Science.gov

Sample records for irreparable transcription-blocking dna

  1. DNA double-strand breaks and ATM activation by transcription-blocking DNA lesions.

    PubMed

    Sordet, Olivier; Nakamura, Asako J; Redon, Christophe E; Pommier, Yves

    2010-01-15

    A taxia telangiectasia mutated (ATM), the deficiency of which causes a severe neurodegenerative disease, is a crucial mediator for the DNA double-strand break (DSB) response. We recently showed that transcription-blocking topoisomerase I cleavage complexes (TOP1cc) produce DSBs related to R-loop formation and activate ATM in post-mitotic neurons and lymphocytes. Here we discuss how TOP1cc can produce transcription arrest with R-loop formation and generate DSBs that activate ATM, as well as data suggesting that those transcription-dependent DSBs tend to form at the IgH locus and at specific genomic sites. We also address the potential roles of ATM in response to transcription-blocking TOP1cc.

  2. Bidirectional coupling of splicing and ATM signaling in response to transcription-blocking DNA damage

    PubMed Central

    Tresini, Maria; Marteijn, Jurgen A.; Vermeulen, Wim

    2016-01-01

    ABSTRACT In response to DNA damage cells activate intricate protein networks to ensure genomic fidelity and tissue homeostasis. DNA damage response signaling pathways coordinate these networks and determine cellular fates, in part, by modulating RNA metabolism. Here we discuss a replication-independent pathway activated by transcription-blocking DNA lesions, which utilizes the ATM signaling kinase to regulate spliceosome function in a reciprocal manner. We present a model according to which, displacement of co-transcriptional spliceosomes from lesion-arrested RNA polymerases, culminates in R-loop formation and non-canonical ATM activation. ATM signals in a feed-forward fashion to further impede spliceosome organization and regulates UV-induced gene expression and alternative splicing genome-wide. This reciprocal coupling between ATM and the spliceosome highlights the importance of ATM signaling in the cellular response to transcription-blocking lesions and supports a key role of the splicing machinery in this process. PMID:26913497

  3. DNA-PK triggers histone ubiquitination and signaling in response to DNA double-strand breaks produced during the repair of transcription-blocking topoisomerase I lesions.

    PubMed

    Cristini, Agnese; Park, Joon-Hyung; Capranico, Giovanni; Legube, Gaëlle; Favre, Gilles; Sordet, Olivier

    2016-02-18

    Although defective repair of DNA double-strand breaks (DSBs) leads to neurodegenerative diseases, the processes underlying their production and signaling in non-replicating cells are largely unknown. Stabilized topoisomerase I cleavage complexes (Top1cc) by natural compounds or common DNA alterations are transcription-blocking lesions whose repair depends primarily on Top1 proteolysis and excision by tyrosyl-DNA phosphodiesterase-1 (TDP1). We previously reported that stabilized Top1cc produce transcription-dependent DSBs that activate ATM in neurons. Here, we use camptothecin (CPT)-treated serum-starved quiescent cells to induce transcription-blocking Top1cc and show that those DSBs are generated during Top1cc repair from Top1 peptide-linked DNA single-strand breaks generated after Top1 proteolysis and before excision by TDP1. Following DSB induction, ATM activates DNA-PK whose inhibition suppresses H2AX and H2A ubiquitination and the later assembly of activated ATM into nuclear foci. Inhibition of DNA-PK also reduces Top1 ubiquitination and proteolysis as well as resumption of RNA synthesis suggesting that DSB signaling further enhances Top1cc repair. Finally, we show that co-transcriptional DSBs kill quiescent cells. Together, these new findings reveal that DSB production and signaling by transcription-blocking Top1 lesions impact on non-replicating cell fate and provide insights on the molecular pathogenesis of neurodegenerative diseases such as SCAN1 and AT syndromes, which are caused by TDP1 and ATM deficiency, respectively.

  4. Irreparable complex DNA double-strand breaks induce chromosome breakage in organotypic three-dimensional human lung epithelial cell culture

    PubMed Central

    Asaithamby, Aroumougame; Hu, Burong; Delgado, Oliver; Ding, Liang-Hao; Story, Michael D.; Minna, John D.; Shay, Jerry W.; Chen, David J.

    2011-01-01

    DNA damage and consequent mutations initiate the multistep carcinogenic process. Differentiated cells have a reduced capacity to repair DNA lesions, but the biological impact of unrepaired DNA lesions in differentiated lung epithelial cells is unclear. Here, we used a novel organotypic human lung three-dimensional (3D) model to investigate the biological significance of unrepaired DNA lesions in differentiated lung epithelial cells. We showed, consistent with existing notions that the kinetics of loss of simple double-strand breaks (DSBs) were significantly reduced in organotypic 3D culture compared to kinetics of repair in two-dimensional (2D) culture. Strikingly, we found that, unlike simple DSBs, a majority of complex DNA lesions were irreparable in organotypic 3D culture. Levels of expression of multiple DNA damage repair pathway genes were significantly reduced in the organotypic 3D culture compared with those in 2D culture providing molecular evidence for the defective DNA damage repair in organotypic culture. Further, when differentiated cells with unrepaired DNA lesions re-entered the cell cycle, they manifested a spectrum of gross-chromosomal aberrations in mitosis. Our data suggest that downregulation of multiple DNA repair pathway genes in differentiated cells renders them vulnerable to DSBs, promoting genome instability that may lead to carcinogenesis. PMID:21421565

  5. HIC1 (hypermethylated in cancer 1) SUMOylation is dispensable for DNA repair but is essential for the apoptotic DNA damage response (DDR) to irreparable DNA double-strand breaks (DSBs).

    PubMed

    Paget, Sonia; Dubuissez, Marion; Dehennaut, Vanessa; Nassour, Joe; Harmon, Brennan T; Spruyt, Nathalie; Loison, Ingrid; Abbadie, Corinne; Rood, Brian R; Leprince, Dominique

    2017-01-10

    The tumor suppressor gene HIC1 (Hypermethylated In Cancer 1) encodes a transcriptional repressor mediating the p53-dependent apoptotic response to irreparable DNA double-strand breaks (DSBs) through direct transcriptional repression of SIRT1. HIC1 is also essential for DSB repair as silencing of endogenous HIC1 in BJ-hTERT fibroblasts significantly delays DNA repair in functional Comet assays. HIC1 SUMOylation favours its interaction with MTA1, a component of NuRD complexes. In contrast with irreparable DSBs induced by 16-hours of etoposide treatment, we show that repairable DSBs induced by 1 h etoposide treatment do not increase HIC1 SUMOylation or its interaction with MTA1. Furthermore, HIC1 SUMOylation is dispensable for DNA repair since the non-SUMOylatable E316A mutant is as efficient as wt HIC1 in Comet assays. Upon induction of irreparable DSBs, the ATM-mediated increase of HIC1 SUMOylation is independent of its effector kinase Chk2. Moreover, irreparable DSBs strongly increase both the interaction of HIC1 with MTA1 and MTA3 and their binding to the SIRT1 promoter. To characterize the molecular mechanisms sustained by this increased repression potential, we established global expression profiles of BJ-hTERT fibroblasts transfected with HIC1-siRNA or control siRNA and treated or not with etoposide. We identified 475 genes potentially repressed by HIC1 with cell death and cell cycle as the main cellular functions identified by pathway analysis. Among them, CXCL12, EPHA4, TGFβR3 and TRIB2, also known as MTA1 target-genes, were validated by qRT-PCR analyses. Thus, our data demonstrate that HIC1 SUMOylation is important for the transcriptional response to non-repairable DSBs but dispensable for DNA repair.

  6. Senescent human fibroblasts show increased glycolysis and redox homeostasis with extracellular metabolomes that overlap with those of irreparable DNA damage, aging, and disease.

    PubMed

    James, Emma L; Michalek, Ryan D; Pitiyage, Gayani N; de Castro, Alice M; Vignola, Katie S; Jones, Janice; Mohney, Robert P; Karoly, Edward D; Prime, Stephen S; Parkinson, Eric Kenneth

    2015-04-03

    Cellular senescence can modulate various pathologies and is associated with irreparable DNA double-strand breaks (IrrDSBs). Extracellular senescence metabolomes (ESMs) were generated from fibroblasts rendered senescent by proliferative exhaustion (PEsen) or 20 Gy of γ rays (IrrDSBsen) and compared with those of young proliferating cells, confluent cells, quiescent cells, and cells exposed to repairable levels of DNA damage to identify novel noninvasive markers of senescent cells. ESMs of PEsen and IrrDSBsen overlapped and showed increased levels of citrate, molecules involved in oxidative stress, a sterol, monohydroxylipids, tryptophan metabolism, phospholipid, and nucleotide catabolism, as well as reduced levels of dipeptides containing branched chain amino acids. The ESM overlaps with the aging and disease body fluid metabolomes, supporting their utility in the noninvasive detection of human senescent cells in vivo and by implication the detection of a variety of human pathologies. Intracellular metabolites of senescent cells showed a relative increase in glycolysis, gluconeogenesis, the pentose-phosphate pathway, and, consistent with this, pyruvate dehydrogenase kinase transcripts. In contrast, tricarboxylic acid cycle enzyme transcript levels were unchanged and their metabolites were depleted. These results are surprising because glycolysis antagonizes senescence entry but are consistent with established senescent cells entering a state of low oxidative stress.

  7. Irreparable telomeric DNA damage and persistent DDR signalling as a shared causative mechanism of cellular senescence and ageing.

    PubMed

    Rossiello, Francesca; Herbig, Utz; Longhese, Maria Pia; Fumagalli, Marzia; d'Adda di Fagagna, Fabrizio

    2014-06-01

    The DNA damage response (DDR) orchestrates DNA repair and halts cell cycle. If damage is not resolved, cells can enter into an irreversible state of proliferative arrest called cellular senescence. Organismal ageing in mammals is associated with accumulation of markers of cellular senescence and DDR persistence at telomeres. Since the vast majority of the cells in mammals are non-proliferating, how do they age? Are telomeres involved? Also oncogene activation causes cellular senescence due to altered DNA replication and DDR activation in particular at the telomeres. Is there a common mechanism shared among apparently distinct types of cellular senescence? And what is the role of telomeric DNA damage?

  8. DNA double helix unwinding triggers transcription block-dependent apoptosis: a semiquantitative probe of the response of ATM, RNAPII, and p53 to two DNA intercalators.

    PubMed

    Zhang, Zhichao; Wang, Yuanyuan; Song, Ting; Gao, Jin; Wu, Guiye; Zhang, Jing; Qian, Xuhong

    2009-03-16

    We have previously shown the binding modes of two DNA interacting analogues (1)a {3-(4-methyl-piperazin)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile} and (3)a {3-(3-dimethylamino-propylamino)-8-oxo-8H-acenaphtho[1,2-b]pyrrole-9-carbonitrile} with the DNA double helix. In this study, we have determined the notably different DNA damage signal pathway elicited by (1)a and (3)a due to the different extents to which they unwind the DNA double helix. First, we have identified that ataxia-telangiectasia-mutated (ATM) protein kinase can respond to DNA double helix unwinding caused by both (1)a and (3)a. In addition, the amount of ATM activation is consistent with the degree to which the DNA double helix was unwound. Consequently, we used (1)a and (3)a to semiquantitatively probe the response of RNA polymerase II (RNAPII) and p53 toward DNA double helix unwinding in vivo. By means of flow cytometry, immunocytochemistry, ChIP, quantitative real-time polymerase chain reaction, and Western blot analyses, we measured the level of p53 and RNAPII phosphorylation, in addition to the dynamics of the RNAPII distribution along the c-Myc gene. These results provided novel evidence for the impact of subtle DNA structural changes on the activity of RNAPII and p53. Moreover, DNA double helix conformational damage-dependent apoptosis was studied for the first time. These results indicated that (1)a can induce transcriptional blockage following a shift of the unphosphorylated IIa form of RNAPII to the phosphorylated IIo form, while (3)a is unable to induce the same effect. Subsequently, p53 accumulation and phosphorylation events occur that lead to apoptosis in the case of (1)a exposure. This suggests that the transcriptional blockage is also correlated to the degree of double helix unwinding. Furthermore, we found that the degree of DNA conformational damage determines whether or not apoptosis occurs through transcriptional blockage. Under our experimental conditions, ATM does not

  9. Elbow dislocation with irreparable fracture radial head

    PubMed Central

    Tanna, Dilip

    2013-01-01

    Background: Treatment of elbow dislocation with irreparable radial head fracture needs replacement of radial head to achieve stability of elbow. An alternate method in cases of elbow dislocation with radial head fracture can be resection of radial head with repair of medial collateral ligament. We report a retrospective analysis of cases of elbow dislocation with irreparable radial head treated by excision head of radius and repair of MCL. Materials and Methods: Nine patients of elbow dislocation with associated irreparable fractures of the head of the radius were included in this analysis (6 F:3 M, Age: 35-47 years). Radial head excision was done through the lateral approach and MCL was sutured using no 3 Ethibond using medial approach. Above elbow plaster was given for 6 weeks and gradual mobilization was done thereafter. All patients were assessed at final followup using Mayo elbow performance score (MEPS). Results: Mean followup was 19.55 ± 7.12 months (range 14-36 months). There was no extension deficit when compared to opposite side with mean range of flexion of 138.8° ± 6.97° (range 130 -145°). Mean pronation was 87.7° ± 4.4° (range 80-90°) and mean supination was 87.7 ± 4.62° (range 80-90°). The mean MEPS was 98.8 ± 3.33 (range 90-100). No patient had pain, sensory complaints, subluxation or redislocation. All were able to carry out their daily activities without disability. Conclusion: Radial head excision with MCL repair is an acceptable option for treatment of patients with elbow dislocation and irreparable radial head fracture. PMID:23798760

  10. Management of irreparable rotator cuff tears and glenohumeral arthritis.

    PubMed

    Laudicina, Laurence; D'Ambrosia, Robert

    2005-04-01

    Glenohumeral arthritis with irreparable rotator cuff tears remain a difficult entity to treat. Varied causes include rotator cuff tear arthropathy, osteoarthritis, or rheumatoid arthritis with irreparable cuff tear. Common symptoms are progressive pain and dysfunction. Physical examination may reveal pain, crepitance, rotator cuff weakness, and loss of motion and function. Radiographs may reveal varying degrees of osteophyte formation, sclerotic bone, superior humeral head migration, and bony erosion. Additional imaging modalities may reveal cuff tear size, retraction, atrophy, and fatty infiltration. Failure of nonoperative management may lead to operative intervention. Rotator cuff repair or reconstruction may help prevent progression of tears and future arthritic changes. In patients with moderate to severe glenohumeral arthritis and irreparable rotator cuff tears, hemiarthroplasty is currently the procedure of choice. For patients with severe cuff dysfunction or loss of coracoacromial arch, or for patients who require revision, the reverse shoulder prosthesis may offer a treatment option. Future management continues to be defined with additional study.

  11. Irreparable Rotator Cuff Tears: Restoring Joint Kinematics by Tendon Transfers

    PubMed Central

    Greenspoon, Joshua A.; Millett, Peter J.; Moulton, Samuel G.; Petri, Maximilian

    2016-01-01

    Background: Tendon transfers can be a surgical treatment option in managing younger, active patients with massive irreparable rotator cuff tears. The purpose of this article is to provide an overview of the use of tendon transfers to treat massive irreparable rotator cuff tears and to summarize clinical outcomes. Methods: A selective literature search was performed and personal surgical experiences are reported. Results: Latissimus dorsi transfers have been used for many years in the management of posterosuperior rotator cuff tears with good reported clinical outcomes. It can be transferred without or with the teres major (L’Episcopo technique). Many surgical techniques have been described for latissimus dorsi transfer including single incision, double incision, and arthroscopically assisted transfer. Transfer of the pectoralis major tendon is the most common tendon transfer procedure performed for anterosuperior rotator cuff deficiencies. Several surgical techniques have been described, however transfer of the pectoralis major beneath the coracoid process has been found to most closely replicate the force vector that is normally provided by the intact subscapularis. Conclusion: Tendon transfers can be used successfully in the management of younger patients with massive irreparable rotator cuff tears and minimal glenohumeral arthritis. Improvements in clinical outcomes scores and range of motion have been demonstrated. This can delay arthroplasty, which is of particular importance for younger patients with high functional demands. PMID:27708730

  12. No prosthetic management of massive and irreparable rotator cuff tears

    PubMed Central

    Garofalo, Raffaele; Cesari, Eugenio

    2014-01-01

    A massive rotator cuff tear is not necessarily irreparable. Number of tendons involved, muscle-tendon unit quality, and decreased acromionhumeral distance (AHD) are as important as tear size in determining reparability of lesion. Massive and irreparable rotator cuff tears cannot be anatomically repaired to the bone and are a common source of pain and disability even in middle-aged patients. In these patients when conservative management has failed, it is possible to perform different surgical techniques. A functional repair can help to restore the horizontal force couple of the cuff on the humeral head and to increase the AHD. Debridement of irreparable tears and biceps tenotomy or tenodesis can have a role in low functional demand patients but results deteriorate over time. Recently, several commercially available tissue-engineered biological and synthetic scaffolds have been developed to augment rotator cuff repairs. The aim is to provide a mechanical improvement in case of poor quality tissue at time zero and give a support to have a better cuff healing. In selected cases, the scaffold can be used also to bridge tendon defect. Patients who not have pseudoparalysis, cuff tear arthropathy and with intact deltoid function can benefit from tendon transfers with satisfactory outcomes. These different procedures should be chosen for each patient with selected criteria and after a satisfactory explanation about the really possible expectation after surgery. PMID:27582930

  13. Management of massive and irreparable rotator cuff tears.

    PubMed

    Neri, Brian R; Chan, Keith W; Kwon, Young W

    2009-01-01

    Massive rotator cuff tears pose a distinct clinical challenge for the orthopaedist. In this review, we will discuss the classification, diagnosis, and evaluation of massive rotator cuff tears before discussing various treatment options for this problem. Nonoperative treatment has had inconsistent results and proven unsuccessful for chronic symptoms while operative treatment including debridement and partial and complete repairs have had varying degrees of success. For rotator cuff tears that are deemed irreparable, treatment options are limited. The use of tendon transfers in younger patients to reconstruct rotator cuff function and restore shoulder kinematics can be useful in salvaging this difficult problem.

  14. Latissimus Dorsi Transfer in Posterior Irreparable Rotator Cuff Tears

    PubMed Central

    Anastasopoulos, Panagiotis P.; Alexiadis, George; Spyridonos, Sarantis; Fandridis, Emmanouil

    2017-01-01

    Background: Massive rotator cuff tears pose a difficult and complex challenge even for the experienced surgeon; inability to repair these tears by conventional means designates them as irreparable, while management becomes quite taxing. Several operative options have been suggested for the management of such lesions with varying degrees of success, while it is imperative to match patient demands and expectations to the predicted outcome. Methods: Research articles are examined and key concepts are discussed, in order to provide an evidence based review of the available literature. The anatomy and pathomechanics along with the indications, contraindications and surgical techniques are reported. Results: Transfer of the Latissimus dorsi has been used with success to restore shoulder function in deficits of the posterior rotator cuff. Although it can be used in a variety of settings, the ideal patient for a Latissimus dorsi tendon transfer is a young and active individual, with no glenohumeral osteoarthritis that has a severe disability and weakness related to an irreparable posterior cuff tear. Conclusion: Tendon transfers have proved to be a successful treatment option in salvaging this difficult problem, providing pain relief and restoring shoulder function. Despite the excellent functional outcomes and pain suppression following operation, a variety of factors may affect the outcome; thus making indications and preoperative assessment a valuable component.

  15. An S-phase specific release from a transcriptional block regulates the expression of mouse ribonucleotide reductase R2 subunit.

    PubMed Central

    Björklund, S; Skogman, E; Thelander, L

    1992-01-01

    Ribonucleotide reductase (RR) activity in mammalian cells is closely linked to DNA synthesis. The RR enzyme is composed of two non-identical subunits, proteins R1 and R2. Both proteins are required for holoenzyme activity, which is regulated by S-phase specific de novo synthesis and breakdown of the R2 subunit. In quiescent cells stimulated to proliferate and in elutriated cell populations enriched in the various cell cycle phases the R2 protein levels are correlated to R2 mRNA levels that are low in G0/G1-phase cells but increase dramatically at the G1/S border. Using an R2 promoter-luciferase reporter gene construct we demonstrate an unexpected early activation of the R2 promoter as cells pass from quiescence to proliferation. However, due to a transcriptional block, this promoter activation only results in very short R2 transcripts until cells enter the S-phase, when full-length R2 transcripts start to appear. The position for the transcriptional block was localized to a nucleotide sequence approximately 87 bp downstream from the first exon/intron boundary by S1 nuclease mapping of R2 transcripts from modified in vitro nuclear run-on experiments. These results identify blocking of transcription as a mechanism to control cell cycle regulated gene expression. Images PMID:1464320

  16. New Solution for Massive, Irreparable Rotator Cuff Tears: The Subacromial “Biodegradable Spacer”

    PubMed Central

    Savarese, Eugenio; Romeo, Rocco

    2012-01-01

    Massive, irreparable rotator cuff tears are a source of pain and disability. Although most rotator cuff tears can be completely repaired, a significant number are considered massive and irreparable. Numerous operative techniques have been described for the treatment of these kinds of tears including arthroscopic debridement, biceps tenotomy, tendon transfer, grafting, and reverse arthroplasty. We describe a surgical technique using a biodegradable subacromial balloon spacer (InSpace; OrthoSpace, Kfar Saba, Israel) implanted between the humeral head and acromion that permits smooth, frictionless gliding, restoring the shoulder biomechanics. The technique is easy to perform and is less invasive than the conventional surgical techniques available, and it may potentially serve as a bridging option in patients with massive, irreparable tears who are normally candidates for reverse arthroplasty. PMID:23766979

  17. Tendon transfer for irreparable rotator cuff tears: indications and surgical rationale

    PubMed Central

    Merolla, Giovanni; Chillemi, Claudio; Franceschini, Vincenzo; Cerciello, Simone; Ippolito, Giorgio; Paladini, Paolo; Porcellini, Giuseppe

    2014-01-01

    Summary Background: treatment of symptomatic irreparable rotator cuff tears is extremely challenging because, at present, there are no ideal solutions to this problem. Many patients respond favorably to nonsurgical treatment. However, when conservative measures fail to improve the patient’s pain and disability, surgery should be considered. Methods: different surgical techniques are available and the choice of the most appropriate procedure depends on the presenting symptoms, age of the patient, functional demand, medical comorbidities, joint stability and presence of arthritic changes. The transposition of the surrounding muscles to replace the rotator cuff function represents a viable option in the treatment of younger patients without glenohumeral osteoarthritis and with severe functional limitation. Purpose: aim of this study is to give an overview of the currently available evidence regarding tendon transfer procedures for irreparable rotator cuff tears. PMID:25767779

  18. Lattisimus Dorsi Transfer assisted by arthroscopy for the treatment of irreparable posterolateral Rotator Cuff Tears

    PubMed Central

    Muiño, José María Silberberg; Gimenez, Martín Alejandro; Salvucci, Mauro Gabriel Maroa; Ferro, Diego; Rullan, Ramón Muiña

    2017-01-01

    Objective: To evaluate subjective and functional mid term results of patients treated by a lattisimus dorsi tendón transfer arthroscopically assisted for massive irreparable posterolateral injuries of the Rotator Cuff. Methods: Between 2009 and 2012, 17 Lattisimus Dorsi transfers (Paribelli technique) for irreparable posterolateral rotator cuff tears were performed. Distribution by sex: 12 men and 5 women with a mean age of 53 years old (range, 40-63). Thirteen right shoulders and 4 left shoulders. Average duration of symptoms prior to surgery was 8 months (range, 6-13 months). Mean follow-up was 28 months (range, 18-44). Patients were evaluated by the VAS, satisfaction rate, the Constant Modified Scale, postoperative range of motion and strength. Postoperative radiological studies included simple AP radiographs and MRI in order to measure AC distance and asses the integrity of the plasty. Results: Postoperative Constant Modified score averaged 63.54 points. (average increase of 13 points compared to preoperative score. (P ..05)). Active Mobility: a) Mean elevation: 142° postop vs. 119° preop (p <.001). b) Mean abduction: 138.24º postop vs. 112.35º preop (p <.001). c) Mean external rotation 40° postop vs. 20.29º preop (p <.004). Insert text. Conclusion: Lattisimus Dorsi transfer in patients with posterolateral massive irreparable injuries of the RC, is a highly demanding and palliative procedure for those cases with loss of active mobility, especially lifting and shoulder abduction.

  19. Arthroscopic treatment options for irreparable rotator cuff tears of the shoulder

    PubMed Central

    Anley, Cameron M; Chan, Samuel KL; Snow, Martyn

    2014-01-01

    The management of patients with irreparable rotator cuff tears remains a challenge for orthopaedic surgeons with the final treatment option in many algorithms being either a reverse shoulder arthroplasty or a tendon transfer. The long term results of these procedures are however still widely debated, especially in younger patients. A variety of arthroscopic treatment options have been proposed for patients with an irreparable rotator cuff tear without the presence of arthritis of the glenohumeral joint. These include a simple debridement with or without a biceps tenotomy, partial rotator cuff repair with or without an interval slide, tuberplasty, graft interposition of the rotator cuff, suprascapular nerve ablation, superior capsule reconstruction and insertion of a biodegradable spacer (Inspace) to depress the humeral head. These options should be considered as part of the treatment algorithm in patients with an irreparable rotator cuff and could be used as either as an interim procedure, delaying the need for more invasive surgery in the physiologically young and active, or as potential definitive procedures in the medically unfit. The aim of this review is to highlight and summarise arthroscopic procedures and the results thereof currently utilised in the management of these challenging patients. PMID:25405083

  20. FUNCTIONAL EVALUATION OF PATIENTS WHO HAVE UNDERGONE ARTHROSCOPIC DEBRIDEMENT TO TREAT MASSIVE AND IRREPARABLE TEARS OF THE ROTATOR CUFF

    PubMed Central

    Veado, Marco Antônio de Castro; Rodrigues, Alessandro Ulhôa

    2015-01-01

    To evaluate the results from patients who underwent arthroscopic debridement of extensive irreparable rotator cuff injuries. Methods: 27 patients were operated between 2003 and 2007, and 22 of them were evaluated. The surgical procedure consisted of arthroscopic debridement of the stumps of the tendons involved, bursectomy, removal of acromial osteophytes and, possibly, biceps tenotomy and tuberoplasty. Results: All the patients showed involvement of the supraspinatus and infraspinatus tendons at the preoperative stage. In the postoperative evaluation, 14 patients had a complete teres minor muscle, and three had partial tears of the subscapularis tendon. There was an improvement in the UCLA criteria, from 15 preoperatively to 31 postoperatively. There was no improvement in muscle strength, but there was a reduction in the pain. Conclusion: Arthroscopic debridement is a recommended procedure for elderly patients with irreparable rotator cuff tears, good range of motion and low functional demand, when the main objective is to diminish pain. PMID:27022590

  1. Latissimus Dorsi Tendon Transfer with GraftJacket® Augmentation to Increase Tendon Length for an Irreparable Rotator Cuff Tear

    PubMed Central

    2017-01-01

    Massive irreparable rotator cuff tears can be reconstructed with latissimus dorsi tendon transfers (LDTT). Although uncommon, the natural length of the latissimus dorsi tendon (LDT) could be insufficient for transfer even after adequate soft tissue releases. Descriptions of cases where grafts were needed to lengthen the LDT are therefore rare. We located only two reports of the use of an acellular dermal matrix to increase effective tendon length in tendon transfers about the shoulder: (1) GraftJacket patch for a pectoralis major tendon reconstruction and (2) ArthroFlex® patch for LDTT. Both of these brands of allograft patches are obtained from human cadavers. These products are usually used to cover soft tissue repairs and offer supplemental support rather than for increasing tendon length. Extending the LDTT with GraftJacket to achieve adequate length, to our knowledge, has not been reported in the literature. We report the case of a 50-year-old male who had a massive, irreparable left shoulder rotator cuff tear that was reconstructed with a LDTT. The natural length of his LDT was insufficient for transfer. This unexpected situation was rectified by sewing two patches of GraftJacket to the LDT. The patient had greatly improved shoulder function at two-year follow-up. PMID:28194290

  2. Influence of psychomotor skills and innervation patterns on results of latissimus dorsi tendon transfer for irreparable rotator cuff tears.

    PubMed

    Werner, Clément M L; Ruckstuhl, Thomas; Müller, Roland; Zanetti, Marco; Gerber, Christian

    2008-01-01

    This investigation was performed to analyze the influence of innervation and psychomotor skills on the outcome of latissimus dorsi transfer. Patients with the 10 best and 10 worst results after latissimus dorsi transfer for irreparable rotator cuff tears were selected. All patients meeting the inclusion criteria (n = 12) were subject to a psychomotor test battery (Motorische Leistungsserie) and electromyographic innervation assessment. There was no statistical difference between the 2 groups preoperatively in terms of the commonly tested factors known to influence the results of this procedure adversely. There was a significant difference in both the pattern and selectivity of innervation in the group that had better clinical results. The psychomotor findings were negatively correlated with the range of motion and the strength of the operative shoulder. Function of the operative shoulder could also be predicted by psychomotor function of the uninjured contralateral side. Psychomotor skills testing appears to be a new, potential method by which to predict the outcome of latissimus dorsi transfer.

  3. Editorial Commentary: Superior Capsular Reconstruction for Irreparable Supraspinatus Tear Reveals Improved Biomechanics With a Thicker Graft Placed in 15° to 45° of Shoulder Abduction.

    PubMed

    Rossi, Michael J

    2016-03-01

    Biomechanical study of superior capsular reconstruction for irreparable supraspinatus tears has lower subacromial contact pressures with a thicker graft placed in 15° to 45° of shoulder abduction. Whether this translates to the clinical situation of massive rotator cuff insufficiency remains to be determined.

  4. DNA.

    ERIC Educational Resources Information Center

    Felsenfeld, Gary

    1985-01-01

    Structural form, bonding scheme, and chromatin structure of and gene-modification experiments with deoxyribonucleic acid (DNA) are described. Indicates that DNA's double helix is variable and also flexible as it interacts with regulatory and other molecules to transfer hereditary messages. (DH)

  5. Deltoid muscle volume affects clinical outcome of reverse total shoulder arthroplasty in patients with cuff tear arthropathy or irreparable cuff tears

    PubMed Central

    Yoon, Jong Pil; Seo, Anna; Kim, Jeong Jun; Lee, Chang-Hwa; Baek, Seung-Hun; Kim, Shin Yoon; Jeong, Eun Taek; Oh, Kyung-Soo

    2017-01-01

    We aimed to estimate the interrelation between preoperative deltoid muscle status by measuring the 3-dimensional deltoid muscle volume and postoperative functional outcomes after reverse total shoulder arthroplasty(RTSA). Thirty-five patients who underwent RTSA participated in this study. All patients underwent preoperative magnetic resonance imaging(MRI) as well as pre- and postoperative radiography and various functional outcome evaluations at least 1 year. The primary outcome parameter was set as age- and sex-matched Constant scores. The 3-dimensional deltoid muscle model was generated using a medical image processing software and in-house code, and the deltoid muscle volume was calculated automatically. Various clinical and radiographic factors comprising the deltoid muscle volume adjusted for body mass index(BMI) were analyzed, and their interrelation with the outcome parameters was appraised using a multivariate analysis. As a result, all practical consequences considerably improved following surgery(all p<0.01). Overall, 20 and 15 indicated a higher and a lower practical consequence than the average, respectively, which was assessed by the matched Constant scores. The deltoid muscle volume adjusted for BMI(p = 0.009), absence of a subscapularis complete tear (p = 0.040), and greater change in acromion-deltoid tuberosity distance(p = 0.013) were associated with higher matched Constant scores. Multivariate analysis indicated that the deltoid muscle volume was the single independent prognostic factor for practical consequences(p = 0.011). In conclusion, the preoperative deltoid muscle volume significantly affected the functional outcome following RTSA in patients with cuff tear arthropathy or irreparable cuff tears. Therefore, more attention should be paid to patients with severe atrophied deltoid muscle who are at a high risk for poor practical consequences subsequent to RTSA. PMID:28355234

  6. DNA

    ERIC Educational Resources Information Center

    Stent, Gunther S.

    1970-01-01

    This history for molecular genetics and its explanation of DNA begins with an analysis of the Golden Jubilee essay papers, 1955. The paper ends stating that the higher nervous system is the one major frontier of biological inquiry which still offers some romance of research. (Author/VW)

  7. DNA repair and aging: the impact of the p53 family

    PubMed Central

    Nicolai, Sara; Rossi, Antonello; Di Daniele, Nicola; Melino, Gerry; Annicchiarico-Petruzzelli, Margherita; Raschellà, Giuseppe

    2015-01-01

    Cells are constantly exposed to endogenous and exogenous factors that threaten the integrity of their DNA. The maintenance of genome stability is of paramount importance in the prevention of both cancer and aging processes. To deal with DNA damage, cells put into operation a sophisticated and coordinated mechanism, collectively known as DNA damage response (DDR). The DDR orchestrates different cellular processes, such as DNA repair, senescence and apoptosis. Among the key factors of the DDR, the related proteins p53, p63 and p73, all belonging to the same family of transcription factors, play multiple relevant roles. Indeed, the members of this family are directly involved in the induction of cell cycle arrest that is necessary to allow the cells to repair. Alternatively, they can promote cell death in case of prolonged or irreparable DNA damage. They also take part in a more direct task by modulating the expression of core factors involved in the process of DNA repair or by directly interacting with them. In this review we will analyze the fundamental roles of the p53 family in the aging process through their multifaceted function in DDR. PMID:26668111

  8. DNA repair and aging: the impact of the p53 family.

    PubMed

    Nicolai, Sara; Rossi, Antonello; Di Daniele, Nicola; Melino, Gerry; Annicchiarico-Petruzzelli, Margherita; Raschellà, Giuseppe

    2015-12-01

    Cells are constantly exposed to endogenous and exogenous factors that threaten the integrity of their DNA. The maintenance of genome stability is of paramount importance in the prevention of both cancer and aging processes. To deal with DNA damage, cells put into operation a sophisticated and coordinated mechanism, collectively known as DNA damage response (DDR). The DDR orchestrates different cellular processes, such as DNA repair, senescence and apoptosis. Among the key factors of the DDR, the related proteins p53, p63 and p73, all belonging to the same family of transcription factors, play multiple relevant roles. Indeed, the members of this family are directly involved in the induction of cell cycle arrest that is necessary to allow the cells to repair. Alternatively, they can promote cell death in case of prolonged or irreparable DNA damage. They also take part in a more direct task by modulating the expression of core factors involved in the process of DNA repair or by directly interacting with them. In this review we will analyze the fundamental roles of the p53 family in the aging process through their multifaceted function in DDR.

  9. BACH2: a Marker of DNA Damage and Aging

    PubMed Central

    Uittenboogaard, L.M.; Payan-Gomez, C.; Pothof, J.; van IJcken, W.; Mastroberardino, PG; van der Pluijm; Hoeijmakers, J.H.J.; Tresini, M.

    2013-01-01

    DNA damage and aging share expression changes involving alterations in many aspects of metabolism, suppression of growth and upregulation of defence and genome maintenance systems. “Omics” technologies have permitted large-scale parallel measurements covering global cellular constituents and aided the identification of specific response pathways that change during aging and after DNA damage. We have set out to identify genes with highly conserved response patterns through meta-analysis of mRNA expression datasets collected during natural aging and accelerated aging caused by a Transcription-Coupled Nucleotide Excision Repair (TC-NER) defect in a diverse set of organs and tissues in mice, and from in-vitro UV-induced DNA damage in a variety of murine cells. The identified set of genes that show similar expression patterns in response to organ aging (accelerated and normal), and endogenously and exogenously induced DNA damage, consists of genes involved in anti-oxidant systems and includes the transcription factor Bach2 as one of the most consistent markers. BACH2 was originally identified as a partner of the small Maf proteins and antagonist of the NRF2 anti-oxidant defence pathway and has been implicated in B-cell differentiation and immune system homeostasis. Although BACH2 has never before been associated with UV-induced damage or aging, it shows a strong downregulation in both conditions. We have characterized the dynamics of Bach2 expression in response to DNA damage and show that it is a highly sensitive responder to transcription-blocking DNA lesions. Gene expression profiling using Affymetrix microarray analysis after siRNA-mediated silencing of Bach2 identified cell cycle and transcription regulation as the most significantly altered processes consistent with a function as transcription factor affecting proliferation. PMID:24075570

  10. BACH2: a marker of DNA damage and ageing.

    PubMed

    Uittenboogaard, L M; Payan-Gomez, C; Pothof, J; van Ijcken, W; Mastroberardino, P G; van der Pluijm, I; Hoeijmakers, J H J; Tresini, M

    2013-11-01

    DNA damage and ageing share expression changes involving alterations in many aspects of metabolism, suppression of growth and upregulation of defence and genome maintenance systems. "Omics" technologies have permitted large-scale parallel measurements covering global cellular constituents and aided the identification of specific response pathways that change during ageing and after DNA damage. We have set out to identify genes with highly conserved response patterns through meta-analysis of mRNA expression datasets collected during natural ageing and accelerated ageing caused by a Transcription-Coupled Nucleotide Excision Repair (TC-NER) defect in a diverse set of organs and tissues in mice, and from in vitro UV-induced DNA damage in a variety of murine cells. The identified set of genes that show similar expression patterns in response to organ ageing (accelerated and normal), and endogenously and exogenously induced DNA damage, consists of genes involved in anti-oxidant systems and includes the transcription factor Bach2 as one of the most consistent markers. BACH2 was originally identified as a partner of the small Maf proteins and antagonist of the NRF2 anti-oxidant defence pathway and has been implicated in B-cell differentiation and immune system homeostasis. Although BACH2 has never before been associated with UV-induced damage or ageing, it shows a strong downregulation in both conditions. We have characterized the dynamics of Bach2 expression in response to DNA damage and show that it is a highly sensitive responder to transcription-blocking DNA lesions. Gene expression profiling using Affymetrix microarray analysis after siRNA-mediated silencing of Bach2 identified cell cycle and transcription regulation as the most significantly altered processes consistent with a function as transcription factor affecting proliferation.

  11. PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break.

    PubMed

    Leroy, Christophe; Lee, Sang Eun; Vaze, Moreshwar B; Ochsenbein, Françoise; Ochsenbien, Françoise; Guerois, Raphaël; Haber, James E; Marsolier-Kergoat, Marie-Claude

    2003-03-01

    Saccharomyces cells suffering a DNA double-strand break (DSB) ultimately escape checkpoint-mediated G2/M arrest either by recovery once the lesion is repaired or by adaptation if the lesion proves irreparable. Cells lacking the PP2C-like phosphatases Ptc2 and Ptc3 are unable to adapt to a HO-induced DSB and are also defective in recovering from a repairable DSB. In contrast, overexpression of PTC2 rescues adaptation-defective yku80Delta and cdc5-ad mutants. These effects are not explained by alterations either in the processing of DSB ends or in DSB repair. In vivo and in vitro evidence suggests that phosphorylated forms of Ptc2 and Ptc3 specifically bind to the Rad53 FHA1 domain and inactivate Rad53-dependent pathways during adaptation and recovery by dephosphorylating Rad53.

  12. DNA Nanotechnology

    NASA Astrophysics Data System (ADS)

    Taniguchi, Masateru; Kawai, Tomoji

    2002-11-01

    DNA is one candidate of promising molecules for molecular electronic devices, since it has the double helix structure with pi-electron bases for electron transport, the address at 0.4 nm intervals, and the self-assembly. Electrical conductivity and nanostructure of DNA and modified DNA molecules are investigated in order to research the application of DNA in nanoelectronic devices. It has been revealed that DNA is a wide-gap semiconductor in the absence of doping. The conductivity of DNA has been controlled by chemical doping, electric field doping, and photo-doping. It has found that Poly(dG)[middle dot]Poly(dC) has the best conductivity and can function as a conducting nanowire. The pattern of DNA network is controlled by changing the concentration of the DNA solution.

  13. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  14. MMS Exposure Promotes Increased MtDNA Mutagenesis in the Presence of Replication-Defective Disease-Associated DNA Polymerase γ Variants

    PubMed Central

    Stumpf, Jeffrey D.; Copeland, William C.

    2014-01-01

    Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but

  15. MMS exposure promotes increased MtDNA mutagenesis in the presence of replication-defective disease-associated DNA polymerase γ variants.

    PubMed

    Stumpf, Jeffrey D; Copeland, William C

    2014-10-01

    Mitochondrial DNA (mtDNA) encodes proteins essential for ATP production. Mutant variants of the mtDNA polymerase cause mutagenesis that contributes to aging, genetic diseases, and sensitivity to environmental agents. We interrogated mtDNA replication in Saccharomyces cerevisiae strains with disease-associated mutations affecting conserved regions of the mtDNA polymerase, Mip1, in the presence of the wild type Mip1. Mutant frequency arising from mtDNA base substitutions that confer erythromycin resistance and deletions between 21-nucleotide direct repeats was determined. Previously, increased mutagenesis was observed in strains encoding mutant variants that were insufficient to maintain mtDNA and that were not expected to reduce polymerase fidelity or exonuclease proofreading. Increased mutagenesis could be explained by mutant variants stalling the replication fork, thereby predisposing the template DNA to irreparable damage that is bypassed with poor fidelity. This hypothesis suggests that the exogenous base-alkylating agent, methyl methanesulfonate (MMS), would further increase mtDNA mutagenesis. Mitochondrial mutagenesis associated with MMS exposure was increased up to 30-fold in mip1 mutants containing disease-associated alterations that affect polymerase activity. Disrupting exonuclease activity of mutant variants was not associated with increased spontaneous mutagenesis compared with exonuclease-proficient alleles, suggesting that most or all of the mtDNA was replicated by wild type Mip1. A novel subset of C to G transversions was responsible for about half of the mutants arising after MMS exposure implicating error-prone bypass of methylated cytosines as the predominant mutational mechanism. Exposure to MMS does not disrupt exonuclease activity that suppresses deletions between 21-nucleotide direct repeats, suggesting the MMS-induce mutagenesis is not explained by inactivated exonuclease activity. Further, trace amounts of CdCl2 inhibit mtDNA replication but

  16. Ataxia telangiectasia mutated activation by transcription- and topoisomerase I-induced DNA double-strand breaks.

    PubMed

    Sordet, Olivier; Redon, Christophe E; Guirouilh-Barbat, Josée; Smith, Susan; Solier, Stéphanie; Douarre, Céline; Conti, Chiara; Nakamura, Asako J; Das, Benu B; Nicolas, Estelle; Kohn, Kurt W; Bonner, William M; Pommier, Yves

    2009-08-01

    Ataxia telangiectasia mutated (ATM), the deficiency of which causes a severe neurodegenerative disease, is a crucial mediator for the DNA damage response (DDR). As neurons have high rates of transcription that require topoisomerase I (TOP1), we investigated whether TOP1 cleavage complexes (TOP1cc)-which are potent transcription-blocking lesions-also produce transcription-dependent DNA double-strand breaks (DSBs) with ATM activation. We show the induction of DSBs and DDR activation in post-mitotic primary neurons and lymphocytes treated with camptothecin, with the induction of nuclear DDR foci containing activated ATM, gamma-H2AX (phosphorylated histone H2AX), activated CHK2 (checkpoint kinase 2), MDC1 (mediator of DNA damage checkpoint 1) and 53BP1 (p53 binding protein 1). The DSB-ATM-DDR pathway was suppressed by inhibiting transcription and gamma-H2AX signals were reduced by RNase H1 transfection, which removes transcription-mediated R-loops. Thus, we propose that Top1cc produce transcription arrests with R-loop formation and generate DSBs that activate ATM in post-mitotic cells.

  17. Dna Sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1995-04-25

    A method for sequencing a strand of DNA, including the steps off: providing the strand of DNA; annealing the strand with a primer able to hybridize to the strand to give an annealed mixture; incubating the mixture with four deoxyribonucleoside triphosphates, a DNA polymerase, and at least three deoxyribonucleoside triphosphates in different amounts, under conditions in favoring primer extension to form nucleic acid fragments complementory to the DNA to be sequenced; labelling the nucleic and fragments; separating them and determining the position of the deoxyribonucleoside triphosphates by differences in the intensity of the labels, thereby to determine the DNA sequence.

  18. Transcriptional blockages in a cell-free system by sequence-selective DNA alkylating agents.

    PubMed

    Ferguson, L R; Liu, A P; Denny, W A; Cullinane, C; Talarico, T; Phillips, D R

    2000-04-14

    There is considerable interest in DNA sequence-selective DNA-binding drugs as potential inhibitors of gene expression. Five compounds with distinctly different base pair specificities were compared in their effects on the formation and elongation of the transcription complex from the lac UV5 promoter in a cell-free system. All were tested at drug levels which killed 90% of cells in a clonogenic survival assay. Cisplatin, a selective alkylator at purine residues, inhibited transcription, decreasing the full-length transcript, and causing blockage at a number of GG or AG sequences, making it probable that intrastrand crosslinks are the blocking lesions. A cyclopropylindoline known to be an A-specific alkylator also inhibited transcription, with blocks at adenines. The aniline mustard chlorambucil, that targets primarily G but also A sequences, was also effective in blocking the formation of full-length transcripts. It produced transcription blocks either at, or one base prior to, AA or GG sequences, suggesting that intrastrand crosslinks could again be involved. The non-alkylating DNA minor groove binder Hoechst 33342 (a bisbenzimidazole) blocked formation of the full-length transcript, but without creating specific blockage sites. A bisbenzimidazole-linked aniline mustard analogue was a more effective transcription inhibitor than either chlorambucil or Hoechst 33342, with different blockage sites occurring immediately as compared with 2 h after incubation. The blockages were either immediately prior to AA or GG residues, or four to five base pairs prior to such sites, a pattern not predicted from in vitro DNA-binding studies. Minor groove DNA-binding ligands are of particular interest as inhibitors of gene expression, since they have the potential ability to bind selectively to long sequences of DNA. The results suggest that the bisbenzimidazole-linked mustard does cause alkylation and transcription blockage at novel DNA sites. in addition to sites characteristic of

  19. DNA Immunization

    PubMed Central

    Wang, Shixia; Lu, Shan

    2013-01-01

    DNA immunization was discovered in early 1990s and its use has been expanded from vaccine studies to a broader range of biomedical research, such as the generation of high quality polyclonal and monoclonal antibodies as research reagents. In this unit, three common DNA immunization methods are described: needle injection, electroporation and gene gun. In addition, several common considerations related to DNA immunization are discussed. PMID:24510291

  20. DNA ligases.

    PubMed

    Tabor, S

    2001-05-01

    DNA ligases catalyze the formation of phosphodiester bonds between juxtaposed 5' phosphate and a 3'-hydroxyl terminus in duplex DNA. This activity can repair single-stranded nicks in duplex DNA and join duplex DNA restriction fragments having either blunt ends or homologous cohesive ends. Two ligases are used for nucleic acid research and their reaction conditions and applications are described in this unit: E. coli ligase and T4 ligase. These enzymes differ in two important properties. One is the source of energy: T4 ligase uses ATP, while E. coli ligase uses NAD. Another important difference is their ability to ligate blunt ends; under normal reaction conditions, only T4 DNA ligase will ligate blunt ends.

  1. Patenting DNA.

    PubMed

    Bobrow, Martin; Thomas, Sandy

    2002-12-01

    The protection of inventions based on human DNA sequences has been achieved mainly through application of the patent system. Over the past decade, there has been continuing debate about whether this use of intellectual property rights is acceptable. Companies and universities have been active during this period in filing thousands of patent applications. Although many have argued that to claim a DNA sequence in a patent is to claim a discovery, patent law allows discoveries that are useful to be claimed as part of an invention. As the technology to isolate DNA sequences has advanced, the criterion for inventiveness, necessary for any invention to be eligible for filing, has become more difficult to justify in the case of claims to DNA sequences. Moreover, the discovery that a gene is associated with a particular disease is, it is argued, to discover a fact about the world and undeserving of the status of an invention. Careful examination of the grounds for allowing the patenting of DNA sequences as research tools suggests such rewards will rarely be justified. The patenting of DNA sequences as chemical intermediates necessary for the manufacture of therapeutic proteins is, however, reasonable given that the information within the sequence is applied to produce a tangible substance which has application as a medicine. Despite the legal, technical and political complexities of applying the flexibilities with the current law, it is argued that much could be achieved in the area of patenting DNA by raising the thresholds for patentability.

  2. Restricted diet delays accelerated ageing and genomic stress in DNA-repair-deficient mice.

    PubMed

    Vermeij, W P; Dollé, M E T; Reiling, E; Jaarsma, D; Payan-Gomez, C; Bombardieri, C R; Wu, H; Roks, A J M; Botter, S M; van der Eerden, B C; Youssef, S A; Kuiper, R V; Nagarajah, B; van Oostrom, C T; Brandt, R M C; Barnhoorn, S; Imholz, S; Pennings, J L A; de Bruin, A; Gyenis, Á; Pothof, J; Vijg, J; van Steeg, H; Hoeijmakers, J H J

    2016-09-15

    Mice deficient in the DNA excision-repair gene Ercc1 (Ercc1(∆/-)) show numerous accelerated ageing features that limit their lifespan to 4-6 months. They also exhibit a 'survival response', which suppresses growth and enhances cellular maintenance. Such a response resembles the anti-ageing response induced by dietary restriction (also known as caloric restriction). Here we report that a dietary restriction of 30% tripled the median and maximal remaining lifespans of these progeroid mice, strongly retarding numerous aspects of accelerated ageing. Mice undergoing dietary restriction retained 50% more neurons and maintained full motor function far beyond the lifespan of mice fed ad libitum. Other DNA-repair-deficient, progeroid Xpg(-/-) (also known as Ercc5(-/-)) mice, a model of Cockayne syndrome, responded similarly. The dietary restriction response in Ercc1(∆/-) mice closely resembled the effects of dietary restriction in wild-type animals. Notably, liver tissue from Ercc1(∆/-) mice fed ad libitum showed preferential extinction of the expression of long genes, a phenomenon we also observed in several tissues ageing normally. This is consistent with the accumulation of stochastic, transcription-blocking lesions that affect long genes more than short ones. Dietary restriction largely prevented this declining transcriptional output and reduced the number of γH2AX DNA damage foci, indicating that dietary restriction preserves genome function by alleviating DNA damage. Our findings establish the Ercc1(∆/-) mouse as a powerful model organism for health-sustaining interventions, reveal potential for reducing endogenous DNA damage, facilitate a better understanding of the molecular mechanism of dietary restriction and suggest a role for counterintuitive dietary-restriction-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general.

  3. Dancing DNA.

    ERIC Educational Resources Information Center

    Pennisi, Elizabeth

    1991-01-01

    An imaging technique that uses fluorescent dyes and allows scientists to track DNA as it moves through gels or in solution is described. The importance, opportunities, and implications of this technique are discussed. (KR)

  4. DNA adductomics.

    PubMed

    Balbo, Silvia; Turesky, Robert J; Villalta, Peter W

    2014-03-17

    Systems toxicology is a broad-based approach to describe many of the toxicological features that occur within a living system under stress or subjected to exogenous or endogenous exposures. The ultimate goal is to capture an overview of all exposures and the ensuing biological responses of the body. The term exposome has been employed to refer to the totality of all exposures, and systems toxicology investigates how the exposome influences health effects and consequences of exposures over a lifetime. The tools to advance systems toxicology include high-throughput transcriptomics, proteomics, metabolomics, and adductomics, which is still in its infancy. A well-established methodology for the comprehensive measurement of DNA damage resulting from every day exposures is not fully developed. During the past several decades, the (32)P-postlabeling technique has been employed to screen the damage to DNA induced by multiple classes of genotoxicants; however, more robust, specific, and quantitative methods have been sought to identify and quantify DNA adducts. Although triple quadrupole and ion trap mass spectrometry, particularly when using multistage scanning (LC-MS(n)), have shown promise in the field of DNA adductomics, it is anticipated that high-resolution and accurate-mass LC-MS(n) instrumentation will play a major role in assessing global DNA damage. Targeted adductomics should also benefit greatly from improved triple quadrupole technology. Once the analytical MS methods are fully mature, DNA adductomics along with other -omics tools will contribute greatly to the field of systems toxicology.

  5. What Is Mitochondrial DNA?

    MedlinePlus

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  6. DNA vaccines

    NASA Astrophysics Data System (ADS)

    Gregersen, Jens-Peter

    2001-12-01

    Immunization by genes encoding immunogens, rather than with the immunogen itself, has opened up new possibilities for vaccine research and development and offers chances for new applications and indications for future vaccines. The underlying mechanisms of antigen processing, immune presentation and regulation of immune responses raise high expectations for new and more effective prophylactic or therapeutic vaccines, particularly for vaccines against chronic or persistent infectious diseases and tumors. Our current knowledge and experience of DNA vaccination is summarized and critically reviewed with particular attention to basic immunological mechanisms, the construction of plasmids, screening for protective immunogens to be encoded by these plasmids, modes of application, pharmacokinetics, safety and immunotoxicological aspects. DNA vaccines have the potential to accelerate the research phase of new vaccines and to improve the chances of success, since finding new immunogens with the desired properties is at least technically less demanding than for conventional vaccines. However, on the way to innovative vaccine products, several hurdles have to be overcome. The efficacy of DNA vaccines in humans appears to be much less than indicated by early studies in mice. Open questions remain concerning the persistence and distribution of inoculated plasmid DNA in vivo, its potential to express antigens inappropriately, or the potentially deleterious ability to insert genes into the host cell's genome. Furthermore, the possibility of inducing immunotolerance or autoimmune diseases also needs to be investigated more thoroughly, in order to arrive at a well-founded consensus, which justifies the widespread application of DNA vaccines in a healthy population.

  7. Ancient DNA

    PubMed Central

    Willerslev, Eske; Cooper, Alan

    2004-01-01

    In the past two decades, ancient DNA research has progressed from the retrieval of small fragments of mitochondrial DNA from a few late Holocene specimens, to large-scale studies of ancient populations, phenotypically important nuclear loci, and even whole mitochondrial genome sequences of extinct species. However, the field is still regularly marred by erroneous reports, which underestimate the extent of contamination within laboratories and samples themselves. An improved understanding of these processes and the effects of damage on ancient DNA templates has started to provide a more robust basis for research. Recent methodological advances have included the characterization of Pleistocene mammal populations and discoveries of DNA preserved in ancient sediments. Increasingly, ancient genetic information is providing a unique means to test assumptions used in evolutionary and population genetics studies to reconstruct the past. Initial results have revealed surprisingly complex population histories, and indicate that modern phylogeographic studies may give misleading impressions about even the recent evolutionary past. With the advent and uptake of appropriate methodologies, ancient DNA is now positioned to become a powerful tool in biological research and is also evolving new and unexpected uses, such as in the search for extinct or extant life in the deep biosphere and on other planets. PMID:15875564

  8. DNA damage and repair in oncogenic transformation by heavy ion radiation

    NASA Technical Reports Server (NTRS)

    Yang, T. C.; Mei, M.; George, K. A.; Craise, L. M.

    1996-01-01

    Energetic heavy ions are present in galactic cosmic rays and solar particle events. One of the most important late effects in risk assessment is carcinogenesis. We have studied the carcinogenic effects of heavy ions at the cellular and molecular levels and have obtained quantitative data on dose-response curves and on the repair of oncogenic lesions for heavy particles with various charges and energies. Studies with repair inhibitors and restriction endonucleases indicated that for oncogenic transformation DNA is the primary target. Results from heavy ion experiments showed that the cross section increased with LET and reached a maximum value of about 0.02 micrometer2 at about 500 keV/micrometer. This limited size of cross section suggests that only a fraction of cellular genomic DNA is important in radiogenic transformation. Free radical scavengers, such as DMSO, do not give any effect on induction of oncogenic transformation by 600 MeV/u iron particles, suggesting most oncogenic damage induced by high-LET heavy ions is through direct action. Repair studies with stationary phase cells showed that the amount of reparable oncogenic lesions decreased with an increase of LET and that heavy ions with LET greater than 200 keV/micrometer produced only irreparable oncogenic damage. An enhancement effect for oncogenic transformation was observed in cells irradiated by low-dose-rate argon ions (400 MeV/u; 120 keV/micrometer). Chromosomal aberrations, such as translocation and deletion, but not sister chromatid exchange, are essential for heavy-ion-induced oncogenic transformation. The basic mechanism(s) of misrepair of DNA damage, which form oncogenic lesions, is unknown.

  9. Mass Spectrometry-Based Quantitative Strategies for Assessing the Biological Consequences and Repair of DNA Adducts.

    PubMed

    You, Changjun; Wang, Yinsheng

    2016-02-16

    The genetic integrity of living organisms is constantly threatened by environmental and endogenous sources of DNA damaging agents that can induce a plethora of chemically modified DNA lesions. Unrepaired DNA lesions may elicit cytotoxic and mutagenic effects and contribute to the development of human diseases including cancer and neurodegeneration. Understanding the deleterious outcomes of DNA damage necessitates the investigation about the effects of DNA adducts on the efficiency and fidelity of DNA replication and transcription. Conventional methods for measuring lesion-induced replicative or transcriptional alterations often require time-consuming colony screening and DNA sequencing procedures. Recently, a series of mass spectrometry (MS)-based strategies have been developed in our laboratory as an efficient platform for qualitative and quantitative analyses of the changes in genetic information induced by DNA adducts during DNA replication and transcription. During the past few years, we have successfully used these MS-based methods for assessing the replicative or transcriptional blocking and miscoding properties of more than 30 distinct DNA adducts. When combined with genetic manipulation, these methods have also been successfully employed for revealing the roles of various DNA repair proteins or translesion synthesis DNA polymerases (Pols) in modulating the adverse effects of DNA lesions on transcription or replication in mammalian and bacterial cells. For instance, we found that Escherichia coli Pol IV and its mammalian ortholog (i.e., Pol κ) are required for error-free bypass of N(2)-(1-carboxyethyl)-2'-deoxyguanosine (N(2)-CEdG) in cells. We also found that the N(2)-CEdG lesions strongly inhibit DNA transcription and they are repaired by transcription-coupled nucleotide excision repair in mammalian cells. In this Account, we focus on the development of MS-based approaches for determining the effects of DNA adducts on DNA replication and transcription

  10. DNA Music.

    ERIC Educational Resources Information Center

    Miner, Carol; della Villa, Paula

    1997-01-01

    Describes an activity in which students reverse-translate proteins from their amino acid sequences back to their DNA sequences then assign musical notes to represent the adenine, guanine, cytosine, and thymine bases. Data is obtained from the National Institutes of Health (NIH) on the Internet. (DDR)

  11. DNA Investigations.

    ERIC Educational Resources Information Center

    Mayo, Ellen S.; Bertino, Anthony J.

    1991-01-01

    Presents a simulation activity that allow students to work through the exercise of DNA profiling and to grapple with some analytical and ethical questions involving a couple arranging with a surrogate mother to have a baby. Can be used to teach the principles of restriction enzyme digestion, gel electrophoresis, and probe hybridization. (MDH)

  12. Synthetic DNA

    PubMed Central

    O’ Driscoll, Aisling; Sleator, Roy D.

    2013-01-01

    With world wide data predicted to exceed 40 trillion gigabytes by 2020, big data storage is a very real and escalating problem. Herein, we discuss the utility of synthetic DNA as a robust and eco-friendly archival data storage solution of the future. PMID:23514938

  13. DNA nanostructure immobilization to lithographic DNA arrays

    NASA Astrophysics Data System (ADS)

    Negrete, Omar D.

