites - a computational study
NASA Astrophysics Data System (ADS)
Maierova, Petra; Lexa, Ondrej; Jeřábek, Petr; Franěk, Jan; Schulmann, Karel
2015-04-01
A dominant deformation mechanism in crustal rocks (e.g., dislocation and diffusion creep, grain boundary sliding, solution-precipitation) depends on many parameters such as temperature, major minerals, differential stress, strain rate and grain size. An exemplary sequence of deformation mechanisms was identified in the largest felsic granulite massifs in the southern Moldanubian domain (Bohemian Massif, central European Variscides). These massifs were interpreted to result from collision-related forced diapiric ascent of lower crust and its subsequent lateral spreading at mid-crustal levels. Three types of microstructures were distinguished. The oldest relict microstructure (S1) with large grains (>1000 μm) of feldspar deformed probably by dislocation creep at peak HT eclogite facies conditions. Subsequently at HP granulite-facies conditions, chemically- and deformation- induced recrystallization of feldspar porphyroclasts led to development of a fine-grained microstructure (S2, ~50 μm grain size) indicating deformation via diffusion creep, probably assisted by melt-enhanced grain-boundary sliding. This microstructure was associated with flow in the lower crust and/or its diapiric ascent. The latest microstructure (S3, ~100 μm grain size) is related to the final lateral spreading of retrograde granulites, and shows deformation by dislocation creep at amphibolite-facies conditions. The S2-S3 switch and coarsening was interpreted to be related with a significant decrease in strain rate. From this microstructural sequence it appears that it is the grain size that is critically linked with specific mechanical behavior of these rocks. Thus in this study, we focused on the interplay between grain size and deformation with the aim to numerically simulate and reinterpret the observed microstructural sequence. We tested several different mathematical descriptions of the grain size evolution, each of which gave qualitatively different results. We selected the two most elaborated and at the same time the most promising descriptions: thermodynamics-based models with and without Zener pinning. For conditions compatible with the S1 and S2 microstructures (~800 °C and strain rate ~10-13 s-1), the calculated stable grain sizes are ~30 μm and >300 μm in the models with and without Zener pinning, respectively. This is in agreement with the contrasting grain sizes associated with S1 and S2 microstructures implying that mainly chemically induced recrystallization of S1 feldspar porphyroclasts must had played a fundamental role in the transition into the diffusion creep. The model with pinning also explains only minor changes of mean grain size associated with S2 microstructure. The S2-S3 switch from the diffusion to dislocation creep is difficult to explain when assuming reasonable temperature and strain rate (or stress). However, a simple incorporation of the effect of melt solidification into the model with pinning can mimic this observed switch. Besides the above mentioned simple models with prescribed temperature and strain rate, we implemented the grain size evolution laws into in a 2D thermo-mechanical model setup, where stress, strain rate and temperature evolve in a more natural manner. This setup simulates a collisional evolution of an orogenic root with anomalous lower crust. The lower-crustal material is a source region for diapirs and it deforms via a combination of dislocation and grain-size-sensitive creeps. We tested the influence of selected parameters in the flow laws and in the grain-size evolution laws on the shape and other characteristics of the growing diapirs. The outputs of our simulations were then compared with the geological record from the Moldanubian granulite massifs.
Study of properties of tungsten irradiated in hydrogen atmosphere
NASA Astrophysics Data System (ADS)
Tazhibayeva, I.; Skakov, M.; Baklanov, V.; Koyanbayev, E.; Miniyazov, A.; Kulsartov, T.; Ponkratov, Yu.; Gordienko, Yu.; Zaurbekova, Zh.; Kukushkin, I.; Nesterov, E.
2017-12-01
The paper presents the results of the experiments with DF (double forged) tungsten samples irradiated at the WWR-K research reactor in hydrogen and helium atmospheres. The irradiation time was 3255 h (135.6 d). After reactor irradiation, W samples have been subjected to investigations of their activity level, hardness, and microstructure, as well as x-ray and texture observations. The hydrogen yield released from irradiated tungsten samples have been measured using TDS-method. The hydrogen concentration in the tungsten samples irradiated in hydrogen was higher than that in the samples irradiated in helium atmosphere. It is shown that the surface microstructure of tungsten samples irradiated in hydrogen is characterized by micro-pits, inclusions and blisters in the form of bubbles, which were not observed earlier for tungsten irradiated in hydrogen.
Irradiation effects and hydrogen behavior in H2+ and He+ implanted γ-LiAlO2 single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiang, Weilin; Zhang, Jiandong; Kovarik, Libor
2017-02-01
Gamma-phase lithium aluminate (gamma-LiAlO2) is a breeder material for tritium, a necessary substance for strategic stockpile and fusion power systems. A fundamental study of structural evolution and tritium diffusion in gamma-LiAlO2 under displacive irradiation is needed to fully assess the material performance. This study utilizes ion implantation of protium (surrogate for tritium) and helium in gamma-LiAlO2 single crystals at elevated temperatures to emulate the irradiation effects. The results show that at 573 K there are two distinct disorder saturation stages to 1 dpa without full amorphization; overlapping implantation of H2+ and He+ ions suggests possible formation of gas bubbles. Formore » irradiation to 1E21 H+/m2 (0.36 dpa at peak) at 773 K, amorphization occurs at surface with H diffusion and dramatic Li loss; the microstructure contains bubbles and cubic LiAl5O8 precipitates with sizes up to 200 nm or larger. In addition, significant H diffusion and release are observed during thermal annealing.« less
Recent advances and issues in development of silicon carbide composites for fusion applications
NASA Astrophysics Data System (ADS)
Nozawa, T.; Hinoki, T.; Hasegawa, A.; Kohyama, A.; Katoh, Y.; Snead, L. L.; Henager, C. H., Jr.; Hegeman, J. B. J.
2009-04-01
Radiation-resistant advanced silicon carbide (SiC/SiC) composites have been developed as a promising candidate of the high-temperature operating advanced fusion reactor. With the completion of the 'proof-of-principle' phase in development of 'nuclear-grade' SiC/SiC composites, the R&D on SiC/SiC composites is shifting toward the more pragmatic phase, i.e., industrialization of component manufactures and data-basing. In this paper, recent advances and issues in (1) development of component fabrication technology including joining and functional coating, e.g., a tungsten overcoat as a plasma facing barrier, (2) recent updates in characterization of non-irradiated properties, e.g., strength anisotropy and chemical compatibility with solid lithium-based ceramics and lead-lithium liquid metal breeders, and (3) irradiation effects are specifically reviewed. Importantly high-temperature neutron irradiation effects on microstructural evolution, thermal and electrical conductivities and mechanical properties including the fiber/matrix interfacial strength are specified under various irradiation conditions, indicating seemingly very minor influence on the composite performance in the design temperature range.
Effect of solute elements in Ni alloys on blistering under He + and D + ion irradiation
NASA Astrophysics Data System (ADS)
Wakai, E.; Ezawa, T.; Takenaka, T.; Imamura, J.; Tanabe, T.; Oshima, R.
2007-08-01
Effects of solute atoms on microstructural evolution and blister formation have been investigated using Ni alloys under 25 keV He + and 20 keV D + irradiation at 500 °C to a dose of about 4 × 10 21 ions/m 2. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys. The volume size factors of solute elements for the Ni alloys range from -5.8% to +63.6%. The formations of blisters were observed in the helium-irradiated specimens, but not in the deuteron-irradiated specimens. The areal number densities of blisters increased with volume size difference of solute atoms. The dependence of volume size on the areal number densities of blisters was very similar to that of the number densities of bubbles on solute atoms. The size of the blisters inversely decreased with increasing size of solute atoms. The formation of blisters was intimately related to the bubble growth, and the gas pressure model for the formation of blisters was supported by this study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Kurt R.; Howard, Richard H.; Daily, Charles R.
The Advanced Fuels Campaign within the Fuel Cycle Research and Development program of the Department of Energy Office of Nuclear Energy is currently investigating a number of advanced nuclear fuel cladding concepts to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace traditional zirconium alloys due to their superior oxidation resistance, provided no prohibitive irradiation-induced embrittlement occurs. Oak Ridge National Laboratory has developed experimental designs to irradiate thin-walled cladding tubes with representative pressurized water reactor geometry in the High Flux Isotope Reactor (HFIR) under relevant temperatures. These designsmore » allow for post-irradiation examination (PIE) of cladding that closely resembles expected commercially viable geometries and microstructures. The experiments were designed using relatively inexpensive rabbit capsules for the irradiation vehicle. The simplistic designs combined with the extremely high neutron flux in the HFIR allow for rapid testing of a large test matrix, thus reducing the time and cost needed to advanced cladding materials closer to commercialization. The designs are flexible in that they allow for testing FeCrAl alloys, stainless steels, Inconel alloys, and zirconium alloys (as a reference material) both with and without hydrides. This will allow a direct comparison of the irradiation performance of advanced cladding materials with traditional zirconium alloys. PIE will include studies of dimensional change, microstructure variation, mechanical performance, etc. This work describes the capsule design, neutronic and thermal analyses, and flow testing that were performed to support the qualification of this new irradiation vehicle.« less
Homogeneous nucleation and microstructure evolution in million-atom molecular dynamics simulation
Shibuta, Yasushi; Oguchi, Kanae; Takaki, Tomohiro; Ohno, Munekazu
2015-01-01
Homogeneous nucleation from an undercooled iron melt is investigated by the statistical sampling of million-atom molecular dynamics (MD) simulations performed on a graphics processing unit (GPU). Fifty independent instances of isothermal MD calculations with one million atoms in a quasi-two-dimensional cell over a nanosecond reveal that the nucleation rate and the incubation time of nucleation as functions of temperature have characteristic shapes with a nose at the critical temperature. This indicates that thermally activated homogeneous nucleation occurs spontaneously in MD simulations without any inducing factor, whereas most previous studies have employed factors such as pressure, surface effect, and continuous cooling to induce nucleation. Moreover, further calculations over ten nanoseconds capture the microstructure evolution on the order of tens of nanometers from the atomistic viewpoint and the grain growth exponent is directly estimated. Our novel approach based on the concept of “melting pots in a supercomputer” is opening a new phase in computational metallurgy with the aid of rapid advances in computational environments. PMID:26311304
Menapace, Ilaria; Masad, Eyad
2016-09-01
This paper presents findings on the evolution of the surface microstructure of two asphalt binders, one unmodified and one polymer modified, directly exposed to aging agents with increasing durations. The aging is performed using an accelerated weathering tester, where ultraviolet radiation, oxygen and an increased temperature are applied to the asphalt binder surface. Ultraviolet and dark cycles, which simulated the succession of day and night, alternated during the aging process, and also the temperature varied, which corresponded to typical summer day and night temperatures registered in the state of Qatar. Direct aging of an exposed binder surface is more effective in showing microstructural modifications than previously applied protocols, which involved the heat treatment of binders previously aged with standardized methods. With the new protocol, any molecular rearrangements in the binder surface after aging induced by the heat treatment is prevented. Optical photos show the rippling and degradation of the binder surface due to aging. Microstructure images obtained by means of atomic force microscopy show gradual alteration of the surface due to aging. The original relatively flat microstructure was substituted with a profoundly different microstructure, which significantly protrudes from the surface, and is characterized by various shapes, such as rods, round structures and finally 'flower' or 'leaf' structures. © 2016 The Authors Journal of Microscopy © 2016 Royal Microscopical Society.
NASA Astrophysics Data System (ADS)
Sangappa, Asha, S.; Sanjeev, Ganesh; Subramanya, G.; Parameswara, P.; Somashekar, R.
2010-01-01
The present work looks into the microstructural modification in electron irradiated Bombyx mori P31 silk fibers. The irradiation process was performed in air at room temperature using 8 MeV electron accelerator at different doses: 0, 25, 50 and 100 kGy. Irradiation of polymer is used to cross-link or degrade the desired component or to fix the polymer morphology. The changes in microstructural parameters in these natural polymer fibers have been computed using wide angle X-ray scattering (WAXS) data and employing line profile analysis (LPA) using Fourier transform technique of Warren. Exponential, Lognormal and Reinhold functions for the column length distributions have been used for the determination of crystal size, lattice strain and enthalpy parameters.
Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; ...
2016-11-01
FeCrAl alloys are an attractive materials class for nuclear power applications due to their increased environmental compatibility over more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300-400 °C have shown post-irradiation microstructures containing dislocation loops and Cr-rich ' phase. Although these initial works established the post-irradiation microstructures, little to no focus was applied towards the influence of pre-irradiation microstructures on this response. Here, a well annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 dpa at 382 °C and then the role of random high angle grain boundariesmore » on the spatial distribution and size of dislocation loops, dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and an increased size of dislocation loops in the vicinity directly adjacent to the grain boundary. Lastly, these results suggest the importance of the pre-irradiation microstructure on the radiation tolerance of FeCrAl alloys.« less
NASA Astrophysics Data System (ADS)
Jiang, Shaoning; Wang, Zhiming
2018-03-01
The effect of post-irradiation annealing on the microstructures and mechanical properties of V-4Cr-4Ti alloys was studied. Helium-hydrogen-irradiated sequentially V-4Cr-4Ti alloys at room temperature (RT) were undergone post-irradiation annealing at 450 °C over periods of up to 30 h. These samples were carried out by high-resolution transmission electron microscopy (HRTEM) observation and nanoindentation test. With the holding time, large amounts of point defects produced during irradiation at RT accumulated into large dislocation loops and then dislocation nets which promoted the irradiation hardening. Meanwhile, bubbles appeared. As annealing time extended, these bubbles grew up and merged, and finally broke up. In the process, the size of bubbles increased and the number density decreased. Microstructural changes due to post-irradiation annealing corresponded to the change of hardening. Dislocations and bubbles are co-contributed to irradiation hardening. With the holding time up to 30 h, the recovery of hardening is not obvious. The phenomenon was discussed by dispersed barrier hardening model and Friedel-Kroupa-Hirsch relationship.
Song, Hong-Lian; Yu, Xiao-Fei; Huang, Qing; ...
2017-01-28
Ion irradiation has been a popular method to modify properties of different kinds of materials. Ion-irradiated crystals have been studied for years, but the effects on microstructure and optical properties during irradiation process are still controversial. In this study, we used 6 MeV C ions with a fluence of 1 × 10 15 ion/cm 2 irradiated Y 2SiO 5 (YSO) crystal at room temperature, and discussed the influence of C ion irradiation on the microstructure, mechanical and optical properties of YSO crystal by Rutherford backscattering/channeling analyzes (RBS/C), X-ray diffraction patterns (XRD), Raman, nano-indentation test, transmission and absorption spectroscopy, the prismmore » coupling and the end-facet coupling experiments. We also used the secondary ion mass spectrometry (SIMS) to analyze the elements distribution along sputtering depth. Finally, 6 MeV C ions with a fluence of 1 × 10 15 ion/cm 2 irradiated caused the deformation of YSO structure and also influenced the spectral properties and lattice vibrations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kozawa, Takahiro, E-mail: t-kozawa@jwri.osaka-u.ac.jp; Yanagisawa, Kazumichi; Murakami, Takeshi
Morphology control of particles formed during conventional solid-state reactions without any additives is a challenging task. Here, we propose a new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles based on water vapor-induced growth of particles during solid-state reactions. We have investigated the synthesis and microstructural evolution of LiMn{sub 2}O{sub 4} particles in air and water vapor atmospheres as model reactions; LiMn{sub 2}O{sub 4} is used as a low-cost cathode material for lithium-ion batteries. By using spherical MnCO{sub 3} precursor impregnated with LiOH, LiMn{sub 2}O{sub 4} spheres with a hollow structure were obtained in air, while angulated particlesmore » with micrometer sizes were formed in water vapor. The pore structure of the particles synthesized in water vapor was found to be affected at temperatures below 700 °C. We also show that the solid-state reaction in water vapor is a simple and valuable method for the large-scale production of particles, where the shape, size, and microstructure can be controlled. - Graphical abstract: This study has demonstrated a new strategy towards achieving morphology control without the use of additives during conventional solid-state reactions by exploiting water vapor-induced particle growth. - Highlights: • A new strategy to control the morphology of LiMn{sub 2}O{sub 4} particles is proposed. • Water vapor-induced particle growth is exploited in solid-state reactions. • The microstructural evolution of LiMn{sub 2}O{sub 4} particles is investigated. • The shape, size and microstructure can be controlled by solid-state reactions.« less
Ablation and cone formation mechanism on CR-39 by ArF laser irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shakeri Jooybari, B., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir; Nuclear Science and Technology Research Institute NSRT, Tehran; Afarideh, H., E-mail: baninshakery@gmail.com, E-mail: hafarideh@aut.ac.ir
In this work, chemical properties, surface modification, and micro structures formation on ablated polyallyl di-glycol carbonate (CR-39) polymer by ArF laser irradiation (λ = 193 nm) at various fluences and pulse number were investigated. CR-39 samples have been irradiated with an ArF laser (193 nm) at a repetition rate of 1 Hz. Threshold fluence of ablation and effective absorption coefficient of CR-39 were determined. Conical microstructures (Taylor cone) formed on laser-ablated CR-39 exhibit: smooth, Taylor cone shape walls and sharp tips together with interference and well defined fringe-structure with a period of 230 nm, around cone base. Mechanism of cone formation and cone evolution of CR-39more » ablated surface were investigated by change of fluences (at a given pulse number) and pulse number (at a given fluence). Cone height, cone base, and region of interface were increased in micrometer steps by increasing the total fluence. Depression on the base of the cone and the circular fringe were simulated. FTIR spectra were measured and energy dispersive x-ray analysis of irradiated and un-irradiated samples was performed.« less
NASA Astrophysics Data System (ADS)
Jung, Jaimyun; Yoon, Jae Ik; Kim, Jung Gi; Latypov, Marat I.; Kim, Jin You; Kim, Hyoung Seop
2017-12-01
Deformation twinning from grain boundaries is often observed in face-centered cubic metals with low stacking fault energy. One of the possible factors that contribute to twinning origination from grain boundaries is the intergranular interactions during deformation. Nonetheless, the influence of mechanical interaction among grains on twin evolution has not been fully understood. In spite of extensive experimental and modeling efforts on correlating microstructural features with their twinning behavior, a clear relation among the large aggregate of grains is still lacking. In this work, we characterize the micromechanics of grain-to-grain interactions that contribute to twin evolution by investigating the mechanical twins near grain boundaries using a full-field crystal plasticity simulation of a twinning-induced plasticity steel deformed in uniaxial tension at room temperature. Microstructures are first observed through electron backscatter diffraction technique to obtain data to reconstruct a statistically equivalent microstructure through synthetic microstructure building. Grain-to-grain micromechanical response is analyzed to assess the collective twinning behavior of the microstructural volume element under tensile deformation. Examination of the simulated results reveal that grain interactions are capable of changing the local mechanical behavior near grain boundaries by transferring strain across grain boundary or localizing strain near grain boundary.
Heavy Deformation of Patented Near-Eutectoid Steel
NASA Astrophysics Data System (ADS)
Khanchandani, Heena; Banerjee, M. K.
2018-01-01
Evolution of microstructure in the patented near-eutectoid steel, forged under varying situations, is critically examined in the present investigation. Steel with 0.74 wt.% carbon is isothermally annealed at 500 °C to obtain fine pearlite microstructure. Steel samples, so patented, are subjected to mechanical deformation by forging at various temperatures with different amount of thickness reduction. Microstructural analyses have revealed that mechanical deformation by forging at lower temperatures brings about partial dissolution of cementite, which is followed by the formation of ɛ-carbide in the microstructures. In contrast, cementite is precipitated within ferrite matrix upon warm or hot forging at higher temperatures. It is further observed that increasing deformation percent during low-temperature forging reduces interlamellar spacing of pearlite, whereas an opposite trend is noticed in case of deformation at higher temperature; moreover, deformation induced the change in interlamellar spacing and formation of fine carbide phases in microstructures has caused appreciable enhancement in hardness of the steel.
NASA Astrophysics Data System (ADS)
Kim, I.-S.; Hunn, J. D.; Hashimoto, N.; Larson^1, D. L.; Maziasz, P. J.; Miyahara, K.; Lee, E. H.
2000-08-01
In an attempt to explore the potential of oxide dispersion strengthened (ODS) ferritic steels for fission and fusion structural materials applications, a set of ODS steels with varying oxide particle dispersion were irradiated at 650°C, using 3.2 MeV Fe + and 330 keV He + ions simultaneously. The void formation mechanisms in these ODS steels were studied by juxtaposing the response of a 9Cr-2WVTa ferritic/martensitic steel and solution annealed AISI 316LN austenitic stainless steel under the same irradiation conditions. The results showed that void formation was suppressed progressively by introducing and retaining a higher dislocation density and finer precipitate particles. Theoretical analyses suggest that the delayed onset of void formation in ODS steels stems from the enhanced point defect recombination in the high density dislocation microstructure, lower dislocation bias due to oxide particle pinning, and a very fine dispersion of helium bubbles caused by trapping helium atoms at the particle-matrix interfaces.
Microstructural processes in irradiated materials
NASA Astrophysics Data System (ADS)
Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie; Almer, Jonathan; Brown, Donald
2016-04-01
These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15-19, 2015.
Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bachmann, Maja D.; Nair, Nityan; Flicker, Felix
By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and, moreover, practical applications in phase-coherent devices and quantum applications have been proposed. Proximity-induced superconductivity promises to allow these experiments on nonsuperconducting Weyl semimetals. Here, we show a new route to reliably fabricate superconducting microstructures from the nonsuperconductingmore » Weyl semimetal NbAs under ion irradiation. Furthermore, the significant difference in the surface binding energy of Nb and As leads to a natural enrichment of Nb at the surface during ion milling, forming a superconducting surface layer (Tc ~ 3.5 K). Being formed from the target crystal itself, the ideal contact between the superconductor and the bulk may enable an effective gapping of the Weyl nodes in the bulk because of the proximity effect. Simple ion irradiation may thus serve as a powerful tool for the fabrication of topological quantum devices from monoarsenides, even on an industrial scale.« less
Inducing superconductivity in Weyl semimetal microstructures by selective ion sputtering
Bachmann, Maja D.; Nair, Nityan; Flicker, Felix; ...
2017-05-24
By introducing a superconducting gap in Weyl or Dirac semimetals, the superconducting state inherits the nontrivial topology of their electronic structure. As a result, Weyl superconductors are expected to host exotic phenomena, such as nonzero-momentum pairing due to their chiral node structure, or zero-energy Majorana modes at the surface. These are of fundamental interest to improve our understanding of correlated topological systems, and, moreover, practical applications in phase-coherent devices and quantum applications have been proposed. Proximity-induced superconductivity promises to allow these experiments on nonsuperconducting Weyl semimetals. Here, we show a new route to reliably fabricate superconducting microstructures from the nonsuperconductingmore » Weyl semimetal NbAs under ion irradiation. Furthermore, the significant difference in the surface binding energy of Nb and As leads to a natural enrichment of Nb at the surface during ion milling, forming a superconducting surface layer (Tc ~ 3.5 K). Being formed from the target crystal itself, the ideal contact between the superconductor and the bulk may enable an effective gapping of the Weyl nodes in the bulk because of the proximity effect. Simple ion irradiation may thus serve as a powerful tool for the fabrication of topological quantum devices from monoarsenides, even on an industrial scale.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
L. Tan; J. T. Busby; H. J. M. Chichester
2013-06-01
An optimized thermomechanical treatment (TMT) applied to austenitic alloy 800H (Fe-21Cr-32Ni) had shown significant improvements in corrosion resistance and basic mechanical properties. This study examined its effect on radiation resistance by irradiating both the solution-annealed (SA) and TMT samples at 500 degrees C for 3 dpa. Microstructural characterization using transmission electron microscopy revealed that the radiation-induced Frank loops, voids, and y'-Ni3(Ti,Al) precipitates had similar sizes between the SA and TMT samples. The amounts of radiation-induced defects and more significantly y' precipitates, however, were reduced in the TMT samples. These reductions would approximately reduce by 40.9% the radiation hardening compared tomore » the SA samples. This study indicates that optimized-TMT is an economical approach for effective overall property improvements.« less
Low-energy electron irradiation induced top-surface nanocrystallization of amorphous carbon film
NASA Astrophysics Data System (ADS)
Chen, Cheng; Fan, Xue; Diao, Dongfeng
2016-10-01
We report a low-energy electron irradiation method to nanocrystallize the top-surface of amorphous carbon film in electron cyclotron resonance plasma system. The nanostructure evolution of the carbon film as a function of electron irradiation density and time was examined by transmission electron microscope (TEM) and Raman spectroscopy. The results showed that the electron irradiation gave rise to the formation of sp2 nanocrystallites in the film top-surface within 4 nm thickness. The formation of sp2 nanocrystallite was ascribed to the inelastic electron scattering in the top-surface of carbon film. The frictional property of low-energy electron irradiated film was measured by a pin-on-disk tribometer. The sp2 nanocrystallized top-surface induced a lower friction coefficient than that of the original pure amorphous film. This method enables a convenient nanocrystallization of amorphous surface.
TEM observations of radiation damage in tungsten irradiated by 20 MeV W ions
NASA Astrophysics Data System (ADS)
Ciupiński, Ł.; Ogorodnikova, O. V.; Płociński, T.; Andrzejczuk, M.; Rasiński, M.; Mayer, M.; Kurzydłowski, K. J.
2013-12-01
Polycrystalline, recrystallized W targets were subjected to implantation with 20 MeV W6+ ions in order to simulate radiation damage caused by fusion neutrons. Three samples with cumulative damage of 0.01, 0.1 and 0.89 dpa were produced. The near-surface zone of each sample has been analyzed by transmission electron microscopy (TEM). To this end, lamellae oriented perpendicularly to the targets implanted surface were milled out using focused ion beam (FIB). A reference lamella from non-irradiated, recrystallized W target was also prepared to estimate the damage introduced during FIB processing. TEM studies revealed a complex microstructure of the damaged zones as well as its evolution with cumulative damage level. The experimentally observed damage depth agrees very well with the one calculated using the Stopping and Range of Ions in Matter (SRIM) software.
NASA Astrophysics Data System (ADS)
Zhou, Z.; Bouwman, W. G.; Schut, H.; van Staveren, T. O.; Heijna, M. C. R.; Pappas, C.
2017-04-01
Neutron irradiation effects on the microstructure of nuclear graphite have been investigated by X-ray diffraction on virgin and low doses (∼ 1.3 and ∼ 2.2 dpa), high temperature (750° C) irradiated samples. The diffraction patterns were interpreted using a model, which takes into account the turbostratic disorder. Besides the lattice constants, the model introduces two distinct coherent lengths in the c-axis and the basal plane, that characterise the volumes from which X-rays are scattered coherently. The methodology used in this work allows to quantify the effect of irradiation damage on the microstructure of nuclear graphite seen by X-ray diffraction. The results show that the changes of the deduced structural parameters are in agreement with previous observations from electron microscopy, but not directly related to macroscopic changes.
