Science.gov

Sample records for irrigation requirement estimation

  1. Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling

    NASA Technical Reports Server (NTRS)

    Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon

    2010-01-01

    We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.

  2. Stochastic physical ecohydrologic-based model for estimating irrigation requirement

    NASA Astrophysics Data System (ADS)

    Alizadeh, H.; Mousavi, S. J.

    2012-04-01

    Climate uncertainty affects both natural and managed hydrological systems. Therefore, methods which could take this kind of uncertainty into account are of primal importance for management of ecosystems, especially agricultural ecosystems. One of the famous problems in these ecosystems is crop water requirement estimation under climatic uncertainty. Both deterministic physically-based methods and stochastic time series modeling have been utilized in the literature. Like other fields of hydroclimatic sciences, there is a vast area in irrigation process modeling for developing approaches integrating physics of the process and statistics aspects. This study is about deriving closed-form expressions for probability density function (p.d.f.) of irrigation water requirement using a stochastic physically-based model, which considers important aspects of plant, soil, atmosphere and irrigation technique and policy in a coherent framework. An ecohydrologic stochastic model, building upon the stochastic differential equation of soil moisture dynamics at root zone, is employed as a basis for deriving the expressions considering temporal stochasticity of rainfall. Due to distinguished nature of stochastic processes of micro and traditional irrigation applications, two different methodologies have been used. Micro-irrigation application has been modeled through dichotomic process. Chapman-Kolomogrov equation of time integral of the dichotomic process for transient condition has been solved to derive analytical expressions for probability density function of seasonal irrigation requirement. For traditional irrigation, irrigation application during growing season has been modeled using a marked point process. Using the renewal theory, probability mass function of seasonal irrigation requirement, which is a discrete-value quantity, has been analytically derived. The methodology deals with estimation of statistical properties of the total water requirement in a growing season that

  3. Estimating Irrigation Water Requirements using MODIS Vegetation Indices and Inverse Biophysical Modeling

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Bounoua, Lahouari; Harriss, Robert; Harriss, Robert; Wells, Gordon; Glantz, Michael; Dukhovny, Victor A.; Orlovsky, Leah

    2007-01-01

    An inverse process approach using satellite-driven (MODIS) biophysical modeling was used to quantitatively assess water resource demand in semi-arid and arid agricultural lands by comparing the carbon and water flux modeled under both equilibrium (in balance with prevailing climate) and non-equilibrium (irrigated) conditions. Since satellite observations of irrigated areas show higher leaf area indices (LAI) than is supportable by local precipitation, we postulate that the degree to which irrigated lands vary from equilibrium conditions is related to the amount of irrigation water used. For an observation year we used MODIS vegetation indices, local climate data, and the SiB2 photosynthesis-conductance model to examine the relationship between climate and the water stress function for a given grid-cell and observed leaf area. To estimate the minimum amount of supplemental water required for an observed cell, we added enough precipitation to the prevailing climatology at each time step to minimize the water stress function and bring the soil to field capacity. The experiment was conducted on irrigated lands on the U.S. Mexico border and Central Asia and compared to estimates of irrigation water used.

  4. [Estimation model for water requirement of greenhouse tomato under drip irrigation].

    PubMed

    Liu, Hao; Sun, Jing-Sheng; Liang, Yuan-Yuan; Wang, Cong-Cong; Duan, Ai-Wang

    2011-05-01

    Based on the modified Penman-Monteith equation, and through the analysis of the relationships between crop coefficient and cumulative temperature, a new model for estimating the water requirement of greenhouse tomato under drip irrigation was built. The model was validated with the measured data of plant transpiration and soil evaporation in May 2-13 (flowering-fruit-developing stage) and June 9-20 (fruit-maturing stage) , 2009. This model was suitable for the estimation of reference evapotranspiration (ET(0)) in greenhouse. The crop coefficient of greenhouse tomato was correlated as a quadratic function of cumulative temperature. The mean relative error between measured and estimated values was less than 10%, being able to estimate the water requirement of greenhouse tomato under drip irrigation.

  5. SEBAL Model Using to Estimate Irrigation Water Efficiency & Water Requirement of Alfalfa Crop

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2013-04-01

    The sustainability of irrigation is a complex and comprehensive undertaking, requiring an attention to much more than hydraulics, chemistry, and agronomy. A special combination of human, environmental, and economic factors exists in each irrigated region and must be recognized and evaluated. A way to evaluate the efficiency of irrigation water use for crop production is to consider the so-called crop-water production functions, which express the relation between the yield of a crop and the quantity of water applied to it or consumed by it. The term has been used in a somewhat ambiguous way. Some authors have defined the Crop-Water Production Functions between yield and the total amount of water applied, whereas others have defined it as a relation between yield and seasonal evapotranspiration (ET). In case of high efficiency of irrigation water use the volume of water applied is less than the potential evapotranspiration (PET), then - assuming no significant change of soil moisture storage from beginning of the growing season to its end-the volume of water may be roughly equal to ET. In other case of low efficiency of irrigation water use the volume of water applied exceeds PET, then the excess of volume of water applied over PET must go to either augmenting soil moisture storage (end-of-season moisture being greater than start-of-season soil moisture) or to runoff or/and deep percolation beyond the root zone. In presented contribution some results of a case study of estimation of biomass and leaf area index (LAI) for irrigated alfalfa by SEBAL algorithm will be discussed. The field study was conducted with aim to compare ground biomass of alfalfa at some irrigated fields (provided by agricultural farm) at Saratov and Volgograd Regions of Russia. The study was conducted during vegetation period of 2012 from April till September. All the operations from importing the data to calculation of the output data were carried by eLEAF company and uploaded in Fieldlook web

  6. Reduction of predictive uncertainty in estimating irrigation water requirement through multi-model ensembles and ensemble averaging

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Exbrayat, J.-F.; Kirby, M.; Viney, N. R.; Frede, H.-G.; Breuer, L.

    2014-11-01

    Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural vs. model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty is far more important than model parametric uncertainty to estimate irrigation water requirement. Using the Reliability Ensemble Averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.

  7. Reduction of predictive uncertainty in estimating irrigation water requirement through multi-model ensembles and ensemble averaging

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Exbrayat, J.-F.; Kirby, M.; Viney, N. R.; Frede, H.-G.; Breuer, L.

    2015-04-01

    Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural versus model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty among reference ET is far more important than model parametric uncertainty introduced by crop coefficients. These crop coefficients are used to estimate irrigation water requirement following the single crop coefficient approach. Using the reliability ensemble averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.

  8. Irrigation Requirement Estimation using MODIS Vegetation Indices and Inverse Biophysical Modeling; A Case Study for Oran, Algeria

    NASA Technical Reports Server (NTRS)

    Bounoua, L.; Imhoff, M.L.; Franks, S.

    2008-01-01

    the study site, for the month of July, spray irrigation resulted in an irrigation amount of about 1.4 mm per occurrence with an average frequency of occurrence of 24.6 hours. The simulated total monthly irrigation for July was 34.85 mm. In contrast, the drip irrigation resulted in less frequent irrigation events with an average water requirement about 57% less than that simulated during the spray irrigation case. The efficiency of the drip irrigation method rests on its reduction of the canopy interception loss compared to the spray irrigation method. When compared to a country-wide average estimate of irrigation water use, our numbers are quite low. We would have to revise the reported country level estimates downward to 17% or less

  9. Estimation of irrigation requirement for wheat in the southern Spain by using a soil water balance remote sensing driven

    NASA Astrophysics Data System (ADS)

    González, Laura; Bodas, Vicente; Espósito, Gabriel; Campos, Isidro; Aliaga, Jerónimo; Calera, Alfonso

    2013-04-01

    This paper aims to evaluate the use of a remote sensing-driven soil water balance to estimate irrigation water requirements of wheat. The applied methodology is based on the approach of the dual crop coefficient proposed in the FAO-56 manual (Allen et al., 1998), where the basal crop coefficient is derived from a time series of remote sensing multispectral imagery which describes the growing cycle of wheat. This approach allows the estimation of the evapotranspiration (ET) and irrigation water requirements by means of a soil water balance in the root layer. The assimilation of satellite data into the FAO-56 soil water balance is based on the relationship between spectral vegetation indices (VI) and the transpiration coefficient (Campos et al., 2010; Sánchez et al., 2010). Two approaches to plant transpiration estimation were analyzed, the basal crop coefficient methodology and the transpiration coefficient approach described in the FAO-56 (Allen et al., 1998) and FAO-66 (Steduto et al., 2012) manuals respectively. The model is computed at daily time step and the results analyzed in this work are the net irrigation water requirements and water stress estimates. Analysis of results has been done by comparison with irrigation data (irrigation dates and volume applied) provided by farmers in 28 plots of wheat for the period 2004-2012 in the Spanish region of La Mancha, southern Spain, under different meteorological conditions. Total irrigation dose during the growing season varies from 200 mm to 700 mm. In some of plots soil moisture sensors data are available, which allowed the comparison with modeled soil moisture. Net irrigation water requirements estimated by the proposed model shows a good agreement with data, having in account the efficiency of the different irrigation systems. Despite the irrigation doses are generally greater than irrigation water requirements, the crops could suffer water stress periods during the campaign, because real irrigation timing and

  10. A synergistic approach using optical and SAR data to estimate crop's irrigation requirements

    NASA Astrophysics Data System (ADS)

    Rolim, João.; Navarro Ferreira, Ana; Saraiva, Cátia; Catalão, João.

    2016-10-01

    A study conducted in the scope of the Alcantara initiative in Angola shown that optical and SAR images allows the estimation of crop's irrigation requirements (CIR) based on a soil water balance model (IrrigRotation). The methodology was applied to east central Portugal, to evaluate its transferability in cases of different climatic conditions and crop types. SPOT-5 Take-5 and Sentinel-1A data from April to September 2015 are used to generate NDVI and backscattering maize crop time series. Both time series are then correlated and a linear regression equation is computed for some maize parcels identified in the test area. Next, basal crop coefficients (Kcb) are determined empirically from the Kcb-NDVI relationships applied within the PLEIADeS project and also from the Kcb-SAR relationships retrieved from the linear fit of both EO data for other maize parcels. These Kcb allow to overcome a major drawback related to the use of the FAO tabulated Kcb, only available for the initial, mid and late season of a certain crop type. More frequent Kcb values also allow a better identification of the crop's phenological stages lengths. CIR estimated from EO data are comparable to the ones obtained with tabulated FAO 56 Kcb values for crops produced under standard conditions, while for crops produced in suboptimal conditions, EO data allow to improve the estimation of the CIR. Although CIR results are promising, further research is required in order to improve the Kcb initial and Kcb end values to avoid the overestimation of the CIR.

  11. WATER REQUIREMENT OF IRRIGATED GARLIC

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A replicated field trial was conducted on the West side of the San Joaquin Valley to determine the crop coefficient and water requirements of irrigated garlic. Irrigation systems used included flood irrigation, subsurface drip irrigation, and surface drip irrigation. Irrigation levels were set at 5...

  12. Water Requirements Of Irrigated Garlic

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A replicated field trial was conducted on the West side of the San Joaquin Valley to determine the crop coefficient and water requirements of irrigated garlic. Irrigation systems used included flood irrigation, subsurface drip irrigation, and surface drip irrigation. Irrigation levels were set at 5...

  13. Energy requirements in pressure irrigation systems

    NASA Astrophysics Data System (ADS)

    Sánchez, R.; Rodríguez-Sinobas, L.; Juana, L.; Laguna, F. V.; Castañón, G.; Gil, M.; Benítez, J.

    2012-04-01

    Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure -sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems and their management possibilities. The work includes all processes involved from the diversion of water into irrigation specific infrastructure to water discharge by the emitters installed on the crop fields. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. It has been applied to extensive and intensive crop systems, such us extensive winter crops, summer crops and olive trees, fruit trees and vineyards and intensive horticulture in greenhouses. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity.

  14. A site-specific agricultural water requirement and footprint estimator (SPARE:WATER 1.0) for irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-01-01

    The water footprint accounting method addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). Most of current water footprint assessments focus on global to continental scale. We therefore developed the spatial decision support system SPARE:WATER that allows to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirement and water footprints are assessed on a grid-basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume in-efficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water can be defined as the water to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008 with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional water footprint assessments.

  15. Estimating Temperature Retrieval Accuracy Associated With Thermal Band Spatial Resolution Requirements for Center Pivot Irrigation Monitoring and Management

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Irons, James; Spruce, Joseph P.; Underwood, Lauren W.; Pagnutti, Mary

    2006-01-01

    This study explores the use of synthetic thermal center pivot irrigation scenes to estimate temperature retrieval accuracy for thermal remote sensed data, such as data acquired from current and proposed Landsat-like thermal systems. Center pivot irrigation is a common practice in the western United States and in other parts of the world where water resources are scarce. Wide-area ET (evapotranspiration) estimates and reliable water management decisions depend on accurate temperature information retrieval from remotely sensed data. Spatial resolution, sensor noise, and the temperature step between a field and its surrounding area impose limits on the ability to retrieve temperature information. Spatial resolution is an interrelationship between GSD (ground sample distance) and a measure of image sharpness, such as edge response or edge slope. Edge response and edge slope are intuitive, and direct measures of spatial resolution are easier to visualize and estimate than the more common Modulation Transfer Function or Point Spread Function. For these reasons, recent data specifications, such as those for the LDCM (Landsat Data Continuity Mission), have used GSD and edge response to specify spatial resolution. For this study, we have defined a 400-800 m diameter center pivot irrigation area with a large 25 K temperature step associated with a 300 K well-watered field surrounded by an infinite 325 K dry area. In this context, we defined the benchmark problem as an easily modeled, highly common stressing case. By parametrically varying GSD (30-240 m) and edge slope, we determined the number of pixels and field area fraction that meet a given temperature accuracy estimate for 400-m, 600-m, and 800-m diameter field sizes. Results of this project will help assess the utility of proposed specifications for the LDCM and other future thermal remote sensing missions and for water resource management.

  16. Agricultural Irrigation Demand Response Estimation Tool

    SciTech Connect

    Olsen, Daniel

    2014-02-01

    This program is used to model the energy demand of agricultural irrigation pumps, used to maintain soil moisture levels in irrigated fields. This modeling is accomplished using historical data from evapotranspirationmeasuring weather stations (from the California Irrigation Management Information System) as well as irrigation system characteristics for the field(s) to be modeled. The modelled energy demand is used to estimate the achievable demand response (DR) potential of the field(s), for use in assessing the value of the DR for the utility company. The program can accept input data with varying degrees of rigor, and estimate the uncertainty of the output accordingly.

  17. Utility of multi temporal satellite images for crop water requirements estimation and irrigation management in the Jordan Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Identifying the spatial and temporal distribution of crop water requirements is a key for successful management of water resources in the dry areas. Climatic data were obtained from three automated weather stations to estimate reference evapotranspiration (ETO) in the Jordan Valley according to the...

  18. Methods to estimate irrigated reference crop evapotranspiration - a review.

    PubMed

    Kumar, R; Jat, M K; Shankar, V

    2012-01-01

    Efficient water management of crops requires accurate irrigation scheduling which, in turn, requires the accurate measurement of crop water requirement. Irrigation is applied to replenish depleted moisture for optimum plant growth. Reference evapotranspiration plays an important role for the determination of water requirements for crops and irrigation scheduling. Various models/approaches varying from empirical to physically base distributed are available for the estimation of reference evapotranspiration. Mathematical models are useful tools to estimate the evapotranspiration and water requirement of crops, which is essential information required to design or choose best water management practices. In this paper the most commonly used models/approaches, which are suitable for the estimation of daily water requirement for agricultural crops grown in different agro-climatic regions, are reviewed. Further, an effort has been made to compare the accuracy of various widely used methods under different climatic conditions.

  19. Estimating irrigation water use in the humid eastern United States

    USGS Publications Warehouse

    Levin, Sara B.; Zarriello, Phillip J.

    2013-01-01

    Accurate accounting of irrigation water use is an important part of the U.S. Geological Survey National Water-Use Information Program and the WaterSMART initiative to help maintain sustainable water resources in the Nation. Irrigation water use in the humid eastern United States is not well characterized because of inadequate reporting and wide variability associated with climate, soils, crops, and farming practices. To better understand irrigation water use in the eastern United States, two types of predictive models were developed and compared by using metered irrigation water-use data for corn, cotton, peanut, and soybean crops in Georgia and turf farms in Rhode Island. Reliable metered irrigation data were limited to these areas. The first predictive model that was developed uses logistic regression to predict the occurrence of irrigation on the basis of antecedent climate conditions. Logistic regression equations were developed for corn, cotton, peanut, and soybean crops by using weekly irrigation water-use data from 36 metered sites in Georgia in 2009 and 2010 and turf farms in Rhode Island from 2000 to 2004. For the weeks when irrigation was predicted to take place, the irrigation water-use volume was estimated by multiplying the average metered irrigation application rate by the irrigated acreage for a given crop. The second predictive model that was developed is a crop-water-demand model that uses a daily soil water balance to estimate the water needs of a crop on a given day based on climate, soil, and plant properties. Crop-water-demand models were developed independently of reported irrigation water-use practices and relied on knowledge of plant properties that are available in the literature. Both modeling approaches require accurate accounting of irrigated area and crop type to estimate total irrigation water use. Water-use estimates from both modeling methods were compared to the metered irrigation data from Rhode Island and Georgia that were used to

  20. An Assessment of Global Net Irrigation Water Requirements from Various Water Supply Sources to Sustain Irrigation

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Sayaka; Cho, Jail; Yamada, Hannah; Khajuria, Anupam; Hanasaki, Naota; Kanae, Shinjiro

    2014-05-01

    Water supply sources for irrigation, such as rivers, reservoirs, and groundwater, are critically important for agricultural productivity. The current rapid increase in irrigation water use threatens sustainable food production. In this study, we estimated the time-varying dependence of irrigation water requirements from water supply sources, with a particular focus on variations in irrigation area during the period 1960-2050 using the global water resources model, H08. The H08 model simulates water requirements on a daily basis at a resolution of 1.0° × 1.0° . The sources of irrigation water requirements in the past simulations were specified using four categories: rivers (RIV), large reservoirs (LR) with a storage capacity greater than 1.0 km3, medium-size reservoirs (MSR) with storage capacities ranging from 1.0 km3 to 3.0 M m3, and non-local non-renewable blue water (NNBW). We also estimated future irrigation water requirements from the above four water supply sources and an additional water supply source (ADD) in three future simulation designs; irrigation area change, climate change, and changes in both irrigation area and climate. ADD was defined as the difference between NNBW in the 1990s and NNBW in the 2040s, because it was difficult to distinguish the types of future water supply sources except for RIV. The simulated results showed that RIV, MSR, and NNBW increased significantly through the 1960s to the early 1990s globally, but LR increased at a relatively low rate. After the early 1990s, RIV approached a critical limit due to the continued expansion of the irrigation area. Furthermore, MSR and NNBW increased significantly following the expansion of the irrigation area and the increased storage capacity of the medium-size reservoirs. After the 2020s, MSR could be expected to approach the critical limit without the construction of medium-size reservoirs. ADD would account for 11-23% of the total requirements in the 2040s. We found that an expansion of

  1. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate increases in irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2015-08-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and

  2. Estimation of evapotranspiration rate in irrigated lands using stable isotopes

    NASA Astrophysics Data System (ADS)

    Umirzakov, Gulomjon; Windhorst, David; Forkutsa, Irina; Brauer, Lutz; Frede, Hans-Georg

    2013-04-01

    Agriculture in the Aral Sea basin is the main consumer of water resources and due to the current agricultural management practices inefficient water usage causes huge losses of freshwater resources. There is huge potential to save water resources in order to reach a more efficient water use in irrigated areas. Therefore, research is required to reveal the mechanisms of hydrological fluxes in irrigated areas. This paper focuses on estimation of evapotranspiration which is one of the crucial components in the water balance of irrigated lands. Our main objective is to estimate the rate of evapotranspiration on irrigated lands and partitioning of evaporation into transpiration using stable isotopes measurements. Experiments has done in 2 different soil types (sandy and sandy loam) irrigated areas in Ferghana Valley (Uzbekistan). Soil samples were collected during the vegetation period. The soil water from these samples was extracted via a cryogenic extraction method and analyzed for the isotopic ratio of the water isotopes (2H and 18O) based on a laser spectroscopy method (DLT 100, Los Gatos USA). Evapotranspiration rates were estimated with Isotope Mass Balance method. The results of evapotranspiration obtained using isotope mass balance method is compared with the results of Catchment Modeling Framework -1D model results which has done in the same area and the same time.

  3. Comparison of Irrigation Water Use Estimates Calculated from Remotely Sensed Irrigated Acres and State Reported Irrigated Acres in the Lake Altus Drainage Basin, Oklahoma and Texas, 2000 Growing Season

    USGS Publications Warehouse

    Masoner, J.R.; Mladinich, C.S.; Konduris, A.M.; Smith, S. Jerrod

    2003-01-01

    Increased demand for water in the Lake Altus drainage basin requires more accurate estimates of water use for irrigation. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation, is investigating new techniques to improve water-use estimates for irrigation purposes in the Lake Altus drainage basin. Empirical estimates of reference evapotranspiration, crop evapotranspiration, and crop irrigation water requirements for nine major crops were calculated from September 1999 to October 2000 using a solar radiation-based evapotranspiration model. Estimates of irrigation water use were calculated using remotely sensed irrigated crop acres derived from Landsat 7 Enhanced Thematic Mapper Plus imagery and were compared with irrigation water-use estimates calculated from irrigated crop acres reported by the Oklahoma Water Resources Board and the Texas Water Development Board for the 2000 growing season. The techniques presented will help manage water resources in the Lake Altus drainage basin and may be transferable to other areas with similar water management needs. Irrigation water use calculated from the remotely sensed irrigated acres was estimated at 154,920 acre-feet; whereas, irrigation water use calculated from state reported irrigated crop acres was 196,026 acre-feet, a 23 percent difference. The greatest difference in irrigation water use was in Carson County, Texas. Irrigation water use for Carson County, Texas, calculated from the remotely sensed irrigated acres was 58,555 acrefeet; whereas, irrigation water use calculated from state reported irrigated acres was 138,180 acre-feet, an 81 percent difference. The second greatest difference in irrigation water use occurred in Beckham County, Oklahoma. Differences between the two irrigation water use estimates are due to the differences of irrigated crop acres derived from the mapping process and those reported by the Oklahoma Water Resources Board and Texas Water Development Board.

  4. An assessment of global net irrigation water requirements from various water supply sources to sustain irrigation: rivers and reservoirs (1960-2000 and 2050)

    NASA Astrophysics Data System (ADS)

    Yoshikawa, S.; Cho, J.; Yamada, H. G.; Hanasaki, N.; Khajuria, A.; Kanae, S.

    2013-01-01

    Water supply sources for irrigation, such as rivers, reservoirs, and groundwater, are critically important for agricultural productivity. The current rapid increase in irrigation water use threatens sustainable food production. In this study, we estimated the time-varying dependency of the supply of irrigation water from rivers, large reservoirs with a greater than 1.0 km3 storage capacity, medium-size reservoirs with storage capacities ranging from 1.0 km3 to 3.0 Mm3, and non-local non-renewable blue water (NNBW), particularly taking into account variations in irrigation area during the period 1960-2000. We also estimated the future irrigation water requirements from water supply sources in addition to these four sources, using an irrigation area scenario. The net irrigation water requirements from various supply sources were assessed using the global H08 water resources model. The H08 model simulates water requirements on a daily basis at a resolution of 1.0° × 1.0°. We obtained net irrigation water from rivers and medium-size reservoirs, and determined that the NNBW increased continuously from 1960 to 1985, but the net irrigation water from large reservoirs increased only marginally. After 1985, the net irrigation water from rivers approached a critical limit with the continued expansion of the irrigation area. The irrigation water requirements from medium-size reservoirs and NNBW increased significantly following the expansion of the irrigation area and the increased storage capacity of medium-size reservoirs. Under the irrigation area scenario without climate change, global net irrigation water requirements from additional water supply sources will account for 26% of the total requirements in the year 2050. We found that expansion of irrigation areas due to population growth will generate an enormous demand for irrigation water from additional resources.

  5. Estimates of Savings Achievable from Irrigation Controller

    SciTech Connect

    Williams, Alison; Fuchs, Heidi; Whitehead, Camilla Dunham

    2014-03-28

    This paper performs a literature review and meta-analysis of water savings from several types of advanced irrigation controllers: rain sensors (RS), weather-based irrigation controllers (WBIC), and soil moisture sensors (SMS).The purpose of this work is to derive average water savings per controller type, based to the extent possible on all available data. After a preliminary data scrubbing, we utilized a series of analytical filters to develop our best estimate of average savings. We applied filters to remove data that might bias the sample such as data self-reported by manufacturers, data resulting from studies focusing on high-water users, or data presented in a non-comparable format such as based on total household water use instead of outdoor water use. Because the resulting number of studies was too small to be statistically significant when broken down by controller type, this paper represents a survey and synthesis of available data rather than a definitive statement regarding whether the estimated water savings are representative.

  6. Estimation of Infiltration Parameters and the Irrigation Coefficients with the Surface Irrigation Advance Distance

    PubMed Central

    Beibei, Zhou; Quanjiu, Wang; Shuai, Tan

    2014-01-01

    A theory based on Manning roughness equation, Philip equation and water balance equation was developed which only employed the advance distance in the calculation of the infiltration parameters and irrigation coefficients in both the border irrigation and the surge irrigation. The improved procedure was validated with both the border irrigation and surge irrigation experiments. The main results are shown as follows. Infiltration parameters of the Philip equation could be calculated accurately only using water advance distance in the irrigation process comparing to the experimental data. With the calculated parameters and the water balance equation, the irrigation coefficients were also estimated. The water advance velocity should be measured at about 0.5 m to 1.0 m far from the water advance in the experimental corn fields. PMID:25061664

  7. [Effect of climate change on rice irrigation water requirement in Songnen Plain, Northeast China].

    PubMed

    Huang, Zhi-gang; Wang, Xiao-li; Xiao, Ye; Yang, Fei; Wang, Chen-xi

    2015-01-01

    Based on meteorological data from China national weather stations and climate scenario grid data through regional climate model provided by National Climate Center, rice water requirement was calculated by using McCloud model and Penman-Monteith model combined with crop coefficient approach. Then the rice irrigation water requirement was estimated by water balance model, and the changes of rice water requirement were analyzed. The results indicated that either in historical period or in climate scenario, rice irrigation water requirement contour lines during the whole growth period and Lmid period decreased along southwest to northeast, and the same irrigation water requirement contour line moved north with decade alternation. Rice irrigation water requirement during the whole growth period increased fluctuantly with decade alternation at 44.2 mm . 10 a-1 in historical period and 19.9 mm . 10 a-1 in climate scenario. The increase in rice irrigation water requirement during the Lmid period with decade alternation was significant in historical period, but not significant in climate scenario. Contribution rate of climate change to rice irrigation water requirement would be fluctuantly increased with decade alternation in climate scenario. Compared with 1970s, contribution rates of climate change to rice irrigation water requirement were 23.6% in 2000s and 34.4% in 2040s, which increased 14.8 x 10(8) m3 irrigation water in 2000s and would increase 21.2 x 10(8) m3 irrigation water in 2040s.

  8. Mediterranean agriculture: More efficient irrigation needed to compensate increases in future irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. Our research shows that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops (1). Also under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect (1). However, in some scenarios (in this case as combinations of climate change, irrigation technology, influence of population growth and CO2-fertilization effect) water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain (1). In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a

  9. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2016-03-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are taken into account, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL (Lund-Potsdam-Jena managed Land) after an extensive development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries such as Syria, Egypt and Turkey have a higher savings potential than others. Currently some crops, especially sugar cane and agricultural trees, consume on average more irrigation water per hectare than annual crops. Different crops show different magnitudes of changes in net irrigation requirements due to climate change, the increases being most pronounced in agricultural trees. The Mediterranean area as a whole may face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (4 and 18 % with 2 °C global warming combined with the full CO2-fertilization effect and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the southern and eastern Mediterranean. However, improved irrigation technologies and conveyance systems have a large water saving potential, especially in the eastern Mediterranean, and may be able to

  10. Global net irrigation water requirements from various water supply sources during past and future periods

    NASA Astrophysics Data System (ADS)

    Yoshikawa, S.; Cho, J.; Hanasaki, N.; Kanae, S.

    2014-12-01

    Water supply sources for irrigation (e.g. rivers and reservoirs) are critically important for agricultural productivity. The current rapid increase in irrigation water use is considered unsustainable and threatens food production. In this study, we estimated the time-varying dependence of irrigation water requirements from water supply sources, with a particular focus on variations in irrigation area during past (1960-2001) and future (2002-2050) periods using the global water resources model, H08. The H08 model can simulate water requirements on a daily basis at a resolution of 1.0° × 1.0° latitude and longitude. The sources of irrigation water requirements in the past simulations were specified using four categories: rivers (RIV), large reservoirs (LR), medium-size reservoirs (MSR), and non-local non-renewable blue water (NNBW). The simulated results from 1960 to 2001 showed that RIV, MSR and NNBW increased significantly from the 1960s to the early 1990s globally, but LR increased at a relatively low rate. After the early 1990s, the increase in RIV declined as it approached a critical limit, due to the continued expansion of irrigation area. MSR and NNBW increased significantly, during the same time period, following the expansion of the irrigation area and the increased storage capacity of the medium-size reservoirs. We also estimated future irrigation water requirements from the above four water supply sources and an additional water supply source (ADD) in three future simulation designs; irrigation area change, climate change, and changes in both irrigation area and climate. ADD was defined as a future increase in NNBW. After the 2020s, MSR was predicted to approach the critical limit, and ADD would account for 11-23% of the total requirements in the 2040s.

  11. Empirically Estimating the Existing Irrigation Adaptation to Future Drought Impacts in Kansas Agriculture

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Lin, X.; Yang, X.

    2014-12-01

    More serious drought has been projected due to the climate change in the Kansas State of the U.S., which might threaten the local agriculture and thus require effective adaptation responses to drought, e.g. better irrigation. But the irrigation adaptation on drought at the current technology-level is poorly quantified, therefore challenges to figure out how much additional efforts are required under more aridity of climate. Here, we collect the irrigation application data for maize, soybean, sorghum and wheat in Kansas, and establish a two-stage model to quantify the crop-specific irrigation application responses to changes in climatic drivers, and further estimate the existing effectiveness of the irrigation to adapt future drought based on the IPCC AR5 ensemble PDSI prediction under RCP4.5 scenario. We find that the three summer season crops (maize, soybean and sorghum) would experience 0 - 20% yield losses depending on county due to more serious drought since 2030s, even though increased irrigation application as the response of drought had saved 0 - 10% yields. At the state level, maize receives most benefits from irrigation, whereas the beneficial effects are least for sorghum among the three crops. To wheat, irrigation adaptation is very weak since irrigation water applied is much less than the above three crops. But wheat yields were projected to have a slight increase in central and eastern regions because climate would become more moisture over the growing season of winter wheat in future. Our results highlight that the existing beneficial effects from irrigation would be surpassed by the negative impact of drought in future, which would cause overall yield reduction in Kansas especially for those summer season crops.

  12. Estimated Domestic, Irrigation, and Industrial Water Use in Washington, 2000

    USGS Publications Warehouse

    Lane, R.C.

    2004-01-01

    Since 1950, the U.S. Geological Survey has published a series of Circulars and other reports on the estimated use of water in the United States at 5-year intervals. This report presents State, regional, and county estimates of the amount of water used for domestic, irrigation, and industrial purposes in the State of Washington during the year 2000. Domestic water use was estimated to be 674 million gallons per day and the per-capita rate, 114 gallons per day. Crop-irrigation water use was estimated to be 3,005 million gallons per day and the application rate, 2.2 acre-feet per acre per year, or feet per year. Golf-course irrigation water use was estimated to be 23.6 million gallons per day and the application rate, 1.4 feet per year. Industrial water use was estimated to be 681 million gallons per day. Historically, these core categories account for about 92 percent of the estimated offstream water used in Washington.

  13. Using Tracer Tests to Estimate Vertical Recharge and Evaluate Influencing Factors for Irrigated Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Lin, D.; Jin, M.; Brusseau, M.; Ma, B.; Liu, Y.

    2013-12-01

    Accurate estimation of vertical groundwater recharge is critical for (semi) arid regions, especially in places such as the North China Plain where vertical recharge comprises the largest portion of recharge. Tracer tests were used to estimate vertical recharge beneath agricultural systems irrigated by groundwater, and to help delineate factors that influence recharge. Bromide solution was applied to trace infiltration in the vadose zone beneath irrigated agricultural fields (rotated winter wheat and summer maize, orchards, and cotton) and non-irrigated woodlands at both piedmont plain (Shijiazhaung) and alluvial and lacustrine plains (Hengshui) in the North China Plain. The tracer tests lasted for more than two years, and were conducted at a total of 37 sites. Tracer solution was injected into the subsurface at a depth of 1.2 m before the rainy season. Soil samples were then collected periodically to observe bromide transport and estimate recharge rates at the point-scale. For these experiments, the only irrigation the fields received was that applied by the landowners. In addition to these tests, a controlled irrigation experiment was conducted at a single wheat and maize site. The results showed that recharge rates were lower for the alluvial and lacustrine plains sites, which comprise finer-textured soils than those present in the piedmont plain. Specifically, the recharge rate ranged between 56-466 mm/a beneath wheat-maize, 110-564 mm/a beneath orchard, and 0-21 mm/a beneath woodlands with an average recharge coefficient of 0.17 for the piedmont plain sites, while the recharge rate ranged between 26-165 mm/a beneath wheat-maize, 6-40 mm/a beneath orchard, 87-319 mm/a beneath cotton, and 0-32 mm/a beneath woodlands with an average recharge coefficient of 0.10 for the alluvial and lacustrine plain sites. Irrigation provided the primary contribution to recharge, with precipitation providing a minor contribution. The results of both the uncontrolled and controlled

  14. An investigation of spectral change as influenced by irrigation and evapotranspiration volume estimation in western Nebraska

    USGS Publications Warehouse

    Seevers, P.M.; Sadowski, F.C.; Lauer, D.T.

    1990-01-01

    Retrospective satellite image data were evaluated for their ability to demonstrate the influence of center-pivot irrigation development in western Nebraska on spectral change and climate-related factors for the region. Periodic images of an albedo index and a normalized difference vegetation index (NDVI) were generated from calibrated Landsat multispectral scanner (MSS) data and used to monitor spectral changes associated with irrigation development from 1972 through 1986. The albedo index was not useful for monitoring irrigation development. For the NDVI, it was found that proportions of counties in irrigated agriculture, as discriminated by a threshold, were more highly correlated with reported ground estimates of irrigated agriculture than were county mean greenness values. A similar result was achieved when using coarse resolution Advanced Very High Resolution Radiometer (AVHRR) image data for estimating irrigated agriculture. The NDVI images were used to evaluate a procedure for making areal estimates of actual evapotranspiration (ET) volumes. Estimates of ET volumes for test counties, using reported ground acreages and corresponding standard crop coefficients, were correlated with the estimates of ET volume using crop coefficients scaled to NDVI values and pixel counts of crop areas. These county estimates were made under the assumption that soil water availability was unlimited. For nonirrigated vegetation, this may result in over-estimation of ET volumes. Ground information regarding crop types and acreages are required to derive the NDVI scaling factor. Potential ET, estimated with the Jensen-Haise model, is common to both methods. These results, achieved with both MSS and AVHRR data, show promise for providing climatologically important land surface information for regional and global climate models. ?? 1990 Kluwer Academic Publishers.

  15. Estimation of furrow irrigation sediment loss using an artificial neural network

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The area irrigated by furrow irrigation in the U.S. has been steadily decreasing but still represents about 20% of the total irrigated area in the U.S. Furrow irrigation sediment loss is a major water quality issue and a method for estimating sediment loss is needed to quantify the environmental imp...

  16. Estimation of irrigated land using Landsat digital data

    NASA Technical Reports Server (NTRS)

    Brown, C. E.; Wall, S. L.; Thomas, R. W.; Erikkson, M.

    1981-01-01

    Techniques developed by the University of California and NASA for the utilization of multitemporal Landsat digital data in estimating and mapping irrigated land are presented. Three dates of Landsat were registered to each other and to a USGS 7.5 minute quadrangle map base for approximately 1.9 million acres of land. Other data registered include county boundaries, land use stratification, and digitized ground data. To identify irrigated land, an indicator was used which consisted of the ratio of MSS Band 7 to MSS Band 5 (the 7/5 ratio). A threshold 7/5 irrigated land value was determined for each date, as actively growing land generally has a higher 7/5 ratio than other cover classes. An estimate of irrigated land was determined by Landsat classification with ground data, at a relative standard error of + or - 7.98% at the 95% confidence interval. Mapping evaluation reveals a 94% accuracy, a 7.4% omission rate, and a 6.3% commission rate. In addition, a sample unit size evaluation recommends a 1-1 1/2 square mile sample range.

  17. Estimating 1980 ground-water pumpage for irrigation on the High Plains in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Heimes, F.J.; Luckey, R.R.

    1983-01-01

    Current ground-water use is required for the High Plains Regional Aquifer-System Analysis. In response to this need, a sampling approach was developed to estimate water pumped for irrigation on the High Plains during 1980. Pumpage was computed by combining application estimates with mapped irrigated-acreage information. Irrigation application (inches of water applied) was measured at 480 sites in 15 counties in the High Plains during the 1980 growing season. The relationship between calculated Blaney-Criddle irrigation demand and measured application was used to estimate application for unsampled areas of the High Plains. Application estimates multiplied by irrigated-acreate estimates, compiled from Landsat-satellite imagery, yielded the volume of ground water pumped for irrigation. The estimate of ground water pumped for irrigation in the High Plains during 1980 and 18,902,000 acre-feet for 13 ,715,000 irrigated areas. The sampled application data were evaluated for significant trends. The application was greater for crops requiring more water such as corn and hay and less for crops such as sorghum, grain, and cotton. The data showed greater application for flood-irrigated systems than for sprinkler-irrigation systems. Areas of the High Plains with thin saturated thickness tended to have a smaller average discharge per well, fewer irrigated acres per well, and a predominance of crops requiring less water crops. (USGS).

  18. The impacts of climate change on global irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.

    2011-12-01

    Climate change tends to affect the irrigation water requirement of current irrigated agricultural land, and also changes the water availability for current rain-fed land by the end of this century. We use the most up-to-date climatic and crop datasets (e.g., global irrigated/rain-fed crop areas and grid level crop growing calendar (Portmann, Siebert and Döll, 2010, Global Biogeochemical Cycles 24)) to evaluate the requirements of currently irrigated land and the water deficit for rain-fed land for all major crops under current and projected climate. Six general circulation models (GCMs) under two emission scenarios, A1B & B1, are assembled using two methods, the Simple Average Method (SAM) and Root Mean Square Error Ensemble Method (RMSEMM), to deal with the GCM regional variability. It is found that the global irrigation requirement and the water deficit are both going to increase significantly under all scenarios, particularly under the A1B emission scenario. For example, the projected irrigation requirement is expected to increase by about 2500 million m3 for wheat, 3200 million m3 for maize and another 3300 million m3 for rice. At the same time, the water deficit for current rain-fed cropland will be widened by around 3000, 4000, 2100 million m3 for wheat, maize and rice respectively. Regional analysis is conducted for Africa, China, Europe, India, South America and the United States. It is found that the U.S. may expect the greatest rise in irrigation requirements for wheat and maize, while the South America may suffer the greatest increase for rice. In addition, Africa and the U.S. may face a larger water deficit for both wheat and maize on rain-fed land, and South America just for rice. In summary, climate change is likely to bring severe challenges for irrigation systems and make global water shortage even worse by the end of this century. These pressures will call for extensive adaptation measures. The change in crop water requirements and availability

  19. Estimated Colorado Golf Course Irrigation Water Use, 2005

    USGS Publications Warehouse

    Ivahnenko, Tamara

    2009-01-01

    Golf course irrigation water-use data were collected as part of the U.S. Geological Survey National Water Use Program's 2005 compilation to provide baseline information, as no golf course irrigation water-use data (separate from crop irrigation) have been reported in previous compilations. A Web-based survey, designed by the U.S. Geological Survey, in cooperation with the Rocky Mountain Golf Course Superintendents Association (RMGCSA), was electronically distributed by the association to the 237 members in Colorado. Forty-three percent of the members returned the survey, and additional source water information was collected by telephone for all but 20 of the 245 association member and non-member Colorado golf courses. For golf courses where no data were collected at all, an average 'per hole' coefficient, based on returned surveys from that same county, were applied. In counties where no data were collected at all, a State average 'per hole' value of 13.2 acre-feet was used as the coefficient. In 2005, Colorado had 243 turf golf courses (there are 2 sand courses in the State) that had an estimated 2.27 acre-feet per irrigated course acre, and 65 percent of the source water for these courses was surface water. Ground water, potable water (public supply), and reclaimed wastewater, either partially or wholly, were source waters for the remaining courses. Fifty-three of the 64 counties in Colorado have at least one golf course, with the greatest number of courses in Jefferson (23 courses), Arapahoe (22 courses), and El Paso Counties (20 courses). In 2005, an estimated 5,647.8 acre-feet in Jefferson County, 5,402 acre-feet in Arapahoe County, and 4,473.3 acre-feet in El Paso County were used to irrigate the turf grass.

  20. Sequential Monte Carlo hydraulic state estimation of an irrigation canal

    NASA Astrophysics Data System (ADS)

    Sau, Jacques; Malaterre, Pierre-Olivier; Baume, Jean-Pierre

    2010-04-01

    The estimation in real time of the hydraulic state of irrigation canals is becoming one of the major concerns of network managers. With this end in view, this Note presents a new approach based on the combination of a numerical solution of the open channel Saint-Venant PDE with a sequential Monte Carlo state-space estimation. We shall show that discharges and elevations along the canal are successfully estimated, and also that, concurrently, model parameters identification, such as the Manning-Strickler friction coefficient, can be performed.

  1. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

    NASA Technical Reports Server (NTRS)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.

    2013-01-01

    Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

  2. Parameter Estimation for Groundwater Models under Uncertain Irrigation Data.

    PubMed

    Demissie, Yonas; Valocchi, Albert; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p < 0.05) bias in estimated parameters and model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  3. The future of irrigated agriculture under environmental flow requirements restrictions

    NASA Astrophysics Data System (ADS)

    Pastor, Amandine; Palazzo, Amanda; Havlik, Petr; Kabat, Pavel; Obersteiner, Michael; Ludwig, Fulco

    2016-04-01

    Water is not an infinite resource and demand from irrigation, household and industry is constantly increasing. This study focused on including global water availability including environmental flow requirements with water withdrawal from irrigation and other sectors at a monthly time-step in the GLOBIOM model. This model allows re-adjustment of land-use allocation, crop management, consumption and international trade. The GLOBIOM model induces an endogenous change in water price depending on water supply and demand. In this study, the focus was on how the inclusion of water resources affects land-use and, in particular, how global change will influence repartition of irrigated and rainfed lands at global scale. We used the climate change scenario including a radiative forcing of 8.5 W/m2 (RCP8.5), the socio-economic scenario (SSP2: middle-of-road), and the environmental flow method based on monthly flow allocation (the Variable Monthly Flow method) with high and low restrictions. Irrigation withdrawals were adjusted to a monthly time-step to account for biophysical water limitations at finer time resolution. Our results show that irrigated land might decrease up to 40% on average depending on the choice of EFR restrictions. Several areas were identified as future hot-spots of water stress such as the Mediterranean and Middle-East regions. Other countries were identified to be in safe position in terms of water stress such as North-European countries. Re-allocation of rainfed and irrigated land might be useful information for land-use planners and water managers at an international level to decide on appropriate legislations on climate change mitigation/adaptation when exposure and sensitivity to climate change is high and/or on adaptation measures to face increasing water demand. For example, some countries are likely to adopt measures to increase their water use efficiencies (irrigation system, soil and water conservation practices) to face water shortages, while

  4. An assessment of global net irrigation water requirements from various water supply sources to sustain irrigation: rivers and reservoirs (1960-2050)

    NASA Astrophysics Data System (ADS)

    Yoshikawa, S.; Cho, J.; Yamada, H. G.; Hanasaki, N.; Kanae, S.

    2014-10-01

    Water supply sources for irrigation (e.g. rivers and reservoirs) are critically important for agricultural productivity. The current rapid increase in irrigation water use is considered unsustainable and threatens food production. In this study, we estimated the time-varying dependence of irrigation water requirements from water supply sources, with a particular focus on variations in irrigation area during past (1960-2001) and future (2002-2050) periods using the global water resources model, H08. The H08 model can simulate water requirements on a daily basis at a resolution of 1.0° × 1.0° latitude and longitude. The sources of irrigation water requirements in the past simulations were specified using four categories: rivers (RIV), large reservoirs (LR) with a storage capacity greater than 1.0 × 109 m3, medium-size reservoirs (MSR) with storage capacities ranging from 1.0 × 109 m3 to 3.0 × 106 m3, and non-local non-renewable blue water (NNBW). The simulated results from 1960 to 2001 showed that RIV, MSR and NNBW increased significantly from the 1960s to the early 1990s globally, but LR increased at a relatively low rate. After the early 1990s, the increase in RIV declined as it approached a critical limit, due to the continued expansion of irrigation area. MSR and NNBW increased significantly, during the same time period, following the expansion of the irrigation area and the increased storage capacity of the medium-size reservoirs. We also estimated future irrigation water requirements from the above four water supply sources and an additional water supply source (ADD) in three future simulation designs; irrigation area change, climate change, and changes in both irrigation area and climate. ADD was defined as a future increase in NNBW. After the 2020s, MSR was predicted to approach the critical limit, and ADD would account for 11-23% of the total requirements in the 2040s.

  5. Modelling regional variability of irrigation requirements due to climate change in Northern Germany.

    PubMed

    Riediger, Jan; Breckling, Broder; Svoboda, Nikolai; Schröder, Winfried

    2016-01-15

    The question whether global climate change invalidates the efficiency of established land use practice cannot be answered without systemic considerations on a region specific basis. In this context plant water availability and irrigation requirements, respectively, were investigated in Northern Germany. The regions under investigation--Diepholz, Uelzen, Fläming and Oder-Spree--represent a climatic gradient with increasing continentality from West to East. Besides regional climatic variation and climate change, soil conditions and crop management differ on the regional scale. In the model regions, temporal seasonal droughts influence crop success already today, but on different levels of intensity depending mainly on climate conditions. By linking soil water holding capacities, crop management data and calculations of evapotranspiration and precipitation from the climate change scenario RCP 8.5 irrigation requirements for maintaining crop productivity were estimated for the years 1991 to 2070. Results suggest that water requirement for crop irrigation is likely to increase with considerable regional variation. For some of the regions, irrigation requirements might increase to such an extent that the established regional agricultural practice might be hard to retain. Where water availability is limited, agricultural practice, like management and cultivated crop spectrum, has to be changed to deal with the new challenges.

  6. A remote sensing approach for estimating the location and rate of urban irrigation in semi-arid climates

    NASA Astrophysics Data System (ADS)

    Johnson, Tyler D.; Belitz, Kenneth

    2012-01-01

    SummaryUrban irrigation is an important component of the hydrologic cycle in many areas of the arid and semiarid western United States. This paper describes a new approach that uses readily available datasets to estimate the location and rate of urban irrigation. The approach provides a repeatable methodology at 1/3 km 2 resolution across a large urbanized area (500 km 2). For this study, Landsat Thematic Mapper satellite imagery, air photos, climatic records, and a land-use map were used to: (1) identify the fraction of irrigated landscaping in urban areas, and (2) estimate the monthly rate of irrigation being applied to those areas. The area chosen for this study was the San Fernando Valley in Southern California. Identifying irrigated areas involved the use of 29 satellite images, air photos, and a land-use map. The fraction of a pixel that consists of irrigated landscaping ( F irr) was estimated using a linear-mixture model of two land-cover endmembers (selected pixels within a satellite image that represent a targeted land-cover). The two endmembers were impervious and fully-irrigated landscaping. In the San Fernando Valley, we used airport buildings, runways, and pavement to represent the impervious endmember; golf courses and parks were used to represent the fully irrigated endmember. The average F irr using all 29 satellite scenes was 44%. F irr calculated from hand-digitizing using air photos for 13 randomly selected single-family-residential neighborhoods showed similar results (42%). Estimating the rate of irrigation required identification of a third endmember: areas that consisted of urban vegetation but were not irrigated. This "nonirrigated" endmember was used to compute a Normalized Difference Vegetation Index (NDVI) surplus, defined as the difference between the NDVI signals of the irrigated and nonirrigated endmembers. The NDVI signals from irrigated areas remains relatively constant throughout the year, whereas the signal from nonirrigated areas

  7. A remote sensing approach for estimating the location and rate of urban irrigation in semi-arid climates

    USGS Publications Warehouse

    Johnson, Tyler D.; Belitz, Kenneth

    2012-01-01

    Urban irrigation is an important component of the hydrologic cycle in many areas of the arid and semiarid western United States. This paper describes a new approach that uses readily available datasets to estimate the location and rate of urban irrigation. The approach provides a repeatable methodology at 1/3 km2 resolution across a large urbanized area (500 km2). For this study, Landsat Thematic Mapper satellite imagery, air photos, climatic records, and a land-use map were used to: (1) identify the fraction of irrigated landscaping in urban areas, and (2) estimate the monthly rate of irrigation being applied to those areas. The area chosen for this study was the San Fernando Valley in Southern California. Identifying irrigated areas involved the use of 29 satellite images, air photos, and a land-use map. The fraction of a pixel that consists of irrigated landscaping (Firr) was estimated using a linear-mixture model of two land-cover endmembers (selected pixels within a satellite image that represent a targeted land-cover). The two endmembers were impervious and fully-irrigated landscaping. In the San Fernando Valley, we used airport buildings, runways, and pavement to represent the impervious endmember; golf courses and parks were used to represent the fully irrigated endmember. The average Firr using all 29 satellite scenes was 44%. Firr calculated from hand-digitizing using air photos for 13 randomly selected single-family-residential neighborhoods showed similar results (42%). Estimating the rate of irrigation required identification of a third endmember: areas that consisted of urban vegetation but were not irrigated. This "nonirrigated" endmember was used to compute a Normalized Difference Vegetation Index (NDVI) surplus, defined as the difference between the NDVI signals of the irrigated and nonirrigated endmembers. The NDVI signals from irrigated areas remains relatively constant throughout the year, whereas the signal from nonirrigated areas rises and

  8. A remote sensing approach for estimating the location and rate of urban irrigation in semi-arid climates

    USGS Publications Warehouse

    Johnson, T.D.; Belitz, K.

    2012-01-01

    Urban irrigation is an important component of the hydrologic cycle in many areas of the arid and semiarid western United States. This paper describes a new approach that uses readily available datasets to estimate the location and rate of urban irrigation. The approach provides a repeatable methodology at 1/3km 2 resolution across a large urbanized area (500km 2). For this study, Landsat Thematic Mapper satellite imagery, air photos, climatic records, and a land-use map were used to: (1) identify the fraction of irrigated landscaping in urban areas, and (2) estimate the monthly rate of irrigation being applied to those areas. The area chosen for this study was the San Fernando Valley in Southern California.Identifying irrigated areas involved the use of 29 satellite images, air photos, and a land-use map. The fraction of a pixel that consists of irrigated landscaping (F irr) was estimated using a linear-mixture model of two land-cover endmembers (selected pixels within a satellite image that represent a targeted land-cover). The two endmembers were impervious and fully-irrigated landscaping. In the San Fernando Valley, we used airport buildings, runways, and pavement to represent the impervious endmember; golf courses and parks were used to represent the fully irrigated endmember. The average F irr using all 29 satellite scenes was 44%. F irr calculated from hand-digitizing using air photos for 13 randomly selected single-family-residential neighborhoods showed similar results (42%).Estimating the rate of irrigation required identification of a third endmember: areas that consisted of urban vegetation but were not irrigated. This " nonirrigated" endmember was used to compute a Normalized Difference Vegetation Index (NDVI) surplus, defined as the difference between the NDVI signals of the irrigated and nonirrigated endmembers. The NDVI signals from irrigated areas remains relatively constant throughout the year, whereas the signal from nonirrigated areas rises and

  9. Influence of resolution in irrigated area mapping and area estimation

    USGS Publications Warehouse

    Velpuri, N.M.; Thenkabail, P.S.; Gumma, M.K.; Biradar, C.; Dheeravath, V.; Noojipady, P.; Yuanjie, L.

    2009-01-01

    The overarching goal of this paper was to determine how irrigated areas change with resolution (or scale) of imagery. Specific objectives investigated were to (a) map irrigated areas using four distinct spatial resolutions (or scales), (b) determine how irrigated areas change with resolutions, and (c) establish the causes of differences in resolution-based irrigated areas. The study was conducted in the very large Krishna River basin (India), which has a high degree of formal contiguous, and informal fragmented irrigated areas. The irrigated areas were mapped using satellite sensor data at four distinct resolutions: (a) NOAA AVHRR Pathfinder 10,000 m, (b) Terra MODIS 500 m, (c) Terra MODIS 250 m, and (d) Landsat ETM+ 30 m. The proportion of irrigated areas relative to Landsat 30 m derived irrigated areas (9.36 million hectares for the Krishna basin) were (a) 95 percent using MODIS 250 m, (b) 93 percent using MODIS 500 m, and (c) 86 percent using AVHRR 10,000 m. In this study, it was found that the precise location of the irrigated areas were better established using finer spatial resolution data. A strong relationship (R2 = 0.74 to 0.95) was observed between irrigated areas determined using various resolutions. This study proved the hypotheses that "the finer the spatial resolution of the sensor used, greater was the irrigated area derived," since at finer spatial resolutions, fragmented areas are detected better. Accuracies and errors were established consistently for three classes (surface water irrigated, ground water/conjunctive use irrigated, and nonirrigated) across the four resolutions mentioned above. The results showed that the Landsat data provided significantly higher overall accuracies (84 percent) when compared to MODIS 500 m (77 percent), MODIS 250 m (79 percent), and AVHRR 10,000 m (63 percent). ?? 2009 American Society for Photogrammetry and Remote Sensing.

  10. HYDRUS-1D Modeling of an Irrigated Agricultural Plot with Application to Aquifer Recharge Estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A variety of methods are available for estimating aquifer recharge in semi-arid regions, each with advantages and disadvantages. We are investigating a procedure for estimating recharge in an irrigated basin. The method involves computing irrigation return flows based on HYDRUS-1D modeling of root z...

  11. Estimation of Land Surface States and Fluxes using a Land Surface Model Considering Different Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Chun, J. A.; Zaitchik, B. F.; Evans, J. P.; Beaudoing, H. K.

    2012-12-01

    Food security can be improved by increasing the extent of agricultural land or by increasing agricultural productivity, including through intensive management such as irrigation. The objectives of this study were to incorporate practical irrigation schemes into land surface models of the NASA Land Information System (LIS) and to apply the tool to estimate the impact of irrigation on land surface states and fluxes—including evapotranspiration, soil moisture, and runoff—in the Murray-Darling basin in Australia. Here we present results obtained using Noah Land Surface Model v3.2 within LIS without simulated irrigation (IR0) and with three irrigation simulation routines: flood irrigation (IR1), drip irrigation (IR2), and sprinkler irrigation (IR3). Moderate Resolution Imaging Spectrometer (MODIS) vegetation index was used to define crop growing seasons. Simulations were performed for a full year (July 2002 to June 2003) and evaluated against hydrologic flux estimates obtained in previous studies. Irrigation amounts during the growing season (August 2002 to March 2003) were simulated as 104.6, 24.6, and 188.1 GL for IR1, IR2, and IR3, respectively. These preliminary results showed water use efficiency from a drip irrigation scheme would be highest and lowest from a sprinkler irrigation scheme, with a highly optimized version of flood irrigation falling in between. Irrigation water contributed to a combination of increased evapotranspiration, runoff, and soil moisture storage in the irrigation simulations relative to IR0. Implications for water management applications and for further model development will be discussed.

  12. Using Cotton Model Simulations to Estimate Optimally Profitable Irrigation Strategies

    NASA Astrophysics Data System (ADS)

    Mauget, S. A.; Leiker, G.; Sapkota, P.; Johnson, J.; Maas, S.

    2011-12-01

    In recent decades irrigation pumping from the Ogallala Aquifer has led to declines in saturated thickness that have not been compensated for by natural recharge, which has led to questions about the long-term viability of agriculture in the cotton producing areas of west Texas. Adopting irrigation management strategies that optimize profitability while reducing irrigation waste is one way of conserving the aquifer's water resource. Here, a database of modeled cotton yields generated under drip and center pivot irrigated and dryland production scenarios is used in a stochastic dominance analysis that identifies such strategies under varying commodity price and pumping cost conditions. This database and analysis approach will serve as the foundation for a web-based decision support tool that will help producers identify optimal irrigation treatments under specified cotton price, electricity cost, and depth to water table conditions.

  13. Estimating phreatic evaporation in irrigated areas using a stable isotope approach

    NASA Astrophysics Data System (ADS)

    Barthold, F. K.; Umirzakov, G.; Schneider, K.; Stulina, G.; Frede, H.; Breuer, L.

    2011-12-01

    Central Asia is characterized by continental arid climate conditions. Mean annual precipitation is 170 mm with a potential evapotranspiration rate of 1200 mm/a. In addition, many regions are affected by a non-sustainable use of the water resources. 90% of the water resources are used for irrigation purposes to grow e.g. cotton and wheat, especially in Uzbekistan. Large amounts of water are needed for cotton growth. Not only does the plant itself require large amounts of water but a substantial part of the water use is ascribed to the inefficient irrigation system and management. The irrigation infrastructure is old and not maintained well and irrigation management is inadequate. Groundwater level rise has been observed in irrigated areas as a result of the inefficient irrigation practices. Capillary raised groundwater is particularly prone to evaporation as it gets closer to the soil surface. The general objective of this study is to quantify the amount of groundwater (or phreatic) evaporation that is due to groundwater table rise on irrigated fields. In this study, we present an approach where we are using stable isotopes of water to estimate phreatic evaporation on irrigated fields. Our specific objective is to estimate phreatic evaporation (Ep) in relation to the groundwater level and varying soil types (sandy, loamy and clay loamy). We chose a stable water isotopes approach to estimate Ep. For this purpose, soil samples along a depth profile were sampled on sites with different groundwater levels and soil types. Samples were taken in 10 cm increments down to the groundwater level. Soil water was extracted using a cryogenic vacuum distillation and the extracted soil water was analyzed for its composition of stable water isotopes, δD and δ18O, using a Liquid Water Isotope Analyzer (Los Gatos Research, Inc.). Ep was calculated by fitting an exponential function to the experimental isotope soil profile. Our results show that in sandy and loamy soils, enrichment

  14. Improving N and P estimates for swine manure lagoon irrigation water

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nutrient management plans (NMPs) for confined animal feeding operations (CAFOs) require a record of N and P loads from manure land-applications, including irrigation with lagoon water. Mississippi regulations require nutrient records for lagoon irrigation water be based on at least one annual analy...

  15. Estimating irrigation water demand in the Moroccan Drâa Valley using contingent valuation.

    PubMed

    Storm, Hugo; Heckelei, Thomas; Heidecke, Claudia

    2011-10-01

    Irrigation water management is crucial for agricultural production and livelihood security in Morocco as in many other parts of the world. For the implementation of an effective water management, knowledge about farmers' demand for irrigation water is crucial to assess reactions to water pricing policy, to establish a cost-benefit analysis of water supply investments or to determine the optimal water allocation between different users. Previously used econometric methods providing this information often have prohibitive data requirements. In this paper, the Contingent Valuation Method (CVM) is adjusted to derive a demand function for irrigation water along farmers' willingness to pay for one additional unit of surface water or groundwater. An application in the Middle Drâa Valley in Morocco shows that the method provides reasonable results in an environment with limited data availability. For analysing the censored survey data, the Least Absolute Deviation estimator was found to be a more suitable alternative to the Tobit model as errors are heteroscedastic and non-normally distributed. The adjusted CVM to derive demand functions is especially attractive for water scarce countries under limited data availability.

  16. Estimated Yield of Some Alternative Crops Under Varying Irrigation in Northeast Colorado

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Much of the irrigated acres in northeastern Colorado are devoted to corn grain production. Diversifying irrigated agricultural production in this region could result in water savings if alternative crops were grown that have lower water requirements than corn. Making such crop choice decisions initi...

  17. Improving estimates of N and P loads in irrigation water from swine manure lagoons

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The implementation of nutrient management plans (NMPs) for confined animal feeding operations (CAFOs) requires recording N and P loads from land-applied manure, including nutrients applied in irrigation water from manure treatment lagoons. By regulation, lagoon irrigation water nutrient records in ...

  18. Gaussian processes-based predictive models to estimate reference ET from alternative meteorological data sources for irrigation scheduling

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate estimates of daily crop evapotranspiration (ET) are needed for efficient irrigation management, especially in arid and semi-arid irrigated regions where crop water demand exceeds rainfall. The impact of inaccurate ET estimates can be tremendous in both irrigation cost and the increased dema...

  19. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An increase in abnormal climate change patterns and unsustainable irrigation in uplands cause drought and affect agricultural water security, crop productivity, and price fluctuations. In this study, we developed a soil moisture model to project irrigation requirements (IR) for upland crops under cl...

  20. Simulation of temporal and spatial distribution of required irrigation water by crop models and the pan evaporation coefficient method

    NASA Astrophysics Data System (ADS)

    Yang, Yan-min; Yang, Yonghui; Han, Shu-min; Hu, Yu-kun

    2009-07-01

    Hebei Plain is the most important agricultural belt in North China. Intensive irrigation, low and uneven precipitation have led to severe water shortage on the plain. This study is an attempt to resolve this crucial issue of water shortage for sustainable agricultural production and water resources management. The paper models distributed regional irrigation requirement for a range of cultivated crops on the plain. Classic crop models like DSSAT- wheat/maize and COTTON2K are used in combination with pan-evaporation coefficient method to estimate water requirements for wheat, corn, cotton, fruit-trees and vegetables. The approach is more accurate than the static approach adopted in previous studies. This is because the combination use of crop models and pan-evaporation coefficient method dynamically accounts for irrigation requirement at different growth stages of crops, agronomic practices, and field and climatic conditions. The simulation results show increasing Required Irrigation Amount (RIA) with time. RIA ranges from 5.08×109 m3 to 14.42×109 m3 for the period 1986~2006, with an annual average of 10.6×109 m3. Percent average water use by wheat, fruit trees, vegetable, corn and cotton is 41%, 12%, 12%, 11%, 7% and 17% respectively. RIA for April and May (the period with the highest irrigation water use) is 1.78×109 m3 and 2.41×109 m3 respectively. The counties in the piedmont regions of Mount Taihang have high RIA while the central and eastern regions/counties have low irrigation requirement.

  1. Probabilistic description of crop development and irrigation water requirements with stochastic rainfall

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2013-03-01

    Supplemental irrigation represents one of the main strategies to mitigate the effects of climatic variability on agroecosystems, stabilizing yields and profits. Because of the significant investments and water requirements associated with irrigation, strategic choices are needed to preserve productivity and profitability while ensuring a sustainable water management, a nontrivial task given rainfall unpredictability. Decision-making under uncertainty requires the knowledge of the probability density function (pdf) of the outcome variable (yield and economic return) for the different management alternatives to be considered (here, irrigation strategies). A stochastic framework is proposed, linking probabilistically the occurrence of rainfall events and irrigation applications to crop development during the growing season. Based on these linkages, the pdf of yields and the corresponding irrigation requirements are obtained analytically as a function of climate, soil, and crop parameters, for different irrigation strategies and both unlimited and limited water availability. Approximate expressions are also presented to facilitate their application. Our results employ relatively few parameters and are thus broadly applicable to different crops and sites, under current- and future-climate scenarios, offering a quantitative tool to quantify the impact of irrigation strategies and water allocation on yields. As a tool for decision-making under uncertainty (e.g., via expected utility theory), our framework will be useful for the assessment of the feasibility of different irrigation strategies and water allocations, toward a sustainable management of water resources for human and environmental needs.

