Science.gov

Sample records for ischemia-induced cholesterol loading

  1. Cellular cholesterol efflux and cholesterol loading capacity of serum: effects of LDL-apheresis[S

    PubMed Central

    Adorni, M. P.; Zimetti, F.; Puntoni, M.; Bigazzi, F.; Sbrana, F.; Minichilli, F.; Bernini, F.; Ronda, N.; Favari, E.; Sampietro, T.

    2012-01-01

    High LDL-cholesterol (LDL-C) characterizes familial hypercholesterolemia (FH) and familial combined hyperlipidemia (FCH). LDL-apheresis, used in these patients to reduce LDL-C levels, has been shown to also affect HDL levels and composition. We studied LDL-apheresis effects on six FH and nine FCH subjects’ serum capacity to modulate cellular cholesterol efflux, an index of HDL functionality, and to load macrophages with cholesterol. Serum cholesterol efflux capacity (CEC) and macrophage cholesterol loading capacity (CLC) were measured before, immediately after, and two days after LDL-apheresis. The procedure reduced total cholesterol (TC), LDL-C, and apoB plasma levels (−69%, −80% and −74%, respectively), parameters only partially restored two days later. HDL-C and apoA-I plasma levels, reduced after LDL-apheresis (−27% and −16%, respectively), were restored to almost normal levels two days later. LDL-apheresis reduced serum aqueous diffusion (AD) CEC, SR-BI-CEC, and ABCA1-CEC. AD and SR-BI were fully restored whereas ABCA1-CEC remained low two days later. Sera immediately and two days after LDL-apheresis had a lower CLC than pre-LDL-apheresis sera. In conclusion, LDL-apheresis transiently reduces HDL-C levels and serum CEC, but it also reduces also serum capacity to deliver cholesterol to macrophages. Despite a potentially negative effect on HDL levels and composition, LDL-apheresis may counteract foam cells formation. PMID:22414482

  2. Differential lipid metabolism in monocytes and macrophages: influence of cholesterol loading[S

    PubMed Central

    Fernandez-Ruiz, Irene; Puchalska, Patrycja; Narasimhulu, Chandrakala Aluganti; Sengupta, Bhaswati; Parthasarathy, Sampath

    2016-01-01

    The influence of the hypercholesterolemia associated with atherosclerosis on monocytes is poorly understood. Monocytes are exposed to high concentrations of lipids, particularly cholesterol and lysophosphatidylcholine (lyso-PC). Indeed, in line with recent reports, we found that monocytes accumulate cholesteryl esters (CEs) in hypercholesterolemic mice, demonstrating the need for studies that analyze the effects of lipid accumulation on monocytes. Here we analyze the effects of cholesterol and lyso-PC loading in human monocytes and macrophages. We found that cholesterol acyltransferase and CE hydrolase activities are lower in monocytes. Monocytes also showed a different expression profile of cholesterol influx and efflux genes in response to lipid loading and a different pattern of lyso-PC metabolism. In monocytes, increased levels of CE slowed the conversion of lyso-PC into PC. Interestingly, although macrophages accumulated glycerophosphocholine, phosphocholine was the main water-soluble choline metabolite being generated in monocytes, suggesting a role for mono- and diacylglycerol in the chemoattractability of these cells. In summary, monocytes and macrophages show significant differences in lipid metabolism and gene expression profiles in response to lipid loading. These findings provide new insights into the mechanisms of atherosclerosis and suggest potentials for targeting monocyte chemotactic properties not only in atherosclerosis but also in other diseases. PMID:26839333

  3. Ischemia-induced endothelial cell dysfunction.

    PubMed

    Keep, R F; Andjelkovic, A V; Stamatovic, S M; Shakui, P; Ennis, S R

    2005-01-01

    Hemorrhagic transformation upon reperfusion therapy has focused attention on ischemia-induced endothelial dysfunction. This study examined whether hyperglycemia may induce hemorrhagic transformation by enhancing endothelial mitochondrial damage during ischemia and whether preconditioning (PC) stimuli may limit ischemia-induced endothelial damage. In vivo, rats received 2.8 M D-glucose or arabinose (1 ml/100 g; i.p.) prior to undergoing two hours of middle cerebral artery occlusion and transcardiac fixation for electron microscopy. In vitro, brain endothelial cells were exposed to a PC impulse (short-term oxygen glucose deprivation; OGD) prior to an injurious event (5 hours OGD). Endothelial injury was assessed by measuring lactate dehydrogenase release. Hyperglycemia during cerebral ischemia resulted in marked changes in endothelial morphology and mitochondrial swelling. Thus, in the ischemic hemisphere, there was no evidence of endothelial mitochondrial swelling in normoglycemic rats (mean profile width 0.22 +/- 0.04 vs. 0.17 +/- 0.01 microm in contralateral hemisphere) but there was marked swelling in hyperglycemic rats (0.44 +/- 0.02 microm). In vitro, cells preconditioned with one hour of OGD one day prior to 5 hours of OGD, showed reduced lactate dehydrogenase release (p < 0.05). In conclusion, hyperglycemia may have specific adverse effects on endothelial cell mitochondria during ischemia. Preventing those effects may help to ameliorate blood-brain barrier disruption on reperfusion. Insights into how to prevent endothelial injury may come from determining the mechanisms involved in endothelial preconditioning.

  4. Mitochondrial Cholesterol Loading Exacerbates Amyloid Beta Peptide-Induced Inflammation and Neurotoxicity

    PubMed Central

    Fernández, Anna; Llacuna, Laura; Fernández-Checa, José C.; Colell., Anna

    2009-01-01

    The role of cholesterol in Alzheimer's disease has been linked to the generation of toxic amyloid β peptides (Aβ). Using genetic mouse models of cholesterol loading, we examined whether mitochondrial cholesterol regulates Aβ neurotoxicity and AD pathology. Isolated mitochondria from brain or cortical neurons of transgenic mice overexpressing SREBP-2 (sterol regulatory element binding protein 2) or NPC1 (Niemann-Pick type C1) knockout mice exhibited mitochondrial cholesterol accumulation, mitochondrial GSH (mGSH) depletion and increased susceptibility to Aβ1-42-induced oxidative stress and release of apoptogenic proteins. Similar findings were observed in pharmacologically GSH-restricted rat brain mitochondria, while selective mGSH depletion sensitized human neuronal and glial cell lines to Aβ1-42-mediated cell death. Intracerebroventricular human Aβ delivery co-localized with mitochondria resulting in oxidative stress, neuroinflammation and neuronal damage that were enhanced in Tg-SREBP-2 mice and prevented upon mGSH recovery by GSH ethyl ester co-infusion, with a similar protection observed by i.p. administration of GSH ethyl ester. Finally, APP/PS1 mice, a transgenic AD mouse model, exhibited mitochondrial cholesterol loading and mGSH depletion. Thus, mitochondrial cholesterol accumulation emerges as a novel pathogenic factor in AD by modulating Aβ toxicity via mGSH regulation; strategies boosting the particular pool of mGSH may be of relevance to slow down disease progression. PMID:19458211

  5. Cholesterol in situ forming gel loaded with doxycycline hyclate for intra-periodontal pocket delivery.

    PubMed

    Phaechamud, Thawatchai; Setthajindalert, Orn

    2017-03-01

    Cholesterol has been widely used in drug delivery systems including implant. Doxycycline hyclate (DH)-loaded cholesterol in situ forming gels using N-methyl pyrrolidone as a solvent were prepared and investigated for their properties including viscosity, rheology, syringeability, gel formation, drug release, degradation and antimicrobial activities. The burst drug release of a DH-loaded in situ forming gel using cholesterol as the gelling agent was minimized when the amount of benzyl benzoate was increased. The viscosity of the system was increased as the amount of benzyl benzoate was increased with Newtonian flow. The systems were easy to inject into the target site because of their minimal force of syringeability. They could transform from solution into matrix-like structures, but formulations with higher concentrations of benzyl benzoate took a longer time. However, the degradability was decreased when the amount of benzyl benzoate was increased. These systems inhibited P. gingivalis, S. mutans and S. aureus effectively. DH-loaded cholesterol in situ forming gel system comprising 10% benzyl benzoate was the most suitable owing to its sustainable release manner for 10days and therefore was the proper formulation for periodontitis treatment.

  6. Differential regulation of gene expression by LXRs in response to macrophage cholesterol loading.

    PubMed

    Ignatova, Irena D; Angdisen, Jerry; Moran, Erin; Schulman, Ira G

    2013-07-01

    The ability of cells to precisely control gene expression in response to intracellular and extracellular signals plays an important role in both normal physiology and in pathological settings. For instance, the accumulation of excess cholesterol by macrophages initiates a genetic response mediated by the liver X receptors (LXRs)-α (NR1H3) and LXRβ (NR1H2), which facilitates the transport of cholesterol out of cells to high-density lipoprotein particles. Studies using synthetic LXR agonists have also demonstrated that macrophage LXR activation simultaneously induces a second network of genes that promotes fatty acid and triglyceride synthesis that may support the detoxification of excess free cholesterol by storage in the ester form. We now show that treatment of human THP-1 macrophages with endogenous or synthetic LXR ligands stimulates both transcriptional and posttranscriptional pathways that result in the selective recruitment of the LXRα subtype to LXR-regulated promoters. Interestingly, when human or mouse macrophages are loaded with cholesterol under conditions that mimic the development of atherogenic macrophage foam cells, a selective LXR response is generated that induces genes mediating cholesterol transport but does not coordinately regulate genes involved in fatty acid synthesis. The gene-selective response to cholesterol loading occurs, even in the presence of LXRα binding to the promoter of the gene encoding the sterol regulatory element-binding protein-1c, the master transcriptional regulator of fatty acid synthesis. The ability of promoter bound LXRα to recruit RNA polymerase to the sterol regulatory element-binding protein-1c promoter, however, appears to be ligand selective.

  7. Differential Regulation of Gene Expression by LXRs in Response to Macrophage Cholesterol Loading

    PubMed Central

    Ignatova, Irena D.; Angdisen, Jerry; Moran, Erin

    2013-01-01

    The ability of cells to precisely control gene expression in response to intracellular and extracellular signals plays an important role in both normal physiology and in pathological settings. For instance, the accumulation of excess cholesterol by macrophages initiates a genetic response mediated by the liver X receptors (LXRs)-α (NR1H3) and LXRβ (NR1H2), which facilitates the transport of cholesterol out of cells to high-density lipoprotein particles. Studies using synthetic LXR agonists have also demonstrated that macrophage LXR activation simultaneously induces a second network of genes that promotes fatty acid and triglyceride synthesis that may support the detoxification of excess free cholesterol by storage in the ester form. We now show that treatment of human THP-1 macrophages with endogenous or synthetic LXR ligands stimulates both transcriptional and posttranscriptional pathways that result in the selective recruitment of the LXRα subtype to LXR-regulated promoters. Interestingly, when human or mouse macrophages are loaded with cholesterol under conditions that mimic the development of atherogenic macrophage foam cells, a selective LXR response is generated that induces genes mediating cholesterol transport but does not coordinately regulate genes involved in fatty acid synthesis. The gene-selective response to cholesterol loading occurs, even in the presence of LXRα binding to the promoter of the gene encoding the sterol regulatory element-binding protein-1c, the master transcriptional regulator of fatty acid synthesis. The ability of promoter bound LXRα to recruit RNA polymerase to the sterol regulatory element-binding protein-1c promoter, however, appears to be ligand selective. PMID:23686114

  8. Cholesterol-loaded cyclodextrin improves ram sperm cryoresistance in skim milk-extender.

    PubMed

    Salmon, Vianney M; Castonguay, François; Demers-Caron, Vincent; Leclerc, Pierre; Bailey, Janice L

    2017-02-01

    Cholesterol-loaded cyclodextrin (CLC) is known to improve ram sperm cryosurvival. This study expands on previous research to: (1) determine the mechanism by which CLC improves ram sperm cryosurvival and (2) compare the efficiency of a novel, skim milk-based extender containing CLC to a traditional egg yolk-based extender. Hypothesis #1 was that CLC enhances membrane cholesterol content to increase the resistance of ram sperm to cold and osmotic stress, thereby improving cryosurvival. We first assessed the ability of fresh sperm treated with CLC to withstand cold shock. Second, fresh sperm were treated with CLC to evaluate their tolerance to osmotic stress. Third, to confirm that cholesterol is incorporated into the sperm using CLC, we quantified sperm cholesterol. To test Hypothesis #2 that CLC is most effective in a medium without competing cholesterol, we compared sperm cryosurvival and fertility in skim milk-based extender containing CLC versus in a traditional egg yolk-based freezing extender without CLC. Our data confirmed that CLC treatment improves ram sperm cold shock and osmotic stress resistance, and augments sperm cholesterol content. Semen in skim milk-based extender containing CLC prior to freezing, had more motile sperm with intact acrosomes after thawing compared to semen in egg yolk-based extender. In contrast, sperm plasma membrane integrity and in vivo fertility of the semen cryopreserved in the skim milk-based extender with CLC did not differ from semen that was cryopreserved in egg yolk-based extender. Further research is warranted to combine CLC with other cryoprotection strategies or to modify the insemination protocol.

