Science.gov

Sample records for irrigation requirement estimation

  1. Irrigation Requirement Estimation Using Vegetation Indices and Inverse Biophysical Modeling

    NASA Technical Reports Server (NTRS)

    Bounoua, Lahouari; Imhoff, Marc L.; Franks, Shannon

    2010-01-01

    We explore an inverse biophysical modeling process forced by satellite and climatological data to quantify irrigation requirements in semi-arid agricultural areas. We constrain the carbon and water cycles modeled under both equilibrium, balance between vegetation and climate, and non-equilibrium, water added through irrigation. We postulate that the degree to which irrigated dry lands vary from equilibrium climate conditions is related to the amount of irrigation. The amount of water required over and above precipitation is considered as an irrigation requirement. For July, results show that spray irrigation resulted in an additional amount of water of 1.3 mm per occurrence with a frequency of 24.6 hours. In contrast, the drip irrigation required only 0.6 mm every 45.6 hours or 46% of that simulated by the spray irrigation. The modeled estimates account for 87% of the total reported irrigation water use, when soil salinity is not important and 66% in saline lands.

  2. Stochastic physical ecohydrologic-based model for estimating irrigation requirement

    NASA Astrophysics Data System (ADS)

    Alizadeh, H.; Mousavi, S. J.

    2012-04-01

    Climate uncertainty affects both natural and managed hydrological systems. Therefore, methods which could take this kind of uncertainty into account are of primal importance for management of ecosystems, especially agricultural ecosystems. One of the famous problems in these ecosystems is crop water requirement estimation under climatic uncertainty. Both deterministic physically-based methods and stochastic time series modeling have been utilized in the literature. Like other fields of hydroclimatic sciences, there is a vast area in irrigation process modeling for developing approaches integrating physics of the process and statistics aspects. This study is about deriving closed-form expressions for probability density function (p.d.f.) of irrigation water requirement using a stochastic physically-based model, which considers important aspects of plant, soil, atmosphere and irrigation technique and policy in a coherent framework. An ecohydrologic stochastic model, building upon the stochastic differential equation of soil moisture dynamics at root zone, is employed as a basis for deriving the expressions considering temporal stochasticity of rainfall. Due to distinguished nature of stochastic processes of micro and traditional irrigation applications, two different methodologies have been used. Micro-irrigation application has been modeled through dichotomic process. Chapman-Kolomogrov equation of time integral of the dichotomic process for transient condition has been solved to derive analytical expressions for probability density function of seasonal irrigation requirement. For traditional irrigation, irrigation application during growing season has been modeled using a marked point process. Using the renewal theory, probability mass function of seasonal irrigation requirement, which is a discrete-value quantity, has been analytically derived. The methodology deals with estimation of statistical properties of the total water requirement in a growing season that

  3. Estimating Irrigation Water Requirements using MODIS Vegetation Indices and Inverse Biophysical Modeling

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Bounoua, Lahouari; Harriss, Robert; Harriss, Robert; Wells, Gordon; Glantz, Michael; Dukhovny, Victor A.; Orlovsky, Leah

    2007-01-01

    An inverse process approach using satellite-driven (MODIS) biophysical modeling was used to quantitatively assess water resource demand in semi-arid and arid agricultural lands by comparing the carbon and water flux modeled under both equilibrium (in balance with prevailing climate) and non-equilibrium (irrigated) conditions. Since satellite observations of irrigated areas show higher leaf area indices (LAI) than is supportable by local precipitation, we postulate that the degree to which irrigated lands vary from equilibrium conditions is related to the amount of irrigation water used. For an observation year we used MODIS vegetation indices, local climate data, and the SiB2 photosynthesis-conductance model to examine the relationship between climate and the water stress function for a given grid-cell and observed leaf area. To estimate the minimum amount of supplemental water required for an observed cell, we added enough precipitation to the prevailing climatology at each time step to minimize the water stress function and bring the soil to field capacity. The experiment was conducted on irrigated lands on the U.S. Mexico border and Central Asia and compared to estimates of irrigation water used.

  4. Estimating Irrigation Water Requirements using MODIS Vegetation Indices and Inverse Biophysical Modeling

    NASA Technical Reports Server (NTRS)

    Imhoff, Marc L.; Bounoua, Lahouari; Harriss, Robert; Harriss, Robert; Wells, Gordon; Glantz, Michael; Dukhovny, Victor A.; Orlovsky, Leah

    2007-01-01

    An inverse process approach using satellite-driven (MODIS) biophysical modeling was used to quantitatively assess water resource demand in semi-arid and arid agricultural lands by comparing the carbon and water flux modeled under both equilibrium (in balance with prevailing climate) and non-equilibrium (irrigated) conditions. Since satellite observations of irrigated areas show higher leaf area indices (LAI) than is supportable by local precipitation, we postulate that the degree to which irrigated lands vary from equilibrium conditions is related to the amount of irrigation water used. For an observation year we used MODIS vegetation indices, local climate data, and the SiB2 photosynthesis-conductance model to examine the relationship between climate and the water stress function for a given grid-cell and observed leaf area. To estimate the minimum amount of supplemental water required for an observed cell, we added enough precipitation to the prevailing climatology at each time step to minimize the water stress function and bring the soil to field capacity. The experiment was conducted on irrigated lands on the U.S. Mexico border and Central Asia and compared to estimates of irrigation water used.

  5. [Estimation model for water requirement of greenhouse tomato under drip irrigation].

    PubMed

    Liu, Hao; Sun, Jing-Sheng; Liang, Yuan-Yuan; Wang, Cong-Cong; Duan, Ai-Wang

    2011-05-01

    Based on the modified Penman-Monteith equation, and through the analysis of the relationships between crop coefficient and cumulative temperature, a new model for estimating the water requirement of greenhouse tomato under drip irrigation was built. The model was validated with the measured data of plant transpiration and soil evaporation in May 2-13 (flowering-fruit-developing stage) and June 9-20 (fruit-maturing stage) , 2009. This model was suitable for the estimation of reference evapotranspiration (ET(0)) in greenhouse. The crop coefficient of greenhouse tomato was correlated as a quadratic function of cumulative temperature. The mean relative error between measured and estimated values was less than 10%, being able to estimate the water requirement of greenhouse tomato under drip irrigation.

  6. SEBAL Model Using to Estimate Irrigation Water Efficiency & Water Requirement of Alfalfa Crop

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2013-04-01

    The sustainability of irrigation is a complex and comprehensive undertaking, requiring an attention to much more than hydraulics, chemistry, and agronomy. A special combination of human, environmental, and economic factors exists in each irrigated region and must be recognized and evaluated. A way to evaluate the efficiency of irrigation water use for crop production is to consider the so-called crop-water production functions, which express the relation between the yield of a crop and the quantity of water applied to it or consumed by it. The term has been used in a somewhat ambiguous way. Some authors have defined the Crop-Water Production Functions between yield and the total amount of water applied, whereas others have defined it as a relation between yield and seasonal evapotranspiration (ET). In case of high efficiency of irrigation water use the volume of water applied is less than the potential evapotranspiration (PET), then - assuming no significant change of soil moisture storage from beginning of the growing season to its end-the volume of water may be roughly equal to ET. In other case of low efficiency of irrigation water use the volume of water applied exceeds PET, then the excess of volume of water applied over PET must go to either augmenting soil moisture storage (end-of-season moisture being greater than start-of-season soil moisture) or to runoff or/and deep percolation beyond the root zone. In presented contribution some results of a case study of estimation of biomass and leaf area index (LAI) for irrigated alfalfa by SEBAL algorithm will be discussed. The field study was conducted with aim to compare ground biomass of alfalfa at some irrigated fields (provided by agricultural farm) at Saratov and Volgograd Regions of Russia. The study was conducted during vegetation period of 2012 from April till September. All the operations from importing the data to calculation of the output data were carried by eLEAF company and uploaded in Fieldlook web

  7. Reduction of predictive uncertainty in estimating irrigation water requirement through multi-model ensembles and ensemble averaging

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Exbrayat, J.-F.; Kirby, M.; Viney, N. R.; Frede, H.-G.; Breuer, L.

    2014-11-01

    Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural vs. model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty is far more important than model parametric uncertainty to estimate irrigation water requirement. Using the Reliability Ensemble Averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.

  8. Reduction of predictive uncertainty in estimating irrigation water requirement through multi-model ensembles and ensemble averaging

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Exbrayat, J.-F.; Kirby, M.; Viney, N. R.; Frede, H.-G.; Breuer, L.

    2015-04-01

    Irrigation agriculture plays an increasingly important role in food supply. Many evapotranspiration models are used today to estimate the water demand for irrigation. They consider different stages of crop growth by empirical crop coefficients to adapt evapotranspiration throughout the vegetation period. We investigate the importance of the model structural versus model parametric uncertainty for irrigation simulations by considering six evapotranspiration models and five crop coefficient sets to estimate irrigation water requirements for growing wheat in the Murray-Darling Basin, Australia. The study is carried out using the spatial decision support system SPARE:WATER. We find that structural model uncertainty among reference ET is far more important than model parametric uncertainty introduced by crop coefficients. These crop coefficients are used to estimate irrigation water requirement following the single crop coefficient approach. Using the reliability ensemble averaging (REA) technique, we are able to reduce the overall predictive model uncertainty by more than 10%. The exceedance probability curve of irrigation water requirements shows that a certain threshold, e.g. an irrigation water limit due to water right of 400 mm, would be less frequently exceeded in case of the REA ensemble average (45%) in comparison to the equally weighted ensemble average (66%). We conclude that multi-model ensemble predictions and sophisticated model averaging techniques are helpful in predicting irrigation demand and provide relevant information for decision making.

  9. Irrigation Requirement Estimation using MODIS Vegetation Indices and Inverse Biophysical Modeling; A Case Study for Oran, Algeria

    NASA Technical Reports Server (NTRS)

    Bounoua, L.; Imhoff, M.L.; Franks, S.

    2008-01-01

    the study site, for the month of July, spray irrigation resulted in an irrigation amount of about 1.4 mm per occurrence with an average frequency of occurrence of 24.6 hours. The simulated total monthly irrigation for July was 34.85 mm. In contrast, the drip irrigation resulted in less frequent irrigation events with an average water requirement about 57% less than that simulated during the spray irrigation case. The efficiency of the drip irrigation method rests on its reduction of the canopy interception loss compared to the spray irrigation method. When compared to a country-wide average estimate of irrigation water use, our numbers are quite low. We would have to revise the reported country level estimates downward to 17% or less

  10. Estimation of irrigation requirement for wheat in the southern Spain by using a soil water balance remote sensing driven

    NASA Astrophysics Data System (ADS)

    González, Laura; Bodas, Vicente; Espósito, Gabriel; Campos, Isidro; Aliaga, Jerónimo; Calera, Alfonso

    2013-04-01

    This paper aims to evaluate the use of a remote sensing-driven soil water balance to estimate irrigation water requirements of wheat. The applied methodology is based on the approach of the dual crop coefficient proposed in the FAO-56 manual (Allen et al., 1998), where the basal crop coefficient is derived from a time series of remote sensing multispectral imagery which describes the growing cycle of wheat. This approach allows the estimation of the evapotranspiration (ET) and irrigation water requirements by means of a soil water balance in the root layer. The assimilation of satellite data into the FAO-56 soil water balance is based on the relationship between spectral vegetation indices (VI) and the transpiration coefficient (Campos et al., 2010; Sánchez et al., 2010). Two approaches to plant transpiration estimation were analyzed, the basal crop coefficient methodology and the transpiration coefficient approach described in the FAO-56 (Allen et al., 1998) and FAO-66 (Steduto et al., 2012) manuals respectively. The model is computed at daily time step and the results analyzed in this work are the net irrigation water requirements and water stress estimates. Analysis of results has been done by comparison with irrigation data (irrigation dates and volume applied) provided by farmers in 28 plots of wheat for the period 2004-2012 in the Spanish region of La Mancha, southern Spain, under different meteorological conditions. Total irrigation dose during the growing season varies from 200 mm to 700 mm. In some of plots soil moisture sensors data are available, which allowed the comparison with modeled soil moisture. Net irrigation water requirements estimated by the proposed model shows a good agreement with data, having in account the efficiency of the different irrigation systems. Despite the irrigation doses are generally greater than irrigation water requirements, the crops could suffer water stress periods during the campaign, because real irrigation timing and

  11. A synergistic approach using optical and SAR data to estimate crop's irrigation requirements

    NASA Astrophysics Data System (ADS)

    Rolim, João.; Navarro Ferreira, Ana; Saraiva, Cátia; Catalão, João.

    2016-10-01

    A study conducted in the scope of the Alcantara initiative in Angola shown that optical and SAR images allows the estimation of crop's irrigation requirements (CIR) based on a soil water balance model (IrrigRotation). The methodology was applied to east central Portugal, to evaluate its transferability in cases of different climatic conditions and crop types. SPOT-5 Take-5 and Sentinel-1A data from April to September 2015 are used to generate NDVI and backscattering maize crop time series. Both time series are then correlated and a linear regression equation is computed for some maize parcels identified in the test area. Next, basal crop coefficients (Kcb) are determined empirically from the Kcb-NDVI relationships applied within the PLEIADeS project and also from the Kcb-SAR relationships retrieved from the linear fit of both EO data for other maize parcels. These Kcb allow to overcome a major drawback related to the use of the FAO tabulated Kcb, only available for the initial, mid and late season of a certain crop type. More frequent Kcb values also allow a better identification of the crop's phenological stages lengths. CIR estimated from EO data are comparable to the ones obtained with tabulated FAO 56 Kcb values for crops produced under standard conditions, while for crops produced in suboptimal conditions, EO data allow to improve the estimation of the CIR. Although CIR results are promising, further research is required in order to improve the Kcb initial and Kcb end values to avoid the overestimation of the CIR.

  12. WATER REQUIREMENT OF IRRIGATED GARLIC

    USDA-ARS?s Scientific Manuscript database

    A replicated field trial was conducted on the West side of the San Joaquin Valley to determine the crop coefficient and water requirements of irrigated garlic. Irrigation systems used included flood irrigation, subsurface drip irrigation, and surface drip irrigation. Irrigation levels were set at 5...

  13. Water Requirements Of Irrigated Garlic

    USDA-ARS?s Scientific Manuscript database

    A replicated field trial was conducted on the West side of the San Joaquin Valley to determine the crop coefficient and water requirements of irrigated garlic. Irrigation systems used included flood irrigation, subsurface drip irrigation, and surface drip irrigation. Irrigation levels were set at 5...

  14. Energy requirements in pressure irrigation systems

    NASA Astrophysics Data System (ADS)

    Sánchez, R.; Rodríguez-Sinobas, L.; Juana, L.; Laguna, F. V.; Castañón, G.; Gil, M.; Benítez, J.

    2012-04-01

    Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure -sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems and their management possibilities. The work includes all processes involved from the diversion of water into irrigation specific infrastructure to water discharge by the emitters installed on the crop fields. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. It has been applied to extensive and intensive crop systems, such us extensive winter crops, summer crops and olive trees, fruit trees and vineyards and intensive horticulture in greenhouses. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity.

  15. A site-specific agricultural water requirement and footprint estimator (SPARE:WATER 1.0) for irrigation agriculture

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-01-01

    The water footprint accounting method addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). Most of current water footprint assessments focus on global to continental scale. We therefore developed the spatial decision support system SPARE:WATER that allows to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirement and water footprints are assessed on a grid-basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume in-efficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water can be defined as the water to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008 with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional water footprint assessments.

  16. Estimating Temperature Retrieval Accuracy Associated With Thermal Band Spatial Resolution Requirements for Center Pivot Irrigation Monitoring and Management

    NASA Astrophysics Data System (ADS)

    Ryan, R. E.; Irons, J. R.; Allen, R.; Spruce, J.; Underwood, L. W.; Pagnutti, M.

    2006-12-01

    This study explores the use of synthetic thermal center pivot irrigation scenes to estimate temperature retrieval accuracy for thermal remote sensed data, such as data acquired from current and proposed Landsat-like thermal systems. Center pivot irrigation is a common practice in the western United States and in other parts of the world where water resources are scarce. Wide-area ET (evapotranspiration) estimates and reliable water management decisions depend on accurate temperature information retrieval from remotely sensed data. Spatial resolution, sensor noise, and the temperature step between a field and its surrounding area impose limits on the ability to retrieve temperature information. Spatial resolution is an interrelationship between GSD (ground sample distance) and a measure of image sharpness, such as edge response or edge slope. Edge response and edge slope are intuitive, and direct measures of spatial resolution are easier to visualize and estimate than the more common Modulation Transfer Function or Point Spread Function. For these reasons, recent data specifications, such as those for the LDCM (Landsat Data Continuity Mission), have used GSD and edge response to specify spatial resolution. For this study, we have defined a 400 800 m diameter center pivot irrigation area with a large 25 K temperature step associated with a 300 K well-watered field surrounded by an infinite 325 K dry area. In this context, we defined the benchmark problem as an easily modeled, highly common stressing case. By parametrically varying GSD (30 240 m) and edge slope, we determined the number of pixels and field area fraction that meet a given temperature accuracy estimate for 400 m, 600 m, and 800 m diameter field sizes. Results of this project will help assess the utility of proposed specifications for the LDCM and other future thermal remote sensing missions and for water resource management.

  17. Estimating Temperature Retrieval Accuracy Associated With Thermal Band Spatial Resolution Requirements for Center Pivot Irrigation Monitoring and Management

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Irons, James; Spruce, Joseph P.; Underwood, Lauren W.; Pagnutti, Mary

    2006-01-01

    This study explores the use of synthetic thermal center pivot irrigation scenes to estimate temperature retrieval accuracy for thermal remote sensed data, such as data acquired from current and proposed Landsat-like thermal systems. Center pivot irrigation is a common practice in the western United States and in other parts of the world where water resources are scarce. Wide-area ET (evapotranspiration) estimates and reliable water management decisions depend on accurate temperature information retrieval from remotely sensed data. Spatial resolution, sensor noise, and the temperature step between a field and its surrounding area impose limits on the ability to retrieve temperature information. Spatial resolution is an interrelationship between GSD (ground sample distance) and a measure of image sharpness, such as edge response or edge slope. Edge response and edge slope are intuitive, and direct measures of spatial resolution are easier to visualize and estimate than the more common Modulation Transfer Function or Point Spread Function. For these reasons, recent data specifications, such as those for the LDCM (Landsat Data Continuity Mission), have used GSD and edge response to specify spatial resolution. For this study, we have defined a 400-800 m diameter center pivot irrigation area with a large 25 K temperature step associated with a 300 K well-watered field surrounded by an infinite 325 K dry area. In this context, we defined the benchmark problem as an easily modeled, highly common stressing case. By parametrically varying GSD (30-240 m) and edge slope, we determined the number of pixels and field area fraction that meet a given temperature accuracy estimate for 400-m, 600-m, and 800-m diameter field sizes. Results of this project will help assess the utility of proposed specifications for the LDCM and other future thermal remote sensing missions and for water resource management.

  18. Estimating Temperature Retrieval Accuracy Associated With Thermal Band Spatial Resolution Requirements for Center Pivot Irrigation Monitoring and Management

    NASA Technical Reports Server (NTRS)

    Ryan, Robert E.; Irons, James; Spruce, Joseph P.; Underwood, Lauren W.; Pagnutti, Mary

    2006-01-01

    This study explores the use of synthetic thermal center pivot irrigation scenes to estimate temperature retrieval accuracy for thermal remote sensed data, such as data acquired from current and proposed Landsat-like thermal systems. Center pivot irrigation is a common practice in the western United States and in other parts of the world where water resources are scarce. Wide-area ET (evapotranspiration) estimates and reliable water management decisions depend on accurate temperature information retrieval from remotely sensed data. Spatial resolution, sensor noise, and the temperature step between a field and its surrounding area impose limits on the ability to retrieve temperature information. Spatial resolution is an interrelationship between GSD (ground sample distance) and a measure of image sharpness, such as edge response or edge slope. Edge response and edge slope are intuitive, and direct measures of spatial resolution are easier to visualize and estimate than the more common Modulation Transfer Function or Point Spread Function. For these reasons, recent data specifications, such as those for the LDCM (Landsat Data Continuity Mission), have used GSD and edge response to specify spatial resolution. For this study, we have defined a 400-800 m diameter center pivot irrigation area with a large 25 K temperature step associated with a 300 K well-watered field surrounded by an infinite 325 K dry area. In this context, we defined the benchmark problem as an easily modeled, highly common stressing case. By parametrically varying GSD (30-240 m) and edge slope, we determined the number of pixels and field area fraction that meet a given temperature accuracy estimate for 400-m, 600-m, and 800-m diameter field sizes. Results of this project will help assess the utility of proposed specifications for the LDCM and other future thermal remote sensing missions and for water resource management.

  19. Agricultural Irrigation Demand Response Estimation Tool

    SciTech Connect

    Olsen, Daniel

    2014-02-01

    This program is used to model the energy demand of agricultural irrigation pumps, used to maintain soil moisture levels in irrigated fields. This modeling is accomplished using historical data from evapotranspirationmeasuring weather stations (from the California Irrigation Management Information System) as well as irrigation system characteristics for the field(s) to be modeled. The modelled energy demand is used to estimate the achievable demand response (DR) potential of the field(s), for use in assessing the value of the DR for the utility company. The program can accept input data with varying degrees of rigor, and estimate the uncertainty of the output accordingly.

  20. Utility of multi temporal satellite images for crop water requirements estimation and irrigation management in the Jordan Valley

    USDA-ARS?s Scientific Manuscript database

    Identifying the spatial and temporal distribution of crop water requirements is a key for successful management of water resources in the dry areas. Climatic data were obtained from three automated weather stations to estimate reference evapotranspiration (ETO) in the Jordan Valley according to the...

  1. Derivation of irrigation requirements for radiological impact assessments.

    PubMed

    Almahayni, Talal; Crout, Neil M J

    2016-11-01

    When assessing the radiological impacts of radioactive waste disposal, irrigation using groundwater contaminated with releases from the disposal system is a principal means of crop and soil contamination. In spite of their importance for radiological impact assessments, irrigation data are scarce and often associated with considerable uncertainty for several reasons including limited obligation to measure groundwater abstraction and differences in measuring methodologies. Further uncertainty arises from environmental (e.g. climate and landscape) change likely to occur during the assessment long time frame. In this paper, we derive irrigation data using the crop growth AquaCrop model relevant to a range of climates, soils and crops for use in radiological impact assessments. The AquaCrop estimates were compared with actual irrigation data reported in the literature and with estimates obtained from simple empirical methods proposed for use in radiological impact assessments. Further, the AquaCrop irrigation data were analysed using mixed effects modelling to investigate the effects of climate, soil and crop type on the irrigation requirement. Irrigation estimates from all models were within a reasonable range of the measured values. The AquaCrop estimates, however, were at the higher end of the range and higher than those from the empirical methods. Nevertheless, they may be more appropriate for conservative radiological assessments. The use of mixed effects modelling allowed for the characterisation of crop-specific variability in the irrigation data, and in contrast to the empirical methods, the AquaCrop and the mixed effects models accounted for the soil effect on the irrigation requirement. The approach presented in this paper is relevant for obtaining irrigation data for a specific site under different climatic conditions as well as for generic dose assessments. To the best of our knowledge, this is one of the most comprehensive analyses of irrigation data in

  2. Methods to estimate irrigated reference crop evapotranspiration - a review.

    PubMed

    Kumar, R; Jat, M K; Shankar, V

    2012-01-01

    Efficient water management of crops requires accurate irrigation scheduling which, in turn, requires the accurate measurement of crop water requirement. Irrigation is applied to replenish depleted moisture for optimum plant growth. Reference evapotranspiration plays an important role for the determination of water requirements for crops and irrigation scheduling. Various models/approaches varying from empirical to physically base distributed are available for the estimation of reference evapotranspiration. Mathematical models are useful tools to estimate the evapotranspiration and water requirement of crops, which is essential information required to design or choose best water management practices. In this paper the most commonly used models/approaches, which are suitable for the estimation of daily water requirement for agricultural crops grown in different agro-climatic regions, are reviewed. Further, an effort has been made to compare the accuracy of various widely used methods under different climatic conditions.

  3. Estimating irrigation water use in the humid eastern United States

    USGS Publications Warehouse

    Levin, Sara B.; Zarriello, Phillip J.

    2013-01-01

    Accurate accounting of irrigation water use is an important part of the U.S. Geological Survey National Water-Use Information Program and the WaterSMART initiative to help maintain sustainable water resources in the Nation. Irrigation water use in the humid eastern United States is not well characterized because of inadequate reporting and wide variability associated with climate, soils, crops, and farming practices. To better understand irrigation water use in the eastern United States, two types of predictive models were developed and compared by using metered irrigation water-use data for corn, cotton, peanut, and soybean crops in Georgia and turf farms in Rhode Island. Reliable metered irrigation data were limited to these areas. The first predictive model that was developed uses logistic regression to predict the occurrence of irrigation on the basis of antecedent climate conditions. Logistic regression equations were developed for corn, cotton, peanut, and soybean crops by using weekly irrigation water-use data from 36 metered sites in Georgia in 2009 and 2010 and turf farms in Rhode Island from 2000 to 2004. For the weeks when irrigation was predicted to take place, the irrigation water-use volume was estimated by multiplying the average metered irrigation application rate by the irrigated acreage for a given crop. The second predictive model that was developed is a crop-water-demand model that uses a daily soil water balance to estimate the water needs of a crop on a given day based on climate, soil, and plant properties. Crop-water-demand models were developed independently of reported irrigation water-use practices and relied on knowledge of plant properties that are available in the literature. Both modeling approaches require accurate accounting of irrigated area and crop type to estimate total irrigation water use. Water-use estimates from both modeling methods were compared to the metered irrigation data from Rhode Island and Georgia that were used to

  4. An Assessment of Global Net Irrigation Water Requirements from Various Water Supply Sources to Sustain Irrigation

    NASA Astrophysics Data System (ADS)

    Yoshikawa, Sayaka; Cho, Jail; Yamada, Hannah; Khajuria, Anupam; Hanasaki, Naota; Kanae, Shinjiro

    2014-05-01

    Water supply sources for irrigation, such as rivers, reservoirs, and groundwater, are critically important for agricultural productivity. The current rapid increase in irrigation water use threatens sustainable food production. In this study, we estimated the time-varying dependence of irrigation water requirements from water supply sources, with a particular focus on variations in irrigation area during the period 1960-2050 using the global water resources model, H08. The H08 model simulates water requirements on a daily basis at a resolution of 1.0° × 1.0° . The sources of irrigation water requirements in the past simulations were specified using four categories: rivers (RIV), large reservoirs (LR) with a storage capacity greater than 1.0 km3, medium-size reservoirs (MSR) with storage capacities ranging from 1.0 km3 to 3.0 M m3, and non-local non-renewable blue water (NNBW). We also estimated future irrigation water requirements from the above four water supply sources and an additional water supply source (ADD) in three future simulation designs; irrigation area change, climate change, and changes in both irrigation area and climate. ADD was defined as the difference between NNBW in the 1990s and NNBW in the 2040s, because it was difficult to distinguish the types of future water supply sources except for RIV. The simulated results showed that RIV, MSR, and NNBW increased significantly through the 1960s to the early 1990s globally, but LR increased at a relatively low rate. After the early 1990s, RIV approached a critical limit due to the continued expansion of the irrigation area. Furthermore, MSR and NNBW increased significantly following the expansion of the irrigation area and the increased storage capacity of the medium-size reservoirs. After the 2020s, MSR could be expected to approach the critical limit without the construction of medium-size reservoirs. ADD would account for 11-23% of the total requirements in the 2040s. We found that an expansion of

  5. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate increases in irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2015-08-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are accounted for, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL after a large development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops. Different crops show different magnitude of changes in net irrigation requirements due to climate change, being the increases most pronounced in agricultural trees. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (2 °C global warming combined with full CO2-fertilization effect, and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and

  6. Estimation of evapotranspiration rate in irrigated lands using stable isotopes

    NASA Astrophysics Data System (ADS)

    Umirzakov, Gulomjon; Windhorst, David; Forkutsa, Irina; Brauer, Lutz; Frede, Hans-Georg

    2013-04-01

    Agriculture in the Aral Sea basin is the main consumer of water resources and due to the current agricultural management practices inefficient water usage causes huge losses of freshwater resources. There is huge potential to save water resources in order to reach a more efficient water use in irrigated areas. Therefore, research is required to reveal the mechanisms of hydrological fluxes in irrigated areas. This paper focuses on estimation of evapotranspiration which is one of the crucial components in the water balance of irrigated lands. Our main objective is to estimate the rate of evapotranspiration on irrigated lands and partitioning of evaporation into transpiration using stable isotopes measurements. Experiments has done in 2 different soil types (sandy and sandy loam) irrigated areas in Ferghana Valley (Uzbekistan). Soil samples were collected during the vegetation period. The soil water from these samples was extracted via a cryogenic extraction method and analyzed for the isotopic ratio of the water isotopes (2H and 18O) based on a laser spectroscopy method (DLT 100, Los Gatos USA). Evapotranspiration rates were estimated with Isotope Mass Balance method. The results of evapotranspiration obtained using isotope mass balance method is compared with the results of Catchment Modeling Framework -1D model results which has done in the same area and the same time.

  7. Comparison of Irrigation Water Use Estimates Calculated from Remotely Sensed Irrigated Acres and State Reported Irrigated Acres in the Lake Altus Drainage Basin, Oklahoma and Texas, 2000 Growing Season

    USGS Publications Warehouse

    Masoner, J.R.; Mladinich, C.S.; Konduris, A.M.; Smith, S. Jerrod

    2003-01-01

    Increased demand for water in the Lake Altus drainage basin requires more accurate estimates of water use for irrigation. The U.S. Geological Survey, in cooperation with the U.S. Bureau of Reclamation, is investigating new techniques to improve water-use estimates for irrigation purposes in the Lake Altus drainage basin. Empirical estimates of reference evapotranspiration, crop evapotranspiration, and crop irrigation water requirements for nine major crops were calculated from September 1999 to October 2000 using a solar radiation-based evapotranspiration model. Estimates of irrigation water use were calculated using remotely sensed irrigated crop acres derived from Landsat 7 Enhanced Thematic Mapper Plus imagery and were compared with irrigation water-use estimates calculated from irrigated crop acres reported by the Oklahoma Water Resources Board and the Texas Water Development Board for the 2000 growing season. The techniques presented will help manage water resources in the Lake Altus drainage basin and may be transferable to other areas with similar water management needs. Irrigation water use calculated from the remotely sensed irrigated acres was estimated at 154,920 acre-feet; whereas, irrigation water use calculated from state reported irrigated crop acres was 196,026 acre-feet, a 23 percent difference. The greatest difference in irrigation water use was in Carson County, Texas. Irrigation water use for Carson County, Texas, calculated from the remotely sensed irrigated acres was 58,555 acrefeet; whereas, irrigation water use calculated from state reported irrigated acres was 138,180 acre-feet, an 81 percent difference. The second greatest difference in irrigation water use occurred in Beckham County, Oklahoma. Differences between the two irrigation water use estimates are due to the differences of irrigated crop acres derived from the mapping process and those reported by the Oklahoma Water Resources Board and Texas Water Development Board.

  8. Quality requirements for irrigation with sewage water

    SciTech Connect

    Bouwer, H.; Idelovitch, E. )

    1987-11-01

    Irrigation is an excellent use for sewage effluent because it is mostly water with nutrients. For small flows, the effluent can be used on special, well-supervised sewage farms, where forage, fiber, or seed crops are grown that can be irrigated with standard primary or secondary effluent. Large-scale use of the effluent requires special treatment so that it meets the public health, agronomic, and aesthetic requirements for unrestricted use. Crops in the unrestricted-use category include those that are consumed raw or brought raw into the kitchen. Most state or government standards deal only with public health aspects, and prescribe the treatment processes or the quality parameters that the effluent must meet before it can be used to irrigate a certain category of crops. However, agronomic aspects related to crops and soils must also be taken into account. Quality parameters to be considered include bacteria, viruses, and other pathogens; total salt content and sodium adsorption ratio of the water; nitrogen; phosphorus; chloride and chlorine; bicarbonate; heavy metals, boron, and other trace elements; pH; and synthetic organics. 23 refs., 9 tabs.

  9. An assessment of global net irrigation water requirements from various water supply sources to sustain irrigation: rivers and reservoirs (1960-2000 and 2050)

    NASA Astrophysics Data System (ADS)

    Yoshikawa, S.; Cho, J.; Yamada, H. G.; Hanasaki, N.; Khajuria, A.; Kanae, S.

    2013-01-01

    Water supply sources for irrigation, such as rivers, reservoirs, and groundwater, are critically important for agricultural productivity. The current rapid increase in irrigation water use threatens sustainable food production. In this study, we estimated the time-varying dependency of the supply of irrigation water from rivers, large reservoirs with a greater than 1.0 km3 storage capacity, medium-size reservoirs with storage capacities ranging from 1.0 km3 to 3.0 Mm3, and non-local non-renewable blue water (NNBW), particularly taking into account variations in irrigation area during the period 1960-2000. We also estimated the future irrigation water requirements from water supply sources in addition to these four sources, using an irrigation area scenario. The net irrigation water requirements from various supply sources were assessed using the global H08 water resources model. The H08 model simulates water requirements on a daily basis at a resolution of 1.0° × 1.0°. We obtained net irrigation water from rivers and medium-size reservoirs, and determined that the NNBW increased continuously from 1960 to 1985, but the net irrigation water from large reservoirs increased only marginally. After 1985, the net irrigation water from rivers approached a critical limit with the continued expansion of the irrigation area. The irrigation water requirements from medium-size reservoirs and NNBW increased significantly following the expansion of the irrigation area and the increased storage capacity of medium-size reservoirs. Under the irrigation area scenario without climate change, global net irrigation water requirements from additional water supply sources will account for 26% of the total requirements in the year 2050. We found that expansion of irrigation areas due to population growth will generate an enormous demand for irrigation water from additional resources.

  10. More efficient irrigation may compensate for increases in irrigation water requirements due to climate change in the Mediterranean area

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2017-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. We will present a recently published study1 that estimates the current level of water demand for Mediterranean agriculture and simulates the potential impacts of climate change, population growth and transitions to water-saving irrigation and conveyance technologies. The results indicate that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems, with large differences in the saving potentials across countries. Under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean. Both the Eastern and the Southern Mediterranean would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect. However, in some scenarios water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain. In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a large development2 that comprised the improved representation of Mediterranean crops.

  11. Estimates of Savings Achievable from Irrigation Controller

    SciTech Connect

    Williams, Alison; Fuchs, Heidi; Whitehead, Camilla Dunham

    2014-03-28

    This paper performs a literature review and meta-analysis of water savings from several types of advanced irrigation controllers: rain sensors (RS), weather-based irrigation controllers (WBIC), and soil moisture sensors (SMS).The purpose of this work is to derive average water savings per controller type, based to the extent possible on all available data. After a preliminary data scrubbing, we utilized a series of analytical filters to develop our best estimate of average savings. We applied filters to remove data that might bias the sample such as data self-reported by manufacturers, data resulting from studies focusing on high-water users, or data presented in a non-comparable format such as based on total household water use instead of outdoor water use. Because the resulting number of studies was too small to be statistically significant when broken down by controller type, this paper represents a survey and synthesis of available data rather than a definitive statement regarding whether the estimated water savings are representative.

  12. [Effect of climate change on rice irrigation water requirement in Songnen Plain, Northeast China].

    PubMed

    Huang, Zhi-gang; Wang, Xiao-li; Xiao, Ye; Yang, Fei; Wang, Chen-xi

    2015-01-01

    Based on meteorological data from China national weather stations and climate scenario grid data through regional climate model provided by National Climate Center, rice water requirement was calculated by using McCloud model and Penman-Monteith model combined with crop coefficient approach. Then the rice irrigation water requirement was estimated by water balance model, and the changes of rice water requirement were analyzed. The results indicated that either in historical period or in climate scenario, rice irrigation water requirement contour lines during the whole growth period and Lmid period decreased along southwest to northeast, and the same irrigation water requirement contour line moved north with decade alternation. Rice irrigation water requirement during the whole growth period increased fluctuantly with decade alternation at 44.2 mm . 10 a-1 in historical period and 19.9 mm . 10 a-1 in climate scenario. The increase in rice irrigation water requirement during the Lmid period with decade alternation was significant in historical period, but not significant in climate scenario. Contribution rate of climate change to rice irrigation water requirement would be fluctuantly increased with decade alternation in climate scenario. Compared with 1970s, contribution rates of climate change to rice irrigation water requirement were 23.6% in 2000s and 34.4% in 2040s, which increased 14.8 x 10(8) m3 irrigation water in 2000s and would increase 21.2 x 10(8) m3 irrigation water in 2040s.

  13. Estimation of Infiltration Parameters and the Irrigation Coefficients with the Surface Irrigation Advance Distance

    PubMed Central

    Beibei, Zhou; Quanjiu, Wang; Shuai, Tan

    2014-01-01

    A theory based on Manning roughness equation, Philip equation and water balance equation was developed which only employed the advance distance in the calculation of the infiltration parameters and irrigation coefficients in both the border irrigation and the surge irrigation. The improved procedure was validated with both the border irrigation and surge irrigation experiments. The main results are shown as follows. Infiltration parameters of the Philip equation could be calculated accurately only using water advance distance in the irrigation process comparing to the experimental data. With the calculated parameters and the water balance equation, the irrigation coefficients were also estimated. The water advance velocity should be measured at about 0.5 m to 1.0 m far from the water advance in the experimental corn fields. PMID:25061664

  14. Evapotranspiration Estimates for Deficit Irrigated Corn

    USDA-ARS?s Scientific Manuscript database

    Water deficits must be imposed on crops during non-critical growth periods to maximize net economic output per unit of water consumed by the plant. The reference ET-crop coefficient procedure widely used for managing fully irrigated crops would be easiest to implement for irrigation management of d...

  15. Mediterranean agriculture: More efficient irrigation needed to compensate increases in future irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; Shi, Sinan; von Bloh, Werner; Bondeau, Alberte; Cramer, Wolfgang

    2016-04-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. Our research shows that, at present, Mediterranean region could save 35% of water by implementing more efficient irrigation and conveyance systems. Some countries like Syria, Egypt and Turkey have higher saving potentials than others. Currently some crops, especially sugar cane and agricultural trees, consume in average more irrigation water per hectare than annual crops (1). Also under climate change, more efficient irrigation is of vital importance for counteracting increases in irrigation water requirements. The Mediterranean area as a whole might face an increase in gross irrigation requirements between 4% and 18% from climate change alone by the end of the century if irrigation systems and conveyance are not improved. Population growth increases these numbers to 22% and 74%, respectively, affecting mainly the Southern and Eastern Mediterranean. However, improved irrigation technologies and conveyance systems have large water saving potentials, especially in the Eastern Mediterranean, and may be able to compensate to some degree the increases due to climate change and population growth. Both subregions would need around 35% more water than today if they could afford some degree of modernization of irrigation and conveyance systems and benefit from the CO2-fertilization effect (1). However, in some scenarios (in this case as combinations of climate change, irrigation technology, influence of population growth and CO2-fertilization effect) water scarcity may constrain the supply of the irrigation water needed in future in Algeria, Libya, Israel, Jordan, Lebanon, Syria, Serbia, Morocco, Tunisia and Spain (1). In this study, vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL ("Lund-Potsdam-Jena managed Land") after a

  16. Mediterranean irrigation under climate change: more efficient irrigation needed to compensate for increases in irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Fader, M.; Shi, S.; von Bloh, W.; Bondeau, A.; Cramer, W.

    2016-03-01

    Irrigation in the Mediterranean is of vital importance for food security, employment and economic development. This study systematically assesses how climate change and increases in atmospheric CO2 concentrations may affect irrigation requirements in the Mediterranean region by 2080-2090. Future demographic change and technological improvements in irrigation systems are taken into account, as is the spread of climate forcing, warming levels and potential realization of the CO2-fertilization effect. Vegetation growth, phenology, agricultural production and irrigation water requirements and withdrawal were simulated with the process-based ecohydrological and agro-ecosystem model LPJmL (Lund-Potsdam-Jena managed Land) after an extensive development that comprised the improved representation of Mediterranean crops. At present the Mediterranean region could save 35 % of water by implementing more efficient irrigation and conveyance systems. Some countries such as Syria, Egypt and Turkey have a higher savings potential than others. Currently some crops, especially sugar cane and agricultural trees, consume on average more irrigation water per hectare than annual crops. Different crops show different magnitudes of changes in net irrigation requirements due to climate change, the increases being most pronounced in agricultural trees. The Mediterranean area as a whole may face an increase in gross irrigation requirements between 4 and 18 % from climate change alone if irrigation systems and conveyance are not improved (4 and 18 % with 2 °C global warming combined with the full CO2-fertilization effect and 5 °C global warming combined with no CO2-fertilization effect, respectively). Population growth increases these numbers to 22 and 74 %, respectively, affecting mainly the southern and eastern Mediterranean. However, improved irrigation technologies and conveyance systems have a large water saving potential, especially in the eastern Mediterranean, and may be able to

  17. Global net irrigation water requirements from various water supply sources during past and future periods

    NASA Astrophysics Data System (ADS)

    Yoshikawa, S.; Cho, J.; Hanasaki, N.; Kanae, S.

    2014-12-01

    Water supply sources for irrigation (e.g. rivers and reservoirs) are critically important for agricultural productivity. The current rapid increase in irrigation water use is considered unsustainable and threatens food production. In this study, we estimated the time-varying dependence of irrigation water requirements from water supply sources, with a particular focus on variations in irrigation area during past (1960-2001) and future (2002-2050) periods using the global water resources model, H08. The H08 model can simulate water requirements on a daily basis at a resolution of 1.0° × 1.0° latitude and longitude. The sources of irrigation water requirements in the past simulations were specified using four categories: rivers (RIV), large reservoirs (LR), medium-size reservoirs (MSR), and non-local non-renewable blue water (NNBW). The simulated results from 1960 to 2001 showed that RIV, MSR and NNBW increased significantly from the 1960s to the early 1990s globally, but LR increased at a relatively low rate. After the early 1990s, the increase in RIV declined as it approached a critical limit, due to the continued expansion of irrigation area. MSR and NNBW increased significantly, during the same time period, following the expansion of the irrigation area and the increased storage capacity of the medium-size reservoirs. We also estimated future irrigation water requirements from the above four water supply sources and an additional water supply source (ADD) in three future simulation designs; irrigation area change, climate change, and changes in both irrigation area and climate. ADD was defined as a future increase in NNBW. After the 2020s, MSR was predicted to approach the critical limit, and ADD would account for 11-23% of the total requirements in the 2040s.

  18. Sub-pixel Area Calculation Methods for Estimating Irrigated Areas.

    PubMed

    Thenkabailc, Prasad S; Biradar, Chandrashekar M; Noojipady, Praveen; Cai, Xueliang; Dheeravath, Venkateswarlu; Li, Yuanjie; Velpuri, Manohar; Gumma, Muralikrishna; Pandey, Suraj

    2007-10-31

    The goal of this paper was to develop and demonstrate practical methods forcomputing sub-pixel areas (SPAs) from coarse-resolution satellite sensor data. Themethods were tested and verified using: (a) global irrigated area map (GIAM) at 10-kmresolution based, primarily, on AVHRR data, and (b) irrigated area map for India at 500-mbased, primarily, on MODIS data. The sub-pixel irrigated areas (SPIAs) from coarse-resolution satellite sensor data were estimated by multiplying the full pixel irrigated areas(FPIAs) with irrigated area fractions (IAFs). Three methods were presented for IAFcomputation: (a) Google Earth Estimate (IAF-GEE); (b) High resolution imagery (IAF-HRI); and (c) Sub-pixel de-composition technique (IAF-SPDT). The IAF-GEE involvedthe use of "zoom-in-views" of sub-meter to 4-meter very high resolution imagery (VHRI)from Google Earth and helped determine total area available for irrigation (TAAI) or netirrigated areas that does not consider intensity or seasonality of irrigation. The IAF-HRI isa well known method that uses finer-resolution data to determine SPAs of the coarser-resolution imagery. The IAF-SPDT is a unique and innovative method wherein SPAs aredetermined based on the precise location of every pixel of a class in 2-dimensionalbrightness-greenness-wetness (BGW) feature-space plot of red band versus near-infraredband spectral reflectivity. The SPIAs computed using IAF-SPDT for the GIAM was within2 % of the SPIA computed using well known IAF-HRI. Further the fractions from the 2 methods were significantly correlated. The IAF-HRI and IAF-SPDT help to determine annualized or gross irrigated areas (AIA) that does consider intensity or seasonality (e.g., sum of areas from season 1, season 2, and continuous year-round crops). The national census based irrigated areas for the top 40 irrigated nations (which covers about 90% of global irrigation) was significantly better related (and had lesser uncertainties and errors) when compared to SPIAs than

  19. Irrigation Management with Remote Sensing Techniques. Crop Water Requirements and Biophysical Indicators

    NASA Astrophysics Data System (ADS)

    Toureiro, Célia; Serralheiro, Ricardo

    2013-04-01

    Saving water in irrigated agriculture is increasingly relevant, as the irrigation sector is in many regions the biggest water consumer, but must be a sustainable activity. Therefore, the need urges for water use control methods and water resources planning. In irrigated agriculture, the right way for saving water is constituted by the increase of efficiency in water management. This work validates procedures and methodologies with remote sensing to determine the water availability in the soil at each moment and therefore the opportunity for the application of the water volume strictly necessary to optimize crop growth (irrigation opportunity and irrigation amount). The analysis applied to the Irrigation District of Divor, Évora, having used 7 experiment plots, which are areas watered by center-pivot systems, cultivated to corn. Data were determined from multispectral and infrared images of the cultivated surface obtained by satellite or by flying unmanned platform and integrated with parameters of the atmosphere and of the crops for calculating biophysical indicators and indices of water stress in the vegetation (NDVI, Kc, Kcb, CWSI). Therefore, evapotranspiration (ETc) was estimated, with which crop water requirement was calculated, with the opportunity and the amount of irrigation water to allocate. As this information is geographic referenced, maps can be prepared with GIS technology, describing water situation and the opportunity for watering crops. If the remote images are available with enough high spatial and temporal resolution, the frequent availability of maps can serve as a basis for a farmers irrigation advice system and for the regional irrigation authority to make decisions on the irrigation management at the regional scale. This can be a significant contribute to an efficient water management technology and a sustainable irrigated agriculture. Key-Words: Remote Sensing, Vegetation Index, Crop Coefficients, Water Balance

  20. Empirically Estimating the Existing Irrigation Adaptation to Future Drought Impacts in Kansas Agriculture

    NASA Astrophysics Data System (ADS)

    Zhang, T.; Lin, X.; Yang, X.

    2014-12-01

    More serious drought has been projected due to the climate change in the Kansas State of the U.S., which might threaten the local agriculture and thus require effective adaptation responses to drought, e.g. better irrigation. But the irrigation adaptation on drought at the current technology-level is poorly quantified, therefore challenges to figure out how much additional efforts are required under more aridity of climate. Here, we collect the irrigation application data for maize, soybean, sorghum and wheat in Kansas, and establish a two-stage model to quantify the crop-specific irrigation application responses to changes in climatic drivers, and further estimate the existing effectiveness of the irrigation to adapt future drought based on the IPCC AR5 ensemble PDSI prediction under RCP4.5 scenario. We find that the three summer season crops (maize, soybean and sorghum) would experience 0 - 20% yield losses depending on county due to more serious drought since 2030s, even though increased irrigation application as the response of drought had saved 0 - 10% yields. At the state level, maize receives most benefits from irrigation, whereas the beneficial effects are least for sorghum among the three crops. To wheat, irrigation adaptation is very weak since irrigation water applied is much less than the above three crops. But wheat yields were projected to have a slight increase in central and eastern regions because climate would become more moisture over the growing season of winter wheat in future. Our results highlight that the existing beneficial effects from irrigation would be surpassed by the negative impact of drought in future, which would cause overall yield reduction in Kansas especially for those summer season crops.

  1. Estimated Domestic, Irrigation, and Industrial Water Use in Washington, 2000

    USGS Publications Warehouse

    Lane, R.C.

    2004-01-01

    Since 1950, the U.S. Geological Survey has published a series of Circulars and other reports on the estimated use of water in the United States at 5-year intervals. This report presents State, regional, and county estimates of the amount of water used for domestic, irrigation, and industrial purposes in the State of Washington during the year 2000. Domestic water use was estimated to be 674 million gallons per day and the per-capita rate, 114 gallons per day. Crop-irrigation water use was estimated to be 3,005 million gallons per day and the application rate, 2.2 acre-feet per acre per year, or feet per year. Golf-course irrigation water use was estimated to be 23.6 million gallons per day and the application rate, 1.4 feet per year. Industrial water use was estimated to be 681 million gallons per day. Historically, these core categories account for about 92 percent of the estimated offstream water used in Washington.

  2. Using Tracer Tests to Estimate Vertical Recharge and Evaluate Influencing Factors for Irrigated Agricultural Systems

    NASA Astrophysics Data System (ADS)

    Lin, D.; Jin, M.; Brusseau, M.; Ma, B.; Liu, Y.

    2013-12-01

    Accurate estimation of vertical groundwater recharge is critical for (semi) arid regions, especially in places such as the North China Plain where vertical recharge comprises the largest portion of recharge. Tracer tests were used to estimate vertical recharge beneath agricultural systems irrigated by groundwater, and to help delineate factors that influence recharge. Bromide solution was applied to trace infiltration in the vadose zone beneath irrigated agricultural fields (rotated winter wheat and summer maize, orchards, and cotton) and non-irrigated woodlands at both piedmont plain (Shijiazhaung) and alluvial and lacustrine plains (Hengshui) in the North China Plain. The tracer tests lasted for more than two years, and were conducted at a total of 37 sites. Tracer solution was injected into the subsurface at a depth of 1.2 m before the rainy season. Soil samples were then collected periodically to observe bromide transport and estimate recharge rates at the point-scale. For these experiments, the only irrigation the fields received was that applied by the landowners. In addition to these tests, a controlled irrigation experiment was conducted at a single wheat and maize site. The results showed that recharge rates were lower for the alluvial and lacustrine plains sites, which comprise finer-textured soils than those present in the piedmont plain. Specifically, the recharge rate ranged between 56-466 mm/a beneath wheat-maize, 110-564 mm/a beneath orchard, and 0-21 mm/a beneath woodlands with an average recharge coefficient of 0.17 for the piedmont plain sites, while the recharge rate ranged between 26-165 mm/a beneath wheat-maize, 6-40 mm/a beneath orchard, 87-319 mm/a beneath cotton, and 0-32 mm/a beneath woodlands with an average recharge coefficient of 0.10 for the alluvial and lacustrine plain sites. Irrigation provided the primary contribution to recharge, with precipitation providing a minor contribution. The results of both the uncontrolled and controlled

  3. An investigation of spectral change as influenced by irrigation and evapotranspiration volume estimation in western Nebraska

    USGS Publications Warehouse

    Seevers, P.M.; Sadowski, F.C.; Lauer, D.T.

    1990-01-01

    Retrospective satellite image data were evaluated for their ability to demonstrate the influence of center-pivot irrigation development in western Nebraska on spectral change and climate-related factors for the region. Periodic images of an albedo index and a normalized difference vegetation index (NDVI) were generated from calibrated Landsat multispectral scanner (MSS) data and used to monitor spectral changes associated with irrigation development from 1972 through 1986. The albedo index was not useful for monitoring irrigation development. For the NDVI, it was found that proportions of counties in irrigated agriculture, as discriminated by a threshold, were more highly correlated with reported ground estimates of irrigated agriculture than were county mean greenness values. A similar result was achieved when using coarse resolution Advanced Very High Resolution Radiometer (AVHRR) image data for estimating irrigated agriculture. The NDVI images were used to evaluate a procedure for making areal estimates of actual evapotranspiration (ET) volumes. Estimates of ET volumes for test counties, using reported ground acreages and corresponding standard crop coefficients, were correlated with the estimates of ET volume using crop coefficients scaled to NDVI values and pixel counts of crop areas. These county estimates were made under the assumption that soil water availability was unlimited. For nonirrigated vegetation, this may result in over-estimation of ET volumes. Ground information regarding crop types and acreages are required to derive the NDVI scaling factor. Potential ET, estimated with the Jensen-Haise model, is common to both methods. These results, achieved with both MSS and AVHRR data, show promise for providing climatologically important land surface information for regional and global climate models. ?? 1990 Kluwer Academic Publishers.

  4. The impacts of climate change on global irrigation water requirements

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Cai, X.

    2011-12-01

    Climate change tends to affect the irrigation water requirement of current irrigated agricultural land, and also changes the water availability for current rain-fed land by the end of this century. We use the most up-to-date climatic and crop datasets (e.g., global irrigated/rain-fed crop areas and grid level crop growing calendar (Portmann, Siebert and Döll, 2010, Global Biogeochemical Cycles 24)) to evaluate the requirements of currently irrigated land and the water deficit for rain-fed land for all major crops under current and projected climate. Six general circulation models (GCMs) under two emission scenarios, A1B & B1, are assembled using two methods, the Simple Average Method (SAM) and Root Mean Square Error Ensemble Method (RMSEMM), to deal with the GCM regional variability. It is found that the global irrigation requirement and the water deficit are both going to increase significantly under all scenarios, particularly under the A1B emission scenario. For example, the projected irrigation requirement is expected to increase by about 2500 million m3 for wheat, 3200 million m3 for maize and another 3300 million m3 for rice. At the same time, the water deficit for current rain-fed cropland will be widened by around 3000, 4000, 2100 million m3 for wheat, maize and rice respectively. Regional analysis is conducted for Africa, China, Europe, India, South America and the United States. It is found that the U.S. may expect the greatest rise in irrigation requirements for wheat and maize, while the South America may suffer the greatest increase for rice. In addition, Africa and the U.S. may face a larger water deficit for both wheat and maize on rain-fed land, and South America just for rice. In summary, climate change is likely to bring severe challenges for irrigation systems and make global water shortage even worse by the end of this century. These pressures will call for extensive adaptation measures. The change in crop water requirements and availability

  5. Estimation of furrow irrigation sediment loss using an artificial neural network

    USDA-ARS?s Scientific Manuscript database

    The area irrigated by furrow irrigation in the U.S. has been steadily decreasing but still represents about 20% of the total irrigated area in the U.S. Furrow irrigation sediment loss is a major water quality issue and a method for estimating sediment loss is needed to quantify the environmental imp...

  6. Estimation of irrigated land using Landsat digital data

    NASA Technical Reports Server (NTRS)

    Brown, C. E.; Wall, S. L.; Thomas, R. W.; Erikkson, M.

    1981-01-01

    Techniques developed by the University of California and NASA for the utilization of multitemporal Landsat digital data in estimating and mapping irrigated land are presented. Three dates of Landsat were registered to each other and to a USGS 7.5 minute quadrangle map base for approximately 1.9 million acres of land. Other data registered include county boundaries, land use stratification, and digitized ground data. To identify irrigated land, an indicator was used which consisted of the ratio of MSS Band 7 to MSS Band 5 (the 7/5 ratio). A threshold 7/5 irrigated land value was determined for each date, as actively growing land generally has a higher 7/5 ratio than other cover classes. An estimate of irrigated land was determined by Landsat classification with ground data, at a relative standard error of + or - 7.98% at the 95% confidence interval. Mapping evaluation reveals a 94% accuracy, a 7.4% omission rate, and a 6.3% commission rate. In addition, a sample unit size evaluation recommends a 1-1 1/2 square mile sample range.

  7. Estimating 1980 ground-water pumpage for irrigation on the High Plains in parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming

    USGS Publications Warehouse

    Heimes, F.J.; Luckey, R.R.

    1983-01-01

    Current ground-water use is required for the High Plains Regional Aquifer-System Analysis. In response to this need, a sampling approach was developed to estimate water pumped for irrigation on the High Plains during 1980. Pumpage was computed by combining application estimates with mapped irrigated-acreage information. Irrigation application (inches of water applied) was measured at 480 sites in 15 counties in the High Plains during the 1980 growing season. The relationship between calculated Blaney-Criddle irrigation demand and measured application was used to estimate application for unsampled areas of the High Plains. Application estimates multiplied by irrigated-acreate estimates, compiled from Landsat-satellite imagery, yielded the volume of ground water pumped for irrigation. The estimate of ground water pumped for irrigation in the High Plains during 1980 and 18,902,000 acre-feet for 13 ,715,000 irrigated areas. The sampled application data were evaluated for significant trends. The application was greater for crops requiring more water such as corn and hay and less for crops such as sorghum, grain, and cotton. The data showed greater application for flood-irrigated systems than for sprinkler-irrigation systems. Areas of the High Plains with thin saturated thickness tended to have a smaller average discharge per well, fewer irrigated acres per well, and a predominance of crops requiring less water crops. (USGS).

  8. Estimated Colorado Golf Course Irrigation Water Use, 2005

    USGS Publications Warehouse

    Ivahnenko, Tamara

    2009-01-01

    Golf course irrigation water-use data were collected as part of the U.S. Geological Survey National Water Use Program's 2005 compilation to provide baseline information, as no golf course irrigation water-use data (separate from crop irrigation) have been reported in previous compilations. A Web-based survey, designed by the U.S. Geological Survey, in cooperation with the Rocky Mountain Golf Course Superintendents Association (RMGCSA), was electronically distributed by the association to the 237 members in Colorado. Forty-three percent of the members returned the survey, and additional source water information was collected by telephone for all but 20 of the 245 association member and non-member Colorado golf courses. For golf courses where no data were collected at all, an average 'per hole' coefficient, based on returned surveys from that same county, were applied. In counties where no data were collected at all, a State average 'per hole' value of 13.2 acre-feet was used as the coefficient. In 2005, Colorado had 243 turf golf courses (there are 2 sand courses in the State) that had an estimated 2.27 acre-feet per irrigated course acre, and 65 percent of the source water for these courses was surface water. Ground water, potable water (public supply), and reclaimed wastewater, either partially or wholly, were source waters for the remaining courses. Fifty-three of the 64 counties in Colorado have at least one golf course, with the greatest number of courses in Jefferson (23 courses), Arapahoe (22 courses), and El Paso Counties (20 courses). In 2005, an estimated 5,647.8 acre-feet in Jefferson County, 5,402 acre-feet in Arapahoe County, and 4,473.3 acre-feet in El Paso County were used to irrigate the turf grass.

  9. Sequential Monte Carlo hydraulic state estimation of an irrigation canal

    NASA Astrophysics Data System (ADS)

    Sau, Jacques; Malaterre, Pierre-Olivier; Baume, Jean-Pierre

    2010-04-01

    The estimation in real time of the hydraulic state of irrigation canals is becoming one of the major concerns of network managers. With this end in view, this Note presents a new approach based on the combination of a numerical solution of the open channel Saint-Venant PDE with a sequential Monte Carlo state-space estimation. We shall show that discharges and elevations along the canal are successfully estimated, and also that, concurrently, model parameters identification, such as the Manning-Strickler friction coefficient, can be performed.

  10. Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA

    NASA Technical Reports Server (NTRS)

    Wei, Jiangfeng; Dirmeyer, Paul A.; Wisser, Dominik; Bosilovich, Michael G.; Mocko, David M.

    2013-01-01

    Irrigation is an important human activity that may impact local and regional climate, but current climate model simulations and data assimilation systems generally do not explicitly include it. The European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-Analysis (ERA-Interim) shows more irrigation signal in surface evapotranspiration (ET) than the Modern-Era Retrospective Analysis for Research and Applications (MERRA) because ERA-Interim adjusts soil moisture according to the observed surface temperature and humidity while MERRA has no explicit consideration of irrigation at the surface. But, when compared with the results from a hydrological model with detailed considerations of agriculture, the ET from both reanalyses show large deficiencies in capturing the impact of irrigation. Here, a back-trajectory method is used to estimate the contribution of irrigation to precipitation over local and surrounding regions, using MERRA with observation-based corrections and added irrigation-caused ET increase from the hydrological model. Results show substantial contributions of irrigation to precipitation over heavily irrigated regions in Asia, but the precipitation increase is much less than the ET increase over most areas, indicating that irrigation could lead to water deficits over these regions. For the same increase in ET, precipitation increases are larger over wetter areas where convection is more easily triggered, but the percentage increase in precipitation is similar for different areas. There are substantial regional differences in the patterns of irrigation impact, but, for all the studied regions, the highest percentage contribution to precipitation is over local land.

  11. Parameter estimation for groundwater models under uncertain irrigation data

    USGS Publications Warehouse

    Demissie, Yonas; Valocchi, Albert J.; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p < 0.05) bias in estimated parameters and model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  12. Parameter Estimation for Groundwater Models under Uncertain Irrigation Data.

    PubMed

    Demissie, Yonas; Valocchi, Albert; Cai, Ximing; Brozovic, Nicholas; Senay, Gabriel; Gebremichael, Mekonnen

    2015-01-01

    The success of modeling groundwater is strongly influenced by the accuracy of the model parameters that are used to characterize the subsurface system. However, the presence of uncertainty and possibly bias in groundwater model source/sink terms may lead to biased estimates of model parameters and model predictions when the standard regression-based inverse modeling techniques are used. This study first quantifies the levels of bias in groundwater model parameters and predictions due to the presence of errors in irrigation data. Then, a new inverse modeling technique called input uncertainty weighted least-squares (IUWLS) is presented for unbiased estimation of the parameters when pumping and other source/sink data are uncertain. The approach uses the concept of generalized least-squares method with the weight of the objective function depending on the level of pumping uncertainty and iteratively adjusted during the parameter optimization process. We have conducted both analytical and numerical experiments, using irrigation pumping data from the Republican River Basin in Nebraska, to evaluate the performance of ordinary least-squares (OLS) and IUWLS calibration methods under different levels of uncertainty of irrigation data and calibration conditions. The result from the OLS method shows the presence of statistically significant (p < 0.05) bias in estimated parameters and model predictions that persist despite calibrating the models to different calibration data and sample sizes. However, by directly accounting for the irrigation pumping uncertainties during the calibration procedures, the proposed IUWLS is able to minimize the bias effectively without adding significant computational burden to the calibration processes.

  13. The future of irrigated agriculture under environmental flow requirements restrictions

    NASA Astrophysics Data System (ADS)

    Pastor, Amandine; Palazzo, Amanda; Havlik, Petr; Kabat, Pavel; Obersteiner, Michael; Ludwig, Fulco

    2016-04-01

    Water is not an infinite resource and demand from irrigation, household and industry is constantly increasing. This study focused on including global water availability including environmental flow requirements with water withdrawal from irrigation and other sectors at a monthly time-step in the GLOBIOM model. This model allows re-adjustment of land-use allocation, crop management, consumption and international trade. The GLOBIOM model induces an endogenous change in water price depending on water supply and demand. In this study, the focus was on how the inclusion of water resources affects land-use and, in particular, how global change will influence repartition of irrigated and rainfed lands at global scale. We used the climate change scenario including a radiative forcing of 8.5 W/m2 (RCP8.5), the socio-economic scenario (SSP2: middle-of-road), and the environmental flow method based on monthly flow allocation (the Variable Monthly Flow method) with high and low restrictions. Irrigation withdrawals were adjusted to a monthly time-step to account for biophysical water limitations at finer time resolution. Our results show that irrigated land might decrease up to 40% on average depending on the choice of EFR restrictions. Several areas were identified as future hot-spots of water stress such as the Mediterranean and Middle-East regions. Other countries were identified to be in safe position in terms of water stress such as North-European countries. Re-allocation of rainfed and irrigated land might be useful information for land-use planners and water managers at an international level to decide on appropriate legislations on climate change mitigation/adaptation when exposure and sensitivity to climate change is high and/or on adaptation measures to face increasing water demand. For example, some countries are likely to adopt measures to increase their water use efficiencies (irrigation system, soil and water conservation practices) to face water shortages, while

  14. An assessment of global net irrigation water requirements from various water supply sources to sustain irrigation: rivers and reservoirs (1960-2050)

    NASA Astrophysics Data System (ADS)

    Yoshikawa, S.; Cho, J.; Yamada, H. G.; Hanasaki, N.; Kanae, S.