  2. Simultaneous soil moisture and properties estimation for a drip irrigated field by assimilating cosmic-ray neutron intensity

    NASA Astrophysics Data System (ADS)

    Han, Xujun; Hendricks Franssen, Harrie-Jan; Jiménez Bello, Miguel Ángel; Rosolem, Rafael; Bogena, Heye; Alzamora, Fernando Martínez; Chanzy, André; Vereecken, Harry

    2016-08-01

    Neutron intensity measured by the aboveground cosmic-ray neutron intensity probe (CRP) allows estimating soil moisture content at the field scale. In this work, synthetic neutron intensities were used to remove the bias of simulated soil moisture content or update soil hydraulic properties (together with soil moisture) in the Community Land Model (CLM) using the Local Ensemble Transform Kalman Filter. The cosmic-ray forward model COSMIC was used as the non-linear measurement operator which maps between neutron intensity and soil moisture. The novel aspect of this work is that synthetically measured neutron intensity was used for real time updating of soil states and soil properties (or soil moisture bias) and posterior use for the real time scheduling of irrigation (data assimilation based real-time control approach). Uncertainty of model forcing and soil properties (sand fraction, clay fraction and organic matter density) were considered in the ensemble predictions of the soil moisture profiles. Horizontal and vertical weighting of soil moisture was introduced in the data assimilation in order to handle the scale mismatch between the cosmic-ray footprint and the CLM grid cell. The approach was illustrated in a synthetic study with the real-time irrigation scheduling of fields of citrus trees. After adjusting soil moisture content by assimilating neutron intensity, the irrigation requirements were calculated based on the water deficit method. Model bias was introduced by using coarser soil texture in the data assimilation experiments than in reality. A series of experiments was done with different combinations of state, parameter and bias estimation in combination with irrigation scheduling. Assimilation of CRP neutron intensity improved soil moisture characterization. Irrigation requirement was overestimated if biased soil properties were used. The soil moisture bias was reduced by 35% after data assimilation. The scenario of joint state-parameter estimation

  3. [Spatial and temporal characteristics of flue-cured tobacco water requirement and irrigation requirement index in Yunnan Province, China].

    PubMed

    Zheng, Dong-fang; Xu, Jia-yang; Lu, Xiu-ping; Xu, Zi-cheng; Li, Jun-ying; Pang, Tao; Zhang, Ya-jie; Wang, Pei-wen

    2015-07-01

    Based on the daily meteorological data of 124 agricultural meteorological sites during 1977-2010 in Yunnan Province, using recommended Penman-Monteith formula by FAO, water requirement and irrigation requirement index in the growth period of flue-cured tobacco were calculated to analyze their spatial and temporal characteristics and change patterns. The results showed that water requirements of flue-cured tobacco in root extending, vigorous, mature periods and field growth period during 1977-2010 were 76.73-174.73, 247.50-386.64, 180.28-258.14 and 528.18-764.08 mm, respectively, and the water requirement of vigorous period was the highest. The average irrigation demand index of each period was -0.02, 0.38, 0.17 and 0.26, respectively. Effective precipitation could meet the demand of flue-cured tobacco in root extending period. Water requirement of flue-cured tobacco in Yunnan Province decreased annually, and the rates of water requirement under the climate change trend in the four periods abovementioned were -12. 42, -21.46, -7.17 and -47.15 mm . (10 a)-1, respectively. The smallest irrigation demand index was observed in Dehong, and the largest in Diqing. The irrigation demand indexes of Dehong, Xishuangbanna and Puer regions were negative in flue-cured tobacco field growth period. The reference crop evapotranspiration, water requirement and effective precipitation decreased, but the irrigation requirement and irrigation requirement index increased with the increase of latitude. The effective precipitation decreased, but the irrigation requirement and irrigation requirement index increased with the increase of altitude.

  4. Water and nitrogen requirements of subsurface drip irrigated pomegranate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface drip irrigation is a well-developed practice for both annual and perennial crops. The use of subsurface drip is a well-established practice in many annual row crops, e.g. tomatoes, strawberries, lettuce. However, the use of subsurface drip on perennial crops has been slow to develop. With th...

  5. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields

    USGS Publications Warehouse

    Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  6. A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields

    PubMed Central

    Senay, Gabriel B.; Budde, Michael; Verdin, James P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250-m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  7. Validation of a Simplified Energy Balance Model for Estimating Irrigated Cropland and Water use in Afghanistan

    NASA Astrophysics Data System (ADS)

    Budde, M. E.; Senay, G. B.; Verdin, J. P.; Rowland, J. D.

    2006-12-01

    A simplified energy balance model was developed to estimate cropped area and water use for two major irrigated areas in Afghanistan. The model utilized Moderate Resolution Imaging Spectroradiometer (MODIS) 1- km land surface temperature data to calculate a thermal-based evapotranspiration (ET) fraction. The fraction, based on temperature differences between "hot" and "cold" pixels in the study area, was used in conjunction with coarse resolution reference ET to estimate seasonal ET from irrigated lands for the 2000 2005 growing seasons. Irrigated areas in the Helmand River basin of southwestern Afghanistan and near the city of Kabul were analyzed. Model results compared well with field reports for irrigated watersheds which identified 2003 as a good year for crop production in Afghanistan. An advantage of this method over the crop water balance method is that it identifies irrigated areas directly and thus helps estimate total irrigated area and its spatial distribution in a given region. In an effort to validate the annual spatial variability of irrigated areas and associated water use, we utilized a combination of multi-date high resolution images acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument and the QuickBird satellite along with time series of MODIS Normalized Difference Vegetation Index (NDVI). Assessment of the spatial variability of irrigated lands in each of the study locations showed good agreement between the model output and these ancillary image data. In addition, time series NDVI provided seasonal profiles of vegetation productivity that could be compared to both the timing and magnitude of the modeled seasonal ET. We found that the timing of peak seasonal water use corresponded more with atmospheric demand than with timing of maximum NDVI.

  8. Estimated demand for agricultural water for irrigation use in New Jersey, 1990

    USGS Publications Warehouse

    Titus, E.O.; Clawges, R.M.; Qualls, C.L.

    1990-01-01

    As part of an effort to determine if an adequate supply of agricultural water for irrigation use will be available to farmers, the U.S. Geological Survey prepared preliminary estimates of demand for agricultural water for irrigation use for the year 1990 on the basis of six possible scenarios. These scenarios incorporate normal and drought climatic conditions and three alternative estimates of the total acreage of farmland that may be irrigated in 1990. Preliminary estimates of water demand based on soil-moisture deficits were made using methods for calculating climatic water budgets. These estimates ranged from 3.0 billion gal/growing season (May through September), under normal climatic conditions and a 2% annual decline in irrigated acreage since 1984, to 28. 9 billion gal/growing season, under drought conditions and a 2% annual increase in irrigated acreage since 1984. Preliminary estimates of water demand made for the 1986 growing season reasonably approximate reported water use for that period. (USGS)

  9. Evaluation of sampling methods used to estimate irrigation pumpage in Chase, Dundy, and Perkins counties, Nebraska

    USGS Publications Warehouse

    Heimes, F.J.; Luckey, R.R.; Stephens, D.M.

    1986-01-01

    Combining estimates of applied irrigation water, determined for selected sample sites, with information on irrigated acreage provides one alternative for developing areal estimates of groundwater pumpage for irrigation. The reliability of this approach was evaluated by comparing estimated pumpage with metered pumpage for two years for a three-county area in southwestern Nebraska. Meters on all irrigation wells in the three counties provided a complete data set for evaluation of equipment and comparison with pumpage estimates. Regression analyses were conducted on discharge, time-of-operation, and pumpage data collected at 52 irrigation sites in 1983 and at 57 irrigation sites in 1984 using data from inline flowmeters as the independent variable. The standard error of the estimate for regression analysis of discharge measurements made using a portable flowmeter was 6.8% of the mean discharge metered by inline flowmeters. The standard error of the estimate for regression analysis of time of operation determined from electric meters was 8.1% of the mean time of operation determined from in-line and 15.1% for engine-hour meters. Sampled pumpage, calculated by multiplying the average discharge obtained from the portable flowmeter by the time of operation obtained from energy or hour meters, was compared with metered pumpage from in-line flowmeters at sample sites. The standard error of the estimate for the regression analysis of sampled pumpage was 10.3% of the mean of the metered pumpage for 1983 and 1984 combined. The difference in the mean of the sampled pumpage and the mean of the metered pumpage was only 1.8% for 1983 and 2.3% for 1984. Estimated pumpage, for each county and for the study area, was calculated by multiplying application (sampled pumpage divided by irrigated acreages at sample sites) by irrigated acreage compiled from Landsat (Land satellite) imagery. Estimated pumpage was compared with total metered pumpage for each county and the study area

  10. COMPARISON OF METHODS FOR ESTIMATING GROUND-WATER PUMPAGE FOR IRRIGATION.

    USGS Publications Warehouse

    Frenzel, Steven A.

    1985-01-01

    Ground-water pumpage for irrigation was measured at 32 sites on the eastern Snake River Plain in southern Idaho during 1983. Pumpage at these sites also was estimated by three commonly used methods, and pumpage estimates were compared to measured values to determine the accuracy of each estimate. Statistical comparisons of estimated and metered pumpage using an F-test showed that only estimates made using the instantaneous discharge method were not significantly different ( alpha equals 0. 01) from metered values. Pumpage estimates made using the power consumption method reflect variability in pumping efficiency among sites. Pumpage estimates made using the crop-consumptive use method reflect variability in water-management practices. Pumpage estimates made using the instantaneous discharge method reflect variability in discharges at each site during the irrigation season.

  11. Crop-specific seasonal estimates of irrigation water demand in South Asia

    NASA Astrophysics Data System (ADS)

    Biemans, H.; Siderius, C.; Mishra, A.; Ahmad, B.

    2015-08-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight in these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation water demand resulting from the typical practice of multiple-cropping in South Asia was accounted for by introducing double-cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest subnational statistics of India, Pakistan, Bangladesh and Nepal. The representation of seasonal land use and more accurate cropping periods lead to lower estimates of irrigation water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation water demand differs sharply between seasons and regions; in Pakistan, winter (Rabi) and summer (Kharif) irrigation demands are almost equal, whereas in Bangladesh the Rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply vs. rain decreases sharply from west to east. Given the size and importance of South Asia, improved regional estimates of food production and its irrigation water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple-cropping and monsoon-dependent planting dates should not be ignored.

  12. Crop-specific seasonal estimates of irrigation-water demand in South Asia

    NASA Astrophysics Data System (ADS)

    Biemans, Hester; Siderius, Christian; Mishra, Ashok; Ahmad, Bashir

    2016-05-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight into these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation-water demand resulting from the typical practice of multiple cropping in South Asia was accounted for by introducing double cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest state-level statistics of India, Pakistan, Bangladesh and Nepal. The improvements in seasonal land use and cropping periods lead to lower estimates of irrigation-water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation-water demand differs sharply between seasons and regions; in Pakistan, winter (rabi) and monsoon summer (kharif) irrigation demands are almost equal, whereas in Bangladesh the rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply versus rain decreases sharply from west to east. Given the size and importance of South Asia improved regional estimates of food production and its irrigation-water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple cropping and monsoon-dependent planting dates should not be ignored.

  13. Irrigation Trials for ET Estimation and Water Management in California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Martin, F.; Lund, C.; Melton, F. S.

    2012-12-01

    Accurate estimation of crop evapotranspiration (ETc) can support efficient irrigation water management, which in turn brings benefits including surface water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality assurance. Past research in California has revealed strong relationships between canopy fractional cover (Fc) and ETc of certain specialty crops, while additional research has shown the potential of monitoring Fc by satellite remote sensing. California's Central Coast is the leading region of cool season vegetable production in the U.S. Monterey County alone produces more than 80,000 ha of lettuce and broccoli (about half of U.S. production), valued at $1.5 billion in 2009. Under this study, we are conducting ongoing irrigation trials on these crops at the USDA Agricultural Research Station (Salinas) to compare irrigation scheduling via plant-based ETc approaches, by way of Fc, with current industry standard-practice. The following two monitoring approaches are being evaluated - 1) a remote sensing model employed by NASA's prototype Satellite Irrigation Management System, and 2) an online irrigation scheduling tool, CropManage, recently developed by U.C. Cooperative Extension. Both approaches utilize daily grass-reference ETo data as provided by the California Irrigation Management Irrigation System (CIMIS). A sensor network is deployed to monitor applied irrigation, volumetric soil water content, soil water potential, deep drainage, and standard meteorologic variables in order to derive ETc by a water balance approach. Evaluations of crop yield and crop quality are performed by the research team and by commercial growers. Initial results to-date indicate that applied water reductions based on Fc measurements are possible with little-to-no impact on yield of crisphead lettuce (Lactuca sativa). Additional results for both lettuce and broccoli trials, conducted during summer-fall 2012, are presented with respect to

  14. Using MODIS Thermal Data for Estimating Actual Evapotranspiration From Irrigated Fields

    NASA Astrophysics Data System (ADS)

    Senay, G. B.; Budde, M.; Verdin, J. P.

    2006-12-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Recently, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and to some extent relative production using satellite derived data and simulation models in Africa, Central America and Afghanistan where ground-based monitoring is limited due to a scarcity of weather stations. The commonly used crop monitoring models use a crop water balance algorithm with inputs from satellite-derived rainfall. While these models provide useful monitoring for rain-fed agriculture, they are ineffective for irrigated areas. This study has focused on Afghanistan where over 80 percent of the agricultural production comes from irrigated agriculture. We implemented a simplified energy balance approach to monitor and assess the performance of irrigated agriculture in Afghanistan using the combination of 1-km thermal data and 250-m NDVI from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Up to 19 cloud free thermal and NDVI images were used for each year to estimate seasonal actual evapotranspiration (AET) for two major irrigation river basins (Kabul and Helmand) over 6 years (2000- 2005). Seasonal AET estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the different irrigated basins was indicative of the cropping patterns specific to the region. The results were comparable to field reports and watershed-wide crop water balance based estimates in that the 2003 seasonal AET was the highest of all six years. The advantage of this method over crop water balance methods is that the energy balance approach also helps identify spatial extents of irrigated fields and their spatial variability as opposed to a lumped watershed-wide assessment that can be obtained from large-scale water-balance models.

  15. Estimating the ratio of pond size to irrigated soybeans land in Mississippi: A case study

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Although more on-farm storage ponds have been constructed in recent years to mitigate groundwater resources depletion in Mississippi, little effort has been devoted to estimating the ratio of pond size to irrigated crop land based on pond matric and its hydrological conditions. Knowledge of this ra...

  16. How irrigation affects soil erosion estimates of RUSLE2

    Technology Transfer Automated Retrieval System (TEKTRAN)

    RUSLE2 is a robust and computationally efficient conservation planning tool that estimates soil, climate, and land management effects on sheet and rill erosion and sediment delivery from hillslopes, and also estimates the size distribution and clay enrichment of sediment delivered to the channel sys...

  17. Propagation of biases in humidity in the estimation of global irrigation water

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Hanasaki, N.; Takahashi, K.; Hijioka, Y.

    2015-07-01

    Future projections on irrigation water under a changing climate are highly dependent on meteorological data derived from general circulation models (GCMs). Since climate projections include biases, bias correction is widely used to adjust meteorological elements, such as the atmospheric temperature and precipitation, but less attention has been paid to biases in humidity. Hence, in many cases, uncorrected humidity data have been directly used to analyze the impact of future climate change. In this study, we examined how the biases remaining in the humidity data of five GCMs propagate into the estimation of irrigation water demand and consumption from rivers using the global hydrological model (GHM) H08. First, to determine the effects of humidity bias across GCMs, we ran H08 with GCM-based meteorological forcing data sets distributed by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). A state-of-the-art bias correction method was applied to the data sets without correcting biases in humidity. Differences in the monthly relative humidity amounted to 11.7 to 20.4 % RH (percentage relative humidity) across the GCMs and propagated into differences in the estimated irrigation water demand, resulting in a range between 1152.6 and 1435.5 km3 yr-1 for 1971-2000. Differences in humidity also propagated into future projections. Second, sensitivity analysis with hypothetical humidity biases of ±5 % RH added homogeneously worldwide revealed the large negative sensitivity of irrigation water abstraction in India and East China, which are heavily irrigated. Third, we performed another set of simulations with bias-corrected humidity data to examine whether bias correction of the humidity can reduce uncertainties in irrigation water across the GCMs. The results showed that bias correction, even with a primitive methodology that only adjusts the monthly climatological relative humidity, helped reduce uncertainties across the GCMs: by using bias-corrected humidity

  18. Using Satellite-based Evapotranspiration Estimation to Characterize Agricultural Irrigation Water Use

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Myint, S. W.; Hendrickx, J. M. H.

    2014-12-01

    The satellite-based evapotranspiration (ET) model permits estimation of water consumption across space and time in a systematic way. Developing tools to monitor water availability and water use is critical to meet future water shortage challenges in the American West. This study applied METRIC (Mapping Evapotranspiration at high Resolution and with Internalized Calibration) to 2001 Landsat imagery to estimate ET of various crop types in Phoenix. The total annual ET estimates are correlated well with the actual water use at the irrigation district level (r=0.99). We further incorporated a crop type map to estimate annual ET for the major crop types in the region, and to examine variability in crop water use among different irrigation districts. Our results show that alfalfa and double crops consume more water than other crop types with mean annual ET estimations of 1300 to 1580 mm/year, and that cotton uses more water (1162 mm/year) than corn (838 mm/year) and sorghum (829 mm/year) as expected. Crop water use varies from one irrigation district to another due to differences in soil quality, water quality, and farming practices. Results from our study suggest that the ET maps derived from METRIC can be used to quantify the spatial distribution of ET and to characterize agricultural water use by crop types at different spatial scales.

  19. Water required, water used, and potential water sources for rice irrigation, north coast of Puerto Rico

    USGS Publications Warehouse

    Roman-Mas, A. J.

    1988-01-01

    A 3-yr investigation was conducted to determine the water required and used (both consumed and applied) for irrigation in the rice-growing areas of Vega Baja, Manati, and Arecibo along the north coast. In addition, the investigation evaluated the water resources of each area with regard to the full development of rice farming areas. Based on experiments conducted at selected test farms, water required ranged from 3.13 to 5.25 acre-ft/acre/crop. The amount of water required varies with the wet and dry seasons. Rainfall was capable of supplying from 31 to 70% of the water required for the measured crop cycles. Statistical analyses demonstrated that as much as 95% of rainfall is potentially usable for rice irrigation. The amount of water consumed differed from the quantity required at selected test farms. The difference between the amount of water consumed and that required was due to unaccounted losses or gains, seepage to and from the irrigation and drainage canals, and lateral leakage through levees. Due to poor water-management practices, the amount of water applied to the farms was considerably larger than the sum of the water requirement and the unaccounted losses or gains. Rivers within the rice growing areas constitute the major water supply for rice irrigation. Full development of these areas will require more water than the rivers can supply. Efficient use of rainfall can significantly reduce the water demand from streamflow. The resulting water demand, however, would still be in excess of the amount available from streamflow. Groundwater development in the area is limited because of seawater intrusion in the aquifers underlying the rice-growing areas. Capture of seepage to the aquifers using wells located near streams, artificial recharge, and development of the deep artesian system can provide additional water for rice irrigation. (Author 's abstract)

  20. Evaluation and comparison of methods to estimate irrigation withdrawal for the National Water Census Focus Area Study of the Apalachicola-Chattahoochee-Flint River Basin in southwestern Georgia

    USGS Publications Warehouse

    Painter, Jaime A.; Torak, Lynn J.; Jones, John W.

    2015-09-30

    Methods to estimate irrigation withdrawal using nationally available datasets and techniques that are transferable to other agricultural regions were evaluated by the U.S. Geological Survey as part of the Apalachicola-Chattahoochee-Flint (ACF) River Basin focus area study of the National Water Census (ACF–FAS). These methods investigated the spatial, temporal, and quantitative distributions of water withdrawal for irrigation in the southwestern Georgia region of the ACF–FAS, filling a vital need to inform science-based decisions regarding resource management and conservation. The crop– demand method assumed that only enough water is pumped onto a crop to satisfy the deficit between evapotranspiration and precipitation. A second method applied a geostatistical regimen of variography and conditional simulation to monthly metered irrigation withdrawal to estimate irrigation withdrawal where data do not exist. A third method analyzed Landsat satellite imagery using an automated approach to generate monthly estimates of irrigated lands. These methods were evaluated independently and compared collectively with measured water withdrawal information available in the Georgia part of the ACF–FAS, principally in the Chattahoochee-Flint River Basin. An assessment of each method’s contribution to the National Water Census program was also made to identify transfer value of the methods to the national program and other water census studies. None of the three methods evaluated represent a turnkey process to estimate irrigation withdrawal on any spatial (local or regional) or temporal (monthly or annual) extent. Each method requires additional information on agricultural practices during the growing season to complete the withdrawal estimation process. Spatial and temporal limitations inherent in identifying irrigated acres during the growing season, and in designing spatially and temporally representative monitor (meter) networks, can belie the ability of the methods to

  1. Determining pomegranate water and nitrogen requirements with drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Despite being an ancient crop there is limited knowledge on the water and nitrogen (N) requirements of pomegranate. We conducted research at the University of California, Kearney Agricultural Research and Extension Center (KARE) to determine the water and nitrogen requirements of a developing pomegr...

  2. Evaluation of Irrigation Methods for Highbush Blueberry. I. Growth and Water Requirements of Young Plants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A study was conducted in a new field of northern highbush blueberry (Vaccinium corymbosum L. 'Elliott') to determine the effects of different irrigation methods on growth and water requirements of uncropped plants during the first 2 years after planting. The plants were grown on mulched, raised beds...

  3. Simulating Irrigation Requirements And Water Withdrawals: The Role Of Agricultural Irrigation In Basin Hydrology And Non-Sustainable Water Use

    NASA Astrophysics Data System (ADS)

    Wisser, D.; Douglas, E. M.; Schumann, A. H.; Vörösmarty, C. J.

    2006-05-01

    The development of irrigation can cause drastic alterations of the water cycle both through changed evaporation patterns, water abstractions, and (in the case of paddy rice), increased percolation rates. The interactions of irrigation development and large-scale water cycles have traditionally not been accounted for in macroscale hydrological models. We use a modified version an existing water balance model (the WBM model) to explicitly consider the effects of irrigation on regional and continental water cycles. The irrigation module is based on the FAO-CROPWAT approach and uses a daily soil moisture balance to simulate crop consumptive water use. Time series of irrigated areas and the distribution of crops and cropping patterns are derived from a combination of remotely sensed data and national and sub-national statistics. An assessment is made of (1) how irrigation water is supplied and (2) how much of this water is abstracted in excess of the renewable water supply in the basin considering different time horizons. Using different scenarios of water availability and irrigation water demand, the response of irrigation water use to water supply and the potential threats to food security are investigated. Case studies in a few river basins that are heavily influenced by irrigated agriculture and that represent different regions of the world will be presented.

  4. Propagation of biases in humidity in the estimation of global irrigational water

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Hanasaki, N.; Takahashi, K.; Hijioka, Y.

    2015-01-01

    Future projections on irrigational water under a changing climate are highly dependent on meteorological data derived from general circulation models (GCMs). Since climate projections include biases, bias correction is widely used to adjust meteorological elements, such as the atmospheric temperature and precipitation, but less attention has been paid to biases in humidity. Hence, in many cases, raw GCM outputs have been directly used to analyze the impact of future climate change. In this study, we examined how the biases remaining in the humidity data of five GCMs propagate into the estimation of irrigational water demand and abstraction from rivers using the global hydrological model (GHM) H08. First, to determine the effects of humidity bias across GCMs, we used meteorological data sets to which a state-of-the-art bias correction method was applied except to the humidity. Uncorrected GCM outputs were used for the humidity. We found that differences in the monthly relative humidity of 11.7 to 20.4% RH (percent used as the unit of relative humidity) from observations across the GCMs caused the estimated irrigational water abstraction from rivers to range between 1217.7 and 1341.3 km3 yr-1 for 1971-2000. Differences in humidity also propagate into future projections. Second, sensitivity analysis with hypothetical humidity biases of ±5% RH added homogeneously worldwide revealed the large negative sensitivity of irrigational water abstraction in India and East China, which have high areal fractions of irrigated cropland. Third, we performed another set of simulations with bias-corrected humidity data to examine whether bias correction of the humidity can reduce uncertainties in irrigational water across the GCMs. The results showed that bias correction, even with a primitive methodology that only adjusts the monthly climatological relative humidity, helped reduce uncertainties across the GCMs. Although the GHMs have different sensitivities to atmospheric humidity

  5. Estimation of groundwater pumping as closure to the water balance of a semi-arid, irrigated agricultural basin

    NASA Astrophysics Data System (ADS)

    Ruud, Nels; Harter, Thomas; Naugle, Alec

    2004-09-01

    Groundwater pumping is frequently the least measured water balance component in semi-arid basins with significant agricultural production. In this article, we develop a GIS-based water balance model for estimating basin-scale monthly and annual groundwater pumping and apply it to a 2300 km 2 semi-arid, irrigated agricultural area in the southern San Joaquin Valley, California. Both, annual groundwater storage changes and pumping are estimated as closure terms. The local hydrology is dominated by distributed surface water supplies, limited precipitation, and large crop water uses; whereas basin-scale runoff generation and groundwater-to-surface water discharges are negligible. Groundwater represents a terminal long-term storage reservoir with distributed inputs and outputs. To capture the spatio-temporal variability in water management and water use, the study area is delineated into 26 water service areas and 9611 individual fields or land units. The model computes conveyance seepage losses external to districts; seepage losses within districts; and net applied surface water of each district. For each land unit, the model calculates the applied water demand; its allotment of delivered surface water; the groundwater pumping required to meet the balance of its applied water demand; and aquifer recharge resulting from deep percolation of applied water and precipitation. These spatially distributed components are aggregated to the basin scale. Estimated annual groundwater storage changes compared well to those computed by the water-table fluctuation method over the 30-year study period, providing an independent verification of the consumptive use estimation. Pumping accounted for as much as 80% of the total applied water in 'Critical' water years and as little as 30% in 'Wet' years. Pumping estimates are most sensitive to estimation uncertainty of soil available water. They show little sensitivity to estimation errors in effective root depth, irrigation efficiencies

  6. A field and statistical modeling study to estimate irrigation water use at Benchmark Farms study sites in southwestern Georgia, 1995-96

    USGS Publications Warehouse

    Fanning, Julia L.; Schwarz, Gregory E.; Lewis, William C.

    2001-01-01

    A benchmark irrigation monitoring network of farms located in a 32-county area in southwestern Georgia was established in 1995 to improve estimates of irrigation water use. A stratified random sample of 500 permitted irrigators was selected from a data base--maintained by the Georgia Department of Natural Resources, Georgia Environmental Protection Division, Water Resources Management Branch--to obtain 180 voluntary participants in the study area. Site-specific irrigation data were collected at each farm using running-time totalizers and noninvasive flowmeters. Data were collected and compiled for 50 farms for 1995 and 130 additional farms for the 1996 growing season--a total of 180 farms. Irrigation data collected during the 1996 growing season were compiled for 180 benchmark farms and used to develop a statistical model to estimate irrigation water use in 32 counties in southwestern Georgia. The estimates derived were developed from using a statistical approach know as "bootstrap analysis" that allows for the estimation of precision. Five model components--whether-to-irrigate, acres irrigated, crop selected, seasonal-irrigation scheduling, and the amount of irrigation applied--compose the irrigation model and were developed to reflect patterns in the data collected at Benchmark Farms Study area sites. The model estimated that peak irrigation for all counties in the study area occurred during July with significant irrigation also occurring during May, June, and August. Irwin and Tift were the most irrigated and Schley and Houston were the least irrigated counties in the study area. High irrigation intensity primarily was located along the eastern border of the study area; whereas, low irrigation intensity was located in the southwestern quadrant where ground water was the dominant irrigation source. Crop-level estimates showed sizable variations across crops and considerable uncertainty for all crops other than peanuts and pecans. Counties having the most

  7. Estimating nitrogen losses in furrow irrigated soil amended by compost using HYDRUS-2D model

    NASA Astrophysics Data System (ADS)

    Iqbal, Shahid; Guber, Andrey; Zaman Khan, Haroon; ullah, Ehsan

    2014-05-01

    Furrow irrigation commonly results in high nitrogen (N) losses from soil profile via deep infiltration. Estimation of such losses and their reduction is not a trivial task because furrow irrigation creates highly nonuniform distribution of soil water that leads to preferential water and N fluxes in soil profile. Direct measurements of such fluxes are impractical. The objective of this study was to assess applicability of HYDRUS-2D model for estimating nitrogen balance in manure amended soil under furrow irrigation. Field experiments were conducted in a sandy loam soil amended by poultry manure compost (PMC) and pressmud compost (PrMC) fertilizers. The PMC and PrMC contained 2.5% and 0.9% N and were applied at 5 rates: 2, 4, 6, 8 and 10 ton/ha. Plots were irrigated starting from 26th day from planting using furrows with 1x1 ridge to furrow aspect ratio. Irrigation depths were 7.5 cm and time interval between irrigations varied from 8 to 15 days. Results of the field experiments showed that approximately the same corn yield was obtained with considerably higher N application rates using PMC than using PrMC as a fertilizer. HYDRUS-2D model was implemented to evaluate N fluxes in soil amended by PMC and PrMC fertilizers. Nitrogen exchange between two pools of organic N (compost and soil) and two pools of mineral N (soil NH4-N and soil NO3-N) was modeled using mineralization and nitrification reactions. Sources of mineral N losses from soil profile included denitrification, root N uptake and leaching with deep infiltration of water. HYDRUS-2D simulations showed that the observed increases in N root water uptake and corn yields associated with compost application could not be explained by the amount of N added to soil profile with the compost. Predicted N uptake by roots significantly underestimated the field data. Good agreement between simulated and field-estimated values of N root uptake was achieved when the rate of organic N mineralization was increased

  8. Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Usman, M.; Liedl, R.; Awan, U. K.

    2015-06-01

    Reallocation of water resources in any irrigation scheme is only possible by detailed assessment of current irrigation performance. The performance of the Lower Chenab Canal (LCC) irrigation system in Pakistan was evaluated at large spatial and temporal scales. Evaporative Fraction (EF) representing the key element to assess the three very important performance indicators of equity, adequacy and reliability, was determined by the Surface Energy Balance Algorithm (SEBAL) using Moderate Resolution Imaging Spectroradiometer (MODIS) images. Spatially based estimations were performed at irrigation subdivisions, lower and upper LCC and, whole LCC scales, while temporal scales covered months, seasons and years for the study period from 2005 to 2012. Differences in consumptive water use between upper and lower LCC were estimated for different crops and possible water saving options were explored. The assessment of equitable water distribution indicates smaller coefficients of variation and hence less inequity within each subdivision except Sagar (0.08) and Bhagat (0.10). Both adequacy and reliability of water resources are found lower during kharif as compared to rabi with variation from head to tail reaches. Reliability is quite low from July to September and in February/March. This is mainly attributed to seasonal rainfalls. Average consumptive water use estimations indicate almost doubled water use (546 mm) in kharif as compared to (274 mm) in rabi with significant variability for different cropping years. Crop specific consumptive water use reveals rice and sugarcane as major water consumers with average values of 593 mm and 580 mm, respectively, for upper and lower LCC, followed by cotton and kharif fodder. The water uses for cotton are 555 mm and 528 mm. For kharif fodder, corresponding values are 525 mm and 494 mm for both regions. Based on the differences in consumptive water use, different land use land cover change scenarios were evaluated with regard to savings

  9. Minimum Irrigation Requirements for Cottonwood (Populus fremontii and P. deltoides) and Willow (Salix gooddingii) Grown in a Desert Environment

    NASA Astrophysics Data System (ADS)

    Glenn, E. P.; Hartwell, S.; Morino, K.; Nagler, P. L.

    2009-12-01

    Native tree plots have been established in riverine irrigation districts in the western U.S. to provide habitat for threatened and endangered birds. Information is needed on the minimum effective irrigation requirements of the target species. We summarize preliminary (or unpublished) findings of a study or cottonwood (Populus spp.) and willow (Salix gooddingii) trees that were grown for seven years in an outdoor plot in a desert environment in Tucson, Arizona to determine plant water use. Plants were allowed to achieve a nearly complete canopy cover over the first four years, then were subjected to three summer irrigation schedules: 6.2 mm d-1; 8.26 mm d-1 and 15.7 mm d-1. The lowest irrigation rate was sufficient to maintain growth and high leaf area index for cottonwoods over three years, but willows suffered partial die-back on this rate, and required 8.26 mm d-1 to maintain growth. These irrigation rates were required April 15 - September 15, but only 0.88 mm d-1 was required during the dormant periods of the year. Expressed as a fraction of reference crop evapotranspiration (ET/ETo), annual water requirements were 0.83 ETo for cottonwood and 1.01 ETo for willow, which includes irrigation plus precipitation. Current practices tend to over-irrigate restoration plots, and this study can provide guidelines for more efficient water use.

  10. Using FAO-56 model to estimate soil and crop water status: Application to a citrus orchard under regulated deficit irrigation

    NASA Astrophysics Data System (ADS)

    Provenzano, Giuseppe; Gonzàles-Altozano, Pablo; Manzano-Juàrez, Juan; Rallo, Giovanni

    2015-04-01

    Agro-hydrological models allow schematizing exchange processes in the soil-plant-atmosphere continuum (SPAC) on a wide range of spatial and temporal scales. Each section of the SPAC system is characterized by complex behaviours arising, for instance, the adaptive plant strategies in response to soil water deficit conditions. Regulated deficit irrigation (RDI) has been considered as one of the potential strategies for sustainable crop production in regions characterized by water scarcity. Moreover, reducing water supply at certain growth stages can improve water use efficiency (WUE) and quality of productions, without affecting significantly crop yield. Environmental policy requires to improve WUE in crops with high water requirements, so that it is necessary to identify easy-to-use tools aimed at irrigation water saving strategies, without the need of tedious and time consuming experiments. Accurate evaluation of crop water status and actual transpiration plays a key role in irrigation scheduling under RDI, in order to avoid that water stress becomes too severe and detrimental to yield and fruit quality. Objective of the research was to assess the suitability of FAO56 agro-hydrological model (Allen et al., 1998) on citrus orchards under different water deficit conditions, to estimate soil and crop water status. The ability of the model to predict actual crop water stress was evaluated based on the temporal dynamic of simulated relative transpirations and on the similarities with the corresponding dynamic of measured midday stem water potentials, MSWP. During dry periods, simulated relative crop transpiration was correlated to MSWP with the aim to assess the model ability to predict crop water stress and to identify "plant-based" irrigation scheduling parameters. Experiments were carried out during three years from 2009 and 2011 in Senyera (39° 3' 35.4" N, 0° 30' 28.2" W), Spain, in a commercial orchard planted with Navelina/Cleopatra citrus trees. Three RDI

  11. Irrigated rice area estimation using remote sensing techniques: Project's proposal and preliminary results. [Rio Grande do Sul, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Deassuncao, G. V.; Moreira, M. A.; Novaes, R. A.

    1984-01-01

    The development of a methodology for annual estimates of irrigated rice crop in the State of Rio Grande do Sul, Brazil, using remote sensing techniques is proposed. The project involves interpretation, digital analysis, and sampling techniques of LANDSAT imagery. Results are discussed from a preliminary phase for identifying and evaluating irrigated rice crop areas in four counties of the State, for the crop year 1982/1983. This first phase involved just visual interpretation techniques of MSS/LANDSAT images.

  12. Estimation of actual irrigation amount and its impact on groundwater depletion: A case study in the Hebei Plain, China

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolong; Shi, Liangsheng; Zeng, Jicai; Yang, Jinzhong; Zha, Yuanyuan; Yao, Yunjun; Cao, Guoliang

    2016-12-01

    Irrigation water is an important but missing hydrological cycle component in the region with intensive agricultural irrigation, due to the lack of monitoring facilities. The Hebei Plain, suffering the most severe groundwater depletion in China for agriculture production, provides an ideal background to study historical agricultural water consumption and its dependence on groundwater exploitation. This paper investigated the method of retrieving the spatial-temporal irrigation amount from multiple data sets of different sources and different scales. Comprehensive data including 21 years of satellite-based data, ground-based data, and four years of tracer experiment data are synthesized to implement the soil water balance. We proposed a modified soil water balance framework by relying on as much as possible of easily available data. Our results showed that the multi-mean annual irrigation amount in the Hebei Plain is 317 mm, and mean irrigation-to-evapotranspiration ratio reaches 50.8% in recent two decades. Moreover, the precipitation distribution, plant structure, and agricultural intensity result in significantly spatiotemporal variation in irrigation and irrigation-to-evapotranspiration ratio, while however has not been addressed by previous studies. Deep percolation, ignored by many soil water balance models, was shown to be unneglectable. The estimated actual irrigation amount, together with groundwater level data, are valuable to obtain a further understanding on groundwater depletion. The diverse groundwater depletion situation in the Hebei Plain indicated the importance of recognizing the groundwater utilization patterns at a smaller scale in the regional-scale groundwater resources management. This work showed the feasibility of estimating the irrigation amount using simultaneously different types of data and revealed the spatiotemporal characteristics of agriculture water consumption and associated groundwater depletion in the Hebei Plain.

  13. Use of Landsat imagery to estimate ground-water pumpage for irrigation on the Columbia Plateau in eastern Washington, 1985

    USGS Publications Warehouse

    Van Metre, P.C.; Seevers, Paul

    1991-01-01

    A method for estimating ground-water pumpage for irrigation was developed for the Columbia Plateau in eastern Washington. The method combines water-application rates estimated from pumpage data with acreage of irrigated crops that was mapped by using Landsat imagery. The study area consisted of Grant, Lincoln, Adams, and Franklin Counties, an area of approximately 8,900 square miles, and accounts for approximately three-fourths of the ground-water pumpage in the Columbia Plateau in eastern Washington. Data from two passes of Landsat's multispectral scanner were analyzed by using a spectral band ratioing procedure to map irrigated crops for the study area. Data from one pass of Landsat's thematic mapper, covering approximately two-thirds of the study area, also were analyzed for determining irrigated crops in the area resulting in a 6-percent improvement in accuracy over the multispectral scanner analysis. A total of 576 annual water-application rates associated with particular crops, for the 1982 through 1985 seasons, were calculated. A regression equation was developed for estimating annual water-application rates as a function of crop type, annual precipitation, irrigation system type, and available water capacity of the soil. Crops were grouped into three water-use categories: (1) small grains, primarily wheat and barley; (2) high water-use crops consisting of corn, alfalfa, and potatoes; and (3) miscellaneous vegetable and row crops. Annual water-application rates, expressed as a depth of water, then were multiplied by irrigated area determined by Landsat to estimate a volume of water pumped for irrigation for 1985-620,000 acre-feet. An assessment of accuracy for estimating pumpage for 28 of the sites showed that total predicted pumpage was within 4 percent of the total observed pumpage.

  14. Estimation of surface energy fluxes using surface renewal and flux variance techniques over an advective irrigated agricultural site

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of surface energy fluxes over irrigated agriculture is needed to monitor crop water use. Estimates are commonly done using well-established techniques such as eddy covariance (EC) and weighing lysimetry, but implementing these to collect spatially distributed observations is complex and c...

  15. Estimating crop water requirements of a command area using multispectral video imagery and geographic information systems

    NASA Astrophysics Data System (ADS)

    Ahmed, Rashid Hassan

    This research focused on the potential use of multispectral video remote sensing for irrigation water management. Two methods for estimating crop evapotranspiration were investigated, the energy balance estimation from multispectral video imagery and use of reflectance-based crop coefficients from multitemporal multispectral video imagery. The energy balance method was based on estimating net radiation, and soil and sensible heat fluxes, using input from the multispectral video imagery. The latent heat flux was estimated as a residual. The results were compared to surface heat fluxes measured on the ground. The net radiation was estimated within 5% of the measured values. However, the estimates of sensible and soil heat fluxes were not consistent with the measured values. This discrepancy was attributed to the methods for estimating the two fluxes. The degree of uncertainty in the parameters used in the methods made their application too limited for extrapolation to large agricultural areas. The second method used reflectance-based crop coefficients developed from the multispectral video imagery using alfalfa as a reference crop. The daily evapotranspiration from alfalfa was estimated using a nearby weather station. With the crop coefficients known for a canal command area, irrigation scheduling was simulated using the soil moisture balance method. The estimated soil moisture matched the actual soil moisture measured using the neutron probe method. Also, the overall water requirement estimated by this method was found to be in close agreement with the canal water deliveries. The crop coefficient method has great potential for irrigation management of large agricultural areas.

  16. Estimating groundwater evapotranspiration from irrigated cropland incorporating root zone soil texture and moisture dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Xingwang; Huo, Zailin; Feng, Shaoyuan; Guo, Ping; Guan, Huade

    2016-12-01

    Estimating evapotranspiration from groundwater (ETg) is of importance to understanding water cycle and agricultural water management. Traditional ETg estimation was developed for regional steady condition and is difficult to be used for cropland where ETg changes with crop growth and irrigation schemes. In the present study, a new method estimating daily ETg during the crop growing season was developed. In this model, the effects of crop growth stage, climate condition, groundwater depth and soil moisture are considered. The method was tested with controlled lysimeter experiments of winter wheat including five controlled water table depths and four soil profiles of different textures. The simulated ETg is in good agreement with the measured data for four soil profiles and different depths to groundwater table. Coefficient of determination (R2) and coefficient of efficiency (NSE) are mostly larger than 0.85 and 0.70, respectively. This result suggests that the new method incorporating both soil texture and moisture dynamics can be used to estimate average daily groundwater evapotranspiration in cropland and contribute to quantifying the field water cycle.

  17. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine.

    PubMed

    Möller, M; Alchanatis, V; Cohen, Y; Meron, M; Tsipris, J; Naor, A; Ostrovsky, V; Sprintsin, M; Cohen, S

    2007-01-01

    Achieving high quality wine grapes depends on the ability to maintain mild to moderate levels of water stress in the crop during the growing season. This study investigates the use of thermal imaging for monitoring water stress. Experiments were conducted on a wine-grape (Vitis vinifera cv. Merlot) vineyard in northern Israel. Irrigation treatments included mild, moderate, and severe stress. Thermal and visible (RGB) images of the crop were taken on four days at midday with a FLIR thermal imaging system and a digital camera, respectively, both mounted on a truck-crane 15 m above the canopy. Aluminium crosses were used to match visible and thermal images in post-processing and an artificial wet surface was used to estimate the reference wet temperature (T(wet)). Monitored crop parameters included stem water potential (Psi(stem)), leaf conductance (g(L)), and leaf area index (LAI). Meteorological parameters were measured at 2 m height. CWSI was highly correlated with g(L) and moderately correlated with Psi(stem). The CWSI-g(L) relationship was very stable throughout the season, but for that of CWSI-Psi(stem) both intercept and slope varied considerably. The latter presumably reflects the non-direct nature of the physiological relationship between CWSI and Psi(stem). The highest R(2) for the CWSI to g(L) relationship, 0.91 (n=12), was obtained when CWSI was computed using temperatures from the centre of the canopy, T(wet) from the artificial wet surface, and reference dry temperature from air temperature plus 5 degrees C. Using T(wet) calculated from the inverted Penman-Monteith equation and estimated from an artificially wetted part of the canopy also yielded crop water-stress estimates highly correlated with g(L) (R(2)=0.89 and 0.82, respectively), while a crop water-stress index using 'theoretical' reference temperatures computed from climate data showed significant deviations in the late season. Parameter variability and robustness of the different CWSI estimates

  18. Use of Sharpened Land Surface Temperature for Daily Evapotranspiration Estimation over Irrigated Crops in Arid Lands

    NASA Astrophysics Data System (ADS)

    Rosas Aguilar, J.; McCabe, M. F.; Houborg, R.; Gao, F.

    2014-12-01

    Satellite remote sensing provides data on land surface characteristics, useful for mapping land surface energy fluxes and evapotranspiration (ET). Land-surface temperature (LST) derived from thermal infrared (TIR) satellite data has been reliably used as a remote indicator of ET and surface moisture status. However, TIR imagery usually operates at a coarser resolution than that of shortwave sensors on the same satellite platform, making it sometimes unsuitable for monitoring of field-scale crop conditions. This study applies the data mining sharpener (DMS; Gao et al., 2012) technique to data from the Moderate Resolution Imaging Spectroradiometer (MODIS), which sharpens the 1 km thermal data down to the resolution of the optical data (250-500 m) based on functional LST and reflectance relationships established using a flexible regression tree approach. The DMS approach adopted here has been enhanced/refined for application over irrigated farming areas located in harsh desert environments in Saudi Arabia. The sharpened LST data is input to an integrated modeling system that uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI) in conjunction with model reanalysis data and remotely sensed data from polar orbiting (MODIS) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate daily estimates of evapotranspiration. Results are evaluated against available flux tower observations over irrigated maize near Riyadh in Saudi Arabia. Successful monitoring of field-scale changes in surface fluxes are of importance towards an efficient water use in areas where fresh water resources are scarce and poorly monitored. Gao, F.; Kustas, W.P.; Anderson, M.C. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote Sens. 2012, 4, 3287-3319.

  19. Use of landsat thematic mapper data to identify crop types and estimate irrigated acreage, Uvalde and Medina counties, Texas, 1991

    USGS Publications Warehouse

    Raymond, L.H.; McFarlane, S.I.

    1994-01-01

    The total number of acres of irrigated crops estimated using Landsat TM data was about 9 percent lower in Uvalde County and about 13 percent lower in Medina County than the number of acres calculated from data reported by the U.S. Department of Agriculture, Agricultural Stabilization and Conservation Service (ASCS). The total quantity of water pumped from the Edwards aquifer for irrigation in the two counties in 1991, about 83,000 acre-feet, was about 5 percent greater than the quantity calculated from data reported by the ASCS.

  20. Estimating the own-price elasticity of demand for irrigation water in the Musi catchment of India

    NASA Astrophysics Data System (ADS)

    Davidson, Brian; Hellegers, Petra

    2011-10-01

    SummaryAs irrigation water is an input into a production process, its demand must be 'derived'. According to theory, a derived demand schedule should be downward sloping and dependent on the outputs produced from it, the prices of other inputs and the price of the water itself. Problems arise when an attempt is made to estimate the demand for irrigation water and the resulting own-price elasticity of demand, as the uses to which water is put are spatially, temporarily and geographically diverse. Because water is not generally freely traded, what normally passes for an estimate of the own-price elasticity of demand for irrigation water is usually a well argued assumption or an estimate that is derived from a simulation model of a hypothesized producer. Such approaches tend to provide an inadequate explanation of what is an extremely complex and important relationship. An adequate explanation of the relationship between the price and the quantity demanded of water should be one that not only accords with the theoretical expectations, but also accounts for the diversity of products produced from water (which includes the management practices of farmers), the seasons in which it is used and over the region within which it is used. The objective in this article is to present a method of estimating the demand curve for irrigation water. The method uses actual field data which is collated using the Residual Method to determine the value of the marginal product of water deployed over a wide range of crops, seasons and regions. These values of the marginal products, all which must lie of the input demand schedule for water, are then ordered from the highest value to the lowest. Then, the amount of irrigation water used for each product, in each season and in each region is cumulatively summed over the range of uses according to the order of the values of the marginal products. This data, once ordered, is then used to econometrically estimate the demand schedule from which

  1. Estimates of deep percolation beneath native vegetation, irrigated fields, and the Amargosa-River Channel, Amargosa Desert, Nye County, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.

    2003-01-01

    The presence and approximate rates of deep percolation beneath areas of native vegetation, irrigated fields, and the Amargosa-River channel in the Amargosa Desert of southern Nevada were evaluated using the chloride mass-balance method and inferred downward velocities of chloride and nitrate peaks. Estimates of deep-percolation rates in the Amargosa Desert are needed for the analysis of regional ground-water flow and transport. An understanding of regional flow patterns is important because ground water originating on the Nevada Test Site may pass through the area before discharging from springs at lower elevations in the Amargosa Desert and in Death Valley. Nine boreholes 10 to 16 meters deep were cored nearly continuously using a hollow-stem auger designed for gravelly sediments. Two boreholes were drilled in each of three irrigated fields in the Amargosa-Farms area, two in the Amargosa-River channel, and one in an undisturbed area of native vegetation. Data from previously cored boreholes beneath undisturbed, native vegetation were compared with the new data to further assess deep percolation under current climatic conditions and provide information on spatial variability. The profiles beneath native vegetation were characterized by large amounts of accumulated chloride just below the root zone with almost no further accumulation at greater depths. This pattern is typical of profiles beneath interfluvial areas in arid alluvial basins of the southwestern United States, where salts have been accumulating since the end of the Pleistocene. The profiles beneath irrigated fields and the Amargosa-River channel contained more than twice the volume of water compared to profiles beneath native vegetation, consistent with active deep percolation beneath these sites. Chloride profiles beneath two older fields (cultivated since the 1960?s) as well as the upstream Amargosa-River site were indicative of long-term, quasi-steady deep percolation. Chloride profiles beneath the

  2. Estimation of recharge from irrigation flows; Analysis of field and laboratory data and modeling.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This work is aimed at quantifying aquifer recharge due to irrigation in the Campo de Cartagena (SE Spain). A study of recharge was conducted on an experiment plot cropped in lettuce and irrigated with a drip system. The physico-chemical and hydraulic properties of the vadose zone were characterized ...

  3. A ROOT ZONE MODELLING APPROACH TO ESTIMATING GROUNDWATER RECHARGE FROM IRRIGATED AREAS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In irrigated semi-arid and arid regions, accurate knowledge of groundwater recharge is important for the sustainable management of scarce water resources. The Campo de Cartagena area of southeast Spain is a semi-arid region where irrigation return flow accounts for a substantial portion of recharge....

  4. A stochastic simulation-optimization approach for estimating highly reliable soil tension threshold values in sensor-based deficit irrigation

    NASA Astrophysics Data System (ADS)

    Kloss, S.; Schütze, N.; Walser, S.; Grundmann, J.

    2012-04-01

    In arid and semi-arid regions where water is scarce, farmers heavily rely on irrigation in order to grow crops and to produce agricultural commodities. The variable and often severely limited water supply thereby poses a serious challenge for farmers to cope with and demand sophisticated irrigation strategies that allow an efficient management of the available water resources. The general aim is to increase water productivity (WP) and one of these strategies to achieve this goal is controlled deficit irrigation (CDI). One way to realize CDI is by defining soil water status specific threshold values (either in soil tension or moisture) at which irrigation cycles are triggered. When utilizing CDI, irrigation control is of utmost importance and yet thresholds are likely chosen by trial and error and thus unreliable. Hence, for CDI to be effective systematic investigations for deriving reliable threshold values that account for different CDI strategies are needed. In this contribution, a method is presented that uses a simulation-based stochastic approach for estimating threshold values with a high reliability. The approach consist of a weather generator offering statistical significance to site-specific climate series, an optimization algorithm that determines optimal threshold values under limiting waters supply, and a crop model for simulating plant growth and water consumption. The study focuses on threshold values of soil tension for different CDI strategies. The advantage of soil-tension-based threshold values over soil-moisture-based lies in their universal and soil type independent applicability. The investigated CDI strategies comprised schedules of constant threshold values, crop development stage dependent threshold values, and different minimum irrigation intervals. For practical reasons, fixed irrigation schedules were tested as well. Additionally, a full irrigation schedule served as reference. The obtained threshold values were then tested in field

  5. Estimating irrigation water use and withdrawal of ground water on the High Plains, U.S.A.

    USGS Publications Warehouse

    Wray, J.R.

    1982-01-01

    In four decades following the Dust Bowl days of the 1930's, extensive areas of dry farming and rangeland on the semi-arid U.S. High Plains were transformed into a vast region of irrigated oases, producing meat and grain for much of the world. The agricultural economy has experienced such rapid growth in part because of the availability of ground water and because of development of new irrigation technology to use that water for agriculture. However, more water is being used than is being replaced. To estimate both the volume of water withdrawn and the regional scope of the problem a technique has been developed that combines multispectral data from Earth-orbiting satellite with known pumpage data for the same growing season. The location and extent of irrigated cropland-some with different crops watered at different times-is inventoried using computer-assisted analysis of the data from Landsat. The amount of water used is estimated by multiplying and summing surface area of irrigated agriculture and the average measured pumpage from sampled sites. Published findings to date are cited in the Selected References. All suggest transferability of a promising technology to the study of land transformation processes elsewhere. ?? 1983.

  6. Unmanned Aerial Vehicles unique cost estimating requirements

    NASA Astrophysics Data System (ADS)

    Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.

    Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.

  7. Characterizing irrigation water requirements for rice production from the Arkansas Rice Research Verification Program

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study investigated rice irrigation water use in the University of Arkansas Rice Research Verification Program between the years of 2003 and 2011. Irrigation water use averaged 747 mm (29.4 inches) over the nine years. A significant 40% water savings was reported for rice grown under a zero gr...

  8. Water-Energy balance in pressure irrigation systems

    NASA Astrophysics Data System (ADS)

    Sánchez, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco V.; Castañón, Guillermo; Gil, María; Benitez, Javier

    2013-04-01

    Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure -sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. Automation techniques become easier after modernization, and operation management plays an important role in energy efficiency issues. Modern systems use to include elevated water reservoirs with enough capacity to irrigate during peak water demand period about 16 to 48 h. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems according to their management possibilities. Also is an objective to estimate the fraction of the water reservoirs available along the irrigation campaign for storing the energy from renewable sources during their availability periods. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity and new opportunities in the renewable energy field.

  9. Planning and Estimation of Operations Support Requirements

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn E.; Barley, Bryan; Bacskay, Allen; Clardy, Dennon

    2010-01-01

    Life Cycle Cost (LCC) estimates during the proposal and early design phases, as well as project replans during the development phase, are heavily focused on hardware development schedules and costs. Operations (phase E) costs are typically small compared to the spacecraft development and test costs. This, combined with the long lead time for realizing operations costs, can lead to de-emphasizing estimation of operations support requirements during proposal, early design, and replan cost exercises. The Discovery and New Frontiers (D&NF) programs comprise small, cost-capped missions supporting scientific exploration of the solar system. Any LCC growth can directly impact the programs' ability to fund new missions, and even moderate yearly underestimates of the operations costs can present significant LCC impacts for deep space missions with long operational durations. The National Aeronautics and Space Administration (NASA) D&NF Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that 4 out of the 5 missions studied had significant overruns at or after launch due to underestimation of the complexity and supporting requirements for operations activities; the fifth mission had not launched at the time of the mission. The drivers behind these overruns include overly optimistic assumptions regarding the savings resulting from the use of heritage technology, late development of operations requirements, inadequate planning for sustaining engineering and the special requirements of long duration missions (e.g., knowledge retention and hardware/software refresh), and delayed completion of ground system development work. This paper updates the D

  10. Evaluation of the use of remote-sensing data to identify crop types and estimate irrigated acreage, Uvalde and Medina counties, Texas, 1989

    USGS Publications Warehouse

    Raymond, L.H.; Nalley, G.M.; Rettman, P.L.

    1992-01-01

    Results were verified using crop acreages reported by the U.S. Department of Agriculture, Agricultural Stabilization and Conservation Service (ASCS). The total areas for all irrigated crops estimated using remote-sensing data were about 8 percent higher for Uvalde County and about 4 percent higher for Medina County than the areas reported by the ASCS. Irrigated-crop areas subsequently were multiplied by the respective duties of water to calculate the total quantity of water pumped from the aquifer for irrigation. Pumpage did not differ for the two estimates of crop areas for Uvalde County and differed by about 3 percent for Medina County.

  11. Evaluation of SEBS for estimation of actual evapotranspiration using ASTER satellite data for irrigation areas of Australia

    NASA Astrophysics Data System (ADS)

    Ma, Weiqiang; Hafeez, Mohsin; Ishikawa, Hirohiko; Ma, Yaoming

    2013-05-01

    Spatial knowledge of land surface evapotranspiration (ET) is of prime interest for environmental applications, such as optimizing irrigation water use, irrigation system performance, crop water deficit, drought mitigation strategies, and accurate initialization of climate prediction models especially in arid and semiarid catchments where water shortage is a critical problem. The recent drought in Australia and concerns about climate change have highlighted the need to manage water resources more sustainably especially in the Murrumbidgee catchment which utilizes bulk water for food production. This study deals with the application of a Surface Energy Balance System (SEBS) algorithm based on Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) data and field observations has been proposed and tested for deriving ET over Coleambally Irrigation Area, located in the southwest of NSW, Australia. We have used 12 ASTER scenes covering the time period of 2002, 2003, 2004, 2005, 2006, and 2009 for estimating the actual ET over the study area. To validate the proposed methodology, the ground-measured ET was compared to the ASTER-derived actual ET values for the study area. The derived ET value over the study area is much closer to the field measurement. From the remote sensing results and observations, the root mean square error is 0.89 and the mean absolute percentage difference is 2.87 %, which demonstrate the reasonability of SEBS ET estimation for the study area.

  12. Estimating spatially and temporally varying recharge and runoff from precipitation and urban irrigation in the Los Angeles Basin, California

    USGS Publications Warehouse

    Hevesi, Joseph A.; Johnson, Tyler D.

    2016-10-17

    A daily precipitation-runoff model, referred to as the Los Angeles Basin watershed model (LABWM), was used to estimate recharge and runoff for a 5,047 square kilometer study area that included the greater Los Angeles area and all surface-water drainages potentially contributing recharge to a 1,450 square kilometer groundwater-study area underlying the greater Los Angeles area, referred to as the Los Angeles groundwater-study area. The recharge estimates for the Los Angeles groundwater-study area included spatially distributed recharge in response to the infiltration of precipitation, runoff, and urban irrigation, as well as mountain-front recharge from surface-water drainages bordering the groundwater-study area. The recharge and runoff estimates incorporated a new method for estimating urban irrigation, consisting of residential and commercial landscape watering, based on land use and the percentage of pervious land area.The LABWM used a 201.17-meter gridded discretization of the study area to represent spatially distributed climate and watershed characteristics affecting the surface and shallow sub-surface hydrology for the Los Angeles groundwater study area. Climate data from a local network of 201 monitoring sites and published maps of 30-year-average monthly precipitation and maximum and minimum air temperature were used to develop the climate inputs for the LABWM. Published maps of land use, land cover, soils, vegetation, and surficial geology were used to represent the physical characteristics of the LABWM area. The LABWM was calibrated to available streamflow records at six streamflow-gaging stations.Model results for a 100-year target-simulation period, from water years 1915 through 2014, were used to quantify and evaluate the spatial and temporal variability of water-budget components, including evapotranspiration (ET), recharge, and runoff. The largest outflow of water from the LABWM was ET; the 100-year average ET rate of 362 millimeters per year (mm

  13. Molecular techniques in ecohealth research toolkit: facilitating estimation of aggregate gastroenteritis burden in an irrigated periurban landscape.

    PubMed

    Tserendorj, Ariuntuya; Anceno, Alfredo J; Houpt, Eric R; Icenhour, Crystal R; Sethabutr, Orntipa; Mason, Carl S; Shipin, Oleg V

    2011-09-01

    Assessment of microbial hazards associated with certain environmental matrices, livelihood strategies, and food handling practices are constrained by time-consuming conventional microbiological techniques that lead to health risk assessments of narrow geographic or time scope, often targeting very few pathogens. Health risk assessment based on one or few indicator organisms underestimates true disease burden due a number of coexisting causative pathogens. Here, we employed molecular techniques in a survey of Cryptosporidium parvum, Giardia lamblia, Campylobacter jejuni, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., Shigella spp., Vibrio cholera, and Rotavirus A densities in canal water with respect to seasonality and spatial distribution of point-nonpoint pollution sources. Three irrigational canals stretching across nearly a 150-km(2) periurban landscape, traditionally used for agricultural irrigation but function as vital part of municipal wastewater stabilization in recent years, were investigated. Compiled stochastic data (pathogen concentration, susceptible populations) and literature-obtained deterministic data (pathogen dose-response model parameter values) were used in estimating waterborne gastroenteritis burden. Exposure scenarios include swimming or fishing, consuming canal water-irrigated vegetables, and ingesting or inhaling water aerosols while working in canal water-irrigated fields. Estimated annual gastroenteritis burden due individual pathogens among the sampling points was -10.6log(10) to -2.2log(10) DALYs. Aggregated annual gastroenteritis burden due all the target pathogens per sampling point was -3.1log(10) to -1.9log(10) DALYs, far exceeding WHO acceptable limit of -6.0log(10) DALYs. The present approach will facilitate the comprehensive collection of surface water microbiological baseline data and setting of benchmarks for interventions aimed at reducing microbial hazards in similar landscapes worldwide.

  14. Nonlinear models for estimating GSFC travel requirements

    NASA Technical Reports Server (NTRS)

    Buffalano, C.; Hagan, F. J.

    1974-01-01

    A methodology is presented for estimating travel requirements for a particular period of time. Travel models were generated using nonlinear regression analysis techniques on a data base of FY-72 and FY-73 information from 79 GSFC projects. Although the subject matter relates to GSFX activities, the type of analysis used and the manner of selecting the relevant variables would be of interest to other NASA centers, government agencies, private corporations and, in general, any organization with a significant travel budget. Models were developed for each of six types of activity: flight projects (in-house and out-of-house), experiments on non-GSFC projects, international projects, ART/SRT, data analysis, advanced studies, tracking and data, and indirects.

  15. A flexible system for the estimation of infiltration and hydraulic resistance parameters in surface irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Critical to the use of modeling tools for the hydraulic analysis of surface irrigation systems is characterizing the infiltration and hydraulic resistance process. Since those processes are still not well understood, various formulations are currently used to represent them. A software component h...

  16. Estimating the Effects of Conversion of Agricultural Land to Urban Land on Deep Percolation of Irrigation Water in the Grand Valley, Western Colorado

    USGS Publications Warehouse

    Mayo, John W.

    2008-01-01

    The conversion of agricultural land to urban residential land is associated with rapid population growth in the Grand Valley of western Colorado. Information regarding the effects of this land-use conversion on deep percolation, irrigation-water application, and associated salt loading to the Colorado River is needed to support water-resource planning and conservation efforts. The Natural Resources Conservation Service (NRCS) assessed deep percolation and estimated salt loading derived from irrigated agricultural lands in the Grand Valley in a 1985 to 2002 monitoring and evaluation study (NRCS M&E). The U.S. Geological Survey (USGS), in cooperation with the Colorado River Salinity Control Forum and the Mesa Conservation District, quantified the current (2005-2006) deep percolation and irrigation-water application characteristics of 1/4-acre residential lots and 5-acre estates, urban parks, and urban orchard grass fields in the Grand Valley, and compared the results to NRCS M&E results from alfalfa-crop sites. In addition, pond seepage from three irrigation-water holding ponds was estimated. Salt loading was estimated for the urban study results and the NRCS M&E results by using standard salt-loading factors. A daily soil-moisture balance calculation technique was used at all urban study irrigated sites. Deep percolation was defined as any water infiltrating below the top 12 inches of soil. Deep percolation occurred when the soil-moisture balance in the first 12 inches of soil exceeded the field capacity for the soil type at each site. Results were reported separately for urban study bluegrass-only sites and for all-vegetation type (bluegrass, native plants, and orchard grass) sites. Deep percolation and irrigation-water application also were estimated for a complete irrigation season at three subdivisions by using mean site data from each subdivision. It was estimated that for the three subdivisions, 37 percent of the developed acreage was irrigated (the balance

  17. Mapping Irrigation Potential in the Upper East Region of Ghana

    NASA Astrophysics Data System (ADS)

    Akomeah, E.; Odai, S. N.; Annor, F. O.; Adjei, K. A.; Barry, B.

    2009-04-01

    The Upper East Region together with the other two regions in Northern Ghana (Upper West and Northern Region) is seen as the locus of perennial food deficit (GPRS, 2003). Despite, the provision of over 200 small scale dams and various mechanisms aimed at poverty alleviation, the region is still plagued with poverty and yearly food shortages. To achieve food security and alleviate poverty in the region however, modernization of agriculture through irrigation is deemed inevitable. While it is true that considerable potential still exists for future expansion of irrigation, it cannot be refuted that water is becoming scarcer in the regions where the need for irrigation is most important, hence mapping the irrigation potential of the region will be the first step toward ensuring sound planning and sustainability of the irrigation developments. In this study, an attempt has been made to map out the irrigation potential of the Upper East Region. The river basin approach was used in assessing the irrigation potential. The catchments drained by The White Volta river, Red volta river, River Sissili and River Kulpawn were considered in the assessment. The irrigation potential for the sub basins was computed by combining information on gross irrigation water requirements for the selected cash crops, area of soil suitable for irrigation and available water resources. The capacity of 80%, 70%, 60% and 50% time of exceedance flow of the available surface water resources in the respective sub basins was estimated. The area that can be irrigated with this flow was computed with selected cropping pattern. Combining the results of the potential irrigable areas and the land use map of the respective sub basins, an irrigation potential map has been generated showing potential sites in the upper east region that can be brought under irrigation. Keywords: Irrigation potential, irrigation water requirement, land evaluation, dependable flow

  18. The Benchmark Farm Program : a method for estimating irrigation water use in southwest Florida

    USGS Publications Warehouse

    Duerr, A.D.; Trommer, J.T.