    Although DNA is well known for its genetic role in biology, DNA has also been sought-after as a material for the self-assembly of biological and electronic devices. Examples of DNA nanostructure construction include DNA tiled self-assembly and DNA Origami, where by controlling the sequence and concentration of DNA molecules, the rational design of geometric DNA nanostructures is possible. The assembly of DNA nanostructures takes place in solution and thus they are in disorder and require further organization to construct circuitry or devices. Hence, it is essential for future applications of this technology to develop methods to direct the placement of DNA nanostructures on a surface. To address this challenge my research examines the use of DNA microarrays to capture DNA nanostructures via DNA hybridization. Modern DNA arrays offer a high-density of sequence-specific molecular recognition sites where the addressable placement of DNA nanostructures can be achieved. Using Maskless Array Synthesizer (MAS) technology, I have characterized photolithographic DNA arrays for the hybridization of DNA complexes like large DNA molecules (> 1 kb), DNA-gold nanoparticle conjugates, and DNA Origami. Although modern photolithographic DNA arrays can possess a high-density of sequence (106/cm2), the printed DNA areas are on the order of tens of microns. Thus, I have also developed a method to reduce the DNA array spot size to nanoscale dimensions through the combined use of electron beam lithography with photolithographic DNA synthesis. This work addresses the key elements towards developing a surface patterning technology that takes advantage of DNA base-pairing for both molecular sub-assembly and surface patterning.

  14. Diet restriction delays accelerated aging and genomic stress in DNA repair deficient mice

    PubMed Central

    Vermeij, W.P.; Dollé, M.E.T.; Reiling, E.; Jaarsma, D.; Payan-Gomez, C.; Bombardieri, C.R.; Wu, H.; Roks, A.J.M.; Botter, S.M.; van der Eerden, B.C.; Youssef, S.A.; Kuiper, R.V.; Nagarajah, B.; van Oostrom, C.T.; Brandt, R.M.C.; Barnhoorn, S.; Imholz, S.; Pennings, J.L.A.; de Bruin, A.; Gyenis, Á.; Pothof, J.; Vijg, J.; van Steeg, H.; Hoeijmakers, J.H.J.

    2016-01-01

    DNA repair-deficient Ercc1Δ/− mice show numerous accelerated aging features limiting lifespan to 4–6 month1–4. Simultaneously they exhibit a ‘survival response’, which suppresses growth and enhances maintenance, resembling the anti-aging response induced by dietary restriction (DR)1,5. Here we report that subjecting these progeroid, dwarf mutants to 30% DR tripled median and maximal remaining lifespan, and drastically retarded numerous aspects of accelerated aging, e.g. DR animals retained 50% more neurons and maintained full motoric function, even far beyond the lifespan of ad libitum (AL) animals. Repair-deficient, progeroid Xpg−/− mice, a Cockayne syndrome model6, responded similarly, extending this observation to other repair mutants. The DR response in Ercc1Δ/− mice closely resembled DR in wild type animals. Interestingly, AL Ercc1Δ/− liver showed preferential extinction of expression of long genes, a phenomenon we also observe in several normal aging tissues. This is consistent with accumulation of stochastic, transcription-blocking lesions, affecting long genes more than short ones. DR largely prevented declining transcriptional output and reduced γH2AX DNA damage foci, indicating that DR preserves genome function by alleviating DNA damage. Our findings establish Ercc1Δ/− mice as powerful model for interventions sustaining health, reveal untapped potential for reducing endogenous damage, provide new venues for understanding the molecular mechanism of DR, and suggest a counterintuitive DR-like therapy for human progeroid genome instability syndromes and possibly neurodegeneration in general. PMID:27556946

  15. Prokaryotic DNA ligases unwind superhelical DNA.

    PubMed

    Ivanchenko, M; van Holde, K; Zlatanova, J

    1996-09-13

    We have studied the effect on DNA topology of binding of prokaryotic DNA ligases (T4 and E. coli) to superhelical or nicked circular DNA. Performing topoisomerase I-mediated relaxation in the presence of increasing amounts of T4 ligase led to a shift in the topoisomer distribution to increasingly more negative values. This result suggested that T4 ligase unwound the DNA and was further substantiated by ligation of nicked circular molecules by E. coli DNA ligase in the presence of increasing amounts of T4 ligase. Such an experiment was possible since the two DNA ligases require different cofactors for enzymatic activity. Performing a similar experiment with reverse partners, using E. coli DNA ligase as ligand, and T4 ligase as sealing agent, we observed that the E. coli enzyme also unwound the DNA. Thus, prokaryotic DNA ligases can be added to an ever-growing list of DNA-binding proteins that unwind the DNA upon binding.

  16. DNA nanostructure meets nanofabrication.

    PubMed

    Zhang, Guomei; Surwade, Sumedh P; Zhou, Feng; Liu, Haitao

    2013-04-07

    Recent advances in DNA nanotechnology have made it possible to construct DNA nanostructures of almost arbitrary shapes with 2-3 nm of precision in their dimensions. These DNA nanostructures are ideal templates for bottom-up nanofabrication. This review highlights the challenges and recent advances in three areas that are directly related to DNA-based nanofabrication: (1) fabrication of large scale DNA nanostructures; (2) pattern transfer from DNA nanostructure to an inorganic substrate; and (3) directed assembly of DNA nanostructures.

  17. DNA ligase I, the replicative DNA ligase.

    PubMed

    Howes, Timothy R L; Tomkinson, Alan E

    2012-01-01

    Multiple DNA ligation events are required to join the Okazaki fragments generated during lagging strand DNA synthesis. In eukaryotes, this is primarily carried out by members of the DNA ligase I family. The C-terminal catalytic region of these enzymes is composed of three domains: a DNA binding domain, an adenylation domain and an OB-fold domain. In the absence of DNA, these domains adopt an extended structure but transition into a compact ring structure when they engage a DNA nick, with each of the domains contacting the DNA. The non-catalytic N-terminal region of eukaryotic DNA ligase I is responsible for the specific participation of these enzymes in DNA replication. This proline-rich unstructured region contains the nuclear localization signal and a PCNA interaction motif that is critical for localization to replication foci and efficient joining of Okazaki fragments. DNA ligase I initially engages the PCNA trimer via this interaction motif which is located at the extreme N-terminus of this flexible region. It is likely that this facilitates an additional interaction between the DNA binding domain and the PCNA ring. The similar size and shape of the rings formed by the PCNA trimer and the DNA ligase I catalytic region when it engages a DNA nick suggest that these proteins interact to form a double-ring structure during the joining of Okazaki fragments. DNA ligase I also interacts with replication factor C, the factor that loads the PCNA trimeric ring onto DNA. This interaction, which is regulated by phosphorylation of the non-catalytic N-terminus of DNA ligase I, also appears to be critical for DNA replication.

  18. DNA modifications: Another stable base in DNA

    NASA Astrophysics Data System (ADS)

    Brazauskas, Pijus; Kriaucionis, Skirmantas

    2014-12-01

    Oxidation of 5-methylcytosine has been proposed to mediate active and passive DNA demethylation. Tracking the history of DNA modifications has now provided the first solid evidence that 5-hydroxymethylcytosine is a stable epigenetic modification.

  19. Sperm DNA oxidative damage and DNA adducts

    PubMed Central

    Jeng, Hueiwang Anna; Pan, Chih-Hong; Chao, Mu-Rong; Lin, Wen-Yi

    2015-01-01

    The objective of this study was to investigate DNA damage and adducts in sperm from coke oven workers who have been exposed to polycyclic aromatic hydrocarbons. A longitudinal study was conducted with repeated measurements during spermatogenesis. Coke-oven workers (n=112) from a coke-oven plant served the PAH-exposed group, while administrators and security personnel (n=67) served the control. Routine semen parameters (concentration, motility, vitality, and morphology) were analyzed simultaneously; the assessment of sperm DNA integrity endpoints included DNA fragmentation, bulky DNA adducts, and 8-oxo-7,8-dihydro-2′-deoxyguanosine (8-oxo-dGuo). The degree of sperm DNA fragmentation was measured using the terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay and sperm chromatin structure assay (SCSA). The PAH-exposed group had a significant increase in bulky DNA adducts and 8-oxo-dGuo compared to the control subjects (Ps = 0.002 and 0.045, respectively). Coke oven workers' percentages of DNA fragmentation and denaturation from the PAH-exposed group were not significantly different from those of the control subjects (Ps = 0.232 and 0.245, respectively). Routine semen parameters and DNA integrity endpoints were not correlated. Concentrations of 8-oxo-dGuo were positively correlated with percentages of DNA fragmentation measured by both TUNEL and SCSA (Ps = 0.045 and 0.034, respectively). However, the concentrations of 8-oxo-dGuo and percentages of DNA fragmentation did not correlate with concentrations of bulky DNA adducts. In summary, coke oven workers with chronic exposure to PAHs experienced decreased sperm DNA integrity. Oxidative stress could contribute to the degree of DNA fragmentation. Bulky DNA adducts may be independent of the formation of DNA fragmentation and oxidative adducts in sperm. Monitoring sperm DNA integrity is recommended as a part of the process of assessing the impact of occupational and environmental toxins on

  20. Synthesis of DNA

    DOEpatents

    Mariella, Jr., Raymond P.

    2008-11-18

    A method of synthesizing a desired double-stranded DNA of a predetermined length and of a predetermined sequence. Preselected sequence segments that will complete the desired double-stranded DNA are determined. Preselected segment sequences of DNA that will be used to complete the desired double-stranded DNA are provided. The preselected segment sequences of DNA are assembled to produce the desired double-stranded DNA.

  1. DNA encoding a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-08-15

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  2. DNA systematics. Volume II

    SciTech Connect

    Dutta, S.K.

    1986-01-01

    This book discusses the following topics: PLANTS: PLANT DNA: Contents and Systematics. Repeated DNA Sequences and Polyploidy in Cereal Crops. Homology of Nonrepeated DNA Sequences in Phylogeny of Fungal Species. Chloropast DNA and Phylogenetic Relationships. rDNA: Evolution Over a Billion Years. 23S rRNA-derived Small Ribosomal RNAs: Their Structure and Evolution with Reference to Plant Phylogeny. Molecular Analysis of Plant DNA Genomes: Conserved and Diverged DNA Sequences. A Critical Review of Some Terminologies Used for Additional DNA in Plant Chromosomes and Index.

  3. Molecular DNA switches and DNA chips

    NASA Astrophysics Data System (ADS)

    Sabanayagam, Chandran R.; Berkey, Cristin; Lavi, Uri; Cantor, Charles R.; Smith, Cassandra L.

    1999-06-01

    We present an assay to detect single-nucleotide polymorphisms on a chip using molecular DNA switches and isothermal rolling- circle amplification. The basic principle behind the switch is an allele-specific oligonucleotide circularization, mediated by DNA ligase. A DNA switch is closed when perfect hybridization between the probe oligonucleotide and target DNA allows ligase to covalently circularize the probe. Mismatches around the ligation site prevent probe circularization, resulting in an open switch. DNA polymerase is then used to preferentially amplify the closed switches, via rolling-circle amplification. The stringency of the molecular switches yields 102 - 103 fold discrimination between matched and mismatched sequences.

  4. DNA Nanotechnology-- Architectures Designed with DNA

    NASA Astrophysics Data System (ADS)

    Han, Dongran

    As the genetic information storage vehicle, deoxyribonucleic acid (DNA) molecules are essential to all known living organisms and many viruses. It is amazing that such a large amount of information about how life develops can be stored in these tiny molecules. Countless scientists, especially some biologists, are trying to decipher the genetic information stored in these captivating molecules. Meanwhile, another group of researchers, nanotechnologists in particular, have discovered that the unique and concise structural features of DNA together with its information coding ability can be utilized for nano-construction efforts. This idea culminated in the birth of the field of DNA nanotechnology which is the main topic of this dissertation. The ability of rationally designed DNA strands to self-assemble into arbitrary nanostructures without external direction is the basis of this field. A series of novel design principles for DNA nanotechnology are presented here, from topological DNA nanostructures to complex and curved DNA nanostructures, from pure DNA nanostructures to hybrid RNA/DNA nanostructures. As one of the most important and pioneering fields in controlling the assembly of materials (both DNA and other materials) at the nanoscale, DNA nanotechnology is developing at a dramatic speed and as more and more construction approaches are invented, exciting advances will emerge in ways that we may or may not predict.

  5. DNA vaccines: a simple DNA sensing matter?

    PubMed

    Coban, Cevayir; Kobiyama, Kouji; Jounai, Nao; Tozuka, Miyuki; Ishii, Ken J

    2013-10-01

    Since the introduction of DNA vaccines two decades ago, this attractive strategy has been hampered by its low immunogenicity in humans. Studies conducted to improve the immunogenicity of DNA vaccines have shown that understanding the mechanism of action of DNA vaccines might be the key to successfully improving their immunogenicity. Our current understanding is that DNA vaccines induce innate and adaptive immune responses in two ways: (1) encoded protein (or polypeptide) antigen(s) by the DNA plasmid can be expressed in stromal cells (i.e., muscle cells) as well as DCs, where these antigens are processed and presented to naïve CD4 or CD8 T cells either by direct or cross presentation, respectively; and (2) the transfected DNA plasmid itself may bind to an un-identified cytosolic DNA sensor and activate the TBK1-STING pathway and the production of type I interferons (IFNs) which function as an adjuvant. Recent studies investigating double-stranded cytosolic DNA sensor(s) have highlighted new mechanisms in which cytosolic DNA may release secondary metabolites, which are in turn recognized by a novel DNA sensing machinery. Here, we discuss these new metabolites and the possibilities of translating this knowledge into improved immunogenicity for DNA vaccines.

  6. DNA Repair by Reversal of DNA Damage

    PubMed Central

    Yi, Chengqi; He, Chuan

    2013-01-01

    Endogenous and exogenous factors constantly challenge cellular DNA, generating cytotoxic and/or mutagenic DNA adducts. As a result, organisms have evolved different mechanisms to defend against the deleterious effects of DNA damage. Among these diverse repair pathways, direct DNA-repair systems provide cells with simple yet efficient solutions to reverse covalent DNA adducts. In this review, we focus on recent advances in the field of direct DNA repair, namely, photolyase-, alkyltransferase-, and dioxygenase-mediated repair processes. We present specific examples to describe new findings of known enzymes and appealing discoveries of new proteins. At the end of this article, we also briefly discuss the influence of direct DNA repair on other fields of biology and its implication on the discovery of new biology. PMID:23284047

  7. Quantitative DNA fiber mapping

    DOEpatents

    Gray, Joe W.; Weier, Heinz-Ulrich G.

    1998-01-01

    The present invention relates generally to the DNA mapping and sequencing technologies. In particular, the present invention provides enhanced methods and compositions for the physical mapping and positional cloning of genomic DNA. The present invention also provides a useful analytical technique to directly map cloned DNA sequences onto individual stretched DNA molecules.

  8. Poxvirus DNA Replication

    PubMed Central

    Moss, Bernard

    2013-01-01

    Poxviruses are large, enveloped viruses that replicate in the cytoplasm and encode proteins for DNA replication and gene expression. Hairpin ends link the two strands of the linear, double-stranded DNA genome. Viral proteins involved in DNA synthesis include a 117-kDa polymerase, a helicase–primase, a uracil DNA glycosylase, a processivity factor, a single-stranded DNA-binding protein, a protein kinase, and a DNA ligase. A viral FEN1 family protein participates in double-strand break repair. The DNA is replicated as long concatemers that are resolved by a viral Holliday junction endonuclease. PMID:23838441

  9. DNA Damage, DNA Repair, Aging, and Neurodegeneration.

    PubMed

    Maynard, Scott; Fang, Evandro Fei; Scheibye-Knudsen, Morten; Croteau, Deborah L; Bohr, Vilhelm A

    2015-09-18

    Aging in mammals is accompanied by a progressive atrophy of tissues and organs, and stochastic damage accumulation to the macromolecules DNA, RNA, proteins, and lipids. The sequence of the human genome represents our genetic blueprint, and accumulating evidence suggests that loss of genomic maintenance may causally contribute to aging. Distinct evidence for a role of imperfect DNA repair in aging is that several premature aging syndromes have underlying genetic DNA repair defects. Accumulation of DNA damage may be particularly prevalent in the central nervous system owing to the low DNA repair capacity in postmitotic brain tissue. It is generally believed that the cumulative effects of the deleterious changes that occur in aging, mostly after the reproductive phase, contribute to species-specific rates of aging. In addition to nuclear DNA damage contributions to aging, there is also abundant evidence for a causative link between mitochondrial DNA damage and the major phenotypes associated with aging. Understanding the mechanistic basis for the association of DNA damage and DNA repair with aging and age-related diseases, such as neurodegeneration, would give insight into contravening age-related diseases and promoting a healthy life span.

  10. Mammalian DNA helicase.

    PubMed Central

    Hübscher, U; Stalder, H P

    1985-01-01

    A forked DNA was constructed to serve as a substrate for DNA helicases. It contains features closely resembling a natural replication fork. The DNA was prepared in large amounts and was used to assay displacement activity during isolation from calf thymus DNA polymerases alpha holoenzyme. One form of DNA polymerase alpha holoenzyme is possibly involved leading strand replication at the replication fork and possesses DNA dependent ATPase activity (Ottiger, H.-P. and Hübscher, U. (1984) Proc. Natl. Acad. Sci. USA 81, 3993-3997). The enzyme can be separated from DNA polymerase alpha by velocity sedimentation in conditions of very low ionic strength and then be purified by chromatography on Sephacryl S-200 and ATP-agarose. At all stages of purification, DNA dependent ATPase and displacement activity profiles were virtually superimposable. The DNA dependent ATPase can displace a hybridized DNA fragment with a short single-stranded tail at its 3'hydroxyl end only in the presence of ATP, and this displacement relies on ATP hydrolysis. Furthermore, homogeneous single-stranded binding proteins from calf thymus as well as from other tissues cannot perform this displacement reaction. By all this token the DNA dependent ATPase appears to be a DNA helicase. It is suggested that this DNA helicase might act in concert with DNA polymerase alpha at the leading strand, possibly pushing the replication fork ahead of the polymerase. Images PMID:3162158

  11. DNA microarray technology. Introduction.

    PubMed

    Pollack, Jonathan R

    2009-01-01

    DNA microarray technology has revolutionized biological research by enabling genome-scale explorations. This chapter provides an overview of DNA microarray technology and its application to characterizing the physical genome, with a focus on cancer genomes. Specific areas discussed include investigations of DNA copy number alteration (and loss of heterozygosity), DNA methylation, DNA-protein (i.e., chromatin and transcription factor) interactions, DNA replication, and the integration of diverse genome-scale data types. Also provided is a perspective on recent advances and future directions in characterizing the physical genome.

  12. Structural Organization of DNA.

    ERIC Educational Resources Information Center

    Banfalvi, Gaspar

    1986-01-01

    Explains the structural organization of DNA by providing information on the primary, secondary, tertiary, and higher organization levels of the molecule. Also includes illustrations and descriptions of sign-inversion and rotating models for supercoiling of DNA. (ML)

  13. Unusual DNA structures

    SciTech Connect

    Wells, R.D.; Harvey, S.C.

    1988-01-01

    The contents of this book are: Unusual DNS Structures and the Probes Used for Their Detection; The Specificity of Single Strand Specific Endonucleases; Chromatin STructure and DNA Structure at the hsp 26 Locus of Drosophilia; Cruciform Extrusion in Supercoiled DNA-Mechanisms and Contextual Influence; Torsional Stress, Unusual DNA Structures, and Eukaryotic Gene Expression; DNA Sequence and Structure: Bending to Biology. Cruciform Transitions Assayed Using a Psoralen Cross-linking Method: Applications to Measurements of DNA Torisonal Tension; NMR-Distance Geometry Studies of Helical Errors and Sequence Dependent Conformations of DNA in Solution; Hyperreactivity of the B-Z Junctions Probed by Two Aromatic Chemical Carcinogens; Inherently Curved DNA and Its Structural Elements; and DNA Flexibility Under Control: The Juma Algorithm and its Application to BZ Junctions.

  14. DNA tagged microparticles

    DOEpatents

    Farquar, George Roy; Leif, Roald N; Wheeler, Elizabeth

    2015-05-05

    A simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the simulant.

  15. Modeling DNA Replication.

    ERIC Educational Resources Information Center

    Bennett, Joan

    1998-01-01

    Recommends the use of a model of DNA made out of Velcro to help students visualize the steps of DNA replication. Includes a materials list, construction directions, and details of the demonstration using the model parts. (DDR)

  16. Nanopores: Flossing with DNA

    NASA Astrophysics Data System (ADS)

    Kasianowicz, John J.

    2004-06-01

    Passing a DNA strand many times back-and-forth through a protein nanopore would enable the interaction between them to be studied more closely. This may now be possible, using a dumbbell-shaped DNA-polymer complex, which may lead to a more reliable analysis of DNA sequences using nanopores.

  17. Three-Dimensional DNA Nanostructures Assembled from DNA Star Motifs.

    PubMed

    Tian, Cheng; Zhang, Chuan

    2017-01-01

    Tile-based DNA self-assembly is a promising method in DNA nanotechnology and has produced a wide range of nanostructures by using a small set of unique DNA strands. DNA star motif, as one of DNA tiles, has been employed to assemble varieties of symmetric one-, two-, three-dimensional (1, 2, 3D) DNA nanostructures. Herein, we describe the design principles, assembly methods, and characterization methods of 3D DNA nanostructures assembled from the DNA star motifs.

  18. The Many Sides of DNA.

    ERIC Educational Resources Information Center

    Flannery, Maura C.

    1997-01-01

    Explores the meaning of DNA. Discusses histories of DNA, literature on DNA, the contributions of Max Delbruck and Barbara McClintock, life, views of control, current research, and the language of DNA. Contains 24 references. (JRH)

  19. DNA-Mediated Electrochemistry

    PubMed Central

    Gorodetsky, Alon A.; Buzzeo, Marisa C.

    2009-01-01

    The base pair stack of DNA has been demonstrated as a medium for long range charge transport chemistry both in solution and at DNA-modified surfaces. This chemistry is exquisitely sensitive to structural perturbations in the base pair stack as occur with lesions, single base mismatches, and protein binding. We have exploited this sensitivity for the development of reliable electrochemical assays based on DNA charge transport at self-assembled DNA monolayers. Here we discuss the characteristic features, applications, and advantages of DNA-mediated electrochemistry. PMID:18980370

  20. DNA Sequencing apparatus

    DOEpatents

    Tabor, Stanley; Richardson, Charles C.

    1992-01-01

    An automated DNA sequencing apparatus having a reactor for providing at least two series of DNA products formed from a single primer and a DNA strand, each DNA product of a series differing in molecular weight and having a chain terminating agent at one end; separating means for separating the DNA products to form a series bands, the intensity of substantially all nearby bands in a different series being different, band reading means for determining the position an This invention was made with government support including a grant from the U.S. Public Health Service, contract number AI-06045. The U.S. government has certain rights in the invention.

  1. Archaeal DNA replication.

    PubMed

    Kelman, Lori M; Kelman, Zvi

    2014-01-01

    DNA replication is essential for all life forms. Although the process is fundamentally conserved in the three domains of life, bioinformatic, biochemical, structural, and genetic studies have demonstrated that the process and the proteins involved in archaeal DNA replication are more similar to those in eukaryal DNA replication than in bacterial DNA replication, but have some archaeal-specific features. The archaeal replication system, however, is not monolithic, and there are some differences in the replication process between different species. In this review, the current knowledge of the mechanisms governing DNA replication in Archaea is summarized. The general features of the replication process as well as some of the differences are discussed.

  2. DNA Functionalization of Nanoparticles.

    PubMed

    Lu, Fang; Gang, Oleg

    2017-01-01

    DNA-nanoparticle conjugates are hybrid nanoscale objects that integrate different types of DNA molecules and inorganic nanoparticles with a typical architecture of a DNA shell around an inorganic core. Such incorporation provides particles with unique properties of DNA, addressability and recognition, but, at the same time, allows exploiting the properties of the particle's inorganic core. Thus, these hybrid nano-objects are advantageous for rational fabrication of functional materials and for biomedical applications. Here, we describe several established DNA functionalization procedures for different types of surface ligands and nanoparticle core materials.

  3. DNA structure and function.

    PubMed

    Travers, Andrew; Muskhelishvili, Georgi

    2015-06-01

    The proposal of a double-helical structure for DNA over 60 years ago provided an eminently satisfying explanation for the heritability of genetic information. But why is DNA, and not RNA, now the dominant biological information store? We argue that, in addition to its coding function, the ability of DNA, unlike RNA, to adopt a B-DNA structure confers advantages both for information accessibility and for packaging. The information encoded by DNA is both digital - the precise base specifying, for example, amino acid sequences - and analogue. The latter determines the sequence-dependent physicochemical properties of DNA, for example, its stiffness and susceptibility to strand separation. Most importantly, DNA chirality enables the formation of supercoiling under torsional stress. We review recent evidence suggesting that DNA supercoiling, particularly that generated by DNA translocases, is a major driver of gene regulation and patterns of chromosomal gene organization, and in its guise as a promoter of DNA packaging enables DNA to act as an energy store to facilitate the passage of translocating enzymes such as RNA polymerase.

  4. Supramolecular DNA assembly.

    PubMed

    McLaughlin, Christopher K; Hamblin, Graham D; Sleiman, Hanadi F

    2011-12-01

    The powerful self-assembly features of DNA make it a unique template to finely organize and control matter on the nanometre scale. While DNA alone offers a high degree of fidelity in its self-assembly, a new area of research termed 'supramolecular DNA assembly' has recently emerged. This field combines DNA building blocks with synthetic organic, inorganic and polymeric structures. It thus brings together the toolbox of supramolecular chemistry with the predictable and programmable nature of DNA. The result of this molecular partnership is a variety of hybrid architectures, that expand DNA assembly beyond the boundaries of Watson-Crick base pairing into new structural and functional properties. In this tutorial review we outline this emerging field of study, and describe recent research aiming to synergistically combine the properties inherent to DNA with those of a number of supramolecular scaffolds. This ultimately creates structures with numerous potential applications in materials science, catalysis and medicine.

  5. [DNA methylation and epigenetics].

    PubMed

    Vaniushin, B F

    2006-09-01

    In eukaryotic cells, nuclear DNA is subject to enzymatic methylation with the formation of 5-methylcytosine residues, mostly within the CG and CNG sequences. In plants and animals this DNA methylation is species-, tissue-, and organelle-specific. It changes (decreases) with age and is regulated by hormones. On the other hand, genome methylation can control hormonal signal. Replicative and post-replicative DNA methylation types are distinguished. They are mediated by multiple DNA methyltransferases with different site-specificity. Replication is accompanied by the appearance of hemimethylated DNA sites. Pronounced asymmetry of the DNA strand methylation disappears to the end of the cell cycle. A model of methylation-regulated DNA replication is proposed. DNA methylation controls all genetic processes in the cell (replication, transcription, DNA repair, recombination, and gene transposition). It is the mechanism of cell differentiation, gene discrimination and silencing. In animals, suppression of DNA methylation stops development (embryogenesis), switches on apoptosis, and is usually lethal. Disruption of DNA methylation pattern results in the malignant cell transformation and serves as one of the early diagnostic features of carcinogenesis. In malignant cell the pattern of DNA methylation, as well as the set of DNA methyltransferase activities, differs from that in normal cell. In plants inhibition of DNA methylation is accompanied by the induction of seed storage and florescence genes. In eukaryotes one and the same gene can be simultaneously methylated both at cytosine and adenine residues. It can be thus suggested, that the plant cell contains at least two different, and probably, interdependent systems of DNA methylation. The first eukaryotic adenine DNA methyltransferase was isolated from plants. This enzyme methylates DNA with the formation of N6-methyladenine residues in the sequence TGATCA (TGATCA-->TGm6ATCA). Plants possess AdoMet-dependent endonucleases

  6. End-to-side neurorrhaphy as a salvage procedure for irreparable nerve injuries. Technical note.

    PubMed

    Oğün, Tunç C; Ozdemir, Mustafa; Senaran, Hakan; Ustün, Mehmet E

    2003-07-01

    After a few reports on end-to-side nerve repair at the beginning of the last century, the technique was put aside until its recent reintroduction. The authors present their results in three patients with median nerve defects that were between 15 and 22 cm long and treated using end-to-side median-to-ulnar neurorrhaphy through an epineurial window. The follow-up times were between 32 and 38 months. Sensory evaluation involved superficial touch, pinprick, and two-point discrimination tests. Motor evaluation was completed by assessing the presence of opposition and by palpating the abductor pollicis brevis muscle. Sensory recovery was observed in all patients in the median nerve dermatome, and motor recovery was absent, except in Case 1. End-to-side nerve repair can be a viable alternative to nerve grafting in patients with long gaps between the ends of the injured nerve.

  7. Radial Head and Neck Allograft for Comminute Irreparable Fracture-Dislocations of the Elbow.

    PubMed

    Bisicchia, Salvatore; Tudisco, Cosimo

    2016-11-01

    Fracture-dislocations of the elbow can be difficult to treat, with unsatisfactory results in some cases. In general, it is preferable to preserve the fractured radial head when possible, but some patients present a unique treatment challenge because of extremely comminuted fractures and bone loss. In these cases, the only options available are radial head prosthesis or allograft. The authors present a case of a 45-year-old man with a fracture-dislocation of the left elbow that was treated with an allograft of the radial head and neck because of extreme comminution of the fracture. There have been a few reports about osteochondral allograft transplantation of the radial head, and they all included traumatic or posttraumatic cases treated with a frozen allograft. To the best of the authors' knowledge, this is the first report on the use of osteochondral allograft in the acute setting for the treatment of a comminuted fracture of the radius involving the whole head and neck. The clinical results were satisfactory at the final follow-up, although mild degenerative changes were present, the screws were coming loose, and the radial head had a slight valgus deformity. Radial head allograft can be an option in selected cases of acute fractures with severe comminution and bone loss that are not amenable to a stable internal fixation; for the young and active patient, who is not the best candidate for radial head resection; or in cases in which radial head arthroplasty is not feasible because of severe bone loss. [Orthopedics. 2016; 39(6):e1205-e1208.].

  8. Forensic DNA analysis.

    PubMed

    McDonald, Jessica; Lehman, Donald C

    2012-01-01

    Before the routine use of DNA profiling, blood typing was an important forensic tool. However, blood typing was not very discriminating. For example, roughly 30% of the United States population has type A-positive blood. Therefore, if A-positive blood were found at a crime scene, it could have come from 30% of the population. DNA profiling has a much better ability for discrimination. Forensic laboratories no longer routinely determine blood type. If blood is found at a crime scene, DNA profiling is performed. From Jeffrey's discovery of DNA fingerprinting to the development of PCR of STRs to the formation of DNA databases, our knowledge of DNA and DNA profiling have expanded greatly. Also, the applications for which we use DNA profiling have increased. DNA profiling is not just used for criminal case work, but it has expanded to encompass paternity testing, disaster victim identification, monitoring bone marrow transplants, detecting fetal cells in a mother's blood, tracing human history, and a multitude of other areas. The future of DNA profiling looks expansive with the development of newer instrumentation and techniques.

  9. Enzymatic initiation of DNA synthesis by yeast DNA polymerases.

    PubMed Central

    Plevani, P; Chang, L M

    1977-01-01

    Partially purified yeast RNA polymerases (RNA nucleotidyltransferases) initiate DNA synthesis by yeast DNA polymerase (DNA nucleotidyltransferase) I and to a lesser extent yeast DNA polymerase II in the replication of single-stranded DNA. The enzymatic initiation of DNA synthesis on phage fd DNA template occurs with dNTPs alone and is further stimulated by the presence of rNTPs in DNA polymerase I reactions. The presence of rNTPs has no effect on the RNA polymerase initiation of the DNA polymerase II reaction. RNA polymerases I and III are more efficient in initiation of DNA synthesis than RNA polymerase II. Analyses of the products of fd DNA replication show noncovalent linkage between the newly synthesized DNA and the template DNA, and covalent linkage between the newly synthesized RNA and DNA. PMID:325562

  10. Functional DNA Nanomaterials

    NASA Astrophysics Data System (ADS)

    Zhao, Zhao

    The discovery of DNA helical structure opened the door of modern molecular biology. Ned Seeman utilized DNA as building block to construct different nanoscale materials, and introduced a new field, know as DNA nanotechnology. After several decades of development, different DNA structures had been created, with different dimension, different morphology and even with complex curvatures. In addition, after construction of enough amounts DNA structure candidates, DNA structure template, with excellent spatial addressability, had been used to direct the assembly of different nanomaterials, including nanoparticles and proteins, to produce different functional nanomaterials. However there are still many challenges to fabricate functional DNA nanostructures. The first difficulty is that the present finite sized template dimension is still very small, usually smaller than 100nm, which will limit the application for large amount of nanomaterials assembly or large sized nanomaterials assembly. Here we tried to solve this problem through developing a new method, superorigami, to construct finite sized DNA structure with much larger dimension, which can be as large as 500nm. The second problem will be explored the ability of DNA structure to assemble inorganic nanomaterials for novel photonic or electronic properties. Here we tried to utilize DNA Origami method to assemble AuNPs with controlled 3D spacial position for possible chiral photonic complex. We also tried to assemble SWNT with discrete length for possible field effect transistor device. In addition, we tried to mimic in vivo compartment with DNA structure to study internalized enzyme behavior. From our results, constructed DNA cage origami can protect encapsulated enzyme from degradation, and internalized enzyme activity can be boosted for up to 10 folds. In summary, DNA structure can serve as an ideal template for construction of functional nanomaterials with lots of possibilities to be explored.

  11. The DNA-polymerase-X family: controllers of DNA quality?

    PubMed

    Ramadan, Kristijan; Shevelev, Igor; Hübscher, Ulrich

    2004-12-01

    Synthesis of the genetic material of the cell is achieved by a large number of DNA polymerases. Besides replicating the genome, they are involved in DNA-repair processes. Recent studies have indicated that certain DNA-polymerase-X-family members can synthesize unusual DNA structures, and we propose that these DNA structures might serve as 'flag wavers' for the induction of DNA-repair and/or DNA-damage-checkpoint pathways.

  12. DNA supercoiling during transcription

    PubMed Central

    Ma, Jie; Wang, Michelle D.

    2017-01-01

    The twin-supercoiled-domain model describes how transcription can drive DNA supercoiling, and how DNA supercoiling, in turn plays an important role in regulating gene transcription. In vivo and in vitro experiments have disclosed many details of the complex interactions in this relationship, and recently new insights have been gained with the help of genome-wide DNA supercoiling mapping techniques and single molecule methods. This review summarizes the general mechanisms of the interplay between DNA supercoiling and transcription, considers the biological implications, and focuses on recent important discoveries and technical advances in this field. We highlight the significant impact of DNA supercoiling in transcription, but also more broadly in all processes operating on DNA.

  13. Rifampin and vaccinia DNA.

    PubMed Central

    Esteban, M

    1977-01-01

    The effect of rifampin on the replication of vaccinia DNA was studied in mouse L cells by a cytochemical techinque and by alkaline sucrose sedimentation analysis of newly synthesized viral DNA molecules. By the use of a fluorescent DNA-binding compound (Hoechst 33258), the sequential appearance, size, and location of the viral "factories" in rifampin-treated, virus-infected cells were found to be indistinguishable from those observed in untreated, infected cells. Sedimentation analysis in alkaline scurose gradients of the viral DNA molecules labeled in pulse-chase experiments showed that formation of small fragments, elongation into "intermediate"-sized molecules, and maturation into full-length viral DNA and, finally, into cross-linked viral DNA molecules occurred in the absence or presence of rifampin. The results support the view that the primary effect of the drug is related to assembly or morphogenesis. Images PMID:833950

  14. Electrocatalysis in DNA Sensors

    PubMed Central

    Furst, Ariel; Hill, Michael G.; Barton, Jacqueline K.

    2014-01-01

    Electrocatalysis is often thought of solely in the inorganic realm, most often applied to energy conversion in fuel cells. However, the ever-growing field of bioelectrocatalysis has made great strides in advancing technology for both biofuel cells as well as biological detection platforms. Within the context of bioelectrocatalytic detection systems, DNA-based platforms are especially prevalent. One subset of these platforms, the one we have developed, takes advantage of the inherent charge transport properties of DNA. Electrocatalysis coupled with DNA-mediated charge transport has enabled specific and sensitive detection of lesions, mismatches and DNA-binding proteins. Even greater signal amplification from these platforms is now being achieved through the incorporation of a secondary electrode to the platform both for patterning DNA arrays and for detection. Here, we describe the evolution of this new DNA sensor technology. PMID:25435647

  15. DNA profiles from fingermarks.

    PubMed

    Templeton, Jennifer E L; Linacre, Adrian

    2014-11-01

    Criminal investigations would be considerably improved if DNA profiles could be routinely generated from single fingermarks. Here we report a direct DNA profiling method that was able to generate interpretable profiles from 71% of 170 fingermarks. The data are based on fingermarks from all 5 digits of 34 individuals. DNA was obtained from the fingermarks using a swab moistened with Triton-X, and the fibers were added directly to one of two commercial DNA profiling kits. All profiles were obtained without increasing the number of amplification cycles; therefore, our method is ideally suited for adoption by the forensic science community. We indicate the use of the technique in a criminal case in which a DNA profile was generated from a fingermark on tape that was wrapped around a drug seizure. Our direct DNA profiling approach is rapid and able to generate profiles from touched items when current forensic practices have little chance of success.

  16. Detection and quantitation of single nucleotide polymorphisms, DNA sequence variations, DNA mutations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    DNA mutation binding proteins alone and as chimeric proteins with nucleases are used with solid supports to detect DNA sequence variations, DNA mutations and single nucleotide polymorphisms. The solid supports may be flow cytometry beads, DNA chips, glass slides or DNA dips sticks. DNA molecules are coupled to solid supports to form DNA-support complexes. Labeled DNA is used with unlabeled DNA mutation binding proteins such at TthMutS to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by binding which gives an increase in signal. Unlabeled DNA is utilized with labeled chimeras to detect DNA sequence variations, DNA mutations and single nucleotide length polymorphisms by nuclease activity of the chimera which gives a decrease in signal.

  17. Disentangling DNA molecules.

    PubMed

    Vologodskii, Alexander

    2016-09-01

    The widespread circular form of DNA molecules inside cells creates very serious topological problems during replication. Due to the helical structure of the double helix the parental strands of circular DNA form a link of very high order, and yet they have to be unlinked before the cell division. DNA topoisomerases, the enzymes that catalyze passing of one DNA segment through another, solve this problem in principle. However, it is very difficult to remove all entanglements between the replicated DNA molecules due to huge length of DNA comparing to the cell size. One strategy that nature uses to overcome this problem is to create the topoisomerases that can dramatically reduce the fraction of linked circular DNA molecules relative to the corresponding fraction at thermodynamic equilibrium. This striking property of the enzymes means that the enzymes that interact with DNA only locally can access their topology, a global property of circular DNA molecules. This review considers the experimental studies of the phenomenon and analyzes the theoretical models that have been suggested in attempts to explain it. We describe here how various models of enzyme action can be investigated computationally. There is no doubt at the moment that we understand basic principles governing enzyme action. Still, there are essential quantitative discrepancies between the experimental data and the theoretical predictions. We consider how these discrepancies can be overcome.

  18. Phytoplasma plasmid DNA extraction.

    PubMed

    Andersen, Mark T; Liefting, Lia W

    2013-01-01

    Phytoplasma plasmids have generally been detected from DNA extracted from plants and insects using methods designed for the purification of total phytoplasma DNA. Methods include extraction from tissues that are high in phytoplasma titre, such as the phloem of plants, with the use of CsCl-bisbenzimide gradients that exploit the low G+C content of phytoplasma DNA. Many of the methods employed for phytoplasma purification have been described elsewhere in this book. Here we describe in detail two methods that are specifically aimed at isolating plasmid DNA.

  19. Multiprotein DNA Looping

    NASA Astrophysics Data System (ADS)

    Vilar, Jose M. G.; Saiz, Leonor

    2006-06-01

    DNA looping plays a fundamental role in a wide variety of biological processes, providing the backbone for long range interactions on DNA. Here we develop the first model for DNA looping by an arbitrarily large number of proteins and solve it analytically in the case of identical binding. We uncover a switchlike transition between looped and unlooped phases and identify the key parameters that control this transition. Our results establish the basis for the quantitative understanding of fundamental cellular processes like DNA recombination, gene silencing, and telomere maintenance.

  20. Forensic DNA testing.

    PubMed

    Butler, John M

    2011-12-01

    Forensic DNA testing has a number of applications, including parentage testing, identifying human remains from natural or man-made disasters or terrorist attacks, and solving crimes. This article provides background information followed by an overview of the process of forensic DNA testing, including sample collection, DNA extraction, PCR amplification, short tandem repeat (STR) allele separation and sizing, typing and profile interpretation, statistical analysis, and quality assurance. The article concludes with discussions of possible problems with the data and other forensic DNA testing techniques.

  1. Disentangling DNA molecules

    NASA Astrophysics Data System (ADS)

    Vologodskii, Alexander

    2016-09-01

    The widespread circular form of DNA molecules inside cells creates very serious topological problems during replication. Due to the helical structure of the double helix the parental strands of circular DNA form a link of very high order, and yet they have to be unlinked before the cell division. DNA topoisomerases, the enzymes that catalyze passing of one DNA segment through another, solve this problem in principle. However, it is very difficult to remove all entanglements between the replicated DNA molecules due to huge length of DNA comparing to the cell size. One strategy that nature uses to overcome this problem is to create the topoisomerases that can dramatically reduce the fraction of linked circular DNA molecules relative to the corresponding fraction at thermodynamic equilibrium. This striking property of the enzymes means that the enzymes that interact with DNA only locally can access their topology, a global property of circular DNA molecules. This review considers the experimental studies of the phenomenon and analyzes the theoretical models that have been suggested in attempts to explain it. We describe here how various models of enzyme action can be investigated computationally. There is no doubt at the moment that we understand basic principles governing enzyme action. Still, there are essential quantitative discrepancies between the experimental data and the theoretical predictions. We consider how these discrepancies can be overcome.

  2. DNA ELECTROPHORESIS AT SURFACES

    SciTech Connect

    RAFAILOVICH, MIRIAM; SOKOLOV, JONATHAN; GERSAPPE, DILIP

    2003-09-01

    During this year we performed two major projects: I. We developed a detailed theoretical model which complements our experiments on surface DNA electrophoresis. We found that it was possible to enhance the separation of DNA chains by imposing a chemical nanoscale pattern on the surface. This approach utilized the surface interaction effect of the DNA chains with the substrate and is a refinement to our previous method in which DNA chains were separated on homogeneous flat surfaces. By introducing the nano-patterns on the surface, the conformational changes of DNA chains of different lengths can be amplified, which results in the different friction strengths with the substrate surface. Our results also show that, when compared to the DNA electrophoresis performed on homogeneous flat surfaces, nanopatterned surfaces offer a larger window in choosing different surface interactions to achieve separation. II. In collaboration with a large international manufacturer of skin care products we also embarked on a project involving photo toxicity of titanium dioxide nanoparticles, which are a key ingredient in sunscreen and cosmetic lotions. The results clearly implicated the nanoparticles in catalyzing damage to chromosomal DNA. We then used this knowledge to develop a polymer/anti-oxidant coating which prevented the photocatalytic reaction on DNA while still retaining the UV absorptive properties of the nanoparticles. The standard gel electrophoresis was not sufficient in determining the extent of the DNA damage. The conclusions of this study were based predominantly on analysis obtained with the surface electrophoresis method.

  3. Function of transcription factors at DNA lesions in DNA repair.

    PubMed

    Malewicz, Michal; Perlmann, Thomas

    2014-11-15

    Cellular systems for DNA repair ensure prompt removal of DNA lesions that threaten the genomic stability of the cell. Transcription factors (TFs) have long been known to facilitate DNA repair via transcriptional regulation of specific target genes encoding key DNA repair proteins. However, recent findings identified TFs as DNA repair components acting directly at the DNA lesions in a transcription-independent fashion. Together this recent progress is consistent with the hypothesis that TFs have acquired the ability to localize DNA lesions and function by facilitating chromatin remodeling at sites of damaged DNA. Here we review these recent findings and discuss how TFs may function in DNA repair.

  4. Oxidative DNA modifications.

    PubMed

    Poulsen, Henrik E

    2005-07-01

    Oxidative DNA modifications are frequent in mammalian DNA and have been suggested an important mechanism in carcinogenesis, diabetes and ageing. The foundations for this suggestion are: Evidence for the importance of oxidative DNA modifications in cancer development is: high levels of oxidative lesions in cancer tissue; highly conserved and specific DNA repair systems targeting oxidative lesions; high levels of oxidative DNA lesions in oxidative DNA repair knock-out animals; defective repair of oxidative lesions in cancer-prone progeria syndromes; reduced cancer incidence in populations with high dietary antioxidant intake; and increased oxidative stress to DNA in tobacco smokers. Conflicting evidence for a relation between oxidative stress to DNA and cancer is: disagreement about the true levels and occurrence of the oxidative lesions in vivo; failure to identify the localization of oxidative lesions in important genes, e.g. tumor suppressor and oncogenes; lack of evidence that the oxidative lesions induce mutations in vivo; no cancer development in animals knocked-out for specific DNA repair enzymes in spite of high tissue levels of oxidative lesions; and unchanged cancer rates after antioxidant interventions in large clinical controlled and randomized trials. The rate of DNA oxidation has been estimated from urinary excretion of repair products and it is evident that if these lesions were not repaired, a large part of DNA would be oxidized to a degree not compatible with living. The methodologies by which oxidative DNA modifications are measured cover a wide and different range, advantages and disadvantages will be presented. One particular problem is artificial oxidation, and methods to prevent such artifacts will be presented together with results from a large interlaboratory standardization program. The methodology by which the lesions can be measured is complicated and prone to artifacts during DNA isolation, digestion, derivatization and maybe even during

  5. Many Ways to Loop DNA

    PubMed Central

    Griffith, Jack D.

    2013-01-01

    In the 1960s, I developed methods for directly visualizing DNA and DNA-protein complexes using an electron microscope. This made it possible to examine the shape of DNA and to visualize proteins as they fold and loop DNA. Early applications included the first visualization of true nucleosomes and linkers and the demonstration that repeating tracts of adenines can cause a curvature in DNA. The binding of DNA repair proteins, including p53 and BRCA2, has been visualized at three- and four-way junctions in DNA. The trombone model of DNA replication was directly verified, and the looping of DNA at telomeres was discovered. PMID:24005675

  6. Curating DNA specimens

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA data are used in a variety of ethnobiological disciplines including archaeology, conservation, ecology, medicinal plants and natural products research, taxonomy and systematics, crop evolution and domestication, and genetic diversity. It frequently is convenient to store and share DNA among coop...

  7. Human Mitochondrial DNA Replication

    PubMed Central

    Holt, Ian J.; Reyes, Aurelio

    2012-01-01

    Elucidation of the process of DNA replication in mitochondria is in its infancy. For many years, maintenance of the mitochondrial genome was regarded as greatly simplified compared to the nucleus. Mammalian mitochondria were reported to lack all DNA repair systems, to eschew DNA recombination, and to possess but a single DNA polymerase, polymerase γ. Polγ was said to replicate mitochondrial DNA exclusively via one mechanism, involving only two priming events and a handful of proteins. In this “strand-displacement model,” leading strand DNA synthesis begins at a specific site and advances approximately two-thirds of the way around the molecule before DNA synthesis is initiated on the “lagging” strand. Although the displaced strand was long-held to be coated with protein, RNA has more recently been proposed in its place. Furthermore, mitochondrial DNA molecules with all the features of products of conventional bidirectional replication have been documented, suggesting that the process and regulation of replication in mitochondria is complex, as befits a genome that is a core factor in human health and longevity. PMID:23143808

  8. Behavior of supercoiled DNA.

    PubMed Central

    Strick, T R; Allemand, J F; Bensimon, D; Croquette, V

    1998-01-01

    We study DNA supercoiling in a quantitative fashion by micromanipulating single linear DNA molecules with a magnetic field gradient. By anchoring one end of the DNA to multiple sites on a magnetic bead and the other end to multiple sites on a glass surface, we were able to exert torsional control on the DNA. A rotating magnetic field was used to induce rotation of the magnetic bead, and reversibly over- and underwind the molecule. The magnetic field was also used to increase or decrease the stretching force exerted by the magnetic bead on the DNA. The molecule's degree of supercoiling could therefore be quantitatively controlled and monitored, and tethered-particle motion analysis allowed us to measure the stretching force acting on the DNA. Experimental results indicate that this is a very powerful technique for measuring forces at the picoscale. We studied the effect of stretching forces ranging from 0.01 pN to 100 pN on supercoiled DNA (-0.1 < sigma < 0.2) in a variety of ionic conditions. Other effects, such as stretching-relaxing hysteresis and the braiding of two DNA molecules, are discussed. PMID:9545060

  9. Characterization of muntjac DNA

    SciTech Connect

    Davis, R.C.

    1981-05-27

    Sister chromatid exchange (SCE) in muntjac chromosomes is generally proportional to the chromosomal DNA content, but the SCE frequency is reduced in the heterochromatic neck region of the X chromosome. The physical properties of muntjac DNA and the kinetics of repair of UV damage in muntjac heterochromatin and euchromatin were examined and compared with the distribution of sister chromatid exchange.

  10. Routine DNA testing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Routine DNA testing. It’s done once you’ve Marker-Assisted Breeding Pipelined promising Qantitative Trait Loci within your own breeding program and thereby established the performance-predictive power of each DNA test for your germplasm under your conditions. By then you are ready to screen your par...

  11. DNA-cell conjugates

    DOEpatents

    Hsiao, Shih-Chia; Francis, Matthew B.; Bertozzi, Carolyn; Mathies, Richard; Chandra, Ravi; Douglas, Erik; Twite, Amy; Toriello, Nicholas; Onoe, Hiroaki

    2016-05-03

    The present invention provides conjugates of DNA and cells by linking the DNA to a native functional group on the cell surface. The cells can be without cell walls or can have cell walls. The modified cells can be linked to a substrate surface and used in assay or bioreactors.

  12. Stool DNA Test

    MedlinePlus

    ... result. A test is considered negative if DNA markers common to colon cancer or precancerous polyps and signs of blood are ... result. A test is considered positive if DNA markers common to colon cancer or precancerous polyps or signs of blood are ...

  13. Modeling DNA Replication Intermediates

    SciTech Connect

    Broyde, S.; Roy, D.; Shapiro, R.

    1997-06-01

    While there is now available a great deal of information on double stranded DNA from X-ray crystallography, high resolution NMR and computer modeling, very little is known about structures that are representative of the DNA core of replication intermediates. DNA replication occurs at a single strand/double strand junction and bulged out intermediates near the junction can lead to frameshift mutations. The single stranded domains are particularly challenging. Our interest is focused on strategies for modeling the DNA of these types of replication intermediates. Modeling such structures presents special problems in addressing the multiple minimum problem and in treating the electrostatic component of the force field. We are testing a number of search strategies for locating low energy structures of these types and we are also investigating two different distance dependent dielectric functions in the coulombic term of the force field. We are studying both unmodified DNA and DNA damaged by aromatic amines, carcinogens present in the environment in tobacco smoke, barbecued meats and automobile exhaust. The nature of the structure adopted by the carcinogen modified DNA at the replication fork plays a key role in determining whether the carcinogen will cause a mutation during replication that can initiate the carcinogenic process. In the present work results are presented for unmodified DNA.

  14. Recombinant DNA for Teachers.

    ERIC Educational Resources Information Center

    Duvall, James G., III

    1992-01-01

    A science teacher describes his experience at a workshop to learn to teach the Cold Spring Harbor DNA Science Laboratory Protocols. These protocols lead students through processes for taking E. coli cells and transforming them into a new antibiotic resistant strain. The workshop featured discussions of the role of DNA recombinant technology in…

  15. DNA replication in thermophiles.

    PubMed

    Majerník, A I; Jenkinson, E R; Chong, J P J

    2004-04-01

    DNA replication enzymes in the thermophilic Archaea have previously attracted attention due to their obvious use in methods such as PCR. The proofreading ability of the Pyrococcus furiosus DNA polymerase has resulted in a commercially successful product (Pfu polymerase). One of the many notable features of the Archaea is the fact that their DNA processing enzymes appear on the whole to be more like those found in eukaryotes than bacteria. These proteins also appear to be simpler versions of those found in eukaryotes. For these reasons, archaeal organisms make potentially interesting model systems to explore the molecular mechanisms of processes such as DNA replication, repair and recombination. Why archaeal DNA-manipulation systems were adopted over bacterial systems by eukaryotic cells remains a most interesting question that we suggest may be linked to thermophily.

  16. DNA supercoiling and its role in DNA decatenation and unknotting

    PubMed Central

    Witz, Guillaume; Stasiak, Andrzej

    2010-01-01

    Chromosomal and plasmid DNA molecules in bacterial cells are maintained under torsional tension and are therefore supercoiled. With the exception of extreme thermophiles, supercoiling has a negative sign, which means that the torsional tension diminishes the DNA helicity and facilitates strand separation. In consequence, negative supercoiling aids such processes as DNA replication or transcription that require global- or local-strand separation. In extreme thermophiles, DNA is positively supercoiled which protects it from thermal denaturation. While the role of DNA supercoiling connected to the control of DNA stability, is thoroughly researched and subject of many reviews, a less known role of DNA supercoiling emerges and consists of aiding DNA topoisomerases in DNA decatenation and unknotting. Although DNA catenanes are natural intermediates in the process of DNA replication of circular DNA molecules, it is necessary that they become very efficiently decatenated, as otherwise the segregation of freshly replicated DNA molecules would be blocked. DNA knots arise as by-products of topoisomerase-mediated intramolecular passages that are needed to facilitate general DNA metabolism, including DNA replication, transcription or recombination. The formed knots are, however, very harmful for cells if not removed efficiently. Here, we overview the role of DNA supercoiling in DNA unknotting and decatenation. PMID:20026582

  17. Simple & Safe Genomic DNA Isolation.

    ERIC Educational Resources Information Center

    Moss, Robert; Solomon, Sondra

    1991-01-01

    A procedure for purifying DNA using either bacteria or rat liver is presented. Directions for doing a qualitative DNA assay using diphenylamine and a quantitative DNA assay using spectroscopy are included. (KR)

  18. Studying DNA in the Classroom.

    ERIC Educational Resources Information Center

    Zarins, Silja

    1993-01-01

    Outlines a workshop for teachers that illustrates a method of extracting DNA and provides instructions on how to do some simple work with DNA without sophisticated and expensive equipment. Provides details on viscosity studies and breaking DNA molecules. (DDR)

  19. DNA Based Molecular Scale Nanofabrication

    DTIC Science & Technology

    2015-12-04

    water adsorption on DNA origami template and its impact on DNA-mediated chemical reactions. We also extended the concept of DNA-mediated reaction to...other nanoscale templates, (b) Studied the thermal and chemical stability of DNA origami template. The result shows that the DNA nanostructures can be...potentially used in very harsh chemical environments, (c) Studied the effect of DNA origami template on the growth of self-assembled monolayer (SAM

  20. DNA UVB dosimeters.

    PubMed

    Regan, J D; Yoshida, H

    1995-11-01

    DNA can be used to establish and monitor solar UVB dose. Since the principal molecular site of UVB damage in living organisms is DNA, it is logical to quantitate biologically effective solar UVB in DNA dosimeters. In addition to their particular sensitivity to UVB, DNA dosimeters have the advantage of a 2 pi geometry for collecting diffuse UVB radiation from all vectors, low cost, small size and portability, and no moving parts. Both molecular (cyclobutane pyrimidine dimers) and biological (bacteriophage plaques) dosimeters can be quantitated as endpoints to yield the total dose. DNA dosimeters integrate the absorbed energy of all UVB wavelengths (290-320 nm), are highly sensitive to the differential biological effectiveness of these wavelengths, and also integrate over time in hours, days or weeks of exposure. Our experiments have focused on the demonstration of DNA solar dosimeters in the ocean at various depths, the application of the dosimeters to the terrestrial monitoring of solar UVB under various conditions, and the development of a mini-dosimeter which uses nanograms of DNA and is assayed by polymerase chain reaction.

  1. DNA Import into Mitochondria.

    PubMed

    Konstantinov, Yu M; Dietrich, A; Weber-Lotfi, F; Ibrahim, N; Klimenko, E S; Tarasenko, V I; Bolotova, T A; Koulintchenko, M V

    2016-10-01

    In recent decades, it has become evident that the condition for normal functioning of mitochondria in higher eukaryotes is the presence of membrane transport systems of macromolecules (proteins and nucleic acids). Natural competence of the mitochondria in plants, animals, and yeasts to actively uptake DNA may be directly related to horizontal gene transfer into these organelles occurring at much higher rate compared to the nuclear and chloroplast genomes. However, in contrast with import of proteins and tRNAs, little is known about the biological role and molecular mechanism underlying import of DNA into eukaryotic mitochondria. In this review, we discuss current state of investigations in this area, particularly specificity of DNA import into mitochondria and its features in plants, animals, and yeasts; a tentative mechanism of DNA import across the mitochondrial outer and inner membranes; experimental data evidencing several existing, but not yet fully understood mechanisms of DNA transfer into mitochondria. Currently available data regarding transport of informational macromolecules (DNA, RNA, and proteins) into the mitochondria do not rule out that the mechanism of protein and tRNA import as well as tRNA and DNA import into the mitochondria may partially overlap.

  2. Quantitive DNA Fiber Mapping

    SciTech Connect

    Lu, Chun-Mei; Wang, Mei; Greulich-Bode, Karin M.; Weier, Jingly F.; Weier, Heinz-Ulli G.

    2008-01-28

    Several hybridization-based methods used to delineate single copy or repeated DNA sequences in larger genomic intervals take advantage of the increased resolution and sensitivity of free chromatin, i.e., chromatin released from interphase cell nuclei. Quantitative DNA fiber mapping (QDFM) differs from the majority of these methods in that it applies FISH to purified, clonal DNA molecules which have been bound with at least one end to a solid substrate. The DNA molecules are then stretched by the action of a receding meniscus at the water-air interface resulting in DNA molecules stretched homogeneously to about 2.3 kb/{micro}m. When non-isotopically, multicolor-labeled probes are hybridized to these stretched DNA fibers, their respective binding sites are visualized in the fluorescence microscope, their relative distance can be measured and converted into kilobase pairs (kb). The QDFM technique has found useful applications ranging from the detection and delineation of deletions or overlap between linked clones to the construction of high-resolution physical maps to studies of stalled DNA replication and transcription.

  3. DNA-PK assay

    DOEpatents

    Anderson, Carl W.; Connelly, Margery A.