    2014-10-01

    Water supply sources for irrigation (e.g. rivers and reservoirs) are critically important for agricultural productivity. The current rapid increase in irrigation water use is considered unsustainable and threatens food production. In this study, we estimated the time-varying dependence of irrigation water requirements from water supply sources, with a particular focus on variations in irrigation area during past (1960-2001) and future (2002-2050) periods using the global water resources model, H08. The H08 model can simulate water requirements on a daily basis at a resolution of 1.0° × 1.0° latitude and longitude. The sources of irrigation water requirements in the past simulations were specified using four categories: rivers (RIV), large reservoirs (LR) with a storage capacity greater than 1.0 × 109 m3, medium-size reservoirs (MSR) with storage capacities ranging from 1.0 × 109 m3 to 3.0 × 106 m3, and non-local non-renewable blue water (NNBW). The simulated results from 1960 to 2001 showed that RIV, MSR and NNBW increased significantly from the 1960s to the early 1990s globally, but LR increased at a relatively low rate. After the early 1990s, the increase in RIV declined as it approached a critical limit, due to the continued expansion of irrigation area. MSR and NNBW increased significantly, during the same time period, following the expansion of the irrigation area and the increased storage capacity of the medium-size reservoirs. We also estimated future irrigation water requirements from the above four water supply sources and an additional water supply source (ADD) in three future simulation designs; irrigation area change, climate change, and changes in both irrigation area and climate. ADD was defined as a future increase in NNBW. After the 2020s, MSR was predicted to approach the critical limit, and ADD would account for 11-23% of the total requirements in the 2040s.

  15. Modelling regional variability of irrigation requirements due to climate change in Northern Germany.

    PubMed

    Riediger, Jan; Breckling, Broder; Svoboda, Nikolai; Schröder, Winfried

    2016-01-15

    The question whether global climate change invalidates the efficiency of established land use practice cannot be answered without systemic considerations on a region specific basis. In this context plant water availability and irrigation requirements, respectively, were investigated in Northern Germany. The regions under investigation--Diepholz, Uelzen, Fläming and Oder-Spree--represent a climatic gradient with increasing continentality from West to East. Besides regional climatic variation and climate change, soil conditions and crop management differ on the regional scale. In the model regions, temporal seasonal droughts influence crop success already today, but on different levels of intensity depending mainly on climate conditions. By linking soil water holding capacities, crop management data and calculations of evapotranspiration and precipitation from the climate change scenario RCP 8.5 irrigation requirements for maintaining crop productivity were estimated for the years 1991 to 2070. Results suggest that water requirement for crop irrigation is likely to increase with considerable regional variation. For some of the regions, irrigation requirements might increase to such an extent that the established regional agricultural practice might be hard to retain. Where water availability is limited, agricultural practice, like management and cultivated crop spectrum, has to be changed to deal with the new challenges.

  16. Will climate change increase irrigation requirements in agriculture of Central Europe? A simulation study for Northern Germany.

    PubMed

    Riediger, Jan; Breckling, Broder; Nuske, Robert S; Schröder, Winfried

    2014-01-01

    By example of a region in Northern Germany (County of Uelzen), this study investigates whether climate change is likely to require adaption of agricultural practices such as irrigation in Central Europe. Due to sandy soils with low water retention capacity and occasional insufficient rainfall, irrigation is a basic condition for agricultural production in the county of Uelzen. Thus, in the framework of the comprehensive research cluster Nachhaltiges Landmanagement im Norddeutschen Tiefland (NaLaMa-nT), we investigated whether irrigation might need to be adapted to changing climatic conditions. To this end, results from regionalised climate change modelling were coupled with soil- and crop-specific evapotranspiration models to calculate potential amounts of irrigation to prevent crop failures. Three different runs of the climate change scenario RCP 8.5 were used for the time period until 2070. The results show that the extent of probable necessary irrigation will likely increase in the future. For the scenario run with the highest temperature rise, the results suggest that the amount of ground water presently allowed to be extracted for irrigation might not be sufficient in the future to retain common agricultural pattern. The investigation at hand exemplifies data requirements and methods to estimate irrigation needs under climate change conditions. Restriction of ground water withdrawal by German environmental regulation may require an adaptation of crop selection and alterations in agricultural practice also in regions with comparable conditions.

  17. Estimating Health Services Requirements

    NASA Technical Reports Server (NTRS)

    Alexander, H. M.

    1985-01-01

    In computer program NOROCA populations statistics from National Center for Health Statistics used with computational procedure to estimate health service utilization rates, physician demands (by specialty) and hospital bed demands (by type of service). Computational procedure applicable to health service area of any size and even used to estimate statewide demands for health services.

  18. A remote sensing approach for estimating the location and rate of urban irrigation in semi-arid climates

    NASA Astrophysics Data System (ADS)

    Johnson, Tyler D.; Belitz, Kenneth

    2012-01-01

    SummaryUrban irrigation is an important component of the hydrologic cycle in many areas of the arid and semiarid western United States. This paper describes a new approach that uses readily available datasets to estimate the location and rate of urban irrigation. The approach provides a repeatable methodology at 1/3 km 2 resolution across a large urbanized area (500 km 2). For this study, Landsat Thematic Mapper satellite imagery, air photos, climatic records, and a land-use map were used to: (1) identify the fraction of irrigated landscaping in urban areas, and (2) estimate the monthly rate of irrigation being applied to those areas. The area chosen for this study was the San Fernando Valley in Southern California. Identifying irrigated areas involved the use of 29 satellite images, air photos, and a land-use map. The fraction of a pixel that consists of irrigated landscaping ( F irr) was estimated using a linear-mixture model of two land-cover endmembers (selected pixels within a satellite image that represent a targeted land-cover). The two endmembers were impervious and fully-irrigated landscaping. In the San Fernando Valley, we used airport buildings, runways, and pavement to represent the impervious endmember; golf courses and parks were used to represent the fully irrigated endmember. The average F irr using all 29 satellite scenes was 44%. F irr calculated from hand-digitizing using air photos for 13 randomly selected single-family-residential neighborhoods showed similar results (42%). Estimating the rate of irrigation required identification of a third endmember: areas that consisted of urban vegetation but were not irrigated. This "nonirrigated" endmember was used to compute a Normalized Difference Vegetation Index (NDVI) surplus, defined as the difference between the NDVI signals of the irrigated and nonirrigated endmembers. The NDVI signals from irrigated areas remains relatively constant throughout the year, whereas the signal from nonirrigated areas

  19. A remote sensing approach for estimating the location and rate of urban irrigation in semi-arid climates

    USGS Publications Warehouse

    Johnson, Tyler D.; Belitz, Kenneth

    2012-01-01

    Urban irrigation is an important component of the hydrologic cycle in many areas of the arid and semiarid western United States. This paper describes a new approach that uses readily available datasets to estimate the location and rate of urban irrigation. The approach provides a repeatable methodology at 1/3 km2 resolution across a large urbanized area (500 km2). For this study, Landsat Thematic Mapper satellite imagery, air photos, climatic records, and a land-use map were used to: (1) identify the fraction of irrigated landscaping in urban areas, and (2) estimate the monthly rate of irrigation being applied to those areas. The area chosen for this study was the San Fernando Valley in Southern California. Identifying irrigated areas involved the use of 29 satellite images, air photos, and a land-use map. The fraction of a pixel that consists of irrigated landscaping (Firr) was estimated using a linear-mixture model of two land-cover endmembers (selected pixels within a satellite image that represent a targeted land-cover). The two endmembers were impervious and fully-irrigated landscaping. In the San Fernando Valley, we used airport buildings, runways, and pavement to represent the impervious endmember; golf courses and parks were used to represent the fully irrigated endmember. The average Firr using all 29 satellite scenes was 44%. Firr calculated from hand-digitizing using air photos for 13 randomly selected single-family-residential neighborhoods showed similar results (42%). Estimating the rate of irrigation required identification of a third endmember: areas that consisted of urban vegetation but were not irrigated. This "nonirrigated" endmember was used to compute a Normalized Difference Vegetation Index (NDVI) surplus, defined as the difference between the NDVI signals of the irrigated and nonirrigated endmembers. The NDVI signals from irrigated areas remains relatively constant throughout the year, whereas the signal from nonirrigated areas rises and

  20. A remote sensing approach for estimating the location and rate of urban irrigation in semi-arid climates

    USGS Publications Warehouse

    Johnson, T.D.; Belitz, K.

    2012-01-01

    Urban irrigation is an important component of the hydrologic cycle in many areas of the arid and semiarid western United States. This paper describes a new approach that uses readily available datasets to estimate the location and rate of urban irrigation. The approach provides a repeatable methodology at 1/3km 2 resolution across a large urbanized area (500km 2). For this study, Landsat Thematic Mapper satellite imagery, air photos, climatic records, and a land-use map were used to: (1) identify the fraction of irrigated landscaping in urban areas, and (2) estimate the monthly rate of irrigation being applied to those areas. The area chosen for this study was the San Fernando Valley in Southern California.Identifying irrigated areas involved the use of 29 satellite images, air photos, and a land-use map. The fraction of a pixel that consists of irrigated landscaping (F irr) was estimated using a linear-mixture model of two land-cover endmembers (selected pixels within a satellite image that represent a targeted land-cover). The two endmembers were impervious and fully-irrigated landscaping. In the San Fernando Valley, we used airport buildings, runways, and pavement to represent the impervious endmember; golf courses and parks were used to represent the fully irrigated endmember. The average F irr using all 29 satellite scenes was 44%. F irr calculated from hand-digitizing using air photos for 13 randomly selected single-family-residential neighborhoods showed similar results (42%).Estimating the rate of irrigation required identification of a third endmember: areas that consisted of urban vegetation but were not irrigated. This " nonirrigated" endmember was used to compute a Normalized Difference Vegetation Index (NDVI) surplus, defined as the difference between the NDVI signals of the irrigated and nonirrigated endmembers. The NDVI signals from irrigated areas remains relatively constant throughout the year, whereas the signal from nonirrigated areas rises and

  1. Influence of resolution in irrigated area mapping and area estimation

    USGS Publications Warehouse

    Velpuri, N.M.; Thenkabail, P.S.; Gumma, M.K.; Biradar, C.; Dheeravath, V.; Noojipady, P.; Yuanjie, L.

    2009-01-01

    The overarching goal of this paper was to determine how irrigated areas change with resolution (or scale) of imagery. Specific objectives investigated were to (a) map irrigated areas using four distinct spatial resolutions (or scales), (b) determine how irrigated areas change with resolutions, and (c) establish the causes of differences in resolution-based irrigated areas. The study was conducted in the very large Krishna River basin (India), which has a high degree of formal contiguous, and informal fragmented irrigated areas. The irrigated areas were mapped using satellite sensor data at four distinct resolutions: (a) NOAA AVHRR Pathfinder 10,000 m, (b) Terra MODIS 500 m, (c) Terra MODIS 250 m, and (d) Landsat ETM+ 30 m. The proportion of irrigated areas relative to Landsat 30 m derived irrigated areas (9.36 million hectares for the Krishna basin) were (a) 95 percent using MODIS 250 m, (b) 93 percent using MODIS 500 m, and (c) 86 percent using AVHRR 10,000 m. In this study, it was found that the precise location of the irrigated areas were better established using finer spatial resolution data. A strong relationship (R2 = 0.74 to 0.95) was observed between irrigated areas determined using various resolutions. This study proved the hypotheses that "the finer the spatial resolution of the sensor used, greater was the irrigated area derived," since at finer spatial resolutions, fragmented areas are detected better. Accuracies and errors were established consistently for three classes (surface water irrigated, ground water/conjunctive use irrigated, and nonirrigated) across the four resolutions mentioned above. The results showed that the Landsat data provided significantly higher overall accuracies (84 percent) when compared to MODIS 500 m (77 percent), MODIS 250 m (79 percent), and AVHRR 10,000 m (63 percent). ?? 2009 American Society for Photogrammetry and Remote Sensing.

  2. HYDRUS-1D Modeling of an Irrigated Agricultural Plot with Application to Aquifer Recharge Estimation

    USDA-ARS?s Scientific Manuscript database

    A variety of methods are available for estimating aquifer recharge in semi-arid regions, each with advantages and disadvantages. We are investigating a procedure for estimating recharge in an irrigated basin. The method involves computing irrigation return flows based on HYDRUS-1D modeling of root z...

  3. Projected Irrigation Requirement Under Climate Change in Korean Peninsula by Apply Global Hydrologic Model to Local Scale.

    NASA Astrophysics Data System (ADS)

    Yang, B.; Lee, D. K.

    2016-12-01

    Understanding spatial distribution of irrigation requirement is critically important for agricultural water management. However, many studies considering future agricultural water management in Korea assessed irrigation requirement on watershed or administrative district scale, but have not accounted the spatial distribution. Lumped hydrologic model has typically used in Korea for simulating watershed scale irrigation requirement, while distribution hydrologic model can simulate the spatial distribution grid by grid. To overcome this shortcoming, here we applied a grid base global hydrologic model (H08) into local scale to estimate spatial distribution under future irrigation requirement of Korean Peninsula. Korea is one of the world's most densely populated countries, with also high produce and demand of rice which requires higher soil moisture than other crops. Although, most of the precipitation concentrate in particular season and disagree with crop growth season. This precipitation character makes management of agricultural water which is approximately 60% of total water usage critical issue in Korea. Furthermore, under future climate change, the precipitation predicted to be more concentrated and necessary need change of future water management plan. In order to apply global hydrological model into local scale, we selected appropriate major crops under social and local climate condition in Korea to estimate cropping area and yield, and revised the cropping area map more accurately. As a result, future irrigation requirement estimation varies under each projection, however, slightly decreased in most case. The simulation reveals, evapotranspiration increase slightly while effective precipitation also increase to balance the irrigation requirement. This finding suggest practical guideline to decision makers for further agricultural water management plan including future development of water supply plan to resolve water scarcity.

  4. Estimation of Land Surface States and Fluxes using a Land Surface Model Considering Different Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Chun, J. A.; Zaitchik, B. F.; Evans, J. P.; Beaudoing, H. K.

    2012-12-01

    Food security can be improved by increasing the extent of agricultural land or by increasing agricultural productivity, including through intensive management such as irrigation. The objectives of this study were to incorporate practical irrigation schemes into land surface models of the NASA Land Information System (LIS) and to apply the tool to estimate the impact of irrigation on land surface states and fluxes—including evapotranspiration, soil moisture, and runoff—in the Murray-Darling basin in Australia. Here we present results obtained using Noah Land Surface Model v3.2 within LIS without simulated irrigation (IR0) and with three irrigation simulation routines: flood irrigation (IR1), drip irrigation (IR2), and sprinkler irrigation (IR3). Moderate Resolution Imaging Spectrometer (MODIS) vegetation index was used to define crop growing seasons. Simulations were performed for a full year (July 2002 to June 2003) and evaluated against hydrologic flux estimates obtained in previous studies. Irrigation amounts during the growing season (August 2002 to March 2003) were simulated as 104.6, 24.6, and 188.1 GL for IR1, IR2, and IR3, respectively. These preliminary results showed water use efficiency from a drip irrigation scheme would be highest and lowest from a sprinkler irrigation scheme, with a highly optimized version of flood irrigation falling in between. Irrigation water contributed to a combination of increased evapotranspiration, runoff, and soil moisture storage in the irrigation simulations relative to IR0. Implications for water management applications and for further model development will be discussed.

  5. Estimation of lateral water flow and bromide transport in a subsurface seepage irrigation system.

    PubMed

    Ouyang, Y

    2009-01-01

    Subsurface seepage irrigation is a common method used by growers in the Tri-County Agricultural Area (TCAA), Florida, USA, owing to its cost-effectiveness and low maintenance requirements. This study investigated the lateral flow of the perched water and the lateral transport of bromide (Br-) in this irrigation system in the TCAA and estimated the potential discharge of Br- into the drainage canals at the edges of the field, using the Visual MODFLOW/ MT3DMS models in conjunction with field experiments. Simulations showed that the perched water flowed from the northeast to the southwest of the field. Migration of the Br- plume from the source areas toward the canals was very slow and varied depending on the selection of the outer Br- concentration contour levels. However, the lateral transport of Br- from the perched water into the canals occurred after about 61 days. The simulations further revealed that the rate of perched water Br- discharge into the canals averaged 8.6 g day(-1) during a 30-day discharge period (from 61 to 91 days). This rate is very important for estimating Br- discharge into the canals and could also provide useful information for evaluating dissolved nutrient discharge into canals from the subsurface seepage irrigation system.

  6. Using Cotton Model Simulations to Estimate Optimally Profitable Irrigation Strategies

    NASA Astrophysics Data System (ADS)

    Mauget, S. A.; Leiker, G.; Sapkota, P.; Johnson, J.; Maas, S.

    2011-12-01

    In recent decades irrigation pumping from the Ogallala Aquifer has led to declines in saturated thickness that have not been compensated for by natural recharge, which has led to questions about the long-term viability of agriculture in the cotton producing areas of west Texas. Adopting irrigation management strategies that optimize profitability while reducing irrigation waste is one way of conserving the aquifer's water resource. Here, a database of modeled cotton yields generated under drip and center pivot irrigated and dryland production scenarios is used in a stochastic dominance analysis that identifies such strategies under varying commodity price and pumping cost conditions. This database and analysis approach will serve as the foundation for a web-based decision support tool that will help producers identify optimal irrigation treatments under specified cotton price, electricity cost, and depth to water table conditions.

  7. Estimating phreatic evaporation in irrigated areas using a stable isotope approach

    NASA Astrophysics Data System (ADS)

    Barthold, F. K.; Umirzakov, G.; Schneider, K.; Stulina, G.; Frede, H.; Breuer, L.

    2011-12-01

    Central Asia is characterized by continental arid climate conditions. Mean annual precipitation is 170 mm with a potential evapotranspiration rate of 1200 mm/a. In addition, many regions are affected by a non-sustainable use of the water resources. 90% of the water resources are used for irrigation purposes to grow e.g. cotton and wheat, especially in Uzbekistan. Large amounts of water are needed for cotton growth. Not only does the plant itself require large amounts of water but a substantial part of the water use is ascribed to the inefficient irrigation system and management. The irrigation infrastructure is old and not maintained well and irrigation management is inadequate. Groundwater level rise has been observed in irrigated areas as a result of the inefficient irrigation practices. Capillary raised groundwater is particularly prone to evaporation as it gets closer to the soil surface. The general objective of this study is to quantify the amount of groundwater (or phreatic) evaporation that is due to groundwater table rise on irrigated fields. In this study, we present an approach where we are using stable isotopes of water to estimate phreatic evaporation on irrigated fields. Our specific objective is to estimate phreatic evaporation (Ep) in relation to the groundwater level and varying soil types (sandy, loamy and clay loamy). We chose a stable water isotopes approach to estimate Ep. For this purpose, soil samples along a depth profile were sampled on sites with different groundwater levels and soil types. Samples were taken in 10 cm increments down to the groundwater level. Soil water was extracted using a cryogenic vacuum distillation and the extracted soil water was analyzed for its composition of stable water isotopes, δD and δ18O, using a Liquid Water Isotope Analyzer (Los Gatos Research, Inc.). Ep was calculated by fitting an exponential function to the experimental isotope soil profile. Our results show that in sandy and loamy soils, enrichment

  8. Improving N and P estimates for swine manure lagoon irrigation water

    USDA-ARS?s Scientific Manuscript database

    Nutrient management plans (NMPs) for confined animal feeding operations (CAFOs) require a record of N and P loads from manure land-applications, including irrigation with lagoon water. Mississippi regulations require nutrient records for lagoon irrigation water be based on at least one annual analy...

  9. An application of METRIC to estimate evapotranspiration of red pepper under four different irrigation levels

    USDA-ARS?s Scientific Manuscript database

    In this study, the METRIC model was used to estimate evapotranspiration (ET) of red pepper under fully irrigated and water stress conditions, in the semi-humid Bafra Plains located in northern Turkey. Field experiments were conducted under four different irrigation levels for red pepper from rainfed...

  10. Estimating irrigation water demand in the Moroccan Drâa Valley using contingent valuation.

    PubMed

    Storm, Hugo; Heckelei, Thomas; Heidecke, Claudia

    2011-10-01

    Irrigation water management is crucial for agricultural production and livelihood security in Morocco as in many other parts of the world. For the implementation of an effective water management, knowledge about farmers' demand for irrigation water is crucial to assess reactions to water pricing policy, to establish a cost-benefit analysis of water supply investments or to determine the optimal water allocation between different users. Previously used econometric methods providing this information often have prohibitive data requirements. In this paper, the Contingent Valuation Method (CVM) is adjusted to derive a demand function for irrigation water along farmers' willingness to pay for one additional unit of surface water or groundwater. An application in the Middle Drâa Valley in Morocco shows that the method provides reasonable results in an environment with limited data availability. For analysing the censored survey data, the Least Absolute Deviation estimator was found to be a more suitable alternative to the Tobit model as errors are heteroscedastic and non-normally distributed. The adjusted CVM to derive demand functions is especially attractive for water scarce countries under limited data availability.

  11. Improving estimates of N and P loads in irrigation water from swine manure lagoons

    USDA-ARS?s Scientific Manuscript database

    The implementation of nutrient management plans (NMPs) for confined animal feeding operations (CAFOs) requires recording N and P loads from land-applied manure, including nutrients applied in irrigation water from manure treatment lagoons. By regulation, lagoon irrigation water nutrient records in ...

  12. Advances in Estimation of Parameters for Surface Irrigation Modeling and Management

    USDA-ARS?s Scientific Manuscript database

    Mathematical models of the surface irrigation process are becoming standard tools for analyzing the performance of irrigation systems and developing design and operational recommendations. A continuing challenge to the practical use of these tools is the difficulty in characterizing required model ...

  13. Estimated Yield of Some Alternative Crops Under Varying Irrigation in Northeast Colorado

    USDA-ARS?s Scientific Manuscript database

    Much of the irrigated acres in northeastern Colorado are devoted to corn grain production. Diversifying irrigated agricultural production in this region could result in water savings if alternative crops were grown that have lower water requirements than corn. Making such crop choice decisions initi...

  14. Gaussian processes-based predictive models to estimate reference ET from alternative meteorological data sources for irrigation scheduling

    USDA-ARS?s Scientific Manuscript database

    Accurate estimates of daily crop evapotranspiration (ET) are needed for efficient irrigation management, especially in arid and semi-arid irrigated regions where crop water demand exceeds rainfall. The impact of inaccurate ET estimates can be tremendous in both irrigation cost and the increased dema...

  15. Projected irrigation requirements for upland crops using soil moisture model under climate change in South Korea

    USDA-ARS?s Scientific Manuscript database

    An increase in abnormal climate change patterns and unsustainable irrigation in uplands cause drought and affect agricultural water security, crop productivity, and price fluctuations. In this study, we developed a soil moisture model to project irrigation requirements (IR) for upland crops under cl...

  16. Simulation of temporal and spatial distribution of required irrigation water by crop models and the pan evaporation coefficient method

    NASA Astrophysics Data System (ADS)

    Yang, Yan-min; Yang, Yonghui; Han, Shu-min; Hu, Yu-kun

    2009-07-01

    Hebei Plain is the most important agricultural belt in North China. Intensive irrigation, low and uneven precipitation have led to severe water shortage on the plain. This study is an attempt to resolve this crucial issue of water shortage for sustainable agricultural production and water resources management. The paper models distributed regional irrigation requirement for a range of cultivated crops on the plain. Classic crop models like DSSAT- wheat/maize and COTTON2K are used in combination with pan-evaporation coefficient method to estimate water requirements for wheat, corn, cotton, fruit-trees and vegetables. The approach is more accurate than the static approach adopted in previous studies. This is because the combination use of crop models and pan-evaporation coefficient method dynamically accounts for irrigation requirement at different growth stages of crops, agronomic practices, and field and climatic conditions. The simulation results show increasing Required Irrigation Amount (RIA) with time. RIA ranges from 5.08×109 m3 to 14.42×109 m3 for the period 1986~2006, with an annual average of 10.6×109 m3. Percent average water use by wheat, fruit trees, vegetable, corn and cotton is 41%, 12%, 12%, 11%, 7% and 17% respectively. RIA for April and May (the period with the highest irrigation water use) is 1.78×109 m3 and 2.41×109 m3 respectively. The counties in the piedmont regions of Mount Taihang have high RIA while the central and eastern regions/counties have low irrigation requirement.

  17. Probabilistic description of crop development and irrigation water requirements with stochastic rainfall

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2013-03-01

    Supplemental irrigation represents one of the main strategies to mitigate the effects of climatic variability on agroecosystems, stabilizing yields and profits. Because of the significant investments and water requirements associated with irrigation, strategic choices are needed to preserve productivity and profitability while ensuring a sustainable water management, a nontrivial task given rainfall unpredictability. Decision-making under uncertainty requires the knowledge of the probability density function (pdf) of the outcome variable (yield and economic return) for the different management alternatives to be considered (here, irrigation strategies). A stochastic framework is proposed, linking probabilistically the occurrence of rainfall events and irrigation applications to crop development during the growing season. Based on these linkages, the pdf of yields and the corresponding irrigation requirements are obtained analytically as a function of climate, soil, and crop parameters, for different irrigation strategies and both unlimited and limited water availability. Approximate expressions are also presented to facilitate their application. Our results employ relatively few parameters and are thus broadly applicable to different crops and sites, under current- and future-climate scenarios, offering a quantitative tool to quantify the impact of irrigation strategies and water allocation on yields. As a tool for decision-making under uncertainty (e.g., via expected utility theory), our framework will be useful for the assessment of the feasibility of different irrigation strategies and water allocations, toward a sustainable management of water resources for human and environmental needs.

  18. Irrigation scheduling of green areas based on soil moisture estimation by the active heated fiber optic distributed temperature sensing AHFO

    NASA Astrophysics Data System (ADS)

    Zubelzu, Sergio; Rodriguez-Sinobas, Leonor; Sobrino, Fernando; Sánchez, Raúl

    2017-04-01

    Irrigation programing determines when and how much water apply to fulfill the plant water requirements depending of its phenology stage and location, and soil water content. Thus, the amount of water, the irrigation time and the irrigation frequency are variables that must be estimated. Likewise, irrigation programing has been based in approaches such as: the determination of plant evapotranspiration and the maintenance of soil water status between a given interval or soil matrix potential. Most of these approaches are based on the measurements of soil water sensors (or tensiometers) located at specific points within the study area which lack of the spatial information of the monitor variable. The information provided in such as few points might not be adequate to characterize the soil water distribution in irrigation systems with poor water application uniformity and thus, it would lead to wrong decisions in irrigation scheduling. Nevertheless, it can be overcome if the active heating pulses distributed fiber optic temperature measurement (AHFO) is used. This estimates the temperature variation along a cable of fiber optic and then, it is correlated with the soil water content. This method applies a known amount of heat to the soil and monitors the temperature evolution, which mainly depends on the soil moisture content. Thus, it allows estimations of soil water content every 12.5 cm along the fiber optic cable, as long as 1500 m (with 2 % accuracy) , every second. This study presents the results obtained in a green area located at the ETSI Agronómica, Agroalimentaria y Biosistesmas in Madrid. The area is irrigated by an sprinkler irrigation system which applies water with low uniformity. Also, it has deployed and installation of 147 m of fiber optic cable at 15 cm depth. The Distribute Temperature Sensing unit was a SILIXA ULTIMA SR (Silixa Ltd, UK) with spatial and temporal resolution of 0.29 m and 1 s, respectively. In this study, heat pulses of 7 W/m for 2

  19. [Spatial and temporal characteristics of flue-cured tobacco water requirement and irrigation requirement index in Yunnan Province, China].

    PubMed

    Zheng, Dong-fang; Xu, Jia-yang; Lu, Xiu-ping; Xu, Zi-cheng; Li, Jun-ying; Pang, Tao; Zhang, Ya-jie; Wang, Pei-wen

    2015-07-01

    Based on the daily meteorological data of 124 agricultural meteorological sites during 1977-2010 in Yunnan Province, using recommended Penman-Monteith formula by FAO, water requirement and irrigation requirement index in the growth period of flue-cured tobacco were calculated to analyze their spatial and temporal characteristics and change patterns. The results showed that water requirements of flue-cured tobacco in root extending, vigorous, mature periods and field growth period during 1977-2010 were 76.73-174.73, 247.50-386.64, 180.28-258.14 and 528.18-764.08 mm, respectively, and the water requirement of vigorous period was the highest. The average irrigation demand index of each period was -0.02, 0.38, 0.17 and 0.26, respectively. Effective precipitation could meet the demand of flue-cured tobacco in root extending period. Water requirement of flue-cured tobacco in Yunnan Province decreased annually, and the rates of water requirement under the climate change trend in the four periods abovementioned were -12. 42, -21.46, -7.17 and -47.15 mm . (10 a)-1, respectively. The smallest irrigation demand index was observed in Dehong, and the largest in Diqing. The irrigation demand indexes of Dehong, Xishuangbanna and Puer regions were negative in flue-cured tobacco field growth period. The reference crop evapotranspiration, water requirement and effective precipitation decreased, but the irrigation requirement and irrigation requirement index increased with the increase of latitude. The effective precipitation decreased, but the irrigation requirement and irrigation requirement index increased with the increase of altitude.

  20. Water and nitrogen requirements of subsurface drip irrigated pomegranate

    USDA-ARS?s Scientific Manuscript database

    Surface drip irrigation is a well-developed practice for both annual and perennial crops. The use of subsurface drip is a well-established practice in many annual row crops, e.g. tomatoes, strawberries, lettuce. However, the use of subsurface drip on perennial crops has been slow to develop. With th...

  1. Simultaneous soil moisture and properties estimation for a drip irrigated field by assimilating cosmic-ray neutron intensity

    NASA Astrophysics Data System (ADS)

    Han, Xujun; Hendricks Franssen, Harrie-Jan; Jiménez Bello, Miguel Ángel; Rosolem, Rafael; Bogena, Heye; Alzamora, Fernando Martínez; Chanzy, André; Vereecken, Harry

    2016-08-01

    Neutron intensity measured by the aboveground cosmic-ray neutron intensity probe (CRP) allows estimating soil moisture content at the field scale. In this work, synthetic neutron intensities were used to remove the bias of simulated soil moisture content or update soil hydraulic properties (together with soil moisture) in the Community Land Model (CLM) using the Local Ensemble Transform Kalman Filter. The cosmic-ray forward model COSMIC was used as the non-linear measurement operator which maps between neutron intensity and soil moisture. The novel aspect of this work is that synthetically measured neutron intensity was used for real time updating of soil states and soil properties (or soil moisture bias) and posterior use for the real time scheduling of irrigation (data assimilation based real-time control approach). Uncertainty of model forcing and soil properties (sand fraction, clay fraction and organic matter density) were considered in the ensemble predictions of the soil moisture profiles. Horizontal and vertical weighting of soil moisture was introduced in the data assimilation in order to handle the scale mismatch between the cosmic-ray footprint and the CLM grid cell. The approach was illustrated in a synthetic study with the real-time irrigation scheduling of fields of citrus trees. After adjusting soil moisture content by assimilating neutron intensity, the irrigation requirements were calculated based on the water deficit method. Model bias was introduced by using coarser soil texture in the data assimilation experiments than in reality. A series of experiments was done with different combinations of state, parameter and bias estimation in combination with irrigation scheduling. Assimilation of CRP neutron intensity improved soil moisture characterization. Irrigation requirement was overestimated if biased soil properties were used. The soil moisture bias was reduced by 35% after data assimilation. The scenario of joint state-parameter estimation

  2. Impact of climate change on irrigation requirements in terms of groundwater resources

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Zwahlen, François; Wang, Yanxin; Li, Yilian

    2010-11-01

    Climate change affects not only water resources but also water demand for irrigation. A large proportion of the world’s agriculture depends on groundwater, especially in arid and semi-arid regions. In several regions, aquifer resources face depletion. Groundwater recharge has been viewed as a by-product of irrigation return flow, and with climate change, aquifer storage of such flow will be vital. A general review, for a broad-based audience, is given of work on global warming and groundwater resources, summarizing the methods used to analyze the climate change scenarios and the influence of these predicted changes on groundwater resources around the world (especially the impact on regional groundwater resources and irrigation requirements). Future challenges of adapting to climate change are also discussed. Such challenges include water-resources depletion, increasing irrigation demand, reduced crop yield, and groundwater salinization. The adaptation to and mitigation of these effects is also reported, including useful information for water-resources managers and the development of sustainable groundwater irrigation methods. Rescheduling irrigation according to the season, coordinating the groundwater resources and irrigation demand, developing more accurate and complete modeling prediction methods, and managing the irrigation facilities in different ways would all be considered, based on the particular cases.

  3. A Coupled Remote Sensing and Simplified Surface Energy Balance Approach to Estimate Actual Evapotranspiration from Irrigated Fields

    PubMed Central

    Senay, Gabriel B.; Budde, Michael; Verdin, James P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250-m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  4. A coupled remote sensing and simplified surface energy balance approach to estimate actual evapotranspiration from irrigated fields

    USGS Publications Warehouse

    Senay, G.B.; Budde, M.; Verdin, J.P.; Melesse, Assefa M.

    2007-01-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Since 2001, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and relative production using satellite-derived data and simulation models in Africa, Central America, and Afghanistan where ground-based monitoring is limited because of a scarcity of weather stations. The commonly used crop monitoring models are based on a crop water-balance algorithm with inputs from satellite-derived rainfall estimates. These models are useful to monitor rainfed agriculture, but they are ineffective for irrigated areas. This study focused on Afghanistan, where over 80 percent of agricultural production comes from irrigated lands. We developed and implemented a Simplified Surface Energy Balance (SSEB) model to monitor and assess the performance of irrigated agriculture in Afghanistan using a combination of 1-km thermal data and 250m Normalized Difference Vegetation Index (NDVI) data, both from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. We estimated seasonal actual evapotranspiration (ETa) over a period of six years (2000-2005) for two major irrigated river basins in Afghanistan, the Kabul and the Helmand, by analyzing up to 19 cloud-free thermal and NDVI images from each year. These seasonal ETa estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the two irrigated basins was indicative of the cropping patterns specific to each region. Our results were comparable to field reports and to estimates based on watershed-wide crop water-balance model results. For example, both methods found that the 2003 seasonal ETa was the highest of all six years. The method also captured water management scenarios where a unique year-to-year variability was identified in addition to water-use differences between

  5. Re-Assessing Leaching Requirements for the Salinity Control under New Irrigation Regimes

    NASA Astrophysics Data System (ADS)

    Wu, Laosheng; Yang, Ting; Šimůnek, Jirka

    2017-04-01

    Irrigation is essential to sustain agricultural production, but it adds dissolved salts (or salinity) to croplands. Leaching is thus necessary to keep the average rootzone salinity below the plant threshold EC levels in order to sustain crop production. Current leaching requirement (LR) calculation is based on steady-state, one-dimensional (1D), and water balance approaches, which often overestimates the LRs under transient field conditions. While in recent years, surface and sprinkler irrigated fields have been largely converted to drip or micro-spray systems and deficit irrigation has become more popular, currently accepted LRs may not be appropriate for these irrigation systems. Under point or line irrigation sources (e.g., drips or drip-lines), water and salts move both downwards and laterally, which may lead to highly saline areas on the edges of the wetted area. Under such circumstances, processes such as precipitation/dissolution of mineral phases and/or cation exchange may significantly affect the leaching requirement. The overall objective of this research was to use computer simulation models (i.e., Hydrus-2D and UnsatChem) to evaluate LRs under transient conditions and new irrigation regimes. Simulations were carried out using parameters for soils, climate zones, and major crops and their corresponding fertilization practices typical for California to: (1) Assess the effects of salt precipitation/dissolution on the leaching requirement (LR); (2) Evaluate localized water movement on average rootzone salinity and the leaching requirement (LR); (3) Evaluate leaching requirements for soils under deficit irrigation; and (4) Assess the effects of rainfall on the leaching requirement. Information from this research could significantly impact water management practices in irrigated croplands.

  6. Validation of a Simplified Energy Balance Model for Estimating Irrigated Cropland and Water use in Afghanistan

    NASA Astrophysics Data System (ADS)

    Budde, M. E.; Senay, G. B.; Verdin, J. P.; Rowland, J. D.

    2006-12-01

    A simplified energy balance model was developed to estimate cropped area and water use for two major irrigated areas in Afghanistan. The model utilized Moderate Resolution Imaging Spectroradiometer (MODIS) 1- km land surface temperature data to calculate a thermal-based evapotranspiration (ET) fraction. The fraction, based on temperature differences between "hot" and "cold" pixels in the study area, was used in conjunction with coarse resolution reference ET to estimate seasonal ET from irrigated lands for the 2000 2005 growing seasons. Irrigated areas in the Helmand River basin of southwestern Afghanistan and near the city of Kabul were analyzed. Model results compared well with field reports for irrigated watersheds which identified 2003 as a good year for crop production in Afghanistan. An advantage of this method over the crop water balance method is that it identifies irrigated areas directly and thus helps estimate total irrigated area and its spatial distribution in a given region. In an effort to validate the annual spatial variability of irrigated areas and associated water use, we utilized a combination of multi-date high resolution images acquired from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument and the QuickBird satellite along with time series of MODIS Normalized Difference Vegetation Index (NDVI). Assessment of the spatial variability of irrigated lands in each of the study locations showed good agreement between the model output and these ancillary image data. In addition, time series NDVI provided seasonal profiles of vegetation productivity that could be compared to both the timing and magnitude of the modeled seasonal ET. We found that the timing of peak seasonal water use corresponded more with atmospheric demand than with timing of maximum NDVI.

  7. Estimated demand for agricultural water for irrigation use in New Jersey, 1990

    USGS Publications Warehouse

    Titus, E.O.; Clawges, R.M.; Qualls, C.L.

    1990-01-01

    As part of an effort to determine if an adequate supply of agricultural water for irrigation use will be available to farmers, the U.S. Geological Survey prepared preliminary estimates of demand for agricultural water for irrigation use for the year 1990 on the basis of six possible scenarios. These scenarios incorporate normal and drought climatic conditions and three alternative estimates of the total acreage of farmland that may be irrigated in 1990. Preliminary estimates of water demand based on soil-moisture deficits were made using methods for calculating climatic water budgets. These estimates ranged from 3.0 billion gal/growing season (May through September), under normal climatic conditions and a 2% annual decline in irrigated acreage since 1984, to 28. 9 billion gal/growing season, under drought conditions and a 2% annual increase in irrigated acreage since 1984. Preliminary estimates of water demand made for the 1986 growing season reasonably approximate reported water use for that period. (USGS)

  8. Evaluation of sampling methods used to estimate irrigation pumpage in Chase, Dundy, and Perkins counties, Nebraska

    USGS Publications Warehouse

    Heimes, F.J.; Luckey, R.R.; Stephens, D.M.

    1986-01-01

    Combining estimates of applied irrigation water, determined for selected sample sites, with information on irrigated acreage provides one alternative for developing areal estimates of groundwater pumpage for irrigation. The reliability of this approach was evaluated by comparing estimated pumpage with metered pumpage for two years for a three-county area in southwestern Nebraska. Meters on all irrigation wells in the three counties provided a complete data set for evaluation of equipment and comparison with pumpage estimates. Regression analyses were conducted on discharge, time-of-operation, and pumpage data collected at 52 irrigation sites in 1983 and at 57 irrigation sites in 1984 using data from inline flowmeters as the independent variable. The standard error of the estimate for regression analysis of discharge measurements made using a portable flowmeter was 6.8% of the mean discharge metered by inline flowmeters. The standard error of the estimate for regression analysis of time of operation determined from electric meters was 8.1% of the mean time of operation determined from in-line and 15.1% for engine-hour meters. Sampled pumpage, calculated by multiplying the average discharge obtained from the portable flowmeter by the time of operation obtained from energy or hour meters, was compared with metered pumpage from in-line flowmeters at sample sites. The standard error of the estimate for the regression analysis of sampled pumpage was 10.3% of the mean of the metered pumpage for 1983 and 1984 combined. The difference in the mean of the sampled pumpage and the mean of the metered pumpage was only 1.8% for 1983 and 2.3% for 1984. Estimated pumpage, for each county and for the study area, was calculated by multiplying application (sampled pumpage divided by irrigated acreages at sample sites) by irrigated acreage compiled from Landsat (Land satellite) imagery. Estimated pumpage was compared with total metered pumpage for each county and the study area

  9. Estimation of infiltration and hydraulic resistance in furrow irrigation, with infiltration dependent on flow depth

    USDA-ARS?s Scientific Manuscript database

    The estimation of parameters of a flow-depth dependent furrow infiltration model and of hydraulic resistance, using irrigation evaluation data, was investigated. The estimated infiltration parameters are the saturated hydraulic conductivity and the macropore volume per unit area. Infiltration throu...

  10. COMPARISON OF METHODS FOR ESTIMATING GROUND-WATER PUMPAGE FOR IRRIGATION.

    USGS Publications Warehouse

    Frenzel, Steven A.

    1985-01-01

    Ground-water pumpage for irrigation was measured at 32 sites on the eastern Snake River Plain in southern Idaho during 1983. Pumpage at these sites also was estimated by three commonly used methods, and pumpage estimates were compared to measured values to determine the accuracy of each estimate. Statistical comparisons of estimated and metered pumpage using an F-test showed that only estimates made using the instantaneous discharge method were not significantly different ( alpha equals 0. 01) from metered values. Pumpage estimates made using the power consumption method reflect variability in pumping efficiency among sites. Pumpage estimates made using the crop-consumptive use method reflect variability in water-management practices. Pumpage estimates made using the instantaneous discharge method reflect variability in discharges at each site during the irrigation season.

  11. Crop-specific seasonal estimates of irrigation water demand in South Asia

    NASA Astrophysics Data System (ADS)

    Biemans, H.; Siderius, C.; Mishra, A.; Ahmad, B.

    2015-08-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight in these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation water demand resulting from the typical practice of multiple-cropping in South Asia was accounted for by introducing double-cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest subnational statistics of India, Pakistan, Bangladesh and Nepal. The representation of seasonal land use and more accurate cropping periods lead to lower estimates of irrigation water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation water demand differs sharply between seasons and regions; in Pakistan, winter (Rabi) and summer (Kharif) irrigation demands are almost equal, whereas in Bangladesh the Rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply vs. rain decreases sharply from west to east. Given the size and importance of South Asia, improved regional estimates of food production and its irrigation water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple-cropping and monsoon-dependent planting dates should not be ignored.

  12. Crop-specific seasonal estimates of irrigation-water demand in South Asia

    NASA Astrophysics Data System (ADS)

    Biemans, Hester; Siderius, Christian; Mishra, Ashok; Ahmad, Bashir

    2016-05-01

    Especially in the Himalayan headwaters of the main rivers in South Asia, shifts in runoff are expected as a result of a rapidly changing climate. In recent years, our insight into these shifts and their impact on water availability has increased. However, a similar detailed understanding of the seasonal pattern in water demand is surprisingly absent. This hampers a proper assessment of water stress and ways to cope and adapt. In this study, the seasonal pattern of irrigation-water demand resulting from the typical practice of multiple cropping in South Asia was accounted for by introducing double cropping with monsoon-dependent planting dates in a hydrology and vegetation model. Crop yields were calibrated to the latest state-level statistics of India, Pakistan, Bangladesh and Nepal. The improvements in seasonal land use and cropping periods lead to lower estimates of irrigation-water demand compared to previous model-based studies, despite the net irrigated area being higher. Crop irrigation-water demand differs sharply between seasons and regions; in Pakistan, winter (rabi) and monsoon summer (kharif) irrigation demands are almost equal, whereas in Bangladesh the rabi demand is ~ 100 times higher. Moreover, the relative importance of irrigation supply versus rain decreases sharply from west to east. Given the size and importance of South Asia improved regional estimates of food production and its irrigation-water demand will also affect global estimates. In models used for global water resources and food-security assessments, processes like multiple cropping and monsoon-dependent planting dates should not be ignored.

  13. Irrigation Trials for ET Estimation and Water Management in California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Martin, F.; Lund, C.; Melton, F. S.

    2012-12-01

    Accurate estimation of crop evapotranspiration (ETc) can support efficient irrigation water management, which in turn brings benefits including surface water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality assurance. Past research in California has revealed strong relationships between canopy fractional cover (Fc) and ETc of certain specialty crops, while additional research has shown the potential of monitoring Fc by satellite remote sensing. California's Central Coast is the leading region of cool season vegetable production in the U.S. Monterey County alone produces more than 80,000 ha of lettuce and broccoli (about half of U.S. production), valued at $1.5 billion in 2009. Under this study, we are conducting ongoing irrigation trials on these crops at the USDA Agricultural Research Station (Salinas) to compare irrigation scheduling via plant-based ETc approaches, by way of Fc, with current industry standard-practice. The following two monitoring approaches are being evaluated - 1) a remote sensing model employed by NASA's prototype Satellite Irrigation Management System, and 2) an online irrigation scheduling tool, CropManage, recently developed by U.C. Cooperative Extension. Both approaches utilize daily grass-reference ETo data as provided by the California Irrigation Management Irrigation System (CIMIS). A sensor network is deployed to monitor applied irrigation, volumetric soil water content, soil water potential, deep drainage, and standard meteorologic variables in order to derive ETc by a water balance approach. Evaluations of crop yield and crop quality are performed by the research team and by commercial growers. Initial results to-date indicate that applied water reductions based on Fc measurements are possible with little-to-no impact on yield of crisphead lettuce (Lactuca sativa). Additional results for both lettuce and broccoli trials, conducted during summer-fall 2012, are presented with respect to

  14. Using MODIS Thermal Data for Estimating Actual Evapotranspiration From Irrigated Fields

    NASA Astrophysics Data System (ADS)

    Senay, G. B.; Budde, M.; Verdin, J. P.

    2006-12-01

    Accurate crop performance monitoring and production estimation are critical for timely assessment of the food balance of several countries in the world. Recently, the Famine Early Warning Systems Network (FEWS NET) has been monitoring crop performance and to some extent relative production using satellite derived data and simulation models in Africa, Central America and Afghanistan where ground-based monitoring is limited due to a scarcity of weather stations. The commonly used crop monitoring models use a crop water balance algorithm with inputs from satellite-derived rainfall. While these models provide useful monitoring for rain-fed agriculture, they are ineffective for irrigated areas. This study has focused on Afghanistan where over 80 percent of the agricultural production comes from irrigated agriculture. We implemented a simplified energy balance approach to monitor and assess the performance of irrigated agriculture in Afghanistan using the combination of 1-km thermal data and 250-m NDVI from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Up to 19 cloud free thermal and NDVI images were used for each year to estimate seasonal actual evapotranspiration (AET) for two major irrigation river basins (Kabul and Helmand) over 6 years (2000- 2005). Seasonal AET estimates were used as relative indicators of year-to-year production magnitude differences. The temporal water-use pattern of the different irrigated basins was indicative of the cropping patterns specific to the region. The results were comparable to field reports and watershed-wide crop water balance based estimates in that the 2003 seasonal AET was the highest of all six years. The advantage of this method over crop water balance methods is that the energy balance approach also helps identify spatial extents of irrigated fields and their spatial variability as opposed to a lumped watershed-wide assessment that can be obtained from large-scale water-balance models.

  15. Estimating the ratio of pond size to irrigated soybeans land in Mississippi: A case study

    USDA-ARS?s Scientific Manuscript database

    Although more on-farm storage ponds have been constructed in recent years to mitigate groundwater resources depletion in Mississippi, little effort has been devoted to estimating the ratio of pond size to irrigated crop land based on pond matric and its hydrological conditions. Knowledge of this ra...

  16. Estimating the ratio of pond size to irrigated soybean land in Mississippi: a case study

    Treesearch

    Ying Ouyang; G. Feng; J. Read; T. D. Leininger; J. N. Jenkins

    2016-01-01

    Although more on-farm storage ponds have been constructed in recent years to mitigate groundwater resources depletion in Mississippi, little effort has been devoted to estimating the ratio of on-farm water storage pond size to irrigated crop land based on pond metric and its hydrogeological conditions.  In this study, two simulation scenarios were chosen to...

  17. How irrigation affects soil erosion estimates of RUSLE2

    USDA-ARS?s Scientific Manuscript database

    RUSLE2 is a robust and computationally efficient conservation planning tool that estimates soil, climate, and land management effects on sheet and rill erosion and sediment delivery from hillslopes, and also estimates the size distribution and clay enrichment of sediment delivered to the channel sys...

  18. Water required, water used, and potential water sources for rice irrigation, north coast of Puerto Rico

    USGS Publications Warehouse

    Roman-Mas, A. J.

    1988-01-01

    A 3-yr investigation was conducted to determine the water required and used (both consumed and applied) for irrigation in the rice-growing areas of Vega Baja, Manati, and Arecibo along the north coast. In addition, the investigation evaluated the water resources of each area with regard to the full development of rice farming areas. Based on experiments conducted at selected test farms, water required ranged from 3.13 to 5.25 acre-ft/acre/crop. The amount of water required varies with the wet and dry seasons. Rainfall was capable of supplying from 31 to 70% of the water required for the measured crop cycles. Statistical analyses demonstrated that as much as 95% of rainfall is potentially usable for rice irrigation. The amount of water consumed differed from the quantity required at selected test farms. The difference between the amount of water consumed and that required was due to unaccounted losses or gains, seepage to and from the irrigation and drainage canals, and lateral leakage through levees. Due to poor water-management practices, the amount of water applied to the farms was considerably larger than the sum of the water requirement and the unaccounted losses or gains. Rivers within the rice growing areas constitute the major water supply for rice irrigation. Full development of these areas will require more water than the rivers can supply. Efficient use of rainfall can significantly reduce the water demand from streamflow. The resulting water demand, however, would still be in excess of the amount available from streamflow. Groundwater development in the area is limited because of seawater intrusion in the aquifers underlying the rice-growing areas. Capture of seepage to the aquifers using wells located near streams, artificial recharge, and development of the deep artesian system can provide additional water for rice irrigation. (Author 's abstract)

  19. Determining pomegranate water and nitrogen requirements with drip irrigation

    USDA-ARS?s Scientific Manuscript database

    Despite being an ancient crop there is limited knowledge on the water and nitrogen (N) requirements of pomegranate. We conducted research at the University of California, Kearney Agricultural Research and Extension Center (KARE) to determine the water and nitrogen requirements of a developing pomegr...

  20. Propagation of biases in humidity in the estimation of global irrigation water

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Hanasaki, N.; Takahashi, K.; Hijioka, Y.

    2015-07-01

    Future projections on irrigation water under a changing climate are highly dependent on meteorological data derived from general circulation models (GCMs). Since climate projections include biases, bias correction is widely used to adjust meteorological elements, such as the atmospheric temperature and precipitation, but less attention has been paid to biases in humidity. Hence, in many cases, uncorrected humidity data have been directly used to analyze the impact of future climate change. In this study, we examined how the biases remaining in the humidity data of five GCMs propagate into the estimation of irrigation water demand and consumption from rivers using the global hydrological model (GHM) H08. First, to determine the effects of humidity bias across GCMs, we ran H08 with GCM-based meteorological forcing data sets distributed by the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP). A state-of-the-art bias correction method was applied to the data sets without correcting biases in humidity. Differences in the monthly relative humidity amounted to 11.7 to 20.4 % RH (percentage relative humidity) across the GCMs and propagated into differences in the estimated irrigation water demand, resulting in a range between 1152.6 and 1435.5 km3 yr-1 for 1971-2000. Differences in humidity also propagated into future projections. Second, sensitivity analysis with hypothetical humidity biases of ±5 % RH added homogeneously worldwide revealed the large negative sensitivity of irrigation water abstraction in India and East China, which are heavily irrigated. Third, we performed another set of simulations with bias-corrected humidity data to examine whether bias correction of the humidity can reduce uncertainties in irrigation water across the GCMs. The results showed that bias correction, even with a primitive methodology that only adjusts the monthly climatological relative humidity, helped reduce uncertainties across the GCMs: by using bias-corrected humidity

  1. Irrigation requirements for seed production of five Lomatium species in a semiarid environment

    Treesearch

    Clinton C. Shock; Erik B. G. Feibert; Alicia Rivera; Lamont D. Saunders; Nancy Shaw; Francis F. Kilkenny

    2016-01-01

    Seeds of native plants are needed for rangeland restoration in the Intermountain West. Many of these plants are rarely cultivated and relatively little is known about the cultural practices required for their seed production. Irrigation trials were conducted for five perennial Lomatium species over multiple years. Lomatium species grown at the Oregon State University...

  2. Evaluation of Irrigation Methods for Highbush Blueberry. I. Growth and Water Requirements of Young Plants

    USDA-ARS?s Scientific Manuscript database

    A study was conducted in a new field of northern highbush blueberry (Vaccinium corymbosum L. 'Elliott') to determine the effects of different irrigation methods on growth and water requirements of uncropped plants during the first 2 years after planting. The plants were grown on mulched, raised beds...

  3. Using Satellite-based Evapotranspiration Estimation to Characterize Agricultural Irrigation Water Use

    NASA Astrophysics Data System (ADS)

    Zheng, B.; Myint, S. W.; Hendrickx, J. M. H.

    2014-12-01

    The satellite-based evapotranspiration (ET) model permits estimation of water consumption across space and time in a systematic way. Developing tools to monitor water availability and water use is critical to meet future water shortage challenges in the American West. This study applied METRIC (Mapping Evapotranspiration at high Resolution and with Internalized Calibration) to 2001 Landsat imagery to estimate ET of various crop types in Phoenix. The total annual ET estimates are correlated well with the actual water use at the irrigation district level (r=0.99). We further incorporated a crop type map to estimate annual ET for the major crop types in the region, and to examine variability in crop water use among different irrigation districts. Our results show that alfalfa and double crops consume more water than other crop types with mean annual ET estimations of 1300 to 1580 mm/year, and that cotton uses more water (1162 mm/year) than corn (838 mm/year) and sorghum (829 mm/year) as expected. Crop water use varies from one irrigation district to another due to differences in soil quality, water quality, and farming practices. Results from our study suggest that the ET maps derived from METRIC can be used to quantify the spatial distribution of ET and to characterize agricultural water use by crop types at different spatial scales.

  4. Evaluation and comparison of methods to estimate irrigation withdrawal for the National Water Census Focus Area Study of the Apalachicola-Chattahoochee-Flint River Basin in southwestern Georgia

    USGS Publications Warehouse

    Painter, Jaime A.; Torak, Lynn J.; Jones, John W.

    2015-09-30

    Methods to estimate irrigation withdrawal using nationally available datasets and techniques that are transferable to other agricultural regions were evaluated by the U.S. Geological Survey as part of the Apalachicola-Chattahoochee-Flint (ACF) River Basin focus area study of the National Water Census (ACF–FAS). These methods investigated the spatial, temporal, and quantitative distributions of water withdrawal for irrigation in the southwestern Georgia region of the ACF–FAS, filling a vital need to inform science-based decisions regarding resource management and conservation. The crop– demand method assumed that only enough water is pumped onto a crop to satisfy the deficit between evapotranspiration and precipitation. A second method applied a geostatistical regimen of variography and conditional simulation to monthly metered irrigation withdrawal to estimate irrigation withdrawal where data do not exist. A third method analyzed Landsat satellite imagery using an automated approach to generate monthly estimates of irrigated lands. These methods were evaluated independently and compared collectively with measured water withdrawal information available in the Georgia part of the ACF–FAS, principally in the Chattahoochee-Flint River Basin. An assessment of each method’s contribution to the National Water Census program was also made to identify transfer value of the methods to the national program and other water census studies. None of the three methods evaluated represent a turnkey process to estimate irrigation withdrawal on any spatial (local or regional) or temporal (monthly or annual) extent. Each method requires additional information on agricultural practices during the growing season to complete the withdrawal estimation process. Spatial and temporal limitations inherent in identifying irrigated acres during the growing season, and in designing spatially and temporally representative monitor (meter) networks, can belie the ability of the methods to

  5. Simulating Irrigation Requirements And Water Withdrawals: The Role Of Agricultural Irrigation In Basin Hydrology And Non-Sustainable Water Use

    NASA Astrophysics Data System (ADS)

    Wisser, D.; Douglas, E. M.; Schumann, A. H.; Vörösmarty, C. J.

    2006-05-01

    The development of irrigation can cause drastic alterations of the water cycle both through changed evaporation patterns, water abstractions, and (in the case of paddy rice), increased percolation rates. The interactions of irrigation development and large-scale water cycles have traditionally not been accounted for in macroscale hydrological models. We use a modified version an existing water balance model (the WBM model) to explicitly consider the effects of irrigation on regional and continental water cycles. The irrigation module is based on the FAO-CROPWAT approach and uses a daily soil moisture balance to simulate crop consumptive water use. Time series of irrigated areas and the distribution of crops and cropping patterns are derived from a combination of remotely sensed data and national and sub-national statistics. An assessment is made of (1) how irrigation water is supplied and (2) how much of this water is abstracted in excess of the renewable water supply in the basin considering different time horizons. Using different scenarios of water availability and irrigation water demand, the response of irrigation water use to water supply and the potential threats to food security are investigated. Case studies in a few river basins that are heavily influenced by irrigated agriculture and that represent different regions of the world will be presented.

  6. Propagation of biases in humidity in the estimation of global irrigational water

    NASA Astrophysics Data System (ADS)

    Masaki, Y.; Hanasaki, N.; Takahashi, K.; Hijioka, Y.

    2015-01-01

    Future projections on irrigational water under a changing climate are highly dependent on meteorological data derived from general circulation models (GCMs). Since climate projections include biases, bias correction is widely used to adjust meteorological elements, such as the atmospheric temperature and precipitation, but less attention has been paid to biases in humidity. Hence, in many cases, raw GCM outputs have been directly used to analyze the impact of future climate change. In this study, we examined how the biases remaining in the humidity data of five GCMs propagate into the estimation of irrigational water demand and abstraction from rivers using the global hydrological model (GHM) H08. First, to determine the effects of humidity bias across GCMs, we used meteorological data sets to which a state-of-the-art bias correction method was applied except to the humidity. Uncorrected GCM outputs were used for the humidity. We found that differences in the monthly relative humidity of 11.7 to 20.4% RH (percent used as the unit of relative humidity) from observations across the GCMs caused the estimated irrigational water abstraction from rivers to range between 1217.7 and 1341.3 km3 yr-1 for 1971-2000. Differences in humidity also propagate into future projections. Second, sensitivity analysis with hypothetical humidity biases of ±5% RH added homogeneously worldwide revealed the large negative sensitivity of irrigational water abstraction in India and East China, which have high areal fractions of irrigated cropland. Third, we performed another set of simulations with bias-corrected humidity data to examine whether bias correction of the humidity can reduce uncertainties in irrigational water across the GCMs. The results showed that bias correction, even with a primitive methodology that only adjusts the monthly climatological relative humidity, helped reduce uncertainties across the GCMs. Although the GHMs have different sensitivities to atmospheric humidity

  7. Use of Dehydrated Agar to Estimate Microbial Water Quality for Horticulture Irrigation.

    PubMed

    Meador, Dustin P; Fisher, Paul R; Guy, Charles L; Harmon, Philip F; Peres, Natalia A; Teplitski, Max

    2016-07-01

    Petrifilms are dehydrated agar culture plates that have been used to quantify colony forming units (CFU) mL of either aerobic bacteria (Petrifilm-AC) or fungus (Petrifilm-YM), depending on substrate composition. Microbes in irrigation systems can indicate biofilm risk and potential clogging of irrigation emitters. The research objective was to compare counts on Petrifilms versus traditional, hydrated-agar plates using samples collected from recirculated irrigation waters and cultures of isolated known species. The estimated count (in CFU mL) from a recirculated irrigation sample after 7 d of incubation on Petrifilm-YM was only 5.5% of the count quantified using sabouraud dextrose agar (SDA) with chloramphenicol after 14 d. In a separate experiment with a known species, Petrifilm-YM did not successfully culture zoospores of . Isolates of viable zoospores were cultured successfully on potato-dextrose agar (PDA), with comparable counts with a vegetable juice medium supplemented with the antibiotics pimaricin, ampicillin, rifamycin, pentochloronitrobenzene and hymexazol (PARP-H). The quantification of pv. Begoniaceae on Petrifilm-AC was not significantly different ( < 0.05) than on PDA, but was lower than on Reasoner and Goldrich agar (R2A) or with a hemocytometer. The current formulation of Petrifilm-YM is unlikely to be a useful monitoring method for plant pathogens in irrigation water because of the inability to successfully culture oomycetes. However, Petrifilm-AC was an effective method to quantify bacteria and can provide an easy-to-use on-farm tool to monitor biofilm risk and microbial density. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Validation of an improved energy balance model to estimate actual evapotranspiration in irrigated cotton ecosystems of Central Asia

    NASA Astrophysics Data System (ADS)

    Knoefel, Patrick; Conrad, Christopher; Falk, Ulrike; Bauer-Marschallinger, Bernhard

    2014-05-01

    improved using the physically based method. While the empirical equation leads to RMSEs of 80 W/m² and r² of 0.09, the improved approach for G shows RMSE of about 35 W/m² and r² of 0.46. Whereat, the impact of the improvement in G estimation on the ET modelling is low due the relatively small proportion of G in the total energy balance, compared to the components Rn, H, and LE. For cotton, the seasonal actual ET varies between 500 mm in dry years and 750 mm in years with higher water availability. Hence, WUE is small compared to other irrigated cotton ecosystems with seasonal ET of about 400 mm. Considering the required amount of irrigation water for the entire area of the irrigation system of 10 mio. ha with a proportion of cotton of about 30%, illustrates the dimension of water diversion in CA. Thus, in the studied case only cotton disturbs the natural cycles by ET in the desert ecosystem. However, for an exact quantification transfer of this method into other irrigated systems of CA, regional meteorological observations are necessary.

  9. A field and statistical modeling study to estimate irrigation water use at Benchmark Farms study sites in southwestern Georgia, 1995-96

    USGS Publications Warehouse

    Fanning, Julia L.; Schwarz, Gregory E.; Lewis, William C.

    2001-01-01

    A benchmark irrigation monitoring network of farms located in a 32-county area in southwestern Georgia was established in 1995 to improve estimates of irrigation water use. A stratified random sample of 500 permitted irrigators was selected from a data base--maintained by the Georgia Department of Natural Resources, Georgia Environmental Protection Division, Water Resources Management Branch--to obtain 180 voluntary participants in the study area. Site-specific irrigation data were collected at each farm using running-time totalizers and noninvasive flowmeters. Data were collected and compiled for 50 farms for 1995 and 130 additional farms for the 1996 growing season--a total of 180 farms. Irrigation data collected during the 1996 growing season were compiled for 180 benchmark farms and used to develop a statistical model to estimate irrigation water use in 32 counties in southwestern Georgia. The estimates derived were developed from using a statistical approach know as "bootstrap analysis" that allows for the estimation of precision. Five model components--whether-to-irrigate, acres irrigated, crop selected, seasonal-irrigation scheduling, and the amount of irrigation applied--compose the irrigation model and were developed to reflect patterns in the data collected at Benchmark Farms Study area sites. The model estimated that peak irrigation for all counties in the study area occurred during July with significant irrigation also occurring during May, June, and August. Irwin and Tift were the most irrigated and Schley and Houston were the least irrigated counties in the study area. High irrigation intensity primarily was located along the eastern border of the study area; whereas, low irrigation intensity was located in the southwestern quadrant where ground water was the dominant irrigation source. Crop-level estimates showed sizable variations across crops and considerable uncertainty for all crops other than peanuts and pecans. Counties having the most

  10. Estimation of groundwater pumping as closure to the water balance of a semi-arid, irrigated agricultural basin

    NASA Astrophysics Data System (ADS)

    Ruud, Nels; Harter, Thomas; Naugle, Alec

    2004-09-01

    Groundwater pumping is frequently the least measured water balance component in semi-arid basins with significant agricultural production. In this article, we develop a GIS-based water balance model for estimating basin-scale monthly and annual groundwater pumping and apply it to a 2300 km 2 semi-arid, irrigated agricultural area in the southern San Joaquin Valley, California. Both, annual groundwater storage changes and pumping are estimated as closure terms. The local hydrology is dominated by distributed surface water supplies, limited precipitation, and large crop water uses; whereas basin-scale runoff generation and groundwater-to-surface water discharges are negligible. Groundwater represents a terminal long-term storage reservoir with distributed inputs and outputs. To capture the spatio-temporal variability in water management and water use, the study area is delineated into 26 water service areas and 9611 individual fields or land units. The model computes conveyance seepage losses external to districts; seepage losses within districts; and net applied surface water of each district. For each land unit, the model calculates the applied water demand; its allotment of delivered surface water; the groundwater pumping required to meet the balance of its applied water demand; and aquifer recharge resulting from deep percolation of applied water and precipitation. These spatially distributed components are aggregated to the basin scale. Estimated annual groundwater storage changes compared well to those computed by the water-table fluctuation method over the 30-year study period, providing an independent verification of the consumptive use estimation. Pumping accounted for as much as 80% of the total applied water in 'Critical' water years and as little as 30% in 'Wet' years. Pumping estimates are most sensitive to estimation uncertainty of soil available water. They show little sensitivity to estimation errors in effective root depth, irrigation efficiencies

  11. Remote-Sensing Biophysical Models for Estimating Lai of Irrigated Crops in Murry Darling Basin

    NASA Astrophysics Data System (ADS)

    Wittamperuma, I.; Hafeez, M.; Pakparvar, M.; Louis, J.