    1982-01-01

    Irrigation water-use data are summarized in this report for 74 farms in the Southwest Florida Water Management District. Most data are for 1978-90, but 18 farms have data extending back to the early 1970's. Data include site number and location, season and year, crop type, irrigation system, monitoring method, and inches of water applied per acre. Crop types include citrus, cucumbers, pasture, peanuts, sod, strawberries, and tropical fish farms are also included. Water-application rates per growing season ranged from 0 inches per acre for several citrus and pasture sites to 239.7 inches per acre for a nursery site. The report also includes rainfall data for 12 stations throughout the study area. (USGS)

  19. Documentation of methods and inventory of irrigation data collected for the 2000 and 2005 U.S. Geological Survey Estimated use of water in the United States, comparison of USGS-compiled irrigation data to other sources, and recommendations for future compilations

    USGS Publications Warehouse

    Dickens, Jade M.; Forbes, Brandon T.; Cobean, Dylan S.; Tadayon, Saeid

    2011-01-01

    An indirect method for estimating irrigation withdrawals is presented and results are compared to the 2005 USGS-reported irrigation withdrawals for selected States. This method is meant to demonstrate a way to check data reported or received from a third party, if metered data are unavailable. Of the 11 States where this method was applied, 8 States had estimated irrigation withdrawals that were within 15 percent of what was reported in the 2005 water-use compilation, and 3 States had estimated irrigation withdrawals that were more than 20 percent of what was reported in 2005. Recommendations for improving estimates of irrigated acreage and irrigation withdrawals also are presented in this report. Conveyance losses and irrigation-system efficiencies should be considered in order to achieve a more accurate representation of irrigation withdrawals. Better documentation of data sources and methods used can help lead to more consistent information in future irrigation water-use compilations. Finally, a summary of data sources and methods used to estimate irrigated acreage and irrigation withdrawals for the 2000 and 2005 compilations for each WSC is presented in appendix 1.

  20. Reimagining cost recovery in Pakistan's irrigation system through willingness-to-pay estimates for irrigation water from a discrete choice experiment

    NASA Astrophysics Data System (ADS)

    Bell, Andrew Reid; Shah, M. Azeem Ali; Ward, Patrick S.

    2014-08-01

    It is widely argued that farmers are unwilling to pay adequate fees for surface water irrigation to recover the costs associated with maintenance and improvement of delivery systems. In this paper, we use a discrete choice experiment to study farmer preferences for irrigation characteristics along two branch canals in Punjab Province in eastern Pakistan. We find that farmers are generally willing to pay well in excess of current surface water irrigation costs for increased surface water reliability and that the amount that farmers are willing to pay is an increasing function of their existing surface water supply as well as location along the main canal branch. This explicit translation of implicit willingness-to-pay (WTP) for water (via expenditure on groundwater pumping) to WTP for reliable surface water demonstrates the potential for greatly enhanced cost recovery in the Indus Basin Irrigation System via appropriate setting of water user fees, driven by the higher WTP of those currently receiving reliable supplies.

  1. Reimagining cost recovery in Pakistan's irrigation system through willingness-to-pay estimates for irrigation water from a discrete choice experiment

    PubMed Central

    Bell, Andrew Reid; Shah, M Azeem Ali; Ward, Patrick S

    2014-01-01

    It is widely argued that farmers are unwilling to pay adequate fees for surface water irrigation to recover the costs associated with maintenance and improvement of delivery systems. In this paper, we use a discrete choice experiment to study farmer preferences for irrigation characteristics along two branch canals in Punjab Province in eastern Pakistan. We find that farmers are generally willing to pay well in excess of current surface water irrigation costs for increased surface water reliability and that the amount that farmers are willing to pay is an increasing function of their existing surface water supply as well as location along the main canal branch. This explicit translation of implicit willingness-to-pay (WTP) for water (via expenditure on groundwater pumping) to WTP for reliable surface water demonstrates the potential for greatly enhanced cost recovery in the Indus Basin Irrigation System via appropriate setting of water user fees, driven by the higher WTP of those currently receiving reliable supplies. PMID:25552779

  2. Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions.

    PubMed

    Hurtado, Carlos; Domínguez, Carmen; Pérez-Babace, Lorea; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2016-03-15

    The widespread distribution of emerging organic contaminants (EOCs) in the water cycle can lead to their incorporation in irrigated crops, posing a potential risk for human consumption. To gain further insight into the processes controlling the uptake of organic microcontaminants, Batavia lettuce (Lactuca sativa) grown under controlled conditions was watered with EOCs (e.g., non-steroidal anti-inflammatories, sulfonamides, β-blockers, phenolic estrogens, anticonvulsants, stimulants, polycyclic musks, biocides) at different concentrations (0-40μgL(-1)). Linear correlations were obtained between the EOC concentrations in the roots and leaves and the watering concentrations for most of the contaminants investigated. However, large differences were found in the root concentration factors ( [Formula: see text] =0.27-733) and leaf translocation concentration factors ( [Formula: see text] =0-3) depending on the persistence of the target contaminants in the rhizosphere and the specific physicochemical properties of each one. With the obtained dataset, a simple predictive model based on a linear regression and the root bioconcentration and translocation factors can be used to estimate the concentration of the target EOCs in leaves based on the dose supplied in the irrigation water or the soil concentration. Finally, enantiomeric fractionation of racemic ibuprofen from the initial spiking mixture suggests that biodegradation mainly occurs in the rhizosphere.

  3. 31 CFR 205.23 - What requirements apply to estimates?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 31 Money and Finance: Treasury 2 2010-07-01 2010-07-01 false What requirements apply to estimates? 205.23 Section 205.23 Money and Finance: Treasury Regulations Relating to Money and Finance (Continued... Treasury-State Agreement § 205.23 What requirements apply to estimates? The following requirements...

  4. Estimating the economic benefits of maintaining residential lake levels at an irrigation reservoir: A contingent valuation study

    NASA Astrophysics Data System (ADS)

    Loomis, John; Smith, Adam; Huszar, Paul

    2005-08-01

    The contingent valuation method (CVM) was used to estimate homeowners' willingness to pay for water leasing to maintain stable lake levels at an irrigation reservoir in a residential neighborhood. A binary logit model was used to analyze households' voter referendum responses for maintaining the lake level. The median willingness to pay (WTP) was found to be 368 per year for lakefront residents and 59 per year for off-lake residents. The median WTP for lakefront residents was significantly different from off-lake residents at the 90% confidence level. Using the median WTP for lakefront and nonlakefront residents, we found that the increase in homeowner association fees would generate approximately $43,000, enough money to lease sufficient water to reach the target higher lake level in a normal water year.

  5. Estimating the economic benefits of maintaining residential lake levels at an irrigation reservoir: A contingent valuation study

    NASA Astrophysics Data System (ADS)

    Loomis, John; Smith, Adam; Huszar, Paul

    2005-08-01

    The contingent valuation method (CVM) was used to estimate homeowners' willingness to pay for water leasing to maintain stable lake levels at an irrigation reservoir in a residential neighborhood. A binary logit model was used to analyze households' voter referendum responses for maintaining the lake level. The median willingness to pay (WTP) was found to be $368 per year for lakefront residents and $59 per year for off-lake residents. The median WTP for lakefront residents was significantly different from off-lake residents at the 90% confidence level. Using the median WTP for lakefront and nonlakefront residents, we found that the increase in homeowner association fees would generate approximately $43,000, enough money to lease sufficient water to reach the target higher lake level in a normal water year.

  6. Estimation of Ascaris infection risks in children under 15 from the consumption of wastewater-irrigated carrots.

    PubMed

    Mara, Duncan; Sleigh, Andrew

    2010-03-01

    Ascaris lumbricoides, the large human roundworm, infects approximately 1,200 million people, with children under the age of 15 being particularly at risk. Monte Carlo quantitative microbial risk analyses were undertaken to estimate median Ascaris infection risks in children under 15 from eating raw carrots irrigated with wastewater. For a tolerable additional disease burden of 10(-5) DALY (disability-adjusted life year) loss per person per year (pppy), the tolerable Ascaris infection risk is approximately 10(-3) pppy, which can be achieved in hyperendemic areas by a 4-log unit Ascaris reduction. This reduction can be easily achieved by wastewater treatment in a 1-day anaerobic pond and 5-day facultative pond (2 log units) and peeling prior to consumption (2 log units).

  7. Simulation of fertilizer requirement for irrigated wheat in eastern India using the QUEFTS model.

    PubMed

    Maiti, Debtanu; Das, D K; Pathak, H

    2006-02-22

    Crop modeling can provide us with information about fertilizer dose to achieve the target yield, crop conditions, etc. Due to conventional and imbalanced fertilizer application, nutrient use efficiency in wheat is low. Estimation of fertilizer requirements based on quantitative approaches can assist in improving yields and nutrient use efficiency. Field experiments were conducted at 20 sites in eastern India (Nadia district of West Bengal) to assess the soil supply, requirement, and internal efficiency of N, P, K, and Zn in wheat. The data were used to calibrate the QUEFTS (Quantitative Evaluation of the Fertility of Tropical Soils) model for site-specific, balanced fertilizer recommendations. The parameters of maximum accumulation (a) and maximum dilution (d) in wheat were calculated for N (35, 100), P (129, 738), K (17, 56), and Zn (21502, 140244). Grain yield of wheat showed statistically significant correlation with N (R2 = 0.937**), P (R2 = 0.901**), and K uptake (R2 = 0.801**). The NPK ratio to produce 1 tonne grain yield of wheat was calculated to be 4.9:1.0:8.9. The relationships between chemical properties and nutrient-supplying capacity of soils were also established. The model was validated using the data from four other experiments. Observed yields with different amounts of N, P, K, and Zn were in good agreement with the predicted values, suggesting that the validated QUEFTS model can be used for site-specific nutrient management of wheat.

  8. Estimation of soil salinity in a drip irrigation system by using joint inversion of multicoil electromagnetic induction measurements

    NASA Astrophysics Data System (ADS)

    Jadoon, Khan Zaib; Moghadas, Davood; Jadoon, Aurangzeb; Missimer, Thomas M.; Al-Mashharawi, Samir K.; McCabe, Matthew F.

    2015-05-01

    Low frequency electromagnetic induction (EMI) is becoming a useful tool for soil characterization due to its fast measurement capability and sensitivity to soil moisture and salinity. In this research, a new EMI system (the CMD mini-Explorer) is used for subsurface characterization of soil salinity in a drip irrigation system via a joint inversion approach of multiconfiguration EMI measurements. EMI measurements were conducted across a farm where Acacia trees are irrigated with brackish water. In situ measurements of vertical bulk electrical conductivity (σb) were recorded in different pits along one of the transects to calibrate the EMI measurements and to compare with the modeled electrical conductivity (σ) obtained by the joint inversion of multiconfiguration EMI measurements. Estimates of σ were then converted into the universal standard of soil salinity measurement (i.e., electrical conductivity of a saturated soil paste extract - ECe). Soil apparent electrical conductivity (ECa) was repeatedly measured with the CMD mini-Explorer to investigate the temperature stability of the new system at a fixed location, where the ambient air temperature increased from 26°C to 46°C. Results indicate that the new EMI system is very stable in high temperature environments, especially above 40°C, where most other approaches give unstable measurements. In addition, the distribution pattern of soil salinity is well estimated quantitatively by the joint inversion of multicomponent EMI measurements. The approach of joint inversion of EMI measurements allows for the quantitative mapping of the soil salinity distribution pattern and can be utilized for the management of soil salinity.

  9. Estimation of Critical Population Support Requirements.

    DTIC Science & Technology

    1984-05-30

    VA 22160 W.U. 4921H 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Federal Emergency Management Agency May 30, 1984 Industrial Protection...ensure the availability of industrial production required to support the population, maintain defense capabilities and perform command and control ...the population, maintain national defense capabilities and perform command and control activi- ties during a national emergency such as a threat of a

  10. Irrigated lands assessment for water management: Technique test. [California

    NASA Technical Reports Server (NTRS)

    Wall, S. L.; Brown, C. E.; Eriksson, M.; Grigg, C. A.; Thomas, R. W.; Colwell, R. N.; Estes, J. E.; Tinney, L. R.; Baggett, J. O.; Sawyer, G.

    1981-01-01

    A procedure for estimating irrigated land using full frame LANDSAT imagery was demonstrated. Relatively inexpensive interpretation of multidate LANDSAT photographic enlargements was used to produce a map of irrigated land in California. The LANDSAT and ground maps were then linked by regression equations to enable precise estimation of irrigated land area by county, basin, and statewide. Land irrigated at least once in California in 1979 was estimated to be 9.86 million acres, with an expected error of less than 1.75% at the 99% level of confidence. To achieve the same level of error with a ground-only sample would have required 3 to 5 times as many ground sample units statewide. A procedure for relatively inexpensive computer classification of LANDSAT digital data to irrigated land categories was also developed. This procedure is based on ratios of MSS band 7 and 5, and gave good results for several counties in the Central Valley.

  11. Improving Soil Moisture and Temperature Profile and Surface Turbulent Fluxes Estimations in Irrigated Field by Assimilating Multi-source Data into Land Surface Model

    NASA Astrophysics Data System (ADS)

    Chen, Weijing; Huang, Chunlin; Shen, Huanfeng; Wang, Weizhen

    2016-04-01

    The optimal estimation of hydrothermal conditions in irrigation field is restricted by the deficiency of accurate irrigation information (when and how much to irrigate). However, the accurate estimation of soil moisture and temperature profile and surface turbulent fluxes are crucial to agriculture and water management in irrigated field. In the framework of land surface model, soil temperature is a function of soil moisture - subsurface moisture influences the heat conductivity at the interface of layers and the heat storage in different layers. In addition, soil temperature determines the phase of soil water content with the transformation between frozen and unfrozen. Furthermore, surface temperature affects the partitioning of incoming radiant energy into ground (sensible and latent heat flux), as a consequence changes the delivery of soil moisture and temperature. Given the internal positive interaction lying in these variables, we attempt to retrieve the accurate estimation of soil moisture and temperature profile via assimilating the observations from the surface under unknown irrigation. To resolve the input uncertainty of imprecise irrigation quantity, original EnKS is implemented with inflation and localization (referred to as ESIL) aiming at solving the underestimation of the background error matrix and the extension of observation information from the top soil to the bottom. EnKS applied in this study includes the states in different time points which tightly connect with adjacent ones. However, this kind of relationship gradually vanishes along with the increase of time interval. Thus, the localization is also employed to readjust temporal scale impact between states and filter out redundant or invalid correlation. Considering the parameter uncertainty which easily causes the systematic deviation of model states, two parallel filters are designed to recursively estimate both states and parameters. The study area consists of irrigated farmland and is

  12. 48 CFR 252.215-7002 - Cost estimating system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... historical costs, and other analyses used to generate cost estimates. (b) General. The Contractor shall... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Cost estimating system... of Provisions And Clauses 252.215-7002 Cost estimating system requirements. As prescribed in...

  13. On the irrigation requirements of cottonwood (Populus fremontii and Populus deltoides var. wislizenii) and willow (Salix gooddingii) grown in a desert environment

    USGS Publications Warehouse

    Hartwell, S.; Morino, K.; Nagler, P.L.; Glenn, E.P.

    2010-01-01

    Native tree plots have been established in river irrigation districts in the western U.S. to provide habitat for threatened and endangered birds. Information is needed on the effective irrigation requirements of the target species. Cottonwood (Populus spp.) and willow (Salix gooddingii) trees were grown for seven years in an outdoor plot in a desert environment in Tucson, Arizona. Plants were allowed to achieve a nearly complete canopy cover over the first four years, then were subjected to three daily summer irrigation schedules of 6.20??mm??d-1; 8.26??mm??d-1 and 15.7??mm??d-1. The lowest irrigation rate was sufficient to maintain growth and high leaf area index for cottonwoods over three years, while willows suffered considerable die-back on this rate in years six and seven. These irrigation rates were applied April 15-September 15, but only 0.88??mm??d-1 was applied during the dormant period of the year. Expressed as a fraction of reference crop evapotranspiration (ETo), recommended annual water applications plus precipitation (and including some deep drainage) were 0.83 ETo for cottonwood and 1.01 ETo for willow. Current practices tend to over-irrigate restoration plots, and this study can provide guidelines for more efficient water use. ?? 2010 Elsevier Ltd.

  14. A Real-time Irrigation Forecasting System in Jiefangzha Irrigation District, China

    NASA Astrophysics Data System (ADS)

    Cong, Z.

    2015-12-01

    In order to improve the irrigation efficiency, we need to know when and how much to irrigate in real time. If we know the soil moisture content at this time, we can forecast the soil moisture content in the next days based on the rainfall forecasting and the crop evapotranspiration forecasting. Then the irrigation should be considered when the forecasting soil moisture content reaches to a threshold. Jiefangzha Irrigation District, a part of Hetao Irrigation District, is located in Inner Mongolia, China. The irrigated area of this irrigation district is about 140,000 ha mainly planting wheat, maize and sunflower. The annual precipitation is below 200mm, so the irrigation is necessary and the irrigation water comes from the Yellow river. We set up 10 sites with 4 TDR sensors at each site (20cm, 40cm, 60cm and 80cm depth) to monitor the soil moisture content. The weather forecasting data are downloaded from the website of European Centre for Medium-Range Weather Forecasts (ECMWF). The reference evapotranspiration is estimated based on FAO-Blaney-Criddle equation with only the air temperature from ECMWF. Then the crop water requirement is forecasted by the crop coefficient multiplying the reference evapotranspiration. Finally, the soil moisture content is forecasted based on soil water balance with the initial condition is set as the monitoring soil moisture content. When the soil moisture content reaches to a threshold, the irrigation warning will be announced. The irrigation mount can be estimated through three ways: (1) making the soil moisture content be equal to the field capacity; (2) making the soil moisture saturated; or (3) according to the irrigation quota. The forecasting period is 10 days. The system is developed according to B2C model with Java language. All the databases and the data analysis are carried out in the server. The customers can log in the website with their own username and password then get the information about the irrigation forecasting

  15. Water requirements and management of maize under drip and sprinkler irrigation. 1999 annual report for Agricultural Technology Utilization and Transfer (ATUT) project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the second year of this project, research continued at Ismailia, Egypt on irrigation management of maize, fava bean, wheat, and alfalfa. Research at Bushland, Texas, continued on alfalfa and grass reference evapotranspiration (ET), means of estimating those values from Bowen ratio meterological m...

  16. [Estimated nitrogen nutrition index based on the hyperspectral for wheat of drip irrigation under mulch].

    PubMed

    Diao, Wan-ying; Li, Shao-kun; Wang, Ke-ru; Jin, Xiu-liang; Wang, Fang-yong; Chen, Bing; Wang, Qiong; Wang, Kai; Xiao, Chun-hua

    2012-05-01

    The accurate wheat management needs a reasonable nitrogen application, and it is one of the key measures for real-time and quantitatively monitoring of nitrogen status to gain the higher yield of wheat. In the present study, two field experiments were conducted with different nitrogen stress and wheat cultivars, the relationship was analyzed between spectral parameters and the partial factor productivity from applied N (PFPn), and the estimating model was established for PFP, in the growth stages of wheat. The result indicated that there was a highly significant correlation between the PFP, and GreenNDVI at jointing, the correlation coefficient (r) was 0.6404, the estimating model of PFPn was established, and the root mean square errors (RMSE) was 0.4597. The result indicated that the PFPn can be effectively estimated by using spectral parameters.

  17. Operational water balance in irrigation districts

    NASA Astrophysics Data System (ADS)

    Sánchez, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco V.

    2014-05-01

    In pressure irrigation-water distribution networks, applied water volume is usually controlled opening a valve during a calculated time interval, and assuming constant flow rate. In general, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of pressure conditions. A pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. Theoretical flow rates values have been introduced into a validated in laboratory PRV performance model coupled with an irrigation district waterworks. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of both the PRV and the water distribution network. In this work the estimation of water balance terms during the irrigation events in an irrigation campaign has been carried on. The effect of demand concentration peaks has been assessed.

  18. Irrigation: Erosion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation is essential for global food production. However, irrigation erosion can limit the ability of irrigation systems to reliably produce food and fiber in the future. The factors affecting soil erosion from irrigation are the same as rainfall—water detaches and transports sediment. However, t...

  19. Tree Canopy Light Interception Estimates in Almond and a Walnut Orchards Using Ground, Low Flying Aircraft, and Satellite Based Methods to Improve Irrigation Scheduling Programs

    NASA Technical Reports Server (NTRS)

    Rosecrance, Richard C.; Johnson, Lee; Soderstrom, Dominic

    2016-01-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  20. An inventory of California's irrigated land

    NASA Technical Reports Server (NTRS)

    Sawyer, G. B.

    1981-01-01

    Currently in the fourth year of its applications pilot test project to assess irrigated lands for water management, California officials found that the performance goal of plus or minus 5% at the 95% confidence level by each of the state's 10 major hydrologic basins was bettered in all but a few cases using manual analysis techniques for estimation. The process used was photointerpretation of enlarged LANDSAT scenes (1:150,000 scale), adjusting the determined acreage using a regression estimator and ground truth data from 637 sample cells. Sample cells were allocated to areas stratified on the basis of field size and selected crop types. Interpretation of three dates of imagery was required to span the complete time during which irrigated crops are grown in California. The registration of multitemporal data and classification procedures for estimating irrigated land using digital techniques are being studied as part of the second task in the project.

  1. A Site-sPecific Agricultural water Requirement and footprint Estimator (SPARE:WATER 1.0)

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-07-01

    The agricultural water footprint addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). By considering site-specific properties when calculating the crop water footprint, this methodology can be used to support decision making in the agricultural sector on local to regional scale. We therefore developed the spatial decision support system SPARE:WATER that allows us to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirements and water footprints are assessed on a grid basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume inefficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water is defined as the water needed to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept, we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008, with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional estimation of crop water footprints.

  2. Irrigation water quality assessments

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing demands on fresh water supplies by municipal and industrial users means decreased fresh water availability for irrigated agriculture in semi arid and arid regions. There is potential for agricultural use of treated wastewaters and low quality waters for irrigation but this will require co...

  3. Web based irrigation scheduler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing use of water in the Mid-South has led to depletion of water levels in aquifers, with few guidelines in place for farmers as to when and how much to irrigate. Irrigation can increase crop yields when water is applied correctly. Wise water management requires knowledge of how much water the...

  4. Estimating the impacts of a reservoir for improved water use in irrigation in the Yarabamba region, Peru

    NASA Astrophysics Data System (ADS)

    Swiech, Theoclea; Ertsen, Maurits W.; Pererya, Carlos Machicao

    The pressure on irrigation is increasing worldwide, not only because of - perceived or real - high water consumption in the irrigated sector, but also because an increased world population puts stress on food production. Numerous irrigated areas around the world face similar issues of water scarcity, disparity in water distribution and deficient infrastructure. As a result, farmers are typically restricted in their production strategies. A general strategy in the irrigation sector is the introduction of so-called modern techniques in existing irrigation systems, with the aim to increase agricultural production. This paper discusses such a modernization effort in the sub-basin of Yarabamba, Arequipa, Peru, in which a reservoir is being constructed to improve water use and stimulate economic development. Based on fieldwork, including interviews and scenario modeling with WEAP, the relationships between water users, their irrigation systems and the water balances in the basin were studied. Scenario studies showed that the reservoir might alleviate the current water shortages in the sub-basin, but that restrictions in the current infrastructure and management of irrigation may be of more importance than the reservoir. Especially existing interests and actions of upstream and downstream areas appear to be important factors; these will not be automatically solved with the new reservoir.

  5. Estimating trends of urban residential irrigation extent and rate using satellite imagery in the city of Los Angeles, CA

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; McFadden, J. P.; Clarke, K. C.; Roberts, D. A.

    2015-12-01

    Urban residential irrigation is a large component of urban water budgets in Mediterranean climate cities, and plays a significant role for managing landscape vegetation and water resources. This is particularly occurring at cities such as Los Angeles, where water availability is limited during dry summers. This study applied 10-m SPOT 5 satellite imagery and a database of monthly water use records for residential water customers in Los Angeles in order to examine the interactions between vegetation water demand and residential water consumption. Here, we identify the spatial distribution of vegetation greenness and the extent of irrigation rates through water year 2005-2007, including normal, dry, and wet extremes of annual rainfall. Additionally, the water conservation ratio, which is between rates of irrigation and vegetation water demand, is used to assess over-irrigation. Although residential outdoor water usage was found as highest in the dry year, landscape vegetation under water stress that cannot maintain greenness condition as well as in wetter years. However, the decreasing trend of over-irrigation occurred from wet to drier years, since vegetation water demand increased significantly but irrigation rates changed little, implying over-irrigation in urbanized areas. This over watering issue can be implemented by water resource management, and urban planning, especially in current severe California drought.

  6. Investigating irrigation scheduling for rice using variable rate irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because almost all US rice is produced with continuous flood irrigation, little information addresses irrigation scheduling for rice; however, successful production without a continuous flood will require timely irrigation. A field study conducted at the University of Missouri Fisher Delta Research ...

  7. Estimating yield of irrigated potatoes using aerial and satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Sivarajan, Saravanan

    Multispectral aerial and satellite remote sensing plays a major role in crop yield prediction due to its ability to detect crop growth conditions on spatial and temporal scales in a cost effective manner. Many empirical relationships have been established in the past between spectral vegetation indices and leaf area index, fractional ground cover, and crop growth rates for different crops through ground sampling. Remote sensing-based vegetation index (VI) yield models using airborne and satellite data have been developed only for grain crops like barley, corn, wheat, and sorghum. So it becomes important to validate and extend the VI-based model for tuber crops like potato, taking into account the most significant parameters that affect the final crop yield of these crops. This research involved developing and validating yield models for potato crop in southern Idaho fields using high-resolution airborne and satellite remote sensing. High-resolution multispectral airborne imagery acquired on three dates throughout the growing season in 2004 was used to develop a VI-based statistical yield model by integrating the area under the Soil Adjusted Vegetation Index (SAVI) curve. The model was developed using hand-dug samples collected in two center pivots based on soil variability and crop growth patterns to account for variability in the leaf area duration and yields. The three-date Integrated SAVI (ISAVI) model developed was then validated using 2005 spot yield samples collected from two center pivot fields and also tested for 2004 and 2005 whole field data over dozens of center pivot fields. The three- date model was applied using 2004 and 2005 satellite images and tested. The eight-date ISAVI yield model was also extended to satellite images to estimate the potato yield. The overall yield estimation using the eight-date ISAVI model was better than the three-date model as the image inputs covered the complete growth cycle of the crop from emergence to harvest. Actual

  8. Newer Root Canal Irrigants in Horizon: A Review

    PubMed Central

    Jaju, Sushma; Jaju, Prashant P.

    2011-01-01

    Sodium hypochloride is the most commonly used endodontic irrigant, despite limitations. None of the presently available root canal irrigants satisfy the requirements of ideal root canal irrigant. Newer root canal irrigants are studied for potential replacement of sodium hypochloride. This article reviews the potential irrigants with their advantages and limitations with their future in endodontic irrigation. PMID:22190936

  9. Optimizing desalinated sea water blending with other sources to meet magnesium requirements for potable and irrigation waters.

    PubMed

    Avni, Noa; Eben-Chaime, Moshe; Oron, Gideon

    2013-05-01

    Sea water desalination provides fresh water that typically lacks minerals essential to human health and to agricultural productivity. Thus the rising proportion of desalinated sea water consumed by both the domestic and agricultural sectors constitutes a public health risk. Research on low-magnesium water irrigation showed that crops developed magnesium deficiency symptoms that could lead to plant death, and tomato yields were reduced by 10-15%. The World Health Organization (WHO) reported on a relationship between sudden cardiac death rates and magnesium intake deficits. An optimization model, developed and tested to provide recommendations for Water Distribution System (WDS) quality control in terms of meeting optimal water quality requirements, was run in computational experiments based on an actual regional WDS. The expected magnesium deficit due to the operation of a large Sea Water Desalination Plant (SWDP) was simulated, and an optimal operation policy, in which remineralization at the SWDP was combined with blending desalinated and natural water to achieve the required quality, was generated. The effects of remineralization costs and WDS physical layout on the optimal policy were examined by sensitivity analysis. As part of the sensitivity blending natural and desalinated water near the treatment plants will be feasible up to 16.2 US cents/m(3), considering all expenses. Additional chemical injection was used to meet quality criteria when blending was not feasible.

  10. Application of the Viterbi Algorithm in Hidden Markov Models for Exploring Irrigation Decision Series

    NASA Astrophysics Data System (ADS)

    Andriyas, S.; McKee, M.

    2014-12-01

    Anticipating farmers' irrigation decisions can provide the possibility of improving the efficiency of canal operations in on-demand irrigation systems. Although multiple factors are considered during irrigation decision making, for any given farmer there might be one factor playing a major role. Identification of that biophysical factor which led to a farmer deciding to irrigate is difficult because of high variability of those factors during the growing season. Analysis of the irrigation decisions of a group of farmers for a single crop can help to simplify the problem. We developed a hidden Markov model (HMM) to analyze irrigation decisions and explore the factor and level at which the majority of farmers decide to irrigate. The model requires observed variables as inputs and the hidden states. The chosen model inputs were relatively easily measured, or estimated, biophysical data, including such factors (i.e., those variables which are believed to affect irrigation decision-making) as cumulative evapotranspiration, soil moisture depletion, soil stress coefficient, and canal flows. Irrigation decision series were the hidden states for the model. The data for the work comes from the Canal B region of the Lower Sevier River Basin, near Delta, Utah. The main crops of the region are alfalfa, barley, and corn. A portion of the data was used to build and test the model capability to explore that factor and the level at which the farmer takes the decision to irrigate for future irrigation events. Both group and individual level behavior can be studied using HMMs. The study showed that the farmers cannot be classified into certain classes based on their irrigation decisions, but vary in their behavior from irrigation-to-irrigation across all years and crops. HMMs can be used to analyze what factor and, subsequently, what level of that factor on which the farmer most likely based the irrigation decision. The study shows that the HMM is a capable tool to study a process

  11. Soil management and conservation: Irrigation: Methods

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation applies water to soil to improve crop production. The three main methods of irrigation are surface, sprinkler and micro. Surface irrigation is used on 85% of the irrigated land in the world. It generally requires lower capital investment because the soil conveys water within the field, ra...

  12. Wireless sensor networks for irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...

  13. Sample Size Requirements for Estimating Pearson, Spearman and Kendall Correlations.

    ERIC Educational Resources Information Center

    Bonett, Douglas G.; Wright, Thomas A.

    2000-01-01

    Reviews interval estimates of the Pearson, Kendall tau-alpha, and Spearman correlates and proposes an improved standard error for the Spearman correlation. Examines the sample size required to yield a confidence interval having the desired width. Findings show accurate results from a two-stage approximation to the sample size. (SLD)

  14. Minimizing instrumentation requirement for estimating crop water stress index and transpiration of maize

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research was conducted in northern Colorado in 2011 to estimate the Crop Water Stress Index (CWSI) and actual water transpiration (Ta) of maize under a range of irrigation regimes. The main goal was to obtain these parameters with minimum instrumentation and measurements. The results confirmed that ...

  15. Measurement of irrigated acreage in Western Kansas from LANDSAT images

    USGS Publications Warehouse

    Keene, K.M.; Conley, C.D.

    1980-01-01

    In the past four decades, irrigated acreage in western Kansas has increased rapidly. Optimum utilization of vital groundwater supplies requires implementation of long-term water-management programs. One important variable in such programs is up-to-date information on acreage under irrigation. Conventional ground survey methods of estimating irrigated acreage are too slow to be of maximum use in water-management programs. Visual interpretation of LANDSAT images permits more rapid measurement of irrigated acreage, but procedures are tedious and still relatively slow. For example, using a LANDSAT false-color composite image in areas of western Kansas with few landmarks, it is impossible to keep track of fields by examination under low-power microscope. Irrigated fields are more easily delineated on a photographically enlarged false-color composite and are traced on an overlay for measurement. Interpretation and measurement required 6 weeks for a four-county (3140 mi2, 8133 km2) test area. Video image-analysis equipment permits rapid measurement of irrigated acreage. Spectral response of irrigated summer crops in western Kansas on MSS band 5 (visible red, 0.6-0.7 ??m) images is low in contrast to high response from harvested and fallow fields and from common soil types. Therefore, irrigated acreage in western Kansas can be uniquely discriminated by video image analysis. The area of irrigated crops in a given area of view is measured directly. Sources of error are small in western Kansas. After preliminary preparation of the images, the time required to measure irrigated acreage was 1 h per county (average area, 876 ml2 or 2269 km2). ?? 1980 Springer-Verlag New York Inc.

  16. Estimating preseason irrigation losses by characterizing evaporation of effective precipitation under bare soil conditions using large weighing lysimeters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation scheduling is one of the most cost effective means of conserving limited groundwater resources, particularly in semi-arid regions. Effective precipitation, or the net amount of water from precipitation that can be used in field water balance equations, is essential to accurate and effecti...

  17. Origins for the estimations of water requirements in adults.

    PubMed

    Vivanti, A P

    2012-12-01

    Water homeostasis generally occurs without conscious effort; however, estimating requirements can be necessary in settings such as health care. This review investigates the derivation of equations for estimating water requirements. Published literature was reviewed for water estimation equations and original papers sought. Equation origins were difficult to ascertain and original references were often not cited. One equation (% of body weight) was based on just two human subjects and another equation (ml water/kcal) was reported for mammals and not specifically for humans. Other findings include that some equations: for children were subsequently applied to adults; had undergone modifications without explicit explanation; had adjusted for the water from metabolism or food; and had undergone conversion to simplify application. The primary sources for equations are rarely mentioned or, when located, lack details conventionally considered important. The sources of water requirement equations are rarely made explicit and historical studies do not satisfy more rigorous modern scientific method. Equations are often applied without appreciating their derivation, or adjusting for the water from food or metabolism as acknowledged by original authors. Water requirement equations should be used as a guide only while employing additional means (such as monitoring short-term weight changes, physical or biochemical parameters and urine output volumes) to ensure the adequacy of water provision in clinical or health-care settings.

  18. Salinity on irrigated lands

    SciTech Connect

    Westmore, R.A.; Manbeck, D.M.

    1984-02-01

    The technology for controlling salinity on irrigated lands is relatively simple, involving both minor and major changes in current land-management practices. Minor changes include more frequent irrigation, the use of salt-tolerant crops, preplanning irrigation, and seed placement. The major changes require a shift from gravity to sprinkler or drip systems, increased water supply and quality, soil modification, land grading, and improved drainage. Some of the major changes are difficult, and some impossible, to accomplish. Examples of reclamation include the Mardan Salinity Control and Reclamation Project (SCARP) in Pakistan. 5 references, 2 figures, 2 tables

  19. Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data

    NASA Astrophysics Data System (ADS)

    Salmon, J. Meghan; Friedl, Mark A.; Frolking, Steve; Wisser, Dominik; Douglas, Ellen M.

    2015-06-01

    Irrigation accounts for 70% of global water use by humans and 33-40% of global food production comes from irrigated croplands. Accurate and timely information related to global irrigation is therefore needed to manage increasingly scarce water resources and to improve food security in the face of yield gaps, climate change and extreme events such as droughts, floods, and heat waves. Unfortunately, this information is not available for many regions of the world. This study aims to improve characterization of global rain-fed, irrigated and paddy croplands by integrating information from national and sub-national surveys, remote sensing, and gridded climate data sets. To achieve this goal, we used supervised classification of remote sensing, climate, and agricultural inventory data to generate a global map of irrigated, rain-fed, and paddy croplands. We estimate that 314 million hectares (Mha) worldwide were irrigated circa 2005. This includes 66 Mha of irrigated paddy cropland and 249 Mha of irrigated non-paddy cropland. Additionally, we estimate that 1047 Mha of cropland are managed under rain-fed conditions, including 63 Mha of rain-fed paddy cropland and 985 Mha of rain-fed non-paddy cropland. More generally, our results show that global mapping of irrigated, rain-fed, and paddy croplands is possible by combining information from multiple data sources. However, regions with rapidly changing irrigation or complex mixtures of irrigated and non-irrigated crops present significant challenges and require more and better data to support high quality mapping of irrigation.

  20. Estimated water requirements for gold heap-leach operations

    USGS Publications Warehouse

    Bleiwas, Donald I.

    2012-01-01

    This report provides a perspective on the amount of water necessary for conventional gold heap-leach operations. Water is required for drilling and dust suppression during mining, for agglomeration and as leachate during ore processing, to support the workforce (requires water in potable form and for sanitation), for minesite reclamation, and to compensate for water lost to evaporation and leakage. Maintaining an adequate water balance is especially critical in areas where surface and groundwater are difficult to acquire because of unfavorable climatic conditions [arid conditions and (or) a high evaporation rate]; where there is competition with other uses, such as for agriculture, industry, and use by municipalities; and where compliance with regulatory requirements may restrict water usage. Estimating the water consumption of heap-leach operations requires an understanding of the heap-leach process itself. The task is fairly complex because, although they all share some common features, each gold heap-leach operation is unique. Also, estimating the water consumption requires a synthesis of several fields of science, including chemistry, ecology, geology, hydrology, and meteorology, as well as consideration of economic factors.

  1. Guidelines for Estimating Unmetered Landscaping Water Use

    SciTech Connect

    McMordie Stoughton, Kate

    2010-07-28

    The document lays-out step by step instructions to estimate landscaping water using two alternative approaches: evapotranspiration method and irrigation audit method. The evapotranspiration method option calculates the amount of water needed to maintain a healthy turf or landscaped area for a given location based on the amount of water transpired and evaporated from the plants. The evapotranspiration method offers a relatively easy “one-stop-shop” for Federal agencies to develop an initial estimate of annual landscape water use. The document presents annual irrigation factors for 36 cities across the U.S. that represents the gallons of irrigation required per square foot for distinct landscape types. By following the steps outlined in the document, the reader can choose a location that is a close match their location and landscape type to provide a rough estimate of annual irrigation needs without the need to research specific data on their site. The second option presented in the document is the irrigation audit method, which is the physical measurement of water applied to landscaped areas through irrigation equipment. Steps to perform an irrigation audit are outlined in the document, which follow the Recommended Audit Guidelines produced by the Irrigation Association.[5] An irrigation audit requires some knowledge on the specific procedures to accurately estimate how much water is being consumed by the irrigation equipment.

  2. Nitrogen Requirements for Growth and Early Fruit Development of Drip-Irrigated Processing Tomato (Lycopersicon esculentum Mill.) in Portugal

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The effect of continuous application of small quantities of nitrogen (N) in irrigation water and N applied as starter on growth and development of processing tomato (Lycopersicon esculentum Mill.), from transplanting to beginning of fruit set, was studied in two experiments: a pot experiment and a f...

  3. Field-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation

    PubMed Central

    Meki, Manyowa N.; Kiniry, James R.; Taylor, Andrew D.; Ogoshi, Richard; Youkhana, Adel; Nakahata, Mae

    2017-01-01

    Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2), as methane was oxidized and nitrous oxide (N2O) emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield. PMID:28052075

  4. Field-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation.

    PubMed

    Pawlowski, Meghan N; Crow, Susan E; Meki, Manyowa N; Kiniry, James R; Taylor, Andrew D; Ogoshi, Richard; Youkhana, Adel; Nakahata, Mae

    2017-01-01

    Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2), as methane was oxidized and nitrous oxide (N2O) emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.

  5. A root zone model for estimating soil water balance and crop yield responses to deficit irrigation in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Song, X.; Feng, S.

    2012-12-01

    This study proposed a new soil water balance model by quantifying drainage out of the root zone with the simplification of the Darcy's law, which combined the advantages of conceptual and physically based models. This model was connected with the Jensen crop water production function to simulate soil water components and relative crop yield. Field experiments with the winter wheat-summer corn cropping system were conducted in Beijing area in the North China Plain (2007-2009) to evaluate the model. The model could give quite reasonable predictions of soil water content in the root zone with the average root mean square error (RMSE), mean relative error (RE) and model efficiency (EF) of 0.02 cm3/cm3, 6.69% and 0.78, respectively. Furthermore, the predicted soil water flux through the bottom of root zone agreed well with the measured ones supported by the values of RMSE (0.10 mm/d) and EF (0.92). The Jensen crop water production function with the calculated actual evapotranspitation from the soil water balance model could satisfactorily evaluate crop yield response to deficit irrigation with the EF values greater than 0.95 and the RE values lower than 6%. As an application, the model was used to obtain the optimal irrigation management schedules for the hydrologic years of 75%, 50% and 25% in the study area. The average amount of irrigation saving and reduction of water losses through drainage under optimal irrigation alternative were about 175 mm and 101.9 mm, respectively. This study indicates that the developed root zone model is more available for agricultural water management as it has minimal input requirement, robust physical meaning and satisfactory simulation performance.

  6. Joint inversion of multi-configuration electromagnetic induction measurements to estimate soil wetting patterns during surface drip irrigation

    NASA Astrophysics Data System (ADS)

    Jadoon, Khan Z.; Moghadas, Davood; Jadoon, Aurangzeb; Missimer, Thomas M.; McCabe, Matthew

    2014-05-01

    In arid and semi-arid regions, development of precise information on the soil wetting pattern is important to optimize drip irrigation system design for sustainable agricultural water management. Usually mathematical models are commonly used to describe infiltration from a point source to design and manage drip irrigation systems. The extent to which water migrates laterally and vertically away from the drip emitter depends on many factors, including dripper discharge rate, the frequency of water application, duration of drip emission, the soil hydraulic characteristics, initial conditions, evaporation, root water uptake and root distribution patterns. However, several simplified assumptions in the mathematical models affect their utility to provide useful design information. In this respect, non-invasive geophysical methods, i.e., low frequency electromagnetic induction (EMI) systems are becoming powerful tools to map spatial and temporal soil moisture patterns due to fast measurement capability and sensitivity to soil water content and salinity. In this research, a new electromagnetic system, the CMD mini-Explorer, is used for soil characterization to measure the wetting patterns of drip irrigation systems using joint inversion of multi-configuration EMI measurements. Six transects of EMI measurements were carried out in a farm where Acacia trees are irrigated with brackish water using a drip irrigation system. EMI reference data (ground-truths) were calculated using vertical soil electrical conductivity recorded in different trenches along one of the measurement transects. Reference data is used for calibration to minimize the instrumental shifts which often occur in EMI data. Global and local optimization algorithms are used sequentially, to minimize the misfit between the measured and modeled apparent electrical conductivity (δa) to reconstruct the vertical electrical conductivity profile. The electromagnetic forward model based on full solution of Maxwell

  7. The Impact of Climate and Its Variability on Crop Yield and Irrigation

    NASA Astrophysics Data System (ADS)

    Li, X.; Troy, T.

    2014-12-01

    As the global population grows and the climate changes, having a secure food supply is increasingly important especially under water stressed-conditions. Although irrigation is a positive climate adaptation mechanism for agriculture, it has a potentially negative effect on water resources. It is therefore important to understand how crop yields due to irrigation are affected by climate variability and how irrigation may buffer against climate, allowing for more resilient agricultural systems. Efforts to solve these barely exposed questions can benefit from comprehending the influence of climate variability on crop yield and irrigation water use in the past. To do this, we use historical climate data,irrigation water use data and rainfed and irrigated crop yields over the US to analyze the relationship among climate, irrigation and delta crop yields, gained by subtracting rainfed yield from irrigated yield since 1970. We find that the increase in delta crop yield due to irrigation is larger for certain climate conditions, such that there are optimal climate conditions where irrigation provides a benefit and other conditions where irrigation proves to have marginal benefits when temperature increased to certain degrees. We find that crop water requirements are linked to potential evapotranspiration, yet actual irrigation water use is largely decoupled from the climate conditions but related with other causes. This has important implications for agricultural and water resource system planning, as it implies there are optimal climate zones where irrigation is productive and that changes in water use, both temporally and spatially, could lead to increased water availability without negative impacts on crop yields. Furthermore, based on the exposed relationship between crop yield gained by irrigation and climate variability, those models predicting the global harvest will be redress to estimate crop production in the future more accurately.

  8. Determination of irrigation pumpage in parts of Kearny and Finney Counties, southwestern Kansas

    USGS Publications Warehouse

    Lindgren, R.J.

    1982-01-01

    Irrigation pumpage was determined for parts of Kearny and Finney Counties in Southwestern Kansas using crop-acreage data and consumptive, irrigation-water requirements. Irrigated acreages for 1974-80 were compiled for wheat, grain sorghum, corn, and alfalfa using records from the U.S. Agricultural Stabilization and Conservation Service. Consumptive-irrigation requirements were computed using a soil-moisture model. The model tabulated monthly soil-moisture and crop-water demand for various crops and computed the volume of irrigation water needed to maintain the available moisture at 50% for loamy soils or at 60% for sandy soils. Irrigated acres in the study area increased from 265,000 acres during 1974 to 321,000 acres during 1980. Irrigation pumpage increased from 584,000 acre-feet during 1974 to 738,000 acre-feet during 1980. Decreased consumptive-irrigation requirements during 1979 resulted in a comparatively small irrigation-pumpage estimate of 458,000 acre-feet. (USGS)

  9. Advances in Irrigation

    NASA Astrophysics Data System (ADS)

    Gardner, W. R.

    This is the first volume of Advances in Irrigation, a new serial publication by the publishers of Advances in Agronomy and Advances in Hydroscience and designed to follow the same format. The editor is a well-known researcher and writer on irrigation and related subjects and has assembled a collection of highly regarded and respected authors for the initial volume. The readership for this volume will probably be mainly specialists and students interested in irrigation and an occasional design engineer.The seven contributions in this volume fall roughly into two classes: research and practice. Three papers (“Conjunctive Use of Rainfall and Irrigation in Semi-arid Regions,” by Stewart and Musik, “Irrigation Scheduling Using Soil Moisture Measurements: Theory and Practice,” by G. S. and M. D. Campbell, and “Use of Solute Transport Models to Estimate Salt Balance Below Irrigated Cropland,” by Jury) cover topics that have been the subject of a number of reviews. The contributions here provide brief, well-written, and authoritative summaries of the chosen topics and serve as good introductions or reviews. They should lend themselves well to classroom use in various ways. They also should be helpful to the nonspecialist interested in getting a sense of the subject without going into great detail.

  10. Evaluation of zigzag furrow irrigation in Andean communities

    NASA Astrophysics Data System (ADS)

    Roldán Cañas, José; Chipana, Gladys; Chipana, René; Fátima Moreno Pérez, María

    2014-05-01

    It is estimated that the area under irrigation in Bolivia represents 9.7% of the cultivated area, ie 253,100 ha. Traditional surface irrigation is the main system used in Bolivia. Currently, 40,000 ha are irrigated in the La Paz Department. The largest irrigated surface and the areas that produce most food in the Department are located in the eastern and western mountain ranges. However, the region's abrupt terrain makes it impossible to use conventional surface irrigation methods. . As a result, farmers in the inter-Andean valleys have used other surface irrigation methods intensively for hundreds of years like zigzag furrow. In this study, we conducted field trials in the rural community of Cebollullo of the municipality of Palca of La Paz Department. Cebollullo is located at an altitude of 2,780 m above sea level. Its geographic coordinates are 16°41'90.1"S to 16°43'12"S latitude and 67°52'13"W to 67°59'15"W longitude. The irrigated area is characterized by its steep slopes and zigzag corrugated furrow irrigation method is used. The main objective of this study is to evaluate the performance of zigzag furrow irrigation in this community. The study plot has an area of 728 m2 and the average slope is 16.46%. For irrigation evaluation, the data of a middle furrow were taken to avoid boundary effects. Irrigation events recorded during the crop development were 21, with irrigation frequency of 2 to 3 days, of which 10 events were evaluated weekly. Due to the low flow rates used for irrigation, the inflow and outflow measurement of the furrows was made volumetrically. These flow measurements were made at five-minute intervals during irrigation. The zigzag corrugated irrigation method uses low flow discharges in order to decrease the rate of irrigation allowing infiltration of required volume by the crops and reducing soil erosion. Application efficiencies in the study plot ranged between 7.55% and 30.31%, with losses by surface runoff from 45.90% to 85.83% and

  11. A History-based Estimation for LHCb job requirements

    NASA Astrophysics Data System (ADS)

    Rauschmayr, Nathalie

    2015-12-01

    The main goal of a Workload Management System (WMS) is to find and allocate resources for the given tasks. The more and better job information the WMS receives, the easier will be to accomplish its task, which directly translates into higher utilization of resources. Traditionally, the information associated with each job, like expected runtime, is defined beforehand by the Production Manager in best case and fixed arbitrary values by default. In the case of LHCb's Workload Management System no mechanisms are provided which automate the estimation of job requirements. As a result, much more CPU time is normally requested than actually needed. Particularly, in the context of multicore jobs this presents a major problem, since single- and multicore jobs shall share the same resources. Consequently, grid sites need to rely on estimations given by the VOs in order to not decrease the utilization of their worker nodes when making multicore job slots available. The main reason for going to multicore jobs is the reduction of the overall memory footprint. Therefore, it also needs to be studied how memory consumption of jobs can be estimated. A detailed workload analysis of past LHCb jobs is presented. It includes a study of job features and their correlation with runtime and memory consumption. Following the features, a supervised learning algorithm is developed based on a history based prediction. The aim is to learn over time how jobs’ runtime and memory evolve influenced due to changes in experiment conditions and software versions. It will be shown that estimation can be notably improved if experiment conditions are taken into account.

  12. Quantifying canal leakage rates using a mass-balance approach and heat-based hydraulic conductivity estimates in selected irrigation canals, western Nebraska, 2007 through 2009

    USGS Publications Warehouse

    Hobza, Christopher M.; Andersen, Michael J.

    2010-01-01

    The water supply in areas of the North Platte River Basin in the Nebraska Panhandle has been designated as fully appropriated or overappropriated by the Nebraska Department of Natural Resources (NDNR). Enacted legislation (Legislative Bill 962) requires the North Platte Natural Resources District (NPNRD) and the NDNR to develop an Integrated Management Plan (IMP) to balance groundwater and surface-water supply and demand in the NPNRD. A clear understanding of the groundwater and surface-water systems is critical for the development of a successful IMP. The primary source of groundwater recharge in parts of the NPNRD is from irrigation canal leakage. Because canal leakage constitutes a large part of the hydrologic budget, spatially distributing canal leakage to the groundwater system is important to any management strategy. Surface geophysical data collected along selected reaches of irrigation canals has allowed for the spatial distribution of leakage on a relative basis; however, the actual magnitude of leakage remains poorly defined. To address this need, the U.S. Geological Survey, in cooperation with the NPNRD, established streamflow-gaging stations at upstream and downstream ends from two selected canal reaches to allow a mass-balance approach to be used to calculate daily leakage rates. Water-level and sediment temperature data were collected and simulated at three temperature monitoring sites to allow the use of heat as a tracer to estimate the hydraulic conductivity of canal bed sediment. Canal-leakage rates were estimated by applying Darcy's Law to modeled vertical hydraulic conductivity and either the estimated or measured hydraulic gradient. This approach will improve the understanding of the spatial and temporal variability of canal leakage in varying geologic settings identified in capacitively coupled resistivity surveys. The high-leakage potential study reach of the Tri-State Canal had two streamflow-gaging stations and two temperature monitoring

  13. Estimation of L-threonine requirements for Longyan laying ducks

    PubMed Central

    Fouad, A. M.; Zhang, H. X.; Chen, W.; Xia, W. G.; Ruan, D.; Wang, S.; Zheng, C. T.

    2017-01-01

    Objective A study was conducted to test six threonine (Thr) levels (0.39%, 0.44%, 0.49%, 0.54%, 0.59%, and 0.64%) to estimate the optimal dietary Thr requirements for Longyan laying ducks from 17 to 45 wk of age. Methods Nine hundred Longyan ducks aged 17 wk were assigned randomly to the six dietary treatments, where each treatment comprised six replicate pens with 25 ducks per pen. Results Increasing the Thr level enhanced egg production, egg weight, egg mass, and the feed conversion ratio (FCR) (linearly or quadratically; p<0.05). The Haugh unit score, yolk color, albumen height, and the weight, percentage, thickness, and breaking strength of the eggshell did not response to increases in the Thr levels, but the albumen weight and its proportion increased significantly (p<0.05), whereas the yolk weight and its proportion decreased significantly as the Thr levels increased. Conclusion According to a regression model, the optimal Thr requirement for egg production, egg mass, and FCR in Longyan ducks is 0.57%, while 0.58% is the optimal level for egg weight from 17 to 45 wk of age. PMID:27282968

  14. Estimates of the maximum time required to originate life

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Fogleman, Guy

    1989-01-01

    Fossils of the oldest microorganisms exist in 3.5 billion year old rocks and there is indirect evidence that life may have existed 3.8 billion years ago (3.8 Ga). Impacts able to destroy life or interrupt prebiotic chemistry may have occurred after 3.5 Ga. If large impactors vaporized the oceans, sterilized the planets, and interfered with the origination of life, life must have originated in the time interval between these impacts which increased with geologic time. Therefore, the maximum time required for the origination of life is the time that occurred between sterilizing impacts just before 3.8 Ga or 3.5 Ga, depending upon when life first appeared on earth. If life first originated 3.5 Ga, and impacts with kinetic energies between 2 x 10 the the 34th and 2 x 10 to the 35th were able to vaporize the oceans, using the most probable impact flux, it is found that the maximum time required to originate life would have been 67 to 133 million years (My). If life originated 3.8 Ga, the maximum time to originate life was 2.5 to 11 My. Using a more conservative estimate for the flux of impacting objects before 3.8 Ga, a maximum time of 25 My was found for the same range of impactor kinetic energies. The impact model suggests that it is possible that life may have originated more than once.

  15. How do current irrigation practices perform? Evaluation of different irrigation scheduling approaches based on experiements and crop model simulations

    NASA Astrophysics Data System (ADS)

    Seidel, Sabine J.; Werisch, Stefan; Barfus, Klemens; Wagner, Michael; Schütze, Niels; Laber, Hermann

    2014-05-01

    coefficients, and (ii) one treatment was automatically drip irrigated using tensiometers (irrigation of 15 mm at a soil tension of -250 hPa at 30 cm soil depth). In treatment (iii), the irrigation schedule was estimated (using the same critera as in the tension-based treatment) applying the model Daisy partially calibrated against data of 2012. Moreover, one control treatment was minimally irrigated. Measured yield was highest for the tension-based treatment with a low irrigation water input (8.5 DM t/ha, 120 mm). Both SWB treatments showed lower yields and higher irrigation water input (both 8.3 DM t/ha, 306 and 410 mm). The simulation model based treatment yielded lower (7.5 DM t/ha, 106 mm) mainly due to drought stress caused by inaccurate simulation of the soil water dynamics and thus an overestimation of the soil moisture. The evaluation using the calibrated model estimated heavy deep percolation under both SWB treatments. Targeting the challenge to increase water productivity, soil water tension-based irrigation should be favoured. Irrigation scheduling based on SWB calculation requires accurate estimates of crop coefficients. A robust calibration of mechanistic crop models implies a high effort and can be recommended to farmers only to some extent but enables comprehensive crop growth and site analyses.

  16. Estimating spatiotemporal variability and sustainability of shallow groundwater in a well-irrigated plain of the Haihe River basin using SWAT model

    NASA Astrophysics Data System (ADS)

    Zhang, Xueliang; Ren, Li; Kong, Xiangbin

    2016-10-01

    Quantitatively estimating the spatiotemporal variability and sustainability of shallow groundwater with a distributed hydrological model could provide an important basis for proper groundwater management, especially in well-irrigated areas. In this study, the Soil and Water Assessment Tool (SWAT) model was modified and applied to a well-irrigated plain of the Haihe River basin. First, appropriate initial values of the parameters in the groundwater module were determined based on abundant hydrogeological investigations and assessment. Then, the model was satisfactorily calibrated and validated using shallow groundwater table data from 16 national wells monitored monthly from 1993 to 2010 and 148 wells investigated yearly from 2006 to 2012. To further demonstrate the model's rationality, the multi-objective validation was conducted by comparing the simulated groundwater balance components, actual evapotranspiration, and crop yields to multiple sources data. Finally, the established SWAT was used to estimate both shallow groundwater table fluctuation and shallow aquifer water storage change in time and space. Results showed that the average shallow groundwater table declined at a rate of 0.69-1.56 m a-1, which depleted almost 350 × 108 m3 of shallow aquifer water storage in the cropland during the period of 1993-2012. Because of the heterogeneity of the underlying surface and precipitation, these variations were spatiotemporally different. Generally, the shallow groundwater table declined 1.43-1.88 m during the winter wheat (Triticum aestivum L.) growing season, while it recovered 0.28-0.57 m during the summer maize (Zea mays L.) growing season except when precipitation was exceptionally scarce. According to the simulated depletion rate, the shallow aquifer in the study area may face a depletion crisis within the next 80 years. This study identified the regions where prohibitions or restrictions on shallow groundwater exploitation should be urgently carried out.

  17. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: a case study of the Xinfengjiang reservoir in southern China

    USGS Publications Warehouse

    Wu, Yiping; Chen, Ji

    2013-01-01

    The ever-increasing demand for water due to growth of population and socioeconomic development in the past several decades has posed a worldwide threat to water supply security and to the environmental health of rivers. This study aims to derive reservoir operating rules through establishing a multi-objective optimization model for the Xinfengjiang (XFJ) reservoir in the East River Basin in southern China to minimize water supply deficit and maximize hydropower generation. Additionally, to enhance the estimation of irrigation water demand from the downstream agricultural area of the XFJ reservoir, a conventional method for calculating crop water demand is improved using hydrological model simulation results. Although the optimal reservoir operating rules are derived for the XFJ reservoir with three priority scenarios (water supply only, hydropower generation only, and equal priority), the river environmental health is set as the basic demand no matter which scenario is adopted. The results show that the new rules derived under the three scenarios can improve the reservoir operation for both water supply and hydropower generation when comparing to the historical performance. Moreover, these alternative reservoir operating policies provide the flexibility for the reservoir authority to choose the most appropriate one. Although changing the current operating rules may influence its hydropower-oriented functions, the new rules can be significant to cope with the increasingly prominent water shortage and degradation in the aquatic environment. Overall, our results and methods (improved estimation of irrigation water demand and formulation of the reservoir optimization model) can be useful for local watershed managers and valuable for other researchers worldwide.

  18. Crop water productivity and irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modern irrigation systems offer large increases in crop water productivity compared with rainfed or gravity irrigation, but require different management approaches to achieve this. Flood, sprinkler, low-energy precision application, LEPA, and subsurface drip irrigation methods vary widely in water a...

  19. Identification and estimation of the area planted with irrigated rice based on the visual interpretation of LANDSAT MSS data

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Moreira, M. A.; Assuncao, G. V.; Novaes, R. A.; Mendoza, A. A. B.; Bauer, C. A.; Ritter, I. T.; Barros, J. A. I.; Perez, J. E.; Thedy, J. L. O.

    1983-01-01

    The objective was to test the feasibility of the application of MSS-LANDSAT data to irrigated rice crop identification and area evaluation, within four rice growing regions of the Rio Grande do Sul state, in order to extend the methodology for the whole state. The applied methodology was visual interpretation of the following LANDSAT products: channels 5 and 7 black and white imageries and color infrared composite imageries all at the scale of 1:250.000. For crop identification and evaluation, the multispectral criterion and the seasonal variation were utilized. Based on the results it was possible to conclude that: (1) the satellite data were efficient for crop area identification and evaluation; (2) the utilization of the multispectral criterion, allied to the seasonal variation of the rice crop areas from the other crops and, (3) the large cloud cover percentage found in the satellite data made it impossible to realize a rice crop spectral monitoring and, therefore, to define the best dates for such data acquisition for rice crop assessment.

  20. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin

    2010-09-01

    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged

  1. 48 CFR 252.215-7002 - Cost estimating system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the estimating methods and rationale used in developing cost estimates and budgets; (v) Provide for... management systems; and (4) Is subject to applicable financial control systems. Estimating system means the Contractor's policies, procedures, and practices for budgeting and planning controls, and...

  2. Nitrate exported in drainage waters of two sprinkler-irrigated watersheds.

    PubMed

    Cavero, J; Beltrán, A; Aragüés, R

    2003-01-01

    Nitrate contamination of surface waters has been linked to irrigated agriculture across the world. We determined the NO3-N loads in the drainage waters of two sprinkler-irrigated watersheds located in the Ebro River basin (Spain) and their relationship to irrigation and N management. Crop water requirements, irrigation, N fertilization, and the volume and NO3-N concentration of drainage waters were measured or estimated during two-year (Watershed A; 494 irrigated ha) and one-year (Watershed B; 470 irrigated ha) study periods. Maize (Zea mays L.) and alfalfa (Medicago sativa L.) were grown in 40 to 60% and 15 to 33% of the irrigated areas, respectively. The seasonal irrigation performance index (IPI) ranged from 92 to 100%, indicating high-quality management of irrigation. However, the IPI varied among fields and overirrigation occurred in 17 to 44% of the area. Soil and maize stalk nitrate contents measured at harvest indicated that N fertilizer rates could be decreased. Drainage flows were 68 mm yr(-1) in Watershed A and 194 mm yr(-1) in Watershed B. Drainage NO3-N concentrations were independent of drainage flows and similar in the irrigated and nonirrigated periods (average: 23-29 mg L(-1)). Drainage flows determined the exported mass of NO3-N, which varied from 18 (Watershed A) to 49 (Watershed B) kg ha(-1) yr(-1), representing 8 (Watershed A) and 22% (Watershed B) of the applied fertilizer plus manure N. High-quality irrigation management coupled to the split application of N through the sprinkler systems allowed a reasonable compromise between profitability and reduced N pollution in irrigation return flows.

  3. Irrigation market for solar thermal parabolic dish systems

    NASA Technical Reports Server (NTRS)

    Habib-Agahi, H.; Jones, S. C.

    1981-01-01

    The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. The model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14 percent real discount rate is assumed to 220,000 modules when the real discount rate drops to 8 percent. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98 percent of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71 percent) of the total market.

  4. Irrigation market for solar thermal parabolic dish systems

    NASA Astrophysics Data System (ADS)

    Habib-Agahi, H.; Jones, S. C.

    1981-09-01

    The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. The model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14 percent real discount rate is assumed to 220,000 modules when the real discount rate drops to 8 percent. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98 percent of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71 percent) of the total market.

  5. Using a System Model for Irrigation Management

    NASA Astrophysics Data System (ADS)

    de Souza, Leonardo; de Miranda, Eu; Sánchez-Román, Rodrigo; Orellana-González, Alba

    2014-05-01

    When using Systems Thinking variables involved in any process have a dynamic behavior, according to nonstatic relationships with the environment. In this paper it is presented a system dynamics model developed to be used as an irrigation management tool. The model involves several parameters related to irrigation such as: soil characteristics, climate data and culture's physiological parameters. The water availability for plants in the soil is defined as a stock in the model, and this soil water content will define the right moment to irrigate and the water depth required to be applied. The crop water consumption will reduce soil water content; it is defined by the potential evapotranspiration (ET) that acts as an outflow from the stock (soil water content). ET can be estimated by three methods: a) FAO Penman-Monteith (ETPM), b) Hargreaves-Samani (ETHS) method, based on air temperature data and c) Class A pan (ETTCA) method. To validate the model were used data from the States of Ceará and Minas Gerais, Brazil, and the culture was bean. Keyword: System Dynamics, soil moisture content, agricultural water balance, irrigation scheduling.

  6. Agricultural land-use classification using landsat imagery data, and estimates of irrigation water use in Gooding, Jerome, Lincoln, and Minidoka counties, 1992 water year, Upper Snake River basin, Idaho and western Wyoming

    USGS Publications Warehouse

    Maupin, Molly A.

    1997-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program in the upper Snake River Basin study unit, land- and water-use data were used to describe activities that have potential effects on water quality, including biological conditions, in the basin. Land-use maps and estimates of water use by irrigated agriculture were needed for Gooding, Jerome, Lincoln, and Minidoka Counties (south-central Idaho), four of the most intensively irrigated counties in the study unit. Land use in the four counties was mapped from Landsat Thematic Mapper imagery data for the 1992 water year using the SPECTRUM computer program. Land-use data were field verified in 108 randomly selected sections (640 acres each); results compared favorably with land-use maps from other sources. Water used for irrigation during the 1992 water year was estimated using land-use and ancillary data. In 1992, a drought year, estimated irrigation withdrawals in the four counties were about 2.9 million acre-feet of water. Of the 2.9 million acre-feet, an estimated 2.12 million acre-feet of water was withdrawn from surface water, mainly the Snake River, and nearly 776,000 acre-feet was withdrawn from ground water. One-half of the 2.9 million acre-feet of water withdrawn for irrigation was considered to be lost during conveyance or was returned to the Snake River; the remainder was consumptively used by crops during the growing season.