  9. Cholesterol-Loaded Cyclodextrin Increases the Cholesterol Content of Goat Sperm to Improve Cold and Osmotic Resistance and Maintain Sperm Function after Cryopreservation.

    PubMed

    Salmon, Vianney M; Leclerc, Pierre; Bailey, Janice L

    2016-04-01

    The success of semen cryopreservation depends on sperm membrane integrity and function after thawing. Cholesterol-loaded cyclodextrin (CLC) is used for in vitro incorporation of cholesterol to protect cells against cold temperatures. We hypothesized that CLC treatment also enhances sperm cholesterol content to increase tolerance to osmotic shock and cryoresistance, thereby improving fertility. We confirmed the fact that treatment of goat semen with 3 mg/ml CLC increases sperm cholesterol content using both the Liebermann-Burchard approach and filipin III labeling of membrane cholesterol. Sperm were then treated with or without CLC and cryopreserved. After thawing, sperm cholesterol dramatically fell, even in the presence of CLC, which explains the mechanism of cryocapacitation. CLC treatment, however, maintained a normal prefreeze cholesterol level in sperm after cryopreservation. Furthermore, fresh sperm treated with CLC and subjected to either cold shock or incubated in hypo-, iso-, and hyperosmotic media, designed to mimic stresses associated with freezing/thawing, displayed increased temperature and osmotic tolerance. CLC treatment also improved sperm viability, motility, and acrosome integrity after thawing. Furthermore, CLC treatment did not affect the sperm's ability to undergo in vitro capacitation according to chlortetracycline fluorescence and protein tyrosine phosphorylation. A pilot field trial demonstrated that artificial insemination with sperm that underwent increased cholesterol levels following CLC treatment yielded higher fertility ( ITALIC! P< 0.1) and proliferation ( ITALIC! P< 0.05) rates in vivo than untreated semen from the same ejaculate samples. These observations suggest that CLC treatment could be used to improve cryoprotection during the freezing and thawing of goat sperm.

  10. Reformulated meat products protect against ischemia-induced cardiac damage.

    PubMed

    Asensio-Lopez, M C; Lax, A; Sanchez-Mas, J; Avellaneda, A; Planes, J; Pascual-Figal, D A

    2016-02-01

    The protective effects of the antioxidants present in food are of great relevance for cardiovascular health. This study evaluates whether the extracts from reformulated meat products with a reduction in fat and/or sodium content exert a cardioprotective effect against ischemia-induced oxidative stress in cardiomyocytes, compared with non-meat foods. Ischemic damage caused loss of cell viability, increased reactive oxygen species and lipid peroxidation and decreased the antioxidant activity. Pretreatment for 24 h with digested or non-digested extracts from reformulated meat products led to protection against ischemia-induced oxidative damage: increased cell viability, reduced oxidative stress and restored the antioxidant activity. Similar results were obtained using extracts from tuna fish, but not with the extracts of green peas, salad or white beans. These results suggest that reformulated meat products have a beneficial impact in protecting cardiac cells against ischemia, and they may represent a source of natural antioxidants with benefits for cardiovascular health.

  11. Effect of cholesterol-loaded cyclodextrins on cryosurvival of dog spermatozoa.

    PubMed

    Khan, J; Tahir, M Z; Khalid, A; Sattar, A; Ahmad, N

    2017-01-18

    Cryopreservation affects integrity of cholesterol and phospholipids in the plasma membrane of sperm leading to decreased fertility of frozen-thawed semen. Cholesterol-loaded cyclodextrins (CLC) have been shown to improve post-thaw semen quality in various species. The aim of this study was to investigate the optimal concentration of CLC for better post-thaw semen quality in dogs. Semen collection, through digital manipulation, was conducted once a week in four adult German shepherd dogs (n = 20 ejaculates; five ejaculates/dog). Semen samples with mass motility>3 (0: without movement; 5: fast progressive movement), motility >70% and concentration >200 × 10(6) /ml were pooled and processed in Tris-citrate extender containing 0, 1, 2 or 3 mg of CLC. The post-thaw quality was assessed on the basis of percentage motility, morphological abnormalities, live/dead ratio and plasma membrane, acrosome and DNA integrity, evaluated using anova and further analysed by Tukey's range test, if applicable. The addition of CLC showed an overall improvement in post-thaw semen quality. Among various treatment groups, and when compared to the control, the percentages of motile (55.5%), viable (65%), plasma membrane intact (56.7%), acrosome intact (49.2%) and DNA intact (98%) spermatozoa were significantly higher in 2 mg/ml CLC group (p < .05). It is concluded that incorporation of cholesterol in semen extender results in a beneficial increase in post-thaw semen quality in dogs.

  12. Response of boar sperm to the treatment with cholesterol-loaded cyclodextrins added prior to cryopreservation.

    PubMed

    Blanch, E; Tomás, C; Graham, J K; Mocé, E

    2012-12-01

    Cryopreserved boar sperm is not used extensively for artificial insemination, owing to the poor fertility rates of the sperm after freezing and thawing. The sperm membrane is damaged as the cells are cooled from body temperature to 5°C (cold shock), as well as during the freeze-thaw process. Increasing the cholesterol content of boar sperm membranes could help them survive cryopreservation, similar to sperm from other species that are cold shock sensitive. The aim of this study was to determine the optimal cholesterol-loaded cyclodextrin (CLC) concentration to use for boar sperm cryopreservation, and the influence of CLCs on the cryosurvival of sperm from boars classified as good or poor freezers. Treating boar sperm with 1 mg of CLC/120 × 10(6) sperm slightly improved (p < 0.05) the percentage of viable sperm after freezing-thawing. On the other hand, sperm, from both good and poor freezers, responded similarly to CLC treatment. Nevertheless, additional studies will be needed to study the effect of this treatment on other parameters of sperm quality.

  13. Development of lycopene-loaded nanostructured lipid carriers: effect of rice oil and cholesterol.

    PubMed

    Riangjanapatee, P; Müller, R H; Keck, C M; Okonogi, S

    2013-09-01

    Nanostructured lipid carriers (NLC) were developed using a skin-compatible surfactant and natural lipid materials (rice oil, cholesterol) to incorporate lycopene. Characteristics of the NLC were explored in comparison with nanoemulsions and solid-lipid nanoparticles (SLN). Photon correlation spectroscopy, laser diffractometry (LD) and differential scanning calorimetry were used to determine particle size and thermal stability. Particle size expressed as LD (0.99) was 405 nm for the SLN, 350 nm for the NLC without cholesterol and 287 nm for the NLC with cholesterol. Rice oil and cholesterol enabled the formation of smaller particles, but cholesterol also reduced drug stability in the NLC. To preserve chemical stability of lycopene in the NLC, cholesterol should be avoided and storage should be at 4 degrees C or at room temperature.

  14. Addition of cholesterol-loaded cyclodextrins to the thawing extender: effects on boar sperm quality.

    PubMed

    Tomás, C; Gómez-Fernández, J; Gómez-Izquierdo, E; Mocé, E; de Mercado, E

    2014-06-01

    The aim of the present study was to evaluate the effect that the addition of cholesterol-loaded cyclodextrins (CLC) to the thawing extender has on the quality of frozen-thawed boar sperm. Pooled semen (n = 5) from three boars was used for the experiments. The semen was cryopreserved with an egg-yolk-based extender, it was diluted after thawing in Beltsville thawing solution (BTS) supplemented with different concentrations of CLC (0, 12.5, 25, 50 or 100 mg/500 × 10(6) sperm), and these samples were incubated at 37°C for 150 min. The following parameters of sperm quality were evaluated 30 and 150 min after incubation: sperm with intact plasma membrane (SIPM; %), sperm with normal acrosomal ridge (NAR; %), total motile sperm (TMS; %), progressively motile sperm (PMS; %) and kinetic parameters. Both SIPM and NAR increased (p < 0.05) when the thawing extender was supplemented with 12.5, 25 and 50 mg CLC/500 × 10(6) sperm. Nevertheless, motility decreased (p < 0.05) when the concentration of CLC exceeded 12.5 mg CLC/500 × 10(6) sperm. In conclusion, our results suggest that the supplementation of thawing extenders with CLC improves sperm viability and reduces acrosome damage after freezing/thawing.

  15. Effect of cholesterol-loaded-cyclodextrin on sperm viability and acrosome reaction in boar semen cryopreservation.

    PubMed

    Lee, Yong-Seung; Lee, Seunghyung; Lee, Sang-Hee; Yang, Boo-Keun; Park, Choon-Keun

    2015-08-01

    This study was undertaken to examine the effect of cholesterol-loaded-cyclodextrin (CLC) on boar sperm viability and spermatozoa cryosurvival during boar semen cryopreservation, and methyl-β-cyclodextrin (MBCD) was treated for comparing with CLC. Boar semen treated with CLC and MBCD before freezing process to monitor the effect on survival and capacitation status by flow cytometry with appropriate fluorescent probes. Sperm viability was higher in 1.5mg CLC-treated sperm (76.9±1.01%, P<0.05) than un-treated and MBCD-treated sperm before cryopreservation (58.7±1.31% and 60.3±0.31%, respectively). For CTC patterns, F-pattern was higher in CLC treated sperm than MBCD-treated sperm, for B-pattern was higher in CLC-treated sperm than fresh sperm (P<0.05). For AR pattern (an acrosome-reacted sperm) was lower in CLC-treated sperm than MBCD-treated sperm (P<0.05). Moreover, we examined in vitro development of porcine oocytes after in vitro fertilization using CLC-treated frozen-thawed semen, in which CLC treatment prior to freezing and thawing increased the development of oocytes to blastocyst stage in vitro. In conclusion, CLC could protect the viability of spermatozoa from cryodamage prior to cryopreservation in boar semen.

  16. Placental Growth Factor Administration Abolishes Placental Ischemia-Induced Hypertension.

    PubMed

    Spradley, Frank T; Tan, Adelene Y; Joo, Woo S; Daniels, Garrett; Kussie, Paul; Karumanchi, S Ananth; Granger, Joey P

    2016-04-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia because placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and vascular endothelial growth factor are both natural ligands for sFlt-1, vascular endothelial growth factor also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to 4 groups: normal pregnant or RUPP±infusion of recombinant human PlGF (180 μg/kg per day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than normal pregnant rats. Infusion of recombinant human PlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that recombinant human PlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia.

  17. PLACENTAL GROWTH FACTOR ADMINISTRATION ABOLISHES PLACENTAL ISCHEMIA-INDUCED HYPERTENSION

    PubMed Central

    Spradley, Frank T.; Tan, Adelene Y.; Joo, Woo S.; Daniels, Garrett; Kussie, Paul; Karumanchi, S. Ananth; Granger, Joey P.