Portable vibro-acoustic testing system for in situ microstructure characterization and metrology
NASA Astrophysics Data System (ADS)
Smith, James A.; Nichol, Corrie I.; Zuck, Larry D.; Fatemi, Mostafa
2018-04-01
There is a need in research reactors like the one at INL to inspect irradiated materials and structures. The goal of this work is to develop a portable scanning infrastructure for a material characterization technique called vibro-acoustography (VA) that has been developed by the Idaho National laboratory for nuclear applications to characterize fuel, cladding materials, and structures. The proposed VA technology is based on ultrasound and acoustic waves; however, it provides information beyond what is available from the traditional ultrasound techniques and can expand the knowledge on nuclear material characterization and microstructure evolution. This paper will report on the development of a portable scanning system that will be set up to characterize materials and components in open water reactors and canals in situ. We will show some initial laboratory results of images generated by vibro-acoustics of surrogate fuel plates and graphite structures and discuss the design of the portable system.
Electron-beam irradiation induced transformation of Cu2(OH)3NO3 nanoflakes into nanocrystalline CuO
NASA Astrophysics Data System (ADS)
Padhi, S. K.; Gottapu, S. N.; Krishna, M. Ghanashyam
2016-05-01
The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural transformation that validate CHN modification. High-resolution transmission electron microscopy imaging of e-beam irradiated regions unambiguously supports the growth of CuO nanoparticles (11.8(3.2) nm in diameter). This study demonstrates e-beam irradiation induced CHN depletion, subsequent nucleation and growth of nanocrystalline CuO regions well embedded in the parent burnt porous matrix which can be useful for miniaturized sensing applications. NaBH4 induced room temperature reduction of CHN to elemental Cu and its printability on paper was also demonstrated.The transmission electron microscope electron-beam (TEM e-beam) as a material modification tool has been demonstrated. The material modification is realised in the high-resolution TEM mode (largest condenser aperture, 150 μm, and 200 nm spot size) at a 200 keV beam energy. The Cu2(OH)3NO3 (CHN) nanoflakes used in this study were microwave solution processed that were layered single crystals and radiation sensitive. The single domain CHN flakes disintegrate into a large number of individual CuO crystallites within a 90 s span of time. The sequential bright-field, dark-field, and selected area electron diffraction modes were employed to record the evolved morphology, microstructural changes, and structural transformation that validate CHN modification. High-resolution transmission electron microscopy imaging of e-beam irradiated regions unambiguously supports the growth of CuO nanoparticles (11.8(3.2) nm in diameter). This study demonstrates e-beam irradiation induced CHN depletion, subsequent nucleation and growth of nanocrystalline CuO regions well embedded in the parent burnt porous matrix which can be useful for miniaturized sensing applications. NaBH4 induced room temperature reduction of CHN to elemental Cu and its printability on paper was also demonstrated. Electronic supplementary information (ESI) available. See DOI: 10.1039/c6nr02572b
NASA Astrophysics Data System (ADS)
Suh, Dong-Woo; Park, Seong-Jun; Lee, Tae-Ho; Oh, Chang-Seok; Kim, Sung-Joon
2010-02-01
Microstructural design with an Al addition is suggested for low-carbon, manganese transformation-induced-plasticity (Mn TRIP) steel for application in the continuous-annealing process. With an Al content of 1 mass pct, the competition between the recrystallization of the cold-rolled microstructure and the austenite formation cannot be avoided during intercritical annealing, and the recrystallization of the deformed matrix does not proceed effectively. The addition of 3 mass pct Al, however, allows nearly complete recrystallization of the deformed microstructure by providing a dual-phase cold-rolled structure consisting of ferrite and martensite and by suppressing excessive austenite formation at a higher annealing temperature. An optimized annealing condition results in the room-temperature stability of the intercritical austenite in Mn TRIP steel containing 3 mass pct Al, permitting persistent transformation to martensite during tensile deformation. The alloy presents an excellent strength-ductility balance combining a tensile strength of approximately 1 GPa with a total elongation over 25 pct, which is comparable to that of Mn TRIP steel subjected to batch-type annealing.
Gums induced microstructure stability in Ca(II)-alginate beads containing lactase analyzed by SAXS.
Traffano-Schiffo, Maria Victoria; Castro-Giraldez, Marta; Fito, Pedro J; Perullini, Mercedes; Santagapita, Patricio R
2018-01-01
Previous works show that the addition of trehalose and gums in β-galactosidase (lactase) Ca(II)-alginate encapsulation systems improved its intrinsic stability against freezing and dehydration processes in the pristine state. However, there is no available information on the evolution in microstructure due to the constraints imposed by the operational conditions. The aim of this research is to study the time course of microstructural changes of Ca(II)-alginate matrices driven by the presence of trehalose, arabic and guar gums as excipients and to discuss how these changes influence the diffusional transport (assessed by LF-NMR) and the enzymatic activity of the encapsulated lactase. The structural modifications at different scales were assessed by SAXS. The incorporation of gums as second excipients induces a significant stabilization in the microstructure not only at the rod scale, but also in the characteristic size and density of alginate dimers (basic units of construction of rods) and the degree of interconnection of rods at a larger scale, improving the performance in terms of lactase activity. Copyright © 2017 Elsevier Ltd. All rights reserved.
Microstructure Evolution of AlSi10Mg(Cu) Alloy Related to Isothermal Exposure.
Cai, Cheng; Geng, Huifang; Wang, Shifu; Gong, Boxue; Zhang, Zheng
2018-05-16
The mechanical properties and corrosion resistance changes of AlSi10Mg(Cu) alloy under different isothermal exposure conditions have been investigated by tensile experiments and electrochemical testing. The results show that isothermal exposure has a significant influence on the mechanical properties and corrosion resistance. Tensile strength is more sensitive to the higher exposure temperature, while the corrosion resistance is greater affected by the lower exposure temperature and shorter time. Microstructure evolution of AlSi10Mg(Cu) alloy related to different isothermal exposure condition has also been studied by using transmission electron microscopy (TEM). The results indicate that the isothermal exposure changed the type and density of nanoscale precipitates in the alloy, which in turn induced the change of performance of the alloy.
Lithium concentration dependent structure and mechanics of amorphous silicon
NASA Astrophysics Data System (ADS)
Sitinamaluwa, H. S.; Wang, M. C.; Will, G.; Senadeera, W.; Zhang, S.; Yan, C.
2016-06-01
A better understanding of lithium-silicon alloying mechanisms and associated mechanical behavior is essential for the design of Si-based electrodes for Li-ion batteries. Unfortunately, the relationship between the dynamic mechanical response and microstructure evolution during lithiation and delithiation has not been well understood. We use molecular dynamic simulations to investigate lithiated amorphous silicon with a focus to the evolution of its microstructure, phase composition, and stress generation. The results show that the formation of LixSi alloy phase is via different mechanisms, depending on Li concentration. In these alloy phases, the increase in Li concentration results in reduction of modulus of elasticity and fracture strength but increase in ductility in tension. For a LixSi system with uniform Li distribution, volume change induced stress is well below the fracture strength in tension.
Microstructure Evolution of AlSi10Mg(Cu) Alloy Related to Isothermal Exposure
Cai, Cheng; Geng, Huifang; Wang, Shifu; Gong, Boxue; Zhang, Zheng
2018-01-01
The mechanical properties and corrosion resistance changes of AlSi10Mg(Cu) alloy under different isothermal exposure conditions have been investigated by tensile experiments and electrochemical testing. The results show that isothermal exposure has a significant influence on the mechanical properties and corrosion resistance. Tensile strength is more sensitive to the higher exposure temperature, while the corrosion resistance is greater affected by the lower exposure temperature and shorter time. Microstructure evolution of AlSi10Mg(Cu) alloy related to different isothermal exposure condition has also been studied by using transmission electron microscopy (TEM). The results indicate that the isothermal exposure changed the type and density of nanoscale precipitates in the alloy, which in turn induced the change of performance of the alloy. PMID:29772678
Effects of 200 keV argon ions irradiation on microstructural properties of titanium nitride films
NASA Astrophysics Data System (ADS)
Popović, M.; Novaković, M.; Šiljegović, M.; Bibić, N.
2012-05-01
This paper reports on a study of microstructrual changes in TiN/Si bilayers due to 200 keV Ar+ ions irradiation at room temperature. The 240 nm TiN/Si bilayers were prepared by d.c. reactive sputtering on crystalline Si (1 0 0) substrates. The TiN films were deposited at the substrate temperature of 150 °C. After deposition the TiN/Si bilayers were irradiated to the fluences of 5 × 1015 and 2 × 1016 ions/cm2. The structural changes induced by ion irradiation in the TiN/Si bilayers were analyzed by Rutherford Backscattering Spectroscopy (RBS), X-ray diffraction analyses (XRD) and Transmission Electron Microscopy (TEM). The irradiations caused the microstructrual changes in TiN layers, but no amorphization even at the highest argon fluence of 2 × 1016 ions/cm2. It is also observed that the mean crystallite size decreases with the increasing ion fluence.
NASA Astrophysics Data System (ADS)
Huang, Y.; Wiezorek, J. M. K.; Garner, F. A.; Freyer, P. D.; Okita, T.; Sagisaka, M.; Isobe, Y.; Allen, T. R.
2015-10-01
While thin reactor structural components such as cladding and ducts do not experience significant gradients in dpa rate, gamma heating rate, temperature or stress, thick components can develop strong local variations in void swelling and irradiation creep in response to gradients in these variables. In this study we conducted microstructural investigations by transmission electron microscopy of two 52 mm thick 304-type stainless steel hex-blocks irradiated for 12 years in the EBR-II reactor with accumulated doses ranging from ∼0.4 to 33 dpa. Spatial variations in the populations of voids, precipitates, Frank loops and dislocation lines have been determined for 304 stainless steel sections exposed to different temperatures, different dpa levels and at different dpa rates, demonstrating the existence of spatial gradients in the resulting void swelling. The microstructural measurements compare very well with complementary density change measurements regarding void swelling gradients in the 304 stainless steel hex-block components. The TEM studies revealed that the original cold-worked-state microstructure of the unirradiated blocks was completely erased by irradiation, replaced by high densities of interstitial Frank loops, voids and carbide precipitates at both the lowest and highest doses. At large dose levels the amount of volumetric void swelling correlated directly with the gamma heating gradient-related temperature increase (e.g. for 28 dpa, ∼2% swelling at 418 °C and ∼2.9% swelling at 448 °C). Under approximately iso-thermal local conditions, volumetric void swelling was found to increase with dose level (e.g. ∼0.2% swelling at 0.4 dpa, ∼0.5% swelling at 4 dpa and ∼2% swelling at 28 dpa). Carbide precipitate formation levels were found to be relatively independent of both dpa level and temperature and induced a measurable densification. Void swelling was dominant at the higher dose levels and caused measurable decreases in density. Void swelling at the lowest doses was larger than might be expected based on the dpa level, an observation in agreement with earlier studies showing that the onset of void swelling is accelerated by decreasing dpa rates.
NASA Astrophysics Data System (ADS)
Field, Kevin G.; Briggs, Samuel A.; Hu, Xunxiang; Yamamoto, Yukinori; Howard, Richard H.; Sridharan, Kumar
2017-01-01
FeCrAl alloys are an attractive class of materials for nuclear power applications because of their increased environmental compatibility compared with more traditional nuclear materials. Preliminary studies into the radiation tolerance of FeCrAl alloys under accelerated neutron testing between 300 and 400 °C have shown post-irradiation microstructures containing dislocation loops and a Cr-rich α‧ phase. Although these initial studies established the post-irradiation microstructures, there was little to no focus on understanding the influence of pre-irradiation microstructures on this response. In this study, a well-annealed commercial FeCrAl alloy, Alkrothal 720, was neutron irradiated to 1.8 displacements per atom (dpa) at 382 °C and then the effect of random high-angle grain boundaries on the spatial distribution and size of a〈100〉 dislocation loops, a/2〈111〉 dislocation loops, and black dot damage was analyzed using on-zone scanning transmission electron microscopy. Results showed a clear heterogeneous dislocation loop formation with a/2〈111〉 dislocation loops showing an increased number density and size, black dot damage showing a significant number density decrease, and a〈100〉 dislocation loops exhibiting an increased size in the vicinity of the grain boundary. These results suggest the importance of the pre-irradiation microstructure and, specifically, defect sink density spacing to the radiation tolerance of FeCrAl alloys.
Soft X-Ray Irradiation of Silicates: Implications for Dust Evolution in Protoplanetary Disks
NASA Astrophysics Data System (ADS)
Ciaravella, A.; Cecchi-Pestellini, C.; Chen, Y.-J.; Muñoz Caro, G. M.; Huang, C.-H.; Jiménez-Escobar, A.; Venezia, A. M.
2016-09-01
The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol-gel technique. Its chemical composition reflects the Mg2SiO4 stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may have relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.
Non-Equilibrium Phenomena in High Power Beam Materials Processing
NASA Astrophysics Data System (ADS)
Tosto, Sebastiano
2004-03-01
The paper concerns some aspects of non-equilibrium materials processing with high power beams. Three examples show that the formation of metastable phases plays a crucial role to understand the effects of beam-matter interaction: (i) modeling of pulsed laser induced thermal sputtering; (ii) formation of metastable phases during solidification of the melt pool; (i) possibility of carrying out heat treatments by low power irradiation ``in situ''. The case (i) deals with surface evaporation and boiling processes in presence of superheating. A computer simulation model of thermal sputtering by vapor bubble nucleation in molten phase shows that non-equilibrium processing enables the rise of large surface temperature gradients in the boiling layer and the possibility of sub-surface temperature maximum. The case (ii) concerns the heterogeneous welding of Cu and AISI 304L stainless steel plates by electron beam irradiation. Microstructural investigation of the molten zone has shown that dwell times of the order of 10-1-10-3 s, consistent with moderate cooling rates in the range 10^3-10^5 K/s, entail the formation of metastable Cu-Fe phases. The case (iii) concerns electron beam welding and post-welding treatments of 2219 Al base alloy. Electron microscopy and positron annihilation have explained why post-weld heat transients induced by low power irradiation of specimens in the as welded condition enable ageing effects usually expected after some hours of treatment in furnace. The problem of microstructural instability is particularly significant for a correct design of components manufactured with high power beam technologies and subjected to severe acceptance standards to ensure advanced performances during service life.
Irradiation of Wrought FeCrAl Tubes in the High Flux Isotope Reactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Linton, Kory D.; Field, Kevin G.; Petrie, Christian M.
The Advanced Fuels Campaign within the Nuclear Technology Research and Development program of the Department of Energy Office of Nuclear Energy is seeking to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are one of the leading candidate materials for fuel cladding to replace traditional zirconium alloys because of the superior oxidation resistance of FeCrAl. However, there are still some unresolved questions regarding irradiation effects on the microstructure and mechanical properties of FeCrAl at end-of-life dose levels. In particular, there are concerns related to irradiation-induced embrittlement of FeCrAl alloys due to secondary phase formation. Tomore » address this issue, Oak Ridge National Laboratory has developed a new experimental design to irradiate shortened cladding tube specimens with representative 17×17 array pressurized water reactor diameter and thickness in the High Flux Isotope Reactor (HFIR) under relevant temperatures (300–350°C). Post-irradiation examination will include studies of dimensional change, microstructural changes, and mechanical performance. This report briefly summarizes the capsule design concept and the irradiation test matrix for six rabbit capsules. Each rabbit contains two FeCrAl alloy tube specimens. The specimens include Generation I and Generation II FeCrAl alloys with varying processing conditions, Cr concentrations, and minor alloying elements. The rabbits were successfully assembled, welded, evaluated, and delivered to the HFIR along with a complete quality assurance fabrication package. Pictures of the rabbit assembly process and detailed dimensional inspection of select specimens are included in this report. The rabbits were inserted into HFIR starting in cycle 472 (May 2017).« less
NASA Astrophysics Data System (ADS)
Jokisaari, Andrea M.
Hydride precipitation in zirconium is a significant factor limiting the lifetime of nuclear fuel cladding, because hydride microstructures play a key role in the degradation of fuel cladding. However, the behavior of hydrogen in zirconium has typically been modeled using mean field approaches, which do not consider microstructural evolution. This thesis describes a quantitative microstructural evolution model for the alpha-zirconium/delta-hydride system and the associated numerical methods and algorithms that were developed. The multiphysics, phase field-based model incorporates CALPHAD free energy descriptions, linear elastic solid mechanics, and classical nucleation theory. A flexible simulation software implementing the model, Hyrax, is built on the Multiphysics Object Oriented Simulation Environment (MOOSE) finite element framework. Hyrax is open-source and freely available; moreover, the numerical methods and algorithms that have been developed are generalizable to other systems. The algorithms are described in detail, and verification studies for each are discussed. In addition, analyses of the sensitivity of the simulation results to the choice of numerical parameters are presented. For example, threshold values for the CALPHAD free energy algorithm and the use of mesh and time adaptivity when employing the nucleation algorithm are studied. Furthermore, preliminary insights into the nucleation behavior of delta-hydrides are described. These include a) the sensitivities of the nucleation rate to temperature, interfacial energy, composition and elastic energy, b) the spatial variation of the nucleation rate around a single precipitate, and c) the effect of interfacial energy and nucleation rate on the precipitate microstructure. Finally, several avenues for future work are discussed. Topics encompass the terminal solid solubility hysteresis of hydrogen in zirconium and the effects of the alpha/delta interfacial energy, as well as thermodiffusion, plasticity, and irradiation, which are not yet accounted for in the model.
Tailoring the structural and optical properties of TiN thin films by Ag ion implantation
NASA Astrophysics Data System (ADS)
Popović, M.; Novaković, M.; Rakočević, Z.; Bibić, N.
2016-12-01
Titanium nitride (TiN) thin films thickness of ∼260 nm prepared by dc reactive sputtering were irradiated with 200 keV silver (Ag) ions to the fluences ranging from 5 × 1015 ions/cm2 to 20 × 1015 ions/cm2. After implantation TiN layers were annealed 2 h at 700 °C in a vacuum. Ion irradiation-induced microstructural changes were examined by using Rutherford backscattering spectrometry, X-ray diffraction and transmission electron microscopy, while the surface topography was observed using atomic force microscopy. Spectroscopic ellipsometry was employed to get insights on the optical and electronic properties of TiN films with respect to their microstructure. The results showed that the irradiations lead to deformation of the lattice, increasing disorder and formation of new Ag phase. The optical results demonstrate the contribution of surface plasmon resonace (SPR) of Ag particles. SPR position shifted in the range of 354.3-476.9 nm when Ag ion fluence varied from 5 × 1015 ions/cm2 to 20 × 1015 ions/cm2. Shift in peak wavelength shows dependence on Ag particles concentration, suggesting that interaction between Ag particles dominate the surface plasmon resonance effect. Presence of Ag as second metal in the layer leads to overall decrease of optical resistivity of TiN.
Recrystallization-Induced Surface Cracks of Carbon Ions Irradiated 6H-SiC after Annealing.
Ye, Chao; Ran, Guang; Zhou, Wei; Shen, Qiang; Feng, Qijie; Lin, Jianxin
2017-10-25
Single crystal 6H-SiC wafers with 4° off-axis [0001] orientation were irradiated with carbon ions and then annealed at 900 °C for different time periods. The microstructure and surface morphology of these samples were investigated by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Ion irradiation induced SiC amorphization, but the surface was smooth and did not have special structures. During the annealing process, the amorphous SiC was recrystallized to form columnar crystals that had a large amount of twin structures. The longer the annealing time was, the greater the amount of recrystallized SiC would be. The recrystallization volume fraction was accorded with the law of the Johnson-Mehl-Avrami equation. The surface morphology consisted of tiny pieces with an average width of approximately 30 nm in the annealed SiC. The volume shrinkage of irradiated SiC layer and the anisotropy of newly born crystals during annealing process produced internal stress and then induced not only a large number of dislocation walls in the non-irradiated layer but also the initiation and propagation of the cracks. The direction of dislocation walls was perpendicular to the growth direction of the columnar crystal. The longer the annealing time was, the larger the length and width of the formed crack would be. A quantitative model of the crack growth was provided to calculate the length and width of the cracks at a given annealing time.
Synthesis and visible light photocatalytic property of polyhedron-shaped AgNbO3.
Li, Guoqiang; Yan, Shicheng; Wang, Zhiqiang; Wang, Xiangyan; Li, Zhaosheng; Ye, Jinhua; Zou, Zhigang
2009-10-28
Polyhedron-shaped AgNbO3 photocatalysts were synthesized by solvothermal and liquid-solid methods. Their photocatalytic properties were evaluated from the photocatalytic O2 evolution under visible light irradiation. The polyhedron-shaped AgNbO3 was induced to grow by shaped silver particles followed by the free-growth model. The photocatalytic results indicate that the polyhedron-shaped morphology is favourable for the photocatalytic O2 evolution under visible light irradiation in comparison with the spherical one. Furthermore, the Cu doping on the surface would enhance the visible light photocatalytic activity significantly.
The effect of ion irradiation on the dissolution of UO 2 and UO 2 -based simulant fuel
Popel, Aleksej J.; Wietsma, Thomas W.; Engelhard, Mark H.; ...
2017-11-21
Our aim is to study the separate effect of fission fragment damage on the dissolution of simulant UK advanced gas-cooled reactor nuclear fuel in water. Plain UO 2 and UO 2 samples, doped with inactive fission products to simulate 43 GWd/tU of burn-up, were fabricated. A set of these samples were then irradiated with 92 MeV 129Xe 23+ ions to a fluence of 4.8 × 10 15 ions/cm 2 to simulate the fission damage that occurs within nuclear fuels. The primary effect of the irradiation on the UO 2 samples, observed by scanning electron microscopy, was to induce a smootheningmore » of the surface features and formation of hollow blisters, which was attributed to multiple overlap of ion tracks. Dissolution experiments were conducted in single-pass flow-through (SPFT) mode under anoxic conditions (<0.1 O 2 ppm in Ar) to study the effect of the induced irradiation damage on the dissolution of the UO 2 matrix with data collection capturing six minute intervals for several hours. These time-resolved data showed that the irradiated samples showed a higher initial release of uranium than unirradiated samples, but that the uranium concentrations converged towards ~10 -9 mol/l after a few hours. And apart from the initial spike in uranium concentration, attributed to irradiation induced surficial micro-structural changes, no noticeable difference in uranium chemistry as measured by X-ray electron spectroscopy or ‘effective solubility’ was observed between the irradiated, doped and undoped samples in this work. Some secondary phase formation was observed on the surface of UO 2 samples after the dissolution experiment.« less
The effect of ion irradiation on the dissolution of UO 2 and UO 2 -based simulant fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popel, Aleksej J.; Wietsma, Thomas W.; Engelhard, Mark H.
Our aim is to study the separate effect of fission fragment damage on the dissolution of simulant UK advanced gas-cooled reactor nuclear fuel in water. Plain UO 2 and UO 2 samples, doped with inactive fission products to simulate 43 GWd/tU of burn-up, were fabricated. A set of these samples were then irradiated with 92 MeV 129Xe 23+ ions to a fluence of 4.8 × 10 15 ions/cm 2 to simulate the fission damage that occurs within nuclear fuels. The primary effect of the irradiation on the UO 2 samples, observed by scanning electron microscopy, was to induce a smootheningmore » of the surface features and formation of hollow blisters, which was attributed to multiple overlap of ion tracks. Dissolution experiments were conducted in single-pass flow-through (SPFT) mode under anoxic conditions (<0.1 O 2 ppm in Ar) to study the effect of the induced irradiation damage on the dissolution of the UO 2 matrix with data collection capturing six minute intervals for several hours. These time-resolved data showed that the irradiated samples showed a higher initial release of uranium than unirradiated samples, but that the uranium concentrations converged towards ~10 -9 mol/l after a few hours. And apart from the initial spike in uranium concentration, attributed to irradiation induced surficial micro-structural changes, no noticeable difference in uranium chemistry as measured by X-ray electron spectroscopy or ‘effective solubility’ was observed between the irradiated, doped and undoped samples in this work. Some secondary phase formation was observed on the surface of UO 2 samples after the dissolution experiment.« less
NASA Astrophysics Data System (ADS)
Stephenson, Kale J.; Was, Gary S.
2015-01-01
The objective of this study was to compare the microstructures, microchemistry, hardening, susceptibility to IASCC initiation, and deformation behavior resulting from proton or reactor irradiation. Two commercial purity and six high purity austenitic stainless steels with various solute element additions were compared. Samples of each alloy were irradiated in the BOR-60 fast reactor at 320 °C to doses between approximately 4 and 12 dpa or by a 3.2 MeV proton beam at 360 °C to a dose of 5.5 dpa. Irradiated microstructures consisted mainly of dislocation loops, which were similar in size but lower in density after proton irradiation. Both irradiation types resulted in the formation of Ni-Si rich precipitates in a high purity alloy with added Si, but several other high purity neutron irradiated alloys showed precipitation that was not observed after proton irradiation, likely due to their higher irradiation dose. Low densities of small voids were observed in several high purity proton irradiated alloys, and even lower densities in neutron irradiated alloys, implying void nucleation was in process. Elemental segregation at grain boundaries was very similar after each irradiation type. Constant extension rate tensile experiments on the alloys in simulated light water reactor environments showed excellent agreement in terms of the relative amounts of intergranular cracking, and an analysis of localized deformation after straining showed a similar response of cracking to surface step height after both irradiation types. Overall, excellent agreement was observed after proton and reactor irradiation, providing additional evidence that proton irradiation is a useful tool for accelerated testing of irradiation effects in austenitic stainless steel.
Microstructure, hardness and modulus of carbon-ion-irradiated new SiC fiber (601-4)
NASA Astrophysics Data System (ADS)
Huang, Qing; Lei, Guanhong; Liu, Renduo; Li, Jianjian; Yan, Long; Li, Cheng; Liu, Weihua; Wang, Mouhua
2018-05-01
Two types of SiC fibers, one is low-oxygen and carbon-rich fiber denoted by 601-4 and the other is low-oxygen and near-stoichiometric Tyranno SA, were irradiated with 450 keV C+ ions at room temperature. The Raman spectra indicate that irradiation induced distortion and amorphization of SiC crystallites in fibers. TEM characterization of Tyranno SA suggests that SiC crystallites undergo a continued fragmentation into smaller crystalline islands and a continued increase of surrounding amorphous structure. The SiC nano-crystallites (<15 nm) in 601-4 fiber are more likely to be amorphized than larger crystallites (∼200 nm) in Tyranno SA. The hardness and modulus of 601-4 continuously decreases with increasing fluence, while that of Tyranno SA first increases and then decreases.