    2012-07-01

    Remote sensing is a rapid and reliable method for estimating crop growth data from individual plant to crops in irrigated agriculture ecosystem. The LAI is one of the important biophysical parameter for determining vegetation health, biomass, photosynthesis and evapotranspiration (ET) for the modelling of crop yield and water productivity. Ground measurement of this parameter is tedious and time-consuming due to heterogeneity across the landscape over time and space. This study deals with the development of remote-sensing based empirical relationships for the estimation of ground-based LAI (LAIG) using NDVI, modelled with and without atmospheric correction models for three irrigated crops (corn, wheat and rice) grown in irrigated farms within Coleambally Irrigation Area (CIA) which is located in southern Murray Darling basin, NSW in Australia. Extensive ground truthing campaigns were carried out to measure crop growth and to collect field samples of LAI using LAI- 2000 Plant Canopy Analyser and reflectance using CROPSCAN Multi Spectral Radiometer at several farms within the CIA. A Set of 12 cloud free Landsat 5 TM satellite images for the period of 2010-11 were downloaded and regression analysis was carried out to analyse the co-relationships between satellite and ground measured reflectance and to check the reliability of data sets for the crops. Among all the developed regression relationships between LAI and NDVI, the atmospheric correction process has significantly improved the relationship between LAI and NDVI for Landsat 5 TM images. The regression analysis also shows strong correlations for corn and wheat but weak correlations for rice which is currently being investigated.

  12. Estimating nitrogen losses in furrow irrigated soil amended by compost using HYDRUS-2D model

    NASA Astrophysics Data System (ADS)

    Iqbal, Shahid; Guber, Andrey; Zaman Khan, Haroon; ullah, Ehsan

    2014-05-01

    Furrow irrigation commonly results in high nitrogen (N) losses from soil profile via deep infiltration. Estimation of such losses and their reduction is not a trivial task because furrow irrigation creates highly nonuniform distribution of soil water that leads to preferential water and N fluxes in soil profile. Direct measurements of such fluxes are impractical. The objective of this study was to assess applicability of HYDRUS-2D model for estimating nitrogen balance in manure amended soil under furrow irrigation. Field experiments were conducted in a sandy loam soil amended by poultry manure compost (PMC) and pressmud compost (PrMC) fertilizers. The PMC and PrMC contained 2.5% and 0.9% N and were applied at 5 rates: 2, 4, 6, 8 and 10 ton/ha. Plots were irrigated starting from 26th day from planting using furrows with 1x1 ridge to furrow aspect ratio. Irrigation depths were 7.5 cm and time interval between irrigations varied from 8 to 15 days. Results of the field experiments showed that approximately the same corn yield was obtained with considerably higher N application rates using PMC than using PrMC as a fertilizer. HYDRUS-2D model was implemented to evaluate N fluxes in soil amended by PMC and PrMC fertilizers. Nitrogen exchange between two pools of organic N (compost and soil) and two pools of mineral N (soil NH4-N and soil NO3-N) was modeled using mineralization and nitrification reactions. Sources of mineral N losses from soil profile included denitrification, root N uptake and leaching with deep infiltration of water. HYDRUS-2D simulations showed that the observed increases in N root water uptake and corn yields associated with compost application could not be explained by the amount of N added to soil profile with the compost. Predicted N uptake by roots significantly underestimated the field data. Good agreement between simulated and field-estimated values of N root uptake was achieved when the rate of organic N mineralization was increased

  13. Stable isotope ratios in irrigation water can estimate rice crop evaporation

    NASA Astrophysics Data System (ADS)

    Simpson, H. J.; Herczeg, A. L.; Meyer, W. S.

    1992-02-01

    Irrigated crops provide about one third of world food production, and the total area under irrigation has increased by more than a factor of three since 1950 [Brown, 1988]. Possibilities for further geographical expansion are limited; therefore future production increases are likely to require higher efficiency of water use. Of the major grain crops, lowland rice requires the most water, with total demand per unit area at least twice that for wheat and maize. Stable isotope abundance changes in irrigation water can provide direct indication of integrated evaporation losses exclusive of transpiration and thus provide a new tool to monitor a key parameter relevant to water use efficiency. Large enrichments of deuterium and oxygen-18 in rice field water compared to initial input water in a semi-arid region of southeastern Australia indicate high evaporation rates (7 mm day-1) during the first month following flooding. This contrasts with semi-mature rice crops which had small heavy isotope enrichments of field water, indicating low evaporation (<1 mm day-1), compared to transpiration (6 to 7 mm day-1). Over the entire rice-cropping season, evaporation accounted for about 40 per cent of total losses to the atmosphere, with transpiration providing the remainder.

  14. Minimum Irrigation Requirements for Cottonwood (Populus fremontii and P. deltoides) and Willow (Salix gooddingii) Grown in a Desert Environment

    NASA Astrophysics Data System (ADS)

    Glenn, E. P.; Hartwell, S.; Morino, K.; Nagler, P. L.

    2009-12-01

    Native tree plots have been established in riverine irrigation districts in the western U.S. to provide habitat for threatened and endangered birds. Information is needed on the minimum effective irrigation requirements of the target species. We summarize preliminary (or unpublished) findings of a study or cottonwood (Populus spp.) and willow (Salix gooddingii) trees that were grown for seven years in an outdoor plot in a desert environment in Tucson, Arizona to determine plant water use. Plants were allowed to achieve a nearly complete canopy cover over the first four years, then were subjected to three summer irrigation schedules: 6.2 mm d-1; 8.26 mm d-1 and 15.7 mm d-1. The lowest irrigation rate was sufficient to maintain growth and high leaf area index for cottonwoods over three years, but willows suffered partial die-back on this rate, and required 8.26 mm d-1 to maintain growth. These irrigation rates were required April 15 - September 15, but only 0.88 mm d-1 was required during the dormant periods of the year. Expressed as a fraction of reference crop evapotranspiration (ET/ETo), annual water requirements were 0.83 ETo for cottonwood and 1.01 ETo for willow, which includes irrigation plus precipitation. Current practices tend to over-irrigate restoration plots, and this study can provide guidelines for more efficient water use.

  15. Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan

    NASA Astrophysics Data System (ADS)

    Usman, M.; Liedl, R.; Awan, U. K.

    2015-06-01

    Reallocation of water resources in any irrigation scheme is only possible by detailed assessment of current irrigation performance. The performance of the Lower Chenab Canal (LCC) irrigation system in Pakistan was evaluated at large spatial and temporal scales. Evaporative Fraction (EF) representing the key element to assess the three very important performance indicators of equity, adequacy and reliability, was determined by the Surface Energy Balance Algorithm (SEBAL) using Moderate Resolution Imaging Spectroradiometer (MODIS) images. Spatially based estimations were performed at irrigation subdivisions, lower and upper LCC and, whole LCC scales, while temporal scales covered months, seasons and years for the study period from 2005 to 2012. Differences in consumptive water use between upper and lower LCC were estimated for different crops and possible water saving options were explored. The assessment of equitable water distribution indicates smaller coefficients of variation and hence less inequity within each subdivision except Sagar (0.08) and Bhagat (0.10). Both adequacy and reliability of water resources are found lower during kharif as compared to rabi with variation from head to tail reaches. Reliability is quite low from July to September and in February/March. This is mainly attributed to seasonal rainfalls. Average consumptive water use estimations indicate almost doubled water use (546 mm) in kharif as compared to (274 mm) in rabi with significant variability for different cropping years. Crop specific consumptive water use reveals rice and sugarcane as major water consumers with average values of 593 mm and 580 mm, respectively, for upper and lower LCC, followed by cotton and kharif fodder. The water uses for cotton are 555 mm and 528 mm. For kharif fodder, corresponding values are 525 mm and 494 mm for both regions. Based on the differences in consumptive water use, different land use land cover change scenarios were evaluated with regard to savings

  16. coupled experimental-modeling approach for estimation of root zone leaching of applied irrigation water and fertilizers

    NASA Astrophysics Data System (ADS)

    Kandelous, M.; Moradi, A. B.; Hopmans, J. W.; Burger, M.

    2012-12-01

    Micro-irrigation methods have proven to be highly effective in achieving the desired crop yields, but there is increasing evidence suggesting the need for the optimization of irrigation scheduling and management, thereby achieving sustainable agricultural practices, while minimizing losses of applied water and fertilizers at the field scale. Moreover, sustainable irrigation systems must maintain a long-term salt balance that minimizes both salinity impacts on crop production and salt leaching to the groundwater. To optimize cropping system efficiency and irrigation/fertigation practices, irrigation and fertilizers must be applied at the right concentration, place, and time to ensure maximum root uptake. However, the applied irrigation water and dissolved fertilizer, as well as root growth and associated nutrient and water uptake, interact with soil properties and nutrient sources in a complex manner that cannot easily be resolved with 'experience' and field experimentation alone. Therefore, a coupling of experimentation and modeling is required to unravel the complexities resulting from spatial variations of soil texture and layering often found in agricultural fields. We present experimental approaches that provide the necessary data on soil moisture, water potential, and nitrate concentration and multi-dimensional modeling of unsaturated water flow and solute transport to evaluate and optimize irrigation and fertility management practices for multiple locations, crop types, and irrigation systems.

  17. Using FAO-56 model to estimate soil and crop water status: Application to a citrus orchard under regulated deficit irrigation

    NASA Astrophysics Data System (ADS)

    Provenzano, Giuseppe; Gonzàles-Altozano, Pablo; Manzano-Juàrez, Juan; Rallo, Giovanni

    2015-04-01

    Agro-hydrological models allow schematizing exchange processes in the soil-plant-atmosphere continuum (SPAC) on a wide range of spatial and temporal scales. Each section of the SPAC system is characterized by complex behaviours arising, for instance, the adaptive plant strategies in response to soil water deficit conditions. Regulated deficit irrigation (RDI) has been considered as one of the potential strategies for sustainable crop production in regions characterized by water scarcity. Moreover, reducing water supply at certain growth stages can improve water use efficiency (WUE) and quality of productions, without affecting significantly crop yield. Environmental policy requires to improve WUE in crops with high water requirements, so that it is necessary to identify easy-to-use tools aimed at irrigation water saving strategies, without the need of tedious and time consuming experiments. Accurate evaluation of crop water status and actual transpiration plays a key role in irrigation scheduling under RDI, in order to avoid that water stress becomes too severe and detrimental to yield and fruit quality. Objective of the research was to assess the suitability of FAO56 agro-hydrological model (Allen et al., 1998) on citrus orchards under different water deficit conditions, to estimate soil and crop water status. The ability of the model to predict actual crop water stress was evaluated based on the temporal dynamic of simulated relative transpirations and on the similarities with the corresponding dynamic of measured midday stem water potentials, MSWP. During dry periods, simulated relative crop transpiration was correlated to MSWP with the aim to assess the model ability to predict crop water stress and to identify "plant-based" irrigation scheduling parameters. Experiments were carried out during three years from 2009 and 2011 in Senyera (39° 3' 35.4" N, 0° 30' 28.2" W), Spain, in a commercial orchard planted with Navelina/Cleopatra citrus trees. Three RDI

  18. Irrigated rice area estimation using remote sensing techniques: Project's proposal and preliminary results. [Rio Grande do Sul, Brazil

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Deassuncao, G. V.; Moreira, M. A.; Novaes, R. A.

    1984-01-01

    The development of a methodology for annual estimates of irrigated rice crop in the State of Rio Grande do Sul, Brazil, using remote sensing techniques is proposed. The project involves interpretation, digital analysis, and sampling techniques of LANDSAT imagery. Results are discussed from a preliminary phase for identifying and evaluating irrigated rice crop areas in four counties of the State, for the crop year 1982/1983. This first phase involved just visual interpretation techniques of MSS/LANDSAT images.

  19. Estimation of actual irrigation amount and its impact on groundwater depletion: A case study in the Hebei Plain, China

    NASA Astrophysics Data System (ADS)

    Hu, Xiaolong; Shi, Liangsheng; Zeng, Jicai; Yang, Jinzhong; Zha, Yuanyuan; Yao, Yunjun; Cao, Guoliang

    2016-12-01

    Irrigation water is an important but missing hydrological cycle component in the region with intensive agricultural irrigation, due to the lack of monitoring facilities. The Hebei Plain, suffering the most severe groundwater depletion in China for agriculture production, provides an ideal background to study historical agricultural water consumption and its dependence on groundwater exploitation. This paper investigated the method of retrieving the spatial-temporal irrigation amount from multiple data sets of different sources and different scales. Comprehensive data including 21 years of satellite-based data, ground-based data, and four years of tracer experiment data are synthesized to implement the soil water balance. We proposed a modified soil water balance framework by relying on as much as possible of easily available data. Our results showed that the multi-mean annual irrigation amount in the Hebei Plain is 317 mm, and mean irrigation-to-evapotranspiration ratio reaches 50.8% in recent two decades. Moreover, the precipitation distribution, plant structure, and agricultural intensity result in significantly spatiotemporal variation in irrigation and irrigation-to-evapotranspiration ratio, while however has not been addressed by previous studies. Deep percolation, ignored by many soil water balance models, was shown to be unneglectable. The estimated actual irrigation amount, together with groundwater level data, are valuable to obtain a further understanding on groundwater depletion. The diverse groundwater depletion situation in the Hebei Plain indicated the importance of recognizing the groundwater utilization patterns at a smaller scale in the regional-scale groundwater resources management. This work showed the feasibility of estimating the irrigation amount using simultaneously different types of data and revealed the spatiotemporal characteristics of agriculture water consumption and associated groundwater depletion in the Hebei Plain.

  20. Estimating crop water requirements of a command area using multispectral video imagery and geographic information systems

    NASA Astrophysics Data System (ADS)

    Ahmed, Rashid Hassan

    This research focused on the potential use of multispectral video remote sensing for irrigation water management. Two methods for estimating crop evapotranspiration were investigated, the energy balance estimation from multispectral video imagery and use of reflectance-based crop coefficients from multitemporal multispectral video imagery. The energy balance method was based on estimating net radiation, and soil and sensible heat fluxes, using input from the multispectral video imagery. The latent heat flux was estimated as a residual. The results were compared to surface heat fluxes measured on the ground. The net radiation was estimated within 5% of the measured values. However, the estimates of sensible and soil heat fluxes were not consistent with the measured values. This discrepancy was attributed to the methods for estimating the two fluxes. The degree of uncertainty in the parameters used in the methods made their application too limited for extrapolation to large agricultural areas. The second method used reflectance-based crop coefficients developed from the multispectral video imagery using alfalfa as a reference crop. The daily evapotranspiration from alfalfa was estimated using a nearby weather station. With the crop coefficients known for a canal command area, irrigation scheduling was simulated using the soil moisture balance method. The estimated soil moisture matched the actual soil moisture measured using the neutron probe method. Also, the overall water requirement estimated by this method was found to be in close agreement with the canal water deliveries. The crop coefficient method has great potential for irrigation management of large agricultural areas.

  1. Use of Landsat imagery to estimate ground-water pumpage for irrigation on the Columbia Plateau in eastern Washington, 1985

    USGS Publications Warehouse

    Van Metre, P.C.; Seevers, Paul

    1991-01-01

    A method for estimating ground-water pumpage for irrigation was developed for the Columbia Plateau in eastern Washington. The method combines water-application rates estimated from pumpage data with acreage of irrigated crops that was mapped by using Landsat imagery. The study area consisted of Grant, Lincoln, Adams, and Franklin Counties, an area of approximately 8,900 square miles, and accounts for approximately three-fourths of the ground-water pumpage in the Columbia Plateau in eastern Washington. Data from two passes of Landsat's multispectral scanner were analyzed by using a spectral band ratioing procedure to map irrigated crops for the study area. Data from one pass of Landsat's thematic mapper, covering approximately two-thirds of the study area, also were analyzed for determining irrigated crops in the area resulting in a 6-percent improvement in accuracy over the multispectral scanner analysis. A total of 576 annual water-application rates associated with particular crops, for the 1982 through 1985 seasons, were calculated. A regression equation was developed for estimating annual water-application rates as a function of crop type, annual precipitation, irrigation system type, and available water capacity of the soil. Crops were grouped into three water-use categories: (1) small grains, primarily wheat and barley; (2) high water-use crops consisting of corn, alfalfa, and potatoes; and (3) miscellaneous vegetable and row crops. Annual water-application rates, expressed as a depth of water, then were multiplied by irrigated area determined by Landsat to estimate a volume of water pumped for irrigation for 1985-620,000 acre-feet. An assessment of accuracy for estimating pumpage for 28 of the sites showed that total predicted pumpage was within 4 percent of the total observed pumpage.

  2. Estimation of surface energy fluxes using surface renewal and flux variance techniques over an advective irrigated agricultural site

    USDA-ARS?s Scientific Manuscript database

    Estimation of surface energy fluxes over irrigated agriculture is needed to monitor crop water use. Estimates are commonly done using well-established techniques such as eddy covariance (EC) and weighing lysimetry, but implementing these to collect spatially distributed observations is complex and c...

  3. An integrated crop and hydrologic modeling system to estimate hydrologic impacts of crop irrigation demands

    Treesearch

    R.T. McNider; C. Handyside; K. Doty; W.L. Ellenburg; J.F. Cruise; J.R. Christy; D. Moss; V. Sharda; G. Hoogenboom; Peter Caldwell

    2015-01-01

    The present paper discusses a coupled gridded crop modeling and hydrologic modeling system that can examine the benefits of irrigation and costs of irrigation and the coincident impact of the irrigation water withdrawals on surface water hydrology. The system is applied to the Southeastern U.S. The system tools to be discussed include a gridded version (GriDSSAT) of...

  4. Estimating groundwater evapotranspiration from irrigated cropland incorporating root zone soil texture and moisture dynamics

    NASA Astrophysics Data System (ADS)

    Wang, Xingwang; Huo, Zailin; Feng, Shaoyuan; Guo, Ping; Guan, Huade

    2016-12-01

    Estimating evapotranspiration from groundwater (ETg) is of importance to understanding water cycle and agricultural water management. Traditional ETg estimation was developed for regional steady condition and is difficult to be used for cropland where ETg changes with crop growth and irrigation schemes. In the present study, a new method estimating daily ETg during the crop growing season was developed. In this model, the effects of crop growth stage, climate condition, groundwater depth and soil moisture are considered. The method was tested with controlled lysimeter experiments of winter wheat including five controlled water table depths and four soil profiles of different textures. The simulated ETg is in good agreement with the measured data for four soil profiles and different depths to groundwater table. Coefficient of determination (R2) and coefficient of efficiency (NSE) are mostly larger than 0.85 and 0.70, respectively. This result suggests that the new method incorporating both soil texture and moisture dynamics can be used to estimate average daily groundwater evapotranspiration in cropland and contribute to quantifying the field water cycle.

  5. Use of thermal and visible imagery for estimating crop water status of irrigated grapevine.

    PubMed

    Möller, M; Alchanatis, V; Cohen, Y; Meron, M; Tsipris, J; Naor, A; Ostrovsky, V; Sprintsin, M; Cohen, S

    2007-01-01

    Achieving high quality wine grapes depends on the ability to maintain mild to moderate levels of water stress in the crop during the growing season. This study investigates the use of thermal imaging for monitoring water stress. Experiments were conducted on a wine-grape (Vitis vinifera cv. Merlot) vineyard in northern Israel. Irrigation treatments included mild, moderate, and severe stress. Thermal and visible (RGB) images of the crop were taken on four days at midday with a FLIR thermal imaging system and a digital camera, respectively, both mounted on a truck-crane 15 m above the canopy. Aluminium crosses were used to match visible and thermal images in post-processing and an artificial wet surface was used to estimate the reference wet temperature (T(wet)). Monitored crop parameters included stem water potential (Psi(stem)), leaf conductance (g(L)), and leaf area index (LAI). Meteorological parameters were measured at 2 m height. CWSI was highly correlated with g(L) and moderately correlated with Psi(stem). The CWSI-g(L) relationship was very stable throughout the season, but for that of CWSI-Psi(stem) both intercept and slope varied considerably. The latter presumably reflects the non-direct nature of the physiological relationship between CWSI and Psi(stem). The highest R(2) for the CWSI to g(L) relationship, 0.91 (n=12), was obtained when CWSI was computed using temperatures from the centre of the canopy, T(wet) from the artificial wet surface, and reference dry temperature from air temperature plus 5 degrees C. Using T(wet) calculated from the inverted Penman-Monteith equation and estimated from an artificially wetted part of the canopy also yielded crop water-stress estimates highly correlated with g(L) (R(2)=0.89 and 0.82, respectively), while a crop water-stress index using 'theoretical' reference temperatures computed from climate data showed significant deviations in the late season. Parameter variability and robustness of the different CWSI estimates

  6. Use of Sharpened Land Surface Temperature for Daily Evapotranspiration Estimation over Irrigated Crops in Arid Lands

    NASA Astrophysics Data System (ADS)

    Rosas Aguilar, J.; McCabe, M. F.; Houborg, R.; Gao, F.

    2014-12-01

    Satellite remote sensing provides data on land surface characteristics, useful for mapping land surface energy fluxes and evapotranspiration (ET). Land-surface temperature (LST) derived from thermal infrared (TIR) satellite data has been reliably used as a remote indicator of ET and surface moisture status. However, TIR imagery usually operates at a coarser resolution than that of shortwave sensors on the same satellite platform, making it sometimes unsuitable for monitoring of field-scale crop conditions. This study applies the data mining sharpener (DMS; Gao et al., 2012) technique to data from the Moderate Resolution Imaging Spectroradiometer (MODIS), which sharpens the 1 km thermal data down to the resolution of the optical data (250-500 m) based on functional LST and reflectance relationships established using a flexible regression tree approach. The DMS approach adopted here has been enhanced/refined for application over irrigated farming areas located in harsh desert environments in Saudi Arabia. The sharpened LST data is input to an integrated modeling system that uses the Atmosphere-Land Exchange Inverse (ALEXI) model and associated flux disaggregation scheme (DisALEXI) in conjunction with model reanalysis data and remotely sensed data from polar orbiting (MODIS) and geostationary (MSG; Meteosat Second Generation) satellite platforms to facilitate daily estimates of evapotranspiration. Results are evaluated against available flux tower observations over irrigated maize near Riyadh in Saudi Arabia. Successful monitoring of field-scale changes in surface fluxes are of importance towards an efficient water use in areas where fresh water resources are scarce and poorly monitored. Gao, F.; Kustas, W.P.; Anderson, M.C. A Data Mining Approach for Sharpening Thermal Satellite Imagery over Land. Remote Sens. 2012, 4, 3287-3319.

  7. Use of landsat thematic mapper data to identify crop types and estimate irrigated acreage, Uvalde and Medina counties, Texas, 1991

    USGS Publications Warehouse

    Raymond, L.H.; McFarlane, S.I.

    1994-01-01

    The total number of acres of irrigated crops estimated using Landsat TM data was about 9 percent lower in Uvalde County and about 13 percent lower in Medina County than the number of acres calculated from data reported by the U.S. Department of Agriculture, Agricultural Stabilization and Conservation Service (ASCS). The total quantity of water pumped from the Edwards aquifer for irrigation in the two counties in 1991, about 83,000 acre-feet, was about 5 percent greater than the quantity calculated from data reported by the ASCS.

  8. Estimating the own-price elasticity of demand for irrigation water in the Musi catchment of India

    NASA Astrophysics Data System (ADS)

    Davidson, Brian; Hellegers, Petra

    2011-10-01

    SummaryAs irrigation water is an input into a production process, its demand must be 'derived'. According to theory, a derived demand schedule should be downward sloping and dependent on the outputs produced from it, the prices of other inputs and the price of the water itself. Problems arise when an attempt is made to estimate the demand for irrigation water and the resulting own-price elasticity of demand, as the uses to which water is put are spatially, temporarily and geographically diverse. Because water is not generally freely traded, what normally passes for an estimate of the own-price elasticity of demand for irrigation water is usually a well argued assumption or an estimate that is derived from a simulation model of a hypothesized producer. Such approaches tend to provide an inadequate explanation of what is an extremely complex and important relationship. An adequate explanation of the relationship between the price and the quantity demanded of water should be one that not only accords with the theoretical expectations, but also accounts for the diversity of products produced from water (which includes the management practices of farmers), the seasons in which it is used and over the region within which it is used. The objective in this article is to present a method of estimating the demand curve for irrigation water. The method uses actual field data which is collated using the Residual Method to determine the value of the marginal product of water deployed over a wide range of crops, seasons and regions. These values of the marginal products, all which must lie of the input demand schedule for water, are then ordered from the highest value to the lowest. Then, the amount of irrigation water used for each product, in each season and in each region is cumulatively summed over the range of uses according to the order of the values of the marginal products. This data, once ordered, is then used to econometrically estimate the demand schedule from which

  9. Unmanned Aerial Vehicles unique cost estimating requirements

    NASA Astrophysics Data System (ADS)

    Malone, P.; Apgar, H.; Stukes, S.; Sterk, S.

    Unmanned Aerial Vehicles (UAVs), also referred to as drones, are aerial platforms that fly without a human pilot onboard. UAVs are controlled autonomously by a computer in the vehicle or under the remote control of a pilot stationed at a fixed ground location. There are a wide variety of drone shapes, sizes, configurations, complexities, and characteristics. Use of these devices by the Department of Defense (DoD), NASA, civil and commercial organizations continues to grow. UAVs are commonly used for intelligence, surveillance, reconnaissance (ISR). They are also use for combat operations, and civil applications, such as firefighting, non-military security work, surveillance of infrastructure (e.g. pipelines, power lines and country borders). UAVs are often preferred for missions that require sustained persistence (over 4 hours in duration), or are “ too dangerous, dull or dirty” for manned aircraft. Moreover, they can offer significant acquisition and operations cost savings over traditional manned aircraft. Because of these unique characteristics and missions, UAV estimates require some unique estimating methods. This paper describes a framework for estimating UAV systems total ownership cost including hardware components, software design, and operations. The challenge of collecting data, testing the sensitivities of cost drivers, and creating cost estimating relationships (CERs) for each key work breakdown structure (WBS) element is discussed. The autonomous operation of UAVs is especially challenging from a software perspective.

  10. Estimates of deep percolation beneath native vegetation, irrigated fields, and the Amargosa-River Channel, Amargosa Desert, Nye County, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Prudic, David E.; Laczniak, Randell J.; Akstin, Katherine C.; Boyd, Robert A.; Henkelman, Katherine K.

    2003-01-01

    The presence and approximate rates of deep percolation beneath areas of native vegetation, irrigated fields, and the Amargosa-River channel in the Amargosa Desert of southern Nevada were evaluated using the chloride mass-balance method and inferred downward velocities of chloride and nitrate peaks. Estimates of deep-percolation rates in the Amargosa Desert are needed for the analysis of regional ground-water flow and transport. An understanding of regional flow patterns is important because ground water originating on the Nevada Test Site may pass through the area before discharging from springs at lower elevations in the Amargosa Desert and in Death Valley. Nine boreholes 10 to 16 meters deep were cored nearly continuously using a hollow-stem auger designed for gravelly sediments. Two boreholes were drilled in each of three irrigated fields in the Amargosa-Farms area, two in the Amargosa-River channel, and one in an undisturbed area of native vegetation. Data from previously cored boreholes beneath undisturbed, native vegetation were compared with the new data to further assess deep percolation under current climatic conditions and provide information on spatial variability. The profiles beneath native vegetation were characterized by large amounts of accumulated chloride just below the root zone with almost no further accumulation at greater depths. This pattern is typical of profiles beneath interfluvial areas in arid alluvial basins of the southwestern United States, where salts have been accumulating since the end of the Pleistocene. The profiles beneath irrigated fields and the Amargosa-River channel contained more than twice the volume of water compared to profiles beneath native vegetation, consistent with active deep percolation beneath these sites. Chloride profiles beneath two older fields (cultivated since the 1960?s) as well as the upstream Amargosa-River site were indicative of long-term, quasi-steady deep percolation. Chloride profiles beneath the

  11. Estimation of recharge from irrigation flows; Analysis of field and laboratory data and modeling.

    USDA-ARS?s Scientific Manuscript database

    This work is aimed at quantifying aquifer recharge due to irrigation in the Campo de Cartagena (SE Spain). A study of recharge was conducted on an experiment plot cropped in lettuce and irrigated with a drip system. The physico-chemical and hydraulic properties of the vadose zone were characterized ...

  12. A ROOT ZONE MODELLING APPROACH TO ESTIMATING GROUNDWATER RECHARGE FROM IRRIGATED AREAS

    USDA-ARS?s Scientific Manuscript database

    In irrigated semi-arid and arid regions, accurate knowledge of groundwater recharge is important for the sustainable management of scarce water resources. The Campo de Cartagena area of southeast Spain is a semi-arid region where irrigation return flow accounts for a substantial portion of recharge....

  13. Deficit irrigation in a production setting; Canopy temperature as an adjunct to ET estimates.

    USDA-ARS?s Scientific Manuscript database

    Water available for agricultural use is declining worldwide as a result of both declining water resources and increasing application costs. Managing crop irrigation under conditions where the water need cannot be fully met represents the future of irrigation in many areas. On the southern high pla...

  14. A stochastic simulation-optimization approach for estimating highly reliable soil tension threshold values in sensor-based deficit irrigation

    NASA Astrophysics Data System (ADS)

    Kloss, S.; Schütze, N.; Walser, S.; Grundmann, J.

    2012-04-01

    In arid and semi-arid regions where water is scarce, farmers heavily rely on irrigation in order to grow crops and to produce agricultural commodities. The variable and often severely limited water supply thereby poses a serious challenge for farmers to cope with and demand sophisticated irrigation strategies that allow an efficient management of the available water resources. The general aim is to increase water productivity (WP) and one of these strategies to achieve this goal is controlled deficit irrigation (CDI). One way to realize CDI is by defining soil water status specific threshold values (either in soil tension or moisture) at which irrigation cycles are triggered. When utilizing CDI, irrigation control is of utmost importance and yet thresholds are likely chosen by trial and error and thus unreliable. Hence, for CDI to be effective systematic investigations for deriving reliable threshold values that account for different CDI strategies are needed. In this contribution, a method is presented that uses a simulation-based stochastic approach for estimating threshold values with a high reliability. The approach consist of a weather generator offering statistical significance to site-specific climate series, an optimization algorithm that determines optimal threshold values under limiting waters supply, and a crop model for simulating plant growth and water consumption. The study focuses on threshold values of soil tension for different CDI strategies. The advantage of soil-tension-based threshold values over soil-moisture-based lies in their universal and soil type independent applicability. The investigated CDI strategies comprised schedules of constant threshold values, crop development stage dependent threshold values, and different minimum irrigation intervals. For practical reasons, fixed irrigation schedules were tested as well. Additionally, a full irrigation schedule served as reference. The obtained threshold values were then tested in field

  15. Characterizing irrigation water requirements for rice production from the Arkansas Rice Research Verification Program

    USDA-ARS?s Scientific Manuscript database

    This study investigated rice irrigation water use in the University of Arkansas Rice Research Verification Program between the years of 2003 and 2011. Irrigation water use averaged 747 mm (29.4 inches) over the nine years. A significant 40% water savings was reported for rice grown under a zero gr...

  16. Estimating irrigation water use and withdrawal of ground water on the High Plains, U.S.A.

    USGS Publications Warehouse

    Wray, J.R.

    1982-01-01

    In four decades following the Dust Bowl days of the 1930's, extensive areas of dry farming and rangeland on the semi-arid U.S. High Plains were transformed into a vast region of irrigated oases, producing meat and grain for much of the world. The agricultural economy has experienced such rapid growth in part because of the availability of ground water and because of development of new irrigation technology to use that water for agriculture. However, more water is being used than is being replaced. To estimate both the volume of water withdrawn and the regional scope of the problem a technique has been developed that combines multispectral data from Earth-orbiting satellite with known pumpage data for the same growing season. The location and extent of irrigated cropland-some with different crops watered at different times-is inventoried using computer-assisted analysis of the data from Landsat. The amount of water used is estimated by multiplying and summing surface area of irrigated agriculture and the average measured pumpage from sampled sites. Published findings to date are cited in the Selected References. All suggest transferability of a promising technology to the study of land transformation processes elsewhere. ?? 1983.

  17. Estimating irrigated areas from satellite and model soil moisture data over the contiguous US

    NASA Astrophysics Data System (ADS)

    Zaussinger, Felix; Dorigo, Wouter; Gruber, Alexander

    2017-04-01

    Information about irrigation is crucial for a number of applications such as drought- and yield management and contributes to a better understanding of the water-cycle, land-atmosphere interactions as well as climate projections. Currently, irrigation is mainly quantified by national agricultural statistics, which do not include spatial information. The digital Global Map of Irrigated Areas (GMIA) has been the first effort to quantify irrigation at the global scale by merging these statistics with remote sensing data. Also, the MODIS-Irrigated Agriculture Dataset (MirAD-US) was created by merging annual peak MODIS-NDVI with US county level irrigation statistics. In this study we aim to map irrigated areas by confronting time series of various satellite soil moisture products with soil moisture from the ERA-Interim/Land reanalysis product. We follow the assumption that irrigation signals are not modelled in the reanalysis product, nor contributing to its forcing data, but affecting the spatially continuous remote sensing observations. Based on this assumption, spatial patterns of irrigation are derived from differences between the temporal slopes of the modelled and remotely sensed time series during the irrigation season. Results show that a combination of ASCAT and ERA-Interim/Land show spatial patterns which are in good agreement with the MIrAD-US, particularly within the Mississippi Delta, Texas and eastern Nebraska. In contrast, AMSRE shows weak agreements, plausibly due to a higher vegetation dependency of the soil moisture signal. There is no significant agreement to the MIrAD-US in California, which is possibly related to higher crop-diversity and lower field sizes. Also, a strong signal in the region of the Great Corn Belt is observed, which is generally not outlined as an irrigated area. It is not yet clear to what extent the signal obtained in the Mississippi Delta is related to re-reflection effects caused by standing water due to flood or furrow

  18. Estimating eye care workforce supply and requirements.

    PubMed

    Lee, P P; Jackson, C A; Relles, D A

    1995-12-01

    To estimate the workforce supply and requirements for eye care in the United States. Three models were constructed for analysis: supply of providers, public health need for eye care, and demand (utilization) for eye care. Ophthalmologists, other physicians, and optometrists were included in the models. Public health need was determined by applying condition-specific prevalence and incidence rates from population-based and other epidemiologic studies. Demand was determined by use of national databases, such as the National Ambulatory Care Survey, National Hospital Discharge Survey, and Medicare Part B. Time requirements for care were obtained through a stratified sample survey of the membership of the American Academy of Ophthalmology. Under modeling assumptions that use a work-time ratio of one between optometrists and ophthalmologists and between specialist and generalist ophthalmologists, a significant excess of eye care providers exists relative to both public health need and demand. Changes in the work-time ratio, work-hours per year per provider, care patterns for the same condition, or other factors could significantly reduce or eliminate the surplus relative to need. If optometrists are the preferred primary eye care provider, ophthalmologists would be in excess under all demand scenarios and all need scenarios where the optometrist to ophthalmologist work-time ratio is greater than 0.6. No excess of ophthalmologists would exist if ophthalmologists are the preferred primary eye care provider. Data on the appropriate work time ratio will help refine estimates of the imbalance between supply and requirements.

  19. A method of estimating physician requirements.

    PubMed

    Scitovsky, A A; McCall, N

    1976-01-01

    This article describes and applies a method of estimating physician requirements for the United States based on physician utilization rates of members of two comprehensive prepaid plans of medical care providing first-dollar coverage for practically all physician services. The plan members' physician utilization rates by age and sex and by field of specialty of the physician were extrapolated to the entire population of the United States. On the basis of data for 1966, it was found that 34 percent more physicians than were available would have been required to give the entire population the amount and type of care received by the plan members. The "shortage" of primary care physicians (general practice, internal medicine, and pediatrics combined) was found to be considerably greater than of physicians in the surgical specialties taken together (41 percent as compared to 21 percent). The paper discusses in detail the various assumptions underlying this method and stresses the need for careful evaluation of all methods of estimating physician requirements.

  20. Water-Energy balance in pressure irrigation systems

    NASA Astrophysics Data System (ADS)

    Sánchez, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco V.; Castañón, Guillermo; Gil, María; Benitez, Javier

    2013-04-01

    Modernization of irrigation schemes, generally understood as transformation of surface irrigation systems into pressure -sprinkler and trickle- irrigation systems, aims at, among others, improving irrigation efficiency and reduction of operation and maintenance efforts made by the irrigators. Automation techniques become easier after modernization, and operation management plays an important role in energy efficiency issues. Modern systems use to include elevated water reservoirs with enough capacity to irrigate during peak water demand period about 16 to 48 h. However, pressure irrigation systems, in contrast, carry a serious energy cost. Energy requirements depend on decisions taken on management strategies during the operation phase, which are conditioned by previous decisions taken on the design project of the different elements which compose the irrigation system. Most of the countries where irrigation activity is significant bear in mind that modernization irrigation must play a key role in the agricultural infrastructure policies. The objective of this study is to characterize and estimate the mean and variation of the energy consumed by common types of irrigation systems according to their management possibilities. Also is an objective to estimate the fraction of the water reservoirs available along the irrigation campaign for storing the energy from renewable sources during their availability periods. Simulation taking into account all elements comprising the irrigation system has been used to estimate the energy requirements of typical irrigation systems of several crop production systems. The simulation of various types of irrigation systems and management strategies, in the framework imposed by particular cropping systems, would help to develop criteria for improving the energy balance in relation to the irrigation water supply productivity and new opportunities in the renewable energy field.

  1. A model to estimate hydrological processes and water budget from an irrigation pond in Mississippi

    USDA-ARS?s Scientific Manuscript database

    With increased interest to conserve groundwater resources without adversely affecting crop yield potential, more irrigation farm ponds have been constructed in recent years in Mississippi. However, the hydrological processes, water budget, and environmental benefits and consequences of these ponds h...

  2. Planning and Estimation of Operations Support Requirements

    NASA Technical Reports Server (NTRS)

    Newhouse, Marilyn E.; Barley, Bryan; Bacskay, Allen; Clardy, Dennon

    2010-01-01

    Life Cycle Cost (LCC) estimates during the proposal and early design phases, as well as project replans during the development phase, are heavily focused on hardware development schedules and costs. Operations (phase E) costs are typically small compared to the spacecraft development and test costs. This, combined with the long lead time for realizing operations costs, can lead to de-emphasizing estimation of operations support requirements during proposal, early design, and replan cost exercises. The Discovery and New Frontiers (D&NF) programs comprise small, cost-capped missions supporting scientific exploration of the solar system. Any LCC growth can directly impact the programs' ability to fund new missions, and even moderate yearly underestimates of the operations costs can present significant LCC impacts for deep space missions with long operational durations. The National Aeronautics and Space Administration (NASA) D&NF Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that 4 out of the 5 missions studied had significant overruns at or after launch due to underestimation of the complexity and supporting requirements for operations activities; the fifth mission had not launched at the time of the mission. The drivers behind these overruns include overly optimistic assumptions regarding the savings resulting from the use of heritage technology, late development of operations requirements, inadequate planning for sustaining engineering and the special requirements of long duration missions (e.g., knowledge retention and hardware/software refresh), and delayed completion of ground system development work. This paper updates the D

  3. Nonlinear models for estimating GSFC travel requirements

    NASA Technical Reports Server (NTRS)

    Buffalano, C.; Hagan, F. J.

    1974-01-01

    A methodology is presented for estimating travel requirements for a particular period of time. Travel models were generated using nonlinear regression analysis techniques on a data base of FY-72 and FY-73 information from 79 GSFC projects. Although the subject matter relates to GSFX activities, the type of analysis used and the manner of selecting the relevant variables would be of interest to other NASA centers, government agencies, private corporations and, in general, any organization with a significant travel budget. Models were developed for each of six types of activity: flight projects (in-house and out-of-house), experiments on non-GSFC projects, international projects, ART/SRT, data analysis, advanced studies, tracking and data, and indirects.

  4. Evaluation of the use of remote-sensing data to identify crop types and estimate irrigated acreage, Uvalde and Medina counties, Texas, 1989

    USGS Publications Warehouse

    Raymond, L.H.; Nalley, G.M.; Rettman, P.L.

    1992-01-01

    Results were verified using crop acreages reported by the U.S. Department of Agriculture, Agricultural Stabilization and Conservation Service (ASCS). The total areas for all irrigated crops estimated using remote-sensing data were about 8 percent higher for Uvalde County and about 4 percent higher for Medina County than the areas reported by the ASCS. Irrigated-crop areas subsequently were multiplied by the respective duties of water to calculate the total quantity of water pumped from the aquifer for irrigation. Pumpage did not differ for the two estimates of crop areas for Uvalde County and differed by about 3 percent for Medina County.

  5. Irrigation Monitoring Project Results

    NASA Technical Reports Server (NTRS)

    Terrie, Gregory; Berglund, Judith; Ryan, Robert; Harrington, Gary; Stewart, Randy; Spiering, Bruce

    2003-01-01

    The objective of this project is to investigate remote sensing requirements for irrigation scheduling to define future systems. Temperature-based crop stress indicators have been developed that could be used for irrigation management. This viewgraph presentation describes an experiment to use airborne and satellite thermal imagery to evaulate the water requirements of irrigated crops.

  6. Evaluation of SEBS for estimation of actual evapotranspiration using ASTER satellite data for irrigation areas of Australia

    NASA Astrophysics Data System (ADS)

    Ma, Weiqiang; Hafeez, Mohsin; Ishikawa, Hirohiko; Ma, Yaoming

    2013-05-01

    Spatial knowledge of land surface evapotranspiration (ET) is of prime interest for environmental applications, such as optimizing irrigation water use, irrigation system performance, crop water deficit, drought mitigation strategies, and accurate initialization of climate prediction models especially in arid and semiarid catchments where water shortage is a critical problem. The recent drought in Australia and concerns about climate change have highlighted the need to manage water resources more sustainably especially in the Murrumbidgee catchment which utilizes bulk water for food production. This study deals with the application of a Surface Energy Balance System (SEBS) algorithm based on Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) data and field observations has been proposed and tested for deriving ET over Coleambally Irrigation Area, located in the southwest of NSW, Australia. We have used 12 ASTER scenes covering the time period of 2002, 2003, 2004, 2005, 2006, and 2009 for estimating the actual ET over the study area. To validate the proposed methodology, the ground-measured ET was compared to the ASTER-derived actual ET values for the study area. The derived ET value over the study area is much closer to the field measurement. From the remote sensing results and observations, the root mean square error is 0.89 and the mean absolute percentage difference is 2.87 %, which demonstrate the reasonability of SEBS ET estimation for the study area.

  7. Estimating spatially and temporally varying recharge and runoff from precipitation and urban irrigation in the Los Angeles Basin, California

    USGS Publications Warehouse

    Hevesi, Joseph A.; Johnson, Tyler D.

    2016-10-17

    A daily precipitation-runoff model, referred to as the Los Angeles Basin watershed model (LABWM), was used to estimate recharge and runoff for a 5,047 square kilometer study area that included the greater Los Angeles area and all surface-water drainages potentially contributing recharge to a 1,450 square kilometer groundwater-study area underlying the greater Los Angeles area, referred to as the Los Angeles groundwater-study area. The recharge estimates for the Los Angeles groundwater-study area included spatially distributed recharge in response to the infiltration of precipitation, runoff, and urban irrigation, as well as mountain-front recharge from surface-water drainages bordering the groundwater-study area. The recharge and runoff estimates incorporated a new method for estimating urban irrigation, consisting of residential and commercial landscape watering, based on land use and the percentage of pervious land area.The LABWM used a 201.17-meter gridded discretization of the study area to represent spatially distributed climate and watershed characteristics affecting the surface and shallow sub-surface hydrology for the Los Angeles groundwater study area. Climate data from a local network of 201 monitoring sites and published maps of 30-year-average monthly precipitation and maximum and minimum air temperature were used to develop the climate inputs for the LABWM. Published maps of land use, land cover, soils, vegetation, and surficial geology were used to represent the physical characteristics of the LABWM area. The LABWM was calibrated to available streamflow records at six streamflow-gaging stations.Model results for a 100-year target-simulation period, from water years 1915 through 2014, were used to quantify and evaluate the spatial and temporal variability of water-budget components, including evapotranspiration (ET), recharge, and runoff. The largest outflow of water from the LABWM was ET; the 100-year average ET rate of 362 millimeters per year (mm

  8. Molecular techniques in ecohealth research toolkit: facilitating estimation of aggregate gastroenteritis burden in an irrigated periurban landscape.

    PubMed

    Tserendorj, Ariuntuya; Anceno, Alfredo J; Houpt, Eric R; Icenhour, Crystal R; Sethabutr, Orntipa; Mason, Carl S; Shipin, Oleg V

    2011-09-01

    Assessment of microbial hazards associated with certain environmental matrices, livelihood strategies, and food handling practices are constrained by time-consuming conventional microbiological techniques that lead to health risk assessments of narrow geographic or time scope, often targeting very few pathogens. Health risk assessment based on one or few indicator organisms underestimates true disease burden due a number of coexisting causative pathogens. Here, we employed molecular techniques in a survey of Cryptosporidium parvum, Giardia lamblia, Campylobacter jejuni, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella spp., Shigella spp., Vibrio cholera, and Rotavirus A densities in canal water with respect to seasonality and spatial distribution of point-nonpoint pollution sources. Three irrigational canals stretching across nearly a 150-km(2) periurban landscape, traditionally used for agricultural irrigation but function as vital part of municipal wastewater stabilization in recent years, were investigated. Compiled stochastic data (pathogen concentration, susceptible populations) and literature-obtained deterministic data (pathogen dose-response model parameter values) were used in estimating waterborne gastroenteritis burden. Exposure scenarios include swimming or fishing, consuming canal water-irrigated vegetables, and ingesting or inhaling water aerosols while working in canal water-irrigated fields. Estimated annual gastroenteritis burden due individual pathogens among the sampling points was -10.6log(10) to -2.2log(10) DALYs. Aggregated annual gastroenteritis burden due all the target pathogens per sampling point was -3.1log(10) to -1.9log(10) DALYs, far exceeding WHO acceptable limit of -6.0log(10) DALYs. The present approach will facilitate the comprehensive collection of surface water microbiological baseline data and setting of benchmarks for interventions aimed at reducing microbial hazards in similar landscapes worldwide.

  9. Simplified Equations to Estimate Flushline Diameter for Subsurface Drip Irrigation Systems

    USDA-ARS?s Scientific Manuscript database

    A formulation of the Hazen-Williams equation is typically used to determine the diameter of the common flushline that is often used at the distal end of subsurface drip irrigation systems to aid in joint flushing of a group of driplines. Although this method is accurate, its usage is not intuitive a...

  10. A flexible system for the estimation of infiltration and hydraulic resistance parameters in surface irrigation

    USDA-ARS?s Scientific Manuscript database

    Critical to the use of modeling tools for the hydraulic analysis of surface irrigation systems is characterizing the infiltration and hydraulic resistance process. Since those processes are still not well understood, various formulations are currently used to represent them. A software component h...

  11. Mapping Irrigation Potential in the Upper East Region of Ghana

    NASA Astrophysics Data System (ADS)

    Akomeah, E.; Odai, S. N.; Annor, F. O.; Adjei, K. A.; Barry, B.

    2009-04-01

    The Upper East Region together with the other two regions in Northern Ghana (Upper West and Northern Region) is seen as the locus of perennial food deficit (GPRS, 2003). Despite, the provision of over 200 small scale dams and various mechanisms aimed at poverty alleviation, the region is still plagued with poverty and yearly food shortages. To achieve food security and alleviate poverty in the region however, modernization of agriculture through irrigation is deemed inevitable. While it is true that considerable potential still exists for future expansion of irrigation, it cannot be refuted that water is becoming scarcer in the regions where the need for irrigation is most important, hence mapping the irrigation potential of the region will be the first step toward ensuring sound planning and sustainability of the irrigation developments. In this study, an attempt has been made to map out the irrigation potential of the Upper East Region. The river basin approach was used in assessing the irrigation potential. The catchments drained by The White Volta river, Red volta river, River Sissili and River Kulpawn were considered in the assessment. The irrigation potential for the sub basins was computed by combining information on gross irrigation water requirements for the selected cash crops, area of soil suitable for irrigation and available water resources. The capacity of 80%, 70%, 60% and 50% time of exceedance flow of the available surface water resources in the respective sub basins was estimated. The area that can be irrigated with this flow was computed with selected cropping pattern. Combining the results of the potential irrigable areas and the land use map of the respective sub basins, an irrigation potential map has been generated showing potential sites in the upper east region that can be brought under irrigation. Keywords: Irrigation potential, irrigation water requirement, land evaluation, dependable flow

  12. Estimating the Effects of Conversion of Agricultural Land to Urban Land on Deep Percolation of Irrigation Water in the Grand Valley, Western Colorado

    USGS Publications Warehouse

    Mayo, John W.

    2008-01-01

    The conversion of agricultural land to urban residential land is associated with rapid population growth in the Grand Valley of western Colorado. Information regarding the effects of this land-use conversion on deep percolation, irrigation-water application, and associated salt loading to the Colorado River is needed to support water-resource planning and conservation efforts. The Natural Resources Conservation Service (NRCS) assessed deep percolation and estimated salt loading derived from irrigated agricultural lands in the Grand Valley in a 1985 to 2002 monitoring and evaluation study (NRCS M&E). The U.S. Geological Survey (USGS), in cooperation with the Colorado River Salinity Control Forum and the Mesa Conservation District, quantified the current (2005-2006) deep percolation and irrigation-water application characteristics of 1/4-acre residential lots and 5-acre estates, urban parks, and urban orchard grass fields in the Grand Valley, and compared the results to NRCS M&E results from alfalfa-crop sites. In addition, pond seepage from three irrigation-water holding ponds was estimated. Salt loading was estimated for the urban study results and the NRCS M&E results by using standard salt-loading factors. A daily soil-moisture balance calculation technique was used at all urban study irrigated sites. Deep percolation was defined as any water infiltrating below the top 12 inches of soil. Deep percolation occurred when the soil-moisture balance in the first 12 inches of soil exceeded the field capacity for the soil type at each site. Results were reported separately for urban study bluegrass-only sites and for all-vegetation type (bluegrass, native plants, and orchard grass) sites. Deep percolation and irrigation-water application also were estimated for a complete irrigation season at three subdivisions by using mean site data from each subdivision. It was estimated that for the three subdivisions, 37 percent of the developed acreage was irrigated (the balance

  13. Remote Sensing Precision Requirements For FIA Estimation

    Treesearch

    Mark H. Hansen

    2001-01-01

    In this study the National Land Cover Data (NLCD) available from the Multi-Resolution Land Characteristics Consortium (MRLC) is used for stratification in the estimation of forest area, timberland area, and growing-stock volume from the first year (1999) of annual FIA data collected in Indiana, Iowa, Minnesota, and Missouri. These estimates show that with improvements...

  14. The Benchmark Farm Program : a method for estimating irrigation water use in southwest Florida

    USGS Publications Warehouse

    Duerr, A.D.; Trommer, J.T.

    1982-01-01

    Irrigation water-use data are summarized in this report for 74 farms in the Southwest Florida Water Management District. Most data are for 1978-90, but 18 farms have data extending back to the early 1970's. Data include site number and location, season and year, crop type, irrigation system, monitoring method, and inches of water applied per acre. Crop types include citrus, cucumbers, pasture, peanuts, sod, strawberries, and tropical fish farms are also included. Water-application rates per growing season ranged from 0 inches per acre for several citrus and pasture sites to 239.7 inches per acre for a nursery site. The report also includes rainfall data for 12 stations throughout the study area. (USGS)

  15. Documentation of methods and inventory of irrigation data collected for the 2000 and 2005 U.S. Geological Survey Estimated use of water in the United States, comparison of USGS-compiled irrigation data to other sources, and recommendations for future compilations

    USGS Publications Warehouse

    Dickens, Jade M.; Forbes, Brandon T.; Cobean, Dylan S.; Tadayon, Saeid

    2011-01-01

    An indirect method for estimating irrigation withdrawals is presented and results are compared to the 2005 USGS-reported irrigation withdrawals for selected States. This method is meant to demonstrate a way to check data reported or received from a third party, if metered data are unavailable. Of the 11 States where this method was applied, 8 States had estimated irrigation withdrawals that were within 15 percent of what was reported in the 2005 water-use compilation, and 3 States had estimated irrigation withdrawals that were more than 20 percent of what was reported in 2005. Recommendations for improving estimates of irrigated acreage and irrigation withdrawals also are presented in this report. Conveyance losses and irrigation-system efficiencies should be considered in order to achieve a more accurate representation of irrigation withdrawals. Better documentation of data sources and methods used can help lead to more consistent information in future irrigation water-use compilations. Finally, a summary of data sources and methods used to estimate irrigated acreage and irrigation withdrawals for the 2000 and 2005 compilations for each WSC is presented in appendix 1.

  16. Reimagining cost recovery in Pakistan's irrigation system through willingness-to-pay estimates for irrigation water from a discrete choice experiment

    NASA Astrophysics Data System (ADS)

    Bell, Andrew Reid; Shah, M. Azeem Ali; Ward, Patrick S.

    2014-08-01

    It is widely argued that farmers are unwilling to pay adequate fees for surface water irrigation to recover the costs associated with maintenance and improvement of delivery systems. In this paper, we use a discrete choice experiment to study farmer preferences for irrigation characteristics along two branch canals in Punjab Province in eastern Pakistan. We find that farmers are generally willing to pay well in excess of current surface water irrigation costs for increased surface water reliability and that the amount that farmers are willing to pay is an increasing function of their existing surface water supply as well as location along the main canal branch. This explicit translation of implicit willingness-to-pay (WTP) for water (via expenditure on groundwater pumping) to WTP for reliable surface water demonstrates the potential for greatly enhanced cost recovery in the Indus Basin Irrigation System via appropriate setting of water user fees, driven by the higher WTP of those currently receiving reliable supplies.

  17. Reimagining cost recovery in Pakistan's irrigation system through willingness-to-pay estimates for irrigation water from a discrete choice experiment.

    PubMed

    Bell, Andrew Reid; Shah, M Azeem Ali; Ward, Patrick S

    2014-08-01

    It is widely argued that farmers are unwilling to pay adequate fees for surface water irrigation to recover the costs associated with maintenance and improvement of delivery systems. In this paper, we use a discrete choice experiment to study farmer preferences for irrigation characteristics along two branch canals in Punjab Province in eastern Pakistan. We find that farmers are generally willing to pay well in excess of current surface water irrigation costs for increased surface water reliability and that the amount that farmers are willing to pay is an increasing function of their existing surface water supply as well as location along the main canal branch. This explicit translation of implicit willingness-to-pay (WTP) for water (via expenditure on groundwater pumping) to WTP for reliable surface water demonstrates the potential for greatly enhanced cost recovery in the Indus Basin Irrigation System via appropriate setting of water user fees, driven by the higher WTP of those currently receiving reliable supplies.

  18. Reimagining cost recovery in Pakistan's irrigation system through willingness-to-pay estimates for irrigation water from a discrete choice experiment

    PubMed Central

    Bell, Andrew Reid; Shah, M Azeem Ali; Ward, Patrick S

    2014-01-01

    It is widely argued that farmers are unwilling to pay adequate fees for surface water irrigation to recover the costs associated with maintenance and improvement of delivery systems. In this paper, we use a discrete choice experiment to study farmer preferences for irrigation characteristics along two branch canals in Punjab Province in eastern Pakistan. We find that farmers are generally willing to pay well in excess of current surface water irrigation costs for increased surface water reliability and that the amount that farmers are willing to pay is an increasing function of their existing surface water supply as well as location along the main canal branch. This explicit translation of implicit willingness-to-pay (WTP) for water (via expenditure on groundwater pumping) to WTP for reliable surface water demonstrates the potential for greatly enhanced cost recovery in the Indus Basin Irrigation System via appropriate setting of water user fees, driven by the higher WTP of those currently receiving reliable supplies. PMID:25552779

  19. Estimation of Critical Population Support Requirements.

    DTIC Science & Technology

    1984-05-30

    VA 22160 W.U. 4921H 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Federal Emergency Management Agency May 30, 1984 Industrial Protection...ensure the availability of industrial production required to support the population, maintain defense capabilities and perform command and control ...the population, maintain national defense capabilities and perform command and control activi- ties during a national emergency such as a threat of a

  20. Estimate of uptake and translocation of emerging organic contaminants from irrigation water concentration in lettuce grown under controlled conditions.

    PubMed

    Hurtado, Carlos; Domínguez, Carmen; Pérez-Babace, Lorea; Cañameras, Núria; Comas, Jordi; Bayona, Josep M

    2016-03-15

    The widespread distribution of emerging organic contaminants (EOCs) in the water cycle can lead to their incorporation in irrigated crops, posing a potential risk for human consumption. To gain further insight into the processes controlling the uptake of organic microcontaminants, Batavia lettuce (Lactuca sativa) grown under controlled conditions was watered with EOCs (e.g., non-steroidal anti-inflammatories, sulfonamides, β-blockers, phenolic estrogens, anticonvulsants, stimulants, polycyclic musks, biocides) at different concentrations (0-40μgL(-1)). Linear correlations were obtained between the EOC concentrations in the roots and leaves and the watering concentrations for most of the contaminants investigated. However, large differences were found in the root concentration factors ( [Formula: see text] =0.27-733) and leaf translocation concentration factors ( [Formula: see text] =0-3) depending on the persistence of the target contaminants in the rhizosphere and the specific physicochemical properties of each one. With the obtained dataset, a simple predictive model based on a linear regression and the root bioconcentration and translocation factors can be used to estimate the concentration of the target EOCs in leaves based on the dose supplied in the irrigation water or the soil concentration. Finally, enantiomeric fractionation of racemic ibuprofen from the initial spiking mixture suggests that biodegradation mainly occurs in the rhizosphere. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Simulation of fertilizer requirement for irrigated wheat in eastern India using the QUEFTS model.

    PubMed

    Maiti, Debtanu; Das, D K; Pathak, H

    2006-02-22

    Crop modeling can provide us with information about fertilizer dose to achieve the target yield, crop conditions, etc. Due to conventional and imbalanced fertilizer application, nutrient use efficiency in wheat is low. Estimation of fertilizer requirements based on quantitative approaches can assist in improving yields and nutrient use efficiency. Field experiments were conducted at 20 sites in eastern India (Nadia district of West Bengal) to assess the soil supply, requirement, and internal efficiency of N, P, K, and Zn in wheat. The data were used to calibrate the QUEFTS (Quantitative Evaluation of the Fertility of Tropical Soils) model for site-specific, balanced fertilizer recommendations. The parameters of maximum accumulation (a) and maximum dilution (d) in wheat were calculated for N (35, 100), P (129, 738), K (17, 56), and Zn (21502, 140244). Grain yield of wheat showed statistically significant correlation with N (R2 = 0.937**), P (R2 = 0.901**), and K uptake (R2 = 0.801**). The NPK ratio to produce 1 tonne grain yield of wheat was calculated to be 4.9:1.0:8.9. The relationships between chemical properties and nutrient-supplying capacity of soils were also established. The model was validated using the data from four other experiments. Observed yields with different amounts of N, P, K, and Zn were in good agreement with the predicted values, suggesting that the validated QUEFTS model can be used for site-specific nutrient management of wheat.

  2. Estimation of Ascaris infection risks in children under 15 from the consumption of wastewater-irrigated carrots.

    PubMed

    Mara, Duncan; Sleigh, Andrew

    2010-03-01

    Ascaris lumbricoides, the large human roundworm, infects approximately 1,200 million people, with children under the age of 15 being particularly at risk. Monte Carlo quantitative microbial risk analyses were undertaken to estimate median Ascaris infection risks in children under 15 from eating raw carrots irrigated with wastewater. For a tolerable additional disease burden of 10(-5) DALY (disability-adjusted life year) loss per person per year (pppy), the tolerable Ascaris infection risk is approximately 10(-3) pppy, which can be achieved in hyperendemic areas by a 4-log unit Ascaris reduction. This reduction can be easily achieved by wastewater treatment in a 1-day anaerobic pond and 5-day facultative pond (2 log units) and peeling prior to consumption (2 log units).

  3. Estimating the economic benefits of maintaining residential lake levels at an irrigation reservoir: A contingent valuation study

    NASA Astrophysics Data System (ADS)

    Loomis, John; Smith, Adam; Huszar, Paul

    2005-08-01

    The contingent valuation method (CVM) was used to estimate homeowners' willingness to pay for water leasing to maintain stable lake levels at an irrigation reservoir in a residential neighborhood. A binary logit model was used to analyze households' voter referendum responses for maintaining the lake level. The median willingness to pay (WTP) was found to be $368 per year for lakefront residents and $59 per year for off-lake residents. The median WTP for lakefront residents was significantly different from off-lake residents at the 90% confidence level. Using the median WTP for lakefront and nonlakefront residents, we found that the increase in homeowner association fees would generate approximately $43,000, enough money to lease sufficient water to reach the target higher lake level in a normal water year.

  4. Estimating the economic benefits of maintaining residential lake levels at an irrigation reservoir: A contingent valuation study

    NASA Astrophysics Data System (ADS)

    Loomis, John; Smith, Adam; Huszar, Paul

    2005-08-01

    The contingent valuation method (CVM) was used to estimate homeowners' willingness to pay for water leasing to maintain stable lake levels at an irrigation reservoir in a residential neighborhood. A binary logit model was used to analyze households' voter referendum responses for maintaining the lake level. The median willingness to pay (WTP) was found to be 368 per year for lakefront residents and 59 per year for off-lake residents. The median WTP for lakefront residents was significantly different from off-lake residents at the 90% confidence level. Using the median WTP for lakefront and nonlakefront residents, we found that the increase in homeowner association fees would generate approximately $43,000, enough money to lease sufficient water to reach the target higher lake level in a normal water year.

  5. Estimation of soil salinity in a drip irrigation system by using joint inversion of multicoil electromagnetic induction measurements

    NASA Astrophysics Data System (ADS)

    Jadoon, Khan Zaib; Moghadas, Davood; Jadoon, Aurangzeb; Missimer, Thomas M.; Al-Mashharawi, Samir K.; McCabe, Matthew F.

    2015-05-01

    Low frequency electromagnetic induction (EMI) is becoming a useful tool for soil characterization due to its fast measurement capability and sensitivity to soil moisture and salinity. In this research, a new EMI system (the CMD mini-Explorer) is used for subsurface characterization of soil salinity in a drip irrigation system via a joint inversion approach of multiconfiguration EMI measurements. EMI measurements were conducted across a farm where Acacia trees are irrigated with brackish water. In situ measurements of vertical bulk electrical conductivity (σb) were recorded in different pits along one of the transects to calibrate the EMI measurements and to compare with the modeled electrical conductivity (σ) obtained by the joint inversion of multiconfiguration EMI measurements. Estimates of σ were then converted into the universal standard of soil salinity measurement (i.e., electrical conductivity of a saturated soil paste extract - ECe). Soil apparent electrical conductivity (ECa) was repeatedly measured with the CMD mini-Explorer to investigate the temperature stability of the new system at a fixed location, where the ambient air temperature increased from 26°C to 46°C. Results indicate that the new EMI system is very stable in high temperature environments, especially above 40°C, where most other approaches give unstable measurements. In addition, the distribution pattern of soil salinity is well estimated quantitatively by the joint inversion of multicomponent EMI measurements. The approach of joint inversion of EMI measurements allows for the quantitative mapping of the soil salinity distribution pattern and can be utilized for the management of soil salinity.

  6. Irrigated lands assessment for water management: Technique test. [California

    NASA Technical Reports Server (NTRS)

    Wall, S. L.; Brown, C. E.; Eriksson, M.; Grigg, C. A.; Thomas, R. W.; Colwell, R. N.; Estes, J. E.; Tinney, L. R.; Baggett, J. O.; Sawyer, G.

    1981-01-01

    A procedure for estimating irrigated land using full frame LANDSAT imagery was demonstrated. Relatively inexpensive interpretation of multidate LANDSAT photographic enlargements was used to produce a map of irrigated land in California. The LANDSAT and ground maps were then linked by regression equations to enable precise estimation of irrigated land area by county, basin, and statewide. Land irrigated at least once in California in 1979 was estimated to be 9.86 million acres, with an expected error of less than 1.75% at the 99% level of confidence. To achieve the same level of error with a ground-only sample would have required 3 to 5 times as many ground sample units statewide. A procedure for relatively inexpensive computer classification of LANDSAT digital data to irrigated land categories was also developed. This procedure is based on ratios of MSS band 7 and 5, and gave good results for several counties in the Central Valley.

  7. 48 CFR 252.215-7002 - Cost estimating system requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... historical costs, and other analyses used to generate cost estimates. (b) General. The Contractor shall... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Cost estimating system... of Provisions And Clauses 252.215-7002 Cost estimating system requirements. As prescribed in...