  7. Estimation of infectious risks in residential populations exposed to airborne pathogens during center pivot irrigation of dairy wastewaters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the western United States where dairy wastewaters are commonly land applied, there are concerns over individuals being exposed to airborne pathogens. In response, a quantitative microbial risk assessment (QMRA) was performed to estimate infectious risks after inhalation exposure of pathogens aero...

  8. Adaptive management of irrigation and crops' biodiversity: a case study on tomato

    NASA Astrophysics Data System (ADS)

    De Lorenzi, Francesca; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Monaco, Eugenia; Riccardi, Maria; Menenti, Massimo

    2013-04-01

    We have assessed the impacts of climate change and evaluated options to adapt irrigation management in the face of predicted changes of agricultural water demand. We have evaluated irrigation scheduling and its effectiveness (versus crop transpiration), and cultivars' adaptability. The spatial and temporal variations of effectiveness and adaptability were studied in an irrigated district of Southern Italy. Two climate scenarios were considered: reference (1961-90) and future (2021-2050) climate, the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data consist of daily time series of maximum and minimum temperature, and daily rainfall on a grid with a spatial resolution of 35 km. The work was carried out in the Destra Sele irrigation scheme (18.000 ha. Twenty-five soil units were identified and their hydrological properties were determined (measured or estimated from texture through pedo-transfer functions). A tomato crop, in a rotation typical of the area, was considered. A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was used to study crop water requirements and water consumption. The model was calibrated and validated in the same area for many different crops. Tomato crop input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. Simulations were performed for reference and future climate, and for different irrigation scheduling options. In all soil units, six levels of irrigation volumes were applied: full irrigation (100%), deficit irrigation (80%, 60%, 40%, 20%), no irrigation. From simulation runs, indicators of soil water availability were calculated, moreover the marginal increases of transpiration per unit of irrigation volume, i.e. the effectiveness of irrigation (ΔT/I), were computed, in both climate scenarios. Indicators and marginal increases were used to

  9. Data concurrency is required for estimating urban heat island intensity.

    PubMed

    Zhao, Shuqing; Zhou, Decheng; Liu, Shuguang

    2016-01-01

    Urban heat island (UHI) can generate profound impacts on socioeconomics, human life, and the environment. Most previous studies have estimated UHI intensity using outdated urban extent maps to define urban and its surrounding areas, and the impacts of urban boundary expansion have never been quantified. Here, we assess the possible biases in UHI intensity estimates induced by outdated urban boundary maps using MODIS Land surface temperature (LST) data from 2009 to 2011 for China's 32 major cities, in combination with the urban boundaries generated from urban extent maps of the years 2000, 2005 and 2010. Our results suggest that it is critical to use concurrent urban extent and LST maps to estimate UHI at the city and national levels. Specific definition of UHI matters for the direction and magnitude of potential biases in estimating UHI intensity using outdated urban extent maps.

  10. Water Stress & Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2016-04-01

    Development of modern irrigation technologies are balanced between the need to maximize production and the need to minimize water use which provides harmonious interaction of irrigated systems with closely-spaced environment. Thus requires an understanding of complex interrelationships between landscape and underground of irrigated and adjacent areas in present and future conditions aiming to minimize development of negative scenarios. In this way in each irrigated areas a combination of specific factors and drivers must be recognized and evaluated. Much can be obtained by improving the efficiency use of water applied for irrigation. Modern RS monitoring technologies offers the opportunity to develop and implement an effective irrigation control program permitting today to increase efficiency of irrigation water use. These technologies provide parameters with both high temporal and adequate spatial needed to monitor agrohydrological parameters of irrigated agricultural crops. Combination of these parameters with meteorological and biophysical parameters can be used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. Aggregation of actual values of crop water stress with biomass (yield) data predicted by agrohydrological model based on weather forecasting and scenarios of irrigation water application may be used for indication of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be easily extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support tool for the authorities on the large perimeter irrigation management. This contribution aims to communicate an illustrative explanation about the practical application of a data combination of agrohydrological modeling and ground & space based monitoring. For this aim some

  11. Using variable rate irrigation to determine optimal irrigation schedule for aerobic rice production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because almost all U.S. rice is produced with flood irrigation, little information addresses irrigation scheduling for rice; however, successful production of rice without a continuous flood will require timely irrigation. A field study was conducted at the University of Missouri Fisher Delta Resear...

  12. Evaluating the accuracy of soil water sensors for irrigation scheduling to conserve freshwater

    NASA Astrophysics Data System (ADS)

    Ganjegunte, Girisha K.; Sheng, Zhuping; Clark, John A.

    2012-06-01

    In the Trans-Pecos area, pecan [ Carya illinoinensis (Wangenh) C. Koch] is a major irrigated cash crop. Pecan trees require large amounts of water for their growth and flood (border) irrigation is the most common method of irrigation. Pecan crop is often over irrigated using traditional method of irrigation scheduling by counting number of calendar days since the previous irrigation. Studies in other pecan growing areas have shown that the water use efficiency can be improved significantly and precious freshwater can be saved by scheduling irrigation based on soil moisture conditions. This study evaluated the accuracy of three recent low cost soil water sensors (ECH2O-5TE, Watermark 200SS and Tensiometer model R) to monitor volumetric soil water content (θv) to develop improved irrigation scheduling in a mature pecan orchard in El Paso, Texas. Results indicated that while all three sensors were successful in following the general trends of soil moisture conditions during the growing season, actual measurements differed significantly. Statistical analyses of results indicated that Tensiometer provided relatively accurate soil moisture data than ECH2O-5TE and Watermark without site-specific calibration. While ECH2O-5TE overestimated the soil water content, Watermark and Tensiometer underestimated. Results of this study suggested poor accuracy of all three sensors if factory calibration and reported soil water retention curve for study site soil texture were used. This indicated that sensors needed site-specific calibration to improve their accuracy in estimating soil water content data.

  13. Irrigation management of crops rotations in a changing climate

    NASA Astrophysics Data System (ADS)

    Rolim, J.; Teixeira, J.; Catalão, J.

    2012-04-01

    Due to climate change we cannot continue to perform irrigation systems design and irrigation management based only on historical records of weather stations, assuming that the statistical parameters of the meteorological data remains unchanged in time, being necessary to take into account the climatic data relative to climate change scenarios. For the Mediterranean basin the various climate models indicate an increase in temperature and a reduction in precipitation and a more frequent occurrence of extreme events which will increase the risk of crop failure. Thus, it is important to adopt strategies to ensure the sustainability of irrigated agriculture in a changing climate. A very interesting technique to achieve this is the adoption of crops rotations, since they increase the heterogeneity of farming systems distributing the risk between crops and minimizing costs. This study aims to evaluate the impact of climate change in the irrigation requirements of crop rotations for the Alentejo region in the South of Portugal, and the ability of crops rotation to reduce these impacts and stabilize crops production. The IrrigRotation software was used to estimate the water requirements of two crop rotations used in the Alentejo region, Sunflower-Wheat-Barley and Sugar beet-Maize-Tomato-Wheat. IrrigRotation is a soil water balance simulation model, continuous in time, based on the dual crop coefficients methodology, which allows to compute the irrigation requirements of crop rotations. The climate data used were the observed data of the Évora and Beja weather stations (1961-90), the A2 and B2 scenarios of the HadRM3P model and the A2 scenarios of the HIRHAMh and HIRHAMhh models (2071-2100). The consideration of a set of climate change scenarios produces as a result a range of values for the irrigation requirements which can be used to define safety margins in irrigation design. The results show that for the Beja clay soils, with high values of soil water storage capacity

  14. Variable rate irrigation (VRI)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variable rate irrigation (VRI) technology is now offered by all major manufacturers of moving irrigation systems, mostly on center pivot irrigation systems. Variable irrigation depths may be controlled by sector only, in which case only the speed of the irrigation lateral is regulated. Or, variable ...

  15. Space Station core resupply and return requirements estimation

    NASA Technical Reports Server (NTRS)

    Wissinger, D. B.

    1988-01-01

    A modular methodology has been developed to model both NASA Space Station onboard resupply/return requirements and Space Shuttle delivery/return capabilities. This approach divides nonpayload Space Station logistics into seven independent categories, each of which is a function of several rates multiplied by user-definable onboard usage scenarios and Shuttle resupply profiles. The categories are summed to arrive at an overall resupply or return requirement. Unused Shuttle resupply and return capacities are also evaluated. The method allows an engineer to evaluate the transportation requirements for a candidate Space Station operational scenario.

  16. Projected Cropping Patterns, Livestock Enterprises, Processing Activities, Capital Requirements, Employment, Income, and Training Needs for Alternative Farm Organizational Structures for the Navajo Indian Irrigation Project. A Special Report to the Four Corners Regional Commission.

    ERIC Educational Resources Information Center

    Gorman, William D.; And Others

    Information on the expected cropping patterns, livestock enterprises, processing and related activities, income and employment opportunities, capital needs, and training requirements for alternative farm organizational structures that could be selected for development of the Navajo Indian Irrigation Project is presented in this report. The major…

  17. Satellite Irrigation Monitoring and Management Support in California with the Terrestrial Observation and Prediction System

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Johnson, L.; Lund, C.; Michaelis, A.; Pierce, L.; Guzman, A.; Hiatt, S.; Purdy, A. J.; Lee, C.; Rosevelt, C.; Fletcher, N.; Votava, P.; Milesi, C.; Hashimoto, H.; Wang, W.; Sheffner, E. J.; Nemani, R.

    2011-12-01

    Satellite data can be used to map crop evapotranspiration over large areas and make irrigation scheduling more practical, convenient, and accurate, but requires the development of new tools and computing frameworks to support operational use in irrigation scheduling and water management. We present findings from the development and deployment of a prototype system for irrigation scheduling and management support. The system utilizes the NASA Terrestrial Observation and Prediction System (TOPS) to integrate satellite observations and meteorological observations to map basal crop coefficient (Kcb) and evapotranspiration (ETcb) values for multiple crop types in the Central Valley of California at spatial resolutions that are useful for irrigation management at the field level (30m). Integration of data from the NOAA NWS Forecasted Reference Evapotranspiration (FRET) system also allows forecasting of irrigation demand with lead times of up to one week, supporting both irrigation scheduling and water delivery planning. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system, web services, and hand held devices. We also present comparisons of estimates of ETcb from the prototype system against estimates from other methods, including surface renewal stations, energy balance models, and water balance models driven with data from wireless sensor networks deployed in operational agricultural fields across California.

  18. A Fuzzy Control Irrigation System For Cottonfield

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Zhao, Yandong; Wang, Yiming; Li, Jinping

    A fuzzy control irrigation system for cotton field is presented in this paper. The system is composed of host computer, slave computer controller, communication module, soil water sensors, valve controllers, and system software. A fuzzy control model is constructed to control the irrigation time and irrigation quantity for cotton filed. According to the water-required rules of different cotton growing periods, different irrigation strategies can be carried out automatically. This system had been used for precision irrigation of the cotton field in Langfang experimental farm of Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences in 2006. The results show that the fuzzy control irrigation system can improve cotton yield and save much water quantity than the irrigation system based on simple on-off control algorithm.

  19. Impact of spatial and temporal aggregation of input parameters on the assessment of irrigation scheme performance

    NASA Astrophysics Data System (ADS)

    Lorite, I. J.; Mateos, L.; Fereres, E.

    2005-01-01

    SummaryThe simulations of dynamic, spatially distributed non-linear models are impacted by the degree of spatial and temporal aggregation of their input parameters and variables. This paper deals with the impact of these aggregations on the assessment of irrigation scheme performance by simulating water use and crop yield. The analysis was carried out on a 7000 ha irrigation scheme located in Southern Spain. Four irrigation seasons differing in rainfall patterns were simulated (from 1996/1997 to 1999/2000) with the actual soil parameters and with hypothetical soil parameters representing wider ranges of soil variability. Three spatial aggregation levels were considered: (I) individual parcels (about 800), (II) command areas (83) and (III) the whole irrigation scheme. Equally, five temporal aggregation levels were defined: daily, weekly, monthly, quarterly and annually. The results showed little impact of spatial aggregation in the predictions of irrigation requirements and of crop yield for the scheme. The impact of aggregation was greater in rainy years, for deep-rooted crops (sunflower) and in scenarios with heterogeneous soils. The highest impact on irrigation requirement estimations was in the scenario of most heterogeneous soil and in 1999/2000, a year with frequent rainfall during the irrigation season: difference of 7% between aggregation levels I and III was found. Equally, it was found that temporal aggregation had only significant impact on irrigation requirements predictions for time steps longer than 4 months. In general, simulated annual irrigation requirements decreased as the time step increased. The impact was greater in rainy years (specially with abundant and concentrated rain events) and in crops which cycles coincide in part with the rainy season (garlic, winter cereals and olive). It is concluded that in this case, average, representative values for the main inputs of the model (crop, soil properties and sowing dates) can generate results

  20. How much water do we need for irrigation under Climate Change in the Mediterranean?

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; Alberte, Bondeau; Wolfgang, Cramer; Simon, Decock; Sinan, Shi

    2014-05-01

    Anthropogenic climate change will very likely alter the hydrological system of already water-limited agricultural landscapes around the Mediterranean. This includes the need for, as well as the availability of irrigation water. On top of that Mediterranean agroecosystems are very likely to be under strong pressure in the near future through changes in consumer demands and diets, increasing urbanization, demographic change, and new markets for agricultural exportation. As a first step to assess the water demand of the agricultural sector, we use an ecohydrological model (the Lund-Potsdam-Jena managed land model, LPJmL) to estimate current and future irrigation water requirements of this region, considering various climate and socio-economic scenarios. LPJmL is a process-based, agricultural and water balance model, where plant growth is ecophysiologically coupled with hydrological variables. For these simulations, the model was adapted to the Mediterranean region in terms of agrosystems as well as crop parameters, and a sensitivity analysis for the irrigation system efficiency was performed. Patterns of current irrigation water requirements differ strongly spatially within the Mediterranean region depending mainly on potential evapotranspiration, the combination of crops cultivated and the extension of irrigated areas. The simulations for the future indicate that the Mediterranean may need considerable additional amounts of irrigation water. However, the regional patterns differ strongly depending on changes in length of growing periods, changes in transpirational rate (temperature and precipitation change, CO2-fertilization), and the consideration of potential improvements in irrigation system efficiency.

  1. Infiltration of unconsumed irrigation water in Utah

    USGS Publications Warehouse

    Brothers, William C.; Thiros, Susan A.

    1991-01-01

    The ground-water hydrology of Panguitch Valley and adjacent areas, south-central Utah, was studied during 1988-90. One objective of the study was to measure ground-water recharge from infiltration of unconsumed irrigation water. Water-level and soil-moisture data were used to estimate travel times for water moving down through the soil profile, and to compare quantities of water reaching the water table after application of flood and sprinkler irrigation. During this study, estimates of travel times from land surface to the water table ranged from 11 days in June 1989 to 2 days in September 1989. Estimates of irrigation water recharging the ground-water system ranged from 25 to 75 percent of the water applied to the flood-irrigated field. Virtually no recharge was apparent for the sprinkler-irrigated field.

  2. 19 CFR 141.102 - When deposit of estimated duties, estimated taxes, or both not required.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... on alcoholic beverages. An importer may pay on a semimonthly basis the estimated internal revenue taxes on all the alcoholic beverages entered or withdrawn for consumption during that period, under...

  3. 19 CFR 141.102 - When deposit of estimated duties, estimated taxes, or both not required.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... on alcoholic beverages. An importer may pay on a semimonthly basis the estimated internal revenue taxes on all the alcoholic beverages entered or withdrawn for consumption during that period, under...

  4. 19 CFR 141.102 - When deposit of estimated duties, estimated taxes, or both not required.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... on alcoholic beverages. An importer may pay on a semimonthly basis the estimated internal revenue taxes on all the alcoholic beverages entered or withdrawn for consumption during that period, under...

  5. 19 CFR 141.102 - When deposit of estimated duties, estimated taxes, or both not required.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... on alcoholic beverages. An importer may pay on a semimonthly basis the estimated internal revenue taxes on all the alcoholic beverages entered or withdrawn for consumption during that period, under...

  6. Estimated water requirements for the conventional flotation of copper ores

    USGS Publications Warehouse

    Bleiwas, Donald I.

    2012-01-01

    This report provides a perspective on the amount of water used by a conventional copper flotation plant. Water is required for many activities at a mine-mill site, including ore production and beneficiation, dust and fire suppression, drinking and sanitation, and minesite reclamation. The water required to operate a flotation plant may outweigh all of the other uses of water at a mine site, [however,] and the need to maintain a water balance is critical for the plant to operate efficiently. Process water may be irretrievably lost or not immediately available for reuse in the beneficiation plant because it has been used in the production of backfill slurry from tailings to provide underground mine support; because it has been entrapped in the tailings stored in the TSF, evaporated from the TSF, or leaked from pipes and (or) the TSF; and because it has been retained as moisture in the concentrate. Water retained in the interstices of the tailings and the evaporation of water from the surface of the TSF are the two most significant contributors to water loss at a conventional flotation circuit facility.

  7. EURRECA-Estimating zinc requirements for deriving dietary reference values.

    PubMed

    Lowe, Nicola M; Dykes, Fiona C; Skinner, Anna-Louise; Patel, Sujata; Warthon-Medina, Marisol; Decsi, Tamás; Fekete, Katalin; Souverein, Olga W; Dullemeijer, Carla; Cavelaars, Adriënne E; Serra-Majem, Lluis; Nissensohn, Mariela; Bel, Silvia; Moreno, Luis A; Hermoso, Maria; Vollhardt, Christiane; Berti, Cristiana; Cetin, Irene; Gurinovic, Mirjana; Novakovic, Romana; Harvey, Linda J; Collings, Rachel; Hall-Moran, Victoria

    2013-01-01

    Zinc was selected as a priority micronutrient for EURRECA, because there is significant heterogeneity in the Dietary Reference Values (DRVs) across Europe. In addition, the prevalence of inadequate zinc intakes was thought to be high among all population groups worldwide, and the public health concern is considerable. In accordance with the EURRECA consortium principles and protocols, a series of literature reviews were undertaken in order to develop best practice guidelines for assessing dietary zinc intake and zinc status. These were incorporated into subsequent literature search strategies and protocols for studies investigating the relationships between zinc intake, status and health, as well as studies relating to the factorial approach (including bioavailability) for setting dietary recommendations. EMBASE (Ovid), Cochrane Library CENTRAL, and MEDLINE (Ovid) databases were searched for studies published up to February 2010 and collated into a series of Endnote databases that are available for the use of future DRV panels. Meta-analyses of data extracted from these publications were performed where possible in order to address specific questions relating to factors affecting dietary recommendations. This review has highlighted the need for more high quality studies to address gaps in current knowledge, in particular the continued search for a reliable biomarker of zinc status and the influence of genetic polymorphisms on individual dietary requirements. In addition, there is a need to further develop models of the effect of dietary inhibitors of zinc absorption and their impact on population dietary zinc requirements.

  8. Operational Irrigation Scheduling for Citrus Trees with Soil Moisture Data Assimilation and Weather Forecast

    NASA Astrophysics Data System (ADS)

    Han, Xujun; Hendricks Franssen, Harrie-Jan; Martínez Alzamora, Fernando; Ángel Jiménez Bello, Miguel; Chanzy, André; Vereecken, Harry

    2015-04-01

    Agricultural areas in the Mediterranean are expected to face more drought stress in the future due to climate change and human activities. Irrigation scheduling is necessary to allocate the optimal water amount at the right time period to avoid unnecessary water losses. An operational data assimilation framework was set-up to combine model predictions and soil moisture measurements in an optimal way for characterizing the soil water status of the root zone. Irrigation amounts for the next days are optimized on the basis of the soil water status of the root zone and meteorological ensemble predictions. In these experiments, the uncertainties of atmospheric forcings and soil properties were considered. The uncertain model forcings were taken from an ensemble of weather forecasts by ECMWF, and delivered by MeteoFrance in this project. The improved soil moisture profile was used to calculate the irrigation requirement taking into account the root distribution of citrus trees in the subsurface. The approach was tested operationally for the experimental site near Picassent, Valencia, Spain. Three fields were irrigated according to our approach in the years 2013 and 2014. Three others were irrigated traditionally, based on FAO-criteria. Soil moisture was measured by FDR probes at 10 cm and 30 cm depth at various fields and these real time data were assimilated by the Local Ensemble Transform Kalman Filter (LETKF) into the Community Land Model (CLM) to improve the estimation of the soil moisture profile. The measured soil moisture was assimilated five times per day before the start of the next drip irrigation. The final results (total amount of irrigated water, stem water potential and citrus production) show that our strategy resulted in significantly less irrigated water compared to the FAO-irrigated fields, but without indications of increased water stress. Soil moisture contents did not decline over time in our approach, stem water potential measurements did not

  9. Evaluation of sap flow and trunk diameter sensors for irrigation scheduling in early maturing peach trees.

    PubMed

    Conejero, W; Alarcón, J J; García-Orellana, Y; Nicolás, E; Torrecillas, A

    2007-12-01

    Five-year-old early maturing peach trees (Prunus persica (L.) Batsch cv. Flordastar grafted on GF-677 peach rootstock) were subjected to three irrigation treatments from March 18 to November 10, 2006. Control plants (T0 treatment) which received irrigation in excess of their crop water requirements (1089.7 mm) were compared with plants watered according to sap flow (SF; T1 treatment) or maximum daily trunk shrinkage (MDS; T2 treatment) measurements, so as to maintain SF and MDS signal intensities (control SF/SF in T1 and MDS in T2/control MDS, respectively) close to unity. When SF or MDS signal intensity on at least two of three consecutive days was at or below unity, irrigation was reduced by 10%. When the MDS signal intensity on at least two of three consecutive days exceeded unity, irrigation was increased by 10%. During the experiment, estimated crop evapotranspiration was 704.9 mm, and the cumulative amounts of applied water in the T1 and T2 treatments were 463.2 and 654.5 mm, respectively. The MDS-signal-intensity-driven irrigation schedule was more suitable than the SF-signal-intensity-driven irrigation schedule because it was more sensitive and reliable in detecting changes in plant water status, preventing the development of detectable plant water stress. Moreover, it had no effect on fruit size. We conclude that peach tree irrigation scheduling can be based on MDS measurements alone. Changes in the irrigation protocol assayed were proposed to reduce MDS signal intensity deviations above unity, for example, by increasing the irrigation scheduling frequency or the amount of water applied, or both. Irrigation schedules based on maintaining MDS signal intensities close to unity could be applied when local crop factor values are unavailable.

  10. Practical implications of applied irrigation research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Groundwater is essential to irrigated agriculture in the semi-arid Texas High Plains. Concerns over groundwater depletion have led to increased emphasis on water conservation. Irrigation scheduling coupled with accurate crop water use (ET) estimation is one of the most effective means to both conser...

  11. Testing an Irrigation Decision Support Tool for California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Benzen, S.; Zaragoza, I.; Murphy, L.; Melton, F. S.; Martin, F.; Quackenbush, A.; Lockhart, T.

    2015-12-01

    Estimation of crop evapotranspiration supports efficiency of irrigation water management, which in turn can mitigate nitrate leaching, groundwater depletion, and provide energy savings. Past research in California and elsewhere has revealed strong relationships between photosynthetically active vegetation fraction (Fc) and crop evapotranspiration (ETc). Additional research has shown the potential of monitoring Fc by satellite remote sensing. The U.C. Cooperative Extension developed and operates CropManage (CM) as on-line database irrigation (and nitrogen) scheduling tool. CM accounts for the rapid growth and typically brief cycle of cool-season vegetables, where Fc and fraction of reference ET can change daily during canopy development. The model automates crop water requirement calculations based on reference ET data collected by California Dept. Water Resources. Empirically-derived equations are used to estimate daily Fc time-series for a given crop type primarily as a function of planting date and expected harvest date. An application programming interface (API) is under development to provide a check on modeled Fc of current crops and facilitate CM expansion to new crops. The API will enable CM to extract field scale Fc observations from NASA's Satellite Irrigation Management Support (SIMS). SIMS is mainly Landsat based and currently monitors Fc over about 8 million irrigation acres statewide, with potential for adding data from ESA/Sentinel for improved temporal resolution. In the current study, a replicated irrigation trial was performed on romaine lettuce at the USDA Agricultural Research Station in Salinas, CA. CropManage recommendations were used to guide water treatments by drip irrigation at 50%, 75%, 100% ETc replacement levels, with an added treatment at 150% ET representing grower standard practice. Experimental results indicate that yields from the 100% and 150% treatments were not significantly different and were in-line with industry average, while

  12. 19 CFR 141.102 - When deposit of estimated duties, estimated taxes, or both not required.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... withdrawal for consumption in the following situations may be made without depositing the estimated Customs... or manufacturer may enter or withdraw for consumption cigars, cigarettes, and cigarette papers and... regulations of the Bureau of Alcohol, Tobacco and Firearms (27 CFR part 251). (c) Deferral of payment of...

  13. Pumpage data from irrigation wells in eastern Laramie County, Wyoming, and Kimball County, Nebraska

    USGS Publications Warehouse

    Avery, Charles

    1983-01-01

    Quantitative information concerning pumpage by irrigation wells is an integral component of the U.S. Geological Survey High Plains Regional Aquifer System Analysis. Thus, operation time, discharge rate, and irrigated acreage were measured at approximately 450 randomly selected irrigation wells within 10 areas of the High Plains during the 1980 irrigation season. The data were used to estimate the seasonal mean application of water to crops and to project total pumpage by irrigation wells in 1980 throughout the High Plains area. As part of the sampling effort, 50 irrigation wells were randomly chosen from the area of eastern Laramie County, Wyoming, and Kimball County, Nebraska. Required information was collected on only 40 of the wells. For these wells, the seasonal mean application of water on the irrigated land was 15.2 inches. For the major crop types, the seasonal mean application, in inches, were as follows: alfalfa, 19.8; corn, 15.4; potatoes, 13.8; beans, 12.8; and small grains 10.2. (USGS)

  14. Irrigation scheduling by ET and soil water sensing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigation scheduling is the process of deciding when, where and how much to irrigate, usually with the goal of optimizing economic return on investment in land, equipment, inputs and personnel. This hour-long seminar presents methods of irrigation scheduling based, on the one hand on estimates of t...

  15. Irrigation management with remote sensing. [Navajo Indian Irrigation Project

    NASA Technical Reports Server (NTRS)

    Harlan, C.; Heilman, J. L.; Moore, D.; Myers, V. (Principal Investigator)

    1982-01-01

    Two visible/near IR hand held radiometers and a hand held thermoradiometer were used along with soil moisture and lysimetric measurements in a study of soil moisture distribution in afalfa fields on the Navajo Indian Irrigation Project near farmington, New Mexico. Radiances from irrigated plots were measured and converted to reflectances. Surface soil water contents (o cm to 4 cm) were determined gravimetrically on samples collected at the same time as the spectral measurements. The relationship between the spectral measurements and the crop coefficient were evaluated to demonstrate potential for using spectral measurement to estimate crop coefficient.

  16. Environmental flows for rivers and economic compensation for irrigators.

    PubMed

    Sisto, Nicholas P

    2009-02-01

    Securing flows for environmental purposes from an already fully utilized river is an impossible task--unless users are either coerced into freeing up water, or offered incentives to do so. One sensible strategy for motivating users to liberate volumes is to offer them economic compensation. The right amount for that compensation then becomes a key environmental management issue. This paper analyses a proposal to restore and maintain ecosystems on a stretch of the Río Conchos in northern Mexico, downstream from a large irrigation district that consumes nearly all local flows. We present here estimates of environmental flow requirements for these ecosystems and compute compensation figures for irrigators. These figures are derived from crop-specific irrigation water productivities we statistically estimate from a large set of historical production and irrigation data obtained from the district. This work has general implications for river ecosystem management in water-stressed basins, particularly in terms of the design of fair and effective water sharing mechanisms.

  17. Spectral reflectance indices for estimating yield and water content in spring wheat genotypes under well irrigated, water stress, and high temperature conditions

    NASA Astrophysics Data System (ADS)

    Gutierrez-Rodriguez, Mario

    Scope and Method of Study. Alternative methods for selecting, detecting, and identifying higher yielding genotypes in wheat breeding programs are important for obtaining major genetic gains. The water indices can be used as an indirect selection tool because of their strong association with different physiological and yield components. Diverse spring wheat advanced lines were used, which corresponded to three international trials developed by the International Maize and Wheat Improvement Center (CIMMYT); 24th Elite Spring Wheat Yield Trial (ESWYT) with 25 lines, 11th Semi-Arid Wheat Yield Trial (SAWYT) with 40 lines, and 11th High Temperature Wheat Yield Trial (HTWYT) with 18 lines. Two other experiments also employed advanced lines for testing the relationship between water indices and water content parameters (10-16 lines) and for evaluating the influence of morphological traits (20 lines) over the water indices. Several water indices and other reflectance indices were estimated at three growth stages (booting, heading, and grain filling) using a field portable spectrometer (Analytical Spectral Devices, Boulder, CO). Field plots were planted in Northwest Mexico during three growing seasons (2006, 2007, and 2007). Grain yield, biomass, and some water status parameters were determined in diverse experiments. Findings and Conclusions. There were high correlations (phenotypic and genetic) between grain yield and the water indices showing high heritability, response to selection and correlated response, relative selection efficiency, and efficiency in selecting the higher yielding genotypes. Two water indices showed the strongest relationships (NWI-1 and NWI-3) for all the parameters determined in the well irrigated, water stress, and high temperature environments. In addition, the water indices were related with parameters commonly employed for assessing the crop water status ( i.e., water potential) during booting, anthesis and grain filling under water stress

  18. Soil salinisation and irrigation management of date palms in a Saharan environment.

    PubMed

    Haj-Amor, Zied; Ibrahimi, Mohamed-Khaled; Feki, Nissma; Lhomme, Jean-Paul; Bouri, Salem

    2016-08-01

    The continuance of agricultural production in regions of the world with chronic water shortages depends upon understanding how soil salinity is impacted by irrigation practises such as water salinity, irrigation frequency and amount of irrigation. A two-year field study was conducted in a Saharan oasis of Tunisia (Lazala Oasis) to determine how the soil electrical conductivity was affected by irrigation of date palms with high saline water. The study area lacked a saline shallow water table. Field results indicate that, under current irrigation practises, soil electrical conductivity can build up to levels which exceed the salt tolerance of date palm trees. The effects of irrigation practises on the soil electrical conductivity were also evaluated using model simulations (HYDRUS-1D) of various irrigation regimes with different frequencies, different amounts of added water and different water salinities. The comparison between the simulated and observed results demonstrated that the model gave an acceptable estimation of water and salt dynamics in the soil profile, as indicated by the small values of root mean square error (RMSE) and the high values of the Nash-Sutcliffe model efficiency coefficient (NSE). The simulations demonstrated that, under field conditions without saline shallow groundwater, saline irrigation water can be used to maintain soil electrical conductivity and soil water content at safe levels (soil electrical conductivity <4 dS m(-1) and soil water content >0.04 cm(3) cm(-3)) if frequent irrigations with small amounts of water (90 % of the evapotranspiration requirements) were applied throughout the year.

  19. Grid-point requirements for large eddy simulation: Chapman's estimates revisited

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon; Moin, Parviz

    2012-01-01

    Resolution requirements for large eddy simulation (LES), estimated by Chapman [AIAA J. 17, 1293 (1979)], are modified using accurate formulae for high Reynolds number boundary layer flow. The new estimates indicate that the number of grid points (N) required for wall-modeled LES is proportional to ReLx , but a wall-resolving LES requires N ˜ReLx 13 /7 , where Lx is the flat-plate length in the streamwise direction. On the other hand, direct numerical simulation, resolving the Kolmogorov length scale, requires N ˜ReLx 37 /14 .

  20. Irrigation water use in Kansas, 2014

    USGS Publications Warehouse

    Lanning-Rush, Jennifer

    2016-01-01

    This U.S. Geological Survey (USGS) Data Release represents geospatial and tabular data on irrigation water use in Kansas.  The data release was produced in compliance with open data requirements.  The dataset consists of 3 separate items with similar attributes aggregated to different geographic extents:  1.  Kansas counties; 2.  Kansas regional planning areas used in the Kansas Water Plan; and 3.  Kansas irrigation water-use analysis regions.Reported 2014 water withdrawn for irrigation, acres irrigated, and application rates along with the published application rate statistics from the previous 4 years (2010–13) are shown with the 2014 statistics and are used to calculate a 5-year average. The 2014 annual total precipitation and the current 30-year climatic normal (based on 1981–2010) are also shown.  Other data published in this data release include the amount of water used, irrigated acres, and application rates by crop type and the amount of water used and acres irrigated are further grouped by irrigation method. Total reported irrigation water use in 2014 was 3.3 million acre-feet of water applied to 3.0 million irrigated acres.

  1. Water requirements and management of maize under drip and sprinkler irrigation. 2000 annual report for Agricultural Technology Utilization and Transfer (ATUT) project

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Research at Ismailia, Egypt, focused on irrigation management of maize, fava bean, wheat, and alfalfa. In 1998, the two weighing lysimeters at Ismailia were recalibrated successfully with precision of 0.01 mm; and a state-of-the-art time domain reflectometry (TDR) system for soil water balance measu...

  2. Irrigation as an Historical Climate Forcing

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2014-01-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  3. Irrigation As an Historical Climate Forcing

    NASA Astrophysics Data System (ADS)

    Cook, B.; Puma, M. J.; McDermid, S. P.; Nazarenko, L.

    2014-12-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  4. Irrigation as an historical climate forcing

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2015-03-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  5. Irrigation strategies using subsurface drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Subsurface drip irrigation (SDI) is practiced on approximately 60,000 ha in the Texas High Plains region of the USA. Adoption of SDI continues to increase in the region. This has been attributed to record drought in Texas and the US Southwest in recent years, declining irrigation well yields, and ev...

  6. Visual Estimation of Spatial Requirements for Locomotion in Novice Wheelchair Users

    ERIC Educational Resources Information Center

    Higuchi, Takahiro; Takada, Hajime; Matsuura, Yoshifusa; Imanaka, Kuniyasu

    2004-01-01

    Locomotion using a wheelchair requires a wider space than does walking. Two experiments were conducted to test the ability of nonhandicapped adults to estimate the spatial requirements for wheelchair use. Participants judged from a distance whether doorlike apertures of various widths were passable or not passable. Experiment 1 showed that…

  7. Nonsustainable groundwater sustaining irrigation: A global assessment

    NASA Astrophysics Data System (ADS)

    Wada, Yoshihide; van Beek, L. P. H.; Bierkens, Marc F. P.

    2012-06-01

    Water used by irrigated crops is obtained from three sources: local precipitation contributing to soil moisture available for root water uptake (i.e., green water), irrigation water taken from rivers, lakes, reservoirs, wetlands, and renewable groundwater (i.e., blue water), and irrigation water abstracted from nonrenewable groundwater and nonlocal water resources. Here we quantify globally the amount of nonrenewable or nonsustainable groundwater abstraction to sustain current irrigation practice. We use the global hydrological model PCR-GLOBWB to simulate gross crop water demand for irrigated crops and available blue and green water to meet this demand. We downscale country statistics of groundwater abstraction by considering the part of net total water demand that cannot be met by surface freshwater. We subsequently confront these with simulated groundwater recharge, including return flow from irrigation to estimate nonrenewable groundwater abstraction. Results show that nonrenewable groundwater abstraction contributes approximately 20% to the global gross irrigation water demand for the year 2000. The contribution of nonrenewable groundwater abstraction to irrigation is largest in India (68 km3 yr-1) followed by Pakistan (35 km3 yr-1), the United States (30 km3 yr-1), Iran (20 km3 yr-1), China (20 km3 yr-1), Mexico (10 km3 yr-1), and Saudi Arabia (10 km3 yr-1). Results also show that globally, this contribution more than tripled from 75 to 234 km3 yr-1 over the period 1960-2000.

  8. Surface drip irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    For many years, surface drip irrigation has been used to irrigation high value vegetable crops. In recent years, surface drip of row crops has been increasing throughout the United States. Surface drip irrigation can precisely deliver water and nutrients to the crop root zone. This article provides ...

  9. Planning for deficit irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigators with limited water supplies that lead to deficit irrigation management need to make decisions about crop selection, water allocations to each crop, and irrigation schedules. Many of these decisions need to occur before the crop is planted and depend on yield-evapotranspiration (ET) and yi...

  10. Climate change would increase the water intensity of irrigated corn ethanol.

    PubMed

    Dominguez-Faus, Rosa; Folberth, Christian; Liu, Junguo; Jaffe, Amy M; Alvarez, Pedro J J

    2013-06-04

    Changes in atmospheric CO2 concentrations, temperature, and precipitation affect plant growth and evapotranspiration. However, the interactive effects of these factors are relatively unexplored, and it is important to consider their combined effects at geographic and temporal scales that are relevant to policymaking. Accordingly, we estimate how climate change would affect water requirements for irrigated corn ethanol production in key regions of the U.S. over a 40 year horizon. We used the geographic-information-system-based environmental policy integrated climate (GEPIC) model, coupled with temperature and precipitation predictions from five different general circulation models and atmospheric CO2 concentrations from the Special Report on Emissions Scenarios A2 emission scenario of the Intergovernmental Panel on Climate Change, to estimate changes in water requirements and yields for corn ethanol. Simulations infer that climate change would increase the evaporative water consumption of the 15 billion gallons per year of corn ethanol needed to comply with the Energy Independency and Security Act by 10%, from 94 to 102 trillion liters/year (tly), and the irrigation water consumption by 19%, from 10.22 to 12.18 tly. Furthermore, on average, irrigation rates would increase by 9%, while corn yields would decrease by 7%, even when the projected increased irrigation requirements were met. In the irrigation-intensive High Plains, this implies increased pressure for the stressed Ogallala Aquifer, which provides water to seven states and irrigates one-fourth of the grain produced in the U.S. In the Corn Belt and Great Lakes region, where more rainfall is projected, higher water requirements could be related to less frequent rainfall, suggesting a need for additional water catchment capacity. The projected increases in water intensity (i.e., the liters of water required during feedstock cultivation to produce 1 L of corn ethanol) because of climate change highlight the need

  11. IRRIMET: a web 2.0 advisory service for irrigation water management

    NASA Astrophysics Data System (ADS)

    De Michele, Carlo; Anzano, Enrico; Colandrea, Marco; Marotta, Luigi; Mula, Ileana; Pelosi, Anna; D'Urso, Guido; Battista Chirico, Giovanni

    2016-04-01

    Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Irrigating according to reliable crop water requirement estimates is one of the most convincing solution to decrease agricultural water use. Here we present an innovative irrigation advisory service, applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. The advisory service is based on the optimal combination of VIS-NIR high resolution satellite images (Landsat, Deimos, Rapideye) to map crop vigour, and high resolution numerical weather prediction for assessing the meteorological variables driving the crop water needs in the short-medium range. The advisory service is broadcasted with a simple and intuitive web app interface which makes daily real time irrigation and evapotranspiration maps and customized weather forecasts (based on Cosmo Leps model) accessible from desktop computers, tablets and smartphones.

  12. Closing the irrigation deficit in Cambodia: Implications for transboundary impacts on groundwater and Mekong River flow

    NASA Astrophysics Data System (ADS)

    Erban, Laura E.; Gorelick, Steven M.

    2016-04-01

    Rice production in Cambodia, essential to food security and exports, is largely limited to the wet season. The vast majority (96%) of land planted with rice during the wet season remains fallow during the dry season. This is in large part due to lack of irrigation capacity, increases in which would entail significant consequences for Cambodia and Vietnam, located downstream on the Mekong River. Here we quantify the extent of the dry season "deficit" area in the Cambodian Mekong River catchment, using a recent agricultural survey and our analysis of MODIS satellite data. Irrigation of this land for rice production would require a volume of water up to 31% of dry season Mekong River flow to Vietnam. However, the two countries share an aquifer system in the Mekong Delta, where irrigation demand is increasingly met by groundwater. We estimate expansion rates of groundwater-irrigated land to be >10% per year in the Cambodian Delta using LANDSAT satellite data and simulate the effects of future expansion on groundwater levels over a 25-year period. If groundwater irrigation continues to expand at current rates, the water table will drop below the lift limit of suction pump wells, used for domestic supply by >1.5 million people, throughout much of the area within 15 years. Extensive groundwater irrigation jeopardizes access for shallow domestic water supply wells, raises the costs of pumping for all groundwater users, and may exacerbate arsenic contamination and land subsidence that are already widespread hazards in the region.

  13. Role of irrigation and irrigation automation in improving crop water use efficiency

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In arid climates, irrigation is required for significant agricultural production. In subhumid and semiarid climates, supplemental irrigation is recognized as both economically necessary (prevention of crop losses in periodic droughts) and as a means to improve overall crop water use effi...

  14. Desert landscape irrigation

    SciTech Connect

    Quinones, R.

    1995-06-01

    Industrialization can take place in an arid environment if a long term, overall water management program is developed. The general rule to follow is that recharge must equal or exceed use. The main problem encountered in landscape projects is that everyone wants a lush jungle setting, tall shade trees, ferns, with a variety of floral arrangements mixed in. What we want, what we can afford, and what we get are not always the same. Vegetation that requires large quantities of water are not native to any desert. Surprisingly; there are various types of fruit trees, and vegetables that will thrive in the desert. Peaches, plums, nut trees, do well with drip irrigation as well as tomatoes. Shaded berry plans will also do well, the strawberry being one. In summary; if we match our landscape to our area, we can then design our irrigation system to maintain our landscape and grow a variety of vegetation in any arid or semiarid environment. The application of science and economics to landscaping has now come of age.

  15. Irrigation management using an expert system, soil water potentials, and vegetative indices for spatial applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variable rate irrigation (VRI) systems are irrigation systems that are capable of applying different water depths both in the direction of travel and along the length of the irrigation system. However, when compared to traditional irrigation systems, VRI systems require a higher level of management...

  16. Adaptability of Irrigation to a Changing Monsoon in India: How far can we go?

    NASA Astrophysics Data System (ADS)

    Zaveri, E.; Grogan, D. S.; Fisher-Vanden, K.; Frolking, S. E.; Wrenn, D. H.; Nicholas, R.

    2014-12-01

    Agriculture and the monsoon are inextricably linked in India. A large part of the steady rise in agricultural production since the onset of the Green Revolution in the 1960's has been attributed to irrigation. Irrigation is used to supplement and buffer crops against precipitation shocks, but water availability for such use is itself sensitive to the erratic, seasonal and spatially heterogeneous nature of the monsoon. We provide new evidence on the relationship between monsoon changes, irrigation variability and water availability by linking a process based hydrology model with an econometric model for one of the world's most water stressed countries. India uses more groundwater for irrigation than any other country, and there is substantial evidence that this has led to depletion of groundwater aquifers. First, we build an econometric model of historical irrigation decisions using detailed agriculture and weather data spanning 35 years. Multivariate regression models reveal that for crops grown in the wet season, irrigation is sensitive to distribution and total monsoon rainfall but not to ground or surface water availability. For crops grown in the dry season, total monsoon rainfall matters most, and its effect is sensitive to groundwater availability. The historical estimates from the econometric model are used to calculate future irrigated areas under three different climate model predictions of monsoon climate for the years 2010 - 2050. These projections are then used as input to a physical hydrology model, which quantifies supply of irrigation water from sustainable sources such as rechargeable shallow groundwater, rivers and reservoirs, to unsustainable sources such as non- rechargeable groundwater. We find that the significant variation in monsoon projections lead to very different results. Crops grown in the dry season show particularly divergent trends between model projections, leading to very different groundwater resource requirements.

  17. Nitrate contamination and its relationship with flood irrigation management

    NASA Astrophysics Data System (ADS)

    García-Garizábal, I.; Causapé, J.; Abrahao, R.

    2012-06-01

    SummaryNitrate contamination is a significant unresolved environmental issue for agriculture in the 21st century, with longstanding challenges in its control and allocation to a specified territory. In order to address these challenges, real-world meticulous irrigation area studies are required. The objective of this investigation is to analyze the evolution of nitrate contamination in relation to agronomic and management changes within a traditionally irrigated land. Specifically, the impact of changes in irrigation allowance assignment, changes in irrigation method from rotation to on-demand flood irrigation, and creation of water consumption accounts were analyzed. To this end, nitrogen monitoring and annual balances were carried out in a small irrigated hydrological basin (95 ha) located in Northeastern Spain throughout the years of 2001 and 2005-2008. The evolution of the nitrate contamination index was also analyzed, which relates the mass of nitrates exported to the fertilization necessities of a specific irrigated area. The results demonstrated that although changes in crop pattern caused a 33% reduction in the nitrogen required through fertilization, the fertilization rates applied are still double the necessities. Changes in irrigation management decreased the mass of nitrates exported by half and the nitrate contamination index by 24%, but the nitrate levels present are still approximately double of those registered in modern irrigation areas. The changes implemented by the Irrigation District in the irrigation management were effective. However, this study confirms that a greater effort is still required to achieve adequate nitrogen fertilization matching the crop necessities.

  18. Method of Estimating the Principal Characteristics of an Infantry Fighting Vehicle from Basic Performance Requirements

    DTIC Science & Technology

    2013-08-01

    Characteristics of an Infantry Fighting Vehicle from Basic Performance Requirements David R. Gillingham Prashant R. Patel, Project Leader INSTITUTE FOR DEFENSE...Paul M. Kodzwa, David A. Sparrow, and Jeremy A. Teichman for performing technical review of this document. Copyright Notice © 2013 Institute for...Paper P-5032 Method of Estimating the Principal Characteristics of an Infantry Fighting Vehicle from Basic Performance Requirements David R. Gillingham

  19. The Sustainability of Irrigation Schemes Under Climate Change

    NASA Astrophysics Data System (ADS)

    Naabil, E.; Lamptey, B. L.; Arnault, J.; Ayorinde, O. A.; Kunstmann, H.

    2015-12-01

    Irrigation is considered to be one of the best practices in agriculture to ensure food security. However water resources that are used for Irrigation activities are increasingly coming under stress, either due to extraction or climate variability and change. To adequately plan and manage water resources so as to ensure their sustainability requires a long term investigations of streamflow and climate. Streamflow analysis and forecasting gives signal of the occurrence of floods and drought situations. However the ability to maximise these early warning signal, especially for small watersheds, require the use of rainfall predictions approaches (Yucel et al., 2015). One approach to extend the predictions of these early warning signals is the coupling of mesoscale numerical weather prediction (NWP) model precipitation estimates with a spatial resolution hydrological model into streamflow estimates (Jasper et al. 2002;Wardah et al. 2008; Yucel et al. 2015). The study explored (1) the potential of the NWP model (WRF) in reproducing observed precipitation over the Tono basin in West Africa, and (2) the potential of a coupled version of WRF with a physics-based hydrological model (WRF-Hydro) in estimating river streamflow. In order to cope with the lack of discharge observation in the Tono basin, the WRF-Hydro performances are evaluated with a water balance approach and dam level observation. The WRF-Hydro predicted dam level is relatively close to the observation (dam level) from January to August (R2=0.93). After this period the deviation from observation increases (R2=0.62). This could be attributed to surface runoff due to peak rainfall (in August) resulting in soil saturation (soil reaching infiltration capacity) into the dam which has not been accounted for in the water balance model. WRF-Hydro has shown to give good estimation of streamflow especially for ungauged stations. Further works requires using WRF-Hydro modeling system for climate projection, and assess the

  20. Water balance in irrigation districts. Uncertainty in on-demand pressurized networks

    NASA Astrophysics Data System (ADS)

    Sánchez-Calvo, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco Vicente

    2015-04-01

    In on-demand pressurized irrigation distribution networks, applied water volume is usually controlled opening a valve during a calculated time interval, and assuming constant flow rate. In general, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of pressure conditions. A pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. Theoretical flow rates values have been introduced into a PRV behavioral model, validated in laboratory, coupled with an on-demand irrigation district waterworks, composed by a distribution network and a multi-pump station. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of both the PRV and the water distribution network. In this work the estimation of water balance terms during the irrigation events in an irrigation campaign has been simulated. The effect of demand concentration peaks has been estimated.

  1. Use Of Crop Canopy Size To Estimate Water Requirements Of Vegetable Crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Planting time, plant density, variety, and cultural practices vary widely for horticultural crops. It is difficult to estimate crop water requirements for crops with these variations. Canopy size, or factional ground cover, as an indicator of intercepted sunlight, is related to crop water use. We...

  2. Estimation of Managerial and Technical Personnel Requirements in Selected Industries. Training for Industry Series, No. 2.

    ERIC Educational Resources Information Center

    United Nations Industrial Development Organization, Vienna (Austria).

    The need to develop managerial and technical personnel in the cement, fertilizer, pulp and paper, sugar, leather and shoe, glass, and metal processing industries of various nations was studied, with emphasis on necessary steps in developing nations to relate occupational requirements to technology, processes, and scale of output. Estimates were…

  3. Sample Size Requirements for Accurate Estimation of Squared Semi-Partial Correlation Coefficients.

    ERIC Educational Resources Information Center

    Algina, James; Moulder, Bradley C.; Moser, Barry K.

    2002-01-01

    Studied the sample size requirements for accurate estimation of squared semi-partial correlation coefficients through simulation studies. Results show that the sample size necessary for adequate accuracy depends on: (1) the population squared multiple correlation coefficient (p squared); (2) the population increase in p squared; and (3) the…

  4. Remote sensing techniques for monitoring and managing irrigated lands

    NASA Astrophysics Data System (ADS)

    Allan, J. A.

    Agriculture in semi-arid tracts of the world depends on water to sustain its irrigation systems. Such agricultural systems either derive from government investments in the control of surface flow or they have been developed through the exploitation of groundwater sometimes by a large community of unsupervised individuals seeking to maximise their own advantage without concern for the resource upon which they depend in the medium and long term. In both cases government agencies need data on the area irrigated and the volume of water used. In countries with highly developed scientific and agricultural institutions the contribution of remote sensing, though significant, may only provide between five and ten per cent of the data required to guide regional and national managers. In countries without such institutions the proportion contributed by remote sensing can be very much higher, as shown in a recent study in North Africa. The paper will emphasise the importance of carefully structured sampling procedures, both to improve the areal estimates from satellite imagery and the estimates of water use based upon them. The role of satellite imagery in providing information on the status of water resources, on trends in water use and in the implementation of policies to extend or diminish irrigated land are discussed.

  5. Estimating Agricultural Water Use using the Operational Simplified Surface Energy Balance Evapotranspiration Estimation Method

    NASA Astrophysics Data System (ADS)

    Forbes, B. T.

    2015-12-01

    Due to the predominantly arid climate in Arizona, access to adequate water supply is vital to the economic development and livelihood of the State. Water supply has become increasingly important during periods of prolonged drought, which has strained reservoir water levels in the Desert Southwest over past years. Arizona's water use is dominated by agriculture, consuming about seventy-five percent of the total annual water demand. Tracking current agricultural water use is important for managers and policy makers so that current water demand can be assessed and current information can be used to forecast future demands. However, many croplands in Arizona are irrigated outside of areas where water use reporting is mandatory. To estimate irrigation withdrawals on these lands, we use a combination of field verification, evapotranspiration (ET) estimation, and irrigation system qualification. ET is typically estimated in Arizona using the Modified Blaney-Criddle method which uses meteorological data to estimate annual crop water requirements. The Modified Blaney-Criddle method assumes crops are irrigated to their full potential over the entire growing season, which may or may not be realistic. We now use the Operational Simplified Surface Energy Balance (SSEBop) ET data in a remote-sensing and energy-balance framework to estimate cropland ET. SSEBop data are of sufficient resolution (30m by 30m) for estimation of field-scale cropland water use. We evaluate our SSEBop-based estimates using ground-truth information and irrigation system qualification obtained in the field. Our approach gives the end user an estimate of crop consumptive use as well as inefficiencies in irrigation system performance—both of which are needed by water managers for tracking irrigated water use in Arizona.

  6. Space transfer vehicle concepts and requirements study. Volume 3, book 1: Program cost estimates

    NASA Technical Reports Server (NTRS)

    Peffley, Al F.

    1991-01-01

    The Space Transfer Vehicle (STV) Concepts and Requirements Study cost estimate and program planning analysis is presented. The cost estimating technique used to support STV system, subsystem, and component cost analysis is a mixture of parametric cost estimating and selective cost analogy approaches. The parametric cost analysis is aimed at developing cost-effective aerobrake, crew module, tank module, and lander designs with the parametric cost estimates data. This is accomplished using cost as a design parameter in an iterative process with conceptual design input information. The parametric estimating approach segregates costs by major program life cycle phase (development, production, integration, and launch support). These phases are further broken out into major hardware subsystems, software functions, and tasks according to the STV preliminary program work breakdown structure (WBS). The WBS is defined to a low enough level of detail by the study team to highlight STV system cost drivers. This level of cost visibility provided the basis for cost sensitivity analysis against various design approaches aimed at achieving a cost-effective design. The cost approach, methodology, and rationale are described. A chronological record of the interim review material relating to cost analysis is included along with a brief summary of the study contract tasks accomplished during that period of review and the key conclusions or observations identified that relate to STV program cost estimates. The STV life cycle costs are estimated on the proprietary parametric cost model (PCM) with inputs organized by a project WBS. Preliminary life cycle schedules are also included.

  7. Estimates of the energy deficit required to reverse the trend in childhood obesity in Australian schoolchildren

    PubMed Central

    Davey, Rachel; de Castella, F. Robert

    2015-01-01

    Abstract Objectives: To estimate: 1) daily energy deficit required to reduce the weight of overweight children to within normal range; 2) time required to reach normal weight for a proposed achievable (small) target energy deficit of 0.42 MJ/day; 3) impact that such an effect may have on prevalence of childhood overweight. Methods: Body mass index and fitness were measured in 31,424 Australian school children aged between 4.5 and 15 years. The daily energy deficit required to reduce weight to within normal range for the 7,747 (24.7%) overweight children was estimated. Further, for a proposed achievable target energy deficit of 0.42 MJ/day, the time required to reach normal weight was estimated. Results: About 18% of children were overweight and 6.6% obese; 69% were either sedentary or light active. If an energy deficit of 0.42 MJ/day could be achieved, 60% of overweight children would reach normal weight and the current prevalence of overweight of 24.7% (24.2%–25.1%) would be reduced to 9.2% (8.9%–9.6%) within about 15 months. Conclusions: The prevalence of overweight in Australian school children could be reduced significantly within one year if even a small daily energy deficit could be achieved by children currently classified as overweight or obese. PMID:26561382

  8. Technical Note: On the Matt-Shuttleworth approach to estimate crop water requirements

    NASA Astrophysics Data System (ADS)

    Lhomme, J. P.; Boudhina, N.; Masmoudi, M. M.

    2014-11-01

    The Matt-Shuttleworth method provides a way to make a one-step estimate of crop water requirements with the Penman-Monteith equation by translating the crop coefficients, commonly available in United Nations Food and Agriculture Organization (FAO) publications, into equivalent surface resistances. The methodology is based upon the theoretical relationship linking crop surface resistance to a crop coefficient and involves the simplifying assumption that the reference crop evapotranspiration (ET0) is equal to the Priestley-Taylor estimate with a fixed coefficient of 1.26. This assumption, used to eliminate the dependence of surface resistance on certain weather variables, is questionable; numerical simulations show that it can lead to substantial differences between the true value of surface resistance and its estimate. Consequently, the basic relationship between surface resistance and crop coefficient, without any assumption, appears to be more appropriate for inferring crop surface resistance, despite the interference of weather variables.

  9. An approach to estimating human resource requirements to achieve the Millennium Development Goals.

    PubMed

    Dreesch, Norbert; Dolea, Carmen; Dal Poz, Mario R; Goubarev, Alexandre; Adams, Orvill; Aregawi, Maru; Bergstrom, Karin; Fogstad, Helga; Sheratt, Della; Linkins, Jennifer; Scherpbier, Robert; Youssef-Fox, Mayada

    2005-09-01

    In the context of the Millennium Development Goals, human resources represent the most critical constraint in achieving the targets. Therefore, it is important for health planners and decision-makers to identify what are the human resources required to meet those targets. Planning the human resources for health is a complex process. It needs to consider both the technical aspects related to estimating the number, skills and distribution of health personnel for meeting population health needs, and the political implications, values and choices that health policy- and decision-makers need to make within given resources limitations. After presenting an overview of the various methods for planning human resources for health, with their advantages and limitations, this paper proposes a methodological approach to estimating the requirements of human resources to achieve the goals set forth by the Millennium Declaration. The method builds on the service-target approach and functional job analysis.

  10. Technical note: A procedure to estimate glucose requirements of an activated immune system in steers.

    PubMed

    Kvidera, S K; Horst, E A; Abuajamieh, M; Mayorga, E J; Sanz Fernandez, M V; Baumgard, L H

    2016-11-01

    Infection and inflammation impede efficient animal productivity. The activated immune system ostensibly requires large amounts of energy and nutrients otherwise destined for synthesis of agriculturally relevant products. Accurately determining the immune system's in vivo energy needs is difficult, but a better understanding may facilitate developing nutritional strategies to maximize productivity. The study objective was to estimate immune system glucose requirements following an i.v. lipopolysaccharide (LPS) challenge. Holstein steers (148 ± 9 kg; = 15) were jugular catheterized bilaterally and assigned to 1 of 3 i.v.

  11. Improving Surface Irrigation Performance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Surface irrigation systems often have a reputation for poor performance. One key feature of efficient surface irrigation systems is precision (e.g. laser-guided) land grading. Poor land grading can make other improvements ineffective. An important issue, related to land shaping, is developing the pr...

  12. SDI versus MESA Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    It is known that irrigation application method can impact crop water use and water use efficiency, but the mechanisms involved are incompletely understood, particularly in terms of the water and energy balances during the growing season from pre-irrigation through planting, early growth and yield de...

  13. 'Smart' Irrigation Systems

    SciTech Connect

    Hastbacka, Mildred; Dieckmann, John; Brodrick, James

    2012-08-31

    The article discusses the ASHRAE Standard 189, with mandatory and optional provisions related to water use efficiency, then focuses on the use of water efficient irrigation systems and the use of recycled water such as air conditioner condensate for landscaping irrigation. Benefits of such practices include both water and energy savings.

  14. Irrigation Systems. Student's Guide.

    ERIC Educational Resources Information Center

    Amarillo Coll., TX.

    This guide is intended for use by individuals preparing for a career in commercial and residential irrigation. The materials included are geared toward students who have had some experience in the irrigation business; they are intended to be presented in 10 six-hour sessions. The first two sections deal with using this guide and preparing for the…

  15. Irrigation Systems. Instructor's Guide.

    ERIC Educational Resources Information Center

    Amarillo Coll., TX.

    This guide is intended for use by licensed irrigators who wish to teach others how to design and install residential and commercial irrigation systems. The materials included in the guide have been developed under the assumption that the instructors who use it have little or no formal training as teachers. The first section presents detailed…

  16. Irrigation Without Waste

    ERIC Educational Resources Information Center

    Shea, Kevin P.

    1975-01-01

    A new means of irrigation, called the drip or trickle system, has been proven more efficient and less wasteful than the current system of flood irrigation. As a result of this drip system, fertilizer-use efficiency is improved and crop yield, though never decreased, is sometimes increased in some crops. (MA)

  17. Investigating the Potential for Rice Production with Sprinkler Irrigation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Almost all rice (Oryza sativa L.) produced in the US Mid-South is grown in a flooded culture that requires considerably more irrigation water than other crops grown in the region. One approach investigated for reducing the water requirements for rice involved producing rice with sprinkler irrigation...

  18. Bioenergetics model for estimating food requirements of female Pacific walruses (Odobenus rosmarus divergens)

    USGS Publications Warehouse

    Noren, S.R.; Udevitz, M.S.; Jay, C.V.

    2012-01-01

    Pacific walruses Odobenus rosmarus divergens use sea ice as a platform for resting, nursing, and accessing extensive benthic foraging grounds. The extent of summer sea ice in the Chukchi Sea has decreased substantially in recent decades, causing walruses to alter habitat use and activity patterns which could affect their energy requirements. We developed a bioenergetics model to estimate caloric demand of female walruses, accounting for maintenance, growth, activity (active in-water and hauled-out resting), molt, and reproductive costs. Estimates for non-reproductive females 0–12 yr old (65−810 kg) ranged from 16359 to 68960 kcal d−1 (74−257 kcal d−1 kg−1) for years with readily available sea ice for which we assumed animals spent 83% of their time in water. This translated into the energy content of 3200–5960 clams per day, equivalent to 7–8% and 14–9% of body mass per day for 5–12 and 2–4 yr olds, respectively. Estimated consumption rates of 12 yr old females were minimally affected by pregnancy, but lactation had a large impact, increasing consumption rates to 15% of body mass per day. Increasing the proportion of time in water to 93%, as might happen if walruses were required to spend more time foraging during ice-free periods, increased daily caloric demand by 6–7% for non-lactating females. We provide the first bioenergetics-based estimates of energy requirements for walruses and a first step towards establishing bioenergetic linkages between demography and prey requirements that can ultimately be used in predicting this population’s response to environmental change.

  19. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  20. Model requirements for estimating and reporting soil C stock changes in national greenhouse gas inventories

    NASA Astrophysics Data System (ADS)

    Didion, Markus; Blujdea, Viorel; Grassi, Giacomo; Hernández, Laura; Jandl, Robert; Kriiska, Kaie; Lehtonen, Aleksi; Saint-André, Laurent

    2016-04-01

    Globally, soils are the largest terrestrial store of carbon (C) and small changes may contribute significantly to the global C balance. Due to the potential implications for climate change, accurate and consistent estimates of C fluxes at the large-scale are important as recognized, for example, in international agreements such as the United Nations Framework Convention on Climate Change (UNFCCC). Under the UNFCCC and also under the Kyoto Protocol it is required to report C balances annually. Most measurement-based soil inventories are currently not able to detect annual changes in soil C stocks consistently across space and representative at national scales. The use of models to obtain relevant estimates is considered an appropriate alternative under the UNFCCC and the Kyoto Protocol. Several soil carbon models have been developed but few models are suitable for a consistent application across larger-scales. Consistency is often limited by the lack of input data for models, which can result in biased estimates and, thus, the reporting criteria of accuracy (i.e., emission and removal estimates are systematically neither over nor under true emissions or removals) may be met. Based on a qualitative assessment of the ability to meet criteria established for GHG reporting under the UNFCCC including accuracy, consistency, comparability, completeness, and transparency, we identified the suitability of commonly used simulation models for estimating annual C stock changes in mineral soil in European forests. Among six discussed simulation models we found a clear trend toward models for providing quantitative precise site-specific estimates which may lead to biased estimates across space. To meet reporting needs for national GHG inventories, we conclude that there is a need for models producing qualitative realistic results in a transparent and comparable manner. Based on the application of one model along a gradient from Boreal forests in Finland to Mediterranean forests

  1. SU-E-T-364: Estimating the Minimum Number of Patients Required to Estimate the Required Planning Target Volume Margins for Prostate Glands

    SciTech Connect

    Bakhtiari, M; Schmitt, J; Sarfaraz, M; Osik, C

    2015-06-15

    Purpose: To establish a minimum number of patients required to obtain statistically accurate Planning Target Volume (PTV) margins for prostate Intensity Modulated Radiation Therapy (IMRT). Methods: A total of 320 prostate patients, consisting of a total number of 9311 daily setups, were analyzed. These patients had gone under IMRT treatments. Daily localization was done using the skin marks and the proper shifts were determined by the CBCT to match the prostate gland. The Van Herk formalism is used to obtain the margins using the systematic and random setup variations. The total patient population was divided into different grouping sizes varying from 1 group of 320 patients to 64 groups of 5 patients. Each grouping was used to determine the average PTV margin and its associated standard deviation. Results: Analyzing all 320 patients lead to an average Superior-Inferior margin of 1.15 cm. The grouping with 10 patients per group (32 groups) resulted to an average PTV margin between 0.6–1.7 cm with the mean value of 1.09 cm and a standard deviation (STD) of 0.30 cm. As the number of patients in groups increases the mean value of average margin between groups tends to converge to the true average PTV of 1.15 cm and STD decreases. For groups of 20, 64, and 160 patients a Superior-Inferior margin of 1.12, 1.14, and 1.16 cm with STD of 0.22, 0.11, and 0.01 cm were found, respectively. Similar tendency was observed for Left-Right and Anterior-Posterior margins. Conclusion: The estimation of the required margin for PTV strongly depends on the number of patients studied. According to this study at least ∼60 patients are needed to calculate a statistically acceptable PTV margin for a criterion of STD < 0.1 cm. Numbers greater than ∼60 patients do little to increase the accuracy of the PTV margin estimation.