Fujita, Keio; Masuda, Yuji; Nakayama, Keisuke; Ando, Maki; Sakamoto, Kenji; Mohri, Jun-pei; Yamauchi, Makoto; Kimura, Masanori; Mizutani, Yasuo; Kimura, Susumu; Yokouchi, Takashi; Suzaki, Yoshifumi; Ejima, Seiki
2005-11-20
Long-period fiber Bragg gratings fabricated by exposure of hydrogen-loaded fiber to UV laser light exhibit large-scale dynamic evolution for approximately two weeks at room temperature. During this time two distinct features show up in their spectrum: a large upswing in wavelength and a substantial deepening of the transmission minimum. The dynamic evolution of the transmission spectrum is explained quantitatively by use of Malo's theory of UV-induced quenching [Electron. Lett. 30, 442 (1994)] followed by refilling of hydrogen in the fiber core and the theory of hydrogen diffusion in the fiber material. The amount of hydrogen quenched by the UV irradiation is 6% of the loaded hydrogen.
Microstructural Evolution of Al2O3-ZrO2 (Y2O3) Composites and its Correlation with Toughness
NASA Astrophysics Data System (ADS)
Kim, Hee Seung; Seo, Mi Young; Kim, Ik Jin
2008-02-01
The microstructure of zirconia (ZrO2) toughened alumina (Al2O3) ceramics was carefully controlled so as to obtain dense and fine-grained ceramics, thereby improving the properties and reliability of the ceramics for capillary applications in semiconductor bonding technology. Al2O3-ZrO2(Y2O3) composite was produced via Ceramic Injection Molding (CIM) technology, followed by Sinter-HIP process. Room temperature strength, hardness, Young's modulus, thermal expansion coefficient and toughness were determined, as well as surface strengthening induced by the fine grained homogenous microstructure and the thermal treatment. The changes in alumina/zirconia grain size, sintering condition and HIP treatment were found to be correlated.
NASA Astrophysics Data System (ADS)
Hoang, Tuan L.; Nazarov, Roman; Kang, Changwoo; Fan, Jiangyuan
2018-07-01
Under the multi-ion irradiation conditions present in accelerated material-testing facilities or fission/fusion nuclear reactors, the combined effects of atomic displacements with radiation products may induce complex synergies in the structural materials. However, limited access to multi-ion irradiation facilities and the lack of computational models capable of simulating the evolution of complex defects and their synergies make it difficult to understand the actual physical processes taking place in the materials under these extreme conditions. In this paper, we propose the application of pulsed single/dual-beam irradiation as replacements for the expensive steady triple-beam irradiation to study radiation damages in materials under multi-ion irradiation.
Numerical Study of Microstructural Evolution During Homogenization of Al-Si-Mg-Fe-Mn Alloys
NASA Astrophysics Data System (ADS)
Priya, Pikee; Johnson, David R.; Krane, Matthew J. M.
2016-09-01
Microstructural evolution during homogenization of Al-Si-Mg-Fe-Mn alloys occurs in two stages at different length scales: while holding at the homogenization temperature (diffusion on the scale of the secondary dendrite arm spacing (SDAS) in micrometers) and during quenching to room temperature (dispersoid precipitation at the nanometer to submicron scale). Here a numerical study estimates microstructural changes during both stages. A diffusion-based model developed to simulate evolution at the SDAS length scale predicts homogenization times and microstructures matching experiments. That model is coupled with a Kampmann Wagner Neumann-based precipitate nucleation and growth model to study the effect of temperature, composition, as-cast microstructure, and cooling rates during posthomogenization quenching on microstructural evolution. A homogenization schedule of 853 K (580 °C) for 8 hours, followed by cooling at 250 K/h, is suggested to optimize microstructures for easier extrusion, consisting of minimal α-Al(FeMn)Si, no β-AlFeSi, and Mg2Si dispersoids <1 μm size.
Laser-Assisted Cold-Sprayed Corrosion- and Wear-Resistant Coatings: A Review
NASA Astrophysics Data System (ADS)
Olakanmi, E. O.; Doyoyo, M.
2014-06-01
Laser-assisted cold spray (LACS) process will be increasingly employed for depositing coatings because of its unique advantages: solid-state deposition of dense, homogeneous, and pore-free coatings onto a range of substrates; and high build rate at reduced operating costs without the use of expensive heating and process inert gases. Depositing coatings with excellent performance indicators via LACS demands an accurate knowledge and control of processing and materials' variables. By varying the LACS process parameters and their interactions, the functional properties of coatings can be manipulated. Moreover, thermal effect due to laser irradiation and microstructural evolution complicate the interpretation of LACS mechanical deformation mechanism which is essential for elucidating its physical phenomena. In order to provide a basis for follow-on-research that leads to the development of high-productivity LACS processing of coatings, this review focuses on the latest developments in depositing corrosion- and wear-resistant coatings with the emphasis on the composition, structure, and mechanical and functional properties. Historical developments and fundamentals of LACS are addressed in an attempt to describe the physics behind the process. Typical technological applications of LACS coatings are also identified. The investigations of all process sequences, from laser irradiation of the powder-laden gas stream and the substrate, to the impingement of thermally softened particles on the deposition site, and subsequent further processes, are described. Existing gaps in the literature relating to LACS-dependent microstructural evolution, mechanical deformation mechanisms, correlation between functional properties and process parameters, processing challenges, and industrial applications have been identified in order to provide insights for further investigations and innovation in LACS deposition of wear- and corrosion-resistant coatings.
NASA Astrophysics Data System (ADS)
Shamanian, Morteza; Mostaan, Hossein; Safari, Mehdi; Szpunar, Jerzy A.
2016-07-01
The as-cast Al alloys contain heterogeneous distributions of non-deforming particles due to non-equilibrium solidification effects. Therefore, these alloys have poor tribological and mechanical behaviors. It is well known that using friction stir processing (FSP), very fine microstructure is created in the as-cast Al alloys, while their wear resistance can be improved. In this research work, FSP is used to locally refine a surface layer of the coarse as-cast microstructure of cast A413 Al alloy. The main objective of this study is to investigate the effect of FSP on microstructure and microtexture evolutions in A413 cast Al alloy. The grain boundary character distribution, grain structure, and microtexture evolutions in as-cast and friction stir processed A413 Al alloy are analyzed by electron back scatter diffraction technique. It is found that with the FSP, the fraction of low ∑boundary such as ∑3, 7, and 9 are increased. The obtained results show that there are no deformation texture components in the structure of friction stir processed samples. However, some of the main recrystallization texture components such as BR and cubeND are formed during FSP which indicate the occurrence of dynamic recrystallization phenomenon due to the severe plastic deformation induced by the rotation of tool.
Cha, Pil-Ryung; Han, Hyung-Seop; Yang, Gui-Fu; Kim, Yu-Chan; Hong, Ki-Ha; Lee, Seung-Cheol; Jung, Jae-Young; Ahn, Jae-Pyeong; Kim, Young-Yul; Cho, Sung-Youn; Byun, Ji Young; Lee, Kang-Sik; Yang, Seok-Jo; Seok, Hyun-Kwang
2013-01-01
Crystalline Mg-based alloys with a distinct reduction in hydrogen evolution were prepared through both electrochemical and microstructural engineering of the constituent phases. The addition of Zn to Mg-Ca alloy modified the corrosion potentials of two constituent phases (Mg + Mg2Ca), which prevented the formation of a galvanic circuit and achieved a comparable corrosion rate to high purity Mg. Furthermore, effective grain refinement induced by the extrusion allowed the achievement of much lower corrosion rate than high purity Mg. Animal studies confirmed the large reduction in hydrogen evolution and revealed good tissue compatibility with increased bone deposition around the newly developed Mg alloy implants. Thus, high strength Mg-Ca-Zn alloys with medically acceptable corrosion rate were developed and showed great potential for use in a new generation of biodegradable implants. PMID:23917705
Comparison of irradiation behaviour of HTR graphite grades
NASA Astrophysics Data System (ADS)
Heijna, M. C. R.; de Groot, S.; Vreeling, J. A.
2017-08-01
The INNOGRAPH irradiations were executed in the High Flux Reactor (HFR) in Petten by NRG supported by the European Framework programs HTR-M, RAPHAEL, and ARCHER to generate data on the irradiation behaviour of graphite grades for High Temperature Reactor (HTR) application available at that time. Samples of the graphite grades NBG-10, NBG-17, NBG-18, NBG-20, NBG-25, PCEA, PPEA, PCIB, and IG-110 have been irradiated at 750 °C and 950 °C. The inherent scatter induced by the probabilistic material behaviour of graphite requires uncertainty and scatter induced by test conditions and post-irradiation examination to be minimized. The INNOGRAPH irradiations supplied an adequate number of irradiated samples to enable accurate determination of material properties and their evolution under irradiation. This allows comparison of different graphite grades and a qualitative assessment of their appropriateness for HTR applications, as a basis of selection, design and core component lifetime. The results indicate that coarse grained graphite grades exhibit more favourable behaviour for application in HTRs due to their low dimensional anisotropy and fracture propagation resilience.
NASA Astrophysics Data System (ADS)
Han, Qihang; Zhang, Yulong; Wang, Li
2015-05-01
To investigate microstructural evolution and its effects on the deformation behaviors of cold-rolled 10Mn1.5Al TRIP steel, a series of intercritical annealing treatments with various holding times from 3 minutes to 48 hours were conducted. With the increase of the holding time from 3 minutes to 12 hours, the elongation was improved from 15 to 42 pct, while the tensile strength was only reduced from 1210 to 1095 MPa; the strength-ductility combination thus exceeded 45 GPa pct. Austenite was found to coexist with martensite within deformed grains, which reduced the strain concentration at the interface. The austenite transformation fraction, as measured from the {220} peaks, after 3 minutes annealing was half that after 12 hours annealing. This is an indication that the slip systems were more easily activated in the micro-scaled grains compared with nano-scaled grains. Therefore, although the stability of austenite would have increased during annealing, size-induced slip suppression was reduced. Thus, more strain was accommodated in the austenite, facilitating a greater strain-induced transformation and better ductility.
Greiner, Christian; Liu, Zhilong; Strassberger, Luis; Gumbsch, Peter
2016-06-22
Tailoring the surface properties of a material for low friction and little wear has long been a goal of tribological research. Since the microstructure of the material under the contact strongly influences tribological performance, the ability to control this microstructure is thereby of key importance. However, there is a significant lack of knowledge about the elementary mechanisms of microstructure evolution under tribological load. To cover different stages of this microstructure evolution, high-purity copper was investigated after increasing numbers of sliding cycles of a sapphire sphere in reciprocating motion. Scanning electron and focused ion beam (FIB) microscopy were applied to monitor the microstructure changes. A thin tribologically deformed layer which grew from tens of nanometers to several micrometers with increasing number of cycles was observed in cross-sections. By analyzing dislocation structures and local orientation changes in the cross-sectional areas, dislocation activity, the occurrence of a distinct dislocation trace line, and the emergence of new subgrain boundaries could be observed at different depths. These results strongly suggest that dislocation self-organization is a key elementary mechanism for the microstructure evolution under a tribological load. The distinct elementary processes at different stages of sliding identified here will be essential for the future modeling of the microstructure evolution in tribological contacts.
Heavy-ion irradiation effects on U3O8 incorporated Gd2Zr2O7 waste forms.
Lu, Xirui; Shu, Xiaoyan; Chen, Shunzhang; Zhang, Kuibao; Chi, Fangtin; Zhang, Haibin; Shao, Dadong; Mao, Xueli
2018-06-12
In this research, the heavy-ion irradiation effects of U-bearing Gd 2 Zr 2 O 7 ceramics were explored for nuclear waste immobilization. U 3 O 8 was designed to be incorporated into Gd 2 Zr 2 O 7 from two different routes in the form of (Gd 1-4 x U 2 x ) 2 (Zr 1- x U x ) 2 O 7 (x = 0.1, 0.14). The self-irradiation of actinide nuclides was simulated by Xe 20+ heavy-ion radiation under different fluences. Grazing incidence X-ray diffraction (GIXRD) analysis reveals the relationship between radiation dose, damage and depth. The radiation tolerance is promoted with the increment of U 3 O 8 content in the discussed range. Raman spectroscopy testifies the enhancement of radiation tolerance and microscopically existed phase evolution from the chemical bond vibrations. In addition, the microstructure and elemental distribution of the irradiated samples were analyzed as well. The amorphization degree of the sample surface declines as the U content was elevated from x = 0.1 to x = 0.14. Copyright © 2018 Elsevier B.V. All rights reserved.
Photoluminescent Au-Ge composite nanodots formation on SiO2 surface by ion induced dewetting
NASA Astrophysics Data System (ADS)
Datta, D. P.; Siva, V.; Singh, A.; Kanjilal, D.; Sahoo, P. K.
2017-09-01
Medium energy ion irradiation on a bilayer of Au and Ge on SiO2 is observed to result in gradual morphological evolution from an interconnected network to a nanodot array on the insulator surface. Structural and compositional analyses reveal composite nature of the nanodots, comprising of both Au and Ge. The growing nanostructures are found to be photoluminescent at room temperature where the emission intensity and wavelengths vary with morphology. The growth of such nanostructures can be understood in terms of dewetting of the metal layer under ion irradiation due to ion-induced melting along the ion tracks. The visible PL emission is found to be related with evolution of the Au-Ge nanodots. The study indicates a route towards single step synthesis of metal-semiconductor nanodots on insulator surface.
Progress in understanding fission-product behaviour in coated uranium-dioxide fuel particles
NASA Astrophysics Data System (ADS)
Barrachin, M.; Dubourg, R.; Kissane, M. P.; Ozrin, V.
2009-03-01
Supported by results of calculations performed with two analytical tools (MFPR, which takes account of physical and chemical mechanisms in calculating the chemical forms and physical locations of fission products in UO2, and MEPHISTA, a thermodynamic database), this paper presents an investigation of some important aspects of the fuel microstructure and chemical evolutions of irradiated TRISO particles. The following main conclusions can be identified with respect to irradiated TRISO fuel: first, the relatively low oxygen potential within the fuel particles with respect to PWR fuel leads to chemical speciation that is not typical of PWR fuels, e.g., the relatively volatile behaviour of barium; secondly, the safety-critical fission-product caesium is released from the urania kernel but the buffer and pyrolytic-carbon coatings could form an important chemical barrier to further migration (i.e., formation of carbides). Finally, significant releases of fission gases from the urania kernel are expected even in nominal conditions.
SOFT X-RAY IRRADIATION OF SILICATES: IMPLICATIONS FOR DUST EVOLUTION IN PROTOPLANETARY DISKS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ciaravella, A.; Cecchi-Pestellini, C.; Jiménez-Escobar, A.
2016-09-01
The processing of energetic photons on bare silicate grains was simulated experimentally on silicate films submitted to soft X-rays of energies up to 1.25 keV. The silicate material was prepared by means of a microwave assisted sol–gel technique. Its chemical composition reflects the Mg{sub 2}SiO{sub 4} stoichiometry with residual impurities due to the synthesis method. The experiments were performed using the spherical grating monochromator beamline at the National Synchrotron Radiation Research Center in Taiwan. We found that soft X-ray irradiation induces structural changes that can be interpreted as an amorphization of the processed silicate material. The present results may havemore » relevant implications in the evolution of silicate materials in X-ray-irradiated protoplanetary disks.« less
Morphological bubble evolution induced by air diffusion on submerged hydrophobic structures
NASA Astrophysics Data System (ADS)
Lv, Pengyu; Xiang, Yaolei; Xue, Yahui; Lin, Hao; Duan, Huiling
2017-03-01
Bubbles trapped in the cavities always play important roles in the underwater applications of structured hydrophobic surfaces. Air exchange between bubbles and surrounding water has a significant influence on the morphological bubble evolution, which in turn frequently affects the functionalities of the surfaces, such as superhydrophobicity and drag reduction. In this paper, air diffusion induced bubble evolution on submerged hydrophobic micropores under reduced pressures is investigated experimentally and theoretically. The morphological behaviors of collective and single bubbles are observed using confocal microscopy. Four representative evolution phases of bubbles are captured in situ. After depressurization, bubbles will not only grow and coalesce but also shrink and split although the applied pressure remains negative. A diffusion-based model is used to analyze the evolution behavior and the results are consistent with the experimental data. A criterion for bubble growth and shrinkage is also derived along with a phase diagram, revealing that the competition of effective gas partial pressures across the two sides of the diffusion layer dominates the bubble evolution process. Strategies for controlling the bubble evolution behavior are also proposed based on the phase diagram. The current work provides a further understanding of the general behavior of bubble evolution induced by air diffusion and can be employed to better designs of functional microstructured hydrophobic surfaces.
Kim, J. T.; Hong, S. H.; Park, H. J.; Kim, Y. S.; Suh, J. Y.; Lee, J. K.; Park, J. M.; Maity, T.; Eckert, J.; Kim, K. B.
2017-01-01
In the present study, the microstructural evolution and the modulation of the mechanical properties have been investigated for a Co-Cr-Mo (CCM) ternary eutectic alloy by addition of a small amount of copper (0.5 and 1 at.%). The microstructural observations reveal a distinct dissimilarity in the eutectic structure such as a broken lamellar structure and a well-aligned lamellar structure and an increasing volume fraction of Co lamellae as increasing amount of copper addition. This microstructural evolution leads to improved plasticity from 1% to 10% without the typical tradeoff between the overall strength and compressive plasticity. Moreover, investigation of the fractured samples indicates that the CCMCu alloy exhibits higher plastic deformability and combinatorial mechanisms for improved plastic behavior. The improved plasticity of CCMCu alloys originates from several deformation mechanisms; i) slip, ii) deformation twinning, iii) strain-induced transformation and iv) shear banding. These results reveal that the mechanical properties of eutectic alloys in the Co-Cr-Mo system can be ameliorated by micro-alloying such as Cu addition. PMID:28067248
NASA Astrophysics Data System (ADS)
Cao, X. Y.; Zhu, P.; Ding, X. F.; Lu, Y. H.; Shoji, T.
2017-04-01
Microstructural evolution and mechanical property change of E308L stainless steel weld overlay cladding aged at 400 °C for 400, 1000 and 5000 h were investigated by transmission electron microscope (TEM) and small punch test (SPT). The results indicated that thermal aging had no obvious effect on the volume fraction of ferrite, but can cause microstructural evolution by spinodal decomposotion and G-phase precipitation in the ferrite phase. Spinodal decomposition took place after aging up to 1000 h, while G-phase formed along dislocations, and growed up to 2-11 nm after aging for 5000 h. The total energy for inducing deformation and fracture by the small punch tests decreased with the increase of thermal aging time, and this decline was associated with spinodal decomposition and G-phase precipitation. Plastic deformation of the aged ferrite proceeded via formation of curvilinear slip bands. Nucleation of microcracks occurred at the δ/γ interface along the slip bands. The hardening of the ferrite and high stress concentration on δ/γ phase interface resulted in brittle fracture and phase boundary separation after thermal aging.
Reverse-transformation austenite structure control with micro/nanometer size
NASA Astrophysics Data System (ADS)
Wu, Hui-bin; Niu, Gang; Wu, Feng-juan; Tang, Di
2017-05-01
To control the reverse-transformation austenite structure through manipulation of the micro/nanometer grain structure, the influences of cold deformation and annealing parameters on the microstructure evolution and mechanical properties of 316L austenitic stainless steel were investigated. The samples were first cold-rolled, and then samples deformed to different extents were annealed at different temperatures. The microstructure evolutions were analyzed by optical microscopy, scanning electron microscopy (SEM), magnetic measurements, and X-ray diffraction (XRD); the mechanical properties are also determined by tensile tests. The results showed that the fraction of stain-induced martensite was approximately 72% in the 90% cold-rolled steel. The micro/nanometric microstructure was obtained after reversion annealing at 820-870°C for 60 s. Nearly 100% reversed austenite was obtained in samples annealed at 850°C, where grains with a diameter ≤ 500 nm accounted for 30% and those with a diameter > 0.5 μm accounted for 70%. The micro/nanometer-grain steel exhibited not only a high strength level (approximately 959 MPa) but also a desirable elongation of approximately 45%.
Role of refractory inclusions in the radiation-induced microstructure of APMT
NASA Astrophysics Data System (ADS)
Zhang, Dalong; Briggs, Samuel A.; Field, Kevin G.
2018-07-01
Kanthal APMT is a promising FeCrAl-based alloy for accident-tolerant fuel cladding because of its excellent high-temperature oxidation resistance. In this study, powder metallurgy Kanthal APMT alloy, neutron irradiated to 1.8 dpa at nominally 382 °C, was characterized. On-zone STEM imaging revealed that radiation-induced dislocation loops with Burgers vectors of a/2<111> or a < 100 > and black dots tended to agglomerate in the vicinity of refractory inclusions. The densities and sizes of these loops decreased with distance from the inclusion-matrix interfaces. In addition, high-resolution energy-dispersive X-ray spectroscopy mapping was used to determine the inclusions to be either yttrium- or silicon-rich, as well as to detect the radial distribution of radiation-enhanced α‧ phase near these inclusions. A high density of randomly distributed Cr-rich α‧ phase was found, regardless of the presence of inclusions. Results from this study provide insights into how microstructural features can locally tailor the radiation-induced defects in FeCrAl-based alloys.
Stoichiometry effect on the irradiation response in the microstructure of zirconium carbides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young Yang; Wei-Yang Lo; Clayton Dickerson
2014-11-01
Zone-refined ultra high pure ZrC with five C/Zr ratios ranging from 0.84 to 1.17 was irradiated using a 2 MeV proton beam at 1125 C. The stoichiometry effect on the irradiation response of ZrC microstructure was examined using transmission electron microscopy following the irradiation. The irradiated microstructures generally feature a high density of perfect dislocation loops particularly at away from the graphite precipitates, and the C/Zr ratio shows a notable effect on the size and density of dislocation loops. The dislocation loops are identified as interstitial type perfect loops, and it was indirectly proved that the dislocation loop core likelymore » consists of carbon atoms. Graphite precipitates that form with excess carbon in the super-stoichiometric ZrC are detrimental, and the dramatic increases in the size of and density of dislocation loops in the vicinity of graphite precipitates in ZrC phase were observed. Irradiationinduced faceted voids were only observed in ZrC0.95, which is attributed to the pre-existing dislocation lines as biased sinks for vacancies.« less
2010-01-01
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 3s1 ÿ s2 2b s x: ð8Þ Note that Eqs. (7) and (8) are nonlinear diffusion equations, and as such possess solitonic ...ðDGh ¼ 0Þ is approached, an Mÿ—Mþ interface splits into Mÿ—A and A—Mþ diffuse interfaces sepa- rated by a layer of A ( soliton splitting – Falk, 1983...in the bottom figure for g1, the dark blue field corresponds to g2 ¼ 1, i.e., with the variant M2. After passing through a complex microstructure
Dey, Sanchita; Mardinly, John; Wang, Yongqiang; ...
2016-05-27
Grain boundaries are effective sinks for radiation-induced defects, ultimately impacting the radiation tolerance of nanocrystalline materials (dense materials with nanosized grains) against net defect accumulation. However, irradiation-induced grain growth leads to grain boundary area decrease, shortening potential benefits of nanostructures. A possible approach to mitigate this is the introduction of dopants to target a decrease in grain boundary mobility or a reduction in grain boundary energy to eliminate driving forces for grain growth (using similar strategies as to control thermal growth). Here, in this study, we tested this concept in nanocrystalline zirconia doped with lanthanum. Although the dopant is observedmore » to segregate to the grain boundaries, causing grain boundary energy decrease and promoting dragging forces for thermally activated boundary movement, irradiation induced grain growth could not be avoided under heavy ion irradiation, suggesting a different growth mechanism as compared to thermal growth. Furthermore, it is apparent that reducing the grain boundary energy reduced the effectiveness of the grain boundary as sinks, and the number of defects in the doped material is higher than in undoped (La-free) YSZ.« less
Microstructure Characterization of RERTR Fuel
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Gan; B. D. Miller; D. D. Keiser
2008-09-01
A variety of phases have the potential to develop in the irradiated fuels for the reduced enrichment research test reactor (RERTR) program. To study the radiation stability of these potential phases, three depleted uranium alloys were cast. The phases of interest were identified including U(Si,Al)3, (U,Mo)(Si,Al)3, UMo2Al20, UAl4, and U6Mo4Al43. These alloys were irradiated with 2.6 MeV protons at 200ºC up to 3.0 dpa. The microstructure is characterized using SEM and TEM. Microstructural characterization for an archive dispersion fuel plate (U-7Mo fuel particles in Al-2%Si cladding) was also carried out. TEM sample preparation for the irradiated dispersion fuel has beenmore » developed.« less
Initial stages of ion beam-induced phase transformations in Gd2O3 and Lu2O3
NASA Astrophysics Data System (ADS)
Chen, Chien-Hung; Tracy, Cameron L.; Wang, Chenxu; Lang, Maik; Ewing, Rodney C.
2018-02-01
The atomic-scale evolution of lanthanide sesquioxides Gd2O3 and Lu2O3 irradiated with 1 MeV Kr ions at room temperature and 120 K, up to fluences of 1 × 1016 ions/cm2 (˜20 dpa), has been characterized by in situ transmission electron microscopy. At room temperature, both oxides exhibited high radiation tolerance. Irradiation did not cause any observable structural change in either material, likely due to the mobility of irradiation-induced point defects, causing efficient defect annihilation. For Gd2O3, having the larger cation ionic radius of the two materials, an irradiation-induced stacking fault structure appeared at low fluences in the low temperature irradiation. As compared with the cubic-to-monoclinic phase transformations known to result from higher energy (˜GeV) ion irradiation, Kr ions of lower energies (˜MeV) yield much lower rates of damage accumulation and thus less extensive structural modification. At a fluence of 2.5 × 1015 ions/cm2, only the initial stages of the cubic-to-monoclinic (C to B) phase transformation process, consisting of the formation and aggregation of defects, have been observed.
The origins of Asteroidal rock disaggregation: Interplay of thermal fatigue and microstructure
NASA Astrophysics Data System (ADS)
Hazeli, Kavan; El Mir, Charles; Papanikolaou, Stefanos; Delbo, Marco; Ramesh, K. T.