  8. On the irrigation requirements of cottonwood (Populus fremontii and Populus deltoides var. wislizenii) and willow (Salix gooddingii) grown in a desert environment

    USGS Publications Warehouse

    Hartwell, S.; Morino, K.; Nagler, P.L.; Glenn, E.P.

    2010-01-01

    Native tree plots have been established in river irrigation districts in the western U.S. to provide habitat for threatened and endangered birds. Information is needed on the effective irrigation requirements of the target species. Cottonwood (Populus spp.) and willow (Salix gooddingii) trees were grown for seven years in an outdoor plot in a desert environment in Tucson, Arizona. Plants were allowed to achieve a nearly complete canopy cover over the first four years, then were subjected to three daily summer irrigation schedules of 6.20??mm??d-1; 8.26??mm??d-1 and 15.7??mm??d-1. The lowest irrigation rate was sufficient to maintain growth and high leaf area index for cottonwoods over three years, while willows suffered considerable die-back on this rate in years six and seven. These irrigation rates were applied April 15-September 15, but only 0.88??mm??d-1 was applied during the dormant period of the year. Expressed as a fraction of reference crop evapotranspiration (ETo), recommended annual water applications plus precipitation (and including some deep drainage) were 0.83 ETo for cottonwood and 1.01 ETo for willow. Current practices tend to over-irrigate restoration plots, and this study can provide guidelines for more efficient water use. ?? 2010 Elsevier Ltd.

  9. Improving Soil Moisture and Temperature Profile and Surface Turbulent Fluxes Estimations in Irrigated Field by Assimilating Multi-source Data into Land Surface Model

    NASA Astrophysics Data System (ADS)

    Chen, Weijing; Huang, Chunlin; Shen, Huanfeng; Wang, Weizhen

    2016-04-01

    The optimal estimation of hydrothermal conditions in irrigation field is restricted by the deficiency of accurate irrigation information (when and how much to irrigate). However, the accurate estimation of soil moisture and temperature profile and surface turbulent fluxes are crucial to agriculture and water management in irrigated field. In the framework of land surface model, soil temperature is a function of soil moisture - subsurface moisture influences the heat conductivity at the interface of layers and the heat storage in different layers. In addition, soil temperature determines the phase of soil water content with the transformation between frozen and unfrozen. Furthermore, surface temperature affects the partitioning of incoming radiant energy into ground (sensible and latent heat flux), as a consequence changes the delivery of soil moisture and temperature. Given the internal positive interaction lying in these variables, we attempt to retrieve the accurate estimation of soil moisture and temperature profile via assimilating the observations from the surface under unknown irrigation. To resolve the input uncertainty of imprecise irrigation quantity, original EnKS is implemented with inflation and localization (referred to as ESIL) aiming at solving the underestimation of the background error matrix and the extension of observation information from the top soil to the bottom. EnKS applied in this study includes the states in different time points which tightly connect with adjacent ones. However, this kind of relationship gradually vanishes along with the increase of time interval. Thus, the localization is also employed to readjust temporal scale impact between states and filter out redundant or invalid correlation. Considering the parameter uncertainty which easily causes the systematic deviation of model states, two parallel filters are designed to recursively estimate both states and parameters. The study area consists of irrigated farmland and is

  10. Strengths and weaknesses of temporal stability analysis for monitoring and estimating grid-mean soil moisture in a high-intensity irrigated agricultural landscape

    USDA-ARS?s Scientific Manuscript database

    Monitoring and estimating field-mean soil moisture is very important but is limited to high-intensity irrigated agricultural landscapes due to data availability and method constraints. In this paper, the temporal stability analysis, a valuable tool for designing a soil moisture monitoring network an...

  11. Water requirements and management of maize under drip and sprinkler irrigation. 1999 annual report for Agricultural Technology Utilization and Transfer (ATUT) project

    USDA-ARS?s Scientific Manuscript database

    In the second year of this project, research continued at Ismailia, Egypt on irrigation management of maize, fava bean, wheat, and alfalfa. Research at Bushland, Texas, continued on alfalfa and grass reference evapotranspiration (ET), means of estimating those values from Bowen ratio meterological m...

  12. A Real-time Irrigation Forecasting System in Jiefangzha Irrigation District, China

    NASA Astrophysics Data System (ADS)

    Cong, Z.

    2015-12-01

    In order to improve the irrigation efficiency, we need to know when and how much to irrigate in real time. If we know the soil moisture content at this time, we can forecast the soil moisture content in the next days based on the rainfall forecasting and the crop evapotranspiration forecasting. Then the irrigation should be considered when the forecasting soil moisture content reaches to a threshold. Jiefangzha Irrigation District, a part of Hetao Irrigation District, is located in Inner Mongolia, China. The irrigated area of this irrigation district is about 140,000 ha mainly planting wheat, maize and sunflower. The annual precipitation is below 200mm, so the irrigation is necessary and the irrigation water comes from the Yellow river. We set up 10 sites with 4 TDR sensors at each site (20cm, 40cm, 60cm and 80cm depth) to monitor the soil moisture content. The weather forecasting data are downloaded from the website of European Centre for Medium-Range Weather Forecasts (ECMWF). The reference evapotranspiration is estimated based on FAO-Blaney-Criddle equation with only the air temperature from ECMWF. Then the crop water requirement is forecasted by the crop coefficient multiplying the reference evapotranspiration. Finally, the soil moisture content is forecasted based on soil water balance with the initial condition is set as the monitoring soil moisture content. When the soil moisture content reaches to a threshold, the irrigation warning will be announced. The irrigation mount can be estimated through three ways: (1) making the soil moisture content be equal to the field capacity; (2) making the soil moisture saturated; or (3) according to the irrigation quota. The forecasting period is 10 days. The system is developed according to B2C model with Java language. All the databases and the data analysis are carried out in the server. The customers can log in the website with their own username and password then get the information about the irrigation forecasting

  13. Irrigation and groundwater in Pakistan

    NASA Astrophysics Data System (ADS)

    Ertsen, Maurits; Iftikhar Kazmi, Syed

    2010-05-01

    Introduction of large gravity irrigation system in the Indus Basin in late nineteenth century without a drainage system resulted in water table rise consequently giving rise to water logging and salinity problems over large areas. In order to cope with the salinity and water logging problem government initiated salinity control and reclamation project (SCARP) in 1960. Initially 10,000 tube wells were installed in different areas, which not only resulted in the lowering of water table, but also supplemented irrigation. Resulting benefits from the full irrigation motivated framers to install private tube wells. Present estimate of private tube wells in Punjab alone is around 0.6 million and 48 billion cubic meter of groundwater is used for irrigation, contributing is 1.3 billion to the economy. The Punjab meets 40% of its irrigation needs from groundwater abstraction. Today, farmers apply both surface water flows and groundwater from tubewells, creating a pattern of private and public water control. As the importance of groundwater in sustaining human life and ecology is evident so are the threats to its sustainability due to overexploitation, but sufficient information for its sustainable management especially in developing countries is still required. Sustainable use of groundwater needs proper quantification of the resource and information on processes involved in its recharge and discharge. Groundwater recharge is broadly defined as water that reaches the aquifer from any direction (Lerner 1997). Sustainability and proper management of groundwater resource requires reliable quantification of the resource. In order to protect the resource from contamination and over exploitation, identification of recharge sources and their contribution to resource is a basic requirement. Physiochemical properties of some pesticides and their behavior in soil and water can make them potential tracers of subsurface moisture movement. Pesticides are intensively used in the area to

  14. Concentration estimation of heavy metal in soils from typical sewage irrigation area of Shandong Province, China using reflectance spectroscopy.

    PubMed

    Wang, Fei; Li, Chunfang; Wang, Jining; Cao, Wentao; Wu, Quanyuan

    2017-07-01

    Since sewage irrigation can markedly disturb the status of heavy metals in soils, a convenient and accurate technique for heavy metal concentration estimation is of utmost importance in the cropland using wastewater for irrigation. This study therefore assessed the feasibility of visible and near infrared reflectance (VINR) spectroscopy for predicting heavy metal contents including Cr, Cu, Ni, Pb, Zn, As, Cd, and Hg in the north plain of Longkou city, Shandong Province, China. A total of 70 topsoil samples were taken for in situ spectra measurement and chemical analysis. Stepwise multiple linear regression (SMLR) and principal component regression (PCR) algorithms were applied to establish the associations between heavy metals and reflectance spectral data pretreated by different transformation methods. Based on the criteria that minimal root mean square error (RMSE), maximal coefficient of determination (R (2)) for calibration, and greater ratio of standard error of performance to standard deviation (RPD) is related to the optimal model, SMLR model using first deviation data (RD1) provided the best prediction for the contents of Ni, Pb, As, Cd, and Hg, calibration using SNV data for Cr and continuum removal spectra for Zn, while PCR equation employed RD1 values was fit for prediction of the contents of Cu. The determination coefficients of all the reasonable models were beyond 0.6, and RPD indicated a fair or good result. In general, first deviation preprocessing tool outperformed other methods in this study, while raw spectra reflectance performed unsatisfactory in all models. Overall, VINR reflectance spectroscopy technique could be applicable to the rapid concentration assessment of heavy metals in soils of the study area.

  15. Approximate sample sizes required to estimate length distributions

    USGS Publications Warehouse

    Miranda, L.E.

    2007-01-01

    The sample sizes required to estimate fish length were determined by bootstrapping from reference length distributions. Depending on population characteristics and species-specific maximum lengths, 1-cm length-frequency histograms required 375-1,200 fish to estimate within 10% with 80% confidence, 2.5-cm histograms required 150-425 fish, proportional stock density required 75-140 fish, and mean length required 75-160 fish. In general, smaller species, smaller populations, populations with higher mortality, and simpler length statistics required fewer samples. Indices that require low sample sizes may be suitable for monitoring population status, and when large changes in length are evident, additional sampling effort may be allocated to more precisely define length status with more informative estimators. ?? Copyright by the American Fisheries Society 2007.

  16. Estimating the Evaporation from Irrigation Canals in Northwestern China Using the Double-Deck Surface Air Layer Model

    NASA Astrophysics Data System (ADS)

    Wang, Weizhen

    2017-04-01

    The evaporation from irrigation canals was estimated by the aerodynamic method based on the double-deck surface air layer model (called "DSAL model" for short hereafter). The DSAL model describes the surface air layer over a canal as a composite air layer with two sublayers, the lower sublayer and the upper sublayer. The lower sublayer is a few tens of centimetres thick and formed by the flowing water, in which there is no advection; the upper sublayer is over the lower sublayer and formed by the surface wind. The results were compared to those obtained by the heat balance method; field experiments were conducted in the middle reaches of the Heihe River in north western China. Results showed that cumulative evaporation instances estimated by the DSAL model were equal in order of magnitude to those by the heat balance method on observed days during the daytime (0700˜1900BST). We infer from these experimental results that the evaporation loss in transport in this region is of the order of one percent at most.

  17. Operational water balance in irrigation districts

    NASA Astrophysics Data System (ADS)

    Sánchez, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco V.

    2014-05-01

    In pressure irrigation-water distribution networks, applied water volume is usually controlled opening a valve during a calculated time interval, and assuming constant flow rate. In general, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of pressure conditions. A pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. Theoretical flow rates values have been introduced into a validated in laboratory PRV performance model coupled with an irrigation district waterworks. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of both the PRV and the water distribution network. In this work the estimation of water balance terms during the irrigation events in an irrigation campaign has been carried on. The effect of demand concentration peaks has been assessed.

  18. [Estimated nitrogen nutrition index based on the hyperspectral for wheat of drip irrigation under mulch].

    PubMed

    Diao, Wan-ying; Li, Shao-kun; Wang, Ke-ru; Jin, Xiu-liang; Wang, Fang-yong; Chen, Bing; Wang, Qiong; Wang, Kai; Xiao, Chun-hua

    2012-05-01

    The accurate wheat management needs a reasonable nitrogen application, and it is one of the key measures for real-time and quantitatively monitoring of nitrogen status to gain the higher yield of wheat. In the present study, two field experiments were conducted with different nitrogen stress and wheat cultivars, the relationship was analyzed between spectral parameters and the partial factor productivity from applied N (PFPn), and the estimating model was established for PFP, in the growth stages of wheat. The result indicated that there was a highly significant correlation between the PFP, and GreenNDVI at jointing, the correlation coefficient (r) was 0.6404, the estimating model of PFPn was established, and the root mean square errors (RMSE) was 0.4597. The result indicated that the PFPn can be effectively estimated by using spectral parameters.

  19. Irrigation: Erosion

    USDA-ARS?s Scientific Manuscript database

    Irrigation is essential for global food production. However, irrigation erosion can limit the ability of irrigation systems to reliably produce food and fiber in the future. The factors affecting soil erosion from irrigation are the same as rainfall—water detaches and transports sediment. However, t...

  20. A Site-sPecific Agricultural water Requirement and footprint Estimator (SPARE:WATER 1.0)

    NASA Astrophysics Data System (ADS)

    Multsch, S.; Al-Rumaikhani, Y. A.; Frede, H.-G.; Breuer, L.

    2013-07-01

    The agricultural water footprint addresses the quantification of water consumption in agriculture, whereby three types of water to grow crops are considered, namely green water (consumed rainfall), blue water (irrigation from surface or groundwater) and grey water (water needed to dilute pollutants). By considering site-specific properties when calculating the crop water footprint, this methodology can be used to support decision making in the agricultural sector on local to regional scale. We therefore developed the spatial decision support system SPARE:WATER that allows us to quantify green, blue and grey water footprints on regional scale. SPARE:WATER is programmed in VB.NET, with geographic information system functionality implemented by the MapWinGIS library. Water requirements and water footprints are assessed on a grid basis and can then be aggregated for spatial entities such as political boundaries, catchments or irrigation districts. We assume inefficient irrigation methods rather than optimal conditions to account for irrigation methods with efficiencies other than 100%. Furthermore, grey water is defined as the water needed to leach out salt from the rooting zone in order to maintain soil quality, an important management task in irrigation agriculture. Apart from a thorough representation of the modelling concept, we provide a proof of concept where we assess the agricultural water footprint of Saudi Arabia. The entire water footprint is 17.0 km3 yr-1 for 2008, with a blue water dominance of 86%. Using SPARE:WATER we are able to delineate regional hot spots as well as crop types with large water footprints, e.g. sesame or dates. Results differ from previous studies of national-scale resolution, underlining the need for regional estimation of crop water footprints.

  1. Estimating sustaining base-hospital personnel requirements during extended operations.

    PubMed

    Fulton, Lawrence V; Devore, Raymond B; McMurry, Pat M

    2010-04-01

    This case study provides a unique method for estimating sustaining base military hospital personnel requirements during combat and stability operations while underscoring the need for such analysis before the commencement of combat operations. The requirement estimates are based on a major combat operation (MCO) scenario, which was extended to simulate stability operations. The scenario selected derived from Department of Defense strategic planning guidance as modeled by the Total Army Analysis (TAA). Since casualties experienced in combat result in additional workload for military hospitals, a mechanism for estimating that workload is required. A single scenario generated as part of an analysis for the acting Army surgeon general produced a median requirement of 1,299 additional full-time equivalents (FTEs) over the course of 36 months, highlighting a significant gap between capabilities and requirements.

  2. An inventory of California's irrigated land

    NASA Technical Reports Server (NTRS)

    Sawyer, G. B.

    1981-01-01

    Currently in the fourth year of its applications pilot test project to assess irrigated lands for water management, California officials found that the performance goal of plus or minus 5% at the 95% confidence level by each of the state's 10 major hydrologic basins was bettered in all but a few cases using manual analysis techniques for estimation. The process used was photointerpretation of enlarged LANDSAT scenes (1:150,000 scale), adjusting the determined acreage using a regression estimator and ground truth data from 637 sample cells. Sample cells were allocated to areas stratified on the basis of field size and selected crop types. Interpretation of three dates of imagery was required to span the complete time during which irrigated crops are grown in California. The registration of multitemporal data and classification procedures for estimating irrigated land using digital techniques are being studied as part of the second task in the project.

  3. Tree canopy light interception estimates in almond and a walnut orchards using ground, low flying aircraft, and satellite based methods to improve irrigation scheduling programs.

    NASA Astrophysics Data System (ADS)

    Rosecrance, R. C.; Johnson, L.; Soderstrom, D.

    2016-12-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  4. Tree Canopy Light Interception Estimates in Almond and a Walnut Orchards Using Ground, Low Flying Aircraft, and Satellite Based Methods to Improve Irrigation Scheduling Programs

    NASA Technical Reports Server (NTRS)

    Rosecrance, Richard C.; Johnson, Lee; Soderstrom, Dominic

    2016-01-01

    Canopy light interception is a main driver of water use and crop yield in almond and walnut production. Fractional green canopy cover (Fc) is a good indicator of light interception and can be estimated remotely from satellite using the normalized difference vegetation index (NDVI) data. Satellite-based Fc estimates could be used to inform crop evapotranspiration models, and hence support improvements in irrigation evaluation and management capabilities. Satellite estimates of Fc in almond and walnut orchards, however, need to be verified before incorporating them into irrigation scheduling or other crop water management programs. In this study, Landsat-based NDVI and Fc from NASA's Satellite Irrigation Management Support (SIMS) were compared with four estimates of canopy cover: 1. light bar measurement, 2. in-situ and image-based dimensional tree-crown analyses, 3. high-resolution NDVI data from low flying aircraft, and 4. orchard photos obtained via Google Earth and processed by an Image J thresholding routine. Correlations between the various estimates are discussed.

  5. Irrigation water quality assessments

    USDA-ARS?s Scientific Manuscript database

    Increasing demands on fresh water supplies by municipal and industrial users means decreased fresh water availability for irrigated agriculture in semi arid and arid regions. There is potential for agricultural use of treated wastewaters and low quality waters for irrigation but this will require co...

  6. Web based irrigation scheduler

    USDA-ARS?s Scientific Manuscript database

    Increasing use of water in the Mid-South has led to depletion of water levels in aquifers, with few guidelines in place for farmers as to when and how much to irrigate. Irrigation can increase crop yields when water is applied correctly. Wise water management requires knowledge of how much water the...

  7. Estimating force and power requirements for crosscut shearing of roundwood.

    Treesearch

    Rodger A. Arola

    1972-01-01

    Presents a procedure which, through the use of nomographs, permits rapid estimation of the force required to crosscut shear logs of various species and diameters with shear blades ranging in thickness from 1/4 to 7/8 inch. In addition, nomographs are included to evaluate hydraulic cylinder sizes, pump capacities, and motor horsepower requirements to effect the cut....

  8. Estimating psychiatric manpower requirements based on patients' needs.

    PubMed

    Faulkner, L R; Goldman, C R

    1997-05-01

    To provide a better understanding of the complexities of estimating psychiatric manpower requirements, the authors describe several approaches to estimation and present a method based on patients' needs. A five-step method for psychiatric manpower estimation is used, with estimates of data pertinent to each step, to calculate the total psychiatric manpower requirements for the United States. The method is also used to estimate the hours of psychiatric service per patient per year that might be available under current psychiatric practice and under a managed care scenario. Depending on assumptions about data at each step in the method, the total psychiatric manpower requirements for the U.S. population range from 2,989 to 358,696 full-time-equivalent psychiatrists. The number of available hours of psychiatric service per patient per year is 14.1 hours under current psychiatric practice and 2.8 hours under the managed care scenario. The key to psychiatric manpower estimation lies in clarifying the assumptions that underlie the specific method used. Even small differences in assumptions mean large differences in estimates. Any credible manpower estimation process must include discussions and negotiations between psychiatrists, other clinicians, administrators, and patients and families to clarify the treatment needs of patients and the roles, responsibilities, and job description of psychiatrists.

  9. Estimating physician requirements for neurology: a needs-based approach.

    PubMed

    Garrison, L P; Bowman, M A; Perrin, E B

    1984-09-01

    Applying the adjusted needs-based model developed by the Graduate Medical Education National Advisory Committee (GMENAC), physician requirements in neurology were estimated for the year 1990. A Delphi panel of physician experts estimated appropriate patterns of treatment for 56 neurologic conditions. Their median estimates implied a need for 14,500 neurologists in 1990, suggesting a shortage relative to the projected supply. An advisory panel of former GMENAC members reviewed those estimates and recommended certain adjustments to ensure internal consistency and compatibility with those for other specialties. Adoption of these adjustments significantly reduces requirements, implying a total need for 8,400 neurologists--a figure in near balance with the projected supply of 8,650. The difference between the Delphi and Advisory Panel estimates reflects divergent views, apparent as well among the Delphi panelists, of the appropriate role of neurologists--consultants versus principal care providers.

  10. Investigating irrigation scheduling for rice using variable rate irrigation

    USDA-ARS?s Scientific Manuscript database

    Because almost all US rice is produced with continuous flood irrigation, little information addresses irrigation scheduling for rice; however, successful production without a continuous flood will require timely irrigation. A field study conducted at the University of Missouri Fisher Delta Research ...

  11. Estimating the impacts of a reservoir for improved water use in irrigation in the Yarabamba region, Peru

    NASA Astrophysics Data System (ADS)

    Swiech, Theoclea; Ertsen, Maurits W.; Pererya, Carlos Machicao

    The pressure on irrigation is increasing worldwide, not only because of - perceived or real - high water consumption in the irrigated sector, but also because an increased world population puts stress on food production. Numerous irrigated areas around the world face similar issues of water scarcity, disparity in water distribution and deficient infrastructure. As a result, farmers are typically restricted in their production strategies. A general strategy in the irrigation sector is the introduction of so-called modern techniques in existing irrigation systems, with the aim to increase agricultural production. This paper discusses such a modernization effort in the sub-basin of Yarabamba, Arequipa, Peru, in which a reservoir is being constructed to improve water use and stimulate economic development. Based on fieldwork, including interviews and scenario modeling with WEAP, the relationships between water users, their irrigation systems and the water balances in the basin were studied. Scenario studies showed that the reservoir might alleviate the current water shortages in the sub-basin, but that restrictions in the current infrastructure and management of irrigation may be of more importance than the reservoir. Especially existing interests and actions of upstream and downstream areas appear to be important factors; these will not be automatically solved with the new reservoir.

  12. Estimating trends of urban residential irrigation extent and rate using satellite imagery in the city of Los Angeles, CA

    NASA Astrophysics Data System (ADS)

    Chen, Y. J.; McFadden, J. P.; Clarke, K. C.; Roberts, D. A.

    2015-12-01

    Urban residential irrigation is a large component of urban water budgets in Mediterranean climate cities, and plays a significant role for managing landscape vegetation and water resources. This is particularly occurring at cities such as Los Angeles, where water availability is limited during dry summers. This study applied 10-m SPOT 5 satellite imagery and a database of monthly water use records for residential water customers in Los Angeles in order to examine the interactions between vegetation water demand and residential water consumption. Here, we identify the spatial distribution of vegetation greenness and the extent of irrigation rates through water year 2005-2007, including normal, dry, and wet extremes of annual rainfall. Additionally, the water conservation ratio, which is between rates of irrigation and vegetation water demand, is used to assess over-irrigation. Although residential outdoor water usage was found as highest in the dry year, landscape vegetation under water stress that cannot maintain greenness condition as well as in wetter years. However, the decreasing trend of over-irrigation occurred from wet to drier years, since vegetation water demand increased significantly but irrigation rates changed little, implying over-irrigation in urbanized areas. This over watering issue can be implemented by water resource management, and urban planning, especially in current severe California drought.

  13. Estimated manpower requirements for psychiatrists in Australia 1980-91.

    PubMed

    Burvill, P W; German, G A

    1984-03-01

    A postal survey of all practising psychiatrists in Australia, conducted in 1980 with the purpose of establishing psychiatric manpower requirements for 1980-91, is described. It is estimated that in 1980 there was one Whole Time Equivalent psychiatrist, aged 65 years or less, per 19,400 population in Australia. The relativity of manpower requirements is emphasised. A number of different models of estimating future requirements is proposed. The two models most favoured estimate a shortfall for the whole of Australia of 294 and 349 psychiatrists, respectively, in 1980, and a need for an additional 621 or 692 by 1991. A major maldistribution of psychiatrists is identified, viz between states, between capital cities and country areas, and between general psychiatry and specialised areas. The two issues of the number of trainees required and of how to train psychiatrists in special areas of expertise are discussed.

  14. Optimizing desalinated sea water blending with other sources to meet magnesium requirements for potable and irrigation waters.

    PubMed

    Avni, Noa; Eben-Chaime, Moshe; Oron, Gideon

    2013-05-01

    Sea water desalination provides fresh water that typically lacks minerals essential to human health and to agricultural productivity. Thus the rising proportion of desalinated sea water consumed by both the domestic and agricultural sectors constitutes a public health risk. Research on low-magnesium water irrigation showed that crops developed magnesium deficiency symptoms that could lead to plant death, and tomato yields were reduced by 10-15%. The World Health Organization (WHO) reported on a relationship between sudden cardiac death rates and magnesium intake deficits. An optimization model, developed and tested to provide recommendations for Water Distribution System (WDS) quality control in terms of meeting optimal water quality requirements, was run in computational experiments based on an actual regional WDS. The expected magnesium deficit due to the operation of a large Sea Water Desalination Plant (SWDP) was simulated, and an optimal operation policy, in which remineralization at the SWDP was combined with blending desalinated and natural water to achieve the required quality, was generated. The effects of remineralization costs and WDS physical layout on the optimal policy were examined by sensitivity analysis. As part of the sensitivity blending natural and desalinated water near the treatment plants will be feasible up to 16.2 US cents/m(3), considering all expenses. Additional chemical injection was used to meet quality criteria when blending was not feasible.

  15. Newer Root Canal Irrigants in Horizon: A Review

    PubMed Central

    Jaju, Sushma; Jaju, Prashant P.

    2011-01-01

    Sodium hypochloride is the most commonly used endodontic irrigant, despite limitations. None of the presently available root canal irrigants satisfy the requirements of ideal root canal irrigant. Newer root canal irrigants are studied for potential replacement of sodium hypochloride. This article reviews the potential irrigants with their advantages and limitations with their future in endodontic irrigation. PMID:22190936

  16. Estimating yield of irrigated potatoes using aerial and satellite remote sensing

    NASA Astrophysics Data System (ADS)

    Sivarajan, Saravanan

    Multispectral aerial and satellite remote sensing plays a major role in crop yield prediction due to its ability to detect crop growth conditions on spatial and temporal scales in a cost effective manner. Many empirical relationships have been established in the past between spectral vegetation indices and leaf area index, fractional ground cover, and crop growth rates for different crops through ground sampling. Remote sensing-based vegetation index (VI) yield models using airborne and satellite data have been developed only for grain crops like barley, corn, wheat, and sorghum. So it becomes important to validate and extend the VI-based model for tuber crops like potato, taking into account the most significant parameters that affect the final crop yield of these crops. This research involved developing and validating yield models for potato crop in southern Idaho fields using high-resolution airborne and satellite remote sensing. High-resolution multispectral airborne imagery acquired on three dates throughout the growing season in 2004 was used to develop a VI-based statistical yield model by integrating the area under the Soil Adjusted Vegetation Index (SAVI) curve. The model was developed using hand-dug samples collected in two center pivots based on soil variability and crop growth patterns to account for variability in the leaf area duration and yields. The three-date Integrated SAVI (ISAVI) model developed was then validated using 2005 spot yield samples collected from two center pivot fields and also tested for 2004 and 2005 whole field data over dozens of center pivot fields. The three- date model was applied using 2004 and 2005 satellite images and tested. The eight-date ISAVI yield model was also extended to satellite images to estimate the potato yield. The overall yield estimation using the eight-date ISAVI model was better than the three-date model as the image inputs covered the complete growth cycle of the crop from emergence to harvest. Actual

  17. Application of the Viterbi Algorithm in Hidden Markov Models for Exploring Irrigation Decision Series

    NASA Astrophysics Data System (ADS)

    Andriyas, S.; McKee, M.

    2014-12-01

    Anticipating farmers' irrigation decisions can provide the possibility of improving the efficiency of canal operations in on-demand irrigation systems. Although multiple factors are considered during irrigation decision making, for any given farmer there might be one factor playing a major role. Identification of that biophysical factor which led to a farmer deciding to irrigate is difficult because of high variability of those factors during the growing season. Analysis of the irrigation decisions of a group of farmers for a single crop can help to simplify the problem. We developed a hidden Markov model (HMM) to analyze irrigation decisions and explore the factor and level at which the majority of farmers decide to irrigate. The model requires observed variables as inputs and the hidden states. The chosen model inputs were relatively easily measured, or estimated, biophysical data, including such factors (i.e., those variables which are believed to affect irrigation decision-making) as cumulative evapotranspiration, soil moisture depletion, soil stress coefficient, and canal flows. Irrigation decision series were the hidden states for the model. The data for the work comes from the Canal B region of the Lower Sevier River Basin, near Delta, Utah. The main crops of the region are alfalfa, barley, and corn. A portion of the data was used to build and test the model capability to explore that factor and the level at which the farmer takes the decision to irrigate for future irrigation events. Both group and individual level behavior can be studied using HMMs. The study showed that the farmers cannot be classified into certain classes based on their irrigation decisions, but vary in their behavior from irrigation-to-irrigation across all years and crops. HMMs can be used to analyze what factor and, subsequently, what level of that factor on which the farmer most likely based the irrigation decision. The study shows that the HMM is a capable tool to study a process

  18. Estimating Wartime Support Resource Requirements. Statistical and Related Policy Issues.

    DTIC Science & Technology

    1984-07-01

    Fitzgerald of Headquarters, Air Force Logistics Command explained the engine requirements Computation arid identified a body of past work that suggests that...C-5 and other aircraft, as well as the more general problem of * estimating wartime support resource requirements. 3 " Cannibalization " is the use of...service. The missing parts should eventually be replaced, but some TF39 engines have been * cannibalized so extensively that it might be cheaper to

  19. Sample Size Requirements for Estimating Pearson, Spearman and Kendall Correlations.

    ERIC Educational Resources Information Center

    Bonett, Douglas G.; Wright, Thomas A.

    2000-01-01

    Reviews interval estimates of the Pearson, Kendall tau-alpha, and Spearman correlates and proposes an improved standard error for the Spearman correlation. Examines the sample size required to yield a confidence interval having the desired width. Findings show accurate results from a two-stage approximation to the sample size. (SLD)

  20. Minimizing instrumentation requirement for estimating crop water stress index and transpiration of maize

    USDA-ARS?s Scientific Manuscript database

    Research was conducted in northern Colorado in 2011 to estimate the Crop Water Stress Index (CWSI) and actual water transpiration (Ta) of maize under a range of irrigation regimes. The main goal was to obtain these parameters with minimum instrumentation and measurements. The results confirmed that ...

  1. Wireless sensor networks for irrigation management

    USDA-ARS?s Scientific Manuscript database

    Sustaining an adequate food supply for the world's population will require advancements in irrigation technology and improved irrigation management. Site-specific irrigation and automatic irrigation scheduling are examples of strategies to deal with declining arable land and limited fresh water reso...

  2. Soil management and conservation: Irrigation: Methods

    USDA-ARS?s Scientific Manuscript database

    Irrigation applies water to soil to improve crop production. The three main methods of irrigation are surface, sprinkler and micro. Surface irrigation is used on 85% of the irrigated land in the world. It generally requires lower capital investment because the soil conveys water within the field, ra...

  3. [A study on estimating health workers requirement (author's transl)].

    PubMed

    Park, I H

    1980-11-01

    4 metholological approaches to the assessment of future demand for health manpower are considered: health needs, service targets, health demand, and ratio of health manpower to population. The service targets approach appears to be the most appropriate for family planning and maternal and child health services. Once targets are determined, they are converted into manpower requirements on the basis of personnel ratios and productivity assumptions. Requirements for family planning workers are estimated by the fertility decline approach, based on national demographic targets established in quantitative terms. Actual number of family planning workers are estimated at 2619 in 1981 (over 14% of current workers in the field) and 2214 in 1986. To meet the established minimum requirements on the maternal and child health program (3 antepartum contacts and direct or indirect services at delivery), more than 4500 workers will be needed during 1981-86. (Author's modified)

  4. Satellite-based energy balance model to estimate seasonal evapotranspiration for irrigated sorghum: a case study from the Gezira scheme, Sudan

    NASA Astrophysics Data System (ADS)

    Bashir, M. A.; Hata, T.; Tanakamaru, H.; Abdelhadi, A. W.; Tada, A.

    2008-08-01

    The availability of the actual water use from agricultural crops is considered as the key factor for irrigation water management, water resources planning, and water allocation. Traditionally, evapotranspiration (ET) has been calculated in the Gezira scheme as the point of reference with evapotranspiration (ETo) and crop coefficients (kc) being derived from actual measurements of soil-water balance. Recently developed, advanced energy balance models assisted in estimating the ET through the remotely sensed data. In this study Enhanced Thematic Mapper Plus (ETM+) and MODerate Resolution Imaging Spectroradiometer (MODIS) images were used to estimate the spatial distribution of the daily, monthly and seasonal ET for irrigated sorghum in the Gezira scheme, Sudan. The daily ET maps were also used to estimate kc over time and space. Results of the energy balance, based on being remotely sensed, were compared to actual measurements conducted during 2004/05 season. The seasonal actual ET values, obtained from the seven MODIS images for irrigated sorghum, were estimated at 579 mm. The values for remotely sensed kc, derived during the initial mid-season and late-season crop development stages, were 0.62, 0.85, 1.15, and 0.48, respectively. On the other hand, the values for the experimental kc during the pervious mention stages were 0.55, 0.94, 1.21 and 0.65, respectively. The estimated seasonal ET of the sorghum, derived by remotely sensed kc, was 674 mm. The Landsat data and the Free MODIS provided reliable, exhaustive, and consistent information on the water use, relevant for decision support in the Gezira scheme.

  5. Origins for the estimations of water requirements in adults.

    PubMed

    Vivanti, A P

    2012-12-01

    Water homeostasis generally occurs without conscious effort; however, estimating requirements can be necessary in settings such as health care. This review investigates the derivation of equations for estimating water requirements. Published literature was reviewed for water estimation equations and original papers sought. Equation origins were difficult to ascertain and original references were often not cited. One equation (% of body weight) was based on just two human subjects and another equation (ml water/kcal) was reported for mammals and not specifically for humans. Other findings include that some equations: for children were subsequently applied to adults; had undergone modifications without explicit explanation; had adjusted for the water from metabolism or food; and had undergone conversion to simplify application. The primary sources for equations are rarely mentioned or, when located, lack details conventionally considered important. The sources of water requirement equations are rarely made explicit and historical studies do not satisfy more rigorous modern scientific method. Equations are often applied without appreciating their derivation, or adjusting for the water from food or metabolism as acknowledged by original authors. Water requirement equations should be used as a guide only while employing additional means (such as monitoring short-term weight changes, physical or biochemical parameters and urine output volumes) to ensure the adequacy of water provision in clinical or health-care settings.

  6. Measurement of irrigated acreage in Western Kansas from LANDSAT images

    USGS Publications Warehouse

    Keene, K.M.; Conley, C.D.

    1980-01-01

    In the past four decades, irrigated acreage in western Kansas has increased rapidly. Optimum utilization of vital groundwater supplies requires implementation of long-term water-management programs. One important variable in such programs is up-to-date information on acreage under irrigation. Conventional ground survey methods of estimating irrigated acreage are too slow to be of maximum use in water-management programs. Visual interpretation of LANDSAT images permits more rapid measurement of irrigated acreage, but procedures are tedious and still relatively slow. For example, using a LANDSAT false-color composite image in areas of western Kansas with few landmarks, it is impossible to keep track of fields by examination under low-power microscope. Irrigated fields are more easily delineated on a photographically enlarged false-color composite and are traced on an overlay for measurement. Interpretation and measurement required 6 weeks for a four-county (3140 mi2, 8133 km2) test area. Video image-analysis equipment permits rapid measurement of irrigated acreage. Spectral response of irrigated summer crops in western Kansas on MSS band 5 (visible red, 0.6-0.7 ??m) images is low in contrast to high response from harvested and fallow fields and from common soil types. Therefore, irrigated acreage in western Kansas can be uniquely discriminated by video image analysis. The area of irrigated crops in a given area of view is measured directly. Sources of error are small in western Kansas. After preliminary preparation of the images, the time required to measure irrigated acreage was 1 h per county (average area, 876 ml2 or 2269 km2). ?? 1980 Springer-Verlag New York Inc.

  7. Estimating supply requirements for forward medical treatment facilities.

    PubMed

    Konoske, P J; Galarneau, M R; Pang, G; Emens-Hesslink, K E; Gauker, E D; Tropeano, A

    2000-11-01

    The Naval Health Research Center designed, developed, and used a systematic process to review Marine Corps medical supply requirements. This approach consisted of identifying the medical tasks required to treat patients with specific injuries and illnesses and determining the supplies and equipment required to perform each task. Subject matter experts reviewed treatment briefs, tasks, supplies, and equipment and examined their value to Marine Corps medical providers in forward areas of care. By establishing the clinical requirement for each item pushed forward, the Naval Health Research Center model was able to reduce the logistical burden carried by Marine Corps units and enhance far-forward clinical capability. The result of this effort is a model to estimate supplies and equipment based on a given casualty stream distribution. This approach produces an audit trail for each item and allows current authorized medical allowance list configurations to be revised using information such as type of conflict anticipated, expected duration, and changes in medical doctrine.

  8. Estimated water requirements for gold heap-leach operations

    USGS Publications Warehouse

    Bleiwas, Donald I.

    2012-01-01

    This report provides a perspective on the amount of water necessary for conventional gold heap-leach operations. Water is required for drilling and dust suppression during mining, for agglomeration and as leachate during ore processing, to support the workforce (requires water in potable form and for sanitation), for minesite reclamation, and to compensate for water lost to evaporation and leakage. Maintaining an adequate water balance is especially critical in areas where surface and groundwater are difficult to acquire because of unfavorable climatic conditions [arid conditions and (or) a high evaporation rate]; where there is competition with other uses, such as for agriculture, industry, and use by municipalities; and where compliance with regulatory requirements may restrict water usage. Estimating the water consumption of heap-leach operations requires an understanding of the heap-leach process itself. The task is fairly complex because, although they all share some common features, each gold heap-leach operation is unique. Also, estimating the water consumption requires a synthesis of several fields of science, including chemistry, ecology, geology, hydrology, and meteorology, as well as consideration of economic factors.

  9. Estimating preseason irrigation losses by characterizing evaporation of effective precipitation under bare soil conditions using large weighing lysimeters

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling is one of the most cost effective means of conserving limited groundwater resources, particularly in semi-arid regions. Effective precipitation, or the net amount of water from precipitation that can be used in field water balance equations, is essential to accurate and effecti...

  10. Salinity on irrigated lands

    SciTech Connect

    Westmore, R.A.; Manbeck, D.M.

    1984-02-01

    The technology for controlling salinity on irrigated lands is relatively simple, involving both minor and major changes in current land-management practices. Minor changes include more frequent irrigation, the use of salt-tolerant crops, preplanning irrigation, and seed placement. The major changes require a shift from gravity to sprinkler or drip systems, increased water supply and quality, soil modification, land grading, and improved drainage. Some of the major changes are difficult, and some impossible, to accomplish. Examples of reclamation include the Mardan Salinity Control and Reclamation Project (SCARP) in Pakistan. 5 references, 2 figures, 2 tables

  11. Global rain-fed, irrigated, and paddy croplands: A new high resolution map derived from remote sensing, crop inventories and climate data

    NASA Astrophysics Data System (ADS)

    Salmon, J. Meghan; Friedl, Mark A.; Frolking, Steve; Wisser, Dominik; Douglas, Ellen M.

    2015-06-01

    Irrigation accounts for 70% of global water use by humans and 33-40% of global food production comes from irrigated croplands. Accurate and timely information related to global irrigation is therefore needed to manage increasingly scarce water resources and to improve food security in the face of yield gaps, climate change and extreme events such as droughts, floods, and heat waves. Unfortunately, this information is not available for many regions of the world. This study aims to improve characterization of global rain-fed, irrigated and paddy croplands by integrating information from national and sub-national surveys, remote sensing, and gridded climate data sets. To achieve this goal, we used supervised classification of remote sensing, climate, and agricultural inventory data to generate a global map of irrigated, rain-fed, and paddy croplands. We estimate that 314 million hectares (Mha) worldwide were irrigated circa 2005. This includes 66 Mha of irrigated paddy cropland and 249 Mha of irrigated non-paddy cropland. Additionally, we estimate that 1047 Mha of cropland are managed under rain-fed conditions, including 63 Mha of rain-fed paddy cropland and 985 Mha of rain-fed non-paddy cropland. More generally, our results show that global mapping of irrigated, rain-fed, and paddy croplands is possible by combining information from multiple data sources. However, regions with rapidly changing irrigation or complex mixtures of irrigated and non-irrigated crops present significant challenges and require more and better data to support high quality mapping of irrigation.

  12. Nitrogen Requirements for Growth and Early Fruit Development of Drip-Irrigated Processing Tomato (Lycopersicon esculentum Mill.) in Portugal

    USDA-ARS?s Scientific Manuscript database

    The effect of continuous application of small quantities of nitrogen (N) in irrigation water and N applied as starter on growth and development of processing tomato (Lycopersicon esculentum Mill.), from transplanting to beginning of fruit set, was studied in two experiments: a pot experiment and a f...

  13. Guidelines for Estimating Unmetered Landscaping Water Use

    SciTech Connect

    McMordie Stoughton, Kate

    2010-07-28

    The document lays-out step by step instructions to estimate landscaping water using two alternative approaches: evapotranspiration method and irrigation audit method. The evapotranspiration method option calculates the amount of water needed to maintain a healthy turf or landscaped area for a given location based on the amount of water transpired and evaporated from the plants. The evapotranspiration method offers a relatively easy “one-stop-shop” for Federal agencies to develop an initial estimate of annual landscape water use. The document presents annual irrigation factors for 36 cities across the U.S. that represents the gallons of irrigation required per square foot for distinct landscape types. By following the steps outlined in the document, the reader can choose a location that is a close match their location and landscape type to provide a rough estimate of annual irrigation needs without the need to research specific data on their site. The second option presented in the document is the irrigation audit method, which is the physical measurement of water applied to landscaped areas through irrigation equipment. Steps to perform an irrigation audit are outlined in the document, which follow the Recommended Audit Guidelines produced by the Irrigation Association.[5] An irrigation audit requires some knowledge on the specific procedures to accurately estimate how much water is being consumed by the irrigation equipment.

  14. Estimates of galactic cosmic ray shielding requirements during solar minimum

    SciTech Connect

    Townsend, L.W.; Nealy, J.E.; Wilson, J.W.; Simonsen, L.C.

    1990-02-01

    Estimates of radiation risk from galactic cosmic rays are presented for manned interplanetary missions. The calculations use the Naval Research Laboratory cosmic ray spectrum model as input into the Langley Research Center galactic cosmic ray transport code. This transport code, which transports both heavy ions and nucleons, can be used with any number of layers of target material, consisting of up to five different arbitrary constituents per layer. Calculated galactic cosmic ray fluxes, dose and dose equivalents behind various thicknesses of aluminum, water and liquid hydrogen shielding are presented for the solar minimum period. Estimates of risk to the skin and the blood-forming organs (BFO) are made using 0-cm and 5-cm depth dose/dose equivalent values, respectively, for water. These results indicate that at least 3.5 g/sq cm (3.5 cm) of water, or 6.5 g/sq cm (2.4 cm) of aluminum, or 1.0 g/sq cm (14 cm) of liquid hydrogen shielding is required to reduce the annual exposure below the currently recommended BFO limit of 0.5 Sv. Because of large uncertainties in fragmentation parameters and the input cosmic ray spectrum, these exposure estimates may be uncertain by as much as a factor of 2 or more. The effects of these potential exposure uncertainties or shield thickness requirements are analyzed.

  15. Estimating dental manpower requirements on a statewide basis.

    PubMed

    DeFriese, G H; Konrad, T R

    1981-01-01

    The North Carolina Dental Manpower Study undertook to use epidemiological data on dental disease, data on practice productivity, and estimates of treatment needs to arrive at more useful measures of dental manpower requirements on a statewide and substate regional basis. As in all attempts to plan for health manpower, the North Carolina study relied upon a measure of subjective judgment pertaining to the treatment/services required to deal with certain dental conditions. These judgments, however, were representative of the conventional standards of practice in North Carolina at the time of the study. Though certain important factors necessary to a complete assessment of dental manpower requirements were not directly measured in the study (e.g., consumer demand), estimates of the volume increase in dental-office practice-productivity were derived for the major categories of dental procedures and conditions. In North Carolina this technic is thought to represent a more meaningful approach to dental manpower planning than the conventional manpower-to-population ratio.

  16. A root zone model for estimating soil water balance and crop yield responses to deficit irrigation in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ma, Y.; Song, X.; Feng, S.

    2012-12-01

    This study proposed a new soil water balance model by quantifying drainage out of the root zone with the simplification of the Darcy's law, which combined the advantages of conceptual and physically based models. This model was connected with the Jensen crop water production function to simulate soil water components and relative crop yield. Field experiments with the winter wheat-summer corn cropping system were conducted in Beijing area in the North China Plain (2007-2009) to evaluate the model. The model could give quite reasonable predictions of soil water content in the root zone with the average root mean square error (RMSE), mean relative error (RE) and model efficiency (EF) of 0.02 cm3/cm3, 6.69% and 0.78, respectively. Furthermore, the predicted soil water flux through the bottom of root zone agreed well with the measured ones supported by the values of RMSE (0.10 mm/d) and EF (0.92). The Jensen crop water production function with the calculated actual evapotranspitation from the soil water balance model could satisfactorily evaluate crop yield response to deficit irrigation with the EF values greater than 0.95 and the RE values lower than 6%. As an application, the model was used to obtain the optimal irrigation management schedules for the hydrologic years of 75%, 50% and 25% in the study area. The average amount of irrigation saving and reduction of water losses through drainage under optimal irrigation alternative were about 175 mm and 101.9 mm, respectively. This study indicates that the developed root zone model is more available for agricultural water management as it has minimal input requirement, robust physical meaning and satisfactory simulation performance.

  17. Field-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation

    PubMed Central

    Meki, Manyowa N.; Kiniry, James R.; Taylor, Andrew D.; Ogoshi, Richard; Youkhana, Adel; Nakahata, Mae

    2017-01-01

    Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2), as methane was oxidized and nitrous oxide (N2O) emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield. PMID:28052075

  18. Field-Based Estimates of Global Warming Potential in Bioenergy Systems of Hawaii: Crop Choice and Deficit Irrigation.

    PubMed

    Pawlowski, Meghan N; Crow, Susan E; Meki, Manyowa N; Kiniry, James R; Taylor, Andrew D; Ogoshi, Richard; Youkhana, Adel; Nakahata, Mae

    2017-01-01

    Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHG emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2), as methane was oxidized and nitrous oxide (N2O) emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated belowground. In the first two years of cultivation napiergrass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.

  19. Field-based estimates of global warming potential in bioenergy systems of Hawaii: Crop choice and deficit irrigation

    DOE PAGES

    Pawlowski, Meghan N.; Crow, Susan E.; Meki, Manyowa N.; ...

    2017-01-04

    Replacing fossil fuel with biofuel is environmentally viable from a climate change perspective only if the net greenhouse gas (GHG) footprint of the system is reduced. The effects of replacing annual arable crops with perennial bioenergy feedstocks on net GHG production and soil carbon (C) stock are critical to the system-level balance. Here, we compared GHG flux, crop yield, root biomass, and soil C stock under two potential tropical, perennial grass biofuel feedstocks: conventional sugarcane and ratoon-harvested, zero-tillage napiergrass. Evaluations were conducted at two irrigation levels, 100% of plantation application and at a 50% deficit. Peaks and troughs of GHGmore » emission followed agronomic events such as ratoon harvest of napiergrass and fertilization. Yet, net GHG flux was dominated by carbon dioxide (CO2), as methane was oxidized and nitrous oxide (N2O) emission was very low even following fertilization. High N2O fluxes that frequently negate other greenhouse gas benefits that come from replacing fossil fuels with agronomic forms of bioenergy were mitigated by efficient water and fertilizer management, including direct injection of fertilizer into buried irrigation lines. From soil intensively cultivated for a century in sugarcane, soil C stock and root biomass increased rapidly following cultivation in grasses selected for robust root systems and drought tolerance. The net soil C increase over the two-year crop cycle was three-fold greater than the annualized soil surface CO2 flux. Furthermore, deficit irrigation reduced yield, but increased soil C accumulation as proportionately more photosynthetic resources were allocated below ground. In the first two years of cultivation napier grass did not increase net greenhouse warming potential (GWP) compared to sugarcane, and has the advantage of multiple ratoon harvests per year and less negative effects of deficit irrigation to yield.« less

  20. The Impact of Climate and Its Variability on Crop Yield and Irrigation

    NASA Astrophysics Data System (ADS)

    Li, X.; Troy, T.

    2014-12-01

    As the global population grows and the climate changes, having a secure food supply is increasingly important especially under water stressed-conditions. Although irrigation is a positive climate adaptation mechanism for agriculture, it has a potentially negative effect on water resources. It is therefore important to understand how crop yields due to irrigation are affected by climate variability and how irrigation may buffer against climate, allowing for more resilient agricultural systems. Efforts to solve these barely exposed questions can benefit from comprehending the influence of climate variability on crop yield and irrigation water use in the past. To do this, we use historical climate data,irrigation water use data and rainfed and irrigated crop yields over the US to analyze the relationship among climate, irrigation and delta crop yields, gained by subtracting rainfed yield from irrigated yield since 1970. We find that the increase in delta crop yield due to irrigation is larger for certain climate conditions, such that there are optimal climate conditions where irrigation provides a benefit and other conditions where irrigation proves to have marginal benefits when temperature increased to certain degrees. We find that crop water requirements are linked to potential evapotranspiration, yet actual irrigation water use is largely decoupled from the climate conditions but related with other causes. This has important implications for agricultural and water resource system planning, as it implies there are optimal climate zones where irrigation is productive and that changes in water use, both temporally and spatially, could lead to increased water availability without negative impacts on crop yields. Furthermore, based on the exposed relationship between crop yield gained by irrigation and climate variability, those models predicting the global harvest will be redress to estimate crop production in the future more accurately.

  1. Joint inversion of multi-configuration electromagnetic induction measurements to estimate soil wetting patterns during surface drip irrigation

    NASA Astrophysics Data System (ADS)

    Jadoon, Khan Z.; Moghadas, Davood; Jadoon, Aurangzeb; Missimer, Thomas M.; McCabe, Matthew

    2014-05-01

    In arid and semi-arid regions, development of precise information on the soil wetting pattern is important to optimize drip irrigation system design for sustainable agricultural water management. Usually mathematical models are commonly used to describe infiltration from a point source to design and manage drip irrigation systems. The extent to which water migrates laterally and vertically away from the drip emitter depends on many factors, including dripper discharge rate, the frequency of water application, duration of drip emission, the soil hydraulic characteristics, initial conditions, evaporation, root water uptake and root distribution patterns. However, several simplified assumptions in the mathematical models affect their utility to provide useful design information. In this respect, non-invasive geophysical methods, i.e., low frequency electromagnetic induction (EMI) systems are becoming powerful tools to map spatial and temporal soil moisture patterns due to fast measurement capability and sensitivity to soil water content and salinity. In this research, a new electromagnetic system, the CMD mini-Explorer, is used for soil characterization to measure the wetting patterns of drip irrigation systems using joint inversion of multi-configuration EMI measurements. Six transects of EMI measurements were carried out in a farm where Acacia trees are irrigated with brackish water using a drip irrigation system. EMI reference data (ground-truths) were calculated using vertical soil electrical conductivity recorded in different trenches along one of the measurement transects. Reference data is used for calibration to minimize the instrumental shifts which often occur in EMI data. Global and local optimization algorithms are used sequentially, to minimize the misfit between the measured and modeled apparent electrical conductivity (δa) to reconstruct the vertical electrical conductivity profile. The electromagnetic forward model based on full solution of Maxwell

  2. Determination of irrigation pumpage in parts of Kearny and Finney Counties, southwestern Kansas

    USGS Publications Warehouse

    Lindgren, R.J.

    1982-01-01

    Irrigation pumpage was determined for parts of Kearny and Finney Counties in Southwestern Kansas using crop-acreage data and consumptive, irrigation-water requirements. Irrigated acreages for 1974-80 were compiled for wheat, grain sorghum, corn, and alfalfa using records from the U.S. Agricultural Stabilization and Conservation Service. Consumptive-irrigation requirements were computed using a soil-moisture model. The model tabulated monthly soil-moisture and crop-water demand for various crops and computed the volume of irrigation water needed to maintain the available moisture at 50% for loamy soils or at 60% for sandy soils. Irrigated acres in the study area increased from 265,000 acres during 1974 to 321,000 acres during 1980. Irrigation pumpage increased from 584,000 acre-feet during 1974 to 738,000 acre-feet during 1980. Decreased consumptive-irrigation requirements during 1979 resulted in a comparatively small irrigation-pumpage estimate of 458,000 acre-feet. (USGS)

  3. Advances in Irrigation

    NASA Astrophysics Data System (ADS)

    Gardner, W. R.

    This is the first volume of Advances in Irrigation, a new serial publication by the publishers of Advances in Agronomy and Advances in Hydroscience and designed to follow the same format. The editor is a well-known researcher and writer on irrigation and related subjects and has assembled a collection of highly regarded and respected authors for the initial volume. The readership for this volume will probably be mainly specialists and students interested in irrigation and an occasional design engineer.The seven contributions in this volume fall roughly into two classes: research and practice. Three papers (“Conjunctive Use of Rainfall and Irrigation in Semi-arid Regions,” by Stewart and Musik, “Irrigation Scheduling Using Soil Moisture Measurements: Theory and Practice,” by G. S. and M. D. Campbell, and “Use of Solute Transport Models to Estimate Salt Balance Below Irrigated Cropland,” by Jury) cover topics that have been the subject of a number of reviews. The contributions here provide brief, well-written, and authoritative summaries of the chosen topics and serve as good introductions or reviews. They should lend themselves well to classroom use in various ways. They also should be helpful to the nonspecialist interested in getting a sense of the subject without going into great detail.

  4. Significant impacts of irrigation water sources and methods on modeling irrigation effects in the ACME Land Model

    DOE PAGES

    Leng, Guoyong; Leung, Lai-Yung; Huang, Maoyi

    2017-07-01

    An irrigation module that considers both irrigation water sources and irrigation methods has been incorporated into the ACME Land Model (ALM). Global numerical experiments were conducted to evaluate the impacts of irrigation water sources and irrigation methods on the simulated irrigation effects. All simulations shared the same irrigation soil moisture target constrained by a global census dataset of irrigation amounts. Irrigation has large impacts on terrestrial water balances especially in regions with extensive irrigation. Such effects depend on the irrigation water sources: surface-water-fed irrigation leads to decreases in runoff and water table depth, while groundwater-fed irrigation increases water table depth,more » with positive or negative effects on runoff depending on the pumping intensity. Irrigation effects also depend significantly on the irrigation methods. Flood irrigation applies water in large volumes within short durations, resulting in much larger impacts on runoff and water table depth than drip and sprinkler irrigations. Differentiating the irrigation water sources and methods is important not only for representing the distinct pathways of how irrigation influences the terrestrial water balances, but also for estimating irrigation water use efficiency. Specifically, groundwater pumping has lower irrigation water use efficiency due to enhanced recharge rates. Different irrigation methods also affect water use efficiency, with drip irrigation the most efficient followed by sprinkler and flood irrigation. Our results highlight the importance of explicitly accounting for irrigation sources and irrigation methods, which are the least understood and constrained aspects in modeling irrigation water demand, water scarcity and irrigation effects in Earth System Models.« less

  5. A History-based Estimation for LHCb job requirements

    NASA Astrophysics Data System (ADS)

    Rauschmayr, Nathalie

    2015-12-01

    The main goal of a Workload Management System (WMS) is to find and allocate resources for the given tasks. The more and better job information the WMS receives, the easier will be to accomplish its task, which directly translates into higher utilization of resources. Traditionally, the information associated with each job, like expected runtime, is defined beforehand by the Production Manager in best case and fixed arbitrary values by default. In the case of LHCb's Workload Management System no mechanisms are provided which automate the estimation of job requirements. As a result, much more CPU time is normally requested than actually needed. Particularly, in the context of multicore jobs this presents a major problem, since single- and multicore jobs shall share the same resources. Consequently, grid sites need to rely on estimations given by the VOs in order to not decrease the utilization of their worker nodes when making multicore job slots available. The main reason for going to multicore jobs is the reduction of the overall memory footprint. Therefore, it also needs to be studied how memory consumption of jobs can be estimated. A detailed workload analysis of past LHCb jobs is presented. It includes a study of job features and their correlation with runtime and memory consumption. Following the features, a supervised learning algorithm is developed based on a history based prediction. The aim is to learn over time how jobs’ runtime and memory evolve influenced due to changes in experiment conditions and software versions. It will be shown that estimation can be notably improved if experiment conditions are taken into account.

  6. Evaluation of zigzag furrow irrigation in Andean communities

    NASA Astrophysics Data System (ADS)

    Roldán Cañas, José; Chipana, Gladys; Chipana, René; Fátima Moreno Pérez, María

    2014-05-01

    It is estimated that the area under irrigation in Bolivia represents 9.7% of the cultivated area, ie 253,100 ha. Traditional surface irrigation is the main system used in Bolivia. Currently, 40,000 ha are irrigated in the La Paz Department. The largest irrigated surface and the areas that produce most food in the Department are located in the eastern and western mountain ranges. However, the region's abrupt terrain makes it impossible to use conventional surface irrigation methods. . As a result, farmers in the inter-Andean valleys have used other surface irrigation methods intensively for hundreds of years like zigzag furrow. In this study, we conducted field trials in the rural community of Cebollullo of the municipality of Palca of La Paz Department. Cebollullo is located at an altitude of 2,780 m above sea level. Its geographic coordinates are 16°41'90.1"S to 16°43'12"S latitude and 67°52'13"W to 67°59'15"W longitude. The irrigated area is characterized by its steep slopes and zigzag corrugated furrow irrigation method is used. The main objective of this study is to evaluate the performance of zigzag furrow irrigation in this community. The study plot has an area of 728 m2 and the average slope is 16.46%. For irrigation evaluation, the data of a middle furrow were taken to avoid boundary effects. Irrigation events recorded during the crop development were 21, with irrigation frequency of 2 to 3 days, of which 10 events were evaluated weekly. Due to the low flow rates used for irrigation, the inflow and outflow measurement of the furrows was made volumetrically. These flow measurements were made at five-minute intervals during irrigation. The zigzag corrugated irrigation method uses low flow discharges in order to decrease the rate of irrigation allowing infiltration of required volume by the crops and reducing soil erosion. Application efficiencies in the study plot ranged between 7.55% and 30.31%, with losses by surface runoff from 45.90% to 85.83% and

  7. Impact of climate change on irrigation management for olive orchards at southern Spain

    NASA Astrophysics Data System (ADS)

    Lorite, Ignacio; Gabaldón-Leal, Clara; Santos, Cristina; Belaj, Angjelina; de la Rosa, Raul; Leon, Lorenzo; Ruiz-Ramos, Margarita

    2017-04-01

    (equal to 0.5%). However, when the individual projections from the 11 climate models were considered the variation of irrigation requirements for far future compared with baseline period ranged from increases of 8.5% to reductions of 10.7%. This fact demonstrates the necessity to consider ensembles of climate models for identifying averaged impacts and the range of variability of these impacts, quantifying the uncertainty in the estimates related with water management in the future. The study concludes that the promotion of controlled deficit irrigation strategies is an excellent adaptation strategy. However, this strategy must be supported with the enhance of farmers' training by the implementation of local or regional irrigation advisory services.

  8. Effects of irrigated agroecosystems: 1. Quantity of soil water and groundwater in the southern High Plains, Texas

    NASA Astrophysics Data System (ADS)

    Scanlon, B. R.; Reedy, R. C.; Gates, J. B.

    2010-09-01

    Although irrigated agriculture is the primary consumer of global groundwater resources, information on recharge rates and sustainable irrigation is limited. The study objective was to fingerprint irrigation return flow to quantify percolation/recharge and to estimate sustainable irrigation levels. This paper focuses on water quantity; a companion paper addresses water quality. Soil samples from 13 boreholes drilled beneath irrigated agroecosystems in the southern High Plains were analyzed for matric potential and water-extractable Cl and NO3. Unsaturated zone pore water beneath irrigated agroecosystems can be fingerprinted by higher matric potentials (wetter soils, median mp: -40 m) and higher NO3-N (median 71 mg/L) than beneath natural ecosystems (mp -200 m; NO3-N 8.1 mg/L) and by higher Cl (720 mg/L) than beneath rain-fed agroecosystems (8.4 mg/L). The range in percolation/recharge rates beneath irrigated agroecosystems is 18-97 mm/a (median 41 mm/a; 5% of irrigation + precipitation) and occurs primarily in response to extreme precipitation events. Similarity in percolation/recharge rates beneath irrigated and rain-fed (4.8-92 mm/a) agroecosystems was unexpected and is attributed to low irrigation applications (median 300 mm/a) and increased crop yield and evapotranspiration in irrigated areas. Regional water table declines are unsustainably large (≥ 30 m over 10,000 km2) in the north and are much lower in the south. Sustainable irrigation in the south would require reduction of the irrigated area from 23% to 9%. Methods developed for quantifying recharge and sustainable irrigation application rates can be applied to groundwater-fed irrigated areas in semiarid regions globally.

  9. Estimates of the maximum time required to originate life

    NASA Technical Reports Server (NTRS)

    Oberbeck, Verne R.; Fogleman, Guy

    1989-01-01

    Fossils of the oldest microorganisms exist in 3.5 billion year old rocks and there is indirect evidence that life may have existed 3.8 billion years ago (3.8 Ga). Impacts able to destroy life or interrupt prebiotic chemistry may have occurred after 3.5 Ga. If large impactors vaporized the oceans, sterilized the planets, and interfered with the origination of life, life must have originated in the time interval between these impacts which increased with geologic time. Therefore, the maximum time required for the origination of life is the time that occurred between sterilizing impacts just before 3.8 Ga or 3.5 Ga, depending upon when life first appeared on earth. If life first originated 3.5 Ga, and impacts with kinetic energies between 2 x 10 the the 34th and 2 x 10 to the 35th were able to vaporize the oceans, using the most probable impact flux, it is found that the maximum time required to originate life would have been 67 to 133 million years (My). If life originated 3.8 Ga, the maximum time to originate life was 2.5 to 11 My. Using a more conservative estimate for the flux of impacting objects before 3.8 Ga, a maximum time of 25 My was found for the same range of impactor kinetic energies. The impact model suggests that it is possible that life may have originated more than once.

  10. Estimation of L-threonine requirements for Longyan laying ducks.

    PubMed

    Fouad, A M; Zhang, H X; Chen, W; Xia, W G; Ruan, D; Wang, S; Zheng, C T

    2017-02-01

    A study was conducted to test six threonine (Thr) levels (0.39%, 0.44%, 0.49%, 0.54%, 0.59%, and 0.64%) to estimate the optimal dietary Thr requirements for Longyan laying ducks from 17 to 45 wk of age. Nine hundred Longyan ducks aged 17 wk were assigned randomly to the six dietary treatments, where each treatment comprised six replicate pens with 25 ducks per pen. Increasing the Thr level enhanced egg production, egg weight, egg mass, and the feed conversion ratio (FCR) (linearly or quadratically; p<0.05). The Haugh unit score, yolk color, albumen height, and the weight, percentage, thickness, and breaking strength of the eggshell did not response to increases in the Thr levels, but the albumen weight and its proportion increased significantly (p<0.05), whereas the yolk weight and its proportion decreased significantly as the Thr levels increased. According to a regression model, the optimal Thr requirement for egg production, egg mass, and FCR in Longyan ducks is 0.57%, while 0.58% is the optimal level for egg weight from 17 to 45 wk of age.

  11. Estimation of L-threonine requirements for Longyan laying ducks

    PubMed Central

    Fouad, A. M.; Zhang, H. X.; Chen, W.; Xia, W. G.; Ruan, D.; Wang, S.; Zheng, C. T.