  2. Grower demand for sensor-controlled irrigation

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Erik; Majsztrik, John; Saavoss, Monica

    2015-01-01

    Water scarcity is likely to increase in the coming years, making improvements in irrigation efficiency increasingly important. An emerging technology that promises to increase irrigation efficiency substantially is a wireless irrigation sensor network that uploads sensor data into irrigation management software, creating an integrated system that allows real-time monitoring and control of moisture status that has been shown in experimental settings to reduce irrigation costs, lower plant loss rates, shorten production times, decrease pesticide application, and increase yield, quality, and profit. We use an original survey to investigate likely initial acceptance, ceiling adoption rates, and profitability of this new sensor network technology in the nursery and greenhouse industry. We find that adoption rates for a base system and demand for expansion components are decreasing in price, as expected. The price elasticity of the probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that of drip irrigation. Adoption rates for a base system and demand for expansion components are increasing in specialization in ornamental production: growers earning greater shares of revenue from greenhouse and nursery operations are willing to pay more for a base system and are willing to purchase larger numbers of expansion components at any given price. We estimate that growers who are willing to purchase a sensor network expect investment in this technology to generate significant profit, consistent with findings from experimental studies.

  3. From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2011-02-01

    With vast regions already experiencing water shortages, it is becoming imperative to manage sustainably the available water resources. As agriculture is by far the most important user of freshwater and the role of irrigation is projected to increase in face of climate change and increased food requirements, it is particularly important to develop simple, widely applicable models of irrigation water needs for short- and long-term water resource management. Such models should synthetically provide the key irrigation quantities (volumes, frequencies, etc.) for different irrigation schemes as a function of the main soil, crop, and climatic features, including rainfall unpredictability. Here we consider often-employed irrigation methods (e.g., surface and sprinkler irrigation systems, as well as modern micro-irrigation techniques) and describe them under a unified conceptual and theoretical framework, which includes rainfed agriculture and stress-avoidance irrigation as extreme cases. We obtain mostly analytical solutions for the stochastic steady state of soil moisture probability density function with random rainfall timing and amount, and compute water requirements as a function of climate, crop, and soil parameters. These results provide the necessary starting point for a full assessment of irrigation strategies, with reference to sustainability, productivity, and profitability, developed in a companion paper [Vico G, Porporato A. From rainfed agriculture to stress-avoidance irrigation: II. Sustainability, crop yield, and net profit. Adv Water Resour 2011;34(2):272-81].

  4. Participatory approach: from problem identification to setting strategies for increased productivity and sustainability in small scale irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Habtu, Solomon; Ludi, Eva; Jamin, Jean Yves; Oates, Naomi; Fissahaye Yohannes, Degol

    2014-05-01

    Practicing various innovations pertinent to irrigated farming at local field scale is instrumental to increase productivity and yield for small holder farmers in Africa. However the translation of innovations from local scale to the scale of a jointly operated irrigation scheme is far from trivial. It requires insight on the drivers for adoption of local innovations within the wider farmer communities. Participatory methods are expected to improve not only the acceptance of locally developed innovations within the wider farmer communities, but to allow also an estimation to which extend changes will occur within the entire irrigation scheme. On such a base, more realistic scenarios of future water productivity within an irrigation scheme, which is operated by small holder farmers, can be estimated. Initial participatory problem and innovation appraisal was conducted in Gumselassa small scale irrigation scheme, Ethiopia, from Feb 27 to March 3, 2012 as part of the EAU4FOOD project funded by EC. The objective was to identify and appraise problems which hinder sustainable water management to enhance production and productivity and to identify future research strategies. Workshops were conducted both at local (Community of Practices) and regional (Learning Practice Alliance) level. At local levels, intensive collaboration with farmers using participatory methods produced problem trees and a "Photo Safari" documented a range of problems that negatively impact on productive irrigated farming. A range of participatory methods were also used to identify local innovations. At regional level a Learning Platform was established that includes a wide range of stakeholders (technical experts from various government ministries, policy makers, farmers, extension agents, researchers). This stakeholder group did a range of exercise as well to identify major problems related to irrigated smallholder farming and already identified innovations. Both groups identified similar problems

  5. Surgical Care Required for Populations Affected by Climate-related Natural Disasters: A Global Estimation

    PubMed Central

    Lee, Eugenia E.; Stewart, Barclay; Zha, Yuanting A.; Groen, Thomas A.; Burkle, Frederick M.; Kushner, Adam L.

    2016-01-01

    Background: Climate extremes will increase the frequency and severity of natural disasters worldwide.  Climate-related natural disasters were anticipated to affect 375 million people in 2015, more than 50% greater than the yearly average in the previous decade. To inform surgical assistance preparedness, we estimated the number of surgical procedures needed.   Methods: The numbers of people affected by climate-related disasters from 2004 to 2014 were obtained from the Centre for Research of the Epidemiology of Disasters database. Using 5,000 procedures per 100,000 persons as the minimum, baseline estimates were calculated. A linear regression of the number of surgical procedures performed annually and the estimated number of surgical procedures required for climate-related natural disasters was performed. Results: Approximately 140 million people were affected by climate-related natural disasters annually requiring 7.0 million surgical procedures. The greatest need for surgical care was in the People’s Republic of China, India, and the Philippines. Linear regression demonstrated a poor relationship between national surgical capacity and estimated need for surgical care resulting from natural disaster, but countries with the least surgical capacity will have the greatest need for surgical care for persons affected by climate-related natural disasters. Conclusion: As climate extremes increase the frequency and severity of natural disasters, millions will need surgical care beyond baseline needs. Countries with insufficient surgical capacity will have the most need for surgical care for persons affected by climate-related natural disasters. Estimates of surgical are particularly important for countries least equipped to meet surgical care demands given critical human and physical resource deficiencies. PMID:27617165

  6. Modeling the future of irrigation: A parametric description of pressure compensating drip irrigation emitter performance.

    PubMed

    Shamshery, Pulkit; Wang, Ruo-Qian; Tran, Davis V; Winter V, Amos G

    2017-01-01

    Drip irrigation is a means of distributing the exact amount of water a plant needs by dripping water directly onto the root zone. It can produce up to 90% more crops than rain-fed irrigation, and reduce water consumption by 70% compared to conventional flood irrigation. Drip irrigation may enable millions of poor farmers to rise out of poverty by growing more and higher value crops, while not contributing to overconsumption of water. Achieving this impact will require broadening the engineering knowledge required to design new, low-cost, low-power drip irrigation technology, particularly for poor, off-grid communities in developing countries. For more than 50 years, pressure compensating (PC) drip emitters-which can maintain a constant flow rate under variations in pressure, to ensure uniform water distribution on a field-have been designed and optimized empirically. This study presents a parametric model that describes the fluid and solid mechanics that govern the behavior of a common PC emitter architecture, which uses a flexible diaphragm to limit flow. The model was validated by testing nine prototypes with geometric variations, all of which matched predicted performance to within R2 = 0.85. This parametric model will enable irrigation engineers to design new drip emitters with attributes that improve performance and lower cost, which will promote the use of drip irrigation throughout the world.

  7. A Reevaluation of Price Elasticities for Irrigation Water

    NASA Astrophysics Data System (ADS)

    Howitt, Richard E.; Watson, William D.; Adams, Richard M.

    1980-08-01

    The effectiveness of pricing systems in the allocation of irrigation water is linked with the price elasticity of demand of farmers for water. Using microeconomic theory, it is shown that omission of the elasticity of demand for the crop produced leads to an inelastic bias in the demand for irrigated water. Linear programing approaches omit the product elasticity of demand and are consequently biased, whereas quadratic programing approaches to estimating derived demands for irrigation water include product demand functions. The difference between the resulting estimates are empirically demonstrated for regional derived demand functions estimated from a model of California's agricultural industry.

  8. A multisector analysis of urban irrigation and water savings potential

    NASA Astrophysics Data System (ADS)

    Bijoor, N.; Kim, H.; Famiglietti, J. S.

    2014-12-01

    Urban irrigation strains limited water supplies in semi-arid areas such as Orange County, CA, yet the quantity and controlling factors of urban irrigation are not well understood. The goals of this research are to (1) quantify and compare landscape irrigation applied by residential and commercial sectors in various retail agencies at a parcel scale (2) determine over- and under-irrigation compared to theoretical need (3) determine the climatic and socioeconomic controls on landscape irrigation. A research partnership was established between six water retail agencies in Orange County, CA representing a wide range of climatic and economic conditions. These agencies contributed between 3 and 13 years of water use data on a monthly/bimonthly basis. Irrigation depth (mm) was estimated using the "minimum month method," and landscape evapotranspiration was calculated using the Hargreaves equation for 122,345 parcels. Multiple regressions of water use were conducted with climatic and socioeconomic variables as possible explanatory variables. Single family residences accounted for the majority of urban water use. Findings from 112,192 single family residences (SFRs) show that total and indoor water use declined, though irrigation did not significantly change. Average irrigation for SFRs was 94 L/day, and a large proportion (42%) of irrigation was applied in excess to landscapes. Air temperature was found to be the primary driver of irrigation. We mapped over-irrigation relative to plant water demand to highlight areas that can be targeted for water conservation efforts. We also show the water savings that would be gained by improving the efficiency of irrigation systems. The information gained in this study would be useful for developing water use efficiency policies and/or educational programs to promote sustainable irrigation practices at the individual parcel scale.

  9. Integration of satellite-based energy balance with simulation models applied to irrigation management at an irrigation scheme of southern Spain

    NASA Astrophysics Data System (ADS)

    Santos, Cristina; Lorite, Ignacio J.; Tasumi, Masahiro; Allen, Richard G.; Gavilán, Pedro; Fereres, Elías

    2007-10-01

    This paper combines a water balance model with satellite-based remote-sensing estimates of evapotranspiration (ET) to provide accurate irrigation scheduling guidelines for individual fields. The satellite-derived ET was used in the daily soil water balance model to improve accuracy of field-by-field ET demands and subsequent field-scale irrigation schedules. The combination of satellite-based ET with daily soil water balance incorporates the advantages of satellite remote-sensing and daily calculation time steps, namely, high spatial resolution and high temporal resolution. The procedure was applied to Genil - Cabra Irrigation Scheme in Spain, where irrigation water supply is often limited by regional drought. Compared with traditional applications of water balance models (i.e. without the satellite-based ET), the combined procedure provided significant improvements in irrigation schedules for both the average condition and when considering field-to-field variability. A 24% reduction in water use was estimated for cotton if the improved irrigation schedules were followed. Irrigation efficiency calculated using satellite-based ET and actual applied irrigation water helped to identify specific agricultural fields experiencing problems in water management, as well as to estimate general irrigation efficiencies of the scheme by irrigation and crop type. Estimation of field irrigation efficiency ranged from 0.72 for cotton to 0.90 for sugar beet.

  10. Evaluation of alternative methods for estimating reference evapotranspiration

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration is an important component in water-balance and irrigation scheduling models. While the FAO-56 Penman-Monteith method has become the de facto standard for estimating reference evapotranspiration (ETo), it is a complex method requiring several weather parameters. Required weather ...

  11. Mapping irrigation potential from renewable groundwater in Africa - a quantitative hydrological approach

    NASA Astrophysics Data System (ADS)

    Altchenko, Y.; Villholth, K. G.

    2015-02-01

    Groundwater provides an important buffer to climate variability in Africa. Yet, groundwater irrigation contributes only a relatively small share of cultivated land, approximately 1% (about 2 × 106 hectares) as compared to 14% in Asia. While groundwater is over-exploited for irrigation in many parts in Asia, previous assessments indicate an underutilized potential in parts of Africa. As opposed to previous country-based estimates, this paper derives a continent-wide, distributed (0.5° spatial resolution) map of groundwater irrigation potential, indicated in terms of fractions of cropland potentially irrigable with renewable groundwater. The method builds on an annual groundwater balance approach using 41 years of hydrological data, allocating only that fraction of groundwater recharge that is in excess after satisfying other present human needs and environmental requirements, while disregarding socio-economic and physical constraints in access to the resource. Due to high uncertainty of groundwater environmental needs, three scenarios, leaving 30, 50 and 70% of recharge for the environment, were implemented. Current dominating crops and cropping rotations and associated irrigation requirements in a zonal approach were applied in order to convert recharge excess to potential irrigated cropland. Results show an inhomogeneously distributed groundwater irrigation potential across the continent, even within individual countries, mainly reflecting recharge patterns and presence or absence of cultivated cropland. Results further show that average annual renewable groundwater availability for irrigation ranges from 692 to 1644 km3 depending on scenario. The total area of cropland irrigable with renewable groundwater ranges from 44.6 to 105.3 × 106 ha, corresponding to 20.5 to 48.6% of the cropland over the continent. In particular, significant potential exists in the semi-arid Sahel and eastern African regions which could support poverty alleviation if developed

  12. Estimating sugarcane water requirements for biofuel feedstock production in Maui, Hawaii using satellite imagery

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Anderson, R. G.; Wang, D.

    2011-12-01

    Water availability is one of the limiting factors for sustainable production of biofuel crops. A common method for determining crop water requirement is to multiply daily potential evapotranspiration (ETo) calculated from meteorological parameters by a crop coefficient (Kc) to obtain actual crop evapotranspiration (ETc). Generic Kc values are available for many crop types but not for sugarcane in Maui, Hawaii, which grows on a relatively unstudied biennial cycle. In this study, an algorithm is being developed to estimate sugarcane Kc using normalized difference vegetation index (NDVI) derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. A series of ASTER NDVI maps were used to depict canopy development over time or fractional canopy cover (fc) which was measured with a handheld multispectral camera in the fields during satellite overpass days. Canopy cover was correlated with NDVI values. Then the NDVI based canopy cover was used to estimate Kc curves for sugarcane plants. The remotely estimated Kc and ETc values were compared and validated with ground-truth ETc measurements. The approach is a promising tool for large scale estimation of evapotranspiration of sugarcane or other biofuel crops.

  13. Advances in sprinkler irrigation management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sprinkler irrigation is being increasingly adopted in the US and worldwide because it offers increased crop water productivity over what is possible with gravity irrigation. Most sprinkler irrigation is by center pivot, which is presently used on about 50 and 80 percent of land irrigated in the US a...

  14. Estimation of fan pressure ratio requirements and operating performance for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.; Nystrom, D.

    1981-01-01

    The National Transonic Facility (NTF), a fan-driven, transonic, pressurized, cryogenic wind tunnel, will operate over the Mach number range of 0.10 to 1.20 with stagnation pressures varying from 1.00 to about 8.8 atm and stagnation temperatures varying from 77 to 340 K. The NTF is cooled to cryogenic temperatures by the injection of liquid nitrogen into the tunnel stream with gaseous nitrogen as the test gas. The NTF can also operate at ambient temperatures using a conventional chilled water heat exchanger with air on nitrogen as the test gas. The methods used in estimating the fan pressure ratio requirements are described. The estimated NTF operating envelopes at Mach numbers from 0.10 to 1.20 are presented.

  15. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    The risk of rice production has increased notably due to climate change in Taiwan. To respond to growing agricultural water shortage without affecting normal food production in the future, the application of water-saving irrigation will be a substantial resolution. However, the adoption of water-saving irrigation may result in the reducing of groundwater recharge because continuous flooding in the paddy fields could be regarded as an important source for groundwater recharge. The aim of this study was to evaluate the irrigation water-saving benefit and groundwater recharge deficit when adopting the System of Rice Intensification, known as SRI methodology, in the Choushui River alluvial fan (the largest groundwater pumping and the most important rice-cropping region in central Taiwan). The three-dimensional finite element groundwater model, FEMWATER, was applied to simulate the infiltration process and groundwater recharge under SRI methodology and traditional irrigation schemes including continuous irrigation, and rotational irrigation in two rice-crop periods with hydro-climatic data of 2013. The irrigation water use was then calculated by water balance. The results showed that groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reduced 3.6% and 1.6% in the first crop period, and reduced 3.2% and 1.6% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. However, the SRI methodology achieved notably water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The field irrigation requirement amount of SRI methodology was significantly lower than those of traditional irrigation schemes, saving 37% and 20% of irrigation water in the first crop period, and saving 53% and 35% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. Therefore, the amount of groundwater pumping for

  16. Estimating potential evapotranspiration with improved radiation estimation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potential evapotranspiration (PET) is of great importance to estimation of surface energy budget and water balance calculation. The accurate estimation of PET will facilitate efficient irrigation scheduling, drainage design, and other agricultural and meteorological applications. However, accuracy o...

  17. Refugee issues. Summary of WFP / UNHCR guidelines for estimating food and nutritional requirements.

    PubMed

    1997-12-01

    In line with recent recommendations by WHO and the Committee on International Nutrition, WFP and UNHCR will now use 2100 kcal/person/day as the initial energy requirement for designing food aid rations in emergencies. In an emergency situation, it is essential to establish such a value to allow for rapid planning and response to the food and nutrition requirements of an affected population. An in-depth assessment is often not possible in the early days of an emergency, and an estimated value is needed to make decisions about the immediate procurement and shipment of food. The initial level is applicable only in the early stages of an emergency. As soon as demographic, health, nutritional and food security information is available, the estimated per capita energy requirements should be adjusted accordingly. Food rations should complement any food that the affected population is able to obtain on its own through activities such as agricultural production, trade, labor, and small business. An understanding of the various mechanisms used by the population to gain access to food is essential to give an accurate estimate of food needs. Therefore, a prerequisite for the design of a longer-term ration is a thorough assessment of the degree of self-reliance and level of household food security. Frequent assessments are necessary to adequately determine food aid needs on an ongoing basis. The importance of ensuring a culturally acceptable, adequate basic ration for the affected population at the onset of an emergency is considered to be one of the basic principles in ration design. The quality of the ration provided, particularly in terms of micronutrients, is stressed in the guidelines, and levels provided will aim to conform with standards set by other technical agencies.

  18. Space transfer vehicle concepts and requirements. Volume 3: Program cost estimates

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Transfer Vehicle (STV) Concepts and Requirements Study has been an eighteen-month study effort to develop and analyze concepts for a family of vehicles to evolve from an initial STV system into a Lunar Transportation System (LTS) for use with the Heavy Lift Launch Vehicle (HLLV). The study defined vehicle configurations, facility concepts, and ground and flight operations concepts. This volume reports the program cost estimates results for this portion of the study. The STV Reference Concept described within this document provides a complete LTS system that performs both cargo and piloted Lunar missions.

  19. Irrigated Agriculture, Saudi Arabia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In Saudi Arabia, center-pivot, swing-arm irrigated agriculture complexes such as the one imaged at Jabal Tuwayq (20.5N, 45.0 E) extract deep fossil water reserves to achieve food crop production self sufficiency in this desert environment. The significance of the Saudi expanded irrigated agriculture is that the depletion of this finite water resource is a short term solution to a long term need that will still exist when the water has been extracted.

  20. Geothermal irrigation pump

    SciTech Connect

    Matthews, H.B.

    1982-04-20

    A deep well pumping apparatus utilizing a geothermal source of energy is disposed within or above a stratum having a cool irrigating fluid, and an associated heat exchange unit is disposed within a stratum having the geothermal source. An organic working fluid is conveyed under pressure through the heat exchange unit and applied as a gas to a turbine assembly operatively coupled to the pump. The spent working fluid and cool irrigation fluid are then conveyed to the surface.

  1. Competing conservation objectives for predators and prey: estimating killer whale prey requirements for Chinook salmon.

    PubMed

    Williams, Rob; Krkošek, Martin; Ashe, Erin; Branch, Trevor A; Clark, Steve; Hammond, Philip S; Hoyt, Erich; Noren, Dawn P; Rosen, David; Winship, Arliss

    2011-01-01

    Ecosystem-based management (EBM) of marine resources attempts to conserve interacting species. In contrast to single-species fisheries management, EBM aims to identify and resolve conflicting objectives for different species. Such a conflict may be emerging in the northeastern Pacific for southern resident killer whales (Orcinus orca) and their primary prey, Chinook salmon (Oncorhynchus tshawytscha). Both species have at-risk conservation status and transboundary (Canada-US) ranges. We modeled individual killer whale prey requirements from feeding and growth records of captive killer whales and morphometric data from historic live-capture fishery and whaling records worldwide. The models, combined with caloric value of salmon, and demographic and diet data for wild killer whales, allow us to predict salmon quantities needed to maintain and recover this killer whale population, which numbered 87 individuals in 2009. Our analyses provide new information on cost of lactation and new parameter estimates for other killer whale populations globally. Prey requirements of southern resident killer whales are difficult to reconcile with fisheries and conservation objectives for Chinook salmon, because the number of fish required is large relative to annual returns and fishery catches. For instance, a U.S. recovery goal (2.3% annual population growth of killer whales over 28 years) implies a 75% increase in energetic requirements. Reducing salmon fisheries may serve as a temporary mitigation measure to allow time for management actions to improve salmon productivity to take effect. As ecosystem-based fishery management becomes more prevalent, trade-offs between conservation objectives for predators and prey will become increasingly necessary. Our approach offers scenarios to compare relative influence of various sources of uncertainty on the resulting consumption estimates to prioritise future research efforts, and a general approach for assessing the extent of conflict

  2. Competing Conservation Objectives for Predators and Prey: Estimating Killer Whale Prey Requirements for Chinook Salmon

    PubMed Central

    Williams, Rob; Krkošek, Martin; Ashe, Erin; Branch, Trevor A.; Clark, Steve; Hammond, Philip S.; Hoyt, Erich; Noren, Dawn P.; Rosen, David; Winship, Arliss

    2011-01-01

    Ecosystem-based management (EBM) of marine resources attempts to conserve interacting species. In contrast to single-species fisheries management, EBM aims to identify and resolve conflicting objectives for different species. Such a conflict may be emerging in the northeastern Pacific for southern resident killer whales (Orcinus orca) and their primary prey, Chinook salmon (Oncorhynchus tshawytscha). Both species have at-risk conservation status and transboundary (Canada–US) ranges. We modeled individual killer whale prey requirements from feeding and growth records of captive killer whales and morphometric data from historic live-capture fishery and whaling records worldwide. The models, combined with caloric value of salmon, and demographic and diet data for wild killer whales, allow us to predict salmon quantities needed to maintain and recover this killer whale population, which numbered 87 individuals in 2009. Our analyses provide new information on cost of lactation and new parameter estimates for other killer whale populations globally. Prey requirements of southern resident killer whales are difficult to reconcile with fisheries and conservation objectives for Chinook salmon, because the number of fish required is large relative to annual returns and fishery catches. For instance, a U.S. recovery goal (2.3% annual population growth of killer whales over 28 years) implies a 75% increase in energetic requirements. Reducing salmon fisheries may serve as a temporary mitigation measure to allow time for management actions to improve salmon productivity to take effect. As ecosystem-based fishery management becomes more prevalent, trade-offs between conservation objectives for predators and prey will become increasingly necessary. Our approach offers scenarios to compare relative influence of various sources of uncertainty on the resulting consumption estimates to prioritise future research efforts, and a general approach for assessing the extent of conflict

  3. Satellite Mapping of Agricultural Water Requirements in California

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Lund, C.; Johnson, L.; Guzman, A.; Hiatt, S.; Post, K.; Adhikari, D.; Rosevelt, C.; Keefauver, S.; Miller, G.; Michaelis, A.; Votava, P.; Temesgen, B.; Frame, K.; Nemani, R. R.

    2013-12-01

    Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide water managers and agricultural producers with information that can be used to optimize agricultural water use, especially in regions with limited water supplies. In particular, the timely delivery of information on agricultural crop water requirements has the potential to make irrigation scheduling more practical, convenient, and accurate. We present findings from the development and deployment of a prototype system for irrigation scheduling and management support in California. The Satellite Irrigation Management Support (SIMS) framework utilizes the NASA Terrestrial Observation and Prediction System to integrate satellite observations and meteorological observations from the California Irrigation Management Information System to map crop canopy development, basal crop coefficients (Kcb), and basal crop evapotranspiration (ETcb) values for multiple crop types in the Central Valley of California at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system and web services. We present the prototype system, including comparisons of estimates of ETcb from the prototype system against estimates of ET from other methods, including surface renewal stations and observations from wireless sensor networks deployed in operational agricultural fields across California. We also summarize results from ongoing studies to quantify the benefits of using satellite data to enhance ET-based irrigation management in terms of total applied water, crop yield, and nitrate leaching.

  4. Ground-water use, locations of production wells, and areas irrigated using ground water in 1998, middle Humboldt River basin, north-central Nevada

    USGS Publications Warehouse

    Plume, Russell W.

    2003-01-01

    In 1998, ground water was being pumped from about 420 production wells in the middle Humboldt River Basin for a variety of uses. Principal uses were for agriculture, industry, mining, municipal, and power plant purposes. This report presents a compilation of the number and types of production wells, areas irrigated by ground water, and ground-water use in 14 hydrographic areas of the middle Humboldt River Basin in 1998. Annual pumping records for production wells usually are reported to the Nevada Division of Water Resources. However, operators of irrigation wells are not consistently required to report annual pumpage. Daily power-consumption and pump-discharge rates measured at 20 wells during the 1998 irrigation season and total power use at each well were used to estimate the amount of water, in feet of depth, applied to 20 alfalfa fields. These fields include about 10 percent of the total area, 36,700 acres, irrigated with ground water in the middle Humboldt River Basin. In 1998 an average of 2.0 feet of water was applied to 14 fields irrigated using center-pivot sprinkler systems, and an average of 2.6 feet of water was applied to 6 fields irrigated using wheel-line sprinkler systems. A similar approach was used to estimate the amount of water pumped at three wells using pumps powered by diesel engines. The two fields served by these three wells received 3.9 feet of water by flood irrigation during the 1998 irrigation season. The amount of water applied to the fields irrigated by center-pivot and wheel-line irrigation systems during the 1998 irrigation season was less than what would have been applied during a typical irrigation season because late winter and spring precipitation exceeded long-term monthly averages by as much as four times. As a result, the health of crops was affected by over-saturated soils, and most irrigation wells were only used sporadically in the first part of the irrigation season. Power consumption at 19 of the 20 wells in the 1994

  5. Irrigation timing and volume affects growth of container grown maples

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Container nursery production requires large inputs of water and nutrients but frequently irrigation inputs exceed plant demand and lack application precision or are not applied at optimal times for plant production. The results from this research can assist producers in developing irrigation manage...

  6. Evapotranspiration-based irrigation scheduling of lettuce and broccoli

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Estimation of crop evapotranspiration supports efficient irrigation water management, which in turn supports water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality maintenance. Past research in California has revealed strong relationships between fract...

  7. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-05-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF) can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  8. Heavy metals in vegetables and respective soils irrigated by canal, municipal waste and tube well waters.

    PubMed

    Ismail, Amir; Riaz, Muhammad; Akhtar, Saeed; Ismail, Tariq; Amir, Mamoona; Zafar-ul-Hye, Muhammad

    2014-01-01

    Heavy metal contamination in the food chain is of serious concern due to the potential risks involved. The results of this study revealed the presence of maximum concentration of heavy metals in the canal followed by sewerage and tube well water. Similarly, the vegetables and respective soils irrigated with canal water were found to have higher heavy metal contamination followed by sewerage- and tube-well-watered samples. However, the heavy metal content of vegetables under study was below the limits as set by FAO/WHO, except for lead in canal-water-irrigated spinach (0.59 mg kg(-1)), radish pods (0.44 mg kg(-1)) and bitter gourd (0.33 mg kg(-1)). Estimated daily intakes of heavy metals by the consumption of selected vegetables were found to be well below the maximum limits. However, a complete estimation of daily intake requires the inclusion of other dietary and non-dietary exposure sources of heavy metals.

  9. Estimation of the leucine and histidine requirements for piglets fed a low-protein diet.

    PubMed

    Wessels, A G; Kluge, H; Mielenz, N; Corrent, E; Bartelt, J; Stangl, G I

    2016-11-01

    Reduction of the CP content in the diets of piglets requires supplementation with crystalline essential amino acids (AA). Data on the leucine (Leu) and histidine (His) requirements of young pigs fed low-CP diets are limited and have primarily been obtained from nonlinear models. However, these models do not consider the possible decline in appetite and growth that can occur when pigs are fed excessive amounts of AA such as Leu. Therefore, two dose-response studies were conducted to estimate the standardised ileal digestible (SID) Leu : lysine (Lys) and His : Lys required to optimise the growth performance of young pigs. In both studies, the average daily gain (ADG), average daily feed intake (ADFI) and gain-to-feed ratio (G : F) were determined during a 6-week period. To ensure that the diets had sub-limiting Lys levels, a preliminary Lys dose-response study was conducted. In the Leu study, 60 35-day-old piglets of both sexes were randomly assigned to one of five treatments and fed a low-CP diet (15%) with SID Leu : Lys levels of 83%, 94%, 104%, 115% or 125%. The His study used 120 31-day-old piglets of both sexes, which were allotted to one of five treatments and fed a low-CP diet (14%) with SID His : Lys levels of 22%, 26%, 30%, 34% or 38%. Linear broken-line, curvilinear-plateau and quadratic-function models were used for estimations of SID Leu : Lys and SID His : Lys. The minimum SID Leu : Lys level needed to maximise ADG, ADFI and G : F was, on average, 101% based on the linear broken-line and curvilinear-plateau models. Using the quadratic-function model, the minimum SID Leu : Lys level needed to maximise ADG, ADFI and G : F was 108%. Data obtained from the quadratic-function analysis further showed that a ±10% deviation from the identified Leu requirement was accompanied by a small decline in the ADG (-3%). The minimum SID His : Lys level needed to maximise ADG, ADFI and G : F was 27% and 28% using the linear broken-line and curvilinear-plateau models

  10. Strategies to Address Infection Prevention and Treatment in the Reduced Inflammatory Milieu of Irrigated Open Wound

    DTIC Science & Technology

    2012-10-01

    debridement, however, removes the body’s first healing response, such as fracture hematoma . We implemented an irrigated radius defect model intended...13. SUPPLEMENTARY NOTES 14. ABSTRACT Open fractures require irrigation and debridement to prevent potential infection. Irrigation and...to represent the open fracture setting with bone loss. We evaluated feasibility to investigate the role of platelet rich plasma (PRP) to restore

  11. Observation and Modelling of Soil Water Content Towards Improved Performance Indicators of Large Irrigation Schemes

    NASA Astrophysics Data System (ADS)

    Labbassi, Kamal; Akdim, Nadia; Alfieri, Silvia Maria; Menenti, Massimo

    2014-05-01

    Irrigation performance may be evaluated for different objectives such as equity, adequacy, or effectiveness. We are using two performance indicators: IP2 measures the consistency of the allocation of the irrigation water with gross Crop Water requirements, while IP3 measures the effectiveness of irrigation by evaluating the increase in crop transpiration between the case of no irrigation and the case of different levels of irrigation. To evaluate IP3 we need to calculate the soil water balance for the two cases. We have developed a system based on the hydrological model SWAP (Soil Water atmosphere Plant) to calculate spatial and temporal patterns of crop transpiration T(x, y, t) and of the vertical distribution of soil water content θ(x, y, z, t). On one hand, in the absence of ground measurement of soil water content to validate and evaluate the precision of the estimated one, a possibility would be to use satellite retrievals of top soil water content, such as the data to be provided by SMAP. On the other hand, to calculate IP3 we need root zone rather than top soil water content. In principle, we could use the model SWAP to establish a relationship between the top soil and root zone water content. Such relationship could be a simple empirical one or a data assimilation procedure. In our study area (Doukkala- Morocco) we have assessed the consistency of the water allocation with the actual irrigated area and crop water requirements (CWR) by using a combination of multispectral satellite image time series (i,e RapidEye (REIS), SPOT4 (HRVIR1) and Landsat 8 (OLI) images acquired during the 2012/2013 agricultural season). To obtain IP2 (x, y, t) we need to determine ETc (x, y, t). We have applied two (semi)empirical approaches: the first one is the Kc-NDVI method, based on the correlation between the Near Difference Vegetation Index (NDVI) and the value of crop coefficient (kc); the second one is the analytical approach based on the direct application of Penman

  12. Laboratory estimation of degree-day developmental requirements of Phlebotomus papatasi (Diptera: Psychodidae).

    PubMed

    Kasap, Ozge Erisoz; Alten, Bulent

    2005-12-01

    Cutaneous leishmaniasis is one of the most important vector-borne endemic diseases in Turkey. The main objective of this study was to evaluate the influence of temperature on the developmental rates of one important vector of leishmaniasis, Phlebotomus papatasi (Scopoli, 1786) (Diptera: Psychodidae). Eggs from laboratory-reared colonies of Phlebotomus papatasi were exposed to six constant temperature regimes from 15 to 32 degrees C with a daylength of 14 h and relative humidity of 65-75%. No adult emergence was observed at 15 degrees C. Complete egg to adult development ranged from 27.89 +/- 1.88 days at 32 degrees C to 246.43 +/- 13.83 days at 18 degrees C. The developmental zero values were estimated to vary from 11.6 degrees C to 20.25 degrees C depending on life stages, and egg to adult development required 440.55 DD above 20.25 degrees C.

  13. Estimating the Residency Expansion Required to Avoid Projected Primary Care Physician Shortages by 2035

    PubMed Central

    Petterson, Stephen M.; Liaw, Winston R.; Tran, Carol; Bazemore, Andrew W.

    2015-01-01

    PURPOSE The purpose of this study was to calculate the projected primary care physician shortage, determine the amount and composition of residency growth needed, and estimate the impact of retirement age and panel size changes. METHODS We used the 2010 National Ambulatory Medical Care Survey to calculate utilization of ambulatory primary care services and the US Census Bureau to project demographic changes. To determine the baseline number of primary care physicians and the number retiring at 66 years, we used the 2014 American Medical Association Masterfile. Using specialty board and American Osteopathic Association figures, we estimated the annual production of primary care residents. To calculate shortages, we subtracted the accumulated primary care physician production from the accumulated number of primary care physicians needed for each year from 2015 to 2035. RESULTS More than 44,000 primary care physicians will be needed by 2035. Current primary care production rates will be unable to meet demand, resulting in a shortage in excess of 33,000 primary care physicians. Given current production, an additional 1,700 primary care residency slots will be necessary by 2035. A 10% reduction in the ratio of population per primary care physician would require more than 3,000 additional slots by 2035, whereas changing the expected retirement age from 66 years to 64 years would require more than 2,400 additional slots. CONCLUSIONS To eliminate projected shortages in 2035, primary care residency production must increase by 21% compared with current production. Delivery models that shift toward smaller ratios of population to primary care physicians may substantially increase the shortage. PMID:25755031

  14. Estimates of the wind speeds required for particle motion on Mars

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Haberle, R.; Greeley, R.; Iversen, J.

    1976-01-01

    Threshold wind speeds for setting particles into motion on Mars are estimated by evaluating experimentally observed threshold friction velocities and determining the ratio of this velocity to the threshold wind speed at the top of earth's atmospheric boundary layer (ABL). Turning angles between the direction of the wind at the top of the ABL and the wind stress at the surface are also estimated. Detailed consideration is given to the dependence of the threshold wind speed at the top of the ABL on particle diameter, surface pressure, air temperature, atmospheric stability and composition, surface roughness, and interparticle cohesion. The results are applied to interpret a number of phenomena that have been observed on Mars and are attributable to aeolian processes. It is shown that: (1) minimum threshold wind speeds of about 50 to 100 m/sec are required to cause particle motion on Mars under 'favorable' conditions; (2) particle motion should be infrequent and strongly correlated with proximity to small topographical features; (3) in general, particle motion occurs more readily at night than during the day, in winter polar areas than equatorial areas around noon, and for H2O or CO2 ice particles than for silicate particles; and (4) the boundary between saltating and suspendible particles is located at a particle diameter of about 100 microns.

  15. Irrigating drip by drip

    SciTech Connect

    Woods, M.

    1991-03-01

    This article describes the use of subterranean drip systems for the irrigation of crops in the San Joaquin Valley of California. This area is in its fourth year of drought. In the past, underground drains carried excess irrigation water away from plant roots to avoid drowning them in selenium, boron, nitrate fertilizer and other pollutants. Later these ponds where outflow emerged accumulated high levels of selenium which led to deaths and deformities of waterfowl. Subsurface drip irrigation is said to reduce overirrigation and thus prevents pollution of the underground water supply; it conserves water by reducing the amount of water lost by evaporation; and it reduces the incidence of mold damage to crops that are bothered by soggy soils.

  16. Micro irrigation of tropical fruit crops

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In most tropical regions, tropical fruits are grown either in wet-and-dry climates characterized by erratic rainfall patterns and prolonged dry periods or in fertile but semiarid lands under irrigation. Little is known about water requirements of tropical crops grown in the tropics. This book chapt...

  17. A new remote sensing procedure for the estimation of crop water requirements

    NASA Astrophysics Data System (ADS)

    Spiliotopoulos, M.; Loukas, A.; Mylopoulos, N.

    2015-06-01

    The objective of this work is the development of a new approach for the estimation of water requirements for the most important crops located at Karla Watershed, central Greece. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used as a basis for the derivation of actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat ETM+ imagery. MODIS imagery has been also used, and a spatial downscaling procedure is followed between the two sensors for the derivation of a new NDVI product with a spatial resolution of 30 m x 30 m. GER 1500 spectro-radiometric measurements are additionally conducted during 2012 growing season. Cotton, alfalfa, corn and sugar beets fields are utilized, based on land use maps derived from previous Landsat 7 ETM+ images. A filtering process is then applied to derive NDVI values after acquiring Landsat ETM+ based reflectance values from the GER 1500 device. ETrF vs NDVI relationships are produced and then applied to the previous satellite based downscaled product in order to finally derive a 30 m x 30 m daily ETrF map for the study area. CropWat model (FAO) is then applied, taking as an input the new crop coefficient values with a spatial resolution of 30 m x 30 m available for every crop. CropWat finally returns daily crop water requirements (mm) for every crop and the results are analyzed and discussed.

  18. Wind pumps for irrigating greenhouse crops

    NASA Astrophysics Data System (ADS)

    Peillón, M.; Sánchez, R.; Tarquis, A. M.; García, J. L.

    2012-04-01

    Agriculture is a major consumer of energy in many countries of the world. Only a few of these countries are self-sufficient in conventional energy sources, which are also exhaustible. Fortunately, there are other sources of energy, such as wind, which has experienced recent developments in the area of wind power generation. From irrigation projects to power supply in remote farms, wind power generation can play a vital role. A simple methodology for technical evaluation of windmills for irrigation water pumping has been developed in this study to determine the feasibility per unit amount of water supplied and the levels of daily irrigation demand satisfied by windmill irrigation system at various levels of risk (probability of failure). For this purpose, a series of three hourly wind-speed data over a period of 38 years at Ciego de Ávila, Cuba, were analyzed to compute the diurnal wind pump discharge at varying levels of risk. The sizes of reservoirs required to modulate fluctuating discharge and to satisfy the levels of irrigation demand, on function of crop development dates, cultivated area and water elevation height, were computed by cumulative deficit water budgeting. An example is given illustrating the use of the methodology on tomato crop (Licopersicon esculentum Mill) under greenhouse.

  19. Automatic restart of complex irrigation systems

    SciTech Connect

    Werner, H.D.; Alcock, R.; DeBoer, D.W.; Olson, D.I. . Dept. of Agricultural Engineering)

    1992-05-01

    Automatic restart of irrigation systems under load management has the potential to maximize pumping time during off-peak hours. Existing automation technology ranges from time delay relays to more sophisticated control using computers together with weather data to optimize irrigation practices. Centrifugal pumps and water hammer concerns prevent automatic restart of common but often complex irrigation systems in South Dakota. The irrigator must manually prime the pump and control water hammer during pipeline pressurization. Methods to prime centrifugal pumps and control water hammer facilitate automatic restart after load management is released. Seven priming methods and three water hammer control methods were investigated. A sump pump and small vacuum pump were used to test two automatic prime and restart systems in the laboratory. A variable frequency phase converter was also used to automatically control water hammer during pipeline pressurization. Economical methods to safely prime and restart centrifugal pumps were discussed. The water hammer control methods safely pressurize the pipeline but require a higher initial investment. The automatic restart systems can be used to safely restart centrifugal pumps and control water hammer after load management is released. Based upon laboratory research and a technical review of available restart components, a computer software program was developed. The program assists customers in evaluating various restart options for automatic restarting of electric irrigation pumps. For further information on the software program, contact the South Dakota State University, Department of Agricultural Engineering.

  20. Irrigation water use for the Fort Lyon Canal, southeastern Colorado, 1989-90

    USGS Publications Warehouse

    Dash, R.G.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Bent County Board of County Commissioners, began a study to evaluate irrigation water use quanti- tatively for about 91,630 acres of farmland irrigated from the 103.7-mile-long Fort Lyon Main Canal in the Arkansas River Valley of southeastern Colorado. This report provides information from 1980 and 1990 for four hydrologic components of irrigation water use: Surface-water withdrawals, conveyance losses, ground-water withdrawals, and estimates of threretical crop consumptive use. Surface-water withdrawals for the Fort Lyon Canal were 211,150 acre-feet (about 2.3 acre-feet per acre) during 1989 and 202,000 acre-feet (about 2.2 acre-feet per acre) during 1990. Conveyance losses occurred during the transport of water in the unlined Fort Lyon Canal. Conveyance losses were as much as 72 (acre-feet per day) per mile in the first division of the canal and generally decreased in the downstream canal divisions. Ground-water withdrawals for the Fort Lyon Canal were estimated to be 38,890 acre-feet (about 0.8 acre-foot per acre irrigated ground water) during 1989 and 33,970 acre-feet (about 0.7 acre-foot per acre irrigated by ground water) during 1990. Theoretical crop consumptive use was estimated to be 227,530 acre-feet (about 2.7 acre-feet per acre of cropland) during 1989 and 251, 130 acre-feet (about 2.9 acre-feet per acre of cropland) during 1990. The total crop irrigation requirement needed from irrigation withdrawals was 172,100 acre-feet (about 2.0 acre-feet per acre of cropland) during ` 1989 and 190,050 acre-feet (about 2.2 acre-feet per acre of cropland) during 1990. Crops cultivted in the five divisions of the canal were alfalfa, sorghum, corn, wheat, pasture, and spring grains.

  1. Potential for Photovoltaic Solar Installation in Non-Irrigated Corners of Center Pivot Irrigation Fields in the State of Colorado

    SciTech Connect

    Roberts, B.

    2011-07-01

    The State of Colorado expressed an interest in assessing the potential for photovoltaic (PV) solar installations on non-irrigated corners of center-pivot irrigation (CPI) fields throughout the state. Using aerial imagery and irrigated land data available from the Colorado Water Conservation Board, an assessment of potentially suitable sites was produced. Productivity estimates were calculated from that assessment. The total area of non-irrigated corners of CPI fields in Colorado was estimated to be 314,674 acres, which could yield 223,418 acres of installed PV panels assuming 71% coverage in triangular plots. The total potential annual electricity production for the state was estimated to be 56,821 gigawatt hours (GWH), with an average of 1.3 GWH per available plot.

  2. Long-term climate sensitivity of an integrated water supply system: The role of irrigation.

    PubMed

    Guyennon, Nicolas; Romano, Emanuele; Portoghese, Ivan

    2016-09-15

    The assessment of the impact of long-term climate variability on water supply systems depends not only on possible variations of the resources availability, but also on the variation of the demand. In this framework, a robust estimation of direct (climate induced) and indirect (anthropogenically induced) effects of climate change is mandatory to design mitigation measures, especially in those regions of the planet where the groundwater equilibrium is strongly perturbed by exploitations for irrigation purposes. The main goal of this contribution is to propose a comprehensive model that integrates distributed crop water requirements with surface and groundwater mass balance, able to consider management rules of the water supply system. The proposed overall model, implemented, calibrated and validated for the case study of the Fortore water supply system (Apulia region, South Italy), permits to simulate the conjunctive use of the water from a surface artificial reservoir and from groundwater. The relative contributions of groundwater recharges and withdrawals to the aquifer stress have been evaluated under different climate perturbations, with emphasis on irrigation practices. Results point out that irrigated agriculture primarily affects groundwater discharge, indicating that ecosystem services connected to river base flow are particularly exposed to climate variation in irrigated areas. Moreover, findings show that the recharge both to surface and to groundwater is mainly affected by drier climate conditions, while hotter conditions have a major impact on the water demand. The non-linearity arising from combined drier and hotter conditions may exacerbate the aquifer stress by exposing it to massive sea-water intrusion.

  3. Phosphorus as a limiting factor on sustainable greywater irrigation.

    PubMed

    Turner, Ryan D R; Will, Geoffrey D; Dawes, Les A; Gardner, Edward A; Lyons, David J

    2013-07-01

    Water reuse through greywater irrigation has been adopted worldwide and has been proposed as a potential sustainable solution to increased water demands. Despite widespread adoption, there is limited domestic knowledge of greywater reuse. There is no pressure to produce low-level phosphorus products and current guidelines and legislation, such as those in Australia, may be inadequate due to the lack of long-term data to provide a sound scientific basis. Research has clearly identified phosphorus as a potential environmental risk to waterways from many forms of irrigation. To assess the sustainability of greywater irrigation, this study compared four residential lots that had been irrigated with greywater for four years and adjacent non-irrigated lots that acted as controls. Each lot was monitored for the volume of greywater applied and selected physic-chemical water quality parameters and soil chemistry profiles were analysed. The non-irrigated soil profiles showed low levels of phosphorus and were used as controls. The Mechlich3 Phosphorus ratio (M3PSR) and Phosphate Environmental Risk Index (PERI) were used to determine the environmental risk of phosphorus leaching from the irrigated soils. Soil phosphorus concentrations were compared to theoretical greywater irrigation loadings. The measured phosphorus soil concentrations and the estimated greywater loadings were of similar magnitude. Sustainable greywater reuse is possible; however incorrect use and/or lack of understanding of how household products affect greywater can result in phosphorus posing a significant risk to the environment.

  4. Water and energy conservation modeling in Pacific Northwest irrigated agriculture

    SciTech Connect

    Houston, J.E. Jr.

    1984-01-01

    Irrigated agriculture and electrical energy supply in the Pacific Northwest are intricately bound by mutual dependence on Columbia River Basin water. Diversion and instream demands on the water have intensified through recent development in the region. Water conservation opportunities exist in present irrigation that could supplement regional firm hydroelectricity. A two-level mathematical programming model is developed to evaluate irrigator production and regional price responses to water and electricity conservation policies. Stage one emphasizes decision criteria at producer level - irrigable land, water, electricity and labor demand, and water response yields on major crops. Irrigators choose cropping and irrigation mixes and rates at expected commodity prices under resource constraints consistent with regional policy. Stage two employs production and resource use solutions from stage one in a regional allocation and price equilibrium-seeking program. Alfalfa, apple, and potato prices are determined endogenously, and a decomposition-type linkage reiterates production area response to regional equilibrium prices. Baseline irrigated acreage, water electricity, production, and crop prices are estimated for 1982. Water pricing policies reflecting the opportunity value of Columbia River water for hydrogeneration indicate increasing net social benefits, net farm returns, and hydropower potential accruing from conservation in irrigation.

  5. Non-sustainable groundwater sustaining irrigation - a global assessment

    NASA Astrophysics Data System (ADS)

    Wada, Y.; van Beek, L. P. H.; Bierkens, M. F. P.

    2012-04-01

    Irrigated crops play a vital role in securing global food production. It is estimated that 17% of agricultural lands are irrigated, yet they account for 40% of the global food production, sustaining the livelihood of billions of people (Abdullah, 2006). At the same time, water used by irrigated crops (i.e., crop water demand) and irrigation water demand are responsible for about 70% of the global water withdrawal and account for about 90% of the global water consumption, i.e. water withdrawal minus return flow respectively. Water demand for irrigated crops can be met by three different sources: 1) green water, being water from local precipitation that is temporarily stored in the soil, 2) blue water, being surface freshwater available in rivers, lakes, reservoirs and wetlands, and renewable groundwater, and 3) non-renewable or non-sustainable groundwater and non-local water resources. Here, we quantify globally the amount of non-renewable groundwater abstraction to sustain current irrigation practice. We use the global hydrological model PCR-GLOBWB to simulate gross crop water demand for irrigated crops and available blue and green water to meet this demand. We downscale country statistics of groundwater abstraction by considering the part of net total water demand that cannot be met by surface freshwater. We subsequently confront these with simulated groundwater recharge including return flow from irrigation to estimate non-renewable groundwater abstraction. Results show that non-renewable groundwater abstraction contributes approximately 20% to the global gross irrigation water demand for the year 2000. The contribution of non-renewable groundwater abstraction to irrigation is largest in India (68 km3 yr-1) followed by Pakistan (35 km3/yr), USA (30 km3/yr), Iran (20 km3/yr), China (20 km3/yr), Mexico (10 km3/yr) and Saudi Arabia (10 km3/yr). Results also show that globally this contribution more than tripled from 75 to 234 km3/yr over the period 1960-2000. These

  6. Strategy of Irrigation Branch in Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, A.; Ermolaeva, O.

    2012-04-01

    At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges

  7. Planning for an Irrigation System.

    ERIC Educational Resources Information Center

    Turner, J. Howard; Anderson, Carl L.

    The publication, with the aid of tables and colored illustrations and diagrams, presents information to help the farmer who is considering the installation of an irrigation system determine whether or not to irrigate, the type of system to use, and the irrigation cost and return on investment. Information is presented on the increase in yield to…

  8. The Arkansas Irrigation Scheduler

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the U.S. Mid-South, annual rainfall is generally sufficient for limited crop production, but periods of drought during the growing season make irrigation essential for optimum yields. However, factors such as cloudy weather, rainfall, and temperature swings caused by the movement of weather front...

  9. Erosion: Irrigation-induced

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soil can be eroded by sprinkler or surface irrigation. Once sprinkler droplet kinetic energy detaches soil, overland flow transports the sediment downslope and off-site. Protecting the soil surface, increasing sprinkler wetted diameters, and tilling to increase infiltration and thereby lessen overla...

  10. Texas Irrigation Situation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The irrigation situation in Texas is an interaction between hydrology and water policies. In 2012, according to National Agricultural Statistical Service (NASS) four High Plains counties, Gainesville, Yoakum, Terry and Cochran, accounted for approximately 60% of the 150,000 acres of peanut productio...

  11. Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe

    NASA Astrophysics Data System (ADS)

    Webber, Heidi; Gaiser, Thomas; Oomen, Roelof; Teixeira, Edmar; Zhao, Gang; Wallach, Daniel; Zimmermann, Andrea; Ewert, Frank

    2016-07-01

    While crop models are widely used to assess the change in crop productivity with climate change, their skill in assessing irrigation water demand or the risk of crop failure in large area impact assessments is relatively unknown. The objective of this study is to investigate which aspects of modeling crop water use (reference crop evapotranspiration (ET0), soil water extraction, soil evaporation, soil water balance and root growth) contributes most to the variability in estimates of maize crop water use and the risk of crop failure, and demonstrate the resulting uncertainty in a climate change impact study for Europe. The SIMPLACE crop modeling framework was used to couple the LINTUL5 crop model in factorial combinations of 2-3 different approaches for simulating the 5 aspects of crop water use, resulting in 51 modeling approaches. Using experiments in France and New Zeland, analysis of total sensitivity revealed that ET0 explained the most variability in both irrigated maize water use and rainfed grain yield levels, with soil evaporation also imporatant in the French experiment. In the European impact study, net irrigation requirement differed by 36% between the Penman and Hargreaves ET0 methods in the baseline period. Average EU grain yields were similar between models, but differences approached 1-2 tonnes in parts of France and Southern Europe. EU wide esimates of crop failure in the historical period ranged between 5.4 years for Priestley-Taylor to every 7.9 years for the Penman ET0 methods. While the uncertainty in absolute values between models was significant, estimates of relative changes were similar between models, confirming the utility of crop models in assessing climate change impacts. If ET0 estimates in crop models can be improved, through the use of appropriate methods, uncertainty in irrigation water demand as well as in yield estimates under drought can be reduced.

  12. Modeling of basin-wide water management for dry-season paddy irrigation with large reservoirs in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Masumoto, T.; Horikawa, N.; Yoshida, T.

    2012-12-01

    . Irrigation and crop patterns are set as agricultural conditions in each mesh, and then irrigation water and actual evapotranspiration can be estimated according to crop stage and soil moisture. We also modeled water management of 160 reservoirs (10 large reservoirs and 150 medium reservoirs) and water allocation process of 10 large irrigated areas in the basin. The results obtained in this study are as follows: 1) The reservoir operation model reproduced water management such as impoundment of flood discharge during rainy seasons and release of irrigation water controlled by water requirement in downstream irrigation area during dry seasons. 2) The paddy water use and the water allocation models estimated water withdrawals at diversion weirs and water supply in paddy fields depending on water demands in large irrigation areas. 3) Based on the difference in water use patterns between rainy and dry seasons, the cropping model represented the actual conditions of rice planting pattern in both seasons. These results show that the interaction among the sub-models (reservoir operation, paddy water use, water allocation and so on) enables this hydrological model to represent the detailed processes of paddy water use and to evaluate the interaction between hydrological cycle and agricultural activities through anthropogenic water management for paddy irrigation.

  13. Role of irrigation and wastewater reuse: comparison of subsurface irrigation and furrow irrigation.

    PubMed

    Choi, C; Song, I; Stine, S; Pimentel, J; Gerba, C

    2004-01-01

    Two different irrigation systems, subsurface drip irrigation and furrow irrigation, are tested to investigate the level of viral contamination and survival when tertiary effluent is used in arid and semi-arid regions. The effluent was injected with bacteriophages of PRD1 and MS2. A greater number of PRD1 and MS2 were recovered from the lettuce in the subsurface drip-irrigated plots as compared to those in the furrow-irrigated plots. Shallow drip tape installation and preferential water paths through cracks on the soil surface appeared to be the main causes of high viral contamination in subsurface drip irrigation plots, which led to the direct contact of the lettuce stems with the irrigation water which penetrated the soil surface. The water use efficiency of the subsurface drip irrigation system was higher than that of the furrow irrigation system. Thus, subsurface drip irrigation is an efficient irrigation method for vegetable crops in arid and semi-arid regions if viral contamination can be reduced. Deeper installation of drip tapes, frequent irrigations, and timely harvests based on cumulative heat units may further reduce health risks by ensuring viral die-off under various field conditions.

  14. Assessment of radar resolution requirements for soil moisture estimation from simulated satellite imagery. [Kansas

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Dobson, M. C.; Moezzi, S.

    1982-01-01

    Radar simulations were performed at five-day intervals over a twenty-day period and used to estimate soil moisture from a generalized algorithm requiring only received power and the mean elevation of a test site near Lawrence, Kansas. The results demonstrate that the soil moisture of about 90% of the 20-m by 20-m pixel elements can be predicted with an accuracy of + or - 20% of field capacity within relatively flat agricultural portions of the test site. Radar resolutions of 93 m by 100 m with 23 looks or coarser gave the best results, largely because of the effects of signal fading. For the distribution of land cover categories, soils, and elevation in the test site, very coarse radar resolutions of 1 km by 1 km and 2.6 km by 3.1 km gave the best results for wet moisture conditions while a finer resolution of 93 m by 100 m was found to yield superior results for dry to moist soil conditions.

  15. Constraints on LISA Pathfinder’s self-gravity: design requirements, estimates and testing procedures

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; de Deus Silva, M.; Desiderio, D.; Piersanti, E.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Flatscher, R.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Rivas, F.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J. I.; Tomlinson, R.; Trenkel, C.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Warren, C.; Wass, P. J.; Wealthy, D.; Weber, W. J.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2016-12-01

    LISA Pathfinder satellite was launched on 3 December 2015 toward the Sun-Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested. LTP achieves measurements of differential acceleration of free-falling test masses (TMs) with sensitivity below 3× {10}-14 {{m}} {{{s}}}-2 {{Hz}}-1/2 within the 1-30 mHz frequency band in one-dimension. The spacecraft itself is responsible for the dominant differential gravitational field acting on the two TMs. Such a force interaction could contribute a significant amount of noise and thus threaten the achievement of the targeted free-fall level. We prevented this by balancing the gravitational forces to the sub nm s-2 level, guided by a protocol based on measurements of the position and the mass of all parts that constitute the satellite, via finite element calculation tool estimates. In this paper, we will introduce the gravitational balance requirements and design, and then discuss our predictions for the balance that will be achieved in flight.

  16. Electrofishing effort required to estimate biotic condition in Southern Idaho Rivers

    USGS Publications Warehouse

    Maret, T.R.; Ott, D.S.; Herlihy, A.T.

    2007-01-01

    An important issue surrounding biomonitoring in large rivers is the minimum sampling effort required to collect an adequate number of fish for accurate and precise determinations of biotic condition. During the summer of 2002, we sampled 15 randomly selected large-river sites in southern Idaho to evaluate the effects of sampling effort on an index of biotic integrity (IBI). Boat electrofishing was used to collect sample populations of fish in river reaches representing 40 and 100 times the mean channel width (MCW; wetted channel) at base flow. Minimum sampling effort was assessed by comparing the relation between reach length sampled and change in IBI score. Thirty-two species of fish in the families Catostomidae, Centrarchidae, Cottidae, Cyprinidae, Ictaluridae, Percidae, and Salmonidae were collected. Of these, 12 alien species were collected at 80% (12 of 15) of the sample sites; alien species represented about 38% of all species (N = 32) collected during the study. A total of 60% (9 of 15) of the sample sites had poor IBI scores. A minimum reach length of about 36 times MCW was determined to be sufficient for collecting an adequate number of fish for estimating biotic condition based on an IBI score. For most sites, this equates to collecting 275 fish at a site. Results may be applicable to other semiarid, fifth-order through seventh-order rivers sampled during summer low-flow conditions. ?? Copyright by the American Fisheries Society 2007.

  17. Empirical evidence for a recent slowdown in irrigation-induced cooling

    SciTech Connect

    Bonfils, C; Lobell, D

    2007-01-19

    Understanding the influence of past land use changes on climate is needed to improve regional projections of future climate change and inform debates about the tradeoffs associated with land use decisions. The effects of rapid expansion of irrigated area in the 20th century has remained unclear relative to other land use changes, such as urbanization, that affected a similar total land area. Using spatial and temporal variations in temperature and irrigation extent observed in California, we show that irrigation expansion has had a large cooling effect on summertime average daily daytime temperatures (-0.15 to -0.25 C.decade{sup -1}), which corresponds to a cooling estimated at -2.0 - -3.3 C since the introduction of irrigation practice. Irrigation has negligible effects on nighttime temperatures, leading to a net cooling effect of irrigation on climate (-0.06 to -0.19 C.decade{sup -1}). Stabilization of irrigated area has occurred in California since 1980 and is expected in the near future for most irrigated regions. The suppression of past human-induced greenhouse warming by increased irrigation is therefore likely to slow in the future, and a potential decrease in irrigation may even contribute to a more rapid warming. Changes in irrigation alone are not expected to influence broadscale temperatures, but they may introduce large uncertainties in climate projections for irrigated agricultural regions, which provide roughly 40% of global food production.

  18. Size and stochasticity in irrigated social-ecological systems

    PubMed Central

    Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L.

    2017-01-01

    This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub ‘collapse trap’. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty. PMID:28266656

  19. Size and stochasticity in irrigated social-ecological systems

    NASA Astrophysics Data System (ADS)

    Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L.

    2017-03-01

    This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub ‘collapse trap’. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty.

  20. Size and stochasticity in irrigated social-ecological systems.

    PubMed

    Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L

    2017-03-07

    This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub 'collapse trap'. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty.

  1. Prophylactic peri-operative local antibiotic irrigation.

    PubMed

    Whiteside, L A

    2016-01-01

    An extensive review of the spinal and arthroplasty literature was undertaken to evaluate the effectiveness of local antibiotic irrigation during surgery. The efficacy of antibiotic irrigation for the prevention of acute post-operative infection after total joint arthroplasty was evaluated retrospectively in 2293 arthroplasties (1990 patients) between January 2004 and December 2013. The mean follow-up was 73 months (20 to 139). One surgeon performed all the procedures with minimal post-operative infection. The intra-operative protocol included an irrigation solution of normal saline with vancomycin 1000 mg/l and polymyxin 250,000 units/l at the rate of 2 l per hour. No patient required re-admission for primary infection or further antibiotic treatment. Two morbidly obese patients (two total hip arthroplasties) developed subcutaneous fat necrosis requiring debridement and one was revised because the deep capsular sutures were contaminated by the draining subcutaneous haematoma. One patient who had undergone total knee arthroplasty had unrecognised damage to the lateral superior geniculate artery and developed a haematoma that became infected secondarily four months after the surgery and underwent revision. The use of antibiotic irrigation during arthroplasty surgery has been highly effective for the prevention of infection in the author's practice. However, it should be understood that any routine prophylactic use of antibiotics may result in resistant organisms, and the wise stewardship of the use of antibiotics is an important part of surgical practice.

  2. A comparison of groundwater recharge estimation methods in a semi-arid, coastal avocado and citrus orchard (Ventura County, California)

    NASA Astrophysics Data System (ADS)

    Grismer, Mark E.; Bachman, S.; Powers, T.

    2000-10-01

    We assess the relative merits of application of the most commonly used field methods (soil-water balance (SWB), chloride mass balance (CMB) and soil moisture monitoring (NP)) to determine recharge rates in micro-irrigated and non-irrigated areas of a semi-arid coastal orchard located in a relatively complex geological environment.Application of the CMB method to estimate recharge rates was difficult owing to the unusually high, variable soil-water chloride concentrations. In addition, contrary to that expected, the chloride concentration distribution at depths below the root zone in the non-irrigated soil profiles was greater than that in the irrigated profiles. The CMB method severely underestimated recharge rates in the non-irrigated areas when compared with the other methods, although the CMB method estimated recharge rates for the irrigated areas, that were similar to those from the other methods, ranging from 42 to 141 mm/year.The SWB method, constructed for a 15-year period, provided insight into the recharge process being driven by winter rains rather than summer irrigation and indicated an average rate of 75 mm/year and 164 mm/year for the 1984 - 98 and 1996 - 98 periods, respectively. Assuming similar soil-water holding capacity, these recharge rates applied to both irrigated and non-irrigated areas. Use of the long period of record was important because it encompassed both drought and heavy rainfall years. Successful application of the SWB method, however, required considerable additional field measurements of orchard ETc, soil-water holding capacity and estimation of rainfall interception - runoff losses.Continuous soil moisture monitoring (NP) was necessary to identify both daily and seasonal seepage processes to corroborate the other recharge estimates. Measured recharge rates during the 1996 - 1998 period in both the orchards and non-irrigated site averaged 180 mm/year. The pattern of soil profile drying during the summer irrigation season, followed

  3. From rainfed agriculture to stress-avoidance irrigation: II. Sustainability, crop yield, and profitability

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2011-02-01

    The optimality of irrigation strategies may be sought with respect to a number of criteria, including water requirements, crop yield, and profitability. To explore the suitability of different demand-based irrigation strategies, we link the probabilistic description of irrigation requirements under stochastic hydro-climatic conditions, provided in a companion paper [Vico G, Porporato A. From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture. Adv Water Resour 2011;34(2):263-71], to crop-yield and economic analyses. Water requirements, application efficiency, and investment costs of different irrigation methods, such as surface, sprinkler and drip irrigation systems, are described via a unified conceptual and theoretical approach, which includes rainfed agriculture and stress-avoidance irrigation as extreme cases. This allows us to analyze irrigation strategies with respect to sustainability, productivity, and economic return, using the same framework, and quantify them as a function of climate, crop, and soil parameters. We apply our results to corn ( Zea mays), a food staple and biofuel source, which is currently mainly irrigated through surface systems. As our analysis shows, micro-irrigation maximizes water productivity, but more traditional solutions may be more profitable at least in some contexts.

  4. Simulated Impacts of Climate Change on Water Use and Yield of Irrigated Sugarcane in South Africa

    NASA Technical Reports Server (NTRS)

    Jones, M.R; Singels, A.; Ruane, A. C.