    2004-10-12

    The present invention provides a method for detecting DNA-activated protein kinase (DNA-PK) activity in a biological sample. The method includes contacting a biological sample with a detectably-labeled phosphate donor and a synthetic peptide substrate defined by the following features to provide specific recognition and phosphorylation by DNA-PK: (1) a phosphate-accepting amino acid pair which may include serine-glutamine (Ser-Gln) (SQ), threonine-glutamine (Thr-Gln) (TQ), glutamine-serine (Gln-Ser) (QS), or glutamine-threonine (Gln-Thr) (QT); (2) enhancer amino acids which may include glutamic acid or glutamine immediately adjacent at the amino- or carboxyl- side of the amino acid pair and forming an amino acid pair-enhancer unit; (3) a first spacer sequence at the amino terminus of the amino acid pair-enhancer unit; (4) a second spacer sequence at the carboxyl terminus of the amino acid pair-enhancer unit, which spacer sequences may include any combination of amino acids that does not provide a phosphorylation site consensus sequence motif; and, (5) a tag moiety, which may be an amino acid sequence or another chemical entity that permits separating the synthetic peptide from the phosphate donor. A compostion and a kit for the detection of DNA-PK activity are also provided. Methods for detecting DNA, protein phosphatases and substances that alter the activity of DNA-PK are also provided. The present invention also provides a method of monitoring protein kinase and DNA-PK activity in living cells. -A composition and a kit for monitoring protein kinase activity in vitro and a composition and a kit for monitoring DNA-PK activities in living cells are also provided. A method for identifying agents that alter protein kinase activity in vitro and a method for identifying agents that alter DNA-PK activity in living cells are also provided.

  4. Chimeric proteins for detection and quantitation of DNA mutations, DNA sequence variations, DNA damage and DNA mismatches

    DOEpatents

    McCutchen-Maloney, Sandra L.

    2002-01-01

    Chimeric proteins having both DNA mutation binding activity and nuclease activity are synthesized by recombinant technology. The proteins are of the general formula A-L-B and B-L-A where A is a peptide having DNA mutation binding activity, L is a linker and B is a peptide having nuclease activity. The chimeric proteins are useful for detection and identification of DNA sequence variations including DNA mutations (including DNA damage and mismatches) by binding to the DNA mutation and cutting the DNA once the DNA mutation is detected.

  5. Plasmid DNA manufacturing technology.

    PubMed

    Carnes, Aaron E; Williams, James A

    2007-01-01

    Today, plasmid DNA is becoming increasingly important as the next generation of biotechnology products (gene medicines and DNA vaccines) make their way into clinical trials, and eventually into the pharmaceutical marketplace. This review summarizes recent patents and patent applications relating to plasmid manufacturing, in the context of a comprehensive description of the plasmid manufacturing intellectual property landscape. Strategies for plasmid manufacturers to develop or in-license key plasmid manufacturing technologies are described with the endpoint of efficiently producing kg quantities of plasmid DNA of a quality that meets anticipated European and FDA quality specifications for commercial plasmid products.

  6. Biology of DNA restriction.

    PubMed Central

    Bickle, T A; Krüger, D H

    1993-01-01

    Our understanding of the evolution of DNA restriction and modification systems, the control of the expression of the structural genes for the enzymes, and the importance of DNA restriction in the cellular economy has advanced by leaps and bounds in recent years. This review documents these advances for the three major classes of classical restriction and modification systems, describes the discovery of a new class of restriction systems that specifically cut DNA carrying the modification signature of foreign cells, and deals with the mechanisms developed by phages to avoid the restriction systems of their hosts. PMID:8336674

  7. Focus: DNA probes

    SciTech Connect

    Not Available

    1986-11-01

    Progress in the development of DNA probes for the identification and quantitation of specific genetic sequences in biological samples is reviewed. Current research efforts in the development of DNA probes for the diagnosis of a wide variety of bacterial, viral, and other infectious diseases, such as herpes simplex and cytomegalovirus, and inherited genetic diseases such as cystic fibrosis and sickle cell anemia are discussed. Progress in development of DNA probe assays for cancer diagnosis, detection of Salmonella food poisoning, tissue typing (detection of histocompatibility antigens), mutagen screening, and animal diseases, among other applications is included.

  8. FBI's DNA analysis program

    NASA Astrophysics Data System (ADS)

    Brown, John R.

    1994-03-01

    Forensic DNA profiling technology is a significant law enforcement tool due to its superior discriminating power. Applying the principles of population genetics to the DNA profile obtained in violent crime investigations results in low frequency of occurrence estimates for the DNA profile. These estimates often range from a frequency of occurrence of 1 in 50 unrelated individuals to 1 in a million unrelated individuals or even smaller. It is this power to discriminate among individuals in the population that has propelled forensic DNA technology to the forefront of forensic testing in violent crime cases. Not only is the technology extremely powerful in including or excluding a criminal suspect as the perpetrator, but it also gives rise to the potential of identifying criminal suspects in cases where the investigators of unknown suspect cases have exhausted all other available leads.

  9. Close encounters with DNA

    PubMed Central

    Maffeo, C.; Yoo, J.; Comer, J.; Wells, D. B.; Luan, B.; Aksimentiev, A.

    2014-01-01

    Over the past ten years, the all-atom molecular dynamics method has grown in the scale of both systems and processes amenable to it and in its ability to make quantitative predictions about the behavior of experimental systems. The field of computational DNA research is no exception, witnessing a dramatic increase in the size of systems simulated with atomic resolution, the duration of individual simulations and the realism of the simulation outcomes. In this topical review, we describe the hallmark physical properties of DNA from the perspective of all-atom simulations. We demonstrate the amazing ability of such simulations to reveal the microscopic physical origins of experimentally observed phenomena and we review the frustrating limitations associated with imperfections of present atomic force fields and inadequate sampling. The review is focused on the following four physical properties of DNA: effective electric charge, response to an external mechanical force, interaction with other DNA molecules and behavior in an external electric field. PMID:25238560

  10. DNA-templated nanofabrication.

    PubMed

    Becerril, Héctor A; Woolley, Adam T

    2009-02-01

    Nanofabrication, or the organizational control over matter at the nanometre scale, is an intriguing scientific challenge requiring multidisciplinary tools for its solution. DNA is a biomolecule that can be combined with other nanometre-scale entities through chemical self-assembly to form a broad variety of nanomaterials. In this tutorial review we present the principles that allow DNA to interact with other chemical species, and describe the challenges and potential applications of DNA as a template for making both biological and inorganic features with nanometre resolution. As such, this report should be of interest to chemists, surface and materials scientists, biologists, and nanotechnologists, as well as others who seek to use DNA in nanofabrication.

  11. Multiplex analysis of DNA

    DOEpatents

    Church, George M.; Kieffer-Higgins, Stephen

    1992-01-01

    This invention features vectors and a method for sequencing DNA. The method includes the steps of: a) ligating the DNA into a vector comprising a tag sequence, the tag sequence includes at least 15 bases, wherein the tag sequence will not hybridize to the DNA under stringent hybridization conditions and is unique in the vector, to form a hybrid vector, b) treating the hybrid vector in a plurality of vessels to produce fragments comprising the tag sequence, wherein the fragments differ in length and terminate at a fixed known base or bases, wherein the fixed known base or bases differs in each vessel, c) separating the fragments from each vessel according to their size, d) hybridizing the fragments with an oligonucleotide able to hybridize specifically with the tag sequence, and e) detecting the pattern of hybridization of the tag sequence, wherein the pattern reflects the nucleotide sequence of the DNA.

  12. Making DNA Fingerprints.

    ERIC Educational Resources Information Center

    Nunley, Kathie F.

    1996-01-01

    Presents an activity to simulate electrophoresis using everyday items. Uses adding machine paper to construct a set of DNA fingerprints that can be used to solve crime cases designed by students in any biology class. (JRH)

  13. Retroviral DNA Integration

    PubMed Central

    2016-01-01

    The integration of a DNA copy of the viral RNA genome into host chromatin is the defining step of retroviral replication. This enzymatic process is catalyzed by the virus-encoded integrase protein, which is conserved among retroviruses and LTR-retrotransposons. Retroviral integration proceeds via two integrase activities: 3′-processing of the viral DNA ends, followed by the strand transfer of the processed ends into host cell chromosomal DNA. Herein we review the molecular mechanism of retroviral DNA integration, with an emphasis on reaction chemistries and architectures of the nucleoprotein complexes involved. We additionally discuss the latest advances on anti-integrase drug development for the treatment of AIDS and the utility of integrating retroviral vectors in gene therapy applications. PMID:27198982

  14. DNA damage and carcinogenesis

    SciTech Connect

    Stelow, R B

    1980-01-01

    Although cancer may arise as a result of many different types of molecular changes, there is little reason to doubt that changes to DNA are one of the more important ones in cancer initiation. Although DNA repair mechanisms seem able to eliminate a very large fraction of deleterious changes to DNA, we not only have little insight into the molecular mechanisms involved in such repair, but have a negligible amount of information to permit us to estimate the shape of dose response relations at low doses. The case of skin cancer is a special one, in that the average population is exposed to sufficient solar uv so that the effects of small increments in uv dose may be estimated. An approximate 85% reduction in DNA repair increases skin cancer incidence 10/sup 4/ fold.

  15. DNA sequencing conference, 2

    SciTech Connect

    Cook-Deegan, R.M.; Venter, J.C.; Gilbert, W.; Mulligan, J.; Mansfield, B.K.

    1991-06-19

    This conference focused on DNA sequencing, genetic linkage mapping, physical mapping, informatics and bioethics. Several were used to study this sequencing and mapping. This article also discusses computer hardware and software aiding in the mapping of genes.

  16. DNA Vaccination in Chickens.

    PubMed

    Gupta, Shishir Kumar; Dey, Sohini; Chellappa, Madhan Mohan

    2016-01-01

    Robust and sustainable development of poultry industry requires prevention of deadly infectious diseases. Vigorous vaccination of the birds is a routine practice; however, the live and inactivated vaccines that are used have inherent disadvantages. New-generation vaccines such as DNA vaccines offer several advantages over conventional vaccines. DNA vaccines, which encode an antigen of interest or multiple antigens in the target host, are stable, easy to produce and administer, do not require cold chain maintenance, and are not affected by the maternal antibodies. In addition, DNA vaccines can also be administered in ovo, and thus, mass vaccination and early induction of immune response can effectively be achieved. In this chapter, we focus on the development of DNA vaccines against important infectious viral as well as parasitic diseases of poultry.

  17. Interaction of DNA and DNA-anti-DNA complexes to fibronectin

    SciTech Connect

    Gupta, R.C.; Simpson, W.A.; Raghow, R.; Hasty, K.

    1986-03-01

    Fibronectin (Fn) is a large multidomain glycoprotein found in the basement membrane, on cell surface and in plasma. The interactions of Fn with DNA may be significant in glomerular deposition of DNA-anti-DNA complexes in patients with systemic lupus erythematosus (SLE). The authors examined the binding of DNA and DNA-anti-DNA complexes to Fn by a solid phase assay in which Fn was coated to microtiter plates and reacted with (/sup 3/H)DNA or DNA complexes with a monoclonal anti-DNA antibody. The optimal interaction of DNA with Fn occurs at <0.1M NaCl suggesting that the binding is charge dependent; the specificity of this binding was shown by competitive inhibition and locking experiments using anti-Fn. The binding was maximum at pH 6.5 and in the absence of Ca/sup 2 +/. The addition of Clq enhanced the binding of DNA and DNA-anti-DNA complexes to Fn, whereas heparan sulfate inhibited such binding. The monomeric or aggregated IgC did not bind Fn but aggregated IgG bound to Fn in the presence of Clq. Furthermore, DNA-anti-DNA complexes in sera from active SLE patients bound Fn which was enhanced in the presence of Clq; DNase abolished this binding indicating that the interaction of these complexes was mediated by DNA. These observations may partially explain the molecular mechanism(s) of the deposition of DNA-anti-DNA complexes in basement membrane.

  18. Patterning nanocrystals using DNA

    NASA Astrophysics Data System (ADS)

    Williams, Shara Carol

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made. Here, we have sought to assemble larger and more complex nanostructures. Cold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA "trimer." This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices to a length greater than 20 mum, and

  19. Patterning nanocrystals using DNA

    SciTech Connect

    Williams, Shara Carol

    2003-01-01

    One of the goals of nanotechnology is to enable programmed self-assembly of patterns made of various materials with nanometer-sized control. This dissertation describes the results of experiments templating arrangements of gold and semiconductor nanocrystals using 2'-deoxyribonucleic acid (DNA). Previously, simple DNA-templated linear arrangements of two and three nanocrystals structures have been made.[1] Here, we have sought to assemble larger and more complex nanostructures. Gold-DNA conjugates with 50 to 100 bases self-assembled into planned arrangements using strands of DNA containing complementary base sequences. We used two methods to increase the complexity of the arrangements: using branched synthetic doublers within the DNA covalent backbone to create discrete nanocrystal groupings, and incorporating the nanocrystals into a previously developed DNA lattice structure [2][3] that self-assembles from tiles made of DNA double-crossover molecules to create ordered nanoparticle arrays. In the first project, the introduction of a covalently-branched synthetic doubler reagent into the backbone of DNA strands created a branched DNA ''trimer.'' This DNA trimer templated various structures that contained groupings of three and four gold nanoparticles, giving promising, but inconclusive transmission electron microscopy (TEM) results. Due to the presence of a variety of possible structures in the reaction mixtures, and due to the difficulty of isolating the desired structures, the TEM and gel electrophoresis results for larger structures having four particles, and for structures containing both 5 and 10 nm gold nanoparticles were inconclusive. Better results may come from using optical detection methods, or from improved sample preparation. In the second project, we worked toward making two-dimensional ordered arrays of nanocrystals. We replicated and improved upon previous results for making DNA lattices, increasing the size of the lattices to a length greater than

  20. Das DNA-Puzzle

    NASA Astrophysics Data System (ADS)

    Kirchner, Stefan

    Im Jahre 1953 wurde von James Watson und Francis Crick erstmalig der strukturelle Aufbau der sogenannten DNA (Desoxyribonukleinsäure) beschrieben, welche das Erbgut jedes Lebewesens enthält. Der wesentliche Teil des Erbguts wird dabei durch eine sehr lange Folge der vier Basen Adenin (A), Cytosin (C), Guanin (G) und Thymin (T) codiert. Seit einigen Jahren ist es möglich, die Folge der vier Basen zu einer gegebenen DNA zu bestimmen. Biologen bezeichnen diesen Vorgang als Sequenzierung.

  1. Blowing DNA bubbles.

    PubMed

    Severin, N; Zhuang, W; Ecker, C; Kalachev, A A; Sokolov, I M; Rabe, J P

    2006-11-01

    We report here experimental observations which indicate that topologically or covalently formed polymer loops embedded in an ultrathin liquid film on a solid substrate can be "blown" into circular "bubbles" during scanning force microscopy (SFM) imaging. In particular, supercoiled vector DNA has been unraveled, moved, stretched, and overstretched to two times its B-form length and then torn apart. We attribute the blowing of the DNA bubbles to the interaction of the tapping SFM tip with the ultrathin liquid film.

  2. Programming DNA tube circumferences.

    PubMed

    Yin, Peng; Hariadi, Rizal F; Sahu, Sudheer; Choi, Harry M T; Park, Sung Ha; Labean, Thomas H; Reif, John H

    2008-08-08

    Synthesizing molecular tubes with monodisperse, programmable circumferences is an important goal shared by nanotechnology, materials science, and supermolecular chemistry. We program molecular tube circumferences by specifying the complementarity relationships between modular domains in a 42-base single-stranded DNA motif. Single-step annealing results in the self-assembly of long tubes displaying monodisperse circumferences of 4, 5, 6, 7, 8, 10, or 20 DNA helices.

  3. Variations in brain DNA

    PubMed Central

    Avila, Jesús; Gómez-Ramos, Alberto; Soriano, Eduardo

    2014-01-01

    It is assumed that DNA sequences are conserved in the diverse cell types present in a multicellular organism like the human being. Thus, in order to compare the sequences in the genome of DNA from different individuals, nucleic acid is commonly isolated from a single tissue. In this regard, blood cells are widely used for this purpose because of their availability. Thus blood DNA has been used to study genetic familiar diseases that affect other tissues and organs, such as the liver, heart, and brain. While this approach is valid for the identification of familial diseases in which mutations are present in parental germinal cells and, therefore, in all the cells of a given organism, it is not suitable to identify sporadic diseases in which mutations might occur in specific somatic cells. This review addresses somatic DNA variations in different tissues or cells (mainly in the brain) of single individuals and discusses whether the dogma of DNA invariance between cell types is indeed correct. We will also discuss how single nucleotide somatic variations arise, focusing on the presence of specific DNA mutations in the brain. PMID:25505410

  4. Transcription of mitochondrial DNA.

    PubMed

    Tabak, H F; Grivell, L A; Borst, P

    1983-01-01

    While mitochondrial DNA (mtDNA) is the simplest DNA in nature, coding for rRNAs and tRNAs, results of DNA sequence, and transcript analysis have demonstrated that both the synthesis and processing of mitochondrial RNAs involve remarkably intricate events. At one extreme, genes in animal mtDNAs are tightly packed, both DNA strands are completely transcribed (symmetric transcription), and the appearance of specific mRNAs is entirely dependent on processing at sites signalled by the sequences of the tRNAs, which abut virtually every gene. At the other extreme, gene organization in yeast (Saccharomyces) is anything but compact, with long stretches of AT-rich DNA interspaced between coding sequences and no obvious logic to the order of genes. Transcription is asymmetric and several RNAs are initiated de novo. Nevertheless, extensive RNA processing occurs due largely to the presence of split genes. RNA splicing is complex, is controlled by both mitochondrial and nuclear genes, and in some cases is accompanied by the formation of RNAs that behave as covalently closed circles. The present article reviews current knowledge of mitochondrial transcription and RNA processing in relation to possible mechanisms for the regulation of mitochondrial gene expression.

  5. DNA methylation and differentiation.

    PubMed Central

    Michalowsky, L A; Jones, P A

    1989-01-01

    The methylation of specific cytosine residues in DNA has been implicated in regulating gene expression and facilitating functional specialization of cellular phenotypes. Generally, the demethylation of certain CpG sites correlates with transcriptional activation of genes. 5-Azacytidine is an inhibitor of DNA methylation and has been widely used as a potent activator of suppressed genetic information. Treatment of cells with 5-azacytidine results in profound phenotypic alterations. The drug-induced hypomethylation of DNA apparently perturbs DNA-protein interactions that may consequently alter transcriptional activity and cell determination. The inhibitory effect of cytosine methylation may be exerted via altered DNA-protein interactions specifically or may be transduced by a change in the conformation of chromatin. Recent studies have demonstrated that cytosine methylation also plays a central role in parental imprinting, which in turn determines the differential expression of maternal and paternal genomes during embryogenesis. In other words, methylation is the mechanism whereby the embryo retains memory of the gametic origin of each component of genetic information. A memory of this type would probably persist during DNA replication and cell division as methylation patterns are stable and heritable. PMID:2466640

  6. DNA biosensors that reason.

    PubMed

    Sainz de Murieta, Iñaki; Rodríguez-Patón, Alfonso

    2012-08-01

    Despite the many designs of devices operating with the DNA strand displacement, surprisingly none is explicitly devoted to the implementation of logical deductions. The present article introduces a new model of biosensor device that uses nucleic acid strands to encode simple rules such as "IF DNA_strand(1) is present THEN disease(A)" or "IF DNA_strand(1) AND DNA_strand(2) are present THEN disease(B)". Taking advantage of the strand displacement operation, our model makes these simple rules interact with input signals (either DNA or any type of RNA) to generate an output signal (in the form of nucleotide strands). This output signal represents a diagnosis, which either can be measured using FRET techniques, cascaded as the input of another logical deduction with different rules, or even be a drug that is administered in response to a set of symptoms. The encoding introduces an implicit error cancellation mechanism, which increases the system scalability enabling longer inference cascades with a bounded and controllable signal-noise relation. It also allows the same rule to be used in forward inference or backward inference, providing the option of validly outputting negated propositions (e.g. "diagnosis A excluded"). The models presented in this paper can be used to implement smart logical DNA devices that perform genetic diagnosis in vitro.

  7. Novel DNA nanoparticles and networks.

    PubMed

    Seela, Frank; Jawalekar, Anup M; Sirivolu, Venkata R; Rosemeyer, Helmut; He, Yang; Leonard, Peter

    2005-01-01

    Joining the thrombin-binding aptamer 5-d(GGTTGGTGTGGTTGG) and the minihairpin 5-d(GCGAAGC) leads to new DNA nanoparticles, which are different from rod-like helical double-stranded DNA. Covalent interstrand cross-links in DNA duplexes generated by bifunctional alkadiyne chains were used to build-up the DNA networks.

  8. DNA as an Optical Material

    DTIC Science & Technology

    2011-07-01

    of DNA, and a natural DNA source is more appropriate. Currently available sources of natural DNA include fish sperm (e.g., from salmon or herring...harvesting of the fish’s waste milt and roe sacs. (Unlike meat and eggs , these elements are not used for cuisine.) From these, DNA is extracted and

  9. From DNA to transistors

    NASA Astrophysics Data System (ADS)

    Braun, Erez; Keren, Kinneret

    2004-06-01

    The rapid advance in molecular biology and nanotechnology opens up the possibility to explore the interface between biology and electronics at the single-molecule level. We focus on the organization of molecular electronic circuits. Interconnecting an immense number of molecular devices into a functional circuit and constructing a framework for integrated molecular electronics requires new concepts. A promising avenue relies on bottom-up assembly where the information for the circuit connectivity and functionality is embedded in the molecular building blocks. Biology can provide concepts and mechanisms for advancing this approach, but there is no straightforward way to apply them to electronics since biological molecules are essentially electrically insulating. Bridging the chasm between biology and electronics therefore presents great challenges. Circuit organization on the molecular scale is considered and contrasted with the levels of organization presented by the living world. The discussion then focuses on our proposal to harness DNA and molecular biology to construct the scaffold for integrated molecular electronics. DNA metallization is used to convert the DNA scaffold into a conductive one. We present the framework of sequence-specific molecular lithography based on the biological mechanism of homologous genetic recombination and carried out by the bacterial protein RecA. Molecular lithography enables us to use the information encoded in the scaffold DNA molecules for directing the construction of an electronic circuit. We show that it can lead all the way from DNA molecules to working transistors in a test-tube. Carbon nanotubes are incorporated as the active electronic components in the DNA-templated transistors. Our approach can, in principle, be applied to the fabrication of larger-scale electronic circuits. The realization of complex DNA-based circuits will, however, require new concepts and additional biological machinery allowing, for example

  10. Forensic DNA Profiling and Database

    PubMed Central

    Panneerchelvam, S.; Norazmi, M.N.

    2003-01-01

    The incredible power of DNA technology as an identification tool had brought a tremendous change in crimnal justice . DNA data base is an information resource for the forensic DNA typing community with details on commonly used short tandem repeat (STR) DNA markers. This article discusses the essential steps in compilation of COmbined DNA Index System (CODIS) on validated polymerase chain amplified STRs and their use in crime detection. PMID:23386793

  11. DNA vaccines: a review.

    PubMed

    Lewis, P J; Babiuk, L A

    1999-01-01

    Therapeutic and prophylactic DNA vaccine clinical trials for a variety of pathogens and cancers are underway (Chattergoon et al., 1997; Taubes, 1997). The speed with which initiation of these trials occurred is no less than astounding; clinical trials for a human immunodeficiency virus (HIV) gp160 DNA-based vaccine were underway within 36 months of the first description of "genetic immunization" (Tang et al., 1992) and within 24 months of publication of the first article describing intramuscular delivery of a DNA vaccine (Ulmer et al., 1993). Despite the relative fervor with which clinical trials have progressed, it can be safely stated that DNA-based vaccines will not be an immunological "silver bullet." In this regard, it was satisfying to see a publication entitled "DNA Vaccines--A Modern Gimmick or a Boon to Vaccinology?" (Manickan et al., 1997b). There is no doubt that this technology is well beyond the phenomenology phase of study. Research niches and models have been established and will allow the truly difficult questions of mechanism and application to target species to be studied. These two aspects of future studies are intricately interwoven and will ultimately determine the necessity for mechanistic understanding and the evolution of target species studies. The basic science of DNA vaccines has yet to be clearly defined and will ultimately determine the success or failure of this technology to find a place in the immunological arsenal against disease. In a commentary on a published study describing DNA vaccine-mediated protection against heterologous challenge with HIV-1 in chimpanzees, Ronald Kennedy (1997) states, "As someone who has been in the trenches of AIDS vaccine research for over a decade and who, together with collaborators, has attempted a number of different vaccine approaches that have not panned out, I have a relatively pessimistic view of new AIDS vaccine approaches." Kennedy then goes on to summarize a DNA-based multigene vaccine

  12. Human DNA polymerase α in binary complex with a DNA:DNA template-primer.

    PubMed

    Coloma, Javier; Johnson, Robert E; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K

    2016-04-01

    The Polα/primase complex assembles the short RNA-DNA fragments for priming of lagging and leading strand DNA replication in eukaryotes. As such, the Polα polymerase subunit encounters two types of substrates during primer synthesis: an RNA:DNA helix and a DNA:DNA helix. The engagement of the polymerase subunit with the DNA:DNA helix has been suggested as the of basis for primer termination in eukaryotes. However, there is no structural information on how the Polα polymerase subunit actually engages with a DNA:DNA helix during primer synthesis. We present here the first crystal structure of human Polα polymerase subunit in complex with a DNA:DNA helix. Unexpectedly, we find that portion of the DNA:DNA helix in contact with the polymerase is not in a B-form but in a hybrid A-B form. Almost all of the contacts observed previously with an RNA primer are preserved with a DNA primer--with the same set of polymerase residues tracking the sugar-phosphate backbone of the DNA or RNA primer. Thus, rather than loss of specific contacts, the free energy cost of distorting DNA from B- to hybrid A-B form may augur the termination of primer synthesis in eukaryotes.

  13. Chromatin and DNA replication.

    PubMed

    MacAlpine, David M; Almouzni, Geneviève

    2013-08-01

    The size of a eukaryotic genome presents a unique challenge to the cell: package and organize the DNA to fit within the confines of the nucleus while at the same time ensuring sufficient dynamics to allow access to specific sequences and features such as genes and regulatory elements. This is achieved via the dynamic nucleoprotein organization of eukaryotic DNA into chromatin. The basic unit of chromatin, the nucleosome, comprises a core particle with 147 bp of DNA wrapped 1.7 times around an octamer of histones. The nucleosome is a highly versatile and modular structure, both in its composition, with the existence of various histone variants, and through the addition of a series of posttranslational modifications on the histones. This versatility allows for both short-term regulatory responses to external signaling, as well as the long-term and multigenerational definition of large functional chromosomal domains within the nucleus, such as the centromere. Chromatin organization and its dynamics participate in essentially all DNA-templated processes, including transcription, replication, recombination, and repair. Here we will focus mainly on nucleosomal organization and describe the pathways and mechanisms that contribute to assembly of this organization and the role of chromatin in regulating the DNA replication program.

  14. Yeast DNA plasmids.

    PubMed

    Gunge, N

    1983-01-01

    The study of yeast DNA plasmids has been initiated with the discovery of the 2-micron DNA in Saccharomyces cerevisiae. This multiple copy plasmid, organized into chromatin structure in vivo, probably exists in the nucleus and provides a good system to obtain information on eukaryotic DNA replication. Yeast transformation with the 2-micron DNA or artificially constructed chimeric plasmids had contributed significantly to the study of the molecular biology of yeast and eukaryotes, allowing the isolation and characterization of various genes, ars, centromeres, and telomeres, and also serving as a tool to study the expression of various heterologous genes. Encouraged by these fruitful results, new yeast plasmids have been screened among phylogenetically distant yeasts. The linear DNA plasmids (pGKl1 and pGKl2) from Kluyveromyces lactis are the first case of yeast plasmids associated with biological function (killer phenotype). This plasmid system would be ideal as a model to study the structure and function of eukaryotic linear chromosomes. The extracellular secretion of protein toxin suggests the plasmids to be an excellent candidate for a secretion vector. The importance of yeasts as suitable materials for the study of eukaryotic cell biology would be much enhanced by the advent of new transformation systems with diverse host yeasts of genetically and phylogenetically distinct properties.

  15. Active DNA unwinding dynamics during processive DNA replication.

    PubMed

    Morin, José A; Cao, Francisco J; Lázaro, José M; Arias-Gonzalez, J Ricardo; Valpuesta, José M; Carrascosa, José L; Salas, Margarita; Ibarra, Borja

    2012-05-22

    Duplication of double-stranded DNA (dsDNA) requires a fine-tuned coordination between the DNA replication and unwinding reactions. Using optical tweezers, we probed the coupling dynamics between these two activities when they are simultaneously carried out by individual Phi29 DNA polymerase molecules replicating a dsDNA hairpin. We used the wild-type and an unwinding deficient polymerase variant and found that mechanical tension applied on the DNA and the DNA sequence modulate in different ways the replication, unwinding rates, and pause kinetics of each polymerase. However, incorporation of pause kinetics in a model to quantify the unwinding reaction reveals that both polymerases destabilize the fork with the same active mechanism and offers insights into the topological strategies that could be used by the Phi29 DNA polymerase and other DNA replication systems to couple unwinding and replication reactions.

  16. Strandwise translocation of a DNA glycosylase on undamaged DNA

    SciTech Connect

    Qi, Yan; Nam, Kwangho; Spong, Marie C.; Banerjee, Anirban; Sung, Rou-Jia; Zhang, Michael; Karplus, Martin; Verdine, Gregory L.

    2012-05-14

    Base excision repair of genotoxic nucleobase lesions in the genome is critically dependent upon the ability of DNA glycosylases to locate rare sites of damage embedded in a vast excess of undamaged DNA, using only thermal energy to fuel the search process. Considerable interest surrounds the question of how DNA glycosylases translocate efficiently along DNA while maintaining their vigilance for target damaged sites. Here, we report the observation of strandwise translocation of 8-oxoguanine DNA glycosylase, MutM, along undamaged DNA. In these complexes, the protein is observed to translocate by one nucleotide on one strand while remaining untranslocated on the complementary strand. We further report that alterations of single base-pairs or a single amino acid substitution (R112A) can induce strandwise translocation. Molecular dynamics simulations confirm that MutM can translocate along DNA in a strandwise fashion. These observations reveal a previously unobserved mode of movement for a DNA-binding protein along the surface of DNA.

  17. DNA endonuclease activities on psoralen plus ultraviolet light treated DNA

    SciTech Connect

    Lambert, M.W.; Clark, M.

    1986-03-01

    Activities of nuclear DNA endonucleases (Endos) from normal human lymphoblastoid cells on DNA treated with the DNA interstrand cross-linking agents 4,5'8-trimethyl psoralen (TMP) or 8-methoxypsoralen (MOP) plus long-wavelength (320-400 nm) ultraviolet light (UVA) were examined. Chromatin-associated DNA Endos were isolated from both cell lines and subjected to isoelectric focusing (IF). Each IF fraction was assayed for DNA Endo activity. Peaks of activity were pooled and assayed for activity on undamaged PM2 bacteriophage DNA and on PM2 DNA that had been treated with 15 ..mu..g/ml TMP or MOP in the dark and then exposed to UVA light. Unbound psoralen was removed by dialysis and a second dose of UVA light was given in order to increase the number of DNA cross-links. Two Endo activities were found which were active on TMP- and MOP-DNA: a major one, pI 4.6, which is also active on intercalated DNA, and a second, lesser one, pI 7.6, which is active on UVC (254 nm) light irradiated DNA. These results indicate that there are two different DNA Endos which act on both TMP- and MOP-treated DNA and that the major activity recognizes the intercalation of, and/or the cross-link produced by interaction of, psoralen with DNA.

  18. DNA Origami with Double Stranded DNA as a Unified Scaffold

    PubMed Central

    Yang, Yang; Han, Dongran; Nangreave, Jeanette; Liu, Yan; Yan, Hao

    2013-01-01

    Scaffolded DNA origami is a widely used technology for self-assembling precisely structured nanoscale objects that contain a large number of addressable features. Typical scaffolds are long, single strands of DNA (ssDNA) that are folded into distinct shapes through the action of many, short ssDNA staples that are complementary to several different domains of the scaffold. However, sources of long single stranded DNA are scarce, limiting the size and complexity of structures that can be assembled. Here we demonstrated that dsDNA scaffolds can be directly used to fabricate integrated DNA origami structures that incorporate both of the constituent ssDNA molecules. Two basic principles were employed in the design of scaffold folding paths – folding path asymmetry and periodic convergence of the two ssDNA scaffold strands. Asymmetry in the folding path minimizes unwanted complementarity between staples, and incorporating an offset between the folding paths of each ssDNA scaffold strand reduces the number of times that complementary portions of the strands are brought into close proximity with one another, both of which decrease the likelihood of dsDNA scaffold recovery. Meanwhile, the folding paths of the two ssDNA scaffold strands were designed to periodically converge to promote the assembly of a single, unified structure rather than two individual ones. Our results reveal that this basic strategy can be used to reliably assemble integrated DNA nanostructures from dsDNA scaffolds. PMID:22830653

  19. Elongation of primed DNA templates by eukaryotic DNA polymerases.

    PubMed Central

    Ikeda, J E; Longiaru, M; Horwitz, M S; Hurwitz, J

    1980-01-01

    The combined action of DNA polymerase alpha and DNA polymerase beta leads to the synthesis of full-length linear DNA strands with phi X174 DNA templates containing an RNA primer. The reaction can be carried out in two stages. In the first stage, DNA polymerase alpha catalyzes the synthesis of a chain that averaged 230 deoxynucleotides long and was covalently linked to the RNA primer. In the second stage, DNA polymerase beta elongates the DNA strand covalently attached to the RNA primer to full length. With DNA primers, DNA polymerase alpha catalyzes only limited deoxynucleotide addition whereas DNA polymerase beta alone elongates DNA primed templates to full length. DNA polymerase beta can also stimulate the synthesis of adenovirus DNA in vitro in the presence of a cytosol extract from adenovirus-infected cells. In all of these systems, dNMP incorporation catalyzed by DNA polymerase beta was sensitive to N-ethylmaleimide; however, this polymerase activity was resistant to N-ethylmaleimide with poly(rA) x (dT) as the primer template. Images PMID:6160581

  20. DNA based molecular motors

    NASA Astrophysics Data System (ADS)

    Michaelis, Jens; Muschielok, Adam; Andrecka, Joanna; Kügel, Wolfgang; Moffitt, Jeffrey R.

    2009-12-01

    Most of the essential cellular processes such as polymerisation reactions, gene expression and regulation are governed by mechanical processes. Controlled mechanical investigations of these processes are therefore required in order to take our understanding of molecular biology to the next level. Single-molecule manipulation and force spectroscopy have over the last 15 years been developed into extremely powerful techniques. Applying these techniques to the investigation of proteins and DNA molecules has led to a mechanistic understanding of protein function on the level of single molecules. As examples for DNA based molecular machines we will describe single-molecule experiments on RNA polymerases as well as on the packaging of DNA into a viral capsid-a process that is driven by one of the most powerful molecular motors.

  1. Transposon facilitated DNA sequencing

    SciTech Connect

    Berg, D.E.; Berg, C.M.; Huang, H.V.

    1990-01-01

    The purpose of this research is to investigate and develop methods that exploit the power of bacterial transposable elements for large scale DNA sequencing: Our premise is that the use of transposons to put primer binding sites randomly in target DNAs should provide access to all portions of large DNA fragments, without the inefficiencies of methods involving random subcloning and attendant repetitive sequencing, or of sequential synthesis of many oligonucleotide primers that are used to match systematically along a DNA molecule. Two unrelated bacterial transposons, Tn5 and {gamma}{delta}, are being used because they have both proven useful for molecular analyses, and because they differ sufficiently in mechanism and specificity of transposition to merit parallel development.

  2. Tunnelling microscopy of DNA

    NASA Astrophysics Data System (ADS)

    Selci, Stefano; Cricenti, Antonio

    1991-01-01

    Uncoated DNA molecules marked with an activated tris (1-aziridinyl) phosphine oxide (TAPO) solution were deposited on gold substrates and imaged in air with a high resolution Scanning Tunnelling Microscope (STM). The STM operated simultaneously in the constant-current and gap-modulated mode. Highly reproducible STM images have been obtained and interpreted in terms of expected DNA structure. The main periodicity, regularly presented in molecules several hundred Ångstrom long, ranges from 25 Å to 35 Å with an average diameter of 22 Å. Higher resolution images of the minor groove have revealed the phosphate groups along the DNA backbones. Constant-current images of TAPO deposited on gold show a crystalline structure of rows of molecules with a side-by-side spacing of 3 Å.

  3. DNA Vaccination Techniques.

    PubMed

    Fissolo, Nicolás; Montalban, Xavier; Comabella, Manuel

    2016-01-01

    Multiple sclerosis (MS) is the most common inflammatory, demyelinating, and neurodegenerative disorder of the central nervous system (CNS) in humans. Although the etiology of MS remains unknown, several lines of evidence support the notion that autoimmunity against components of the myelin sheath plays a major role in susceptibility to and development of the disease. At present, there are no approved MS therapies aimed specifically toward downregulating antigen-specific autoreactive immune cells. One antigen-specific approach that appears promising for the treatment of MS is DNA vaccination. This technique has demonstrated efficacy in clinical trials while maintaining safety.Here, we describe the generation of DNA vaccines containing immunologically relevant antigens of MS. Moreover, we present a detailed protocol for the prophylactic and therapeutic administration of DNA vaccines via intramuscular injection targeting on the development of experimental autoimmune encephalomyelitis (EAE), an animal model resembling MS.

  4. Principles of DNA architectonics: design of DNA-based nanoobjects

    NASA Astrophysics Data System (ADS)

    Vinogradova, O. A.; Pyshnyi, D. V.

    2012-02-01

    The methods of preparation of monomeric DNA blocks that serve as key building units for the construction of complex DNA objects are described. Examples are given of the formation of DNA blocks based on native and modified oligonucleotide components using hydrogen bonding and nucleic acid-specific types of bonding and also some affinity interactions with RNA, proteins, ligands. The static discrete and periodic two- and three-dimensional DNA objects reported to date are described systematically. Methods used to prove the structures of DNA objects and the prospects for practical application of nanostructures based on DNA and its analogues in biology, medicine and biophysics are considered. The bibliography includes 195 references.

  5. The DNA methylome

    PubMed Central

    Pelizzola, Mattia; Ecker, Joseph R.

    2010-01-01

    Methylation of cytosines is a pervasive feature of eukaryotic genomes and an important epigenetic layer that is fundamental for cellular differentiation processes and control of transcriptional potential. DNA methylation patterns can be inherited and influenced by the environment, diet and aging, and disrupted in diseases. Complete DNA methylomes for several organisms are now available, helping clarify the evolutionary story of this epigenetic mark and its distribution in key genomic elements. Nonetheless, a complete understanding of its role, the mechanisms responsible for its establishment and maintenance, and its cross talk with other components of cellular machiney remains elusive. PMID:21056564

  6. An autoradiographic demonstration of nuclear DNA replication by DNA polymerase alpha and of mitochondrial DNA synthesis by DNA polymerase gamma.

    PubMed Central

    Geuskens, M; Hardt, N; Pedrali-Noy, G; Spadari, S

    1981-01-01

    The incorporation of thymidine into the DNA of eukaryotic cells is markedly depressed, but not completely inhibited, by aphidicolin, a highly specific inhibitor of DNA polymerase alpha. An electron microscope autoradiographic analysis of the synthesis of nuclear and mitochondrial DNA in vivo in Concanavalin A stimulated rabbit spleen lymphocytes and in Hamster cell cultures, in the absence and in the presence of aphidicolin, revealed that aphidicolin inhibits the nuclear but not the mitochondrial DNA replication. We therefore conclude that DNA polymerase alpha performs the synchronous bidirectional replication of nuclear DNA and that DNA polymerase gamma, the only DNA polymerase present in the mitochondria, performs the "strand displacement" DNA synthesis of these organelles. Images PMID:6262734

  7. DNA banking and DNA databanking by academic and commercial laboratories

    SciTech Connect

    McEwen, J.E. |; Reilly, P.R.

    1994-09-01

    The advent of DNA-based testing is giving rise to DNA banking (the long-term storage of cells, transformed cell lines, or extracted DNA for subsequent retrieval and analysis) and DNA data banking (the indefinite storage of information derived from DNA analysis). Large scale acquisition and storage of DNA and DNA data has important implications for the privacy rights of individuals. A survey of 148 academically based and commercial DNA diagnostic laboratories was conducted to determine: (1) the extent of their DNA banking activities; (2) their policies and experiences regarding access to DNA samples and data; (3) the quality assurance measures they employ; and (4) whether they have written policies and/or depositor`s agreements addressing specific issues. These issues include: (1) who may have access to DNA samples and data; (2) whether scientists may have access to anonymous samples or data for research use; (3) whether they have plans to contact depositors or retest samples if improved tests for a disorder become available; (4) disposition of samples at the end of the contract period if the laboratory ceases operations, if storage fees are unpaid, or after a death or divorce; (5) the consequence of unauthorized release, loss, or accidental destruction of samples; and (6) whether depositors may share in profits from the commercialization of tests or treatments developed in part from studies of stored DNA. The results suggest that many laboratories are banking DNA, that many have already amassed a large number of samples, and that a significant number plan to further develop DNA banking as a laboratory service over the next two years. Few laboratories have developed written policies governing DNA banking, and fewer still have drafted documents that define the rights and obligations of the parties. There may be a need for increased regulation of DNA banking and DNA data banking and for better defined policies with respect to protecting individual privacy.

  8. DNA nanomechanical devices for molecular biology and DNA nanotechnology

    NASA Astrophysics Data System (ADS)

    Gu, Hongzhou

    The aim of nanotechnology is to put specific atomic and molecular species where we want them, when we want them there. Achieving such a dynamic and functional control could lead to molecular programming. Structural DNA nanotechnology offers a powerful route to this goal by combining stable branched DNA motifs with cohesive ends to produce objects, programmed nanomechanical devices and fixed or modified patterned lattices. In Chapter II, a two-armed nanorobotic device is built based on a DNA origami substrate. The arms face each other, ready to capture different DNA nanostructures into distinguishable nanopatterns. Combining with a simple error-correction protocol, we are able to achieve this goal in a nearly flawless fashion. In Chapter III, a DNA-based programmable assembly line is developed by combining three PX/JX2 cassettes and a novel DNA walker on a DNA origami substrate. This programmable assembly line can generate eight products by switching the cassettes to PX (ON) or JX2 (OFF) state when the DNA walker passes by. DNA nanomechanical devices hold the promise of controlling structure and performing exquisitely fine measurements on the molecular scale. Several DNA nanomechanical devices based on different biochemistry phenomena have been reported before. In Chapter IV, a scissors-based DNA device is built to measure the work that can be done by a DNA-bending protein (MutS) when it binds to DNA.

  9. DNA Nanotechnology for Cancer Therapy

    PubMed Central

    Kumar, Vinit; Palazzolo, Stefano; Bayda, Samer; Corona, Giuseppe; Toffoli, Giuseppe; Rizzolio, Flavio

    2016-01-01

    DNA nanotechnology is an emerging and exciting field, and represents a forefront frontier for the biomedical field. The specificity of the interactions between complementary base pairs makes DNA an incredible building material for programmable and very versatile two- and three-dimensional nanostructures called DNA origami. Here, we analyze the DNA origami and DNA-based nanostructures as a drug delivery system. Besides their physical-chemical nature, we dissect the critical factors such as stability, loading capability, release and immunocompatibility, which mainly limit in vivo applications. Special attention was dedicated to highlighting the boundaries to be overcome to bring DNA nanostructures closer to the bedside of patients. PMID:27022418

  10. DNA polymerase having modified nucleotide binding site for DNA sequencing

    DOEpatents

    Tabor, S.; Richardson, C.

    1997-03-25

    A modified gene encoding a modified DNA polymerase is disclosed. The modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase. 6 figs.

  11. DNA polymerase having modified nucleotide binding site for DNA sequencing

    DOEpatents

    Tabor, Stanley; Richardson, Charles

    1997-01-01

    Modified gene encoding a modified DNA polymerase wherein the modified polymerase incorporates dideoxynucleotides at least 20-fold better compared to the corresponding deoxynucleotides as compared with the corresponding naturally-occurring DNA polymerase.

  12. DNA profiling of trace DNA recovered from bedding.

    PubMed

    Petricevic, Susan F; Bright, Jo-Anne; Cockerton, Sarah L

    2006-05-25

    Trace DNA is often detected on handled items and worn clothing examined in forensic laboratories. In this study, the potential transfer of trace DNA to bedding by normal contact, when an individual sleeps in a bed, is examined. Volunteers slept one night on a new, lower bed sheet in their own bed and one night in a bed foreign to them. Samples from the sheets were collected and analysed by DNA profiling. The results indicate that the DNA profile of an individual can be obtained from bedding after one night of sleeping in a bed. The DNA profile of the owner of the bed could also be detected in the foreign bed experiments. Since mixed DNA profiles can be obtained from trace DNA on bedding, caution should be exercised when drawing conclusions from DNA profiling results obtained from such samples. This transfer may have important repercussions in sexual assault investigations.

  13. Impact of Alternative DNA Structures on DNA Damage, DNA Repair, and Genetic Instability

    PubMed Central

    Wang, Guliang; Vasquez, Karen M.

    2014-01-01

    Repetitive genomic sequences can adopt a number of alternative DNA structures that differ from the canonical B-form duplex (i.e. non-B DNA). These non-B DNA-forming sequences have been shown to have many important biological functions related to DNA metabolic processes; for example, they may have regulatory roles in DNA transcription and replication. In addition to these regulatory functions, non-B DNA can stimulate genetic instability in the presence or absence of DNA damage, via replication-dependent and/or replication-independent pathways. This review focuses on the interactions of non-B DNA conformations with DNA repair proteins and how these interactions impact genetic instability. PMID:24767258

  14. Enzymatic DNA molecules

    NASA Technical Reports Server (NTRS)

    Joyce, Gerald F. (Inventor); Breaker, Ronald R. (Inventor)

    1998-01-01

    The present invention discloses deoxyribonucleic acid enzymes--catalytic or enzymatic DNA molecules--capable of cleaving nucleic acid sequences or molecules, particularly RNA, in a site-specific manner, as well as compositions including same. Methods of making and using the disclosed enzymes and compositions are also disclosed.

  15. Nutrients and DNA Methylation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Epigenetics is a new mechanism responsible for development, aging, and disease process such as cancer development. One major epigenetic phenomenon is DNA methylation, which attributes to gene expression and integrity. Deepening the knowledge on one-carbon metabolism is very important to understandin...

  16. Psoralen DNA photobiology

    SciTech Connect

    Gasparro, F.P.

    1988-01-01

    This text covers the spectrum of psoralen photobiology from molecular mechanisms to their in vivo impact. HPLC, gel electrophoresis, and ELISA techniques are described. Also described is the most recent information on cellular mechanisms for the repair of psoralen photodamage in DNA, and the use of psoralens as structural probes and the newly ascribed effects of psoralens on membranes and proteins.

  17. DNA tagged microparticles

    DOEpatents

    Farquar, George R.; Leif, Roald N.; Wheeler, Elizabeth

    2016-03-22

    In one embodiment, a product includes a plurality of particles, each particle including: a carrier that includes a non-toxic material; and at least one DNA barcode coupled to the carrier, where the particles each have a diameter in a range from about 1 nanometer to about 100 microns.

  18. Field Deployable DNA analyzer

    SciTech Connect

    Wheeler, E; Christian, A; Marion, J; Sorensen, K; Arroyo, E; Vrankovich, G; Hara, C; Nguyen, C

    2005-02-09

    This report details the feasibility of a field deployable DNA analyzer. Steps for swabbing cells from surfaces and extracting DNA in an automatable way are presented. Since enzymatic amplification reactions are highly sensitive to environmental contamination, sample preparation is a crucial step to make an autonomous deployable instrument. We perform sample clean up and concentration in a flow through packed bed. For small initial samples, whole genome amplification is performed in the packed bed resulting in enough product for subsequent PCR amplification. In addition to DNA, which can be used to identify a subject, protein is also left behind, the analysis of which can be used to determine exposure to certain substances, such as radionuclides. Our preparative step for DNA analysis left behind the protein complement as a waste stream; we determined to learn if the proteins themselves could be analyzed in a fieldable device. We successfully developed a two-step lateral flow assay for protein analysis and demonstrate a proof of principle assay.

  19. Automated DNA Sequencing System

    SciTech Connect

    Armstrong, G.A.; Ekkebus, C.P.; Hauser, L.J.; Kress, R.L.; Mural, R.J.

    1999-04-25

    Oak Ridge National Laboratory (ORNL) is developing a core DNA sequencing facility to support biological research endeavors at ORNL and to conduct basic sequencing automation research. This facility is novel because its development is based on existing standard biology laboratory equipment; thus, the development process is of interest to the many small laboratories trying to use automation to control costs and increase throughput. Before automation, biology Laboratory personnel purified DNA, completed cycle sequencing, and prepared 96-well sample plates with commercially available hardware designed specifically for each step in the process. Following purification and thermal cycling, an automated sequencing machine was used for the sequencing. A technician handled all movement of the 96-well sample plates between machines. To automate the process, ORNL is adding a CRS Robotics A- 465 arm, ABI 377 sequencing machine, automated centrifuge, automated refrigerator, and possibly an automated SpeedVac. The entire system will be integrated with one central controller that will direct each machine and the robot. The goal of this system is to completely automate the sequencing procedure from bacterial cell samples through ready-to-be-sequenced DNA and ultimately to completed sequence. The system will be flexible and will accommodate different chemistries than existing automated sequencing lines. The system will be expanded in the future to include colony picking and/or actual sequencing. This discrete event, DNA sequencing system will demonstrate that smaller sequencing labs can achieve cost-effective the laboratory grow.

  20. DNA adsorption on graphene

    NASA Astrophysics Data System (ADS)

    Alshehri, Mansoor H.; Cox, Barry J.; Hill, James M.

    2013-11-01

    Here we use classical applied mathematical modeling to determine surface binding energies between both single-strand and double-strand DNA molecules interacting with a graphene sheet. We adopt basic mechanical principles to exploit the 6-12 Lennard-Jones potential function and the continuum approximation, which assumes that intermolecular interactions can be approximated by average atomic line or surface densities. The minimum binding energy occurs when the single-strand DNA molecule is centred 20.2 Å from the surface of the graphene and the double-strand DNA molecule is centred 20.3 Å from the surface, noting that these close values apply for the case when the axis of the helix is perpendicular to the surface of graphene. For the case when the axis of the helix is parallel to the surface, the minimum binding energy occurs when the axis of the single-strand molecule is 8.3 Å from the surface, and the double-strand molecule has axis 13.3 Å from the surface. For arbitrary tilted axis, we determine the optimal angles Ω of the axis of the helix, which give the minimum values of the binding energies, and we observe that the optimal angles tend to occur in the intervals Ω ∈ ( π /4 ,π/2) and Ω ∈ ( π /7 ,π/5) for the single and double-strand DNA molecules, respectively.

  1. The Dynamic Interplay Between DNA Topoisomerases and DNA Topology.

    PubMed

    Seol, Yeonee; Neuman, Keir C

    2016-09-01

    Topological properties of DNA influence its structure and biochemical interactions. Within the cell DNA topology is constantly in flux. Transcription and other essential processes including DNA replication and repair, alter the topology of the genome, while introducing additional complications associated with DNA knotting and catenation. These topological perturbations are counteracted by the action of topoisomerases, a specialized class of highly conserved and essential enzymes that actively regulate the topological state of the genome. This dynamic interplay among DNA topology, DNA processing enzymes, and DNA topoisomerases, is a pervasive factor that influences DNA metabolism in vivo. Building on the extensive structural and biochemical characterization over the past four decades that established the fundamental mechanistic basis of topoisomerase activity, the unique roles played by DNA topology in modulating and influencing the activity of topoisomerases have begun to be explored. In this review we survey established and emerging DNA topology dependent protein-DNA interactions with a focus on in vitro measurements of the dynamic interplay between DNA topology and topoisomerase activity.

  2. DNA-DNA interaction inside bacteriophage modulated by multivalent counterions

    NASA Astrophysics Data System (ADS)

    Nguyen, Toan; Lee, Seil; Le, Tung

    2010-03-01

    The problem of inhibiting viral DNA ejection from bacteriophages by multivalent counterions, especially Mg^+2 counterions, is studied. Experimentally, it is known that MgSO4 salt has a strong and non-monotonic effect on the amount of DNA ejected. There exists an optimal concentration at which the least DNA is ejected from the virus. At lower or higher concentrations, more DNA is ejected from the capsid. We propose that this phenomenon is the result of DNA overcharging by Mg^+2 multivalent counterions. As Mg^+2 concentration increases from zero, DNA net charge changes from negative to positive. The optimal inhibition corresponds to the Mg^+2 concentration where DNA is neutral. At lower/higher concentrations, DNA genome is charged. It prefers to be in solution to lower its electrostatic self-energy, which consequently leads to an increase in DNA ejection. Our theory fits experimental data well. The strength of DNA - DNA short range attraction, mediated by Mg^+2, is found to be - 0.003 kBT per nucleotide base. Results from expanded ensemble Monte-Carlo simulation of hexagonal DNA bundles are discussed and are shown to be in good agreement with theoretical results.

  3. Borrowing Nuclear DNA Helicases to Protect Mitochondrial DNA

    PubMed Central

    Ding, Lin; Liu, Yilun

    2015-01-01

    In normal cells, mitochondria are the primary organelles that generate energy, which is critical for cellular metabolism. Mitochondrial dysfunction, caused by mitochondrial DNA (mtDNA) mutations or an abnormal mtDNA copy number, is linked to a range of human diseases, including Alzheimer’s disease, premature aging‎ and cancer. mtDNA resides in the mitochondrial lumen, and its duplication requires the mtDNA replicative helicase, Twinkle. In addition to Twinkle, many DNA helicases, which are encoded by the nuclear genome and are crucial for nuclear genome integrity, are transported into the mitochondrion to also function in mtDNA replication and repair. To date, these helicases include RecQ-like helicase 4 (RECQ4), petite integration frequency 1 (PIF1), DNA replication helicase/nuclease 2 (DNA2) and suppressor of var1 3-like protein 1 (SUV3). Although the nuclear functions of some of these DNA helicases have been extensively studied, the regulation of their mitochondrial transport and the mechanisms by which they contribute to mtDNA synthesis and maintenance remain largely unknown. In this review, we attempt to summarize recent research progress on the role of mammalian DNA helicases in mitochondrial genome maintenance and the effects on mitochondria-associated diseases. PMID:25984607

  4. Borrowing nuclear DNA helicases to protect mitochondrial DNA.

    PubMed

    Ding, Lin; Liu, Yilun

    2015-05-13

    In normal cells, mitochondria are the primary organelles that generate energy, which is critical for cellular metabolism. Mitochondrial dysfunction, caused by mitochondrial DNA (mtDNA) mutations or an abnormal mtDNA copy number, is linked to a range of human diseases, including Alzheimer's disease, premature aging‎ and cancer. mtDNA resides in the mitochondrial lumen, and its duplication requires the mtDNA replicative helicase, Twinkle. In addition to Twinkle, many DNA helicases, which are encoded by the nuclear genome and are crucial for nuclear genome integrity, are transported into the mitochondrion to also function in mtDNA replication and repair. To date, these helicases include RecQ-like helicase 4 (RECQ4), petite integration frequency 1 (PIF1), DNA replication helicase/nuclease 2 (DNA2) and suppressor of var1 3-like protein 1 (SUV3). Although the nuclear functions of some of these DNA helicases have been extensively studied, the regulation of their mitochondrial transport and the mechanisms by which they contribute to mtDNA synthesis and maintenance remain largely unknown. In this review, we attempt to summarize recent research progress on the role of mammalian DNA helicases in mitochondrial genome maintenance and the effects on mitochondria-associated diseases.

  5. Conformation-dependent DNA attraction

    NASA Astrophysics Data System (ADS)

    Li, Weifeng; Nordenskiöld, Lars; Zhou, Ruhong; Mu, Yuguang

    2014-05-01

    Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by molecular dynamics simulations. Using umbrella sampling, we find that for both B- and Z-form DNA, surrounding Mg2+ ions always exert themselves to screen the Coulomb repulsion between DNA phosphates, resulting in very weak attractive force. On the contrary, a tight and stable bound state is discovered for Z-DNA in the presence of Mg2+ or Na+, benefiting from their hydrophobic nature. Based on the contact surface and a dewetting process analysis, a two-stage binding process of Z-DNA is outlined: two Z-DNA first attract each other through charge screening and Mg2+ bridges to phosphate groups in the same way as that of B-DNA, after which hydrophobic contacts of the deoxyribose groups are formed via a dewetting effect, resulting in stable attraction between two Z-DNA molecules. The highlighted hydrophobic nature of Z-DNA interaction from the current study may help to understand the biological functions of Z-DNA in gene transcription.Understanding how DNA molecules interact with other biomolecules is related to how they utilize their functions and is therefore critical for understanding their structure-function relationships. For a long time, the existence of Z-form DNA (a left-handed double helical version of DNA, instead of the common right-handed B-form) has puzzled the scientists, and the definitive biological significance of Z-DNA has not yet been clarified. In this study, the effects of DNA conformation in DNA-DNA interactions are explored by

  6. MAMMALIAN DNA IN PCR REAGENTS

    EPA Science Inventory

    Ancient DNA analysis is becoming widespread. These studies use polymerase chain reaction (PCR) to amplify minute quantities of heavily damaged template. Unusual steps are taken to achieve the sensitivity necessary to detect ancient DNA, including high- cycle PCR amplification t...