    2017-01-01

    Objective A study was conducted to test six threonine (Thr) levels (0.39%, 0.44%, 0.49%, 0.54%, 0.59%, and 0.64%) to estimate the optimal dietary Thr requirements for Longyan laying ducks from 17 to 45 wk of age. Methods Nine hundred Longyan ducks aged 17 wk were assigned randomly to the six dietary treatments, where each treatment comprised six replicate pens with 25 ducks per pen. Results Increasing the Thr level enhanced egg production, egg weight, egg mass, and the feed conversion ratio (FCR) (linearly or quadratically; p<0.05). The Haugh unit score, yolk color, albumen height, and the weight, percentage, thickness, and breaking strength of the eggshell did not response to increases in the Thr levels, but the albumen weight and its proportion increased significantly (p<0.05), whereas the yolk weight and its proportion decreased significantly as the Thr levels increased. Conclusion According to a regression model, the optimal Thr requirement for egg production, egg mass, and FCR in Longyan ducks is 0.57%, while 0.58% is the optimal level for egg weight from 17 to 45 wk of age. PMID:27282968

  12. Quantifying canal leakage rates using a mass-balance approach and heat-based hydraulic conductivity estimates in selected irrigation canals, western Nebraska, 2007 through 2009

    USGS Publications Warehouse

    Hobza, Christopher M.; Andersen, Michael J.

    2010-01-01

    The water supply in areas of the North Platte River Basin in the Nebraska Panhandle has been designated as fully appropriated or overappropriated by the Nebraska Department of Natural Resources (NDNR). Enacted legislation (Legislative Bill 962) requires the North Platte Natural Resources District (NPNRD) and the NDNR to develop an Integrated Management Plan (IMP) to balance groundwater and surface-water supply and demand in the NPNRD. A clear understanding of the groundwater and surface-water systems is critical for the development of a successful IMP. The primary source of groundwater recharge in parts of the NPNRD is from irrigation canal leakage. Because canal leakage constitutes a large part of the hydrologic budget, spatially distributing canal leakage to the groundwater system is important to any management strategy. Surface geophysical data collected along selected reaches of irrigation canals has allowed for the spatial distribution of leakage on a relative basis; however, the actual magnitude of leakage remains poorly defined. To address this need, the U.S. Geological Survey, in cooperation with the NPNRD, established streamflow-gaging stations at upstream and downstream ends from two selected canal reaches to allow a mass-balance approach to be used to calculate daily leakage rates. Water-level and sediment temperature data were collected and simulated at three temperature monitoring sites to allow the use of heat as a tracer to estimate the hydraulic conductivity of canal bed sediment. Canal-leakage rates were estimated by applying Darcy's Law to modeled vertical hydraulic conductivity and either the estimated or measured hydraulic gradient. This approach will improve the understanding of the spatial and temporal variability of canal leakage in varying geologic settings identified in capacitively coupled resistivity surveys. The high-leakage potential study reach of the Tri-State Canal had two streamflow-gaging stations and two temperature monitoring

  13. Integrating Growth Stage Deficit Irrigation into a Process Based Crop Model

    NASA Technical Reports Server (NTRS)

    Lopez, Jose R.; Winter, Jonathan M.; Elliott, Joshua; Ruane, Alex C.; Porter, Cheryl; Hoogenboom, Gerrit

    2017-01-01

    Current rates of agricultural water use are unsustainable in many regions, creating an urgent need to identify improved irrigation strategies for water limited areas. Crop models can be used to quantify plant water requirements, predict the impact of water shortages on yield, and calculate water productivity (WP) to link water availability and crop yields for economic analyses. Many simulations of crop growth and development, especially in regional and global assessments, rely on automatic irrigation algorithms to estimate irrigation dates and amounts. However, these algorithms are not well suited for water limited regions because they have simplistic irrigation rules, such as a single soil-moisture based threshold, and assume unlimited water. To address this constraint, a new modeling framework to simulate agricultural production in water limited areas was developed. The framework consists of a new automatic irrigation algorithm for the simulation of growth stage based deficit irrigation under limited seasonal water availability; and optimization of growth stage specific parameters. The new automatic irrigation algorithm was used to simulate maize and soybean in Gainesville, Florida, and first used to evaluate the sensitivity of maize and soybean simulations to irrigation at different growth stages and then to test the hypothesis that water productivity calculated using simplistic irrigation rules underestimates WP. In the first experiment, the effect of irrigating at specific growth stages on yield and irrigation water use efficiency (IWUE) in maize and soybean was evaluated. In the reproductive stages, IWUE tended to be higher than in the vegetative stages (e.g. IWUE was 18% higher than the well watered treatment when irrigating only during R3 in soybean), and when rainfall events were less frequent. In the second experiment, water productivity (WP) was significantly greater with optimized irrigation schedules compared to non-optimized irrigation schedules in

  14. How do current irrigation practices perform? Evaluation of different irrigation scheduling approaches based on experiements and crop model simulations

    NASA Astrophysics Data System (ADS)

    Seidel, Sabine J.; Werisch, Stefan; Barfus, Klemens; Wagner, Michael; Schütze, Niels; Laber, Hermann

    2014-05-01

    coefficients, and (ii) one treatment was automatically drip irrigated using tensiometers (irrigation of 15 mm at a soil tension of -250 hPa at 30 cm soil depth). In treatment (iii), the irrigation schedule was estimated (using the same critera as in the tension-based treatment) applying the model Daisy partially calibrated against data of 2012. Moreover, one control treatment was minimally irrigated. Measured yield was highest for the tension-based treatment with a low irrigation water input (8.5 DM t/ha, 120 mm). Both SWB treatments showed lower yields and higher irrigation water input (both 8.3 DM t/ha, 306 and 410 mm). The simulation model based treatment yielded lower (7.5 DM t/ha, 106 mm) mainly due to drought stress caused by inaccurate simulation of the soil water dynamics and thus an overestimation of the soil moisture. The evaluation using the calibrated model estimated heavy deep percolation under both SWB treatments. Targeting the challenge to increase water productivity, soil water tension-based irrigation should be favoured. Irrigation scheduling based on SWB calculation requires accurate estimates of crop coefficients. A robust calibration of mechanistic crop models implies a high effort and can be recommended to farmers only to some extent but enables comprehensive crop growth and site analyses.

  15. Crop water productivity and irrigation management

    USDA-ARS?s Scientific Manuscript database

    Modern irrigation systems offer large increases in crop water productivity compared with rainfed or gravity irrigation, but require different management approaches to achieve this. Flood, sprinkler, low-energy precision application, LEPA, and subsurface drip irrigation methods vary widely in water a...

  16. 48 CFR 252.215-7002 - Cost estimating system requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the estimating methods and rationale used in developing cost estimates and budgets; (v) Provide for... management systems; and (4) Is subject to applicable financial control systems. Estimating system means the Contractor's policies, procedures, and practices for budgeting and planning controls, and...

  17. Strengths and weaknesses of temporal stability analysis for monitoring and estimating grid-mean soil moisture in a high-intensity irrigated agricultural landscape

    NASA Astrophysics Data System (ADS)

    Ran, Youhua; Li, Xin; Jin, Rui; Kang, Jian; Cosh, Michael H.

    2017-01-01

    Monitoring and estimating grid-mean soil moisture is very important for assessing many hydrological, biological, and biogeochemical processes and for validating remotely sensed surface soil moisture products. Temporal stability analysis (TSA) is a valuable tool for identifying a small number of representative sampling points to estimate the grid-mean soil moisture content. This analysis was evaluated and improved using high-quality surface soil moisture data that were acquired by a wireless sensor network in a high-intensity irrigated agricultural landscape in an arid region of northwestern China. The performance of the TSA was limited in areas where the representative error was dominated by random events, such as irrigation events. This shortcoming can be effectively mitigated by using a stratified TSA (STSA) method, proposed in this paper. In addition, the following methods were proposed for rapidly and efficiently identifying representative sampling points when using TSA. (1) Instantaneous measurements can be used to identify representative sampling points to some extent; however, the error resulting from this method is significant when validating remotely sensed soil moisture products. Thus, additional representative sampling points should be considered to reduce this error. (2) The calibration period can be determined from the time span of the full range of the grid-mean soil moisture content during the monitoring period. (3) The representative error is sensitive to the number of calibration sampling points, especially when only a few representative sampling points are used. Multiple sampling points are recommended to reduce data loss and improve the likelihood of representativeness at two scales.

  18. Estimating spatiotemporal variability and sustainability of shallow groundwater in a well-irrigated plain of the Haihe River basin using SWAT model

    NASA Astrophysics Data System (ADS)

    Zhang, Xueliang; Ren, Li; Kong, Xiangbin

    2016-10-01

    Quantitatively estimating the spatiotemporal variability and sustainability of shallow groundwater with a distributed hydrological model could provide an important basis for proper groundwater management, especially in well-irrigated areas. In this study, the Soil and Water Assessment Tool (SWAT) model was modified and applied to a well-irrigated plain of the Haihe River basin. First, appropriate initial values of the parameters in the groundwater module were determined based on abundant hydrogeological investigations and assessment. Then, the model was satisfactorily calibrated and validated using shallow groundwater table data from 16 national wells monitored monthly from 1993 to 2010 and 148 wells investigated yearly from 2006 to 2012. To further demonstrate the model's rationality, the multi-objective validation was conducted by comparing the simulated groundwater balance components, actual evapotranspiration, and crop yields to multiple sources data. Finally, the established SWAT was used to estimate both shallow groundwater table fluctuation and shallow aquifer water storage change in time and space. Results showed that the average shallow groundwater table declined at a rate of 0.69-1.56 m a-1, which depleted almost 350 × 108 m3 of shallow aquifer water storage in the cropland during the period of 1993-2012. Because of the heterogeneity of the underlying surface and precipitation, these variations were spatiotemporally different. Generally, the shallow groundwater table declined 1.43-1.88 m during the winter wheat (Triticum aestivum L.) growing season, while it recovered 0.28-0.57 m during the summer maize (Zea mays L.) growing season except when precipitation was exceptionally scarce. According to the simulated depletion rate, the shallow aquifer in the study area may face a depletion crisis within the next 80 years. This study identified the regions where prohibitions or restrictions on shallow groundwater exploitation should be urgently carried out.

  19. Estimating irrigation water demand using an improved method and optimizing reservoir operation for water supply and hydropower generation: a case study of the Xinfengjiang reservoir in southern China

    USGS Publications Warehouse

    Wu, Yiping; Chen, Ji

    2013-01-01

    The ever-increasing demand for water due to growth of population and socioeconomic development in the past several decades has posed a worldwide threat to water supply security and to the environmental health of rivers. This study aims to derive reservoir operating rules through establishing a multi-objective optimization model for the Xinfengjiang (XFJ) reservoir in the East River Basin in southern China to minimize water supply deficit and maximize hydropower generation. Additionally, to enhance the estimation of irrigation water demand from the downstream agricultural area of the XFJ reservoir, a conventional method for calculating crop water demand is improved using hydrological model simulation results. Although the optimal reservoir operating rules are derived for the XFJ reservoir with three priority scenarios (water supply only, hydropower generation only, and equal priority), the river environmental health is set as the basic demand no matter which scenario is adopted. The results show that the new rules derived under the three scenarios can improve the reservoir operation for both water supply and hydropower generation when comparing to the historical performance. Moreover, these alternative reservoir operating policies provide the flexibility for the reservoir authority to choose the most appropriate one. Although changing the current operating rules may influence its hydropower-oriented functions, the new rules can be significant to cope with the increasingly prominent water shortage and degradation in the aquatic environment. Overall, our results and methods (improved estimation of irrigation water demand and formulation of the reservoir optimization model) can be useful for local watershed managers and valuable for other researchers worldwide.

  20. Roles of the combined irrigation, drainage, and storage of the canal network in improving water reuse in the irrigation districts along the lower Yellow River, China

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Luo, Yi; He, Chansheng; Lai, Jianbin; Li, Xiubin

    2010-09-01

    SummaryThe commonly used irrigation system in the irrigation districts (with a combined irrigation area of 3.334 × 10 6 ha) along the lower Yellow River of China is canal network. It delivers water from the Yellow River to the fields, collects surface runoff and drainage from cropland, and stores both of them for subsequent irrigation uses. This paper developed a new combined irrigation, drainage, and storage (CIDS) module for the SWAT2000 model, simulated the multiple roles of the CIDS canal system, and estimated its performance in improving water reuse in the irrigation districts under different irrigation and water diversion scenarios. The simulation results show that the annual evapotranspiration (ET) of the double-cropping winter wheat and summer maize was the highest under the full irrigation scenario (automatic irrigation), and the lowest under the no irrigation scenario. It varied between these two values when different irrigation schedules were adopted. Precipitation could only meet the water requirement of the double-cropping system by 62-96% on an annual basis; that of the winter wheat by 32-36%, summer maize by 92-123%, and cotton by 87-98% on a seasonal basis. Hence, effective irrigation management for winter wheat is critical to ensure high wheat yield in the study area. Runoff generation was closely related to precipitation and influenced by irrigation. The highest and lowest annual runoff accounted for 19% and 11% of the annual precipitation under the full irrigation and no irrigation scenarios, respectively. Nearly 70% of the annual runoff occurred during months of July and August due to the concentrated precipitation in these 2 months. The CIDS canals play an important role in delivering the diversion water from the Yellow River, intercepting the surface runoff and drainage from cropland (inflow of the CIDS canal) and recharging the shallow aquifer for later use. Roughly 14-26% of the simulated total flow in the CIDS canal system recharged

  1. Nitrate exported in drainage waters of two sprinkler-irrigated watersheds.

    PubMed

    Cavero, J; Beltrán, A; Aragüés, R

    2003-01-01

    Nitrate contamination of surface waters has been linked to irrigated agriculture across the world. We determined the NO3-N loads in the drainage waters of two sprinkler-irrigated watersheds located in the Ebro River basin (Spain) and their relationship to irrigation and N management. Crop water requirements, irrigation, N fertilization, and the volume and NO3-N concentration of drainage waters were measured or estimated during two-year (Watershed A; 494 irrigated ha) and one-year (Watershed B; 470 irrigated ha) study periods. Maize (Zea mays L.) and alfalfa (Medicago sativa L.) were grown in 40 to 60% and 15 to 33% of the irrigated areas, respectively. The seasonal irrigation performance index (IPI) ranged from 92 to 100%, indicating high-quality management of irrigation. However, the IPI varied among fields and overirrigation occurred in 17 to 44% of the area. Soil and maize stalk nitrate contents measured at harvest indicated that N fertilizer rates could be decreased. Drainage flows were 68 mm yr(-1) in Watershed A and 194 mm yr(-1) in Watershed B. Drainage NO3-N concentrations were independent of drainage flows and similar in the irrigated and nonirrigated periods (average: 23-29 mg L(-1)). Drainage flows determined the exported mass of NO3-N, which varied from 18 (Watershed A) to 49 (Watershed B) kg ha(-1) yr(-1), representing 8 (Watershed A) and 22% (Watershed B) of the applied fertilizer plus manure N. High-quality irrigation management coupled to the split application of N through the sprinkler systems allowed a reasonable compromise between profitability and reduced N pollution in irrigation return flows.

  2. Identification and estimation of the area planted with irrigated rice based on the visual interpretation of LANDSAT MSS data

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Moreira, M. A.; Assuncao, G. V.; Novaes, R. A.; Mendoza, A. A. B.; Bauer, C. A.; Ritter, I. T.; Barros, J. A. I.; Perez, J. E.; Thedy, J. L. O.

    1983-01-01

    The objective was to test the feasibility of the application of MSS-LANDSAT data to irrigated rice crop identification and area evaluation, within four rice growing regions of the Rio Grande do Sul state, in order to extend the methodology for the whole state. The applied methodology was visual interpretation of the following LANDSAT products: channels 5 and 7 black and white imageries and color infrared composite imageries all at the scale of 1:250.000. For crop identification and evaluation, the multispectral criterion and the seasonal variation were utilized. Based on the results it was possible to conclude that: (1) the satellite data were efficient for crop area identification and evaluation; (2) the utilization of the multispectral criterion, allied to the seasonal variation of the rice crop areas from the other crops and, (3) the large cloud cover percentage found in the satellite data made it impossible to realize a rice crop spectral monitoring and, therefore, to define the best dates for such data acquisition for rice crop assessment.

  3. Irrigation market for solar thermal parabolic dish systems

    NASA Astrophysics Data System (ADS)

    Habib-Agahi, H.; Jones, S. C.

    1981-09-01

    The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. The model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14 percent real discount rate is assumed to 220,000 modules when the real discount rate drops to 8 percent. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98 percent of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71 percent) of the total market.

  4. Irrigation market for solar thermal parabolic dish systems

    NASA Technical Reports Server (NTRS)

    Habib-Agahi, H.; Jones, S. C.

    1981-01-01

    The potential size of the onfarm-pumped irrigation market for solar thermal parabolic dish systems in seven high-insolation states is estimated. The study is restricted to the displacement of three specific fuels: gasoline, diesel and natural gas. The model was developed to estimate the optimal number of parabolic dish modules per farm based on the minimum cost mix of conventional and solar thermal energy required to meet irrigation needs. The study concludes that the potential market size for onfarm-pumped irrigation applications ranges from 101,000 modules when a 14 percent real discount rate is assumed to 220,000 modules when the real discount rate drops to 8 percent. Arizona, Kansas, Nebraska, New Mexico and Texas account for 98 percent of the total demand for this application, with the natural gas replacement market accounting for the largest segment (71 percent) of the total market.

  5. Using a System Model for Irrigation Management

    NASA Astrophysics Data System (ADS)

    de Souza, Leonardo; de Miranda, Eu; Sánchez-Román, Rodrigo; Orellana-González, Alba

    2014-05-01

    When using Systems Thinking variables involved in any process have a dynamic behavior, according to nonstatic relationships with the environment. In this paper it is presented a system dynamics model developed to be used as an irrigation management tool. The model involves several parameters related to irrigation such as: soil characteristics, climate data and culture's physiological parameters. The water availability for plants in the soil is defined as a stock in the model, and this soil water content will define the right moment to irrigate and the water depth required to be applied. The crop water consumption will reduce soil water content; it is defined by the potential evapotranspiration (ET) that acts as an outflow from the stock (soil water content). ET can be estimated by three methods: a) FAO Penman-Monteith (ETPM), b) Hargreaves-Samani (ETHS) method, based on air temperature data and c) Class A pan (ETTCA) method. To validate the model were used data from the States of Ceará and Minas Gerais, Brazil, and the culture was bean. Keyword: System Dynamics, soil moisture content, agricultural water balance, irrigation scheduling.

  6. 48 CFR 252.215-7002 - Cost estimating system requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (d) of this clause, and provides for a system that— (1) Is maintained, reliable, and consistently... provide for the use of appropriate source data, utilize sound estimating techniques and good judgment...) Identify and document the sources of data and the estimating methods and rationale used in developing cost...

  7. Evaluation of an operational real-time irrigation scheduling scheme for drip irrigated citrus fields in Picassent, Spain

    NASA Astrophysics Data System (ADS)

    Li, Dazhi; Hendricks-Franssen, Harrie-Jan; Han, Xujun; Jiménez Bello, Miguel Angel; Martínez Alzamora, Fernando; Vereecken, Harry

    2017-04-01

    Irrigated agriculture accounts worldwide for 40% of food production and 70% of fresh water withdrawals. Irrigation scheduling aims to minimize water use while maintaining the agricultural production. In this study we were concerned with the real-time automatic control of irrigation, which calculates daily water allocation by combining information from soil moisture sensors and a land surface model. The combination of soil moisture measurements and predictions by the Community Land Model (CLM) using sequential data assimilation (DA) is a promising alternative to improve the estimate of soil and plant water status. The LETKF (Local Ensemble Transform Kalman Filter) was chosen to assimilate soil water content measured by FDR (Frequency Domain Reflectometry) into CLM and improve the initial (soil moisture) conditions for the next model run. In addition, predictions by the GFS (Global Forecast System) atmospheric simulation model were used as atmospheric input data for CLM to predict an ensemble of possible soil moisture evolutions for the next days. The difference between predicted and target soil water content is defined as the water deficit, and the irrigation amount was calculated by the integrated water deficit over the root zone. The corresponding irrigation time to apply the required water was introduced in SCADA (supervisory control and data acquisition system) for each citrus field. In total 6 fields were irrigated according our optimization approach including data assimilation (CLM-DA) and there were also 2 fields following the FAO (Food and Agriculture Organization) water balance method and 4 fields controlled by farmers as reference. During the real-time irrigation campaign in Valencia from July to October in 2015 and June to October in 2016, the applied irrigation amount, stem water potential and soil moisture content were recorded. The data indicated that 5% 20% less irrigation water was needed for the CLM-DA scheduled fields than for the other fields

  8. Data concurrency is required for estimating urban heat island intensity.

    PubMed

    Zhao, Shuqing; Zhou, Decheng; Liu, Shuguang

    2016-01-01

    Urban heat island (UHI) can generate profound impacts on socioeconomics, human life, and the environment. Most previous studies have estimated UHI intensity using outdated urban extent maps to define urban and its surrounding areas, and the impacts of urban boundary expansion have never been quantified. Here, we assess the possible biases in UHI intensity estimates induced by outdated urban boundary maps using MODIS Land surface temperature (LST) data from 2009 to 2011 for China's 32 major cities, in combination with the urban boundaries generated from urban extent maps of the years 2000, 2005 and 2010. Our results suggest that it is critical to use concurrent urban extent and LST maps to estimate UHI at the city and national levels. Specific definition of UHI matters for the direction and magnitude of potential biases in estimating UHI intensity using outdated urban extent maps. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Application of future remote sensing systems to irrigation

    NASA Technical Reports Server (NTRS)

    Miller, L. D.

    1982-01-01

    Area estimates of irrigated crops and knowledge of crop type are required for modeling water consumption to assist farmers, rangers, and agricultural consultants in scheduling irrigation for distributed management of crop yields. Information on canopy physiology and soil moisture status on a spatial basis is potentially available from remote sensors, so the questions to be addressed relate to: (1) timing (data frequency, instantaneous and integrated measurement); and scheduling (widely distributed spatial demands); (2) spatial resolution; (3) radiometric and geometric accuracy and geoencoding; and (4) information/data distribution. This latter should be overnight, with no central storage, onsite capture, and low cost.

  10. The influence of the microbial quality of wastewater, lettuce cultivars and enumeration technique when estimating the microbial contamination of wastewater-irrigated lettuce.

    PubMed

    Makkaew, P; Miller, M; Cromar, N J; Fallowfield, H J

    2017-04-01

    This study investigated the volume of wastewater retained on the surface of three different varieties of lettuce, Iceberg, Cos, and Oak leaf, following submersion in wastewater of different microbial qualities (10, 10(2), 10(3), and 10(4) E. coli MPN/100 mL) as a surrogate method for estimation of contamination of spray-irrigated lettuce. Uniquely, Escherichia coli was enumerated, after submersion, on both the outer and inner leaves and in a composite sample of lettuce. E. coli were enumerated using two techniques. Firstly, from samples of leaves - the direct method. Secondly, using an indirect method, where the E. coli concentrations were estimated from the volume of wastewater retained by the lettuce and the E. coli concentration of the wastewater. The results showed that different varieties of lettuce retained significantly different volumes of wastewater (p < 0.01). No statistical differences (p > 0.01) were detected between E. coli counts obtained from different parts of lettuce, nor between the direct and indirect enumeration methods. Statistically significant linear relationships were derived relating the E. coli concentration of the wastewater in which the lettuces were submerged to the subsequent E. coli count on each variety the lettuce.

  11. Adaptive management of irrigation and crops' biodiversity: a case study on tomato

    NASA Astrophysics Data System (ADS)

    De Lorenzi, Francesca; Alfieri, Silvia Maria; Basile, Angelo; Bonfante, Antonello; Monaco, Eugenia; Riccardi, Maria; Menenti, Massimo

    2013-04-01

    We have assessed the impacts of climate change and evaluated options to adapt irrigation management in the face of predicted changes of agricultural water demand. We have evaluated irrigation scheduling and its effectiveness (versus crop transpiration), and cultivars' adaptability. The spatial and temporal variations of effectiveness and adaptability were studied in an irrigated district of Southern Italy. Two climate scenarios were considered: reference (1961-90) and future (2021-2050) climate, the former from climatic statistics, and the latter from statistical downscaling of general circulation models (AOGCM). Climatic data consist of daily time series of maximum and minimum temperature, and daily rainfall on a grid with a spatial resolution of 35 km. The work was carried out in the Destra Sele irrigation scheme (18.000 ha. Twenty-five soil units were identified and their hydrological properties were determined (measured or estimated from texture through pedo-transfer functions). A tomato crop, in a rotation typical of the area, was considered. A mechanistic model of water flow in the soil-plant-atmosphere system (SWAP) was used to study crop water requirements and water consumption. The model was calibrated and validated in the same area for many different crops. Tomato crop input data and model parameters were estimated on the basis of scientific literature and assumed to be generically representative of the species. Simulations were performed for reference and future climate, and for different irrigation scheduling options. In all soil units, six levels of irrigation volumes were applied: full irrigation (100%), deficit irrigation (80%, 60%, 40%, 20%), no irrigation. From simulation runs, indicators of soil water availability were calculated, moreover the marginal increases of transpiration per unit of irrigation volume, i.e. the effectiveness of irrigation (ΔT/I), were computed, in both climate scenarios. Indicators and marginal increases were used to

  12. Water Stress & Biomass Monitoring and SWAP Modeling of Irrigated Crops in Saratov Region of Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, Anatoly; Ermolaeva, Olga

    2016-04-01

    Development of modern irrigation technologies are balanced between the need to maximize production and the need to minimize water use which provides harmonious interaction of irrigated systems with closely-spaced environment. Thus requires an understanding of complex interrelationships between landscape and underground of irrigated and adjacent areas in present and future conditions aiming to minimize development of negative scenarios. In this way in each irrigated areas a combination of specific factors and drivers must be recognized and evaluated. Much can be obtained by improving the efficiency use of water applied for irrigation. Modern RS monitoring technologies offers the opportunity to develop and implement an effective irrigation control program permitting today to increase efficiency of irrigation water use. These technologies provide parameters with both high temporal and adequate spatial needed to monitor agrohydrological parameters of irrigated agricultural crops. Combination of these parameters with meteorological and biophysical parameters can be used to estimate crop water stress defined as ratio between actual (ETa) and potential (ETc) evapotranspiration. Aggregation of actual values of crop water stress with biomass (yield) data predicted by agrohydrological model based on weather forecasting and scenarios of irrigation water application may be used for indication of both rational timing and amount of irrigation water allocation. This type of analysis facilitating an efficient water management can be easily extended to irrigated areas by developing maps of water efficiency application serving as an irrigation advice system for farmers at his fields and as a decision support tool for the authorities on the large perimeter irrigation management. This contribution aims to communicate an illustrative explanation about the practical application of a data combination of agrohydrological modeling and ground & space based monitoring. For this aim some

  13. Agricultural land-use classification using landsat imagery data, and estimates of irrigation water use in Gooding, Jerome, Lincoln, and Minidoka counties, 1992 water year, Upper Snake River basin, Idaho and western Wyoming

    USGS Publications Warehouse

    Maupin, Molly A.

    1997-01-01

    As part of the U.S. Geological Survey's National Water-Quality Assessment Program in the upper Snake River Basin study unit, land- and water-use data were used to describe activities that have potential effects on water quality, including biological conditions, in the basin. Land-use maps and estimates of water use by irrigated agriculture were needed for Gooding, Jerome, Lincoln, and Minidoka Counties (south-central Idaho), four of the most intensively irrigated counties in the study unit. Land use in the four counties was mapped from Landsat Thematic Mapper imagery data for the 1992 water year using the SPECTRUM computer program. Land-use data were field verified in 108 randomly selected sections (640 acres each); results compared favorably with land-use maps from other sources. Water used for irrigation during the 1992 water year was estimated using land-use and ancillary data. In 1992, a drought year, estimated irrigation withdrawals in the four counties were about 2.9 million acre-feet of water. Of the 2.9 million acre-feet, an estimated 2.12 million acre-feet of water was withdrawn from surface water, mainly the Snake River, and nearly 776,000 acre-feet was withdrawn from ground water. One-half of the 2.9 million acre-feet of water withdrawn for irrigation was considered to be lost during conveyance or was returned to the Snake River; the remainder was consumptively used by crops during the growing season.

  14. Using variable rate irrigation to determine optimal irrigation schedule for aerobic rice production

    USDA-ARS?s Scientific Manuscript database

    Because almost all U.S. rice is produced with flood irrigation, little information addresses irrigation scheduling for rice; however, successful production of rice without a continuous flood will require timely irrigation. A field study was conducted at the University of Missouri Fisher Delta Resear...

  15. 31 CFR 205.23 - What requirements apply to estimates?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) FISCAL SERVICE, DEPARTMENT OF THE TREASURY FINANCIAL MANAGEMENT SERVICE RULES AND PROCEDURES FOR... the State's immediate cash needs: (a) The State must ensure that the estimate reasonably represents the flow of Federal funds under the Federal assistance program or program component to which the...

  16. Space Station core resupply and return requirements estimation

    NASA Technical Reports Server (NTRS)

    Wissinger, D. B.

    1988-01-01

    A modular methodology has been developed to model both NASA Space Station onboard resupply/return requirements and Space Shuttle delivery/return capabilities. This approach divides nonpayload Space Station logistics into seven independent categories, each of which is a function of several rates multiplied by user-definable onboard usage scenarios and Shuttle resupply profiles. The categories are summed to arrive at an overall resupply or return requirement. Unused Shuttle resupply and return capacities are also evaluated. The method allows an engineer to evaluate the transportation requirements for a candidate Space Station operational scenario.

  17. Estimation of infectious risks in residential populations exposed to airborne pathogens during center pivot irrigation of dairy wastewaters

    USDA-ARS?s Scientific Manuscript database

    In the western United States where dairy wastewaters are commonly land applied, there are concerns over individuals being exposed to airborne pathogens. In response, a quantitative microbial risk assessment (QMRA) was performed to estimate infectious risks after inhalation exposure of pathogens aero...

  18. Evaluating the accuracy of soil water sensors for irrigation scheduling to conserve freshwater

    NASA Astrophysics Data System (ADS)

    Ganjegunte, Girisha K.; Sheng, Zhuping; Clark, John A.

    2012-06-01

    In the Trans-Pecos area, pecan [ Carya illinoinensis (Wangenh) C. Koch] is a major irrigated cash crop. Pecan trees require large amounts of water for their growth and flood (border) irrigation is the most common method of irrigation. Pecan crop is often over irrigated using traditional method of irrigation scheduling by counting number of calendar days since the previous irrigation. Studies in other pecan growing areas have shown that the water use efficiency can be improved significantly and precious freshwater can be saved by scheduling irrigation based on soil moisture conditions. This study evaluated the accuracy of three recent low cost soil water sensors (ECH2O-5TE, Watermark 200SS and Tensiometer model R) to monitor volumetric soil water content (θv) to develop improved irrigation scheduling in a mature pecan orchard in El Paso, Texas. Results indicated that while all three sensors were successful in following the general trends of soil moisture conditions during the growing season, actual measurements differed significantly. Statistical analyses of results indicated that Tensiometer provided relatively accurate soil moisture data than ECH2O-5TE and Watermark without site-specific calibration. While ECH2O-5TE overestimated the soil water content, Watermark and Tensiometer underestimated. Results of this study suggested poor accuracy of all three sensors if factory calibration and reported soil water retention curve for study site soil texture were used. This indicated that sensors needed site-specific calibration to improve their accuracy in estimating soil water content data.

  19. Projected Cropping Patterns, Livestock Enterprises, Processing Activities, Capital Requirements, Employment, Income, and Training Needs for Alternative Farm Organizational Structures for the Navajo Indian Irrigation Project. A Special Report to the Four Corners Regional Commission.

    ERIC Educational Resources Information Center

    Gorman, William D.; And Others

    Information on the expected cropping patterns, livestock enterprises, processing and related activities, income and employment opportunities, capital needs, and training requirements for alternative farm organizational structures that could be selected for development of the Navajo Indian Irrigation Project is presented in this report. The major…

  20. Irrigation management of crops rotations in a changing climate

    NASA Astrophysics Data System (ADS)

    Rolim, J.; Teixeira, J.; Catalão, J.

    2012-04-01

    Due to climate change we cannot continue to perform irrigation systems design and irrigation management based only on historical records of weather stations, assuming that the statistical parameters of the meteorological data remains unchanged in time, being necessary to take into account the climatic data relative to climate change scenarios. For the Mediterranean basin the various climate models indicate an increase in temperature and a reduction in precipitation and a more frequent occurrence of extreme events which will increase the risk of crop failure. Thus, it is important to adopt strategies to ensure the sustainability of irrigated agriculture in a changing climate. A very interesting technique to achieve this is the adoption of crops rotations, since they increase the heterogeneity of farming systems distributing the risk between crops and minimizing costs. This study aims to evaluate the impact of climate change in the irrigation requirements of crop rotations for the Alentejo region in the South of Portugal, and the ability of crops rotation to reduce these impacts and stabilize crops production. The IrrigRotation software was used to estimate the water requirements of two crop rotations used in the Alentejo region, Sunflower-Wheat-Barley and Sugar beet-Maize-Tomato-Wheat. IrrigRotation is a soil water balance simulation model, continuous in time, based on the dual crop coefficients methodology, which allows to compute the irrigation requirements of crop rotations. The climate data used were the observed data of the Évora and Beja weather stations (1961-90), the A2 and B2 scenarios of the HadRM3P model and the A2 scenarios of the HIRHAMh and HIRHAMhh models (2071-2100). The consideration of a set of climate change scenarios produces as a result a range of values for the irrigation requirements which can be used to define safety margins in irrigation design. The results show that for the Beja clay soils, with high values of soil water storage capacity

  1. Groundwater use for irrigation - a global inventory

    NASA Astrophysics Data System (ADS)

    Siebert, S.; Burke, J.; Faures, J. M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F. T.

    2010-10-01

    Irrigation is the most important water use sector accounting for about 70% of the global freshwater withdrawals and 90% of consumptive water uses. While the extent of irrigation and related water uses are reported in statistical databases or estimated by model simulations, information on the source of irrigation water is scarce and very scattered. Here we present a new global inventory on the extent of areas irrigated with groundwater, surface water or non-conventional sources, and we determine the related consumptive water uses. The inventory provides data for 15 038 national and sub-national administrative units. Irrigated area was provided by census-based statistics from international and national organizations. A global model was then applied to simulate consumptive water uses for irrigation by water source. Globally, area equipped for irrigation is currently about 301 million ha of which 38% are equipped for irrigation with groundwater. Total consumptive groundwater use for irrigation is estimated as 545 km3 yr-1, or 43% of the total consumptive irrigation water use of 1277 km3 yr-1. The countries with the largest extent of areas equipped for irrigation with groundwater, in absolute terms, are India (39 million ha), China (19 million ha) and the USA (17 million ha). Groundwater use in irrigation is increasing both in absolute terms and in percentage of total irrigation, leading in places to concentrations of users exploiting groundwater storage at rates above groundwater recharge. Despite the uncertainties associated with statistical data available to track patterns and growth of groundwater use for irrigation, the inventory presented here is a major step towards a more informed assessment of agricultural water use and its consequences for the global water cycle.

  2. Variable rate irrigation (VRI)

    USDA-ARS?s Scientific Manuscript database

    Variable rate irrigation (VRI) technology is now offered by all major manufacturers of moving irrigation systems, mostly on center pivot irrigation systems. Variable irrigation depths may be controlled by sector only, in which case only the speed of the irrigation lateral is regulated. Or, variable ...

  3. A Fuzzy Control Irrigation System For Cottonfield

    NASA Astrophysics Data System (ADS)

    Zhang, Jun; Zhao, Yandong; Wang, Yiming; Li, Jinping

    A fuzzy control irrigation system for cotton field is presented in this paper. The system is composed of host computer, slave computer controller, communication module, soil water sensors, valve controllers, and system software. A fuzzy control model is constructed to control the irrigation time and irrigation quantity for cotton filed. According to the water-required rules of different cotton growing periods, different irrigation strategies can be carried out automatically. This system had been used for precision irrigation of the cotton field in Langfang experimental farm of Soil and Fertilizer Institute, Chinese Academy of Agricultural Sciences in 2006. The results show that the fuzzy control irrigation system can improve cotton yield and save much water quantity than the irrigation system based on simple on-off control algorithm.

  4. Satellite Irrigation Monitoring and Management Support in California with the Terrestrial Observation and Prediction System

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Johnson, L.; Lund, C.; Michaelis, A.; Pierce, L.; Guzman, A.; Hiatt, S.; Purdy, A. J.; Lee, C.; Rosevelt, C.; Fletcher, N.; Votava, P.; Milesi, C.; Hashimoto, H.; Wang, W.; Sheffner, E. J.; Nemani, R.

    2011-12-01

    Satellite data can be used to map crop evapotranspiration over large areas and make irrigation scheduling more practical, convenient, and accurate, but requires the development of new tools and computing frameworks to support operational use in irrigation scheduling and water management. We present findings from the development and deployment of a prototype system for irrigation scheduling and management support. The system utilizes the NASA Terrestrial Observation and Prediction System (TOPS) to integrate satellite observations and meteorological observations to map basal crop coefficient (Kcb) and evapotranspiration (ETcb) values for multiple crop types in the Central Valley of California at spatial resolutions that are useful for irrigation management at the field level (30m). Integration of data from the NOAA NWS Forecasted Reference Evapotranspiration (FRET) system also allows forecasting of irrigation demand with lead times of up to one week, supporting both irrigation scheduling and water delivery planning. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system, web services, and hand held devices. We also present comparisons of estimates of ETcb from the prototype system against estimates from other methods, including surface renewal stations, energy balance models, and water balance models driven with data from wireless sensor networks deployed in operational agricultural fields across California.

  5. Impact of spatial and temporal aggregation of input parameters on the assessment of irrigation scheme performance

    NASA Astrophysics Data System (ADS)

    Lorite, I. J.; Mateos, L.; Fereres, E.

    2005-01-01

    SummaryThe simulations of dynamic, spatially distributed non-linear models are impacted by the degree of spatial and temporal aggregation of their input parameters and variables. This paper deals with the impact of these aggregations on the assessment of irrigation scheme performance by simulating water use and crop yield. The analysis was carried out on a 7000 ha irrigation scheme located in Southern Spain. Four irrigation seasons differing in rainfall patterns were simulated (from 1996/1997 to 1999/2000) with the actual soil parameters and with hypothetical soil parameters representing wider ranges of soil variability. Three spatial aggregation levels were considered: (I) individual parcels (about 800), (II) command areas (83) and (III) the whole irrigation scheme. Equally, five temporal aggregation levels were defined: daily, weekly, monthly, quarterly and annually. The results showed little impact of spatial aggregation in the predictions of irrigation requirements and of crop yield for the scheme. The impact of aggregation was greater in rainy years, for deep-rooted crops (sunflower) and in scenarios with heterogeneous soils. The highest impact on irrigation requirement estimations was in the scenario of most heterogeneous soil and in 1999/2000, a year with frequent rainfall during the irrigation season: difference of 7% between aggregation levels I and III was found. Equally, it was found that temporal aggregation had only significant impact on irrigation requirements predictions for time steps longer than 4 months. In general, simulated annual irrigation requirements decreased as the time step increased. The impact was greater in rainy years (specially with abundant and concentrated rain events) and in crops which cycles coincide in part with the rainy season (garlic, winter cereals and olive). It is concluded that in this case, average, representative values for the main inputs of the model (crop, soil properties and sowing dates) can generate results

  6. How much water do we need for irrigation under Climate Change in the Mediterranean?

    NASA Astrophysics Data System (ADS)

    Fader, Marianela; Alberte, Bondeau; Wolfgang, Cramer; Simon, Decock; Sinan, Shi

    2014-05-01

    Anthropogenic climate change will very likely alter the hydrological system of already water-limited agricultural landscapes around the Mediterranean. This includes the need for, as well as the availability of irrigation water. On top of that Mediterranean agroecosystems are very likely to be under strong pressure in the near future through changes in consumer demands and diets, increasing urbanization, demographic change, and new markets for agricultural exportation. As a first step to assess the water demand of the agricultural sector, we use an ecohydrological model (the Lund-Potsdam-Jena managed land model, LPJmL) to estimate current and future irrigation water requirements of this region, considering various climate and socio-economic scenarios. LPJmL is a process-based, agricultural and water balance model, where plant growth is ecophysiologically coupled with hydrological variables. For these simulations, the model was adapted to the Mediterranean region in terms of agrosystems as well as crop parameters, and a sensitivity analysis for the irrigation system efficiency was performed. Patterns of current irrigation water requirements differ strongly spatially within the Mediterranean region depending mainly on potential evapotranspiration, the combination of crops cultivated and the extension of irrigated areas. The simulations for the future indicate that the Mediterranean may need considerable additional amounts of irrigation water. However, the regional patterns differ strongly depending on changes in length of growing periods, changes in transpirational rate (temperature and precipitation change, CO2-fertilization), and the consideration of potential improvements in irrigation system efficiency.

  7. Estimated water requirements for the conventional flotation of copper ores

    USGS Publications Warehouse

    Bleiwas, Donald I.

    2012-01-01

    This report provides a perspective on the amount of water used by a conventional copper flotation plant. Water is required for many activities at a mine-mill site, including ore production and beneficiation, dust and fire suppression, drinking and sanitation, and minesite reclamation. The water required to operate a flotation plant may outweigh all of the other uses of water at a mine site, [however,] and the need to maintain a water balance is critical for the plant to operate efficiently. Process water may be irretrievably lost or not immediately available for reuse in the beneficiation plant because it has been used in the production of backfill slurry from tailings to provide underground mine support; because it has been entrapped in the tailings stored in the TSF, evaporated from the TSF, or leaked from pipes and (or) the TSF; and because it has been retained as moisture in the concentrate. Water retained in the interstices of the tailings and the evaporation of water from the surface of the TSF are the two most significant contributors to water loss at a conventional flotation circuit facility.

  8. EURRECA-Estimating zinc requirements for deriving dietary reference values.

    PubMed

    Lowe, Nicola M; Dykes, Fiona C; Skinner, Anna-Louise; Patel, Sujata; Warthon-Medina, Marisol; Decsi, Tamás; Fekete, Katalin; Souverein, Olga W; Dullemeijer, Carla; Cavelaars, Adriënne E; Serra-Majem, Lluis; Nissensohn, Mariela; Bel, Silvia; Moreno, Luis A; Hermoso, Maria; Vollhardt, Christiane; Berti, Cristiana; Cetin, Irene; Gurinovic, Mirjana; Novakovic, Romana; Harvey, Linda J; Collings, Rachel; Hall-Moran, Victoria

    2013-01-01

    Zinc was selected as a priority micronutrient for EURRECA, because there is significant heterogeneity in the Dietary Reference Values (DRVs) across Europe. In addition, the prevalence of inadequate zinc intakes was thought to be high among all population groups worldwide, and the public health concern is considerable. In accordance with the EURRECA consortium principles and protocols, a series of literature reviews were undertaken in order to develop best practice guidelines for assessing dietary zinc intake and zinc status. These were incorporated into subsequent literature search strategies and protocols for studies investigating the relationships between zinc intake, status and health, as well as studies relating to the factorial approach (including bioavailability) for setting dietary recommendations. EMBASE (Ovid), Cochrane Library CENTRAL, and MEDLINE (Ovid) databases were searched for studies published up to February 2010 and collated into a series of Endnote databases that are available for the use of future DRV panels. Meta-analyses of data extracted from these publications were performed where possible in order to address specific questions relating to factors affecting dietary recommendations. This review has highlighted the need for more high quality studies to address gaps in current knowledge, in particular the continued search for a reliable biomarker of zinc status and the influence of genetic polymorphisms on individual dietary requirements. In addition, there is a need to further develop models of the effect of dietary inhibitors of zinc absorption and their impact on population dietary zinc requirements.

  9. 19 CFR 141.102 - When deposit of estimated duties, estimated taxes, or both not required.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... on alcoholic beverages. An importer may pay on a semimonthly basis the estimated internal revenue taxes on all the alcoholic beverages entered or withdrawn for consumption during that period, under the...

  10. 19 CFR 141.102 - When deposit of estimated duties, estimated taxes, or both not required.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... on alcoholic beverages. An importer may pay on a semimonthly basis the estimated internal revenue taxes on all the alcoholic beverages entered or withdrawn for consumption during that period, under the...

  11. 19 CFR 141.102 - When deposit of estimated duties, estimated taxes, or both not required.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... on alcoholic beverages. An importer may pay on a semimonthly basis the estimated internal revenue taxes on all the alcoholic beverages entered or withdrawn for consumption during that period, under the...

  12. 19 CFR 141.102 - When deposit of estimated duties, estimated taxes, or both not required.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... on alcoholic beverages. An importer may pay on a semimonthly basis the estimated internal revenue taxes on all the alcoholic beverages entered or withdrawn for consumption during that period, under the...

  13. Estimation of dietary arginine requirements for Longyan laying ducks.

    PubMed

    Xia, Weiguang; Fouad, Ahmed Mohamed; Chen, Wei; Ruan, Dong; Wang, Shuang; Fan, Qiuli; Wang, Ying; Cui, Yiyan; Zheng, Chuntian

    2017-01-01

    This study aimed to establish the arginine requirements of Longyan ducks from 17 to 31 wk of age based on egg production, egg quality, plasma, and ovarian indices, as well as the expression of vitellogenesis-related genes. In total, 660 Longyan ducks with similar body weight at 15 wk of age were assigned randomly to 5 treatments, each with 6 replicates of 22 birds, and fed a corn-corn gluten meal basal diet (0.66% arginine) supplemented with either 0, 0.20%, 0.40%, 0.60%, or 0.80% arginine. Dietary arginine did not affect egg production by laying ducks, but it increased (linear, P < 0.01) the egg weight at 22 to 31 and 17 to 31 wk of age. Dietary arginine increased the yolk color score (linearly, P < 0.05) and the yolk percentage (quadratic, P < 0.05), where the maximum values were obtained with 1.26% arginine. Dietary arginine affected the total shell percentage and shell thickness, with the highest values using 1.46% arginine (P < 0.01). The weight and number of small yellow follicles (SYFs) increased (quadratic, P < 0.05) with the dietary arginine level and there was a quadratic response (P < 0.05) in terms of the SYFs weight/ovarian weight; the highest values were obtained in ducks fed 1.26% arginine. The plasma arginine concentration exhibited a quadratic (P < 0.05) response to dietary arginine. The plasma progesterone concentration decreased (linear, P < 0.05) as dietary arginine increased. The mRNA abundance of the very low density lipoprotein receptor-b increased in the second large yellow follicle membranes (quadratic, P < 0.05) with the dietary arginine level, where the highest value occurred with 1.26% arginine. According to the regression model, the dietary arginine requirements for Longyan laying ducks aged 17 to 31 wk are 1.06%, 1.13%, 1.22%, and 1.11% to obtain the maximum yolk percentage, SYFs number, SYFs weight, and SYFs weight/ovarian weight, respectively. © 2016 Poultry Science Association Inc.

  14. Estimating soil phosphorus requirements and limits from oxalate extract data.

    PubMed

    D'Angelo, E M; Vandiviere, M V; Thom, W O; Sikora, F

    2003-01-01

    Excessive fertilizer and manure phosphorus (P) inputs to soils elevates P in soil solution and surface runoff, which can lead to freshwater eutrophication. Runoff P can be related to soil test P and P sorption saturation, but these approaches are restricted to a limited range of soil types or are difficult to determine on a routine basis. The purpose of this study was to determine whether easily measurable soil characteristics were related to the soil phosphorus requirements (P(req), the amount of P sorbed at a particular solution P level). The P(req) was determined for 18 chemically diverse soils from sorption isotherm data (corrected for native sorbed P) and was found to be highly correlated to the sum of oxalate-extractable Al and Fe (R2 > 0.90). Native sorbed P, also determined from oxalate extraction, was subtracted from the P(req) to determine soil phosphorus limits (PL, the amount of P that can be added to soil to reach P(req)). Using this approach, the PL to reach 0.2 mg P L(-1) in solution ranged between -92 and 253 mg P kg(-1). Negative values identified soils with surplus P, while positive values showed soils with P deficiency. The results showed that P, Al, and Fe in oxalate extracts of soils held promise for determining PL to reach up to 10 mg P L(-1) in solution (leading to potential runoff from many soils). The soil oxalate extraction test could be integrated into existing best management practices for improving soil fertility and protecting water quality.

  15. Infiltration of unconsumed irrigation water in Utah

    USGS Publications Warehouse

    Brothers, William C.; Thiros, Susan A.

    1991-01-01

    The ground-water hydrology of Panguitch Valley and adjacent areas, south-central Utah, was studied during 1988-90. One objective of the study was to measure ground-water recharge from infiltration of unconsumed irrigation water. Water-level and soil-moisture data were used to estimate travel times for water moving down through the soil profile, and to compare quantities of water reaching the water table after application of flood and sprinkler irrigation. During this study, estimates of travel times from land surface to the water table ranged from 11 days in June 1989 to 2 days in September 1989. Estimates of irrigation water recharging the ground-water system ranged from 25 to 75 percent of the water applied to the flood-irrigated field. Virtually no recharge was apparent for the sprinkler-irrigated field.

  16. Operational Irrigation Scheduling for Citrus Trees with Soil Moisture Data Assimilation and Weather Forecast

    NASA Astrophysics Data System (ADS)

    Han, Xujun; Hendricks Franssen, Harrie-Jan; Martínez Alzamora, Fernando; Ángel Jiménez Bello, Miguel; Chanzy, André; Vereecken, Harry

    2015-04-01

    Agricultural areas in the Mediterranean are expected to face more drought stress in the future due to climate change and human activities. Irrigation scheduling is necessary to allocate the optimal water amount at the right time period to avoid unnecessary water losses. An operational data assimilation framework was set-up to combine model predictions and soil moisture measurements in an optimal way for characterizing the soil water status of the root zone. Irrigation amounts for the next days are optimized on the basis of the soil water status of the root zone and meteorological ensemble predictions. In these experiments, the uncertainties of atmospheric forcings and soil properties were considered. The uncertain model forcings were taken from an ensemble of weather forecasts by ECMWF, and delivered by MeteoFrance in this project. The improved soil moisture profile was used to calculate the irrigation requirement taking into account the root distribution of citrus trees in the subsurface. The approach was tested operationally for the experimental site near Picassent, Valencia, Spain. Three fields were irrigated according to our approach in the years 2013 and 2014. Three others were irrigated traditionally, based on FAO-criteria. Soil moisture was measured by FDR probes at 10 cm and 30 cm depth at various fields and these real time data were assimilated by the Local Ensemble Transform Kalman Filter (LETKF) into the Community Land Model (CLM) to improve the estimation of the soil moisture profile. The measured soil moisture was assimilated five times per day before the start of the next drip irrigation. The final results (total amount of irrigated water, stem water potential and citrus production) show that our strategy resulted in significantly less irrigated water compared to the FAO-irrigated fields, but without indications of increased water stress. Soil moisture contents did not decline over time in our approach, stem water potential measurements did not

  17. Evaluation of sap flow and trunk diameter sensors for irrigation scheduling in early maturing peach trees.

    PubMed

    Conejero, W; Alarcón, J J; García-Orellana, Y; Nicolás, E; Torrecillas, A

    2007-12-01

    Five-year-old early maturing peach trees (Prunus persica (L.) Batsch cv. Flordastar grafted on GF-677 peach rootstock) were subjected to three irrigation treatments from March 18 to November 10, 2006. Control plants (T0 treatment) which received irrigation in excess of their crop water requirements (1089.7 mm) were compared with plants watered according to sap flow (SF; T1 treatment) or maximum daily trunk shrinkage (MDS; T2 treatment) measurements, so as to maintain SF and MDS signal intensities (control SF/SF in T1 and MDS in T2/control MDS, respectively) close to unity. When SF or MDS signal intensity on at least two of three consecutive days was at or below unity, irrigation was reduced by 10%. When the MDS signal intensity on at least two of three consecutive days exceeded unity, irrigation was increased by 10%. During the experiment, estimated crop evapotranspiration was 704.9 mm, and the cumulative amounts of applied water in the T1 and T2 treatments were 463.2 and 654.5 mm, respectively. The MDS-signal-intensity-driven irrigation schedule was more suitable than the SF-signal-intensity-driven irrigation schedule because it was more sensitive and reliable in detecting changes in plant water status, preventing the development of detectable plant water stress. Moreover, it had no effect on fruit size. We conclude that peach tree irrigation scheduling can be based on MDS measurements alone. Changes in the irrigation protocol assayed were proposed to reduce MDS signal intensity deviations above unity, for example, by increasing the irrigation scheduling frequency or the amount of water applied, or both. Irrigation schedules based on maintaining MDS signal intensities close to unity could be applied when local crop factor values are unavailable.

  18. Practical implications of applied irrigation research

    USDA-ARS?s Scientific Manuscript database

    Groundwater is essential to irrigated agriculture in the semi-arid Texas High Plains. Concerns over groundwater depletion have led to increased emphasis on water conservation. Irrigation scheduling coupled with accurate crop water use (ET) estimation is one of the most effective means to both conser...

  19. 19 CFR 141.102 - When deposit of estimated duties, estimated taxes, or both not required.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... withdrawal for consumption in the following situations may be made without depositing the estimated Customs... or manufacturer may enter or withdraw for consumption cigars, cigarettes, and cigarette papers and... regulations of the Bureau of Alcohol, Tobacco and Firearms (27 CFR part 251). (c) Deferral of payment of...

  20. Testing an Irrigation Decision Support Tool for California Specialty Crops

    NASA Astrophysics Data System (ADS)

    Johnson, L.; Cahn, M.; Benzen, S.; Zaragoza, I.; Murphy, L.; Melton, F. S.; Martin, F.; Quackenbush, A.; Lockhart, T.

    2015-12-01

    Estimation of crop evapotranspiration supports efficiency of irrigation water management, which in turn can mitigate nitrate leaching, groundwater depletion, and provide energy savings. Past research in California and elsewhere has revealed strong relationships between photosynthetically active vegetation fraction (Fc) and crop evapotranspiration (ETc). Additional research has shown the potential of monitoring Fc by satellite remote sensing. The U.C. Cooperative Extension developed and operates CropManage (CM) as on-line database irrigation (and nitrogen) scheduling tool. CM accounts for the rapid growth and typically brief cycle of cool-season vegetables, where Fc and fraction of reference ET can change daily during canopy development. The model automates crop water requirement calculations based on reference ET data collected by California Dept. Water Resources. Empirically-derived equations are used to estimate daily Fc time-series for a given crop type primarily as a function of planting date and expected harvest date. An application programming interface (API) is under development to provide a check on modeled Fc of current crops and facilitate CM expansion to new crops. The API will enable CM to extract field scale Fc observations from NASA's Satellite Irrigation Management Support (SIMS). SIMS is mainly Landsat based and currently monitors Fc over about 8 million irrigation acres statewide, with potential for adding data from ESA/Sentinel for improved temporal resolution. In the current study, a replicated irrigation trial was performed on romaine lettuce at the USDA Agricultural Research Station in Salinas, CA. CropManage recommendations were used to guide water treatments by drip irrigation at 50%, 75%, 100% ETc replacement levels, with an added treatment at 150% ET representing grower standard practice. Experimental results indicate that yields from the 100% and 150% treatments were not significantly different and were in-line with industry average, while

  1. Pumpage data from irrigation wells in eastern Laramie County, Wyoming, and Kimball County, Nebraska

    USGS Publications Warehouse

    Avery, Charles

    1983-01-01

    Quantitative information concerning pumpage by irrigation wells is an integral component of the U.S. Geological Survey High Plains Regional Aquifer System Analysis. Thus, operation time, discharge rate, and irrigated acreage were measured at approximately 450 randomly selected irrigation wells within 10 areas of the High Plains during the 1980 irrigation season. The data were used to estimate the seasonal mean application of water to crops and to project total pumpage by irrigation wells in 1980 throughout the High Plains area. As part of the sampling effort, 50 irrigation wells were randomly chosen from the area of eastern Laramie County, Wyoming, and Kimball County, Nebraska. Required information was collected on only 40 of the wells. For these wells, the seasonal mean application of water on the irrigated land was 15.2 inches. For the major crop types, the seasonal mean application, in inches, were as follows: alfalfa, 19.8; corn, 15.4; potatoes, 13.8; beans, 12.8; and small grains 10.2. (USGS)

  2. Irrigation scheduling by ET and soil water sensing

    USDA-ARS?s Scientific Manuscript database

    Irrigation scheduling is the process of deciding when, where and how much to irrigate, usually with the goal of optimizing economic return on investment in land, equipment, inputs and personnel. This hour-long seminar presents methods of irrigation scheduling based, on the one hand on estimates of t...

  3. FAO-56 methodology for determining water requirement of irrigated crops: critical examination of the concepts, alternative proposals and validation in Mediterranean region

    NASA Astrophysics Data System (ADS)

    Katerji, Nader; Rana, Gianfranco

    2014-05-01

    The present study evaluates firstly the ability of the FAO-56 methodology, based on the two-step approach "reference evapotranspiration (ET0)—crop coefficient ( K c)," to accurately determine the actual evapotranspiration (ET) of irrigated crops and proposes, secondly, the alternative approaches for improving this determination. The FAO-56 methodology is supported by two hypotheses: (1) ET0 represents all effects of weather and (2) K c varies predominately with specific crop characteristics and only marginally with climate, which enables the transfer of K c standard values among locations and climates. On the base of the theoretical analysis and experimental observations, a critical examination of the previous hypotheses demonstrates that they are not verified by reality. The first hypothesis is not verified for two reasons: (a) The formulation adapted by the Penman-Monteith equation and proposed in FAO-56 methodology for calculating ET0 uses climatic variables determined at a 24-h average scale. However, in principle it is only valid in permanent regime, in other words at least on an hourly scale. (b) The FAO-56-proposed formulation attributes a constant value to the canopy resistance of the reference surface; but in reality, this resistance is variable in relation to the climatic variables. The second hypothesis, concerning the two-step approach, is also not verified because the values of K c largely vary in relation to climatic variables (radiation, air vapour pressure deficit and wind speed). This fact does not support the possibility of the transferability of K c values into locations where the local conditions deviate from the conditions where the adjusted values of K c were determined. The weakness of the ET estimation, observed on several crops cultivated in the Mediterranean region, through the application of the FAO-56 methodology, is the result of errors accumulation, associated with that affects the determination of either ET0 or K c. The present

  4. Irrigation management with remote sensing. [Navajo Indian Irrigation Project

    NASA Technical Reports Server (NTRS)

    Harlan, C.; Heilman, J. L.; Moore, D.; Myers, V. (Principal Investigator)

    1982-01-01

    Two visible/near IR hand held radiometers and a hand held thermoradiometer were used along with soil moisture and lysimetric measurements in a study of soil moisture distribution in afalfa fields on the Navajo Indian Irrigation Project near farmington, New Mexico. Radiances from irrigated plots were measured and converted to reflectances. Surface soil water contents (o cm to 4 cm) were determined gravimetrically on samples collected at the same time as the spectral measurements. The relationship between the spectral measurements and the crop coefficient were evaluated to demonstrate potential for using spectral measurement to estimate crop coefficient.

  5. Environmental flows for rivers and economic compensation for irrigators.

    PubMed

    Sisto, Nicholas P

    2009-02-01

    Securing flows for environmental purposes from an already fully utilized river is an impossible task--unless users are either coerced into freeing up water, or offered incentives to do so. One sensible strategy for motivating users to liberate volumes is to offer them economic compensation. The right amount for that compensation then becomes a key environmental management issue. This paper analyses a proposal to restore and maintain ecosystems on a stretch of the Río Conchos in northern Mexico, downstream from a large irrigation district that consumes nearly all local flows. We present here estimates of environmental flow requirements for these ecosystems and compute compensation figures for irrigators. These figures are derived from crop-specific irrigation water productivities we statistically estimate from a large set of historical production and irrigation data obtained from the district. This work has general implications for river ecosystem management in water-stressed basins, particularly in terms of the design of fair and effective water sharing mechanisms.

  6. Grid-point requirements for large eddy simulation: Chapman's estimates revisited

    NASA Astrophysics Data System (ADS)

    Choi, Haecheon; Moin, Parviz

    2012-01-01

    Resolution requirements for large eddy simulation (LES), estimated by Chapman [AIAA J. 17, 1293 (1979)], are modified using accurate formulae for high Reynolds number boundary layer flow. The new estimates indicate that the number of grid points (N) required for wall-modeled LES is proportional to ReLx , but a wall-resolving LES requires N ˜ReLx 13 /7 , where Lx is the flat-plate length in the streamwise direction. On the other hand, direct numerical simulation, resolving the Kolmogorov length scale, requires N ˜ReLx 37 /14 .

  7. Spectral reflectance indices for estimating yield and water content in spring wheat genotypes under well irrigated, water stress, and high temperature conditions

    NASA Astrophysics Data System (ADS)

    Gutierrez-Rodriguez, Mario

    Scope and Method of Study. Alternative methods for selecting, detecting, and identifying higher yielding genotypes in wheat breeding programs are important for obtaining major genetic gains. The water indices can be used as an indirect selection tool because of their strong association with different physiological and yield components. Diverse spring wheat advanced lines were used, which corresponded to three international trials developed by the International Maize and Wheat Improvement Center (CIMMYT); 24th Elite Spring Wheat Yield Trial (ESWYT) with 25 lines, 11th Semi-Arid Wheat Yield Trial (SAWYT) with 40 lines, and 11th High Temperature Wheat Yield Trial (HTWYT) with 18 lines. Two other experiments also employed advanced lines for testing the relationship between water indices and water content parameters (10-16 lines) and for evaluating the influence of morphological traits (20 lines) over the water indices. Several water indices and other reflectance indices were estimated at three growth stages (booting, heading, and grain filling) using a field portable spectrometer (Analytical Spectral Devices, Boulder, CO). Field plots were planted in Northwest Mexico during three growing seasons (2006, 2007, and 2007). Grain yield, biomass, and some water status parameters were determined in diverse experiments. Findings and Conclusions. There were high correlations (phenotypic and genetic) between grain yield and the water indices showing high heritability, response to selection and correlated response, relative selection efficiency, and efficiency in selecting the higher yielding genotypes. Two water indices showed the strongest relationships (NWI-1 and NWI-3) for all the parameters determined in the well irrigated, water stress, and high temperature environments. In addition, the water indices were related with parameters commonly employed for assessing the crop water status ( i.e., water potential) during booting, anthesis and grain filling under water stress

  8. Soil salinisation and irrigation management of date palms in a Saharan environment.

    PubMed

    Haj-Amor, Zied; Ibrahimi, Mohamed-Khaled; Feki, Nissma; Lhomme, Jean-Paul; Bouri, Salem

    2016-08-01

    The continuance of agricultural production in regions of the world with chronic water shortages depends upon understanding how soil salinity is impacted by irrigation practises such as water salinity, irrigation frequency and amount of irrigation. A two-year field study was conducted in a Saharan oasis of Tunisia (Lazala Oasis) to determine how the soil electrical conductivity was affected by irrigation of date palms with high saline water. The study area lacked a saline shallow water table. Field results indicate that, under current irrigation practises, soil electrical conductivity can build up to levels which exceed the salt tolerance of date palm trees. The effects of irrigation practises on the soil electrical conductivity were also evaluated using model simulations (HYDRUS-1D) of various irrigation regimes with different frequencies, different amounts of added water and different water salinities. The comparison between the simulated and observed results demonstrated that the model gave an acceptable estimation of water and salt dynamics in the soil profile, as indicated by the small values of root mean square error (RMSE) and the high values of the Nash-Sutcliffe model efficiency coefficient (NSE). The simulations demonstrated that, under field conditions without saline shallow groundwater, saline irrigation water can be used to maintain soil electrical conductivity and soil water content at safe levels (soil electrical conductivity <4 dS m(-1) and soil water content >0.04 cm(3) cm(-3)) if frequent irrigations with small amounts of water (90 % of the evapotranspiration requirements) were applied throughout the year.

  9. Water requirements and management of maize under drip and sprinkler irrigation. 2000 annual report for Agricultural Technology Utilization and Transfer (ATUT) project

    USDA-ARS?s Scientific Manuscript database

    Research at Ismailia, Egypt, focused on irrigation management of maize, fava bean, wheat, and alfalfa. In 1998, the two weighing lysimeters at Ismailia were recalibrated successfully with precision of 0.01 mm; and a state-of-the-art time domain reflectometry (TDR) system for soil water balance measu...

  10. A comparison of three methods for estimating the requirements for medical specialists: the case of otolaryngologists.