    2016-01-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia as placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor (VEGF) and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and VEGF are both natural ligands for sFlt-1, VEGF also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to four groups: normal pregnant (NP) or RUPP ± infusion of rhPlGF (180 μg/kg/day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than NP rats. Infusion of rhPlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that rhPlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. PMID:26831193

  18. Use of cholesterol-loaded cyclodextrin: an alternative for bad cooler stallions.

    PubMed

    Hartwig, F P; Lisboa, F P; Hartwig, F P; Monteiro, G A; Maziero, R R D; Freitas-Dell'Aqua, C P; Alvarenga, M A; Papa, F O; Dell'Aqua, J A

    2014-01-15

    During the cooling process, sperm may suffer irreversible damage that compromises the fertility rate. Incorporating cholesterol-loaded cyclodextrin (CLC) represents a strategy to increase sperm resistance at low temperatures; however, high levels of cholesterol in the cell membrane can interfere with sperm capacitation. The goals of this study were to determine the CLC concentration and cooling temperature that produce optimal kinetic parameters and viability of sperm from stallions identified as bad coolers (BCs) and good coolers (GCs), as well as the effect of adding CLC on the occurrence of the acrosome reaction (ACR) and on the fertility rate of cooled sperm. In experiment 1, each ejaculate was divided into four groups: Control and treated with 1 (CLC-1), 1.5 (CLC-1.5), or 2 mg (CLC-2) of CLC/120 × 10(6) sperm and cooled for 48 hours at 5 °C. In experiment 2, each ejaculate was divided into four groups: Control and CLC-1.5 cooled at 15 °C or 5 °C for 24 hours. For experiment 3, GC and BC stallions were used, and the ejaculates were divided into control and CLC-1.5 cooled at 5 °C for 48 hours. According to experiment, the sperm kinetics (SK) and plasma membrane integrity (PMI) were analyzed before and after 24 and 48 hours of cooling. In experiment 4, the ejaculates were divided into four groups: Control and CLC-1.5 maintained at room temperature or cooled at 5 °C for 24 hours. Each group was incubated with ionophore calcium at 37 °C for 3 hours. The incidence of ACR was analyzed before and after 1, 2, and 3 hours of incubation. For experiment 5, two cycles of 10 mares for a GC stallion and two cycles of 25 for a BC stallion were used. The inseminations were performed with control and CLC-1.5 groups cooled at 5 °C for 24 hours. According to results, all groups treated with CLC exhibited higher PMI compared with controls, and CLC-1.5 and CLC-2 exhibited the best SK results. The cooling temperature of 5 °C was superior to 15 °C when the sperm was treated

  19. Environmental Experience Modulates Ischemia-Induced Amyloidogenesis and Enhances Functional Recovery

    PubMed Central

    Rogozinska, Magdalena; Woods, Julie

    2009-01-01

    Abstract In this study, we examined whether ischemia-induced amyloidogenesis could be modulated by environmental “experience,” and whether this modulation is associated with improved cognitive functioning. Rats were subjected to either global ischemia or sham surgery and then were randomly assigned to either enriched environment housing (EE) or socially paired housing (controls). After 14 days of differential environmental housing, the rats were tested in the water maze. Our results show decreased C-terminal fragments of the β-amyloid precursor protein (βAPP) and decreased amyloid beta (Aβ) load in the ischemic EE rats compared to the ischemic control animals. In addition, Aβ oligomerization was significantly decreased in the ischemic EE animals compared to the ischemic control rats. Further, significantly increased levels of neprilysin, but not insulin-degrading enzyme, amyloid-degrading enzymes, were seen in the ischemic EE rats compared to the ischemic control animals. Behavioral analyses showed that ischemic EE rats performed significantly better on the memory task compared to the ischemic control group. These results suggest that use of multi-sensory environmental enrichment following cerebral ischemia may reduce the accumulation of Aβ peptide in the more pathologic oligomeric form, and consequently may enhance functional recovery. PMID:19271963

  20. Simvastatin promotes NPC1-mediated free cholesterol efflux from lysosomes through CYP7A1/LXRα signalling pathway in oxLDL-loaded macrophages.

    PubMed

    Xu, Xiaoyang; Zhang, Aolin; Halquist, Matthew S; Yuan, Xinxu; Henderson, Scott C; Dewey, William L; Li, Pin-Lan; Li, Ningjun; Zhang, Fan

    2017-02-01

    Statins, 3-hydroxyl-3-methylglutaryl coenzyme A reductase inhibitors, are the first-line medications prescribed for the prevention and treatment of coronary artery diseases. The efficacy of statins has been attributed not only to their systemic cholesterol-lowering actions but also to their pleiotropic effects that are unrelated to cholesterol reduction. These pleiotropic effects have been increasingly recognized as essential in statins therapy. This study was designed to investigate the pleiotropic actions of simvastatin, one of the most commonly prescribed statins, on macrophage cholesterol homeostasis with a focus on lysosomal free cholesterol egression. With simultaneous nile red and filipin staining, analysis of confocal/multi-photon imaging demonstrated that simvastatin markedly attenuated unesterified (free) cholesterol buildup in macrophages loaded with oxidized low-density lipoprotein but had little effect in reducing the sizes of cholesteryl ester-containing lipid droplets; the reduction in free cholesterol was mainly attributed to decreases in lysosome-compartmentalized cholesterol. Functionally, the egression of free cholesterol from lysosomes attenuated pro-inflammatory cytokine secretion. It was determined that the reduction of lysosomal free cholesterol buildup by simvastatin was due to the up-regulation of Niemann-Pick C1 (NPC1), a lysosomal residing cholesterol transporter. Moreover, the enhanced enzymatic production of 7-hydroxycholesterol by cytochrome P450 7A1 and the subsequent activation of liver X receptor α underscored the up-regulation of NPC1. These findings reveal a novel pleiotropic effect of simvastatin in affecting lysosomal cholesterol efflux in macrophages and the associated significance in the treatment of atherosclerosis.

  1. Cholesterol loading re-programs the miR-143/145-myocardin axis to convert aortic smooth muscle cells to a dysfunctional macrophage-like phenotype

    PubMed Central

    Vengrenyuk, Yuliya; Nishi, Hitoo; Long, Xiaochun; Ouimet, Mireille; Savji, Nazir; Martinez, Fernando O.; Cassella, Courtney P.; Moore, Kathryn J.; Ramsey, Stephen A.; Miano, Joseph M.; Fisher, Edward A.

    2015-01-01

    Objective We previously showed that cholesterol loading in vitro converts mouse aortic vascular smooth muscle cells (VSMC) from a contractile state to one resembling macrophages. In human and mouse atherosclerotic plaques it has become appreciated that ~40% of cells classified as macrophages by histological markers may be of VSMC origin. We therefore sought to gain insight into the molecular regulation of this clinically relevant process. Approach and Results VSMC of mouse (or human) origin were incubated with cyclodextrin-cholesterol complexes for 72 hours, at which time the expression at the protein and mRNA levels of contractile-related proteins were reduced and of macrophage markers increased. Concurrent was down regulation of miR-143/145, which positively regulate the master VSMC-differentiation transcription factor myocardin (MYOCD). Mechanisms were further probed in mouse VSMC. Maintaining the expression of MYOCD or miR-143/145 prevented and reversed phenotypic changes caused by cholesterol loading. Reversal was also seen when cholesterol efflux was stimulated after loading. Notably, despite expression of macrophage markers, bioinformatic analyses showed that cholesterol-loaded cells remained closer to the VSMC state, consistent with impairment in classical macrophage functions of phagocytosis and efferocytosis. In apoE-deficient atherosclerotic plaques, cells positive for VSMC and macrophage markers were found lining the cholesterol-rich necrotic core. Conclusions Cholesterol loading of VSMC converts them to a macrophage–appearing state by downregulating the miR-143/145-myocardin axis. Though these cells would be classified by immunohistochemistry as macrophages in human and mouse plaques, their transcriptome and functional properties imply that their contributions to atherogenesis would not be those of classical macrophages. PMID:25573853

  2. Blockade of calcium-permeable AMPA receptors protects hippocampal neurons against global ischemia-induced death

    PubMed Central

    Noh, Kyung-Min; Yokota, Hidenori; Mashiko, Toshihiro; Castillo, Pablo E.; Zukin, R. Suzanne; Bennett, Michael V. L.

    2005-01-01

    Transient global or forebrain ischemia induced experimentally in animals can cause selective, delayed neuronal death of hippocampal CA1 pyramidal neurons. A striking feature is a delayed rise in intracellular free Zn2+ in CA1 neurons just before the onset of histologically detectable cell death. Here we show that α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors (AMPARs) at Schaffer collateral to CA1 synapses in postischemic hippocampus exhibit properties of Ca2+/Zn2+-permeable, Glu receptor 2 (GluR2)-lacking AMPARs before the rise in Zn2+ and cell death. At 42 h after ischemia, AMPA excitatory postsynaptic currents exhibited pronounced inward rectification and marked sensitivity to 1-naphthyl acetyl spermine (Naspm), a selective channel blocker of GluR2-lacking AMPARs. In control hippocampus, AMPA excitatory postsynaptic currents were electrically linear and relatively insensitive to Naspm. Naspm injected intrahippocampally at 9-40 h after insult greatly reduced the late rise in intracellular free Zn2+ in postischemic CA1 neurons and afforded partial protection against ischemia-induced cell death. These results implicate GluR2-lacking AMPA receptors in the ischemia-induced rise in free Zn2+ and death of CA1 neurons, although a direct action at the time of the rise in Zn2+ is unproven. This receptor subtype appears to be an important therapeutic target for intervention in ischemia-induced neuronal death in humans. PMID:16093311

  3. Aqueous extract of Cordyceps alleviates cerebral ischemia-induced short-term memory impairment in gerbils

    PubMed Central

    Lee, Sang-Hak; Ko, Il-Gyu; Kim, Sung-Eun; Hwang, Lakkyong; Jin, Jun-Jang; Choi, Hyun-Hee; Kim, Chang-Ju

    2016-01-01

    Cerebral ischemia is caused by reduced cerebral blood flow due to a transient or permanent cerebral artery occlusion. Ischemic injury in the brain leads to neuronal cell death, and eventually causes neurological impairments. Cordyceps, the name given to the fungi on insects, has abundant useful natural products with various biological activities. Cordyceps is known to have nephroprotective, hepatoprotective, anti-inflammatory, antioxidative, and antiapoptotic effects. We investigated the effects of Cordyceps on short-term memory, neuronal apoptosis, and cell proliferation in the hippocampal dentate gyrus following transient global ischemia in gerbils. For this study, a step-down avoidance test, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, immunohistochemistry for caspase-3 and 5-bromo-2′-de-oxyuridine, and western blot for Bax, Bcl-2, brain-derived neurotrophic factor (BDNF), and tyrosin kinase B were performed. In the present study, Cordyceps alleviated cerebral ischemia-induced short-term memory impairment. Cordyceps showed therapeutic effects through inhibiting cerebral ischemia-induced apoptosis in the hippocampus. Cordyceps suppressed cerebral ischemia-induced cell proliferation in the hippocampal dentate gyrus due to the reduced apoptotic neuronal cell death. Cordyceps treatment also enhanced BDNF and TrkB expressions in the hippocampus of ischemic gerbils. It can be suggested that Cordyceps overcomes cerebral ischemia-induced neuronal apoptosis, thus facilitates recovery following cerebral ischemia injury. PMID:27162767

  4. Aqueous extract of Cordyceps alleviates cerebral ischemia-induced short-term memory impairment in gerbils.

    PubMed

    Lee, Sang-Hak; Ko, Il-Gyu; Kim, Sung-Eun; Hwang, Lakkyong; Jin, Jun-Jang; Choi, Hyun-Hee; Kim, Chang-Ju

    2016-04-01

    Cerebral ischemia is caused by reduced cerebral blood flow due to a transient or permanent cerebral artery occlusion. Ischemic injury in the brain leads to neuronal cell death, and eventually causes neurological impairments. Cordyceps, the name given to the fungi on insects, has abundant useful natural products with various biological activities. Cordyceps is known to have nephroprotective, hepatoprotective, anti-inflammatory, antioxidative, and antiapoptotic effects. We investigated the effects of Cordyceps on short-term memory, neuronal apoptosis, and cell proliferation in the hippocampal dentate gyrus following transient global ischemia in gerbils. For this study, a step-down avoidance test, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, immunohistochemistry for caspase-3 and 5-bromo-2'-de-oxyuridine, and western blot for Bax, Bcl-2, brain-derived neurotrophic factor (BDNF), and tyrosin kinase B were performed. In the present study, Cordyceps alleviated cerebral ischemia-induced short-term memory impairment. Cordyceps showed therapeutic effects through inhibiting cerebral ischemia-induced apoptosis in the hippocampus. Cordyceps suppressed cerebral ischemia-induced cell proliferation in the hippocampal dentate gyrus due to the reduced apoptotic neuronal cell death. Cordyceps treatment also enhanced BDNF and TrkB expressions in the hippocampus of ischemic gerbils. It can be suggested that Cordyceps overcomes cerebral ischemia-induced neuronal apoptosis, thus facilitates recovery following cerebral ischemia injury.

  5. Pretreatment of Asian elephant (Elephas maximus) spermatozoa with cholesterol-loaded cyclodextrins and glycerol addition at 4°C improves cryosurvival.

    PubMed

    Kiso, Wendy K; Asano, Atsushi; Travis, Alexander J; Schmitt, Dennis L; Brown, Janine L; Pukazhenthi, Budhan S

    2012-01-01

    Asian elephant spermatozoa are sensitive to chilling and do not respond well to cryopreservation. The objectives of the present study were to: (1) determine whether cholesterol content can be modified by preincubation of Asian elephant spermatozoa with cholesterol-loaded cyclodextrin (CLC); and (2) assess the effects of CLC concentration(s), temperature at time of glycerol addition (22°C vs 4°C) and dilution medium on post-thaw sperm survival. Spermatozoa incubated with ≥1.5 mg CLC exhibited increased (P < 0.05) cholesterol concentrations. Pretreatment of spermatozoa with 1.5 mg CLC resulted in improvements (P < 0.05) in all post-thaw parameters. Glycerol addition at 4°C also improved all post-thaw parameters compared with 22°C. Dilution of thawed spermatozoa in an egg yolk-based medium improved (P < 0.05) motility compared with Ham's F-10 culture medium. In summary, our findings indicate that modifying cholesterol content within the plasma membrane improves the cryosurvival of Asian elephant spermatozoa. The development of an improved cryopreservation method that includes modification of membrane cholesterol and the addition of glycerol at 4°C, as reported in the present study, is an important step towards utilisation of cryopreserved spermatozoa in captive management of this species.