  7. Structural diversity of supercoiled DNA

    PubMed Central

    Irobalieva, Rossitza N.; Fogg, Jonathan M.; Catanese, Daniel J.; Sutthibutpong, Thana; Chen, Muyuan; Barker, Anna K.; Ludtke, Steven J.; Harris, Sarah A.; Schmid, Michael F.; Chiu, Wah; Zechiedrich, Lynn

    2015-01-01

    By regulating access to the genetic code, DNA supercoiling strongly affects DNA metabolism. Despite its importance, however, much about supercoiled DNA (positively supercoiled DNA, in particular) remains unknown. Here we use electron cryo-tomography together with biochemical analyses to investigate structures of individual purified DNA minicircle topoisomers with defined degrees of supercoiling. Our results reveal that each topoisomer, negative or positive, adopts a unique and surprisingly wide distribution of three-dimensional conformations. Moreover, we uncover striking differences in how the topoisomers handle torsional stress. As negative supercoiling increases, bases are increasingly exposed. Beyond a sharp supercoiling threshold, we also detect exposed bases in positively supercoiled DNA. Molecular dynamics simulations independently confirm the conformational heterogeneity and provide atomistic insight into the flexibility of supercoiled DNA. Our integrated approach reveals the three-dimensional structures of DNA that are essential for its function. PMID:26455586

  8. DNA Methylation within Transcribed Regions

    PubMed Central

    To, Taiko K.; Saze, Hidetoshi; Kakutani, Tetsuji

    2015-01-01

    DNA methylation within transcribed genes is commonly found in diverse animals and plants. Here, we provide an overview of recent advances and the remaining mystery regarding intragenic DNA methylation. PMID:26143255

  9. An Introduction to DNA Fingerprinting.

    ERIC Educational Resources Information Center

    Hepfer, Carol Ely; And Others

    1993-01-01

    Provides background information on DNA fingerprinting, and describes exercises for introducing general biology students at the high school or college level to the methodology and applications of DNA fingerprinting. (PR)

  10. The Dynamics of DNA Sequencing.

    ERIC Educational Resources Information Center

    Morvillo, Nancy

    1997-01-01

    Describes a paper-and-pencil activity that helps students understand DNA sequencing and expands student understanding of DNA structure, replication, and gel electrophoresis. Appropriate for advanced biology students who are familiar with the Sanger method. (DDR)

  11. Novel triterpenoids inhibit both DNA polymerase and DNA topoisomerase.

    PubMed Central

    Mizushina, Y; Iida, A; Ohta, K; Sugawara, F; Sakaguchi, K

    2000-01-01

    As described previously, we found that new triterpenoid compounds, designated fomitellic acids A and B, which selectively inhibit the activities of mammalian DNA polymerases alpha and beta [Mizushina, Tanaka, Kitamura, Tamai, Ikeda, Takemura, Sugawara, Arai, Matsukage, Yoshida and Sakaguchi (1998) Biochem. J. 330, 1325-1332; Tanaka, Kitamura, Mizushina, Sugawara and Sakaguchi (1998) J. Nat. Prod. 61, 193-197] and that a known triterpenoid, ursolic acid, is an inhibitor of human DNA topoisomerases I and II (A. Iida, Y. Mizushina and K. Sakaguchi, unpublished work). Here we report that all of these triterpenoids are potent inhibitors of calf DNA polymerase alpha, rat DNA polymerase beta and human DNA topoisomerases I and II, and show moderate inhibitory effects on plant DNA polymerase II and human immunodeficiency virus reverse transcriptase. However, these compounds did not influence the activities of prokaryotic DNA polymerases such as Escherichia coli DNA polymerase I or other DNA metabolic enzymes such as human telomerase, T7 RNA polymerase and bovine deoxyribonuclease I. These triterpenoids were not only mammalian DNA polymerase inhibitors but also inhibitors of DNA topoisomerases I and II even though the enzymic characteristics of DNA polymerases and DNA topoisomerases, including their modes of action, amino acid sequences and three-dimensional structures, differed markedly. These triterpenoids did not bind to DNA, suggesting that they act directly on these enzymes. Because the three-dimensional structures of fomitellic acids were shown by computer simulation to be very similar to that of ursolic acid, the DNA-binding sites of both enzymes, which compete for the inhibitors, might be very similar. Fomitellic acid A and ursolic acid prevented the growth of NUGC cancer cells, with LD(50) values of 38 and 30 microM respectively. PMID:10970789

  12. Nanostructure-induced DNA condensation

    NASA Astrophysics Data System (ADS)

    Zhou, Ting; Llizo, Axel; Wang, Chen; Xu, Guiying; Yang, Yanlian

    2013-08-01

    The control of the DNA condensation process is essential for compaction of DNA in chromatin, as well as for biological applications such as nonviral gene therapy. This review endeavours to reflect the progress of investigations on DNA condensation effects of nanostructure-based condensing agents (such as nanoparticles, nanotubes, cationic polymer and peptide agents) observed by using atomic force microscopy (AFM) and other techniques. The environmental effects on structural characteristics of nanostructure-induced DNA condensates are also discussed.

  13. Strain softening in stretched DNA

    PubMed Central

    Luan, Binquan; Aksimentiev, Aleksei

    2010-01-01

    The microscopic mechanics of DNA stretching was characterized using extensive molecular dynamics simulations. By employing an anisotropic pressure control method, realistic force-extension dependences of effectively infinite DNA molecules were obtained. A coexistence of B- and S-DNA domains was observed during the overstretching transition. The simulations revealed that strain softening may occur in the process of stretching torsionally constrained DNA. The latter observation was qualitatively reconciled with available experimental data using a random-field Ising model. PMID:18851334

  14. Efficient DNA ligation in DNA-RNA hybrid helices by Chlorella virus DNA ligase.

    PubMed

    Lohman, Gregory J S; Zhang, Yinhua; Zhelkovsky, Alexander M; Cantor, Eric J; Evans, Thomas C

    2014-02-01

    Single-stranded DNA molecules (ssDNA) annealed to an RNA splint are notoriously poor substrates for DNA ligases. Herein we report the unexpectedly efficient ligation of RNA-splinted DNA by Chlorella virus DNA ligase (PBCV-1 DNA ligase). PBCV-1 DNA ligase ligated ssDNA splinted by RNA with kcat ≈ 8 x 10(-3) s(-1) and K(M) < 1 nM at 25 °C under conditions where T4 DNA ligase produced only 5'-adenylylated DNA with a 20-fold lower kcat and a K(M) ≈ 300 nM. The rate of ligation increased with addition of Mn(2+), but was strongly inhibited by concentrations of NaCl >100 mM. Abortive adenylylation was suppressed at low ATP concentrations (<100 µM) and pH >8, leading to increased product yields. The ligation reaction was rapid for a broad range of substrate sequences, but was relatively slower for substrates with a 5'-phosphorylated dC or dG residue on the 3' side of the ligation junction. Nevertheless, PBCV-1 DNA ligase ligated all sequences tested with 10-fold less enzyme and 15-fold shorter incubation times than required when using T4 DNA ligase. Furthermore, this ligase was used in a ligation-based detection assay system to show increased sensitivity over T4 DNA ligase in the specific detection of a target mRNA.

  15. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase.

    PubMed

    Gansauge, Marie-Theres; Gerber, Tobias; Glocke, Isabelle; Korlević, Petra; Lippik, Laurin; Nagel, Sarah; Riehl, Lara Maria; Schmidt, Anna; Meyer, Matthias

    2017-01-23

    DNA library preparation for high-throughput sequencing of genomic DNA usually involves ligation of adapters to double-stranded DNA fragments. However, for highly degraded DNA, especially ancient DNA, library preparation has been found to be more efficient if each of the two DNA strands are converted into library molecules separately. We present a new method for single-stranded library preparation, ssDNA2.0, which is based on single-stranded DNA ligation with T4 DNA ligase utilizing a splinter oligonucleotide with a stretch of random bases hybridized to a 3' biotinylated donor oligonucleotide. A thorough evaluation of this ligation scheme shows that single-stranded DNA can be ligated to adapter oligonucleotides in higher concentration than with CircLigase (an RNA ligase that was previously chosen for end-to-end ligation in single-stranded library preparation) and that biases in ligation can be minimized when choosing splinters with 7 or 8 random nucleotides. We show that ssDNA2.0 tolerates higher quantities of input DNA than CircLigase-based library preparation, is less costly and better compatible with automation. We also provide an in-depth comparison of library preparation methods on degraded DNA from various sources. Most strikingly, we find that single-stranded library preparation increases library yields from tissues stored in formalin for many years by several orders of magnitude.

  16. DNA Origami-Graphene Hybrid Nanopore for DNA Detection.

    PubMed

    Barati Farimani, Amir; Dibaeinia, Payam; Aluru, Narayana R

    2017-01-11

    DNA origami nanostructures can be used to functionalize solid-state nanopores for single molecule studies. In this study, we characterized a nanopore in a DNA origami-graphene heterostructure for DNA detection. The DNA origami nanopore is functionalized with a specific nucleotide type at the edge of the pore. Using extensive molecular dynamics (MD) simulations, we computed and analyzed the ionic conductivity of nanopores in heterostructures carpeted with one or two layers of DNA origami on graphene. We demonstrate that a nanopore in DNA origami-graphene gives rise to distinguishable dwell times for the four DNA base types, whereas for a nanopore in bare graphene, the dwell time is almost the same for all types of bases. The specific interactions (hydrogen bonds) between DNA origami and the translocating DNA strand yield different residence times and ionic currents. We also conclude that the speed of DNA translocation decreases due to the friction between the dangling bases at the pore mouth and the sequencing DNA strands.

  17. A survey of DNA diagnostic laboratories regarding DNA banking.

    PubMed

    McEwen, J E; Reilly, P R

    1995-06-01

    This article reports the findings of a survey of 148 academically based and commercial DNA diagnostic labs regarding DNA banking (defined as the storage of individual DNA samples in some form with identifiers for later retrieval). The population surveyed consisted of all laboratories listed with HELIX, a national directory of DNA diagnostic labs that includes a fairly comprehensive listing of clinical service labs as well as a large number of research labs. The survey was concerned primarily with the legal and ethical issues that the long-term storage of DNA may raise. The survey inquired into the respondents' policies and procedures concerning (1) the extent of DNA banking and of interest in developing DNA banking in academia and industry and (2) the degree to which DNA banks had developed written internal policies and/or a written depositor's agreement (a signed document defining the rights and obligations of the person from whom the sample was taken and the bank) designed to anticipate or prevent some of the ethical and legal problems that can arise from the long-term retention of DNA. Our research suggests that (1) the activity of DNA banking is growing, particularly in the academic setting, and (2) most academically based DNA banks lack written internal policies, written depositor's agreements, or other relevant documentation regarding important aspects of this activity.

  18. Production of random DNA oligomers for scalable DNA computing.

    PubMed

    Wang, Sixue S L; Johnson, John J X; Hughes, Bradley S T; Karabay, Dundar A O; Bader, Karson D W; Austin, Allen; Austin, Alan; Habib, Aisha; Hatef, Husnia; Joshi, Megha; Nguyen, Lawrence; Mills, Allen P

    2009-01-01

    While remarkably complex networks of connected DNA molecules can form from a relatively small number of distinct oligomer strands, a large computational space created by DNA reactions would ultimately require the use of many distinct DNA strands. The automatic synthesis of this many distinct strands is economically prohibitive. We present here a new approach to producing distinct DNA oligomers based on the polymerase chain reaction (PCR) amplification of a few random template sequences. As an example, we designed a DNA template sequence consisting of a 50-mer random DNA segment flanked by two 20-mer invariant primer sequences. Amplification of a dilute sample containing about 30 different template molecules allows us to obtain around 10(11) copies of these molecules and their complements. We demonstrate the use of these amplicons to implement some of the vector operations that will be required in a DNA implementation of an analog neural network.

  19. Molecular Motors from DNA

    NASA Astrophysics Data System (ADS)

    Turberfield, Andrew

    2013-03-01

    DNA is a wonderful material for nanoscale construction: its self-assembly can be programmed by making use of its information-carrying capability and its hybridization or hydrolysis can be used as to provide energy for synthetic molecular machinery. With DNA it is possible to design and build three-dimensional scaffolds, to attach molecular components to them with sub-nanometre precision-and then to make them move. I shall describe our work on autonomous, biomimetic molecular motors powered by chemical fuels and the use of synthetic molecular machinery to control covalent chemical synthesis. I shall demonstrate bipedal motors whose operation depends on the coordination of the chemomechanical cycles of two separate catalytic centres and burnt bridges motors that can be programmed to navigate networks of tracks. I shall also discuss the use of kinesin motor proteins to power synthetic devices.

  20. Fleet DNA (Presentation)

    SciTech Connect

    Walkokwicz, K.; Duran, A.

    2014-06-01

    The Fleet DNA project objectives include capturing and quantifying drive cycle and technology variation for the multitude of medium- and heavy-duty vocations; providing a common data storage warehouse for medium- and heavy-duty vehicle fleet data across DOE activities and laboratories; and integrating existing DOE tools, models, and analyses to provide data-driven decision making capabilities. Fleet DNA advantages include: for Government - providing in-use data for standard drive cycle development, R&D, tech targets, and rule making; for OEMs - real-world usage datasets provide concrete examples of customer use profiles; for fleets - vocational datasets help illustrate how to maximize return on technology investments; for Funding Agencies - ways are revealed to optimize the impact of financial incentive offers; and for researchers -a data source is provided for modeling and simulation.

  1. Counterintuitive DNA Sequence Dependence in Supercoiling-Induced DNA Melting

    PubMed Central

    Vlijm, Rifka; v.d. Torre, Jaco; Dekker, Cees

    2015-01-01

    The metabolism of DNA in cells relies on the balance between hybridized double-stranded DNA (dsDNA) and local de-hybridized regions of ssDNA that provide access to binding proteins. Traditional melting experiments, in which short pieces of dsDNA are heated up until the point of melting into ssDNA, have determined that AT-rich sequences have a lower binding energy than GC-rich sequences. In cells, however, the double-stranded backbone of DNA is destabilized by negative supercoiling, and not by temperature. To investigate what the effect of GC content is on DNA melting induced by negative supercoiling, we studied DNA molecules with a GC content ranging from 38% to 77%, using single-molecule magnetic tweezer measurements in which the length of a single DNA molecule is measured as a function of applied stretching force and supercoiling density. At low force (<0.5pN), supercoiling results into twisting of the dsDNA backbone and loop formation (plectonemes), without inducing any DNA melting. This process was not influenced by the DNA sequence. When negative supercoiling is introduced at increasing force, local melting of DNA is introduced. We measured for the different DNA molecules a characteristic force Fchar, at which negative supercoiling induces local melting of the dsDNA. Surprisingly, GC-rich sequences melt at lower forces than AT-rich sequences: Fchar = 0.56pN for 77% GC but 0.73pN for 38% GC. An explanation for this counterintuitive effect is provided by the realization that supercoiling densities of a few percent only induce melting of a few percent of the base pairs. As a consequence, denaturation bubbles occur in local AT-rich regions and the sequence-dependent effect arises from an increased DNA bending/torsional energy associated with the plectonemes. This new insight indicates that an increased GC-content adjacent to AT-rich DNA regions will enhance local opening of the double-stranded DNA helix. PMID:26513573

  2. DNA strand breaks: the DNA template alterations that trigger p53-dependent DNA damage response pathways.

    PubMed Central

    Nelson, W G; Kastan, M B

    1994-01-01

    The tumor suppressor protein p53 serves as a critical regulator of a G1 cell cycle checkpoint and of apoptosis following exposure of cells to DNA-damaging agents. The mechanism by which DNA-damaging agents elevate p53 protein levels to trigger G1/S arrest or cell death remains to be elucidated. In fact, whether damage to the DNA template itself participates in transducing the signal leading to p53 induction has not yet been demonstrated. We exposed human cell lines containing wild-type p53 alleles to several different DNA-damaging agents and found that agents which rapidly induce DNA strand breaks, such as ionizing radiation, bleomycin, and DNA topoisomerase-targeted drugs, rapidly triggered p53 protein elevations. In addition, we determined that camptothecin-stimulated trapping of topoisomerase I-DNA complexes was not sufficient to elevate p53 protein levels; rather, replication-associated DNA strand breaks were required. Furthermore, treatment of cells with the antimetabolite N(phosphonoacetyl)-L-aspartate (PALA) did not cause rapid p53 protein increases but resulted in delayed increases in p53 protein levels temporally correlated with the appearance of DNA strand breaks. Finally, we concluded that DNA strand breaks were sufficient for initiating p53-dependent signal transduction after finding that introduction of nucleases into cells by electroporation stimulated rapid p53 protein elevations. While DNA strand breaks appeared to be capable of triggering p53 induction, DNA lesions other than strand breaks did not. Exposure of normal cells and excision repair-deficient xeroderma pigmentosum cells to low doses of UV light, under conditions in which thymine dimers appear but DNA replication-associated strand breaks were prevented, resulted in p53 induction attributable to DNA strand breaks associated with excision repair. Our data indicate that DNA strand breaks are sufficient and probably necessary for p53 induction in cells with wild-type p53 alleles exposed to DNA

  3. Geant4-DNA simulations using complex DNA geometries generated by the DnaFabric tool

    NASA Astrophysics Data System (ADS)

    Meylan, S.; Vimont, U.; Incerti, S.; Clairand, I.; Villagrasa, C.

    2016-07-01

    Several DNA representations are used to study radio-induced complex DNA damages depending on the approach and the required level of granularity. Among all approaches, the mechanistic one requires the most resolved DNA models that can go down to atomistic DNA descriptions. The complexity of such DNA models make them hard to modify and adapt in order to take into account different biological conditions. The DnaFabric project was started to provide a tool to generate, visualise and modify such complex DNA models. In the current version of DnaFabric, the models can be exported to the Geant4 code to be used as targets in the Monte Carlo simulation. In this work, the project was used to generate two DNA fibre models corresponding to two DNA compaction levels representing the hetero and the euchromatin. The fibres were imported in a Geant4 application where computations were performed to estimate the influence of the DNA compaction on the amount of calculated DNA damage. The relative difference of the DNA damage computed in the two fibres for the same number of projectiles was found to be constant and equal to 1.3 for the considered primary particles (protons from 300 keV to 50 MeV). However, if only the tracks hitting the DNA target are taken into account, then the relative difference is more important for low energies and decreases to reach zero around 10 MeV. The computations were performed with models that contain up to 18,000 DNA nucleotide pairs. Nevertheless, DnaFabric will be extended to manipulate multi-scale models that go from the molecular to the cellular levels.

  4. Epigenetics of Ancient DNA

    PubMed Central

    Zhenilo, S. V.; Sokolov, A.S.; Prokhortchouk, E. B.

    2016-01-01

    Initially, the study of DNA isolated from ancient specimens had been based on the analysis of the primary nucleotide sequence. This approach has allowed researchers to study the evolutionary changes that occur in different populations and determine the influence of the environment on genetic selection. However, the improvement of methodological approaches to genome-wide analysis has opened up new possibilities in the search for the epigenetic mechanisms involved in the regulation of gene expression. It was discovered recently that the methylation status of the regulatory elements of the HOXD cluster and MEIS1 gene changed during human evolution. Epigenetic changes in these genes played a key role in the evolution of the limbs of modern humans. Recent works have demonstrated that it is possible to determine the transcriptional activity of genes in ancient DNA samples by combining information on DNA methylation and the DNAaseI hypersensitive sequences located at the transcription start sites of genes. In the nearest future, if a preserved fossils brain is found, it will be possible to identify the evolutionary changes in the higher nervous system associated with epigenetic differences. PMID:27795845

  5. DNA nanotechnology and fluorescence applications.

    PubMed

    Schlichthaerle, Thomas; Strauss, Maximilian T; Schueder, Florian; Woehrstein, Johannes B; Jungmann, Ralf

    2016-06-01

    Structural DNA nanotechnology allow researchers to use the unique molecular recognition properties of DNA strands to construct nanoscale objects with almost arbitrary complexity in two and three dimensions. Abstracted as molecular breadboards, DNA nanostructures enable nanometer-precise placement of guest molecules such as proteins, fluorophores, or nanoparticles. These assemblies can be used to study biological phenomena with unprecedented control over number, spacing, and molecular identity. Here, we give a general introduction to structural DNA nanotechnology and more specifically discuss applications of DNA nanostructures in the field of fluorescence and plasmonics.

  6. Temperature Shift Alters DNA Methylation and Histone Modification Patterns in Gonadal Aromatase (cyp19a1) Gene in Species with Temperature-Dependent Sex Determination

    PubMed Central

    Hannigan, Brette; Crews, David

    2016-01-01

    The environment surrounding the embryos has a profound impact on the developmental process and phenotypic outcomes of the organism. In species with temperature-dependent sex determination, gonadal sex is determined by the incubation temperature of the eggs. A mechanistic link between temperature and transcriptional regulation of developmental genes, however, remains elusive. In this study, we examine the changes in DNA methylation and histone modification patterns of the aromatase (cyp19a1) gene in embryonic gonads of red-eared slider turtles (Trachemys scripta) subjected to a temperature shift during development. Shifting embryos from a male-producing temperature (MPT) to a female-producing temperature (FPT) at the beginning of the temperature-sensitive period (TSP) resulted in an increase in aromatase mRNA expression while a shift from FPT to MPT resulted in decreased expression. DNA methylation levels at CpG sites in the promoter of the aromatase gene were high (70–90%) at the beginning of TSP, but decreased in embryos that were incubated at constant FPT and those shifted from MPT to the FPT. This decrease in methylation in the promoter inversely correlated with the expected increase in aromatase expression at the FPT. The active demethylation under the FPT was especially prominent at the CpG site upstream of the gonad-specific TATA box at the beginning of TSP and spread downstream of the gene including exon1 as the gonad development progressed. In embryos incubated at FPT, the promoter region was also labeled by canonical transcriptional activation markers, H3K4me3 and RNA polymerase II. A transcriptional repression marker, H3K27me3, was observed in temperature-shifted gonads of both temperature groups, but was not maintained throughout the development in either group. Our findings suggest that DNA hypomethylation and H3K4me3 modification at the aromatase promoter may be a primary mechanism that releases a transcriptional block of aromatase to initiate a

  7. Temperature Shift Alters DNA Methylation and Histone Modification Patterns in Gonadal Aromatase (cyp19a1) Gene in Species with Temperature-Dependent Sex Determination.

    PubMed

    Matsumoto, Yuiko; Hannigan, Brette; Crews, David

    2016-01-01

    The environment surrounding the embryos has a profound impact on the developmental process and phenotypic outcomes of the organism. In species with temperature-dependent sex determination, gonadal sex is determined by the incubation temperature of the eggs. A mechanistic link between temperature and transcriptional regulation of developmental genes, however, remains elusive. In this study, we examine the changes in DNA methylation and histone modification patterns of the aromatase (cyp19a1) gene in embryonic gonads of red-eared slider turtles (Trachemys scripta) subjected to a temperature shift during development. Shifting embryos from a male-producing temperature (MPT) to a female-producing temperature (FPT) at the beginning of the temperature-sensitive period (TSP) resulted in an increase in aromatase mRNA expression while a shift from FPT to MPT resulted in decreased expression. DNA methylation levels at CpG sites in the promoter of the aromatase gene were high (70-90%) at the beginning of TSP, but decreased in embryos that were incubated at constant FPT and those shifted from MPT to the FPT. This decrease in methylation in the promoter inversely correlated with the expected increase in aromatase expression at the FPT. The active demethylation under the FPT was especially prominent at the CpG site upstream of the gonad-specific TATA box at the beginning of TSP and spread downstream of the gene including exon1 as the gonad development progressed. In embryos incubated at FPT, the promoter region was also labeled by canonical transcriptional activation markers, H3K4me3 and RNA polymerase II. A transcriptional repression marker, H3K27me3, was observed in temperature-shifted gonads of both temperature groups, but was not maintained throughout the development in either group. Our findings suggest that DNA hypomethylation and H3K4me3 modification at the aromatase promoter may be a primary mechanism that releases a transcriptional block of aromatase to initiate a

  8. DNA-based soft phases.

    PubMed

    Bellini, Tommaso; Cerbino, Roberto; Zanchetta, Giuliano

    2012-01-01

    This chapter reviews the state-of-the-art in the study of molecular or colloidal systems whose mutual interactions are mediated by DNA molecules. In the last decade, the robust current knowledge of DNA interactions has enabled an impressive growth of self-assembled DNA-based structures that depend crucially on the properties of DNA-DNA interactions. In many cases, structures are built on design by exploiting the programmable selectivity of DNA interactions and the modularity of their strength. The study of DNA-based materials is definitely an emerging field in condensed matter physics, nanotechnology, and material science. This chapter will consider both systems that are entirely constructed by DNA and hybrid systems in which latex or metal colloidal particles are coated by DNA strands. We will confine our discussion to systems in which DNA-mediated interactions promote the formation of "phases," that is structures extending on length scales much larger than the building blocks. Their self-assembly typically involves a large number of interacting particles and often features hierarchical stages of structuring. Because of the possibility of fine-tuning the geometry and strength of the DNA-mediated interactions, these systems are characterized by a wide variety of patterns of self-assembly, ranging from amorphous, to liquid crystalline, to crystalline in one, two, or three dimensions.

  9. Fragmentation of DNA by sonication.

    PubMed

    Sambrook, Joseph; Russell, David W

    2006-09-01

    INTRODUCTIONDNA fragmentation is often necessary prior to library construction or subcloning for DNA sequencing. This protocol describes a method for DNA fragmentation by sonication. During sonication, DNA samples are subjected to hydrodynamic shearing by exposure to brief periods of sonication. DNA that has been sonicated for excessive periods of time is extremely difficult to clone. Most sonicators will not shear DNA to a size of less than 300-500 bp, and it is tempting to continue sonication until the entire DNA population has been reduced in size. However, the yield of subclones is usually greater if sonication is stopped when the fragments of the target DNA first reach a size of ~700 bp.

  10. DNA Methylation and Cancer Diagnosis

    PubMed Central

    Delpu, Yannick; Cordelier, Pierre; Cho, William C.; Torrisani, Jérôme

    2013-01-01

    DNA methylation is a major epigenetic modification that is strongly involved in the physiological control of genome expression. DNA methylation patterns are largely modified in cancer cells and can therefore be used to distinguish cancer cells from normal tissues. This review describes the main technologies available for the detection and the discovery of aberrantly methylated DNA patterns. It also presents the different sources of biological samples suitable for DNA methylation studies. We discuss the interest and perspectives on the use of DNA methylation measurements for cancer diagnosis through examples of methylated genes commonly documented in the literature. The discussion leads to our consideration for why DNA methylation is not commonly used in clinical practice through an examination of the main requirements that constitute a reliable biomarker. Finally, we describe the main DNA methylation inhibitors currently used in clinical trials and those that exhibit promising results. PMID:23873296

  11. Cinnamate-based DNA photolithography

    NASA Astrophysics Data System (ADS)

    Feng, Lang; Romulus, Joy; Li, Minfeng; Sha, Ruojie; Royer, John; Wu, Kun-Ta; Xu, Qin; Seeman, Nadrian C.; Weck, Marcus; Chaikin, Paul

    2013-08-01

    As demonstrated by means of DNA nanoconstructs, as well as DNA functionalization of nanoparticles and micrometre-scale colloids, complex self-assembly processes require components to associate with particular partners in a programmable fashion. In many cases the reversibility of the interactions between complementary DNA sequences is an advantage. However, permanently bonding some or all of the complementary pairs may allow for flexibility in design and construction. Here, we show that the substitution of a cinnamate group for a pair of complementary bases provides an efficient, addressable, ultraviolet light-based method to bond complementary DNA covalently. To show the potential of this approach, we wrote micrometre-scale patterns on a surface using ultraviolet light and demonstrated the reversible attachment of conjugated DNA and DNA-coated colloids. Our strategy enables both functional DNA photolithography and multistep, specific binding in self-assembly processes.

  12. Ancient DNA extraction from plants.

    PubMed

    Kistler, Logan

    2012-01-01

    A variety of protocols for DNA extraction from archaeological and paleobotanical plant specimens have been proposed. This is not surprising given the range of taxa and tissue types that may be preserved and the variety of conditions in which that preservation may take place. Commercially available DNA extraction kits can be used to recover ancient plant DNA, but modifications to standard approaches are often necessary to improve yield. In this chapter, I describe two protocols for extracting DNA from small amounts of ancient plant tissue. The CTAB protocol, which I recommend for use with single seeds, utilizes an incubation period in extraction buffer and subsequent chloroform extraction followed by DNA purification and suspension. The PTB protocol, which I recommend for use with gourd rind and similar tissues, utilizes an overnight incubation of pulverized tissue in extraction buffer, removal of the tissue by centrifugation, and DNA extraction from the buffer using commercial plant DNA extraction kits.

  13. Forensic trace DNA: a review

    PubMed Central

    2010-01-01

    DNA analysis is frequently used to acquire information from biological material to aid enquiries associated with criminal offences, disaster victim identification and missing persons investigations. As the relevance and value of DNA profiling to forensic investigations has increased, so too has the desire to generate this information from smaller amounts of DNA. Trace DNA samples may be defined as any sample which falls below recommended thresholds at any stage of the analysis, from sample detection through to profile interpretation, and can not be defined by a precise picogram amount. Here we review aspects associated with the collection, DNA extraction, amplification, profiling and interpretation of trace DNA samples. Contamination and transfer issues are also briefly discussed within the context of trace DNA analysis. Whilst several methodological changes have facilitated profiling from trace samples in recent years it is also clear that many opportunities exist for further improvements. PMID:21122102

  14. Functionalizing Designer DNA Crystals

    NASA Astrophysics Data System (ADS)

    Chandrasekaran, Arun Richard

    Three-dimensional crystals have been self-assembled from a DNA tensegrity triangle via sticky end interaction. The tensegrity triangle is a rigid DNA motif containing three double helical edges connected pair-wise by three four-arm junctions. The symmetric triangle contains 3 unique strands combined in a 3:3:1 ratio: 3 crossover, 3 helical and 1 central. The length of the sticky end reported previously was two nucleotides (nt) (GA:TC) and the motif with 2-helical turns of DNA per edge diffracted to 4.9 A at beam line NSLS-X25 and to 4 A at beam line ID19 at APS. The purpose of these self-assembled DNA crystals is that they can be used as a framework for hosting external guests for use in crystallographic structure solving or the periodic positioning of molecules for nanoelectronics. This thesis describes strategies to improve the resolution and to incorporate guests into the 3D lattice. The first chapter describes the effect of varying sticky end lengths and the influence of 5'-phosphate addition on crystal formation and resolution. X-ray diffraction data from beam line NSLS-X25 revealed that the crystal resolution for 1-nt (G:C) sticky end was 3.4 A. Motifs with every possible combination of 1-nt and 2-nt sticky-ended phosphorylated strands were crystallized and X-ray data were collected. The position of the 5'-phosphate on either the crossover (strand 1), helical (strand 2), or central strand (3) had an impact on the resolution of the self-assembled crystals with the 1-nt 1P-2-3 system diffracting to 2.62 A at APS and 3.1 A at NSLS-X25. The second chapter describes the sequence-specific recognition of DNA motifs with triplex-forming oligonucleotides (TFOs). This study examined the feasibility of using TFOs to bind to specific locations within a 3-turn DNA tensegrity triangle motif. The TFO 5'-TTCTTTCTTCTCT was used to target the tensegrity motif containing an appropriately embedded oligopurine.oligopyrimidine binding site. As triplex formation involving cytidine

  15. Multivalent Lipid--DNA Complexes: Distinct DNA Compaction Regimes

    NASA Astrophysics Data System (ADS)

    Evans, Heather M.; Ahmad, A.; Ewert, K.; Safinya, C. R.

    2004-03-01

    Cationic liposomes (CL), while intrinsically advantageous in comparison to viruses, still have limited success for gene therapy and require more study. CL spontaneously self-assemble with DNA via counterion release, forming small particles approximately 200nm in diameter. X-ray diffraction reveals CL-DNA structures that are typically a multilamellar organization of lipids with DNA intercalated between the layers. We explore the structural properties of CL-DNA complexes formed with new multivalent lipids (Ewert et al, J. Med. Chem. 2002; 45:5023) that range from 2+ to 16+. Contrary to a simple prediction for the DNA interaxial spacing d_DNA based on a geometrical space-filling model, these lipids show dramatic DNA compaction, down to d_DNA ˜ 25 ÅVariations in the membrane charge density, σ _M, lead to distinct spacing regimes. We propose that this DNA condensation is controlled by a unique locking mechanism between the DNA double helix and the large, multivalent lipid head groups. Funded by NSF DMR-0203755 and NIH GM-59288.

  16. Touch DNA-The prospect of DNA profiles from cables.

    PubMed

    Lim, Sharon; Subhani, Zuhaib; Daniel, Barbara; Frascione, Nunzianda

    2016-05-01

    Metal theft in the railroad industry poses significant challenges to transport investigators. Cable sheaths left behind at crime scenes, if appropriately analysed, could provide valuable evidence in a forensic investigation, but attempts at recovering DNA are not routinely made. Experiments were set up to ascertain the success in DNA recovery from the surface of cable sheaths after deposition of (a) sweat, (b) extracted DNA and (c) fingermarks. Since investigators try to collect fingermarks and often treat the cables with cyanoacrylate fuming (CNA fuming) or wet powder suspensions (WPS) to enhance the marks this study investigated the recovery of DNA from fingermarks pre- and post-enhancement. The double-swab technique and mini-taping were compared as options to recover DNA from the cable sheaths. Results demonstrate that generally, there is no significant difference between using swabs or mini-tapes to recover the DNA from the non-porous cables (p>0.05). It was also illustrated that CNA fuming performed better than WPS in terms of subsequent recovery and profiling of DNA. CNA fuming resulted in an average increase in DNA recovered via swabbing and taping (more than 4× and 8×, respectively), as compared to no treatment, with 50% of the DNA recovered after CNA fuming generating full DNA profiles.

  17. Sequence and Structure Dependent DNA-DNA Interactions

    NASA Astrophysics Data System (ADS)

    Kopchick, Benjamin; Qiu, Xiangyun

    Molecular forces between dsDNA strands are largely dominated by electrostatics and have been extensively studied. Quantitative knowledge has been accumulated on how DNA-DNA interactions are modulated by varied biological constituents such as ions, cationic ligands, and proteins. Despite its central role in biology, the sequence of DNA has not received substantial attention and ``random'' DNA sequences are typically used in biophysical studies. However, ~50% of human genome is composed of non-random-sequence DNAs, particularly repetitive sequences. Furthermore, covalent modifications of DNA such as methylation play key roles in gene functions. Such DNAs with specific sequences or modifications often take on structures other than the canonical B-form. Here we present series of quantitative measurements of the DNA-DNA forces with the osmotic stress method on different DNA sequences, from short repeats to the most frequent sequences in genome, and to modifications such as bromination and methylation. We observe peculiar behaviors that appear to be strongly correlated with the incurred structural changes. We speculate the causalities in terms of the differences in hydration shell and DNA surface structures.

  18. DNA-mediated charge transport for DNA repair

    PubMed Central

    Boon, Elizabeth M.; Livingston, Alison L.; Chmiel, Nikolas H.; David, Sheila S.; Barton, Jacqueline K.

    2003-01-01

    MutY, like many DNA base excision repair enzymes, contains a [4Fe4S]2+ cluster of undetermined function. Electrochemical studies of MutY bound to a DNA-modified gold electrode demonstrate that the [4Fe4S] cluster of MutY can be accessed in a DNA-mediated redox reaction. Although not detectable without DNA, the redox potential of DNA-bound MutY is ≈275 mV versus NHE, which is characteristic of HiPiP iron proteins. Binding to DNA is thus associated with a change in [4Fe4S]3+/2+ potential, activating the cluster toward oxidation. Given that DNA charge transport chemistry is exquisitely sensitive to perturbations in base pair structure, such as mismatches, we propose that this redox process of MutY bound to DNA exploits DNA charge transport and provides a DNA signaling mechanism to scan for mismatches and lesions in vivo. PMID:14559969

  19. Acetylation of Werner syndrome protein (WRN): relationships with DNA damage, DNA replication and DNA metabolic activities

    PubMed Central

    Lozada, Enerlyn; Yi, Jingjie; Luo, Jianyuan; Orren, David K.

    2014-01-01

    Loss of WRN function causes Werner Syndrome, characterized by increased genomic instability, elevated cancer susceptibility and premature aging. Although WRN is subject to acetylation, phosphorylation and sumoylation, the impact of these modifications on WRN’s DNA metabolic function remains unclear. Here, we examined in further depth the relationship between WRN acetylation and its role in DNA metabolism, particularly in response to induced DNA damage. Our results demonstrate that endogenous WRN is acetylated somewhat under unperturbed conditions. However, levels of acetylated WRN significantly increase after treatment with certain DNA damaging agents or the replication inhibitor hydroxyurea. Use of DNA repair-deficient cells or repair pathway inhibitors further increase levels of acetylated WRN, indicating that induced DNA lesions and their persistence are at least partly responsible for increased acetylation. Notably, acetylation of WRN correlates with inhibition of DNA synthesis, suggesting that replication blockage might underlie this effect. Moreover, WRN acetylation modulates its affinity for and activity on certain DNA structures, in a manner that may enhance its relative specificity for physiological substrates. Our results also show that acetylation and deacetylation of endogenous WRN is a dynamic process, with sirtuins and other histone deacetylases contributing to WRN deacetylation. These findings advance our understanding of the dynamics of WRN acetylation under unperturbed conditions and following DNA damage induction, linking this modification not only to DNA damage persistence but also potentially to replication stalling caused by specific DNA lesions. Our results are consistent with proposed metabolic roles for WRN and genomic instability phenotypes associated with WRN deficiency. PMID:24965941

  20. Chiral DNA packaging in DNA-cationic liposome assemblies.

    PubMed

    Zuidam, N J; Barenholz, Y; Minsky, A

    1999-09-03

    Recent studies have indicated that the structural features of DNA-lipid assemblies, dictated by the lipid composition and cationic lipid-to-DNA ratio, critically affect the efficiency of these complexes in acting as vehicles for cellular delivery of genetic material. Using circular dichroism we find that upon binding DNA, positively-charged liposomes induce a secondary conformational transition of the DNA molecules from the native B form to the C motif. Liposomes composed of positively-charged and neutral 'helper' lipids, found to be particularly effective as transfecting agents, induce - in addition to secondary conformational changes - DNA condensation into a left-handed cholesteric-like phase. A structural model is presented according to which two distinct, yet inter-related modes of DNA packaging coexist within such assemblies. The results underline the notion that subtle changes in the components of a supramolecular assembly may substantially modulate the interplay of interactions which dictate its structure and functional properties.

  1. Quantification of DNA photoproducts in mammalian cell DNA using radioimmunoassay.

    PubMed

    Berton, Thomas R; Mitchell, David L

    2012-01-01

    Over the past 25 years, the use of polyclonal and monoclonal antibodies to quantify DNA damage has burgeoned. Immunoassays offer distinct advantages over other analytical procedures currently used to measure DNA damage including adaptability, sensitivity, and selectivity. This combination of attributes allows for the development of powerful analytical techniques to visualize and quantify specific types of DNA damage in cells, tissue, and organisms exposed to subtoxic levels of xenobiotics with distinct advantages over the other procedures in the analysis of DNA damage in human and environmental samples. Radioimmunoassay (RIA) is readily applied to a variety of biological materials and has typically been used to measure DNA damage in cell and organ cultures, tissue sections and biopsies, buccal cells, bone marrow aspirates, peripheral blood lymphocytes, and urine. Here we describe the use of a very sensitive RIA for the specific quantitation of cyclobutane dimers and (6-4) photoproducts in DNA extracted from mammalian cells and tissues.

  2. Topological Behavior of Plasmid DNA.

    PubMed

    Higgins, N Patrick; Vologodskii, Alexander V

    2015-04-01

    The discovery of the B-form structure of DNA by Watson and Crick led to an explosion of research on nucleic acids in the fields of biochemistry, biophysics, and genetics. Powerful techniques were developed to reveal a myriad of different structural conformations that change B-DNA as it is transcribed, replicated, and recombined and as sister chromosomes are moved into new daughter cell compartments during cell division. This article links the original discoveries of superhelical structure and molecular topology to non-B form DNA structure and contemporary biochemical and biophysical techniques. The emphasis is on the power of plasmids for studying DNA structure and function. The conditions that trigger the formation of alternative DNA structures such as left-handed Z-DNA, inter- and intra-molecular triplexes, triple-stranded DNA, and linked catenanes and hemicatenanes are explained. The DNA dynamics and topological issues are detailed for stalled replication forks and for torsional and structural changes on DNA in front of and behind a transcription complex and a replisome. The complex and interconnected roles of topoisomerases and abundant small nucleoid association proteins are explained. And methods are described for comparing in vivo and in vitro reactions to probe and understand the temporal pathways of DNA and chromosome chemistry that occur inside living cells.

  3. Mitochondrial DNA maintenance: an appraisal.

    PubMed

    Akhmedov, Alexander T; Marín-García, José

    2015-11-01

    Mitochondria play a crucial role in a variety of cellular processes ranging from energy metabolism, generation of reactive oxygen species (ROS), and Ca(2+) handling to stress responses, cell survival, and death. Malfunction of the organelle may contribute to the pathogenesis of neuromuscular disorders, cancer, premature aging, and cardiovascular diseases, including myocardial ischemia, cardiomyopathy, and heart failure. Mitochondria are unique as they contain their own genome organized into DNA-protein complexes, so-called mitochondrial nucleoids, along with multiprotein machineries, which promote mitochondrial DNA (mtDNA) replication, transcription, and repair. Although the organelle possesses almost all known nuclear DNA repair pathways, including base excision repair, mismatch repair, and recombinational repair, the proximity of mtDNA to the main sites of ROS production and the lack of protective histones may result in increased susceptibility to oxidative stress and other types of mtDNA damage. Defects in the components of these highly organized machineries, which mediate mtDNA maintenance (replication and repair), may result in accumulation of point mutations and/or deletions in mtDNA and decreased mtDNA copy number impairing mitochondrial function. This review will focus on the mechanisms of mtDNA maintenance with emphasis on the proteins implicated in these processes and their functional role in various disease conditions and aging.

  4. Ultrasensitive fluorescence detection of DNA

    SciTech Connect

    Mathies, R.A.; Glazer, A.N.

    1992-01-01

    We have shown that a number of polycationic highly fluorescent dyes form complexes with double-stranded DNA (dsDNA) which are stable to electrophoresis and have characterized in detail such dsDNA complexes with TOTO (1,1[prime]-(4,4,7,7-tetramethyl-4,7-diazaundecamethylene)-bis-4-[3-methyl-2,3-dihydro-(benzo-1,3-thiazole)-2-methylidene]-quinolinium tetraiodide) and oxazole yellow dimer (YOYO; an analogue of TOTO with a benzo-1,3-oxazole in place of the benzo-1,3-thiazole). TOTO and YOYO are virtually non-fluorescent in solution, but form highly fluorescent complexes with dsDNA, up to a maximum dye to DNA bp ratio of 1:4, with >1000-fold fluorescence enhancement. We have developed an assay using YOYO for the quantitation of single-stranded and dsDNA in solution applicable over a range of DNA concentrations from 0.5 to 100 ng per ml. The fluorescent dsDNA-dye complexes allow detection of dsDNA on agarose and acrylamide gels with picogram sensitivity. We have applied these complexes in multiplex mapping experiments for accurate sizing and quantitation of restriction fragments. We have shown that in gel shift experiments the stable dsDNA-dye complexes can be used to detect heteroduplex-Muts complexes with a sensitivity comparable to radioisotopic detection.

  5. DNA logic gates.

    PubMed

    Okamoto, Akimitsu; Tanaka, Kazuo; Saito, Isao

    2004-08-04

    A conceptually new logic gate based on DNA has been devised. Methoxybenzodeazaadenine ((MD)A), an artificial nucleobase which we recently developed for efficient hole transport through DNA, formed stable base pairs with T and C. However, a reasonable hole-transport efficiency was observed in the reaction for the duplex containing an (MD)A/T base pair, whereas the hole transport was strongly suppressed in the reaction using a duplex where the base opposite (MD)A was replaced by C. The influence of complementary pyrimidines on the efficiency of hole transport through (MD)A was quite contrary to the selectivity observed for hole transport through G. The orthogonality of the modulation of these hole-transport properties by complementary pyrimidine bases is promising for the design of a new molecular logic gate. The logic gate system was executed by hole transport through short DNA duplexes, which consisted of the "logic gate strand", containing hole-transporting nucleobases, and the "input strand", containing pyrimidines which modulate the hole-transport efficiency of logic bases. A logic gate strand containing multiple (MD)A bases in series provided the basis for a sharp AND logic action. On the other hand, for OR logic and combinational logic, conversion of Boolean expressions to standard sum-of-product (SOP) expressions was indispensable. Three logic gate strands were designed for OR logic according to each product term in the standard SOP expression of OR logic. The hole-transport efficiency observed for the mixed sample of logic gate strands exhibited an OR logic behavior. This approach is generally applicable to the design of other complicated combinational logic circuits such as the full-adder.

  6. Using DNA looping to measure sequence dependent DNA elasticity

    NASA Astrophysics Data System (ADS)

    Kandinov, Alan; Raghunathan, Krishnan; Meiners, Jens-Christian

    2012-10-01

    We are using tethered particle motion (TPM) microscopy to observe protein-mediated DNA looping in the lactose repressor system in DNA constructs with varying AT / CG content. We use these data to determine the persistence length of the DNA as a function of its sequence content and compare the data to direct micromechanical measurements with constant-force axial optical tweezers. The data from the TPM experiments show a much smaller sequence effect on the persistence length than the optical tweezers experiments.

  7. DNA-based watermarks using the DNA-Crypt algorithm

    PubMed Central

    Heider, Dominik; Barnekow, Angelika

    2007-01-01

    Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434

  8. DNA reviews: the national DNA database of the United Kingdom.

    PubMed

    Graham, E A M

    2007-12-01

    The national DNA database in United Kingdom has now been operational for over 10 years. This review looks at the history and development of this investigative resource. From the development of commercial DNA profiling kits to the current statistics for matches obtained in relation to criminal investigation in the United Kingdom, before moving onto discussing potential future direction that national DNA databases might take, including international collaboration on a European and global scale.

  9. The DNA Files

    SciTech Connect

    1998-06-09

    The DNA Files is a radio documentary which disseminates genetics information over public radio. The documentaries explore subjects which include the following: How genetics affects society. How human life began and how it evolved. Could new prenatal genetic tests hold the key to disease prevention later in life? Would a national genetic data base sacrifice individual privacy? and Should genes that may lead to the cure for cancer be privately owned? This report serves as a project update for the second quarter of 1998. It includes the spring/summer 1998 newsletter, the winter 1998 newsletter, the program clock, and the latest flyer.

  10. Switchable catalytic DNA catenanes.

    PubMed

    Hu, Lianzhe; Lu, Chun-Hua; Willner, Itamar

    2015-03-11

    Two-ring interlocked DNA catenanes are synthesized and characterized. The supramolecular catenanes show switchable cyclic catalytic properties. In one system, the catenane structure is switched between a hemin/G-quadruplex catalytic structure and a catalytically inactive state. In the second catenane structure the catenane is switched between a catalytically active Mg(2+)-dependent DNAzyme-containing catenane and an inactive catenane state. In the third system, the interlocked catenane structure is switched between two distinct catalytic structures that include the Mg(2+)- and the Zn(2+)-dependent DNAzymes.

  11. Foldback intercoil DNA and the mechanism of DNA transposition.

    PubMed

    Kim, Byung-Dong

    2014-09-01

    Foldback intercoil (FBI) DNA is formed by the folding back at one point of a non-helical parallel track of double-stranded DNA at as sharp as 180° and the intertwining of two double helixes within each other's major groove to form an intercoil with a diameter of 2.2 nm. FBI DNA has been suggested to mediate intra-molecular homologous recombination of a deletion and inversion. Inter-molecular homologous recombination, known as site-specific insertion, on the other hand, is mediated by the direct perpendicular approach of the FBI DNA tip, as the attP site, onto the target DNA, as the attB site. Transposition of DNA transposons involves the pairing of terminal inverted repeats and 5-7-bp tandem target duplication. FBI DNA configuration effectively explains simple as well as replicative transposition, along with the involvement of an enhancer element. The majority of diverse retrotransposable elements that employ a target site duplication mechanism is also suggested to follow the FBI DNA-mediated perpendicular insertion of the paired intercoil ends by non-homologous end-joining, together with gap filling. A genome-wide perspective of transposable elements in light of FBI DNA is discussed.

  12. Fluorescently labeled circular DNA molecules for DNA topology and topoisomerases

    PubMed Central

    Gu, Maxwell; Berrido, Andrea; Gonzalez, Walter G.; Miksovska, Jaroslava; Chambers, Jeremy W.; Leng, Fenfei

    2016-01-01

    DNA topology plays essential roles in several fundamental biological processes, such as DNA replication, recombination, and transcription. Typically agarose gel electrophoresis is employed to study DNA topology. Since gel electrophoresis is time-consuming and labor intensive, it is desirable to develop other methods, such as fluorescence-based methods, for such studies. In this paper we report the synthesis of a type of unique fluorescence-labeled DNA molecules that can be used to study DNA topology and topoisomerases by fluorescence resonance energy transfer (FRET). Specifically, we inserted an 82 nt. synthetic DNA oligomer FL905 carrying a 42 nt. AT sequence with fluorescein and dabcyl labels into a gapped DNA molecule to generate relaxed and supercoiled pAB1_FL905. Since the fluorescence intensity of pAB1_FL905 is dependent on its supercoiling status, pAB1_FL905 is a powerful tool to study DNA topology and topoisomerases by FRET. pAB1_FL905 can also be developed into rapid and efficient high-throughput screening assays to identify inhibitors that target various DNA topoisomerases. PMID:27796331

  13. Mechanism for priming DNA synthesis by yeast DNA Polymerase α

    PubMed Central

    Perera, Rajika L; Torella, Rubben; Klinge, Sebastian; Kilkenny, Mairi L; Maman, Joseph D; Pellegrini, Luca

    2013-01-01

    The DNA Polymerase α (Pol α)/primase complex initiates DNA synthesis in eukaryotic replication. In the complex, Pol α and primase cooperate in the production of RNA-DNA oligonucleotides that prime synthesis of new DNA. Here we report crystal structures of the catalytic core of yeast Pol α in unliganded form, bound to an RNA primer/DNA template and extending an RNA primer with deoxynucleotides. We combine the structural analysis with biochemical and computational data to demonstrate that Pol α specifically recognizes the A-form RNA/DNA helix and that the ensuing synthesis of B-form DNA terminates primer synthesis. The spontaneous release of the completed RNA-DNA primer by the Pol α/primase complex simplifies current models of primer transfer to leading- and lagging strand polymerases. The proposed mechanism of nucleotide polymerization by Pol α might contribute to genomic stability by limiting the amount of inaccurate DNA to be corrected at the start of each Okazaki fragment. DOI: http://dx.doi.org/10.7554/eLife.00482.001 PMID:23599895

  14. Slowing DNA Transport Using Graphene–DNA Interactions

    PubMed Central

    Banerjee, Shouvik; Wilson, James; Shim, Jiwook; Shankla, Manish; Corbin, Elise A.

    2015-01-01

    Slowing down DNA translocation speed in a nanopore is essential to ensuring reliable resolution of individual bases. Thin membrane materials enhance spatial resolution but simultaneously reduce the temporal resolution as the molecules translocate far too quickly. In this study, the effect of exposed graphene layers on the transport dynamics of both single (ssDNA) and double-stranded DNA (dsDNA) through nanopores is examined. Nanopore devices with various combinations of graphene and Al2O3 dielectric layers in stacked membrane structures are fabricated. Slow translocations of ssDNA in nanopores drilled in membranes with layers of graphene are reported. The increased hydrophobic interactions between the ssDNA and the graphene layers could explain this phenomenon. Further confirmation of the hydrophobic origins of these interactions is obtained through reporting significantly faster translocations of dsDNA through these graphene layered membranes. Molecular dynamics simulations confirm the preferential interactions of DNA with the graphene layers as compared to the dielectric layer verifying the experimental findings. Based on our findings, we propose that the integration of multiple stacked graphene layers could slow down DNA enough to enable the identification of nucleobases. PMID:26167144

  15. Applications of mass spectrometry to DNA fingerprinting and DNA sequencing

    SciTech Connect

    Jacobson, K.B.; Buchanan, M.V.; Chen, C.H.; Doktycz, M.J.; McLuckey, S.A. ); Arlinghaus, H.F. )

    1993-01-01

    DNA fingerprinting and sequencing rely on polyacrylamide gel electrophoresis to determine the sizes of the DNA fragments. Innovative altematives to polyacrylamide gel electrophoresis are under investigation for characterization of such fingerprinting and sequencing. One method uses stable isotopes of tin and other elements to label the DNAwhereas other procedures do not require labels. The detectors in each case are mass spectrometers that detect either the stable isotopes or the DNA fragments themselves. If successful, these methods will speed up the rate of DNA analysis by one or two orders of magnitude.

  16. Applications of mass spectrometry to DNA fingerprinting and DNA sequencing

    SciTech Connect

    Jacobson, K.B.; Buchanan, M.V.; Chen, C.H.; Doktycz, M.J.; McLuckey, S.A.; Arlinghaus, H.F.

    1993-06-01

    DNA fingerprinting and sequencing rely on polyacrylamide gel electrophoresis to determine the sizes of the DNA fragments. Innovative altematives to polyacrylamide gel electrophoresis are under investigation for characterization of such fingerprinting and sequencing. One method uses stable isotopes of tin and other elements to label the DNAwhereas other procedures do not require labels. The detectors in each case are mass spectrometers that detect either the stable isotopes or the DNA fragments themselves. If successful, these methods will speed up the rate of DNA analysis by one or two orders of magnitude.

  17. Recent progress in DNA origami technology.

    PubMed

    Endo, Masayuki; Sugiyama, Hiroshi

    2011-06-01

    DNA origami is an emerging technology for designing defined two-dimensional DNA nanostructures. In this review, we focus on and describe several types of DNA origami-related studies, as follows: (1) programmed DNA origami assembly, (2) DNA origami-templated molecular assembly, (3) design and construction of various three-dimensional DNA origami structures, (4) programmed functionalization of DNA origami and combination with top-down nanotechnology, (5) single molecular observation on a designed DNA origami, and (6) DNA nanomachines working on a DNA origami.

  18. DNA vaccine for cancer immunotherapy

    PubMed Central

    Yang, Benjamin; Jeang, Jessica; Yang, Andrew; Wu, T C; Hung, Chien-Fu

    2014-01-01

    DNA vaccination has emerged as an attractive immunotherapeutic approach against cancer due to its simplicity, stability, and safety. Results from numerous clinical trials have demonstrated that DNA vaccines are well tolerated by patients and do not trigger major adverse effects. DNA vaccines are also very cost effective and can be administered repeatedly for long-term protection. Despite all the practical advantages, DNA vaccines face challenges in inducing potent antigen specific cellular immune responses as a result of immune tolerance against endogenous self-antigens in tumors. Strategies to enhance immunogenicity of DNA vaccines against self-antigens have been investigated including encoding of xenogeneic versions of antigens, fusion of antigens to molecules that activate T cells or trigger associative recognition, priming with DNA vectors followed by boosting with viral vector, and utilization of immunomodulatory molecules. This review will focus on discussing strategies that circumvent immune tolerance and provide updates on findings from recent clinical trials. PMID:25625927

  19. Ancient DNA and human history

    PubMed Central

    Slatkin, Montgomery; Racimo, Fernando

    2016-01-01

    We review studies of genomic data obtained by sequencing hominin fossils with particular emphasis on the unique information that ancient DNA (aDNA) can provide about the demographic history of humans and our closest relatives. We concentrate on nuclear genomic sequences that have been published in the past few years. In many cases, particularly in the Arctic, the Americas, and Europe, aDNA has revealed historical demographic patterns in a way that could not be resolved by analyzing present-day genomes alone. Ancient DNA from archaic hominins has revealed a rich history of admixture between early modern humans, Neanderthals, and Denisovans, and has allowed us to disentangle complex selective processes. Information from aDNA studies is nowhere near saturation, and we believe that future aDNA sequences will continue to change our understanding of hominin history. PMID:27274045

  20. Ancient DNA and human history.

    PubMed

    Slatkin, Montgomery; Racimo, Fernando

    2016-06-07

    We review studies of genomic data obtained by sequencing hominin fossils with particular emphasis on the unique information that ancient DNA (aDNA) can provide about the demographic history of humans and our closest relatives. We concentrate on nuclear genomic sequences that have been published in the past few years. In many cases, particularly in the Arctic, the Americas, and Europe, aDNA has revealed historical demographic patterns in a way that could not be resolved by analyzing present-day genomes alone. Ancient DNA from archaic hominins has revealed a rich history of admixture between early modern humans, Neanderthals, and Denisovans, and has allowed us to disentangle complex selective processes. Information from aDNA studies is nowhere near saturation, and we believe that future aDNA sequences will continue to change our understanding of hominin history.

  1. DNA denaturation in ionic solution

    NASA Astrophysics Data System (ADS)

    Maity, Arghya; Singh, Amar; Singh, Navin

    2016-05-01

    Salt or cations, present in solution play an important role in DNA denaturation and folding kinetics of DNA helix. In this work we study the thermal melting of double stranded DNA (dsDNA) molecule using Peyrard Bishop Dauxois (PBD) model. We modify the potential of H-bonding between the bases of the complimentary strands to introduce the salt and solvent effect. We choose different DNA sequences having different contents of GC pairs and calculate the melting temperatures. The melting temperature increases logarithmically with the salt concentration of the solution. The more GC base pairs in the chain enhance the stability of DNA chain at a fix salt concentration. The obtained results are in good accordance with experimental findings.

  2. Cryptography with DNA binary strands.

    PubMed

    Leier, A; Richter, C; Banzhaf, W; Rauhe, H

    2000-06-01

    Biotechnological methods can be used for cryptography. Here two different cryptographic approaches based on DNA binary strands are shown. The first approach shows how DNA binary strands can be used for steganography, a technique of encryption by information hiding, to provide rapid encryption and decryption. It is shown that DNA steganography based on DNA binary strands is secure under the assumption that an interceptor has the same technological capabilities as sender and receiver of encrypted messages. The second approach shown here is based on steganography and a method of graphical subtraction of binary gel-images. It can be used to constitute a molecular checksum and can be combined with the first approach to support encryption. DNA cryptography might become of practical relevance in the context of labelling organic and inorganic materials with DNA 'barcodes'.

  3. Methods of DNA methylation detection

    NASA Technical Reports Server (NTRS)

    Maki, Wusi Chen (Inventor); Filanoski, Brian John (Inventor); Mishra, Nirankar (Inventor); Rastogi, Shiva (Inventor)

    2010-01-01

    The present invention provides for methods of DNA methylation detection. The present invention provides for methods of generating and detecting specific electronic signals that report the methylation status of targeted DNA molecules in biological samples.Two methods are described, direct and indirect detection of methylated DNA molecules in a nano transistor based device. In the direct detection, methylated target DNA molecules are captured on the sensing surface resulting in changes in the electrical properties of a nano transistor. These changes generate detectable electronic signals. In the indirect detection, antibody-DNA conjugates are used to identify methylated DNA molecules. RNA signal molecules are generated through an in vitro transcription process. These RNA molecules are captured on the sensing surface change the electrical properties of nano transistor thereby generating detectable electronic signals.

  4. DNA-based hybrid catalysis.

    PubMed

    Rioz-Martínez, Ana; Roelfes, Gerard

    2015-04-01

    In the past decade, DNA-based hybrid catalysis has merged as a promising novel approach to homogeneous (asymmetric) catalysis. A DNA hybrid catalysts comprises a transition metal complex that is covalently or supramolecularly bound to DNA. The chiral microenvironment and the second coordination sphere interactions provided by the DNA are key to achieve high enantioselectivities and, often, additional rate accelerations in catalysis. Nowadays, current efforts are focused on improved designs, understanding the origin of the enantioselectivity and DNA-induced rate accelerations, expanding the catalytic scope of the concept and further increasing the practicality of the method for applications in synthesis. Herein, the recent developments will be reviewed and the perspectives for the emerging field of DNA-based hybrid catalysis will be discussed.

  5. Development of dengue DNA vaccines.

    PubMed

    Danko, Janine R; Beckett, Charmagne G; Porter, Kevin R

    2011-09-23

    Vaccination with plasmid DNA against infectious pathogens including dengue is an active area of investigation. By design, DNA vaccines are able to elicit both antibody responses and cellular immune responses capable of mediating long-term protection. Great technical improvements have been made in dengue DNA vaccine constructs and trials are underway to study these in the clinic. The scope of this review is to highlight the rich history of this vaccine platform and the work in dengue DNA vaccines accomplished by scientists at the Naval Medical Research Center. This work resulted in the only dengue DNA vaccine tested in a clinical trial to date. Additional advancements paving the road ahead in dengue DNA vaccine development are also discussed.

  6. Labeling nuclear DNA using DAPI.

    PubMed

    Chazotte, Brad

    2011-01-01

    A number of fluorescent stains are available that label DNA and allow easy visualization of the nucleus in interphase cells and chromosomes in mitotic cells, including Hoechst, 4',6-diamidino-2-phenylindole (DAPI), ethidium bromide, propidium iodide, and acridine orange. Although not as bright as the vital Hoechst stains for DNA, DAPI has greater photostability. It is believed that DAPI associates with the minor groove of double-stranded DNA, with a preference for the adenine-thymine clusters. Cells must be permeabilized and/or fixed for DAPI to enter the cell and to bind DNA. Fluorescence increases approximately 20-fold when DAPI is bound to double-stranded DNA. This protocol describes the use of DAPI to label nuclear DNA of cells grown in culture.