2018-04-01
The distributions of size and chemical composition in regolith on airless bodies provide clues to the evolution of the solar system. Recently, the regolith on asteroid (25143) Itokawa, visited by the JAXA Hayabusa spacecraft, was observed to contain millimeter to centimeter sized particles. Itokawa boulders commonly display well-rounded profiles and surface textures that appear inconsistent with mechanical fragmentation during meteorite impact; the rounded profiles have been hypothesized to arise from rolling and movement on the surface as a consequence of seismic shaking. This investigation provides a possible explanation of these observations by exploring the primary crack propagation mechanism during thermal fatigue of a chondrite. Herein, we present the evolution of the full-field strains on the surface as a function of temperature and microstructure, and examine the crack growth during thermal cycling. Our experimental results demonstrate that thermal-fatigue-driven fracture occurs under these conditions. The results suggest that the primary fatigue crack path preferentially follows the interfaces between monominerals, leaving the minerals themselves intact after fragmentation. These observations are explained through a microstructure-based finite element model that is quantitatively compared with our experimental results. These results on the interactions of thermal fatigue cracking with the microstructure may ultimately allow us to distinguish between thermally induced fragments and impact products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pasebani, Somayeh; Charit, Indrajit; Burns, Jatuporn
Thermally stable nanofeatures with high number density are expected to impart excellent high temperature strength and irradiation stability in nanostructured ferritic steels (NFSs) which have potential applications in advanced nuclear reactors. A lanthana-bearing NFS (14LMT) developed via mechanical alloying and spark plasma sintering was used in this study. The sintered samples were irradiated by Fe 2+ ions to 10, 50 and 100 dpa at 30 °C and 500 °C. Microstructural and mechanical characteristics of the irradiated samples were studied using different microscopy techniques and nanoindentation, respectively. Overall morphology and number density of the nanofeatures remained unchanged after irradiation. Average radiusmore » of nanofeatures in the irradiated sample (100 dpa at 500 °C) was slightly reduced. A notable level of irradiation hardening and enhanced dislocation activity occurred after ion irradiation except at 30 °C and ≥50 dpa. Other microstructural features like grain boundaries and high density of dislocations also provided defect sinks to assist in defect removal.« less
Influence of chemical disorder on energy dissipation and defect evolution in advanced alloys
Zhang, Yanwen; Jin, Ke; Xue, Haizhou; ...
2016-08-01
We report that historically, alloy development with better radiation performance has been focused on traditional alloys with one or two principal element(s) and minor alloying elements, where enhanced radiation resistance depends on microstructural or nanoscale features to mitigate displacement damage. In sharp contrast to traditional alloys, recent advances of single-phase concentrated solid solution alloys (SP-CSAs) have opened up new frontiers in materials research. In these alloys, a random arrangement of multiple elemental species on a crystalline lattice results in disordered local chemical environments and unique site-to-site lattice distortions. Based on closely integrated computational and experimental studies using a novel setmore » of SP-CSAs in a face-centered cubic structure, we have explicitly demonstrated that increasing chemical disorder can lead to a substantial reduction in electron mean free paths, as well as electrical and thermal conductivity, which results in slower heat dissipation in SP-CSAs. The chemical disorder also has a significant impact on defect evolution under ion irradiation. Considerable improvement in radiation resistance is observed with increasing chemical disorder at electronic and atomic levels. Finally, the insights into defect dynamics may provide a basis for understanding elemental effects on evolution of radiation damage in irradiated materials and may inspire new design principles of radiation-tolerant structural alloys for advanced energy systems.« less
Aidhy, Dilpuneet S.; Lu, Chenyang; Jin, Ke; ...
2015-08-08
Using molecular dynamics simulations, we elucidate irradiation-induced point defect evolution in fcc pure Ni, Ni 0.5Fe 0.5, and Ni 0.8Cr 0.2 solid solution alloys. We find that irradiation-induced interstitials form dislocation loops that are of 1/3 <111>{111}-type, consistent with our experimental results. While the loops are formed in all the three materials, the kinetics of formation is considerably slower in NiFe and NiCr than in pure Ni, indicating that defect migration barriers and extended defect formation energies could be higher in the alloys than pure Ni. As a result, while larger size clusters are formed in pure Ni, smaller andmore » more clusters are observed in the alloys. The vacancy diffusion occurs at relatively higher temperatures than interstitials, and their clustering leads to formation of stacking fault tetrahedra, also consistent with our experiments. The results also show that the surviving Frenkel pairs are composition-dependent and are largely Ni dominated.« less
The Role of Grain Size on Neutron Irradiation Response of Nanocrystalline Copper
Mohamed, Walid; Miller, Brandon; Porter, Douglas; Murty, Korukonda
2016-01-01
The role of grain size on the developed microstructure and mechanical properties of neutron irradiated nanocrystalline copper was investigated by comparing the radiation response of material to the conventional micrograined counterpart. Nanocrystalline (nc) and micrograined (MG) copper samples were subjected to a range of neutron exposure levels from 0.0034 to 2 dpa. At all damage levels, the response of MG-copper was governed by radiation hardening manifested by an increase in strength with accompanying ductility loss. Conversely, the response of nc-copper to neutron irradiation exhibited a dependence on the damage level. At low damage levels, grain growth was the primary response, with radiation hardening and embrittlement becoming the dominant responses with increasing damage levels. Annealing experiments revealed that grain growth in nc-copper is composed of both thermally-activated and irradiation-induced components. Tensile tests revealed minimal change in the source hardening component of the yield stress in MG-copper, while the source hardening component was found to decrease with increasing radiation exposure in nc-copper. PMID:28773270
Effect of solute atoms on swelling in Ni alloys and pure Ni under He + ion irradiation
NASA Astrophysics Data System (ADS)
Wakai, E.; Ezawa, T.; Imamura, J.; Takenaka, T.; Tanabe, T.; Oshima, R.
2002-12-01
The effects of solute atoms on microstructural evolutions have been investigated using Ni alloys under 25 keV He + irradiation at 500 °C. The specimens used were pure Ni, Ni-Si, Ni-Co, Ni-Cu, Ni-Mn and Ni-Pd alloys with different volume size factors. The high number densities of dislocation loops about 1.5×10 22 m -3 were formed in the specimens irradiated to 1×10 19 ions/m 2, and they were approximately equivalent, except for Ni-Si. The mean size of loops tended to increase with the volume size factor of solute atoms. In a dose of 4×10 20 ions/m 2, the swelling was changed from 0.2% to 4.5%, depending on the volume size factors. The number densities of bubbles tended to increase with the absolute values of the volume size factor, and the swelling increased with the volume size factors. This suggests that the mobility of helium and vacancy atoms may be influenced by the interaction of solute atoms with them.
Jia, Xiaolong; Tang, Tianhong; Cheng, Dan; Zhang, Cuihua; Zhang, Ran; Cai, Qing; Yang, Xiaoping
2015-12-01
Bioactive glass (BG)-containing carbon nanofibers (CNFs) are promising orthopaedic biomaterials. Herein, CNF composites were produced from electrospinning of polyacrylonitrile (PAN)/BG sol-gel precursor solution, followed by carbonization. Choosing 58S-type BG (mol%: 58.0% SiO2-26.3% CaO-15.7% P2O5) as the model, micro-structural evolution of CNF/BG composites was systematically evaluated in relating to aging times of BG precursor solution. With aging time prolonging, BG precursors underwent morphological changes from small sol clusters with loosely and randomly branched structure to highly crosslinked Si-network structure, showing continuous increase in solution viscosity. BG precursor solution with low viscosity could mix well with PAN solution, resulting in CNF composite with homogeneously distributed BG component. Whereas, BG precursor gel with densely crosslinked Si-network structure led to uneven distribution of BG component along final CNFs due to its significant phase separation from PAN component. Meanwhile, BG nanoparticles in CNFs demonstrated micro-structural evolution that they transited from weak to strong crystal state along with longer aging time. Biomineralization in simulated body fluid and in vitro osteoblasts proliferation were then applied to determine the bioactivity of CNF/BG composites. CNF/BG composites prepared from shorter aging time could induce both faster apatite deposition and cell proliferation rate. It was suggested weakly crystallized BG nanoparticles along CNFs dissolved fast and was able to provide numerous nucleation sites for apatite deposition, which also favored the proliferation of osteoblasts cells. Aging time could thus be a useful tool to regulate the biological features of CNF/BG composites. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Christoffersen, R.; Loeffler, M. J.; Dukes, C. A.; Baragiola, R. A.
2015-01-01
Introduction: The use of pulsed laser irradiation to simulate the short duration, high-energy conditions characteristic of micrometeorite impacts is now an established approach in experimental space weathering studies. The laser generates both melt and vapor deposits that contain nanophase metallic Fe (npFe(sup 0)) grains with size distributions and optical properties similar to those in natural impact-generated melt and vapor deposits. There remains uncertainty, however, about how well lasers simulate the mechanical work and internal (thermal) energy partitioning that occurs in actual impacts. We are currently engaged in making a direct comparison between the products of laser irradiation and experimental/natural hypervelocity impacts. An initial step reported here is to use analytical TEM is to attain a better understanding of how the microstructure and composition of laser deposits evolve over multiple cycles of pulsed laser irradiation. Experimental Methods: We irradiated pressed-powder pellets of San Carlos olivine (Fo(sub 90)) with up to 99 rastered pulses of a GAM ArF excimer laser. The irradiated surface of the sample were characterized by SEM imaging and areas were selected for FIB cross sectioning for TEM study using an FEI Quanta dual-beam electron/focused ion beam instrument. FIB sections were characterized using a JEOL2500SE analytical field-emission scanning transmission electron microscope (FE-STEM) optimized for quantitative element mapping at less than 10 nm spatial resolutions. Results: In the SEM the 99 pulse pressed pellet sample shows a complex, inhomogeneous, distribution of laser-generated material, largely concentrated in narrow gaps and larger depressions between grains. Local concentrations of npFe0 spherules 0.1 to 1 micrometers in size are visible within these deposits in SEM back-scatter images. Fig. 1 shows bright-field STEM images of a FIB cross-section of a one of these deposits that continuously covers the top and sloping side of an olivine grain. The deposit has 3 microstructurally distinct sub-layers composed of silicate glass with varying modal fractions and size distributions of npFe( sup 0) spherules, along with nanocrystalline silicate material. A relatively thin (50-300 nm) topmost surface layer has a high-concentration of npFe0 spherules 5-20 nm in size. Element mapping shows the layer to be enriched in Fe by a factor of 2.5 relative to the olivine substrate, with Mg and Si depleted by 20% and 10% respectively. This is compositionally complementary to the underlying, middle layer of the deposit that is depleted in Fe, enriched in Mg and has a much lower npFe0 concentration. A third layer of nanocrystalline olivine occurs at the substrate interface. Discussion: The FE-STEM results suggest the topmost layer is a vapor deposit, underlain by a thicker microstructurally complex melt-generated layer. The compositional relations suggest the melt layer was partially vaporized, preferentially losing more volatile elements (e.g., Fe). The vaporized material re-condensed to form the thin, npFe(sup 0)-rich surface deposit during or immediately after the scan cycle. Nanocrystalline olivine that grew within the melt layer as it formed and cooled is similar in volume and microstructure to what we have observed in the impact melt lining of a micrometeorite impact crater in olivine. This suggest the time-temperature relations attained in the laser sample may not be too different from a micrometeorite impact. Our TEM observations, however, do not show evidence for the same level of mechanical dam-age (e.g., fracturing) seen around the natural micrometeorite crater.
Pulsed-Laser Irradiation Space Weathering of a Carbonaceous Chondrite
NASA Astrophysics Data System (ADS)
Thompson, M. S.; Keller, L. P.; Christoffersen, R.; Loeffler, M. J.; Morris, R. V.; Graff, T. G.; Rahman, Z.
2017-07-01
We used pulsed laser irradiation of the Murchison meteorite to simulate space weathering processes in the laboratory. We analyzed changes in the spectral, chemical, and microstructural characteristics of the material after irradiation.
NASA Astrophysics Data System (ADS)
Duan, Binghuang; Heintze, Cornelia; Bergner, Frank; Ulbricht, Andreas; Akhmadaliev, Shavkat; Oñorbe, Elvira; de Carlan, Yann; Wang, Tieshan
2017-11-01
Oxide dispersion strengthened (ODS) Fe-Cr alloys are promising candidates for structural components in nuclear energy production. The small grain size, high dislocation density and the presence of particle matrix interfaces may contribute to the improved irradiation resistance of this class of alloys by providing sinks and/or traps for irradiation-induced point defects. The extent to which these effects impede hardening is still a matter of debate. To address this problem, a set of alloys of different grain size, dislocation density and oxide particle distribution were selected. In this study, three-step Fe-ion irradiation at both 300 °C and 500 °C up to 10 dpa was used to introduce damage in five different materials including three 9Cr-ODS alloys, one 14Cr-ODS alloy and one 14Cr-non-ODS alloy. Electron backscatter diffraction (EBSD), transmission electron microscopy (TEM), small angle neutron scattering (SANS), and nanoindentation testing were applied, the latter before and after irradiation. Significant hardening occurred for all materials and temperatures, but it is distinctly lower in the 14Cr alloys and also tends to be lower at the higher temperature. The possible contribution of Cr-rich α‧-phase particles is addressed. The impact of grain size, dislocation density and particle distribution is demonstrated in terms of an empirical trend between total sink strength and hardening.
NASA Astrophysics Data System (ADS)
Valderrama, Billy
Performance in commercial light water reactors is dictated by the ability of its fuel material, uranium dioxide (UO2), to transport heat generated during the fission process. It is widely known that the service lifetime is limited by irradiation-induced microstructural changes that degrade the thermal performance of UO2. Studying the role of complex, often interacting mechanisms that occur during the early stages of microstructural evolution presents a challenge. Phenomena of particular interest are the segregation of fission products to form bubbles and their resultant effect on grain boundary (GB) mobility, and the effect of irradiation on fuel stoichiometry. Each mechanism has a profound consequence on fuel thermal conductivity. Several advanced analytical techniques, such as transmission electron microscopy, x-ray diffraction, x-ray photoelectron spectroscopy, etc. have been used to study these mechanisms. However, they each have limitations and cannot individually provide the necessary information for deeper understanding. One technique that has been under utilized is atom probe tomography (APT), which has a unique ability to spatially resolve small-scale chemical variations. APT uses the principle of field ionization to evaporate surface ions for chemical analysis. For low electrical conductivity systems, a pulsed laser is used to thermally assist in the evaporation process. One factor complicating the analysis is that laser-material interactions are poorly understood for oxide materials and literature using this technique with UO2 is lacking. Therefore, an initial systematic study to identify the optimal conditions for the analysis of UO2 using laser-assisted APT was conducted. A comparative study on the evaporation behavior between CeO2 and UO2 was followed. CeO2 was chosen due to its technological relevancy and availability of comparative studies with laser-assisted APT. Dissimilar evaporation behavior between these materials was identified and attributed to differences in laser absorption, oxide stability, and thermal conductivity between the two materials. After the conditions were identified, APT was utilized to study the role of temperature and GB structure on the segregation of Kr. Results indicate that high angle GBs contain more Kr relative to low angle GBs. The methodology presented can be applied to investigate small-scale chemical changes in other oxide materials.
Microstructural processes in irradiated materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Byun, Thak Sang; Morgan, Dane; Jiao, Zhijie
2016-04-01
This is an editorial article (preface) for the publication of symposium papers in the Journal of Nuclear materials: These proceedings contain the papers presented at two symposia, the Microstructural Processes in Irradiated Materials (MPIM) and Characterization of Nuclear Reactor Materials and Components with Neutron and Synchrotron Radiation, held in the TMS 2015, 144th Annual Meeting & Exhibition at Walt Disney World, Orlando, Florida, USA on March 15–19, 2015.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye Jia; Lawrence Berkeley Laboratory, Berkeley, California 94720-8250; Li Youhong
Theoretical predictions indicate that ordered alloys can spontaneously develop a steady-state nanoscale microstructure when irradiated with energetic particles. This behavior derives from a dynamical competition between disordering in cascades and thermally activated reordering, which leads to self-organization of the chemical order parameter. We test this possibility by combining molecular dynamics (MD) and kinetic Monte Carlo (KMC) simulations. We first generate realistic distributions of disordered zones for Ni{sub 3}Al irradiated with 70 keV He and 1 MeV Kr ions using MD and then input this data into KMC to obtain predictions of steady state microstructures as a function of the irradiationmore » flux. Nanoscale patterning is observed for Kr ion irradiations but not for He ion irradiations. We illustrate, moreover, using image simulations of these KMC microstructures, that high-resolution transmission electron microscopy can be employed to identify nanoscale patterning. Finally, we indicate how this method could be used to synthesize functional thin films, with potential for magnetic applications.« less
Microstructure of RERTR DU-Alloys Irradiated with Krypton Ions
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Gan; D. Keiser; D. Wachs
2009-11-01
Fuel development for reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium fuels that can be employed to replace existing high enrichment uranium fuels currently used in many research and test reactors worldwide. Radiation stability of the interaction product formed at fuel-matrix interface has a strong impact on fuel performance. Three depleted uranium alloys are cast that consist of the following 5 phases of interest to be investigated: U(Si,Al)3, (U,Mo)(Si,Al)3, UMo2Al20, U6Mo4Al43 and UAl4. Irradiation of TEM disc samples with 500 keV Kr ions at 200?C to high doses up tomore » ~100 dpa were conducted using an intermediate voltage electron microscope equipped with an ion accelerator. The irradiated microstructure of the 5 phases is characterized using transmission electron microscopy. The results will be presented and the implication of the observed irradiated microstructure on the fuel performance will be discussed.« less
Initial examination of fuel compacts and TRISO particles from the US AGR-2 irradiation test
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hunn, John D.; Baldwin, Charles A.; Montgomery, Fred C.
Post-irradiation examination was completed on two as-irradiated compacts from the US Advanced Gas Reactor Fuel Development and Qualification Program’s second irradiation test. These compacts were selected for examination because there were indications that they may have contained particles that released cesium through a failed or defective SiC layer. The coated particles were recovered from these compacts by electrolytic deconsolidation of the surrounding graphitic matrix in nitric acid. The leach-burn-leach (LBL) process was used to dissolve and analyze exposed metallic elements (actinides and fission products), and each particle was individually surveyed for relative cesium retention with the Irradiated Microsphere Gamma Analyzermore » (IMGA). Data from IMGA and LBL examinations provided information on fission product release during irradiation and whether any specific particles had below-average retention that could be related to coating layer defects or radiation-induced degradation. A few selected normal-retention particles and six with abnormally-low cesium inventory were analyzed using X-ray tomography to produce three-dimensional images of the internal coating structure. Four of the low-cesium particles had obviously damaged or degraded SiC, and X-ray imaging was able to guide subsequent grinding and polishing to expose the regions of interest for analysis by optical and electron microscopy. Additional particles from each compact were also sectioned and examined to study the overall radiation-induced microstructural changes in the kernel and coating layers.« less
Initial examination of fuel compacts and TRISO particles from the US AGR-2 irradiation test
Hunn, John D.; Baldwin, Charles A.; Montgomery, Fred C.; ...
2017-10-21
Post-irradiation examination was completed on two as-irradiated compacts from the US Advanced Gas Reactor Fuel Development and Qualification Program’s second irradiation test. These compacts were selected for examination because there were indications that they may have contained particles that released cesium through a failed or defective SiC layer. The coated particles were recovered from these compacts by electrolytic deconsolidation of the surrounding graphitic matrix in nitric acid. The leach-burn-leach (LBL) process was used to dissolve and analyze exposed metallic elements (actinides and fission products), and each particle was individually surveyed for relative cesium retention with the Irradiated Microsphere Gamma Analyzermore » (IMGA). Data from IMGA and LBL examinations provided information on fission product release during irradiation and whether any specific particles had below-average retention that could be related to coating layer defects or radiation-induced degradation. A few selected normal-retention particles and six with abnormally-low cesium inventory were analyzed using X-ray tomography to produce three-dimensional images of the internal coating structure. Four of the low-cesium particles had obviously damaged or degraded SiC, and X-ray imaging was able to guide subsequent grinding and polishing to expose the regions of interest for analysis by optical and electron microscopy. Additional particles from each compact were also sectioned and examined to study the overall radiation-induced microstructural changes in the kernel and coating layers.« less
Irradiation performance of AGR-1 high temperature reactor fuel
Demkowicz, Paul A.; Hunn, John D.; Ploger, Scott A.; ...
2015-10-23
The AGR-1 experiment contained 72 low-enriched uranium oxide/uranium carbide TRISO coated particle fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA, with zero TRISO coating failures detected during the irradiation. The irradiation performance of the fuel including the extent of fission product release and the evolution of kernel and coating microstructures was evaluated based on detailed examination of the irradiation capsules, the fuel compacts, and individual particles. Fractional release of 110mAg from the fuel compacts was often significant, with capsule-average values ranging from 0.01 to 0.38. Analysis of silver release from individual compacts indicated that itmore » was primarily dependent on fuel temperature history. Europium and strontium were released in small amounts through intact coatings, but were found to be significantly retained in the outer pyrocarbon and compact matrix. The capsule-average fractional release from the compacts was 1 × 10 –4 to 5 × 10 –4 for 154Eu and 8 × 10 –7 to 3 × 10 –5 for 90Sr. The average 134Cs fractional release from compacts was <3 × 10 –6 when all particles maintained intact SiC. An estimated four particles out of 2.98 × 10 5 in the experiment experienced partial cesium release due to SiC failure during the irradiation, driving 134Cs fractional release in two capsules to approximately 10 –5. Identification and characterization of these particles has provided unprecedented insight into the nature and causes of SiC coating failure in high-quality TRISO fuel. In general, changes in coating morphology were found to be dominated by the behavior of the buffer and inner pyrolytic carbon (IPyC), and infrequently observed SiC layer damage was usually related to cracks in the IPyC. Palladium attack of the SiC layer was relatively minor, except for the particles that released cesium during irradiation, where SiC corrosion was found adjacent to IPyC cracks. In conclusion, palladium, silver, and uranium were found in the SiC layer of irradiated particles, and characterization of these elements within the SiC microstructure is the subject of ongoing focused study.« less
Recrystallization-Induced Surface Cracks of Carbon Ions Irradiated 6H-SiC after Annealing
Ye, Chao; Ran, Guang; Zhou, Wei; Shen, Qiang; Feng, Qijie; Lin, Jianxin
2017-01-01
Single crystal 6H-SiC wafers with 4° off-axis [0001] orientation were irradiated with carbon ions and then annealed at 900 °C for different time periods. The microstructure and surface morphology of these samples were investigated by grazing incidence X-ray diffraction (GIXRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). Ion irradiation induced SiC amorphization, but the surface was smooth and did not have special structures. During the annealing process, the amorphous SiC was recrystallized to form columnar crystals that had a large amount of twin structures. The longer the annealing time was, the greater the amount of recrystallized SiC would be. The recrystallization volume fraction was accorded with the law of the Johnson–Mehl–Avrami equation. The surface morphology consisted of tiny pieces with an average width of approximately 30 nm in the annealed SiC. The volume shrinkage of irradiated SiC layer and the anisotropy of newly born crystals during annealing process produced internal stress and then induced not only a large number of dislocation walls in the non-irradiated layer but also the initiation and propagation of the cracks. The direction of dislocation walls was perpendicular to the growth direction of the columnar crystal. The longer the annealing time was, the larger the length and width of the formed crack would be. A quantitative model of the crack growth was provided to calculate the length and width of the cracks at a given annealing time. PMID:29068408
NASA Astrophysics Data System (ADS)
Veres, Teodor
Cette these est consacree a l'etude de l'evolution structurale des proprietes magnetiques et de transport des multicouches Ni/Fe et nanostructures a base de Co et de l'Ag. Dans une premiere partie, essentiellement bibliographique, nous introduisons quelques concepts de base relies aux proprietes magnetiques et de transport des multicouches metalliques. Ensuite, nous presentons une breve description des methodes d'analyse des resultats. La deuxieme partie est consacree a l'etude des proprietes magnetiques et de transport des multicouches ferromagnetiques/ferromagnetiques Ni/Fe. Nous montrerons qu'une interpretation coherente de ces proprietes necessite la prise en consideration des effets des interfaces. Nous nous attacherons a mettre en evidence, a evaluer et a etudier les effets de ces interfaces ainsi que leur evolution, et ce, suite a des traitements thermiques tel que le depot a temperature elevee et l'irradiation ionique. Les analyses correlees de la structure et de la magnetoresistance nous permettront d'emettre des conclusions sur l'influence des couches tampons entre l'interface et le substrat ainsi qu'entre les couches elles-memes sur le comportement magnetique des couches F/F. La troisieme partie est consacree aux systemes a Magneto-Resistance Geante (MRG) a base de Co et Ag. Nous allons etudier l'evolution de la microstructure suite a l'irradiation avec des ions Si+ ayant une energie de 1 MeV, ainsi que les effets de ces changements sur le comportement magnetique. Cette partie debutera par l'analyse des proprietes d'une multicouche hybride, intermediaire entre les multicouches et les materiaux granulaires. Nous analyserons a l'aide des mesures de diffraction, de relaxation superparamagnetique et de magnetoresistance, les evolutions structurales produites par l'irradiation ionique. Nous etablirons des modeles qui nous aideront a interpreter les resultats pour une serie des multicouches qui couvrent un large eventail de differents comportements magnetiques et ceci en fonction de l'epaisseur de la couche magnetique de Co. Nous verrons que dans ces systemes les effets de l'irradiation ionique sont fortement influences par l'energie de surface ainsi que par l'enthalpie de formation, largement positive pour le systeme Co/Ag.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Y.; Chopra, O. K.; Soppet, W. K.
2010-02-16
Cracking behavior of stainless steels specimens irradiated in the BOR-60 at about 320 C is studied. The primary objective of this research is to improve the mechanistic understanding of irradiation-assisted stress corrosion cracking (IASCC) of core internal components under conditions relevant to pressurized water reactors. The current report covers several baseline tests in air, a comparison study in high-dissolved-oxygen environment, and TEM characterization of irradiation defect structure. Slow strain rate tensile (SSRT) tests were conducted in air and in high-dissolved-oxygen (DO) water with selected 5- and 10-dpa specimens. The results in high-DO water were compared with those from earlier testsmore » with identical materials irradiated in the Halden reactor to a similar dose. The SSRT tests produced similar results among different materials irradiated in the Halden and BOR-60 reactors. However, the post-irradiation strength for the BOR-60 specimens was consistently lower than that of the corresponding Halden specimens. The elongation of the BOR-60 specimens was also greater than that of their Halden specimens. Intergranular cracking in high-DO water was consistent for most of the tested materials in the Halden and BOR-60 irradiations. Nonetheless, the BOR-60 irradiation was somewhat less effective in stimulating IG fracture among the tested materials. Microstructural characterization was also carried out using transmission electron microscopy on selected BOR-60 specimens irradiated to {approx}25 dpa. No voids were observed in irradiated austenitic stainless steels and cast stainless steels, while a few voids were found in base and grain-boundary-engineered Alloy 690. All the irradiated microstructures were dominated by a high density of Frank loops, which varied in mean size and density for different alloys.« less
NASA Astrophysics Data System (ADS)
Sheng, Wei; He, Honghui; Dong, Yang; Ma, Hui
2018-02-01
As one of the most fundamental features of light, polarization can be used to develop imaging techniques which can provide insight into the optical and structural properties of tissues. Especially, the Mueller matrix polarimetry is suitable to detect the changes in collagen and elastic fibres, which are the main compositions of skin tissue. Here we demonstrate a novel quantitative, non-contact and in situ technique to monitor the microstructural variations of skin tissue during ultraviolet radiation (UVR) induced photoaging based on Mueller matrix polarimetry. Specifically, we measure the twodimensional (2D) backscattering Mueller matrices of nude mouse skin samples, then calculate and analyze the Mueller matrix derived parameters during the skin photoaging and self-repairing processes. To induce three-day skin photoaging, the back skin of each mouse is irradiated with UVR (0.05J/cm2) for five minutes per day. After UVR, the microstructures of the nude mouse skin are damaged. During the process of UV damage, we measure the backscattering Mueller matrices of the mouse skin samples and examine the relationship between the Mueller matrix parameters and the microstructural variations of skin tissue quantitatively. The comparisons between the UVR damaged groups with and without sunscreens show that the Mueller matrix derived parameters are potential indicators for fibrous microstructure variation in skin tissue. The pathological examinations and Monte Carlo simulations confirm the relationship between the values of Mueller matrix parameters and the changes of fibrous structures. Combined with smart phones or wearable devices, this technique may have a good application prospect in the fields of cosmetics and dermatological health.