  6. Early immature neuronal death initiates cerebral ischemia-induced neurogenesis in the dentate gyrus.

    PubMed

    Kim, D H; Lee, H E; Kwon, K J; Park, S J; Heo, H; Lee, Y; Choi, J W; Shin, C Y; Ryu, J H

    2015-01-22

    Throughout adulthood, neurons are continuously replaced by new cells in the dentate gyrus (DG) of the hippocampus, and this neurogenesis is increased by various neuronal injuries including ischemic stroke and seizure. While several mechanisms of this injury-induced neurogenesis have been elucidated, the initiation factor remains unclear. Here, we investigated which signal(s) trigger(s) ischemia-induced cell proliferation and neurogenesis in the hippocampal DG region. We found that early apoptotic cell death of the immature neurons occurred in the DG region following transient forebrain ischemia/reperfusion in mice. Moreover, early immature neuronal death in the DG initiated transient forebrain ischemia/reperfusion-induced neurogenesis through glycogen synthase kinase-3β/β-catenin signaling, which was mediated by microglia-derived insulin-like growth factor-1 (IGF-1). Additionally, we observed that the blockade of immature neuronal cell death, early microglial activation, or IGF-1 signaling attenuated ischemia-induced neurogenesis. These results suggest that early immature neuronal cell death initiates ischemia-induced neurogenesis through microglial IGF-1 in mice.

  7. Cholesterol Test

    MedlinePlus

    ... AACC products and services. Advertising & Sponsorship: Policy | Opportunities Cholesterol Share this page: Was this page helpful? Also known as: Blood Cholesterol Formal name: Total Cholesterol Related tests: HDL Cholesterol , ...

  8. What's Cholesterol?

    MedlinePlus

    ... los dientes Video: Getting an X-ray What's Cholesterol? KidsHealth > For Kids > What's Cholesterol? Print A A ... thing for food to be low in it? Cholesterol and Your Body Cholesterol (say: kuh-LES-tuh- ...

  9. What's Cholesterol?

    MedlinePlus

    ... Room? What Happens in the Operating Room? What's Cholesterol? KidsHealth > For Kids > What's Cholesterol? A A A ... thing for food to be low in it? Cholesterol and Your Body Cholesterol (say: kuh-LES-tuh- ...

  10. Protective effect of cholesterol-loaded cyclodextrin pretreatment against hydrogen peroxide induced oxidative damage in ram sperm.

    PubMed

    Naseer, Zahid; Ahmad, Ejaz; Aksoy, Melih; Küçük, Niyazi; Serin, İlker; Ceylan, Ahmet; Boyacıoğlu, Murat; Kum, Cavit

    2015-08-01

    Three experiments were conducted to determine the protective effect of cholesterol-loaded cyclodextrin (CLC) against hydrogen peroxide (H2O2) or cryo-induced damage in ram sperm. In Experiment 1, the fresh ejaculates were either treated with CLC or remained untreated. Both CLC treated and untreated samples were then incubated with 0, 250 or 500 μM H2O2 at 35°C for 12 h. After incubation period of 12 h, the motility, viability and membrane integrity remained higher in CLC treated sperm even in the presence of 250 or 500 μM H2O2. The H2O2 treatment affected all the sperm parameters adversely (P<0.05). However, compared to CLC untreated counterpart, the motility, viability and membrane integrity remained higher (P<0.05) in treated sperm, even in the presence of 250 or 500 μM H2O2 during 12 h of incubation. In Experiment 2, semen was cryopreserved in the presence or absence of CLC. The post-thaw results revealed that CLC treated sperm has higher (P<0.05) motility, viability and membrane integrity compared to the control. In Experiment 3, lipid peroxidation levels were assessed by determining malondialdehyde (MDA) concentrations during the H2O2-induced oxidative stress in CLC treated and untreated sperm. However, no difference (P>0.05) in MDA level was observed among the groups at any stage of incubation. In conclusion, the CLC incorporation in ram sperm membrane may protects it against H2O2 or cryo-induced oxidative damage. The cryoprotective influence of CLC on ram sperm might be resulted from, at least partly, its antioxidative property.

  11. Use of cholesterol-loaded cyclodextrin in donkey semen cryopreservation improves sperm viability but results in low fertility in mares.

    PubMed

    Oliveira, R R; Rates, D M; Pugliesi, G; Ker, P G; Arruda, R P; Moraes, E A; Carvalho, G R

    2014-10-01

    The use of cholesterol-loaded cyclodextrin (CLC) on semen cryopreservation has been related with better sperm viability in several species; however, the effect on fertility is not known in donkey semen. Ejaculates (n = 25) from five donkeys were diluted in S-MEDIUM with 0, 1, 2 or 3 mg of CLC/120 × 10(6) spermatozoa. Semen was frozen, and thawed samples were evaluated by computer-assisted sperm analyser system (CASA), supravital test, hyposmotic swelling test and fluorescent dyes to assess the integrity of sperm membranes. Mares (n = 60) were inseminated with frozen-thawed semen treated with the doses of 0 or 1 mg CLC. Percentages of sperm with progressive motility and with functional plasma membrane were greater (p < 0.05) in the CLC-treated groups than in the control. Percentages of intact plasma membrane and intact plasma membrane and acrosome detected by fluorescent dyes were also greater (p < 0.05) in CLC-treated groups. Although no difference (p > 0.05) in conception rates was detected between groups (control, 3/30, 10%; CLC-treated, 1/30, 3.3%), fertility was low for artificial insemination programs in mares. Therefore, we firstly demonstrated that frozen semen treated with CLC in S-MEDIA extender before freezing improves the in vitro sperm viability, but semen treated or not with CLC in S-MEDIUM extender results in a very low conception rate in mares inseminated with thawed donkey semen.

  12. Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice

    PubMed Central

    Tamarat, Radia; Silvestre, Jean-Sébastien; Huijberts, Maya; Benessiano, Joelle; Ebrahimian, Teni G.; Duriez, Micheline; Wautier, Marie-Paule; Wautier, Jean Luc; Lévy, Bernard I.

    2003-01-01

    We hypothesized that formation of advanced glycation end products (AGEs) associated with diabetes reduces matrix degradation by metalloproteinases (MMPs) and contributes to the impairment of ischemia-induced angiogenesis. Mice were treated or not with streptozotocin (40 mg/kg) and streptozotocin plus aminoguanidine (AGEs formation blocker, 50 mg/kg). After 8 weeks of treatment, hindlimb ischemia was induced by right femoral artery ligature. Plasma AGE levels were strongly elevated in diabetic mice when compared with control mice (579 ± 21 versus 47 ± 4 pmol/ml, respectively; P < 0.01). Treatment with aminoguanidine reduced AGE plasma levels when compared with untreated diabetic mice (P < 0.001). After 28 days of ischemia, ischemic/nonischemic leg angiographic score, capillary density, and laser Doppler skin-perfusion ratios were 1.4-, 1.5-, and 1.4-fold decreased in diabetic mice in reference to controls (P < 0.01). Treatment with aminoguanidine completely normalized ischemia-induced angiogenesis in diabetic mice. We next analyzed the role of proteolysis in AGE formation-induced hampered neovascularization process. After 3 days of ischemia, MMP-2 activity and MMP-3 and MMP-13 protein levels were increased in untreated and aminoguanidine-treated diabetic mice when compared with controls (P < 0.05). Despite this activation of the MMP pathway, collagenolysis was decreased in untreated diabetic mice. Conversely, treatment of diabetic mice with aminoguanidine restored collagenolysis toward levels found in control mice. In conclusion, blockade of AGE formation by aminoguanidine normalizes impaired ischemia-induced angiogenesis in diabetic mice. This effect is probably mediated by restoration of matrix degradation processes that are disturbed as a result of AGE accumulation. PMID:12805564

  13. Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice.

    PubMed

    Tamarat, Radia; Silvestre, Jean-Sébastien; Huijberts, Maya; Benessiano, Joelle; Ebrahimian, Teni G; Duriez, Micheline; Wautier, Marie-Paule; Wautier, Jean Luc; Lévy, Bernard I

    2003-07-08

    We hypothesized that formation of advanced glycation end products (AGEs) associated with diabetes reduces matrix degradation by metalloproteinases (MMPs) and contributes to the impairment of ischemia-induced angiogenesis. Mice were treated or not with streptozotocin (40 mg/kg) and streptozotocin plus aminoguanidine (AGEs formation blocker, 50 mg/kg). After 8 weeks of treatment, hindlimb ischemia was induced by right femoral artery ligature. Plasma AGE levels were strongly elevated in diabetic mice when compared with control mice (579 +/- 21 versus 47 +/- 4 pmol/ml, respectively; P < 0.01). Treatment with aminoguanidine reduced AGE plasma levels when compared with untreated diabetic mice (P < 0.001). After 28 days of ischemia, ischemic/nonischemic leg angiographic score, capillary density, and laser Doppler skin-perfusion ratios were 1.4-, 1.5-, and 1.4-fold decreased in diabetic mice in reference to controls (P < 0.01). Treatment with aminoguanidine completely normalized ischemia-induced angiogenesis in diabetic mice. We next analyzed the role of proteolysis in AGE formation-induced hampered neovascularization process. After 3 days of ischemia, MMP-2 activity and MMP-3 and MMP-13 protein levels were increased in untreated and aminoguanidine-treated diabetic mice when compared with controls (P < 0.05). Despite this activation of the MMP pathway, collagenolysis was decreased in untreated diabetic mice. Conversely, treatment of diabetic mice with aminoguanidine restored collagenolysis toward levels found in control mice. In conclusion, blockade of AGE formation by aminoguanidine normalizes impaired ischemia-induced angiogenesis in diabetic mice. This effect is probably mediated by restoration of matrix degradation processes that are disturbed as a result of AGE accumulation.

  14. Alpinetin enhances cholesterol efflux and inhibits lipid accumulation in oxidized low-density lipoprotein-loaded human macrophages.

    PubMed

    Jiang, Zhengming; Sang, Haiqiang; Fu, Xin; Liang, Ying; Li, Ling

    2015-01-01

    Alpinetin is a natural flavonoid abundantly present in the ginger family. Here, we investigated the effect of alpinetin on cholesterol efflux and lipid accumulation in oxidized low-density lipoprotein (ox-LDL)-treated THP-1 macrophages and human peripheral blood monocyte-derived macrophages (HMDMs). After exposing THP-1 macrophages to alpinetin, cholesterol efflux was determined by liquid scintillator. The mRNA and protein levels of peroxisome proliferator-activated receptor gamma (PPAR-γ), liver X receptor alpha (LXR-α), ATP-binding cassette transporter A1 (ABCA1), and ABCG1 and scavenger receptor class B member 1 were determined by reverse-transcriptase PCR (RT-PCR) and Western blot analysis, respectively. Alpinetin promoted apolipoprotein A-I- and high-density-lipoprotein-mediated cholesterol efflux and elevated PPAR-γ and LXR-α mRNA and protein expression in a dose-dependent fashion in ox-LDL-treated THP-1 macrophages and HMDMs. Small interfering RNA-mediated silencing of PPAR-γ or LXR-α dose dependently reversed alpinetin-increased cholesterol efflux in THP-1 macrophages, indicating the involvement of PPAR-γ and LXR-α in alpinetin-promoted cholesterol efflux. Alpinetin inhibited ox-LDL-induced lipid accumulation and enhanced the expression of ABCA1 and ABCG1 mRNA and protein, which was reversed by specific knockdown of PPAR-γ or LXR-α. Taken together, our results reveal that alpinetin exhibits positive effects on cholesterol efflux and inhibits ox-LDL-induced lipid accumulation, which might be through PPAR-γ/LXR-α/ABCA1/ABCG1 pathway.