  7. Human DNA ligase III recognizes DNA ends by dynamic switching between two DNA-bound states.

    PubMed

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A; Tomkinson, Alan E; Ellenberger, Tom

    2010-07-27

    Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a "jackknife model" in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.

  8. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining

    PubMed Central

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L.; Tomkinson, Alan E.; Tainer, John A.; Ellenberger, Tom

    2015-01-01

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation. PMID:26130724

  9. Human DNA ligase III bridges two DNA ends to promote specific intermolecular DNA end joining.

    PubMed

    Kukshal, Vandna; Kim, In-Kwon; Hura, Gregory L; Tomkinson, Alan E; Tainer, John A; Ellenberger, Tom

    2015-08-18

    Mammalian DNA ligase III (LigIII) functions in both nuclear and mitochondrial DNA metabolism. In the nucleus, LigIII has functional redundancy with DNA ligase I whereas LigIII is the only mitochondrial DNA ligase and is essential for the survival of cells dependent upon oxidative respiration. The unique LigIII zinc finger (ZnF) domain is not required for catalytic activity but senses DNA strand breaks and stimulates intermolecular ligation of two DNAs by an unknown mechanism. Consistent with this activity, LigIII acts in an alternative pathway of DNA double strand break repair that buttresses canonical non-homologous end joining (NHEJ) and is manifest in NHEJ-defective cancer cells, but how LigIII acts in joining intermolecular DNA ends versus nick ligation is unclear. To investigate how LigIII efficiently joins two DNAs, we developed a real-time, fluorescence-based assay of DNA bridging suitable for high-throughput screening. On a nicked duplex DNA substrate, the results reveal binding competition between the ZnF and the oligonucleotide/oligosaccharide-binding domain, one of three domains constituting the LigIII catalytic core. In contrast, these domains collaborate and are essential for formation of a DNA-bridging intermediate by adenylated LigIII that positions a pair of blunt-ended duplex DNAs for efficient and specific intermolecular ligation.

  10. Human DNA Ligase III Recognizes DNA Ends by Dynamic Switching between Two DNA-Bound States

    SciTech Connect

    Cotner-Gohara, Elizabeth; Kim, In-Kwon; Hammel, Michal; Tainer, John A.; Tomkinson, Alan E.; Ellenberger, Tom

    2010-09-13

    Human DNA ligase III has essential functions in nuclear and mitochondrial DNA replication and repair and contains a PARP-like zinc finger (ZnF) that increases the extent of DNA nick joining and intermolecular DNA ligation, yet the bases for ligase III specificity and structural variation among human ligases are not understood. Here combined crystal structure and small-angle X-ray scattering results reveal dynamic switching between two nick-binding components of ligase III: the ZnF-DNA binding domain (DBD) forms a crescent-shaped surface used for DNA end recognition which switches to a ring formed by the nucleotidyl transferase (NTase) and OB-fold (OBD) domains for catalysis. Structural and mutational analyses indicate that high flexibility and distinct DNA binding domain features in ligase III assist both nick sensing and the transition from nick sensing by the ZnF to nick joining by the catalytic core. The collective results support a 'jackknife model' in which the ZnF loads ligase III onto nicked DNA and conformational changes deliver DNA into the active site. This work has implications for the biological specificity of DNA ligases and functions of PARP-like zinc fingers.

  11. Precipitation of DNA with Ethanol.

    PubMed

    Green, Michael R; Sambrook, Joseph

    2016-12-01

    DNA can be precipitated out of solution for the removal of salts and/or for resuspension in an alternative buffer. Either ethanol or isopropanol can be used to achieve this purpose; however, the use of ethanol is generally preferred. Cations, provided as salts, are typically included to neutralize the negative charge of the DNA phosphate backbone. This method describes ethanol precipitation of DNA in microcentrifuge tubes.

  12. Exons, Introns, and DNA Thermodynamics

    NASA Astrophysics Data System (ADS)

    Carlon, Enrico; Malki, Mehdi Lejard; Blossey, Ralf

    2005-05-01

    The genes of eukaryotes are characterized by protein coding fragments, the exons, interrupted by introns, i.e., stretches of DNA which do not carry useful information for protein synthesis. We have analyzed the melting behavior of randomly selected human cDNA sequences obtained from genomic DNA by removing all introns. A clear correspondence is observed between exons and melting domains. This finding may provide new insights into the physical mechanisms underlying the evolution of genes.

  13. Integrated Sensing Using DNA Nanoarchitectures

    DTIC Science & Technology

    2014-05-20

    characterization of vibrational modes in artificially designed DNA monocrystal, Chemical Physics , (11 2013): 121. doi: 10.1016/j.chemphys.2013.08.015 Xiaoning...M. Rahman, M. L. Norton. Observation of terahertz absorption signatures in microliter DNA solutions, Applied Physics Letters, (01 2013): 23701...Modification of surface bound DNA nanoarchitectures with biomolecules and conjugates," ACS, Indianapolis, IN. (September 8, 2013). Rahman, M. (Author

  14. DNA Damage Induced Neuronal Death

    DTIC Science & Technology

    1999-10-01

    Experiments are proposed to examine the molecular mechanism by which mustard chemical warfare agents induce neuronal cell death . DNA damage is the...proposed underlying mechanism of mustard-induced neuronal cell death . We propose a novel research strategy to test this hypothesis by using mice with...perturbed DNA repair to explore the relationship between mustard-induced DNA damage and neuronal cell death . Initial in vitro studies (Years 1, 2 & 3

  15. Biosensors for DNA sequence detection

    NASA Technical Reports Server (NTRS)

    Vercoutere, Wenonah; Akeson, Mark

    2002-01-01

    DNA biosensors are being developed as alternatives to conventional DNA microarrays. These devices couple signal transduction directly to sequence recognition. Some of the most sensitive and functional technologies use fibre optics or electrochemical sensors in combination with DNA hybridization. In a shift from sequence recognition by hybridization, two emerging single-molecule techniques read sequence composition using zero-mode waveguides or electrical impedance in nanoscale pores.

  16. DNA Looping, Supercoiling and Tension

    NASA Astrophysics Data System (ADS)

    Finzi, Laura

    2007-11-01

    In complex organisms, activation or repression of gene expression by proteins bound to enhancer or silencer elements located several kilobases away from the promoter is a well recognized phenomenon. However, a mechanistic understanding of any of these multiprotein interactions is still incomplete. Part of the difficulty in characterizing long-range interactions is the complexity of the regulatory systems and also an underestimation of the effect of DNA supercoiling and tension. Supercoiling is expected to promote interactions between DNA sites because it winds the DNA into compact plectonemes in which distant DNA segments more frequently draw close. The idea that DNA is also under various levels of tension is becoming more widely accepted. Forces that stretch the double helix in vivo are the electrostatic repulsion among the negatively charged phosphate groups along the DNA backbone, the action of motor enzymes perhaps acting upon a topologically constrained sequence of DNA or chromosome segregation during cell mitosis following DNA replication. Presently, little is known about the tension acting on DNA in vivo, but characterization of how physiological regulatory processes, such as loop formation, depend on DNA tension in vitro will indicate the stretching force regimes likely to exist in vivo. In this light, the well studied CI protein of bacteriophage l, which was recently found to cause a of 3.8 kbp loop in DNA, is an ideal system in which to characterize long-range gene regulation. The large size of the loop lends itself to single-molecule techniques, which allow characterization of the dynamics of CI-mediated l DNA looping under controlled levels of supercoiling and tension. Such experiments are being used to discover the principles of long-range interactions in l and in more complex systems.

  17. [Legal implication of DNA profiling].

    PubMed

    Doutremepuich, Christian

    2012-06-01

    In recent years, DNA profiling has been used regularly by the justice system, and has seen a number of improvements, with the need for fewer cells, more efficient DNA extraction and purification, and more rapid genotyping. These methods can now identify an individual more rapidly, from a corpse, blood stain, sperm or epithelial cells, by comparison with familial profiles. In France, DNA profiling can only be ordered by a judge.

  18. DNA Rearrangements through Spatial Graphs

    NASA Astrophysics Data System (ADS)

    Jonoska, Nataša; Saito, Masahico

    The paper is a short overview of a recent model of homologous DNA recombination events guided by RNA templates that have been observed in certain species of ciliates. This model uses spatial graphs to describe DNA rearrangements and show how gene recombination can be modeled as topological braiding of the DNA. We show that a graph structure, which we refer to as an assembly graph, containing only 1- and 4-valent rigid vertices can provide a physical representation of the DNA at the time of recombination. With this representation, 4-valent vertices correspond to the alignment of the recombination sites, and we model the actual recombination event as smoothing of these vertices.

  19. DNA nanotechnology-enabled biosensors.

    PubMed

    Chao, Jie; Zhu, Dan; Zhang, Yinan; Wang, Lianhui; Fan, Chunhai

    2016-02-15

    Biosensors employ biological molecules to recognize the target and utilize output elements which can translate the biorecognition event into electrical, optical or mass-sensitive signals to determine the quantities of the target. DNA-based biosensors, as a sub-field to biosensor, utilize DNA strands with short oligonucleotides as probes for target recognition. Although DNA-based biosensors have offered a promising alternative for fast, simple and cheap detection of target molecules, there still exist key challenges including poor stability and reproducibility that hinder their competition with the current gold standard for DNA assays. By exploiting the self-recognition properties of DNA molecules, researchers have dedicated to make versatile DNA nanostructures in a highly rigid, controllable and functionalized manner, which offers unprecedented opportunities for developing DNA-based biosensors. In this review, we will briefly introduce the recent advances on design and fabrication of static and dynamic DNA nanostructures, and summarize their applications for fabrication and functionalization of DNA-based biosensors.

  20. DNA methylation dynamics in neurogenesis.

    PubMed

    Wang, Zhiqin; Tang, Beisha; He, Yuquan; Jin, Peng

    2016-03-01

    Neurogenesis is not limited to the embryonic stage, but continually proceeds in the adult brain throughout life. Epigenetic mechanisms, including DNA methylation, histone modification and noncoding RNA, play important roles in neurogenesis. For decades, DNA methylation was thought to be a stable modification, except for demethylation in the early embryo. In recent years, DNA methylation has proved to be dynamic during development. In this review, we summarize the latest understanding about DNA methylation dynamics in neurogenesis, including the roles of different methylation forms (5-methylcytosine, 5-hydroxymethylcytosine, 5-formylcytosine and 5-carboxylcytosine), as well as their 'writers', 'readers' and interactions with histone modifications.

  1. DNA attachment to support structures

    DOEpatents

    Balhorn, Rodney L.; Barry, Christopher H.

    2002-01-01

    Microscopic beads or other structures are attached to nucleic acids (DNA) using a terminal transferase. The transferase adds labeled dideoxy nucleotide bases to the ends of linear strands of DNA. The labels, such as the antigens digoxigenin and biotin, bind to the antibody compounds or other appropriate complementary ligands, which are bound to the microscopic beads or other support structures. The method does not require the synthesis of a synthetic oligonucleotide probe. The method can be used to tag or label DNA even when the DNA has an unknown sequence, has blunt ends, or is a very large fragment (e.g., >500 kilobase pairs).

  2. Piezoresistivity in single DNA molecules

    PubMed Central

    Bruot, Christopher; Palma, Julio L.; Xiang, Limin; Mujica, Vladimiro; Ratner, Mark A.; Tao, Nongjian

    2015-01-01

    Piezoresistivity is a fundamental property of materials that has found many device applications. Here we report piezoresistivity in double helical DNA molecules. By studying the dependence of molecular conductance and piezoresistivity of single DNA molecules with different sequences and lengths, and performing molecular orbital calculations, we show that the piezoresistivity of DNA is caused by force-induced changes in the π–π electronic coupling between neighbouring bases, and in the activation energy of hole hopping. We describe the results in terms of thermal activated hopping model together with the ladder-based mechanical model for DNA proposed by de Gennes. PMID:26337293

  3. Stabbing simulations and DNA transfer.

    PubMed

    Samie, Lydie; Hicks, Tacha; Castella, Vincent; Taroni, Franco

    2016-05-01

    Technical developments have made it possible to analyze very low amounts of DNA. This has many advantages, but the drawback of this technological progress is that interpretation of the results becomes increasingly complex: the number of mixed DNA profiles increased relatively to single source DNA profiles and stochastic effects in the DNA profile, such as drop-in and drop-out, are more frequently observed. Moreover, the relevance of low template DNA material regarding the activities alleged is not as straightforward as it was a few years ago, when for example large quantities of blood were recovered. The possibility of secondary and tertiary transfer is now becoming an issue. The purpose of this research is twofold: first, to study the transfer of DNA from the handler and secondly, to observe if handlers would transfer DNA from persons closely connected to them. We chose to mimic cases where the offender would attack a person with a knife. As a first approach, we envisaged that the defense would not give an alternative explanation for the origin of the DNA. In our transfer experiments (4 donors, 16 experiments each, 64 traces), 3% of the traces were single DNA profiles. Most of the time, the DNA profile of the person handling the knife was present as the major profile: in 83% of the traces the major contributor profile corresponded to the stabber's DNA profile (in single stains and mixtures). Mixture with no clear major/minor fraction (12%) were observed. 5% of the traces were considered of insufficient quality (more than 3 contributors, presence of a few minor peaks). In that case, we considered that the stabber's DNA was absent. In our experiments, no traces allowed excluding the stabber, however it must be noted that precautions were taken to minimize background DNA as knives were cleaned before the experiments. DNA profiles of the stabber's colleagues were not observed. We hope that this study will allow for a better understanding of the transfer mechanism and

  4. DNA/genetic vaccination (minireview).

    PubMed

    Kucerova, L

    1998-01-01

    An important new approach to vaccination is plasmid DNA injection in vivo that can elicit an immune response against protein(s) encoded. Antigen that is expressed from the in vivo transfected cells induces both humoral and cellular immune response. DNA immunization is generally applicable for a wide range of proteins. It can provide an organism with immunity against viruses, bacteria, parasites, and tumors. DNA vaccines can overcome the disadvantages of vaccines presently used as well as provide various new vaccines that are currently not available. This minireview provides an overview of evaluated DNA vaccine candidates against infectious agents and certain cancers.

  5. The human specialized DNA polymerases and non-B DNA: vital relationships to preserve genome integrity.

    PubMed

    Boyer, Anne-Sophie; Grgurevic, Srdana; Cazaux, Christophe; Hoffmann, Jean-Sébastien

    2013-11-29

    In addition to the canonical right-handed double helix, DNA molecule can adopt several other non-B DNA structures. Readily formed in the genome at specific DNA repetitive sequences, these secondary conformations present a distinctive challenge for progression of DNA replication forks. Impeding normal DNA synthesis, cruciforms, hairpins, H DNA, Z DNA and G4 DNA considerably impact the genome stability and in some instances play a causal role in disease development. Along with previously discovered dedicated DNA helicases, the specialized DNA polymerases emerge as major actors performing DNA synthesis through these distorted impediments. In their new role, they are facilitating DNA synthesis on replication stalling sites formed by non-B DNA structures and thereby helping the completion of DNA replication, a process otherwise crucial for preserving genome integrity and concluding normal cell division. This review summarizes the evidence gathered describing the function of specialized DNA polymerases in replicating DNA through non-B DNA structures.

  6. Influence of DNA methylation on positioning and DNA flexibility of nucleosomes with pericentric satellite DNA.

    PubMed

    Osakabe, Akihisa; Adachi, Fumiya; Arimura, Yasuhiro; Maehara, Kazumitsu; Ohkawa, Yasuyuki; Kurumizaka, Hitoshi

    2015-10-01

    DNA methylation occurs on CpG sites and is important to form pericentric heterochromatin domains. The satellite 2 sequence, containing seven CpG sites, is located in the pericentric region of human chromosome 1 and is highly methylated in normal cells. In contrast, the satellite 2 region is reportedly hypomethylated in cancer cells, suggesting that the methylation status may affect the chromatin structure around the pericentric regions in tumours. In this study, we mapped the nucleosome positioning on the satellite 2 sequence in vitro and found that DNA methylation modestly affects the distribution of the nucleosome positioning. The micrococcal nuclease assay revealed that the DNA end flexibility of the nucleosomes changes, depending on the DNA methylation status. However, the structures and thermal stabilities of the nucleosomes are unaffected by DNA methylation. These findings provide new information to understand how DNA methylation functions in regulating pericentric heterochromatin formation and maintenance in normal and malignant cells.

  7. Loss of maintenance DNA methylation results in abnormal DNA origin firing during DNA replication.

    PubMed

    Haruta, Mayumi; Shimada, Midori; Nishiyama, Atsuya; Johmura, Yoshikazu; Le Tallec, Benoît; Debatisse, Michelle; Nakanishi, Makoto

    2016-01-22

    The mammalian maintenance methyltransferase DNMT1 [DNA (cytosine-5-)-methyltransferase 1] mediates the inheritance of the DNA methylation pattern during replication. Previous studies have shown that depletion of DNMT1 causes a severe growth defect and apoptosis in differentiated cells. However, the detailed mechanisms behind this phenomenon remain poorly understood. Here we show that conditional ablation of Dnmt1 in murine embryonic fibroblasts (MEFs) resulted in an aberrant DNA replication program showing an accumulation of late-S phase replication and causing severely defective growth. Furthermore, we found that the catalytic activity and replication focus targeting sequence of DNMT1 are required for a proper DNA replication program. Taken together, our findings suggest that the maintenance of DNA methylation by DNMT1 plays a critical role in proper regulation of DNA replication in mammalian cells.

  8. ANIMAL DNA IN PCR REAGENTS PLAGUES ANCIENT DNA RESEARCH

    EPA Science Inventory

    Ancient DNA analysis is becoming widespread. These studies use polymerase chain reaction (PCR) to amplify minute quantities of heavily damaged template. Unusual steps are taken to achieve the sensitivity necessary to detect ancient DNA, including high-cycle PCR amplification targ...

  9. DNA-templated silver nanoclusters for multiplexed fluorescent DNA detection.

    PubMed

    Zhang, Ying; Zhu, Changfeng; Zhang, Lei; Tan, Chaoliang; Yang, Jian; Chen, Bo; Wang, Lianhui; Zhang, Hua

    2015-03-25

    Novel label-free/conjugation-free molecular beacons are designed based on DNA templated-silver nanoclusters for multiplexed DNA detection. The assay is implemented in solution, which makes it easy for the in-situ and real-time analysis. This study demonstrates a new method for multiplexd detection of biological molecules by using fluorescent Ag nanocluster-based molecular beacon probes.

  10. Pea amyloplast DNA is qualitatively similar to pea chloroplast DNA

    NASA Technical Reports Server (NTRS)

    Gaynor, J. J.

    1984-01-01

    Amyloplast DNA (apDNA), when subjected to digestion with restriction endonucleases, yields patterns nearly identical to that of DNA from mature pea chloroplasts (ctDNA). Southern transfers of apDNA and ctDNA, probed with the large subunit (LS) gene of ribulose-1,5-bisphosphate carboxylase (Rubisco), shows hybridization to the expected restriction fragments for both apDNA and ctDNA. However, Northern transfers of total RNA from chloroplasts and amyloplasts, probed again with the LS gene of Rubisco, shows that no detectable LS meggage is found in amyloplasts although LS expression in mature chloroplasts is high. Likewise, two dimensional polyacrylamide gel electrophoresis of etiolated gravisensitive pea tissue shows that both large and small subunits of Rubisco are conspicuously absent; however, in greening tissue these two constitute the major soluble proteins. These findings suggest that although the informational content of these two organelle types is equivalent, gene expression is quite different and is presumably under nuclear control.

  11. Flexible DNA bending in HU-DNA cocrystal structures.

    PubMed

    Swinger, Kerren K; Lemberg, Kathryn M; Zhang, Ying; Rice, Phoebe A

    2003-07-15

    HU and IHF are members of a family of prokaryotic proteins that interact with the DNA minor groove in a sequence-specific (IHF) or non-specific (HU) manner to induce and/or stabilize DNA bending. HU plays architectural roles in replication initiation, transcription regulation and site-specific recombination, and is associated with bacterial nucleoids. Cocrystal structures of Anabaena HU bound to DNA (1P71, 1P78, 1P51) reveal that while underlying proline intercalation and asymmetric charge neutralization mechanisms of DNA bending are similar for IHF and HU, HU stabilizes different DNA bend angles ( approximately 105-140 degrees ). The two bend angles within a single HU complex are not coplanar, and the resulting dihedral angle is consistent with negative supercoiling. Comparison of HU-DNA and IHF-DNA structures suggests that sharper bending is correlated with longer DNA binding sites and smaller dihedral angles. An HU-induced bend may be better modeled as a hinge, not a rigid bend. The ability to induce or stabilize varying bend angles is consistent with HU's role as an architectural cofactor in many different systems that may require differing geometries.

  12. Repetitive DNA in three Gramineae species with low DNA content.

    PubMed

    Deshpande, V G; Ranjekar, P K

    1980-08-01

    The genomes of three Gramineae species, namely finger millet (Eleusine coracana), pearl millet (Pennisetum americanum) and rice (Oryza sativa) are characterized by studying their DNA denaturation-reassociation properties. The reassociation kinetics measurement of the sonicated DNA (500--700 nucleotide pairs) indicate the presence of a heterogeneous, repetitive DNA fraction accounting for 49--54% of the total DNA in all three species. From the cot 1/2 value of the slow reassociating DNA, the genome size is estimated as 3.0 X 10(8) np in finger millet, 7.8 X 10(8) np in pearl millet and 9.0 X 10(8) np in rice. The melting patterns of the total DNAs reveal Tm value of 88.6 degrees C in the case of pearl millet and 85.0 degrees C in the case of finger millet and rice. Total repetitive and cot 1.0 DNA fractions in all the three species are isolated and their melting properties are compared with those of respective sonicated DNAs. In finger millet, the Tm values of cot 25 and cot 1 fractions are lower by 10.8 degrees C and 12.8 degrees C, respectively, than that of sonicated DNA and thus exhibit the presence of a base pair mismatch in the range of 10.8--12.8%. In rice, the Tm values of the fractions cot 50 and cot 1 are slightly lower than that of sonicated DNA and reveal a nucleotide mismatching of only 1.8--3.8%. In the case of pearl millet cot 10 DNA fraction a high-melting DNA component (Tm = 92 degrees C) representing 12% of the total cot 10 DNA and a low-melting component with a Tm of 78 degrees C are present. In cot 1 DNA fraction of pearl millet the proportion of the high-melting component is 35% and it has a Tm or 94.8 degrees C. Optical reassociation studies of cot 1.0 DNA fractions have revealed the presence of two kinetically distinct components, namely minor fast-reassociating and major slow-reassociating, having complexities in the range of 330--390 np and 1.28 X 10(5)--6.0 X 10(5) np, respectively in pearl millet and rice and only one DNA fraction with an

  13. Variola type IB DNA topoisomerase: DNA binding and supercoil unwinding using engineered DNA minicircles.

    PubMed

    Anderson, Breeana G; Stivers, James T

    2014-07-08

    Type IB topoisomerases unwind positive and negative DNA supercoils and play a key role in removing supercoils that would otherwise accumulate at replication and transcription forks. An interesting question is whether topoisomerase activity is regulated by the topological state of the DNA, thereby providing a mechanism for targeting the enzyme to highly supercoiled DNA domains in genomes. The type IB enzyme from variola virus (vTopo) has proven to be useful in addressing mechanistic questions about topoisomerase function because it forms a reversible 3'-phosphotyrosyl adduct with the DNA backbone at a specific target sequence (5'-CCCTT-3') from which DNA unwinding can proceed. We have synthesized supercoiled DNA minicircles (MCs) containing a single vTopo target site that provides highly defined substrates for exploring the effects of supercoil density on DNA binding, strand cleavage and ligation, and unwinding. We observed no topological dependence for binding of vTopo to these supercoiled MC DNAs, indicating that affinity-based targeting to supercoiled DNA regions by vTopo is unlikely. Similarly, the cleavage and religation rates of the MCs were not topologically dependent, but topoisomers with low superhelical densities were found to unwind more slowly than highly supercoiled topoisomers, suggesting that reduced torque at low superhelical densities leads to an increased number of cycles of cleavage and ligation before a successful unwinding event. The K271E charge reversal mutant has an impaired interaction with the rotating DNA segment that leads to an increase in the number of supercoils that were unwound per cleavage event. This result provides evidence that interactions of the enzyme with the rotating DNA segment can restrict the number of supercoils that are unwound. We infer that both superhelical density and transient contacts between vTopo and the rotating DNA determine the efficiency of supercoil unwinding. Such determinants are likely to be important in

  14. Authentication of forensic DNA samples.

    PubMed

    Frumkin, Dan; Wasserstrom, Adam; Davidson, Ariane; Grafit, Arnon

    2010-02-01

    Over the past twenty years, DNA analysis has revolutionized forensic science, and has become a dominant tool in law enforcement. Today, DNA evidence is key to the conviction or exoneration of suspects of various types of crime, from theft to rape and murder. However, the disturbing possibility that DNA evidence can be faked has been overlooked. It turns out that standard molecular biology techniques such as PCR, molecular cloning, and recently developed whole genome amplification (WGA), enable anyone with basic equipment and know-how to produce practically unlimited amounts of in vitro synthesized (artificial) DNA with any desired genetic profile. This artificial DNA can then be applied to surfaces of objects or incorporated into genuine human tissues and planted in crime scenes. Here we show that the current forensic procedure fails to distinguish between such samples of blood, saliva, and touched surfaces with artificial DNA, and corresponding samples with in vivo generated (natural) DNA. Furthermore, genotyping of both artificial and natural samples with Profiler Plus((R)) yielded full profiles with no anomalies. In order to effectively deal with this problem, we developed an authentication assay, which distinguishes between natural and artificial DNA based on methylation analysis of a set of genomic loci: in natural DNA, some loci are methylated and others are unmethylated, while in artificial DNA all loci are unmethylated. The assay was tested on natural and artificial samples of blood, saliva, and touched surfaces, with complete success. Adopting an authentication assay for casework samples as part of the forensic procedure is necessary for maintaining the high credibility of DNA evidence in the judiciary system.

  15. Chimeric DNA methyltransferases target DNA methylation to specific DNA sequences and repress expression of target genes

    PubMed Central

    Li, Fuyang; Papworth, Monika; Minczuk, Michal; Rohde, Christian; Zhang, Yingying; Ragozin, Sergei; Jeltsch, Albert

    2007-01-01

    Gene silencing by targeted DNA methylation has potential applications in basic research and therapy. To establish targeted methylation in human cell lines, the catalytic domains (CDs) of mouse Dnmt3a and Dnmt3b DNA methyltransferases (MTases) were fused to different DNA binding domains (DBD) of GAL4 and an engineered Cys2His2 zinc finger domain. We demonstrated that (i) Dense DNA methylation can be targeted to specific regions in gene promoters using chimeric DNA MTases. (ii) Site-specific methylation leads to repression of genes controlled by various cellular or viral promoters. (iii) Mutations affecting any of the DBD, MTase or target DNA sequences reduce targeted methylation and gene silencing. (iv) Targeted DNA methylation is effective in repressing Herpes Simplex Virus type 1 (HSV-1) infection in cell culture with the viral titer reduced by at least 18-fold in the presence of an MTase fused to an engineered zinc finger DBD, which binds a single site in the promoter of HSV-1 gene IE175k. In short, we show here that it is possible to direct DNA MTase activity to predetermined sites in DNA, achieve targeted gene silencing in mammalian cell lines and interfere with HSV-1 propagation. PMID:17151075

  16. Tumorigenic DNA viruses

    SciTech Connect

    Klein, G.

    1989-01-01

    The eighth volume of Advances in Viral Oncology focuses on the three major DNA virus groups with a postulated or proven tumorigenic potential: papillomaviruses, animal hepatitis viruses, and the Epstein-Bar virus. In the opening chapters, the contributors analyze the evidence that papillomaviruses and animal hepatitis viruses are involved in tumorigenesis and describe the mechanisms that trigger virus-host cell interactions. A detailed section on the Epstein-Barr virus (EBV) - comprising more than half the book - examines the transcription and mRNA processing patterns of the virus genome; the mechanisms by which EBV infects lymphoid and epithelial cells; the immunological aspects of the virus; the actions of EBV in hosts with Acquired Immune Deficiency Syndrome; and the involvement of EBV in the etiology of Burkitt's lymphoma.

  17. DNA movies and panspermia.

    PubMed

    Norris, Victor; Grondin, Yohann

    2011-10-20

    There are several ways that our species might try to send a message to another species separated from us by space and/or time. Synthetic biology might be used to write an epitaph to our species, or simply "Kilroy was here", in the genome of a bacterium via the patterns of either (1) the codons to exploit Life's non-equilibrium character or (2) the bases themselves to exploit Life's quasi-equilibrium character. We suggest here how DNA movies might be designed using such patterns. We also suggest that a search for mechanisms to create and preserve such patterns might lead to a better understanding of modern cells. Finally, we argue that the cutting-edge microbiology and synthetic biology needed for the Kilroy project would put origin-of-life studies in the vanguard of research.

  18. DNA Movies and Panspermia

    PubMed Central

    Norris, Victor; Grondin, Yohann

    2011-01-01

    There are several ways that our species might try to send a message to another species separated from us by space and/or time. Synthetic biology might be used to write an epitaph to our species, or simply “Kilroy was here”, in the genome of a bacterium via the patterns of either (1) the codons to exploit Life's non-equilibrium character or (2) the bases themselves to exploit Life's quasi-equilibrium character. We suggest here how DNA movies might be designed using such patterns. We also suggest that a search for mechanisms to create and preserve such patterns might lead to a better understanding of modern cells. Finally, we argue that the cutting-edge microbiology and synthetic biology needed for the Kilroy project would put origin-of-life studies in the vanguard of research. PMID:25382053

  19. Humanity and human DNA.

    PubMed

    Mattei, Jean-François

    2012-10-01

    Genetics has marked the second half of the 20th century by addressing such formidable problems as the identification of our genes and their role, their interaction with the environment, and even their therapeutic uses. The identification of genes raises questions about differences between humans and non-humans, as well as about the evolution towards trans-humanism and post-humanism. In practise, however, the main question concerns the limits of prenatal genetic diagnosis, not only on account of the seriousness of the affections involved but also because of the choice to be made between following-up the medical indication and engaging in a systematic public health strategy aimed at eliminating children with certain handicaps. History reminds us that genetic science has already been misused by political forces influenced by the ideas of eugenics, particularly in the Nazi period. We may wonder whether it is reasonable to formulate a judgement on the life of a child yet to be born, merely on the basis of a DNA analysis. My experience as a practising geneticist and my involvement in French politics forces me to stress the dangers of a new eugenics hiding behind a medical mask. As demonstrated by epigenetics, human beings cannot be reduced to their DNA alone. In our society, one of the problems concerns individuals whose lives may be considered by some as simply not worth living. Another problem is the place and the social significance of the handicapped amongst us. Fortunately, recent progresses in gene therapy, biotherapy, and even pharmacology, appear to be opening up promising therapeutic perspectives. We should bear in mind that the chief vocation of medical genetics, which fully belongs to the art of medicine, is to heal and to cure. This is precisely where genetics should concentrate its efforts software.

  20. Method for assaying clustered DNA damages

    DOEpatents

    Sutherland, Betsy M.

    2004-09-07

    Disclosed is a method for detecting and quantifying clustered damages in DNA. In this method, a first aliquot of the DNA to be tested for clustered damages with one or more lesion-specific cleaving reagents under conditions appropriate for cleavage of the DNA to produce single-strand nicks in the DNA at sites of damage lesions. The number average molecular length (Ln) of double stranded DNA is then quantitatively determined for the treated DNA. The number average molecular length (Ln) of double stranded DNA is also quantitatively determined for a second, untreated aliquot of the DNA. The frequency of clustered damages (.PHI..sub.c) in the DNA is then calculated.

  1. DNA: Polymer and molecular code

    NASA Astrophysics Data System (ADS)

    Shivashankar, G. V.

    1999-10-01

    The thesis work focusses upon two aspects of DNA, the polymer and the molecular code. Our approach was to bring single molecule micromanipulation methods to the study of DNA. It included a home built optical microscope combined with an atomic force microscope and an optical tweezer. This combined approach led to a novel method to graft a single DNA molecule onto a force cantilever using the optical tweezer and local heating. With this method, a force versus extension assay of double stranded DNA was realized. The resolution was about 10 picoN. To improve on this force measurement resolution, a simple light backscattering technique was developed and used to probe the DNA polymer flexibility and its fluctuations. It combined the optical tweezer to trap a DNA tethered bead and the laser backscattering to detect the beads Brownian fluctuations. With this technique the resolution was about 0.1 picoN with a millisecond access time, and the whole entropic part of the DNA force-extension was measured. With this experimental strategy, we measured the polymerization of the protein RecA on an isolated double stranded DNA. We observed the progressive decoration of RecA on the l DNA molecule, which results in the extension of l , due to unwinding of the double helix. The dynamics of polymerization, the resulting change in the DNA entropic elasticity and the role of ATP hydrolysis were the main parts of the study. A simple model for RecA assembly on DNA was proposed. This work presents a first step in the study of genetic recombination. Recently we have started a study of equilibrium binding which utilizes fluorescence polarization methods to probe the polymerization of RecA on single stranded DNA. In addition to the study of material properties of DNA and DNA-RecA, we have developed experiments for which the code of the DNA is central. We studied one aspect of DNA as a molecular code, using different techniques. In particular the programmatic use of template specificity makes

  2. DNA Extraction Techniques for Use in Education

    ERIC Educational Resources Information Center

    Hearn, R. P.; Arblaster, K. E.

    2010-01-01

    DNA extraction provides a hands-on introduction to DNA and enables students to gain real life experience and practical knowledge of DNA. Students gain a sense of ownership and are more enthusiastic when they use their own DNA. A cost effective, simple protocol for DNA extraction and visualization was devised. Buccal mucosal epithelia provide a…

  3. Prenatal Cell-Free DNA Screening

    MedlinePlus

    Prenatal cell-free DNA screening Overview By Mayo Clinic Staff Prenatal cell-free DNA (cfDNA) screening, also known as noninvasive prenatal screening, is ... in a developing baby. During prenatal cell-free DNA screening, DNA from the mother and fetus is ...

  4. Chromatin dynamics during DNA replication

    PubMed Central

    Bar-Ziv, Raz; Voichek, Yoav; Barkai, Naama

    2016-01-01

    Chromatin is composed of DNA and histones, which provide a unified platform for regulating DNA-related processes, mostly through their post-translational modification. During DNA replication, histone arrangement is perturbed, first to allow progression of DNA polymerase and then during repackaging of the replicated DNA. To study how DNA replication influences the pattern of histone modification, we followed the cell-cycle dynamics of 10 histone marks in budding yeast. We find that histones deposited on newly replicated DNA are modified at different rates: While some marks appear immediately upon replication (e.g., H4K16ac, H3K4me1), others increase with transcription-dependent delays (e.g., H3K4me3, H3K36me3). Notably, H3K9ac was deposited as a wave preceding the replication fork by ∼5–6 kb. This replication-guided H3K9ac was fully dependent on the acetyltransferase Rtt109, while expression-guided H3K9ac was deposited by Gcn5. Further, topoisomerase depletion intensified H3K9ac in front of the replication fork and in sites where RNA polymerase II was trapped, suggesting supercoiling stresses trigger H3K9 acetylation. Our results assign complementary roles for DNA replication and gene expression in defining the pattern of histone modification. PMID:27225843

  5. DNA/chitosan electrostatic complex.

    PubMed

    Bravo-Anaya, Lourdes Mónica; Soltero, J F Armando; Rinaudo, Marguerite

    2016-07-01

    Up to now, chitosan and DNA have been investigated for gene delivery due to chitosan advantages. It is recognized that chitosan is a biocompatible and biodegradable non-viral vector that does not produce immunological reactions, contrary to viral vectors. Chitosan has also been used and studied for its ability to protect DNA against nuclease degradation and to transfect DNA into several kinds of cells. In this work, high molecular weight DNA is compacted with chitosan. DNA-chitosan complex stoichiometry, net charge, dimensions, conformation and thermal stability are determined and discussed. The influence of external salt and chitosan molecular weight on the stoichiometry is also discussed. The isoelectric point of the complexes was found to be directly related to the protonation degree of chitosan. It is clearly demonstrated that the net charge of DNA-chitosan complex can be expressed in terms of the ratio [NH3(+)]/[P(-)], showing that the electrostatic interactions between DNA and chitosan are the main phenomena taking place in the solution. Compaction of DNA long chain complexed with low molar mass chitosan gives nanoparticles with an average radius around 150nm. Stable nanoparticles are obtained for a partial neutralization of phosphate ionic sites (i.e.: [NH3(+)]/[P(-)] fraction between 0.35 and 0.80).

  6. Methods of DNA methylation analysis.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The purpose of this review was to provide guidance for investigators who are new to the field of DNA methylation analysis. Epigenetics is the study of mitotically heritable alterations in gene expression potential that are not mediated by changes in DNA sequence. Recently, it has become clear that n...

  7. Stereochemical control of DNA biosynthesis

    PubMed Central

    Sosunov, Vasily V.; Santamaria, Fanny; Victorova, Lyubov S.; Gosselin, Gilles; Rayner, Bernard; Krayevsky, Alexander A.

    2000-01-01

    Stereochemical control of DNA biosynthesis was studied using several DNA-synthesizing complexes containing, in each case, a single substitution of a 2′-deoxy-d-nucleotide residue by an enantiomeric l-nucleotide residue in a DNA chain (either in the primer or in the template) as well as 2′-deoxy-l-ribonucleoside 5′-triphosphates (l-dNTPs) as substrates. Three template-dependent DNA polymerases were tested, Escherichia coli DNA polymerase I Klenow fragment, Thermus aquaticus DNA polymerase and avian myeloblastosis virus reverse transcriptase, as well as template-independent calf-thymus terminal deoxynucleotidyl transferase. Very stringent control of stereoselectivity was demonstrated for template-dependent DNA polymerases, whereas terminal deoxynucleotidyl transferase was less selective. DNA polymerase I and reverse transcriptase catalyzed formation of dinucleoside 5′,5′-tetraphosphates when l-dTTP was used as substrate. Comparison between models of template–primer complexes, modified or not by a single l-nucleotide residue, revealed striking differences in their geometry. PMID:10666459

  8. Structural DNA Nanotechnology: An Overview

    PubMed Central

    Seeman, Nadrian C.

    2012-01-01

    Structural DNA Nanotechnology uses unusual DNA motifs to build target shapes and arrangements. These unusual motifs are generated by reciprocal exchange of DNA backbones, leading to branched systems with many strands and multiple helical domains. The motifs may be combined by sticky ended cohesion, involving hydrogen bonding or covalent interactions. Other forms of cohesion involve edge-sharing or paranemic interactions of double helices. A large number of individual species have been developed by this approach, including polyhedral catenanes, such as a cube and a truncated octahedron, a variety of single-stranded knots, and Borromean rings. In addition to these static species, DNA-based nanomechanical devices have been produced that are targeted ultimately to lead to nanorobotics. Many of the key goals of structural DNA nanotechnology entail the use of periodic arrays. A variety of 2D DNA arrays have been produced with tunable features, such as patterns and cavities. DNA molecules have be used successfully in DNA-based computation as molecular representations of Wang tiles, whose self-assembly can be programmed to perform a calculation. The area appears to be at the cusp of a truly exciting explosion of applications, which can be expected to occur by the end of the current decade. PMID:15923682

  9. Microscopic Electrohydrodynamics of DNA electrophoresis

    NASA Astrophysics Data System (ADS)

    Aksimentiev, Aleksei; Luan, Binquan

    2008-03-01

    Gel electrophoresis is currently the most successful yet costly method to sequence DNA. Electrophoresis of DNA through solid-state nanopores holds promise for reducing the costs and making personal genomics a reality. The underlying physics of DNA electrophoresis, however, remains controversial. Theoretical models of this process often invoke the notion of the effective charge of a DNA molecule qeff to account for the reduced electric force on DNA in an external field E, i.e. F= qeffE. However, experimental estimates of qeff can differ from each other by as much as ten times. To clarify the physical origin of the reduction of an electric force on DNA in electrophoresis, we investigated this process through extensive all-atom molecular dynamics simulations. Our results demonstrate that the effective screening of the DNA charge arises from the hydrodynamic drag of the electroosmotic flow, not from the counterion condensation. We show that the effective driving force F of an applied electric field E in a nanopore obeys the same law as in a bulk electrolyte: F=ξμE. Here, ξ and μ are, respectively, the friction coefficient and electrophoretic mobility of DNA that depend on the surface properties of a nanopore, such as its roughness. Based on the above law, a method for determining the effective driving force is suggested that does not require a direct force measurement.

  10. DNA nanotechnology: a future perspective.

    PubMed

    Zahid, Muniza; Kim, Byeonghoon; Hussain, Rafaqat; Amin, Rashid; Park, Sung Ha

    2013-03-04

    In addition to its genetic function, DNA is one of the most distinct and smart self-assembling nanomaterials. DNA nanotechnology exploits the predictable self-assembly of DNA oligonucleotides to design and assemble innovative and highly discrete nanostructures. Highly ordered DNA motifs are capable of providing an ultra-fine framework for the next generation of nanofabrications. The majority of these applications are based upon the complementarity of DNA base pairing: adenine with thymine, and guanine with cytosine. DNA provides an intelligent route for the creation of nanoarchitectures with programmable and predictable patterns. DNA strands twist along one helix for a number of bases before switching to the other helix by passing through a crossover junction. The association of two crossovers keeps the helices parallel and holds them tightly together, allowing the assembly of bigger structures. Because of the DNA molecule's unique and novel characteristics, it can easily be applied in a vast variety of multidisciplinary research areas like biomedicine, computer science, nano/optoelectronics, and bionanotechnology.

  11. DNA nanotechnology: a future perspective

    PubMed Central

    2013-01-01

    In addition to its genetic function, DNA is one of the most distinct and smart self-assembling nanomaterials. DNA nanotechnology exploits the predictable self-assembly of DNA oligonucleotides to design and assemble innovative and highly discrete nanostructures. Highly ordered DNA motifs are capable of providing an ultra-fine framework for the next generation of nanofabrications. The majority of these applications are based upon the complementarity of DNA base pairing: adenine with thymine, and guanine with cytosine. DNA provides an intelligent route for the creation of nanoarchitectures with programmable and predictable patterns. DNA strands twist along one helix for a number of bases before switching to the other helix by passing through a crossover junction. The association of two crossovers keeps the helices parallel and holds them tightly together, allowing the assembly of bigger structures. Because of the DNA molecule's unique and novel characteristics, it can easily be applied in a vast variety of multidisciplinary research areas like biomedicine, computer science, nano/optoelectronics, and bionanotechnology. PMID:23497147

  12. Quantitative detection of single DNA molecules on DNA tetrahedron decorated substrates.

    PubMed

    Wang, Zhenguang; Xue, Qingwang; Tian, Wenzhi; Wang, Lei; Jiang, Wei

    2012-10-07

    A single DNA molecule detection method on DNA tetrahedron decorated substrates has been developed. DNA tetrahedra were introduced onto substrates for both preventing nonspecific adsorption and sensitive recognition of single DNA molecules.

  13. DNA signals at isoform promoters

    PubMed Central

    Dai, Zhiming; Xiong, Yuanyan; Dai, Xianhua

    2016-01-01

    Transcriptional heterogeneity is extensive in the genome, and most genes express variable transcript isoforms. However, whether variable transcript isoforms of one gene are regulated by common promoter elements remain to be elucidated. Here, we investigated whether isoform promoters of one gene have separated DNA signals for transcription and translation initiation. We found that TATA box and nucleosome-disfavored DNA sequences are prevalent in distinct transcript isoform promoters of one gene. These DNA signals are conserved among species. Transcript isoform has a RNA-determined unstructured region around its start site. We found that these DNA/RNA features facilitate isoform transcription and translation. These results suggest a DNA-encoded mechanism by which transcript isoform is generated. PMID:27353836

  14. DNA-Catalyzed Amide Hydrolysis

    PubMed Central

    Zhou, Cong; Avins, Joshua L.; Klauser, Paul C.; Brandsen, Benjamin M.; Lee, Yujeong; Silverman, Scott K.

    2016-01-01

    DNA catalysts (deoxyribozymes) for a variety of reactions have been identified by in vitro selection. However, for certain reactions this identification has not been achieved. One important example is DNA-catalyzed amide hydrolysis, for which a previous selection experiment instead led to DNA-catalyzed DNA phosphodiester hydrolysis. Subsequent efforts in which the selection strategy deliberately avoided phosphodiester hydrolysis led to DNA-catalyzed ester and aromatic amide hydrolysis, but aliphatic amide hydrolysis has been elusive. In the present study, we show that including modified nucleotides that bear protein-like functional groups (any one of primary amino, carboxyl, or primary hydroxyl) enables identification of amide-hydrolyzing deoxyribozymes. In one case, the same deoxyribozyme sequence without the modifications still retains substantial catalytic activity. Overall, these findings establish the utility of introducing protein-like functional groups into deoxyribozymes for identifying new catalytic function. The results also suggest the longer-term feasibility of deoxyribozymes as artificial proteases. PMID:26854515

  15. DNA vaccines in veterinary use

    PubMed Central

    Redding, Laurel; Werner, David B

    2015-01-01

    DNA vaccines represent a new frontier in vaccine technology. One important application of this technology is in the veterinary arena. DNA vaccines have already gained a foothold in certain fields of veterinary medicine. However, several important questions must be addressed when developing DNA vaccines for animals, including whether or not the vaccine is efficacious and cost effective compared with currently available options. Another important question to consider is how to apply this developing technology in a wide range of different situations, from the domestic pet to individual fish in fisheries with several thousand animals, to wildlife programs for disease control. In some cases, DNA vaccines represent an interesting option for vaccination, while in others, currently available options are sufficient. This review will examine a number of diseases of veterinary importance and the progress being made in DNA vaccine technology relevant to these diseases, and we compare these with the conventional treatment options available. PMID:19722897

  16. DNA looping mediates nucleosome transfer

    PubMed Central

    Brennan, Lucy D.; Forties, Robert A.; Patel, Smita S.; Wang, Michelle D.

    2016-01-01

    Proper cell function requires preservation of the spatial organization of chromatin modifications. Maintenance of this epigenetic landscape necessitates the transfer of parental nucleosomes to newly replicated DNA, a process that is stringently regulated and intrinsically linked to replication fork dynamics. This creates a formidable setting from which to isolate the central mechanism of transfer. Here we utilized a minimal experimental system to track the fate of a single nucleosome following its displacement, and examined whether DNA mechanics itself, in the absence of any chaperones or assembly factors, may serve as a platform for the transfer process. We found that the nucleosome is passively transferred to available dsDNA as predicted by a simple physical model of DNA loop formation. These results demonstrate a fundamental role for DNA mechanics in mediating nucleosome transfer and preserving epigenetic integrity during replication. PMID:27808093

  17. DNA vaccines in veterinary use.

    PubMed

    Redding, Laurel; Weiner, David B

    2009-09-01

    DNA vaccines represent a new frontier in vaccine technology. One important application of this technology is in the veterinary arena. DNA vaccines have already gained a foothold in certain fields of veterinary medicine. However, several important questions must be addressed when developing DNA vaccines for animals, including whether or not the vaccine is efficacious and cost effective compared with currently available options. Another important question to consider is how to apply this developing technology in a wide range of different situations, from the domestic pet to individual fish in fisheries with several thousand animals, to wildlife programs for disease control. In some cases, DNA vaccines represent an interesting option for vaccination, while in others, currently available options are sufficient. This review will examine a number of diseases of veterinary importance and the progress being made in DNA vaccine technology relevant to these diseases, and we compare these with the conventional treatment options available.

  18. Re-entrant DNA gels

    PubMed Central

    Bomboi, Francesca; Romano, Flavio; Leo, Manuela; Fernandez-Castanon, Javier; Cerbino, Roberto; Bellini, Tommaso; Bordi, Federico; Filetici, Patrizia; Sciortino, Francesco

    2016-01-01

    DNA is acquiring a primary role in material development, self-assembling by design into complex supramolecular aggregates, the building block of a new-materials world. Using DNA nanoconstructs to translate sophisticated theoretical intuitions into experimental realizations by closely matching idealized models of colloidal particles is a much less explored avenue. Here we experimentally show that an appropriate selection of competing interactions enciphered in multiple DNA sequences results into the successful design of a one-pot DNA hydrogel that melts both on heating and on cooling. The relaxation time, measured by light scattering, slows down dramatically in a limited window of temperatures. The phase diagram displays a peculiar re-entrant shape, the hallmark of the competition between different bonding patterns. Our study shows that it is possible to rationally design biocompatible bulk materials with unconventional phase diagrams and tuneable properties by encoding into DNA sequences both the particle shape and the physics of the collective response. PMID:27767029

  19. Graphene nanodevices for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Heerema, Stephanie J.; Dekker, Cees

    2016-02-01

    Fast, cheap, and reliable DNA sequencing could be one of the most disruptive innovations of this decade, as it will pave the way for personalized medicine. In pursuit of such technology, a variety of nanotechnology-based approaches have been explored and established, including sequencing with nanopores. Owing to its unique structure and properties, graphene provides interesting opportunities for the development of a new sequencing technology. In recent years, a wide range of creative ideas for graphene sequencers have been theoretically proposed and the first experimental demonstrations have begun to appear. Here, we review the different approaches to using graphene nanodevices for DNA sequencing, which involve DNA passing through graphene nanopores, nanogaps, and nanoribbons, and the physisorption of DNA on graphene nanostructures. We discuss the advantages and problems of each of these key techniques, and provide a perspective on the use of graphene in future DNA sequencing technology.

  20. Regulatory parameters of DNA replication.

    PubMed

    Zannis-Hadjopoulos, M; Price, G B

    1998-01-01

    One of the fundamental characteristics that help define life is the ability to propagate. At the basest level in the act of propagation is replication of the genetic information as the databank and architectural plans for each particular life form. Thus propagation of life requires the replication of the genome--for the purposes of our review, eukaryotic DNA replication. In this critical review, we have chosen to present the issues and supporting experimental evidence in question-and-answer format. Over the past 3 to 4 years, the research domain of eukaryotic DNA replication has developed a new dynamism. This new force in discovery of the fundamental elements and mechanisms for DNA replication in higher eukaryotes has been propelled by accepted methodologies for mapping (identification) of origins of DNA replication, applicable to mammalian DNA replication, and by the discovery of the origin recognition complex (ORC) in yeast, which has served as a model in the search for the mammalian equivalent.

  1. Re-entrant DNA gels

    NASA Astrophysics Data System (ADS)

    Bomboi, Francesca; Romano, Flavio; Leo, Manuela; Fernandez-Castanon, Javier; Cerbino, Roberto; Bellini, Tommaso; Bordi, Federico; Filetici, Patrizia; Sciortino, Francesco

    2016-10-01

    DNA is acquiring a primary role in material development, self-assembling by design into complex supramolecular aggregates, the building block of a new-materials world. Using DNA nanoconstructs to translate sophisticated theoretical intuitions into experimental realizations by closely matching idealized models of colloidal particles is a much less explored avenue. Here we experimentally show that an appropriate selection of competing interactions enciphered in multiple DNA sequences results into the successful design of a one-pot DNA hydrogel that melts both on heating and on cooling. The relaxation time, measured by light scattering, slows down dramatically in a limited window of temperatures. The phase diagram displays a peculiar re-entrant shape, the hallmark of the competition between different bonding patterns. Our study shows that it is possible to rationally design biocompatible bulk materials with unconventional phase diagrams and tuneable properties by encoding into DNA sequences both the particle shape and the physics of the collective response.

  2. Multiscale modelling of DNA mechanics

    NASA Astrophysics Data System (ADS)

    Dršata, Tomáš; Lankaš, Filip

    2015-08-01

    Mechanical properties of DNA are important not only in a wide range of biological processes but also in the emerging field of DNA nanotechnology. We review some of the recent developments in modeling these properties, emphasizing the multiscale nature of the problem. Modern atomic resolution, explicit solvent molecular dynamics simulations have contributed to our understanding of DNA fine structure and conformational polymorphism. These simulations may serve as data sources to parameterize rigid base models which themselves have undergone major development. A consistent buildup of larger entities involving multiple rigid bases enables us to describe DNA at more global scales. Free energy methods to impose large strains on DNA, as well as bead models and other approaches, are also briefly discussed.

  3. DNA typing by capillary electrophoresis

    SciTech Connect

    Zhang, N.

    1997-10-08

    Capillary electrophoresis is becoming more and more important in nucleic acid analysis including DNA sequencing, typing and disease gene measurements. This work summarized the background of DNA typing. The recent development of capillary electrophoresis was also discussed. The second part of the thesis showed the principle of DNA typing based on using the allelic ladder as the absolute standard ladder in capillary electrophoresis system. Future work will be focused on demonstrating DNA typing on multiplex loci and examples of disease diagnosis in the on-line format of PCR-CE. Also capillary array electrophoresis system should allow high throughput, fast speed DNA typing. Only the introduction and conclusions for this report are available here. A reprint was removed for separate processing.

  4. Importance of DNA stiffness in protein-DNA binding specificity

    NASA Astrophysics Data System (ADS)

    Hogan, M. E.; Austin, R. H.

    1987-09-01

    From the first high-resolution structure of a repressor bound specifically to its DNA recognition sequence1 it has been shown that the phage 434 repressor protein binds as a dimer to the helix. Tight, local interactions are made at the ends of the binding site, causing the central four base pairs (bp) to become bent and overtwisted. The centre of the operator is not in contact with protein but repressor binding affinity can be reduced at least 50-fold in response to a sequence change there2. This observation might be explained should the structure of the intervening DNA segment vary with its sequence, or if DNA at the centre of the operator resists the torsional and bending deformation necessary for complex formation in a sequence dependent fashion. We have considered the second hypothesis by demonstrating that DNA stiffness is sequence dependent. A method is formulated for calculating the stiffness of any particular DNA sequence, and we show that this predicted relationship between sequence and stiffness can explain the repressor binding data in a quantitative manner. We propose that the elastic properties of DNA may be of general importance to an understanding of protein-DNA binding specificity.

  5. DNA sequencing using electrical conductance measurements of a DNA polymerase

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Shiun; Lee, Chia-Hui; Hung, Meng-Yen; Pan, Hsu-An; Chiou, Jin-Chern; Huang, G. Steven

    2013-06-01

    The development of personalized medicine--in which medical treatment is customized to an individual on the basis of genetic information--requires techniques that can sequence DNA quickly and cheaply. Single-molecule sequencing technologies, such as nanopores, can potentially be used to sequence long strands of DNA without labels or amplification, but a viable technique has yet to be established. Here, we show that single DNA molecules can be sequenced by monitoring the electrical conductance of a phi29 DNA polymerase as it incorporates unlabelled nucleotides into a template strand of DNA. The conductance of the polymerase is measured by attaching it to a protein transistor that consists of an antibody molecule (immunoglobulin G) bound to two gold nanoparticles, which are in turn connected to source and drain electrodes. The electrical conductance of the DNA polymerase exhibits well-separated plateaux that are ~3 pA in height. Each plateau corresponds to an individual base and is formed at a rate of ~22 nucleotides per second. Additional spikes appear on top of the plateaux and can be used to discriminate between the four different nucleotides. We also show that the sequencing platform works with a variety of DNA polymerases and can sequence difficult templates such as homopolymers.

  6. Regulation of DNA Strand Displacement Using Allosteric DNA Toehold.

    PubMed

    Yang, Xiaolong; Tang, Yanan; Traynor, Sarah M; Li, Feng

    2016-10-05

    Toehold-mediated DNA strand displacement is the fundamental basis for the construction and operation of diverse DNA devices, including circuits, machines, sensors, and reconfigurable structures. Controllable activation and regulation of toeholds are critical to construct devices with multistep, autonomous, and complex behaviors. A handful of unique toehold activation mechanisms, including toehold-exchange, associative toehold, and remote toehold, have been developed and are often combined to achieve desired strand displacement behaviors and functions. Here we report an allosteric DNA toehold (A-toehold) design that allows the flexible regulation of DNA strand displacement by splitting an input strand into an A-toehold and branch migration domain. Because of its simplicity, the A-toehold mechanism can be a useful addition to the current toolbox of DNA strand displacement techniques. We demonstrated that A-toehold enabled a number of interesting functions that were previously shown using more sophisticated DNA strand displacement systems, including 1) continuously tuning the rate of strand displacement, 2) dynamic control of strand displacement reactions, and 3) selective activation of multiple strand displacement reactions. Moreover, by combining A-toehold and toehold-exchange mechanisms, we have successfully constructed a non-covalent DNA catalysis network that resembles an allosteric enzyme.

  7. The RecQ DNA helicases in DNA Repair

    PubMed Central

    Bernstein, Kara A.; Gangloff, Serge; Rothstein, Rodney

    2014-01-01

    The RecQ helicases are conserved from bacteria to humans and play a critical role in genome stability. In humans, loss of RecQ gene function is associated with cancer predisposition and/or premature aging. Recent data have shown that the RecQ helicases function during two distinct steps during DNA repair; DNA end resection and resolution of double Holliday junctions (dHJs). RecQ functions in these different processing steps has important implications for its role in repair of double-strand breaks (DSBs) that occur during DNA replication, meiosis and at specific genomic loci such as telomeres. PMID:21047263

  8. DNA topology, not DNA sequence, is a critical determinant for Drosophila ORC–DNA binding

    PubMed Central

    Remus, Dirk; Beall, Eileen L; Botchan, Michael R

    2004-01-01

    Drosophila origin recognition complex (ORC) localizes to defined positions on chromosomes, and in follicle cells the chorion gene amplification loci are well-studied examples. However, the mechanism of specific localization is not known. We have studied the DNA binding of DmORC to investigate the cis-requirements for DmORC:DNA interaction. DmORC displays at best six-fold differences in the relative affinities to DNA from the third chorion locus and to random fragments in vitro, and chemical probing and DNase1 protection experiments did not identify a discrete binding site for DmORC on any of these fragments. The intrinsic DNA-binding specificity of DmORC is therefore insufficient to target DmORC to origins of replication in vivo. However, the topological state of the DNA significantly influences the affinity of DmORC to DNA. We found that the affinity of DmORC for negatively supercoiled DNA is about 30-fold higher than for either relaxed or linear DNA. These data provide biochemical evidence for the notion that origin specification in metazoa likely involves mechanisms other than simple replicator–initiator interactions and that in vivo other proteins must determine ORC's localization. PMID:14765124

  9. Ligand inducible assembly of a DNA tetrahedron.

    PubMed

    Dohno, Chikara; Atsumi, Hiroshi; Nakatani, Kazuhiko

    2011-03-28

    Here we show that a small synthetic ligand can be used as a key building component for DNA nanofabrication. Using naphthyridinecarbamate dimer (NCD) as a molecular glue for DNA hybridization, we demonstrate NCD-triggered formation of a DNA tetrahedron.

  10. Convention on nomenclature for DNA cytometry

    SciTech Connect

    Hiddemann, W.; Schumann, J.; Andreeff, M.; Barlogie, B.; Herman, C.J.; Leif, R.C.; Mayall, B.H.; Murphy, R.F.; Sandberg, A.A.