    PubMed

    Anderson, G F; Han, K C; Miller, R H; Johns, M E

    1997-06-01

    To compare three methods of computing the national requirements for otolaryngologists in 1994 and 2010. Three large HMOs, a Delphi panel, the Bureau of Health Professions (BHPr), and published sources. Three established methods of computing requirements for otolaryngologists were compared: managed care, demand-utilization, and adjusted needs assessment. Under the managed care model, a published method based on reviewing staffing patterns in HMOs was modified to estimate the number of otolaryngologists. We obtained from BHPr estimates of work force projections from their demand model. To estimate the adjusted needs model, we convened a Delphi panel of otolaryngologists using the methodology developed by the Graduate Medical Education National Advisory Committee (GMENAC). Not applicable. Wide variation in the estimated number of otolaryngologists required occurred across the three methods. Within each model it was possible to alter the requirements for otolaryngologists significantly by changing one or more of the key assumptions. The managed care model has a potential to obtain the most reliable estimates because it reflects actual staffing patterns in institutions that are attempting to use physicians efficiently. Estimates of work force requirements can vary considerably if one or more assumptions are changed. In order for the managed care approach to be useful for actual decision making concerning the appropriate number of otolaryngologists required, additional research on the methodology used to extrapolate the results to the general population is necessary.

  11. A comparison of three methods for estimating the requirements for medical specialists: the case of otolaryngologists.

    PubMed Central

    Anderson, G F; Han, K C; Miller, R H; Johns, M E

    1997-01-01

    OBJECTIVE: To compare three methods of computing the national requirements for otolaryngologists in 1994 and 2010. DATA SOURCES: Three large HMOs, a Delphi panel, the Bureau of Health Professions (BHPr), and published sources. STUDY DESIGN: Three established methods of computing requirements for otolaryngologists were compared: managed care, demand-utilization, and adjusted needs assessment. Under the managed care model, a published method based on reviewing staffing patterns in HMOs was modified to estimate the number of otolaryngologists. We obtained from BHPr estimates of work force projections from their demand model. To estimate the adjusted needs model, we convened a Delphi panel of otolaryngologists using the methodology developed by the Graduate Medical Education National Advisory Committee (GMENAC). DATA COLLECTION/EXTRACTION METHODS: Not applicable. PRINCIPAL FINDINGS: Wide variation in the estimated number of otolaryngologists required occurred across the three methods. Within each model it was possible to alter the requirements for otolaryngologists significantly by changing one or more of the key assumptions. The managed care model has a potential to obtain the most reliable estimates because it reflects actual staffing patterns in institutions that are attempting to use physicians efficiently. CONCLUSIONS: Estimates of work force requirements can vary considerably if one or more assumptions are changed. In order for the managed care approach to be useful for actual decision making concerning the appropriate number of otolaryngologists required, additional research on the methodology used to extrapolate the results to the general population is necessary. PMID:9180613

  12. 77 FR 10767 - Rate Adjustments for Indian Irrigation Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-23

    ... Bureau of Indian Affairs Rate Adjustments for Indian Irrigation Projects AGENCY: Bureau of Indian Affairs... interest in, irrigation projects located on or associated with various Indian reservations throughout the United States. We are required to establish irrigation assessment rates to recover the costs to...

  13. 76 FR 58293 - Rate Adjustments for Indian Irrigation Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-20

    ... Bureau of Indian Affairs Rate Adjustments for Indian Irrigation Projects AGENCY: Bureau of Indian Affairs... has an interest in, irrigation projects located on or associated with various Indian reservations throughout the United States. We are required to establish irrigation assessment rates to recover the costs...

  14. Irrigation water use in Kansas, 2014

    USGS Publications Warehouse

    Lanning-Rush, Jennifer

    2016-01-01

    This U.S. Geological Survey (USGS) Data Release represents geospatial and tabular data on irrigation water use in Kansas.  The data release was produced in compliance with open data requirements.  The dataset consists of 3 separate items with similar attributes aggregated to different geographic extents:  1.  Kansas counties; 2.  Kansas regional planning areas used in the Kansas Water Plan; and 3.  Kansas irrigation water-use analysis regions.Reported 2014 water withdrawn for irrigation, acres irrigated, and application rates along with the published application rate statistics from the previous 4 years (2010–13) are shown with the 2014 statistics and are used to calculate a 5-year average. The 2014 annual total precipitation and the current 30-year climatic normal (based on 1981–2010) are also shown.  Other data published in this data release include the amount of water used, irrigated acres, and application rates by crop type and the amount of water used and acres irrigated are further grouped by irrigation method. Total reported irrigation water use in 2014 was 3.3 million acre-feet of water applied to 3.0 million irrigated acres.

  15. Long-term trends in field level irrigation water demand in Mahanadi delta districts - a hydrological modeling approach for coping with climate change

    NASA Astrophysics Data System (ADS)

    Raju Pokkuluri, Venkat; Rao, Diwakar Parsi Guru; Hazra, Sugata; Srikant Kulkarni, Sunil

    2017-04-01

    India uses its 85 percent of available water resources for irrigation making it the country with largest net irrigated area in the world. With one of the largest delta plains, sustaining the needs of irrigation supplies is critical for food security and coping with challenges of climate change. The extensive development of upstream river basins/catchments is posing serious challenge and constrains to the water availability to delta regions, which depend on the controlled/regulated flows from the upstream catchments. The irrigation water demands vary due to changes in agricultural practices, cropping pattern and changing climate conditions. Estimation of realistic irrigation water demand and its trend over time is critical for meeting the supplementary water needs of productive agricultural lands in delta plains and there by coping the challenges of extensive upstream river basin development and climate change. The present study carried out in delta districts of Mahanadi river in Odisha State of India, wherein the long-term trends in field level irrigation water requirements were estimated, both on spatial & temporal scales, using hydrological modeling framework. This study attempts to estimate field level irrigation water requirements through simulation of soil water balance during the crop growing season through process based hydrological modeling framework. The soil water balance computations were carried out using FAO-56 framework, by modifying the crop coefficient (Kc) proportional to the water stress coefficient (Ks), which is a function of root zone depletion of water. Daily meteorological data, spatial cropping pattern, terrain are incorporated in the soil water balance simulation in the model. The irrigation water demand is derived considering the exclusion of soil water stress for each model time step. The field level irrigation water requirement at 8 day interval had been estimated for the each Rabi season (post-monsoon) spanning over 1986 to 2015. The

  16. Integrating Satellite and Surface Sensor Networks for Irrigation Management Applications in California

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Johnson, L.; Post, K. M.; Guzman, A.; Zaragoza, I.; Spellenberg, R.; Rosevelt, C.; Michaelis, A.; Nemani, R. R.; Cahn, M.; Frame, K.; Temesgen, B.; Eching, S.

    2016-12-01

    Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide agricultural producers and water managers with information that can be used to optimize agricultural water use, especially in regions with limited water supplies. The timely delivery of information on agricultural crop water requirements has the potential to make irrigation scheduling more practical, convenient, and accurate. We present a system for irrigation scheduling and management support in California and describe lessons learned from the development and implementation of the system. The Satellite Irrigation Management Support (SIMS) framework integrates satellite data with information from agricultural weather networks to map crop canopy development, basal crop coefficients (Kcb), and basal crop evapotranspiration (ETcb) at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system and web data services. SIMS also provides an application programming interface (API) that facilitates integration with other irrigation decision support tools, estimation of total crop evapotranspiration (ETc) and calculation of on-farm water use efficiency metrics. Accuracy assessments conducted in commercial fields for more than a dozen crop types to date have shown that SIMS seasonal ETcb estimates are within 10% mean absolute error (MAE) for well-watered crops and within 15% across all crop types studied, and closely track daily ETc and running totals of ETc measured in each field. Use of a soil water balance model to correct for soil evaporation and crop water stress reduces this error to less than 8% MAE across all crop types studied to date relative to field measurements of ETc. Results from irrigation trials conducted by the project for four vegetable crops have also demonstrated the potential for use of ET-based irrigation management strategies to reduce total applied water by

  17. Visual Estimation of Spatial Requirements for Locomotion in Novice Wheelchair Users

    ERIC Educational Resources Information Center

    Higuchi, Takahiro; Takada, Hajime; Matsuura, Yoshifusa; Imanaka, Kuniyasu

    2004-01-01

    Locomotion using a wheelchair requires a wider space than does walking. Two experiments were conducted to test the ability of nonhandicapped adults to estimate the spatial requirements for wheelchair use. Participants judged from a distance whether doorlike apertures of various widths were passable or not passable. Experiment 1 showed that…

  18. Visual Estimation of Spatial Requirements for Locomotion in Novice Wheelchair Users

    ERIC Educational Resources Information Center

    Higuchi, Takahiro; Takada, Hajime; Matsuura, Yoshifusa; Imanaka, Kuniyasu

    2004-01-01

    Locomotion using a wheelchair requires a wider space than does walking. Two experiments were conducted to test the ability of nonhandicapped adults to estimate the spatial requirements for wheelchair use. Participants judged from a distance whether doorlike apertures of various widths were passable or not passable. Experiment 1 showed that…

  19. Irrigation As an Historical Climate Forcing

    NASA Astrophysics Data System (ADS)

    Cook, B.; Puma, M. J.; McDermid, S. P.; Nazarenko, L.

    2014-12-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  20. Irrigation as an historical climate forcing

    NASA Astrophysics Data System (ADS)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2015-03-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  1. Irrigation as an Historical Climate Forcing

    NASA Technical Reports Server (NTRS)

    Cook, Benjamin I.; Shukla, Sonali P.; Puma, Michael J.; Nazarenko, Larissa S.

    2014-01-01

    Irrigation is the single largest anthropogenic water use, a modification of the land surface that significantly affects surface energy budgets, the water cycle, and climate. Irrigation, however, is typically not included in standard historical general circulation model (GCM) simulations along with other anthropogenic and natural forcings. To investigate the importance of irrigation as an anthropogenic climate forcing, we conduct two 5-member ensemble GCM experiments. Both are setup identical to the historical forced (anthropogenic plus natural) scenario used in version 5 of the Coupled Model Intercomparison Project, but in one experiment we also add water to the land surface using a dataset of historically estimated irrigation rates. Irrigation has a negligible effect on the global average radiative balance at the top of the atmosphere, but causes significant cooling of global average surface air temperatures over land and dampens regional warming trends. This cooling is regionally focused and is especially strong in Western North America, the Mediterranean, the Middle East, and Asia. Irrigation enhances cloud cover and precipitation in these same regions, except for summer in parts of Monsoon Asia, where irrigation causes a reduction in monsoon season precipitation. Irrigation cools the surface, reducing upward fluxes of longwave radiation (increasing net longwave), and increases cloud cover, enhancing shortwave reflection (reducing net shortwave). The relative magnitude of these two processes causes regional increases (northern India) or decreases (Central Asia, China) in energy availability at the surface and top of the atmosphere. Despite these changes in net radiation, however, climate responses are due primarily to larger magnitude shifts in the Bowen ratio from sensible to latent heating. Irrigation impacts on temperature, precipitation, and other climate variables are regionally significant, even while other anthropogenic forcings (anthropogenic aerosols

  2. Irrigation strategies using subsurface drip irrigation

    USDA-ARS?s Scientific Manuscript database

    Subsurface drip irrigation (SDI) is practiced on approximately 60,000 ha in the Texas High Plains region of the USA. Adoption of SDI continues to increase in the region. This has been attributed to record drought in Texas and the US Southwest in recent years, declining irrigation well yields, and ev...

  3. Nonsustainable groundwater sustaining irrigation: A global assessment

    NASA Astrophysics Data System (ADS)

    Wada, Yoshihide; van Beek, L. P. H.; Bierkens, Marc F. P.

    2012-06-01

    Water used by irrigated crops is obtained from three sources: local precipitation contributing to soil moisture available for root water uptake (i.e., green water), irrigation water taken from rivers, lakes, reservoirs, wetlands, and renewable groundwater (i.e., blue water), and irrigation water abstracted from nonrenewable groundwater and nonlocal water resources. Here we quantify globally the amount of nonrenewable or nonsustainable groundwater abstraction to sustain current irrigation practice. We use the global hydrological model PCR-GLOBWB to simulate gross crop water demand for irrigated crops and available blue and green water to meet this demand. We downscale country statistics of groundwater abstraction by considering the part of net total water demand that cannot be met by surface freshwater. We subsequently confront these with simulated groundwater recharge, including return flow from irrigation to estimate nonrenewable groundwater abstraction. Results show that nonrenewable groundwater abstraction contributes approximately 20% to the global gross irrigation water demand for the year 2000. The contribution of nonrenewable groundwater abstraction to irrigation is largest in India (68 km3 yr-1) followed by Pakistan (35 km3 yr-1), the United States (30 km3 yr-1), Iran (20 km3 yr-1), China (20 km3 yr-1), Mexico (10 km3 yr-1), and Saudi Arabia (10 km3 yr-1). Results also show that globally, this contribution more than tripled from 75 to 234 km3 yr-1 over the period 1960-2000.

  4. Surface drip irrigation

    USDA-ARS?s Scientific Manuscript database

    For many years, surface drip irrigation has been used to irrigation high value vegetable crops. In recent years, surface drip of row crops has been increasing throughout the United States. Surface drip irrigation can precisely deliver water and nutrients to the crop root zone. This article provides ...

  5. Planning for deficit irrigation

    USDA-ARS?s Scientific Manuscript database

    Irrigators with limited water supplies that lead to deficit irrigation management need to make decisions about crop selection, water allocations to each crop, and irrigation schedules. Many of these decisions need to occur before the crop is planted and depend on yield-evapotranspiration (ET) and yi...

  6. Climate change would increase the water intensity of irrigated corn ethanol.

    PubMed

    Dominguez-Faus, Rosa; Folberth, Christian; Liu, Junguo; Jaffe, Amy M; Alvarez, Pedro J J

    2013-06-04

    Changes in atmospheric CO2 concentrations, temperature, and precipitation affect plant growth and evapotranspiration. However, the interactive effects of these factors are relatively unexplored, and it is important to consider their combined effects at geographic and temporal scales that are relevant to policymaking. Accordingly, we estimate how climate change would affect water requirements for irrigated corn ethanol production in key regions of the U.S. over a 40 year horizon. We used the geographic-information-system-based environmental policy integrated climate (GEPIC) model, coupled with temperature and precipitation predictions from five different general circulation models and atmospheric CO2 concentrations from the Special Report on Emissions Scenarios A2 emission scenario of the Intergovernmental Panel on Climate Change, to estimate changes in water requirements and yields for corn ethanol. Simulations infer that climate change would increase the evaporative water consumption of the 15 billion gallons per year of corn ethanol needed to comply with the Energy Independency and Security Act by 10%, from 94 to 102 trillion liters/year (tly), and the irrigation water consumption by 19%, from 10.22 to 12.18 tly. Furthermore, on average, irrigation rates would increase by 9%, while corn yields would decrease by 7%, even when the projected increased irrigation requirements were met. In the irrigation-intensive High Plains, this implies increased pressure for the stressed Ogallala Aquifer, which provides water to seven states and irrigates one-fourth of the grain produced in the U.S. In the Corn Belt and Great Lakes region, where more rainfall is projected, higher water requirements could be related to less frequent rainfall, suggesting a need for additional water catchment capacity. The projected increases in water intensity (i.e., the liters of water required during feedstock cultivation to produce 1 L of corn ethanol) because of climate change highlight the need

  7. Impacts of Change in Irrigation Water Availability on Food Production in the Yellow River Basin under Climate Change

    NASA Astrophysics Data System (ADS)

    Yin, Y. Y.; Tang, Q.

    2014-12-01

    Approximately 9 percent of China's population and 17 percent of its agricultural area are settled in the Yellow River Basins. Irrigation, which plays an important role in agricultural production, occupies the largest share of human consumptive water use in the basin. Given increasing water demands, the basin faces acute water scarcity. Previous studies have suggested that decrease in irrigation water availability under climate change might have an overall adverse impact on the food production of the basin. The timing and area that would face severe water stress are yet to be identified. We used a land surface hydrological model forced with the bias-corrected climatic variables from 5 climate models under 4 Representative Concentration Pathways (RCPs) to estimate total water availability in the sub-basins of the Yellow River basin. The future socioeconomic conditions, the Shared Socioeconomic Pathways (SSPs), were used to estimate the water requirement in the nonagricultural water use sectors. The irrigation water availability was estimated from the total water availability and nonagricultural water use, and the irrigation water demands were estimated based on the current irrigation project efficiencies. The timing and area of irrigation water shortage were shown and the implication of change in irrigation water availability on food production was assessed. The results show that the sub-basins with high population density and gross domestic product (GDP) are likely to confront severe water stress and reduction in food production earlier because irrigation water was to be appropriated by the rapid increase in nonagricultural water use sectors. The study stresses the need for adaptive management of water to balance agriculture and nonagricultural demands in northern China.

  8. IRRIMET: a web 2.0 advisory service for irrigation water management

    NASA Astrophysics Data System (ADS)

    De Michele, Carlo; Anzano, Enrico; Colandrea, Marco; Marotta, Luigi; Mula, Ileana; Pelosi, Anna; D'Urso, Guido; Battista Chirico, Giovanni

    2016-04-01

    Irrigation agriculture is one the biggest consumer of water in Europe, especially in southern regions, where it accounts for up to 70% of the total water consumption. The EU Common Agricultural Policy, combined with the Water Framework Directive, imposes to farmers and irrigation managers a substantial increase of the efficiency in the use of water in agriculture for the next decade. Irrigating according to reliable crop water requirement estimates is one of the most convincing solution to decrease agricultural water use. Here we present an innovative irrigation advisory service, applied in Campania region (Southern Italy), where a satellite assisted irrigation advisory service has been operating since 2006. The advisory service is based on the optimal combination of VIS-NIR high resolution satellite images (Landsat, Deimos, Rapideye) to map crop vigour, and high resolution numerical weather prediction for assessing the meteorological variables driving the crop water needs in the short-medium range. The advisory service is broadcasted with a simple and intuitive web app interface which makes daily real time irrigation and evapotranspiration maps and customized weather forecasts (based on Cosmo Leps model) accessible from desktop computers, tablets and smartphones.

  9. Closing the irrigation deficit in Cambodia: Implications for transboundary impacts on groundwater and Mekong River flow

    NASA Astrophysics Data System (ADS)

    Erban, Laura E.; Gorelick, Steven M.

    2016-04-01

    Rice production in Cambodia, essential to food security and exports, is largely limited to the wet season. The vast majority (96%) of land planted with rice during the wet season remains fallow during the dry season. This is in large part due to lack of irrigation capacity, increases in which would entail significant consequences for Cambodia and Vietnam, located downstream on the Mekong River. Here we quantify the extent of the dry season "deficit" area in the Cambodian Mekong River catchment, using a recent agricultural survey and our analysis of MODIS satellite data. Irrigation of this land for rice production would require a volume of water up to 31% of dry season Mekong River flow to Vietnam. However, the two countries share an aquifer system in the Mekong Delta, where irrigation demand is increasingly met by groundwater. We estimate expansion rates of groundwater-irrigated land to be >10% per year in the Cambodian Delta using LANDSAT satellite data and simulate the effects of future expansion on groundwater levels over a 25-year period. If groundwater irrigation continues to expand at current rates, the water table will drop below the lift limit of suction pump wells, used for domestic supply by >1.5 million people, throughout much of the area within 15 years. Extensive groundwater irrigation jeopardizes access for shallow domestic water supply wells, raises the costs of pumping for all groundwater users, and may exacerbate arsenic contamination and land subsidence that are already widespread hazards in the region.

  10. An allometric model to estimate fluid requirements in children following burn injury.

    PubMed

    Ansermino, J Mark; Vandebeek, Christine A; Myers, Dorothy

    2010-04-01

    To evaluate the ability of an allometric 3/4 Power Model combined with the Galveston Formula (Galveston-3/4 PM Formula) to predict fluid resuscitation requirements in children suffering burn injuries in comparison with the frequently used Parkland Formula and Galveston Formula using the Du Bois formula for surface area estimation (Galveston-DB Formula). To demonstrate that the Galveston-3/4 PM Formula is clinically equivalent to the Galveston-DB Formula for the estimation of fluid requirements in pediatric burn injury cases. Fluid resuscitation requirements differ in children suffering burn injuries when compared to adults. The Parkland Formula works well for normal weight adults but underestimates fluid requirements when indiscriminately applied to pediatric burn patients. The Galveston-DB Formula accounts for the change in body composition with age by using a body surface area (BSA) model but requires the measurement of height. The allometric model, using an exponent of 3/4, accounts for the dependence of a physiological variable on body mass without requiring height measurement and can be applied to estimate fluid requirements after burn injury in children. Comparisons were performed between the hourly calculated fluid requirements for the first 8 h following 20%, 40%, and 60% BSA burns using the Parkland Formula, the Galveston-DB Formula and Galveston-3/4 PM Formula for children 2-23 kg. In children less than 23 kg, the fluid requirements predicted by the Galveston-3/4 PM Formula are well correlated with those predicted by the Galveston-DB Formula (R2 = 0.997, P < 0.0001) and are much better than of the predictions made with the Parkland Formula, especially for children <10 kg. For the purposes of clinical estimation of fluid requirements, the Galveston-3/4 PM Formula is indistinguishable from the Galveston-DB Formula in children 23 kg or less.

  11. Irrigation management using an expert system, soil water potentials, and vegetative indices for spatial applications

    USDA-ARS?s Scientific Manuscript database

    Variable rate irrigation (VRI) systems are irrigation systems that are capable of applying different water depths both in the direction of travel and along the length of the irrigation system. However, when compared to traditional irrigation systems, VRI systems require a higher level of management...

  12. Role of irrigation and irrigation automation in improving crop water use efficiency

    USDA-ARS?s Scientific Manuscript database

    In arid climates, irrigation is required for significant agricultural production. In subhumid and semiarid climates, supplemental irrigation is recognized as both economically necessary (prevention of crop losses in periodic droughts) and as a means to improve overall crop water use effi...

  13. Estimating Manpower Requirements. A Background Paper Prepared for the Graduate Medical Education Advisory Committee. Report No. 76-114.

    ERIC Educational Resources Information Center

    Health Resources Administration (DHEW/PHS), Bethesda, MD. Bureau of Health Manpower.

    This report on estimating physician manpower requirements is intended as a history and summary of the state of the art in manpower requirements estimation and forecasting. It describes the various ways in which manpower requirements have been estimated in recent years and discusses the variety of concepts, methods, definitions, and approaches that…

  14. Desert landscape irrigation

    SciTech Connect

    Quinones, R.

    1995-06-01

    Industrialization can take place in an arid environment if a long term, overall water management program is developed. The general rule to follow is that recharge must equal or exceed use. The main problem encountered in landscape projects is that everyone wants a lush jungle setting, tall shade trees, ferns, with a variety of floral arrangements mixed in. What we want, what we can afford, and what we get are not always the same. Vegetation that requires large quantities of water are not native to any desert. Surprisingly; there are various types of fruit trees, and vegetables that will thrive in the desert. Peaches, plums, nut trees, do well with drip irrigation as well as tomatoes. Shaded berry plans will also do well, the strawberry being one. In summary; if we match our landscape to our area, we can then design our irrigation system to maintain our landscape and grow a variety of vegetation in any arid or semiarid environment. The application of science and economics to landscaping has now come of age.

  15. Adaptability of Irrigation to a Changing Monsoon in India: How far can we go?

    NASA Astrophysics Data System (ADS)

    Zaveri, E.; Grogan, D. S.; Fisher-Vanden, K.; Frolking, S. E.; Wrenn, D. H.; Nicholas, R.

    2014-12-01

    Agriculture and the monsoon are inextricably linked in India. A large part of the steady rise in agricultural production since the onset of the Green Revolution in the 1960's has been attributed to irrigation. Irrigation is used to supplement and buffer crops against precipitation shocks, but water availability for such use is itself sensitive to the erratic, seasonal and spatially heterogeneous nature of the monsoon. We provide new evidence on the relationship between monsoon changes, irrigation variability and water availability by linking a process based hydrology model with an econometric model for one of the world's most water stressed countries. India uses more groundwater for irrigation than any other country, and there is substantial evidence that this has led to depletion of groundwater aquifers. First, we build an econometric model of historical irrigation decisions using detailed agriculture and weather data spanning 35 years. Multivariate regression models reveal that for crops grown in the wet season, irrigation is sensitive to distribution and total monsoon rainfall but not to ground or surface water availability. For crops grown in the dry season, total monsoon rainfall matters most, and its effect is sensitive to groundwater availability. The historical estimates from the econometric model are used to calculate future irrigated areas under three different climate model predictions of monsoon climate for the years 2010 - 2050. These projections are then used as input to a physical hydrology model, which quantifies supply of irrigation water from sustainable sources such as rechargeable shallow groundwater, rivers and reservoirs, to unsustainable sources such as non- rechargeable groundwater. We find that the significant variation in monsoon projections lead to very different results. Crops grown in the dry season show particularly divergent trends between model projections, leading to very different groundwater resource requirements.

  16. Coupled Hydro-Economic Dynamics of Groundwater Irrigated Agriculture in a Hard Rock Region of India

    NASA Astrophysics Data System (ADS)

    Modi, V.; Fishman, R.; Siegfried, T. U.; Raj, P.; Vasquez, V.; Narula, K.; Lall, U.

    2009-12-01

    We analyze the dynamics of groundwater and irrigated agriculture in a semi-arid, hard rock region of India, which is characterized by low-yield, limited storativity aquifers. Telengana, in western Andhra Pradesh has witnessed a relentless expansion of the total irrigated area. Total crop irrigation water requirements have increased by more than 50 percent over the last 30 years. Nowadays, more than 80 percent of the net irrigated area in the region is irrigated from groundwater. Given limited, period monsoonal recharge to the aquifers, it can be estimated that groundwater irrigation intensity is surpassing sustainable allocation levels by a factor of 3. It is not further surprising that the region is increasingly affected by widespread groundwater depletion, with negative consequences for farmers and the energy sector as well as the natural environment. Using data on water tables, precipitation and agricultural land use, we show how both rainfall and farmers’ choices effect water tables and how these, in turn, re-effect farmers choices and agricultural outcomes in a dynamic relationship that allows us to model the interaction between the natural hydrological and agricultural-social dynamics. We use the model to elucidate and quantify the meaning of groundwater mining in this hard rock environment. In contrast to deep alluvial aquifers, excessive extraction does not lead to sustained long term deepening of the water table, but to increased fluctuations in the supply of groundwater for irrigation and the loss of the buffering capacity. For the farmers, this potentially translates into increasingly perilous agricultural production outcomes during monsoonal failures. Furthermore, the dry season agricultural production that entirely depends on the availability of sufficient amounts of irrigation water is progressively threatened under the current allocation scenario. Alternative management practices to address the aquifer depletion issues are discussed. We show that

  17. Nitrate contamination and its relationship with flood irrigation management

    NASA Astrophysics Data System (ADS)

    García-Garizábal, I.; Causapé, J.; Abrahao, R.

    2012-06-01

    SummaryNitrate contamination is a significant unresolved environmental issue for agriculture in the 21st century, with longstanding challenges in its control and allocation to a specified territory. In order to address these challenges, real-world meticulous irrigation area studies are required. The objective of this investigation is to analyze the evolution of nitrate contamination in relation to agronomic and management changes within a traditionally irrigated land. Specifically, the impact of changes in irrigation allowance assignment, changes in irrigation method from rotation to on-demand flood irrigation, and creation of water consumption accounts were analyzed. To this end, nitrogen monitoring and annual balances were carried out in a small irrigated hydrological basin (95 ha) located in Northeastern Spain throughout the years of 2001 and 2005-2008. The evolution of the nitrate contamination index was also analyzed, which relates the mass of nitrates exported to the fertilization necessities of a specific irrigated area. The results demonstrated that although changes in crop pattern caused a 33% reduction in the nitrogen required through fertilization, the fertilization rates applied are still double the necessities. Changes in irrigation management decreased the mass of nitrates exported by half and the nitrate contamination index by 24%, but the nitrate levels present are still approximately double of those registered in modern irrigation areas. The changes implemented by the Irrigation District in the irrigation management were effective. However, this study confirms that a greater effort is still required to achieve adequate nitrogen fertilization matching the crop necessities.

  18. Estimating resource costs of compliance with EU WFD ecological status requirements at the river basin scale

    NASA Astrophysics Data System (ADS)

    Riegels, Niels; Jensen, Roar; Bensasson, Lisa; Banou, Stella; Møller, Flemming; Bauer-Gottwein, Peter

    2011-01-01

    SummaryResource costs of meeting EU WFD ecological status requirements at the river basin scale are estimated by comparing net benefits of water use given ecological status constraints to baseline water use values. Resource costs are interpreted as opportunity costs of water use arising from water scarcity. An optimization approach is used to identify economically efficient ways to meet WFD requirements. The approach is implemented using a river basin simulation model coupled to an economic post-processor; the simulation model and post-processor are run from a central controller that iterates until an allocation is found that maximizes net benefits given WFD requirements. Water use values are estimated for urban/domestic, agricultural, industrial, livestock, and tourism water users. Ecological status is estimated using metrics that relate average monthly river flow volumes to the natural hydrologic regime. Ecological status is only estimated with respect to hydrologic regime; other indicators are ignored in this analysis. The decision variable in the optimization is the price of water, which is used to vary demands using consumer and producer water demand functions. The price-based optimization approach minimizes the number of decision variables in the optimization problem and provides guidance for pricing policies that meet WFD objectives. Results from a real-world application in northern Greece show the suitability of the approach for use in complex, water-stressed basins. The impact of uncertain input values on model outcomes is estimated using the Info-Gap decision analysis framework.

  19. Sample Size Requirements for Accurate Estimation of Squared Semi-Partial Correlation Coefficients.

    ERIC Educational Resources Information Center

    Algina, James; Moulder, Bradley C.; Moser, Barry K.

    2002-01-01

    Studied the sample size requirements for accurate estimation of squared semi-partial correlation coefficients through simulation studies. Results show that the sample size necessary for adequate accuracy depends on: (1) the population squared multiple correlation coefficient (p squared); (2) the population increase in p squared; and (3) the…

  20. Use Of Crop Canopy Size To Estimate Water Requirements Of Vegetable Crops

    USDA-ARS?s Scientific Manuscript database

    Planting time, plant density, variety, and cultural practices vary widely for horticultural crops. It is difficult to estimate crop water requirements for crops with these variations. Canopy size, or factional ground cover, as an indicator of intercepted sunlight, is related to crop water use. We...

  1. Estimation of Managerial and Technical Personnel Requirements in Selected Industries. Training for Industry Series, No. 2.

    ERIC Educational Resources Information Center

    United Nations Industrial Development Organization, Vienna (Austria).

    The need to develop managerial and technical personnel in the cement, fertilizer, pulp and paper, sugar, leather and shoe, glass, and metal processing industries of various nations was studied, with emphasis on necessary steps in developing nations to relate occupational requirements to technology, processes, and scale of output. Estimates were…

  2. Sample Size Requirements for Accurate Estimation of Squared Semi-Partial Correlation Coefficients.

    ERIC Educational Resources Information Center

    Algina, James; Moulder, Bradley C.; Moser, Barry K.

    2002-01-01

    Studied the sample size requirements for accurate estimation of squared semi-partial correlation coefficients through simulation studies. Results show that the sample size necessary for adequate accuracy depends on: (1) the population squared multiple correlation coefficient (p squared); (2) the population increase in p squared; and (3) the…

  3. Estimation of Managerial and Technical Personnel Requirements in Selected Industries. Training for Industry Series, No. 2.

    ERIC Educational Resources Information Center

    United Nations Industrial Development Organization, Vienna (Austria).

    The need to develop managerial and technical personnel in the cement, fertilizer, pulp and paper, sugar, leather and shoe, glass, and metal processing industries of various nations was studied, with emphasis on necessary steps in developing nations to relate occupational requirements to technology, processes, and scale of output. Estimates were…

  4. Water balance in irrigation districts. Uncertainty in on-demand pressurized networks

    NASA Astrophysics Data System (ADS)

    Sánchez-Calvo, Raúl; Rodríguez-Sinobas, Leonor; Juana, Luis; Laguna, Francisco Vicente

    2015-04-01

    In on-demand pressurized irrigation distribution networks, applied water volume is usually controlled opening a valve during a calculated time interval, and assuming constant flow rate. In general, pressure regulating devices for controlling the discharged flow rate by irrigation units are needed due to the variability of pressure conditions. A pressure regulating valve PRV is the commonly used pressure regulating device in a hydrant, which, also, executes the open and close function. A hydrant feeds several irrigation units, requiring a wide range in flow rate. In addition, some flow meters are also available, one as a component of the hydrant and the rest are placed downstream. Every land owner has one flow meter for each group of field plots downstream the hydrant. Ideal PRV performance would maintain a constant downstream pressure. However, the true performance depends on both upstream pressure and the discharged flow rate. Theoretical flow rates values have been introduced into a PRV behavioral model, validated in laboratory, coupled with an on-demand irrigation district waterworks, composed by a distribution network and a multi-pump station. Variations on flow rate are simulated by taking into account the consequences of variations on climate conditions and also decisions in irrigation operation, such us duration and frequency application. The model comprises continuity, dynamic and energy equations of the components of both the PRV and the water distribution network. In this work the estimation of water balance terms during the irrigation events in an irrigation campaign has been simulated. The effect of demand concentration peaks has been estimated.

  5. The Sustainability of Irrigation Schemes Under Climate Change

    NASA Astrophysics Data System (ADS)

    Naabil, E.; Lamptey, B. L.; Arnault, J.; Ayorinde, O. A.; Kunstmann, H.

    2015-12-01

    Irrigation is considered to be one of the best practices in agriculture to ensure food security. However water resources that are used for Irrigation activities are increasingly coming under stress, either due to extraction or climate variability and change. To adequately plan and manage water resources so as to ensure their sustainability requires a long term investigations of streamflow and climate. Streamflow analysis and forecasting gives signal of the occurrence of floods and drought situations. However the ability to maximise these early warning signal, especially for small watersheds, require the use of rainfall predictions approaches (Yucel et al., 2015). One approach to extend the predictions of these early warning signals is the coupling of mesoscale numerical weather prediction (NWP) model precipitation estimates with a spatial resolution hydrological model into streamflow estimates (Jasper et al. 2002;Wardah et al. 2008; Yucel et al. 2015). The study explored (1) the potential of the NWP model (WRF) in reproducing observed precipitation over the Tono basin in West Africa, and (2) the potential of a coupled version of WRF with a physics-based hydrological model (WRF-Hydro) in estimating river streamflow. In order to cope with the lack of discharge observation in the Tono basin, the WRF-Hydro performances are evaluated with a water balance approach and dam level observation. The WRF-Hydro predicted dam level is relatively close to the observation (dam level) from January to August (R2=0.93). After this period the deviation from observation increases (R2=0.62). This could be attributed to surface runoff due to peak rainfall (in August) resulting in soil saturation (soil reaching infiltration capacity) into the dam which has not been accounted for in the water balance model. WRF-Hydro has shown to give good estimation of streamflow especially for ungauged stations. Further works requires using WRF-Hydro modeling system for climate projection, and assess the

  6. Requirements for characterization of DWPF canister welds and labels, and estimates of service life

    SciTech Connect

    Plodinec, M.J.; Harbour, J.R.; Marra, S.L.

    1993-01-11

    The Department of Energy has established specifications for the DWPF product, which require that the DWPF provide estimates of the service life of the canister label, provide assurance that the DWPF canister will be leaktight when shipped, demonstrate that the contents of the canistered waste form will not lead to internal corrosion of the canister. The DWPF has elected to meet these requirements, in part, by characterizing canisters produced in the facility during the Startup Test Program. This includes canisters filled on the pour turntable (normal conditions) and canisters filled on the drain turntable (credible upset conditions expected to be more severe due to higher temperatures). This document identifies the requirements for characterization of the canister fabrication welds and canister labels (characterization of canister closure welds is being performed by Equipment Engineering Section), and for estimation of their service life in DWPF`s Glass Waste Storage Building.

  7. Requirements for characterization of DWPF canister welds and labels, and estimates of service life

    SciTech Connect

    Plodinec, M.J.; Harbour, J.R.; Marra, S.L.

    1993-01-11

    The Department of Energy has established specifications for the DWPF product, which require that the DWPF provide estimates of the service life of the canister label, provide assurance that the DWPF canister will be leaktight when shipped, demonstrate that the contents of the canistered waste form will not lead to internal corrosion of the canister. The DWPF has elected to meet these requirements, in part, by characterizing canisters produced in the facility during the Startup Test Program. This includes canisters filled on the pour turntable (normal conditions) and canisters filled on the drain turntable (credible upset conditions expected to be more severe due to higher temperatures). This document identifies the requirements for characterization of the canister fabrication welds and canister labels (characterization of canister closure welds is being performed by Equipment Engineering Section), and for estimation of their service life in DWPF's Glass Waste Storage Building.

  8. Space transfer vehicle concepts and requirements study. Volume 3, book 1: Program cost estimates

    NASA Technical Reports Server (NTRS)

    Peffley, Al F.

    1991-01-01

    The Space Transfer Vehicle (STV) Concepts and Requirements Study cost estimate and program planning analysis is presented. The cost estimating technique used to support STV system, subsystem, and component cost analysis is a mixture of parametric cost estimating and selective cost analogy approaches. The parametric cost analysis is aimed at developing cost-effective aerobrake, crew module, tank module, and lander designs with the parametric cost estimates data. This is accomplished using cost as a design parameter in an iterative process with conceptual design input information. The parametric estimating approach segregates costs by major program life cycle phase (development, production, integration, and launch support). These phases are further broken out into major hardware subsystems, software functions, and tasks according to the STV preliminary program work breakdown structure (WBS). The WBS is defined to a low enough level of detail by the study team to highlight STV system cost drivers. This level of cost visibility provided the basis for cost sensitivity analysis against various design approaches aimed at achieving a cost-effective design. The cost approach, methodology, and rationale are described. A chronological record of the interim review material relating to cost analysis is included along with a brief summary of the study contract tasks accomplished during that period of review and the key conclusions or observations identified that relate to STV program cost estimates. The STV life cycle costs are estimated on the proprietary parametric cost model (PCM) with inputs organized by a project WBS. Preliminary life cycle schedules are also included.

  9. Remote sensing techniques for monitoring and managing irrigated lands

    NASA Astrophysics Data System (ADS)

    Allan, J. A.

    Agriculture in semi-arid tracts of the world depends on water to sustain its irrigation systems. Such agricultural systems either derive from government investments in the control of surface flow or they have been developed through the exploitation of groundwater sometimes by a large community of unsupervised individuals seeking to maximise their own advantage without concern for the resource upon which they depend in the medium and long term. In both cases government agencies need data on the area irrigated and the volume of water used. In countries with highly developed scientific and agricultural institutions the contribution of remote sensing, though significant, may only provide between five and ten per cent of the data required to guide regional and national managers. In countries without such institutions the proportion contributed by remote sensing can be very much higher, as shown in a recent study in North Africa. The paper will emphasise the importance of carefully structured sampling procedures, both to improve the areal estimates from satellite imagery and the estimates of water use based upon them. The role of satellite imagery in providing information on the status of water resources, on trends in water use and in the implementation of policies to extend or diminish irrigated land are discussed.

  10. Irrigation in endodontics.

    PubMed

    Haapasalo, Markus; Shen, Ya; Qian, Wei; Gao, Yuan

    2010-04-01

    The success of endodontic treatment depends on the eradication of microbes from the root-canal system and prevention of reinfection. The root canal is shaped with hand and rotary instruments under constant irrigation to remove the inflamed and necrotic tissue, microbes/biofilms, and other debris from the root-canal space. Irrigants have traditionally been delivered into the root-canal space using syringes and metal needles of different size and tip design. Clinical experience and research have shown, however, that this classic approach typically results in ineffective irrigation. Many of the compounds used for irrigation have been chemically modified and several mechanical devices have been developed to improve the penetration and effectiveness of irrigation. This article summarizes the chemistry, biology, and procedures for safe and efficient irrigation and provides cutting-edge information on the most recent developments. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Root canal irrigants.

    PubMed

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-10-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were 'root canal irrigants' and 'endodontic irrigants.' The reference lists of each article were manually checked for additional articles of relevance.

  12. Estimating Agricultural Water Use using the Operational Simplified Surface Energy Balance Evapotranspiration Estimation Method

    NASA Astrophysics Data System (ADS)

    Forbes, B. T.

    2015-12-01

    Due to the predominantly arid climate in Arizona, access to adequate water supply is vital to the economic development and livelihood of the State. Water supply has become increasingly important during periods of prolonged drought, which has strained reservoir water levels in the Desert Southwest over past years. Arizona's water use is dominated by agriculture, consuming about seventy-five percent of the total annual water demand. Tracking current agricultural water use is important for managers and policy makers so that current water demand can be assessed and current information can be used to forecast future demands. However, many croplands in Arizona are irrigated outside of areas where water use reporting is mandatory. To estimate irrigation withdrawals on these lands, we use a combination of field verification, evapotranspiration (ET) estimation, and irrigation system qualification. ET is typically estimated in Arizona using the Modified Blaney-Criddle method which uses meteorological data to estimate annual crop water requirements. The Modified Blaney-Criddle method assumes crops are irrigated to their full potential over the entire growing season, which may or may not be realistic. We now use the Operational Simplified Surface Energy Balance (SSEBop) ET data in a remote-sensing and energy-balance framework to estimate cropland ET. SSEBop data are of sufficient resolution (30m by 30m) for estimation of field-scale cropland water use. We evaluate our SSEBop-based estimates using ground-truth information and irrigation system qualification obtained in the field. Our approach gives the end user an estimate of crop consumptive use as well as inefficiencies in irrigation system performance—both of which are needed by water managers for tracking irrigated water use in Arizona.

  13. Requirements for accurate estimation of anisotropic material parameters by magnetic resonance elastography: A computational study.

    PubMed

    Tweten, D J; Okamoto, R J; Bayly, P V

    2017-01-17

    To establish the essential requirements for characterization of a transversely isotropic material by magnetic resonance elastography (MRE). Three methods for characterizing nearly incompressible, transversely isotropic (ITI) materials were used to analyze data from closed-form expressions for traveling waves, finite-element (FE) simulations of waves in homogeneous ITI material, and FE simulations of waves in heterogeneous material. Key properties are the complex shear modulus μ2 , shear anisotropy ϕ=μ1/μ2-1, and tensile anisotropy ζ=E1/E2-1. Each method provided good estimates of ITI parameters when both slow and fast shear waves with multiple propagation directions were present. No method gave accurate estimates when the displacement field contained only slow shear waves, only fast shear waves, or waves with only a single propagation direction. Methods based on directional filtering are robust to noise and include explicit checks of propagation and polarization. Curl-based methods led to more accurate estimates in low noise conditions. Parameter estimation in heterogeneous materials is challenging for all methods. Multiple shear waves, both slow and fast, with different propagation directions, must be present in the displacement field for accurate parameter estimates in ITI materials. Experimental design and data analysis can ensure that these requirements are met. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. Simulated errors in deep drainage beneath irrigated settings: Partitioning vegetation, texture and irrigation effects using Monte Carlo

    NASA Astrophysics Data System (ADS)

    Gibson, J. P.; Gates, J. B.; Nasta, P.

    2014-12-01

    Groundwater in irrigated regions is impacted by timing and rates of deep drainage. Because field monitoring of deep drainage is often cost prohibitive, numerical soil water models are frequently the main method of estimation. Unfortunately, few studies have quantified the relative importance of likely error sources. In this study, three potential error sources are considered within a Monte Carlo framework: water retention parameters, rooting depth, and irrigation practice. Error distributions for water retention parameters were determined by 1) laboratory hydraulic measurements and 2) pedotransfer functions. Error distributions for rooting depth were developed from literature values. Three irrigation scheduling regimes were considered: one representing pre-scheduled irrigation ignoring preceding rainfall, one representing pre-scheduled irrigation that was altered based on preceding rainfall, and one representing algorithmic irrigation scheduling informed by profile matric potential sensors. This approach was applied to an experimental site in Nebraska with silt loam soils and irrigated corn for 2002-2012. Results are based on Six Monte-Carlo simulations, each consisting of 1000 Hydrus 1D simulations at daily timesteps, facilitated by parallelization on a 12-node computing cluster. Results indicate greater sensitivity to irrigation regime than to hydraulic or vegetation parameters (median values for prescheduled irrigation, prescheduled irrigation altered by rainfall, and algorithmic irrigation were 310 ,100, and 110 mm/yr, respectively). Error ranges were up to 700% higher for pedotransfer functions than for laboratory-measured hydraulic functions. Deep drainage was negatively correlated with alpha and maximum root zone depth and, for some scenarios, positively correlated with n. The relative importance of error sources differed amongst the irrigation scenarios because of nonlinearities amongst parameter values, profile wetness, and deep drainage. Compared to pre

  15. Evaluation of thermal X/5-detector Skylab S-192 data for estimating evapotranspiration and thermal properties of soils for irrigation management

    NASA Technical Reports Server (NTRS)

    Moore, D. G.; Horton, M. L.; Russell, M. J.; Myers, V. I.

    1975-01-01

    An energy budget approach to evaluating the SKYLAB X/5-detector S-192 data for prediction of soil moisture and evapotranspiration rate was pursued. A test site which included both irrigated and dryland agriculture in Southern Texas was selected for the SL-4 SKYLAB mission. Both vegetated and fallow fields were included. Data for a multistage analysis including ground, NC-130B aircraft, RB-57F aircraft, and SKYLAB altitudes were collected. The ground data included such measurements as gravimetric soil moisture, percent of the ground covered by green vegetation, soil texture, net radiation, soil temperature gradients, surface emittance, soil heat flux, air temperature and humidity gradients, and cultural practices. Ground data were used to characterize energy budgets and to evaluate the utility of an energy budget approach for determining soil moisture differences among twelve specific agricultural fields.

  16. An approach to estimating future manpower requirements in physical and occupational therapy.

    PubMed

    MacKinnon, J R; Stark, A J

    1984-01-01

    This paper reports the approach used in a physical therapy (PT) and occupational therapy (OT) manpower requirements study conducted in British Columbia, Canada. A total of 426 questionnaires were mailed to likely employers of PTs and OTs, and to PTs in private practice. After telephone reminders and a second mailing, the overall response rate was 83.3%. The results of the survey indicated that, by 1986, respective PT and OT department heads were anticipating a 60% increase in demand for PTs and a 102% increase for OTs, while agency administrators were suggesting a 76% increase for PTs and a 142% increase for OTs. Although a variety of factors--all largely beyond the control of both respondents and researchers--will determine the degree to which these estimates actually reflect the future demand for these manpower groups, it should be noted that, for both disciplines, the anticipated increase was substantially greater than the level experienced in the five years preceding the survey. The estimation approach used in this study considers nonrespondents; it is a procedure which permits investigators to offer a more accurate picture of the current manpower situation while using a more realistic base on which to estimate future requirements. The development of the requirement side in the supply/requirement equations of manpower studies may be well served in the future with this approach.

  17. Estimates of the energy deficit required to reverse the trend in childhood obesity in Australian schoolchildren

    PubMed Central

    Davey, Rachel; de Castella, F. Robert

    2015-01-01

    Abstract Objectives: To estimate: 1) daily energy deficit required to reduce the weight of overweight children to within normal range; 2) time required to reach normal weight for a proposed achievable (small) target energy deficit of 0.42 MJ/day; 3) impact that such an effect may have on prevalence of childhood overweight. Methods: Body mass index and fitness were measured in 31,424 Australian school children aged between 4.5 and 15 years. The daily energy deficit required to reduce weight to within normal range for the 7,747 (24.7%) overweight children was estimated. Further, for a proposed achievable target energy deficit of 0.42 MJ/day, the time required to reach normal weight was estimated. Results: About 18% of children were overweight and 6.6% obese; 69% were either sedentary or light active. If an energy deficit of 0.42 MJ/day could be achieved, 60% of overweight children would reach normal weight and the current prevalence of overweight of 24.7% (24.2%–25.1%) would be reduced to 9.2% (8.9%–9.6%) within about 15 months. Conclusions: The prevalence of overweight in Australian school children could be reduced significantly within one year if even a small daily energy deficit could be achieved by children currently classified as overweight or obese. PMID:26561382

  18. Implications of a needs-based approach to estimating psychiatric workforce requirements.

    PubMed

    Faulkner, Larry R

    2003-01-01

    The author reviews a needs-based approach to estimating psychiatric workforce requirements that entails five determinations: (1) number of people with mental health problems, (2) number of people needing mental health treatment, (3) number of people needing psychiatric treatment, (4) amount of psychiatric time required to meet patient needs, and (5) amount of time psychiatrists have available to provide direct patient care. Questions, issues, and strategies raised by the needs-based approach are outlined. The author suggests that only a coordinated, carefully orchestrated effort among national psychiatric organizations will ensure that the future psychiatric workforce is adequate to meet the needs of the mentally ill.

  19. Technical note: A procedure to estimate glucose requirements of an activated immune system in steers.

    PubMed

    Kvidera, S K; Horst, E A; Abuajamieh, M; Mayorga, E J; Sanz Fernandez, M V; Baumgard, L H

    2016-11-01

    Infection and inflammation impede efficient animal productivity. The activated immune system ostensibly requires large amounts of energy and nutrients otherwise destined for synthesis of agriculturally relevant products. Accurately determining the immune system's in vivo energy needs is difficult, but a better understanding may facilitate developing nutritional strategies to maximize productivity. The study objective was to estimate immune system glucose requirements following an i.v. lipopolysaccharide (LPS) challenge. Holstein steers (148 ± 9 kg; = 15) were jugular catheterized bilaterally and assigned to 1 of 3 i.v.

  20. An approach to estimating human resource requirements to achieve the Millennium Development Goals.

    PubMed

    Dreesch, Norbert; Dolea, Carmen; Dal Poz, Mario R; Goubarev, Alexandre; Adams, Orvill; Aregawi, Maru; Bergstrom, Karin; Fogstad, Helga; Sheratt, Della; Linkins, Jennifer; Scherpbier, Robert; Youssef-Fox, Mayada

    2005-09-01

    In the context of the Millennium Development Goals, human resources represent the most critical constraint in achieving the targets. Therefore, it is important for health planners and decision-makers to identify what are the human resources required to meet those targets. Planning the human resources for health is a complex process. It needs to consider both the technical aspects related to estimating the number, skills and distribution of health personnel for meeting population health needs, and the political implications, values and choices that health policy- and decision-makers need to make within given resources limitations. After presenting an overview of the various methods for planning human resources for health, with their advantages and limitations, this paper proposes a methodological approach to estimating the requirements of human resources to achieve the goals set forth by the Millennium Declaration. The method builds on the service-target approach and functional job analysis.

  1. Technical Note: On the Matt-Shuttleworth approach to estimate crop water requirements

    NASA Astrophysics Data System (ADS)

    Lhomme, J. P.; Boudhina, N.; Masmoudi, M. M.

    2014-11-01

    The Matt-Shuttleworth method provides a way to make a one-step estimate of crop water requirements with the Penman-Monteith equation by translating the crop coefficients, commonly available in United Nations Food and Agriculture Organization (FAO) publications, into equivalent surface resistances. The methodology is based upon the theoretical relationship linking crop surface resistance to a crop coefficient and involves the simplifying assumption that the reference crop evapotranspiration (ET0) is equal to the Priestley-Taylor estimate with a fixed coefficient of 1.26. This assumption, used to eliminate the dependence of surface resistance on certain weather variables, is questionable; numerical simulations show that it can lead to substantial differences between the true value of surface resistance and its estimate. Consequently, the basic relationship between surface resistance and crop coefficient, without any assumption, appears to be more appropriate for inferring crop surface resistance, despite the interference of weather variables.

  2. Bioenergetics model for estimating food requirements of female Pacific walruses (Odobenus rosmarus divergens)

    USGS Publications Warehouse

    Noren, S.R.; Udevitz, M.S.; Jay, C.V.

    2012-01-01

    Pacific walruses Odobenus rosmarus divergens use sea ice as a platform for resting, nursing, and accessing extensive benthic foraging grounds. The extent of summer sea ice in the Chukchi Sea has decreased substantially in recent decades, causing walruses to alter habitat use and activity patterns which could affect their energy requirements. We developed a bioenergetics model to estimate caloric demand of female walruses, accounting for maintenance, growth, activity (active in-water and hauled-out resting), molt, and reproductive costs. Estimates for non-reproductive females 0–12 yr old (65−810 kg) ranged from 16359 to 68960 kcal d−1 (74−257 kcal d−1 kg−1) for years with readily available sea ice for which we assumed animals spent 83% of their time in water. This translated into the energy content of 3200–5960 clams per day, equivalent to 7–8% and 14–9% of body mass per day for 5–12 and 2–4 yr olds, respectively. Estimated consumption rates of 12 yr old females were minimally affected by pregnancy, but lactation had a large impact, increasing consumption rates to 15% of body mass per day. Increasing the proportion of time in water to 93%, as might happen if walruses were required to spend more time foraging during ice-free periods, increased daily caloric demand by 6–7% for non-lactating females. We provide the first bioenergetics-based estimates of energy requirements for walruses and a first step towards establishing bioenergetic linkages between demography and prey requirements that can ultimately be used in predicting this population’s response to environmental change.

  3. SU-E-T-364: Estimating the Minimum Number of Patients Required to Estimate the Required Planning Target Volume Margins for Prostate Glands

    SciTech Connect

    Bakhtiari, M; Schmitt, J; Sarfaraz, M; Osik, C

    2015-06-15

    Purpose: To establish a minimum number of patients required to obtain statistically accurate Planning Target Volume (PTV) margins for prostate Intensity Modulated Radiation Therapy (IMRT). Methods: A total of 320 prostate patients, consisting of a total number of 9311 daily setups, were analyzed. These patients had gone under IMRT treatments. Daily localization was done using the skin marks and the proper shifts were determined by the CBCT to match the prostate gland. The Van Herk formalism is used to obtain the margins using the systematic and random setup variations. The total patient population was divided into different grouping sizes varying from 1 group of 320 patients to 64 groups of 5 patients. Each grouping was used to determine the average PTV margin and its associated standard deviation. Results: Analyzing all 320 patients lead to an average Superior-Inferior margin of 1.15 cm. The grouping with 10 patients per group (32 groups) resulted to an average PTV margin between 0.6–1.7 cm with the mean value of 1.09 cm and a standard deviation (STD) of 0.30 cm. As the number of patients in groups increases the mean value of average margin between groups tends to converge to the true average PTV of 1.15 cm and STD decreases. For groups of 20, 64, and 160 patients a Superior-Inferior margin of 1.12, 1.14, and 1.16 cm with STD of 0.22, 0.11, and 0.01 cm were found, respectively. Similar tendency was observed for Left-Right and Anterior-Posterior margins. Conclusion: The estimation of the required margin for PTV strongly depends on the number of patients studied. According to this study at least ∼60 patients are needed to calculate a statistically acceptable PTV margin for a criterion of STD < 0.1 cm. Numbers greater than ∼60 patients do little to increase the accuracy of the PTV margin estimation.

  4. Model requirements for estimating and reporting soil C stock changes in national greenhouse gas inventories

    NASA Astrophysics Data System (ADS)

    Didion, Markus; Blujdea, Viorel; Grassi, Giacomo; Hernández, Laura; Jandl, Robert; Kriiska, Kaie; Lehtonen, Aleksi; Saint-André, Laurent

    2016-04-01

    Globally, soils are the largest terrestrial store of carbon (C) and small changes may contribute significantly to the global C balance. Due to the potential implications for climate change, accurate and consistent estimates of C fluxes at the large-scale are important as recognized, for example, in international agreements such as the United Nations Framework Convention on Climate Change (UNFCCC). Under the UNFCCC and also under the Kyoto Protocol it is required to report C balances annually. Most measurement-based soil inventories are currently not able to detect annual changes in soil C stocks consistently across space and representative at national scales. The use of models to obtain relevant estimates is considered an appropriate alternative under the UNFCCC and the Kyoto Protocol. Several soil carbon models have been developed but few models are suitable for a consistent application across larger-scales. Consistency is often limited by the lack of input data for models, which can result in biased estimates and, thus, the reporting criteria of accuracy (i.e., emission and removal estimates are systematically neither over nor under true emissions or removals) may be met. Based on a qualitative assessment of the ability to meet criteria established for GHG reporting under the UNFCCC including accuracy, consistency, comparability, completeness, and transparency, we identified the suitability of commonly used simulation models for estimating annual C stock changes in mineral soil in European forests. Among six discussed simulation models we found a clear trend toward models for providing quantitative precise site-specific estimates which may lead to biased estimates across space. To meet reporting needs for national GHG inventories, we conclude that there is a need for models producing qualitative realistic results in a transparent and comparable manner. Based on the application of one model along a gradient from Boreal forests in Finland to Mediterranean forests

  5. Estimating blood transfusion requirements in preparation for a major earthquake: the Tehran, Iran study.

    PubMed

    Tabatabaie, Morteza; Ardalan, Ali; Abolghasemi, Hassan; Holakouie Naieni, Kourosh; Pourmalek, Farshad; Ahmadi, Batool; Shokouhi, Mostafa

    2010-01-01

    Tehran, Iran, with a population of approximately seven million people, is at a very high risk for a devastating earthquake. This study aims to estimate the number of units of blood required at the time of such an earthquake. To assume the damage of an earthquake in Tehran, the researchers applied the Centre for Earthquake and Environmental Studies of Tehran/Japan International Cooperation Agency (CEST/JICA) fault-activation scenarios, and accordingly estimated the injury-to-death ratio (IDR), hospital admission rate (HAR), and blood transfusion rate (BTR). The data were based on Iran's major earthquakes during last two decades. The following values were considered for the analysis: (1) IDR = 1, 2, and 3; (2) HAR = 0.25 and 0.35; and (3) BTR = 0.05, 0.07, and 0.10. The American Association of Blood Banks' formula was adapted to calculate total required numbers of Type- O red blood cell (RBC) units. Calculations relied on the following assumptions: (1) no change in Tehran's vulnerability from CEST/JICA study time; (2) no functional damage to Tehran Blood Transfusion Post; and (3) standards of blood safety are secure during the disaster responses. Surge capacity was estimated based on the Bam earthquake experience. The maximum, optimum, and minimum blood deficits were calculated accordingly. No deficit was estimated in case of the Mosha fault activation and the optimum scenario of North Tehran fault. The maximum blood deficit was estimated from the activation of the Ray fault, requiring up to 107,293 and 95,127 units for the 0-24 hour and the 24-72 hour periods after the earthquake, respectively. The optimum deficit was estimated up to 46,824 and 16,528 units for 0-24 hour and 24-72 hour period after the earthquake, respectively. In most Tehran earthquake scenarios, a shortage of blood was estimated to surge the capacity of all blood transfusion posts around the country within first three days, as it might ask for a 2-8 times more than what the system had produced

  6. Investigating the Potential for Rice Production with Sprinkler Irrigation

    USDA-ARS?s Scientific Manuscript database

    Almost all rice (Oryza sativa L.) produced in the US Mid-South is grown in a flooded culture that requires considerably more irrigation water than other crops grown in the region. One approach investigated for reducing the water requirements for rice involved producing rice with sprinkler irrigation...

  7. Irrigation Systems. Instructor's Guide.

    ERIC Educational Resources Information Center

    Amarillo Coll., TX.

    This guide is intended for use by licensed irrigators who wish to teach others how to design and install residential and commercial irrigation systems. The materials included in the guide have been developed under the assumption that the instructors who use it have little or no formal training as teachers. The first section presents detailed…

  8. Irrigating forest plantations

    Treesearch

    Edward A. Hansen

    1983-01-01

    Irrigating forest plantations cannot be justified economically on yield increases alone under present market conditions. Other factors such as bringing noncommercial land into high production, insuring a constant wood supply, or providing a means to dispose of wastewater can add to the value of increasing yields and may make irrigation feasible in certain situations....

  9. Irrigation Systems. Student's Guide.

    ERIC Educational Resources Information Center

    Amarillo Coll., TX.

    This guide is intended for use by individuals preparing for a career in commercial and residential irrigation. The materials included are geared toward students who have had some experience in the irrigation business; they are intended to be presented in 10 six-hour sessions. The first two sections deal with using this guide and preparing for the…

  10. 'Smart' Irrigation Systems

    SciTech Connect

    Hastbacka, Mildred; Dieckmann, John; Brodrick, James

    2012-08-31

    The article discusses the ASHRAE Standard 189, with mandatory and optional provisions related to water use efficiency, then focuses on the use of water efficient irrigation systems and the use of recycled water such as air conditioner condensate for landscaping irrigation. Benefits of such practices include both water and energy savings.

  11. Improving Surface Irrigation Performance

    USDA-ARS?s Scientific Manuscript database

    Surface irrigation systems often have a reputation for poor performance. One key feature of efficient surface irrigation systems is precision (e.g. laser-guided) land grading. Poor land grading can make other improvements ineffective. An important issue, related to land shaping, is developing the pr...

  12. Irrigation Without Waste

    ERIC Educational Resources Information Center

    Shea, Kevin P.

    1975-01-01

    A new means of irrigation, called the drip or trickle system, has been proven more efficient and less wasteful than the current system of flood irrigation. As a result of this drip system, fertilizer-use efficiency is improved and crop yield, though never decreased, is sometimes increased in some crops. (MA)

  13. Irrigation Without Waste

    ERIC Educational Resources Information Center

    Shea, Kevin P.

    1975-01-01

    A new means of irrigation, called the drip or trickle system, has been proven more efficient and less wasteful than the current system of flood irrigation. As a result of this drip system, fertilizer-use efficiency is improved and crop yield, though never decreased, is sometimes increased in some crops. (MA)

  14. SDI versus MESA Irrigation

    USDA-ARS?s Scientific Manuscript database

    It is known that irrigation application method can impact crop water use and water use efficiency, but the mechanisms involved are incompletely understood, particularly in terms of the water and energy balances during the growing season from pre-irrigation through planting, early growth and yield de...

  15. Assessing Potential Land Suitability for Surface Irrigation using Groundwater in Ethiopia

    NASA Astrophysics Data System (ADS)

    Worqlul, A. W.; Jeong, J.; Osorio, J.; Gerik, T.; Yihun, D.; Srinivan, R.; Clark, N.

    2016-12-01

    Although Ethiopia has large land areas that can potentially be developed for surface irrigation, only a fraction of the potential available land has been utilized. This paper presents evaluation of the potential lands in Ethiopia that are suitable for irrigation using groundwater. The suitable land was identified using GIS-based Multi-Criteria Evaluation (MCE) techniques applying a GIS model. The factors used were identified from literature and from experts in the region. Factors considered includes physical land features (land use, soil and slope), climate characteristics (rainfall and evapotranspiration), and market access (proximity to roads and access to market). Factors were weighted using a pair-wise comparison matrix, reclassified, and overlaid to identify the suitable areas for groundwater irrigation at 1 km grid. Groundwater data from the British Geological Survey were used to estimate potential groundwater availability and analyze the irrigation potential for dominant crops. Simulated output from SWAT could be used in areas where data is not available. Result indicates that approximately 6.0 million ha of land in Ethiopia is suitable for surface irrigation. A large portion of this suitable land is located in the Abbay, Rift Valley, Omo Ghibe, and Awash River basins, which all also have shallow groundwater access (< 20 m from the surface). The comparison between available groundwater and total crop water requirements indicated that current groundwater resources in the basins are not capable of irrigating all suitable land independently, but groundwater resources are a good option for supplementing current surface water resources in many regions. The study indicated that only 8 % of the suitable land could be irrigated with the groundwater within the grid.

  16. Root canal irrigants

    PubMed Central

    Kandaswamy, Deivanayagam; Venkateshbabu, Nagendrababu

    2010-01-01

    Successful root canal therapy relies on the combination of proper instrumentation, irrigation, and obturation of the root canal. Of these three essential steps of root canal therapy, irrigation of the root canal is the most important determinant in the healing of the periapical tissues. The primary endodontic treatment goal must thus be to optimize root canal disinfection and to prevent reinfection. In this review of the literature, various irrigants and the interactions between irrigants are discussed. We performed a Medline search for English-language papers published untill July 2010. The keywords used were ‘root canal irrigants’ and ‘endodontic irrigants.’ The reference lists of each article were manually checked for additional articles of relevance. PMID:21217955

  17. Estimated maintenance and repair requirements for coal-fired propulsion systems. Final report

    SciTech Connect

    Little, D.E.; Murtagh, M.M.

    1982-06-01

    This study was directed toward identifying unique maintenance and repair requirements in terms of manpower and materials for coal-fired steam turbine propulsion plant ships. The method of approach included surveys of industrial and marine coal-fired plant operators and coal-firing equipment manufacturers to obtain a data base of manpower and material requirements for a range of plant sizes and operating scenarios. A national coal-fired plant was then developed and the maintenance data base adapted to the marine coal-fired system. From this information, required crew manpower was determined and compared to typical oil-fired systems and associated manpower availability evaluated. Material and contract manpower costs were assessed and parametric data developed to allow potential operators to estimate daily maintenance and repair costs.