  15. CNT loading into cationic cholesterol suspensions show improved DNA binding and serum stability and ability to internalize into cancer cells

    NASA Astrophysics Data System (ADS)

    Chhikara, Bhupender S.; Misra, Santosh K.; Bhattacharya, Santanu

    2012-02-01

    Methods which disperse single-walled carbon nanotubes (SWNTs) in water as ‘debundled’, while maintaining their unique physical properties are highly useful. We present here a family of cationic cholesterol compounds (Chol+) {Cholest-5en-3β-oxyethyl pyridinium bromide (Chol-PB+), Cholest-5en-3β-oxyethyl N-methyl pyrrolidinium bromide (Chol-MPB+), Cholest-5en-3β-oxyethyl N-methyl morpholinium bromide (Chol-MMB+) and Cholest-5en-3β-oxyethyl diazabicyclo octanium bromide (Chol-DOB+)}. Each of these could be easily dispersed in water. The resulting cationic cholesterol (Chol+) suspensions solubilized single-walled carbon nanotubes (SWCNTs) by the non-specific physical adsorption of Chol+ to form stable, transparent, dark aqueous suspensions at room temperature. Electron microscopy reveals the existence of highly segregated CNTs in these samples. Zeta potential measurements showed an increase in potential of cationic cholesterol aggregates on addition of CNTs. The CNT-Chol+ suspensions were capable of forming stable complexes with genes (DNA) efficiently. The release of double-helical DNA from such CNT-Chol+ complexes could be induced upon the addition of anionic micellar solution of SDS. Furthermore, the CNT-based DNA complexes containing cationic cholesterol aggregates showed higher stability in fetal bovine serum media at physiological conditions. Confocal studies confirm that CNT-Chol+ formulations adhere to HeLa cell surfaces and get internalized more efficiently than the cationic cholesterol suspensions alone (devoid of any CNTs). These cationic cholesterol-CNT suspensions therefore appear to be a promising system for further use in biological applications.

  16. About Cholesterol

    MedlinePlus

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More About Cholesterol Updated:Apr 3,2017 It may surprise you ... our bodies to keep us healthy. What is cholesterol and where does it come from? Cholesterol is ...

  17. O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling

    PubMed Central

    Shi, Jianhua; Gu, Jin-hua; Dai, Chun-ling; Gu, Jianlan; Jin, Xiaoxia; Sun, Jianming; Iqbal, Khalid; Liu, Fei; Gong, Cheng-Xin

    2015-01-01

    Apoptosis plays an important role in neural development and neurological disorders. In this study, we found that O-GlcNAcylation, a unique protein posttranslational modification with O-linked β-N-acetylglucosamine (GlcNAc), promoted apoptosis through attenuating phosphorylation/activation of AKT and Bad. By using co-immunoprecipitation and mutagenesis techniques, we identified O-GlcNAc modification at both Thr308 and Ser473 of AKT. O-GlcNAcylation-induced apoptosis was attenuated by over-expression of AKT. We also found a dynamic elevation of protein O-GlcNAcylation during the first four hours of cerebral ischemia, followed by continuous decline after middle cerebral artery occlusion (MCAO) in the mouse brain. The elevation of O-GlcNAcylation coincided with activation of cell apoptosis. Finally, we found a negative correlation between AKT phosphorylation and O-GlcNAcylation in ischemic brain tissue. These results indicate that cerebral ischemia induces a rapid increase of O-GlcNAcylation that promotes apoptosis through down-regulation of AKT activity. These findings provide a novel mechanism through which O-GlcNAcylation regulates ischemia-induced neuronal apoptosis through AKT signaling. PMID:26412745

  18. Moderate or deep local hypothermia does not prevent the onset of ischemia-induced dendritic damage

    PubMed Central

    Tran, Sherri; Chen, Shangbin; Liu, Ran R; Xie, Yicheng; Murphy, Timothy H

    2012-01-01

    We studied the acute (up to 2 hours after reperfusion) effects of localized cortical hypothermia on ischemia-induced dendritic structural damage. Moderate (31°C) and deep (22°C) hypothermia delays, but does not block the onset of dendritic blebbing or spine loss during global ischemia in mouse in vivo. Hypothermic treatment promoted more consistent recovery of dendritic structure and spines during reperfusion. These results suggest that those using therapeutic hypothermia will need to consider that it does not spare neurons from structural changes that are the result of ischemia, but hypothermia may interact with mechanisms that control the onset of damage and recovery during reperfusion. PMID:22167237

  19. LOX-1 plays an important role in ischemia-induced angiogenesis of limbs.

    PubMed

    Shiraki, Takeru; Aoyama, Takuma; Yokoyama, Chiharu; Hayakawa, Yuka; Tanaka, Toshiki; Nishigaki, Kazuhiko; Sawamura, Tatsuya; Minatoguchi, Shinya

    2014-01-01

    LOX-1, lectin-like oxidized low-density lipoprotein (LDL) receptor-1, is a single transmembrane receptor mainly expressed on endothelial cells. LOX-1 mediates the uptake of oxidized LDL, an early step in atherosclerosis; however, little is known about whether LOX-1 is involved in angiogenesis during tissue ischemia. Therefore, we examined the role of LOX-1 in ischemia-induced angiogenesis in the hindlimbs of LOX-1 knockout (KO) mice. Angiogenesis was evaluated in a surgically induced hindlimb ischemia model using laser Doppler blood flowmetry (LDBF) and histological capillary density (CD) and arteriole density (AD). After right hindlimb ischemia, the ischemic/nonischemic hindlimb blood flow ratio was persistently lower in LOX-1 KO mice than in wild-type (WT) mice. CD and AD were significantly smaller in LOX-1 KO mice than in WT mice on postoperative day 14. Immunohistochemical analysis revealed that the number of macrophages infiltrating ischemic tissues was significantly smaller in LOX-1 KO mice than in WT mice. The number of infiltrated macrophages expressing VEGF was also significantly smaller in LOX-1 KO mice than in WT mice. Western blot analysis and ROS production assay revealed that LOX- KO mice show significant decrease in Nox2 expression, ROS production and HIF-1α expression, the phosphorylation of p38 MAPK and NF-κB p65 subunit as well as expression of redox-sensitive vascular cell adhesion molecule-1 (VCAM-1) and LOX-1 itself in ischemic muscles, which is supposed to be required for macrophage infiltration expressing angiogenic factor VEGF. Reduction of VEGF expression successively suppressed the phosphorylation of Akt and eNOS, which accelerated angiogenesis, in the ischemic leg of LOX-1 KO mice. Our findings indicate that LOX-1 plays an important role in ischemia-induced angiogenesis by 1) Nox2-ROS-NF-κB activation, 2) upregulated expression of adhesion molecules: VCAM-1 and LOX-1 and 3) promoting macrophage infiltration, which expresses angiogenic

  20. Complement activation is critical for placental ischemia-induced hypertension in the rat.

    PubMed

    Lillegard, Kathryn E; Johnson, Alex C; Lojovich, Sarah J; Bauer, Ashley J; Marsh, Henry C; Gilbert, Jeffrey S; Regal, Jean F

    2013-11-01

    Preeclampsia is a major obstetric problem defined by new-onset hypertension and proteinuria associated with compromised placental perfusion. Although activation of the complement system is increased in preeclampsia compared to normal pregnancy, it remains unclear whether excess complement activation is a cause or consequence of placental ischemia. Therefore, we hypothesized that complement activation is critical for placental ischemia-induced hypertension. We employed the reduced utero-placental perfusion pressure (RUPP) model of placental ischemia in the rat to induce hypertension in the third trimester and evaluated the effect of inhibiting complement activation with a soluble recombinant form of an endogenous complement regulator, human complement receptor 1 (sCR1; CDX-1135). On day 14 of a 21-day gestation, rats received either RUPP or Sham surgery and 15 mg/kg/day sCR1 or saline intravenously on days 14-18. Circulating complement component 3 decreased and complement activation product C3a increased in RUPP vs. Sham (p<0.05), indicating complement activation had occurred. Mean arterial pressure (MAP) measured on day 19 increased in RUPP vs. Sham rats (109.8±2.8 mmHg vs. 93.6±1.6 mmHg). Treatment with sCR1 significantly reduced elevated MAP in RUPP rats (98.4±3.6 mmHg, p<0.05) and reduced C3a production. Vascular endothelial growth factor (VEGF) decreased in RUPP compared to Sham rats, and the decrease in VEGF was not affected by sCR1 treatment. Thus, these studies have identified a mechanistic link between complement activation and the pregnancy complication of hypertension apart from free plasma VEGF and have identified complement inhibition as a potential treatment strategy for placental ischemia-induced hypertension in preeclampsia.

  1. Characterization of Cardiac Anoctamin1 Ca2+-Activated Chloride Channels and Functional Role in Ischemia-Induced Arrhythmias

    PubMed Central

    Ye, Zhen; Wu, Ming-Ming; Wang, Chun-Yu; Li, Yan-Chao; Yu, Chang-Jiang; Gong, Yuan-Feng; Zhang, Jun; Wang, Qiu-Shi; Song, Bin-Lin; Yu, Kuai; Hartzell, H. Criss; Duan, Dayue Darrel; Zhao, Dan; Zhang, Zhi-Ren

    2015-01-01

    Anoctamin1 (ANO1) encodes a Ca2+-activated chloride (Cl−) channel (CaCC) in variety tissues of many species. Whether ANO1 expresses and functions as a CaCC in cardiomyocytes remain unknown. The objective of this study is to characterize the molecular and functional expression of ANO1 in cardiac myocytes and the role of ANO1-encoded CaCCs in ischemia-induced arrhythmias in the heart. Quantitative real-time RT-PCR, immunofluorescence staining assays, and immunohistochemistry identified the molecular expression, location, and distribution of ANO1 in mouse ventricular myocytes (mVMs). Patch-clamp recordings combined with pharmacological analyses found that ANO1 was responsible for a Ca2+-activated Cl− current (ICl.Ca) in cardiomyocytes. Myocardial ischemia led to a significant increase in the current density of ICl.Ca, which was inhibited by a specific ANO1 inhibitor, T16Ainh-A01, and an antibody targeting at the pore area of ANO1. Moreover, cardiomyocytes isolated from mice with ischemia-induced arrhythmias had an accelerated early phase 1 repolarization of action potentials (APs) and a deeper “spike and dome” compared to control cardiomyocytes from non-ischemia mice. Application of the antibody targeting at ANO1 pore prevented the ischemia-induced early phase 1 repolarization acceleration and caused a much shallower “spike and dome”. We conclude that ANO1 encodes CaCC and plays a significant role in the phase 1 repolarization of APs in mVMs. The ischemia-induced increase in ANO1 expression may be responsible for the increased density of ICl.Ca in the ischemic heart and may contribute, at least in part, to ischemia-induced arrhythmias. PMID:24962810

  2. Cholesterol (image)

    MedlinePlus

    Cholesterol is a soft, waxy substance that is present in all parts of the body including the ... and obtained from animal products in the diet. Cholesterol is manufactured in the liver and is needed ...

  3. Size, density and cholesterol load of HDL predict microangiopathy, coronary artery disease and β-cell function in men with T2DM.

    PubMed

    Hermans, Michel P; Amoussou-Guenou, K Daniel; Bouenizabila, Evariste; Sadikot, Shaukat S; Ahn, Sylvie A; Rousseau, Michel F

    2016-09-01

    The role of high-density lipoprotein cholesterol (HDL-C) as modifiable risk factor for cardiovascular (CV) disease is increasingly debated, notwithstanding the finding that small-dense and dysfunctional HDL are associated with the metabolic syndrome and T2DM. In order to better clarify the epidemiological risk related to HDL of different size/density, without resorting to direct measures, it would seem appropriate to adjust HDL-C to the level of its main apolipoprotein (apoA-I), thereby providing an [HDL-C/apoA-I] ratio. The latter allows not only to estimate an average size for HDLs, but also to derive indices on particle number, cholesterol load, and density. So far, the potential usefulness of this ratio in diabetes is barely addressed. To this end, we sorted 488 male patients with T2DM according to [HDL-C/apoA-I] quartiles (Q), to determine how the ratio relates to cardiometabolic risk, β-cell function, glycaemic control, and micro- and macrovascular complications. Five lipid parameters were derived from the combined determination of HDL-C and apoA-I, namely HDL size; particle number; cholesterol load/particle; apoA-I/particle; and particle density. An unfavorable cardiometabolic profile characterized patients from QI and QII, in which HDLs were pro-atherogenic, denser and apoA-I-depleted. By contrast, QIII patients had an [HDL-C/apoA-I] ratio close to that of non-diabetic controls. QIV patients had better than average HDL size and composition, and in those patients whose [HDL-C/apoA-I] ratio was above normal, a more favorable phenotype was observed regarding lifestyle, anthropometry, metabolic comorbidities, insulin sensitivity, MetS score/severity, glycaemic control, and target-organ damage pregalence in small or large vessels. In conclusion, [HDL-C/apoA-I] and the resulting indices of HDL composition and functionality predict macrovascular risk and β-cell function decline, as well as overall microangiopathic risk, suggesting that this ratio could serve

  4. Effect of ATP-dependent channel modulators on ischemia-induced arrhythmia change depending on age and gender.

    PubMed

    Bozdogan, Ömer; Kaya, Salih Tunç; Yasar, Selçuk; Orallar, Hayriye

    2013-10-01

    The number of ATP-dependent potassium channels in myocardial cells has been previously shown to change depending on gender and age. Different effects of the ATP-dependent potassium channel blocker, glybenclamide and ATP-dependent potassium channel opener, pinacidil on ischemia or reperfusion-induced arrhythmia observed in various research might depend on different ages and genders of the animals used. The aim of this study is to research the effect of ATP-dependent potassium channel modulators on ischemia-induced arrhythmia in animals of different ages and genders. Sprague-Dawley rats of different ages and genders were used in this study. Ischemia was produced by the ligation of the left coronary artery for 30 min. Electrocardiogram (ECG), blood pressure, infarct area and blood glucose were determined during the 30 min of ischemia. An arrhythmia score from an ECG recorded during 30 min of ischemia was determined by examining the duration and type of arrhythmia. Different effects of glybenclamide and pinacidil on the arrhythmias were observed in male and female young and middle-age rats. Pinacidil decreased the infarct zone in younger female rats, but differences in the type and length of ischemia-induced arrhythmias between females and males disappeared in older age. The results of this study showed that the effect of ATP-dependent potassium channel modulators on ischemia-induced arrhythmia changed due to the age and gender of rats.