    1984-01-01

    The Committee on Nomenclature of the Society for Analytical Cytology presents guidelines for the analysis of DNA content by cytometry. These guidelines cover: staining of DNA; cytogenetic and cytometric terminology; DNA index; resolution of measurements; and cytometric standards.

  11. Isolation and Characterization of Bacterial DNA.

    ERIC Educational Resources Information Center

    Wilson, W. David; Davidson, Michael W.

    1979-01-01

    An inexpensive DNA preparation is presented which starts with commercially available frozen packed bacterial cells. Methods for analyzing the DNA are also presented, along with physical chemical experiments which can be done using the purified DNA. (BB)

  12. Meta-DNA: synthetic biology via DNA nanostructures and hybridization reactions

    PubMed Central

    Chandran, Harish; Gopalkrishnan, Nikhil; Yurke, Bernard; Reif, John

    2012-01-01

    Can a wide range of complex biochemical behaviour arise from repeated applications of a highly reduced class of interactions? In particular, can the range of DNA manipulations achieved by protein enzymes be simulated via simple DNA hybridization chemistry? In this work, we develop a biochemical system which we call meta-DNA (abbreviated as mDNA), based on strands of DNA as the only component molecules. Various enzymatic manipulations of these mDNA molecules are simulated via toehold-mediated DNA strand displacement reactions. We provide a formal model to describe the required properties and operations of our mDNA, and show that our proposed DNA nanostructures and hybridization reactions provide these properties and functionality. Our meta-nucleotides are designed to form flexible linear assemblies (single-stranded mDNA (ssmDNA)) analogous to single-stranded DNA. We describe various isothermal hybridization reactions that manipulate our mDNA in powerful ways analogous to DNA–DNA reactions and the action of various enzymes on DNA. These operations on mDNA include (i) hybridization of ssmDNA into a double-stranded mDNA (dsmDNA) and heat denaturation of a dsmDNA into its component ssmDNA, (ii) strand displacement of one ssmDNA by another, (iii) restriction cuts on the backbones of ssmDNA and dsmDNA, (iv) polymerization reactions that extend ssmDNA on a template to form a complete dsmDNA, (v) synthesis of mDNA sequences via mDNA polymerase chain reaction, (vi) isothermal denaturation of a dsmDNA into its component ssmDNA, and (vii) an isothermal replicator reaction that exponentially amplifies ssmDNA strands and may be modified to allow for mutations. PMID:22237679

  13. Towards DNA-Based Programmable Matter

    DTIC Science & Technology

    2012-02-28

    that moves along a DNA track and mediates autonomous multistep organic synthesis in a single isothermal solution.35 McKee et al. recently used a DNA...functionalize a variety of mesoscale materials with DNA oligonucleotides. Finally, we demonstrated the ability of these DNA-linked surfaces to mediate ...these DNA-linked surfaces to mediate surface-surface interactions in a DNA sequence-specific manner. In a second line of research, we applied these

  14. Odyssey of agrobacterium T-DNA.

    PubMed

    Ziemienowicz, A

    2001-01-01

    Agrobacterium tumefaciens, a plant pathogen, is characterized by the unique feature of interkingdom DNA transfer. This soil bacterium is able to transfer a fragment of its DNA, called T-DNA (transferred DNA), to the plant cell where T-DNA is integrated into the plant genome leading to "genetic colonization" of the host. The fate of T-DNA, its processing, transfer and integration, resembles the journey of Odysseus, although our hero returns from its long trip in a slightly modified form.

  15. Chromatin structure and DNA damage

    SciTech Connect

    Gale, J.M.

    1987-01-01

    This dissertation examines the structure and structural transitions of chromatin in relation to DNA damage. The ability of intact and histone H1 depleted chromatin fibers to fold into higher ordered structures in vitro was examined following DNA photodamage introduced by two different agents. (1) 254-nm UV radiation and (2) trimethylpsoralen (plus near-UV radiation). Both agents are highly specific for DNA and form adducts predicted to cause different degrees of distortion in the DNA helix. The salt-induced structural transitions of intact and histone H1 depleted chromatin fibers were monitored by both analytical ultracentrifugation and light scattering. Our results show that even in the presence of extremely large, nonphysiological amounts of photodamage by either agent the ability of chromatin to fold into higher ordered structures is not affected. The compact, 30 nm fiber must therefore be able to accommodate a large amount of DNA damage without any measurable changes in the overall size or degree of compaction of this structure. The distribution of pyrimidine dimers was mapped at the single nucleotide level in nucleosome core DNA from UV-irradiated mononucleosomes, chromatin fibers, and human cells in culture using the 3' ..-->.. 5' exonuclease activity of T4 DNA polymerase.

  16. DNA condensation in one dimension

    NASA Astrophysics Data System (ADS)

    Pardatscher, Günther; Bracha, Dan; Daube, Shirley S.; Vonshak, Ohad; Simmel, Friedrich C.; Bar-Ziv, Roy H.

    2016-12-01

    DNA can be programmed to assemble into a variety of shapes and patterns on the nanoscale and can act as a template for hybrid nanostructures such as conducting wires, protein arrays and field-effect transistors. Current DNA nanostructures are typically in the sub-micrometre range, limited by the sequence space and length of the assembled strands. Here we show that on a patterned biochip, DNA chains collapse into one-dimensional (1D) fibres that are 20 nm wide and around 70 µm long, each comprising approximately 35 co-aligned chains at its cross-section. Electron beam writing on a photocleavable monolayer was used to immobilize and pattern the DNA molecules, which condense into 1D bundles in the presence of spermidine. DNA condensation can propagate and split at junctions, cross gaps and create domain walls between counterpropagating fronts. This system is inherently adept at solving probabilistic problems and was used to find the possible paths through a maze and to evaluate stochastic switching circuits. This technique could be used to propagate biological or ionic signals in combination with sequence-specific DNA nanotechnology or for gene expression in cell-free DNA compartments.

  17. Ancient and modern environmental DNA.

    PubMed

    Pedersen, Mikkel Winther; Overballe-Petersen, Søren; Ermini, Luca; Sarkissian, Clio Der; Haile, James; Hellstrom, Micaela; Spens, Johan; Thomsen, Philip Francis; Bohmann, Kristine; Cappellini, Enrico; Schnell, Ida Bærholm; Wales, Nathan A; Carøe, Christian; Campos, Paula F; Schmidt, Astrid M Z; Gilbert, M Thomas P; Hansen, Anders J; Orlando, Ludovic; Willerslev, Eske

    2015-01-19

    DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field.

  18. DNA damage by various radiations

    NASA Astrophysics Data System (ADS)

    Hasegawa, K.; Yoshioka, H.; Yoshioka, H.

    1997-01-01

    In an attempt to shed light on the influence of tritiated water on DNA we have investigated the post-irradiation damage with a simple plasmid DNA, pBR322 and pUC18. The survival of covalently closed circular (CCC) DNA form was directly followed by agarose gel electrophoresis. The survival percentage of DNA in tritiated water was almost the same as with the irradiation with X-rays at the same absorbed dose. For irradiation with γ-rays, on the other hand, the decay rate was larger than those observed with both tritiated water and X-rays. The percentages of breakage for DNA in tritiated water, X-rays and γ-rays were found to be 34, 38 and 33% at 100 Gy of absorbed dose. The effect of dose rate was not observed for irradiation with tritiated water, X-rays and γ-rays. In order to study protection of DNA against radiation, we investigated the protecting effect of tea catechin which is the main component of (-)-epigallocatechin gallate (EGCg). The protection mechanism for DNA against radiation-induced scission has been studied using ESR spin-trapping method.

  19. Ancient and modern environmental DNA

    PubMed Central

    Pedersen, Mikkel Winther; Overballe-Petersen, Søren; Ermini, Luca; Sarkissian, Clio Der; Haile, James; Hellstrom, Micaela; Spens, Johan; Thomsen, Philip Francis; Bohmann, Kristine; Cappellini, Enrico; Schnell, Ida Bærholm; Wales, Nathan A.; Carøe, Christian; Campos, Paula F.; Schmidt, Astrid M. Z.; Gilbert, M. Thomas P.; Hansen, Anders J.; Orlando, Ludovic; Willerslev, Eske

    2015-01-01

    DNA obtained from environmental samples such as sediments, ice or water (environmental DNA, eDNA), represents an important source of information on past and present biodiversity. It has revealed an ancient forest in Greenland, extended by several thousand years the survival dates for mainland woolly mammoth in Alaska, and pushed back the dates for spruce survival in Scandinavian ice-free refugia during the last glaciation. More recently, eDNA was used to uncover the past 50 000 years of vegetation history in the Arctic, revealing massive vegetation turnover at the Pleistocene/Holocene transition, with implications for the extinction of megafauna. Furthermore, eDNA can reflect the biodiversity of extant flora and fauna, both qualitatively and quantitatively, allowing detection of rare species. As such, trace studies of plant and vertebrate DNA in the environment have revolutionized our knowledge of biogeography. However, the approach remains marred by biases related to DNA behaviour in environmental settings, incomplete reference databases and false positive results due to contamination. We provide a review of the field. PMID:25487334

  20. Diatom DNA as historical information

    NASA Astrophysics Data System (ADS)

    Stoof, K. R.; Epp, L. S.; Trauth, M. H.; Tiedemann, R.

    2009-04-01

    This survey is about the reconstruction of paleo environmental conditions in East Africa using recent and historic lakes sediments of shallow lakes in Kenya. This interdisciplinary approach combines the molecular analysis of ancient diatom DNA and the morphological analysis of diatom assemblages of short sediment cores to reveal the potential of molecular genetics in geosciences. This study comprises the investigation of two short sediment cores from Lake Naivasha (Kenya) taken in 2007, covering a stretch of ca. 80 years. Several sediment slices were analysed by molecular methods that concludes in species identification based on DNA fragments. Therefore total DNA was extracted and applied to a diatom DNA specific PCR amplifying a gene fragment that is frequently used for species identification. After cloning PCR products, clones were sequenced, sequences from different diatom species were analysed. As a comparison permanent slides were prepared for each sediment sample for counting diatom valves. The results suggest that DNA damage, perhaps species depended, and specific factors of PCR contribute to an overhang of two dominant diatom species (Aulacoseira ambigua and Aulacoseira granulata) represented by the molecular approach whereas rare species seen by light microscopy are not yet identifiable with molecular methods. Moreover changes in diatom assemblages and the reconstructed conductivity indicate a decrease of lake level around 1940. This shift seems to be also represented in the molecular approach as a decrease in the amount of diverse diatom DNA sequences found, what is probably caused by worse DNA preservation conditions at that time.

  1. Visualization of yeast chromosomal DNA

    NASA Technical Reports Server (NTRS)

    Lubega, Seth

    1990-01-01

    The DNA molecule is the most significant life molecule since it codes the blue print for other structural and functional molecules of all living organisms. Agarose gel electrophoresis is now being widely used to separate DNA of virus, bacteria, and lower eukaryotes. The task was undertaken of reviewing the existing methods of DNA fractionation and microscopic visualization of individual chromosonal DNA molecules by gel electrophoresis as a basis for a proposed study to investigate the feasibility of separating DNA molecules in free fluids as an alternative to gel electrophoresis. Various techniques were studied. On the molecular level, agarose gel electrophoresis is being widely used to separate chromosomal DNA according to molecular weight. Carl and Olson separate and characterized the entire karyotype of a lab strain of Saccharomyces cerevisiae. Smith et al. and Schwartz and Koval independently reported the visualization of individual DNA molecules migrating through agarose gel matrix during electrophoresis. The techniques used by these researchers are being reviewed in the lab as a basis for the proposed studies.

  2. Anomeric DNA quadruplexes.

    PubMed

    Kolganova, Natalia A; Varizhuk, Anna M; Novikov, Roman A; Florentiev, Vladimir L; Pozmogova, Galina E; Borisova, Olga F; Shchyolkina, Anna K; Smirnov, Igor P; Kaluzhny, Dmitry N; Timofeev, Edward N

    2014-01-01

    Thrombin-binding aptamer (TBA) is a 15-nt DNA oligomer that efficiently inhibits thrombin. It has been shown that TBA folds into an anti-parallel unimolecular G-quadruplex. Its three-dimensional chair-like structure consists of two G-tetrads connected by TT and TGT loops. TBA undergoes fast degradation by nucleases in vivo. To improve the nuclease resistance of TBA, a number of modified analogs have been proposed. Here, we describe anomeric modifications of TBA. Non-natural α anomers were used to replace selected nucleotides in the loops and core. Significant stabilization of the quadruplex was observed for the anomeric modification of TT loops at T4 and T13. Replacement of the core guanines either prevents quadruplex assembly or induces rearrangement in G-tetrads. It was found that the anticoagulant properties of chimeric aptamers could be retained only with intact TT loops. On the contrary, modification of the TGT loop was shown to substantially increase nuclease resistance of the chimeric aptamer without a notable disturbance of its anticoagulant activity.

  3. Anomeric DNA quadruplexes

    PubMed Central

    Kolganova, Natalia A; Varizhuk, Anna M; Novikov, Roman A; Florentiev, Vladimir L; Pozmogova, Galina E; Borisova, Olga F; Shchyolkina, Anna K; Smirnov, Igor P; Kaluzhny, Dmitry N; Timofeev, Edward N

    2014-01-01

    Thrombin-binding aptamer (TBA) is a 15-nt DNA oligomer that efficiently inhibits thrombin. It has been shown that TBA folds into an anti-parallel unimolecular G-quadruplex. Its three-dimensional chair-like structure consists of two G-tetrads connected by TT and TGT loops. TBA undergoes fast degradation by nucleases in vivo. To improve the nuclease resistance of TBA, a number of modified analogs have been proposed. Here, we describe anomeric modifications of TBA. Non-natural α anomers were used to replace selected nucleotides in the loops and core. Significant stabilization of the quadruplex was observed for the anomeric modification of TT loops at T4 and T13. Replacement of the core guanines either prevents quadruplex assembly or induces rearrangement in G-tetrads. It was found that the anticoagulant properties of chimeric aptamers could be retained only with intact TT loops. On the contrary, modification of the TGT loop was shown to substantially increase nuclease resistance of the chimeric aptamer without a notable disturbance of its anticoagulant activity. PMID:25483931

  4. TOPICAL REVIEW: DNA nanowire fabrication

    NASA Astrophysics Data System (ADS)

    Gu, Qun; Cheng, Chuanding; Gonela, Ravikanth; Suryanarayanan, Shivashankar; Anabathula, Sathish; Dai, Kun; Haynie, Donald T.

    2006-01-01

    Deoxyribonucleic acid (DNA) has been a key building block in nanotechnology since the earliest work on what is now called DNA-templated self-assembly (Alivisatos et al 1996 Nature 382 609; Mirkin et al 1996 Nature 382 607; Braun et al 1998 Nature 391 775). A range of different nanoparticles and nanoclusters have been assembled on single DNA molecules for a variety of purposes (Braun et al 1998 Nature 391 775; Richter et al 2001 Appl. Phys. Lett. 78 536; Park et al 2002 Science 295 1503; Mirkin 2000 Inorg. Chem. 39 2258; Keren et al 2003 Science 302 1380). Electrically conductive silver (Braun et al 1998 Nature 391 775) and palladium (Richter et al 2001 Appl. Phys. Lett. 78 536) nanowires, for example, have been fabricated by DNA templating for the development of interconnection of nanoelectric elements, and field effect transistors have been built by assembly of a single carbon nanotube and DNA-templated nanowires (Keren et al 2003 Science 302 1380). DNA is well suited for nanowire assembly because of its size, well organized structure, and exquisite molecular-recognition-ability-specific base pairing. This property has been used to detect nucleic acids (Park et al 2002 Science 295 1503) and anthrax (Mirkin 2000 Inorg. Chem. 39 2258) with high sensitivity and specificity. Molecular recognition can also be used to localize nanowires in electronics. Various methods, for example molecular combing, electrophoretic stretching, and hydrodynamic stretching, have been developed to orient DNA molecules on a solid support. This review focuses on methods used to manipulate and metallize DNA in nanowire fabrication. A novel approach based on a single-stranded DNA template and molecular recognition is also discussed.

  5. DNA under Force: Mechanics, Electrostatics, and Hydration

    PubMed Central

    Li, Jingqiang; Wijeratne, Sithara S.; Qiu, Xiangyun; Kiang, Ching-Hwa

    2015-01-01

    Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  6. Role of DNA profiling in forensic odontology.

    PubMed

    Sakari, S Leena; Jimson, Sudha; Masthan, K M K; Jacobina, Jenita

    2015-04-01

    The recent advances in DNA profiling have made DNA evidence to be more widely accepted in courts. This has revolutionized the aspect of forensic odontology. DNA profiling/DNA fingerprinting has come a long way from the conventional fingerprints. DNA that is responsible for all the cell's activities, yields valuable information both in the healthy and diseased individuals. When other means of traditional identification become impossible following mass calamities or fire explosions, teeth provide a rich source of DNA as they have a high chemical as well as physical resistance. The recent evolution in the isolation of DNA and the ways of running a DNA fingerprint are highlighted in this literature review.

  7. Mechanical design of DNA nanostructures.

    PubMed

    Castro, Carlos E; Su, Hai-Jun; Marras, Alexander E; Zhou, Lifeng; Johnson, Joshua

    2015-04-14

    Structural DNA nanotechnology is a rapidly emerging field that has demonstrated great potential for applications such as single molecule sensing, drug delivery, and templating molecular components. As the applications of DNA nanotechnology expand, a consideration of their mechanical behavior is becoming essential to understand how these structures will respond to physical interactions. This review considers three major avenues of recent progress in this area: (1) measuring and designing mechanical properties of DNA nanostructures, (2) designing complex nanostructures based on imposed mechanical stresses, and (3) designing and controlling structurally dynamic nanostructures. This work has laid the foundation for mechanically active nanomachines that can generate, transmit, and respond to physical cues in molecular systems.

  8. Autonomous DNA-Molecule Computing

    NASA Astrophysics Data System (ADS)

    Komiya, Ken; Rose, John A.; Yamamura, Masayuki

    DNA molecules autonomously change their forms from the single strand to the double helix by specific binding between complementary sequences according to the Watson-Crick base pairing rule. This paring rule allows us to control connections among molecules and to construct various structures by sequence design. Further, the motion of constructed structures can also be designed by considering sequential bindings. Recently, the feasibility to utilize the programmed DNA structural change for information processing was studied. In the present paper, we report an efficient synthetic chain reaction based on autonomous binding of DNA to realize a computing system, which enable us to implement computational intelligence in vitro.

  9. Microwave effects on plasmid DNA.

    PubMed

    Sagripanti, J L; Swicord, M L; Davis, C C

    1987-05-01

    The exposure of purified plasmid DNA to microwave radiation at nonthermal levels in the frequency range from 2.00 to 8.75 GHz produces single- and double-strand breaks that are detected by agarose gel electrophoresis. Microwave-induced damage to DNA depends on the presence of small amounts of copper. This effect is dependent upon both the microwave power and the duration of the exposure. Cuprous, but not cupric, ions were able to mimic the effects produced by microwaves on DNA.

  10. DNA Uptake by Transformable Bacteria

    SciTech Connect

    Lacks, Sanford A.

    1999-03-31

    The various processes of DNA uptake by cells can be categorized as: viral DNA entry, conjugation, or transformation. Within each category, a variety of mechanisms have been found. However, considerable similarities occur among the different mechanisms of conjugation and, especially, transformation. All of these natural mechanisms of DNA transfer are quite elaborate and involve multiple protein components, as the case may be, of the virus, the donor cell, and the recipient cell. The mechanisms of viral infection and conjugation will be discussed mainly with respect to their relevance to transformation.

  11. DNA UPTAKE BY TRANSFORMABLE BACTERIA

    SciTech Connect

    LACKS,S.A.

    1999-09-07

    The various processes of DNA uptake by cells can be categorized as: viral DNA entry, conjugation, or transformation. Within each category, a variety of mechanisms have been found. However, considerable similarities occur among the different mechanisms of conjugation and, especially, transformation. All of these natural mechanisms of DNA transfer are quite elaborate and involve multiple protein components, as the case may be, of the virus, the donor cell, and the recipient cell. The mechanisms of viral infection and conjugation will be discussed mainly with respect to their relevance to transformation.

  12. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, Stefan K.

    1998-01-01

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei.

  13. Sequence independent amplification of DNA

    DOEpatents

    Bohlander, S.K.

    1998-03-24

    The present invention is a rapid sequence-independent amplification procedure (SIA). Even minute amounts of DNA from various sources can be amplified independent of any sequence requirements of the DNA or any a priori knowledge of any sequence characteristics of the DNA to be amplified. This method allows, for example, the sequence independent amplification of microdissected chromosomal material and the reliable construction of high quality fluorescent in situ hybridization (FISH) probes from YACs or from other sources. These probes can be used to localize YACs on metaphase chromosomes but also--with high efficiency--in interphase nuclei. 25 figs.

  14. [DNA examination for criminal investigation].

    PubMed

    Takahashi, Masanori

    2008-11-30

    The main purpose of DNA examination in a criminal investigation is identification from biological specimen material (sample). Occasionally, DNA genotyping of the sample in which decomposition, pollution, mixture, degeneration, etc., have progressed is requested for identification. In addition, in cases of a small amount of sample, it is not possible to conduct checks many times. The Police Agency in Japan introduced the multiplex PCR system that can detect 15 kinds of STR genotyping and perform sex determination simultaneously using only a small amount of DNA.

  15. Normalized cDNA libraries

    DOEpatents

    Soares, M.B.; Efstratiadis, A.

    1997-06-10

    This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3{prime} noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library. 4 figs.

  16. Carbon nanotube interaction with DNA.

    PubMed

    Lu, Gang; Maragakis, Paul; Kaxiras, Efthimios

    2005-05-01

    We investigate a system consisting of B-DNA and an array of (10,0) carbon nanotubes periodically arranged to fit into the major groove of the DNA. We obtain an accurate electronic structure of the combined system, which reveals that it is semiconducting and that the bands on either end of the gap are derived exclusively from one of the two components. We discuss in detail how this system can be used as either an electronic switch involving transport through both components, or as a device for ultrafast DNA sequencing.

  17. Microwave effects on plasmid DNA

    SciTech Connect

    Sagripanti, J.L.; Swicord, M.L.; Davis, C.C.

    1987-05-01

    The exposure of purified plasmid DNA to microwave radiation at nonthermal levels in the frequency range from 2.00 to 8.75 GHz produces single- and double-strand breaks that are detected by agarose gel electrophoresis. Microwave-induced damage to DNA depends on the presence of small amounts of copper. This effect is dependent upon both the microwave power and the duration of the exposure. Cuprous, but not cupric, ions were able to mimic the effects produced by microwaves on DNA.

  18. Normalized cDNA libraries

    DOEpatents

    Soares, Marcelo B.; Efstratiadis, Argiris

    1997-01-01

    This invention provides a method to normalize a directional cDNA library constructed in a vector that allows propagation in single-stranded circle form comprising: (a) propagating the directional cDNA library in single-stranded circles; (b) generating fragments complementary to the 3' noncoding sequence of the single-stranded circles in the library to produce partial duplexes; (c) purifying the partial duplexes; (d) melting and reassociating the purified partial duplexes to moderate Cot; and (e) purifying the unassociated single-stranded circles, thereby generating a normalized cDNA library.

  19. Physical Interactions between Mcm10, DNA, and DNA Polymerase [alpha

    SciTech Connect

    Warren, Eric M.; Huang, Hao; Fanning, Ellen; Chazin, Walter J.; Eichman, Brandt F.

    2009-10-21

    Mcm10 is an essential eukaryotic protein required for the initiation and elongation phases of chromosomal replication. Specifically, Mcm10 is required for the association of several replication proteins, including DNA polymerase {alpha} (pol {alpha}), with chromatin. We showed previously that the internal (ID) and C-terminal (CTD) domains of Mcm10 physically interact with both single-stranded (ss) DNA and the catalytic p180 subunit of pol {alpha}. However, the mechanism by which Mcm10 interacts with pol {alpha} on and off DNA is unclear. As a first step toward understanding the structural details for these critical intermolecular interactions, x-ray crystallography and NMR spectroscopy were used to map the binary interfaces between Mcm10-ID, ssDNA, and p180. The crystal structure of an Mcm10-ID {center_dot} ssDNA complex confirmed and extended our previous evidence that ssDNA binds within the oligonucleotide/oligosaccharide binding-fold cleft of Mcm10-ID. We show using NMR chemical shift perturbation and fluorescence spectroscopy that p180 also binds to the OB-fold and that ssDNA and p180 compete for binding to this motif. In addition, we map a minimal Mcm10 binding site on p180 to a small region within the p180 N-terminal domain (residues 286-310). These findings, together with data for DNA and p180 binding to an Mcm10 construct that contains both the ID and CTD, provide the first mechanistic insight into how Mcm10 might use a handoff mechanism to load and stabilize pol {alpha} within the replication fork.

  20. DNA-DNA interaction beyond the ground state

    NASA Astrophysics Data System (ADS)

    Lee, D. J.; Wynveen, A.; Kornyshev, A. A.

    2004-11-01

    The electrostatic interaction potential between DNA duplexes in solution is a basis for the statistical mechanics of columnar DNA assemblies. It may also play an important role in recombination of homologous genes. We develop a theory of this interaction that includes thermal torsional fluctuations of DNA using field-theoretical methods and Monte Carlo simulations. The theory extends and rationalizes the earlier suggested variational approach which was developed in the context of a ground state theory of interaction of nonhomologous duplexes. It shows that the heuristic variational theory is equivalent to the Hartree self-consistent field approximation. By comparison of the Hartree approximation with an exact solution based on the QM analogy of path integrals, as well as Monte Carlo simulations, we show that this easily analytically-tractable approximation works very well in most cases. Thermal fluctuations do not remove the ability of DNA molecules to attract each other at favorable azimuthal conformations, neither do they wash out the possibility of electrostatic “snap-shot” recognition of homologous sequences, considered earlier on the basis of ground state calculations. At short distances DNA molecules undergo a “torsional alignment transition,” which is first order for nonhomologous DNA and weaker order for homologous sequences.

  1. DNA-DNA interaction beyond the ground state.

    PubMed

    Lee, D J; Wynveen, A; Kornyshev, A A

    2004-11-01

    The electrostatic interaction potential between DNA duplexes in solution is a basis for the statistical mechanics of columnar DNA assemblies. It may also play an important role in recombination of homologous genes. We develop a theory of this interaction that includes thermal torsional fluctuations of DNA using field-theoretical methods and Monte Carlo simulations. The theory extends and rationalizes the earlier suggested variational approach which was developed in the context of a ground state theory of interaction of nonhomologous duplexes. It shows that the heuristic variational theory is equivalent to the Hartree self-consistent field approximation. By comparison of the Hartree approximation with an exact solution based on the QM analogy of path integrals, as well as Monte Carlo simulations, we show that this easily analytically-tractable approximation works very well in most cases. Thermal fluctuations do not remove the ability of DNA molecules to attract each other at favorable azimuthal conformations, neither do they wash out the possibility of electrostatic "snap-shot" recognition of homologous sequences, considered earlier on the basis of ground state calculations. At short distances DNA molecules undergo a "torsional alignment transition," which is first order for nonhomologous DNA and weaker order for homologous sequences.

  2. Use of Genomic DNA as A Reference in DNA Microarrays

    SciTech Connect

    Yang, Yunfeng

    2009-01-01

    DNA microarray has become a mainstream technology to explore gene expression profiles, identify novel genes involved in a biological process of interest and predict their function, and determine biomarkers that are relevant to a given phenotype or disease. Typical two-channel microarray studies use an experimental design called the complementary DNA (cDNA) reference method, in which samples from test and control conditions are compared directly on a microarray slide. A substantial limitation of this strategy is that it is nearly impossible to compare data between experiments because the reference sample composition is subjected to changes at the level of experimental design and thereby not consistent from one experiment to another. Using genomic DNA as common reference will effectively overcome this limitation. This chapter describes detailed methods to prepare genomic DNA of high quality, label with fluorescent dye, co-hybridize with cDNA samples, and the subsequent data analyses. In addition, notes are provided to help the readers to obtain optimal results using the procedure.

  3. Construction of DNA Hemicatenanes from Two Small Circular DNA Molecules

    PubMed Central

    Gaillard, Claire; Strauss, François

    2015-01-01

    DNA hemicatenanes, one of the simplest possible junctions between two double stranded DNA molecules, have frequently been mentioned in the literature for their possible function in DNA replication, recombination, repair, and organization in chromosomes. They have been little studied experimentally, however, due to the lack of an appropriate method for their preparation. Here we have designed a method to build hemicatenanes from two small circular DNA molecules. The method involves, first, the assembly of two linear single strands and their circularization to form a catenane of two single stranded circles, and, second, the addition and base-pairing of the two single stranded circles complementary to the first ones, followed by their annealing using DNA topoisomerase I. The product was purified by gel electrophoresis and characterized. The arrangement of strands was as expected for a hemicatenane and clearly distinct from a full catenane. In addition, each circle was unwound by an average of half a double helical turn, also in excellent agreement with the structure of a hemicatenane. It was also observed that hemicatenanes are quickly destabilized by a single cut on either of the two strands passing inside the junction, strongly suggesting that DNA strands are able to slide easily inside the hemicatenane. This method should make it possible to study the biochemical properties of hemicatenanes and to test some of the hypotheses that have been proposed about their function, including a possible role for this structure in the organization of complex genomes in loops and chromosomal domains. PMID:25799010

  4. Bacterial identification and subtyping using DNA microarray and DNA sequencing.

    PubMed

    Al-Khaldi, Sufian F; Mossoba, Magdi M; Allard, Marc M; Lienau, E Kurt; Brown, Eric D

    2012-01-01

    The era of fast and accurate discovery of biological sequence motifs in prokaryotic and eukaryotic cells is here. The co-evolution of direct genome sequencing and DNA microarray strategies not only will identify, isotype, and serotype pathogenic bacteria, but also it will aid in the discovery of new gene functions by detecting gene expressions in different diseases and environmental conditions. Microarray bacterial identification has made great advances in working with pure and mixed bacterial samples. The technological advances have moved beyond bacterial gene expression to include bacterial identification and isotyping. Application of new tools such as mid-infrared chemical imaging improves detection of hybridization in DNA microarrays. The research in this field is promising and future work will reveal the potential of infrared technology in bacterial identification. On the other hand, DNA sequencing by using 454 pyrosequencing is so cost effective that the promise of $1,000 per bacterial genome sequence is becoming a reality. Pyrosequencing technology is a simple to use technique that can produce accurate and quantitative analysis of DNA sequences with a great speed. The deposition of massive amounts of bacterial genomic information in databanks is creating fingerprint phylogenetic analysis that will ultimately replace several technologies such as Pulsed Field Gel Electrophoresis. In this chapter, we will review (1) the use of DNA microarray using fluorescence and infrared imaging detection for identification of pathogenic bacteria, and (2) use of pyrosequencing in DNA cluster analysis to fingerprint bacterial phylogenetic trees.

  5. DNA Damage and Repair in Vascular Disease.

    PubMed

    Uryga, Anna; Gray, Kelly; Bennett, Martin

    2016-01-01

    DNA damage affecting both genomic and mitochondrial DNA is present in a variety of both inherited and acquired vascular diseases. Multiple cell types show persistent DNA damage and a range of lesions. In turn, DNA damage activates a variety of DNA repair mechanisms, many of which are activated in vascular disease. Such DNA repair mechanisms either stall the cell cycle to allow repair to occur or trigger apoptosis or cell senescence to prevent propagation of damaged DNA. Recent evidence has indicated that DNA damage occurs early, is progressive, and is sufficient to impair function of cells composing the vascular wall. The consequences of persistent genomic and mitochondrial DNA damage, including inflammation, cell senescence, and apoptosis, are present in vascular disease. DNA damage can thus directly cause vascular disease, opening up new possibilities for both prevention and treatment. We review the evidence for and the causes, types, and consequences of DNA damage in vascular disease.

  6. Synchronization of DNA array replication kinetics

    NASA Astrophysics Data System (ADS)

    Manturov, Alexey O.; Grigoryev, Anton V.

    2016-04-01

    In the present work we discuss the features of the DNA replication kinetics at the case of multiplicity of simultaneously elongated DNA fragments. The interaction between replicated DNA fragments is carried out by free protons that appears at the every nucleotide attachment at the free end of elongated DNA fragment. So there is feedback between free protons concentration and DNA-polymerase activity that appears as elongation rate dependence. We develop the numerical model based on a cellular automaton, which can simulate the elongation stage (growth of DNA strands) for DNA elongation process with conditions pointed above and we study the possibility of the DNA polymerases movement synchronization. The results obtained numerically can be useful for DNA polymerase movement detection and visualization of the elongation process in the case of massive DNA replication, eg, under PCR condition or for DNA "sequencing by synthesis" sequencing devices evaluation.

  7. Three Decades of Recombinant DNA.

    ERIC Educational Resources Information Center

    Palmer, Jackie

    1985-01-01

    Discusses highlights in the development of genetic engineering, examining techniques with recombinant DNA, legal and ethical issues, GenBank (a national database of nucleic acid sequences), and other topics. (JN)

  8. Sorting fluorescent nanocrystals with DNA

    SciTech Connect

    Gerion, Daniele; Parak, Wolfgang J.; Williams, Shara C.; Zanchet, Daniela; Micheel, Christine M.; Alivisatos, A. Paul

    2001-12-10

    Semiconductor nanocrystals with narrow and tunable fluorescence are covalently linked to oligonucleotides. These biocompounds retain the properties of both nanocrystals and DNA. Therefore, different sequences of DNA can be coded with nanocrystals and still preserve their ability to hybridize to their complements. We report the case where four different sequences of DNA are linked to four nanocrystal samples having different colors of emission in the range of 530-640 nm. When the DNA-nanocrystal conjugates are mixed together, it is possible to sort each type of nanoparticle using hybridization on a defined micrometer -size surface containing the complementary oligonucleotide. Detection of sorting requires only a single excitation source and an epifluorescence microscope. The possibility of directing fluorescent nanocrystals towards specific biological targets and detecting them, combined with their superior photo-stability compared to organic dyes, opens the way to improved biolabeling experiments, such as gene mapping on a nanometer scale or multicolor microarray analysis.

  9. Optical detection of DNA damage

    NASA Astrophysics Data System (ADS)

    Rogers, Kim R.; Apostol, A.; Cembrano, J.

    1999-02-01

    A rapid and sensitive fluorescence assay for oxidative damage to calf thymus DNA is reported. A decrease in the transition temperature for strand separation resulted from exposure of the DNA to the reactive decomposition products of 3- morpholinosydnonimine (SIN-1) (i.e., nitric oxide, superoxide, peroxynitrite, hydrogen peroxide, and hydroxyl radicals). A decrease in melting temperature of 12 degrees Celsius was indicative of oxidative damage including single strand chain breaks. Double stranded (ds) and single stranded (ss) forms of DNA were determined using the indicator dyes ethidium bromide and PicoGreen. The change in DNA 'melting' curves was dependant on the concentration of SIN-1 and was most pronounced at 75 degrees Celsius. This chemically induced damage was significantly inhibited by sodium citrate, tris(hydroxymethyl)aminomethane (Tris), and diethylenetriaminepentaacetic acid (DTPA), but was unaffected by superoxide dismutase (SOD), catalase, ethylenediamine tetraacietic acid (EDTA), or deferoxamine. Lowest observable effect level for SIN-1-induced damage was 200 (mu) M.

  10. Rethinking transcription coupled DNA repair.

    PubMed

    Kamarthapu, Venu; Nudler, Evgeny

    2015-04-01

    Nucleotide excision repair (NER) is an evolutionarily conserved, multistep process that can detect a wide variety of DNA lesions. Transcription coupled repair (TCR) is a subpathway of NER that repairs the transcribed DNA strand faster than the rest of the genome. RNA polymerase (RNAP) stalled at DNA lesions mediates the recruitment of NER enzymes to the damage site. In this review we focus on a newly identified bacterial TCR pathway in which the NER enzyme UvrD, in conjunction with NusA, plays a major role in initiating the repair process. We discuss the tradeoff between the new and conventional models of TCR, how and when each pathway operates to repair DNA damage, and the necessity of pervasive transcription in maintaining genome integrity.

  11. Mammalian DNA Repair. Final Report

    SciTech Connect

    2003-01-24

    The Gordon Research Conference (GRC) on Mammalian DNA Repair was held at Harbortown Resort, Ventura Beach, CA. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  12. Biphasic DNA Synthesis in Spumaviruses

    PubMed Central

    Delelis, Olivier; Saïb, Ali; Sonigo, Pierre

    2003-01-01

    Spumaviruses are complex retroviruses whose replication cycle resembles that of hepadnaviruses, especially by a late-occurring reverse transcription step. The possible existence of an early reverse transcription as observed in other retroviruses was not documented. Using real-time quantitative PCR, we addressed directly the kinetics of DNA synthesis during spumavirus infection. An early phase of viral DNA synthesis developed until 3 h postinfection, followed by a second phase, culminating 10 h postinfection. Both phases were abolished by the reverse transcriptase inhibitor 3′-azido-3′-deoxythymidine. Similar to other retroviruses, circular forms of viral DNA harboring two long terminal repeats were mainly found in the nucleus of infected cells. Interestingly, a fraction of these circular forms were detected in the cytoplasm and in extracellular virions, a feature shared with hepadnaviruses. Combined with packaging of both viral DNA and RNA genomes in virions, early and late reverse transcription might allow spumavirus to maximize its genome replication. PMID:12829852

  13. DNA vaccines: roles against diseases

    PubMed Central

    Khan, Kishwar Hayat

    2013-01-01

    Vaccination is the most successful application of immunological principles to human health. Vaccine efficacy needs to be reviewed from time to time and its safety is an overriding consideration. DNA vaccines offer simple yet effective means of inducing broad-based immunity. These vaccines work by allowing the expression of the microbial antigen inside host cells that take up the plasmid. These vaccines function by generating the desired antigen inside the cells, with the advantage that this may facilitate presentation through the major histocompatibility complex. This review article is based on a literature survey and it describes the working and designing strategies of DNA vaccines. Advantages and disadvantages for this type of vaccines have also been explained, together with applications of DNA vaccines. DNA vaccines against cancer, tuberculosis, Edwardsiella tarda, HIV, anthrax, influenza, malaria, dengue, typhoid and other diseases were explored. PMID:24432284

  14. New insights on single-stranded versus double-stranded DNA library preparation for ancient DNA.

    PubMed

    Wales, Nathan; Carøe, Christian; Sandoval-Velasco, Marcela; Gamba, Cristina; Barnett, Ross; Samaniego, José Alfredo; Madrigal, Jazmín Ramos; Orlando, Ludovic; Gilbert, M Thomas P

    2015-12-01

    An innovative single-stranded DNA (ssDNA) library preparation method has sparked great interest among ancient DNA (aDNA) researchers, especially after reports of endogenous DNA content increases >20-fold in some samples. To investigate the behavior of this method, we generated ssDNA and conventional double-stranded DNA (dsDNA) libraries from 23 ancient and historic plant and animal specimens. We found ssDNA library preparation substantially increased endogenous content when dsDNA libraries contained <3% endogenous DNA, but this enrichment is less pronounced when dsDNA preparations successfully recover short endogenous DNA fragments (mean size < 70 bp). Our findings can help researchers determine when to utilize the time- and resource-intensive ssDNA library preparation method.

  15. Multiscaffold DNA Origami Nanoparticle Waveguides

    PubMed Central

    2013-01-01

    DNA origami templated self-assembly has shown its potential in creating rationally designed nanophotonic devices in a parallel and repeatable manner. In this investigation, we employ a multiscaffold DNA origami approach to fabricate linear waveguides of 10 nm diameter gold nanoparticles. This approach provides independent control over nanoparticle separation and spatial arrangement. The waveguides were characterized using atomic force microscopy and far-field polarization spectroscopy. This work provides a path toward large-scale plasmonic circuitry. PMID:23841957

  16. A Drosophila complementary DNA resource

    SciTech Connect

    Rubin, Gerald M.; Hong, Ling; Brokstein, Peter; Evans-Holm, Martha; Frise, Erwin; Stapleton, Mark; Harvey, Damon A.

    2000-03-24

    Collections of nonredundant, full-length complementary DNA (cDNA) clones for each of the model organisms and humans will be important resources for studies of gene structure and function. We describe a general strategy for producing such collections and its implementation, which so far has generated a set of cDNAs corresponding to over 40% of the genes in the fruit fly Drosophila melanogaster.

  17. DNA sequences encoding osteoinductive products

    SciTech Connect

    Wang, E.A.; Wozney, J.M.; Rosen, V.

    1991-05-07

    This patent describes an isolated DNA sequence encoding an osteoinductive protein the DNA sequence comprising a coding sequence. It comprises: nucleotide No.1 through nucleotide No.387, nucleotide No.356 through nucleotide No.1543, nucleotide $402 through nucleotide No.1626, naturally occurring allelic sequences and equivalent degenerative codon sequences and sequences which hybridize to any of sequences under stringent hybridization conditions; and encode a protein characterized by the ability to induce the formation of bone and/or cartilage.

  18. Replicating damaged DNA in eukaryotes.

    PubMed

    Chatterjee, Nimrat; Siede, Wolfram

    2013-12-01

    DNA damage is one of many possible perturbations that challenge the mechanisms that preserve genetic stability during the copying of the eukaryotic genome in S phase. This short review provides, in the first part, a general introduction to the topic and an overview of checkpoint responses. In the second part, the mechanisms of error-free tolerance in response to fork-arresting DNA damage will be discussed in some detail.

  19. DNA Charge Transport within the Cell

    PubMed Central

    Grodick, Michael A.; Muren, Natalie B.; Barton, Jacqueline K.

    2015-01-01

    The unique characteristics of DNA charge transport (CT) have prompted an examination of roles for this chemistry within a biological context. Not only can DNA CT facilitate long range oxidative damage of DNA, but redox-active proteins can couple to the DNA base stack and participate in long range redox reactions using DNA CT. DNA transcription factors with redox-active moieties such as SoxR and p53 can use DNA CT as a form of redox sensing. DNA CT chemistry also provides a means to monitor the integrity of the DNA, given the sensitivity of DNA CT to perturbations in base stacking as arise with mismatches and lesions. Enzymes that utilize this chemistry include an interesting and ever-growing class of DNA-processing enzymes involved in DNA repair, replication, and transcription that have been found to contain 4Fe-4S clusters. DNA repair enzymes containing 4Fe-4S clusters, that include Endonuclease III (EndoIII), MutY, and DinG from bacteria, as well as XPD from archaea, have been shown to be redox-active when bound to DNA, share a DNA-bound redox potential, and can be reduced and oxidized at long range via DNA CT. Interactions between DNA and these proteins in solution, in addition to genetics experiments within E. coli, suggest that DNA-mediated CT can be used as a means of cooperative signaling among DNA repair proteins that contain 4Fe-4S clusters as a first step in finding DNA damage, even within cells. Based on these data, we can consider also how DNA-mediated CT may be used as a means of signaling to coordinate DNA processing across the genome. PMID:25606780

  20. DNA-PK is Involved in Repairing a Transient Surge of DNA BreaksInduced by Deceleration of DNA Replication.

    SciTech Connect

    Shimura, Tsutomu; Martin, Melvenia M.; Torres, Michael J.; Gu,Cory; Pluth, Janice M.; DiBernardi, Maria A.; McDonald, Jeffrey S.; Aladjem, Mirit I.

    2006-09-25

    ells that suffer substantial inhibition of DNA replication halt their cell cycle via a checkpoint response mediated by the PI3 kinases ATM and ATR. It is unclear how cells cope with milder replication insults, which are under the threshold for ATM and ATR activation. A third PI3 kinase, DNA-dependent protein kinase (DNA-PK), is also activated following replication inhibition, but the role DNA-PK might play in response to perturbed replication is unclear, since this kinase does not activate the signaling cascades involved in the S-phase checkpoint. Here we report that mild, transient drug-induced perturbation of DNA replication rapidly induced DNA breaks that promptly disappeared in cells that contained a functional DNA-PK whereas such breaks persisted in cells that were deficient in DNA-PK activity. After the initial transient burst of DNA breaks, cells with a functional DNA-PK did not halt replication and continued to synthesize DNA at a slow pace in the presence of replication inhibitors. In contrast, DNA-PK deficient cells subject to low levels of replication inhibition halted cell cycle progression via an ATR-mediated S-phase checkpoint. The ATM kinase was dispensable for the induction of the initial DNA breaks. These observations suggest that DNA-PK is involved in setting a high threshold for the ATR-Chkl-mediated S-phase checkpoint by promptly repairing DNA breaks that appear immediately following inhibition of DNA replication.

  1. Dynamics of DNA Mismatch Repair

    NASA Astrophysics Data System (ADS)

    Coats, Julie; Lin, Yuyen; Rasnik, Ivan

    2009-11-01

    DNA mismatch repair protects the genome from spontaneous mutations by recognizing errors, excising damage, and re-synthesizing DNA in a pathway that is highly conserved. Mismatch recognition is accomplished by the MutS family of proteins which are weak ATPases that bind specifically to damaged DNA, but the specific molecular mechanisms by which these proteins recognize damage and initiate excision are not known. Previous structural investigations have implied that protein-induced conformational changes are central to mismatch recognition. Because damage detection is a highly dynamic process in which conformational changes of the protein-DNA complexes occur on a time scale of a few seconds, it is difficult to obtain meaningful kinetic information with traditional ensemble techniques. In this work, we use single molecule fluorescence resonance energy transfer (smFRET) to study the conformational dynamics of fluorescently labeled DNA substrates in the presence of the mismatch repair protein MutS from E. coli and its human homolog MSH2/MSH6. Our studies allow us to obtain quantitative kinetic information about the rates of binding and dissociation and to determine the conformational states for each protein-DNA complex.

  2. DNA Damage and Pulmonary Hypertension

    PubMed Central

    Ranchoux, Benoît; Meloche, Jolyane; Paulin, Roxane; Boucherat, Olivier; Provencher, Steeve; Bonnet, Sébastien

    2016-01-01

    Pulmonary hypertension (PH) is defined by a mean pulmonary arterial pressure over 25 mmHg at rest and is diagnosed by right heart catheterization. Among the different groups of PH, pulmonary arterial hypertension (PAH) is characterized by a progressive obstruction of distal pulmonary arteries, related to endothelial cell dysfunction and vascular cell proliferation, which leads to an increased pulmonary vascular resistance, right ventricular hypertrophy, and right heart failure. Although the primary trigger of PAH remains unknown, oxidative stress and inflammation have been shown to play a key role in the development and progression of vascular remodeling. These factors are known to increase DNA damage that might favor the emergence of the proliferative and apoptosis-resistant phenotype observed in PAH vascular cells. High levels of DNA damage were reported to occur in PAH lungs and remodeled arteries as well as in animal models of PH. Moreover, recent studies have demonstrated that impaired DNA-response mechanisms may lead to an increased mutagen sensitivity in PAH patients. Finally, PAH was linked with decreased breast cancer 1 protein (BRCA1) and DNA topoisomerase 2-binding protein 1 (TopBP1) expression, both involved in maintaining genome integrity. This review aims to provide an overview of recent evidence of DNA damage and DNA repair deficiency and their implication in PAH pathogenesis. PMID:27338373

  3. DNA-templated gold nanowires

    NASA Astrophysics Data System (ADS)

    Mohammadzadegan, Reza; Mohabatkar, Hassan; Sheikhi, Mohammad Hossein; Safavi, Afsaneh; Khajouee, Mahmood Barati

    2008-10-01

    We have developed simple methods of reproducibly creating deoxyribonucleic acid (DNA)-templated gold nanowires on silicon. First DNA nanowires were aligned on silicon surfaces. Briefly, modified silicon wafer was soaked in the DNA solution, and then the solution was removed using micropipettes; the surface tension at the moving air-solution interface is sufficient to align the DNA nanowires on the silicon wafer. In another attempt, an aqueous dispersion of sodium azide-stabilized gold nanoparticles was prepared. The nanoparticles aligned double-stranded λ-DNA to form a linear nanoparticle array. Continuous gold nanowires were obtained. The above nanowires were structurally characterized using scanning electron microscopy. The results of the characterizations show the wires to be 57-323 nm wide, to be continuous with a length of 2.8-9.5 μm. The use of DNA as a template for the self-assembly of conducting nanowires represents a potentially important approach in the fabrication of nanoscale interconnects.

  4. DNA extraction from herbarium specimens.

    PubMed

    Drábková, Lenka Záveská

    2014-01-01

    With the expansion of molecular techniques, the historical collections have become widely used. Studying plant DNA using modern molecular techniques such as DNA sequencing plays an important role in understanding evolutionary relationships, identification through DNA barcoding, conservation status, and many other aspects of plant biology. Enormous herbarium collections are an important source of material especially for specimens from areas difficult to access or from taxa that are now extinct. The ability to utilize these specimens greatly enhances the research. However, the process of extracting DNA from herbarium specimens is often fraught with difficulty related to such variables as plant chemistry, drying method of the specimen, and chemical treatment of the specimen. Although many methods have been developed for extraction of DNA from herbarium specimens, the most frequently used are modified CTAB and DNeasy Plant Mini Kit protocols. Nine selected protocols in this chapter have been successfully used for high-quality DNA extraction from different kinds of plant herbarium tissues. These methods differ primarily with respect to their requirements for input material (from algae to vascular plants), type of the plant tissue (leaves with incrustations, sclerenchyma strands, mucilaginous tissues, needles, seeds), and further possible applications (PCR-based methods or microsatellites, AFLP).

  5. DNA excision repair at telomeres.

    PubMed

    Jia, Pingping; Her, Chengtao; Chai, Weihang

    2015-12-01

    DNA damage is caused by either endogenous cellular metabolic processes such as hydrolysis, oxidation, alkylation, and DNA base mismatches, or exogenous sources including ultraviolet (UV) light, ionizing radiation, and chemical agents. Damaged DNA that is not properly repaired can lead to genomic instability, driving tumorigenesis. To protect genomic stability, mammalian cells have evolved highly conserved DNA repair mechanisms to remove and repair DNA lesions. Telomeres are composed of long tandem TTAGGG repeats located at the ends of chromosomes. Maintenance of functional telomeres is critical for preventing genome instability. The telomeric sequence possesses unique features that predispose telomeres to a variety of DNA damage induced by environmental genotoxins. This review briefly describes the relevance of excision repair pathways in telomere maintenance, with the focus on base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). By summarizing current knowledge on excision repair of telomere damage and outlining many unanswered questions, it is our hope to stimulate further interest in a better understanding of excision repair processes at telomeres and in how these processes contribute to telomere maintenance.

  6. Electrokinetic Stretching of Tethered DNA

    PubMed Central

    Ferree, Sean; Blanch, Harvey W.

    2003-01-01

    During electrophoretic separations of DNA in a sieving medium, DNA molecules stretch from a compact coil into elongated conformations when encountering an obstacle and relax back to a coil upon release from the obstacle. These stretching dynamics are thought to play an important role in the separation mechanism. In this article we describe a silicon microfabricated device to measure the stretching of tethered DNA in electric fields. Upon application of an electric field, electro-osmosis generates bulk fluid flow in the device, and a protocol for eliminating this flow by attaching a polymer brush to all silicon oxide surfaces is shown to be effective. Data on the steady stretching of DNA in constant electric fields is presented. The data corroborate the approximate theory of hydrodynamic equivalence, indicating that DNA is not free-draining in the presence of both electric and nonelectric forces. Finally, these data provide the first quantitative test of a Stigter and Bustamante's detailed theory of electrophoretic stretching of DNA without adjustable parameters. The agreement between theory and experiment is good. PMID:14507716

  7. Inosine in DNA and RNA.

    PubMed

    Alseth, Ingrun; Dalhus, Bjørn; Bjørås, Magnar

    2014-06-01

    Deamination of the nucleobases in DNA and RNA is a result of spontaneous hydrolysis, endogenous or environmental factors as well as deaminase enzymes. Adenosine is deaminated to inosine which is miscoding and preferentially base pairs with cytosine. In the case of DNA, this is a premutagenic event that is counteracted by DNA repair enzymes specifically engaged in recognition and removal of inosine. However, in RNA, inosine is an essential modification introduced by specialized enzymes in a highly regulated manner to generate transcriptome diversity. Defect editing is seen in various human disease including cancer, viral infections and neurological and psychiatric disorders. Enzymes catalyzing the deaminase reaction are well characterized and recently an unexpected function of Endonuclease V in RNA processing was revealed. Whereas bacterial Endonuclease V enzymes are classified as DNA repair enzymes, it appears that the mammalian enzymes are involved in processing of inosine in RNA. This yields an interesting yet unexplored, link between DNA and RNA processing. Further work is needed to gain understanding of the impact of inosine in DNA and RNA under normal physiology and disease progression.

  8. Sustained expression from DNA vectors.

    PubMed

    Wong, Suet Ping; Argyros, Orestis; Harbottle, Richard P

    2015-01-01

    DNA vectors have the potential to become powerful medical tools for treatment of human disease. The human body has, however, developed a range of defensive strategies to detect and silence foreign or misplaced DNA, which is more typically encountered during infection or chromosomal damage. A clinically relevant human gene therapy vector must overcome or avoid these protections whilst delivering sustained levels of therapeutic gene product without compromising the vitality of the recipient host. Many non-viral DNA vectors trigger these defense mechanisms and are subsequently destroyed or rendered silent. Thus, without modification or considered design, the clinical utility of a typical DNA vector is fundamentally limited due to the transient nature of its transgene expression. The development of safe and persistently expressing DNA vectors is a crucial prerequisite for its successful clinical application and subsequently remains, therefore, one of the main strategic tasks of non-viral gene therapy research. In this chapter we will describe our current understanding of the mechanisms that can destroy or silence DNA vectors and discuss strategies, which have been utilized to improve their sustenance and the level and duration of their transgene expression.

  9. Salmon redd identification using environmental DNA (eDNA)

    USGS Publications Warehouse

    Pilliod, David S.; Laramie, Matthew B.

    2016-06-10

    IntroductionThe purpose of this project was to develop a technique to use environmental DNA (eDNA) to distinguish between redds made by Chinook salmon (Oncorhynchus tshawytscha) and redds made by Coho salmon (O. kisutch) and to distinguish utilized redds from test/abandoned redds or scours that have the appearance of redds. The project had two phases:Phase 1. Develop, test, and optimize a molecular assay for detecting and identifying Coho salmon DNA and differentiating it from Chinook salmon DNA.Phase 2. Demonstrate the efficacy of the technique.Collect and preserve water samples from the interstitial spaces of 10 known redds (as identified by expert observers) of each species and 10 gravel patches that do not include a redd of either species.Collect control samples from the water column adjacent to each redd to establish background eDNA levels.Analyze the samples using the developed molecular assays for Coho salmon (phase I) and Chinook salmon (Laramie and others, 2015).Evaluate whether samples collected from Chinook and Coho redds have significantly higher levels of eDNA of the respective species than background levels (that is, from gravel, water column).Evaluate whether samples collected from the interstitial spaces of gravel patches that are not redds are similar to background eDNA levels.The Sandy River is a large tributary of the Columbia River. The Sandy River meets the Columbia River approximately 23 km upstream of Portland, Oregon. The Sandy River Basin provides overlapping spawning habitat for both Chinook and Coho salmon.Samples provided by Portland Water Bureau for analysis were collected from the Bull Run River, Sixes Creek, Still Creek, Arrah Wanna Side Channel, and Side Channel 18.

  10. Coordinate expression of Escherichia coli dnaA and dnaN genes.

    PubMed

    Sako, T; Sakakibara, Y

    1980-01-01

    The defects of temperature-sensitive dnaA and dnaN mutants of Escherichia coli are complemented by a recombinant lambda phage, which carries the bacterial DNA segment composed of two EcoRI segments of 1.0 and 3.3 kilobases. Derivatives of the phage, which have an insertion segment of Tn3 in the dnaA gene, are much less active in expressing the dnaN gene function than the parent phage. The dnaN gene activity was determined as the efficiency of superinfecting phage to suppress loss of the viability of lambda lysogenic dnaN59 cells at the non-permissive temperature. Deletions that include the end of the dnaA gene distal to the dnaN gene also reduce the expression of the dnaN gene function. Deletion and insertion in the dnaN gene do not affect the expression of the dnaA gene function. The expression of the dnaN gene function by the dnaA- dnaN+ phages remains weak upon simultaneous infection with dnaA+ dnaN- phages. Thus the insertion and deletion of the dnaA gene influence in cis the expresion of the dnaN gene. We propose that the dnaA and dnaN genes constitute an operon, where the former is upstream to the latter.

  11. Mammalian satellite DNA: a speaking dumb.

    PubMed

    Enukashvily, Natella I; Ponomartsev, Nikita V

    2013-01-01

    The tandemly organized highly repetitive satellite DNA is the main DNA component of centromeric/pericentromeric constitutive heterochromatin. For almost a century, it was considered as "junk DNA," only a small portion of which is used for kinetochore formation. The current review summarizes recent data about satellite DNA transcription. The possible functions of the transcripts are discussed.

  12. DNA Fingerprinting in a Forensic Teaching Experiment

    ERIC Educational Resources Information Center

    Wagoner, Stacy A.; Carlson, Kimberly A.

    2008-01-01

    This article presents an experiment designed to provide students, in a classroom laboratory setting, a hands-on demonstration of the steps used in DNA forensic analysis by performing DNA extraction, DNA fingerprinting, and statistical analysis of the data. This experiment demonstrates how DNA fingerprinting is performed and how long it takes. It…

  13. Anti-DNA antibodies in SLE

    SciTech Connect

    Voss, E.W.

    1988-01-01

    This book contains 8 chapters. Some of the titles are: Anti-DNA Antibodies in SLE: Historical Perspective; Specificity of Anti-DNA Antibodies in Systemic Lupus Erythematosus; Monoclonial Autoimmune Anti-DNA Antibodies; and Structure--Function Analyses of Anti-DNA Autoantibodies.

  14. JavaScript DNA translator: DNA-aligned protein translations.

    PubMed

    Perry, William L

    2002-12-01

    There are many instances in molecular biology when it is necessary to identify ORFs in a DNA sequence. While programs exist for displaying protein translations in multiple ORFs in alignment with a DNA sequence, they are often expensive, exist as add-ons to software that must be purchased, or are only compatible with a particular operating system. JavaScript DNA Translator is a shareware application written in JavaScript, a scripting language interpreted by the Netscape Communicator and Internet Explorer Web browsers, which makes it compatible with several different operating systems. While the program uses a familiar Web page interface, it requires no connection to the Internet since calculations are performed on the user's own computer. The program analyzes one or multiple DNA sequences and generates translations in up to six reading frames aligned to a DNA sequence, in addition to displaying translations as separate sequences in FASTA format. ORFs within a reading frame can also be displayed as separate sequences. Flexible formatting options are provided, including the ability to hide ORFs below a minimum size specified by the user. The program is available free of charge at the BioTechniques Software Library (www.Biotechniques.com).

  15. Mechanism of DNA loading by the DNA repair helicase XPD

    PubMed Central

    Constantinescu-Aruxandei, Diana; Petrovic-Stojanovska, Biljana; Penedo, J. Carlos; White, Malcolm F.; Naismith, James H.