    2015-01-01

    Reliable predictions of climate change impacts on water use, irrigation requirements and yields of irrigated sugarcane in South Africa (a water-scarce country) are necessary to plan adaptation strategies. Although previous work has been done in this regard, methodologies and results vary considerably. The objectives were (1) to estimate likely impacts of climate change on sugarcane yields, water use and irrigation demand at three irrigated sugarcane production sites in South Africa (Malelane, Pongola and La Mercy) for current (1980-2010) and future (2070-2100) climate scenarios, using an approach based on the Agricultural Model Inter-comparison and Improvement Project (AgMIP) protocols; and (2) to assess the suitability of this methodology for investigating climate change impacts on sugarcane production. Future climate datasets were generated using the Delta downscaling method and three Global Circulation Models (GCMs) assuming atmospheric CO2 concentration [CO2] of 734 ppm(A2 emissions scenario). Yield and water use were simulated using the DSSAT-Canegro v4.5 model. Irrigated cane yields are expected to increase at all three sites (between 11 and 14%), primarily due to increased interception of radiation as a result of accelerated canopy development. Evapotranspiration and irrigation requirements increased by 11% due to increased canopy cover and evaporative demand. Sucrose yields are expected to decline because of increased consumption of photo-assimilate for structural growth and maintenance respiration. Crop responses in canopy development and yield formation differed markedly between the crop cycles investigated. Possible agronomic implications of these results include reduced weed control costs due to shortened periods of partial canopy, a need for improved efficiency of irrigation to counter increased demands, and adjustments to ripening and harvest practices to counter decreased cane quality and optimize productivity. Although the Delta climate data

  5. Spatial quantification of groundwater abstraction in the irrigated Indus basin.

    PubMed

    Cheema, M J M; Immerzeel, W W; Bastiaanssen, W G M

    2014-01-01

    Groundwater abstraction and depletion were assessed at a 1-km resolution in the irrigated areas of the Indus Basin using remotely sensed evapotranspiration (ET) and precipitation; a process-based hydrological model and spatial information on canal water supplies. A calibrated Soil and Water Assessment Tool (SWAT) model was used to derive total annual irrigation applied in the irrigated areas of the basin during the year 2007. The SWAT model was parameterized by station corrected precipitation data (R) from the Tropical Rainfall Monitoring Mission, land use, soil type, and outlet locations. The model was calibrated using a new approach based on spatially distributed ET fields derived from different satellite sensors. The calibration results were satisfactory and strong improvements were obtained in the Nash-Sutcliffe criterion (0.52 to 0.93), bias (-17.3% to -0.4%), and the Pearson correlation coefficient (0.78 to 0.93). Satellite information on R and ET was then combined with model results of surface runoff, drainage, and percolation to derive groundwater abstraction and depletion at a nominal resolution of 1 km. It was estimated that in 2007, 68 km³ (262 mm) of groundwater was abstracted in the Indus Basin while 31 km³ (121 mm) was depleted. The mean error was 41 mm/year and 62 mm/year at 50% and 70% probability of exceedance, respectively. Pakistani and Indian Punjab and Haryana were the most vulnerable areas to groundwater depletion and strong measures are required to maintain aquifer sustainability.

  6. Geospatial compilation and digital map of centerpivot irrigated areas in the mid-Atlantic region, United States

    USGS Publications Warehouse

    Finkelstein, Jason S.; Nardi, Mark R.

    2015-01-01

    The digitized acreage totals were compared with the irrigation estimates provided by the U.S. Department of Agriculture farm and ranch irrigation survey, which is the most comprehensive source of information on irrigation water use within the agricultural industry. This survey collects information on a wide range of topics, including the amount of water used, total acres irrigated, crop specific data, and even energy costs. The U.S. Department of Agriculture samples data for both entire States and individual counties.

  7. Asian irrigation, African rain: Remote impacts of irrigation

    NASA Astrophysics Data System (ADS)

    Vrese, Philipp; Hagemann, Stefan; Claussen, Martin

    2016-04-01

    Irrigation is not only vital for global food security but also constitutes an anthropogenic land use change, known to have strong effects on local hydrological and energy cycles. Using the Max Planck Institute for Meteorology's Earth System Model, we show that related impacts are not confined regionally but that possibly as much as 40% of the present-day precipitation in some of the arid regions in Eastern Africa are related to irrigation-based agriculture in Asia. Irrigation in South Asia also substantially influences the climate throughout Southeast Asia and China via the advection of water vapor and by altering the Asian monsoon. The simulated impact of irrigation on remote regions is sensitive to the magnitude of the irrigation-induced moisture flux. Therefore, it is likely that a future extension or decline of irrigated areas due to increasing food demand or declining fresh water resources will also affect precipitation and temperatures in remote regions.

  8. Study of the hydrological functionning of the irrigated crops in the southern mediterranean basin

    NASA Astrophysics Data System (ADS)

    Khabba, Said; Jarlan, Lionel; Er-Raki, Salah; Le Page, Michel; Merlin, Olivier; Ezzahar, Jamal; Kharrou, Mohamed H.

    2015-04-01

    the physically based SVATs such as ISBA provide good estimates of surface fluxes over all sites once a proper calibration is carried out. However, they required several input parameters that are not routinely available at the appropriate spatial scale. For operational purposes, simpler approaches such as the FAO-56 and the TSEB models showed a good estimate of ET at field scale. Also, the FAO-56 approach was adapted to use a satellite-based vegetation index. It was calibrated and validated on the Haouz plain, for the main crops (wheat, olive and citrus). Its implementation was validated using a Landsat TM image time series and also using low resolution images. The results showed that despite the simplicity of the model, spatial estimates of ET were reasonable. This model was converted in software for Satellite Monitoring of Irrigation. However, the FAO-56 method combined with solar remote sensing data alone was not sufficient to accurately estimate water consumption, especially when soil evaporation and stress under full vegetation cover conditions occurred. In this regard, we directly assimilated snapshot evaporation data that could be obtained through the resolution of a simple energy budget forced by TIR observations. These preliminary results showed a clear improvement of the seasonal ET estimates.

  9. Practical salinity management for leachate irrigation to poplar trees.

    PubMed

    Smesrud, Jason K; Duvendack, George D; Obereiner, James M; Jordahl, James L; Madison, Mark F

    2012-01-01

    Landfill leachate can be beneficially reused for irrigation of fiber crops with appropriate attention to nutrient and salinity management. The Riverbend Landfill in Western Oregon has been effectively practicing irrigation of landfill leachate to poplar trees since 1993. Over that time, the site has been adaptively managed to control salinity impacts to the tree crop while beneficially utilizing the applied water and nutrients during each growing season. Representative leachate irrigation water has ranged in concentration of total dissolved solids from 777 to 6,940 mg/L, chloride from 180 to 1,760 mg/L and boron from 3.2 to 7.3 mg/L. Annual leachate irrigation applications have also ranged between 102 and 812 mm/yr. Important conclusions from this site have included: 1) Appropriate tree clone selection and tree stand spacing, thinning, and harvest rotations are critical to maintaining a productive tree stand that is resilient and resistant to salt stress. The most effective combinations have included clones DN-34, OP-367, 184-411, 49-177, and 15-29 planted at spacing of 3.7-m x 1.8-m to 3.7-m x 3.7-m; 2) Leaf tissue boron levels are closely correlated to soil boron levels and can be managed with leaching. When leaf tissue boron levels exceed 200 to 250 mg/kg, signs of salt stress may emerge and should be monitored closely; 3) Salinity from leachate irrigation can be managed to sustain a healthy tree crop by controlling mass loading rates and providing appropriate irrigation blending if necessary. Providing freshwater irrigation following each leachate irrigation and targeting freshwater irrigation as 30 percent of total irrigation water applied has successfully controlled salt impacts to vegetation; and 4) Drip irrigation generally requires more careful attention to long-term soil salinity management than spray irrigation. Moving drip irrigation tubes periodically to prevent the formation of highly saline zones within the soil profile is important. In this paper, a

  10. Estimating the Reliability of Dynamic Variables Requiring Rater Judgment: A Generalizability Paradigm.

    ERIC Educational Resources Information Center

    Webber, Larry; And Others

    Generalizability theory, which subsumes classical measurement theory as a special case, provides a general model for estimating the reliability of observational rating data by estimating the variance components of the measurement design. Research data from the "Heart Smart" health intervention program were analyzed as a heuristic tool.…

  11. Estimation of the left ventricular relaxation time constant tau requires consideration of the pressure asymptote.

    PubMed

    Langer, S F J; Habazettl, H; Kuebler, W M; Pries, A R

    2005-01-01

    The left ventricular isovolumic pressure decay, obtained by cardiac catheterization, is widely characterized by the time constant tau of the exponential regression p(t)=Pomega+(P0-Pomega)exp(-t/tau). However, several authors prefer to prefix Pomega=0 instead of coestimating the pressure asymptote empirically; others present tau values estimated by both methods that often lead to discordant results and interpretation of lusitropic changes. The present study aims to clarify the relations between the tau estimates from both methods and to decide for the more reliable estimate. The effect of presetting a zero asymptote on the tau estimate was investigated mathematically and empirically, based on left ventricular pressure decay data from isolated ejecting rat and guinea pig hearts at different preload and during spontaneous decrease of cardiac function. Estimating tau with preset Pomega=0 always yields smaller values than the regression with empirically estimated asymptote if the latter is negative and vice versa. The sequences of tau estimates from both methods can therefore proceed in reverse direction if tau and Pomega change in opposite directions between the measurements. This is exemplified by data obtained during an increasing preload in spontaneously depressed isolated hearts. The estimation of the time constant of isovolumic pressure fall with a preset zero asymptote is heavily biased and cannot be used for comparing the lusitropic state of the heart in hemodynamic conditions with considerably altered pressure asymptotes.

  12. Studies on the tryptophan requirement of lactating sows. Part 2: Estimation of the tryptophan requirement by physiological criteria.

    PubMed

    Pampuch, F G; Paulicks, B R; Roth-Maier, D A

    2006-12-01

    Mature sows were fed for a total of 72 lactations with diets which provided an adequate supply of energy and nutrients except for tryptophan (Trp). By supplementing a basal diet [native 1.2 g Trp/kg, equivalent to 0.8 g apparent ileal digestible (AID) Trp or 0.9 g true ileal digestible (TID) Trp] with L-Trp, five further diets (2-6) containing 1.5-4.2 g Trp/kg were formulated. The dietary Trp content had no effect on amino acid contents in milk on days 20 and 21 of lactation, but Trp in blood plasma on day 28 of lactation reflected the alimentary Trp supply with an increase from 2.74 +/- 1.14 mg/l (diet 1) to 23.91 +/- 7.53 mg/l (diet 6; p < 0.001). There were no directional differences between the diets with regard to the other amino acids. Concentrations of urea in milk and blood were higher with diet 1 (211 and 272 mg/l, respectively) than with diets 3-6 (183 and 227 mg/l, respectively). Serotonin levels in the blood serum were lower with diet 1 (304 ng/ml) than the average of diets 4-6 (540 ng/ml). This study confirms previously given recommendations for the Trp content in the diet of lactating sows, estimated by means of performance, of 1.9 g AID Trp (equivalent to 2.0 g TID Trp; approximately 2.6 g gross Trp) per kg diet.

  13. Agricultural irrigated land-use inventory for Jackson, Calhoun, and Gadsden Counties in Florida, and Houston County in Alabama, 2014

    USGS Publications Warehouse

    Marella, Richard L.; Dixon, Joann F.

    2015-09-18

    The irrigated acreage estimated for Jackson County in 2014 (31,608) is about 47 percent higher than the 2012 estimated acreage published by the USDA (21,508 acres). The estimates of irrigated acreage field verified during 2014 for Calhoun and Gadsden Counties are also higher than those published by the USDA for 2012 (86 percent and 71 percent, respectively). In Calhoun County the USDA reported 1,647 irrigated acres while the current study estimated 3,060 acres, and in Gadsden County the USDA reported 2,650 acres while the current study estimated 4,547 acres. For Houston County the USDA-reported value of 9,138 acres in 2012 was 13 percent below the 10,333 acres field verified in the current study. Differences between the USDA 2012 values and 2014 field verified estimates in these two datasets may occur because (1) irrigated acreage for some specific crops increased or decreased substantially during the 2-year interval due to commodity prices or economic changes, (2) irrigated acreage calculated for the current study may be estimated high because irrigation was assumed if an irrigation system was present and therefore the acreage was counted as irrigated, when in fact that may not have been the case as some farmers may not have used their irrigation systems during this growing period even if they had a crop in the field, or (3) the amount of irrigated acreages published by the USDA for selected crops may be underestimated in some cases.

  14. Estimation of yield and water requirements of maize crops combining high spatial and temporal resolution images with a simple crop model, in the perspective of the Sentinel-2 mission

    NASA Astrophysics Data System (ADS)

    Battude, Marjorie; Bitar, Ahmad Al; Brut, Aurore; Cros, Jérôme; Dejoux, Jean-François; Huc, Mireille; Marais Sicre, Claire; Tallec, Tiphaine; Demarez, Valérie

    2016-04-01

    Water resources are under increasing pressure as a result of global change and of a raising competition among the different users (agriculture, industry, urban). It is therefore important to develop tools able to estimate accurately crop water requirements in order to optimize irrigation while maintaining acceptable production. In this context, remote sensing is a valuable tool to monitor vegetation development and water demand. This work aims at developing a robust and generic methodology mainly based on high resolution remote sensing data to provide accurate estimates of maize yield and water needs at the watershed scale. Evapotranspiration (ETR) and dry aboveground biomass (DAM) of maize crops were modeled using time series of GAI images used to drive a simple agro-meteorological crop model (SAFYE, Duchemin et al., 2005). This model is based on a leaf partitioning function (Maas, 1993) for the simulation of crop biomass and on the FAO-56 methodology for the ETR simulation. The model also contains a module to simulate irrigation. This study takes advantage of the SPOT4 and SPOT5 Take5 experiments initiated by CNES (http://www.cesbio.ups-tlse.fr/multitemp/). They provide optical images over the watershed from February to May 2013 and from April to August 2015 respectively, with a temporal and spatial resolution similar to future images from the Sentinel-2 and VENμS missions. This dataset was completed with LandSat8 and Deimos1 images in order to cover the whole growing season while reducing the gaps in remote sensing time series. Radiometric, geometric and atmospheric corrections were achieved by the THEIA land data center, and the KALIDEOS processing chain. The temporal dynamics of the green area index (GAI) plays a key role in soil-plant-atmosphere interactions and in biomass accumulation process. Consistent seasonal dynamics of the remotely sensed GAI was estimated by applying a radiative transfer model based on artificial neural networks (BVNET, Baret

  15. Producer gas from citrus wood fuels irrigation power unit

    SciTech Connect

    Churchill, D.B.; Hedden, S.L.; Whitney, J.D.; Shaw, L.N.

    1985-01-01

    A 90-hp diesel engine operating a citrus irrigation system was converted to run on a dual-fuel mixture utilizing producer gas from citrus wood chips as the main fuel source. A chip feeder mechanism, gasifier, filter system and control unit were designed to meet typical irrigation power requirements. Blighted, unproductive and dead trees removed near the irrigation site were used for chipping. Data on chip moisture content, fuel analysis, drying rate and fuel/tree weight are presented but labour and equipment costs were not determined. 14 references.

  16. An estimation of the protein requirements of Iberian x Duroc 50:50 crossbred growing pigs.

    PubMed

    Rojas-Cano, M L; Ruiz-Guerrero, V; Lara, L; Nieto, R; Aguilera, J F

    2014-04-01

    The effects of dietary protein content on the rates of gain and protein deposition were studied in Iberian (IB) × Duroc (DU) 50:50 barrows at 2 stages of growth [10.6 ± 0.2 (n = 28) and 60.0 ± 0.4 (n = 24) kg initial BW]. Two feeding, digestibility, and N-balance trials were performed. At each stage of growth, they were allocated in individual pens and given restrictedly (at 0.9 × ad libitum intake) one of 4 pelleted diets of similar energy concentration (13.8 to 14.5 MJ ME/kg DM), formulated to provide 4 different (ideal) CP contents (236, 223, 208, and 184 g CP/kg DM in the first trial, and 204, 180, 143, and 114 g CP/kg DM in the second trial). Feed allowance was offered in 2 daily equal meals. The average concentration of Lys was 6.59 ± 0.13 g /100 g CP for all diets. Whatever the stage of growth, average daily BW gain and gain to feed ratio were unchanged by increases in dietary CP content (477 ± 7 and 1,088 ± 20 g, and 0.475 ± 0.027 and 0.340 ± 0.113, respectively, in the first and second trial). In pigs growing from 10 to 27 kg BW, the average rate of N retention increased linearly (P < 0.01) on increasing the protein content in the diet up to a break point, so a linear-plateau dose response was observed. Pigs fed diets providing 208 to 236 g/kg DM did not differ in rate of protein deposition (PD). A maximum value of 87 (13.93 g N retained × 6.25) g PD/d was obtained when the diet supplied at least 208 g CP/kg DM. The broken-line regression analysis estimated dietary CP requirements at 211 g ideal CP (15.2 g total Lys)/kg DM. In the fattening pigs, there was a quadratic response (P < 0.01) in the rate of N retention as dietary CP content increased. Maximum N retention (18.7 g/d) was estimated from the first derivative of the function that relates the observed N retained (g/d) and dietary CP content (g/kg DM). This maximum value would be obtained by feeding a diet containing 185 g ideal CP (13.3 g total Lys)/kg DM and represents the maximum capacity

  17. Number of trials required to estimate a free-energy difference, using fluctuation relations

    NASA Astrophysics Data System (ADS)

    Yunger Halpern, Nicole; Jarzynski, Christopher

    2016-05-01

    The difference Δ F between free energies has applications in biology, chemistry, and pharmacology. The value of Δ F can be estimated from experiments or simulations, via fluctuation theorems developed in statistical mechanics. Calculating the error in a Δ F estimate is difficult. Worse, atypical trials dominate estimates. How many trials one should perform was estimated roughly by Jarzynski [Phys. Rev. E 73, 046105 (2006), 10.1103/PhysRevE.73.046105]. We enhance the approximation with the following information-theoretic strategies. We quantify "dominance" with a tolerance parameter chosen by the experimenter or simulator. We bound the number of trials one should expect to perform, using the order-∞ Rényi entropy. The bound can be estimated if one implements the "good practice" of bidirectionality, known to improve estimates of Δ F . Estimating Δ F from this number of trials leads to an error that we bound approximately. Numerical experiments on a weakly interacting dilute classical gas support our analytical calculations.

  18. A global dataset of the extent of irrigated land from 1900 to 2005

    NASA Astrophysics Data System (ADS)

    Siebert, S.; Kummu, M.; Porkka, M.; Döll, P.; Ramankutty, N.; Scanlon, B. R.

    2014-12-01

    Irrigation intensifies land use by increasing crop yield but also impacts water resources. It affects water and energy balances and consequently the microclimate in irrigated regions. Therefore, knowledge of the extent of irrigated land is important for hydrological and crop modelling, global change research, and assessments of resource use and management. Information on the historical evolution of irrigated lands is limited. The new global Historical Irrigation Dataset (HID) provides estimates of the temporal development of the area equipped for irrigation (AEI) between 1900 and 2005 at 5 arc-minute resolution. We collected subnational irrigation statistics from various sources and found that the global extent of AEI increased from 63 million ha (Mha) in 1900 to 112 Mha in 1950 and 306 Mha in 2005. We developed eight gridded versions of time series of AEI by combining subnational irrigation statistics with different data sets on the historical extent of cropland and pasture. Different rules were applied to maximize consistency of the gridded products to subnational irrigation statistics or to historical cropland and pasture data sets. The HID reflects very well the spatial patterns of irrigated land in the western United States as shown on historical maps. Mean aridity on irrigated land increased and river discharge decreased from 1900-1950 whereas aridity decreased from 1950-2005. The dataset and its documentation are made available in an open data repository at https://mygeohub.org/publications/8 (doi:10.13019/M2MW2G).

  19. Physically-based Methods for the Estimation of Crop Water Requirements from E.O. Optical Data

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The estimation of evapotranspiration (ET) represent the basic information for the evaluation of crop water requirements. A widely used method to compute ET is based on the so-called "crop coefficient" (Kc), defined as the ratio of total evapotranspiration by reference evapotranspiration ET0. The val...

  20. Water savings potentials of irrigation systems: dynamic global simulation

    NASA Astrophysics Data System (ADS)

    Jägermeyr, J.; Gerten, D.; Heinke, J.; Schaphoff, S.; Kummu, M.; Lucht, W.

    2015-04-01

    Global agricultural production is heavily sustained by irrigation, but irrigation system efficiencies are often surprisingly low. However, our knowledge of irrigation efficiencies is mostly confined to rough indicative estimates for countries or regions that do not account for spatio-temporal heterogeneity due to climate and other biophysical dependencies. To allow for refined estimates of global agricultural water use, and of water saving and water productivity potentials constrained by biophysical processes and also non-trivial downstream effects, we incorporated a dynamic representation of the three major irrigation systems (surface, sprinkler, and drip) into a process-based bio- and agrosphere model, LPJmL. Based on this enhanced model we provide a gridded worldmap of dynamically retrieved irrigation efficiencies reflecting differences in system types, crop types, climatic and hydrologic conditions, and overall crop management. We find pronounced regional patterns in beneficial irrigation efficiency (a refined irrigation efficiency indicator accounting for crop-productive water consumption only), due to differences in these features, with lowest values (< 30%) in South Asia and Sub-Saharan Africa and highest values (> 60%) in Europe and North America. We arrive at an estimate of global irrigation water withdrawal of 2396 km3 (2004-2009 average); irrigation water consumption is calculated to be 1212 km3, of which 511 km3 are non-beneficially consumed, i.e. lost through evaporation, interception, and conveyance. Replacing surface systems by sprinkler or drip systems could, on average across the world's river basins, reduce the non-beneficial consumption at river basin level by 54 and 76%, respectively, while maintaining the current level of crop yields. Accordingly, crop water productivity would increase by 9 and 15%, respectively, and by much more in specific regions such as in the Indus basin. This study significantly advances the global quantification of

  1. Changes in whole grain polyphenols and antioxidant activity of six sorghum genotypes under different irrigation treatments.

    PubMed

    Wu, Gangcheng; Johnson, Stuart K; Bornman, Janet F; Bennett, Sarita J; Fang, Zhongxiang

    2017-01-01

    Sorghum grain containing elevated polyphenolic antioxidant content may provide foods with benefits to human health. A study was undertaken to determine the potential role of irrigation on the content of polyphenols and antioxidant levels in sorghum grain. Bound, free and total polyphenols were investigated in six diverse sorghum genotypes grown under either full irrigation or a deficit irrigation regime. Results showed genotype, irrigation and their interaction had a significant effect on polyphenols and antioxidant activity (P⩽0.05). The deficit irrigation treatment significantly increased polyphenol content and antioxidant activity compared to the full irrigation treatment. Of the six genotypes Shawaya black short 1 and IS1311C (brown) showed the highest polyphenols levels and antioxidant activity. Therefore, both irrigation treatments and genotype need to be considered by sorghum breeders and farmers during sorghum production to produce grain with the required levels of polyphenolics and antioxidant activity for targeted end-use.

  2. Potential conservation opportunities from the use of improved irrigation scheduling in the Pacific Northwest region

    SciTech Connect

    Harrer, B J; Lezberg, A J

    1985-03-01

    This report documents research to identify the potential energy savings and the costs per kWh saved from using systematic rather than traditional irrigation scheduling to reduce water usage in the irrigated agricultural sector of the Pacific Northwest. This research is part of an overall project aimed at developing a computer model and data base that will allow for estimation of the potential energy savings and cost effectiveness of a number of conservation technologies that are available for use in irrigated agriculture.

  3. Coolidge solar powered irrigation pumping project

    NASA Technical Reports Server (NTRS)

    Larson, D. L.

    1980-01-01

    A 150 kW solar thermal electric power plant which includes over 2100 square meters of parabolic trough type collectors and an organic Rankine cycle turbine engine was constructed on an irrigated farm. The plant is interconnected with the electrical utility grid. Operation is providing an evaluation of equipment performance and operating and maintenance requirements as well as the desirability of an on farm location.

  4. DEVELOPMENT OF WATER CIRCULATION MODEL INCLUDING IRRIGATION

    NASA Astrophysics Data System (ADS)

    Kotsuki, Shunji; Tanaka, Kenji; Kojiri, Toshiharu; Hamaguchi, Toshio

    It is well known that since agricultural water withdrawal has much affect on water circulation system, accurate analysis of river discharge or water balance are difficult with less regard for it. In this study, water circulation model composed of land surface model and distributed runoff model is proposed at 10km 10km resolution. In this model, irrigation water, which is estimated with land surface model, is introduced to river discharge analysis. The model is applied to the Chao Phraya River in Thailand, and reproduced seasonal water balance. Additionally, the discharge on dry season simulated with the model is improved as a result of including irrigation. Since the model, which is basically developed from global data sets, simulated seasonal change of river discharge, it can be suggested that our model has university to other river basins.

  5. Advances in Irrigation: Select Works from 2010 Decennial Irrigation Symposium

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This paper is an introduction to the Advances in Irrigation Special Collection in this issue of Transactions ASABE and the next issue of Applied Engineering in Agriculture of 14 papers selected from 88 papers and presentations at the ASABE 5th Decennial National Irrigation Symposium, December 2010, ...

  6. Influence of time scale wind speed data on sustainability analysis for irrigating greenhouse crops

    NASA Astrophysics Data System (ADS)

    Díaz Méndez, Rodrigo; García Llaneza, Joaquín; Peillón, Manuel; Perdigones, Alicia; Sanchez, Raul; Tarquis, Ana M.; Garcia, Jose Luis

    2014-05-01

    Appropriate water supply at crop/farm level, with suitable costs, is becoming more and more important. Energy management is closely related to water supply in this context, being wind energy one of the options to be considered, using wind pumps for irrigation water supply. Therefore, it is important to characterize the wind speed frequency distribution to study the technical feasibility to use its energy for irrigation management purpose. The general objective of this present research is to analyze the impact of time scale recorded wind speed data in the sustainability for tomato (Solanum lycopersicum L.) grown under greenhouse at Cuban conditions using drip irrigation system. For this porpoise, a daily estimation balance between water needs and water availability was used to evaluate the feasibility of the most economic windmill irrigation system. Several factors were included: wind velocity (W, m/s) in function of the time scale averaged, flow supplied by the wind pump as a function of the elevation height (H, m) and daily greenhouse evapotranspiration. Monthly volumes of water required for irrigation (Dr, m3/ha) and in the water tank (Vd, m3), as well as the monthly irrigable area (Ar, ha), were estimated by cumulative deficit water budgeting taking in account these factors. Three-hourly wind velocity (W3h, m/s) data from 1992 till 2008 was available for this study. The original data was grouped in six and twelve hourly data (W6h and W12h respectively) as well as daily data (W24h). For each time scale the daily estimation balance was applied. A comparison of the results points out a need for at least three-hourly data to be used mainly in the months in which mean wind speed are close or below the pumps threshold speed to start-up functioning. References Manuel Esteban Peillon Mesa, Ana Maria Tarquis Alfonso, José Luis García Fernández, and Raúl Sánchez Calvo. The use of wind pumps for irrigating greenhouse tomato crops: a case study in Cuba. Geophysical

  7. A Decision Tool to Evaluate Budgeting Methodologies for Estimating Facility Recapitalization Requirements

    DTIC Science & Technology

    2008-03-01

    REQUIREMENTS   THESIS Presented to the Faculty Department of Systems and Engineering Management Graduate School of Engineering and... Management Air Force Institute of Technology Air University Air Education and Training Command In Partial Fulfillment of the Requirements for the Degree...of Master of Science in Engineering Management Krista M. Hickman, BS Captain, USAF March 2008 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION

  8. Estimated quantitative amino acid requirements for Florida pompano reared in low-salinity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As with most marine carnivores, Florida pompano require relatively high crude protein diets to obtain optimal growth. Precision formulations to match the dietary indispensable amino acid (IAA) pattern to a species’ requirements can be used to lower the overall dietary protein. However IAA requirem...

  9. Subsurface drip irrigation in different planting spacing of sugarcane

    NASA Astrophysics Data System (ADS)

    Pires, R. C. M.; Barbosa, E. A. A.; Arruda, F. B.; Silva, T. J. A.; Sakai, E.; Landell, M. G. A.

    2012-04-01

    The use of subsurface drip irrigation (SDI) in sugarcane cultivation is an interesting cultural practice to improve production and allow cultivation in marginal lands due to water deficits conditions. The SDI provides better water use efficiency, due to the water and nutrients application in root zone plants. However, it is important to investigate the long-term effect of irrigation in the yield and technological quality in different ecological condition cultivation. Thus, the aim of this work was to evaluate the effect of SDI in sugarcane cultivated in different planting spacings on technological quality, yield and theoretical recoverable sugar during four cycles of sugarcane cultivation. The experiment was carried out at Colorado Mill, Guaíra, São Paulo State in Brazil, in a clay soil. The experiment was installed in randomized blocks, with six replications. The treatments were three different planting spacings (S1 - 1.5 m between rows; S2 - 1.8 m between rows and S3 - planting in double line of 0.5 m x 1.3 m between planting rows) which were subdivided in irrigated and non-irrigated plots. In S1 and S2 treatments were installed one drip line in each plant row and in treatment S3 one drip line was installed between the rows with smaller spacing (0.5 m). The RB855536 genotype was used and the planting date occurred in May, 25th 2005. The analyzed parameters were: percentage of soluble solids (brix), percent apparent sucrose juice (Pol), total recoverable sugar (ATR), yield and theoretically recoverable sugar (RTR). Four years of yield (plant cane and first, second and third ratoon) were analyzed. Data were submitted to variance analysis and the averages compared by Duncan test at 5% probability. Two months before the first harvest a yield estimate was realized. According to the observed results the irrigated plants provided increase of about 20 % compared to non irrigated plants. However there was a great tipping of plants specially in irrigated plots. The

  10. Preserving the World Second Largest Hypersaline Lake under Future Irrigation and Climate Change

    NASA Astrophysics Data System (ADS)

    Shadkam, Somayeh; Ludwig, Fulco; van Vliet, Michelle; Pastor, Amandine; Kabat, Pavel

    2016-04-01

    Urmia Lake, the world second largest hypersaline lake, has been largely desiccated over the last two decades resulting in socio-environmental consequences similar or even larger than the Aral Sea disaster. To rescue the lake a new water management plan has been proposed, a rapid 40% decline in irrigation water use replacing a former plan which intended to develop reservoirs and irrigation. However, none of these water management plans, which have large socio-economic impacts, have been assessed under future changes in climate and water availability. By adapting a method of environmental flow requirements (EFRs) for hypersaline lakes, we estimated annually 3.9•109 m3 water is needed to preserve Urmia Lake. Then, the Variable Infiltration Capacity (VIC) hydrological model was forced with bias-corrected climate model outputs for both the lowest (RCP2.6) and highest (RCP8.5) greenhouse-gas concentration scenarios to estimate future water availability and impacts of water management strategies. Results showed a 10% decline in future water availability in the basin under RCP2.6 and 27% under RCP8.5. Our results showed that if future climate change is highly limited (RCP2.6) inflow can be just enough to meet the EFRs by implementing the reduction irrigation plan. However, under more rapid climate change scenario (RCP8.5) reducing irrigation water use will not be enough to save the lake and more drastic measures are needed. Our results showed that future water management plans are not robust under climate change in this region. Therefore, an integrated approach of future land-water use planning and climate change adaptation is therefore needed to improve future water security and to reduce the desiccating of this hypersaline lake.

  11. Preserving the world second largest hypersaline lake under future irrigation and climate change.

    PubMed

    Shadkam, Somayeh; Ludwig, Fulco; van Vliet, Michelle T H; Pastor, Amandine; Kabat, Pavel

    2016-07-15

    Iran Urmia Lake, the world second largest hypersaline lake, has been largely desiccated over the last two decades resulting in socio-environmental consequences similar or even larger than the Aral Sea disaster. To rescue the lake a new water management plan has been proposed, a rapid 40% decline in irrigation water use replacing a former plan which intended to develop reservoirs and irrigation. However, none of these water management plans, which have large socio-economic impacts, have been assessed under future changes in climate and water availability. By adapting a method of environmental flow requirements (EFRs) for hypersaline lakes, we estimated annually 3.7·10(9)m(3) water is needed to preserve Urmia Lake. Then, the Variable Infiltration Capacity (VIC) hydrological model was forced with bias-corrected climate model outputs for both the lowest (RCP2.6) and highest (RCP8.5) greenhouse-gas concentration scenarios to estimate future water availability and impacts of water management strategies. Results showed a 10% decline in future water availability in the basin under RCP2.6 and 27% under RCP8.5. Our results showed that if future climate change is highly limited (RCP2.6) inflow can be just enough to meet the EFRs by implementing the reduction irrigation plan. However, under more rapid climate change scenario (RCP8.5) reducing irrigation water use will not be enough to save the lake and more drastic measures are needed. Our results showed that future water management plans are not robust under climate change in this region. Therefore, an integrated approach of future land-water use planning and climate change adaptation is therefore needed to improve future water security and to reduce the desiccating of this hypersaline lake.

  12. Irrigation with desalinated water: A step toward increasing water saving and crop yields

    NASA Astrophysics Data System (ADS)

    Silber, Avner; Israeli, Yair; Elingold, Idan; Levi, Menashe; Levkovitch, Irit; Russo, David; Assouline, Shmuel

    2015-01-01

    We examined the impact of two different approaches to managing irrigation water salinity: salt leaching from the field ("conventional" management) and water desalination before field application ("alternative" management). Freshwater commonly used for irrigation (FW) and desalinated water (DS) were applied to the high-water-demanding crop banana at four different rates. Both irrigation rate and water salinity significantly affected yield. DS application consistently produced higher yields than FW, independently of irrigation rate. The highest yield for FW-irrigation was achieved with the highest irrigation rate, whereas the same yield was obtained in the case of DS-irrigation with practically half the amount of water. Yield decreased with FW-irrigation, even when the water salinity, ECi, was lower than the limit considered safe for soil and crops. Irrigating with FW provided a massive amount of salt which accumulated in the rhizosphere, inducing increased osmotic potential of the soil solution and impairing plant water uptake. Furthermore, applying the "conventional" management, a significant amount of salt is leached from the rhizosphere, accumulating in deeper soil layers, and eventually reaching groundwater reservoirs, thus contributing to the deterioration of both soil and water quality. Removal of salt excess from the water before it reaches the field by means of DS-irrigation may save significant amounts of irrigation water by reducing the salt leaching requirements while increasing yield and improving fruit quality, and decreasing salt load in the groundwater.

  13. Irrigation impacts on California's climate with the variable-resolution CESM

    NASA Astrophysics Data System (ADS)

    Huang, Xingying; Ullrich, Paul A.

    2016-09-01

    The variable-resolution capability within the Community Earth System Model (VR-CESM) is applied to understand the impact of irrigation on the regional climate of California. Irrigation is an important contributor to the regional climate of heavily irrigated regions, and within the U.S. there are few regions that are as heavily irrigated as California's Central Valley, responsible for 25% of domestic agricultural products. A flexible irrigation scheme with relatively realistic estimates of agricultural water use is employed. The impact of irrigation on mean climatology and heat extremes is investigated over the 26 year period 1980-2005 using a relatively fine grid resolution of 0.25° (˜28 km). Three simulations are performed, including an unirrigated control run and two irrigation-enabled runs, with results compared to gridded observations and weather station data sets. During the summer months (when irrigation peaks), irrigation leads to cooling of the daily maximum near-surface temperature field (Tmax) by approximately 1.1 K. Under irrigation, latent heat flux increased by ˜61% during the daytime as a result of increased surface evaporation; specific humidity increased by about 12%; heat stress was reduced by 22% and the average soil moisture exhibited a small (˜4.4%) but statistically significant increase. Compared with observations, irrigation improved the frequency distribution of Tmax, and both length and frequency of hot spells were better represented with irrigation enabled. Consequently, we argue that high-resolution simulations of regional climate in CESM, particularly over heavily irrigated regions, should likely enable the irrigation parameterization to better represent local temperature statistics.

  14. Modern Endodontic Principles Part 4: Irrigation.

    PubMed

    Darcey, James; Jawad, Sarra; Taylor, Carly; Roudsari, Reza Vahid; Hunter, Mark

    2016-01-01

    The complex anatomy of the tooth limits the ability to eradicate pathogens by mechanical means alone. Irrigation is the key to solving this problem. This paper highlights the importance of irrigation, the key irrigants available and methods of improving the performance of irrigants within the canal. CPD/CLINICAL RELEVANCE: To provide advice on which irrigants to use, how to use them effectively and safely and what to do if irrigants are extruded beyond the apex.

  15. EVALUATION OF SAMPLING FREQUENCIES REQUIRED TO ESTIMATE NUTRIENT AND SUSPENDED SEDIMENT LOADS IN LARGE RIVERS

    EPA Science Inventory

    Nutrients and suspended sediments in streams and large rivers are two major issues facing state and federal agencies. Accurate estimates of nutrient and sediment loads are needed to assess a variety of important water-quality issues including total maximum daily loads, aquatic ec...

  16. COLT: seasonal prediction of crop irrigation needs

    NASA Astrophysics Data System (ADS)

    Villani, Giulia; Spisni, Andrea; Mariani, Maria Cristina; Pratizzoli, William; Pavan, Valentina; Tomei, Fausto; Botarelli, Lucio; Marletto, Vittorio

    2013-04-01

    from the ARPA-SIMC web site. Since 2010 forecasts of the crops water irrigation requirements have been computed and compared with the simulated data at the end of the summer with good results. The COLT scheme is able to predict the very large interannual variability of the seasonal crop water needs: in 2010 the summer was rather wet and COLT predicted about 500 Mm3, while in 2011 the median forecast was 850 Mm3, a value considered as normal. The summer of 2012 was exceptionally dry, thus the median COLT forecast was 1077 Mm3, while the value computed with observed summer data reached 1340 Mm3 (+24%). The COLT scheme was also tested in a study area located near Ravenna (570 ha), where actual crop irrigation volumes are measured. The median forecasted irrigation (0.50 Mm3) resulted 14% higher than the observed value for 2011 (0.44 Mm3), mainly due to errors in classification of non irrigated crops as irrigated, and possibly to the water table not being accounted for in the model. COLT looks like a promising approach for assessing, planning and managing water resources in agriculture, and for mitigating the impacts of intense climate anomalies in the agricultural sector.

  17. Integrated assessment of conservation opportunities in the irrigated agriculture sector of the Pacific Northwest Region

    SciTech Connect

    Harrer, B.J.; Lezberg, A.J.; Wilfert, G.L.

    1985-02-01

    This report documents research to identify the potential energy savings and cost per kWh saved for implementing currently available energy conservation measures in the irrigated agriculture sector of the Pacific Northwest. A computer model that simulates the energy consumption process of irrigation systems and estimates the levelized costs of undertaking conservation investments is the primary analytical tool used in this research. Using engineering and economic input parameters for the various conservation measures that could potentially be implemented in irrigated agriculture, the Irrigation Sector Energy Planning (ISEP) model generates estimates of energy savings and cost per kWh saved for the measures. All parameters input to the ISEP model are based upon empirical field data. Results provided by the ISEP model indicate tht by the year 2003 a total of approximately 158.6 average MW of energy could potentially be saved in the Pacific Northwest irrigation sector on all sprinkler-irrigated acres. Approximately 130.4 average MW can be saved on acres currently by sprinkler, while an additional 28.2 average MW could be saved on new acres that are forecast to come under irrigation in the next 20 years. The largest share of the total savings (47%) is estimated to come from the use of low-pressure irrigation. Over 60% of the total potential savings 158.6 average MW is estimated to be available for a cost per kWh saved of 20 mills or less and over 75% could be achieved for a cost of 30 mills or less. Savings from low-pressure irrigation and the redesign of fittings and mainlines will normally cost less than 20 mills per kWh saved. Almost all of the savings that are estimated to cost more than 30 mills per kWh saved to obtain are savings from improved irrigation scheduling on irrigated acres that use surface water and have low average pumping lifts.

  18. On farm evaluation of the effect of low cost drip irrigation on water and crop productivity compared to conventional surface irrigation system

    NASA Astrophysics Data System (ADS)

    Maisiri, N.; Senzanje, A.; Rockstrom, J.; Twomlow, S. J.

    This on-farm research study was carried out at Zholube irrigation scheme in a semi-arid agro tropical climate of Zimbabwe to determine how low cost drip irrigation technologies compare with conventional surface irrigation systems in terms of water and crop productivity. A total of nine farmers who were practicing surface irrigation were chosen to participate in the study. The vegetable English giant rape ( Brassica napus) was grown under the two irrigation systems with three fertilizer treatments in each system: ordinary granular fertilizer, liquid fertilizer (fertigation) and the last treatment with no fertilizer. These trials were replicated three times in a randomized block design. Biometric parameters of leaf area index (LAI) and fresh weight of the produce, water use efficiency (WUE) were used to compare the performance of the two irrigation systems. A water balance of the inflows and outflows was kept for analysis of WUE. The economic profitability and the operation, maintenance and management requirements of the different systems were also evaluated. There was no significant difference in vegetable yield between the irrigation systems at 8.5 ton/ha for drip compared to 7.8 ton/ha in surface irrigation. There were significant increases in yields due to use of fertilizers. Drip irrigation used about 35% of the water used by the surface irrigation systems thus giving much higher water use efficiencies. The leaf area indices were comparable in both systems with the same fertilizer treatment ranging between 0.05 for surface without fertilizer to 6.8 for low cost drip with fertigation. Low cost drip systems did not reflect any labour saving especially when manually lifting the water into the drum compared to the use of siphons in surface irrigation systems. The gross margin level for surface irrigation was lower than for low cost drip irrigation but the gross margin to total variable cost ratio was higher in surface irrigation systems, which meant that surface

  19. Electrofishing effort requirements for estimating species richness in the Kootenai River, Idaho

    USGS Publications Warehouse

    Watkins, Carson J.; Quist, Michael; Shepard, Bradley B.; Ireland, Susan C.

    2016-01-01

    This study was conducted on the Kootenai River, Idaho to provide insight on sampling requirements to optimize future monitoring effort associated with the response of fish assemblages to habitat rehabilitation. Our objective was to define the electrofishing effort (m) needed to have a 95% probability of sampling 50, 75, and 100% of the observed species richness and to evaluate the relative influence of depth, velocity, and instream woody cover on sample size requirements. Sidechannel habitats required more sampling effort to achieve 75 and 100% of the total species richness than main-channel habitats. The sampling effort required to have a 95% probability of sampling 100% of the species richness was 1100 m for main-channel sites and 1400 m for side-channel sites. We hypothesized that the difference in sampling requirements between main- and side-channel habitats was largely due to differences in habitat characteristics and species richness between main- and side-channel habitats. In general, main-channel habitats had lower species richness than side-channel habitats. Habitat characteristics (i.e., depth, current velocity, and woody instream cover) were not related to sample size requirements. Our guidelines will improve sampling efficiency during monitoring effort in the Kootenai River and provide insight on sampling designs for other large western river systems where electrofishing is used to assess fish assemblages.

  20. Water balance and flow rate discharge on a receiving water body: Application to the B-XII Irrigation District in Spain

    NASA Astrophysics Data System (ADS)

    Moyano, Maria C.; Tornos, Lucia; Juana, Luis

    2015-08-01

    The quantification of the main water balance components becomes necessary to diminish the pollutants load from drainage, and its harmful effect on the environment, aggravated within a context of increasing water scarcity. As a first approach to the hydrological study of the 15,000 ha B-XII Irrigation District in Spain, a conceptual lumped model entitled WATEN has been developed, aiming to calculate the monthly flow rate discharge to the Guadalquivir River over the period 2002-2012. The model requires as inputs, irrigation, precipitation and potential crop evapotranspiration. Main model parameters are the total and readily available moisture in the soil, the effective rainfall and the irrigation efficiency. Energy consumption for drainage discharge was used for calibration. Both classical optimization and a robust approach based on Monte Carlo were performed. In order to diminish computational requirements, Monte Carlo was not haphazardly applied, but conducted on a similar manner to genetic algorithms, entitled Parameters Estimation on Driven Trials (PEDT). The model attained an average Nash-Sutcliffe coefficient e2 ≅ 0.90 between observed and estimated drainage discharge. It was detected a significant crop evapotranspiration reduction compared to potential values. The volume of water discharged to the river might be sufficient for leaching irrigation water salts.

  1. Toward an Integrated Root Ideotype for Irrigated Systems.

    PubMed

    Schmidt, Jennifer E; Gaudin, Amélie C M

    2017-03-02

    Breeding towards root-centric ideotypes can be a relatively quick trait-based strategy to improve crop resource use efficiency. Irrigated agriculture represents a crucial and expanding sector, but its unique parameters require traits distinct from previously proposed rainfed ideotypes. We propose a novel irrigated ideotype that integrates traits across multiple scales to enhance resource use efficiency in irrigated agroecosystems, where resources are concentrated in a relatively shallow 'critical zone'. Unique components of this ideotype include rapid transplant recovery and establishment, enhanced exploitation of localized resource hotspots, adaptive physiological regulation, maintenance of hydraulic conductivity, beneficial rhizosphere interactions, and salinity/waterlogging avoidance. If augmented by future research, this target could help to enhance agricultural sustainability in irrigated agroecosystems by guiding the creation of resource-efficient cultivars.

  2. Conservative management of bilateral pneumoparotitis with sialendoscopy and steroid irrigation.

    PubMed

    Konstantinidis, Iordanis; Chatziavramidis, Angelos; Constantinidis, Jannis

    2014-10-29

    Pneumoparotitis is a rare condition related to retrograde airflow into the ductal system of the gland and secondary infections. Although counselling is enough in the majority of cases, persistent problems require surgery. Sialendoscopy and ductal irrigation with steroids have never been described as a treatment option. We present the case of a 61-year-old man with recurrent bilateral parotid swellings who had three episodes of sialadenitis on the right side within 2 years. Massage of the glands revealed air bubbles coming out from both papillae. A previous CT scan confirmed the presence of air in both parotid glands. The patient underwent sialendoscopy and irrigation of the ductal system with prednisolone. Ductal irrigation with steroids in three additional sessions led to a significant improvement of symptoms 6 months later. Sialendoscopy and irrigation with steroids could be another treatment modality in cases of recurrent pneumoparotitis avoiding major surgery.

  3. Conservative management of bilateral pneumoparotitis with sialendoscopy and steroid irrigation

    PubMed Central

    Konstantinidis, Iordanis; Chatziavramidis, Angelos; Constantinidis, Jannis

    2014-01-01

    Pneumoparotitis is a rare condition related to retrograde airflow into the ductal system of the gland and secondary infections. Although counselling is enough in the majority of cases, persistent problems require surgery. Sialendoscopy and ductal irrigation with steroids have never been described as a treatment option. We present the case of a 61-year-old man with recurrent bilateral parotid swellings who had three episodes of sialadenitis on the right side within 2 years. Massage of the glands revealed air bubbles coming out from both papillae. A previous CT scan confirmed the presence of air in both parotid glands. The patient underwent sialendoscopy and irrigation of the ductal system with prednisolone. Ductal irrigation with steroids in three additional sessions led to a significant improvement of symptoms 6 months later. Sialendoscopy and irrigation with steroids could be another treatment modality in cases of recurrent pneumoparotitis avoiding major surgery. PMID:25355739

  4. MEG Connectivity and Power Detections with Minimum Norm Estimates Require Different Regularization Parameters

    PubMed Central

    Hincapié, Ana-Sofía; Kujala, Jan; Mattout, Jérémie; Daligault, Sebastien; Delpuech, Claude; Mery, Domingo; Cosmelli, Diego; Jerbi, Karim

    2016-01-01

    Minimum Norm Estimation (MNE) is an inverse solution method widely used to reconstruct the source time series that underlie magnetoencephalography (MEG) data. MNE addresses the ill-posed nature of MEG source estimation through regularization (e.g., Tikhonov regularization). Selecting the best regularization parameter is a critical step. Generally, once set, it is common practice to keep the same coefficient throughout a study. However, it is yet to be known whether the optimal lambda for spectral power analysis of MEG source data coincides with the optimal regularization for source-level oscillatory coupling analysis. We addressed this question via extensive Monte-Carlo simulations of MEG data, where we generated 21,600 configurations of pairs of coupled sources with varying sizes, signal-to-noise ratio (SNR), and coupling strengths. Then, we searched for the Tikhonov regularization coefficients (lambda) that maximize detection performance for (a) power and (b) coherence. For coherence, the optimal lambda was two orders of magnitude smaller than the best lambda for power. Moreover, we found that the spatial extent of the interacting sources and SNR, but not the extent of coupling, were the main parameters affecting the best choice for lambda. Our findings suggest using less regularization when measuring oscillatory coupling compared to power estimation. PMID:27092179

  5. Irrigation Depletions 1928-1989 : 1990 Level of Irrigation, Snake Yakima and Deschutes River Basins.

    SciTech Connect

    United States. Bonneville Power Administation; A.G. Crook Company

    1993-07-01

    The vast amount of irrigation in relation to the available water and extensive system of reservoirs located in the Snake River Basin above Brownlee reservoir precludes this area from using methods such as Blaney-Criddle for estimating irrigation depletions. Also the hydrology, irrigation growth patterns, and water supply problems are unique and complex. Therefore regulation studies were utilized to reflect the net effect on streamflow of the changes in irrigated acreage in terms of corresponding changes in storage regulation and in the amount of water depleted and diverted from and returned to the river system. The regulation study for 1990 conditions was conducted by the Idaho Department of Water Resources. The end product of the basin simulation is 61 years of regulated flows at various points in the river system that are based on 1990 conditions. Data used by the Idaho Department of Water Resources is presented in this section and includes natural gains to the river system and diversions from the river system based on a 1990 level of development and operation criteria. Additional information can be obtained for an Idaho Department of Water Resources Open-File Report ``Stream Flows in the Snake River Basin 1989 Conditions of Use and Management`` dated June 1991. Similar considerations apply to the Yakima and Deschutes river basins.

  6. Urban irrigation effects on WRF-UCM summertime forecast skill over the Los Angeles metropolitan area

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Hogue, T. S.

    2015-10-01

    In the current study, we explicitly address the impacts of urban irrigation on the local hydrological cycle by integrating a previously developed irrigation scheme within the coupled framework of the Weather Research and Forecasting-Urban Canopy Models (WRF-UCM) over the semiarid Los Angeles metropolitan area. We focus on the impacts of irrigation on the urban water cycle and atmospheric feedback. Our results demonstrate a significant sensitivity of WRF-UCM simulated surface turbulent fluxes to the incorporation of urban irrigation. Introducing anthropogenic moisture, vegetated pixels show a shift in the energy partitioning toward elevated latent heat fluxes. The cooling effects of irrigation on daily peak air temperatures are evident over all three urban types, with the largest influence over low-intensity residential areas (average cooling of 1.64°C). The evaluation of model performance via comparison against CIMIS (California Irrigation Management Information System) evapotranspiration (ET) estimates indicates that WRF-UCM, after adding irrigation, performs reasonably during the course of the month of July, tracking day-to-day variability of ET with notable consistency. In the nonirrigated case, CIMIS-based ET fluctuations are significantly underestimated by the model. Our analysis shows the importance of accurate representation of urban irrigation in modeling studies, especially over water-scarce regions such as the Los Angeles metropolitan area. We also illustrate that the impacts of irrigation on simulated energy and water cycles are more critical for longer-term simulations due to the interactions between irrigation and soil moisture fluctuations.

  7. Estimating Sugarcane Water Requirements for Biofuel Feedstock Production in Maui, Hawaii Using Satellite Imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Water availability is one of the limiting factors for sustainable production of biofuel crops. A common method for determining crop water requirement is to multiply daily potential evapotranspiration (ETo) calculated from meteorological parameters by a crop coefficient (Kc) to obtain actual crop eva...

  8. Estimation of F-15 Peacetime Maintenance Manpower Requirements Using the Logistics Composite Model.

    DTIC Science & Technology

    1976-12-01

    Sequence of Simulation Runs. .. ... ..... .... .. 30 *Determination of.Manpower Requirements .. .. .. .... .. 30 Model Validation...17 6. LCOM F-15 TFTW Maintenance Organization Structure ....... 20 7. Sequence of Simulation Runs ...... ............. ... 31 8. Type I...constraints to simulate a sequence of maintenance activities. When the flying schedule calls for aircraft to start mission preparation, LCOM designates

  9. Electrofishing Effort Required to Estimate Biotic Condition in Southern Idaho Rivers

    EPA Science Inventory

    An important issue surrounding biomonitoring in large rivers is the minimum sampling effort required to collect an adequate number of fish for accurate and precise determinations of biotic condition. During the summer of 2002, we sampled 15 randomly selected large-river sites in...

  10. A Method for Precision Closed-Loop Irrigation Using a Modified PID Control Algorithm

    NASA Astrophysics Data System (ADS)

    Goodchild, Martin; Kühn, Karl; Jenkins, Malcolm; Burek, Kazimierz; Dutton, Andrew

    2016-04-01

    The benefits of closed-loop irrigation control have been demonstrated in grower trials which show the potential for improved crop yields and resource usage. Managing water use by controlling irrigation in response to soil moisture changes to meet crop water demands is a popular approach but requires knowledge of closed-loop control practice. In theory, to obtain precise closed-loop control of a system it is necessary to characterise every component in the control loop to derive the appropriate controller parameters, i.e. proportional, integral & derivative (PID) parameters in a classic PID controller. In practice this is often difficult to achieve. Empirical methods are employed to estimate the PID parameters by observing how the system performs under open-loop conditions. In this paper we present a modified PID controller, with a constrained integral function, that delivers excellent regulation of soil moisture by supplying the appropriate amount of water to meet the needs of the plant during the diurnal cycle. Furthermore, the modified PID controller responds quickly to changes in environmental conditions, including rainfall events which can result in: controller windup, under-watering and plant stress conditions. The experimental work successfully demonstrates the functionality of a constrained integral PID controller that delivers robust and precise irrigation control. Coir substrate strawberry growing trial data is also presented illustrating soil moisture control and the ability to match water deliver to solar radiation.

  11. Integrating Field Spectra and Worldview-2 Data for Grapevine Productivity in Different Irrigation Treatments

    NASA Astrophysics Data System (ADS)

    Maimaitiyiming, M.; Bozzolo, A.; Wulamu, A.; Wilkins, J. L.

    2015-12-01

    Precision farming requires high spectral, spatial and temporal resolution remote sensing data to detect plant physiological changes. The higher spatial resolution is particularly as important as the spectral resolution for crop monitoring. It is important to develop data integration techniques between field or airborne hyperspectral data with spaceborne broad band multispectral images for plant productivity monitoring. To investigate varying rootstock and irrigation interactions, different irrigation treatments are implemented in a vineyard experimental site either i) unirrigated ii) full replacement of evapotranspiration (ET) iii) irrigated at 50 % of the potential ET. In summer 2014, we collected leaf and canopy spectra of the vineyard using field spectroscopy along with other plant physiological and nutritional variables. In this contribution, we integrate the field spectra and the spectral wavelengths of WorldView-2 to develop a predictive model for plant productivity,i.e., fruit quality and yield. First, we upscale field and canopy spectra to WorldView-2 spectral bands using radiative transfer simulations (e.g., MODTRAN). Then we develop remote sensing techniques to quantify plant productivity in different scenarios water stress by identifying the most effective and sensitive wavelengths, and indices that are capable of early detection of plant health and estimation of crop nutrient status. Finally we present predictive models developed from partial least square regression (PLSR) for plant productivity using spectral wavelengths and indices derived from integrated field and satellite remote sensing data.

  12. Seasonal simulation of water, salinity and nitrate dynamics under drip irrigated mandarin (Citrus reticulata) and assessing management options for drainage and nitrate leaching

    NASA Astrophysics Data System (ADS)

    Phogat, V.; Skewes, M. A.; Cox, J. W.; Sanderson, G.; Alam, J.; Šimůnek, J.

    2014-05-01

    Estimation of all water fluxes temporally and spatially within and out of the crop root zone, and evaluation of issues like salinity and nutrient leaching, are necessary to fully appraise the efficiency of irrigation systems. Simulation models can be used to investigate these issues over several seasons when the cost of long term monitoring is prohibitive. Model results can be used to advise growers if improvements are required to various aspects of irrigation system operations. In this study, HYDRUS-2D was used to evaluate data measured during one season in a young mandarin (Citrus reticulata) orchard, irrigated with an intensive surface drip fertigation system. Water contents, salinities, and nitrate concentrations measured weekly in the field were compared with model predictions. The temporal mean absolute error (MAE) values between weekly measured and simulated water contents ranged from 0.01 to 0.04 cm3 cm-3. However, modelling error (MAE) was slightly larger at 10 cm depth (0.04 cm3 cm-3), as compared to greater depths (0.02-0.03 cm3 cm-3). Similarly, the errors were larger in the surface soil layer (25 cm depth) for nitrate-nitrogen, NO3--N (1.52 mmol(c) L-1), as compared to greater depths. The spatial and temporal soil solution salinity (ECsw) and NO3--N data showed accumulation of salts and nitrate within the soil up until day 150 of the simulation (December, 2006), followed by leaching due to high precipitation and over irrigation at later times. Only 49% of applied water was used by the mandarin trees, while 33.5% was leached. On the other hand, the simulation revealed that a significant amount of applied nitrogen (85%) was taken up by the mandarin trees, and the remaining 15% was leached. The results indicate that the irrigation and fertigation schedule needs modifying as there was overwatering from December onwards. Different permutations and combinations of irrigation and fertigation scheduling were evaluated to optimise the water and nitrogen uptake

  13. Monitoring irrigated land acreage using Landsat imagery: an application example

    USGS Publications Warehouse

    Draeger, William C.

    1976-01-01

    Two interpreters independently estimated the irrigated area.  Their adjusted estimates were 285,000 acres (115,000 ha) and 267,000 acres (108,000 ha) respectively, with corresponding 95 percent confidence intervals of +19,500 acres (7,880 ha) and +34,700 acres (14,000 ha). The estimated cost of the survey, exclusive of management costs and training, was $1,500.

  14. A conditional likelihood is required to estimate the selection coefficient in ancient DNA

    PubMed Central

    Valleriani, Angelo

    2016-01-01

    Time-series of allele frequencies are a useful and unique set of data to determine the strength of natural selection on the background of genetic drift. Technically, the selection coefficient is estimated by means of a likelihood function built under the hypothesis that the available trajectory spans a sufficiently large portion of the fitness landscape. Especially for ancient DNA, however, often only one single such trajectories is available and the coverage of the fitness landscape is very limited. In fact, one single trajectory is more representative of a process conditioned both in the initial and in the final condition than of a process free to visit the available fitness landscape. Based on two models of population genetics, here we show how to build a likelihood function for the selection coefficient that takes the statistical peculiarity of single trajectories into account. We show that this conditional likelihood delivers a precise estimate of the selection coefficient also when allele frequencies are close to fixation whereas the unconditioned likelihood fails. Finally, we discuss the fact that the traditional, unconditioned likelihood always delivers an answer, which is often unfalsifiable and appears reasonable also when it is not correct. PMID:27527811

  15. A conditional likelihood is required to estimate the selection coefficient in ancient DNA

    NASA Astrophysics Data System (ADS)

    Valleriani, Angelo

    2016-08-01

    Time-series of allele frequencies are a useful and unique set of data to determine the strength of natural selection on the background of genetic drift. Technically, the selection coefficient is estimated by means of a likelihood function built under the hypothesis that the available trajectory spans a sufficiently large portion of the fitness landscape. Especially for ancient DNA, however, often only one single such trajectories is available and the coverage of the fitness landscape is very limited. In fact, one single trajectory is more representative of a process conditioned both in the initial and in the final condition than of a process free to visit the available fitness landscape. Based on two models of population genetics, here we show how to build a likelihood function for the selection coefficient that takes the statistical peculiarity of single trajectories into account. We show that this conditional likelihood delivers a precise estimate of the selection coefficient also when allele frequencies are close to fixation whereas the unconditioned likelihood fails. Finally, we discuss the fact that the traditional, unconditioned likelihood always delivers an answer, which is often unfalsifiable and appears reasonable also when it is not correct.

  16. Amelioration of the irrigated lands of the Vakhsh valley

    NASA Astrophysics Data System (ADS)

    Ikromov, Islomkul; Mirzoev, Mm

    2015-04-01

    In the agro-industrial country like Tajikistan, the efficient use of irrigation of arable land is important because it contributes to the solution of the State Program of the Food independence of the country, by increasing the yield of agricultural production per unit of irrigated area. The irrigated area in the Republic of Tajikistan as of 1.01.2014g. equal to about 750 thousand. ha, per capita, on average, less than 0.10 hectares. and its share in relation to agricultural land is only 10.5%. However, more than 90% of crop production are grown on these lands. Given the demographic growth of the population of the republic specific area of irrigated land from year to year is becoming less and less of that call into question the successful solution of the above program. Therefore, in our view, to ensure food independence of the country in addition to the development of land from the reserve, should focus on the amelioration of existing irrigated areas, improve the culture of land and water, on modernization of reclamation systems contribute to a high degree of adaptability based on a high degree of water metering, water distribution, water and resource conservation, the use of the latest technology and irrigation techniques. Condition of the soil is their estimated figures is mainly determined by its productivity. It is determined by the degree of salinity of soils, the depth of the groundwater level and salinity, erosion and on stony ground. Vakhsh valley in Tajikistan is one of the main oases, ensuring production of agricultural products but, in recent years due to a number of man-made reasons: Adherence crop irrigation, low technical condition of irrigation systems and as a consequence their efficiency and utilization of irrigation water and farming, inoperable drainage system, or lack of them all, the virtual absence of vodouchёta on the field, no use of it modern technology and irrigation techniques, etc., the level of both fresh and saline groundwater rose

  17. Virtual Sensors for Designing Irrigation Controllers in Greenhouses

    PubMed Central

    Sánchez, Jorge Antonio; Rodríguez, Francisco; Guzmán, José Luis; Arahal, Manuel R

    2012-01-01

    Monitoring the greenhouse transpiration for control purposes is currently a difficult task. The absence of affordable sensors that provide continuous transpiration measurements motivates the use of estimators. In the case of tomato crops, the availability of estimators allows the design of automatic fertirrigation (irrigation + fertilization) schemes in greenhouses, minimizing the dispensed water while fulfilling crop needs. This paper shows how system identification techniques can be applied to obtain nonlinear virtual sensors for estimating transpiration. The greenhouse used for this study is equipped with a microlysimeter, which allows one to continuously sample the transpiration values. While the microlysimeter is an advantageous piece of equipment for research, it is also expensive and requires maintenance. This paper presents the design and development of a virtual sensor to model the crop transpiration, hence avoiding the use of this kind of expensive sensor. The resulting virtual sensor is obtained by dynamical system identification techniques based on regressors taken from variables typically found in a greenhouse, such as global radiation and vapor pressure deficit. The virtual sensor is thus based on empirical data. In this paper, some effort has been made to eliminate some problems associated with grey-box models: advance phenomenon and overestimation. The results are tested with real data and compared with other approaches. Better results are obtained with the use of nonlinear Black-box virtual sensors. This sensor is based on global radiation and vapor pressure deficit (VPD) measurements. Predictive results for the three models are developed for comparative purposes. PMID:23202208

  18. Virtual sensors for designing irrigation controllers in greenhouses.

    PubMed

    Sánchez, Jorge Antonio; Rodríguez, Francisco; Guzmán, José Luis; Arahal, Manuel R

    2012-11-08

    Monitoring the greenhouse transpiration for control purposes is currently a difficult task. The absence of affordable sensors that provide continuous transpiration measurements motivates the use of estimators. In the case of tomato crops, the availability of estimators allows the design of automatic fertirrigation (irrigation + fertilization) schemes in greenhouses, minimizing the dispensed water while fulfilling crop needs. This paper shows how system identification techniques can be applied to obtain nonlinear virtual sensors for estimating transpiration. The greenhouse used for this study is equipped with a microlysimeter, which allows one to continuously sample the transpiration values. While the microlysimeter is an advantageous piece of equipment for research, it is also expensive and requires maintenance. This paper presents the design and development of a virtual sensor to model the crop transpiration, hence avoiding the use of this kind of expensive sensor. The resulting virtual sensor is obtained by dynamical system identification techniques based on regressors taken from variables typically found in a greenhouse, such as global radiation and vapor pressure deficit. The virtual sensor is thus based on empirical data. In this paper, some effort has been made to eliminate some problems associated with grey-box models: advance phenomenon and overestimation. The results are tested with real data and compared with other approaches. Better results are obtained with the use of nonlinear Black-box virtual sensors. This sensor is based on global radiation and vapor pressure deficit (VPD) measurements. Predictive results for the three models are developed for comparative purposes.

  19. Distillation irrigation: a low-energy process for coupling water purification and drip irrigation

    USGS Publications Warehouse

    Constantz, J.