  18. Arsenic contamination in food-chain: transfer of arsenic into food materials through groundwater irrigation.

    PubMed

    Huq, S M Imamul; Joardar, J C; Parvin, S; Correll, Ray; Naidu, Ravi

    2006-09-01

    Arsenic contamination in groundwater in Bangladesh has become an additional concern vis-à-vis its use for irrigation purposes. Even if arsenic-safe drinking-water is assured, the question of irrigating soils with arsenic-laden groundwater will continue for years to come. Immediate attention should be given to assess the possibility of accumulating arsenic in soils through irrigation-water and its subsequent entry into the food-chain through various food crops and fodders. With this possibility in mind, arsenic content of 2,500 water, soil and vegetable samples from arsenic-affected and arsenic-unaffected areas were analyzed during 1999-2004. Other sources of foods and fodders were also analyzed. Irrigating a rice field with groundwater containing 0.55 mg/L of arsenic with a water requirement of 1,000 mm results in an estimated addition of 5.5 kg of arsenic per ha per annum. Concentration of arsenic as high as 80 mg per kg of soil was found in an area receiving arsenic-contaminated irrigation. A comparison of results from affected and unaffected areas revealed that some commonly-grown vegetables, which would usually be suitable as good sources of nourishment, accumulate substantially-elevated amounts of arsenic. For example, more than 150 mg/kg of arsenic has been found to be accumulated in arum (kochu) vegetable. Implications of arsenic ingested in vegetables and other food materials are discussed in the paper.

  19. Arsenic Contamination in Food-chain: Transfer of Arsenic into Food Materials through Groundwater Irrigation

    PubMed Central

    Joardar, J.C.; Parvin, S.; Correll, Ray; Naidu, Ravi

    2006-01-01

    Arsenic contamination in groundwater in Bangladesh has become an additional concern vis-à-vis its use for irrigation purposes. Even if arsenic-safe drinking-water is assured, the question of irrigating soils with arsenic-laden groundwater will continue for years to come. Immediate attention should be given to assess the possibility of accumulating arsenic in soils through irrigation-water and its subsequent entry into the food-chain through various food crops and fodders. With this possibility in mind, arsenic content of 2,500 water, soil and vegetable samples from arsenic-affected and arsenic-unaffected areas were analyzed during 1999–2004. Other sources of foods and fodders were also analyzed. Irrigating a rice field with groundwater containing 0.55 mg/L of arsenic with a water requirement of 1,000 mm results in an estimated addition of 5.5 kg of arsenic per ha per annum. Concentration of arsenic as high as 80 mg per kg of soil was found in an area receiving arsenic-contaminated irrigation. A comparison of results from affected and unaffected areas revealed that some commonly-grown vegetables, which would usually be suitable as good sources of nourishment, accumulate substantially-elevated amounts of arsenic. For example, more than 150 mg/kg of arsenic has been found to be accumulated in arum (kochu) vegetable. Implications of arsenic ingested in vegetables and other food materials are discussed in the paper. PMID:17366772

  20. Surgical Care Required for Populations Affected by Climate-related Natural Disasters: A Global Estimation.

    PubMed

    Lee, Eugenia E; Stewart, Barclay; Zha, Yuanting A; Groen, Thomas A; Burkle, Frederick M; Kushner, Adam L

    2016-08-10

    Climate extremes will increase the frequency and severity of natural disasters worldwide.  Climate-related natural disasters were anticipated to affect 375 million people in 2015, more than 50% greater than the yearly average in the previous decade. To inform surgical assistance preparedness, we estimated the number of surgical procedures needed.   The numbers of people affected by climate-related disasters from 2004 to 2014 were obtained from the Centre for Research of the Epidemiology of Disasters database. Using 5,000 procedures per 100,000 persons as the minimum, baseline estimates were calculated. A linear regression of the number of surgical procedures performed annually and the estimated number of surgical procedures required for climate-related natural disasters was performed. Approximately 140 million people were affected by climate-related natural disasters annually requiring 7.0 million surgical procedures. The greatest need for surgical care was in the People's Republic of China, India, and the Philippines. Linear regression demonstrated a poor relationship between national surgical capacity and estimated need for surgical care resulting from natural disaster, but countries with the least surgical capacity will have the greatest need for surgical care for persons affected by climate-related natural disasters. As climate extremes increase the frequency and severity of natural disasters, millions will need surgical care beyond baseline needs. Countries with insufficient surgical capacity will have the most need for surgical care for persons affected by climate-related natural disasters. Estimates of surgical are particularly important for countries least equipped to meet surgical care demands given critical human and physical resource deficiencies.

  1. Surgical Care Required for Populations Affected by Climate-related Natural Disasters: A Global Estimation

    PubMed Central

    Lee, Eugenia E.; Stewart, Barclay; Zha, Yuanting A.; Groen, Thomas A.; Burkle, Frederick M.; Kushner, Adam L.

    2016-01-01

    Background: Climate extremes will increase the frequency and severity of natural disasters worldwide.  Climate-related natural disasters were anticipated to affect 375 million people in 2015, more than 50% greater than the yearly average in the previous decade. To inform surgical assistance preparedness, we estimated the number of surgical procedures needed.   Methods: The numbers of people affected by climate-related disasters from 2004 to 2014 were obtained from the Centre for Research of the Epidemiology of Disasters database. Using 5,000 procedures per 100,000 persons as the minimum, baseline estimates were calculated. A linear regression of the number of surgical procedures performed annually and the estimated number of surgical procedures required for climate-related natural disasters was performed. Results: Approximately 140 million people were affected by climate-related natural disasters annually requiring 7.0 million surgical procedures. The greatest need for surgical care was in the People’s Republic of China, India, and the Philippines. Linear regression demonstrated a poor relationship between national surgical capacity and estimated need for surgical care resulting from natural disaster, but countries with the least surgical capacity will have the greatest need for surgical care for persons affected by climate-related natural disasters. Conclusion: As climate extremes increase the frequency and severity of natural disasters, millions will need surgical care beyond baseline needs. Countries with insufficient surgical capacity will have the most need for surgical care for persons affected by climate-related natural disasters. Estimates of surgical are particularly important for countries least equipped to meet surgical care demands given critical human and physical resource deficiencies. PMID:27617165

  2. From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2011-02-01

    With vast regions already experiencing water shortages, it is becoming imperative to manage sustainably the available water resources. As agriculture is by far the most important user of freshwater and the role of irrigation is projected to increase in face of climate change and increased food requirements, it is particularly important to develop simple, widely applicable models of irrigation water needs for short- and long-term water resource management. Such models should synthetically provide the key irrigation quantities (volumes, frequencies, etc.) for different irrigation schemes as a function of the main soil, crop, and climatic features, including rainfall unpredictability. Here we consider often-employed irrigation methods (e.g., surface and sprinkler irrigation systems, as well as modern micro-irrigation techniques) and describe them under a unified conceptual and theoretical framework, which includes rainfed agriculture and stress-avoidance irrigation as extreme cases. We obtain mostly analytical solutions for the stochastic steady state of soil moisture probability density function with random rainfall timing and amount, and compute water requirements as a function of climate, crop, and soil parameters. These results provide the necessary starting point for a full assessment of irrigation strategies, with reference to sustainability, productivity, and profitability, developed in a companion paper [Vico G, Porporato A. From rainfed agriculture to stress-avoidance irrigation: II. Sustainability, crop yield, and net profit. Adv Water Resour 2011;34(2):272-81].

  3. Grower demand for sensor-controlled irrigation

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Erik; Majsztrik, John; Saavoss, Monica

    2015-01-01

    Water scarcity is likely to increase in the coming years, making improvements in irrigation efficiency increasingly important. An emerging technology that promises to increase irrigation efficiency substantially is a wireless irrigation sensor network that uploads sensor data into irrigation management software, creating an integrated system that allows real-time monitoring and control of moisture status that has been shown in experimental settings to reduce irrigation costs, lower plant loss rates, shorten production times, decrease pesticide application, and increase yield, quality, and profit. We use an original survey to investigate likely initial acceptance, ceiling adoption rates, and profitability of this new sensor network technology in the nursery and greenhouse industry. We find that adoption rates for a base system and demand for expansion components are decreasing in price, as expected. The price elasticity of the probability of adoption suggests that sensor networks are likely to diffuse at a rate somewhat greater than that of drip irrigation. Adoption rates for a base system and demand for expansion components are increasing in specialization in ornamental production: growers earning greater shares of revenue from greenhouse and nursery operations are willing to pay more for a base system and are willing to purchase larger numbers of expansion components at any given price. We estimate that growers who are willing to purchase a sensor network expect investment in this technology to generate significant profit, consistent with findings from experimental studies.

  4. Participatory approach: from problem identification to setting strategies for increased productivity and sustainability in small scale irrigated agriculture

    NASA Astrophysics Data System (ADS)

    Habtu, Solomon; Ludi, Eva; Jamin, Jean Yves; Oates, Naomi; Fissahaye Yohannes, Degol

    2014-05-01

    Practicing various innovations pertinent to irrigated farming at local field scale is instrumental to increase productivity and yield for small holder farmers in Africa. However the translation of innovations from local scale to the scale of a jointly operated irrigation scheme is far from trivial. It requires insight on the drivers for adoption of local innovations within the wider farmer communities. Participatory methods are expected to improve not only the acceptance of locally developed innovations within the wider farmer communities, but to allow also an estimation to which extend changes will occur within the entire irrigation scheme. On such a base, more realistic scenarios of future water productivity within an irrigation scheme, which is operated by small holder farmers, can be estimated. Initial participatory problem and innovation appraisal was conducted in Gumselassa small scale irrigation scheme, Ethiopia, from Feb 27 to March 3, 2012 as part of the EAU4FOOD project funded by EC. The objective was to identify and appraise problems which hinder sustainable water management to enhance production and productivity and to identify future research strategies. Workshops were conducted both at local (Community of Practices) and regional (Learning Practice Alliance) level. At local levels, intensive collaboration with farmers using participatory methods produced problem trees and a "Photo Safari" documented a range of problems that negatively impact on productive irrigated farming. A range of participatory methods were also used to identify local innovations. At regional level a Learning Platform was established that includes a wide range of stakeholders (technical experts from various government ministries, policy makers, farmers, extension agents, researchers). This stakeholder group did a range of exercise as well to identify major problems related to irrigated smallholder farming and already identified innovations. Both groups identified similar problems

  5. Estimating sugarcane water requirements for biofuel feedstock production in Maui, Hawaii using satellite imagery

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Anderson, R. G.; Wang, D.

    2011-12-01

    Water availability is one of the limiting factors for sustainable production of biofuel crops. A common method for determining crop water requirement is to multiply daily potential evapotranspiration (ETo) calculated from meteorological parameters by a crop coefficient (Kc) to obtain actual crop evapotranspiration (ETc). Generic Kc values are available for many crop types but not for sugarcane in Maui, Hawaii, which grows on a relatively unstudied biennial cycle. In this study, an algorithm is being developed to estimate sugarcane Kc using normalized difference vegetation index (NDVI) derived from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) imagery. A series of ASTER NDVI maps were used to depict canopy development over time or fractional canopy cover (fc) which was measured with a handheld multispectral camera in the fields during satellite overpass days. Canopy cover was correlated with NDVI values. Then the NDVI based canopy cover was used to estimate Kc curves for sugarcane plants. The remotely estimated Kc and ETc values were compared and validated with ground-truth ETc measurements. The approach is a promising tool for large scale estimation of evapotranspiration of sugarcane or other biofuel crops.

  6. Modeling the future of irrigation: A parametric description of pressure compensating drip irrigation emitter performance.

    PubMed

    Shamshery, Pulkit; Wang, Ruo-Qian; Tran, Davis V; Winter V, Amos G

    2017-01-01

    Drip irrigation is a means of distributing the exact amount of water a plant needs by dripping water directly onto the root zone. It can produce up to 90% more crops than rain-fed irrigation, and reduce water consumption by 70% compared to conventional flood irrigation. Drip irrigation may enable millions of poor farmers to rise out of poverty by growing more and higher value crops, while not contributing to overconsumption of water. Achieving this impact will require broadening the engineering knowledge required to design new, low-cost, low-power drip irrigation technology, particularly for poor, off-grid communities in developing countries. For more than 50 years, pressure compensating (PC) drip emitters-which can maintain a constant flow rate under variations in pressure, to ensure uniform water distribution on a field-have been designed and optimized empirically. This study presents a parametric model that describes the fluid and solid mechanics that govern the behavior of a common PC emitter architecture, which uses a flexible diaphragm to limit flow. The model was validated by testing nine prototypes with geometric variations, all of which matched predicted performance to within R2 = 0.85. This parametric model will enable irrigation engineers to design new drip emitters with attributes that improve performance and lower cost, which will promote the use of drip irrigation throughout the world.

  7. Modeling the future of irrigation: A parametric description of pressure compensating drip irrigation emitter performance

    PubMed Central

    Wang, Ruo-Qian; Tran, Davis V.; Winter V, Amos G.

    2017-01-01

    Drip irrigation is a means of distributing the exact amount of water a plant needs by dripping water directly onto the root zone. It can produce up to 90% more crops than rain-fed irrigation, and reduce water consumption by 70% compared to conventional flood irrigation. Drip irrigation may enable millions of poor farmers to rise out of poverty by growing more and higher value crops, while not contributing to overconsumption of water. Achieving this impact will require broadening the engineering knowledge required to design new, low-cost, low-power drip irrigation technology, particularly for poor, off-grid communities in developing countries. For more than 50 years, pressure compensating (PC) drip emitters—which can maintain a constant flow rate under variations in pressure, to ensure uniform water distribution on a field—have been designed and optimized empirically. This study presents a parametric model that describes the fluid and solid mechanics that govern the behavior of a common PC emitter architecture, which uses a flexible diaphragm to limit flow. The model was validated by testing nine prototypes with geometric variations, all of which matched predicted performance to within R2 = 0.85. This parametric model will enable irrigation engineers to design new drip emitters with attributes that improve performance and lower cost, which will promote the use of drip irrigation throughout the world. PMID:28384355

  8. Estimation of fan pressure ratio requirements and operating performance for the National Transonic Facility

    NASA Technical Reports Server (NTRS)

    Gloss, B. B.; Nystrom, D.

    1981-01-01

    The National Transonic Facility (NTF), a fan-driven, transonic, pressurized, cryogenic wind tunnel, will operate over the Mach number range of 0.10 to 1.20 with stagnation pressures varying from 1.00 to about 8.8 atm and stagnation temperatures varying from 77 to 340 K. The NTF is cooled to cryogenic temperatures by the injection of liquid nitrogen into the tunnel stream with gaseous nitrogen as the test gas. The NTF can also operate at ambient temperatures using a conventional chilled water heat exchanger with air on nitrogen as the test gas. The methods used in estimating the fan pressure ratio requirements are described. The estimated NTF operating envelopes at Mach numbers from 0.10 to 1.20 are presented.

  9. Online decision support system for surface irrigation management

    NASA Astrophysics Data System (ADS)

    Wang, Wenchao; Cui, Yuanlai

    2017-04-01

    Irrigation has played an important role in agricultural production. Irrigation decision support system is developed for irrigation water management, which can raise irrigation efficiency with few added engineering services. An online irrigation decision support system (OIDSS), in consist of in-field sensors and central computer system, is designed for surface irrigation management in large irrigation district. Many functions have acquired in OIDSS, such as data acquisition and detection, real-time irrigation forecast, water allocation decision and irrigation information management. The OIDSS contains four parts: Data acquisition terminals, Web server, Client browser and Communication system. Data acquisition terminals are designed to measure paddy water level, soil water content in dry land, ponds water level, underground water level, and canals water level. A web server is responsible for collecting meteorological data, weather forecast data, the real-time field data, and manager's feedback data. Water allocation decisions are made in the web server. Client browser is responsible for friendly displaying, interacting with managers, and collecting managers' irrigation intention. Communication system includes internet and the GPRS network used by monitoring stations. The OIDSS's model is based on water balance approach for both lowland paddy and upland crops. Considering basic database of different crops water demands in the whole growth stages and irrigation system engineering information, the OIDSS can make efficient decision of water allocation with the help of real-time field water detection and weather forecast. This system uses technical methods to reduce requirements of user's specialized knowledge and can also take user's managerial experience into account. As the system is developed by the Browser/Server model, it is possible to make full use of the internet resources, to facilitate users at any place where internet exists. The OIDSS has been applied in

  10. 25 CFR 171.220 - What must I do to my farm unit to receive irrigation service?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What must I do to my farm unit to receive irrigation... WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Service § 171.220 What must I do to my farm unit to receive irrigation service? You must meet the following requirements for us to provide service: (a...

  11. 25 CFR 171.220 - What must I do to my farm unit to receive irrigation service?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false What must I do to my farm unit to receive irrigation... WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Service § 171.220 What must I do to my farm unit to receive irrigation service? You must meet the following requirements for us to provide service: (a...

  12. 25 CFR 171.220 - What must I do to my farm unit to receive irrigation service?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true What must I do to my farm unit to receive irrigation... WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Service § 171.220 What must I do to my farm unit to receive irrigation service? You must meet the following requirements for us to provide service: (a...

  13. 25 CFR 171.220 - What must I do to my farm unit to receive irrigation service?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false What must I do to my farm unit to receive irrigation... WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Service § 171.220 What must I do to my farm unit to receive irrigation service? You must meet the following requirements for us to provide service: (a...

  14. 25 CFR 171.220 - What must I do to my farm unit to receive irrigation service?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false What must I do to my farm unit to receive irrigation... WATER IRRIGATION OPERATION AND MAINTENANCE Irrigation Service § 171.220 What must I do to my farm unit to receive irrigation service? You must meet the following requirements for us to provide service: (a...

  15. A multisector analysis of urban irrigation and water savings potential

    NASA Astrophysics Data System (ADS)

    Bijoor, N.; Kim, H.; Famiglietti, J. S.

    2014-12-01

    Urban irrigation strains limited water supplies in semi-arid areas such as Orange County, CA, yet the quantity and controlling factors of urban irrigation are not well understood. The goals of this research are to (1) quantify and compare landscape irrigation applied by residential and commercial sectors in various retail agencies at a parcel scale (2) determine over- and under-irrigation compared to theoretical need (3) determine the climatic and socioeconomic controls on landscape irrigation. A research partnership was established between six water retail agencies in Orange County, CA representing a wide range of climatic and economic conditions. These agencies contributed between 3 and 13 years of water use data on a monthly/bimonthly basis. Irrigation depth (mm) was estimated using the "minimum month method," and landscape evapotranspiration was calculated using the Hargreaves equation for 122,345 parcels. Multiple regressions of water use were conducted with climatic and socioeconomic variables as possible explanatory variables. Single family residences accounted for the majority of urban water use. Findings from 112,192 single family residences (SFRs) show that total and indoor water use declined, though irrigation did not significantly change. Average irrigation for SFRs was 94 L/day, and a large proportion (42%) of irrigation was applied in excess to landscapes. Air temperature was found to be the primary driver of irrigation. We mapped over-irrigation relative to plant water demand to highlight areas that can be targeted for water conservation efforts. We also show the water savings that would be gained by improving the efficiency of irrigation systems. The information gained in this study would be useful for developing water use efficiency policies and/or educational programs to promote sustainable irrigation practices at the individual parcel scale.

  16. A Reevaluation of Price Elasticities for Irrigation Water

    NASA Astrophysics Data System (ADS)

    Howitt, Richard E.; Watson, William D.; Adams, Richard M.

    1980-08-01

    The effectiveness of pricing systems in the allocation of irrigation water is linked with the price elasticity of demand of farmers for water. Using microeconomic theory, it is shown that omission of the elasticity of demand for the crop produced leads to an inelastic bias in the demand for irrigated water. Linear programing approaches omit the product elasticity of demand and are consequently biased, whereas quadratic programing approaches to estimating derived demands for irrigation water include product demand functions. The difference between the resulting estimates are empirically demonstrated for regional derived demand functions estimated from a model of California's agricultural industry.

  17. Irrigation in endodontics.

    PubMed

    Haapasalo, M; Shen, Y; Wang, Z; Gao, Y

    2014-03-01

    Irrigation is a key part of successful root canal treatment. It has several important functions, which may vary according to the irrigant used: it reduces friction between the instrument and dentine, improves the cutting effectiveness of the files, dissolves tissue, cools the file and tooth, and furthermore, it has a washing effect and an antimicrobial/antibiofilm effect. Irrigation is also the only way to impact those areas of the root canal wall not touched by mechanical instrumentation. Sodium hypochlorite is the main irrigating solution used to dissolve organic matter and kill microbes effectively. High concentration sodium hypochlorite (NaOCl) has a better effect than 1 and 2% solutions. Ethylenediaminetetraacetic acid (EDTA) is needed as a final rinse to remove the smear layer. Sterile water or saline may be used between these two main irrigants, however, they must not be the only solutions used. The apical root canal imposes a special challenge to irrigation as the balance between safety and effectiveness is particularly important in this area. Different means of delivery are used for root canal irrigation, from traditional syringe-needle delivery to various machine-driven systems, including automatic pumps and sonic or ultrasonic energy.

  18. Refugee issues. Summary of WFP / UNHCR guidelines for estimating food and nutritional requirements.

    PubMed

    1997-12-01

    In line with recent recommendations by WHO and the Committee on International Nutrition, WFP and UNHCR will now use 2100 kcal/person/day as the initial energy requirement for designing food aid rations in emergencies. In an emergency situation, it is essential to establish such a value to allow for rapid planning and response to the food and nutrition requirements of an affected population. An in-depth assessment is often not possible in the early days of an emergency, and an estimated value is needed to make decisions about the immediate procurement and shipment of food. The initial level is applicable only in the early stages of an emergency. As soon as demographic, health, nutritional and food security information is available, the estimated per capita energy requirements should be adjusted accordingly. Food rations should complement any food that the affected population is able to obtain on its own through activities such as agricultural production, trade, labor, and small business. An understanding of the various mechanisms used by the population to gain access to food is essential to give an accurate estimate of food needs. Therefore, a prerequisite for the design of a longer-term ration is a thorough assessment of the degree of self-reliance and level of household food security. Frequent assessments are necessary to adequately determine food aid needs on an ongoing basis. The importance of ensuring a culturally acceptable, adequate basic ration for the affected population at the onset of an emergency is considered to be one of the basic principles in ration design. The quality of the ration provided, particularly in terms of micronutrients, is stressed in the guidelines, and levels provided will aim to conform with standards set by other technical agencies. full text

  19. Integration of satellite-based energy balance with simulation models applied to irrigation management at an irrigation scheme of southern Spain

    NASA Astrophysics Data System (ADS)

    Santos, Cristina; Lorite, Ignacio J.; Tasumi, Masahiro; Allen, Richard G.; Gavilán, Pedro; Fereres, Elías

    2007-10-01

    This paper combines a water balance model with satellite-based remote-sensing estimates of evapotranspiration (ET) to provide accurate irrigation scheduling guidelines for individual fields. The satellite-derived ET was used in the daily soil water balance model to improve accuracy of field-by-field ET demands and subsequent field-scale irrigation schedules. The combination of satellite-based ET with daily soil water balance incorporates the advantages of satellite remote-sensing and daily calculation time steps, namely, high spatial resolution and high temporal resolution. The procedure was applied to Genil - Cabra Irrigation Scheme in Spain, where irrigation water supply is often limited by regional drought. Compared with traditional applications of water balance models (i.e. without the satellite-based ET), the combined procedure provided significant improvements in irrigation schedules for both the average condition and when considering field-to-field variability. A 24% reduction in water use was estimated for cotton if the improved irrigation schedules were followed. Irrigation efficiency calculated using satellite-based ET and actual applied irrigation water helped to identify specific agricultural fields experiencing problems in water management, as well as to estimate general irrigation efficiencies of the scheme by irrigation and crop type. Estimation of field irrigation efficiency ranged from 0.72 for cotton to 0.90 for sugar beet.

  20. Mapping irrigation potential from renewable groundwater in Africa - a quantitative hydrological approach

    NASA Astrophysics Data System (ADS)

    Altchenko, Y.; Villholth, K. G.

    2015-02-01

    Groundwater provides an important buffer to climate variability in Africa. Yet, groundwater irrigation contributes only a relatively small share of cultivated land, approximately 1% (about 2 × 106 hectares) as compared to 14% in Asia. While groundwater is over-exploited for irrigation in many parts in Asia, previous assessments indicate an underutilized potential in parts of Africa. As opposed to previous country-based estimates, this paper derives a continent-wide, distributed (0.5° spatial resolution) map of groundwater irrigation potential, indicated in terms of fractions of cropland potentially irrigable with renewable groundwater. The method builds on an annual groundwater balance approach using 41 years of hydrological data, allocating only that fraction of groundwater recharge that is in excess after satisfying other present human needs and environmental requirements, while disregarding socio-economic and physical constraints in access to the resource. Due to high uncertainty of groundwater environmental needs, three scenarios, leaving 30, 50 and 70% of recharge for the environment, were implemented. Current dominating crops and cropping rotations and associated irrigation requirements in a zonal approach were applied in order to convert recharge excess to potential irrigated cropland. Results show an inhomogeneously distributed groundwater irrigation potential across the continent, even within individual countries, mainly reflecting recharge patterns and presence or absence of cultivated cropland. Results further show that average annual renewable groundwater availability for irrigation ranges from 692 to 1644 km3 depending on scenario. The total area of cropland irrigable with renewable groundwater ranges from 44.6 to 105.3 × 106 ha, corresponding to 20.5 to 48.6% of the cropland over the continent. In particular, significant potential exists in the semi-arid Sahel and eastern African regions which could support poverty alleviation if developed

  1. Comparison of optimal irrigation scheduling and groundwater recharge at representative sites in the North China Plain

    NASA Astrophysics Data System (ADS)

    Ma, Ying

    2014-05-01

    The North China Plain (NCP) is an important food production area in China, facing an increasing water shortage and overexploitation of groundwater. It is critical to optimize the irrigation scheduling and accurately estimate groundwater recharge for saving water and increasing crop water use efficiency. However, the water cycle and crop responses to irrigation are quite various in different areas, because of the spatial variation of climatic, soil, water table and other management practices in the NCP. In this study, three representative sites (LC site in the piedmont plain, TZ site in the northern alluvial and lacustrine plain, YC site in the southern alluvial and lacustrine plain) were selected to compare the optimal irrigation scheduling and corresponding groundwater recharge under different hydrological years for winter wheat-summer maize double cropping system. At each site, a physically based agro-hydrological model (SWAP) was calibrated using field data of soil moisture. Then, scenarios under different irrigation time and amount were simulated. Results showed that the optimal irrigation scheduling and corresponding groundwater recharge were significant different between the three representative sites. The mean water table depth at the LC (33.0 m), YC (10.3 m), and TZ site (2.5 m) caused great different time lags of infiltrated water and groundwater contribution to evapotranspiration. Then, the most irrigation amount was required for the TZ site but the least requirement for the YC site at each hydrologic year. As most clay contents in the deep soils at the LC site increased tortuosity and limited water movement, which resulted in lower rates of recharge compared to more sandy soils at the other two sites. Averagely, using the optimal irrigation scheduling could save 2.04×109 m3 irrigation water and reduce about 84.3% groundwater over-exploitation in winter wheat growth period in the NCP. Therefore, comparison of the simulation results among the three

  2. Space transfer vehicle concepts and requirements. Volume 3: Program cost estimates

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Space Transfer Vehicle (STV) Concepts and Requirements Study has been an eighteen-month study effort to develop and analyze concepts for a family of vehicles to evolve from an initial STV system into a Lunar Transportation System (LTS) for use with the Heavy Lift Launch Vehicle (HLLV). The study defined vehicle configurations, facility concepts, and ground and flight operations concepts. This volume reports the program cost estimates results for this portion of the study. The STV Reference Concept described within this document provides a complete LTS system that performs both cargo and piloted Lunar missions.

  3. Comparing the speed of irrigation between pulsatile lavage versus gravity irrigation: an Ex-vivo experimental investigation.

    PubMed

    Mundy, Lily R; Gage, Mark J; Yoon, Richard S; Liporace, Frank A

    2017-01-01

    The need for reoperation or wound infection treatments between pulsatile and gravity irrigation are statistically equivalent, however, it is unclear which method maximizes operative efficiency and expeditious irrigation. In this study we set out to determine the differences in irrigation rate between these various treatment methods. This was an ex-vivo experimental laboratory study not involving human subjects. Irrigation rates were tested based on the time in seconds required to empty a three-liter bag of normal saline hanging at either 6 or 9 ft. Three forms of irrigation were tested: gravity irrigation (GI6, GI9), low-pressure pulsatile irrigation (LP6, LP9) and high-pressure pulsatile irrigation. One-way ANOVA and Student's t-test were used to compare rates based on height and form of irrigation. Significant differences in irrigation rates were noted at 6 ft between all three forms of irrigation with gravity irrigation the fastest followed by high-pressure and low-pressure pulsatile irrigation (GI6, mean 142 s ± 3.2; HP6, mean 189 s ± 10.2; LP6, mean 323 s ± 22.5; p < 0.001). This difference was also found at 9 ft (GI9, mean 114 s ± 1.5; HP9, mean 186 s ± 10.5; LP9, mean 347 s ± 3.5; p < 0.001). Gravity irrigation was significantly faster (p < 0.001) at an increased height, whereas the high and low-pressure irrigation rates were unaffected by height. List price comparison found pulsatile irrigation to cost approximately 3.3 times more than gravity lavage. Gravity irrigation provided the most rapid rate of irrigation tested, regardless of the height. With existing literature demonstrating equivalent clinical outcomes between methods, gravity lavage offers a faster and potentially more cost-effective form of irrigation.

  4. Evaluation of alternative methods for estimating reference evapotranspiration

    USDA-ARS?s Scientific Manuscript database

    Evapotranspiration is an important component in water-balance and irrigation scheduling models. While the FAO-56 Penman-Monteith method has become the de facto standard for estimating reference evapotranspiration (ETo), it is a complex method requiring several weather parameters. Required weather ...

  5. Comparative study of irrigation water use and groundwater recharge under various irrigation schemes in an agricultural region, central Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2016-04-01

    The risk of rice production has increased notably due to climate change in Taiwan. To respond to growing agricultural water shortage without affecting normal food production in the future, the application of water-saving irrigation will be a substantial resolution. However, the adoption of water-saving irrigation may result in the reducing of groundwater recharge because continuous flooding in the paddy fields could be regarded as an important source for groundwater recharge. The aim of this study was to evaluate the irrigation water-saving benefit and groundwater recharge deficit when adopting the System of Rice Intensification, known as SRI methodology, in the Choushui River alluvial fan (the largest groundwater pumping and the most important rice-cropping region in central Taiwan). The three-dimensional finite element groundwater model, FEMWATER, was applied to simulate the infiltration process and groundwater recharge under SRI methodology and traditional irrigation schemes including continuous irrigation, and rotational irrigation in two rice-crop periods with hydro-climatic data of 2013. The irrigation water use was then calculated by water balance. The results showed that groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reduced 3.6% and 1.6% in the first crop period, and reduced 3.2% and 1.6% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. However, the SRI methodology achieved notably water-saving benefit compared to the disadvantage of reducing the groundwater recharge amount. The field irrigation requirement amount of SRI methodology was significantly lower than those of traditional irrigation schemes, saving 37% and 20% of irrigation water in the first crop period, and saving 53% and 35% in the second crop period, compared with continuous irrigation and rotational irrigation, respectively. Therefore, the amount of groundwater pumping for

  6. Advances in sprinkler irrigation management

    USDA-ARS?s Scientific Manuscript database

    Sprinkler irrigation is being increasingly adopted in the US and worldwide because it offers increased crop water productivity over what is possible with gravity irrigation. Most sprinkler irrigation is by center pivot, which is presently used on about 50 and 80 percent of land irrigated in the US a...

  7. Monitoring of flood irrigation for the characterization of irrigation practices of grassland fields in the Crau region (South of France)

    NASA Astrophysics Data System (ADS)

    Alkassem Alosman, Mohamed; Ruy, Stéphane; Olioso, Albert; Flamain, Fabrice

    2015-04-01

    Surface irrigation (flooding and furrow) is the main irrigation technic in the world. This irrigation system is known as having poor water efficiency and that results in very large water losses through drainage and runoff out the field. Although these unused water amounts can generate positive externalities (wetlands and groundwater recharge), a decreased of water volume used in surface irrigation is sought in a context of limited water resource. In the Crau area (South of France), more than 12,500 ha of grassland are irrigated by flooding. There, at the regional scale, it is estimated that the water volumes brought into the field are very high; and ranges from 15,000; up to 20,000 m3.h-1.year-1; more than 78% of these amounts recharges the Crau aquifer (Saos, 2006). However, the actual volumes which are injected to the plot surface (the " irrigation dose ") are insufficiently known, because of the diversity of encountered agricultural practices and fields topography. For better characterizing these practices, a campaign of irrigation monitoring has been carried out during an irrigation season (March to September 2014) on a set of representative plots of soil variability, practices, and different stages of hay grow. Each grassland field has been also characterized from a topographical and pedological view point. A mobile device for measurements (soil moisture and water level probes, photographic monitoring, soil sampling, .. ) was deployed for each irrigation. A total of 35 irrigation events were followed. The data obtained allow describing accurately and quantitatively the variability in encountered irrigation practices. Combined with a flood irrigation model (Model CALHY, Bader et al., 2010, Hydrol. Sci. J., 55, 177-191), these data will be used to calculate the water balance at the field scale: amounts of injected, infiltrated and lost water by runoff or drainage. They will also offer different ways for optimizing the irrigation efficiency.

  8. Simulated climate effects of desert irrigation geoengineering

    PubMed Central

    Cheng, Wei; Moore, John C.; Cao, Long; Ji, Duoying; Zhao, Liyun

    2017-01-01

    Geoengineering, the deliberate large-scale manipulation of earth’s energy balance to counteract global warming, is an attractive proposition for sparsely populated deserts. We use the BNU and UVic Earth system models to simulate the effects of irrigating deserts under the RCP8.5 scenario. Previous studies focused on increasing desert albedo to reduce global warming; in contrast we examine how extending afforestation and ecological projects, that successfully improve regional environments, fair for geoengineering purposes. As expected desert irrigation allows vegetation to grow, with bare soil or grass gradually becoming shrub or tree covered, with increases in terrestrial carbon storage of 90.3 Pg C (UVic-ESCM) – 143.9 Pg C (BNU-ESM). Irrigating global deserts makes the land surface temperature decrease by 0.48 °C and land precipitation increase by 100 mm yr−1. In the irrigated areas, BNU-ESM simulates significant cooling of up to 4.2 °C owing to the increases in low cloud and latent heat which counteract the warming effect due to decreased surface albedo. Large volumes of water would be required to maintain global desert irrigation, equivalent 10 mm/year of global sea level (BNU-ESM) compensate for evapotranspiration losses. Differences in climate responses between the deserts prompt research into tailored albedo-irrigation schemes. PMID:28418005

  9. Simulated climate effects of desert irrigation geoengineering.

    PubMed

    Cheng, Wei; Moore, John C; Cao, Long; Ji, Duoying; Zhao, Liyun

    2017-04-18

    Geoengineering, the deliberate large-scale manipulation of earth's energy balance to counteract global warming, is an attractive proposition for sparsely populated deserts. We use the BNU and UVic Earth system models to simulate the effects of irrigating deserts under the RCP8.5 scenario. Previous studies focused on increasing desert albedo to reduce global warming; in contrast we examine how extending afforestation and ecological projects, that successfully improve regional environments, fair for geoengineering purposes. As expected desert irrigation allows vegetation to grow, with bare soil or grass gradually becoming shrub or tree covered, with increases in terrestrial carbon storage of 90.3 Pg C (UVic-ESCM) - 143.9 Pg C (BNU-ESM). Irrigating global deserts makes the land surface temperature decrease by 0.48 °C and land precipitation increase by 100 mm yr(-1). In the irrigated areas, BNU-ESM simulates significant cooling of up to 4.2 °C owing to the increases in low cloud and latent heat which counteract the warming effect due to decreased surface albedo. Large volumes of water would be required to maintain global desert irrigation, equivalent 10 mm/year of global sea level (BNU-ESM) compensate for evapotranspiration losses. Differences in climate responses between the deserts prompt research into tailored albedo-irrigation schemes.

  10. Simulated climate effects of desert irrigation geoengineering

    NASA Astrophysics Data System (ADS)

    Cheng, Wei; Moore, John C.; Cao, Long; Ji, Duoying; Zhao, Liyun

    2017-04-01

    Geoengineering, the deliberate large-scale manipulation of earth’s energy balance to counteract global warming, is an attractive proposition for sparsely populated deserts. We use the BNU and UVic Earth system models to simulate the effects of irrigating deserts under the RCP8.5 scenario. Previous studies focused on increasing desert albedo to reduce global warming; in contrast we examine how extending afforestation and ecological projects, that successfully improve regional environments, fair for geoengineering purposes. As expected desert irrigation allows vegetation to grow, with bare soil or grass gradually becoming shrub or tree covered, with increases in terrestrial carbon storage of 90.3 Pg C (UVic-ESCM) - 143.9 Pg C (BNU-ESM). Irrigating global deserts makes the land surface temperature decrease by 0.48 °C and land precipitation increase by 100 mm yr-1. In the irrigated areas, BNU-ESM simulates significant cooling of up to 4.2 °C owing to the increases in low cloud and latent heat which counteract the warming effect due to decreased surface albedo. Large volumes of water would be required to maintain global desert irrigation, equivalent 10 mm/year of global sea level (BNU-ESM) compensate for evapotranspiration losses. Differences in climate responses between the deserts prompt research into tailored albedo-irrigation schemes.

  11. Competing conservation objectives for predators and prey: estimating killer whale prey requirements for Chinook salmon.

    PubMed

    Williams, Rob; Krkošek, Martin; Ashe, Erin; Branch, Trevor A; Clark, Steve; Hammond, Philip S; Hoyt, Erich; Noren, Dawn P; Rosen, David; Winship, Arliss

    2011-01-01

    Ecosystem-based management (EBM) of marine resources attempts to conserve interacting species. In contrast to single-species fisheries management, EBM aims to identify and resolve conflicting objectives for different species. Such a conflict may be emerging in the northeastern Pacific for southern resident killer whales (Orcinus orca) and their primary prey, Chinook salmon (Oncorhynchus tshawytscha). Both species have at-risk conservation status and transboundary (Canada-US) ranges. We modeled individual killer whale prey requirements from feeding and growth records of captive killer whales and morphometric data from historic live-capture fishery and whaling records worldwide. The models, combined with caloric value of salmon, and demographic and diet data for wild killer whales, allow us to predict salmon quantities needed to maintain and recover this killer whale population, which numbered 87 individuals in 2009. Our analyses provide new information on cost of lactation and new parameter estimates for other killer whale populations globally. Prey requirements of southern resident killer whales are difficult to reconcile with fisheries and conservation objectives for Chinook salmon, because the number of fish required is large relative to annual returns and fishery catches. For instance, a U.S. recovery goal (2.3% annual population growth of killer whales over 28 years) implies a 75% increase in energetic requirements. Reducing salmon fisheries may serve as a temporary mitigation measure to allow time for management actions to improve salmon productivity to take effect. As ecosystem-based fishery management becomes more prevalent, trade-offs between conservation objectives for predators and prey will become increasingly necessary. Our approach offers scenarios to compare relative influence of various sources of uncertainty on the resulting consumption estimates to prioritise future research efforts, and a general approach for assessing the extent of conflict

  12. Competing Conservation Objectives for Predators and Prey: Estimating Killer Whale Prey Requirements for Chinook Salmon

    PubMed Central

    Williams, Rob; Krkošek, Martin; Ashe, Erin; Branch, Trevor A.; Clark, Steve; Hammond, Philip S.; Hoyt, Erich; Noren, Dawn P.; Rosen, David; Winship, Arliss

    2011-01-01

    Ecosystem-based management (EBM) of marine resources attempts to conserve interacting species. In contrast to single-species fisheries management, EBM aims to identify and resolve conflicting objectives for different species. Such a conflict may be emerging in the northeastern Pacific for southern resident killer whales (Orcinus orca) and their primary prey, Chinook salmon (Oncorhynchus tshawytscha). Both species have at-risk conservation status and transboundary (Canada–US) ranges. We modeled individual killer whale prey requirements from feeding and growth records of captive killer whales and morphometric data from historic live-capture fishery and whaling records worldwide. The models, combined with caloric value of salmon, and demographic and diet data for wild killer whales, allow us to predict salmon quantities needed to maintain and recover this killer whale population, which numbered 87 individuals in 2009. Our analyses provide new information on cost of lactation and new parameter estimates for other killer whale populations globally. Prey requirements of southern resident killer whales are difficult to reconcile with fisheries and conservation objectives for Chinook salmon, because the number of fish required is large relative to annual returns and fishery catches. For instance, a U.S. recovery goal (2.3% annual population growth of killer whales over 28 years) implies a 75% increase in energetic requirements. Reducing salmon fisheries may serve as a temporary mitigation measure to allow time for management actions to improve salmon productivity to take effect. As ecosystem-based fishery management becomes more prevalent, trade-offs between conservation objectives for predators and prey will become increasingly necessary. Our approach offers scenarios to compare relative influence of various sources of uncertainty on the resulting consumption estimates to prioritise future research efforts, and a general approach for assessing the extent of conflict

  13. Assessment of the efficiency and water productivity in the Spanish irrigation associations "Canal Toro-Zamora" and "Canal Villagonzalo" from the Duero basin

    NASA Astrophysics Data System (ADS)

    Rodriguez-Sinobas, Leonor; Amado Mendoza Hidalgo, Edwin

    2017-04-01

    Within a water scarcity scenario, the irrigated agriculture economic sector would be affected by the reduction on water supply and this might have a negative impact on the National gross income. Water for irrigation in Spain comprises the 75% of total consumption. Therefore, the search for irrigation strategies dealing with sustainable irrigation by saving water and improving the environment quality is encouraged. Within this framework the assessment of water use in the irrigation districts to assist water stakeholder decisions is reinforced. Water resources can be assessed at field scheme or regional scale by analyzing the water use efficiency and the water productivity indicators. Which determine the water availability and the water supply quality in irrigation areas. Among then, the following are broadly used: water productivity WP, and irrigation water productivity IWP, annual relative water supply (ARWS) and the annual relative irrigation water supply (ARIS). Keeping in mind the water scarcity scenario for irrigation in the short and long term and the probably scenario of water allocation for different uses following criteria of efficiency and productivity, this work is aimed at assessing the water use efficiency and water productivity of two modernized Spanish irrigation districts CCRRs: "Canal Toro-Zamora" and "Canal Villagonzalo" from the Duero basin. For that purpose, the above indicators were estimated for years 2014 and 2015. Crop water requirements are needed to calculate the indicators. For this study, maize was chosen since it is the major crop in the area and its water needs were estimated with the FAO program Cropwat. Local crop coefficients (Kc) were determined with the open access application SpiderWebGis (http://maps.spiderwebgis.org/webgis/) which uses satelital images to monitor Kc coefficients in all crops across Spain. In both CCRRs the maize Kc coefficients were similar for all the phenology stages although a slightly spatial variability was

  14. Satellite Mapping of Agricultural Water Requirements in California

    NASA Astrophysics Data System (ADS)

    Melton, F. S.; Lund, C.; Johnson, L.; Guzman, A.; Hiatt, S.; Post, K.; Adhikari, D.; Rosevelt, C.; Keefauver, S.; Miller, G.; Michaelis, A.; Votava, P.; Temesgen, B.; Frame, K.; Nemani, R. R.

    2013-12-01

    Satellite mapping of evapotranspiration (ET) from irrigated agricultural lands can provide water managers and agricultural producers with information that can be used to optimize agricultural water use, especially in regions with limited water supplies. In particular, the timely delivery of information on agricultural crop water requirements has the potential to make irrigation scheduling more practical, convenient, and accurate. We present findings from the development and deployment of a prototype system for irrigation scheduling and management support in California. The Satellite Irrigation Management Support (SIMS) framework utilizes the NASA Terrestrial Observation and Prediction System to integrate satellite observations and meteorological observations from the California Irrigation Management Information System to map crop canopy development, basal crop coefficients (Kcb), and basal crop evapotranspiration (ETcb) values for multiple crop types in the Central Valley of California at the scale of individual fields. Information is distributed to agricultural producers and water managers via a web-based irrigation management decision support system and web services. We present the prototype system, including comparisons of estimates of ETcb from the prototype system against estimates of ET from other methods, including surface renewal stations and observations from wireless sensor networks deployed in operational agricultural fields across California. We also summarize results from ongoing studies to quantify the benefits of using satellite data to enhance ET-based irrigation management in terms of total applied water, crop yield, and nitrate leaching.

  15. Preliminary estimates of galactic cosmic ray shielding requirements for manned interplanetary missions

    NASA Technical Reports Server (NTRS)

    Townsend, Lawrence W.; Wilson, John W.; Nealy, John E.

    1988-01-01

    Estimates of radiation risk to the blood forming organs from galactic cosmic rays are presented for manned interplanetary missions. The calculations use the Naval Research Laboratory cosmic ray spectrum model as input into the Langley Research Center galactic cosmic ray transport code. This transport code, which transports both heavy ions and nucleons, can be used with any number of layers of target material, consisting of up to five different constituents per layer. Calculated galactic cosmic ray doses and dose equivalents behind various thicknesses of aluminum and water shielding are presented for solar maximum and solar minimum periods. Estimates of risk to the blood forming organs are made using 5 cm depth dose/dose equivalent values for water. These results indicate that at least 5 g/sq cm (5 cm) of water of 6.5 g/sq cm (2.4 cm) of aluminum shield is required to reduce annual exposure below the current recommended limit of 50 rem. Because of the large uncertainties in fragmentation parameters, and the input cosmic ray spectrum, these exposure estimates may be uncertain by as much as 70 percent. Therefore, more detailed analyses with improved inputs could indicate the need for additional shielding.

  16. Preliminary estimates of galactic cosmic ray shielding requirements for manned interplanetary missions

    SciTech Connect

    Townsend, L.W.; Wilson, J.W.; Nealy, J.E.

    1988-10-01

    Estimates of radiation risk to the blood forming organs from galactic cosmic rays are presented for manned interplanetary missions. The calculations use the Naval Research Laboratory cosmic ray spectrum model as input into the Langley Research Center galactic cosmic ray transport code. This transport code, which transports both heavy ions and nucleons, can be used with any number of layers of target material, consisting of up to five different constituents per layer. Calculated galactic cosmic ray doses and dose equivalents behind various thicknesses of aluminum and water shielding are presented for solar maximum and solar minimum periods. Estimates of risk to the blood forming organs are made using 5 cm depth dose/dose equivalent values for water. These results indicate that at least 5 g/sq cm (5 cm) of water of 6.5 g/sq cm (2.4 cm) of aluminum shield is required to reduce annual exposure below the current recommended limit of 50 rem. Because of the large uncertainties in fragmentation parameters, and the input cosmic ray spectrum, these exposure estimates may be uncertain by as much as 70 percent. Therefore, more detailed analyses with improved inputs could indicate the need for additional shielding.

  17. Estimating potential evapotranspiration with improved radiation estimation

    USDA-ARS?s Scientific Manuscript database

    Potential evapotranspiration (PET) is of great importance to estimation of surface energy budget and water balance calculation. The accurate estimation of PET will facilitate efficient irrigation scheduling, drainage design, and other agricultural and meteorological applications. However, accuracy o...

  18. Satellite-based evapotranspiration and crop coefficient for irrigated sorghum in the Gezira scheme, Sudan

    NASA Astrophysics Data System (ADS)

    Bashir, M. A.; Hata, T.; Abdelhadi, A. W.; Tanakamaru, H.; Tada, A.

    2006-06-01

    The availability of the actual water use from agricultural crops is considered as the key factor for irrigation water management, water resources planning, and water allocation. Traditionally, evapotranspiration (ET) has been estimated in the Gezira scheme by multiplying the reference evapotranspiration (ETo) by crop coefficient (kc) which is derived from the phenomenological crop stages. Recently, advanced developed energy balance models assist to estimate ET through remotely sensed data. In this study Enhanced Thematic Mapper Plus (ETM+) images were used to estimate spatial distribution of daily, monthly and seasonal ET for irrigated sorghum in the Gezira scheme, Sudan. The daily ET maps were also used to estimate kc over time and space. Results of remotely sensed based energy balance were compared with actual measurements conducted during 2004/05 season. The daily actual ET values estimated using the energy balance model during the satellite acquisition dates (28 July, 29 August, 16 October and 17 November) were 4.7, 5.5, 7.1 and 2.7 mm/day, while the average seasonal evapotranspiration for irrigated sorghum estimated to be around 596 mm. The remotely estimated kc values in the initial, crop development, mid-season and late-season stages were 0.62, 0.85, 1.15, and 0.48 respectively. On the other hand the widely used tradition kc values during the pervious mention stages are 0.55, 0.94, 1.21 and 0.65, respectively. This research shows that remotely sensed measurements can help objectively analyzed the irrigation water requirement for different field crops on daily and seasonal time step. Moreover, the remotely sensed real-time data availability provides the system managers with information that not previously available.

  19. Irrigation on Topographic Maps.

    ERIC Educational Resources Information Center

    Raitz, Karl B.

    1979-01-01

    Describes how study of irrigation practices on topographic maps can help students in introductory high school and college geography courses understand man and land relationships to geography. (Author/DB)

  20. Antibacterial efficiency of passive ultrasonic versus sonic irrigation. Ultrasonic root canal irrigation.

    PubMed

    Tardivo, D; Pommel, L; La Scola, B; About, I; Camps, J

    2010-03-01

    To compare the antibacterial effect of the passive ultrasonic to passive sonic irrigation with a 5.25% NaOCI solution. Sixty human teeth were used. The crowns were removed and the roots were instrumented prior to sterilization and incubation with Enterococcus faecalis. Five mL of 5.25% NaOCI were used during a 3 min final rinsing with: syringe irrigation (n = 20), passive ultrasonic irrigation with the Irrisafe (n = 20) and passive sonic irrigation with the Endo Activator (n = 20). A sterile file was used to remove dentine shavings at the apex and placed in BHI. After 72 h, this infusion was used to inoculate blood agar plates. The presence or absence of Enterococcus faecalis colonies was determined and statistically analyzed. No statistically significant difference was found among the 3 groups. None of the irrigation regimen permitted to obtain 100% of bacteria free teeth. The passive agitation of the irrigation solution did not increase its antibacterial efficiency. Longer irrigation times may be required.

  1. Irrigated Agriculture, Saudi Arabia

    NASA Image and Video Library

    1990-01-20

    In Saudi Arabia, center-pivot, swing-arm irrigated agriculture complexes such as the one imaged at Jabal Tuwayq (20.5N, 45.0 E) extract deep fossil water reserves to achieve food crop production self sufficiency in this desert environment. The significance of the Saudi expanded irrigated agriculture is that the depletion of this finite water resource is a short term solution to a long term need that will still exist when the water has been extracted.

  2. Geothermal irrigation pump

    SciTech Connect

    Matthews, H.B.

    1982-04-20

    A deep well pumping apparatus utilizing a geothermal source of energy is disposed within or above a stratum having a cool irrigating fluid, and an associated heat exchange unit is disposed within a stratum having the geothermal source. An organic working fluid is conveyed under pressure through the heat exchange unit and applied as a gas to a turbine assembly operatively coupled to the pump. The spent working fluid and cool irrigation fluid are then conveyed to the surface.

  3. Irrigated Agriculture, Saudi Arabia

    NASA Technical Reports Server (NTRS)

    1990-01-01

    In Saudi Arabia, center-pivot, swing-arm irrigated agriculture complexes such as the one imaged at Jabal Tuwayq (20.5N, 45.0 E) extract deep fossil water reserves to achieve food crop production self sufficiency in this desert environment. The significance of the Saudi expanded irrigated agriculture is that the depletion of this finite water resource is a short term solution to a long term need that will still exist when the water has been extracted.

  4. Ground-water use, locations of production wells, and areas irrigated using ground water in 1998, middle Humboldt River basin, north-central Nevada

    USGS Publications Warehouse

    Plume, Russell W.

    2003-01-01

    In 1998, ground water was being pumped from about 420 production wells in the middle Humboldt River Basin for a variety of uses. Principal uses were for agriculture, industry, mining, municipal, and power plant purposes. This report presents a compilation of the number and types of production wells, areas irrigated by ground water, and ground-water use in 14 hydrographic areas of the middle Humboldt River Basin in 1998. Annual pumping records for production wells usually are reported to the Nevada Division of Water Resources. However, operators of irrigation wells are not consistently required to report annual pumpage. Daily power-consumption and pump-discharge rates measured at 20 wells during the 1998 irrigation season and total power use at each well were used to estimate the amount of water, in feet of depth, applied to 20 alfalfa fields. These fields include about 10 percent of the total area, 36,700 acres, irrigated with ground water in the middle Humboldt River Basin. In 1998 an average of 2.0 feet of water was applied to 14 fields irrigated using center-pivot sprinkler systems, and an average of 2.6 feet of water was applied to 6 fields irrigated using wheel-line sprinkler systems. A similar approach was used to estimate the amount of water pumped at three wells using pumps powered by diesel engines. The two fields served by these three wells received 3.9 feet of water by flood irrigation during the 1998 irrigation season. The amount of water applied to the fields irrigated by center-pivot and wheel-line irrigation systems during the 1998 irrigation season was less than what would have been applied during a typical irrigation season because late winter and spring precipitation exceeded long-term monthly averages by as much as four times. As a result, the health of crops was affected by over-saturated soils, and most irrigation wells were only used sporadically in the first part of the irrigation season. Power consumption at 19 of the 20 wells in the 1994

  5. Irrigation timing and volume affects growth of container grown maples

    USDA-ARS?s Scientific Manuscript database

    Container nursery production requires large inputs of water and nutrients but frequently irrigation inputs exceed plant demand and lack application precision or are not applied at optimal times for plant production. The results from this research can assist producers in developing irrigation manage...

  6. Diagnosing Trouble Spots Caused by an Irrigation System

    Treesearch

    John R. Scholtes

    2002-01-01

    I discuss a testing procedure to determine the water distribution pattern of a sprinkler irrigation system and steps that may be taken to improve uniformity of application. All irrigation systems require testing and maintenance to assure that water application is as uniform as possible. Even new systems installed to a manufacturer's specifications should be "...

  7. 77 FR 63850 - Rate Adjustments for Indian Irrigation Projects

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-17

    ... using current technology and is a cost factor included in calculating your O&M assessment. Responsible... throughout the United States. We are required to establish irrigation assessment rates to recover the costs... information about the irrigation projects covered by this ] notice. The second table provides the current...

  8. Evapotranspiration-based irrigation scheduling of lettuce and broccoli

    USDA-ARS?s Scientific Manuscript database

    Estimation of crop evapotranspiration supports efficient irrigation water management, which in turn supports water conservation, mitigation of groundwater depletion/degradation, energy savings, and crop quality maintenance. Past research in California has revealed strong relationships between fract...

  9. Integrated management of water resources demand and supply in irrigated agriculture from plot to regional scale

    NASA Astrophysics Data System (ADS)

    Schütze, Niels; Wagner, Michael

    2016-05-01

    Growing water scarcity in agriculture is an increasing problem in future in many regions of the world. Recent trends of weather extremes in Saxony, Germany also enhance drought risks for agricultural production. In addition, signals of longer and more intense drought conditions during the vegetation period can be found in future regional climate scenarios for Saxony. However, those climate predictions are associated with high uncertainty and therefore, e.g. stochastic methods are required to analyze the impact of changing climate patterns on future crop water requirements and water availability. For assessing irrigation as a measure to increase agricultural water security a generalized stochastic approach for a spatial distributed estimation of future irrigation water demand is proposed, which ensures safe yields and a high water productivity at the same time. The developed concept of stochastic crop water production functions (SCWPF) can serve as a central decision support tool for both, (i) a cost benefit analysis of farm irrigation modernization on a local scale and (ii) a regional water demand management using a multi-scale approach for modeling and implementation. The new approach is applied using the example of a case study in Saxony, which is dealing with the sustainable management of future irrigation water demands and its implementation.

  10. Earth observation products for operational irrigation management: the PLEIADeS project

    NASA Astrophysics Data System (ADS)

    D'Urso, G.; Vuolo, F.; Richter, K.; Calera Belmonte, A.; Osann, M. A.

    2009-09-01

    In the context of a sustainable agriculture, a controlled and efficient irrigation management is required to avoid negative effects of the increasing water scarcity, especially in arid and semi-arid regions. Within this background, the project 'Participatory multi-Level EO-assisted tools for Irrigation water management and Agricultural Decision-Support' (PLEIADeS: http://www.pleiades.es) addressed the efficient and sustainable use of water for food production in water-scarce environments. Economical, environmental, technical, social and political dimensions are considered by means of a synergy of leading-edge technologies and participatory approaches. Project partners, represented by a set of nine pilot case studies, include a broad range of conditions characteristic for the European, Southern Mediterranean and American regions. PLEIADeS aimed at improving the performance of irrigation schemes by means of a range of measures, made possible through wide space-time coverage of Earth observation (E.O.) data and interactive networking capabilities of Information and Communication Technologies (ICT). Algorithms for a number of basic products to estimate Irrigation Water Requirements (IWR) in an operational context are defined. In this study, the pilot zone at the Nurra site in Sardinia, Italy, is chosen to test, validate and apply these methodologies.

  11. Estimation of the leucine and histidine requirements for piglets fed a low-protein diet.

    PubMed

    Wessels, A G; Kluge, H; Mielenz, N; Corrent, E; Bartelt, J; Stangl, G I

    2016-11-01

    Reduction of the CP content in the diets of piglets requires supplementation with crystalline essential amino acids (AA). Data on the leucine (Leu) and histidine (His) requirements of young pigs fed low-CP diets are limited and have primarily been obtained from nonlinear models. However, these models do not consider the possible decline in appetite and growth that can occur when pigs are fed excessive amounts of AA such as Leu. Therefore, two dose-response studies were conducted to estimate the standardised ileal digestible (SID) Leu : lysine (Lys) and His : Lys required to optimise the growth performance of young pigs. In both studies, the average daily gain (ADG), average daily feed intake (ADFI) and gain-to-feed ratio (G : F) were determined during a 6-week period. To ensure that the diets had sub-limiting Lys levels, a preliminary Lys dose-response study was conducted. In the Leu study, 60 35-day-old piglets of both sexes were randomly assigned to one of five treatments and fed a low-CP diet (15%) with SID Leu : Lys levels of 83%, 94%, 104%, 115% or 125%. The His study used 120 31-day-old piglets of both sexes, which were allotted to one of five treatments and fed a low-CP diet (14%) with SID His : Lys levels of 22%, 26%, 30%, 34% or 38%. Linear broken-line, curvilinear-plateau and quadratic-function models were used for estimations of SID Leu : Lys and SID His : Lys. The minimum SID Leu : Lys level needed to maximise ADG, ADFI and G : F was, on average, 101% based on the linear broken-line and curvilinear-plateau models. Using the quadratic-function model, the minimum SID Leu : Lys level needed to maximise ADG, ADFI and G : F was 108%. Data obtained from the quadratic-function analysis further showed that a ±10% deviation from the identified Leu requirement was accompanied by a small decline in the ADG (-3%). The minimum SID His : Lys level needed to maximise ADG, ADFI and G : F was 27% and 28% using the linear broken-line and curvilinear-plateau models

  12. Laboratory estimation of degree-day developmental requirements of Phlebotomus papatasi (Diptera: Psychodidae).

    PubMed

    Kasap, Ozge Erisoz; Alten, Bulent

    2005-12-01

    Cutaneous leishmaniasis is one of the most important vector-borne endemic diseases in Turkey. The main objective of this study was to evaluate the influence of temperature on the developmental rates of one important vector of leishmaniasis, Phlebotomus papatasi (Scopoli, 1786) (Diptera: Psychodidae). Eggs from laboratory-reared colonies of Phlebotomus papatasi were exposed to six constant temperature regimes from 15 to 32 degrees C with a daylength of 14 h and relative humidity of 65-75%. No adult emergence was observed at 15 degrees C. Complete egg to adult development ranged from 27.89 +/- 1.88 days at 32 degrees C to 246.43 +/- 13.83 days at 18 degrees C. The developmental zero values were estimated to vary from 11.6 degrees C to 20.25 degrees C depending on life stages, and egg to adult development required 440.55 DD above 20.25 degrees C.

  13. Irrigation in a changing world: a global systems analysis perspective

    NASA Astrophysics Data System (ADS)

    Doell, P.

    2003-04-01

    The global issues of water security and food security are closely linked. Sustainable plant production requires a sustained provisioning of water, either in the form of "green" or of "blue" water (as introduced by Malin Falkenmark in 1993). Green water is defined as the fraction of water that is evapotranspirated, i.e. the water supply for all non-irrigated vegetation. Blue water refers to the water flows in groundwater and surface water. It represents the water that can be withdrawn, e.g. for irrigation. In areas without enough green water in the soil to achieve satisfactory crop growth, crops can be irrigated with blue water. The distinction between green and blue water helps to understand the linkages between rainfall, soil, land productivity and water availability for irrigation and other human uses. Today, about 67% of the current global water withdrawals and about 87% of the consumptive water use (withdrawal minus return flow) is for irrigation purposes. Irrigated land comprises less than one-fifth of all cropped area but produces about two-fifth of the world's cereals. Due to the high and reliable productivity of irrigated land, an extension of irrigation appears to be an appropriate strategy to feed the world's growing population However, will there be enough water available for the necessary extension? To assess this question, both water availability and demand must be analyzed. At the global scale, such an assessment is supported by the global model of water resources and use model WaterGAP 2, which, with a spatial resolution of 0.5 degrees, computes both water resources and water use by irrigation, livestock, households, manufacturing and thermal power plants. WaterGAP is applied to derive scenarios that show the impact of climate change as well as demographic, economic and technological changes. The Global Irrigation Model of WaterGAP computes, for example, the impact of climate change on irrigation requirements on net irrigation requirements. This is

  14. Estimating the residency expansion required to avoid projected primary care physician shortages by 2035.

    PubMed

    Petterson, Stephen M; Liaw, Winston R; Tran, Carol; Bazemore, Andrew W

    2015-03-01

    The purpose of this study was to calculate the projected primary care physician shortage, determine the amount and composition of residency growth needed, and estimate the impact of retirement age and panel size changes. We used the 2010 National Ambulatory Medical Care Survey to calculate utilization of ambulatory primary care services and the US Census Bureau to project demographic changes. To determine the baseline number of primary care physicians and the number retiring at 66 years, we used the 2014 American Medical Association Masterfile. Using specialty board and American Osteopathic Association figures, we estimated the annual production of primary care residents. To calculate shortages, we subtracted the accumulated primary care physician production from the accumulated number of primary care physicians needed for each year from 2015 to 2035. More than 44,000 primary care physicians will be needed by 2035. Current primary care production rates will be unable to meet demand, resulting in a shortage in excess of 33,000 primary care physicians. Given current production, an additional 1,700 primary care residency slots will be necessary by 2035. A 10% reduction in the ratio of population per primary care physician would require more than 3,000 additional slots by 2035, whereas changing the expected retirement age from 66 years to 64 years would require more than 2,400 additional slots. To eliminate projected shortages in 2035, primary care residency production must increase by 21% compared with current production. Delivery models that shift toward smaller ratios of population to primary care physicians may substantially increase the shortage. © 2015 Annals of Family Medicine, Inc.

  15. Estimating the Residency Expansion Required to Avoid Projected Primary Care Physician Shortages by 2035

    PubMed Central

    Petterson, Stephen M.; Liaw, Winston R.; Tran, Carol; Bazemore, Andrew W.

    2015-01-01

    PURPOSE The purpose of this study was to calculate the projected primary care physician shortage, determine the amount and composition of residency growth needed, and estimate the impact of retirement age and panel size changes. METHODS We used the 2010 National Ambulatory Medical Care Survey to calculate utilization of ambulatory primary care services and the US Census Bureau to project demographic changes. To determine the baseline number of primary care physicians and the number retiring at 66 years, we used the 2014 American Medical Association Masterfile. Using specialty board and American Osteopathic Association figures, we estimated the annual production of primary care residents. To calculate shortages, we subtracted the accumulated primary care physician production from the accumulated number of primary care physicians needed for each year from 2015 to 2035. RESULTS More than 44,000 primary care physicians will be needed by 2035. Current primary care production rates will be unable to meet demand, resulting in a shortage in excess of 33,000 primary care physicians. Given current production, an additional 1,700 primary care residency slots will be necessary by 2035. A 10% reduction in the ratio of population per primary care physician would require more than 3,000 additional slots by 2035, whereas changing the expected retirement age from 66 years to 64 years would require more than 2,400 additional slots. CONCLUSIONS To eliminate projected shortages in 2035, primary care residency production must increase by 21% compared with current production. Delivery models that shift toward smaller ratios of population to primary care physicians may substantially increase the shortage. PMID:25755031

  16. Estimates of the wind speeds required for particle motion on Mars

    NASA Technical Reports Server (NTRS)

    Pollack, J. B.; Haberle, R.; Greeley, R.; Iversen, J.