    2016-01-01

    The xeroderma pigmentosum group D (XPD) helicase is a component of the transcription factor IIH complex in eukaryotes and plays an essential role in DNA repair in the nucleotide excision repair pathway. XPD is a 5′ to 3′ helicase with an essential iron–sulfur cluster. Structural and biochemical studies of the monomeric archaeal XPD homologues have aided a mechanistic understanding of this important class of helicase, but several important questions remain open. In particular, the mechanism for DNA loading, which is assumed to require large protein conformational change, is not fully understood. Here, DNA binding by the archaeal XPD helicase from Thermoplasma acidophilum has been investigated using a combination of crystallography, cross-linking, modified substrates and biochemical assays. The data are consistent with an initial tight binding of ssDNA to helicase domain 2, followed by transient opening of the interface between the Arch and 4FeS domains, allowing access to a second binding site on helicase domain 1 that directs DNA through the pore. A crystal structure of XPD from Sulfolobus acidocaldiarius that lacks helicase domain 2 has an otherwise unperturbed structure, emphasizing the stability of the interface between the Arch and 4FeS domains in XPD. PMID:26896802

  16. Phase Transition of DNA Coated Nanogold Networks

    NASA Astrophysics Data System (ADS)

    Kiang, Ching-Hwa; Sun, Young; Harris, Nolan; Wickremasinghe, Nissanka

    2004-03-01

    Melting and hybridization of DNA-coated gold nanoparticle networks are investigated with optical absorption spectroscopy and tansmission electron microscopy. Single-stranded DNA-coated nanogold are linked with complementary, single-stranded linker DNA to form particle networks. Network formation results in a solution color change, which can be used for DNA detection. Compared to free DNA, networked DNA-nanoparticle systems result in a sharp melting transition. Melting curves calculated from percolation theory agree with our experimental results(1). (1) C.-H. Kiang, ``Phase Transition of DNA-Linked Gold Nanoparticles,'' Physica A, 321 (2003) 164--169.

  17. Dynamics of DNA Looping in Nanochannels

    NASA Astrophysics Data System (ADS)

    Heidarpourroushan, Maedeh

    This thesis is devoted to the study of protein-DNA interactions and especially how proteins can mediate DNA loop formation in nanochannels. In the last decade, a large number of studies have been performed, wherein DNA molecules were confined to the channels with cross-section around the persistence length of DNA molecule. Such nanochannels provide a good model system for studying of the physics of confined DNA. The results of this thesis increase our understanding of how different DNA-binding proteins can change the DNA configuration. (Abstract shortened by ProQuest.).

  18. SA1 and TRF1 synergistically bind to telomeric DNA and promote DNA-DNA pairing

    NASA Astrophysics Data System (ADS)

    Wang, Hong; Lin, Jiangguo; Countryman, Preston; Pan, Hai; Parminder Kaur Team; Robert Riehn Team; Patricia Opresko Team; Jane Tao Team; Susan Smith Team

    Impaired telomere cohesion leads to increased aneuploidy and early onset of tumorigenesis. Cohesion is thought to occur through the entrapment of two DNA strands within tripartite cohesin ring(s), along with a fourth subunit (SA1/SA2). Surprisingly, cohesion rings are not essential for telomere cohesion, which instead requires SA1 and shelterin proteins including TRF1. However, neither this unique cohesion mechanism at telomeres or DNA-binding properties of SA1 is understood. Here, using single-molecule fluorescence imaging of quantum dot-labeled proteins on DNA we discover that while SA1 diffuses across multiple telomeric and non-telomeric regions, the diffusion mediated through its N-terminal domain is slower at telomeric regions. However, addition of TRF1 traps SA1 within telomeric regions, which form longer DNA-DNA pairing tracts than with TRF1 alone, as revealed by atomic force microscopy. Together, these experimental results and coarse-grained molecular dynamics simulations suggest that TRF1 and SA1 synergistically interact with DNA to support telomere cohesion without cohesin rings.

  19. Disconnecting XRCC1 and DNA ligase III.

    PubMed

    Katyal, Sachin; McKinnon, Peter J

    2011-07-15

    DNA strand break repair is essential for the prevention of multiple human diseases, particularly those which feature neuropathology. To further understand the pathogenesis of these syndromes, we recently developed animal models in which the DNA single-strand break repair (SSBR) components, XRCC1 and DNA Ligase III (LIG3), were inactivated in the developing nervous system. Although biochemical evidence suggests that inactivation of XRCC1 and LIG3 should share common biological defects, we found profound phenotypic differences between these two models, implying distinct biological roles for XRCC1 and LIG3 during DNA repair. Rather than a key role in nuclear DNA repair, we found LIG3 function was central to mitochondrial DNA maintenance. Instead, our data indicate that DNA Ligase 1 is the main DNA ligase for XRCC1-mediated DNA repair. These studies refine our understanding of DNA SSBR and the etiology of neurological disease.

  20. Chemical adjuvants for plasmid DNA vaccines.

    PubMed

    Greenland, John R; Letvin, Norman L

    2007-05-10

    Plasmid DNA vaccines are a promising modality for immunization against a variety of human pathogens. Immunization via multiple routes with plasmid DNA can elicit potent cellular immune responses, and these immunogens can be administered repeatedly without inducing anti-vector immunity. Nonetheless, the immunogenicity of plasmid DNA vaccines has been limited by problems associated with delivery. A number of adjuvants have been designed to improve plasmid DNA immunogenicity, either by directly stimulating the immune system or by enhancing plasmid DNA expression. Chemical adjuvants for enhancing plasmid DNA expression include liposomes, polymers, and microparticles, all of which have shown promise for enhancing the expression and immunogenicity of plasmid DNA vaccines in animal models. Micro- and nanoparticles have not been shown to enhance immune responses to plasmid DNA vaccines. However, formulation of plasmid DNA with some non-particulate polymeric adjuvants has led to a statistically significant enhancement of immune responses. Further development of these technologies will significantly improve the utility of plasmid DNA vaccination.

  1. A mathematical formulation of DNA computation.

    PubMed

    Zhang, Mingjun; Cheng, Maggie X; Tarn, Tzyh-Jong

    2006-03-01

    DNA computation is to use DNA molecules for information storing and processing. The task is accomplished by encoding and interpreting DNA molecules in suspended solutions before and after the complementary binding reactions. DNA computation is attractive, due to its fast parallel information processing, remarkable energy efficiency, and high storing capacity. Challenges currently faced by DNA computation are: 1) lack of theoretical computational models for applications and 2) high error rate for implementation. This paper attempts to address these problems from mathematical modeling and genetic coding aspects. The first part of this paper presents a mathematical formulation of DNA computation. The model may serve as a theoretical framework for DNA computation. In the second part, a genetic code based DNA computation approach is presented to reduce error rate for implementation, which has been a major concern for DNA computation. The method provides a promising alternative to reduce error rate for DNA computation.

  2. Automated DNA extraction from pollen in honey.

    PubMed

    Guertler, Patrick; Eicheldinger, Adelina; Muschler, Paul; Goerlich, Ottmar; Busch, Ulrich

    2014-04-15

    In recent years, honey has become subject of DNA analysis due to potential risks evoked by microorganisms, allergens or genetically modified organisms. However, so far, only a few DNA extraction procedures are available, mostly time-consuming and laborious. Therefore, we developed an automated DNA extraction method from pollen in honey based on a CTAB buffer-based DNA extraction using the Maxwell 16 instrument and the Maxwell 16 FFS Nucleic Acid Extraction System, Custom-Kit. We altered several components and extraction parameters and compared the optimised method with a manual CTAB buffer-based DNA isolation method. The automated DNA extraction was faster and resulted in higher DNA yield and sufficient DNA purity. Real-time PCR results obtained after automated DNA extraction are comparable to results after manual DNA extraction. No PCR inhibition was observed. The applicability of this method was further successfully confirmed by analysis of different routine honey samples.

  3. The Sunscreen Octyl Methoxycinnamate Binds to DNA

    NASA Astrophysics Data System (ADS)

    Norrell, Johannes; Vohra, Shikhar; Nordlund, T. M.

    2000-03-01

    Sunscreens are designed to prevent skin cancer by absorbing ultraviolet radiation from the sun before it gets to the DNA in skin cells. The purpose of this work is to determine whether or not octyl methoxycinnamate, an active ingredient in many sunscreens, will bind to DNA. If so, the sunscreen could transfer the energy it absorbed from the sun to the DNA and cause damage. To determine this, we prepared samples with varying concentrations of cinnamate added to herring sperm DNA, sonicating the mixture to disperse the hydrophobic sunscreen into solution. Absorption and fluorescence spectra of the mixtures showed (i) much more sunscreen was dispersed into solution when DNA was present, and (ii) the spectra of both DNA and sunscreen differed from those of the separate solutions. We conclude that the octyl methoxycinnamate can indeed bind to DNA in aqueous solution. Energy transfer experiments from DNA to sunscreen and from sunscreen to 2-aminopurine- (a fluorescent DNA base) labeled DNA will be presented.

  4. Disconnecting XRCC1 and DNA ligase III

    PubMed Central

    Katyal, Sachin

    2011-01-01

    DNA strand break repair is essential for the prevention of multiple human diseases, particularly those which feature neuropathology. To further understand the pathogenesis of these syndromes, we recently developed animal models in which the DNA single-strand break repair (SSBR) components, XRCC1 and DNA Ligase III (LIG3), were inactivated in the developing nervous system. Although biochemical evidence suggests that inactivation of XRCC1 and LIG3 should share common biological defects, we found profound phenotypic differences between these two models, implying distinct biological roles for XRCC1 and LIG3 during DNA repair. Rather than a key role in nuclear DNA repair, we found LIG3 function was central to mitochondrial DNA maintenance. Instead, our data indicate that DNA Ligase 1 is the main DNA ligase for XRCC1-mediated DNA repair. These studies refine our understanding of DNA SSBR and the etiology of neurological disease. PMID:21636980

  5. DNA extraction from rice endosperm (including a protocol for extraction of DNA from ancient seed samples).

    PubMed

    Mutou, Chiaki; Tanaka, Katsunori; Ishikawa, Ryuji

    2014-01-01

    Deoxyribonucleic acid (DNA) extracted from endosperm can be effectively used for rapid genotyping using seed tissue, to evaluate seed quality from packaged grains and to determine the purity of milled grains. Methods outlined here are optimal procedures to isolate DNA from endosperm tissue of modern rice grains and of aged rice remains preserved between 50 and 100 years. The extracted DNA can be used to amplify regions of chloroplast genomic DNA (ctDNA), mitochondrial genomic DNA (mtDNA), and nuclear genomic DNA using standard PCR protocols. In addition, we describe an optimal procedure to process archaeological grain specimens, aged for a couple of thousand years, to isolate DNA from these ancient samples, referred to here as ancient DNA (aDNA). The aDNA can be successfully amplified by PCR using appropriate primer pairs designed specifically for aDNA amplification.

  6. Reentrant Behavior of Divalent-Counterion-Mediated DNA-DNA Electrostatic Interaction

    NASA Astrophysics Data System (ADS)

    Lee, Seil; Le, Tung T.; Nguyen, Toan T.

    2010-12-01

    The problem of DNA-DNA interaction mediated by divalent counterions is studied using computer simulation. Although divalent counterions cannot condense free DNA molecules in solution, we show that if DNA configurational entropy is restricted, divalent counterions can cause DNA reentrant condensation similar to that caused by tri- or tetravalent counterions. DNA-DNA interaction is strongly repulsive at small or large counterion concentration and is negligible or slightly attractive for a concentration in between. Implications of our results to experiments of DNA ejection from bacteriophages are discussed. The quantitative result serves to understand electrostatic effects in other experiments involving DNA and divalent counterions.

  7. Cellular responses to environmental DNA damage

    SciTech Connect

    Not Available

    1994-08-01

    This volume contains the proceedings of the conference entitled Cellular Responses to Environmental DNA Damage held in Banff,Alberta December 1--6, 1991. The conference addresses various aspects of DNA repair in sessions titled DNA repair; Basic Mechanisms; Lesions; Systems; Inducible Responses; Mutagenesis; Human Population Response Heterogeneity; Intragenomic DNA Repair Heterogeneity; DNA Repair Gene Cloning; Aging; Human Genetic Disease; and Carcinogenesis. Individual papers are represented as abstracts of about one page in length.

  8. Developments of highly sensitive DNA sensors

    NASA Astrophysics Data System (ADS)

    Ogata, Naoya

    2011-09-01

    The large enhancements of optical properties of the dye-intercalated DNA lead us to apply the dye-intercalated DNA as various sensors with a high sensitivity to detect environmentally toxic gases such as dioxine, NOx or carbon monoxide. This paper retorts on DNA sensors for the further applications of DNA as materials. Also, bio-medical applications of DNA sensors such as a glucose sensor are reported.

  9. DNA polymorphism identity determination using flow cytometry

    DOEpatents

    Nolan, John P.; White, P. Scott; Cai, Hong

    2001-01-01

    DNA polymorphism identity determination using flow cytometry. Primers designed to be immobilized on microspheres are allowed to anneal to the DNA strand under investigation, and are extended by either DNA polymerase using fluorescent dideoxynucleotides or ligated by DNA ligase to fluorescent reporter oligonucleotides. The fluorescence of either the dideoxynucleotide or the reporter oligonucleotide attached to the immobilized primer is measured by flow cytometry, thereby identifying the nucleotide polymorphism on the DNA strand.

  10. Engineered DNA polymerase improves PCR results for plastid DNA1

    PubMed Central

    Schori, Melanie; Appel, Maryke; Kitko, AlexaRae; Showalter, Allan M.

    2013-01-01

    • Premise of the study: Secondary metabolites often inhibit PCR and sequencing reactions in extractions from plant material, especially from silica-dried and herbarium material. A DNA polymerase that is tolerant to inhibitors improves PCR results. • Methods and Results: A novel DNA amplification system, including a DNA polymerase engineered via directed evolution for improved tolerance to common plant-derived PCR inhibitors, was evaluated and PCR parameters optimized for three species. An additional 31 species were then tested with the engineered enzyme and optimized protocol, as well as with regular Taq polymerase. • Conclusions: PCR products and high-quality sequence data were obtained for 96% of samples for rbcL and 79% for matK, compared to 29% and 21% with regular Taq polymerase. PMID:25202519

  11. DNA nanotechnology. Programming colloidal phase transitions with DNA strand displacement.

    PubMed

    Rogers, W Benjamin; Manoharan, Vinothan N

    2015-02-06

    DNA-grafted nanoparticles have been called "programmable atom-equivalents": Like atoms, they form three-dimensional crystals, but unlike atoms, the particles themselves carry information (the sequences of the grafted strands) that can be used to "program" the equilibrium crystal structures. We show that the programmability of these colloids can be generalized to the full temperature-dependent phase diagram, not just the crystal structures themselves. We add information to the buffer in the form of soluble DNA strands designed to compete with the grafted strands through strand displacement. Using only two displacement reactions, we program phase behavior not found in atomic systems or other DNA-grafted colloids, including arbitrarily wide gas-solid coexistence, reentrant melting, and even reversible transitions between distinct crystal phases.

  12. DNA mismatch repair and the DNA damage response

    PubMed Central

    Li, Zhongdao; Pearlman, Alexander H.; Hsieh, Peggy

    2015-01-01

    This review discusses the role of DNA mismatch repair (MMR) in the DNA damage response (DDR) that triggers cell cycle arrest and, in some cases, apoptosis. Although the focus is on findings from mammalian cells, much has been learned from studies in other organisms including bacteria and yeast [1,2]. MMR promotes a DDR mediated by a key signaling kinase, ATM and Rad3-related (ATR), in response to various types of DNA damage including some encountered in widely used chemotherapy regimes. An introduction to the DDR mediated by ATR reveals its immense complexity and highlights the many biological and mechanistic questions that remain. Recent findings and future directions are highlighted. PMID:26704428

  13. Complex DNA structures and structures of DNA complexes

    SciTech Connect

    Chazin, W.J.; Carlstroem, G.; Shiow-Meei Chen; Miick, S.; Gomez-Paloma, L.; Smith, J.; Rydzewski, J.

    1994-12-01

    Complex DNA structures (for example, triplexes, quadruplexes, junctions) and DNA-ligand complexes are more difficult to study by NMR than standard DNA duplexes are because they have high molecular weights, show nonstandard or distorted local conformations, and exhibit large resonance linewidths and severe {sup 1}H spectral overlap. These systems also tend to have limited solubility and may require specialized solution conditions to maintain favorable spectral characteristics, which adds to the spectroscopic difficulties. Furthermore, with more atoms in the system, both assignment and structure calculation become more challenging. In this article, we focus on demonstrating the current status of NMR studies of such systems and the limitations to further progress; we also indicate in what ways isotopic enrichment can be useful.

  14. The RecQ DNA helicases in DNA repair.

    PubMed

    Bernstein, Kara A; Gangloff, Serge; Rothstein, Rodney

    2010-01-01

    The RecQ helicases are conserved from bacteria to humans and play a critical role in genome stability. In humans, loss of RecQ gene function is associated with cancer predisposition and/or premature aging. Recent experiments have shown that the RecQ helicases function during distinct steps during DNA repair; DNA end resection, displacement-loop (D-loop) processing, branch migration, and resolution of double Holliday junctions (dHJs). RecQ function in these different processing steps has important implications for its role in repair of double-strand breaks (DSBs) that occur during DNA replication and meiosis, as well as at specific genomic loci such as telomeres.

  15. DNA micelles as nanoreactors: efficient DNA functionalization with hydrophobic organic molecules.

    PubMed

    Trinh, Tuan; Chidchob, Pongphak; Bazzi, Hassan S; Sleiman, Hanadi F

    2016-09-18

    We report a micelle-templated method to enhance the reactivity of DNA with highly hydrophobic molecules. Lipids, chromophores and polymers can be conjugated to DNA in high yield and under mild conditions. This method expands the range of DNA-templated reactions for DNA-encoded libraries, oligonucleotide and drug delivery, nanopore mimetics and DNA nanotechnology.

  16. Osmylated DNA, a novel concept for sequencing DNA using nanopores

    NASA Astrophysics Data System (ADS)

    Kanavarioti, Anastassia

    2015-03-01

    Saenger sequencing has led the advances in molecular biology, while faster and cheaper next generation technologies are urgently needed. A newer approach exploits nanopores, natural or solid-state, set in an electrical field, and obtains base sequence information from current variations due to the passage of a ssDNA molecule through the pore. A hurdle in this approach is the fact that the four bases are chemically comparable to each other which leads to small differences in current obstruction. ‘Base calling’ becomes even more challenging because most nanopores sense a short sequence and not individual bases. Perhaps sequencing DNA via nanopores would be more manageable, if only the bases were two, and chemically very different from each other; a sequence of 1s and 0s comes to mind. Osmylated DNA comes close to such a sequence of 1s and 0s. Osmylation is the addition of osmium tetroxide bipyridine across the C5-C6 double bond of the pyrimidines. Osmylation adds almost 400% mass to the reactive base, creates a sterically and electronically notably different molecule, labeled 1, compared to the unreactive purines, labeled 0. If osmylated DNA were successfully sequenced, the result would be a sequence of osmylated pyrimidines (1), and purines (0), and not of the actual nucleobases. To solve this problem we studied the osmylation reaction with short oligos and with M13mp18, a long ssDNA, developed a UV-vis assay to measure extent of osmylation, and designed two protocols. Protocol A uses mild conditions and yields osmylated thymidines (1), while leaving the other three bases (0) practically intact. Protocol B uses harsher conditions and effectively osmylates both pyrimidines, but not the purines. Applying these two protocols also to the complementary of the target polynucleotide yields a total of four osmylated strands that collectively could define the actual base sequence of the target DNA.

  17. Small polarons in dry DNA

    NASA Astrophysics Data System (ADS)

    Chacham, Helio; Alexandre, Simone S.; Soler, Jose M.; Artacho, Emilio

    2004-03-01

    The phenomenon of charge transport in DNA has been attracting attention of both biologists and physicists. From the biology side, there are evidences that charge injection can be associated to damage, mutation, and repair processes in DNA. From the physical sciences side, recent developments in nanotechnology now allow the measurement of currents through single DNA molecules in dried samples, which depict semiconductor behavior. Several mechanisms have been proposed for charge migration and transport in DNA. In that respect, detailed electrical transport measurements through DNA molecules containing identical base pairs (poly(dA)-poly(dT) and poly(dG)-poly(dC)) have been recently reported by Yoo et al [1]. These results fit extremely well a model in which the conduction is due to small polaron motion. In particular, these results indicate that the I-V characteristic of poly(dG)-poly(dC) DNA above 200 K is consistent with a small polaron hopping regime with an activation energy of 0.12 eV. In this work [2] we investigate the polaron formation in dry DNA by applying ab initio calculations to both neutral and charged fragments of dry poly(dG)-poly(dC). Our calculations show that the hole polaron in dry poly(dG)-poly(dC) DNA is a clear case of small polaron. This is verified by four basic properties: (i) the small variation of the polaron binding energy as a function of the DNA fragment size, for small fragment sizes, which is an indication of polaron localization; (ii) the fact that the width of the uppermost valence band is an order of magnitude smaller than the polaron binding energy; (iii) the explicit localization of the hole wavefunction for the largest considered fragment (four base pairs), indicated by the fact that about half of the norm of the hole is localized on a single guanine site; (iv) the localization of structural deformations at the nucleotides where the hole is concentrated. Our calculations also give a polaron binding energy of 0.30 eV. This allows

  18. Relationship between nucleosome positioning and DNA methylation

    PubMed Central

    Chodavarapu, Ramakrishna K.; Feng, Suhua; Bernatavichute, Yana V.; Chen, Pao-Yang; Stroud, Hume; Yu, Yanchun; Hetzel, Jonathan; Kuo, Frank; Kim, Jin; Cokus, Shawn J.; Casero, David; Bernal, Maria; Huijser, Peter; Clark, Amander T.; Krämer, Ute; Merchant, Sabeeha S.; Zhang, Xiaoyu; Jacobsen, Steven E.; Pellegrini, Matteo

    2010-01-01

    Nucleosomes compact and regulate access to DNA in the nucleus, and are composed of approximately 147 bases of DNA wrapped around a histone octamer1, 2. Here we report a genome-wide nucleosome positioning analysis of Arabidopsis thaliana utilizing massively parallel sequencing of mononucleosomes. By combining this data with profiles of DNA methylation at single base resolution, we identified ten base periodicities in the DNA methylation status of nucleosome-bound DNA and found that nucleosomal DNA was more highly methylated than flanking DNA. These results suggest that nucleosome positioning strongly influences DNA methylation patterning throughout the genome and that DNA methyltransferases preferentially target nucleosome-bound DNA. We also observed similar trends in human nucleosomal DNA suggesting that the relationships between nucleosomes and DNA methyltransferases are conserved. Finally, as has been observed in animals, nucleosomes were highly enriched on exons, and preferentially positioned at intron-exon and exon-intron boundaries. RNA Pol II was also enriched on exons relative to introns, consistent with the hypothesis that nucleosome positioning regulates Pol II processivity. DNA methylation is enriched on exons, consistent with the targeting of DNA methylation to nucleosomes, and suggesting a role for DNA methylation in exon definition. PMID:20512117

  19. Scaffolded DNA origami of a DNA tetrahedron molecular container.

    PubMed

    Ke, Yonggang; Sharma, Jaswinder; Liu, Minghui; Jahn, Kasper; Liu, Yan; Yan, Hao

    2009-06-01

    We describe a strategy of scaffolded DNA origami to design and construct 3D molecular cages of tetrahedron geometry with inside volume closed by triangular faces. Each edge of the triangular face is approximately 54 nm in dimension. The estimated total external volume and the internal cavity of the triangular pyramid are about 1.8 x 10(-23) and 1.5 x 10(-23) m(3), respectively. Correct formation of the tetrahedron DNA cage was verified by gel electrophoresis, atomic force microscopy, transmission electron microscopy, and dynamic light scattering techniques.

  20. Autophagy in DNA damage response.

    PubMed

    Czarny, Piotr; Pawlowska, Elzbieta; Bialkowska-Warzecha, Jolanta; Kaarniranta, Kai; Blasiak, Janusz

    2015-01-23

    DNA damage response (DDR) involves DNA repair, cell cycle regulation and apoptosis, but autophagy is also suggested to play a role in DDR. Autophagy can be activated in response to DNA-damaging agents, but the exact mechanism underlying this activation is not fully understood, although it is suggested that it involves the inhibition of mammalian target of rapamycin complex 1 (mTORC1). mTORC1 represses autophagy via phosphorylation of the ULK1/2-Atg13-FIP200 complex thus preventing maturation of pre-autophagosomal structures. When DNA damage occurs, it is recognized by some proteins or their complexes, such as poly(ADP)ribose polymerase 1 (PARP-1), Mre11-Rad50-Nbs1 (MRN) complex or FOXO3, which activate repressors of mTORC1. SQSTM1/p62 is one of the proteins whose levels are regulated via autophagic degradation. Inhibition of autophagy by knockout of FIP200 results in upregulation of SQSTM1/p62, enhanced DNA damage and less efficient damage repair. Mitophagy, one form of autophagy involved in the selective degradation of mitochondria, may also play role in DDR. It degrades abnormal mitochondria and can either repress or activate apoptosis, but the exact mechanism remains unknown. There is a need to clarify the role of autophagy in DDR, as this process may possess several important biomedical applications, involving also cancer therapy.

  1. Abstractions for DNA circuit design.

    PubMed

    Lakin, Matthew R; Youssef, Simon; Cardelli, Luca; Phillips, Andrew

    2012-03-07

    DNA strand displacement techniques have been used to implement a broad range of information processing devices, from logic gates, to chemical reaction networks, to architectures for universal computation. Strand displacement techniques enable computational devices to be implemented in DNA without the need for additional components, allowing computation to be programmed solely in terms of nucleotide sequences. A major challenge in the design of strand displacement devices has been to enable rapid analysis of high-level designs while also supporting detailed simulations that include known forms of interference. Another challenge has been to design devices capable of sustaining precise reaction kinetics over long periods, without relying on complex experimental equipment to continually replenish depleted species over time. In this paper, we present a programming language for designing DNA strand displacement devices, which supports progressively increasing levels of molecular detail. The language allows device designs to be programmed using a common syntax and then analysed at varying levels of detail, with or without interference, without needing to modify the program. This allows a trade-off to be made between the level of molecular detail and the computational cost of analysis. We use the language to design a buffered architecture for DNA devices, capable of maintaining precise reaction kinetics for a potentially unbounded period. We test the effectiveness of buffered gates to support long-running computation by designing a DNA strand displacement system capable of sustained oscillations.

  2. Alcohol, DNA Methylation, and Cancer

    PubMed Central

    Varela-Rey, Marta; Woodhoo, Ashwin; Martinez-Chantar, Maria-Luz; Mato, José M.; Lu, Shelly C.

    2013-01-01

    Cancer is one of the most significant diseases associated with chronic alcohol consumption, and chronic drinking is a strong risk factor for cancer, particularly of the upper aerodigestive tract, liver, colorectum, and breast. Several factors contribute to alcohol-induced cancer development (i.e., carcinogenesis), including the actions of acetaldehyde, the first and primary metabolite of ethanol, and oxidative stress. However, increasing evidence suggests that aberrant patterns of DNA methylation, an important epigenetic mechanism of transcriptional control, also could be part of the pathogenetic mechanisms that lead to alcohol-induced cancer development. The effects of alcohol on global and local DNA methylation patterns likely are mediated by its ability to interfere with the availability of the principal biological methyl donor, S-adenosylmethionine (SAMe), as well as pathways related to it. Several mechanisms may mediate the effects of alcohol on DNA methylation, including reduced folate levels and inhibition of key enzymes in one-carbon metabolism that ultimately lead to lower SAMe levels, as well as inhibition of activity and expression of enzymes involved in DNA methylation (i.e., DNA methyltransferases). Finally, variations (i.e., polymorphisms) of several genes involved in one-carbon metabolism also modulate the risk of alcohol-associated carcinogenesis. PMID:24313162

  3. Electrochemical application of DNA biosensors

    NASA Astrophysics Data System (ADS)

    Mascini, M.; Lucarelli, F.; Palchetti, I.; Marrazza, G.

    2001-09-01

    Disposable electrochemical DNA-based biosensors are reviewed; they have been used for the determination of low- molecular weight compounds with affinity for nucleic acids and for the detection of hybridization reaction. The first application is related to the molecular interaction between surface-linked DNA and pollutants or drugs, in order to develop a simple device for rapid screening of toxic compounds. The determination of such compounds was measured by their effect simple device for rapid screening of toxic compounds. The determination of such compounds was measured by their effect on the oxidation signal of the guanine peak of calf thymus DNA immobilized on the electrode surface and investigated by chronopotentiometric or voltammetric analysis. Applicability to river and wastewater sample is demonstrated. Moreover, disposable electrochemical sensors for the detection of a specific sequence of DNA were realized by immobilizing synthetic single-stranded oligonucleotides onto a graphite screen-printed electrode. The probes because hybridized with different concentrations of complementary sequences present in the sample. The hybrids formed on the electrode surface were evaluated by chronopotentiometric analysis using daunomycin as the indicator of the hybridization reaction. The hybridization was also performed using real samples. Application to apolipoprotein E is described, in this case samples have to be amplified by PCR and then analyzed by the DNA biosensor. The extension of such procedures to samples of environmental interest or to contamination of food is discussed.

  4. DNA Vaccines for Prostate Cancer

    PubMed Central

    McNeel, Douglas G.; Becker, Jordan T.; Johnson, Laura E.; Olson, Brian M.

    2013-01-01

    Delivery of plasmid DNA encoding an antigen of interest has been demonstrated to be an effective means of immunization, capable of eliciting antigen-specific T cells. Plasmid DNA vaccines offer advantages over other anti-tumor vaccine approaches in terms of simplicity, manufacturing, and possibly safety. The primary disadvantage is their poor transfection efficiency and subsequent lower immunogenicity relative to other genetic vaccine approaches. However, multiple preclinical models demonstrate anti-tumor efficacy, and many efforts are underway to improve the immunogenicity and anti-tumor effect of these vaccines. Clinical trials using DNA vaccines as treatments for prostate cancer have begun, and to date have demonstrated safety and immunological effect. This review will focus on DNA vaccines as a specific means of antigen delivery, advantages and disadvantages of this type of immunization, previous experience in preclinical models and human trials specifically conducted for the treatment of prostate cancer, and future directions for the application of DNA vaccines to prostate cancer immunotherapy. PMID:24587772

  5. DNA repair in cultured keratinocytes

    SciTech Connect

    Liu, S.C.; Parsons, S.; Hanawalt, P.C.

    1983-07-01

    Most of our understanding of DNA repair mechanisms in human cells has come from the study of these processes in cultured fibroblasts. The unique properties of keratinocytes and their pattern of terminal differentiation led us to a comparative examination of their DNA repair properties. The relative repair capabilities of the basal cells and the differentiated epidermal keratinocytes as well as possible correlations of DNA repair capacity with respect to age of the donor have been examined. In addition, since portions of human skin are chronically exposed to sunlight, the repair response to ultraviolet (UV) irradiation (254 nm) when the cells are conditioned by chronic low-level UV irradiation has been assessed. The comparative studies of DNA repair in keratinocytes from infant and aged donors have revealed no significant age-related differences for repair of UV-induced damage to DNA. Sublethal UV conditioning of cells from infant skin had no appreciable effect on either the repair or normal replication response to higher, challenge doses of UVL. However, such conditioning resulted in attenuated repair in keratinocytes from adult skin after UV doses above 25 J/m2. In addition, a surprising enhancement in replication was seen in conditioned cells from adult following challenge UV doses.

  6. Statistical properties of DNA sequences

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Mantegna, R. N.; Simons, M.; Stanley, H. E.

    1995-01-01

    We review evidence supporting the idea that the DNA sequence in genes containing non-coding regions is correlated, and that the correlation is remarkably long range--indeed, nucleotides thousands of base pairs distant are correlated. We do not find such a long-range correlation in the coding regions of the gene. We resolve the problem of the "non-stationarity" feature of the sequence of base pairs by applying a new algorithm called detrended fluctuation analysis (DFA). We address the claim of Voss that there is no difference in the statistical properties of coding and non-coding regions of DNA by systematically applying the DFA algorithm, as well as standard FFT analysis, to every DNA sequence (33301 coding and 29453 non-coding) in the entire GenBank database. Finally, we describe briefly some recent work showing that the non-coding sequences have certain statistical features in common with natural and artificial languages. Specifically, we adapt to DNA the Zipf approach to analyzing linguistic texts. These statistical properties of non-coding sequences support the possibility that non-coding regions of DNA may carry biological information.

  7. Nucleotide Metabolism and DNA Replication.

    PubMed

    Warner, Digby F; Evans, Joanna C; Mizrahi, Valerie

    2014-10-01

    The development and application of a highly versatile suite of tools for mycobacterial genetics, coupled with widespread use of "omics" approaches to elucidate the structure, function, and regulation of mycobacterial proteins, has led to spectacular advances in our understanding of the metabolism and physiology of mycobacteria. In this article, we provide an update on nucleotide metabolism and DNA replication in mycobacteria, highlighting key findings from the past 10 to 15 years. In the first section, we focus on nucleotide metabolism, ranging from the biosynthesis, salvage, and interconversion of purine and pyrimidine ribonucleotides to the formation of deoxyribonucleotides. The second part of the article is devoted to DNA replication, with a focus on replication initiation and elongation, as well as DNA unwinding. We provide an overview of replication fidelity and mutation rates in mycobacteria and summarize evidence suggesting that DNA replication occurs during states of low metabolic activity, and conclude by suggesting directions for future research to address key outstanding questions. Although this article focuses primarily on observations from Mycobacterium tuberculosis, it is interspersed, where appropriate, with insights from, and comparisons with, other mycobacterial species as well as better characterized bacterial models such as Escherichia coli. Finally, a common theme underlying almost all studies of mycobacterial metabolism is the potential to identify and validate functions or pathways that can be exploited for tuberculosis drug discovery. In this context, we have specifically highlighted those processes in mycobacterial DNA replication that might satisfy this critical requirement.

  8. Nuclear entry of DNA viruses

    PubMed Central

    Fay, Nikta; Panté, Nelly

    2015-01-01

    DNA viruses undertake their replication within the cell nucleus, and therefore they must first deliver their genome into the nucleus of their host cells. Thus, trafficking across the nuclear envelope is at the basis of DNA virus infections. Nuclear transport of molecules with diameters up to 39 nm is a tightly regulated process that occurs through the nuclear pore complex (NPC). Due to the enormous diversity of virus size and structure, each virus has developed its own strategy for entering the nucleus of their host cells, with no two strategies alike. For example, baculoviruses target their DNA-containing capsid to the NPC and subsequently enter the nucleus intact, while the hepatitis B virus capsid crosses the NPC but disassembles at the nuclear side of the NPC. For other viruses such as herpes simplex virus and adenovirus, although both dock at the NPC, they have each developed a distinct mechanism for the subsequent delivery of their genome into the nucleus. Remarkably, other DNA viruses, such as parvoviruses and human papillomaviruses, access the nucleus through an NPC-independent mechanism. This review discusses our current understanding of the mechanisms used by DNA viruses to deliver their genome into the nucleus, and further presents the experimental evidence for such mechanisms. PMID:26029198

  9. [Application of the QIAamp DNA Investigator Kit and Prepfiler Forensic DNA Extraction Kit in genomic DNA extraction from skeletal remains].

    PubMed

    Ludwikowska-Pawłowska, Małgorzata; Jacewicz, Renata; Jedrzejczyk, Maciej; Prośniak, Adam; Berent, Jarosław

    2009-01-01

    The report presents an application of the QIAamp DNA Investigator Kit and PrepFiler Forensic DNA Extraction Kit in genomic DNA extraction from post-mortem highly degraded skeletal remains. The analysis included 25 bone samples collected on autopsy. DNA extraction was performed in accordance with the QIAamp DNA Investigator Kit and PrepFiler Forensic DNA Extraction Kit manufacturer's isolation protocols. Amplification was performed on a Biometra termocycler using the AmpFISTR Identifiler PCR Amplification Kit according to the manufacturer's protocol. Typing of PCR products was carried out on an ABI Prism 377 DNA sequencer. The recommended parameters for GeneScan analysis and Genotyper software were followed. The authors demonstrated that the QIAamp DNA Investigator Kit was more effective, convenient and statistically significantly better method which may be employed in DNA extraction from bone specimens.

  10. A novel interaction between DNA ligase III and DNA polymerase gamma plays an essential role in mitochondrial DNA stability.

    PubMed

    De, Ananya; Campbell, Colin

    2007-02-15

    The data in the present study show that DNA polymerase gamma and DNA ligase III interact in mitochondrial protein extracts from cultured HT1080 cells. An interaction was also observed between the two recombinant proteins in vitro. Expression of catalytically inert versions of DNA ligase III that bind DNA polymerase gamma was associated with reduced mitochondrial DNA copy number and integrity. In contrast, overexpression of wild-type DNA ligase III had no effect on mitochondrial DNA copy number or integrity. Experiments revealed that wild-type DNA ligase III facilitates the interaction of DNA polymerase gamma with a nicked DNA substrate in vitro, and that the zinc finger domain of DNA ligase III is required for this activity. Mitochondrial protein extracts prepared from cells overexpressing a DNA ligase III protein that lacked the zinc finger domain had reduced base excision repair activity compared with extracts from cells overexpressing the wild-type protein. These data support the interpretation that the interaction of DNA ligase III and DNA polymerase gamma is required for proper maintenance of the mammalian mitochondrial genome.

  11. Induction of dnaN and dnaQ gene expression in Escherichia coli by alkylation damage to DNA.

    PubMed Central

    Quiñones, A; Kaasch, J; Kaasch, M; Messer, W

    1989-01-01

    The dnaN and dnaQ genes encode the beta-subunit and the epsilon-subunit of the DNA polymerase III holoenzyme. By transcriptional fusions to the galK gene, translational fusions to lacZ and comparative S1 mapping analysis, we investigated the in-vivo regulation of dnaN and dnaQ. We found that DNA damage caused by the alkylating agent methyl methanesulphonate (MMS) leads to a significant induction in dnaN and dnaQ gene expression suggesting a requirement of increased amounts of at least some DNA polymerase III holoenzyme subunits for recovery from DNA damage caused by MMS. These results are first evidences that subunits of the DNA polymerase III holoenzyme are DNA damage inducible. This MMS induction of dnaN and dnaQ gene expression is unrelated to the adaptive response. It was not observed in lexA and recA mutants which abolish the induction of the SOS response. Images PMID:2656258

  12. Induction of dnaN and dnaQ gene expression in Escherichia coli by alkylation damage to DNA.

    PubMed

    Quiñones, A; Kaasch, J; Kaasch, M; Messer, W

    1989-02-01

    The dnaN and dnaQ genes encode the beta-subunit and the epsilon-subunit of the DNA polymerase III holoenzyme. By transcriptional fusions to the galK gene, translational fusions to lacZ and comparative S1 mapping analysis, we investigated the in-vivo regulation of dnaN and dnaQ. We found that DNA damage caused by the alkylating agent methyl methanesulphonate (MMS) leads to a significant induction in dnaN and dnaQ gene expression suggesting a requirement of increased amounts of at least some DNA polymerase III holoenzyme subunits for recovery from DNA damage caused by MMS. These results are first evidences that subunits of the DNA polymerase III holoenzyme are DNA damage inducible. This MMS induction of dnaN and dnaQ gene expression is unrelated to the adaptive response. It was not observed in lexA and recA mutants which abolish the induction of the SOS response.

  13. Stacking interactions and DNA intercalation

    SciTech Connect

    Li, Dr. Shen; Cooper, Valentino R; Thonhauser, Prof. Timo; Lundqvist, Prof. Bengt I.; Langreth, David C.

    2009-01-01

    The relationship between stacking interactions and the intercalation of proflavine and ellipticine within DNA is investigated using a nonempirical van der Waals density functional for the correlation energy. Our results, employing a binary stack model, highlight fundamental, qualitative differences between base-pair base-pair interactions and that of the stacked intercalator base pair system. Most notable result is the paucity of torque which so distinctively defines the Twist of DNA. Surprisingly, this model, when combined with a constraint on the twist of the surrounding base-pair steps to match the observed unwinding of the sugar-phosphate backbone, was sufficient for explaining the experimentally observed proflavine intercalator configuration. Our extensive mapping of the potential energy surface of base-pair intercalator interactions can provide valuable information for future nonempirical studies of DNA intercalation dynamics.

  14. Playing TETris with DNA modifications

    PubMed Central

    Delatte, Benjamin; Deplus, Rachel; Fuks, François

    2014-01-01

    Methylation of the fifth carbon of cytosine was the first epigenetic modification to be discovered in DNA. Recently, three new DNA modifications have come to light: hydroxymethylcytosine, formylcytosine, and carboxylcytosine, all generated by oxidation of methylcytosine by Ten Eleven Translocation (TET) enzymes. These modifications can initiate full DNA demethylation, but they are also likely to participate, like methylcytosine, in epigenetic signalling per se. A scenario is emerging in which coordinated regulation at multiple levels governs the participation of TETs in a wide range of physiological functions, sometimes via a mechanism unrelated to their enzymatic activity. Although still under construction, a sophisticated picture is rapidly forming where, according to the function to be performed, TETs ensure epigenetic marking to create specific landscapes, and whose improper build-up can lead to diseases such as cancer and neurodegenerative disorders. PMID:24825349

  15. DNA detection by THz pumping

    SciTech Connect

    Chernev, A. L.; Bagraev, N. T.; Klyachkin, L. E.; Emelyanov, A. K.; Dubina, M. V.

    2015-07-15

    DNA semiconductor detection and sequencing is considered to be the most promising approach for future discoveries in genome and proteome research which is dramatically dependent on the challenges faced by semiconductor nanotechnologies. DNA pH-sensing with ion-sensitive field effect transistor (ISFET) is well-known to be a successfully applied electronic platform for genetic research. However this method lacks fundamentally in chemical specificity. Here we develop the first ever silicon nanosandwich pump device, which provides both the excitation of DNA fragments’ self-resonant modes and the feedback for current-voltage measurements at room temperature. This device allows direct detection of singlestranded label-free oligonucleotides by measuring their THz frequency response in aqueous solution. These results provide a new insight into the nanobioelectronics for the future real-time technologies of direct gene observations.

  16. Mosaic organization of DNA nucleotides

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Buldyrev, S. V.; Havlin, S.; Simons, M.; Stanley, H. E.; Goldberger, A. L.

    1994-01-01

    Long-range power-law correlations have been reported recently for DNA sequences containing noncoding regions. We address the question of whether such correlations may be a trivial consequence of the known mosaic structure ("patchiness") of DNA. We analyze two classes of controls consisting of patchy nucleotide sequences generated by different algorithms--one without and one with long-range power-law correlations. Although both types of sequences are highly heterogenous, they are quantitatively distinguishable by an alternative fluctuation analysis method that differentiates local patchiness from long-range correlations. Application of this analysis to selected DNA sequences demonstrates that patchiness is not sufficient to account for long-range correlation properties.

  17. Apparatus for improved DNA sequencing

    DOEpatents

    Douthart, Richard J.; Crowell, Shannon L.

    1996-01-01

    This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection.

  18. Apparatus for improved DNA sequencing

    DOEpatents

    Douthart, R.J.; Crowell, S.L.

    1996-05-07

    This invention is a means for the rapid sequencing of DNA samples. More specifically, it consists of a new design direct blotting electrophoresis unit. The DNA sequence is deposited on a membrane attached to a rotating drum. Initial data compaction is facilitated by the use of a machined multi-channeled plate called a ribbon channel plate. Each channel is an isolated mini gel system much like a gel filled capillary. The system as a whole, however, is in a slab gel like format with the advantages of uniformity and easy reusability. The system can be used in different embodiments. The drum system is unique in that after deposition the drum rotates the deposited DNA into a large non-buffer open space where processing and detection can occur. The drum can also be removed in toto to special workstations for downstream processing, multiplexing and detection. 18 figs.

  19. High resolution optical DNA mapping

    NASA Astrophysics Data System (ADS)

    Baday, Murat

    Many types of diseases including cancer and autism are associated with copy-number variations in the genome. Most of these variations could not be identified with existing sequencing and optical DNA mapping methods. We have developed Multi-color Super-resolution technique, with potential for high throughput and low cost, which can allow us to recognize more of these variations. Our technique has made 10--fold improvement in the resolution of optical DNA mapping. Using a 180 kb BAC clone as a model system, we resolved dense patterns from 108 fluorescent labels of two different colors representing two different sequence-motifs. Overall, a detailed DNA map with 100 bp resolution was achieved, which has the potential to reveal detailed information about genetic variance and to facilitate medical diagnosis of genetic disease.

  20. Graphene Nanopres for DNA Fingerprinting

    NASA Astrophysics Data System (ADS)

    Ahmed, Towfiq; Balatsky, Alexander V.; Haraldsen, J. T.; Schuller, Ivan K.; di Ventra, M.; Wikfeldt, K. T.

    2013-03-01

    The recent progress in nanopore experiments with transverse current is important for the development of fast, accurate and cheap finger-printing techniques for single nucleotide. Despite its enormous potential for the next generation DNA sequencing technology, the presence of large noise in the temporal spectrum of transverse current remains a big challenge for getting highly accurate interpretation of data. In this paper we present our abinitio calculations, and propose graphene based device for DNA fingerprinting. We calculate transmission current through graphene for each DNA base (A,C,G,T). As shown in our work, a proper time-series analysis of a signal provides a higher quality information in identifying single bio-molecule is translocating through the nanopores. This work is supported by LANL, Nordita, US DOE, AFOSR, and NIH.

  1. Thermophoresis of single stranded DNA.

    PubMed

    Reineck, Philipp; Wienken, Christoph J; Braun, Dieter

    2010-01-01

    The manipulation and analysis of biomolecules in native bulk solution is highly desired; however, few methods are available. In thermophoresis, the thermal analog to electrophoresis, molecules are moved along a microscopic temperature gradient. Its theoretical foundation is still under debate, but practical applications for analytics in biology show considerable potential. Here we measured the thermophoresis of highly diluted single stranded DNA using an all-optical capillary approach. Temperature gradients were created locally by an infrared laser. The thermal depletion of oligonucleotides of between 5 and 50 bases in length were investigated by fluorescence at various salt concentrations. To a good approximation, the previously tested capacitor model describes thermophoresis: the Soret coefficient linearly depends on the Debye length and is proportional to the DNA length to the power of 0.35, dictated by the conformation-based size scaling of the diffusion coefficient. The results form the basis for quantitative DNA analytics using thermophoresis.

  2. DNA-Based Nanostructures: Changes of Mechanical Properties of DNA upon Ligand Binding

    NASA Astrophysics Data System (ADS)

    Nechipurenko, Yury; Grokhovsky, Sergey; Gursky, Georgy; Nechipurenko, Dmitry; Polozov, Robert

    The formation of DNA-based nanostructures involves the binding of different kinds of ligands to DNA as well as the interaction of DNA molecules with each other. Complex formation between ligand and DNA can alter physicochemical properties of the DNA molecule. In the present work, the accessibility of DNA-ligand complexes to cleavage by DNase I are considered, and the exact algorithms for analysis of diagrams of DNase I footprinting for ligand-DNA complexes are obtained. Changes of mechanical properties of the DNA upon ligand binding are also demonstrated by the cleavage patterns generated upon ultrasound irradiation of cis-platin-DNA complexes. Propagation of the mechanical perturbations along DNA in the presence of bound ligands is considered in terms of a string model with a heterogeneity corresponding to the position of a bound ligand on DNA. This model can reproduce qualitatively the cleavage patterns obtained upon ultrasound irradiation of cis-platin-DNA complexes.

  3. Imaging of DNA and Protein–DNA Complexes with Atomic Force Microscopy

    PubMed Central

    Lyubchenko, Yuri L.; Shlyakhtenko, Luda S.

    2016-01-01

    This article reviews atomic force microscopy (AFM) studies of DNA structure and dynamics and protein–DNA complexes, including recent advances in the visualization of protein–DNA complexes with the use of cutting-edge, high-speed AFM. Special emphasis is given to direct nanoscale visualization of dynamics of protein–DNA complexes. In the area of DNA structure and dynamics, structural studies of local non-B conformations of DNA and the interplay of local and global DNA conformations are reviewed. The application of time-lapse AFM nanoscale imaging of DNA dynamics is illustrated by studies of Holliday junction branch migration. Structure and dynamics of protein–DNA interactions include problems related to site-specific DNA recombination, DNA replication, and DNA mismatch repair. Studies involving the structure and dynamics of chromatin are also described. PMID:27278886

  4. Identifying DNA methylation in a nanochannel

    PubMed Central

    Sun, Xiaoyin; Yasui, Takao; Yanagida, Takeshi; Kaji, Noritada; Rahong, Sakon; Kanai, Masaki; Nagashima, Kazuki; Kawai, Tomoji; Baba, Yoshinobu

    2016-01-01

    Abstract DNA methylation is a stable epigenetic modification, which is well known to be involved in gene expression regulation. In general, however, analyzing DNA methylation requires rather time consuming processes (24–96 h) via DNA replication and protein modification. Here we demonstrate a methodology to analyze DNA methylation at a single DNA molecule level without any protein modifications by measuring the contracted length and relaxation time of DNA within a nanochannel. Our methodology is based on the fact that methylation makes DNA molecules stiffer, resulting in a longer contracted length and a longer relaxation time (a slower contraction rate). The present methodology offers a promising way to identify DNA methylation without any protein modification at a single DNA molecule level within 2 h. PMID:27877910

  5. DNA Compatible Multistep Synthesis and Applications to DNA Encoded Libraries.

    PubMed

    Satz, Alexander Lee; Cai, Jianping; Chen, Yi; Goodnow, Robert; Gruber, Felix; Kowalczyk, Agnieszka; Petersen, Ann; Naderi-Oboodi, Goli; Orzechowski, Lucja; Strebel, Quentin

    2015-08-19

    Complex mixtures of DNA encoded small molecules may be readily interrogated via high-throughput sequencing. These DNA encoded libraries (DELs) are commonly used to discover molecules that interact with pharmaceutically relevant proteins. The chemical diversity displayed by the library is key to successful discovery of potent, novel, and drug-like chemical matter. The small molecule moieties of DELs are generally synthesized though a multistep process, and each chemical step is accomplished while it is simultaneously attached to an encoding DNA oligomer. Hence, library chemical diversity is often limited to DNA compatible synthetic reactions. Herein, protocols for 24 reactions are provided that have been optimized for high-throughput production of DELs. These protocols detail the multistep synthesis of benzimidazoles, imidazolidinones, quinazolinones, isoindolinones, thiazoles, and imidazopyridines. Additionally, protocols are provided for a diverse range of useful chemical reactions including BOC deprotection (under pH neutral conditions), carbamylation, and Sonogashira coupling. Last, step-by-step protocols for synthesizing functionalized DELs from trichloronitropyrimidine and trichloropyrimidine scaffolds are detailed.

  6. Superimposed Code Theoretic Analysis of DNA Codes and DNA Computing

    DTIC Science & Technology

    2008-01-01

    complements of one another and the DNA duplex formed is a Watson - Crick (WC) duplex. However, there are many instances when the formation of non-WC...that the user’s requirements for probe selection are met based on the Watson - Crick probe locality within a target. The second type, called

  7. Structural Organization of DNA in Chlorella Viruses

    PubMed Central

    Wulfmeyer, Timo; Polzer, Christian; Hiepler, Gregor; Hamacher, Kay; Shoeman, Robert; Dunigan, David D.; Van Etten, James L.; Lolicato, Marco; Moroni, Anna; Thiel, Gerhard; Meckel, Tobias

    2012-01-01

    Chlorella viruses have icosahedral capsids with an internal membrane enclosing their large dsDNA genomes and associated proteins. Their genomes are packaged in the particles with a predicted DNA density of ca. 0.2 bp nm−3. Occasionally infection of an algal cell by an individual particle fails and the viral DNA is dynamically ejected from the capsid. This shows that the release of the DNA generates a force, which can aid in the transfer of the genome into the host in a successful infection. Imaging of ejected viral DNA indicates that it is intimately associated with proteins in a periodic fashion. The bulk of the protein particles detected by atomic force microscopy have a size of ∼60 kDa and two proteins (A278L and A282L) of about this size are among 6 basic putative DNA binding proteins found in a proteomic analysis of DNA binding proteins packaged in the virion. A combination of fluorescence images of ejected DNA and a bioinformatics analysis of the DNA reveal periodic patterns in the viral DNA. The periodic distribution of GC rich regions in the genome provides potential binding sites for basic proteins. This DNA/protein aggregation could be responsible for the periodic concentration of fluorescently labeled DNA observed in ejected viral DNA. Collectively the data indicate that the large chlorella viruses have a DNA packaging strategy that differs from bacteriophages; it involves proteins and share similarities to that of chromatin structure in eukaryotes. PMID:22359540

  8. Random Coding Bounds for DNA Codes Based on Fibonacci Ensembles of DNA Sequences

    DTIC Science & Technology

    2008-07-01

    COVERED (From - To) 6 Jul 08 – 11 Jul 08 4. TITLE AND SUBTITLE RANDOM CODING BOUNDS FOR DNA CODES BASED ON FIBONACCI ENSEMBLES OF DNA SEQUENCES ... sequences which are generalizations of the Fibonacci sequences . 15. SUBJECT TERMS DNA Codes, Fibonacci Ensembles, DNA Computing, Code Optimization 16...coding bound on the rate of DNA codes is proved. To obtain the bound, we use some ensembles of DNA sequences which are generalizations of the Fibonacci

  9. Improving upon nature's somatic mitochondrial DNA therapies.

    PubMed

    Dani, M A; Dani, S U

    2010-06-01

    Mitochondrial DNA (mtDNA) directs key metabolic functions in eukaryotic cells. While a number of mtDNA mutations are known causes of human diseases and age-related dysfunctions, some mtDNA haplotypes are associated with extreme longevity. Despite the mutagenic mitochondrial environment naturally enhancing somatic mtDNA mutation rates, mtDNA remains grossly stable along generations of plant and animal species including man. This relative stability can be accounted for by the purging of deleterious mutations by natural selection operating on growing cells, tissues, organisms and populations, as observed in gametogenesis, embryogenesis, oncogenesis and cladogenesis. In the adult multicellular organism, however, mtDNA mutations accumulate in slowly dividing cells, and, to a much higher degree, in postmitotic cells and tissues. Dynamic mitochondrial fusion and fission, by redistributing polymorphic mtDNA molecules; mitophagy, by clearing defective mitochondria and mutated mtDNA; compensatory mutations and mtDNA repair can compensate for the accumulation of mtDNA mutations only to a certain extent, thereby creating a dysfunctional threshold. Here we hypothesize that this threshold is naturally up-regulated by both vertical and horizontal transfers of mtDNA from stem cells or cell types which retain the capacity of purging deleterious mtDNA through cell division and natural selection in the adult organism. When these natural cell and tissue mtDNA reserves are exhausted, artificial mtDNA therapy may provide for additional threshold up-regulation. Replacement of mtDNA has been already successfully accomplished in early stage embryos and stem cells in a number of species including primates. It is thus simply a matter of refinement of technique that somatic mtDNA therapy, i.e., therapy of pathological conditions based on the transfer of mtDNA to somatic eukaryotic cells and tissues, becomes a medical reality.

  10. Zip-DNA: A Novel DNA Structure Formed Under Mechanical Stress

    NASA Astrophysics Data System (ADS)

    Balaeff, Alexander; Mikhailov, Ivan; Turabekova, Malakhat; Craig, Stephen; Beratan, David

    2014-03-01

    Zip-DNA is a novel DNA structure predicted by molecular dynamics simulations of forced DNA extension. In the zip-DNA form, the Watson-Crick hydrogen bonds are broken and nucleobases from the opposite DNA strands interdigitate with each other, forming a continuous single-base aromatic stack. The B-Zip DNA structural transition is proposed to be responsible for the famous overstretching plateau on the force-extension curve of DNA. The simulations show that zip-DNA may either self-assemble from force-melted DNA strands or evolve from B-DNA through an earlier recognized S-DNA. Zip-DNA is shown to be consistent with multiple experimental observations; notably, the S-DNA transition state is shown to be a highly disordered state consistent with experimentally measured thermodynamic characteristics of DNA extension. We predict that zip-DNA possesses increased molecular conductivity compared to the B-DNA form and, therefore, may find applications in molecular electronics. A conductive state of a stretched non-complementary double-stranded DNA would, if detected, become a ``smoking gun'' experiment validating the existence of zip-DNA.

  11. PCR-based analysis of mitochondrial DNA copy number, mitochondrial DNA damage, and nuclear DNA damage

    PubMed Central

    Gonzalez-Hunt, Claudia P.; Rooney, John P.; Ryde, Ian T.; Anbalagan, Charumathi; Joglekar, Rashmi

    2016-01-01

    Because of the role DNA damage and depletion play in human disease, it is important to develop and improve tools to assess these endpoints. This unit describes PCR-based methods to measure nuclear and mitochondrial DNA damage and copy number. Long amplicon quantitative polymerase chain reaction (LA-QPCR) is used to detect DNA damage by measuring the number of polymerase-inhibiting lesions present based on the amount of PCR amplification; real-time PCR (RT-PCR) is used to calculate genome content. In this unit we provide step-by-step instructions to perform these assays in Homo sapiens, Mus musculus, Rattus norvegicus, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Oryzias latipes, Fundulus grandis, and Fundulus heteroclitus, and discuss the advantages and disadvantages of these assays. PMID:26828332

  12. Ultra-high resolution DNA structures.

    PubMed

    Wang, A H; Robinson, H; Gao, Y G

    1999-01-01

    This paper describes the progress in our efforts at producing ultra-high resolution (< 0.8 A) DNA structures using advanced cryo-crystallography and synchrotron. Our work is aimed at providing reliable geometric (bond length and bond angle), electronic and motional information of DNA molecules in different conformational contexts. These highly-reliable, new structures will be the basis for constructing better DNA force-field parameters, which will benefit the structural refinement of DNA, protein-DNA complexes, and ligand-DNA complexes.

  13. Engineering DNA-based functional materials.

    PubMed

    Roh, Young Hoon; Ruiz, Roanna C H; Peng, Songming; Lee, Jong Bum; Luo, Dan

    2011-12-01

    While DNA is a genetic material, it is also an inherently polymeric material made from repeating units called nucleotides. Although DNA's biological functions have been studied for decades, the polymeric features of DNA have not been extensively exploited until recently. In this tutorial review, we focus on two aspects of using DNA as a polymeric material: (1) the engineering methods, and (2) the potential real-world applications. More specifically, various strategies for constructing DNA-based building blocks and materials are introduced based on DNA topologies, which include linear, branched/dendritic, and networked. Different applications in nanotechnology, medicine, and biotechnology are further reviewed.

  14. DNA nanowire translocation phenomena in nanopores.

    PubMed

    Chen, Lei; Conlisk, A T

    2010-04-01

    One recent application of nanopores is to use them as detectors and analyzers for fast DNA sequencing. To better understand the DNA electrokinetic transport through a nanopore, a hydrodynamic model is developed to investigate the flow field, the resistive forces acting on the DNA, the DNA velocity and the ionic current through the nanopore. The numerical results reveal the relation between the DNA velocity and various parameters such as nanopore surface charge and solution concentration. The model is validated by comparing the numerical results with the experimental data for both DNA velocity and ionic current through the nanopore.