    1989-01-01

    A method is proposed for combining solar distillation and drip irrigation to simultaneously desalinize water and apply this water to row crops. In this paper, the basic method is illustrated by a simple device constructed primarily of sheets of plastic, which uses solar energy to distill impaired water and apply the distillate to a widely spaced row crop. To predict the performance of the proposed device, an empirical equation for distillate production, dp, is developed from reported solar still production rates, and a modified Jensen-Haise equation is used to calculate the potential evapotranspiration, et, for a row crop. Monthly values for et and dp are calculated by using a generalized row crop at five locations in the Western United States. Calculated et values range from 1 to 22 cm month-1 and calculated dp values range from 2 to 11 cm month-1, depending on the location, the month, and the crop average. When the sum of dp plus precipitation, dp + P, is compared to et for the case of 50% distillation irrigation system coverage, the results indicate that the crop's et is matched by dp + P, at the cooler locations only. However, when the system coverage is increased to 66%, the crop's et is matched by dp + P even at the hottest location. Potential advantages of distillation irrigation include the ability: (a) to convert impaired water resources to water containing no salts or sediments; and (b) to efficiently and automatically irrigate crops at a rate that is controlled primarily by radiation intensities. The anticipated disadvantages of distillation irrigation include: (a) the high costs of a system, due to the large amounts of sheeting required, the short lifetime of the sheeting, and the physically cumbersome nature of a system; (b) the need for a widely spaced crop to reduce shading of the system by the crop; and (c) the production of a concentrated brine or precipitate, requiring proper off-site disposal. ?? 1989.

  20. [In vitro estimation using radioactive phosphorus of the phosphorus requirements of rumen microorganisms].

    PubMed

    Durand, M; Beaumatin, P; Dumay, C

    1983-01-01

    Microbial requirements for P were assumed to be a function of the amount of microbial protein synthesis (microbial growth) and of the quantity of organic matter (OM) fermented in the rumen. The relationships among P incorporation into microbial matter and protein synthesis, ammonia utilization, volatile fatty acid (VFA) production and organic matter fermented (OMF) were studied in short-term incubations (3 h) using 32P-labelled phosphate. The amount of P incorporated was calculated from extracellular phosphate pool specific activity and the radioactivity incorporated into the microbial sediment during incubation (table 1). The inocula came from sheep fed a protein-free purified diet. In order to vary the intensity of fermentation, carbohydrates with a wide range of degrees of enzymatic susceptibility were used as substrates and the medium was either provided or was deficient in S and trace elements (table 4). Nitrogen was supplied as ammonium salts. Linear regression analyses showed that P incorporation was positively correlated with the criteria of protein synthesis and OM fermentation (figs. 1, 2, 3, 4). However, there was significant phosphorus incorporation when the value for nitrogen incorporation was zero (equation A: (Pi (mg) = 0.162 NH3-N + 0.376; r = 0.9). This was assumed to result either from energetic uncoupling (fermentation without concomitant bacterial growth) or from the lysis of cold microbial cells only. Equation A would reflect total P incorporation and equation A' Pi (mg) = 0.162 NH3-N (mg), net P incorporation. It was assumed that in vitro microbial requirements for P were in the range of 30-70 mg of P/liter of medium for 3-hour incubation, depending on the intensity of fermentation. From a mean value of microbial N yield of 30 g/kg of DOMR (organic matter apparently digested in the rumen), it was calculated that the total and net P requirements in vivo were 6 and 4.9 g/kg of DOMR, respectively, corresponding to 3.9 and 3.2 g/kg of DOM

  1. CNS tumor induction by radiotherapy: A report of four new cases and estimate of dose required

    SciTech Connect

    Cavin, L.W.; Dalrymple, G.V.; McGuire, E.L.; Maners, A.W.; Broadwater, J.R. )

    1990-02-01

    We have analyzed 60 cases of intra-axial brain tumors associated with antecedent radiation therapy. These include four new cases. The patients had originally received radiation therapy for three reasons: (a) cranial irradiation for acute lymphoblastic leukemia (ALL), (b) definitive treatment of CNS neoplasia, and (c) treatment of benign disease (mostly cutaneous infections). The number of cases reported during the past decade has greatly increased as compared to previous years. Forty-six of the 60 intra-axial tumors have been reported since 1978. The relative risk of induction of an intra-axial brain tumor by radiation therapy is estimated to be more than 100, as compared to individuals who have not had head irradiation.

  2. Estimated use of water in the United States - 1950

    USGS Publications Warehouse

    MacKichan, Kenneth Allen

    1951-01-01

    An estimated 170,000 million gallons of water was withdrawn from the ground, lakes, or streams each day on the average during 1950 and used on the farms and in the homes, factories, and business establishments of the United States. An additional 1,100,000 million gallons per day was used to generate hydro-power. Water power is the largest user of water; however, irrigation and industry also are large users of both ground and surface water. More surface water was used for industrial purposes than for irrigation, whereas more ground water was used for irrigation than for industrial purposes (fig. 1). The total withdrawal of surface water was considerably in excess of ground-water withdrawal, as shown by figure 1. Large quantities of water were used also for purposes requiring no diversion, such as navigation, waste disposal, recreation, and support of wildlife.

  3. Drip irrigation research update at NPRL

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Drip irrigation research has been conducted since 1998 at NPRL. Systems include deep subsurface drip irrigation (SSDI), surface drip irrigation (SDI), and shallow subsurface drip irrigation (S3DI). Results have shown that SDI and S3DI are more economical to install than SSDI. SDI systems have more r...

  4. Calculation of the number of bits required for the estimation of the bit error ratio

    NASA Astrophysics Data System (ADS)

    Almeida, Álvaro J.; Silva, Nuno A.; Muga, Nelson J.; André, Paulo S.; Pinto, Armando N.

    2014-08-01

    We present a calculation of the required number of bits to be received in a system of communications in order to achieve a given level of confidence. The calculation assumes a binomial distribution function for the errors. The function is numerically evaluated and the results are compared with the ones obtained from Poissonian and Gaussian approximations. The performance in terms of the signal-to-noise ratio is also studied. We conclude that for higher number of errors in detection the use of approximations allows faster and more efficient calculations, without loss of accuracy.

  5. Estimation of the lead thickness required to shield scattered radiation from synchrotron radiation experiments

    NASA Astrophysics Data System (ADS)

    Wroblewski, Thomas

    2015-03-01

    In the enclosure of synchrotron radiation experiments using a monochromatic beam, secondary radiation arises from two effects, namely fluorescence and scattering. While fluorescence can be regarded as isotropic, the angular dependence of Compton scattering has to be taken into account if the shielding shall not become unreasonably thick. The scope of this paper is to clarify how the different factors starting from the spectral properties of the source and the attenuation coefficient of the shielding, over the spectral and angular distribution of the scattered radiation and the geometry of the experiment influence the thickness of lead required to keep the dose rate outside the enclosure below the desired threshold.

  6. [Estimating the impacts of future climate change on water requirement and water deficit of winter wheat in Henan Province, China].

    PubMed

    Ji, Xing-jie; Cheng, Lin; Fang, Wen-song

    2015-09-01

    Based on the analysis of water requirement and water deficit during development stage of winter wheat in recent 30 years (1981-2010) in Henan Province, the effective precipitation was calculated using the U.S. Department of Agriculture Soil Conservation method, the water requirement (ETC) was estimated by using FAO Penman-Monteith equation and crop coefficient method recommended by FAO, combined with the climate change scenario A2 (concentration on the economic envelopment) and B2 ( concentration on the sustainable development) of Special Report on Emissions Scenarios (SRES) , the spatial and temporal characteristics of impacts of future climate change on effective precipitation, water requirement and water deficit of winter wheat were estimated. The climatic impact factors of ETc and WD also were analyzed. The results showed that under A2 and B2 scenarios, there would be a significant increase in anomaly percentage of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period compared with the average value from 1981 to 2010. Effective precipitation increased the most in 2030s under A2 and B2 scenarios by 33.5% and 39.2%, respectively. Water requirement increased the most in 2010s under A2 and B2 scenarios by 22.5% and 17.5%, respectively, and showed a significant downward trend with time. Water deficit increased the most under A2 scenario in 2010s by 23.6% and under B2 scenario in 2020s by 13.0%. Partial correlation analysis indicated that solar radiation was the main cause for the variation of ETc and WD in future under A2 and B2 scenarios. The spatial distributions of effective precipitation, water requirement and water deficit of winter wheat during the whole growing period were spatially heterogeneous because of the difference in geographical and climatic environments. A possible tendency of water resource deficiency may exist in Henan Province in the future.

  7. Remote sensing technologies applied to the irrigation water management on a golf course

    NASA Astrophysics Data System (ADS)

    Pedras, Celestina; Lança, Rui; Martins, Fernando; Soares, Cristina; Guerrero, Carlos; Paixão, Helena

    2015-04-01

    An adequate irrigation water management in a golf course is a complex task that depends upon climate (multiple microclimates) and land cover (where crops differ in morphology, physiology, plant density, sensitivity to water stress, etc.). These factors change both in time and space on a landscape. A direct measurement provides localized values of the evapotranspiration and climate conditions. Therefore this is not a practical or economical methodology for large-scale use due to spatial and temporal variability of vegetation, soils, and irrigation management strategies. Remote sensing technology combines large scale with ground measurement of vegetation indexes. These indexes are mathematical combinations of different spectral bands mostly in the visible and near infrared regions of the electromagnetic spectrum. They represent the measures of vegetation activity that vary not only with the seasonal variability of green foliage, but also across space, thus they are suitable for detecting spatial landscape variability. The spectral vegetation indexes may enhance irrigation management through the information contained in spectral reflectance data. This study was carried out on the 18th fairway of the Royal Golf Course, Vale do Lobo, Portugal, and it aims to establish the relationship between direct measurements and vegetation indexes. For that it is required (1) to characterize the soil and climatic conditions, (2) to assessment of the irrigation system, (3) to estimate the evapotranspiration (4) and to calculate the vegetation indices. The vegetation indices were determined with basis on spectral bands red, green and blue, RGB, and near Infrared, NIR, obtained from the analysis of images acquired from a unpiloted aerial vehicle, UAV, platform. The measurements of reference evapotranspiration (ETo) were obtained from two meteorological stations located in the study area. The landscape evapotranspiration, ETL, was determined in the fairway with multiple microclimates

  8. Bridging dry spells for maize cropping through supplemental irrigation in the Central Rift Valley of Ethiopia

    NASA Astrophysics Data System (ADS)

    Muluneh Bitew, Alemayehu; Keesstra, Saskia; Stroosnijder, Leo

    2015-04-01

    Maize yield in the Central Rift Valley of Ethiopia (CRV) suffers from dry spells at sensitive growth stages. Risk of crop failure makes farmers reluctant to invest in fertilizer. This makes the CRV food insecure. There are farms with well-maintained terraces and Rain Water Harvesting (RWH) systems using concrete farms ponds. We tested the hypothesis that in these farms supplemental irrigation with simultaneous crop intensification might boost production of a small maize area sufficient to improve food security. Intensification includes a higher plant density of a hybrid variety under optimum fertilization. First we assessed the probability of occurrence of dry spells. Then we estimated the availability of sufficient runoff in the ponds in dry years. During 2012 (dry) and 2013 (wet) on-farm field research was conducted with 10 combinations of supplemental irrigation and plant density. The simplest was rainfed farming with 30,000 plants ha-1. The most advanced was no water stress and 75,000 plants ha-1. Finally we compared our on-farm yield with that of neighbouring farmers. Because 2013 was a wet year no irrigation was needed. Our long term daily rainfall (1970-2011) analysis proves the occurrence of dry spells during the onset of the maize (Belg months March and April). In March there is hardly enough water in the ponds. So, we advise later sowing. Starting from April available water (runoff from a 2.2 ha catchment) matches crop water requirement (for 0.5 ha maize). Significant differences between grain and total biomass yield were observed between rainfed and other irrigation levels. However, since the largest difference is only 12%, the investment in irrigation non-critical drought years is not worth the effort. There was also a limited effect (18-22%) of increasing plant density. So, we advise not to use more than 45,000 plants ha-1. The grain yield and total biomass difference between farmers own practice and our on-farm research was 101% and 84% respectively

  9. Determining storm sampling requirements for improving precision of annual load estimates of nutrients from a small forested watershed.

    PubMed

    Ide, Jun'ichiro; Chiwa, Masaaki; Higashi, Naoko; Maruno, Ryoko; Mori, Yasushi; Otsuki, Kyoichi

    2012-08-01

    This study sought to determine the lowest number of storm events required for adequate estimation of annual nutrient loads from a forested watershed using the regression equation between cumulative load (∑L) and cumulative stream discharge (∑Q). Hydrological surveys were conducted for 4 years, and stream water was sampled sequentially at 15-60-min intervals during 24 h in 20 events, as well as weekly in a small forested watershed. The bootstrap sampling technique was used to determine the regression (∑L-∑Q) equations of dissolved nitrogen (DN) and phosphorus (DP), particulate nitrogen (PN) and phosphorus (PP), dissolved inorganic nitrogen (DIN), and suspended solid (SS) for each dataset of ∑L and ∑Q. For dissolved nutrients (DN, DP, DIN), the coefficient of variance (CV) in 100 replicates of 4-year average annual load estimates was below 20% with datasets composed of five storm events. For particulate nutrients (PN, PP, SS), the CV exceeded 20%, even with datasets composed of more than ten storm events. The differences in the number of storm events required for precise load estimates between dissolved and particulate nutrients were attributed to the goodness of fit of the ∑L-∑Q equations. Bootstrap simulation based on flow-stratified sampling resulted in fewer storm events than the simulation based on random sampling and showed that only three storm events were required to give a CV below 20% for dissolved nutrients. These results indicate that a sampling design considering discharge levels reduces the frequency of laborious chemical analyses of water samples required throughout the year.

  10. E.O.-based estimation of transpiration and crop water requirements for vineyards: a case study in southern Italy

    NASA Astrophysics Data System (ADS)

    D'Urso, Guido; Maltese, Antonino; Palladino, Mario

    2014-10-01

    An efficient use of water for irrigation is a challenging task. From an agronomical point of view, it requires establishing the optimal amount of water to be supplied, at the correct time, based on phenological phase and water stress spatial distribution. Indeed, the knowledge of the actual water stress is essential for agronomic decisions, vineyards need to be managed to maintain a moderate water stress, thus allowing to optimize berries quality and quantity. Methods for quickly quantifying where, when and in what extent, vines begin to experience water stress are beneficial. Traditional point based methodologies, such those based on Scholander pressure chamber, even if well established are time expensive and do not give a comprehensive picture of the vineyard water deficit. Earth Observation (E.O.) based methodologies promise to achieve a synoptic overview of the water stress. Some E.O. data, indeed, sense the territory in the thermal part of the spectrum and, as it is well recognized, leaf radiometric temperature is related to the plant water status. However, current satellite sensors have not detailed enough spatial resolution to detect pure canopy pixels; thus, the pixel radiometric temperature characterizes the whole soil-vegetation system, and in variable proportions. On the other hand, due to limits in the actual crop dusters, there is no need to characterize the water stress distribution at plant scale, and a coarser spatial characterization would be sufficient. The research aims to assess to what extent: 1) E.O. based canopy radiometric temperature can be used, straightforwardly, to detected plant water status; 2) E.O. based canopy transpiration, would be more suitable (or not) to describe the spatial variability in plant water stress. To these aims: 1) radiometric canopy temperature measured in situ, and derived from a two-source energy balance model applied on airborne data, were compared with in situ leaf water potential from freshly cut leaves; 2) two

  11. Estimation of the dietary riboflavin required to maximize tissue riboflavin concentration in juvenile shrimp (Penaeus monodon).

    PubMed

    Chen, H Y; Hwang, G

    1992-12-01

    The riboflavin requirements of marine shrimp (Penaeus monodon) were evaluated in a 15-wk feeding trial. Juvenile shrimp (initial mean weight, 0.13 +/- 0.05 g) were fed purified diets containing seven levels (0, 8, 12, 16, 20, 40 and 80 mg/kg diet) of supplemental riboflavin. There were no significant differences in weight gains, feed efficiency ratios and survival of shrimp over the dietary riboflavin range. The riboflavin concentrations in shrimp bodies increased with the increasing vitamin supplementation. Hemolymph (blood) glutathione reductase activity coefficient was not a sensitive and specific indicator of riboflavin status of the shrimp. The dietary riboflavin level required for P. monodon was found to be 22.3 mg/kg diet, based on the broken-line model analysis of body riboflavin concentrations. Shrimp fed unsupplemented diet (riboflavin concentration of 0.48 mg/kg diet) for 15 wk showed signs of deficiency: light coloration, irritability, protuberant cuticle at intersomites and short-head dwarfism.

  12. Agricultural irrigated land-use inventory for Osceola County, Florida, October 2013-April 2014

    USGS Publications Warehouse

    Marella, Richard L.; Dixon, Joann F.

    2014-01-01

    A detailed inventory of irrigated crop acreage is not available at the level of resolution needed to increase the accuracy of current water-use estimates or to project future water demands in many Florida counties. This report provides a detailed digital map and summary of irrigated areas within Osceola County for the agricultural growing period October 2013–April 2014. The irrigated areas were first delineated using land-use data and satellite imagery and then field verified between February and April 2014. Selected attribute data were collected for the irrigated areas, including crop type, primary water source, and type of irrigation system. Results indicate that an estimated 27,450 acres were irrigated during the study period. This includes 4,370 acres of vegetables, 10,970 acres of orchard crops, 1,620 acres of field crops, and 10,490 acres of ornamentals and grasses. Specifically, irrigated acreage included citrus (10,860 acres), sod (5,640 acres), pasture (4,580 acres), and potatoes (3,320 acres). Overall, groundwater was used to irrigate 18,350 acres (67 percent of the total acreage), and surface water was used to irrigate the remaining 9,100 acres (33 percent). Microirrigation systems accounted for 45 percent of the total acreage irrigated, flood systems 30 percent, and sprinkler systems the remaining 25 percent. An accurate, detailed, spatially referenced, and field-verified inventory of irrigated crop acreage can be used to assist resource managers making current and future county-level water-use estimates in Osceola County.

  13. Irrigation trends in Kansas, 1991-2011

    USGS Publications Warehouse

    Kenny, Joan F.; Juracek, Kyle E.

    2013-01-01

    This fact sheet examines trends in total reported irrigation water use and acres irrigated as well as irrigation water use by crop type and system type in Kansas for the years 1991 through 2011. During the 21-year period, total reported irrigation water diversions varied substantially from year to year as affected primarily by climatic fluctuations. Total reported acres irrigated remained comparatively constant during this time, although acreages of irrigated corn increased and center pivots with drop nozzles became the dominant system type used for irrigation.

  14. Intelligent irrigation performance: evaluation and quantifying its ability for conserving water in arid region

    NASA Astrophysics Data System (ADS)

    Al-Ghobari, Hussein M.; Mohammad, Fawzi S.

    2011-12-01

    controlling irrigation water and has been proven to be a good mean to determine the water requirements for crops and to schedule irrigation automatically.

  15. New model for sustainable management of pressurized irrigation networks. Application to Bembézar MD irrigation district (Spain).

    PubMed

    Carrillo Cobo, M T; Camacho Poyato, E; Montesinos, P; Rodríguez Díaz, J A

    2014-03-01

    Pressurized irrigation networks require large amounts of energy for their operation which are linked to significant greenhouse gas (GHG) emissions. In recent years, several management strategies have been developed to reduce energy consumption in the agricultural sector. One strategy is the reduction of the water supplied for irrigation but implies a reduction in crop yields and farmer's profits. In this work, a new methodology is developed for sustainable management of irrigation networks considering environmental and economic criteria. The multiobjective non-dominated Sorting Genetic Algorithm (NSGA II) has been selected to obtain the optimum irrigation pattern that would reduce GHG emissions and increase profits. This methodology has been applied to Bembézar Margen Derecha (BMD) irrigation district (Spain). Irrigation patterns that reduce GHG emissions or increase actual profits are obtained. The best irritation pattern reduces the current GHG emissions in 8.56% with increases the actual profits in 14.56%. Thus, these results confirm that simultaneous improvements in environmental and economic factors are possible.

  16. Irrigation scheduling using remote sensing data assimilation approach

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Linked remote sensing and crop growth models have enhanced our ability to understand soil water balance in irrigated agriculture. However, limited efforts have been made to adopt data assimilation methodologies in these linked models that use stochastic parameter estimation with genetic algorithm (G...

  17. Daily irrigation attenuates xylem abscisic acid concentration and increases leaf water potential of Pelargonium × hortorum compared with infrequent irrigation.

    PubMed

    Boyle, Richard K A; McAinsh, Martin; Dodd, Ian C

    2016-09-01

    The physiological response of plants to different irrigation frequencies may affect plant growth and water use efficiency (WUE; defined as shoot biomass/cumulative irrigation). Glasshouse-grown, containerized Pelargonium × hortorum BullsEye plants were irrigated either daily at 100% of plant evapotranspiration (ET) (well-watered; WW), or at 50% ET applied either daily [frequent deficit irrigation (FDI)] or cumulatively every 4 days [infrequent deficit irrigation (IDI)], for 24 days. Both FDI and IDI applied the same irrigation volume. Xylem sap was collected from the leaves, and stomatal conductance (gs ) and leaf water potential (Ψleaf ) measured every 2 days. As soil moisture decreased, gs decreased similarly under both FDI and IDI throughout the experiment. Ψleaf was maintained under IDI and increased under FDI. Leaf xylem abscisic acid (ABA) concentrations ([X-ABA]leaf ) increased as soil moisture decreased under both IDI and FDI, and was strongly correlated with decreased gs , but [X-ABA]leaf was attenuated under FDI throughout the experiment (at the same level of soil moisture as IDI plants). These physiological changes corresponded with differences in plant production. Both FDI and IDI decreased growth compared with WW plants, and by the end of the experiment, FDI plants also had a greater shoot fresh weight (18%) than IDI plants. Although both IDI and FDI had higher WUE than WW plants during the first 10 days of the experiment (when biomass did not differ between treatments), the deficit irrigation treatments had lower WUE than WW plants in the latter stages when growth was limited. Thus, ABA-induced stomatal closure may not always translate to increased WUE (at the whole plant level) if vegetative growth shows a similar sensitivity to soil drying, and growers must adapt their irrigation scheduling according to crop requirements.

  18. Using the soil water balance to analyze the deep percolation losses and the irrigation adequacy of irrigated citrus crops (Haouz plain, Morocco)

    NASA Astrophysics Data System (ADS)

    Nassah, Houda; Fakir, Younes; Er-raki, Salah; Khabba, Said; Merlin, Olivier; Mougenot, Bernard

    2016-04-01

    In the semi-arid Haouz plain, located in central Morocco, agriculture consumes about 85% of the available water resources. Therefore, the management of irrigation water is important to avoid the water loss by soil evaporation and by deep percolation (DP) below the plant root zone. Estimating the irrigation water demand has been investigated by many studies in the Haouz plain, but DP losses beneath the irrigated areas have not been quantified yet. In this context, the objectives of the persent work are threefold :1) to evaluate DP over irrigated citrus orchard under drip and flood irrigation systems using the soil water balance equation; 2) to compare the obtained results to direct measurements of DP by a "flux-meter"; and 3) to optimize the irrigation rates that avoid excessive DP losses and water stress. The results showed that the weekly DP losses vary in average from 15 mm/week to more than 40 mm/week depending to the amount of water supply. The irrigation systems have also an important impact on DP losses evaluated to 38 % in drip irrigation and 12% in flood irrigation. Additionally the density of canopy influences the DP percentage inducing a difference of 10% between the denser citrus site and the sparse one. The comparison of DP losses calculated by soil water balance with those measured by a flux-meter installed beneath the root zone show that the first method gives higher values than the second does. Finally we evaluated the adequacy of the water supply for the crop needs based on two performance indices: depleted fraction (DF) and relative evapotranspiration (RET), showing that the drip irrigation has respond to the culture demands with an excessive quantity of irrigation, unlike to the flood one.

  19. Local irrigation management institutions mediate changes driven by external policy and market pressures in Nepal and Thailand.

    PubMed

    Bastakoti, Ram C; Shivakoti, Ganesh P; Lebel, Louis

    2010-09-01

    This article assesses the role of local institutions in managing irrigation water use. Fifty irrigation systems in each country were studied in Nepal and Thailand to compare the influence of local institutions on performance of irrigation systems amid changes in external policy and market pressures. Nepal's new irrigation policy after the re-instatement of multiparty democracy in 1990 emphasized participatory irrigation management transferring the management responsibility from state authorities to water users. The water user associations of traditional farmer-managed irrigation systems were formally recognized by requiring registration with related state authorities. In Thailand also government policies encouraged people's participation in irrigation management. Today water users are directly involved in management of even some large irrigation systems at the level of tertiary canals. Traditional communal irrigation systems in northern Thailand received support for system infrastructure improvement but have faced increased interference from government. In Thailand market development supported diversification in farming practices resulting in increased areas under high water-demanding commercial crops in the dry season. In contrast, the command areas of most irrigation systems in Nepal include cereal-based subsistence farming with only one-third having commercial farming. Cropping intensities are higher in Nepal than in Thailand reflecting, in part, differences in availability of land and management. In both countries local institutions play an important role in maintaining the performance of irrigation systems as external drivers and local contexts change. Local institutions have provided alternative options for irrigation water use by mediating external pressures.

  20. Local Irrigation Management Institutions Mediate Changes Driven by External Policy and Market Pressures in Nepal and Thailand

    NASA Astrophysics Data System (ADS)

    Bastakoti, Ram C.; Shivakoti, Ganesh P.; Lebel, Louis

    2010-09-01

    This article assesses the role of local institutions in managing irrigation water use. Fifty irrigation systems in each country were studied in Nepal and Thailand to compare the influence of local institutions on performance of irrigation systems amid changes in external policy and market pressures. Nepal’s new irrigation policy after the re-instatement of multiparty democracy in 1990 emphasized participatory irrigation management transferring the management responsibility from state authorities to water users. The water user associations of traditional farmer-managed irrigation systems were formally recognized by requiring registration with related state authorities. In Thailand also government policies encouraged people’s participation in irrigation management. Today water users are directly involved in management of even some large irrigation systems at the level of tertiary canals. Traditional communal irrigation systems in northern Thailand received support for system infrastructure improvement but have faced increased interference from government. In Thailand market development supported diversification in farming practices resulting in increased areas under high water-demanding commercial crops in the dry season. In contrast, the command areas of most irrigation systems in Nepal include cereal-based subsistence farming with only one-third having commercial farming. Cropping intensities are higher in Nepal than in Thailand reflecting, in part, differences in availability of land and management. In both countries local institutions play an important role in maintaining the performance of irrigation systems as external drivers and local contexts change. Local institutions have provided alternative options for irrigation water use by mediating external pressures.

  1. Maintenance nitrogen requirement of the turkey breeder hen with an estimate of associated essential amino acid needs.

    PubMed

    Moran, E T; Ferket, P R; Blackman, J R

    1983-09-01

    Nonproducing, small-type breeder hens in excess of 65 weeks of age were used to represent the maintenance state. All birds had been in laying cages since 30 weeks and accustomed to 16 hr of 70 lx lighting at 16 C. Nitrogen (N) balance was performed in metabolism cages under the same conditions. Ad libitum intake of a common breeder ration led to an intake of ca. 47 kcal metabolizable energy (ME)/kg body weight (BW)/day, which was considered to represent the maintenace energy requirement. Nitrogen retained while consuming this feed averaged 172 mg/kg BW/day. Force-feeding a N-free diet to satisfy the maintenance energy requirement resulted in an 85 mg N/kg BW/day endogenous loss. Total maintenance nitrogen requirement was considered to approximate 257 mg/kg BW/day. Nitrogen retention after force-feeding corn-soybean meal rations having a progressive protein content indicated that the associated amino acids were more efficient in satisfying the endogenous than the total N requirement. A model that estimated maintenance amino acid requirements was assembled by combining the relative concentrations found in muscle and feathers to represent endogenous and retained N, respectively. For the most part, model values agreed with published results for the rooster; however, verification in balance studies was less than successful and believed to be attributable to hen variation in feather cover and protein reserves.

  2. Estimates of power requirements for a Manned Mars Rover powered by a nuclear reactor

    NASA Technical Reports Server (NTRS)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    1991-01-01

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are meet using an SP-100 type reactor. The primary electric power needs, which include 30-kW(e) net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle using He/Xe as the working fluid. The specific mass of the nuclear reactor power system, including a man-rated radiation shield, ranged from 150-kg/kW(e) to 190-kg/KW(e) and the total mass of the Rover vehicle varied depend upon the cruising speed.

  3. Estimates of power requirements for a Manned Mars Rover powered by a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are meet using an SP-100 type reactor. The primary electric power needs, which include 30-kW(e) net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle using He/Xe as the working fluid. The specific mass of the nuclear reactor power system, including a man-rated radiation shield, ranged from 150-kg/kW(e) to 190-kg/KW(e) and the total mass of the Rover vehicle varied depend upon the cruising speed.

  4. Estimates of power requirements for a manned Mars rover powered by a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Morley, Nicholas J.; El-Genk, Mohamed S.; Cataldo, Robert; Bloomfield, Harvey

    1991-01-01

    This paper assesses the power requirement for a Manned Mars Rover vehicle. Auxiliary power needs are fulfilled using a hybrid solar photovoltaic/regenerative fuel cell system, while the primary power needs are met using an SP-100 type reactor. The primary electric power needs, which include 30-kWe net user power, depend on the reactor thermal power and the efficiency of the power conversion system. Results show that an SP-100 type reactor coupled to a Free Piston Stirling Engine (FPSE) yields the lowest total vehicle mass and lowest specific mass for the power system. The second lowest mass was for a SP-100 reactor coupled to a Closed Brayton Cycle (CBC) using He/Xe as the working fluid. The specific mass of the nuclear reactor power systrem, including a man-rated radiation shield, ranged from 150-kg/kWe to 190-kg/kWe and the total mass of the Rover vehicle varied depend upon the cruising speed.

  5. Supplemental irrigation potential and impact on downstream flow of Karkheh River basin in Iran

    NASA Astrophysics Data System (ADS)

    Hessari, Behzad; Bruggeman, Adriana; Akhoond-Ali, Ali Mohammad; Oweis, Theib; Abbasi, Fariborz

    2016-05-01

    Supplemental irrigation of rainfed winter crops improves and stabilises crop yield and water productivity. Although yield increases by supplemental irrigation are well established at the field level, its potential extent and impact on water resources at the basin level are less researched. This work presents a Geographic Information Systems (GIS)-based methodology for identifying areas that are potentially suitable for supplemental irrigation and a computer routine for allocating streamflow for supplemental irrigation in different sub-basins. A case study is presented for the 42 908 km2 upper Karkheh River basin (KRB) in Iran, which has 15 840 km2 of rainfed crop areas. Rainfed crop areas within 1 km from the streams, with slope classes 0-5, 0-8, 0-12, and 0-20 %, were assumed to be suitable for supplemental irrigation. Four streamflow conditions (normal, normal with environmental flow requirements, drought and drought with environmental flow) were considered for the allocation of water resources. Thirty-seven percent (5801 km2) of the rainfed croplands had slopes less than 5 %; 61 % (3559 km2) of this land was suitable for supplemental irrigation, but only 22 % (1278 km2) could be served with irrigation in both autumn (75 mm) and spring (100 mm), under normal flow conditions. If irrigation would be allocated to all suitable land with slopes up to 20 %, 2057 km2 could be irrigated. This would reduce the average annual outflow of the upper KRB by 9 %. If environmental flow requirements are considered, a maximum (0-20 % slopes) of 1444 km2 could receive supplemental irrigation. Under drought conditions a maximum of 1013 km2 could be irrigated, while the outflow would again be reduced by 9 %. Thus, the withdrawal of streamflow for supplemental irrigation has relatively little effect on the outflow of the upper KRB. However, if the main policy goal would be to improve rainfed areas throughout the upper KRB, options for storing surface water need to be developed.

  6. Pervaporative irrigation: a flow rate driven by environmental conditions

    NASA Astrophysics Data System (ADS)

    Todman, L. C.; Mougros, C.; Ireson, A. M.; Butler, A. P.; Templeton, M. R.

    2012-04-01

    Pervaporative irrigation allows in-situ treatment of low quality water (e.g. saline water) whilst simultaneously distributing water throughout the soil. The system is also low energy, requiring only that a positive head of water is maintained in a supply tank. To irrigate using this method a pervaporative polymer membrane is formed into a pipe, buried in the soil and filled with water. Water is transported across the membrane by the process of pervaporation whilst the transport of contaminants is retarded, thus reducing the risk of soil degradation due to the use of low water quality. Uniquely these systems also inherently provide a feedback mechanism by which crops can affect the irrigation rate. Such a system has significant possibilities to provide an irrigation pipe from which water is only applied when required, hence reducing the volume of water used. However such systems are currently not fully understood and, to be implemented effectively, the behaviour of the membrane in different environmental conditions must be quantified. From experimental results this work has identified the significance of vapour flows in predicting the flux from the irrigation system in dry soils. In a 15cm layer of sand, the presence of a desiccant above the soil doubled the flux from the pipe, but more than 70% of this mass was adsorbed by the desiccant. Experiments also show that the flux into typical top soil was greater than into sand because of the greater capacity of the top soil for water adsorption. This adsorption maintained a lower humidity in the soil, hence providing a larger gradient across the irrigation membrane and inducing a higher flux. Although there is some evidence that seeds can absorb water from vapour flows the possibility that plants also do this has not yet been explored. This technology provides future opportunities to explore the interaction of plants both with vapour flows, and with a system where the irrigation rate is influenced by the crop uptake and

  7. Numerical investigation of root canal irrigation adopting innovative needles with dimple and protrusion.

    PubMed

    Li, Ping; Zhang, Di; Xie, Yonghui; Lan, Jibing

    2013-01-01

    As important passive flow control methods, dimples and protrusions have been successfully implemented via geometric modifications to manipulate flow fields to get a desired flow parameters enhancement. In this research, two novel needles were proposed based on a prototype by means of the dimple and protrusion, and flow patterns within a root canal during final irrigation with these needles were numerically investigated. The calculation cases consistent with the clinically realistic irrigant flow rates, which are 0.02, 0.16 and 0.26 mL s(-1) are marked as case A, B and C, respectively. The characteristic parameters to estimate irrigation efficiency, such as shearing effect, mean apical pressure, irrigation replacement and fluid agitation, were compared and the optimal geometry in every calculation case was obtained. As shown from the results, flow rates and needle geometries were the causes of irrigation parameters variations. The sum of shear stress, irrigation replacement and fluid agitation were equal in the low flow rate case A, however, the needle with a protrusion on its tip had advantages in the three irrigation characteristic parameters above in calculation case B, and the needle with a dimple on its tip had advantages in calculation case C. Furthermore, the needles proposed did not give rise to the risk of irrigant extrusion. These needles can be better choices at larger flow rates. Therefore, needle geometry optimizations utilizing passive flow control methods are worthy to be investigated in the root canal irrigation enhancement.

  8. Effects of irrigation practices on water use in the groundwater management districts within the Kansas high plains, 1991-2003

    USGS Publications Warehouse

    Perry, Charles A.

    2006-01-01

    estimator of irrigation water use incorporated total acres irrigated and annual average or March-October regional precipitation. A conclusion that can be drawn from the trend analyses described in this report is that, although irrigation water use for all GMDs showed no statistically significant trend, an apparent increased efficiency of center pivots irrigation systems with drop nozzles has allowed more water-intensive crops to be grown on more irrigated acres.

  9. Sustaining Irrigated Agriculture in Arid Areas: Lessons Learned in the San Joaquin Valley

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The conventional wisdom is that drainage is required to sustain irrigation in arid and semiarid areas. However, disposal of saline drainage water is a problem throughout the world that is challenging the sustainability of irrigated agriculture. The presence of elements besides salt in the drainage w...

  10. Alfalfa production with subsurface drip irrigation in the Central Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Irrigated alfalfa production is gaining interest because of the growing number of dairies in the semi-arid U.S. Central Great Plains and its longstanding superior profitability compared to other alternative crops grown in the region. Irrigation requirements for alfalfa are great because of alfalfa's...

  11. Surface irrigation management for guayule rubber production in the US desert southwest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Agricultural production of the desert shrub, guayule (Parthenium argentatum G.), requires judicious management of irrigation water for achieving economic yields and high water productivity. This study expands existing, but limited and dated knowledge on irrigation management of guayule. A 29-month g...

  12. Developing a hybrid solar/wind powered irrigation system for crops in the Great Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Some small scale irrigation systems (< 2 ha) powered by wind or solar do not require subsidies, but this paper discusses ways to achieve an economical renewable energy powered center pivot irrigation system for crops in the Great Plains. By adding a solar-photovoltaic (PV) array together with a wind...

  13. Assessing spatial variation of corn response to irrigation using a bayesian semiparametric model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Spatial irrigation of agricultural crops using site-specific variable-rate irrigation (VRI) systems is beginning to have wide-spread acceptance. However, optimizing the management of these VRI systems to conserve natural resources and increase profitability requires an understanding of the spatial ...

  14. Empirical evidence for a recent slowdown in irrigation-induced cooling

    PubMed Central

    Bonfils, Céline; Lobell, David

    2007-01-01

    Understanding the influence of past land use changes on climate is needed to improve regional projections of future climate change and inform debates about the tradeoffs associated with land use decisions. The effects of rapid expansion of irrigated area in the 20th century has remained unclear relative to other land use changes, such as urbanization, that affected a similar total land area. Using spatial and temporal variations in temperature and irrigation extent observed in California, we show that irrigation expansion has had a large cooling effect on summertime average daily daytime temperatures (−0.14°C to −0.25°C per decade), which corresponds to an estimated cooling of −1.8°C to −3.2°C since the introduction of irrigation practices. Irrigation has negligible effects on nighttime temperatures, leading to a net cooling effect of irrigation on climate (−0.06°C to −0.19°C per decade). Stabilization of irrigated area has occurred in California since 1980 and is expected in the near future for many irrigated regions. The suppression of past human-induced greenhouse warming by increased irrigation is therefore likely to slow in the future, and a potential decrease in irrigation may even contribute to a more rapid warming. Changes in irrigation alone are not expected to influence broad-scale temperatures, but they may introduce large uncertainties in climate projections for irrigated agricultural regions, which provide ≈40% of global food production. PMID:17698963

  15. A global data set of the extent of irrigated land from 1900 to 2005

    NASA Astrophysics Data System (ADS)

    Siebert, S.; Kummu, M.; Porkka, M.; Döll, P.; Ramankutty, N.; Scanlon, B. R.

    2015-03-01

    Irrigation intensifies land use by increasing crop yield but also impacts water resources. It affects water and energy balances and consequently the microclimate in irrigated regions. Therefore, knowledge of the extent of irrigated land is important for hydrological and crop modelling, global change research, and assessments of resource use and management. Information on the historical evolution of irrigated lands is limited. The new global historical irrigation data set (HID) provides estimates of the temporal development of the area equipped for irrigation (AEI) between 1900 and 2005 at 5 arcmin resolution. We collected sub-national irrigation statistics from various sources and found that the global extent of AEI increased from 63 million ha (Mha) in 1900 to 111 Mha in 1950 and 306 Mha in 2005. We developed eight gridded versions of time series of AEI by combining sub-national irrigation statistics with different data sets on the historical extent of cropland and pasture. Different rules were applied to maximize consistency of the gridded products to sub-national irrigation statistics or to historical cropland and pasture data sets. The HID reflects very well the spatial patterns of irrigated land as shown on historical maps for the western United States (around year 1900) and on a global map (around year 1960). Mean aridity on irrigated land increased and mean natural river discharge on irrigated land decreased from 1900 to 1950 whereas aridity decreased and river discharge remained approximately constant from 1950 to 2005. The data set and its documentation are made available in an open-data repository at https://mygeohub.org/publications/8 (doi:10.13019/M20599).

  16. Monitoring irrigation water consumption using high resolution NDVI image time series (Sentinel-2 like). Calibration and validation in the Kairouan plain (Tunisia)

    NASA Astrophysics Data System (ADS)

    Saadi, Sameh; Simonneaux, Vincent; Boulet, Gilles; Mougenot, Bernard; Zribi, Mehrez; Lili Chabaane, Zohra

    2015-04-01

    Water scarcity is one of the main factors limiting agricultural development in semi-arid areas. It is thus of major importance to design tools allowing a better management of this resource. Remote sensing has long been used for computing evapotranspiration estimates, which is an input for crop water balance monitoring. Up to now, only medium and low resolution data (e.g. MODIS) are available on regular basis to monitor cultivated areas. However, the increasing availability of high resolution high repetitivity VIS-NIR remote sensing, like the forthcoming Sentinel-2 mission to be lunched in 2015, offers unprecedented opportunity to improve this monitoring. In this study, regional crops water consumption was estimated with the SAMIR software (Satellite of Monitoring Irrigation) using the FAO-56 dual crop coefficient water balance model fed with high resolution NDVI image time series providing estimates of both the actual basal crop coefficient (Kcb) and the vegetation fraction cover. The model includes a soil water model, requiring the knowledge of soil water holding capacity, maximum rooting depth, and water inputs. As irrigations are usually not known on large areas, they are simulated based on rules reproducing the farmer practices. The main objective of this work is to assess the operationality and accuracy of SAMIR at plot and perimeter scales, when several land use types (winter cereals, summer vegetables…), irrigation and agricultural practices are intertwined in a given landscape, including complex canopies such as sparse orchards. Meteorological ground stations were used to compute the reference evapotranspiration and get the rainfall depths. Two time series of ten and fourteen high-resolution SPOT5 have been acquired for the 2008-2009 and 2012-2013 hydrological years over an irrigated area in central Tunisia. They span the various successive crop seasons. The images were radiometrically corrected, first, using the SMAC6s Algorithm, second, using invariant

  17. Assessing future drought impacts on yields based on historical irrigation reaction to drought for four major crops in Kansas.

    PubMed

    Zhang, Tianyi; Lin, Xiaomao

    2016-04-15

    Evaluation of how historical irrigation reactions can adapt to future drought is indispensable to irrigation policy, however, such reactions are poorly quantified. In this paper, county-level irrigation data for maize, soybean, grain sorghum, and wheat crops in Kansas were compiled. Statistical models were developed to quantify changes of irrigation and yields in response to drought for each crop. These were then used to evaluate the ability of current irrigation to cope with future drought impacts on each crop based on an ensemble Palmer Drought Severity Index (PDSI) prediction under the Representative Concentration Pathways 4.5 scenario. Results indicate that irrigation in response to drought varies by crop; approximately 10 to 13% additional irrigation was applied when PDSI was reduced by one unit for maize, soybean, and grain sorghum. However, the irrigation reaction for wheat exhibits a large uncertainty, indicating a weaker irrigation reaction. Analysis of future climate conditions indicates that maize, soybean, and grain sorghum yields would decrease 2.2-12.4% at the state level despite additional irrigation application induced by drought (which was expected to increase 5.1-19.0%), suggesting that future drought will exceed the range that historical irrigation reactions can adapt to. In contrast, a lower reduction (-0.99 to -0.63%) was estimated for wheat yields because wetter climate was projected in the central section of the study area. Expanding wheat areas may be helpful in avoiding future drought risks for Kansas agriculture.

  18. Quantification of deep percolation from two flood-irrigated alfalfa field, Roswell Basin, New Mexico

    USGS Publications Warehouse

    Roark, D. Michael; Healy, D.F.

    1998-01-01

    For many years water management in the Roswell ground-water basin (Roswell Basin) and other declared basins in New Mexico has been the responsibility of the State of New Mexico. One of the water management issues requiring better quantification is the amount of deep percolation from applied irrigation water. Two adjacent fields, planted in alfalfa, were studied to determine deep percolation by the water-budget, volumetric-moisture, and chloride mass-balance methods. Components of the water-budget method were measured, in study plots called borders, for both fields during the 1996 irrigation season. The amount of irrigation water applied in the west border was 95.8 centimeters and in the east border was 169.8 centimeters. The total amount of precipitation that fell during the irrigation season was 21.9 centimeters. The increase in soil-moisture storage from the beginning to the end of the irrigation season was 3.2 centimeters in the west border and 8.8 centimeters in the east border. Evapotranspiration, as estimated by the Bowen ratio energy balance technique, in the west border was 97.8 centimeters and in the east border was 101.0 centimeters. Deep percolation determined using the water-budget method was 16.4 centimeters in the west border and 81.6 centimeters in the east border. An average deep percolation of 22.3 centimeters in the west border and 31.6 centimeters in the east border was determined using the volumetric-moisture method. The chloride mass-balance method determined the multiyear deep percolation to be 15.0 centimeters in the west border and 38.0 centimeters in the east border. Large differences in the amount of deep percolation between the two borders calculated by the water-budget method are due to differences in the amount of water that was applied to each border. More water was required to flood the east border because of the greater permeability of the soils in that field and the smaller rate at which water could be applied.

  19. Determining Environmental Impacts of Large Scale Irrigation in Turkey

    NASA Astrophysics Data System (ADS)

    Simpson, K.; Douglas, E. M.; Limbrunner, J. F.; Ozertan, G.

    2010-12-01

    In 1989, the Turkish government launched their most comprehensive regional development plan in history entitled the Southeastern Anatolia Project (SAP) which focuses on improving the quality of life and income level within the most underdeveloped region in Turkey. This project aims to integrate sustainable human development through agriculture, industry, transportation, education, health and rural and urban infrastructure building. In May 2008, a new action plan was announced for the region which includes the designation of almost 800,000 hectares of previously unirrigated land to be open for irrigation within the next five years. If not done in a sustainable manner, such a large-scale irrigation project could cause severe environmental impacts. The first objective of our research is to use computer simulations to reproduce the observed environmental impacts of irrigated agriculture in this arid region, primarily by simulating the effects of soil salinization. The second objective of our research is to estimate soil salinization that could result from expanded irrigation and suggest sustainable strategies for the newly irrigated land in Turkey in order to minimize these environmental impacts.

  20. Effects of Changes in Irrigation Practices and Aquifer Development on Groundwater Discharge to the Jobos Bay National Estuarine Research Reserve near Salinas, Puerto Rico

    USGS Publications Warehouse

    Kuniansky, Eve L.; Rodriguez, Jose M.

    2010-01-01

    Since 1990, about 75 acres of black mangroves have died in the Jobos Bay National Estuarine Research Reserve near Salinas, Puerto Rico. Although many factors can contribute to the mortality of mangroves, changes in irrigation practices, rainfall, and water use resulted in as much as 25 feet of drawdown in the potentiometric surface of the aquifer in the vicinity of the reserve between 1986 and 2002. To clarify the issue, the U.S. Geological Survey, in cooperation with the Puerto Rico Department of Natural and Environmental Resources, conducted a study to ascertain how aquifer development and changes in irrigation practices have affected groundwater levels and groundwater flow to the Mar Negro area of the reserve. Changes in groundwater flow to the mangrove swamp and bay from 1986 to 2004 were estimated in this study by developing and calibrating a numerical groundwater flow model. The transient simulations indicate that prior to 1994, high irrigation return flows more than offset the effect of reduced groundwater withdrawals. In this case, the simulated discharge to the coast in the modeled area was 19 million gallons per day. From 1994 through 2004, furrow irrigation was completely replaced by micro-drip irrigation, thus eliminating return flows and the simulated average coastal discharge was 7 million gallons per day, a reduction of 63 percent. The simulated average groundwater discharge to the coastal mangrove swamps in the reserve from 1986 to 1993 was 2 million gallons per day, compared to an average simulated discharge of 0.2 million gallons per day from 1994 to 2004. The average annual rainfall for each of these periods was 38 inches. The groundwater discharge to the coastal mangrove swamps in the Jobos Bay National Estuarine Research Reserve was estimated at about 0.5 million gallons per day for 2003-2004 because of higher than average annual rainfall during these 2 years. The groundwater flow model was used to test five alternatives for increasing

  1. Barriers against required nurse estimation models applying in Iran hospitals from health system experts’ point of view

    PubMed Central

    Tabatabaee, Seyed Saeed; Nekoie-Moghadam, Mahmood; Vafaee-Najar, Ali; Amiresmaili, Mohammad Reza

    2016-01-01

    Introduction One of the strategies for accessing effective nursing care is to design and implement a nursing estimation model. The purpose of this research was to determine barriers in applying models or norms for estimating the size of a hospital’s nursing team. Methods This study was conducted from November 2015 to March 2016 among three levels of managers at the Ministry of Health, medical universities, and hospitals in Iran. We carried out a qualitative study using a Colaizzi method. We used semistructured and in-depth interviews by purposive, quota, and snowball sampling of 32 participants (10 informed experts in the area of policymaking in human resources in the Ministry of Health, 10 decision makers in employment and distribution of human resources in treatment and administrative chancellors of Medical Universities, and 12 nursing managers in hospitals). The data were analyzed by Atlas.ti software version 6.0.15. Results The following 14 subthemes emerged from data analysis: Lack of specific steward, weakness in attracting stakeholder contributions, lack of authorities trust to the models, lack of mutual interests between stakeholders, shortage of nurses, financial deficit, non-native models, designing models by people unfamiliar with nursing process, lack of attention to the nature of work in each ward, lack of attention to hospital classification, lack of transparency in defining models, reduced nurses available time, increased indirect activity of nurses, and outdated norms. The main themes were inappropriate planning and policymaking in high levels, resource constraints, and poor design of models and lack of updating the model. Conclusion The results of present study indicate that many barriers exist in applying models for estimating the size of a hospital’s nursing team. Therefore, for designing an appropriate nursing staff estimation model and implementing it, in addition to considering the present barriers, identifying the norm required features

  2. Alternating irrigation water quality as a method to control solute concentrations and mass fluxes below irrigated fields: A numerical study

    NASA Astrophysics Data System (ADS)

    Russo, David

    2016-05-01

    The aim of the present numerical study was to extend the data-driven protocol for the control of soil salinity, to control chloride and nitrate concentrations and mass fluxes below agricultural fields irrigated with treated waste water (TWW). The protocol is based on alternating irrigation water quality between TWW and desalinized water (DSW), guided by solute concentrations at soil depth, zs. Two different schemes, the first requires measurements of soil solution concentrations of chloride and nitrate at zs, while, the second scheme requires only measurements of soil solution EC at zs, were investigated. For this purpose, 3-D numerical simulations of flow and transport were performed for variably saturated, spatially heterogeneous, flow domains located at two different field sites. The sites differ in crop type, irrigation method, and in their lithology; these differences, in turn, considerably affect the performance of the proposed schemes, expressed in terms of their ability to reduce solute concentrations that drained below the root zone. Results of the analyses suggest that the proposed data-driven schemes allow the use of low-quality water for irrigation, while minimizing the consumption of high-quality water to a level, which, for given climate, soil, crop, irrigation method, and water quality, may be determined by the allowable nitrate and chloride concentrations in the groundwater. The results of the present study indicate that with respect to the diminution of groundwater contamination by chloride and nitrate, the more data demanding, first scheme is superior the second scheme.

  3. Estimation of spatial distribution of heavy metals in groundwater using interpolation methods and multivariate statistical techniques; its suitability for drinking and irrigation purposes in the Middle Black Sea Region of Turkey.

    PubMed

    Arslan, Hakan; Ayyildiz Turan, Nazlı

    2015-08-01

    Monitoring of heavy metal concentrations in groundwater potentially used for drinking and irrigation is very important. This study collected groundwater samples from 78 wells in July 2012 and analyzed them for 17 heavy metals (Pb, Zn, Cr, Mn, Fe, Cu, Cd, Co, Ni, Al, As, Mo, Se, B, Ti, V, Ba). Spatial distributions of these elements were identified using three different interpolation methods [inverse distance weighing (IDW), radial basis function (RBF), and ordinary kriging (OK)]. Root mean squared error (RMSE) and mean absolute error (MAE) for cross validation were used to select the best interpolation methods for each parameter. Multivariate statistical analysis [cluster analysis (CA) and factor analysis (FA)] were used to identify similarities among sampling sites and the contribution of variables to groundwater pollution. Fe and Mn levels exceeded World Health Organization (WHO) recommended limits for drinking water in almost all of the study area, and some locations had Fe and Mn levels that exceeded Food and Agriculture Organization (FAO) guidelines for drip irrigation systems. Al, As, and Cd levels also exceeded WHO guidelines for drinking water. Cluster analysis classified groundwater in the study area into three groups, and factor analysis identified five factors that explained 73.39% of the total variation in groundwater, which are as follows: factor 1: Se, Ti, Cr, Mo; factor 2: Ni, Mn, Co, Ba; factor 3: Pb, Cd; factor 4: B, V, Fe, Cu; and factor 5: AS, Zn. As a result of this study, it could be said that interpolation methods and multivariate statistical techniques gave very useful results for the determination of the source.

  4. Estimating shallow groundwater availability in small catchments using streamflow recession and instream flow requirements of rivers in South Africa

    NASA Astrophysics Data System (ADS)

    Ebrahim, Girma Y.; Villholth, Karen G.

    2016-10-01

    Groundwater is an important resource for multiple uses in South Africa. Hence, setting limits to its sustainable abstraction while assuring basic human needs is required. Due to prevalent data scarcity related to groundwater replenishment, which is the traditional basis for estimating groundwater availability, the present article presents a novel method for determining allocatable groundwater in quaternary (fourth-order) catchments through information on streamflow. Using established methodologies for assessing baseflow, recession flow, and instream ecological flow requirement, the methodology develops a combined stepwise methodology to determine annual available groundwater storage volume using linear reservoir theory, essentially linking low flows proportionally to upstream groundwater storages. The approach was trialled for twenty-one perennial and relatively undisturbed catchments with long-term and reliable streamflow records. Using the Desktop Reserve Model, instream flow requirements necessary to meet the present ecological state of the streams were determined, and baseflows in excess of these flows were converted into a conservative estimates of allocatable groundwater storages on an annual basis. Results show that groundwater development potential exists in fourteen of the catchments, with upper limits to allocatable groundwater volumes (including present uses) ranging from 0.02 to 3.54 × 106 m3 a-1 (0.10-11.83 mm a-1) per catchment. With a secured availability of these volume 75% of the years, variability between years is assumed to be manageable. A significant (R2 = 0.88) correlation between baseflow index and the drainage time scale for the catchments underscores the physical basis of the methodology and also enables the reduction of the procedure by one step, omitting recession flow analysis. The method serves as an important complementary tool for the assessment of the groundwater part of the Reserve and the Groundwater Resource Directed Measures in

  5. Relation between irrigation engineering and bilharziasis*

    PubMed Central

    Lanoix, Joseph N.

    1958-01-01

    The author discusses the relation between irrigation systems and the transmission of bilharziasis, with special reference to the important part the irrigation engineer can play in checking the spread of the disease. He points out that, in the past, there has been little co-operation between health departments and public works agencies in respect of the setting-up of irrigation systems, and stresses the advantages to be gained from an active collaboration between malacologists, epidemiologists and irrigation engineers at the planning stage of irrigation schemes. The author also puts forward some suggestions for research on irrigation-system design and outlines the role of WHO in bilharziasis control. PMID:13573123

  6. Key aspects in representing the impact of irrigation on hydrology and climate

    NASA Astrophysics Data System (ADS)

    de Vrese, Philipp; Hagemann, Stefan

    2015-04-01

    The hydrological cycle is a key component in the climate system and its alteration presents a critical anthropogenic influence on climate change. The amount of solar radiation absorbed by water vapor within the atmosphere makes it the most important greenhouse gas. Furthermore strong positive climate feedbacks are presumed in connection with atmospheric water vapor; increasing temperatures could increase the global water vapor concentration by increasing the water vapor pressure at saturation. This in turn increases the amount of absorbed solar radiation and thus temperatures. It is often assumed that on the global scale the atmospheric input of water vapor attributed to irrigation is negligible in comparison to the naturally occurring water vapor. On the regional scale however many studies showed that irrigation has a strong impact on climate which will very likely increase in the future due to increasing demands and changing climate conditions. Furthermore it is plausible that the estimated impact of irrigation is not only depending on the scope (regional vs. global) but also on the design of a given study. Thus the key concern of this study was not only to estimate the impact of irrigation on a global scale, but rather to evaluate the importance of the way irrigation is represented in a model. On one hand, the effect of the representation of different irrigation characteristics was investigated e.g. the extent to which irrigation was applied to the vegetated/ non-vegetated part of a grid box. On the other hand it was investigated, whether the scheme used to couple the two model components plays an important role for the impact of irrigation on climate. For the investigation, several 20-year-AMIP-type experiments were conducted using the Max Planck Institute for Meteorology's earth system model, i.e. the general circulation ECHAM6 coupled to a version of the land-surface model JSBACH, which had been modified to represent irrigated areas. It was found that

  7. Influence of deficit irrigation strategies on fatty acid and tocopherol concentration of almond (Prunus dulcis).

    PubMed

    Zhu, Ying; Taylor, Cathy; Sommer, Karl; Wilkinson, Kerry; Wirthensohn, Michelle

    2015-04-15

    The effects of deficit irrigation on almond fatty acid and tocopherol levels were studied in a field trial. Mature almond trees were subjected to three levels of deficit irrigation (85%, 70% and 55% of potential crop evapotranspiration (ETo), as well as control (100% ETo) and over-irrigation (120% ETo) treatments. Two deficit irrigation strategies were employed: regulated deficit irrigation (RDI) and sustained deficit irrigation (SDI). Moderate deficit irrigation (85% RDI and 85% SDI) had no detrimental impact on almond kernel lipid content, but severe and extreme deficiencies (70% and 55%) influenced lipid content. Unsaturated fatty acid (USFA) and saturated fatty acid (SFA) contents fluctuated under these treatments, the oleic/linoleic ratio increased under moderate water deficiency, but decreased under severe and extreme water deficiency. Almond tocopherols concentration was relatively stable under deficit irrigation. The variation between years indicated climate has an effect on almond fruit development. In conclusion it is feasible to irrigate almond trees using less water than the normal requirement, without significant loss of kernel quality.

  8. Global effect of irrigation and its impact on the onset of the Indian summer monsoon

    NASA Astrophysics Data System (ADS)

    Guimberteau, Matthieu; Laval, Katia; Perrier, Alain; Polcher, Jan

    2012-09-01

    In a context of increased demand for food and of climate change, the water consumptions associated with the agricultural practice of irrigation focuses attention. In order to analyze the global influence of irrigation on the water cycle, the land surface model ORCHIDEE is coupled to the GCM LMDZ to simulate the impact of irrigation on climate. A 30-year simulation which takes into account irrigation is compared with a simulation which does not. Differences are usually not significant on average over all land surfaces but hydrological variables are significantly affected by irrigation over some of the main irrigated river basins. Significant impacts over the Mississippi river basin are shown to be contrasted between eastern and western regions. An increase in summer precipitation is simulated over the arid western region in association with enhanced evapotranspiration whereas a decrease in precipitation occurs over the wet eastern part of the basin. Over the Indian peninsula where irrigation is high during winter and spring, a delay of 6 days is found for the mean monsoon onset date when irrigation is activated, leading to a significant decrease in precipitation during May to July. Moreover, the higher decrease occurs in June when the water requirements by crops are maximum, exacerbating water scarcity in this region. A significant cooling of the land surfaces occurs during the period of high irrigation leading to a decrease of the land-sea heat contrast in June, which delays the monsoon onset.

  9. Irrigation with treated wastewater: effects on soil, lettuce (Lactuca sativa L.) crop and dynamics of microorganisms.

    PubMed

    Mañas, Pilar; Castro, Elena; de Las Heras, Jorge

    2009-10-01

    The aim of this study was to evaluate the applicability of treated wastewater for horticultural crops, assess the effects of continuous use of treated water on soil and crops, and analyse the physical, chemical and biological effects of irrigation with recycled water. Two lettuce plots watered with drinking water and treated wastewater were monitored over a three year period. Nutrients, heavy metal and the dynamics of pathogen and indicator microorganism content in soil and foliar tissues were analysed. Wastewater irrigation had a high influence on soil parameters: organic matter, N, P, Ca, Al, Fe, Pb and Zn. Indicator and pathogenic microorganisms were detected in soil and plants grown in the wastewater-irrigated plot, and persisted in the soil for 27 days during the study under humid conditions. N, P, Pb and Al content were significantly higher in plant tissues of wastewater-irrigated plots than in the control after 3 years of irrigation. Harvest was significantly higher in the wastewater-irrigated plot. Wastewater can be a resource for agricultural irrigation. In any case, the possible heavy metal accumulation in soils and presence of pathogenic organisms require careful management of this alternative resource: use of a drip irrigation system, previous wastewater disinfection and a limited irrigation period are recommended.

  10. Mapping irrigated areas in Afghanistan over the past decade using MODIS NDVI

    USGS Publications Warehouse

    Pervez, Md Shahriar; Budde, Michael; Rowland, James

    2014-01-01

    the severe drought conditions in those years, whereas 2009, 2012 and 2013 registered the largest irrigated area (~ 2.5 million hectares) due to record snowpack and snowmelt in the region. The model holds promise the ability to provide near-real-time (by the end of the growing seasons) estimates of irrigated area, which are beneficial for food security monitoring as well as subsequent decision making for the country. While the model is developed for Afghanistan, it can be adopted with appropriate adjustments in the derived threshold values to map irrigated areas elsewhere.

  11. Remote-Sensing-Based Evaluation of Relative Consumptive Use Between Flood- and Drip-Irrigated Fields

    NASA Astrophysics Data System (ADS)

    Martinez Baquero, G. F.; Jordan, D. L.; Whittaker, A. T.; Allen, R. G.

    2013-12-01

    Governments and water authorities are compelled to evaluate the impacts of agricultural irrigation on economic development and sustainability as water supply shortages continue to increase in many communities. One of the strategies commonly used to reduce such impacts is the conversion of traditional irrigation methods towards more water-efficient practices. As part of a larger effort by the New Mexico Interstate Stream Commission to understand the environmental and economic impact of converting from flood irrigation to drip irrigation, this study evaluates the water-saving effectiveness of drip irrigation in Deming, New Mexico, using a remote-sensing-based technique combined with ground data collection. The remote-sensing-based technique used relative temperature differences as a proxy for water use to show relative differences in crop consumptive use between flood- and drip-irrigated fields. Temperature analysis showed that, on average, drip-irrigated fields were cooler than flood-irrigated fields, indicating higher water use. The higher consumption of water by drip-irrigated fields was supported by a determination of evapotranspiration (ET) from all fields using the METRIC Landsat-based surface energy balance model. METRIC analysis yielded higher instantaneous ET for drip-irrigated fields when compared to flood-irrigated fields and confirmed that drip-irrigated fields consumed more water than flood-irrigated fields planted with the same crop. More water use generally results in more biomass and hence higher crop yield, and this too was confirmed by greater relative Normalized Difference Vegetation Index for the drip irrigated fields. Results from this study confirm previous estimates regarding the impacts of increased efficiency of drip irrigation on higher water consumption in the area (Ward and Pulido-Velazquez, 2008). The higher water consumption occurs with drip because, with the limited water supplies and regulated maximum limits on pumping amounts, the

  12. Productivity of irrigation technologies in the White Volta basin

    NASA Astrophysics Data System (ADS)

    Ofosu, E. A.; van der Zaag, P.; van de Giesen, N. C.; Odai, S. N.

    Parts of the White Volta basin in northern Ghana and southern Burkina Faso have witnessed a spectacular rise of irrigated agriculture since about 2000, largely without government support, and seems to have been triggered by a strong and growing demand for vegetables, notably tomatoes in the urban centres of southern Ghana. It is interesting to note the variety of different irrigation technologies that individual and groups of smallholder farmers adopted, adapted and implemented. Some technologies are well-known, such as those associated with conventional sources of water like small and large reservoirs; others have been rarely described in literature, such as temporal shallow wells and alluvial dugouts. This paper describes and characterises these different irrigation technologies and conducts a comparative analysis of their productivities, in terms of crop yield, water use and financial returns. The study was conducted in three neighbouring and transboundary watersheds (Anayari, Atankwidi and Yarigatanga) located in the Upper East Region of Ghana and southern Burkina Faso. For the study, 90 tomato farmers with different irrigation technologies were surveyed during one crop season (2007/2008). The results show that adequate fertilizer application is the major contributor to irrigation productivity. Technologies characterised by relatively small farm sizes are better managed by the surveyed farmers because they are able to provide adequate water and crop nutrients thus resulting in higher productivity, and high profit margins. Apart from technologies that depend on reservoirs, all other technologies surveyed in the paper are farmer driven and required no government support. This ongoing type of endogenous irrigation development provides a strong backing that the way forward in sub-Saharan Africa is for governments to create policies that facilitate poor farmers becoming irrigation entrepreneurs. Such policies should aim to enhance the reliability of markets (both

  13. Radiological Evaluation of Penetration of the Irrigant according to Three Endodontic Irrigation Techniques

    PubMed Central

    Benkiran, Imane; El Ouazzani, Amal

    2016-01-01

    Introduction. This experimental study is to compare radiographs based on the penetration depth of the irrigant following three final irrigation techniques. Material and Method. A sample of sixty teeth with single roots were prepared with stainless steel K files followed by mechanized Ni-Ti files iRace® under irrigation with 2.5% sodium hypochlorite. Radiopaque solution was utilized to measure the penetration depth of the irrigant. Three irrigation techniques were performed during this study: (i) passive irrigation, (ii) manually activated irrigation, and (iii) passive irrigation with an endodontic needle CANAL CLEAN®. Radiographs were performed to measure the length of irrigant penetration in each technique. Results. In comparison, passive irrigation with a conventional syringe showed infiltration of the irrigant by an average of 0.682 ± 0.105, whereas the manually activated irrigation technique indicated an average of 0.876 ± 0.066 infiltration. Irrigation with an endodontic syringe showed an average infiltration of 0.910 ± 0.043. The results revealed highly significant difference between the three irrigation techniques (α = 5%). Conclusion. Adding manual activation to the irrigant improved the result by 20%. This study indicates that passive irrigation with an endodontic needle has proved to be the most effective irrigation technique of the canal system. PMID:27433162

  14. Simulation of groundwater flow and effects of groundwater irrigation on stream base flow in the Elkhorn and Loup River Basins, Nebraska, 1895-2055-Phase Two

    USGS Publications Warehouse

    Stanton, Jennifer S.; Peterson, Steven M.; Fienen, Michael N.