Characterization of faulted dislocation loops and cavities in ion irradiated alloy 800H
NASA Astrophysics Data System (ADS)
Ulmer, Christopher J.; Motta, Arthur T.
2018-01-01
Alloy 800H is a high nickel austenitic stainless steel with good high temperature mechanical properties which is considered for use in current and advanced nuclear reactor designs. The irradiation response of 800H was examined by characterizing samples that had been bulk ion irradiated at the Michigan Ion Beam Laboratory with 5 MeV Fe2+ ions to 1, 10, and 20 dpa at 440 °C. Transmission electron microscopy was used to measure the size and density of both {111} faulted dislocation loops and cavities as functions of depth from the irradiated surface. The faulted loop density increased with dose from 1 dpa up to 10 dpa where it saturated and remained approximately the same until 20 dpa. The faulted loop average diameter decreased between 1 dpa and 10 dpa and again remained approximately constant from 10 dpa to 20 dpa. Cavities were observed after irradiation doses of 10 and 20 dpa, but not after 1 dpa. The average diameter of cavities increased with dose from 10 to 20 dpa, with a corresponding small decrease in density. Cavity denuded zones were observed near the irradiated surface and near the ion implantation peak. To further understand the microstructural evolution of this alloy, FIB lift-out samples from material irradiated in bulk to 1 and 10 dpa were re-irradiated in-situ in their thin-foil geometry with 1 MeV Kr2+ ions at 440 °C at the Intermediate Voltage Electron Microscope. It was observed that the cavities formed during bulk irradiation shrank under thin-foil irradiation in-situ while dislocation loops were observed to grow and incorporate into the dislocation network. The thin-foil geometry used for in-situ irradiation is believed to cause the cavities to shrink.
NASA Astrophysics Data System (ADS)
Zheng, Pengfei; Chen, Jiming; Xu, Zengyu; Duan, Xuru
2013-10-01
V-4Cr-4Ti was identified as an attractive structural material for Li blanket in fusion reactors. However, both high temperature and irradiation induced degradation are great challenges for this material. It was thought that the nano-particles with high thermal stability can efficiently strengthen the alloy at elevated temperatures, and accommodate the irradiation induced defects at the boundaries. This study is a starting work aiming at improving the creep resistance and reducing the irradiation induced degradation for V-4Cr-4Ti alloy. Currently, we focus on the preparation of some comparative nano-particle dispersion strengthened V-4Cr-4Ti alloys. A mechanical alloying (MA) route is used to fabricate yttrium and carbides added V-4Cr-4Ti alloys. Nano-scale yttria, carbides and other possible particles have a combined dispersion-strengthening effect on the matrices of these MA-fabricated V-4Cr-4Ti alloys. High-temperature annealing is carried out to stabilize the optimized nano-particles. Mechanical properties are tested. Microstructures of the MA-fabricated V-4Cr-4Ti alloys with yttrium and carbide additions are characterized. Based on these results, the thermal stability of different nano-particle agents are classified. ITER related China domestic project 2011GB108007.
NASA Astrophysics Data System (ADS)
Barr, Christopher M.; Felfer, Peter J.; Cole, James I.; Taheri, Mitra L.
2018-06-01
Radiation induced segregation in austenitic Fe-Ni-Cr stainless steels is a key detrimental microstructural modification experienced in the current generation of light water reactors. In particular, Cr depletion at grain boundaries can be a significant factor in irradiation-assisted stress corrosion cracking. Therefore, having a complete knowledge and mechanistic understanding of radiation induced segregation at high dose and after a long thermal history is desired for continued sustainability of existing reactors. Here, we examine a 12% cold worked AISI 316 stainless steel hexagonal duct exposed in the lower dose, outer blanket region of the EBR-II reactor, by using advanced characterization and analysis techniques including atom probe tomography and analytical scanning transmission electron microscopy. Contrary to existing literature, we observe an oscillatory w-shape Cr and M-shape Ni concentration profile at 31 dpa. The presence and characterization through advanced atom probe tomography analysis of the w-shape Cr RIS profile is discussed in the context of the localized GB plane interfacial excess of the other major and minor alloying elements. The key finding of a co-segregation phenomena coupling Cr, Mo, and C is discussed in the context of the existing solute segregation literature under irradiation with emphasis on improved spatial and chemical resolution of atom probe tomography.
Lithium concentration dependent structure and mechanics of amorphous silicon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sitinamaluwa, H. S.; Wang, M. C.; Will, G.
2016-06-28
A better understanding of lithium-silicon alloying mechanisms and associated mechanical behavior is essential for the design of Si-based electrodes for Li-ion batteries. Unfortunately, the relationship between the dynamic mechanical response and microstructure evolution during lithiation and delithiation has not been well understood. We use molecular dynamic simulations to investigate lithiated amorphous silicon with a focus to the evolution of its microstructure, phase composition, and stress generation. The results show that the formation of Li{sub x}Si alloy phase is via different mechanisms, depending on Li concentration. In these alloy phases, the increase in Li concentration results in reduction of modulus ofmore » elasticity and fracture strength but increase in ductility in tension. For a Li{sub x}Si system with uniform Li distribution, volume change induced stress is well below the fracture strength in tension.« less
Thermal evolution of defects in undoped zinc oxide grown by pulsed laser deposition
NASA Astrophysics Data System (ADS)
Wang, Zilan; Su, Shichen; Ling, Francis Chi-Chung; Anwand, W.; Wagner, A.
2014-07-01
Undoped ZnO films are grown by pulsed laser deposition on c-plane sapphire with different oxygen pressures. Thermal evolutions of defects in the ZnO films are studied by secondary ion mass spectroscopy (SIMS), Raman spectroscopy, and positron annihilation spectroscopy (PAS), and with the electrical properties characterized by the room temperature Hall measurement. Oxygen deficient defect related Raman lines 560 cm-1 and 584 cm-1 are identified and their origins are discussed. Thermal annealing induces extensive Zn out-diffusion at the ZnO/sapphire interface and leaves out Zn-vacancy in the ZnO film. Two types of Zn-vacancy related defects with different microstructures are identified in the films. One of them dominates in the samples grown without oxygen. Annealing the sample grown without oxygen or growing the samples in oxygen would favor the Zn-vacancy with another microstructure, and this Zn-vacancy defect persists after 1100 °C annealing.
Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; Mehner, A.; Lucca, D. A.
2017-01-01
Ion irradiation is an alternative to heat treatment for transforming organic-inorganic thin films to a ceramic state. One major shortcoming in previous studies of ion-irradiated films is the assumption that constituent phases in ion-irradiated and heat-treated films are identical and that the ion irradiation effect is limited to changes in composition. In this study, we investigate the effects of ion irradiation on both the composition and structure of constituent phases and use the results to explain the measured elastic modulus of the films. The results indicated that the microstructure of the irradiated films consisted of carbon clusters within a silica matrix. It was found that carbon was present in a non-graphitic sp2-bonded configuration. It was also observed that ion irradiation caused a decrease in the Si-O-Si bond angle of silica, similar to the effects of applied pressure. A phase transformation from tetrahedrally bonded to octahedrally bonded silica was also observed. The results indicated the incorporation of carbon within the silica network. A combination of the decrease in Si-O-Si bond angle and an increase in the carbon incorporation within the silica network was found to be responsible for the increase in the elastic modulus of the films. PMID:28071696
Shojaee, S. A.; Qi, Y.; Wang, Y. Q.; ...
2017-01-10
Ion irradiation is an alternative to heat treatment for transforming organic-inorganic thin films to a ceramic state. One major shortcoming in previous studies of ion-irradiated films is the assumption that constituent phases in ion-irradiated and heat-treated films are identical and that the ion irradiation effect is limited to changes in composition. Here, we investigate the effects of ion irradiation on both the composition and structure of constituent phases and use the results to explain the measured elastic modulus of the films. Our results indicated that the microstructure of the irradiated films consisted of carbon clusters within a silica matrix. Itmore » was found that carbon was present in a non-graphitic sp 2-bonded configuration. It was also observed that ion irradiation caused a decrease in the Si-O-Si bond angle of silica, similar to the effects of applied pressure. A phase transformation from tetrahedrally bonded to octahedrally bonded silica was also observed. The results indicated the incorporation of carbon within the silica network. Finally, a combination of the decrease in Si-O-Si bond angle and an increase in the carbon incorporation within the silica network was found to be responsible for the increase in the elastic modulus of the films.« less
Multiple ion beam irradiation for the study of radiation damage in materials
NASA Astrophysics Data System (ADS)
Taller, Stephen; Woodley, David; Getto, Elizabeth; Monterrosa, Anthony M.; Jiao, Zhijie; Toader, Ovidiu; Naab, Fabian; Kubley, Thomas; Dwaraknath, Shyam; Was, Gary S.
2017-12-01
The effects of transmutation produced helium and hydrogen must be included in ion irradiation experiments to emulate the microstructure of reactor irradiated materials. Descriptions of the criteria and systems necessary for multiple ion beam irradiation are presented and validated experimentally. A calculation methodology was developed to quantify the spatial distribution, implantation depth and amount of energy-degraded and implanted light ions when using a thin foil rotating energy degrader during multi-ion beam irradiation. A dual ion implantation using 1.34 MeV Fe+ ions and energy-degraded D+ ions was conducted on single crystal silicon to benchmark the dosimetry used for multi-ion beam irradiations. Secondary Ion Mass Spectroscopy (SIMS) analysis showed good agreement with calculations of the peak implantation depth and the total amount of iron and deuterium implanted. The results establish the capability to quantify the ion fluence from both heavy ion beams and energy-degraded light ion beams for the purpose of using multi-ion beam irradiations to emulate reactor irradiated microstructures.
UV-visible, Raman and E.S.R. studies of gamma-irradiated NiO-doped sodium metaphosphate glasses.
ElBatal, Fatma H; Morsi, Reham M; Ouis, Mona A; Marzouk, Samir Y
2010-11-01
UV-visible spectroscopic measurements of Ni-doped sodium phosphate glasses were carried out before and after successive gamma irradiation. The undoped glass reveals strong UV absorption originating from trace iron impurities. NiO-doped glasses show characteristic absorption bands due mainly to octahedral coordination of Ni(2+) ions. Gamma irradiation produces induced bands generated from intrinsic defects and extrinsic defects. The changes in the spectroscopic data are discussed in relation to the structural evolution caused by the changes in composition and coordination state of nickel ions. The change in the growth behaviour of the induced bands is related to the annihilation or approach saturation of these characteristic induced bands. Raman and E.S.R. spectroscopic measurements confirm the presence of nickel as Ni(2+) ions in octahedral state. Copyright © 2010 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Krimpalis, S.; Mergia, K.; Messoloras, S.; Dubinko, A.; Terentyev, D.; Triantou, K.; Reiser, J.; Pintsuk, G.
2017-12-01
The mechanical properties of tungsten produced in different forms before and after neutron irradiation are of considerable interest for their application in fusion devices such as ITER. In this work the mechanical properties and the microstructure of two tungsten (W) products with different microstructures are investigated using depth sensing nano/micro-indentation and transmission electron microscopy, respectively. Neutron irradiation of these materials for different doses, in the temperature range 600 °C-1200 °C, is underway within the EUROfusion project in order to progress our basic understanding of neutron irradiation effects on W. The hardness and elastic modulus are determined as a function of the penetration depth, loading/unloading rate, holding time at maximum load and the final surface treatment. The results are correlated with the microstructure as investigated by SEM and TEM measurements.
Nonlinear Ultrasonic Measurements in Nuclear Reactor Environments
NASA Astrophysics Data System (ADS)
Reinhardt, Brian T.
Several Department of Energy Office of Nuclear Energy (DOE-NE) programs, such as the Fuel Cycle Research and Development (FCRD), Advanced Reactor Concepts (ARC), Light Water Reactor Sustainability, and Next Generation Nuclear Power Plants (NGNP), are investigating new fuels, materials, and inspection paradigms for advanced and existing reactors. A key objective of such programs is to understand the performance of these fuels and materials during irradiation. In DOE-NE's FCRD program, ultrasonic based technology was identified as a key approach that should be pursued to obtain the high-fidelity, high-accuracy data required to characterize the behavior and performance of new candidate fuels and structural materials during irradiation testing. The radiation, high temperatures, and pressure can limit the available tools and characterization methods. In this thesis, two ultrasonic characterization techniques will be explored. The first, finite amplitude wave propagation has been demonstrated to be sensitive to microstructural material property changes. It is a strong candidate to determine fuel evolution; however, it has not been demonstrated for in-situ reactor applications. In this thesis, finite amplitude wave propagation will be used to measure the microstructural evolution in Al-6061. This is the first demonstration of finite amplitude wave propagation at temperatures in excess of 200 °C and during an irradiation test. Second, a method based on contact nonlinear acoustic theory will be developed to identify compressed cracks. Compressed cracks are typically transparent to ultrasonic wave propagation; however, by measuring harmonic content developed during finite amplitude wave propagation, it is shown that even compressed cracks can be characterized. Lastly, piezoelectric transducers capable of making these measurements are developed. Specifically, three piezoelectric sensors (Bismuth Titanate, Aluminum Nitride, and Zinc Oxide) are tested in the Massachusetts Institute of Technology Research reactor to a fast neutron fluence of 8.65x10 20 n/cm2. It is demonstrated that Bismuth Titanate is capable of transduction up to 5 x1020 n/cm2, Zinc Oxide is capable of transduction up to 6.27 x1020 n/cm 2, and Aluminum Nitride is capable of transduction up to 8.65x x10 20 n/cm2.
NASA Astrophysics Data System (ADS)
Casalegno, Valentina; Kondo, Sosuke; Hinoki, Tatsuya; Salvo, Milena; Czyrska-Filemonowicz, Aleksandra; Moskalewicz, Tomasz; Katoh, Yutai; Ferraris, Monica
2018-04-01
The aim of this work was to investigate and discuss the microstructure and interface reaction of a calcia-alumina based glass-ceramic (CA) with SiC. CA has been used for several years as a glass-ceramic for pressure-less joining of SiC based components. In the present work, the crystalline phases in the CA glass-ceramic and at the CA/SiC interface were investigated and the absence of any detectable amorphous phase was assessed. In order to provide a better understanding of the effect of irradiation on the joining material and on the joints, Si ion irradiation was performed both on bulk CA and CA joined SiC. CA glass-ceramic and CA joined SiC were both irradiated with 5.1 MeV Si2+ ions to 3.3 × 1020 ions/m2 at temperatures of 400 and 800 °C at DuET facility, Kyoto University. This corresponds to a damage level of 5 dpa for SiC averaged over the damage range. This paper presents the results of a microstructural analysis of the irradiated samples as well as an evaluation of the dimensional stability of the CA glass-ceramic and its irradiation temperature and/or damage dependence.
The structural and electrical evolution of graphene by oxygen plasma-induced disorder.
Kim, Dong Chul; Jeon, Dae-Young; Chung, Hyun-Jong; Woo, YunSung; Shin, Jai Kwang; Seo, Sunae
2009-09-16
Evolution of a single graphene layer with disorder generated by remote oxygen plasma irradiation is investigated using atomic force microscopy, Raman spectroscopy and electrical measurement. Gradual changes of surface morphology from planar graphene to isolated granular structure associated with a decrease of transconductance are accounted for by two-dimensional percolative conduction by disorder and the oxygen plasma-induced doping effect. The corresponding evolution of Raman spectra of graphene shows several peculiarities such as a sudden appearance of a saturated D peak followed by a linear decrease in its intensity, a relatively inert characteristic of a D' peak and a monotonic increase of a G peak position as the exposure time to oxygen plasma increases. These are discussed in terms of a disorder-induced change of Raman spectra in the graphite system.
The structural behavior of SrTiO3 under 400 keV Ne2+ ion irradiation
NASA Astrophysics Data System (ADS)
Su, X.; Liu, C. G.; Yang, D. Y.; Wen, J.; Fu, E. G.; Zhang, J.; Chen, L. J.; Xu, D. P.; Wang, Y. Q.; Li, Y. H.
2015-11-01
The structural behavior of polycrystalline perovskite SrTiO3 under 400 keV Ne2+ ion irradiation at both liquid nitrogen (LN2) and room temperature (RT) has been investigated. The grazing incident X-ray diffraction technique was applied to examine the radiation-induced structural evolution. The radiation behavior of SrTiO3 depends strongly on the irradiation temperature. At LN2 temperature, the samples exhibit significant lattice swelling and amorphization, whereas at RT, the lattice swelling is much less conspicuous and no amorphization is detected even at the highest irradiation dose of 5.0 dpa. Nevertheless, Ne2+ irradiation induces peak splitting in XRD patterns at both temperatures. Furthermore, first-principle calculations have been performed with VASP, involving possible defect types, to identify which defect is responsible for the radiation effect of SrTiO3. The results reveal that the oxygen vacancy defect is the most likely to contribute to the radiation behavior of SrTiO3.
Colour centre recovery in yttria-stabilised zirconia: photo-induced versus thermal processes
NASA Astrophysics Data System (ADS)
Costantini, Jean-Marc; Touati, Nadia; Binet, Laurent; Lelong, Gérald; Guillaumet, Maxime; Beuneu, François
2018-05-01
The photo-annealing of colour centres in yttria-stabilised zirconia (YSZ) was studied by electron paramagnetic resonance spectroscopy upon UV-ray or laser light illumination, and compared to thermal annealing. Stable hole centres (HCs) were produced in as-grown YSZ single crystals by UV-ray irradiation at room temperature (RT). The HCs produced by 200-MeV Au ion irradiation, as well as the F+-type centres (? centres involving oxygen vacancies) were left unchanged upon UV illumination. In contrast, a significant photo-annealing of the latter point defects was achieved in 1.4-MeV electron-irradiated YSZ by 553-nm laser light irradiation at RT. Almost complete photo-bleaching was achieved by laser irradiation inside the absorption band of ? centres centred at a wavelength 550 nm. Thermal annealing of these colour centres was also followed by UV-visible absorption spectroscopy showing full bleaching at 523 K. Colour-centre evolutions by photo-induced and thermally activated processes are discussed on the basis of charge exchange processes between point defects.
Evolution of Radiation Induced Defects in SiC: A Multiscale Simulation Approach
NASA Astrophysics Data System (ADS)
Jiang, Hao
Because of various excellent properties, SiC has been proposed for many applications in nuclear reactors including cladding layers in fuel rod, fission products container in TRISO fuel, and first wall/blanket in magnetic controlled fusion reactors. Upon exposure to high energy radiation environments, point defects and defect clusters are generated in materials in amounts significantly exceeding their equilibrium concentrations. The accumulation of defects can lead to undesired consequences such as crystalline-to-amorphous transformation1, swelling, and embrittlement, and these phenomena can adversely affect the lifetime of SiC based components in nuclear reactors. It is of great importance to understand the accumulation process of these defects in order to estimate change in properties of this material and to design components with superior ability to withstand radiation damages. Defect clusters are widely in SiC irradiated at the operation temperatures of various reactors. These clusters are believed to cause more than half of the overall swelling of irradiated SiC and can potentially lead to lowered thermal conductivity and mechanical strength. It is critical to understand the formation and growth of these clusters. Diffusion of these clusters is one importance piece to determine the growth rate of clusters; however it is unclear so far due to the challenges in simulating rare events. Using a combination of kinetic Activation Relaxation Technique with empirical potential and ab initio based climbing image nudged elastic band method, I performed an extensive search of the migration paths of the most stable carbon tri-interstitial cluster in SiC. This research reveals paths with the lowest energy barriers to migration, rotation, and dissociation of the most stable cluster. Based on these energy barriers, I concluded defect clusters are thermally immobile at temperatures lower than 1500 K and can dissociate into smaller clusters and single interstitials at temperatures beyond that. Even though clusters cannot diffuse by thermal vibrations, we found they can migrate at room temperature under the influence of electron radiation. This is the first direct observation of radiation-induced diffusion of defect clusters in bulk materials. We show that the underlying mechanism of this athermal diffusion is elastic collision between incoming electrons and cluster atoms. Our findings suggest that defect clusters may be mobile under certain irradiation conditions, changing current understanding of cluster annealing process in irradiated SiC. With the knowledge of cluster diffusion in SiC demonstrated in this thesis, we now become able to predict cluster evolution in SiC with good agreement with experimental measurements. This ability can enable us to estimate changes in many properties of irradiated SiC relevant for its applications in reactors. Internal interfaces such as grain boundaries can behave as sinks to radiation induced defects. The ability of GBs to absorb, transport, and annihilate radiation-induced defects (sink strength) is important to understand radiation response of polycrystalline materials and to better design interfaces for improved resistance to radiation damage. Nowadays, it is established GBs' sink strength is not a static property but rather evolves with many factors, including radiation environments, grain size, and GB microstructure. In this thesis, I investigated the response of small-angle tilt and twist GBs to point defects fluxes in SiC. First of all, I found the pipe diffusion of interstitials in tilt GBs is slower than bulk diffusion. This is because the increased interatomic distance at dislocation cores raises the migration barrier of interstitial dumbbells. Furthermore, I show that both the annihilation of interstitials at jogs and jog nucleation from clusters are diffusion-controlled and can occur under off-stoichiometric interstitial fluxes. Finally, a dislocation line model is developed to predict the role of tilt GBs in annihilating radiation damage. The model predicts the role of tilt GBs in annihilating defects depends on the rate of defects segregation to and diffusion along tilt GBs. Tilt GBs mainly serve as diffusion channel for defects to reach other sinks when defect diffusivity is high at boundaries. When defect diffusivity is low, most of the defects segregated to tilt GBs are annihilated by dislocation climb. Up-to-date, the response of twist GBs under irradiation has been rarely reported in literature and is still unclear. It is important to develop atom scale insight on this question in order to predict twist GBs' sink strength for a better understanding of radiation response of polycrystalline materials. By using a combination of molecular dynamics and grand canonical Monte Carlo, here I demonstrate the defect kinetics in {001} and {111} twist GBs and the microstructural evolution of these GBs under defect fluxes in SiC. I found due to the deep potential well for interstitials at dislocation intersections within the interface, the mobility of defects on dislocation grid is retard and this leads to defect accumulation at GBs for many cases. Furthermore, I conclude both types of twist GBs have to form mixed dislocations with edge component in order to absorb accumulated interstitials at the interface. The formation of mixed dislocation is either by interstitial loop nucleation or by dislocation reactions at the interface. The continuous formation and climb of these mixed dislocations make twist GBs unsaturatable sinks to radiation induced defects.
NASA Astrophysics Data System (ADS)
Naveen Kumar, N.; Tewari, R.; Mukherjee, P.; Gayathri, N.; Durgaprasad, P. V.; Taki, G. S.; Krishna, J. B. M.; Sinha, A. K.; Pant, P.; Revally, A. K.; Dutta, B. K.; Dey, G. K.
2017-08-01
In the present study, microstructures of Ferritic-martensitic T-91 steel irradiated at room temperature for 5, 10 and 20 dpa using 315 KeV Ar+9 ions have been characterized by grazing incident X-ray diffraction (GIXRD) and by transmission electron microscopy (TEM). Line profiles of GIXRD patterns have shown that the size of domain continuously reduced with increasing dose of radiation. TEM investigations of irradiated samples have shown the presence of black dots, the number density of which decreases with increasing dose. Microstructures of irradiated samples have also revealed the presence of point defect clusters, such as dislocation loops and bubbles. In addition, dissolution of precipitates due to irradiation was also observed. Nano-indentation studies on the irradiated samples have shown saturation behavior in hardness as a function of dose which could be correlated with the changes in the yield strength of the alloy.
Weiblen, R Joseph; Florea, Catalin M; Busse, Lynda E; Shaw, L Brandon; Menyuk, Curtis R; Aggarwal, Ishwar D; Sanghera, Jasbinder S
2015-10-15
It has been experimentally observed that moth-eye antireflective microstructures at the end of As2S3 fibers have an increased laser damage threshold relative to thin-film antireflective coatings. In this work, we computationally study the irradiance enhancement in As2S3 moth-eye antireflective microstructures in order to explain the increased damage threshold. We show that the irradiance enhancement occurs mostly on the air side of the interfaces and is minimal in the As2S3 material. We give a physical explanation for this behavior.
Microstructural evolution during thermal annealing of ice-Ih
NASA Astrophysics Data System (ADS)
Hidas, Károly; Tommasi, Andréa; Mainprice, David; Chauve, Thomas; Barou, Fabrice; Montagnat, Maurine
2017-06-01
We studied the evolution of the microstructure of ice-Ih during static recrystallization by stepwise annealing experiments. We alternated thermal annealing and electron backscatter diffraction (EBSD) analyses on polycrystalline columnar ice pre-deformed in uniaxial compression at temperature of -7 °C to macroscopic strains of 3.0-5.2. Annealing experiments were carried out at -5 °C and -2 °C up to a maximum of 3.25 days, typically in 5-6 steps. EBSD crystal orientation maps obtained after each annealing step permit the description of microstructural changes. Decrease in average intragranular misorientation at the sample scale and modification of the misorientation across subgrain boundaries provide evidence for recovery from the earliest stages of annealing. This initial evolution is similar for all studied samples irrespective of their initial strain or annealing temperature. After an incubation period ≥1.5 h, recovery is accompanied by recrystallization (nucleation and grain boundary migration). Grain growth proceeds at the expense of domains with high intragranular misorientations, consuming first the most misorientated parts of primary grains. Grain growth kinetics fits the parabolic growth law with grain growth exponents in the range of 2.4-4.0. Deformation-induced tilt boundaries and kink bands may slow down grain boundary migration. They are stable features during early stages of static recrystallization, only erased by normal growth, which starts after >24 h of annealing.