  5. Enhanced autophagy signaling in diabetic rats with ischemia-induced seizures.

    PubMed

    Xia, Luoxing; Lei, Zhigang; Shi, Zhongshan; Guo, Dave; Su, Henry; Ruan, Yiwen; Xu, Zao C

    2016-07-15

    Seizures are among the most common neurological sequelae of stroke, and ischemic insult in diabetes notably increases the incidence of seizures. Recent studies indicated that autophagy influences the outcome of stroke and involved in epileptogenesis. However, the association of autophagy and post-ischemic seizures in diabetes remains unclear. The present study aimed to reveal the involvement of autophagy in the seizures following cerebral ischemia in diabetes. Diabetes was induced in adult male Wistar rats by intraperitoneal injection of streptozotocin (STZ). The diabetic rats were subjected to transient forebrain ischemia. The neuronal damage was assessed using hematoxylin-eosin staining. Western blotting and immunohistochemistry were performed to investigate the alteration of autophagy marker microtubule-associated protein light chain 1B (LC3B). The results showed that all diabetic animals developed seizures after ischemia. However, no apparent cell death was observed in the hippocampus of seizure rats 12h after the insult. The expression of LC3B was significantly enhanced in naïve animals after ischemia and was further increased in diabetic animals after ischemia. Immunofluorescence double-labeling study indicated that LC3B was mainly increased in neurons. Our study demonstrated, for the first time, that autophagy activity is significantly increased in diabetic animals with ischemia-induced seizures. Further studies are needed to explore the role of autophagy in seizure generation after ischemia in diabetic conditions.

  6. Good vs. Bad Cholesterol

    MedlinePlus

    ... Venous Thromboembolism Aortic Aneurysm More Good vs. Bad Cholesterol Updated:Apr 3,2017 Cholesterol can't dissolve ... test . View an animation of cholesterol . LDL (Bad) Cholesterol LDL cholesterol is considered the “bad” cholesterol because ...

  7. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery

    PubMed Central

    Lagace, Thomas A.

    2015-01-01

    Negative feedback regulation of cholesterol metabolism in mammalian cells ensures a proper balance of cholesterol with other membrane lipids, principal among these being the major phospholipid phosphatidylcholine (PC). Processes such as cholesterol biosynthesis and efflux, cholesteryl ester storage in lipid droplets, and uptake of plasma lipoproteins are tuned to the cholesterol/PC ratio. Cholesterol-loaded macrophages in atherosclerotic lesions display increased PC biosynthesis that buffers against elevated cholesterol levels and may also facilitate cholesterol trafficking to enhance cholesterol sensing and efflux. These same mechanisms could play a generic role in homeostatic responses to acute changes in membrane free cholesterol levels. Here, I discuss the established and emerging roles of PC metabolism in promoting intracellular cholesterol trafficking and membrane lipid homeostasis. PMID:27081313

  8. Antiangiogenic effect of angiotensin II type 2 receptor in ischemia-induced angiogenesis in mice hindlimb.

    PubMed

    Silvestre, Jean-Sébastien; Tamarat, Radia; Senbonmatsu, Takaaki; Icchiki, Toshihiro; Ebrahimian, Teni; Iglarz, Marc; Besnard, Sandrine; Duriez, Micheline; Inagami, Tadashi; Lévy, Bernard I

    2002-05-31

    This study examined the potential role of angiotensin type 2 (AT(2)) receptor on angiogenesis in a model of surgically induced hindlimb ischemia. Ischemia was produced by femoral artery ligature in both wild-type and AT(2) gene-deleted mice (Agtr2(-)/Y). After 28 days, angiogenesis was quantitated by microangiography, capillary density measurement, and laser Doppler perfusion imaging. Protein levels of vascular endothelial growth factor (VEGF), endothelial nitric oxide synthase (eNOS), Bax, and Bcl-2 were determined by Western blot analysis in hindlimbs. The AT(2) mRNA level (assessed by semiquantitative RT-PCR) was increased in the ischemic hindlimb of wild-type mice. Angiographic vessel density and laser Doppler perfusion data showed significant improvement in ischemic/nonischemic leg ratio, 1.9- and 1.7-fold, respectively, in Agtr2(-)/Y mice compared with controls. In ischemic leg of Agtr2(-)/Y mice, revascularization was associated with an increase in the antiapoptotic protein content, Bcl-2 (211% of basal), and a decrease (60% of basal) in the number of cell death, determined by TUNEL method. Angiotensin II treatment (0.3 mg/kg per day) raised angiogenic score, blood perfusion, and both VEGF and eNOS protein content in ischemic leg of wild-type control but did not modulate the enhanced angiogenic response observed in untreated Agtr2(-)/Y mice. Finally, immunohistochemistry analysis revealed that VEGF was mainly localized to myocyte, whereas eNOS-positive staining was mainly observed in the capillary of ischemic leg of both wild-type and AT(2)-deficient mice. This study demonstrates for the first time that the AT(2) receptor subtype may negatively modulate ischemia-induced angiogenesis through an activation of the apoptotic process.

  9. Brown propolis attenuates cerebral ischemia-induced oxidative damage via affecting antioxidant enzyme system in mice.

    PubMed

    Bazmandegan, Gholamreza; Boroushaki, Mohammad Taher; Shamsizadeh, Ali; Ayoobi, Fatemeh; Hakimizadeh, Elham; Allahtavakoli, Mohammad

    2017-01-01

    Oxidative stress plays a critical role in ischemic brain injury. Superoxide dismutase (SOD) and glutathione peroxidase (GPx) are the enzymes underlying the endogenous antioxidant mechanisms affected by stroke and are considered as oxidative stress biomarkers. Brown propolis (BP) is a bioactive natural product with a set of biological activities that in turn may differ depending on the area from which the substance is originated. The aim of this study was to investigate the effect of water-extracted brown propolis (WEBPs), from two regions of Iran, against cerebral ischemia-induced oxidative injury in a mouse model of stroke. Experimentally, the chemical characterization and total polyphenol content were determined using GC/MS and Folin-Ciocalteu assay respectively. Seventy-two adult male mice were randomly divided into the surgical sham group, control group (treated with vehicle), and four groups of WEBPs-treated animals. The WEBPs were administered at the doses of 100 and 200mg/kg IP, during four different time points. Oxidative stress biomarkers (SOD and GPx activity, SOD/GPx ratio), lipid peroxidation (LPO) index (malondialdehyde content) and infarct volume were measured 48h post stroke. Behavioral tests were evaluated 24 and 48h after stroke. WEBPs treatment resulted in significant restoration of antioxidant enzymes activity and a subsequent decrease in LPO as well as the infarct volume compared to the control group. Sensory-motor impairment and neurological deficits were improved significantly as well. These results indicate that Iranian BP confers neuroprotection on the stroke-induced neuronal damage via an antioxidant mechanism which seems to be mediated by the endogenous antioxidant system.

  10. Prevention of ischemia-induced myocardial platelet deposition by exogenous prostacyclin

    SciTech Connect

    Aherne, T.; Price, D.C.; Yee, E.S.; Hsieh, W.R.; Ebert, P.A.

    1986-07-01

    The antithrombotic effects of prostacyclin infusion on myocardial platelet deposition were studied in a canine model during and after global ischemia. Eleven isolated heart preparations were subjected to 1 hour of cardioplegic arrest under moderate hypothermia (27 to 28/sup 0/C), including a control group (n = 7) and a prostacyclin-treated group (n = 4). The hearts of four other dogs were continuously perfused for 180 minutes. Platelet deposition was measured at 15 minute intervals throughout the 3 hour study. Serial full-thickness myocardial biopsy specimens were analyzed for activity of /sup 111/In-labeled platelets with /sup 99m/Tc-labeled erythrocyte correction for tissue blood content. The pattern of platelet distribution was determined by scintiscans of each heart, taken with a gamma camera at the end of the 60 minute reperfusion period. Substantial myocardial platelet deposition was found in the control hearts after ischemia but not in the prostacyclin-treated group (p less than 0.05). Furthermore, prostacyclin infusion had a significant disaggregatory effect on intracoronary platelet deposits when the precardioplegic and postcardioplegic biopsy specimens were analyzed (p less than 0.05). Three hours of continuous perfusion did not increase tissue /sup 111/In-labeled platelet activity. Ex vivo images showed platelet deposition to be a diffuse patchy process with significantly more /sup 111/In activity in the endocardium than in the epicardium after global ischemia (p less than 0.05). These data show the potent antithrombotic properties of prostacyclin in preventing and disaggregating ischemia-induced intracoronary platelet deposition during and after cardioplegic arrest.

  11. Effects of 2,4-dinitrophenol on ischemia-induced blood-brain barrier disruption.

    PubMed

    Ennis, S R; Keep, R F

    2006-01-01

    This study examines the effect of 2,4-dinitrophenol (DNP), a mitochondrial uncoupling agent, during focal brain ischemia induced by middle cerebral artery (MCA) occlusion. Blood-brain barrier (BBB) disruption was assessed after 2 hours of occlusion with 2 hours of reperfusion or 4 hours of permanent occlusion by measurement of the influx rate constant (K(i)) for 3H-inulin in the MCA territory ipsi- and contralateral to the occlusion. Three experimental groups were examined: vehicle and 1 and 5 mg/kg DNP treated animals (given 30 minutes prior to occlusion). Four hours of permanent MCA occlusion only induced a modest increase in the K(i) for inulin in vehicle-treated animals (0.09 +/- 0.01 vs. 0.07 +/- 0.01 microL/g/min in contralateral tissue). Although 5 mg/kg DNP significantly increased this disruption (p < 0.01), this effect was relatively minor (0.14 +/- 0.02 microL/g/min). In contrast, DNP treatment in transient ischemia markedly increased barrier disruption. The ipsilateral K(i) for 3H-inulin were 0.15 +/- 0.04, 0.37 +/- 0.06, and 0.79 +/- 0.17 microL/g/min in vehicle, 1 mg/kg DNP and 5 mg/kg DNP groups, respectively. DNP did not induce barrier disruption in the contralateral hemisphere. Thus, while there is evidence that DNP can be neuroprotective, it has adverse effects on the BBB during ischemia, particularly with reperfusion. Considering the importance of naturally- or therapeutically-induced reperfusion in limiting brain damage, this may limit the utility of DNP and mitochondrial uncouplers as therapeutic agents.