    2010-01-01

    Regional groundwater-flow simulations for a 30,000-square-mile area of the High Plains aquifer, referred to collectively as the Elkhorn-Loup Model, were developed to predict the effects of groundwater irrigation on stream base flow in the Elkhorn and Loup River Basins, Nebraska. Simulations described the stream-aquifer system from predevelopment through 2005 [including predevelopment (pre-1895), early development (1895-1940), and historical development (1940 through 2005) conditions] and future hypothetical development conditions (2006 through 2033 or 2055). Predicted changes to stream base flow that resulted from simulated changes to groundwater irrigation will aid development of long-term strategies for management of hydrologically connected water supplies. The predevelopment through 2005 simulation was calibrated using an automated parameter-estimation method to optimize the fit to pre-1940 groundwater levels and base flows, 1945 through 2005 decadal groundwater-level changes, and 1940 through 2005 base flows. The calibration results of the pre-1940 period indicated that 81 percent of the simulated groundwater levels were within 30 feet of the measured water levels. The results did not indicate large areas of simulated groundwater levels that were biased too high or too low, indicating that the simulation generally captures the regional trends. Calibration results using 1945 through 2005 decadal groundwater-level changes indicated that a majority of the simulated groundwater-level changes were within 5 feet of the changes calculated from measured groundwater levels. Simulated groundwater-level rises generally were smaller than measured rises near surface-water irrigation districts. Simulated groundwater-level declines were larger than measured declines in several parts of the study area having large amounts of irrigated crops. Base-flow trends and volumes generally were reproduced by the simulation at most sites. Exceptions include downward trends of simulated

  15. Evapotranspiration measurement and modeling in Mid-South irrigated rice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nearly 75% of US rice is grown in the humid mid-South. Rice requires more water to produce than other crops (corn, soybean, and cotton). The identification of rice evapotranspiration and irrigation demand is paramount to understand regional water use and water allocation. Drill-seeded, commercial si...

  16. Influence of Container Mulches on Irrigation and Nutrient Management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    An experiment was conducted in 2005 and repeated in 2006 to determine the influence of mulch products and controlled release fertilizer (CRF) placement on irrigation and nutrition requirements of container-grown crops. Hydrangea (Hydrangea macrophylla 'Fasan' and 'Endless Summer') were grown in 2.7...

  17. Soybean micronutrient content in irrigated plants grown in the Midsouth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Micronutrients are essential to soybean (Glycine max L. Merr.) but required in minute quantities. Concentrations and tissue contents of Fe, B, Zn, Mn and Cu were determined for two MG IV and one MG V irrigated cultivars grown in twin-rows in the Mississippi Delta on clay and sandy loam soil sites i...

  18. Assessment of water use in the Spanish irrigation district "Río Adaja"

    NASA Astrophysics Data System (ADS)

    Naroua, Illiassou; Rodriguez-Sinobas, Leonor; Sánchez Calvo, Raúl

    2013-04-01

    Intensive agricultural practices combined with the increasing pressure of urbanization and the changing lifestyles, have strengthened the problems of competing users over limited water resources in a fragile and already stressed environment. Sustainable irrigated agriculture is prescribed as a policy approach that maximizes economic benefits while maintaining environmental quality. Within this framework a proper management of irrigation systems saving water is required. On the other hand, crops with high tolerance to water stress and deficit irrigation are recommended. However, crop yield, among other factors, is very sensitive to water Thus, studies addressing the relations among crop water requirements, irrigation depth and crop yield are necessary. This type of study has been carried out in the Spanish irrigation District "Río Adaja" in the year 2010-2011 with the crops: wheat, barley, sugarbeet, corn, onion, potato, sunflower, clover and carrot. A soil hydrology balance model was applied taking into account climatic data for the nearby weather station and soil characteristics. Effective precipitation was calculated by the index curve number. Crop water requirements were calculated by the FAO Penman-Monteith with the application of the dual crop coefficient. Likewise, productivity was measured by the following indexes: annual relative irrigation supply (ARIS), relative water supply (RWS), relative rainfall supply (RS) and water productivity (WP). Results show that water applied with the irrigation of clover, sugarbeet, corn and onion was less than their water requirements There was a 35 % difference between the amount of water simulated with the model and the gross amount applied during the irrigation period by the irrigation district. WP values differed among crops depending, mainly, on the crop`s market price and the amount of irrigation water. The highest values corresponded to potato and onion crops.

  19. Sustainability of irrigated crops under future climate: the interplay of irrigation strategies and cultivar responses

    NASA Astrophysics Data System (ADS)

    De Lorenzi, F.; Bonfante, A.; Alfieri, S.; Patanè, C.; Basile, A.; Di Tommasi, P.; Monaco, E.; Menenti, M.

    2012-04-01

    Climate evolution will cause significant changes in the quality and availability of water resources, affecting many sectors including food production, where available water resources for irrigation play a crucial role. Strategies focused on managing and conserving water are one way to deal with the impact; moreover concurring adaptation measurements will be needed to cope with the foreseen decline of water resource. This work deals with i) the impacts of climate change on water requirements of an horticultural crop, determined in an irrigated district in Southern Italy, ii) the possible irrigation scheduling options and their sustainability in the future, iii) the adaptation measurements that can be undertaken to protect production, relying on intra-specific biodiversity of agricultural crops. Two climate scenarios were considered: present climate (1961-90) and future climate (2021-2050), the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data set consists of daily time series of maximum and minimum temperature, and rainfall on a grid with spatial resolution of 35 km. The analysis of climate scenarios showed that significant increases in summer maximum daily temperature could be expected in 2021-2050 period. Soil water regime was determined by means of a mechanistic model (SWAP) of water flow in the soil-plant-atmosphere system. Twenty? soil units were identified in the district (in Sele Plain, Campania Region) and simulations were performed accounting for hydro-pedological properties of different soil units. Parameters of a generic tomato crop, in a rotation typical of the area, were used in simulations. Soil water balance was simulated in the present and future climate, both with optimal water availability and under constrains that irrigation schemes will pose. Indicators of soil water availability were calculated, in terms of soil water or evapotranspiration deficit. For several tomato

  20. Irrigation dynamic pressure-assisted hydrodissection during cataract surgery

    PubMed Central

    Masuda, Yoichiro; Iwaki, Hisaharu; Kato, Noriko; Takahashi, Genichiro; Oki, Kotaro; Tsuneoka, Hiroshi

    2017-01-01

    The irrigation dynamic pressure-assisted hydrodissection technique (irrigation-hydro [iH]) does not require performing manual hydrodissection using a syringe and cannula to achieve cortical-capsular cleavage during cataract surgery. Since the iH technique uses the phaco tip to intentionally vacuum the intraocular fluid in order to induce the irrigation dynamic pressure for cortical-capsular cleavage, there is a reduction in the intraocular pressure (IOP) from the bottle-height-dependent hydrostatic pressure. Thus, since the peak irrigation pressure derived from the phaco tip sleeve will be limited by the height of the irrigation fluid bottle, this is advantageous in helping to avoid excessively high IOP during cortical-capsular hydrodissection. Using this technique, we were able to effectively perform phacoemulsification without complications in 607 of 609 cataract eyes. Our findings show that utilization of the iH technique would be of benefit to patients, as it prevents high-pressure hydrodissection-related complications, such as capsular block syndrome and tears in the anterior hyaloid membrane during cataract surgery. PMID:28243054

  1. Automatic restart of complex irrigation systems. Final report

    SciTech Connect

    Werner, H.D.; Alcock, R.; DeBoer, D.W.; Olson, D.I.

    1992-05-01

    Automatic restart of irrigation systems under load management has the potential to maximize pumping time during off-peak hours. Existing automation technology ranges from time delay relays to more sophisticated control using computers together with weather data to optimize irrigation practices. Centrifugal pumps and water hammer concerns prevent automatic restart of common but often complex irrigation systems in South Dakota. The irrigator must manually prime the pump and control water hammer during pipeline pressurization. Methods to prime centrifugal pumps and control water hammer facilitate automatic restart after load management is released. Seven priming methods and three water hammer control methods were investigated. A sump pump and small vacuum pump were used to test two automatic prime and restart systems in the laboratory. A variable frequency phase converter was also used to automatically control water hammer during pipeline pressurization. Economical methods to safely prime and restart centrifugal pumps were discussed. The water hammer control methods safely pressurize the pipeline but require a higher initial investment. The automatic restart systems can be used to safely restart centrifugal pumps and control water hammer after load management is released. Based upon laboratory research and a technical review of available restart components, a computer software program was developed. The program assists customers in evaluating various restart options for automatic restarting of electric irrigation pumps. For further information on the software program, contact the South Dakota State University, Department of Agricultural Engineering.

  2. Sustainability of irrigated agriculture in the San Joaquin Valley, California.

    PubMed

    Schoups, Gerrit; Hopmans, Jan W; Young, Chuck A; Vrugt, Jasper A; Wallender, Wesley W; Tanji, Ken K; Panday, Sorab

    2005-10-25

    The sustainability of irrigated agriculture in many arid and semiarid areas of the world is at risk because of a combination of several interrelated factors, including lack of fresh water, lack of drainage, the presence of high water tables, and salinization of soil and groundwater resources. Nowhere in the United States are these issues more apparent than in the San Joaquin Valley of California. A solid understanding of salinization processes at regional spatial and decadal time scales is required to evaluate the sustainability of irrigated agriculture. A hydro-salinity model was developed to integrate subsurface hydrology with reactive salt transport for a 1,400-km(2) study area in the San Joaquin Valley. The model was used to reconstruct historical changes in salt storage by irrigated agriculture over the past 60 years. We show that patterns in soil and groundwater salinity were caused by spatial variations in soil hydrology, the change from local groundwater to snowmelt water as the main irrigation water supply, and by occasional droughts. Gypsum dissolution was a critical component of the regional salt balance. Although results show that the total salt input and output were about equal for the past 20 years, the model also predicts salinization of the deeper aquifers, thereby questioning the sustainability of irrigated agriculture.

  3. Estimation of nitrogen maintenance requirements and potential for nitrogen deposition in fast-growing chickens depending on age and sex.

    PubMed

    Samadi, F; Liebert, F

    2006-08-01

    Experiments were conducted to estimate daily N maintenance requirements (NMR) and the genetic potential for daily N deposition (ND(max)T) in fast-growing chickens depending on age and sex. In N-balance studies, 144 male and 144 female chickens (Cobb 500) were utilized in 4 consecutive age periods (I: 10 to 25 d; II: 30 to 45 d; III: 50 to 65 d; and IV: 70 to 85 d). The experimental diets contained high-protein soybean meal and crystalline amino acids as protein sources and 6 graded levels of protein supply (N1 = 6.6%; N2 = 13.0%; N3 = 19.6%; N4 = 25.1%; N5 = 31.8%; and N6 = 37.6% CP in DM). The connection between N intake and total N excretion was fitted for NMR determination by an exponential function. The average NMR value (252 mg of N/BW(kg)0.67 per d) was applied for further calculation of ND(max)T as the threshold value of the function between N intake and daily N balance. For estimating the threshold value, the principle of the Levenberg-Marquardt algorithm within the SPSS program (Version 11.5) was applied. As a theoretical maximum for ND(max)T, 3,592, 2,723, 1,702, and 1,386 mg of N/BW(kg)0.67 per d for male and 3,452, 2,604, 1,501, and 1,286 mg of N/BW(kg)0.67 per d for female fast-growing chickens (corresponding to age periods I to IV) were obtained. The determined model parameters were the precondition for modeling of the amino acid requirement based on an exponential N-utilization model and depended on performance and dietary amino acid efficiency. This procedure will be further developed and applied in the subsequent paper.

  4. Developing Automatic Controllers for sprinkler irrigation systems

    NASA Astrophysics Data System (ADS)

    Playán, E.; Salvador, R.; Cavero, J.; López, C.; Lecina, S.; Zapata, N.

    2012-04-01

    The application of new technologies to the control and automation of irrigation processes is quickly gaining attention. The automation of irrigation execution (through irrigation controllers) is now widespread. However, the automatic generation and execution of irrigation schedules is receiving growing attention due to the possibilities offered by the telemetry/remote control systems currently being installed in collective pressurized networks. These developments can greatly benefit from the combination of irrigation system and crop models, and from the interaction with agrometeorological databases, hydraulic models of pressurized collective distribution networks, weather forecasts and management databases for water users associations. Prospects for the development of such systems in collective sprinkler irrigation systems are analyzed in this presentation. Additionally, experimental results are presented on the application of these concepts to a hydrant irrigating a solid-set irrigated maize field.

  5. Sustainability of effluent irrigation schemes: Measurable definition

    SciTech Connect

    Hu, X.

    1997-09-01

    Traditionally water requirements and nutrient removal capacity by plants are considered as the main design criteria of effluent irrigation schemes. Environmental impacts of schemes on surface and groundwater pollution, which may be controlling factors in some circumstances, have not been considered in the design process. In this paper the implication of the sustainability for effluent irrigation schemes has been identified through investigating the pollutant fate. An index has been developed to measure the sustainability status. A dynamic simulation model of the soil-plant system was used to predict the pollutant export to surface runoff and ground water. Pollutant accumulation in the soil profile was also predicted by the model. The traditional design procedure has been extended using the sustainable index as a design criterion and the simulation model for data generation. The application of sustainable concept and index was demonstrated through a test case. Ground-water pollution was found to be the controlling factor instead of water requirement and nutrient removal capacity in this case.

  6. A stochastic ensemble-based model to predict crop water requirements from numerical weather forecasts and VIS-NIR high resolution satellite images in Southern Italy

    NASA Astrophysics Data System (ADS)

    Pelosi, Anna; Falanga Bolognesi, Salvatore; De Michele, Carlo; Medina Gonzalez, Hanoi; Villani, Paolo; D'Urso, Guido; Battista Chirico, Giovanni

    2015-04-01

    Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Ensemble numerical weather predictions can be valuable data for developing operational advisory irrigation services. We propose a stochastic ensemble-based model providing spatial and temporal estimates of crop water requirements, implemented within an advisory service offering detailed maps of irrigation water requirements and crop water consumption estimates, to be used by water irrigation managers and farmers. The stochastic model combines estimates of crop potential evapotranspiration retrieved from ensemble numerical weather forecasts (COSMO-LEPS, 16 members, 7 km resolution) and canopy parameters (LAI, albedo, fractional vegetation cover) derived from high resolution satellite images in the visible and near infrared wavelengths. The service provides users with daily estimates of crop water requirements for lead times up to five days. The temporal evolution of the crop potential evapotranspiration is simulated with autoregressive models. An ensemble Kalman filter is employed for updating model states by assimilating both ground based meteorological variables (where available) and numerical weather forecasts. The model has been applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. This work presents the results of the system performance for one year of experimental service. The results suggest that the proposed model can be an effective support for a sustainable use and management of irrigation water, under conditions of water scarcity and drought. Since the evapotranspiration term represents a staple

  7. Variable-rate irrigation management for peanut using Irrigator Pro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Variable-rate irrigation has the potential to save water. These savings become more important as urban, industrial, and environmental sectors compete with agriculture for available water. To help save water, methodologies are needed to precision-apply water for maximum agronomic and economic efficac...

  8. Cotton irrigation timing with variable seasonal irrigation capacities in the Texas south plains.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Within the Ogallala Aquifer Region of Texas, the irrigation capacity (IC) for a given field often changes within a growing season due to seasonal depletion of the aquifer, in season changes in crop irrigation needs in dry years, or consequences of irrigation volume limits imposed by irrigation distr...

  9. Measuring Transpiration to Regulate Winter Irrigation Rates

    SciTech Connect

    Samuelson, Lisa

    2006-11-08

    Periodic transpiration (monthly sums) in a young loblolly pine plantation between ages 3 and 6 was measured using thermal dissipation probes. Fertilization and fertilization with irrigation were better than irrigation alone in increasing transpiration of young loblolly pines during winter months, apparently because of increased leaf area in fertilized trees. Irrigation alone did not significantly increase transpiration compared with the non-fertilized and non-irrigated control plots.

  10. [Intraperitoneal irrigation for pseudomyxoma peritonei-a case of critical metabolic alkalosis precipitated by irrigation with 101 of sodium bicarbonate--].

    PubMed

    Shirasaki, Reimi; Yamasaki, Saeko; Wakamatsu, Masaki; Mori, Yasuichiro; Hirano, Hiroko; Kaida, Takeshi; Machino, Asami

    2013-05-01

    Pseudomyxoma peritonei causes marked accumulation of jelly-like ascites in the peritoneal cavity. Removal of much mucinous ascites by irrigating the cavity appears to be an effective treatment. We describe a patient who underwent the irrigation with sodium bicarbonate solution and developed critical alkalemia. A 68-year-old woman with normal renal function was operated on for recurrent pseudomyxoma peritonei. Fol- lowing the excision of primary lesion, her intraperitoneal cavity was irrigated with 10 1 of 7% sodium bicarbonate in about 45 minutes. Thirty minutes after irrigation, blood gas analysis revealed severe metabolic alkalosis (pH 7.714, BE 25.6 mmol x l-1 ) with electrolyte disorder (Na 157.8 mmol x l-1 K 2.31mmol x l-1, Ca 0.73 mmol x l-1). Hypotension (<60 mmHg) and sinus tachycardia (>130 beats x min -1) supervened 75 minutes later. Transferring to the ICU, she was given KC1 solution intravenously based on serial blood analysis while on mechanical ventilation. The next day acid-base disturbance returned spontaneously to normal (pH 7.45, BE 8.0mmol x l-1), leading to endotracheal extubation. Electrolyte imbalance was gradually resolved on 2nd POD and she was discharged from the ICU. Intraperitoneal irrigation with sodium bicarbonate requires special perioperative considerations for lifethreatening alkalemia, especially in a patient with renal impairment.

  11. Malaria and schistosomiasis risks associated with surface and sprinkler irrigation systems in Zimbabwe.

    PubMed

    Chimbari, M J; Chirebvu, E; Ndlela, B

    2004-01-01

    A comparative assessment of the malaria and schistosomiasis risks associated with surface and sprinkler irrigation systems in Zimbabwe was carried out. The risk assessment of the two diseases was done in accordance with the three standard components of health impact assessment, namely (i) community vulnerability, (ii) environmental receptivity, and (iii) capability of health services to respond to malaria and schistosomiasis. Records of the two diseases were obtained from four health centres serving two surface irrigation schemes and two sprinkler irrigation schemes. For comparison records were also obtained from health centres serving nearby dryland areas. Incidence of schistosomiasis as estimated from recorded new cases of the disease was much higher in surface irrigation schemes than in sprinkler irrigation schemes. For malaria it was the other way around. These findings were confirmed by rapid risk assessments. Malaria risk factors were more prominent in sprinkler irrigation schemes, whereas more schistosomiasis risk factors were identified in surface irrigation schemes. These observations were attributed to poorly maintained infrastructure and inadequate landscape-levelling, which created mosquito breeding sites within the fields in the case of sprinkler schemes, and to poor drainage structures, which created snail-breeding sites in the case of surface-irrigation schemes. Importantly, poor maintenance of sprinkler scheme infrastructure accounted for more disease promoting features than the engineering designs per se. This study demonstrated the value of complementing routinely collected health data with rapid assessment procedures for appraisal of commonly reported diseases.

  12. Thermal requirements and estimate number of generations of Palmistichus elaeisis (Hymenoptera: Eulophidae) in different Eucalyptus plantations regions.

    PubMed

    Pereira, F F; Zanuncio, J C; Oliveira, H N; Grance, E L V; Pastori, P L; Gava-Oliveira, M D

    2011-05-01

    To use Palmistichus elaeisis Delvare and LaSalle, 1993 (Hymenoptera: Eulophidae) in a biological control programme of Thyrinteina arnobia (Stoll, 1782) (Lepidoptera: Geometridae), it is necessary to study thermal requirements, because temperature can affect the metabolism and bioecological aspects. The objective was to determine the thermal requirements and estimate the number of generations of P. elaeisis in different Eucalyptus plantations regions. After 24 hours in contact with the parasitoid, the pupae was placed in 16, 19, 22, 25, 28 and 31 °C, 70 ± 10% of relative humidity and 14 hours of photophase. The duration of the life cycle of P. elaeisis was reduced with the increase in the temperature. At 31 °C the parasitoid could not finish the cycle in T. arnobia pupae. The emergence of P. elaeisis was not affected by the temperature, except at 31 °C. The number of individuals was between six and 1238 per pupae, being higher at 16 °C. The thermal threshold of development (Tb) and the thermal constant (K) of this parasitoid were 3.92 °C and 478.85 degree-days (GD), respectively, allowing for the completion of 14.98 generations per year in Linhares, Espírito Santo State, 13.87 in Pompéu and 11.75 in Viçosa, Minas Gerais State and 14.10 in Dourados, Mato Grosso do Sul State.

  13. Mississippi web-based irrigation scheduling tool

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Increasing use of water in the Mid-South has begun to deplete water levels in aquifers, with few guidelines in place for farmers as to when and how much to irrigate. Irrigation can increase crop yields when water is applied correctly. Irrigation scheduling is a method of managing water to better mat...

  14. Estimated Water Use in Washington, 2005

    USGS Publications Warehouse

    Lane, R.C.

    2009-01-01

    Water use in the State of Washington has evolved in the past century from meager domestic and stock water needs to the current complex requirements of domestic-water users, large irrigation projects, industrial plants, and numerous other uses such as fish habitat and recreational activities. Since 1950, the U.S. Geological Survey (USGS) has, at 5-year intervals, compiled data on the amount of water used in homes, businesses, industries, and on farms throughout the State. This water-use data, combined with other related USGS information, has facilitated a unique understanding of the effects of human activity on the State's water resources. As water availability continues to emerge as an important issue in the 21st century, the need for consistent, long-term water-use data will increase to support wise use of this essential natural resource. This report presents state and county estimates of the amount of public- and self-supplied water used for domestic, irrigation, livestock, aquaculture, industrial, mining, and thermoelectric power purposes in the State of Washington during 2005. Offstream fresh-water use was estimated to be 5,780 million gallons per day (Mgal/d). Domestic water use was estimated to be 648 Mgal/d or 11 percent of the total. Irrigation water use was estimated to be 3,520 Mgal/d, or 61 percent of the total. Industrial fresh-water use was estimated to be 520 Mgal/d, or 9 percent of the total. These three categories accounted for about 81 percent (4,690 Mgal/d) of the total of the estimated offstream freshwater use in Washington during 2005.

  15. Characteristics of dissolved carbon change in irrigation water

    NASA Astrophysics Data System (ADS)

    Akaike, Y.; Kunishio, A.; Kawamoto, Y.; Murakami, H.; Iwata, T.

    2012-12-01

    It is necessary to estimate carbon emission from soil for understanding carbon cycle processes in cultivated fields. Since irrigation water is introduced into a typical rice paddy field, one part of emitted carbon content from soil were trapped by water and dissolved in it, and dissolved carbon content outflows from the field at the drainage moment. In this study, we continuously and regularly analyzed dissolved carbon content of irrigation water and investigated seasonal variation of efflux of carbon from a paddy field. Experimental site is located reclaimed land in the southern part of Okayama Prefecture, Japan. And rice cropping cultivation has continued in a similar method every year. Intermittent irrigation water managements, or 3 days flooded and 4 days drained condition, were carried out during almost all the period of rice cultivated term. Irrigation water was sampled every flooding and drainage days. Inorganic carbon (IC) concentration was measured with total carbon (TC) analyzer (TOC-V/CSH, SHIMAZU). Amount of dissolved carbon in irrigation water was calculated from product of the carbon concentration and water levels. The experimental paddy field was divided into two areas, and two bottle of water were sampled from each area. In order to investigate what impact is brought on the annual carbon cycle by the difference of disposal management of residual biomass after the harvest, residual biomass was burned and plowed into soil at the one area on 29th Nov., 2011, and residue was not burned and directly plowed into soil at the other area as usual. IC during cultivated term in 2011 and 2012 in both area gradually increased day by day for every flooded periods. And IC showed distinct diurnal variations with lower value in the daytime than at night, it is because of photosynthetic activities by aquatic algae in the irrigation water.

  16. Phytoplankton Productivity in an Arctic Fjord (West Greenland): Estimating Electron Requirements for Carbon Fixation and Oxygen Production

    PubMed Central

    Hancke, Kasper; Dalsgaard, Tage; Sejr, Mikael Kristian; Markager, Stiig; Glud, Ronnie Nøhr

    2015-01-01

    Accurate quantification of pelagic primary production is essential for quantifying the marine carbon turnover and the energy supply to the food web. Knowing the electron requirement (Κ) for carbon (C) fixation (ΚC) and oxygen (O2) production (ΚO2), variable fluorescence has the potential to quantify primary production in microalgae, and hereby increasing spatial and temporal resolution of measurements compared to traditional methods. Here we quantify ΚC and ΚO2 through measures of Pulse Amplitude Modulated (PAM) fluorometry, C fixation and O2 production in an Arctic fjord (Godthåbsfjorden, W Greenland). Through short- (2h) and long-term (24h) experiments, rates of electron transfer (ETRPSII), C fixation and/or O2 production were quantified and compared. Absolute rates of ETR were derived by accounting for Photosystem II light absorption and spectral light composition. Two-hour incubations revealed a linear relationship between ETRPSII and gross 14C fixation (R2 = 0.81) during light-limited photosynthesis, giving a ΚC of 7.6 ± 0.6 (mean ± S.E.) mol é (mol C)−1. Diel net rates also demonstrated a linear relationship between ETRPSII and C fixation giving a ΚC of 11.2 ± 1.3 mol é (mol C)−1 (R2 = 0.86). For net O2 production the electron requirement was lower than for net C fixation giving 6.5 ± 0.9 mol é (mol O2)−1 (R2 = 0.94). This, however, still is an electron requirement 1.6 times higher than the theoretical minimum for O2 production [i.e. 4 mol é (mol O2)−1]. The discrepancy is explained by respiratory activity and non-photochemical electron requirements and the variability is discussed. In conclusion, the bio-optical method and derived electron requirement support conversion of ETR to units of C or O2, paving the road for improved spatial and temporal resolution of primary production estimates. PMID:26218096

  17. Modeling as a tool for management of saline soils and irrigation waters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optimal management of saline soils and irrigation waters requires consideration of many interrelated factors including, climate, water applications and timing, water flow, plant water uptake, soil chemical reactions, plant response to salinity and solution composition, soil hydraulic properties and ...

  18. PRN 87-1: Label Improvement Program for Pesticides Applied through Irrigation Systems (Chemigation)

    EPA Pesticide Factsheets

    This Notice requires registrants of pesticide products registered under FIFRA and applied through irrigation systems to revise the labeling for such products to include additional use directions and other statements described in this Notice.

  19. Irrigation with Treated Urban Wastewater for Bioenergy Crop Production in the Far West Texas

    NASA Astrophysics Data System (ADS)

    Ganjegunte, G. K.; Clark, J. A.; Wu, Y.

    2011-12-01

    In the recent years, interest in biobased fuels is increasing and the congressionally mandated goal is to use at least 36 billion gallons of bio-based transportation fuels by 2022. However, in 2009 the U.S. produced about 10.75 billion gallons of ethanol, primarily as corn starch ethanol and 550 million gallons of biodiesel. Thus, there is a huge gap between the current capacity and the mandated goal. USDA estimates that about 27 million acres of land has to be brought under bioenergy crops to produce 36 billion gallons of bio-based fuels. Meeting the challenge of bridging this huge gap requires a comprehensive regional strategy that includes bringing addition area from different regions within the country under bioenergy crops. In the southwest U.S. region such as west Texas or southern New Mexico, bringing vast abandoned crop lands and areas having permeable soils under bioenergy crops can be a part of such a regional strategy. While the region has adequate supply of land, finding reliable source of water to produce bioenergy crops is the main challenge. This challenge can be met by developing marginal quality water sources for bioenergy crops production. Use of marginal quality waters such as treated urban wastewater/saline groundwater to irrigate bioenergy crops may prove beneficial, if the bioenergy crops can grow under elevated salinity and the effects on soil and shallow groundwater can be minimized by appropriate management. The region has enormous potential for marginal quality water irrigation to produce bioenergy crops for a greater farm return. For example, at present, in El Paso alone, the total volume of treated municipal and industrial wastewater is about 65,000 acre-feet/year, of which only 13% is being reused for industrial processes and irrigating urban landscapes. The major concern associated with treated wastewater irrigation is its salinity (electrical conductivity or EC which measures salinity ranges from 1.8 to 2.1 dS m-1) and sodicity

  20. Identifying the effect of irrigation on evapotranspiration variability over the High Plains

    NASA Astrophysics Data System (ADS)

    Zeng, R.; Cai, X.

    2015-12-01

    Irrigation is widely adopted as a measure to maintain crop yield when precipitation is limited and stabilize crop yield to buffer climatic fluctuation. Irrigation has considerably interfered with hydrological processes in many areas with extensive and intensive irrigation requirement; with the increasing demand for food and weather variability related to climate change, irrigation application is expected to increase, which would aggravate the interferences to hydrologic processes. Current studies focus on the impact of irrigation on the mean value of ET at either local or regional scale, however, how irrigation changes the variability of ET has not been well understood. This study analyzes the impact of extensive irrigation on ET variability in the High Plains. We apply an ET variance decomposition framework (Zeng and Cai 2015) to quantify the effects of both climate and irrigation on ET variance in in the High Plains watersheds. Based on climatic and groundwater storage data, we assess the monthly ET variance and its components for both pre-development (1930s-1960s) and development periods (1970-2010s). It is found that irrigation not only causes the well-known groundwater drawdown and stream depletion problems in the area associated with, but also changes ET variance, which further affects land surface processes. With complementary water supply from irrigation, ET approaches to potential ET, and ET variance is more attributed to climatic variables such as temperature, while causing significant seasonal fluctuations to groundwater storage. For sustainable water resources management in the High Plains, we argue that both the mean value and the variance of ET should be considered together for the regulation of irrigation in this region.

  1. Monitoring and Evaluation of Cultivated Land Irrigation Guarantee Capability with Remote Sensing

    NASA Astrophysics Data System (ADS)

    Zhang, C., Sr.; Huang, J.; Li, L.; Wang, H.; Zhu, D.

    2015-12-01

    Abstract: Cultivated Land Quality Grade monitoring and evaluation is an important way to improve the land production capability and ensure the country food safety. Irrigation guarantee capability is one of important aspects in the cultivated land quality monitoring and evaluation. In the current cultivated land quality monitoring processing based on field survey, the irrigation rate need much human resources investment in long investigation process. This study choses Beijing-Tianjin-Hebei as study region, taking the 1 km × 1 km grid size of cultivated land unit with a winter wheat-summer maize double cropping system as study object. A new irrigation capacity evaluation index based on the ratio of the annual irrigation requirement retrieved from MODIS data and the actual quantity of irrigation was proposed. With the years of monitoring results the irrigation guarantee capability of study area was evaluated comprehensively. The change trend of the irrigation guarantee capability index (IGCI) with the agricultural drought disaster area in rural statistical yearbook of Beijing-Tianjin-Hebei area was generally consistent. The average of IGCI value, the probability of irrigation-guaranteed year and the weighted average which controlled by the irrigation demand index were used and compared in this paper. The experiment results indicate that the classification result from the present method was close to that from irrigation probability in the gradation on agriculture land quality in 2012, with overlap of 73% similar units. The method of monitoring and evaluation of cultivated land IGCI proposed in this paper has a potential in cultivated land quality level monitoring and evaluation in China. Key words: remote sensing, evapotranspiration, MODIS cultivated land quality, irrigation guarantee capability Authors: Chao Zhang, Jianxi Huang, Li Li, Hongshuo Wang, Dehai Zhu China Agricultural University zhangchaobj@gmail.com

  2. Implementation of efficient irrigation management for a sustainable agriculture. LIFE+ project IRRIMAN

    NASA Astrophysics Data System (ADS)

    Pérez-Pastor, Alejandro; Garcia-Vila, Margarita; Gamero-Ojeda, Pedro; Ascensión Carmona, M.°; Hernandez, David; José Alarcón, Juan; Nicolás, Emilio; Nortes, Pedro; Aroca, Antonio; María de la Rosa, Jose; Zornoza, Raúl; Faz, Ángel; Molina, Angel; Torres, Roque; Ruiz, Manuel; Calatrava, Javier

    2016-04-01

    In water scarcity areas, it must be highlighted that the maximum productions of the crops do not necessarily imply maximum profitability. Therefore, during the last years a special interest in the development of deficit irrigation strategies based on significant reductions of the seasonal ET without affecting production or quality has been observed. The strategies of regulated deficit irrigation (RDI) are based on the reduction of water supply during non critical periods, the covering of water needs during critical periods and maximizing, at the same time, the production by unit of applied water. But its success greatly depends on the adequate application of the water deficit and requires a continuous and precise control of the plant and soil water status to adjust the water supplies at every crop phenological period. The main objective of this project is to implement, demonstrate and disseminate a sustainable irrigation strategy based on deficit irrigation to promote its large scale acceptance and use in woody crops in Mediterranean agroecosystems, characterized by water scarcity, without affecting the quality standards demanded by exportation markets. With the adoption of this irrigation management we mean to ensure efficient use of water resources, improving quantitative water management, preserving high level of water quality and avoiding misuse and deterioration of water resources. The adoption of efficient irrigation will also lead to increments in water productivity, increments in the potential carbon fixation of the agroecosystem, and decrease energy costs of pressurized irrigation, together with mitigation and adaptation to climate change. The project will achieve the general objective by implication of farmers, irrigation communities, agronomists, industry, consultants, associations and public administration, by increments in social awareness for sustainable irrigation benefits, optimization of irrigation scheduling, improvements in technology, and

  3. Comparison of simulations of land-use specific water demand and irrigation water supply by MF-FMP and IWFM

    USGS Publications Warehouse

    Schmid, Wolfgang; Dogural, Emin; Hanson, Randall T.; Kadir, Tariq; Chung, Francis

    2011-01-01

    Two hydrologic models, MODFLOW with the Farm Process (MF-FMP) and the Integrated Water Flow Model (IWFM), are compared with respect to each model’s capabilities of simulating land-use hydrologic processes, surface-water routing, and groundwater flow. Of major concern among the land-use processes was the consumption of water through evaporation and transpiration by plants. The comparison of MF-FMP and IWFM was conducted and completed using a realistic hypothetical case study. Both models simulate the water demand for water-accounting units resulting from evapotranspiration and inefficiency losses and, for irrigated units, the supply from surface-water deliveries and groundwater pumpage. The MF-FMP simulates reductions in evapotranspiration owing to anoxia and wilting, and separately considers land-use-related evaporation and transpiration; IWFM simulates reductions in evapotranspiration related to the depletion of soil moisture. The models simulate inefficiency losses from precipitation and irrigation water applications to runoff and deep percolation differently. MF-FMP calculates the crop irrigation requirement and total farm delivery requirement, and then subtracts inefficiency losses from runoff and deep percolation. In IWFM, inefficiency losses to surface runoff from irrigation and precipitation are computed and subtracted from the total irrigation and precipitation before the crop irrigation requirement is estimated. Inefficiency losses in terms of deep percolation are computed simultaneously with the crop irrigation requirement. The seepage from streamflow routing also is computed differently and can affect certain hydrologic settings and magnitudes ofstreamflow infiltration. MF-FMP assumes steady-state conditions in the root zone; therefore, changes in soil moisture within the root zone are not calculated. IWFM simulates changes in the root zone in both irrigated and non-irrigated natural vegetation. Changes in soil moisture are more significant for non-irrigated

  4. Estimated freshwater withdrawals in Washington, 2010

    USGS Publications Warehouse

    Lane, Ron C.; Welch, Wendy B.

    2015-03-18

    The amount of public- and self-supplied water used for domestic, irrigation, livestock, aquaculture, industrial, mining, and thermoelectric power was estimated for state, county, and eastern and western regions of Washington during calendar year 2010. Withdrawals of freshwater for offstream uses were estimated to be about 4,885 million gallons per day. The total estimated freshwater withdrawals for 2010 was approximately 15 percent less than the 2005 estimate because of decreases in irrigation and thermoelectric power withdrawals.

  5. Greenhouse irrigation control system design based on ZigBee and fuzzy PID technology

    NASA Astrophysics Data System (ADS)

    Zhou, Bing; Yang, Qiliang; Liu, Kenan; Li, Peiqing; Zhang, Jing; Wang, Qijian

    In order to achieve the water demand information accurately detect of the greenhouse crop and its precision irrigation automatic control, this article has designed a set of the irrigated control system based on ZigBee and fuzzy PID technology, which composed by the soil water potential sensor, CC2530F256 wireless microprocessor, IAR Embedded Workbench software development platform. And the time of Irrigation as the output .while the amount of soil water potential and crop growth cycle as the input. The article depended on Greenhouse-grown Jatropha to verify the object, the results show that the system can irrigate timely and appropriately according to the soil water potential and water demend of the different stages of Jatropha growth , which basically meet the design requirements. Therefore, the system has broad application prospects in the amount of greenhouse crop of fine control irrigation.

  6. Land, irrigation water, greenhouse gas, and reactive nitrogen burdens of meat, eggs, and dairy production in the United States

    PubMed Central

    Eshel, Gidon; Shepon, Alon; Makov, Tamar; Milo, Ron

    2014-01-01

    Livestock production impacts air and water quality, ocean health, and greenhouse gas (GHG) emissions on regional to global scales and it is the largest use of land globally. Quantifying the environmental impacts of the various livestock categories, mostly arising from feed production, is thus a grand challenge of sustainability science. Here, we quantify land, irrigation water, and reactive nitrogen (Nr) impacts due to feed production, and recast published full life cycle GHG emission estimates, for each of the major animal-based categories in the US diet. Our calculations reveal that the environmental costs per consumed calorie of dairy, poultry, pork, and eggs are mutually comparable (to within a factor of 2), but strikingly lower than the impacts of beef. Beef production requires 28, 11, 5, and 6 times more land, irrigation water, GHG, and Nr, respectively, than the average of the other livestock categories. Preliminary analysis of three staple plant foods shows two- to sixfold lower land, GHG, and Nr requirements than those of the nonbeef animal-derived calories, whereas irrigation requirements are comparable. Our analysis is based on the best data currently available, but follow-up studies are necessary to improve parameter estimates and fill remaining knowledge gaps. Data imperfections notwithstanding, the key conclusion—that beef production demands about 1 order of magnitude more resources than alternative livestock categories—is robust under existing uncertainties. The study thus elucidates the multiple environmental benefits of potential, easy-to-implement dietary changes, and highlights the uniquely high resource demands of beef. PMID:25049416

  7. Estimation of the minimum food requirement using the respiration rate of medusa of Aurelia aurita in Sihwa Lake

    NASA Astrophysics Data System (ADS)

    Han, Chang-hoon; Chae, Jinho; Jin, Jonghyeok; Yoon, Wonduk

    2012-06-01

    We examined the respiration rate of Aurelia aurita medusae at 20 °C and 28 °C to evaluate minimum metabolic demands of medusae population in Sihwa Lake, Korea during summer. While weight specific respiration rates of medusae were constant and irrespective to the wet weight (8-220 g), they significantly varied in respect to temperatures ( p<0.001, 0.11±0.03 mg C g-1 of medusa d-1 at 20°C and 0.28±0.11 mg C g-1 of medusa d-1 at 28 °C in average, where Q 10 value was 2.62). The respiration rate of medusae was defined as a function of temperature ( T, °C) and body weight ( W, g) according to the equation, R=0.13×2.62( T-20)/10 W 0.93. Population minimum food requirement ( PMFR) was estimated from the respiration rate as 15.06 and 4.86 mg C m-3 d-1 in June and July, respectively. During this period, increase in bell diameter and wet weight was not significant ( p=1 in the both), suggesting that the estimated PMFR closely represented the actual food consumption in the field. From July to August, medusae grew significantly at 0.052 d-1, thus the amount of food ingested by medusae population in situ was likely to exceed the PMFR (1.27 mg C m-3 d-1) during the period. In conclusion, the medusae population of higher density during June and July had limited amount of food, while those of lower in July and August ingested enough food for growth.

  8. Estimation of protein requirement for maintenance in adult parrots (Amazona spp.) by determining inevitable N losses in excreta.

    PubMed

    Westfahl, C; Wolf, P; Kamphues, J

    2008-06-01

    Especially in older pet birds, an unnecessary overconsumption of protein--presumably occurring in human custody--should be avoided in view of a potential decrease in the excretory organs' (liver, kidney) efficiency. Inevitable nitrogen (N)-losses enable the estimation of protein requirement for maintenance, because these losses have at least to be replaced to maintain N equilibrium. To determine the inevitable N losses in excreta of adult amazons (Amazona spp.), a frugivor-granivorous avian species from South America, adult amazons (n = 8) were fed a synthetic nearly N-free diet (in dry matter; DM: 37.8% starch, 26.6% sugar, 11.0% fat) for 9 days. Throughout the trial, feed and water intake were recorded, the amounts of excreta were measured and analysed for DM and ash content, N (Dumas analysis) and uric acid (enzymatic-photometric analysis) content. Effects of the N-free diet on body weight (BW) and protein-related blood parameters were quantified and compared with data collected during a previous 4-day period in which a commercial seed mixture was offered to the birds. After feeding an almost N-free diet for 9 days, under the conditions of a DM intake (20.1 g DM/bird/day) as in seeds and digestibility of organic matter comparable with those when fed seeds (82% and 76% respectively), it was possible to quantify the inevitable N losses via excrements to be 87.2 mg/bird/day or 172.5 mg/kg BW(0.75)/day. Assuming a utilization coefficient of 0.57 this leads to an estimated protein need of approximately 1.9 g/kg BW(0.75)/day (this value does not consider further N losses via feathers and desquamated cells; with the prerequisite that there is a balanced amino acid pattern).

  9. Dietary energy requirements in relatively healthy maintenance hemodialysis patients estimated from long-term metabolic studies1

    PubMed Central

    Shah, Anuja; Bross, Rachelle; Shapiro, Bryan B; Morrison, Gillian; Kopple, Joel D

    2016-01-01

    Background: Studies that examined dietary energy requirements (DERs) of patients undergoing maintenance hemodialysis (MHD) have shown mixed results. Many studies reported normal DERs, but some described increased energy needs. DERs in MHD patients have been estimated primarily from indirect calorimetry and from nitrogen balance studies. The present study measured DERs in MHD patients on the basis of their dietary energy intake and changes in body composition. Objective: This study assessed DERs in MHD patients who received a constant energy intake while changes in their body composition were measured. Design: Seven male and 6 female sedentary, clinically stable MHD patients received a constant mean (±SD) energy intake for 92.2 ± 7.9 d while residing in a metabolic research ward. Changes in fat and fat-free mass, measured by dual-energy X-ray absorptiometry, were converted to calorie equivalents and added to energy intake to calculate energy requirements. Results: The average DER was 31 ± 3 kcal · kg−1 · d−1 calculated from energy intake and change in fat and fat-free calories, which was 28 ± 197 kcal/d over the 92 d of the study. DERs of MHD patients correlated strongly with their body weight (r = 0.81, P = 0.002) and less closely with their measured resting energy expenditure expressed as kcal/d (r = 0.69, P = 0.01). Although the average observed DER in MHD patients was similar to published estimated values for normal sedentary individuals of similar age and sex, there was wide variability in DER among individual patients (range: 26–36 kcal · kg−1 · d−1). Conclusions: Average DERs of sedentary, clinically stable patients receiving MHD are similar to those of sedentary normal individuals. Our data do not support the theory that MHD patients have increased DERs. Due to the high variability in DERs, careful monitoring of the nutritional status of individual MHD patients is essential. This trial was registered at clinicaltrials.gov as NCT02194114

  10. Remotely sensed spatio-temporal trends of irrigation agriculture in northwestern India

    NASA Astrophysics Data System (ADS)

    Cela Diaz, F.; Siegfried, T. U.; Vasquez, V.; Pollard, B. S.; Temimi, M.; Narula, K. K.; Lall, U.

    2009-12-01

    Irrigated agricultural production plays a key role in covering the world’s food demand. Its importance will grow in the future given increasing population numbers and uncertain climate. Irrigation, however, has also a major impact on water resources, esp. in the drylands on the planet. For example, most of the large-scale problems of aquifer mining can be linked to groundwater-irrigated agriculture. South Asia is one of these regions of concern where roughly 40 percent of the total global groundwater irrigated area is located. In India, almost half of the total agricultural area is irrigated and it is estimated that groundwater irrigation in the country sustains 27 million ha. Esp. in the northwestern part of the country, water tables are falling at increasing rates that give rise to concern about the future viability of irrigation there. Since the majority of food grains in India are produced in that region, this development is a direct threat to the national food security with potentially global implications. We present a novel remote sensing approach to map the temporal development of irrigated agriculture at large spatial scales with high accuracy. We use time series data from the Moderate Resolution Imaging Spectroradiometer (MODIS) on NDVI and surface temperature as well as high-resolution precipitation data from the Indian Meteorological Department from 2000 - 2008 and ancillary data for our supervised classification approach. A cascade of classifiers was chosen to deal with the problem of obtaining labeled examples. A first stage classifier uses large regions of known irrigated and non-irrigated areas to learn a rough estimate of the multi-dimensional time series signature on variables of interest in non-irrigated areas. An estimate of the probability of non-irrigation is generated and passed to a second stage classifier along with the variables used to derive it. The second stage classifier is trained with a small dataset of very high quality estimates

  11. Mapping crop coefficients in irrigated areas from Landsat TM images

    NASA Astrophysics Data System (ADS)

    D'Urso, Guido; Menenti, Massimo

    1995-11-01

    It is well known that reflectance of Earth surface largely depends upon amount of biomass, crop type, development stage, ground coverage. The knowledge of these parameters -- together with groundbased meteorological data -- allows for the estimate of crop water requirements and their spatial distribution. Recent research has shown the possibility of using multispectral satellite images in combination with other information for mapping crop coefficients in irrigated areas. This approach is based on the assumption that crop coefficients (Kc) are greatly influenced by canopy development and vegetation fractional ground cover; since these parameters directly affect the reflectance of cropped areas, it is possible to establish a correlation between multispectral measurements of canopies reflectance and the corresponding Kc values. Within this frame, two different approaches may be applied: (1) definition of spectral classes corresponding to different crop coefficient values and successive supervised classification for the derivation of crop coefficients maps; (2) use of analytical relationships between the surface reflectance and the corresponding values of vegetation parameters, i.e., the leaf area index, the albedo and the surface roughness, needed for the calculation of the potential evapotranspiration according to the combination type equation. The two different techniques are discussed with reference to the results of their application to specific case-studies. The aim of this report is to illustrate the suitability of remote sensing techniques as an operational tool for assessing crop water demand at regional scale.

  12. Opportunities for woody crop production using treated wastewater in Egypt. II. Irrigation strategies.

    PubMed

    Evett, Steven R; Zalesny, Ronald S; Kandil, Nabil F; Stanturf, John A; Soriano, Chris

    2011-01-01

    An Egyptian national program targets annual reuse of 2.4 billion m3 of treated wastewater (TWW) to irrigate 84,000 ha of manmade forests in areas close to treatment plants and in the desert. To evaluate the feasibility of such afforestation efforts, we describe information about TWW irrigation strategies based on (1) water use of different tree species, (2) weather conditions in different climate zones of Egypt, (3) soil types and available irrigation systems, and (4) the requirement to avoid deep percolation losses that could lead to groundwater contamination. We conclude that drip irrigation systems are preferred, that they should in most cases use multiple emitters per tree in order to increase wetted area and decrease depth of water penetration, that deep rooting should be encouraged, and that in most situations irrigation system automation is desirable to achieve several small irrigations per day in order to avoid deep percolation losses. We describe directed research necessary to fill knowledge gaps about depth of rooting of different species in sandy Egyptian soils and environments, tree crop coefficients needed for rational irrigation scheduling, and depth of water penetration under different irrigation system designs. A companion paper addresses recommendations for afforestation strategies (see Zalesny et al. 2011, this issue).

  13. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    NASA Astrophysics Data System (ADS)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  14. Modeling irrigation behavior in groundwater systems

    NASA Astrophysics Data System (ADS)

    Foster, Timothy; Brozović, Nicholas; Butler, Adrian P.

    2014-08-01

    Integrated hydro-economic models have been widely applied to water management problems in regions of intensive groundwater-fed irrigation. However, policy interpretations may be limited as most existing models do not explicitly consider two important aspects of observed irrigation decision making, namely the limits on instantaneous irrigation rates imposed by well yield and the intraseasonal structure of irrigation planning. We develop a new modeling approach for determining irrigation demand that is based on observed farmer behavior and captures the impacts on production and water use of both well yield and climate. Through a case study of irrigated corn production in the Texas High Plains region of the United States we predict optimal irrigation strategies under variable levels of groundwater supply, and assess the limits of existing models for predicting land and groundwater use decisions by farmers. Our results show that irrigation behavior exhibits complex nonlinear responses to changes in groundwater availability. Declining well yields induce large reductions in the optimal size of irrigated area and irrigation use as constraints on instantaneous application rates limit the ability to maintain sufficient soil moisture to avoid negative impacts on crop yield. We demonstrate that this important behavioral response to limited groundwater availability is not captured by existing modeling approaches, which therefore may be unreliable predictors of irrigation demand, agricultural profitability, and resilience to climate change and aquifer depletion.

  15. Potential perchlorate exposure from Citrus sp. irrigated with contaminated water.

    PubMed

    Sanchez, C A; Krieger, R I; Khandaker, N R; Valentin-Blasini, L; Blount, B C

    2006-05-10

    Citrus produced in the southwestern United States is often irrigated with perchlorate-contaminated water. This irrigation water includes Colorado River water which is contaminated with perchlorate from a manufacturing plant previously located near the Las Vegas Wash, and ground water from wells in Riverside and San Bernardino counties of California which are affected by a perchlorate plume associated with an aerospace facility once located near Redlands, California. Studies were conducted to evaluate the uptake and distribution of perchlorate in citrus irrigated with contaminated water, and estimate potential human exposure to perchlorate from the various citrus types including lemon (Citrus limon), grapefruit (Citrus paradise), and orange (Citrus sinensis) produced in the region. Perchlorate concentrations ranged from less than 2-9 microg/L for Colorado River water and from below detection to approximately 18 microg/L for water samples from wells used to irrigate citrus. Destructive sampling of lemon trees produced with Colorado River water show perchlorate concentrations larger in the leaves (1835 microg/kg dry weight (dw)) followed by the fruit (128 microg/kg dw). Mean perchlorate concentrations in roots, trunk, and branches were all less than 30 microg/kg dw. Fruit pulp analyzed in the survey show perchlorate concentrations ranged from below detection limit to 38 microg/kg fresh weight (fw), and were related to the perchlorate concentration of irrigation water. Mean hypothetical exposures (mug/person/day) of children and adults from lemons (0.005 and 0.009), grapefruit (0.03 and 0.24), and oranges (0.51 and 1.20) were estimated. These data show that potential perchlorate exposures from citrus in the southwestern United States are negligible relative to the reference dose recommended by the National Academy of Sciences.

  16. Nebraska's groundwater legacy: Nitrate contamination beneath irrigated cropland

    PubMed Central

    Exner, Mary E; Hirsh, Aaron J; Spalding, Roy F

    2014-01-01

    A 31 year record of ∼44,000 nitrate analyses in ∼11,500 irrigation wells was utilized to depict the decadal expansion of groundwater nitrate contamination (N ≥ 10 mg/L) in the irrigated corn-growing areas of eastern and central Nebraska and analyze long-term nitrate concentration trends in 17 management areas (MAs) subject to N fertilizer and budgeting requirements. The 1.3 M contaminated hectares were characterized by irrigation method, soil drainage, and vadose zone thickness and lithology. The areal extent and growth of contaminated groundwater in two predominately sprinkler-irrigated areas was only ∼20% smaller beneath well-drained silt loams with thick clayey-silt unsaturated layers and unsaturated thicknesses >15 m (400,000 ha and 15,000 ha/yr) than beneath well and excessively well-drained soils with very sandy vadose zones (511,000 ha and 18,600 ha/yr). Much slower expansion (3700 ha/yr) occurred in the 220,000 contaminated hectares in the central Platte valley characterized by predominately gravity irrigation on thick, well-drained silt loams above a thin (∼5.3 m), sandy unsaturated zone. The only reversals in long-term concentration trends occurred in two MAs (120,500 ha) within this contaminated area. Concentrations declined 0.14 and 0.20 mg N/L/yr (p < 0.02) to ∼18.3 and 18.8 mg N/L, respectively, during >20 years of management. Average annual concentrations in 10 MAs are increasing (p < 0.05) and indicate that average nitrate concentrations in leachates below the root zone and groundwater concentrations have not yet reached steady state. While management practices likely have slowed increases in groundwater nitrate concentrations, irrigation and nutrient applications must be more effectively controlled to retain nitrate in the root zone. PMID:25558112

  17. Spent fuel disassembly hardware and other non-fuel bearing components: characterization, disposal cost estimates, and proposed repository acceptance requirements

    SciTech Connect

    Luksic, A.T.; McKee, R.W.; Daling, P.M.; Konzek, G.J.; Ludwick, J.D.; Purcell, W.L.

    1986-10-01

    There are two categories of waste considered in this report. The first is the spent fuel disassembly (SFD) hardware. This consists of the hardware remaining after the fuel pins have been removed from the fuel assembly. This includes end fittings, spacer grids, water rods (BWR) or guide tubes (PWR) as appropriate, and assorted springs, fasteners, etc. The second category is other non-fuel-bearing (NFB) components the DOE has agreed to accept for disposal, such as control rods, fuel channels, etc., under Appendix E of the standard utiltiy contract (10 CFR 961). It is estimated that there will be approximately 150 kg of SFD and NFB waste per average metric ton of uranium (MTU) of spent uranium. PWR fuel accounts for approximately two-thirds of the average spent-fuel mass but only 50 kg of the SFD and NFB waste, with most of that being spent fuel disassembly hardware. BWR fuel accounts for one-third of the average spent-fuel mass and the remaining 100 kg of the waste. The relatively large contribution of waste hardware in BWR fuel, will be non-fuel-bearing components, primarily consisting of the fuel channels. Chapters are devoted to a description of spent fuel disassembly hardware and non-fuel assembly components, characterization of activated components, disposal considerations (regulatory requirements, economic analysis, and projected annual waste quantities), and proposed acceptance requirements for spent fuel disassembly hardware and other non-fuel assembly components at a geologic repository. The economic analysis indicates that there is a large incentive for volume reduction.

  18. The use and re-use of unsustainable groundwater for irrigation: a global budget

    NASA Astrophysics Data System (ADS)

    Grogan, Danielle S.; Wisser, Dominik; Prusevich, Alex; Lammers, Richard B.; Frolking, Steve

    2017-03-01

    Depletion of groundwater aquifers across the globe has become a significant concern, as groundwater is an important and often unsustainable source of irrigation water. Simultaneously, the field of water resource management has seen a lively debate over the concepts and metrics used to assess the downstream re-use of agricultural runoff, with most studies focusing on surface water balances. Here, we bring these two lines of research together, recognizing that depletion of aquifers leads to large amounts of groundwater entering surface water storages and flows by way of agricultural runoff. While it is clear that groundwater users will be impacted by reductions in groundwater availability, there is a major gap in our understanding of potential impacts downstream of groundwater pumping locations. We find that the volume of unsustainable groundwater that is re-used for irrigation following runoff from agricultural systems is nearly as large as the volume initially extracted from reservoirs for irrigation. Basins in which the volume of irrigation water re-used is equal to or greater than the volume of water initially used (which is possible due to multiple re-use of the same water) contain 33 million hectares of irrigated land and are home to 1.3 billion people. Some studies have called for increasing irrigation efficiency as a solution to water shortages. We find that with 100% irrigation efficiency, global demand for unsustainable groundwater is reduced by 52%, but not eliminated. In many basins, increased irrigation efficiency leads to significantly decreased river low flows; increasing irrigation efficiency to 70% globally decreases total surface water supplies by ∽600 km3 yr‑1. These findings illustrate that estimates of aquifer depletion alone underestimate the importance of unsustainable groundwater to sustaining surface water systems and irrigated agriculture.

  19. Agro-ecosystems impact malaria prevalence: large-scale irrigation drives vector population in western Ethiopia

    PubMed Central

    2013-01-01

    Background Development strategies in Ethiopia have largely focused on the expansion of irrigated agriculture in the last decade to reduce poverty and promote economic growth. However, such irrigation schemes can worsen the socio-economic state by aggravating the problem of mosquito-borne diseases. In this study, the effect of agro-ecosystem practices on malaria prevalence and the risk of malaria transmission by the primary vector mosquito, Anopheles arabiensis, in Ethiopia were investigated. Methods In three villages in western Ethiopia practising large-scale sugarcane irrigation, traditional smallholder irrigation and non-irrigated farming, cross-sectional parasitological surveys were conducted during the short rains, after the long rains and during the dry season. Entomological surveys were undertaken monthly (February 2010-January 2011) in each village using light traps, pyrethrum spray collections and artificial pit shelters. Results Malaria prevalence and the risk of transmission by An. arabiensis assessed by the average human biting rate, mean sporozoite rate and estimated annual entomological inoculation rate were significantly higher in the irrigated sugarcane agro-ecosystem compared to the traditionally irrigated and non-irrigated agro-ecosystems. The average human biting rate was significantly elevated by two-fold, while the mean sporozoite rate was 2.5-fold higher, and the annual entomological inoculation rate was 4.6 to 5.7-fold higher in the irrigated sugarcane compared to the traditional and non-irrigated agro-ecosystems. Active irrigation clearly affected malaria prevalence by increasing the abundance of host seeking Anopheles mosquitoes year-round and thus increasing the risk of infective bites. The year-round presence of sporozoite-infected vectors due to irrigation practices was found to strengthen the coupling between rainfall and risk of malaria transmission, both on- and off-season. Conclusion This study demonstrates the negative impact of

  20. Root characters of Lucerne (Medicago sativa L.) under rain-fed and irrigated conditions

    NASA Astrophysics Data System (ADS)

    Raza, Amir; Moghaddam, Ali; Loiskandl, Willibald; Friedel, Jürgen K.; Himmelbauer, Margaritta; Bodner, Gernot

    2010-05-01

    In organic farming, only limited use of selected fertilizers is allowed and plants have to meet their nutritional requirements through mobilization of nutrients provided by organic amendments, crop residue input within the rotation, and released from the soil reservoir. The crop varieties used in such systems shall be efficient in nutrient and water uptake. Root length, surface area and depth distribution are important root characters that demonstrate a potential for nutrient and water uptake. Detailed information on these root characters is lacking for Lucerne, one of the most important legume crop widely used in organic farming. A study was designed to compare three lucerne cultivars from different geographical origin viz. Niva, Mohajaren and Sitel for their root characters in two different sets of experiments planted under rain-fed and irrigated conditions in 2007. The irrigated experiment should provide root traits under potential growth conditions while the rain-fed experiment should highlight root characteristics under water limited conditions. The experiments were conducted on fields of the research station Groß Enzersdorf of the University or Natural Resources and Applied Life Sciences(BOKU), Vienna, Austria. Both experiments were laid out in α-lattice design with two replicates. At the end of vegetation period, root samples were taken for every 30 cm soil profile depth till the depth of 90 cm. From each plot, one sample was taken on the row and two samples between the rows using a cylindrical auger for sampling depth of 0 - 30, 30 - 60 and 60 - 90 cm. Root samples were washed out and analyzed with WinRhizo software to determine root length, surface area, root volume and average diameter. Results revealed that cultivars under rain-fed conditions had higher root length density and surface area than under irrigated conditions. The differences in root parameters estimated for each of the Lucerne cultivars are discussed.

  1. Effects of irrigation pumping on the ground-water system in Newton and Jasper Counties, Indiana

    USGS Publications Warehouse

    Bergeron, Marcel P.

    1981-01-01

    Flow in the ground-water system in Newton and Jasper Counties, Indiana, was simulated in a quasi-three-dimensional model in a study of irrigation use of ground water in the two counties. The ground-water system consists of three aquifers: (1) a surficial coarse sand aquifer known as the Kankakee aquifer, (2) a limestone and dolomite bedrock aquifer, and (3) a sand and gravel bedrock valley aquifer. Irrigation pumping, derived primarily from the bedrock, was estimated to be 34.8 million gallons per day during peak irrigation in 1977. Acreage irrigated with ground water is estimated to be 6,200 acres. A series of model experiments was used to estimate the effects of irrigation pumping on ground-water levels and streamflow. Model analysis indicates that a major factor controlling drawdown due to pumping in the bedrock aquifer are the variations in thickness and in vertical hydraulic conductivity in a semiconfining unit overlying the bedrock. Streamflow was not significantly reduced by hypothetical withdrawals of 12.6 million gallons per day from the bedrock aquifer and 10.3 million gallons per day in the Kankakee aquifer. Simulation of water-level recovery after irrigation pumping indicated that a 5-year period of alternating between increasing pumping and recovery will not cause serious problems of residual drawdown or ground-water mining. 

  2. Ground-water resources of Riverton irrigation project area, Wyoming

    USGS Publications Warehouse

    Morris, Donald Arthur; Hackett, O.M.; Vanlier, K.E.; Moulder, E.A.; Durum, W.H.

    1959-01-01

    streams, drains, or lakes; by pumping or flow of wells; or by flow of springs. Waterlogging and the associated development of saline soils are common in parts of the Riverton irrigation project and adjacent irrigated land. The waterlogging is in part the result of the infiltration of irrigation water in excess of the capacity of the aquifers to store and transmit this added recharge. The solution of the drainage problems involves the consideration of a number of factors, some of which are inadequately known in some parts of the area and require further investigation before fully effective drainage measures can be designed. The results of an aquifer test to determine the hydrologic characteristics of the Wind River formation at Riverton indicate a transmissibility of 10,000 gallons per day per foot (10,000 gpd per ft) and a storage coefficient of 2 x 10-4. The results of the test provide a part of the necessary foundation for the solution of present and future water-supply problems at Riverton and throughout the project area. Water from shallow aquifers in irrigated tracts in the Riverton irrigation project area generally contains large amounts of dissolved solids that were leached from the soil and rocks by infiltrating irrigation water. However, wells tapping beds that receive considerable recharge from influent canal and drain seepage yield water of relatively low mineralizatoin. Dilute water is obtained also from some shallow wells in the alluvial bottom lands and on low stream terraces that border the Wind Rover. Water from deep aquifers generally is more dilute than that from shallow aquifers. However, ground water from the deep aquifers, unmixed with irrigation water, generally has a percent sodium greater than 80. Analyses of salt crusts on the ground surface in low areas that are affected by effluent seepage and a high water table show predominance of sodium sulfate salinity, and from determinations of the water-soluble and acid-soluble substances in several

  3. Potentials and problems of sustainable irrigation with water high in salts

    NASA Astrophysics Data System (ADS)

    Ben-Gal, Alon

    2015-04-01

    Water scarcity and need to expand agricultural productivity have led to ever growing utilization of poor quality water for irrigation of crops. Almost in all cases, marginal or alternative water sources for irrigation contain relatively high concentrations of dissolved salts. When salts are present, irrigation water management, especially in the dry regions where water requirements are highest, must consider leaching in addition to crop evapotranspiration requirements. Leaching requirements for agronomic success are calculable and functions of cli