NASA Astrophysics Data System (ADS)
Kumar, Pawan; Balakrishnan, Viswanath
2018-04-01
We report CVD growth of WS2 nanostructures with the ability to control the evolution of 1D to 2D microstructural changes for light and field effect transistor applications. Detailed mechanistic growth sequences from WO3 nanorod to nanotube, monolayer and pyramidal structures of WS2 has been achieved using atmospheric pressure chemical vapor deposition (APCVD). Electron microscopy and Raman spectroscopy analysis showed the growth evolution of different nanostructures and their formation mechanism. Location specific growth of different WS2 nanostructures can be achieved by drop casting dispersed WO3 nanorods on required substrate. Layer dependent photoluminescence (PL) properties of WS2 indicate the effect of quantum confinement induced radiative recombination and enhanced PL intensity in monolayer WS2 provides suitability for nanoscale photodetector application. The fabricated device shows light as well as field modulated switching at ultra-low biased voltage in hybrid WS2 nanostructure that contains 1D (nanotube)-2D (flake) interface. The demonstrated aspects of CVD growth and hybrid device characteristics provide opportunities to tune electrical transport of WS2 nanostructures at low active power.
Modeling liquid crystal polymeric devices
NASA Astrophysics Data System (ADS)
Gimenez Pinto, Vianney Karina
The main focus of this work is the theoretical and numerical study of materials that combine liquid crystal and polymer. Liquid crystal elastomers are polymeric materials that exhibit both the ordered properties of the liquid crystals and the elastic properties of rubbers. Changing the order of the liquid crystal molecules within the polymer network can induce shape change. These materials are very valuable for applications such as actuators, sensors, artificial muscles, haptic displays, etc. In this work we apply finite element elastodynamics simulations to study the temperature induced shape deformation in nematic elastomers with complex director microstructure. In another topic, we propose a novel numerical method to model the director dynamics and microstructural evolution of three dimensional nematic and cholesteric liquid crystals. Numerical studies presented in this work are in agreement with experimental observations and provide insight into the design of application devices.
Thermal Stabilization and Mechanical Properties of Nanocrystalline Iron-Nickel-Zirconium Alloys
NASA Astrophysics Data System (ADS)
Kotan, Hasan
Ultrafine grained and nanostructured materials are promising for structural applications because of the high strength compared to coarse grained counterparts. However, their widespread application is limited by an inherently high driving force for thermally induced grain growth, even at low temperatures. Accordingly, the understanding of and control over grain growth in nanoscale materials is of great technological and scientific importance as many physical properties (i.e. mechanical properties) are functions of the average grain size and the grain size distribution within the microstructure. Here, we investigate the microstructural evolution and grain growth in Fe-Ni alloys with Zr addition and differentiate the stabilization mechanisms acting on grain boundaries. Fe-Ni alloys are chosen for stability investigations since they are important for understanding the behavior of many steels and other ferrous alloys. Zirconium is proven to be an effective grain size stabilizer in pure Fe and Fe-base systems. In this study, nanocrystalline alloys were prepared by high energy ball milling. In situ and ex situ experiments were utilized to directly follow grain growth and microstructural evolution as a function of temperature and composition. The information obtained from these experiments enables the real time observation of microstructural evolution and phase transformation and provides a unique view of dynamic reactions as they occur. The knowledge of the thermal stability will exploit the potential high temperature applications and the consolidation conditions (i.e. temperature and pressure) to obtain high dense materials for advanced mechanical tests. Our investigations reveal that the grain growth of Fe-Ni alloys is not affected by Ni content but strongly inhibited by the addition of 1 at% Zr up to about 700 °C. The microstructural stability is lost due to the bcc-to-fcc transformation (occurring at 700°C) by the sudden appearance of abnormally grown fcc grains. However it was determined grain growth can be suppressed kinetically at higher temperatures for high Zr containing alloys by precipitation of intermetallic compounds. Eventually at high enough temperatures the retention of nanocrystallinity was lost, leaving behind fine micron grains filled with nanoscale intermetallic precipitates. Despite the loss of stability the in-situ formed precipitates were found to induce an Orowan hardening affect. The results from the mechanical tests show that Orowan particle strengthening can be as significant as Hall Petch hardening is at the smallest grain sizes.
Ion beam induced optical and surface modification in plasmonic nanostructures
NASA Astrophysics Data System (ADS)
Singh, Udai B.; Gautam, Subodh K.; Kumar, Sunil; Hooda, Sonu; Ojha, Sunil; Singh, Fouran
2016-07-01
In present work, ion irradiation induced nanostructuring has been exploited as an efficient and effective tool for synthesis of coupled plasmonics nanostructures by using 1.2 MeV Xe ions on Au/ZnO/Au system deposited on glass substrate. The results are correlated on the basis of their optical absorption, surface morphologies and enhanced sensitivity of evolved phonon modes by using UV Visible spectroscopy, scanning electron microscopy (SEM), and Raman spectroscopy (RS), respectively. Optical absorbance spectra of plasmonic nanostructures (NSs) show a decrease in band gap, which may be ascribed to the formation of defects with ion irradiation. The surface morphology reveals the formation of percolated NSs upon ion irradiation and Rutherford backscattering spectrometry (RBS) study clearly shows the formation of multilayer system. Furthermore, RS measurements on samples are studied to understand the enhanced sensitivity of ion irradiation induced phonon mode at 573 cm-1 along with other modes. As compared to pristine sample, a stronger and pronounced evolution of these phonon modes is observed with further ion irradiation, which indicates localized surface plasmon results with enhanced intensity of phonon modes of Zinc oxide (ZnO) material. Thus, such plasmonic NSs can be used as surface enhanced Raman scattering (SERS) substrates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Ce; Auger, Maria A.; Moody, Michael P.
In this study, Ferritic/Martensitic (F/M) HT9 steel was irradiated to 20 displacements per atom (dpa) at 600 nm depth at 420 and 440 °C, and to 1, 10 and 20 dpa at 600 nm depth at 470 °C using 5 MeV Fe++ ions. The characterization was conducted using ChemiSTEM and Atom Probe Tomography (APT), with a focus on radiation induced segregation and precipitation. Ni and/or Si segregation at defect sinks (grain boundaries, dislocation lines, carbide/matrix interfaces) together with Ni, Si, Mn rich G-phase precipitation were observed in self-ion irradiated HT9 except in very low dose case (1 dpa at 470more » °C). Some G-phase precipitates were found to nucleate heterogeneously at defect sinks where Ni and/or Si segregated. In contrast to what was previously reported in the literature for neutron irradiated HT9, no Cr-rich α' phase, χ-phases, η phase and voids were found in self-ion irradiated HT9. The difference of observed microstructures is probably due to the difference of irradiation dose rate between ion irradiation and neutron irradiation. In addition, the average size and number density of G-phase precipitates were found to be sensitive to both irradiation temperature and dose. With the same irradiation dose, the average size of G-phase increased whereas the number density decreased with increasing irradiation temperature. Within the same irradiation temperature, the average size increased with increasing irradiation dose.« less
NASA Astrophysics Data System (ADS)
Tsai, K. V.; Maksimkin, O. P.; Turubarova, L. G.
2007-03-01
The formation and evolution of thermally-induced secondary precipitates in an austenitic stainless steel 12Kh18N9T irradiated in the core of a laboratory reactor VVR-K to a dose of 5 dpa and subjected to post-radiation isochronous annealings for 1 h in a temperature range from 450 to 1050°C have been studied using transmission electron microscopy (TEM) and microhardness measurements. It has been shown that the formation of stitch (secondary) titanium carbides and M 23C6 carbides at grain and twin boundaries after annealing at 1050°C is preceded by a complex evolution of fineparticles of secondary phases (titanium carbides and nitrides) precipitated at dislocation loops and dislocations during annealing at temperatures above 750°C.
NASA Astrophysics Data System (ADS)
Asha, S.; Sangappa, Naik, Prashantha; Chandra, K. Sharat; Sanjeev, Ganesh
2014-04-01
The Bombyx mori silk fibroin (SF) films were prepared by solution casting method and the effects of electron beam on structural, thermal and antibacterial responses of the prepared films were studied. The electron irradiation for different doses was carried out using 8 MeV Microtron facility at Mangalore University. The changes in microstructural parameters and thermal stability of the films were investigated using Wide Angle X-ray Scattering (WAXS) and thermogravimetric analysis (TGA) respectively. Both microstructuralline parameters (crystallite size
Radiation response of nanotwinned Cu under multiple-collision cascades
NASA Astrophysics Data System (ADS)
Wu, Lianping; Yu, Wenshan; Hu, Shuling; Shen, Shengping
2018-07-01
In this paper, multiple collision cascades (MCC) of nanotwinned (nt) Cu with three different twin spacings are performed to model the response of nt Cu upon a radiation dose of 1 displacements per atom (dpa). Considering the defects developed with high randomness in the material during a MCC process, each MCC in a nt Cu is conducted for eight times. This enables us to analyze some average properties of defect clusters in the radiated nt Cu with different twin spacings at the different radiation doses. We also analyze the microstructural evolution in the nt Cu during the MCC. Smaller size of defect clusters and lower defect density are seen in the nt Cu with smaller twin spacing. In addition, a number of defect clusters could be removed via their frequent interactions with the coherent twin boundaries (CTBs) during the MCC. This induces either the migration of CTBs or the healing of CTBs. Moreover, the potential formation and elimination mechanisms of stacking fault are found to be due to the climb of Frank partial dislocation and glide of Shockley partial dislocations. This study provides further evidence on the irradiation tolerance of CTBs and the self-healing capability of CTBs in response to radiation.
NASA Astrophysics Data System (ADS)
Keiser, Dennis; Jue, Jan-Fong; Miller, Brandon; Gan, Jian; Robinson, Adam; Madden, James
2017-12-01
A low-enriched uranium U-10Mo monolithic nuclear fuel is being developed by the Material Management and Minimization Program, earlier known as the Reduced Enrichment for Research and Test Reactors Program, for utilization in research and test reactors around the world that currently use high-enriched uranium fuels. As part of this program, reactor experiments are being performed in the Advanced Test Reactor. It must be demonstrated that this fuel type exhibits mechanical integrity, geometric stability, and predictable behavior to high powers and high fission densities in order for it to be a viable fuel for qualification. This paper provides an overview of the microstructures observed at different regions of interest in fuel plates before and after irradiation for fuel samples that have been tested. These fuel plates were fabricated using laboratory-scale fabrication methods. Observations regarding how microstructural changes during irradiation may impact fuel performance are discussed.
Phase stability and microstructures of high entropy alloys ion irradiated to high doses
NASA Astrophysics Data System (ADS)
Xia, Songqin; Gao, Michael C.; Yang, Tengfei; Liaw, Peter K.; Zhang, Yong
2016-11-01
The microstructures of AlxCoCrFeNi (x = 0.1, 0.75 and 1.5 in molar ratio) high entropy alloys (HEAs) irradiated at room temperature with 3 MeV Au ions at the highest fluence of 105, 91, and 81 displacement per atom, respectively, were studied. Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) analyses show that the initial microstructures and phase composition of all three alloys are retained after ion irradiation and no phase decomposition is observed. Furthermore, it is demonstrated that the disordered face-centered cubic (FCC) and disordered body-centered cubic (BCC) phases show much less defect cluster formation and structural damage than the NiAl-type ordered B2 phase. This effect is explained by higher entropy of mixing, higher defect formation/migration energies, substantially lower thermal conductivity, and higher atomic level stress in the disordered phases.
Zong, Chuanyong; Zhao, Yan; Ji, Haipeng; Xie, Jixun; Han, Xue; Wang, Juanjuan; Cao, Yanping; Lu, Conghua; Li, Hongfei; Jiang, Shichun
2016-08-01
Here, a simple combined strategy of surface wrinkling with visible light irradiation to fabricate well tunable hierarchical surface patterns on azo-containing multilayer films is reported. The key to tailor surface patterns is to introduce a photosensitive poly(disperse orange 3) intermediate layer into the film/substrate wrinkling system, in which the modulus decrease is induced by the reversible photoisomerization. The existence of a photoinert top layer prevents the photoisomerization-induced stress release in the intermediate layer to some extent. Consequently, the as-formed wrinkling patterns can be modulated over a large area by light irradiation. Interestingly, in the case of selective exposure, the wrinkle wavelength in the exposed region decreases, while the wrinkles in the unexposed region are evolved into highly oriented wrinkles with the orientation perpendicular to the exposed/unexposed boundary. Compared with traditional single layer-based film/substrate systems, the multilayer system consisting of the photosensitive intermediate layer offers unprecedented advantages in the patterning controllability/universality. As demonstrated here, this simple and versatile strategy can be conveniently extended to functional multilayer systems for the creation of prescribed hierarchical surface patterns with optically tailored microstructures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Lee, Wi Hyoung; Min, Honggi; Park, Namwoo; Lee, Junghwi; Seo, Eunsuk; Kang, Boseok; Cho, Kilwon; Lee, Hwa Sung
2013-08-28
Research into printing techniques has received special attention for the commercialization of cost-efficient organic electronics. Here, we have developed a capillary pen printing technique to realize a large-area pattern array of organic transistors and systematically investigated self-organization behavior of printed soluble organic semiconductor ink. The capillary pen-printed deposits of organic semiconductor, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS_PEN), was well-optimized in terms of morphological and microstructural properties by using ink with mixed solvents of chlorobenzene (CB) and 1,2-dichlorobenzene (DCB). Especially, a 1:1 solvent ratio results in the best transistor performances. This result is attributed to the unique evaporation characteristics of the TIPS_PEN deposits where fast evaporation of CB induces a morphological evolution at the initial printed position, and the remaining DCB with slow evaporation rate offers a favorable crystal evolution at the pinned position. Finally, a large-area transistor array was facilely fabricated by drawing organic electrodes and active layers with a versatile capillary pen. Our approach provides an efficient printing technique for fabricating large-area arrays of organic electronics and further suggests a methodology to enhance their performances by microstructural control of the printed organic semiconducting deposits.
López-Barrón, Carlos R; Gurnon, A Kate; Eberle, Aaron P R; Porcar, Lionel; Wagner, Norman J
2014-04-01
We present direct measurements of the evolution of the segmental-level microstructure of a stable shear-banding polymerlike micelle solution during flow startup and cessation in the plane of flow. These measurements provide a definitive, quantitative microstructural understanding of the stages observed during flow startup: an initial elastic response with limited alignment that yields with a large stress overshoot to a homogeneous flow with associated micellar alignment that persists for approximately three relaxation times. This transient is followed by a shear (kink) band formation with a flow-aligned low-viscosity band that exhibits shear-induced concentration fluctuations and coexists with a nearly isotropic band of homogenous, highly viscoelastic micellar solution. Stable, steady banding flow is achieved only after approximately two reptation times. Flow cessation from this shear-banded state is also found to be nontrivial, exhibiting an initial fast relaxation with only minor structural relaxation, followed by a slower relaxation of the aligned micellar fluid with the equilibrium fluid's characteristic relaxation time. These measurements resolve a controversy in the literature surrounding the mechanism of shear banding in entangled wormlike micelles and, by means of comparison to existing literature, provide further insights into the mechanisms driving shear-banding instabilities in related systems. The methods and instrumentation described should find broad use in exploring complex fluid rheology and testing microstructure-based constitutive equations.
Binder-induced surface structure evolution effects on Li-ion battery performance
NASA Astrophysics Data System (ADS)
Rezvani, S. J.; Pasqualini, M.; Witkowska, A.; Gunnella, R.; Birrozzi, A.; Minicucci, M.; Rajantie, H.; Copley, M.; Nobili, F.; Di Cicco, A.
2018-03-01
A comparative investigation on binder induced chemical and morphological evolution of Li4Ti5O12 electrodes was performed via X-ray photoemission spectroscopy, scanning electron microscopy, and electrochemical measurements. Composite electrodes were obtained using three different binders (PAA, PVdF, and CMC) with 80:10:10 ratio of active material:carbon:binder. The electrochemical performances of the electrodes, were found to be intimately correlated with the evolution of the microstructure of the electrodes, probed by XPS and SEM analysis. Our analysis shows that the surface chemistry, thickness of the passivation layers and the morphology of the electrodes are strongly dependent on the type of binders that significantly influence the electrochemical properties of the electrodes. These results point to a key role played by binders in optimization of the battery performance and improve our understanding of the previously observed and unexplained electrochemical properties of these electrodes.
Darkening effect on AZ31B magnesium alloy surface induced by nanosecond pulse Nd:YAG laser
NASA Astrophysics Data System (ADS)
Guan, Y. C.; Zhou, W.; Zheng, H. Y.; Li, Z. L.
2013-09-01
Permanent darkening effect was achieved on surface of AZ31B Mg alloy irradiated with nanosecond pulse Nd:YAG laser, and special attention was made to examine how surface structure as well as oxidation affect the darkening effect. Experiments were carried out to characterize morphological evolution and chemical composition of the irradiated areas by optical reflection spectrometer, Talysurf surface profiler, SEM, EDS, and XPS. The darkening effect was found to be occurred at the surface under high laser energy. Optical spectra showed that the induced darkening surface was uniform over the spectral range from 200 nm to 1100 nm. SEM and surface profiler showed that surface morphology of darkening areas consisted of large number of micron scale cauliflower-like clusters and protruding particles. EDS and XPS showed that compared to non-irradiated area, oxygen content at the darkening areas increased significantly. It was proposed a mechanism that involved trapping of light in the surface morphology and chemistry variation of irradiated areas to explain the laser-induced darkening effect on AZ31B Mg alloy.
He-irradiation effects on glass-ceramics for joining of SiC-based materials
NASA Astrophysics Data System (ADS)
Gozzelino, L.; Casalegno, V.; Ghigo, G.; Moskalewicz, T.; Czyrska-Filemonowicz, A.; Ferraris, M.
2016-04-01
CaO-Al2O3 (CA) and SiO2-Al2O3-Y2O3 (SAY) glass-ceramics are promising candidates for SiC/SiC indirect joints. In view of their use in locations where high radiation level is expected (i.e. fusion plants) it is important to investigate how radiation-induced damage can modify the material microstructure. To this aim, pellets of both types were irradiated with 5.5 MeV 4He+ ions at an average temperature of 75 °C up to a fluence of almost 2.3·1018 cm-2. This produces a displacement defect density that increases with depth and reaches a value of about 40 displacements per atom in the ion implantation region, where the He-gas reaches a concentration of several thousands of atomic parts per million. X-ray diffractometry and scanning electron microscopy showed no change in the microstructure and in the morphology of the pellet surface. Moreover, a transmission electron microscopy investigation on cross-section lamellas revealed the occurrence of structural defects and agglomerates of He-bubbles in the implantation region for the CA sample and a more homogeneous He-bubble distribution in the SAY pellet, even outside the implantation layer. In addition, no amorphization was found in both samples, even in correspondence to the He implantation zone. The radiation damage induced only occasional micro-cracks, mainly located at grain boundaries (CA) or within the grains (SAY).
Irradiation-induced Ag nanocluster nucleation in silicate glasses: Analogy with photography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Espiau de Lamaestre, R.; Fontainebleau Research Center, Corning SA, 77210 Avon; Bea, H.
2007-11-15
The synthesis of Ag nanoclusters in soda lime silicate glasses and silica was studied by optical absorption and electron spin resonance experiments under both low (gamma ray) and high (MeV ion) deposited energy density irradiation conditions. Both types of irradiation create electrons and holes whose density and thermal evolution--notably via their interaction with defects--are shown to determine the clustering and growth rates of Ag nanocrystals. We thus establish the influence of redox interactions of defects and silver (poly)ions. The mechanisms are similar to the latent image formation in photography: Irradiation-induced photoelectrons are trapped within the glass matrix, notably on dissolvedmore » noble metal ions and defects, which are thus neutralized (reverse oxidation reactions are also shown to exist). Annealing promotes metal atom diffusion, which, in turn, leads to cluster nuclei formation. The cluster density depends not only on the irradiation fluence but also--and primarily--on the density of deposited energy and the redox properties of the glass. Ion irradiation (i.e., large deposited energy density) is far more effective in cluster formation, despite its lower neutralization efficiency (from Ag{sup +} to Ag{sup 0}) as compared to gamma photon irradiation.« less
Ion-beam-induced nanodots formation from Au/Si thin films on quartz surface
NASA Astrophysics Data System (ADS)
Datta, D. P.; Siva, V.; Singh, A.; Joshi, S. R.; Kanjilal, D.; Sahoo, P. K.
2016-07-01
We report the synthesis of Si nanodots on quartz surface using ion irradiation. When a bi-layer of ultrathin Au and Si on quartz surface is irradiated by 500 keV Xe-ion beam, the bi-layer spontaneously transforms into nanodots at a fluence of 5 × 1014 ions cm-2. The spatial density and diameter of the nanodots are reduced with increase in applied ion fluence. The nanostructures exhibit photoluminescence in the visible range at room temperature where the intensity and wavelength depends upon ion fluence. The observed evolution seems to be correlated to ion beam mixing induced silicide formation at Au-Si interface.
Rtimi, Sami; Pulgarin, Cesar; Nadtochenko, Victor A.; Gostev, Fedor E.; Shelaev, Ivan V.; Kiwi, John
2016-01-01
This study presents the first report addressing the effect of FeOx-TiO2 films microstructure on the transients detected by fast spectroscopy related to the long-range bacterial inactivation performance. The different fast kinetic femtosecond transient spectroscopy is reported for each FeOx+TiO2 microstructure. The lifetime of the short transient-species and the oxidative intermediate radicals generated under light were identified. Co-sputtered FeOx-TiO2 on polyethylene films presenting random distribution for both oxides were compared with sequentially sputtered FeOx/TiO2 films made up only by FeOx in the topmost layers. The ratio FeOx:TiO2 was optimized to attain the highest photo-conversion. By X-ray fluorescence, the Fe:Ti ration was found to be ~1.4 in the film bulk and by XPS-etching a ratio of 4:1 was found on the photocatalyst top-most layers. For co-sputtered FeOx-TiO2-PE films, the FeOx-TiO2 heterojunction led to electron injection from the FeOx to lower-lying TiO2 trapping states. The film optical properties, particle size, roughness, hydrophobic-hydrophilic shift and temporal evolution of the transient redox states were characterized in detail. Films with different microstructure led to different antibacterial activity. This suggests that the FeOx-TiO2-PE microstructure and not the position of the potential energy level of the semiconductors FeOx and TiO2 control the charge transfer under light irradiation. PMID:27443505
Rtimi, Sami; Pulgarin, Cesar; Nadtochenko, Victor A; Gostev, Fedor E; Shelaev, Ivan V; Kiwi, John
2016-07-22
This study presents the first report addressing the effect of FeOx-TiO2 films microstructure on the transients detected by fast spectroscopy related to the long-range bacterial inactivation performance. The different fast kinetic femtosecond transient spectroscopy is reported for each FeOx+TiO2 microstructure. The lifetime of the short transient-species and the oxidative intermediate radicals generated under light were identified. Co-sputtered FeOx-TiO2 on polyethylene films presenting random distribution for both oxides were compared with sequentially sputtered FeOx/TiO2 films made up only by FeOx in the topmost layers. The ratio FeOx:TiO2 was optimized to attain the highest photo-conversion. By X-ray fluorescence, the Fe:Ti ration was found to be ~1.4 in the film bulk and by XPS-etching a ratio of 4:1 was found on the photocatalyst top-most layers. For co-sputtered FeOx-TiO2-PE films, the FeOx-TiO2 heterojunction led to electron injection from the FeOx to lower-lying TiO2 trapping states. The film optical properties, particle size, roughness, hydrophobic-hydrophilic shift and temporal evolution of the transient redox states were characterized in detail. Films with different microstructure led to different antibacterial activity. This suggests that the FeOx-TiO2-PE microstructure and not the position of the potential energy level of the semiconductors FeOx and TiO2 control the charge transfer under light irradiation.
NASA Astrophysics Data System (ADS)
Rtimi, Sami; Pulgarin, Cesar; Nadtochenko, Victor A.; Gostev, Fedor E.; Shelaev, Ivan V.; Kiwi, John
2016-07-01
This study presents the first report addressing the effect of FeOx-TiO2 films microstructure on the transients detected by fast spectroscopy related to the long-range bacterial inactivation performance. The different fast kinetic femtosecond transient spectroscopy is reported for each FeOx+TiO2 microstructure. The lifetime of the short transient-species and the oxidative intermediate radicals generated under light were identified. Co-sputtered FeOx-TiO2 on polyethylene films presenting random distribution for both oxides were compared with sequentially sputtered FeOx/TiO2 films made up only by FeOx in the topmost layers. The ratio FeOx:TiO2 was optimized to attain the highest photo-conversion. By X-ray fluorescence, the Fe:Ti ration was found to be ~1.4 in the film bulk and by XPS-etching a ratio of 4:1 was found on the photocatalyst top-most layers. For co-sputtered FeOx-TiO2-PE films, the FeOx-TiO2 heterojunction led to electron injection from the FeOx to lower-lying TiO2 trapping states. The film optical properties, particle size, roughness, hydrophobic-hydrophilic shift and temporal evolution of the transient redox states were characterized in detail. Films with different microstructure led to different antibacterial activity. This suggests that the FeOx-TiO2-PE microstructure and not the position of the potential energy level of the semiconductors FeOx and TiO2 control the charge transfer under light irradiation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Yanwen; Jin, Ke; Xue, Haizhou
We report that historically, alloy development with better radiation performance has been focused on traditional alloys with one or two principal element(s) and minor alloying elements, where enhanced radiation resistance depends on microstructural or nanoscale features to mitigate displacement damage. In sharp contrast to traditional alloys, recent advances of single-phase concentrated solid solution alloys (SP-CSAs) have opened up new frontiers in materials research. In these alloys, a random arrangement of multiple elemental species on a crystalline lattice results in disordered local chemical environments and unique site-to-site lattice distortions. Based on closely integrated computational and experimental studies using a novel setmore » of SP-CSAs in a face-centered cubic structure, we have explicitly demonstrated that increasing chemical disorder can lead to a substantial reduction in electron mean free paths, as well as electrical and thermal conductivity, which results in slower heat dissipation in SP-CSAs. The chemical disorder also has a significant impact on defect evolution under ion irradiation. Considerable improvement in radiation resistance is observed with increasing chemical disorder at electronic and atomic levels. Finally, the insights into defect dynamics may provide a basis for understanding elemental effects on evolution of radiation damage in irradiated materials and may inspire new design principles of radiation-tolerant structural alloys for advanced energy systems.« less
NASA Astrophysics Data System (ADS)
Dutta, Argha; Das, Kalipada; Gayathri, N.; Menon, Ranjini; Nabhiraj, P. Y.; Mukherjee, Paramita
2018-03-01
The microstructural parameters such as domain size and microstrain have been estimated from Grazing Incidence X-ray Diffraction (GIXRD) data for Ar9+ irradiated Zr-1Nb-1Sn-0.1Fe sample as a function of dpa (dose). Detail studies using X-ray Diffraction Line Profile Analysis (XRDLPA) from GIXRD data has been carried out to characterize the microstructural parameters like domain size and microstrain. The reorientation of the grains due to effect of irradiation at high dpa (dose) has been qualitatively assessed by the texture parameter P(hkl).
NASA Astrophysics Data System (ADS)
Yao, Z.; Jenkins, M. L.; Hernández-Mayoral, M.; Kirk, M. A.