    1976-01-01

    Threshold wind speeds for setting particles into motion on Mars are estimated by evaluating experimentally observed threshold friction velocities and determining the ratio of this velocity to the threshold wind speed at the top of earth's atmospheric boundary layer (ABL). Turning angles between the direction of the wind at the top of the ABL and the wind stress at the surface are also estimated. Detailed consideration is given to the dependence of the threshold wind speed at the top of the ABL on particle diameter, surface pressure, air temperature, atmospheric stability and composition, surface roughness, and interparticle cohesion. The results are applied to interpret a number of phenomena that have been observed on Mars and are attributable to aeolian processes. It is shown that: (1) minimum threshold wind speeds of about 50 to 100 m/sec are required to cause particle motion on Mars under 'favorable' conditions; (2) particle motion should be infrequent and strongly correlated with proximity to small topographical features; (3) in general, particle motion occurs more readily at night than during the day, in winter polar areas than equatorial areas around noon, and for H2O or CO2 ice particles than for silicate particles; and (4) the boundary between saltating and suspendible particles is located at a particle diameter of about 100 microns.

  17. Heavy metals in vegetables and respective soils irrigated by canal, municipal waste and tube well waters.

    PubMed

    Ismail, Amir; Riaz, Muhammad; Akhtar, Saeed; Ismail, Tariq; Amir, Mamoona; Zafar-ul-Hye, Muhammad

    2014-01-01

    Heavy metal contamination in the food chain is of serious concern due to the potential risks involved. The results of this study revealed the presence of maximum concentration of heavy metals in the canal followed by sewerage and tube well water. Similarly, the vegetables and respective soils irrigated with canal water were found to have higher heavy metal contamination followed by sewerage- and tube-well-watered samples. However, the heavy metal content of vegetables under study was below the limits as set by FAO/WHO, except for lead in canal-water-irrigated spinach (0.59 mg kg(-1)), radish pods (0.44 mg kg(-1)) and bitter gourd (0.33 mg kg(-1)). Estimated daily intakes of heavy metals by the consumption of selected vegetables were found to be well below the maximum limits. However, a complete estimation of daily intake requires the inclusion of other dietary and non-dietary exposure sources of heavy metals.

  18. Intra-abdominal saline irrigation at cesarean section: a systematic review and meta-analysis.

    PubMed

    Eke, Ahizechukwu Chigoziem; Shukr, Ghadear Hussein; Chaalan, Tina Taissir; Nashif, Sereen Khaled; Eleje, George Uchenna

    2016-01-01

    The aim of this study was to examine the evidence guiding intraoperative saline irrigation at cesarean sections. We searched "cesarean sections", "pregnancy", "saline irrigation" and "randomized clinical trials" in ClinicalTrials.gov, the Cochrane Central Register of Controlled Trials, AJOL, MEDLINE, LILACS and CINAHL from inception of each database to April 2015. The primary outcomes were predefined as intraoperative nausea and emesis. The pooled results were reported as relative risk (RR) with 95% confidence interval (95% CI). Three randomized trials including 862 women were analyzed. Intraoperative saline irrigation was associated with a 68% increased risk of developing intraoperative nausea (RR = 1.68, 95% CI 1.36-2.06), 70% increased risk of developing intraoperative emesis (RR = 1.70, 95% CI 1.28-2.25), 92% increased risk of developing post-operative nausea and 84% increased risk of using anti-emetics post-operatively (RR = 1.84, 95% CI 0.21-2.78) when compared with controls. There were no significant differences between intraoperative saline irrigation and no treatment for post-operative emesis (RR = 1.65, 95% CI 0.74-3.67), estimated blood loss, time to return of gastrointestinal function, postpartum endometritis (RR = 0.95, 95% CI 0.64-1.40), urinary tract infection and wound infection. Intraoperative saline irrigation at cesarean delivery increases intraoperative and post-operative nausea, requiring increasing use of anti-emetics without significant reduction in infectious, intraoperative and postpartum complications. Routine abdominal irrigation at cesarean section is not supported by current data.

  19. 25 CFR 162.611 - Payment of fees and drainage and irrigation charges.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Payment of fees and drainage and irrigation charges. 162... AND PERMITS Non-Agricultural Leases § 162.611 Payment of fees and drainage and irrigation charges. (a) Any lease covering lands within an irrigation project or drainage district shall require the lessee to...

  20. 25 CFR 162.611 - Payment of fees and drainage and irrigation charges.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true Payment of fees and drainage and irrigation charges. 162... AND PERMITS Non-Agricultural Leases § 162.611 Payment of fees and drainage and irrigation charges. (a) Any lease covering lands within an irrigation project or drainage district shall require the lessee to...

  1. 25 CFR 162.611 - Payment of fees and drainage and irrigation charges.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Payment of fees and drainage and irrigation charges. 162... AND PERMITS Non-Agricultural Leases § 162.611 Payment of fees and drainage and irrigation charges. (a) Any lease covering lands within an irrigation project or drainage district shall require the lessee to...

  2. Crop water stress indices correlated with soil water storage: Implications for variable rate irrigation management

    USDA-ARS?s Scientific Manuscript database

    Soil water sensing methods are now coming to be used for irrigation scheduling of whole fields. However, newly introduced variable rate irrigation (VRI) systems require information about soil water content in many areas of a field, each called an irrigation management zone. Commonly available soil w...

  3. A new remote sensing procedure for the estimation of crop water requirements

    NASA Astrophysics Data System (ADS)

    Spiliotopoulos, M.; Loukas, A.; Mylopoulos, N.

    2015-06-01

    The objective of this work is the development of a new approach for the estimation of water requirements for the most important crops located at Karla Watershed, central Greece. Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC) was used as a basis for the derivation of actual evapotranspiration (ET) and crop coefficient (ETrF) values from Landsat ETM+ imagery. MODIS imagery has been also used, and a spatial downscaling procedure is followed between the two sensors for the derivation of a new NDVI product with a spatial resolution of 30 m x 30 m. GER 1500 spectro-radiometric measurements are additionally conducted during 2012 growing season. Cotton, alfalfa, corn and sugar beets fields are utilized, based on land use maps derived from previous Landsat 7 ETM+ images. A filtering process is then applied to derive NDVI values after acquiring Landsat ETM+ based reflectance values from the GER 1500 device. ETrF vs NDVI relationships are produced and then applied to the previous satellite based downscaled product in order to finally derive a 30 m x 30 m daily ETrF map for the study area. CropWat model (FAO) is then applied, taking as an input the new crop coefficient values with a spatial resolution of 30 m x 30 m available for every crop. CropWat finally returns daily crop water requirements (mm) for every crop and the results are analyzed and discussed.

  4. Observation and Modelling of Soil Water Content Towards Improved Performance Indicators of Large Irrigation Schemes

    NASA Astrophysics Data System (ADS)

    Labbassi, Kamal; Akdim, Nadia; Alfieri, Silvia Maria; Menenti, Massimo

    2014-05-01

    Irrigation performance may be evaluated for different objectives such as equity, adequacy, or effectiveness. We are using two performance indicators: IP2 measures the consistency of the allocation of the irrigation water with gross Crop Water requirements, while IP3 measures the effectiveness of irrigation by evaluating the increase in crop transpiration between the case of no irrigation and the case of different levels of irrigation. To evaluate IP3 we need to calculate the soil water balance for the two cases. We have developed a system based on the hydrological model SWAP (Soil Water atmosphere Plant) to calculate spatial and temporal patterns of crop transpiration T(x, y, t) and of the vertical distribution of soil water content θ(x, y, z, t). On one hand, in the absence of ground measurement of soil water content to validate and evaluate the precision of the estimated one, a possibility would be to use satellite retrievals of top soil water content, such as the data to be provided by SMAP. On the other hand, to calculate IP3 we need root zone rather than top soil water content. In principle, we could use the model SWAP to establish a relationship between the top soil and root zone water content. Such relationship could be a simple empirical one or a data assimilation procedure. In our study area (Doukkala- Morocco) we have assessed the consistency of the water allocation with the actual irrigated area and crop water requirements (CWR) by using a combination of multispectral satellite image time series (i,e RapidEye (REIS), SPOT4 (HRVIR1) and Landsat 8 (OLI) images acquired during the 2012/2013 agricultural season). To obtain IP2 (x, y, t) we need to determine ETc (x, y, t). We have applied two (semi)empirical approaches: the first one is the Kc-NDVI method, based on the correlation between the Near Difference Vegetation Index (NDVI) and the value of crop coefficient (kc); the second one is the analytical approach based on the direct application of Penman

  5. Micro irrigation of tropical fruit crops

    USDA-ARS?s Scientific Manuscript database

    In most tropical regions, tropical fruits are grown either in wet-and-dry climates characterized by erratic rainfall patterns and prolonged dry periods or in fertile but semiarid lands under irrigation. Little is known about water requirements of tropical crops grown in the tropics. This book chapt...

  6. Irrigating drip by drip

    SciTech Connect

    Woods, M.

    1991-03-01

    This article describes the use of subterranean drip systems for the irrigation of crops in the San Joaquin Valley of California. This area is in its fourth year of drought. In the past, underground drains carried excess irrigation water away from plant roots to avoid drowning them in selenium, boron, nitrate fertilizer and other pollutants. Later these ponds where outflow emerged accumulated high levels of selenium which led to deaths and deformities of waterfowl. Subsurface drip irrigation is said to reduce overirrigation and thus prevents pollution of the underground water supply; it conserves water by reducing the amount of water lost by evaporation; and it reduces the incidence of mold damage to crops that are bothered by soggy soils.

  7. Irrigation in northeastern Mississippi

    USGS Publications Warehouse

    Lang, J.W.; Boswell, E.H.

    1957-01-01

    The phenomenal increase in the use of water for agriculture, industry, and public water supply in the past few years has been an important factor in bringing about the current accelerated inventory and appraisal of the water resources of Mississippi. As a result of severe droughts during the past several years, and of the favorable results of experiments, the water resources of northeastern Mississippi today are rapidly being developed for irrigation. Records have shown that even during years of normal rainfall the distribution of the rain usually is such that supplementary irrigation can be profitably practiced on almost any crop. Although in northeaster Mississippi the annual precipitation generally is enough to support crops and pasture, short periods of drought are common. Supplemental irrigation protects against the periods of drought during the growing season and increases the yield and quality of crops.

  8. Wind pumps for irrigating greenhouse crops

    NASA Astrophysics Data System (ADS)

    Peillón, M.; Sánchez, R.; Tarquis, A. M.; García, J. L.

    2012-04-01

    Agriculture is a major consumer of energy in many countries of the world. Only a few of these countries are self-sufficient in conventional energy sources, which are also exhaustible. Fortunately, there are other sources of energy, such as wind, which has experienced recent developments in the area of wind power generation. From irrigation projects to power supply in remote farms, wind power generation can play a vital role. A simple methodology for technical evaluation of windmills for irrigation water pumping has been developed in this study to determine the feasibility per unit amount of water supplied and the levels of daily irrigation demand satisfied by windmill irrigation system at various levels of risk (probability of failure). For this purpose, a series of three hourly wind-speed data over a period of 38 years at Ciego de Ávila, Cuba, were analyzed to compute the diurnal wind pump discharge at varying levels of risk. The sizes of reservoirs required to modulate fluctuating discharge and to satisfy the levels of irrigation demand, on function of crop development dates, cultivated area and water elevation height, were computed by cumulative deficit water budgeting. An example is given illustrating the use of the methodology on tomato crop (Licopersicon esculentum Mill) under greenhouse.

  9. Automatic restart of complex irrigation systems

    SciTech Connect

    Werner, H.D.; Alcock, R.; DeBoer, D.W.; Olson, D.I. . Dept. of Agricultural Engineering)

    1992-05-01

    Automatic restart of irrigation systems under load management has the potential to maximize pumping time during off-peak hours. Existing automation technology ranges from time delay relays to more sophisticated control using computers together with weather data to optimize irrigation practices. Centrifugal pumps and water hammer concerns prevent automatic restart of common but often complex irrigation systems in South Dakota. The irrigator must manually prime the pump and control water hammer during pipeline pressurization. Methods to prime centrifugal pumps and control water hammer facilitate automatic restart after load management is released. Seven priming methods and three water hammer control methods were investigated. A sump pump and small vacuum pump were used to test two automatic prime and restart systems in the laboratory. A variable frequency phase converter was also used to automatically control water hammer during pipeline pressurization. Economical methods to safely prime and restart centrifugal pumps were discussed. The water hammer control methods safely pressurize the pipeline but require a higher initial investment. The automatic restart systems can be used to safely restart centrifugal pumps and control water hammer after load management is released. Based upon laboratory research and a technical review of available restart components, a computer software program was developed. The program assists customers in evaluating various restart options for automatic restarting of electric irrigation pumps. For further information on the software program, contact the South Dakota State University, Department of Agricultural Engineering.

  10. Irrigation water use for the Fort Lyon Canal, southeastern Colorado, 1989-90

    USGS Publications Warehouse

    Dash, R.G.

    1995-01-01

    The U.S. Geological Survey, in cooperation with the Bent County Board of County Commissioners, began a study to evaluate irrigation water use quanti- tatively for about 91,630 acres of farmland irrigated from the 103.7-mile-long Fort Lyon Main Canal in the Arkansas River Valley of southeastern Colorado. This report provides information from 1980 and 1990 for four hydrologic components of irrigation water use: Surface-water withdrawals, conveyance losses, ground-water withdrawals, and estimates of threretical crop consumptive use. Surface-water withdrawals for the Fort Lyon Canal were 211,150 acre-feet (about 2.3 acre-feet per acre) during 1989 and 202,000 acre-feet (about 2.2 acre-feet per acre) during 1990. Conveyance losses occurred during the transport of water in the unlined Fort Lyon Canal. Conveyance losses were as much as 72 (acre-feet per day) per mile in the first division of the canal and generally decreased in the downstream canal divisions. Ground-water withdrawals for the Fort Lyon Canal were estimated to be 38,890 acre-feet (about 0.8 acre-foot per acre irrigated ground water) during 1989 and 33,970 acre-feet (about 0.7 acre-foot per acre irrigated by ground water) during 1990. Theoretical crop consumptive use was estimated to be 227,530 acre-feet (about 2.7 acre-feet per acre of cropland) during 1989 and 251, 130 acre-feet (about 2.9 acre-feet per acre of cropland) during 1990. The total crop irrigation requirement needed from irrigation withdrawals was 172,100 acre-feet (about 2.0 acre-feet per acre of cropland) during ` 1989 and 190,050 acre-feet (about 2.2 acre-feet per acre of cropland) during 1990. Crops cultivted in the five divisions of the canal were alfalfa, sorghum, corn, wheat, pasture, and spring grains.

  11. Potential for Photovoltaic Solar Installation in Non-Irrigated Corners of Center Pivot Irrigation Fields in the State of Colorado

    SciTech Connect

    Roberts, B.

    2011-07-01

    The State of Colorado expressed an interest in assessing the potential for photovoltaic (PV) solar installations on non-irrigated corners of center-pivot irrigation (CPI) fields throughout the state. Using aerial imagery and irrigated land data available from the Colorado Water Conservation Board, an assessment of potentially suitable sites was produced. Productivity estimates were calculated from that assessment. The total area of non-irrigated corners of CPI fields in Colorado was estimated to be 314,674 acres, which could yield 223,418 acres of installed PV panels assuming 71% coverage in triangular plots. The total potential annual electricity production for the state was estimated to be 56,821 gigawatt hours (GWH), with an average of 1.3 GWH per available plot.

  12. Water and energy conservation modeling in Pacific Northwest irrigated agriculture

    SciTech Connect

    Houston, J.E. Jr.

    1984-01-01

    Irrigated agriculture and electrical energy supply in the Pacific Northwest are intricately bound by mutual dependence on Columbia River Basin water. Diversion and instream demands on the water have intensified through recent development in the region. Water conservation opportunities exist in present irrigation that could supplement regional firm hydroelectricity. A two-level mathematical programming model is developed to evaluate irrigator production and regional price responses to water and electricity conservation policies. Stage one emphasizes decision criteria at producer level - irrigable land, water, electricity and labor demand, and water response yields on major crops. Irrigators choose cropping and irrigation mixes and rates at expected commodity prices under resource constraints consistent with regional policy. Stage two employs production and resource use solutions from stage one in a regional allocation and price equilibrium-seeking program. Alfalfa, apple, and potato prices are determined endogenously, and a decomposition-type linkage reiterates production area response to regional equilibrium prices. Baseline irrigated acreage, water electricity, production, and crop prices are estimated for 1982. Water pricing policies reflecting the opportunity value of Columbia River water for hydrogeneration indicate increasing net social benefits, net farm returns, and hydropower potential accruing from conservation in irrigation.

  13. Phosphorus as a limiting factor on sustainable greywater irrigation.

    PubMed

    Turner, Ryan D R; Will, Geoffrey D; Dawes, Les A; Gardner, Edward A; Lyons, David J

    2013-07-01

    Water reuse through greywater irrigation has been adopted worldwide and has been proposed as a potential sustainable solution to increased water demands. Despite widespread adoption, there is limited domestic knowledge of greywater reuse. There is no pressure to produce low-level phosphorus products and current guidelines and legislation, such as those in Australia, may be inadequate due to the lack of long-term data to provide a sound scientific basis. Research has clearly identified phosphorus as a potential environmental risk to waterways from many forms of irrigation. To assess the sustainability of greywater irrigation, this study compared four residential lots that had been irrigated with greywater for four years and adjacent non-irrigated lots that acted as controls. Each lot was monitored for the volume of greywater applied and selected physic-chemical water quality parameters and soil chemistry profiles were analysed. The non-irrigated soil profiles showed low levels of phosphorus and were used as controls. The Mechlich3 Phosphorus ratio (M3PSR) and Phosphate Environmental Risk Index (PERI) were used to determine the environmental risk of phosphorus leaching from the irrigated soils. Soil phosphorus concentrations were compared to theoretical greywater irrigation loadings. The measured phosphorus soil concentrations and the estimated greywater loadings were of similar magnitude. Sustainable greywater reuse is possible; however incorrect use and/or lack of understanding of how household products affect greywater can result in phosphorus posing a significant risk to the environment. Copyright © 2013 Elsevier B.V. All rights reserved.

  14. Assessing the changes of groundwater recharge / irrigation water use between SRI and traditional irrigation schemes in Central Taiwan

    NASA Astrophysics Data System (ADS)

    Chen, Shih-Kai; Jang, Cheng-Shin; Tsai, Cheng-Bin

    2015-04-01

    To respond to agricultural water shortage impacted by climate change without affecting rice yield in the future, the application of water-saving irrigation, such as SRI methodology, is considered to be adopted in rice-cultivation in Taiwan. However, the flooded paddy fields could be considered as an important source of groundwater recharge in Central Taiwan. The water-saving benefit of this new methodology and its impact on the reducing of groundwater recharge should be integrally assessed in this area. The objective of this study was to evaluate the changes of groundwater recharge/ irrigation water use between the SRI and traditional irrigation schemes (continuous irrigation, rotational irrigation). An experimental paddy field located in the proximal area of the Choushui River alluvial fan (the largest groundwater pumping region in Taiwan) was chosen as the study area. The 3-D finite element groundwater model (FEMWATER) with the variable boundary condition analog functions, was applied in simulating groundwater recharge process and amount under traditional irrigation schemes and SRI methodology. The use of effective rainfall was taken into account or not in different simulation scenarios for each irrigation scheme. The simulation results showed that there were no significant variations of infiltration rate in the use of effective rainfall or not, but the low soil moisture setting in deep soil layers resulted in higher infiltration rate. Taking the use of effective rainfall into account, the average infiltration rate for continuous irrigation, rotational irrigation, and SRI methodology in the first crop season of 2013 were 4.04 mm/day, 4.00 mm/day and 3.92 mm/day, respectively. The groundwater recharge amount of SRI methodology was slightly lower than those of traditional irrigation schemes, reducing 4% and 2% compared with continuous irrigation and rotational irrigation, respectively. The field irrigation requirement amount of SRI methodology was significantly

  15. Non-sustainable groundwater sustaining irrigation - a global assessment

    NASA Astrophysics Data System (ADS)

    Wada, Y.; van Beek, L. P. H.; Bierkens, M. F. P.

    2012-04-01

    Irrigated crops play a vital role in securing global food production. It is estimated that 17% of agricultural lands are irrigated, yet they account for 40% of the global food production, sustaining the livelihood of billions of people (Abdullah, 2006). At the same time, water used by irrigated crops (i.e., crop water demand) and irrigation water demand are responsible for about 70% of the global water withdrawal and account for about 90% of the global water consumption, i.e. water withdrawal minus return flow respectively. Water demand for irrigated crops can be met by three different sources: 1) green water, being water from local precipitation that is temporarily stored in the soil, 2) blue water, being surface freshwater available in rivers, lakes, reservoirs and wetlands, and renewable groundwater, and 3) non-renewable or non-sustainable groundwater and non-local water resources. Here, we quantify globally the amount of non-renewable groundwater abstraction to sustain current irrigation practice. We use the global hydrological model PCR-GLOBWB to simulate gross crop water demand for irrigated crops and available blue and green water to meet this demand. We downscale country statistics of groundwater abstraction by considering the part of net total water demand that cannot be met by surface freshwater. We subsequently confront these with simulated groundwater recharge including return flow from irrigation to estimate non-renewable groundwater abstraction. Results show that non-renewable groundwater abstraction contributes approximately 20% to the global gross irrigation water demand for the year 2000. The contribution of non-renewable groundwater abstraction to irrigation is largest in India (68 km3 yr-1) followed by Pakistan (35 km3/yr), USA (30 km3/yr), Iran (20 km3/yr), China (20 km3/yr), Mexico (10 km3/yr) and Saudi Arabia (10 km3/yr). Results also show that globally this contribution more than tripled from 75 to 234 km3/yr over the period 1960-2000. These

  16. Strategy of Irrigation Branch in Russia

    NASA Astrophysics Data System (ADS)

    Zeyliger, A.; Ermolaeva, O.

    2012-04-01

    At this moment, at the starting time of the program on restoration of a large irrigation in Russia till 2020, the scientific and technical community of irrigation branch does not have clear vision on how to promote a development of irrigated agriculture and without repeating of mistakes having a place in the past. In many respects absence of a vision is connected to serious backlog of a scientific and technical and informational and technological level of development of domestic irrigation branch from advanced one. Namely such level of development is necessary for the resolving of new problems in new conditions of managing, and also for adequate answers to new challenges from climate and degradation of ground & water resources, as well as a rigorous requirement from an environment. In such important situation for irrigation branch when it is necessary quickly generate a scientific and technical politics for the current decade for maintenance of translation of irrigated agriculture in the Russian Federation on a new highly effective level of development, in our opinion, it is required to carry out open discussion of needs and requirements as well as a research for a adequate solutions. From political point of view a framework organized in FP6 DESIRE 037046 project is an example of good practice that can serve as methodical approach how to organize and develop such processes. From technical point of view a technology of operational management of irrigation at large scale presents a prospective alternative to the current type of management based on planning. From point of view ICT operational management demands creation of a new platform for the professional environment of activity. This platform should allow to perceive processes in real time, at their partial predictability on signals of a straight line and a feedback, within the framework of variability of decision making scenarious, at high resolution and the big ex-awning of sensor controls and the gauges

  17. Modeling an irrigation ditch opens up the world. Hydrology and hydraulics of an ancient irrigation system in Peru

    NASA Astrophysics Data System (ADS)

    Ertsen, Maurits W.; van der Spek, Joanne

    Ancient Peruvian irrigation systems have been studied extensively, but much remains unknown about technical and hydrological aspects of these irrigation systems. The Pampa de Chaparrí irrigation system in Peru is used as an example to show how modeling approaches for hydrological and hydraulic features of irrigation can yield results to improve our understanding of irrigation in the area. Analysis focuses on water availability compared demand, the way available water may have been applied to crops and whether the water needed could be delivered through the canal system. Results suggest that on the Pampa some 2500 hectares may have been cultivated within certain security limits for acceptable yields. The rhythm with which the irrigation requirement was applied to crops most likely influenced yields and thus food security. Furthermore, the influence of groundwater on crop growth may have been considerable. The hydraulic behavior of the irrigation system suggests that it should not be taken for granted that theoretically required water flows could actually be diverted and/or distributed to water users. The many questions coming out of the results define important items for a joint research agenda of archeologists and irrigation scientists.

  18. Planning for an Irrigation System.

    ERIC Educational Resources Information Center

    Turner, J. Howard; Anderson, Carl L.

    The publication, with the aid of tables and colored illustrations and diagrams, presents information to help the farmer who is considering the installation of an irrigation system determine whether or not to irrigate, the type of system to use, and the irrigation cost and return on investment. Information is presented on the increase in yield to…

  19. Planning for an Irrigation System.

    ERIC Educational Resources Information Center

    Turner, J. Howard; Anderson, Carl L.

    The publication, with the aid of tables and colored illustrations and diagrams, presents information to help the farmer who is considering the installation of an irrigation system determine whether or not to irrigate, the type of system to use, and the irrigation cost and return on investment. Information is presented on the increase in yield to…

  20. Ensuring equal opportunity sprinkler irrigation

    USDA-ARS?s Scientific Manuscript database

    Equal opportunity for plants to sprinkler irrigation water must be carefully considered by crop producers, irrigation consultants, and the industry that supplies the irrigation equipment. Equal opportunity can be negated by improper marketing, design, and installation, as well as through improper f...

  1. Constraints on LISA Pathfinder’s self-gravity: design requirements, estimates and testing procedures

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; de Deus Silva, M.; Desiderio, D.; Piersanti, E.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Flatscher, R.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Grzymisch, J.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Liu, L.; López-Zaragoza, J. P.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Polo, L.; Martino, J.; Martin-Porqueras, F.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Rivas, F.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J. I.; Tomlinson, R.; Trenkel, C.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Warren, C.; Wass, P. J.; Wealthy, D.; Weber, W. J.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2016-12-01

    LISA Pathfinder satellite was launched on 3 December 2015 toward the Sun-Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested. LTP achieves measurements of differential acceleration of free-falling test masses (TMs) with sensitivity below 3× {10}-14 {{m}} {{{s}}}-2 {{Hz}}-1/2 within the 1-30 mHz frequency band in one-dimension. The spacecraft itself is responsible for the dominant differential gravitational field acting on the two TMs. Such a force interaction could contribute a significant amount of noise and thus threaten the achievement of the targeted free-fall level. We prevented this by balancing the gravitational forces to the sub nm s-2 level, guided by a protocol based on measurements of the position and the mass of all parts that constitute the satellite, via finite element calculation tool estimates. In this paper, we will introduce the gravitational balance requirements and design, and then discuss our predictions for the balance that will be achieved in flight.

  2. Electrofishing effort required to estimate biotic condition in southern Idaho Rivers

    USGS Publications Warehouse

    Maret, Terry R.; Ott, Douglas S.; Herlihy, Alan T.

    2007-01-01

    An important issue surrounding biomonitoring in large rivers is the minimum sampling effort required to collect an adequate number of fish for accurate and precise determinations of biotic condition. During the summer of 2002, we sampled 15 randomly selected large-river sites in southern Idaho to evaluate the effects of sampling effort on an index of biotic integrity (IBI). Boat electrofishing was used to collect sample populations of fish in river reaches representing 40 and 100 times the mean channel width (MCW; wetted channel) at base flow. Minimum sampling effort was assessed by comparing the relation between reach length sampled and change in IBI score. Thirty-two species of fish in the families Catostomidae, Centrarchidae, Cottidae, Cyprinidae, Ictaluridae, Percidae, and Salmonidae were collected. Of these, 12 alien species were collected at 80% (12 of 15) of the sample sites; alien species represented about 38% of all species (N = 32) collected during the study. A total of 60% (9 of 15) of the sample sites had poor IBI scores. A minimum reach length of about 36 times MCW was determined to be sufficient for collecting an adequate number of fish for estimating biotic condition based on an IBI score. For most sites, this equates to collecting 275 fish at a site. Results may be applicable to other semiarid, fifth-order through seventh-order rivers sampled during summer low-flow conditions.

  3. Assessment of radar resolution requirements for soil moisture estimation from simulated satellite imagery. [Kansas

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T. (Principal Investigator); Dobson, M. C.; Moezzi, S.

    1982-01-01

    Radar simulations were performed at five-day intervals over a twenty-day period and used to estimate soil moisture from a generalized algorithm requiring only received power and the mean elevation of a test site near Lawrence, Kansas. The results demonstrate that the soil moisture of about 90% of the 20-m by 20-m pixel elements can be predicted with an accuracy of + or - 20% of field capacity within relatively flat agricultural portions of the test site. Radar resolutions of 93 m by 100 m with 23 looks or coarser gave the best results, largely because of the effects of signal fading. For the distribution of land cover categories, soils, and elevation in the test site, very coarse radar resolutions of 1 km by 1 km and 2.6 km by 3.1 km gave the best results for wet moisture conditions while a finer resolution of 93 m by 100 m was found to yield superior results for dry to moist soil conditions.

  4. Constraints on LISA Pathfinder's Self-Gravity: Design Requirements, Estimates and Testing Procedures

    NASA Technical Reports Server (NTRS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, M.; Brandt, Nico; Bursi, Alessandro; Slutsky. J.; hide

    2016-01-01

    LISA Pathfinder satellite was launched on 3 December 2015 toward the Sun Earth first Lagrangian point (L1) where the LISA Technology Package (LTP), which is the main science payload, will be tested. LTP achieves measurements of differential acceleration of free-falling test masses (TMs) with sensitivity below 3 x 10(exp -14) m s(exp -2) Hz(exp - 1/2) within the 130 mHz frequency band in one dimension. The spacecraft itself is responsible for the dominant differential gravitational field acting on the two TMs. Such a force interaction could contribute a significant amount of noise and thus threaten the achievement of the targeted free-fall level. We prevented this by balancing the gravitational forces to the sub nm s(exp -2) level, guided by a protocol based on measurements of the position and the mass of all parts that constitute the satellite, via finite element calculation tool estimates. In this paper, we will introduce the gravitational balance requirements and design, and then discuss our predictions for the balance that will be achieved in flight.

  5. MONITORING INEQUALITIES IN IRRIGATION WATER SUPPLIES FOR SUSTAINABLE IRRIGATION MANAGEMENT

    NASA Astrophysics Data System (ADS)

    Gunasekara, Nilupul; Kazama, So

    The Kirindi Oya irrigation scheme is considered water scarce since its inauguration in 1986. At present, it is faced with the grave problem of its farmers leaving paddy cultivation especially in the RB sub system. The present governance of the irrigation system was evaluated using inequality in irrigation water supplies as an indicator of farmer dissatisfaction. Gini Coefficient proved strong for our cause, of the three inequality measures used. Monitoring inequality in the irrigation system provides approaches to better future governance. The Lorenz curves provided a wide insight into the inequality conditions as well. The introduced methodology will facilitate irrigation management in the whole Asia.

  6. Evaluation of a method estimating real-time individual lysine requirements in two lines of growing-finishing pigs.

    PubMed

    Cloutier, L; Pomar, C; Létourneau Montminy, M P; Bernier, J F; Pomar, J

    2015-04-01

    The implementation of precision feeding in growing-finishing facilities requires accurate estimates of the animals' nutrient requirements. The objectives of the current study was to validate a method for estimating the real-time individual standardized ileal digestible (SID) lysine (Lys) requirements of growing-finishing pigs and the ability of this method to estimate the Lys requirements of pigs with different feed intake and growth patterns. Seventy-five pigs from a terminal cross and 72 pigs from a maternal cross were used in two 28-day experimental phases beginning at 25.8 (±2.5) and 73.3 (±5.2) kg BW, respectively. Treatments were randomly assigned to pigs within each experimental phase according to a 2×4 factorial design in which the two genetic lines and four dietary SID Lys levels (70%, 85%, 100% and 115% of the requirements estimated by the factorial method developed for precision feeding) were the main factors. Individual pigs' Lys requirements were estimated daily using a factorial approach based on their feed intake, BW and weight gain patterns. From 25 to 50 kg BW, this method slightly underestimated the pigs' SID Lys requirements, given that maximum protein deposition and weight gain were achieved at 115% of SID Lys requirements. However, the best gain-to-feed ratio (G : F) was obtained at a level of 85% or more of the estimated Lys requirement. From 70 to 100 kg, the method adequately estimated the pigs' individual requirements, given that maximum performance was achieved at 100% of Lys requirements. Terminal line pigs ate more (P=0.04) during the first experimental phase and tended to eat more (P=0.10) during the second phase than the maternal line pigs but both genetic lines had similar ADG and protein deposition rates during the two phases. The factorial method used in this study to estimate individual daily SID Lys requirements was able to accommodate the small genetic differences in feed intake, and it was concluded that this method can be

  7. Erosion: Irrigation-induced

    USDA-ARS?s Scientific Manuscript database

    Soil can be eroded by sprinkler or surface irrigation. Once sprinkler droplet kinetic energy detaches soil, overland flow transports the sediment downslope and off-site. Protecting the soil surface, increasing sprinkler wetted diameters, and tilling to increase infiltration and thereby lessen overla...

  8. The Arkansas Irrigation Scheduler

    USDA-ARS?s Scientific Manuscript database

    In the U.S. Mid-South, annual rainfall is generally sufficient for limited crop production, but periods of drought during the growing season make irrigation essential for optimum yields. However, factors such as cloudy weather, rainfall, and temperature swings caused by the movement of weather front...

  9. Texas Irrigation Situation

    USDA-ARS?s Scientific Manuscript database

    The irrigation situation in Texas is an interaction between hydrology and water policies. In 2012, according to National Agricultural Statistical Service (NASS) four High Plains counties, Gainesville, Yoakum, Terry and Cochran, accounted for approximately 60% of the 150,000 acres of peanut productio...

  10. Modeling of basin-wide water management for dry-season paddy irrigation with large reservoirs in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Kudo, R.; Masumoto, T.; Horikawa, N.; Yoshida, T.

    2012-12-01

    . Irrigation and crop patterns are set as agricultural conditions in each mesh, and then irrigation water and actual evapotranspiration can be estimated according to crop stage and soil moisture. We also modeled water management of 160 reservoirs (10 large reservoirs and 150 medium reservoirs) and water allocation process of 10 large irrigated areas in the basin. The results obtained in this study are as follows: 1) The reservoir operation model reproduced water management such as impoundment of flood discharge during rainy seasons and release of irrigation water controlled by water requirement in downstream irrigation area during dry seasons. 2) The paddy water use and the water allocation models estimated water withdrawals at diversion weirs and water supply in paddy fields depending on water demands in large irrigation areas. 3) Based on the difference in water use patterns between rainy and dry seasons, the cropping model represented the actual conditions of rice planting pattern in both seasons. These results show that the interaction among the sub-models (reservoir operation, paddy water use, water allocation and so on) enables this hydrological model to represent the detailed processes of paddy water use and to evaluate the interaction between hydrological cycle and agricultural activities through anthropogenic water management for paddy irrigation.

  11. A risk-based approach for developing standards for irrigation with reclaimed water.

    PubMed

    Troldborg, Mads; Duckett, Dominic; Allan, Richard; Hastings, Emily; Hough, Rupert L

    2017-09-25

    A generalised quantitative risk assessment (QRA) is developed to assess the potential harm to human health resulting from irrigation with reclaimed water. The QRA is conducted as a backward calculation starting from a pre-defined acceptable risk level at the receptor point (defined as an annual infection risk of 10(-4) for pathogens and by reference doses (RfD) for chemical hazards) and results in an estimate of the corresponding acceptable concentration levels of the given hazards in the effluent. In this way the QRA is designed to inform the level of water treatment required to achieve an acceptable risk level and help establish reclaimed water quality standards. The QRA considers the exposure of human receptors to microbial and chemical hazards in the effluent through various exposure pathways and routes depending on the specific irrigation scenario. By considering multiple pathways and routes, a number of key aspects relevant to estimating human exposure to recycled water can be accounted for, including irrigation and crop handling practices (e.g., non-edible vs edible, spray vs. drip, withholding time) and volumes consumed (directly vs indirectly). The QRA relies on a large number of inputs, many of which were found to be highly uncertain. A possibilistic approach, based on fuzzy set theory, was used to propagate the uncertain input values through the QRA model to estimate the possible range of hazard concentrations that are deemed acceptable/safe for reclaimed water irrigation. Two scenarios were considered: amenity irrigation and irrigation of ready-to-eat food crops, and calculations were carried out for six example hazards (norovirus, Cryptosporidium, cadmium, lead, PCB118 and naphthalene) and using UK-specific input values. The human health risks associated with using reclaimed water for amenity irrigation were overall deemed low, i.e. the calculated acceptable concentration levels for most of the selected hazards were generally far greater than levels

  12. Uncertainty in future irrigation water demand and risk of crop failure for maize in Europe

    NASA Astrophysics Data System (ADS)

    Webber, Heidi; Gaiser, Thomas; Oomen, Roelof; Teixeira, Edmar; Zhao, Gang; Wallach, Daniel; Zimmermann, Andrea; Ewert, Frank

    2016-07-01

    While crop models are widely used to assess the change in crop productivity with climate change, their skill in assessing irrigation water demand or the risk of crop failure in large area impact assessments is relatively unknown. The objective of this study is to investigate which aspects of modeling crop water use (reference crop evapotranspiration (ET0), soil water extraction, soil evaporation, soil water balance and root growth) contributes most to the variability in estimates of maize crop water use and the risk of crop failure, and demonstrate the resulting uncertainty in a climate change impact study for Europe. The SIMPLACE crop modeling framework was used to couple the LINTUL5 crop model in factorial combinations of 2-3 different approaches for simulating the 5 aspects of crop water use, resulting in 51 modeling approaches. Using experiments in France and New Zeland, analysis of total sensitivity revealed that ET0 explained the most variability in both irrigated maize water use and rainfed grain yield levels, with soil evaporation also imporatant in the French experiment. In the European impact study, net irrigation requirement differed by 36% between the Penman and Hargreaves ET0 methods in the baseline period. Average EU grain yields were similar between models, but differences approached 1-2 tonnes in parts of France and Southern Europe. EU wide esimates of crop failure in the historical period ranged between 5.4 years for Priestley-Taylor to every 7.9 years for the Penman ET0 methods. While the uncertainty in absolute values between models was significant, estimates of relative changes were similar between models, confirming the utility of crop models in assessing climate change impacts. If ET0 estimates in crop models can be improved, through the use of appropriate methods, uncertainty in irrigation water demand as well as in yield estimates under drought can be reduced.

  13. Role of irrigation and wastewater reuse: comparison of subsurface irrigation and furrow irrigation.

    PubMed

    Choi, C; Song, I; Stine, S; Pimentel, J; Gerba, C

    2004-01-01

    Two different irrigation systems, subsurface drip irrigation and furrow irrigation, are tested to investigate the level of viral contamination and survival when tertiary effluent is used in arid and semi-arid regions. The effluent was injected with bacteriophages of PRD1 and MS2. A greater number of PRD1 and MS2 were recovered from the lettuce in the subsurface drip-irrigated plots as compared to those in the furrow-irrigated plots. Shallow drip tape installation and preferential water paths through cracks on the soil surface appeared to be the main causes of high viral contamination in subsurface drip irrigation plots, which led to the direct contact of the lettuce stems with the irrigation water which penetrated the soil surface. The water use efficiency of the subsurface drip irrigation system was higher than that of the furrow irrigation system. Thus, subsurface drip irrigation is an efficient irrigation method for vegetable crops in arid and semi-arid regions if viral contamination can be reduced. Deeper installation of drip tapes, frequent irrigations, and timely harvests based on cumulative heat units may further reduce health risks by ensuring viral die-off under various field conditions.

  14. Empirical evidence for a recent slowdown in irrigation-induced cooling

    SciTech Connect

    Bonfils, C; Lobell, D

    2007-01-19

    Understanding the influence of past land use changes on climate is needed to improve regional projections of future climate change and inform debates about the tradeoffs associated with land use decisions. The effects of rapid expansion of irrigated area in the 20th century has remained unclear relative to other land use changes, such as urbanization, that affected a similar total land area. Using spatial and temporal variations in temperature and irrigation extent observed in California, we show that irrigation expansion has had a large cooling effect on summertime average daily daytime temperatures (-0.15 to -0.25 C.decade{sup -1}), which corresponds to a cooling estimated at -2.0 - -3.3 C since the introduction of irrigation practice. Irrigation has negligible effects on nighttime temperatures, leading to a net cooling effect of irrigation on climate (-0.06 to -0.19 C.decade{sup -1}). Stabilization of irrigated area has occurred in California since 1980 and is expected in the near future for most irrigated regions. The suppression of past human-induced greenhouse warming by increased irrigation is therefore likely to slow in the future, and a potential decrease in irrigation may even contribute to a more rapid warming. Changes in irrigation alone are not expected to influence broadscale temperatures, but they may introduce large uncertainties in climate projections for irrigated agricultural regions, which provide roughly 40% of global food production.

  15. Size and stochasticity in irrigated social-ecological systems

    PubMed Central

    Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L.

    2017-01-01

    This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub ‘collapse trap’. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty. PMID:28266656

  16. Size and stochasticity in irrigated social-ecological systems

    NASA Astrophysics Data System (ADS)

    Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L.

    2017-03-01

    This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub ‘collapse trap’. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty.

  17. Size and stochasticity in irrigated social-ecological systems.

    PubMed

    Puy, Arnald; Muneepeerakul, Rachata; Balbo, Andrea L

    2017-03-07

    This paper presents a systematic study of the relation between the size of irrigation systems and the management of uncertainty. We specifically focus on studying, through a stylized theoretical model, how stochasticity in water availability and taxation interacts with the stochastic behavior of the population within irrigation systems. Our results indicate the existence of two key population thresholds for the sustainability of any irrigation system: or the critical population size required to keep the irrigation system operative, and N* or the population threshold at which the incentive to work inside the irrigation system equals the incentives to work elsewhere. Crossing irretrievably leads to system collapse. N* is the population level with a sub-optimal per capita payoff towards which irrigation systems tend to gravitate. When subjected to strong stochasticity in water availability or taxation, irrigation systems might suffer sharp population drops and irreversibly disintegrate into a system collapse, via a mechanism we dub 'collapse trap'. Our conceptual study establishes the basis for further work aiming at appraising the dynamics between size and stochasticity in irrigation systems, whose understanding is key for devising mitigation and adaptation measures to ensure their sustainability in the face of increasing and inevitable uncertainty.

  18. Why and how to acidify irrigation water

    SciTech Connect

    Matkin, O.A.; Petersen, F.H.

    1984-01-01

    The principles involved and the precautions required when utilizing acid in irrigation water include: reduction in carbonate and/or bicarbonate concentrations because of their toxic effects on the roots of plants; reduction or elimination of plugging of small-orifice irrigation equipment where calcium and/or magnesium carbonates form with water evaporation; reduction of sodium uptake by plant foliage under overhead irrigation; introduction of one or more anions for plant nutrition purposes without appreciably increasing the salinity of the water; avoidance of gradual soil pH rise from carbonate accumulation. The chemist can readily calculate the theoretical quantities of specific acids required to neutralize the carbonates found in irrigation water. The tested water should have a final pH of about 6.5. Acids are available in various strengths and degrees of purity. The 75% food grade phosphoric acid is the least dangerous to handle and is the only source of soluble phosphate which does not introduce some other element such as nitrogen, potassium, or sodium.

  19. Prophylactic peri-operative local antibiotic irrigation.

    PubMed

    Whiteside, L A

    2016-01-01

    An extensive review of the spinal and arthroplasty literature was undertaken to evaluate the effectiveness of local antibiotic irrigation during surgery. The efficacy of antibiotic irrigation for the prevention of acute post-operative infection after total joint arthroplasty was evaluated retrospectively in 2293 arthroplasties (1990 patients) between January 2004 and December 2013. The mean follow-up was 73 months (20 to 139). One surgeon performed all the procedures with minimal post-operative infection. The intra-operative protocol included an irrigation solution of normal saline with vancomycin 1000 mg/l and polymyxin 250,000 units/l at the rate of 2 l per hour. No patient required re-admission for primary infection or further antibiotic treatment. Two morbidly obese patients (two total hip arthroplasties) developed subcutaneous fat necrosis requiring debridement and one was revised because the deep capsular sutures were contaminated by the draining subcutaneous haematoma. One patient who had undergone total knee arthroplasty had unrecognised damage to the lateral superior geniculate artery and developed a haematoma that became infected secondarily four months after the surgery and underwent revision. The use of antibiotic irrigation during arthroplasty surgery has been highly effective for the prevention of infection in the author's practice. However, it should be understood that any routine prophylactic use of antibiotics may result in resistant organisms, and the wise stewardship of the use of antibiotics is an important part of surgical practice.

  20. Studies on the tryptophan requirement of lactating sows. Part 2: Estimation of the tryptophan requirement by physiological criteria.

    PubMed

    Pampuch, F G; Paulicks, B R; Roth-Maier, D A

    2006-12-01

    Mature sows were fed for a total of 72 lactations with diets which provided an adequate supply of energy and nutrients except for tryptophan (Trp). By supplementing a basal diet [native 1.2 g Trp/kg, equivalent to 0.8 g apparent ileal digestible (AID) Trp or 0.9 g true ileal digestible (TID) Trp] with L-Trp, five further diets (2-6) containing 1.5-4.2 g Trp/kg were formulated. The dietary Trp content had no effect on amino acid contents in milk on days 20 and 21 of lactation, but Trp in blood plasma on day 28 of lactation reflected the alimentary Trp supply with an increase from 2.74 +/- 1.14 mg/l (diet 1) to 23.91 +/- 7.53 mg/l (diet 6; p < 0.001). There were no directional differences between the diets with regard to the other amino acids. Concentrations of urea in milk and blood were higher with diet 1 (211 and 272 mg/l, respectively) than with diets 3-6 (183 and 227 mg/l, respectively). Serotonin levels in the blood serum were lower with diet 1 (304 ng/ml) than the average of diets 4-6 (540 ng/ml). This study confirms previously given recommendations for the Trp content in the diet of lactating sows, estimated by means of performance, of 1.9 g AID Trp (equivalent to 2.0 g TID Trp; approximately 2.6 g gross Trp) per kg diet.

  1. From rainfed agriculture to stress-avoidance irrigation: II. Sustainability, crop yield, and profitability

    NASA Astrophysics Data System (ADS)

    Vico, Giulia; Porporato, Amilcare

    2011-02-01

    The optimality of irrigation strategies may be sought with respect to a number of criteria, including water requirements, crop yield, and profitability. To explore the suitability of different demand-based irrigation strategies, we link the probabilistic description of irrigation requirements under stochastic hydro-climatic conditions, provided in a companion paper [Vico G, Porporato A. From rainfed agriculture to stress-avoidance irrigation: I. A generalized irrigation scheme with stochastic soil moisture. Adv Water Resour 2011;34(2):263-71], to crop-yield and economic analyses. Water requirements, application efficiency, and investment costs of different irrigation methods, such as surface, sprinkler and drip irrigation systems, are described via a unified conceptual and theoretical approach, which includes rainfed agriculture and stress-avoidance irrigation as extreme cases. This allows us to analyze irrigation strategies with respect to sustainability, productivity, and economic return, using the same framework, and quantify them as a function of climate, crop, and soil parameters. We apply our results to corn ( Zea mays), a food staple and biofuel source, which is currently mainly irrigated through surface systems. As our analysis shows, micro-irrigation maximizes water productivity, but more traditional solutions may be more profitable at least in some contexts.

  2. A comparison of groundwater recharge estimation methods in a semi-arid, coastal avocado and citrus orchard (Ventura County, California)

    NASA Astrophysics Data System (ADS)

    Grismer, Mark E.; Bachman, S.; Powers, T.

    2000-10-01

    We assess the relative merits of application of the most commonly used field methods (soil-water balance (SWB), chloride mass balance (CMB) and soil moisture monitoring (NP)) to determine recharge rates in micro-irrigated and non-irrigated areas of a semi-arid coastal orchard located in a relatively complex geological environment.Application of the CMB method to estimate recharge rates was difficult owing to the unusually high, variable soil-water chloride concentrations. In addition, contrary to that expected, the chloride concentration distribution at depths below the root zone in the non-irrigated soil profiles was greater than that in the irrigated profiles. The CMB method severely underestimated recharge rates in the non-irrigated areas when compared with the other methods, although the CMB method estimated recharge rates for the irrigated areas, that were similar to those from the other methods, ranging from 42 to 141 mm/year.The SWB method, constructed for a 15-year period, provided insight into the recharge process being driven by winter rains rather than summer irrigation and indicated an average rate of 75 mm/year and 164 mm/year for the 1984 - 98 and 1996 - 98 periods, respectively. Assuming similar soil-water holding capacity, these recharge rates applied to both irrigated and non-irrigated areas. Use of the long period of record was important because it encompassed both drought and heavy rainfall years. Successful application of the SWB method, however, required considerable additional field measurements of orchard ETc, soil-water holding capacity and estimation of rainfall interception - runoff losses.Continuous soil moisture monitoring (NP) was necessary to identify both daily and seasonal seepage processes to corroborate the other recharge estimates. Measured recharge rates during the 1996 - 1998 period in both the orchards and non-irrigated site averaged 180 mm/year. The pattern of soil profile drying during the summer irrigation season, followed

  3. Simulated Impacts of Climate Change on Water Use and Yield of Irrigated Sugarcane in South Africa

    NASA Technical Reports Server (NTRS)

    Jones, M.R; Singels, A.; Ruane, A. C.

    2015-01-01

    Reliable predictions of climate change impacts on water use, irrigation requirements and yields of irrigated sugarcane in South Africa (a water-scarce country) are necessary to plan adaptation strategies. Although previous work has been done in this regard, methodologies and results vary considerably. The objectives were (1) to estimate likely impacts of climate change on sugarcane yields, water use and irrigation demand at three irrigated sugarcane production sites in South Africa (Malelane, Pongola and La Mercy) for current (1980-2010) and future (2070-2100) climate scenarios, using an approach based on the Agricultural Model Inter-comparison and Improvement Project (AgMIP) protocols; and (2) to assess the suitability of this methodology for investigating climate change impacts on sugarcane production. Future climate datasets were generated using the Delta downscaling method and three Global Circulation Models (GCMs) assuming atmospheric CO2 concentration [CO2] of 734 ppm(A2 emissions scenario). Yield and water use were simulated using the DSSAT-Canegro v4.5 model. Irrigated cane yields are expected to increase at all three sites (between 11 and 14%), primarily due to increased interception of radiation as a result of accelerated canopy development. Evapotranspiration and irrigation requirements increased by 11% due to increased canopy cover and evaporative demand. Sucrose yields are expected to decline because of increased consumption of photo-assimilate for structural growth and maintenance respiration. Crop responses in canopy development and yield formation differed markedly between the crop cycles investigated. Possible agronomic implications of these results include reduced weed control costs due to shortened periods of partial canopy, a need for improved efficiency of irrigation to counter increased demands, and adjustments to ripening and harvest practices to counter decreased cane quality and optimize productivity. Although the Delta climate data

  4. Simulated Impacts of Climate Change on Water Use and Yield of Irrigated Sugarcane in South Africa

    NASA Technical Reports Server (NTRS)

    Jones, M.R; Singels, A.; Ruane, A. C.

    2015-01-01

    Reliable predictions of climate change impacts on water use, irrigation requirements and yields of irrigated sugarcane in South Africa (a water-scarce country) are necessary to plan adaptation strategies. Although previous work has been done in this regard, methodologies and results vary considerably. The objectives were (1) to estimate likely impacts of climate change on sugarcane yields, water use and irrigation demand at three irrigated sugarcane production sites in South Africa (Malelane, Pongola and La Mercy) for current (1980-2010) and future (2070-2100) climate scenarios, using an approach based on the Agricultural Model Inter-comparison and Improvement Project (AgMIP) protocols; and (2) to assess the suitability of this methodology for investigating climate change impacts on sugarcane production. Future climate datasets were generated using the Delta downscaling method and three Global Circulation Models (GCMs) assuming atmospheric CO2 concentration [CO2] of 734 ppm(A2 emissions scenario). Yield and water use were simulated using the DSSAT-Canegro v4.5 model. Irrigated cane yields are expected to increase at all three sites (between 11 and 14%), primarily due to increased interception of radiation as a result of accelerated canopy development. Evapotranspiration and irrigation requirements increased by 11% due to increased canopy cover and evaporative demand. Sucrose yields are expected to decline because of increased consumption of photo-assimilate for structural growth and maintenance respiration. Crop responses in canopy development and yield formation differed markedly between the crop cycles investigated. Possible agronomic implications of these results include reduced weed control costs due to shortened periods of partial canopy, a need for improved efficiency of irrigation to counter increased demands, and adjustments to ripening and harvest practices to counter decreased cane quality and optimize productivity. Although the Delta climate data

  5. Estimating the Reliability of Dynamic Variables Requiring Rater Judgment: A Generalizability Paradigm.

    ERIC Educational Resources Information Center

    Webber, Larry; And Others

    Generalizability theory, which subsumes classical measurement theory as a special case, provides a general model for estimating the reliability of observational rating data by estimating the variance components of the measurement design. Research data from the "Heart Smart" health intervention program were analyzed as a heuristic tool.…

  6. Estimation of the left ventricular relaxation time constant tau requires consideration of the pressure asymptote.

    PubMed

    Langer, S F J; Habazettl, H; Kuebler, W M; Pries, A R

    2005-01-01

    The left ventricular isovolumic pressure decay, obtained by cardiac catheterization, is widely characterized by the time constant tau of the exponential regression p(t)=Pomega+(P0-Pomega)exp(-t/tau). However, several authors prefer to prefix Pomega=0 instead of coestimating the pressure asymptote empirically; others present tau values estimated by both methods that often lead to discordant results and interpretation of lusitropic changes. The present study aims to clarify the relations between the tau estimates from both methods and to decide for the more reliable estimate. The effect of presetting a zero asymptote on the tau estimate was investigated mathematically and empirically, based on left ventricular pressure decay data from isolated ejecting rat and guinea pig hearts at different preload and during spontaneous decrease of cardiac function. Estimating tau with preset Pomega=0 always yields smaller values than the regression with empirically estimated asymptote if the latter is negative and vice versa. The sequences of tau estimates from both methods can therefore proceed in reverse direction if tau and Pomega change in opposite directions between the measurements. This is exemplified by data obtained during an increasing preload in spontaneously depressed isolated hearts. The estimation of the time constant of isovolumic pressure fall with a preset zero asymptote is heavily biased and cannot be used for comparing the lusitropic state of the heart in hemodynamic conditions with considerably altered pressure asymptotes.

  7. Uncertainties in modelling the climate impact of irrigation

    NASA Astrophysics Data System (ADS)

    de Vrese, Philipp; Hagemann, Stefan

    2017-04-01

    Many issues related to the climate impact of irrigation are addressed in studies that apply a wide range of models. These involve uncertainties related to differences in the model's general structure and parametrizations on the one hand and the need for simplifying assumptions with respect to the representation of irrigation on the other hand. To address these uncertainties, we used the Max Planck Institute for Meteorology's Earth System model into which a simple irrigation scheme was implemented. In several simulations, we varied certain irrigation characteristics to estimate the resulting variations in irrigation's climate impact and found a large sensitivity with respect to the irrigation effectiveness. Here, the assumed effectiveness of the scheme is a combination of the target soil moisture and the degree to which water losses are accounted for. In general, the simulated impact of irrigation on the state of the land surface and the atmosphere is more than three times larger when assuming a low irrigation effectiveness compared to a high effectiveness. In an additional set of simulations, we varied certain aspects of the model's general structure, namely the land-surface-atmosphere coupling, to estimate the related uncertainties. Here we compared the impact of irrigation between simulations using a parameter aggregation, a simple flux aggregation scheme and a coupling scheme that also accounts for spatial heterogeneity within the lowest layers of the atmosphere. It was found that changes in the land-surface-atmosphere coupling do not only affect the magnitude of climate impacts but they can even affect the direction of the impacts.

  8. Spatial quantification of groundwater abstraction in the irrigated Indus basin.

    PubMed

    Cheema, M J M; Immerzeel, W W; Bastiaanssen, W G M

    2014-01-01

    Groundwater abstraction and depletion were assessed at a 1-km resolution in the irrigated areas of the Indus Basin using remotely sensed evapotranspiration (ET) and precipitation; a process-based hydrological model and spatial information on canal water supplies. A calibrated Soil and Water Assessment Tool (SWAT) model was used to derive total annual irrigation applied in the irrigated areas of the basin during the year 2007. The SWAT model was parameterized by station corrected precipitation data (R) from the Tropical Rainfall Monitoring Mission, land use, soil type, and outlet locations. The model was calibrated using a new approach based on spatially distributed ET fields derived from different satellite sensors. The calibration results were satisfactory and strong improvements were obtained in the Nash-Sutcliffe criterion (0.52 to 0.93), bias (-17.3% to -0.4%), and the Pearson correlation coefficient (0.78 to 0.93). Satellite information on R and ET was then combined with model results of surface runoff, drainage, and percolation to derive groundwater abstraction and depletion at a nominal resolution of 1 km. It was estimated that in 2007, 68 km³ (262 mm) of groundwater was abstracted in the Indus Basin while 31 km³ (121 mm) was depleted. The mean error was 41 mm/year and 62 mm/year at 50% and 70% probability of exceedance, respectively. Pakistani and Indian Punjab and Haryana were the most vulnerable areas to groundwater depletion and strong measures are required to maintain aquifer sustainability.

  9. Geospatial compilation and digital map of centerpivot irrigated areas in the mid-Atlantic region, United States

    USGS Publications Warehouse

    Finkelstein, Jason S.; Nardi, Mark R.

    2015-01-01

    The digitized acreage totals were compared with the irrigation estimates provided by the U.S. Department of Agriculture farm and ranch irrigation survey, which is the most comprehensive source of information on irrigation water use within the agricultural industry. This survey collects information on a wide range of topics, including the amount of water used, total acres irrigated, crop specific data, and even energy costs. The U.S. Department of Agriculture samples data for both entire States and individual counties.

  10. An estimation of the protein requirements of Iberian x Duroc 50:50 crossbred growing pigs.

    PubMed

    Rojas-Cano, M L; Ruiz-Guerrero, V; Lara, L; Nieto, R; Aguilera, J F

    2014-04-01

    The effects of dietary protein content on the rates of gain and protein deposition were studied in Iberian (IB) × Duroc (DU) 50:50 barrows at 2 stages of growth [10.6 ± 0.2 (n = 28) and 60.0 ± 0.4 (n = 24) kg initial BW]. Two feeding, digestibility, and N-balance trials were performed. At each stage of growth, they were allocated in individual pens and given restrictedly (at 0.9 × ad libitum intake) one of 4 pelleted diets of similar energy concentration (13.8 to 14.5 MJ ME/kg DM), formulated to provide 4 different (ideal) CP contents (236, 223, 208, and 184 g CP/kg DM in the first trial, and 204, 180, 143, and 114 g CP/kg DM in the second trial). Feed allowance was offered in 2 daily equal meals. The average concentration of Lys was 6.59 ± 0.13 g /100 g CP for all diets. Whatever the stage of growth, average daily BW gain and gain to feed ratio were unchanged by increases in dietary CP content (477 ± 7 and 1,088 ± 20 g, and 0.475 ± 0.027 and 0.340 ± 0.113, respectively, in the first and second trial). In pigs growing from 10 to 27 kg BW, the average rate of N retention increased linearly (P < 0.01) on increasing the protein content in the diet up to a break point, so a linear-plateau dose response was observed. Pigs fed diets providing 208 to 236 g/kg DM did not differ in rate of protein deposition (PD). A maximum value of 87 (13.93 g N retained × 6.25) g PD/d was obtained when the diet supplied at least 208 g CP/kg DM. The broken-line regression analysis estimated dietary CP requirements at 211 g ideal CP (15.2 g total Lys)/kg DM. In the fattening pigs, there was a quadratic response (P < 0.01) in the rate of N retention as dietary CP content increased. Maximum N retention (18.7 g/d) was estimated from the first derivative of the function that relates the observed N retained (g/d) and dietary CP content (g/kg DM). This maximum value would be obtained by feeding a diet containing 185 g ideal CP (13.3 g total Lys)/kg DM and represents the maximum capacity

  11. Groundwater recharge is affected by irrigation efficiency and climate change

    NASA Astrophysics Data System (ADS)

    Green, T. R.; Anapalli, S.

    2016-12-01

    Agricultural water savings may be viewed as a potential water supply as municipalities seek water security. However, historical "return flows" to groundwater must be estimated to determine how much net irrigation water can be sold. The RZWQM agricultural systems model was used to simulate deep drainage (pre-groundwater recharge) and surface runoff (potential return flow to streams) under historical conditions in Colorado, USA for limited and full irrigation of corn (maize). Interactions between projected climate change and water management (including limited irrigation) can be simulated. Irrigation (in)efficiency is assumed to result in distributions of variable irrigation amounts, which can be transformed with the model to estimate derived distributions of groundwater recharge and nitrate leaching. The simulation results indicate potential for large changes in the distributions and average groundwater recharge (up to 50% increase under climate change). Even so, biochemical cycling of nitrogen (denitrification) could reduce the nitrate leaching rates. This study serves as a prototype for estimating the derived distributions of groundwater recharge and other fluxes affected by irrigation and climate change.

  12. Estimation of yield and water requirements of maize crops combining high spatial and temporal resolution images with a simple crop model, in the perspective of the Sentinel-2 mission

    NASA Astrophysics Data System (ADS)

    Battude, Marjorie; Bitar, Ahmad Al; Brut, Aurore; Cros, Jérôme; Dejoux, Jean-François; Huc, Mireille; Marais Sicre, Claire; Tallec, Tiphaine; Demarez, Valérie

    2016-04-01

    Water resources are under increasing pressure as a result of global change and of a raising competition among the different users (agriculture, industry, urban). It is therefore important to develop tools able to estimate accurately crop water requirements in order to optimize irrigation while maintaining acceptable production. In this context, remote sensing is a valuable tool to monitor vegetation development and water demand. This work aims at developing a robust and generic methodology mainly based on high resolution remote sensing data to provide accurate estimates of maize yield and water needs at the watershed scale. Evapotranspiration (ETR) and dry aboveground biomass (DAM) of maize crops were modeled using time series of GAI images used to drive a simple agro-meteorological crop model (SAFYE, Duchemin et al., 2005). This model is based on a leaf partitioning function (Maas, 1993) for the simulation of crop biomass and on the FAO-56 methodology for the ETR simulation. The model also contains a module to simulate irrigation. This study takes advantage of the SPOT4 and SPOT5 Take5 experiments initiated by CNES (http://www.cesbio.ups-tlse.fr/multitemp/). They provide optical images over the watershed from February to May 2013 and from April to August 2015 respectively, with a temporal and spatial resolution similar to future images from the Sentinel-2 and VENμS missions. This dataset was completed with LandSat8 and Deimos1 images in order to cover the whole growing season while reducing the gaps in remote sensing time series. Radiometric, geometric and atmospheric corrections were achieved by the THEIA land data center, and the KALIDEOS processing chain. The temporal dynamics of the green area index (GAI) plays a key role in soil-plant-atmosphere interactions and in biomass accumulation process. Consistent seasonal dynamics of the remotely sensed GAI was estimated by applying a radiative transfer model based on artificial neural networks (BVNET, Baret

  13. Number of trials required to estimate a free-energy difference, using fluctuation relations

    NASA Astrophysics Data System (ADS)

    Yunger Halpern, Nicole; Jarzynski, Christopher

    2016-05-01

    The difference Δ F between free energies has applications in biology, chemistry, and pharmacology. The value of Δ F can be estimated from experiments or simulations, via fluctuation theorems developed in statistical mechanics. Calculating the error in a Δ F estimate is difficult. Worse, atypical trials dominate estimates. How many trials one should perform was estimated roughly by Jarzynski [Phys. Rev. E 73, 046105 (2006), 10.1103/PhysRevE.73.046105]. We enhance the approximation with the following information-theoretic strategies. We quantify "dominance" with a tolerance parameter chosen by the experimenter or simulator. We bound the number of trials one should expect to perform, using the order-∞ Rényi entropy. The bound can be estimated if one implements the "good practice" of bidirectionality, known to improve estimates of Δ F . Estimating Δ F from this number of trials leads to an error that we bound approximately. Numerical experiments on a weakly interacting dilute classical gas support our analytical calculations.

  14. Spectrophotometric determination of irrigant extrusion using passive ultrasonic irrigation, EndoActivator, or syringe irrigation.

    PubMed

    Rodríguez-Figueroa, Carolina; McClanahan, Scott B; Bowles, Walter R

    2014-10-01

    Sodium hypochlorite (NaOCl) irrigation is critical to endodontic success, and several new methods have been developed to improve irrigation efficacy (eg, passive ultrasonic irrigation</