  12. Vitamin D Deficiency Exacerbates Experimental Stroke Injury and Dysregulates Ischemia-Induced Inflammation in Adult Rats

    PubMed Central

    Balden, Robyn; Selvamani, Amutha

    2012-01-01

    Vitamin D deficiency (VDD) is widespread and considered a risk factor for cardiovascular disease and stroke. Low vitamin D levels are predictive for stroke and more fatal strokes in humans, whereas vitamin D supplements are associated with decreased risk of all-cause mortality. Because VDD occurs with other comorbid conditions that are also independent risk factors for stroke, this study examined the specific effect of VDD on stroke severity in rats. Adult female rats were fed control or VDD diet for 8 wk and were subject to middle cerebral artery occlusion thereafter. The VDD diet reduced circulating vitamin D levels to one fifth (22%) of that observed in rats fed control chow. Cortical and striatal infarct volumes in animals fed VDD diet were significantly larger, and sensorimotor behavioral testing indicated that VDD animals had more severe poststroke behavioral impairment than controls. VDD animals were also found to have significantly lower levels of the neuroprotective hormone IGF-I in plasma and the ischemic hemisphere. Cytokine analysis indicated that VDD significantly reduced IL-1α, IL-1β, IL-2, IL-4, IFN-γ, and IL-10 expression in ischemic brain tissue. However, ischemia-induced IL-6 up-regulation was significantly higher in VDD animals. In a separate experiment, the therapeutic potential of acute vitamin D treatments was evaluated, where animals received vitamin D injections 4 h after stroke and every 24 h thereafter. Acute vitamin D treatment did not improve infarct volume or behavioral performance. Our data indicate that VDD exacerbates stroke severity, involving both a dysregulation of the inflammatory response as well as suppression of known neuroprotectants such as IGF-I. PMID:22408173

  13. Diminazene aceturate enhances ACE2 activity and attenuates ischemia-induced cardiac pathophysiology

    PubMed Central

    Qi, YanFei; Zhang, Juan; Cole-Jeffrey, Colleen T; Shenoy, Vinayak; Espejo, Andrew; Hanna, Mina; Song, Chunjuan; Pepine, Carl J; Katovich, Michael J; Raizada, Mohan K

    2013-01-01

    Angiotensin-converting enzyme 2 (ACE2) plays a critical role against myocardial infarction (MI). We hypothesized that activation of intrinsic ACE2 would be protective against ischemia-induced cardiac pathophysiology. Diminazine aceturate (DIZE), a small molecule ACE2 activator has been used to evaluate this hypothesis. DIZE (15 mg/kg/day, s.c.) was injected two days prior to MI surgery and continued throughout the study-period. MI rats showed a 62% decrease in fractional shortening (FS,%) [control (Con): 51.1 ± 3.2; DIZE alone (D) : 52.1 ± 3.2; MI (M): 19.1± 3.0], a 55% decrease in contractility (dP/dtmax mmHg/s) (Con: 9480 ± 425.3; D: 9585 ± 597.4; M: 4251 ± 657.7), and a 27% increase in ventricular hypertrophy [VH, mg/mm (Con: 26.5 ± 1.5; D: 26.9 ± 1.4; M: 33.4± 1.1)]. DIZE attenuated the MI-induced decrease in FS by 89%, improved dP/dtmax by 92%, and reversed VH by 18%. MI also significantly increased ACE and angiotensin type 1 receptor levels while decreased ACE2 activity by 40% (Con: 246.2 ± 25.1; D: 254.2 ± 20.6; M: 148.9 ± 29.2, RFU/min), which was reversed by DIZE treatment. Thus, DIZE treatment decreased the infarct area, attenuated LV remodeling post-MI and restored normal balance of the cardiac renin angiotensin system. Additionally, DIZE treatment increased circulating endothelial progenitor cells, increased engraftment of cardiac progenitor cells and decreased inflammatory cells in peri-infarct cardiac regions. All of the beneficial effects associated with DIZE treatment were abolished by C-16, an ACE2 inhibitor. Collectively, DIZE and DIZE-like small molecules may represent promising new therapeutic agents for MI. PMID:23959549

  14. Validated HPLC Method for the Determination of Paclitaxel-related Substances in an Intravenous Emulsion Loaded with a Paclitaxel–Cholesterol Complex

    PubMed Central

    Xia, X. J.; Peng, J.; Zhang, P. X.; Jin, D. J.; Liu, Y. L.

    2013-01-01

    A high-performance liquid chromatography method was developed for the determination of related substances in an intravenous emulsion loaded with a paclitaxel–cholesterol complex. The separation was achieved using Agilent Eclipse XDB-C18 column (150×4.6 mm, 3.5 μm), which was kept at 40°. The gradient mobile phase consisted of acetonitrile and water with a flow rate of 1.2 ml/min. The ultraviolet detection wavelength was set at 227 nm. The preparation of the sample solution began with the addition of anhydrous sodium sulphate to break the emulsion. Then, methanol and ethyl ether were added to pick up the drug and remove the accessories of the emulsion by extraction and centrifugation. Finally, paclitaxel was enriched by a nitrogen blow method and resolved with a mixture of methanol:glacial acetic acid (200:1). The method was proven to be selective, sensitive, robust, linear, repeatable, accurate and suitable for the determination of paclitaxel-related substances in the emulsion formulations, and the major degradation products in the potential pharmaceutical product were 7-epipaclitaxel and 10-deacetylpaclitaxel. PMID:24591742

  15. Catalpol Protects Pre-Myelinating Oligodendrocytes against Ischemia-induced Oxidative Injury through ERK1/2 Signaling Pathway

    PubMed Central

    Cai, Qiyan; Ma, Teng; Li, Chengren; Tian, Yanping; Li, Hongli

    2016-01-01

    The vulnerability of pre-myelinating oligodendrocytes (PreOLs) to ischemic injury plays an important role in the pathogenesis and progression of perinatal white matter injury. Although oxidative stress is thought to be a major pathogenic mechanism predisposing the PreOLs to injury, no effective therapies have been identified to date. The present study aimed to investigate the direct protective effects of catalpol, a potent antioxidant and free radical scavenger, on ischemia-induced oxidative damage in PreOLs and to explore whether the ERK1/2 signaling pathway contributed to the protection provided by catalpol. Primary cultures of PreOLs exposed to oxygen-glucose deprivation (OGD) followed by reperfusion were used as an in vitro model of ischemia. Pretreatment with 0.5 mM catalpol for 1 h prior to OGD treatment significantly reversed ischemia-induced apoptosis in PreOLs and myelination deficits by inhibiting intracellular Ca2+ increase, reducing mitochondrial damage, and ameliorating overproduction of reactive oxygen species (ROS). The expression levels of phosphorylated ERK1/2 (p-ERK1/2) and activated poly-ADP-ribose polymerase-1 (PARP-1) were also markedly decreased by catalpol treatment. Blocking the ERK1/2 signaling pathway with the MEK inhibitor U0126 and catalpol significantly protected PreOLs from ROS-mediated apoptosis under OGD. Taken together, these results suggest that catalpol protects PreOLs against ischemia-induced oxidative injury through ERK1/2 signaling pathway. Catalpol may be a candidate for treating ischemic white matter damage. PMID:27994507

  16. Magnesium Sulfate Prevents Placental Ischemia-Induced Increases in Brain Water Content and Cerebrospinal Fluid Cytokines in Pregnant Rats

    PubMed Central

    Zhang, Linda W.; Warrington, Junie P.

    2016-01-01

    Magnesium sulfate (MgSO4) is the most widely used therapy in the clinic to prevent the progression of preeclampsia, a hypertensive disorder of pregnancy, to eclampsia. Eclampsia, manifested as unexplained seizures and/or coma during pregnancy or postpartum, accounts for ~13% of maternal deaths worldwide. While MgSO4 continues to be used in the clinic, the mechanisms by which it exerts its protective actions are not well understood. In this study, we tested the hypothesis that MgSO4 protects against placental ischemia-induced increases in brain water content and cerebrospinal fluid cytokines. To test this hypothesis, MgSO4 was administered via mini-osmotic pump (60 mg/day, i.p.) to pregnant and placental ischemic rats, induced by mechanical reduction of uterine perfusion pressure, from gestational day 14–19. This treatment regimen of MgSO4 led to therapeutic level of 2.8 ± 0.6 mmol/L Mg in plasma. MgSO4 had no effect on improving placental ischemia-induced changes in mean arterial pressure, number of live fetuses, or fetal and placental weight. Placental ischemia increased, while MgSO4 prevented the increase in water content in the anterior cerebrum. Cytokine and chemokine levels were measured in the cerebrospinal fluid using a multi-plex assay. Results demonstrate that cerebrospinal fluid, obtained via the cisterna magna, had reduced protein, albumin, interleukin (IL)-17A, IL-18, IL-2, eotaxin, fractalkine, interferon gamma, vascular endothelial growth factor (VEGF), and macrophage inflammatory protein (MIP)-2 following MgSO4 treatment. These data support the hypothesis that MgSO4 offers neuroprotection by preventing placental ischemia-induced cerebral edema and reducing levels of cytokines/chemokines in the cerebrospinal fluid. PMID:28008305

  17. Mitogen and stress-activated kinases 1/2 regulate ischemia-induced hippocampal progenitor cell proliferation and neurogenesis

    PubMed Central

    Karelina, Kate; Liu, Yujia; Alzate-Correa, Diego; Wheaton, Kelin L.; Hoyt, Kari R.; Arthur, J. Simon C.; Obrietan, Karl

    2016-01-01

    Pathophysiological conditions such as cerebral ischemia trigger the production of new neurons from the neurogenic niche within the subgranular zone (SGZ) of the dentate gyrus. The functional significance of ischemia-induced neurogenesis is believed to be the regeneration of lost cells, thus contributing to post-ischemia recovery. However, the cell signaling mechanisms by which this process is regulated are still under investigation. Here, we investigated the role of mitogen and stress-activated protein kinases (MSK1/2) in the regulation of progenitor cell proliferation and neurogenesis after cerebral ischemia. Using the endothelin-1 model of ischemia, wild type (WT) and MSK1−/−/MSK2−/− (MSK dKO) mice were injected with BrdU and sacrificed 2 days, 4 weeks, or 6 weeks later for the analysis of progenitor cell proliferation, neurogenesis, and neuronal morphology, respectively. We report a decrease in SGZ progenitor cell proliferation in MSK dKO mice compared to WT mice. Moreover, MSK dKO mice exhibited reduced neurogenesis and a delayed maturation of ischemia-induced newborn neurons. Further, structural analysis of neuronal arborization revealed reduced branching complexity in MSK dKO compared to WT mice. Taken together, this dataset suggests that MSK1/2 plays a significant role in the regulation of ischemia-induced progenitor cell proliferation and neurogenesis. Ultimately, revealing the cell signaling mechanisms that promote neuronal recovery will lead to novel pharmacological approaches for the treatment of neurodegenerative diseases such as cerebral ischemia. PMID:25451279

  18. PET imaging of ischemia-induced impairment of mitochondrial complex I function in monkey brain

    PubMed Central

    Tsukada, Hideo; Ohba, Hiroyuki; Nishiyama, Shingo; Kanazawa, Masakatsu; Kakiuchi, Takeharu; Harada, Norihiro

    2014-01-01

    To assess the capability of 18F-2-tert-butyl-4-chloro-5-{6-[2-(2-fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one (18F-BCPP-EF), a novel positron emission tomography (PET) probe for mitochondrial complex I (MC-I) activity, as a specific marker of ischemia-induced neuronal death without being disturbed by inflammation, translational research was conducted using an animal PET in ischemic brains of Cynomolgus monkeys (Macaca fascicularis). Focal ischemia was induced by the right middle cerebral artery occlusion for 3 hours, then PET scans were conducted at Day-7 with 15O-gases for regional cerebral blood flow (rCBF) and regional cerebral metabolism of oxygen (rCMRO2), and 18F-BCPP-EF for MC-I with arterial blood sampling. On Day-8, the additional PET scans conducted with 11C-flumazenil (11C-FMZ) for central-type benzodiazepine receptors, 11C-PBR28 for translocator protein, and 18F-fluoro-2-deoxy-D-glucose (18F-FDG) for regional cerebral metabolic rate of glucose (rCMRglc). The total distribution volume (VT) values of 18F-BCPP-EF showed the significant reduction in MC-I activity in the damaged area at Day-7. When correlated with rCBF and rCMRO2, the VT values of 18F-BCPP-EF provided better correlation with rCMRO2 than with rCBF. In the inflammatory regions (region of interest, ROIPBR) of the ischemic hemisphere detected with 11C-PBR28, higher 18F-FDG uptake and lower VT of 18F-BCPP-EF, 11C-FMZ, and rCMRO2 than those in normal contralateral hemisphere were observed. These results strongly suggested that 18F-BCPP-EF could discriminate the neuronal damaged areas with neuroinflammation, where 18F-FDG could not owing to its high uptake into the activated microglia. PMID:24447952

  19. Ischemia induces partial loss of surface membrane polarity and accumulation of putative calcium ionophores.

    PubMed Central

    Molitoris, B A; Wilson, P D; Schrier, R W; Simon, F R

    1985-01-01

    To determine if ischemia induces alterations in renal proximal tubule surface membranes, brush border (BBM) and basolateral membranes (BLM) were isolated simultaneously from the same cortical homogenate after 50 min of renal pedicle clamping. Ischemia caused a selective decrease in the specific activity of BBM marker enzymes leucine aminopeptidase and alkaline phosphatase, but did not effect enrichment (15 times). Neither specific activity nor enrichment (10 times) of BLM NaK-ATPase was altered by ischemia. Contamination of BBM by intracellular organelles was also unchanged, but there was an increase in the specific activity (41.1 vs. 60.0, P less than 0.01) and enrichment (2.3 vs. 4.3, P less than 0.01) of NaK-ATPase in the ischemic BBM fraction. Ischemia increased BLM lysophosphatidylcholine (1.3 vs. 2.5%, P less than 0.05) and phosphatidic acid (0.4 vs. 1.3%, P less than 0.05). Ischemia also decreased BBM sphingomyelin (38.5 vs. 29.6%, P less than 0.01) and phosphatidylserine (16.1 vs. 11.4%, P less than 0.01), and increased phosphatidylcholine (17.2 vs. 29.7%, P less than 0.01), phosphatidylinositol (1.8 vs. 4.6%, P less than 0.01), and lysophosphatidylcholine (1.0 vs. 1.8%, P less than 0.05). The large changes in BBM phospholipids did not result from new phospholipid synthesis, since the specific activity (32P dpm/nmol Pi) of prelabeled individual and total phospholipids was unaltered by ischemia. We next evaluated if these changes were due to inability of ischemic cells to maintain surface membrane polarity. Cytochemical evaluation showed that while NaK-ATPase could be detected only in control BLM, specific deposits of reaction product were present in the BBM of ischemic kidneys. Furthermore, using continuous sucrose gradients, the enzymatic profile of ischemic BBM NaK-ATPase shifted away from ischemic BLM NaK-ATPase and toward the BBM enzymatic marker leucine aminopeptidase. Taken together, these data suggest that NaK-ATPase activity determined enzymatically

  20. High Blood Cholesterol

    MedlinePlus

    ... page from the NHLBI on Twitter. What Is Cholesterol? To understand high blood cholesterol (ko-LES-ter- ... cholesterol from your body. What Is High Blood Cholesterol? High blood cholesterol is a condition in which ...