2010-12-01
A transition is reported in the dislocation microstructure of pure Fe produced by heavy-ion irradiation of thin foils, which took place between irradiation temperatures (T irr) of 300°C and 500°C. At T irr ≤ 400°C, the microstructure was dominated by round or irregular non-edge dislocation loops of interstitial nature and with Burgers vectors b = ½ ⟨111⟩, although interstitial ⟨100⟩ loops were also present; at 500°C only rectilinear pure-edge ⟨100⟩ loops occurred. At intermediate temperatures there was a gradual transition between the two types of microstructure. At temperatures just below 500°C, mobile ½⟨111⟩ loops were seen to be subsumed by sessile ⟨100⟩ loops. A possible explanation of these observations is given.
Intrinsic stress evolution during amorphous oxide film growth on Al surfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flötotto, D., E-mail: d.floetotto@is.mpg.de; Wang, Z. M.; Jeurgens, L. P. H.
2014-03-03
The intrinsic stress evolution during formation of ultrathin amorphous oxide films on Al(111) and Al(100) surfaces by thermal oxidation at room temperature was investigated in real-time by in-situ substrate curvature measurements and detailed atomic-scale microstructural analyses. During thickening of the oxide a considerable amount of growth stresses is generated in, remarkably even amorphous, ultrathin Al{sub 2}O{sub 3} films. The surface orientation-dependent stress evolutions during O adsorption on the bare Al surfaces and during subsequent oxide-film growth can be interpreted as a result of (i) adsorption-induced surface stress changes and (ii) competing processes of free volume generation and structural relaxation, respectively.
Gerczak, Tyler J.; Hunn, John D.; Lowden, Richard A.; ...
2016-08-15
Tristructural isotropic (TRISO) coated particle fuel is a promising fuel form for advanced reactor concepts such as high temperature gas-cooled reactors (HTGR) and is being developed domestically under the US Department of Energy’s Nuclear Reactor Technologies Initiative in support of Advanced Reactor Technologies. The fuel development and qualification plan includes a series of fuel irradiations to demonstrate fuel performance from the laboratory to commercial scale. The first irradiation campaign, AGR-1, included four separate TRISO fuel variants composed of multiple, laboratory-scale coater batches. The second irradiation campaign, AGR-2, included TRISO fuel particles fabricated by BWX Technologies with a larger coater representativemore » of an industrial-scale system. The SiC layers of as-fabricated particles from the AGR-1 and AGR-2 irradiation campaigns have been investigated by electron backscatter diffraction (EBSD) to provide key information about the microstructural features relevant to fuel performance. The results of a comprehensive study of multiple particles from all constituent batches are reported. The observations indicate that there were microstructural differences between variants and among constituent batches in a single variant. Finally, insights on the influence of microstructure on the effective diffusivity of key fission products in the SiC layer are also discussed.« less
Synergies Between ' and Cavity Formation in HT-9 Following High Dose Neutron Irradiation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Parish, Chad M.; Saleh, Tarik A.
Candidate cladding materials for advanced nuclear power reactors including fast reactor designs require materials capable of withstanding high dose neutron irradiation at elevated temperatures. One candidate material, HT-9, through various research programs have demonstrated the ability to withstand significant swelling and other radiation-induced degradation mechanisms in the high dose regime (>50 displacements per atom, dpa) at elevated temperatures (>300 C). Here, high efficiency multi-dimensional scanning transmission electron microscopy (STEM) acquisition with the aid of a three-dimensional (3D) reconstruction and modeling technique is used to probe the microstructural features that contribute to the exceptional swelling resistance of HT-9. In particular, themore » synergies between ' and fine-scale and moderate-scale cavity formation is investigated.« less
Development of High-Z Materials with Improved Toughness for High Heat Flux Components
NASA Astrophysics Data System (ADS)
Kurishita, Hiroaki; Kitsunai, Yuji; Kuwabara, Tetsuya; Hasegawa, Masayuki; Hiraoka, Yutaka; Takida, Tomohiro; Igarashi, Tadashi
Tungsten is superior to other materials in physical and mechanical properties for use as high heat flux components in future fusion reactors. The key issue of the metal is to improve the low temperature embrittlement, the recrystallization embrittlement and the irradiation embrittlement. An alloy design and microstructure control for achieving simultaneous and significant improvements in those embrittlements are described and are applied to tungsten and molybdenum which has quite similar properties as tungsten. The result of the application is presented for each of the embrittlement, with considerable success. Emphasis is placed on the occurrence of RIDU (Radiation Induced Ductilization) because RIDU is expected to provide the scenario to overcome severe irradiation embrittlement that is the most crucial problem for structure materials exposed in fusion environment.
Srivastava, Samanvaya; Reddy, P Dinesh Sankar; Wang, Cindy; Bandyopadhyay, Dipankar; Sharma, Ashutosh
2010-05-07
We study by nonlinear simulations the electric field induced pattern formation in a thin viscous film resting on a topographically or chemically patterned substrate. The thin film microstructures can be aligned to the substrate patterns within a window of parameters where the spinodal length scale of the field induced instability is close to the substrate periodicity. We investigate systematically the change in the film morphology and order when (i) the substrate pattern periodicity is varied at a constant film thickness and (ii) the film thickness is varied at a constant substrate periodicity. Simulations show two distinct pathway of evolution when the substrate-topography changes from protrusions to cavities. The isolated substrate defects generate locally ordered ripplelike structures distinct from the structures on a periodically patterned substrate. In the latter case, film morphology is governed by a competition between the pattern periodicity and the length scale of instability. Relating the thin film morphologies to the underlying substrate pattern has implications for field induced patterning and robustness of inter-interface pattern transfer, e.g., coding-decoding of information printed on a substrate.
Proton irradiation damage of an annealed Alloy 718 beam window
Bach, H. T.; Anderoglu, O.; Saleh, T. A.; ...
2015-04-01
Mechanical testing and microstructural analysis was performed on an Alloy 718 window that was in use at the Los Alamos Neutron Science Center (LANSCE) Isotope Production Facility (IPF) for approximately 5 years. It was replaced as part of the IPF preventive maintenance program. The window was transported to the Wing 9 hot cells at the Chemical and Metallurgical Research (CMR) LANL facility, visually inspected and 3-mm diameter samples were trepanned from the window for mechanical testing and microstructural analysis. Shear punch testing and optical metallography was performed at the CMR hot cells. The 1-mm diameter shear punch disks were cutmore » into smaller samples to further reduce radiation exposure dose rate using Focus Ion Beam (FIB) and microstructure changes were analyzed using a Transmission Electron Microscopy (TEM). Irradiation doses were determined to be ~0.2–0.7 dpa (edge) to 11.3 dpa (peak of beam intensity) using autoradiography and MCNPX calculations. The corresponding irradiation temperatures were calculated to be ~34–120 °C with short excursion to be ~47–220 °C using ANSYS. Mechanical properties and microstructure analysis results with respect to calculated dpa and temperatures show that significant work hardening occurs but useful ductility still remains. The hardening in the lowest dose region (~0.2–0.7 dpa) was the highest and attributed to the formation of γ" precipitates and irradiation defect clusters/bubbles whereas the hardening in the highest dose region (~11.3 dpa) was lower and attributed mainly to irradiation defect clusters and some thermal annealing.« less
Microstructural response of InGaN to swift heavy ion irradiation
NASA Astrophysics Data System (ADS)
Zhang, L. M.; Jiang, W.; Fadanelli, R. C.; Ai, W. S.; Peng, J. X.; Wang, T. S.; Zhang, C. H.
2016-12-01
A monocrystalline In0.18Ga0.82N film of ∼275 nm in thickness grown on a GaN/Al2O3 substrate was irradiated with 290 MeV 238U32+ ions to a fluence of 1.2 × 1012 cm-2 at room temperature. The irradiated sample was characterized using helium ion microscopy (HIM), Rutherford backscattering spectrometry under ion-channeling conditions (RBS/C), and high-resolution X-ray diffraction (HRXRD). The irradiation leads to formation of ion tracks throughout the thin In0.18Ga0.82N film and the 3.0 μm thick GaN buffer layer. The mean diameter of the tracks in In0.18Ga0.82N is ∼9 nm, as determined by HIM examination. Combination of the HIM and RBS/C data suggests that the In0.18Ga0.82N material in the track is likely to be highly disordered or fully amorphized. The irradiation induced lattice relaxation in In0.18Ga0.82N and a distribution of d-spacing of the (0 0 0 2) planes in GaN with lattice expansion are observed by HRXRD.
NASA Astrophysics Data System (ADS)
Ye, B.; Hofman, G. L.; Leenaers, A.; Bergeron, A.; Kuzminov, V.; Van den Berghe, S.; Kim, Y. S.; Wallin, H.
2018-02-01
Post irradiation examinations of full-size U-Mo/Al dispersion fuel plates fabricated with ZrN- or Si- coated U-Mo particles revealed that the reaction rate of irradiation-induced U-Mo-Al inter-diffusion, an important microstructural change impacting the performance of this type of fuel, transited at a threshold temperature/fission rate. The existing inter-diffusion layer (IL) growth correlation, which does not describe the transition behavior of IL growth, was modified by applying a temperature-dependent multiplication factor that transits around a threshold fission rate. In-pile irradiation data from four tests in the BR2 reactors, including FUTURE, E-FUTURE, SELEMIUM, and SELEMIUM-1a, were utilized to determine and validate the updated IL growth correlation. Irradiation behavior of the plates was simulated with the DART-2D computational code. The general agreement between the calculated and measured fuel meat swelling and constituent volume fractions as a function of fission density demonstrated the plausibility of the updated IL growth correlation. The simulation results also suggested the temperature dependence of the IL growth rate, similar to the temperature dependence of the inter-mixing rate in ion-irradiated bi-layer systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asha, S.; Sanjeev, Ganesh, E-mail: ganeshsanjeev@rediffmail.com; Sangappa
The Bombyx mori silk fibroin (SF) films were prepared by solution casting method and the effects of electron beam on structural, thermal and antibacterial responses of the prepared films were studied. The electron irradiation for different doses was carried out using 8 MeV Microtron facility at Mangalore University. The changes in microstructural parameters and thermal stability of the films were investigated using Wide Angle X-ray Scattering (WAXS) and thermogravimetric analysis (TGA) respectively. Both microstructuralline parameters (crystallite size and lattice strain (g in %)) and thermal stability of the irradiated films have increased with radiation dosage. Agar diffusion method demonstrated themore » antibacterial activity of SF film which was increased after irradiation on both Gram-positive and Gram-negative species.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jung, Hee Joon; Edwards, Dan J.; Kurtz, Richard J.
An investigation of the influence of helium on damage evolution under neutron irradiation of an 11 at% Al, 19 at% Cr ODS ferritic PM2000 alloy was carried out in the High Flux Isotope Reactor (HFIR) using a novel in situ helium injection (ISHI) technique. Helium was injected into adjacent TEM discs from thermal neutron 59Ni(nth, 59Ni(nth,α) reactions in a thin NiAl layer. The PM2000 undergoes concurrent displacement damage from the high-energy neutrons. The ISHI technique allows direct comparisons of regions with and without high concentrations of helium since only the side coated with the NiAl experiences helium injection. The correspondingmore » microstructural and microchemical evolutions were characterized using both conventional and scanning transmission electron microscopy techniques. The evolutions observed include formation of dislocation loops and associated helium bubbles, precipitation of a variety of phases, amorphization of the Al2YO3 oxides (which also variously contained internal voids), and several manifestations of solute segregation. Notably, high concentrations of helium had a significant effect on many of these diverse phenomena. These results on PM2000 are compared and contrasted to the evolution of so-called nanostructured ferritic alloys (NFA).« less
Modeling of Microstructure Evolution During Alloy Solidification
NASA Astrophysics Data System (ADS)
Zhu, Mingfang; Pan, Shiyan; Sun, Dongke
In recent years, considerable advances have been achieved in the numerical modeling of microstructure evolution during solidification. This paper presents the models based on the cellular automaton (CA) technique and lattice Boltzmann method (LBM), which can reproduce a wide variety of solidification microstructure features observed experimentally with an acceptable computational efficiency. The capabilities of the models are addressed by presenting representative examples encompassing a broad variety of issues, such as the evolution of dendritic structure and microsegregation in two and three dimensions, dendritic growth in the presence of convection, divorced eutectic solidification of spheroidal graphite irons, and gas porosity formation. The simulations offer insights into the underlying physics of microstructure formation during alloy solidification.
Post Deformation Annealing Behaviour of Mg-Al-Sn Alloys
NASA Astrophysics Data System (ADS)
Kabir, Abu Syed Humaun; Su, Jing; Sanjari, Mehdi; Jung, In-Ho; Yue, Stephen
In this study, effects of dynamically formed precipitates on the microstructure and texture evolutions were investigated after the post deformation annealing for various times. Two ternary alloys of Mg, Al and Sn were designed, produced and deformed at 300°C at a strain rate of 0.01s-1 to form different amounts of strain induced precipitates during deformation. Subsequent annealing at deformation temperature was performed for up to 4 hours. Microstructures and precipitation were investigated by optical and scanning electron microscopes and macro and micro-texture were measured by X-ray diffraction (XRD) and Electron Back-Scattered Diffraction (EBSD) techniques, respectively. It was found that certain amount of strain induced precipitates was necessary to prevent grain growth for a certain time during annealing by grain boundary pinning effect. Also, texture randomization was possible with the presence of precipitates after certain time of annealing.
Gigax, Jonathan G.; Kim, Hyosim; Aydogan, Eda; ...
2017-05-16
Although accelerator-based ion irradiation has been widely accepted to simulate neutron damage, neutron-atypical features need to be carefully investigated. In this study, we have shown that Coulomb force drag by ion beams can introduce significant amounts of carbon, nitrogen, and oxygen into target materials even under ultra-high vacuum conditions. The resulting compositional and microstructural changes dramatically suppress void swelling. By applying a beam-filtering technique, introduction of vacuum contaminants is greatly minimized and the true swelling resistance of the alloys is revealed and matches neutron behavior closely. These findings are a significant step toward developing standardized procedures for emulating neutron damage.
NASA Astrophysics Data System (ADS)
Salakhitdinov, Amritdin; Ibragimova, Elvira; Salakhitdinova, Maysara
2018-02-01
This work experimentally revealed, that 60Co-gamma-irradiation of potash-alumina-borate glasses doped with 1 and 2 mass% of iron oxide to the dose of 1.7 MR in the temperature range of 150-300 °C induced differential optical density changes within - 6 ≤ Δ D ≤ 0 in the wave length range of 300-350 nm, which is characteristic for meta-material. Calculations have shown that variation of optical refraction index within - 0.05 ≤ Δ n ω ≤ 0.05 due to microstructure transformation causes changes in the differential absorption index of the glass - 0.5 < Δ α ω < 0.55.
Kr ion irradiation study of the depleted-uranium alloys
NASA Astrophysics Data System (ADS)
Gan, J.; Keiser, D. D.; Miller, B. D.; Kirk, M. A.; Rest, J.; Allen, T. R.; Wachs, D. M.
2010-12-01
Fuel development for the reduced enrichment research and test reactor (RERTR) program is tasked with the development of new low enrichment uranium nuclear fuels that can be employed to replace existing high enrichment uranium fuels currently used in some research reactors throughout the world. For dispersion type fuels, radiation stability of the fuel-cladding interaction product has a strong impact on fuel performance. Three depleted-uranium alloys are cast for the radiation stability studies of the fuel-cladding interaction product using Kr ion irradiation to investigate radiation damage from fission products. SEM analysis indicates the presence of the phases of interest: U(Al, Si) 3, (U, Mo)(Al, Si) 3, UMo 2Al 20, U 6Mo 4Al 43 and UAl 4. Irradiations of TEM disc samples were conducted with 500 keV Kr ions at 200 °C to ion doses up to 2.5 × 10 19 ions/m 2 (˜10 dpa) with an Kr ion flux of 10 16 ions/m 2/s (˜4.0 × 10 -3 dpa/s). Microstructural evolution of the phases relevant to fuel-cladding interaction products was investigated using transmission electron microscopy.
Effect of solidification rate on microstructure evolution in dual phase microalloyed steel
Kostryzhev, A. G.; Slater, C. D.; Marenych, O. O.; Davis, C. L.
2016-01-01
In steels the dependence of ambient temperature microstructure and mechanical properties on solidification rate is not well reported. In this work we investigate the microstructure and hardness evolution for a low C low Mn NbTi-microalloyed steel solidified in the cooling rate range of 1–50 Cs−1. The maximum strength was obtained at the intermediate solidification rate of 30 Cs−1. This result has been correlated to the microstructure variation with solidification rate. PMID:27759109
Biondi, Elisa; Branciamore, Sergio; Maurel, Marie-Christine; Gallori, Enzo
2007-01-01
Background The hypothesis of an RNA-based origin of life, known as the "RNA world", is strongly affected by the hostile environmental conditions probably present in the early Earth. In particular, strong UV and X-ray radiations could have been a major obstacle to the formation and evolution of the first biomolecules. In 1951, J. D. Bernal first proposed that clay minerals could have served as the sites of accumulation and protection from degradation of the first biopolymers, providing the right physical setting for the evolution of more complex systems. Numerous subsequent experimental studies have reinforced this hypothesis. Results The ability of the possibly widespread prebiotic, clay mineral montmorillonite to protect the catalytic RNA molecule ADHR1 (Adenine Dependent Hairpin Ribozyme 1) from UV-induced damages was experimentally checked. In particular, the self-cleavage reaction of the ribozyme was evaluated after UV-irradiation of the molecule in the absence or presence of clay particles. Results obtained showed a three-fold retention of the self-cleavage activity of the montmorillonite-protected molecule, with respect to the same reaction performed by the ribozyme irradiated in the absence of the clay. Conclusion These results provide a suggestion with which RNA, or RNA-like molecules, could have overcame the problem of protection from UV irradiation in the RNA world era, and suggest that a clay-rich environment could have favoured not only the formation of first genetic molecules, but also their evolution towards increasingly complex molecular organization. PMID:17767730
Glazoff, Michael V.; Dufek, Eric J.; Shalashnikov, Egor V.
2016-09-15
Morphological analysis and synthesis operations were employed for analysis of electrode microstructure transformations and evolution accompanying the application of charge/discharge cycles to electrochemical storage systems (batteries). Using state-of-the-art morphological algorithms, it was possible to predict microstructure evolution in porous Si electrodes for Li-ion batteries with sufficient accuracy. Algorithms for image analyses (segmentation, feature extraction, and 3D-reconstructions using 2D-images) were also developed. Altogether, these techniques could be considered supplementary to phase-field mesoscopic approach to microstructure evolution that is based upon clear and definitive changes in the appearance of microstructure. However, unlike in phase-field, the governing equations for morphological approach are geometry-,more » not physics-based. Similar non-physics based approach to understanding different phenomena was attempted with the introduction of cellular automata. It is anticipated that morphological synthesis and analysis will represent a useful supplementary tool to phase-field and will render assistance to unraveling the underlying microstructure-property relationships. The paper contains data on electrochemical characterization of different electrode materials that was conducted in parallel to morphological study.« less
Chemical evolution of Titan’s aerosol analogues under VUV irradiation
NASA Astrophysics Data System (ADS)
Carrasco, Nathalie; Gavilan, Lisseth; Tigrine, Sarah; Vettier, Ludovic; Nahon, Laurent; Pernot, Pascal
2017-10-01
Since the Cassini-CAPS measurements, organic aerosols are known to be present and formed at high altitudes in the diluted and partially ionized medium that is Titan’s ionosphere [1].After production in the ionosphere, Titan’s aerosols evolve through microphysics during their sedimentation down to Titan’s surface [2]. Starting with a few nanomers size in the upper atmosphere, they reach a fractal structure of a few hundreds nanometers close to the surface [3]. During sedimentation, aerosols are also submitted to solar irradiation. As laboratory analogs of Titan’s atmospheric aerosols (tholins) show a strong UV absorption [4], we suspect that VUV irradiation could also induce a chemical evolution of Titan’s aerosols during their descent in Titan’s atmosphere.The aim of this work ist to simulate the irradiation process occuring on the aerosols in Titan’s atmosphere and to address whether this irradiation impacts the chemical composition of the organic solids. First aerosol analogues were produced in a N2-CH4 plasma discharge as thin organic films of a few hundreds of nanometers thick [5]. Then those were irradiated at Lyman-α wavelength, the strongest VUV line in the solar spectrum, with a high photon flux on a synchrotron VUV beamline. We will present and discuss the significant chemical evolutions observed on the analogues after VUV irradiation by mid-IR absorption spectroscopy.[1] Waite et al. (2009) Science , 316, p. 870[2] Lavvas et al. (2011) Astrophysical Journal, 728:80[3] Tomasko et al. (2008) Planetary and Space Science, 56, p. 669[4] Mahjoub et al. (2012) Icarus 221, P. 670[5] Carrasco et al. (2016) Planetary and Space Science, 128, p. 52
TEM Characterization of High Burn-up Microstructure of U-7Mo Alloy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jian Gan; Brandon Miller; Dennis Keiser
2014-04-01
As an essential part of global nuclear non-proliferation effort, the RERTR program is developing low enriched U-Mo fuels (< 20% U-235) for use in research and test reactors that currently employ highly enriched uranium fuels. One type of fuel being developed is a dispersion fuel plate comprised of U-7Mo particles dispersed in Al alloy matrix. Recent TEM characterizations of the ATR irradiated U-7Mo dispersion fuel plates include the samples with a local fission densities of 4.5, 5.2, 5.6 and 6.3 E+21 fissions/cm3 and irradiation temperatures of 101-136?C. The development of the irradiated microstructure of the U-7Mo fuel particles consists ofmore » fission gas bubble superlattice, large gas bubbles, solid fission product precipitates and their association to the large gas bubbles, grain subdivision to tens or hundreds of nanometer size, collapse of bubble superlattice, and amorphisation. This presentation will describe the observed microstructures specifically focusing on the U-7Mo fuel particles. The impact of the observed microstructure on the fuel performance and the comparison of the relevant features with that of the high burn-up UO2 fuels will be discussed.« less
Experimental studies of irradiated and hydrogen implantation damaged reactor steels
NASA Astrophysics Data System (ADS)
Slugeň, Vladimír; Pecko, Stanislav; Sojak, Stanislav
2016-01-01
Radiation degradation of nuclear materials can be experimentally simulated via ion implantation. In our case, German reactor pressure vessel (RPV) steels were studied by positron annihilation lifetime spectroscopy (PALS). This unique non-destructive method can be effectively applied for the evaluation of microstructural changes and for the analysis of degradation of reactor steels due to neutron irradiation and proton implantation. Studied specimens of German reactor pressure vessel steels are originally from CARINA/CARISMA program. Eight specimens were measured in as-received state and two specimens were irradiated by neutrons in German experimental reactor VAK (Versuchsatomkraftwerk Kahl) in the 1980s. One of the specimens which was in as-received and neutron irradiated condition was also used for simulation of neutron damage by hydrogen nuclei implantation. Defects with the size of about 1-2 vacancies with relatively small contribution (with intensity on the level of 20-40 %) were observed in "as-received" steels. A significant increase in the size of the induced defects due to neutron damage was observed in the irradiated specimens resulting in 2-3 vacancies. The size and intensity of defects reached a similar level as in the specimens irradiated in the nuclear reactor due to the implantation of hydrogen ions with energies of 100 keV (up to the depth <500 nm).
NASA Astrophysics Data System (ADS)
Pecko, Stanislav; Sojak, Stanislav; Slugeň, Vladimír
2014-09-01
Commercial German reactor pressure vessel (RPV) steels were studied by positron annihilation lifetime spectroscopy (PALS). This unique non-destructive method can be effectively applied for the evaluation of microstructural changes and for the analysis of degradation of reactor steels due to neutron irradiation and proton implantation. Studied specimens of German reactor pressure vessel steels are originally from CARINA/CARISMA program. Eight specimens were measured in as-received state and two specimens were irradiated by neutrons in German experimental reactor VAK (Versuchsatomkraftwerk Kahl) in the 1980s. One of the specimens which was also in as-received and neutron irradiated condition was also used for simulation of neutron damage by hydrogen nuclei implantation. Defects with the size of about 1-2 vacancies with relatively small contribution (with intensity on the level of 20-40%) were observed in "as-received" steels. A significant increase in the size of the induced defects due to neutron damage was observed at a level of 2-3 vacancies in the irradiated specimens. The size and intensity of defects reached a similar level as in the specimens irradiated in nuclear reactor due to hydrogen ions implantation with energy of 100 keV (up to the depth <500 nm). This could confirm the ability to simulate neutron damage by ion implantation.
Muntifering, Brittany; Blair, Sarah Jane; Gong, Cajer; ...
2015-12-30
Enhanced radiation tolerance of nanostructured metals is attributed to the high density of interfaces that can absorb radiation-induced defects. Here, cavity evolution mechanisms during cascade damage, helium implantation, and annealing of nanocrystalline nickel are characterized via in situ transmission electron microscopy (TEM). Films subjected to self-ion irradiation followed by helium implantation developed evenly distributed cavity structures, whereas films exposed in the reversed order developed cavities preferentially distributed along grain boundaries. Post-irradiation annealing and orientation mapping demonstrated uniform cavity growth in the nanocrystalline structure, and cavities spanning multiple grains. Furthermore, these mechanisms suggest limited ability to reduce swelling, despite the stabilitymore » of the nanostructure.« less
Microstructural examination of irradiated vanadium alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gelles, D.S.; Chung, H.M.
1997-04-01
Microstructural examination results are reported for a V-5Cr-5Ti unirradiated control specimens of heat BL-63 following annealing at 1050{degrees}C, and V-4Cr-4Ti heat BL-47 irradiated in three conditions from the DHCE experiment: at 425{degrees}C to 31 dpa and 0.39 appm He/dpa, at 600{degrees}C to 18 dpa and 0.54 appm He/dpa and at 600{degrees}C to 18 dpa and 4.17 appm He/dpa.
Microstructural Evolution and Tensile Properties of SnAgCu Mixed with Sn-Pb Solder Alloys (Preprint)
2009-03-01
AFRL-RX-WP-TP-2009-4132 MICROSTRUCTURAL EVOLUTION AND TENSILE PROPERTIES OF SnAgCu MIXED WITH Sn-Pb SOLDER ALLOYS (PREPRINT...PROPERTIES OF SnAgCu MIXED WITH Sn-Pb SOLDER ALLOYS (PREPRINT) 5a. CONTRACT NUMBER FA8650-04-C-5704 5b. GRANT NUMBER 5c. PROGRAM ELEMENT...ANSI Std. Z39-18 Microstructural evolution and tensile properties of SnAgCu mixed with Sn-Pb solder alloys Fengjiang Wang,1 Matthew O’Keefe,1,2 and
Microstructural characterisation of proton irradiated niobium using X-ray diffraction technique
NASA Astrophysics Data System (ADS)
Dutta, Argha; Gayathri, N.; Neogy, S.; Mukherjee, P.