  15. Structural and Thermodynamic Signatures of DNA Recognition by Mycobacterium tuberculosis DnaA

    SciTech Connect

    Tsodikov, Oleg V.; Biswas, Tapan

    2011-09-06

    An essential protein, DnaA, binds to 9-bp DNA sites within the origin of replication oriC. These binding events are prerequisite to forming an enigmatic nucleoprotein scaffold that initiates replication. The number, sequences, positions, and orientations of these short DNA sites, or DnaA boxes, within the oriCs of different bacteria vary considerably. To investigate features of DnaA boxes that are important for binding Mycobacterium tuberculosis DnaA (MtDnaA), we have determined the crystal structures of the DNA binding domain (DBD) of MtDnaA bound to a cognate MtDnaA-box (at 2.0 {angstrom} resolution) and to a consensus Escherichia coli DnaA-box (at 2.3 {angstrom}). These structures, complemented by calorimetric equilibrium binding studies of MtDnaA DBD in a series of DnaA-box variants, reveal the main determinants of DNA recognition and establish the [T/C][T/A][G/A]TCCACA sequence as a high-affinity MtDnaA-box. Bioinformatic and calorimetric analyses indicate that DnaA-box sequences in mycobacterial oriCs generally differ from the optimal binding sequence. This sequence variation occurs commonly at the first 2 bp, making an in vivo mycobacterial DnaA-box effectively a 7-mer and not a 9-mer. We demonstrate that the decrease in the affinity of these MtDnaA-box variants for MtDnaA DBD relative to that of the highest-affinity box TTGTCCACA is less than 10-fold. The understanding of DnaA-box recognition by MtDnaA and E. coli DnaA enables one to map DnaA-box sequences in the genomes of M. tuberculosis and other eubacteria.

  16. The DNA of ciliated protozoa.

    PubMed Central

    Prescott, D M

    1994-01-01

    Ciliates contain two types of nuclei: a micronucleus and a macronucleus. The micronucleus serves as the germ line nucleus but does not express its genes. The macronucleus provides the nuclear RNA for vegetative growth. Mating cells exchange haploid micronuclei, and a new macronucleus develops from a new diploid micronucleus. The old macronucleus is destroyed. This conversion consists of amplification, elimination, fragmentation, and splicing of DNA sequences on a massive scale. Fragmentation produces subchromosomal molecules in Tetrahymena and Paramecium cells and much smaller, gene-sized molecules in hypotrichous ciliates to which telomere sequences are added. These molecules are then amplified, some to higher copy numbers than others. rDNA is differentially amplified to thousands of copies per macronucleus. Eliminated sequences include transposonlike elements and sequences called internal eliminated sequences that interrupt gene coding regions in the micronuclear genome. Some, perhaps all, of these are excised as circular molecules and destroyed. In at least some hypotrichs, segments of some micronuclear genes are scrambled in a nonfunctional order and are recorded during macronuclear development. Vegetatively growing ciliates appear to possess a mechanism for adjusting copy numbers of individual genes, which corrects gene imbalances resulting from random distribution of DNA molecules during amitosis of the macronucleus. Other distinctive features of ciliate DNA include an altered use of the conventional stop codons. Images PMID:8078435

  17. DNA breakage drives nuclear search.

    PubMed

    Ira, Grzegorz; Hastings, Philip J

    2012-05-02

    The search for a homologous template is a fundamental, yet largely uncharacterized, reaction in DNA double-strand break repair. Two reports now demonstrate that broken chromosomes increase their movement and explore large volumes of nuclear space searching for a homologous template. Break mobility requires resection and recombination enzymes, as well as damage-checkpoint components.

  18. Image analysis for DNA sequencing

    NASA Astrophysics Data System (ADS)

    Palaniappan, Kannappan; Huang, Thomas S.

    1991-07-01

    There is a great deal of interest in automating the process of DNA (deoxyribonucleic acid) sequencing to support the analysis of genomic DNA such as the Human and Mouse Genome projects. In one class of gel-based sequencing protocols autoradiograph images are generated in the final step and usually require manual interpretation to reconstruct the DNA sequence represented by the image. The need to handle a large volume of sequence information necessitates automation of the manual autoradiograph reading step through image analysis in order to reduce the length of time required to obtain sequence data and reduce transcription errors. Various adaptive image enhancement, segmentation and alignment methods were applied to autoradiograph images. The methods are adaptive to the local characteristics of the image such as noise, background signal, or presence of edges. Once the two-dimensional data is converted to a set of aligned one-dimensional profiles waveform analysis is used to determine the location of each band which represents one nucleotide in the sequence. Different classification strategies including a rule-based approach are investigated to map the profile signals, augmented with the original two-dimensional image data as necessary, to textual DNA sequence information.

  19. DNA nanotechnology for nanophotonic applications.

    PubMed

    Samanta, Anirban; Banerjee, Saswata; Liu, Yan

    2015-02-14

    DNA nanotechnology has touched the epitome of miniaturization by integrating various nanometer size particles with nanometer precision. This enticing bottom-up approach has employed small DNA tiles, large multi-dimensional polymeric structures or more recently DNA origami to organize nanoparticles of different inorganic materials, small organic molecules or macro-biomolecules like proteins, and RNAs into fascinating patterns that are difficult to achieve by other conventional methods. Here, we are especially interested in the self-assembly of nanomaterials that are potentially attractive elements in the burgeoning field of nanophotonics. These materials include plasmonic nanoparticles, quantum dots, fluorescent organic dyes, etc. DNA based self-assembly allows excellent control over distance, orientation and stoichiometry of these nano-elements that helps to engineer intelligent systems that can potentially pave the path for future technology. Many outstanding structures have been fabricated that are capable of fine tuning optical properties, such as fluorescence intensity and lifetime modulation, enhancement of Raman scattering and emergence of circular dichroism responses. Within the limited scope of this review we have tried to give a glimpse of the development of this still nascent but highly promising field to its current status as well as the existing challenges before us.

  20. Natural products: DNA double whammy

    NASA Astrophysics Data System (ADS)

    Gates, Kent S.

    2014-06-01

    The lomaiviticins are exceedingly potent antibiotic agents, but the mechanism responsible for this activity has so far been unclear. Now, efficient generation of double-strand breaks in DNA by lomaiviticin A has been linked to the remarkable cytotoxicity of these diazobenzofluorene-containg natural products.

  1. Linker DNA destabilizes condensed chromatin.

    PubMed

    Green, G R; Ferlita, R R; Walkenhorst, W F; Poccia, D L

    2001-01-01

    The contribution of the linker region to maintenance of condensed chromatin was examined in two model systems, namely sea urchin sperm nuclei and chicken red blood cell nuclei. Linkerless nuclei, prepared by extensive digestion with micrococcal nuclease, were compared with Native nuclei using several assays, including microscopic appearance, nuclear turbidity, salt stability, and trypsin resistance. Chromatin in the Linkerless nuclei was highly condensed, resembling pyknotic chromatin in apoptotic cells. Linkerless nuclei were more stable in low ionic strength buffers and more resistant to trypsin than Native nuclei. Analysis of histones from the trypsinized nuclei by polyacrylamide gel electrophoresis showed that specific histone H1, H2B, and H3 tail regions stabilized linker DNA in condensed nuclei. Thermal denaturation of soluble chromatin preparations from differentially trypsinized sperm nuclei demonstrated that the N-terminal regions of histones Sp H1, Sp H2B, and H3 bind tightly to linker DNA, causing it to denature at a high temperature. We conclude that linker DNA exerts a disruptive force on condensed chromatin structure which is counteracted by binding of specific histone tail regions to the linker DNA. The inherent instability of the linker region may be significant in all eukaryotic chromatins and may promote gene activation in living cells.

  2. Chromosome specific repetitive DNA sequences

    DOEpatents

    Moyzis, Robert K.; Meyne, Julianne

    1991-01-01

    A method is provided for determining specific nucleotide sequences useful in forming a probe which can identify specific chromosomes, preferably through in situ hybridization within the cell itself. In one embodiment, chromosome preferential nucleotide sequences are first determined from a library of recombinant DNA clones having families of repetitive sequences. Library clones are identified with a low homology with a sequence of repetitive DNA families to which the first clones respectively belong and variant sequences are then identified by selecting clones having a pattern of hybridization with genomic DNA dissimilar to the hybridization pattern shown by the respective families. In another embodiment, variant sequences are selected from a sequence of a known repetitive DNA family. The selected variant sequence is classified as chromosome specific, chromosome preferential, or chromosome nonspecific. Sequences which are classified as chromosome preferential are further sequenced and regions are identified having a low homology with other regions of the chromosome preferential sequence or with known sequences of other family me This invention is the result of a contract with the Department of Energy (Contract No. W-7405-ENG-36).

  3. DNA methylation in endometriosis (Review)

    PubMed Central

    KOUKOURA, OURANIA; SIFAKIS, STAVROS; SPANDIDOS, DEMETRIOS A.

    2016-01-01

    Endometriosis is defined by the presence and growth of functional endometrial tissue, outside the uterine cavity, primarily in the ovaries, pelvic peritoneum and rectovaginal septum. Although it is a benign disease, it presents with malignant characteristics, such as invasion to surrounding tissues, metastasis to distant locations and recurrence following treatment. Accumulating evidence suggests that various epigenetic aberrations may play an essential role in the pathogenesis of endometriosis. Aberrant DNA methylation represents a possible mechanism repsonsible for this disease, linking gene expression alterations observed in endometriosis with hormonal and environmental factors. Several lines of evidence indicate that endometriosis may partially be due to selective epigenetic deregulations influenced by extrinsic factors. Previous studies have shed light into the epigenetic component of endometriosis, reporting variations in the epigenetic patterns of genes known to be involved in the aberrant hormonal, immunologic and inflammatory status of endometriosis. Although recent studies, utilizing advanced molecular techniques, have allowed us to further elucidate the possible association of DNA methylation with altered gene expression, whether these molecular changes represent the cause or merely the consequence of the disease is a question which remains to be answered. This review provides an overview of the current literature on the role of DNA methylation in the pathophysiology and malignant evolution of endometriosis. We also provide insight into the mechanisms through which DNA methylation-modifying agents may be the next step in the research of the pharmaceutical treatment of endometriosis. PMID:26934855

  4. DNA nanotechnology for nanophotonic applications

    NASA Astrophysics Data System (ADS)

    Samanta, Anirban; Banerjee, Saswata; Liu, Yan

    2015-01-01

    DNA nanotechnology has touched the epitome of miniaturization by integrating various nanometer size particles with nanometer precision. This enticing bottom-up approach has employed small DNA tiles, large multi-dimensional polymeric structures or more recently DNA origami to organize nanoparticles of different inorganic materials, small organic molecules or macro-biomolecules like proteins, and RNAs into fascinating patterns that are difficult to achieve by other conventional methods. Here, we are especially interested in the self-assembly of nanomaterials that are potentially attractive elements in the burgeoning field of nanophotonics. These materials include plasmonic nanoparticles, quantum dots, fluorescent organic dyes, etc. DNA based self-assembly allows excellent control over distance, orientation and stoichiometry of these nano-elements that helps to engineer intelligent systems that can potentially pave the path for future technology. Many outstanding structures have been fabricated that are capable of fine tuning optical properties, such as fluorescence intensity and lifetime modulation, enhancement of Raman scattering and emergence of circular dichroism responses. Within the limited scope of this review we have tried to give a glimpse of the development of this still nascent but highly promising field to its current status as well as the existing challenges before us.

  5. DNA Technology in the Classroom.

    ERIC Educational Resources Information Center

    Williamson, John H.; Campbell, A. Malcolm

    1997-01-01

    Presents a protocol that gives students hands-on experience in generating a meaningful physical map of a circular molecule of DNA. Topics include agarose gel electrophoresis, logic of restriction maps, extracting data from an agarose gel, managing data from gels, experimental protocol, loading gels, electrophoresis, photographing gels, collecting…

  6. Electrical conduction through DNA molecule.

    PubMed

    Abdalla, S

    2011-09-01

    Several disorder parameters, inside the DNA molecule, lead to localization of charge carriers inside potential wells in the lowest unoccupied and highest occupied molecular orbits (LUMO and HOMO) which affects drastically the electrical conduction through the molecule, and demonstrates that the band carriers play an essential role in the conduction mechanism. So, a model is presented to shed light on the role of electrons of the LUMO in the electrical conduction through the DNA molecule. DC-, AC-conductivity and dielectric permittivity experimental data are well fitted with the presented model giving evidence that the free carriers in the LUMO and HOMO are responsible to make the DNA molecule conductor, insulator or semiconductor. The obtained results show that the localized charge carriers in the DNA molecule are characterized by four different types of relaxation phenomena which are thermally activated by corresponding four activation energies at 0.56 eV, 0.33 eV, 0.24 eV, and 0.05 eV respectively. Moreover, the calculations after the model, at room temperature, show that the time of the relaxation times of the current carriers are in the order of 5 × 10(-2)s, 1.74 × 10(-4)s, 5 × 10(-7)s, and 1.6 × 10(-10)s, respectively.

  7. Mechanisms of DNA Motor Proteins (Helicases)

    NASA Astrophysics Data System (ADS)

    Lohman, Timothy M.

    1996-03-01

    DNA helicases are ubiquitous motor proteins that couple the binding and hydrolysis of NTP to the unwinding of duplex (ds) DNA to form the single stranded (ss) DNA intermediates that are required for replication, recombination and repair. We are studying the DNA unwinding mechanisms catalyzed by two helicases from E. coli: Rep and Helicase II (UvrD) by examining the linkage of DNA binding, protein dimerization and nucleotide binding using both thermodynamic and kinetic approaches. A dimer of the Rep protein is the active form of the helicase; however, the dimer forms only upon binding either ss or ds DNA. There are significant cooperative interactions between the two DNA binding sites on the dimer and nucleotides (ATP, ADP) allosterically control the stabilities of the DNA ligation states of the Rep dimer. Based on these studies we have proposed an "active, rolling" mechanism for the Rep dimer unwinding of duplex DNA. An essential intermediate is a complex, in which ss- and ds-DNA bind simultaneously to each subunit of a Rep dimer. This model predicts that Rep helicase translocation along DNA is coupled to ATP binding, whereas ATP hydrolysis drives unwinding of multiple DNA base pairs for each catalytic event. Rapid chemical quench-flow and stopped-flow fluorescence studies of Rep and UvrD- catalyzed DNA unwinding of a series of non-natural DNA substrates support the "active, rolling" mechanism and rule out a strictly "passive" mechanism of unwinding. Kinetic studies of DNA and nucleotide binding and ATP hydrolysis by wild type and mutant Rep proteins will be discussed that bear on the coupling of ATP binding and hydrolysis to translocation along DNA and DNA unwinding.

  8. DNA adsorption by indium tin oxide nanoparticles.

    PubMed

    Liu, Biwu; Liu, Juewen

    2015-01-01

    The high conductivity and optical transparency of indium tin oxide (ITO) has made it a popular material in the electronic industry. Recently, its application in biosensors is also explored. To understand its biointerface chemistry, we herein investigate its interaction with fluorescently labeled single-stranded oligonucleotides using ITO nanoparticles (NPs). The fluorescence of DNA is efficiently quenched after adsorption, and the interaction between DNA and ITO NPs is strongly dependent on the surface charge of ITO. At low pH, the ITO surface is positively charged to afford a high DNA adsorption capacity. Adsorption is also influenced by the sequence and length of DNA. For its components, In2O3 adsorbs DNA more strongly while SnO2 repels DNA at neutral pH. The DNA adsorption property of ITO is an averaging result from both components. DNA adsorption is confirmed to be mainly by the phosphate backbone via displacement experiments using free phosphate or DNA bases. Last, DNA-induced DNA desorption by forming duplex DNA is demonstrated on ITO, while the same reaction is more difficult to achieve on other metal oxides including CeO2, TiO2, and Fe3O4 because these particles adsorb DNA more tightly.

  9. Production of Double-stranded DNA Ministrings

    PubMed Central

    Wong, Shirley; Lam, Peggy; Nafissi, Nafiseh; Denniss, Steven; Slavcev, Roderick

    2016-01-01

    We constructed linear covalently closed (LCC) DNA minivectors as a non-viral gene-delivery vector alternative produced via a simple platform in vivo. DNA ministrings possess a heightened safety profile and also efficiently deliver DNA cargo to targeted cells. Conventional DNA vectors carry undesirable prokaryotic sequences, including antibiotic resistance genes, CpG motifs, and bacterial origins of replication, which may lead to the stimulation of host immunological responses. The bioavailability of conventional DNA vectors is also compromised due to their larger molecular size. Their circular nature may also impart chromosomal integration, leading to insertional mutagenesis. Bacterial sequences are excised from DNA minivectors, leaving only the gene of interest (GOI) and necessary eukaryotic expression elements. Our LCC DNA minivectors, or DNA ministrings, are devoid of immunogenic bacterial sequences; therefore improving their bioavailability and GOI expression. In the event of vector integration into the chromosome, the LCC DNA ministring will lethally disrupt the host chromosome, thereby removing the potentially dangerous mutant from the proliferating cell population. Consequently, DNA ministrings offer the benefits of 'minicircle' DNA while eliminating the potential for undesirable vector integration events. In comparison to conventional plasmids and their isogenic circular covalently closed (CCC) counterparts, DNA ministrings demonstrate superior bioavailability, transfection efficiency, and cytoplasmic kinetics - they thus require lower amounts of cationic surfactants for effective transfection of target cells. We have constructed a one-step inducible in vivo system for the production of DNA ministrings in Escherichia coli that is simple to use, rapid, and scalable. PMID:26967586

  10. DNA Generated Electric Current Biosensor.

    PubMed

    Hu, Lanshuang; Hu, Shengqiang; Guo, Linyan; Shen, Congcong; Yang, Minghui; Rasooly, Avraham

    2017-02-21

    In addition to its primary function as a genetic material, deoxyribonucleic acid (DNA) is also a potential biologic energy source for molecular electronics. For the first time, we demonstrate that DNA can generate a redox electric current. As an example of this new functionality, DNA generated redox current was used for electrochemical detection of human epidermal growth factor receptor 2 (HER2), a clinically important breast cancer biomarker. To induce redox current, the phosphate of the single stranded DNA aptamer backbone was reacted with molybdate to form redox molybdophosphate precipitate and generate an electrochemical current of ∼16.8 μA/μM cm(2). This detection of HER2 was performed using a sandwich detection assay. A HER2 specific peptide was immobilized onto a gold electrode surface for capturing HER2 in buffer and serum. The HER2 specific aptamer was used as both ligand to bind the captured HER2 and to generate a redox current signal. When tested for HER2 detection, the electrochemical current generated by the aptasensor was proportional to HER2 concentration in the range of 0.01 to 5 ng/mL, with a current generated in the range of ∼6.37 to 31.8 μA/cm(2) in both buffer and serum. This detection level is within the clinically relevant range of HER2 concentrations. This method of electrochemical signal amplification greatly simplifies the signal transduction of aptasensors, broadening their use for HER2 analysis. This novel approach of using the same aptamer as biosensor ligand and as transducer can be universally extended to other aptasensors for a wide array of biodetection applications. Moreover, electric currents generated by DNA or other nucleic acids can be used in molecular electronics or implanted devices for both power generation and measurement of output.

  11. Stretching DNA with optical tweezers.

    PubMed Central

    Wang, M D; Yin, H; Landick, R; Gelles, J; Block, S M

    1997-01-01

    Force-extension (F-x) relationships were measured for single molecules of DNA under a variety of buffer conditions, using an optical trapping interferometer modified to incorporate feedback control. One end of a single DNA molecule was fixed to a coverglass surface by means of a stalled RNA polymerase complex. The other end was linked to a microscopic bead, which was captured and held in an optical trap. The DNA was subsequently stretched by moving the coverglass with respect to the trap using a piezo-driven stage, while the position of the bead was recorded at nanometer-scale resolution. An electronic feedback circuit was activated to prevent bead movement beyond a preset clamping point by modulating the light intensity, altering the trap stiffness dynamically. This arrangement permits rapid determination of the F-x relationship for individual DNA molecules as short as -1 micron with unprecedented accuracy, subjected to both low (approximately 0.1 pN) and high (approximately 50 pN) loads: complete data sets are acquired in under a minute. Experimental F-x relationships were fit over much of their range by entropic elasticity theories based on worm-like chain models. Fits yielded a persistence length, Lp, of approximately 47 nm in a buffer containing 10 mM Na1. Multivalent cations, such as Mg2+ or spermidine 3+, reduced Lp to approximately 40 nm. Although multivalent ions shield most of the negative charges on the DNA backbone, they did not further reduce Lp significantly, suggesting that the intrinsic persistence length remains close to 40 nm. An elasticity theory incorporating both enthalpic and entropic contributions to stiffness fit the experimental results extremely well throughout the full range of extensions and returned an elastic modulus of approximately 1100 pN. Images FIGURE 1 FIGURE 2 PMID:9138579

  12. Identification of the dnaA and dnaN gene products of Escherichia coli.

    PubMed

    Yuasa, S; Sakakibara, Y

    1980-01-01

    A specialized transducing lambda phage carrying the dnaN genes of Escherichia coli specifies two proteins of about 41 and 48 kilodaltons (kd). The temperature-sensitive mutations, dnaN59 and dnaA167, were found to result in altered isoelectric points of the 41 and 48 kd proteins, respectively. Thus the dnaN gene product was identified as a weakly acidic 41 and 48 kd protein. The synthesis of the dnaN gene product is greatly reduced by insertion of a transposon Tn3 in the dnaA gene and by deletion in the gene at the distal end to the dnaN gene. Temperature-sensitive dnaA mutations, on the dnaN gene product. These results indicate that the synthesis of the dnaN gene product is dependent on the structural integrity of the dnaA gene.

  13. Structural analysis of the dnaA and dnaN genes of Escherichia coli.

    PubMed

    Ohmori, H; Kimura, M; Nagata, T; Sakakibara, Y

    1984-05-01

    The nucleotide sequence of the entire region containing the Escherichia coli dnaA and dnaN genes was determined. Base substitutions by such mutations as dnaA46, dnaA167, dnaN59, and dnaN806 were also identified. Analyses of coding frames, the mutational base substitutions, and other data indicate that dnaN follows dnaA, both have the same orientation, and are separated by only 4 bp. The deduced amino acid sequence specifies Mrs and isoelectric points consistent with those of the previously identified gene products. The transcriptional initiation site of the dnaA gene was assigned by analysis of in vitro RNA products. Examination of the intercistronic sequence and analysis of in vitro transcription supported the notion that the dnaA and dnaN genes constitute a single operon.

  14. DNA methylation profiling using bisulfite-based epityping of pooled genomic DNA.

    PubMed

    Docherty, Sophia J; Davis, Oliver S P; Haworth, Claire M A; Plomin, Robert; Mill, Jonathan

    2010-11-01

    DNA methylation plays a vital role in normal cellular function, with aberrant methylation signatures being implicated in a growing number of human pathologies and complex human traits. Methods based on the modification of genomic DNA with sodium bisulfite are considered the 'gold-standard' for DNA methylation profiling on genomic DNA; however they require large amounts of DNA and may be prohibitively expensive when used on the large sample sizes necessary to detect small effects. DNA pooling approaches are already widely used in large-scale studies of DNA sequence and gene expression. In this paper, we describe the application of this economical DNA pooling technique to the study of DNA methylation profiles. This method generates accurate quantitative assessments of group DNA methylation averages, reducing the time, cost and amount of DNA starting material required for large-scale epigenetic investigation of disease phenotypes.

  15. Impact of DNA Twist Accumulation on Progressive Helical Wrapping of Torsionally Constrained DNA

    NASA Astrophysics Data System (ADS)

    Li, Wei; Wang, Peng-Ye; Yan, Jie; Li, Ming

    2012-11-01

    DNA wrapping is an important mechanism for chromosomal DNA packaging in cells and viruses. Previous studies of DNA wrapping have been performed mostly on torsionally unconstrained DNA, while in vivo DNA is often under torsional constraint. In this study, we extend a previously proposed theoretical model for wrapping of torsionally unconstrained DNA to a new model including the contribution of DNA twist energy, which influences DNA wrapping drastically. In particular, due to accumulation of twist energy during DNA wrapping, it predicts a finite amount of DNA that can be wrapped on a helical spool. The predictions of the new model are tested by single-molecule study of DNA wrapping under torsional constraint using magnetic tweezers. The theoretical predictions and the experimental results are consistent with each other and their implications are discussed.

  16. Improved forensic DNA analysis through the use of alternative DNA polymerases and statistical modeling of DNA profiles.

    PubMed

    Hedman, Johannes; Nordgaard, Anders; Rasmusson, Birgitta; Ansell, Ricky; Rådström, Peter

    2009-11-01

    DNA evidence, linking perpetrators to crime scenes, is central to many legal proceedings. However, DNA samples from crime scenes often contain PCR-inhibitory substances, which may generate blank or incomplete DNA profiles. Extensive DNA purification can be required to rid the sample of these inhibitors, although these procedures increase the risk of DNA loss. Most forensic laboratories use commercial DNA amplification kits (e.g., AmpFlSTR SGM Plus) with the DNA polymerase AmpliTaq Gold as the gold standard. Here, we show that alternative DNA polymerase-buffer systems can improve the quality of forensic DNA analysis and efficiently circumvent PCR inhibition in crime scene samples, without additional sample preparation. DNA profiles from 20 of 32 totally or partially inhibited crime scene saliva samples were significantly improved using Bio-X-Act Short, ExTaq Hot Start, or PicoMaxx High Fidelity instead of AmpliTaq Gold. A statistical model for unbiased quality control of forensic DNA profiles was developed to quantify the results. Our study demonstrates the importance of adjusting the chemistry of the PCR to enhance forensic DNA analysis and diagnostic PCR, providing an alternative to laborious sample preparation protocols.

  17. Tetrahedron DNA dendrimers and their encapsulation of gold nanoparticles.

    PubMed

    Zhou, Tao; Wang, Yijie; Dong, Yuanchen; Chen, Chun; Liu, Dongsheng; Yang, Zhongqiang

    2014-08-15

    DNA dendrimers have achieved increasing attention recently. Previously reported DNA dendrimers used Y-DNA as monomers. Tetrahedron DNA is a rigid tetrahedral cage made of DNA. Herein, we use tetrahedron DNA as monomers to prepare tetrahedron DNA dendrimers. The prepared tetrahedron DNA dendrimers have larger size compared with those made of Y-DNA. In addition, thanks to the central cavity of tetrahedron DNA monomers, some nanoscale structures (e.g., gold nanoparticles) can be encapsulated within tetrahedron DNA monomers. Tetrahedron DNA encapsulated with gold nanoparticles can be further assembled into dendrimers, guiding gold nanoparticles into clusters.

  18. Discoordinate gene expression in the dnaA-dnaN operon of Escherichia coli.

    PubMed

    Quiñones, A; Messer, W

    1988-07-01

    The dnaN gene of Escherichia coli encodes the beta-subunit of the DNA polymerase III holoenzyme. Previous work has established that dnaN lies immediately downstream of dnaA and that both genes may be cotranscribed from the dnaA promoters; no promoter for dnaN has been described. We investigated the in vivo regulation of transcription of the dnaN gene by transcriptional fusions to the galK gene, translational fusion to the lacZ gene and S1 mapping analysis. We found that there are at least three dnaN promoters residing entirely in the reading frame of the preceding dnaA gene, and that transcription from these promoters can occur independently of dnaA transcription which, however, extends at least up to dnaN. Furthermore, we found evidence for the inducibility of the dnaN promoters in a dam background under conditions of simultaneously reduced dnaA transcription. These results are consistent with the hypothesis that although dnaA and dnaN are organized in an operon considerable discoordinate transcription can occur, thus uncoupling dnaN and dnaA regulation, when needed.

  19. DNA-PKcs and ATM Co-Regulate DNA Double-Strand Break Repair

    PubMed Central

    Shrivastav, Meena; Miller, Cheryl A.; De Haro, Leyma P.; Durant, Stephen T.; Chen, Benjamin P.C.; Chen, David J.; Nickoloff, Jac A.

    2009-01-01

    DNA double-strand breaks (DSBs) are repaired by nonhomologous end-joining (NHEJ) and homologous recombination (HR). The NHEJ/HR decision is under complex regulation and involves DNA-dependent protein kinase (DNA-PKcs). HR is elevated in DNA-PKcs null cells, but suppressed by DNA-PKcs kinase inhibitors, suggesting that kinase-inactive DNA-PKcs (DNA-PKcs-KR) would suppress HR. Here we use a direct repeat assay to monitor HR repair of DSBs induced by I-SceI nuclease. Surprisingly, DSB-induced HR in DNA-PKcs-KR cells was 2- to 3-fold above the elevated HR level of DNA-PKcs null cells, and ∼4- to 7-fold above cells expressing wild-type DNA-PKcs. The hyperrecombination in DNA-PKcs-KR cells compared to DNA-PKcs null cells was also apparent as increased resistance to DNA crosslinks induced by mitomycin C. ATM phosphorylates many HR proteins, and ATM is expressed at a low level in cells lacking DNA-PKcs, but restored to wild-type level in cells expressing DNA-PKcs-KR. Several clusters of phosphorylation sites in DNA-PKcs, including the T2609 cluster, which is phosphorylated by DNA-PKcs and ATM, regulate access of repair factors to broken ends. Our results indicate that ATM-dependent phosphorylation of DNA-PKcs-KR contributes to the hyperrecombination phenotype. Interestingly, DNA-PKcs null cells showed more persistent ionizing radiation-induced RAD51 foci (but lower HR levels) compared to DNA-PKcs-KR cells, consistent with HR completion requiring RAD51 turnover. ATM may promote RAD51 turnover, suggesting a second (not mutually exclusive) mechanism by which restored ATM contributes to hyperrecombination in DNA-PKcs-KR cells. We propose a model in which DNA-PKcs and ATM coordinately regulate DSB repair by NHEJ and HR. PMID:19535303

  20. Biotechnology and DNA vaccines for aquatic animals

    USGS Publications Warehouse

    Kurath, G.

    2008-01-01

    Biotechnology has been used extensively in the development of vaccines for aquaculture. Modern molecular methods such as polymerase chain reaction (PCR), cloning and microarray analysis have facilitated antigen discovery, construction of novel candidate vaccines, and assessments of vaccine efficacy, mode of action, and host response. This review focuses on DNA vaccines for finfish to illustrate biotechnology applications in this field. Although DNA vaccines for fish rhabdoviruses continue to show the highest efficacy, DNA vaccines for several other viral and bacterial fish pathogens have now been proven to provide significant protection against pathogen challenge. Studies of the fish rhabdovirus DNA vaccines have elucidated factors that affect DNA vaccine efficacy as well as the nature of the fish innate and adaptive immune responses to DNA vaccines. As tools for managing aquatic animal disease emergencies, DNA vaccines have advantages in speed, flexibility, and safety, and one fish DNA vaccine has been licensed.

  1. Mitochondrial DNA and Cancer Epidemiology Workshop

    Cancer.gov

    A workshop to review the state-of-the science in the mitochondrial DNA field and its use in cancer epidemiology, and to develop a concept for a research initiative on mitochondrial DNA and cancer epidemiology.

  2. Complex DNA nanostructures from oligonucleotide ensembles.

    PubMed

    Mathur, Divita; Henderson, Eric R

    2013-04-19

    The first synthetic DNA nanostructures were created by self-assembly of a small number of oligonucleotides. Introduction of the DNA origami method provided a new paradigm for designing and creating two- and three-dimensional DNA nanostructures by folding a large single-stranded DNA and 'stapling' it together with a library of oligonucleotides. Despite its power and wide-ranging implementation, the DNA origami technique suffers from some limitations. Foremost among these is the limited number of useful single-stranded scaffolds of biological origin. This report describes a new approach to creating large DNA nanostructures exclusively from synthetic oligonucleotides. The essence of this approach is to replace the single-stranded scaffold in DNA origami with a library of oligonucleotides termed "scaples" (scaffold staples). Scaples eliminate the need for scaffolds of biological origin and create new opportunities for producing larger and more diverse DNA nanostructures as well as simultaneous assembly of distinct structures in a "single-pot" reaction.

  3. DNA stability at temperatures typical for hyperthermophiles.

    PubMed Central

    Marguet, E; Forterre, P

    1994-01-01

    We have studied the fate of covalently-closed circular DNA in the temperature range from 95 to 107 degrees C. Supercoiled plasmid was not denatured up to the highest temperature tested. However, it was progressively transformed into open DNA by cleavage and then denatured. Thermodegradation was not dependent on the DNA supercoiling density. In particular, DNA made positively supercoiled by an archaeal reverse gyrase was not more resistant to depurination and thermodegradation than negatively supercoiled DNA. Thermodegradation was similar in aerobic or anaerobic conditions but strongly reduced in the presence of physiological concentrations of K+ or Mg2+. These results indicate that the major problem faced by covalently closed DNA in hyperthermophilic conditions is not thermodenaturation, but thermodegradation, and that intracellular salt concentration is important for stability of DNA primary structure. Our data suggest that reverse gyrase is not directly required to protect DNA against thermodegradation or thermodenaturation. Images PMID:8202372

  4. A DNA Fingerprint Simulation: Different, Simple, Effective.

    ERIC Educational Resources Information Center

    Reed, Eileen

    2001-01-01

    Discusses the impact of biotechnology (i.e., the use of DNA profiling in the courtroom) on today's society. Presents a hands-on activity for DNA profiling simulation that actively involves students. (YDS)

  5. Biotechnology and DNA vaccines for aquatic animals.

    PubMed

    Kurath, G

    2008-04-01

    Biotechnology has been used extensively in the development of vaccines for aquaculture. Modern molecular methods such as polymerase chain reaction (PCR), cloning and microarray analysis have facilitated antigen discovery, construction of novel candidate vaccines, and assessments of vaccine efficacy, mode of action, and host response. This review focuses on DNA vaccines for finfish to illustrate biotechnology applications in this field. Although DNA vaccines for fish rhabdoviruses continue to show the highest efficacy, DNA vaccines for several other viral and bacterial fish pathogens have now been proven to provide significant protection against pathogen challenge. Studies of the fish rhabdovirus DNA vaccines have elucidated factors that affect DNA vaccine efficacy as well as the nature of the fish innate and adaptive immune responses to DNA vaccines. As tools for managing aquatic animal disease emergencies, DNA vaccines have advantages in speed, flexibility, and safety, and one fish DNA vaccine has been licensed.

  6. The Value of DNA Sequencing - TCGA

    Cancer.gov

    DNA sequencing: what it tells us about DNA changes in cancer, how looking across many tumors will help to identify meaningful changes and potential drug targets, and how genomics is changing the way we think about cancer.

  7. Recombinant DNA: History of the Controversy.

    ERIC Educational Resources Information Center

    Vigue, Charles L.; Stanziale, William G.

    1979-01-01

    The hazards associated with recombinant DNA research are presented along with some social implications and the development of recombinant DNA research guidelines by the National Institutes of Health. (SA)

  8. Tunable and regenerative DNA zipper based spring

    NASA Astrophysics Data System (ADS)

    Landon, Preston; Mo, Alexander; Ramachandran, Srinivasan; Lal, Ratnesh

    2012-02-01

    We report a DNA zipper based actuator device termed `DNA- spring' with tunable and repeated cycles of extension and contraction ability. DNA zipper is a double-stranded DNA system engineered to open upon its specific interaction with appropriately designed single strand DNA (ssDNA), opening of the zipper is driven by binding energy differences between the DNA strands. The zipper system is incorporated with defined modifications to function like a spring, capable of delivering approximately 9 pN force over a distance of approximately 13 nm, producing approximately 116 kJ/mol of work. Time-lapse fluorescence and fluorescent DNA gel electrophoresis analysis is utilized to evaluate and confirm the spring action. A second zipper incorporated into the spring provides the ability to couple/decouple to an object/substrate. Such devices would have wide application, including for conditionally triggered molecular delivery systems and as actuators in nano-devices. zippers.

  9. Role of DNA profiling in forensic odontology

    PubMed Central

    Sakari, S. Leena; Jimson, Sudha; Masthan, K. M. K.; Jacobina, Jenita

    2015-01-01

    The recent advances in DNA profiling have made DNA evidence to be more widely accepted in courts. This has revolutionized the aspect of forensic odontology. DNA profiling/DNA fingerprinting has come a long way from the conventional fingerprints. DNA that is responsible for all the cell's activities, yields valuable information both in the healthy and diseased individuals. When other means of traditional identification become impossible following mass calamities or fire explosions, teeth provide a rich source of DNA as they have a high chemical as well as physical resistance. The recent evolution in the isolation of DNA and the ways of running a DNA fingerprint are highlighted in this literature review. PMID:26015692

  10. Cloning of Salmonella typhimurium DNA encoding mutagenic DNA repair

    SciTech Connect

    Thomas, S.M.; Sedgwick, S.G. )

    1989-11-01

    Mutagenic DNA repair in Escherichia coli is encoded by the umuDC operon. Salmonella typhimurium DNA which has homology with E. coli umuC and is able to complement E. coli umuC122::Tn5 and umuC36 mutations has been cloned. Complementation of umuD44 mutants and hybridization with E. coli umuD also occurred, but these activities were much weaker than with umuC. Restriction enzyme mapping indicated that the composition of the cloned fragment is different from the E. coli umuDC operon. Therefore, a umu-like function of S. typhimurium has been found; the phenotype of this function is weaker than that of its E. coli counterpart, which is consistent with the weak mutagenic response of S. typhimurium to UV compared with the response in E. coli.

  11. Elastic energy of protein-DNA chimeras

    NASA Astrophysics Data System (ADS)

    Tseng, Chiao-Yu; Wang, Andrew; Zocchi, Giovanni; Rolih, Biljana; Levine, Alex J.

    2009-12-01

    We present experimental measurements of the equilibrium elastic energy of protein-DNA chimeras, for two different sets of attachment points of the DNA “molecular spring” on the surface of the protein. Combining these with measurements of the enzyme’s activity under stress and a mechanical model of the system, we determine how the elastic energy is partitioned between the DNA and the protein. The analysis shows that the protein is mechanically stiffer than the DNA spring.

  12. Fractal landscape analysis of DNA walks

    NASA Technical Reports Server (NTRS)

    Peng, C. K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H. E.

    1992-01-01

    By mapping nucleotide sequences onto a "DNA walk", we uncovered remarkably long-range power law correlations [Nature 356 (1992) 168] that imply a new scale invariant property of DNA. We found such long-range correlations in intron-containing genes and in non-transcribed regulatory DNA sequences, but not in cDNA sequences or intron-less genes. In this paper, we present more explicit evidences to support our findings.

  13. Sphingolipids in the DNA Damage Response

    PubMed Central

    Carroll, Brittany; Donaldson, Cat; Obeid, Lina

    2014-01-01

    Recently, sphingolipid metabolizing enzymes have emerged as important targets of many chemotherapeutics and DNA damaging agents and therefore play significant roles in mediating the physiological response of the cell to DNA damage. In this review we will highlight points of connection between the DNA damage response (DDR) and sphingolipid metabolism; specifically how certain sphingolipid enzymes are regulated in response to DNA damage and how the bioactive lipids produced by these enzymes affect cell fate. PMID:25434743

  14. Role of Deubiquitinating Enzymes in DNA Repair

    PubMed Central

    2015-01-01

    Both proteolytic and nonproteolytic functions of ubiquitination are essential regulatory mechanisms for promoting DNA repair and the DNA damage response in mammalian cells. Deubiquitinating enzymes (DUBs) have emerged as key players in the maintenance of genome stability. In this minireview, we discuss the recent findings on human DUBs that participate in genome maintenance, with a focus on the role of DUBs in the modulation of DNA repair and DNA damage signaling. PMID:26644404

  15. B-DNA to Z-DNA structural transitions in the SV40 enhancer: stabilization of Z-DNA in negatively supercoiled DNA minicircles

    NASA Technical Reports Server (NTRS)

    Gruskin, E. A.; Rich, A.

    1993-01-01

    During replication and transcription, the SV40 control region is subjected to significant levels of DNA unwinding. There are three, alternating purine-pyrimidine tracts within this region that can adopt the Z-DNA conformation in response to negative superhelix density: a single copy of ACACACAT and two copies of ATGCATGC. Since the control region is essential for both efficient transcription and replication, B-DNA to Z-DNA transitions in these vital sequence tracts may have significant biological consequences. We have synthesized DNA minicircles to detect B-DNA to Z-DNA transitions in the SV40 enhancer, and to determine the negative superhelix density required to stabilize the Z-DNA. A variety of DNA sequences, including the entire SV40 enhancer and the two segments of the enhancer with alternating purine-pyrimidine tracts, were incorporated into topologically relaxed minicircles. Negative supercoils were generated, and the resulting topoisomers were resolved by electrophoresis. Using an anti-Z-DNA Fab and an electrophoretic mobility shift assay, Z-DNA was detected in the enhancer-containing minicircles at a superhelix density of -0.05. Fab saturation binding experiments demonstrated that three, independent Z-DNA tracts were stabilized in the supercoiled minicircles. Two other minicircles, each with one of the two alternating purine-pyrimidine tracts, also contained single Z-DNA sites. These results confirm the identities of the Z-DNA-forming sequences within the control region. Moreover, the B-DNA to Z-DNA transitions were detected at superhelix densities observed during normal replication and transcription processes in the SV40 life cycle.

  16. Amplification of chromosomal DNA in situ

    DOEpatents

    Christian, Allen T.; Coleman, Matthew A.; Tucker, James D.

    2002-01-01

    Amplification of chromosomal DNA in situ to increase the amount of DNA associated with a chromosome or chromosome region is described. The amplification of chromosomal DNA in situ provides for the synthesis of Fluorescence in situ Hybridization (FISH) painting probes from single dissected chromosome fragments, the production of cDNA libraries from low copy mRNAs and improved in Comparative Genomic Hybridization (CGH) procedures.

  17. Mechanisms for radiation damadge in DNA

    SciTech Connect

    Sevilla, M.D.

    1994-11-01

    A comprehensive report is provided of the author`s research since 1986 on radiolysis of DNA as well as current state of knowledge in this area. In particular study areas such as the influence of hydration on the absolute yield of primary ionic free radicals in irradiated DNA at 77K, Ab Initio molecular orbital calculations of DNA base pairs and their radical ions, and radiation-induced DNA damage as a function of hydration are discussed.

  18. Fractal landscape analysis of DNA walks

    NASA Astrophysics Data System (ADS)

    Peng, C.-K.; Buldyrev, S. V.; Goldberger, A. L.; Havlin, S.; Sciortino, F.; Simons, M.; Stanley, H. E.

    1992-12-01

    By mapping nucleotide sequences onto a “DNA walk”, we uncovered remarkably long-range power law correlations [Nature 356 (1992) 168] that simply a new scale invariant property of DNA. We found such long-range correlations in intron-containing genes and in non-transcribed regulatory DNA sequences, but not in cDNA sequences or intron-less genes. In this paper, we present more explicit evidences to support our findings.

  19. Imaging DNA Structure by Atomic Force Microscopy.

    PubMed

    Pyne, Alice L B; Hoogenboom, Bart W

    2016-01-01

    Atomic force microscopy (AFM) is a microscopy technique that uses a sharp probe to trace a sample surface at nanometre resolution. For biological applications, one of its key advantages is its ability to visualize substructure of single molecules and molecular complexes in an aqueous environment. Here, we describe the application of AFM to determine superstructure and secondary structure of surface-bound DNA. The method is also readily applicable to probe DNA-DNA interactions and DNA-protein complexes.

  20. Hairpins under tension: RNA versus DNA

    PubMed Central

    Bercy, Mathilde; Bockelmann, Ulrich

    2015-01-01

    We use optical tweezers to control the folding and unfolding of individual DNA and RNA hairpins by force. Four hairpin molecules are studied in comparison: two DNA and two RNA ones. We observe that the conformational dynamics is slower for the RNA hairpins than for their DNA counterparts. Our results indicate that structures made of RNA are dynamically more stable. This difference might contribute to the fact that DNA and RNA play fundamentally different biological roles in spite of chemical similarity. PMID:26323319

  1. Binary electrokinetic separation of target DNA from background DNA primers.

    SciTech Connect

    James, Conrad D.; Derzon, Mark Steven

    2005-10-01

    This report contains the summary of LDRD project 91312, titled ''Binary Electrokinetic Separation of Target DNA from Background DNA Primers''. This work is the first product of a collaboration with Columbia University and the Northeast BioDefense Center of Excellence. In conjunction with Ian Lipkin's lab, we are developing a technique to reduce false positive events, due to the detection of unhybridized reporter molecules, in a sensitive and multiplexed detection scheme for nucleic acids developed by the Lipkin lab. This is the most significant problem in the operation of their capability. As they are developing the tools for rapidly detecting the entire panel of hemorrhagic fevers this technology will immediately serve an important national need. The goal of this work was to attempt to separate nucleic acid from a preprocessed sample. We demonstrated the preconcentration of kilobase-pair length double-stranded DNA targets, and observed little preconcentration of 60 base-pair length single-stranded DNA probes. These objectives were accomplished in microdevice formats that are compatible with larger detection systems for sample pre-processing. Combined with Columbia's expertise, this technology would enable a unique, fast, and potentially compact method for detecting/identifying genetically-modified organisms and multiplexed rapid nucleic acid identification. Another competing approach is the DARPA funded IRIS Pharmaceutical TIGER platform which requires many hours for operation, and an 800k$ piece of equipment that fills a room. The Columbia/SNL system could provide a result in 30 minutes, at the cost of a few thousand dollars for the platform, and would be the size of a shoebox or smaller.

  2. Superimposed Code Theorectic Analysis of DNA Codes and DNA Computing

    DTIC Science & Technology

    2010-03-01

    that the hybridization that occurs between a DNA strand and its Watson - Crick complement can be used to perform mathematical computation. This research... Watson - Crick (WC) duplex, e.g., TCGCA TCGCA . Note that non-WC duplexes can form and such a formation is called a cross-hybridization. Cross...5’GAAAGTCGCGTA3’ Watson Crick (WC) Duplexes TACGCGACTTTC Cross Hybridized (CH) Duplexes ATTTTTGCGTTA GAAAAAGAAGAA Coding Strands for Ligation

  3. DNA Ligase III is critical for mtDNA integrity but not Xrcc1-mediated nuclear DNA repair

    PubMed Central

    Gao, Yankun; Katyal, Sachin; Lee, Youngsoo; Zhao, Jingfeng; Rehg, Jerold E.; Russell, Helen R.; McKinnon, Peter J.

    2011-01-01

    DNA replication and repair in mammalian cells involves three distinct DNA ligases; ligase I (Lig1), ligase III (Lig3) and ligase IV (Lig4)1. Lig3 is considered a key ligase during base excision repair because its stability depends upon its nuclear binding partner Xrcc1, a critical factor for this DNA repair pathway2,3. Lig3 is also present in the mitochondria where its role in mitochondrial DNA (mtDNA) maintenance is independent of Xrcc14. However, the biological role of Lig3 is unclear as inactivation of murine Lig3 results in early embryonic lethality5. Here we report that Lig3 is essential for mtDNA integrity but dispensable for nuclear DNA repair. Inactivation of Lig3 in the mouse nervous system resulted in mtDNA loss leading to profound mitochondrial dysfunction, disruption of cellular homeostasis and incapacitating ataxia. Similarly, inactivation of Lig3 in cardiac muscle resulted in mitochondrial dysfunction and defective heart pump function leading to heart failure. However, Lig3 inactivation did not result in nuclear DNA repair deficiency, indicating essential DNA repair functions of Xrcc1 can occur in the absence of Lig3. Instead, we found that Lig1 was critical for DNA repair, but in a cooperative manner with Lig3. Additionally, Lig3 deficiency did not recapitulate the hallmark features of neural Xrcc1 inactivation such as DNA damage-induced cerebellar interneuron loss6, further underscoring functional separation of these DNA repair factors. Therefore, our data reveal that the critical biological role of Lig3 is to maintain mtDNA integrity and not Xrcc1-dependent DNA repair. PMID:21390131

  4. Interplay between DNA supercoiling and transcription elongation.

    PubMed

    Ma, Jie; Wang, Michelle

    2014-01-01

    Transcription-coupled DNA supercoiling has been shown to be an important regulator of transcription that is broadly present in the cell. Here we review experimental work which shows that RNA polymerase is a powerful torsional motor that can alter DNA topology and structure, and DNA supercoiling in turn directly affects transcription elongation.

  5. Visualization of large elongated DNA molecules.

    PubMed

    Lee, Jinyong; Kim, Yongkyun; Lee, Seonghyun; Jo, Kyubong

    2015-09-01

    Long and linear DNA molecules are the mainstream single-molecule analytes for a variety of biochemical analysis within microfluidic devices, including functionalized surfaces and nanostructures. However, for biochemical analysis, large DNA molecules have to be unraveled, elongated, and visualized to obtain biochemical and genomic information. To date, elongated DNA molecules have been exploited in the development of a number of genome analysis systems as well as for the study of polymer physics due to the advantage of direct visualization of single DNA molecule. Moreover, each single DNA molecule provides individual information, which makes it useful for stochastic event analysis. Therefore, numerous studies of enzymatic random motions have been performed on a large elongated DNA molecule. In this review, we introduce mechanisms to elongate DNA molecules using microfluidics and nanostructures in the beginning. Secondly, we discuss how elongated DNA molecules have been utilized to obtain biochemical and genomic information by direct visualization of DNA molecules. Finally, we reviewed the approaches used to study the interaction of proteins and large DNA molecules. Although DNA-protein interactions have been investigated for many decades, it is noticeable that there have been significant achievements for the last five years. Therefore, we focus mainly on recent developments for monitoring enzymatic activity on large elongated DNA molecules.

  6. DNA Barcoding in Fragaria L. (Strawberry) Species

    Technology Transfer Automated Retrieval System (TEKTRAN)

    DNA barcoding for species identification using a short DNA sequence has been successful in animals due to rapid mutation rates of the mitochondrial genome where the animal DNA barocode, cytochrome c oxidase 1 gene is located. The chloroplast PsbA-trnH spacer and the nuclear ribosomal internal transc...

  7. Probe and method for DNA detection

    DOEpatents

    Yeh, Hsin-Chih; Werner, James Henry; Sharma, Jaswinder Kumar; Martinez, Jennifer Suzanne

    2013-07-02

    A hybridization probe containing two linear strands of DNA lights up upon hybridization to a target DNA using silver nanoclusters that have been templated onto one of the DNA strands. Hybridization induces proximity between the nanoclusters on one strand and an overhang on the other strand, which results in enhanced fluorescence emission from the nanoclusters.

  8. Antibody specific for a DNA repair protein

    DOEpatents

    Petrini, John H.; Morgan, William Francis; Maser, Richard Scott; Carney, James Patrick

    2006-07-11

    An isolated and purified DNA molecule encoding a DNA repair protein, p95, is provided, as is isolated and purified p95. Also provided are methods of detecting p95 and DNA encoding p95. The invention further provides p95 knock-out mice.

  9. Conductance of Dry DNA: Role of Environment

    NASA Technical Reports Server (NTRS)

    Anantram, M. P.; Adessi, Ch.; S. Walch

    2003-01-01

    This paper presents viewgraphs on the conductance of dry DNA and its effect on the surrounding environment. The topics include: 1) Approach; 2) Influence of Counter Ions; 3) Conductance Versus DNA Length; 4) Intrinsic Resonant Tunneling in Engineered DNA Sequence; and 5) Transmission Versus Energy.

  10. Identification of acquired DNA in Neisseria lactamica.

    PubMed

    van Passel, Mark W J; Bart, Aldert; Luyf, Angela C M; van Kampen, Antoine H C; van der Ende, Arie

    2006-09-01

    Anomalous DNA (aDNA) in prokaryotic genomes, identified by its aberrant nucleotide composition, generally represents horizontally acquired DNA. Previous studies showed that frequent DNA transfer occurs between commensal Neisseriae and Neisseria meningitidis. Currently, it is unknown whether aDNA regions are also transferred between these species. The genome of Neisseria lactamica strain 892586 was assessed by a strategy that enables the selective isolation of aDNA, using endonucleases with recognition sites that are overrepresented in aDNA. Of eight regions with aDNA, five displayed similarity to virulence-associated meningococcal sequences. Of three aDNA fragments with limited or no similarity to neisserial sequences, one encodes a novel putative autotransporter/adhesin. The remaining two fragments are adjacent in the N. lactamica genome, and encode a novel putative ATPase/subtilisin-like protease operon. A similar operon is present in the genomes of different respiratory tract pathogens. The identification of aDNA from N. lactamica with similarity to meningococcal aDNA shows that genetic exchange between the Neisseriae is not limited to the neisserial core genome. The discovery of aDNA in N. lactamica similar to a locus in other pathogens substantially expands the neisserial gene pool.

  11. Microarrays Made Simple: "DNA Chips" Paper Activity

    ERIC Educational Resources Information Center

    Barnard, Betsy

    2006-01-01

    DNA microarray technology is revolutionizing biological science. DNA microarrays (also called DNA chips) allow simultaneous screening of many genes for changes in expression between different cells. Now researchers can obtain information about genes in days or weeks that used to take months or years. The paper activity described in this article…

  12. Types and Consequences of DNA Damage

    EPA Science Inventory

    This review provides a concise overview of the types of DNA damage and the molecular mechanisms by which a cell senses DNA damage, repairs the damage, converts the damage into a mutation, or dies as a consequence of unrepaired DNA damage. Such information is important in consid...

  13. Theory and Application of DNA Histogram Analysis.

    ERIC Educational Resources Information Center

    Bagwell, Charles Bruce

    The underlying principles and assumptions associated with DNA histograms are discussed along with the characteristics of fluorescent probes. Information theory was described and used to calculate the information content of a DNA histogram. Two major types of DNA histogram analyses are proposed: parametric and nonparametric analysis. Three levels…

  14. A nonlinear model for DNA dynamics

    SciTech Connect

    Muto, V.; Scott, A.C.; Christiansen, P.L.

    1989-07-01

    In this paper the thermal equilibrium number of solitons in DNA as a function of absolute temperature and the number of base pairs is calculated. These calculations are effected by modeling DNA as a Toda lattice with parameters chosen to match experimentally measured properties of DNA. It is found that a significant number of solitons is generated at physiological temperature. 23 refs., 2 figs.

  15. Concepts in Biochemistry: Chemical Synthesis of DNA.

    ERIC Educational Resources Information Center

    Caruthers, Marvin H.

    1989-01-01

    Outlines the chemistry of the rapid synthesis of relatively large DNA fragments (100-200 monomers each) with yields exceeding 99 percent per coupling. DNA synthesis methodologies are outlined and a polymer-supported synthesis of DNA using deoxynucleoside phosphoramidites is described with structural formulas. (YP)

  16. Quantitative DNA Methylation Profiling in Cancer.

    PubMed

    Ammerpohl, Ole; Haake, Andrea; Kolarova, Julia; Siebert, Reiner

    2016-01-01

    Epigenetic mechanisms including DNA methylation are fundamental for the regulation of gene expression. Epigenetic alterations can lead to the development and the evolution of malignant tumors as well as the emergence of phenotypically different cancer cells or metastasis from one single tumor cell. Here we describe bisulfite pyrosequencing, a technology to perform quantitative DNA methylation analyses, to detect aberrant DNA methylation in malignant tumors.

  17. Rational design of human DNA ligase inhibitors that target cellular DNA replication and repair.

    PubMed

    Chen, Xi; Zhong, Shijun; Zhu, Xiao; Dziegielewska, Barbara; Ellenberger, Tom; Wilson, Gerald M; MacKerell, Alexander D; Tomkinson, Alan E

    2008-05-01

    Based on the crystal structure of human DNA ligase I complexed with nicked DNA, computer-aided drug design was used to identify compounds in a database of 1.5 million commercially available low molecular weight chemicals that were predicted to bind to a DNA-binding pocket within the DNA-binding domain of DNA ligase I, thereby inhibiting DNA joining. Ten of 192 candidates specifically inhibited purified human DNA ligase I. Notably, a subset of these compounds was also active against the other human DNA ligases. Three compounds that differed in their specificity for the three human DNA ligases were analyzed further. L82 inhibited DNA ligase I, L67 inhibited DNA ligases I and III, and L189 inhibited DNA ligases I, III, and IV in DNA joining assays with purified proteins and in cell extract assays of DNA replication, base excision repair, and nonhomologous end-joining. L67 and L189 are simple competitive inhibitors with respect to nicked DNA, whereas L82 is an uncompetitive inhibitor that stabilized complex formation between DNA ligase I and nicked DNA. In cell culture assays, L82 was cytostatic whereas L67 and L189 were cytotoxic. Concordant with their ability to inhibit DNA repair in vitro, subtoxic concentrations of L67 and L189 significantly increased the cytotoxicity of DNA-damaging agents. Interestingly, the ligase inhibitors specifically sensitized cancer cells to DNA damage. Thus, these novel human DNA ligase inhibitors will not only provide insights into the cellular function of these enzymes but also serve as lead compounds for the development of anticancer agents.

  18. Hydrodynamic properties of DNA and DNA-lipid complex in an elongational flow field.

    PubMed

    Sasaki, Naoki; Ashitaka, Hidetomo; Ohtomo, Kenji; Fukui, Akimasa

    2007-03-10

    The aim of this study was to determine the difference between hydrodynamic properties of DNA-cetyltrimethylammonium (CTA) complex and those of DNA, which may be related to the difference in fibre-forming ability of DNA-CTA from that of DNA. Responses of DNA and DNA-CTA complex to an elongational flow field were investigated. In both solution systems, results suggesting a coil-stretch transition were obtained. From a critical strain rate value, the radius of gyration of DNA-CTA molecules in ethanol-glycerol solution was revealed to be 0.3-0.5 times of that of DNA in aqueous NaCl solution. Shear viscosity of DNA-CTA solution was much smaller than that of DNA solution, also suggesting a smaller size of DNA-CTA in ethanol-glycerol solution than that of DNA in aqueous NaCl solution. The plateau birefringence value of the DNA-CTA system, a parameter that indicates the local molecular conformation and the molecular arrangement, was only about 1/10 of that of the DNA system. There is an empirically determined molecular model of DNA-CTA complex in which a DNA molecule is sheathed by a cylindrical crust made of CTA chains. This structure reduces the DNA molecular density in a pure elongational flow field region but cannot explain the observed reduction of birefringence intensity. The small plateau birefringence value of DNA-CTA compared with that of DNA was attributed to the reduced molecular polarizability by the particular conformation of DNA molecules and CTA chains in the DNA-CTA system such as that expected by the conformational models.

  19. Programmable Self-Assembly of DNA-Dendrimer and DNA-Fullerene Nanostructures

    DTIC Science & Technology

    2004-10-01

    OF PHOTO-REACTIVE PSORALEN -CONTAINING DENDRIMERS .........................................33 4.4. DNA-DENDRIMERS AND DNA-DENDRON CONJUGATES ON... Psoralen -Containing Dendrimers We report the synthesis and characterization of photo-reactive psoralen -containing dendrimers in order to develop...a novel labeling method for the detection of DNA. Psoralens are unique in their ability to detect hybridized DNA: planar psoralen molecules

  20. Macrocyclic Metal Complex-DNA Conjugates for Electrochemical Sensing of Single Nucleobase Changes in DNA.

    PubMed

    Duprey, Jean-Louis H A; Carr-Smith, James; Horswell, Sarah L; Kowalski, Jarosław; Tucker, James H R

    2016-01-27

    The direct incorporation of macrocyclic cyclidene complexes into DNA via automated synthesis results in a new family of metal-functionalized DNA derivatives that readily demonstrate their utility through the ability of one redox-active copper(II)-containing strand to distinguish electrochemically between all four canonical DNA nucleobases at a single site within a target sequence of DNA.