2018-04-01
The microstructural parameters in pure Nb, irradiated with 5 MeV proton beam have been evaluated as a function of dose using X-ray diffraction line profile analysis. In order to assess the microstructural changes in the homogeneous region and in the peak damage region of the damage energy deposition profile, X-ray diffraction patterns have been collected using two different geometries (Bragg-Brentano and parallel beam geometries). Different X-ray line profile analysis like Williamson-Hall (W-H) analysis, modified W-H analysis, double-Voigt analysis, modified Rietveld technique and convolutional multiple whole profile fitting have been employed to extract the microstructural parameters like coherent domain size, microstrain within the domain, dislocation density and arrangement of dislocations. The coherent domain size decreases drastically along with increase in microstrain and dislocation density in the first dose for both the geometries. With increasing dose, a decreasing trend in microstrain associated with decrease in dislocation density is observed for both the geometries. This is attributed to the formation of defect clusters due to irradiation which with increasing dose collapse to dislocation loops to minimise the strain in the matrix. This is corroborated with the observation of black dots and loops in the TEM images. No significant difference is observed in the trend of microstructural parameters between the homogeneous and peak damage region of the damage profile.
Simulation of irradiation hardening of Zircaloy within plate-type dispersion nuclear fuel elements
NASA Astrophysics Data System (ADS)
Jiang, Yijie; Wang, Qiming; Cui, Yi; Huo, Yongzhong; Ding, Shurong
2011-06-01
Within plate-type dispersion nuclear fuel elements, the metal matrix and cladding attacked continuously by fast neutrons undergo irradiation hardening, which might have remarkable effects upon the mechanical behaviors within fuel elements. In this paper, with the irradiation hardening effect of metal materials mainly considered together with irradiation growth effect of the cladding, the three-dimensional large-deformation constitutive relations for the metal matrix and cladding are developed. The method of virtual temperature increase in the previous studies is further developed to model the irradiation swelling of fuel particles; the method of anisotropic thermal expansion is introduced to model irradiation growth of the cladding; and a method of multi-step-temperature loading is proposed to simulate the coupling features of irradiation-induced swelling of the fuel particles together with irradiation growth of the cladding. Above all, based on the developed relationship between irradiation growth at certain burnup and the loaded virtual temperatures, with considering that certain burnup corresponds to certain fast neutron fluence, the time-dependent constitutive relation due to irradiation hardening effect is replaced by the virtual-temperature-dependent one which is introduced into the commercial software to simulate the irradiation hardening effects of the matrix and cladding. Numerical simulations of the irradiation-induced mechanical behaviors are implemented with the finite element method in consideration of the micro-structure of the fuel meat. The obtained results indicate that when the irradiation hardening effects are introduced into the constitutive relations of the metal matrix and cladding: (1) higher maximum Mises stresses for certain burnup at the matrix exist with the equivalent plastic strains remaining almost the same at lower burnups; (2) the maximum Mises stresses for certain burnup at the cladding are enhanced while the maximum equivalent plastic strains are reduced; and (3) the maximum first principal stresses for certain burnup at the matrix or the cladding are lower than the ones without the hardening effect, and the differences are found to increase with burnup; and the variation rules of the interfacial stresses are similar.
Characterization of swift heavy ion irradiation damage in ceria
Yablinsky, Clarissa A.; Devanathan, Ram; Pakarinen, Janne; ...
2015-03-04
Swift heavy ion induced radiation damage is investigated for ceria (CeO 2), which serves as a UO 2 fuel surrogate. Microstructural changes resulting from an irradiation with 940 MeV gold ions of 42 keV/nm electronic energy loss are investigated by means of electron microscopy accompanied by electron energy loss spectroscopy showing that there exists a small density reduction in the ion track core. While chemical changes in the ion track are not precluded, evidence of them was not observed. Classical molecular dynamics simulations of thermal spikes in CeO 2 with an energy deposition of 12 and 36 keV/nm show damagemore » consisting of isolated point defects at 12 keV/nm, and defect clusters at 36 keV/nm, with no amorphization at either energy. Furthermore, inferences are drawn from modeling about density changes in the ion track and the formation of interstitial loops that shed light on features observed by electron microscopy of swift heavy ion irradiated ceria.« less
NASA Astrophysics Data System (ADS)
Alias, J.; Zhou, X.; Das, Sanjeev; El-Fakir, Omer; Thompson, G. E.
2017-12-01
The present study on the microstructure evolution of hot form-quench (HFQ) AZ31 twin roll cast magnesium alloy attempt to provide an understanding on the grain structure and heterogeneous intermetallic phase formation in the alloy and texture development following the HFQ process. Grain recrystallization and partial dissolution of eutectic β-Mg17Al12 phase particles were occurred during the solution heat treatment at 450°C, leaving the alloy consists of recrystallized grains and discontinuous or random β-Mg17Al12 phase particles distribution with small volume fraction. The particles act as effective nucleation sites for new grains during recrystallization and variation of recrystallization occurrence contributed to texture alteration. The partial or full β-Mg17Al12 phase dissolution following the HFQ induces void formation that act as fracture nucleation site and the corresponding texture alteration in the recrystallized grains led to poor formability in TRC alloy.
NASA Astrophysics Data System (ADS)
McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; Coughlin, Daniel R.; Clarke, Amy J.; Baldwin, J. Kevin; Gibbs, John W.; Roehling, John D.; Imhoff, Seth D.; Gibbs, Paul J.; Tourret, Damien; Wiezorek, Jörg M. K.; Campbell, Geoffrey H.
2016-03-01
Additive manufacturing (AM) of metals and alloys is becoming a pervasive technology in both research and industrial environments, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al-Cu and Al-Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid-liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. The observed microstructure evolution, solidification product, and presence of a morphological instability at the solid-liquid interface in the Al-4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.
McKeown, Joseph T.; Zweiacker, Kai; Liu, Can; ...
2016-01-27
In research and industrial environments, additive manufacturing (AM) of metals and alloys is becoming a pervasive technology, though significant challenges remain before widespread implementation of AM can be realized. In situ investigations of rapid alloy solidification with high spatial and temporal resolutions can provide unique experimental insight into microstructure evolution and kinetics that are relevant for AM processing. Hypoeutectic thin-film Al–Cu and Al–Si alloys were investigated using dynamic transmission electron microscopy to monitor pulsed-laser-induced rapid solidification across microsecond timescales. Solid–liquid interface velocities measured from time-resolved images revealed accelerating solidification fronts in both alloys. We observed microstructure evolution, solidification product, andmore » presence of a morphological instability at the solid–liquid interface in the Al–4 at.%Cu alloy are related to the measured interface velocities and small differences in composition that affect the thermophysical properties of the alloys. These time-resolved in situ measurements can inform and validate predictive modeling efforts for AM.« less
Grain Refinement Kinetics in a Low Alloyed Cu–Cr–Zr Alloy Subjected to Large Strain Deformation
Morozova, Anna; Borodin, Elijah; Bratov, Vladimir; Zherebtsov, Sergey; Kaibyshev, Rustam
2017-01-01
This paper investigates the microstructural evolution and grain refinement kinetics of a solution-treated Cu–0.1Cr–0.06Zr alloy during equal channel angular pressing (ECAP) at a temperature of 673 K via route BC. The microstructural change during plastic deformation was accompanied by the formation of the microband and an increase in the misorientations of strain-induced subboundaries. We argue that continuous dynamic recrystallization refined the initially coarse grains, and discuss the dynamic recrystallization kinetics in terms of grain/subgrain boundary triple junction evolution. A modified Johnson–Mehl–Avrami–Kolmogorov relationship with a strain exponent of about 1.49 is used to express the strain dependence of the triple junctions of high-angle boundaries. Severe plastic deformation by ECAP led to substantial strengthening of the Cu–0.1Cr–0.06Zr alloy. The yield strength increased from 60 MPa in the initial state to 445 MPa after a total strain level of 12. PMID:29210990
NASA Astrophysics Data System (ADS)
Wu, C.; Han, S.
2018-05-01
In order to obtain an optimal heat treatment for a low alloy high strength Ni-Cr-Mo-V steel, the microstructural evolution and mechanical properties of the material were studied. For this purpose, a series of quenching and temper experiments were carried out. The results showed that the effects of tempering temperature, time, original microstructure on the microstructural evolution and final properties were significant. The martensite can be completely transformed into the tempered lath structure. The width and length of the lath became wider and shorter, respectively with increasing temperature and time. The amount and size of the precipitates increased with temperature and time. The yield strength (YS), ultimate tensile strength (UTS) and hardness decreased with temperature and time, but the reduction in area (Z), elongation (E) and impact toughness displayed an opposite trend, which was related to the morphological evolution of the lath tempered structure.
Strain Characterization and Microstructure Evolution Under Deformation in 2060 Alloy
NASA Astrophysics Data System (ADS)
Jin, X.; Zhang, G. D.; Zhao, Y. F.; Xue, F.
2018-05-01
A new method of DIC combined with EBSD is developed for the characterization of strain and microstructure evolution during bending. The traditional microhardness point and DIC methods are used to study the microstructure evolution in 2060 alloy during bending; the interested area suffers under tensile stress, the microstructure evolution is collected by SEM, EBSD, digital image correlation (DIC) method during bending. The results shows that the DIC method can both realize the strain tensor characterization of the interested area, and can also express the local strain tensor in the micro-area even more. The degree of grain division in the process of deformation is related to the strain in this region; the grains have larger strain of small angle grain boundary (SLGBs), which results in a new micro-organizational structure. The misorientation is smaller with larger strain degree while the misorientation is larger with smaller strain.
NASA Astrophysics Data System (ADS)
Dautriat, J.; Dimanov, A.; Gland, N.; Raphanel, J.
2009-04-01
The influence of stress paths representative of reservoir conditions on the mechanical behavior and the coupled permeability evolutions of a carbonate has been investigated. In order to predict the permeability evolutions under triaxial loading, we have developed a triaxial cell designed to allow the measurements of the permeability in three orthogonal directions, along and transverse to the maximum principal stress direction. A set of core specimens are mechanically loaded following different stress paths characterized by a constant ratio K between horizontal and vertical stress. Our experimental set-up allows the monitoring of the petrophysical and geomechanical parameters during loading, before and post sample damage. The tested rock is an analog reservoir carbonate, the Estaillades Limestone, characterized macroscopically by a porosity around 29% and a moderate permeability around 150mD. From our experimental results, the failure envelope of this carbonate is determined and the evolutions of the directional permeability are examined in the (p',q) diagram. According to the followed stress path, permeability reductions can be limited or drastic. In addition, we have performed microstructural analyses on deformed samples and in-situ observations during loading inside a SEM in order to identify the micromechanisms responsible for the evolutions of porosity and permeability. For instance, we show the importance of local heterogeneities on initiation of damage and of pore collapse. In the near-elastic domain, brittle damage induces limited directional permeability modifications; whereas, at higher stress, depending on the value of K, shear induced dilation or shear induced compaction mechanisms are activated. The highest permeability drop occurred for the hydrostatic compression (K=1), in the compaction regime, characterized by pore collapse mechanisms affecting preferentially the macroporosity. A failure model is proposed and the failure envelope is determined in the (p',q) plane. A new expression of the failure envelope is also discussed which includes a dependency of the deviatoric stress with the stress-path parameter.
NASA Astrophysics Data System (ADS)
Keiser, Dennis D.; Perez, Emmanuel; Wiencek, Tom; Leenaers, Ann; Van den Berghe, Sven
2015-03-01
The United States High Performance Research Reactor Fuel Development program is developing low enriched uranium fuels for application in research and test reactors. One concept utilizes U-7 wt.% Mo (U-7Mo) fuel particles dispersed in Al matrix, where the fuel particles are coated with a 1 μm-thick ZrN coating. The ZrN serves as a diffusion barrier to eliminate a deleterious reaction that can occur between U-7Mo and Al when a dispersion fuel is irradiated under aggressive reactor conditions. To investigate the final microstructure of a physically-vapor-deposited ZrN coating in a dispersion fuel plate after it was fabricated using a rolling process, characterization samples were taken from a fuel plate that was fabricated at 500 °C using ZrN-coated U-7Mo particles, Al matrix and AA6061 cladding. Scanning electron and transmission electron microscopy analysis were performed. Data from these analyses will be used to support future microstructural examinations of irradiated fuel plates, in terms of understanding the effects of irradiation on the ZrN microstructure, and to determine the role of diffusion barrier microstructure in eliminating fuel/matrix interactions during irradiation. The as-fabricated coating was determined to be cubic-ZrN (cF8) phase. It exhibited a columnar microstructure comprised of nanometer-sized grains and a region of relatively high porosity, mainly near the Al matrix. Small impurity-containing phases were observed at the U-7Mo/ZrN interface, and no interaction zone was observed at the ZrN/Al interface. The bonding between the U-7Mo and ZrN appeared to be mechanical in nature. A relatively high level of oxygen was observed in the ZrN coating, extending from the Al matrix in the ZrN coating in decreasing concentration. The above microstructural characteristics are discussed in terms of what may be most optimal for a diffusion barrier in a dispersion fuel plate application.
Advances in the Development of Processing - Microstructure Relations for Titanium Alloys (Postprint)
2016-05-06
10.1002/9781119296126.ch29 14. ABSTRACT (Maximum 200 words) Advances in the fundamental understanding of microstructure evolution and plastic flow during...Abstract Advances in the fundamental understanding of microstructure evolution and plastic flow during primary and secondary processing of titanium...generation of rolling-direction secondary tension stresses. Important factors in such failures have been deduced to include the plastic properties and the
Database on Performance of Neutron Irradiated FeCrAl Alloys
DOE Office of Scientific and Technical Information (OSTI.GOV)
Field, Kevin G.; Briggs, Samuel A.; Littrell, Ken
The present report summarizes and discusses the database on radiation tolerance for Generation I, Generation II, and commercial FeCrAl alloys. This database has been built upon mechanical testing and microstructural characterization on selected alloys irradiated within the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory (ORNL) up to doses of 13.8 dpa at temperatures ranging from 200°C to 550°C. The structure and performance of these irradiated alloys were characterized using advanced microstructural characterization techniques and mechanical testing. The primary objective of developing this database is to enhance the rapid development of a mechanistic understanding on the radiation tolerancemore » of FeCrAl alloys, thereby enabling informed decisions on the optimization of composition and microstructure of FeCrAl alloys for application as an accident tolerant fuel (ATF) cladding. This report is structured to provide a brief summary of critical results related to the database on radiation tolerance of FeCrAl alloys.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwarm, Samuel C.; Mburu, Sarah N.; Kolli, Ratna P.
Cast duplex stainless steel piping in light water nuclear reactors expe- rience thermal aging embrittlement during operational service. Interest in extending the operational life to 80 years requires an increased understanding of the microstructural evolution and corresponding changes in mechanical behavior. We analyze the evolution of the microstructure during thermal aging of cast CF-3 and CF-8 stainless steels using electron microscopy and atom probe tomography. The evolution of the mechanical properties is measured concurrently by mechanical methods such as tensile tests, Charpy V-notch tests, and instrumented nanoinden- tation. A microstructure-based finite element method model is developed and uti- lized inmore » conjunction with the characterization results in order to correlate the local stress-strain effects in the microstructure with the bulk measurements. This work is supported by the DOE Nuclear Energy University Programs (NEUP), contract number DE-NE0000724.« less
High-energy synchrotron study of in-pile-irradiated U–Mo fuels
Miao, Yinbin; Mo, Kun; Ye, Bei; ...
2015-12-30
We report synchrotron scattering analysis results on U-7wt%Mo fuel samples irradiated in the Advanced Test Reactor to three different burnup levels. Mature fission gas bubble superlattice was observed to form at intermediate burnup. The superlattice constant was determined to be 11.7 nm and 12.1 nm by wide-angle and small-angle scattering respectively. Grain sub-division takes place throughout the irradiation and causes the collapse of the superlattice at high burnup. The bubble superlattice expands the lattice constant and acts as strong sinks of radiation induced defects. The evolution of dislocation loops was therefore suppressed until the bubble superlattice collapses.
Radiation damage buildup by athermal defect reactions in nickel and concentrated nickel alloys
Zhang, S.; Nordlund, K.; Djurabekova, F.; ...
2017-04-12
We develop a new method using binary collision approximation simulating the Rutherford backscattering spectrometry in channeling conditions (RBS/C) from molecular dynamics atom coordinates of irradiated cells. The approach allows comparing experimental and simulated RBS/C signals as a function of depth without fitting parameters. The simulated RBS/C spectra of irradiated Ni and concentrated solid solution alloys (CSAs, NiFe and NiCoCr) show a good agreement with the experimental results. The good agreement indicates the damage evolution under damage overlap conditions in Ni and CSAs at room temperature is dominated by defect recombination and migration induced by irradiation rather than activated thermally.
NASA Astrophysics Data System (ADS)
Donnini, Riccardo; Fabrizi, Alberto; Bonollo, Franco; Zanardi, Franco; Angella, Giuliano
2017-09-01
The aim of this investigation was to determine a procedure based on tensile testing to assess the critical range of austempering times for having the best ausferrite produced through austempering. The austempered ductile iron (ADI) 1050 was quenched at different times during austempering and the quenched samples were tested in tension. The dislocation-density-related constitutive equation proposed by Estrin for materials having high density of geometrical obstacles to dislocation motion, was used to model the flow curves of the tensile tested samples. On the basis of strain hardening theory, the equation parameters were related to the microstructure of the quenched samples and were used to assess the ADI microstructure evolution during austempering. The microstructure evolution was also analysed through conventional optical microscopy, electron back-scattered diffraction technique and transmission electron microscopy. The microstructure observations resulted to be consistent with the assessment based on tensile testing, so the dislocation-density-related constitutive equation was found to be a powerful tool to characterise the evolution of the solid state transformations of austempering.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tomar, Vikas
2017-03-06
DoE-NETL partnered with Purdue University to predict the creep and associated microstructure evolution of tungsten-based refractory alloys. Researchers use grain boundary (GB) diagrams, a new concept, to establish time-dependent creep resistance and associated microstructure evolution of grain boundaries/intergranular films GB/IGF controlled creep as a function of load, environment, and temperature. The goal was to conduct a systematic study that includes the development of a theoretical framework, multiscale modeling, and experimental validation using W-based body-centered-cubic alloys, doped/alloyed with one or two of the following elements: nickel, palladium, cobalt, iron, and copper—typical refractory alloys. Prior work has already established and validated amore » basic theory for W-based binary and ternary alloys; the study conducted under this project extended this proven work. Based on interface diagrams phase field models were developed to predict long term microstructural evolution. In order to validate the models nanoindentation creep data was used to elucidate the role played by the interface properties in predicting long term creep strength and microstructure evolution.« less
NASA Astrophysics Data System (ADS)
Zhao, Yu; Xu, Songsong; Zou, Yun; Li, Jinhui; Zhang, Z. W.
High strength low alloy (HSLA) steels with high strength, high toughness, good corrosion resistance and weldability, can be widely used in shipbuilding, automobile, construction, bridging industry, etc. The microstructure evolution and mechanical properties can be influenced by thermomechanical processing. In this study, themomechanical processing is optimized to control the matrix microstructure and nano-scale precipitates in the matrix simultaneously. It is found that the low-temperature toughness and ductility of the steels are significantly the matrix microstructure during enhancing the strength by introducing the nano-scale precipitates. The effects of alloying elements on the microstructure evolution and nano-scale precipitation are also discussed.
Fulgentini, Lorenzo; Passini, Valerio; Colombetti, Giuliano; Miceli, Cristina; La Terza, Antonietta; Marangoni, Roberto
2015-08-01
The psychrophilic ciliate Euplotes focardii inhabits the shallow marine coastal sediments of Antarctica, where, over millions of years of evolution, it has reached a strict molecular adaptation to such a constant-temperature environment (about -2 °C). This long evolution at sub-zero temperatures has made E. focardii unable to respond to heat stress with the activation of its heat shock protein (hsp) 70 genes. These genes can, however, be expressed in response to other stresses, like the oxidative one, thus indicating that the molecular adaptation has exclusively altered the heat stress signaling pathways, while it has preserved hsp70 gene activation in response to other environmental stressors. Since radiative stress has proved to be affine to oxidative stress in several organisms, we investigated the capability of UV radiation to induce hsp70 transcription. E. focardii cell cultures were exposed to several different irradiation regimes, ranging from visible only to a mixture of visible, UV-A and UV-B. The irradiation values of each spectral band have been set to be comparable with those recorded in a typical Antarctic spring. Using Northern blot analysis, we measured the expression level of hsp70 immediately after irradiation (0-h-labeled samples), 1 h, and 2 h from the end of the irradiation. Surprisingly, our results showed that besides UV radiation, the visible light was also able to induce hsp70 expression in E. focardii. Moreover, spectrophotometric measurements have revealed no detectable endogenous pigments in E. focardii, making it difficult to propose a possible explanation for the visible light induction of its hsp70 genes. Further research is needed to conclusively clarify this point.
Zhang, Xuan; Li, Meimei; Park, Jun -Sang; ...
2016-12-30
The effect of neutron irradiation on tensile deformation of a Fe-9wt.%Cr alloy was investigated using in situ high-energy synchrotron X-ray diffraction during room-temperature uniaxial tensile tests. New insights into the deformation mechanisms were obtained through the measurements of lattice strain evolution and the analysis of diffraction peak broadening using the modified Williamson-Hall method. Two neutron-irradiated specimens, one irradiated at 300 °C to 0.01 dpa and the other at 450 °C to 0.01dpa, were tested along with an unirradiated specimen. The macroscopic stress–strain curves of the irradiated specimens showed increased strength, reduced ductility and work-hardening exponent compared to the unirradiated specimen.more » The evolutions of the lattice strain, the dislocation density and the coherent scattering domain size in the deformation process revealed different roles of the submicroscopic defects in the 300°C/0.01 dpa specimen and the TEM-visible nanometer-sized dislocation loops in the 450°C/0.01 dpa specimen: submicroscopic defects extended the linear work hardening stage (stage II) to a higher strain, while irradiation-induced dislocation loops were more effective in dislocation pinning. Lastly, while the work hardening rate of stage II was unaffected by irradiation, significant dynamic recovery in stage III in the irradiated specimens led to the early onset of necking without stage IV as observed in the unirradiated specimen.« less
Simos, N.; Ludewig, H.; Kirk, H.; ...
2018-05-29
The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory’s (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest inmore » assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.« less
NASA Astrophysics Data System (ADS)
Simos, N.; Ludewig, H.; Kirk, H.; Dooryhee, E.; Ghose, S.; Zhong, Z.; Zhong, H.; Makimura, S.; Yoshimura, K.; Bennett, J. R. J.; Kotsinas, G.; Kotsina, Z.; McDonald, K. T.
2018-05-01
The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory's (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest in assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simos, N.; Ludewig, H.; Kirk, H.
The effects of proton beams irradiating materials considered for targets in high-power accelerator experiments have been studied using the Brookhaven National Laboratory’s (BNL) 200 MeV proton linac. A wide array of materials and alloys covering a wide range of the atomic number (Z) are being scoped by the high-power accelerator community prompting the BNL studies to focus on materials representing each distinct range, i.e. low-Z, mid-Z and high-Z. The low range includes materials such as beryllium and graphite, the midrange alloys such as Ti-6Al-4V, gum metal and super-Invar and finally the high-Z range pure tungsten and tantalum. Of interest inmore » assessing proton irradiation effects are (a) changes in physiomechanical properties which are important in maintaining high-power target functionality, (b) identification of possible limits of proton flux or fluence above which certain materials cease to maintain integrity, (c) the role of material operating temperature in inducing or maintaining radiation damage reversal, and (d) phase stability and microstructural changes. The paper presents excerpt results deduced from macroscopic and microscopic post-irradiation evaluation (PIE) following several irradiation campaigns conducted at the BNL 200 MeV linac and specifically at the isotope producer beam-line/target station. The microscopic PIE relied on high energy x-ray diffraction at the BNL NSLS X17B1 and NSLS II XPD beam lines. The studies reveal the dramatic effects of irradiation on phase stability in several of the materials, changes in physical properties and ductility loss as well as thermally induced radiation damage reversal in graphite and alloys such as super-Invar.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vallayer, B.; Hourquebie, P.; Marsacq, D.
1996-12-31
In the field of Space Charge Physics, the role of electrical traps on space charge behavior and therefore on the breakdown properties has been now well-established. However, the traps in polymers are very difficult to define compared to the case of ceramics for which a lot of studies have been performed. A new specific method for measuring the trapping and detrapping properties of dielectric materials has been developed. This method allows to characterize the electrostatic state of an insulating sample after irradiation by a high energy electron beam. The authors discuss the basis of the method and its general possibilitiesmore » to measure the breakdown relevant parameters as the secondary electron yield for instance. Moreover, the method has been used on several polymers as HDPE and LDPE. The difference of trapping properties between those materials can be explained by microstructure evolutions (crystallinity ratio) due to a difference of the branching rate. This difference of trapping and detrapping properties of these two polymers could be connected to the breakdown behavior of the two materials which is known to be very different.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borg, G.; Froier, K.f Gustafsson, A.
1959-10-31
Results are reported from plant breeding programs in which mutations induced in barley by irradiation resulted in the development of a variety with characteristics superior to the parents. Good results were also reported in the development of superior varieties of oil rape, white mustard, and pea plants. The usefulness of radiation-induced mutations in plant breeding programs is discussed. (C.H.)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Jiali, E-mail: j.zhang@mpie.de; Morsdorf, Lutz, E-mail: l.morsdorf@mpie.de; Tasan, Cemal Cem, E-mail: c.tasan@mpie.de
In-situ scanning electron microscopy observations of the microstructure evolution during heat treatments are increasingly demanded due to the growing number of alloys with complex microstructures. Post-mortem characterization of the as-processed microstructures rarely provides sufficient insight on the exact route of the microstructure formation. On the other hand, in-situ SEM approaches are often limited due to the arising challenges upon using an in-situ heating setup, e.g. in (i) employing different detectors, (ii) preventing specimen surface degradation, or (iii) controlling and measuring the temperature precisely. Here, we explore and expand the capabilities of the “mid-way” solution by step-wise microstructure tracking, ex-situ, atmore » selected steps of heat treatment. This approach circumvents the limitations above, as it involves an atmosphere and temperature well-controlled dilatometer, and high resolution microstructure characterization (using electron channeling contrast imaging, electron backscatter diffraction, atom probe tomography, etc.). We demonstrate the capabilities of this approach by focusing on three cases: (i) nano-scale carbide precipitation during low-temperature tempering of martensitic steels, (ii) formation of transformation-induced geometrically necessary dislocations in a dual-phase steel during intercritical annealing, and (iii) the partial recrystallization of a metastable β-Ti alloy. - Highlights: • A multi-probe method to track microstructures during heat treatment is developed. • It enables the analysis of various complex phenomena, even those at atomistic scale. • It circumvents some of the free surface effects of classical in-situ experiments.« less