  1. Ischemia-induced alterations in myocardial (Na+ + K+)-ATPase and cardiac glycoside binding.

    PubMed Central

    Beller, G A; Conroy, J; Smith, T W

    1976-01-01

    The effects of ischemia on the canine myocardial (Na+ + K+)-ATPase complex were examined in terms of alterations in cardiac glycoside binding and enzymatic activity. Ability of the myocardial cell to bind tritiated ouabain in vivo was assessed after 1, 2, and 6 h of coronary occlusion followed by 45 min of reperfusion, and correlated with measurements of in vitro (Na+ + K+)-ATPase activity and in vitro [3H]ouabain binding after similar periods of ischemia. Regional blood flow alterations during occlusion and reperfusion were simultaneously determined utilizing 15 mum radioactive microspheres to determine the degree to which altered binding of ouabain might be flow related. Anterior wall infarction was produced in 34 dogs by snaring of confluent branches of the left coronary system. Epicardial electrograms delineated ischemic and border zone areas. Coronary reperfusion after 2 and 6 h of occlusion was associated with impaired reflow of blood and markedly impaired uptake of [3H]ouabain in ischemic myocardium. In both groups, in vivo [3H]ouabain binding by ischemic tissue was reduced out of proportion to the reduction in flow. Despite near-complete restoration of flow in seven dogs occluded for 1 h and reperfused, [3H]ouabain remained significantly reduced to 58 +/- 9% of nonischemic uptake in subendocardial layers of the central zone of ischemia. Thus, when coronary flow was restored to areas of myocardium rendered acutely ischemia for 1 or more hours, ischemic zones demonstrated progressively diminished ability to bind ouabain. To determine whether ischemia-induced alteration in myocardial (Na+ + K+)-ATPase might underlie these changes, (Na+ + K+)-ATPase activity and [3H]ouabain binding were measured in microsomal fractions from ischemic myocardium after 1, 2, and 6 h of coronary occlusion. In animals occluded for 6 h, (Na+ + K+)-ATPase activity was significantly reduced by 40% in epicardial and by 35% in endocardial layers compared with nonischemic myocardium

  2. Cholesterol and Your Child

    MedlinePlus

    ... Old Feeding Your 1- to 2-Year-Old Cholesterol and Your Child KidsHealth > For Parents > Cholesterol and ... child's risk of developing heart disease later. About Cholesterol Cholesterol is a waxy substance produced by the ...

  3. Women and Cholesterol

    MedlinePlus

    ... Disease Venous Thromboembolism Aortic Aneurysm More Women and Cholesterol Updated:Apr 1,2016 The female sex hormone ... 2014. Related Sites Nutrition Center My Life Check Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  4. LDL Cholesterol Test

    MedlinePlus

    ... products and services. Advertising & Sponsorship: Policy | Opportunities LDL Cholesterol Share this page: Was this page helpful? Also ... LDL; LDL-C Formal name: Low-Density Lipoprotein Cholesterol Related tests: Cholesterol ; HDL Cholesterol ; Triglycerides ; Lipid Profile ; ...

  5. Common Misconceptions about Cholesterol

    MedlinePlus

    ... Venous Thromboembolism Aortic Aneurysm More Common Misconceptions about Cholesterol Updated:Apr 3,2017 Cholesterol can be both ... misconceptions about cholesterol. Click on each misconception about cholesterol to see the truth: My choices about diet ...

  6. Lifestyle Changes and Cholesterol

    MedlinePlus

    ... Venous Thromboembolism Aortic Aneurysm More Lifestyle Changes and Cholesterol Updated:Sep 26,2016 As part of a ... to the Terms and Conditions and Privacy Policy Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  7. HDL Cholesterol Test

    MedlinePlus

    ... products and services. Advertising & Sponsorship: Policy | Opportunities HDL Cholesterol Share this page: Was this page helpful? Also ... HDL; HDL-C Formal name: High-density Lipoprotein Cholesterol Related tests: Cholesterol ; LDL Cholesterol ; Triglycerides ; Lipid Profile ; ...

  8. Cholesterol IQ Quiz

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More Cholesterol IQ Quiz Updated:Feb 2,2015 Begin the quiz Cholesterol • Home • About Cholesterol Introduction Good vs. Bad Cholesterol ...

  9. Hypoxia inducible factor stabilization improves defective ischemia-induced angiogenesis in a rodent model of chronic kidney disease.

    PubMed

    Schellinger, Isabel N; Cordasic, Nada; Panesar, Julian; Buchholz, Björn; Jacobi, Johannes; Hartner, Andrea; Klanke, Bernd; Jakubiczka-Smorag, Joanna; Burzlaff, Nicolai; Heinze, Eva; Warnecke, Christina; Raaz, Uwe; Willam, Carsten; Tsao, Philip S; Eckardt, Kai-Uwe; Amann, Kerstin; Hilgers, Karl F

    2017-03-01

    Chronic kidney disease (CKD) is associated with increased risk and worse prognosis of cardiovascular disease, including peripheral artery disease. An impaired angiogenic response to ischemia may contribute to poor outcomes of peripheral artery disease in patients with CKD. Hypoxia inducible factors (HIF) are master regulators of angiogenesis and therefore represent a promising target for therapeutic intervention. To test this we induced hind-limb ischemia in rats with CKD caused by 5/6 nephrectomy and administered two different treatments known to stabilize HIF protein in vivo: carbon monoxide and a pharmacological inhibitor of prolyl hydroxylation 2-(1-chloro-4- hydroxyisoquinoline-3-carboxamido) acetate (ICA). Expression levels of pro-angiogenic HIF target genes (Vegf, Vegf-r1, Vegf-r2, Ho-1) were measured by qRT-PCR. Capillary density was measured by CD31 immunofluorescence staining and HIF expression was evaluated by immunohistochemistry. Capillary density in ischemic skeletal muscle was significantly lower in CKD animals compared to sham controls. Rats with CKD showed significantly lower expression of HIF and all measured pro-angiogenic HIF target genes, including VEGF. Both HIF stabilizing treatments rescued HIF target gene expression in animals with CKD and led to significantly higher ischemia-induced capillary sprouting compared to untreated controls. ICA was effective regardless of whether it was administered before or after induction of ischemia and led to a HIF expression in skeletal muscle. Thus, impaired ischemia-induced angiogenesis in rats with CKD can be improved by HIF stabilization, even if started after onset of ischemia.

  10. PKCβ: Expanding role in hepatic adaptation of cholesterol homeostasis to dietary fat/cholesterol.

    PubMed

    Mehta, Devina; Mehta, Kamal D

    2017-03-01

    Cholesterol homeostasis relies on an intricate network of cellular processes whose deregulation in response to Western type high-fat/cholesterol diets can lead to several life-threatening pathologies. Significant advances have been made in resolving the molecular identity and regulatory function of transcription factors sensitive to fat, cholesterol, or bile acids, but whether body senses the presence of both fat and cholesterol simultaneously is not known. Assessing the impact of a high-fat/cholesterol load, rather than an individual component alone, on cholesterol homeostasis is more physiologically relevant because Western diets deliver both fat and cholesterol at the same time. Moreover, dietary fat and dietary cholesterol are reported to act synergistically to impair liver cholesterol homeostasis. A key insight into the role of protein kinase C-β (PKCβ) in hepatic adaptation to high-fat/cholesterol diets was gained recently through the use of knockout mice. The emerging evidence indicates that PKCβ is an important regulator of cholesterol homeostasis that ensures normal adaptation to high-fat/cholesterol intake. Consistent with this function, high-fat/cholesterol diets induce PKCβ expression and signaling in the intestine and liver, while systemic PKCβ deficiency promotes accumulation of cholesterol in the liver and bile. PKCβ disruption results in profound dysregulation of hepatic cholesterol and bile homeostasis and imparts sensitivity to cholesterol gallstone formation. The available results support involvement of a two-pronged mechanism by which intestine and liver PKCβ signaling converge on liver ERK1/2 to dictate diet-induced cholesterol and bile acid homeostasis. Collectively, PKCβ is an integrator of dietary fat/cholesterol signal and mediates changes to cholesterol homeostasis.

  11. Glycemic load is associated with HDL cholesterol but not with the other components and prevalence of metabolic syndrome in the third National Health and Nutrition Examination Survey, 1988–1994

    PubMed Central

    Culberson, Amy; Kafai, Mohammad R; Ganji, Vijay

    2009-01-01

    Background Carbohydrate quality and quantity may affect the risk for cardiovascular diseases (CVD) and type-2 diabetes mellitus. Glycemic load (GL) is a mathematical concept based on carbohydrate quality and quantity. GL is a product of glycemic index (GI) and the carbohydrate content of a food item divided by 100. Objective In this study, the association between GL and components and prevalence of metabolic syndrome was investigated in a representative sample survey of US residents utilizing the data reported in the third National Health and Nutrition Examination Survey (n = 5011). Methods Metabolic syndrome was defined according to the criteria established by the Adult Treatment Panel III. Multivariate-adjusted means for waist circumference, triacylglycerol, systolic and diastolic blood pressures, blood glucose, and HDL cholesterol were determined according to the energy-adjusted GL intake quartiles using regression models. Results In all subjects and in men, high GL was associated with low HDL-cholesterol concentrations in multivariate-adjusted analysis (P for trend < 0.01). However, no association was observed between GL and any of the individual components of metabolic syndrome in women. Also, no association was observed between energy-adjusted GL and prevalence of metabolic syndrome in both men (P for trend < 0.21) and women (P for trend < 0.09) in the multivariate-adjusted logistic regression analysis. Conclusion It is likely that the diets low in GL may mitigate the risk for CVD through HDL cholesterol. PMID:19144143

  12. The intra-arterial injection of microglia protects hippocampal CA1 neurons against global ischemia-induced functional deficits in rats.

    PubMed

    Hayashi, Y; Tomimatsu, Y; Suzuki, H; Yamada, J; Wu, Z; Yao, H; Kagamiishi, Y; Tateishi, N; Sawada, M; Nakanishi, H

    2006-09-29

    In the present study, we have attempted to elucidate the effects of the intra-arterial injection of microglia on the global ischemia-induced functional and morphological deficits of hippocampal CA1 neurons. When PKH26-labeled immortalized microglial cells, GMIR1, were injected into the subclavian artery, these exogenous microglia were found to accumulate in the hippocampus at 24 h after ischemia. In hippocampal slices prepared from medium-injected rats subjected to ischemia 48 h earlier, synaptic dysfunctions including a significant reduction of synaptic responses and a marked reduction of long-term potentiation (LTP) of the CA3-CA1 Schaffer collateral synapses were observed. At this stage, however, neither significant neuronal degeneration nor gliosis was observed in the hippocampus. At 96 h after ischemia, there was a total loss of the synaptic activity and a marked neuronal death in the CA1 subfield. In contrast, the basal synaptic transmission and LTP of the CA3-CA1 synapses were well preserved after ischemia in the slices prepared from the microglia-injected animals. We also found the microglial-conditioned medium (MCM) to significantly increase the frequency of the spontaneous postsynaptic currents of CA1 neurons without affecting the amplitude, thus indicating that MCM increased the provability of the neurotransmitter release. The protective effect of the intra-arterial injected microglia against the ischemia-induced neuronal degeneration in the hippocampus was substantiated by immunohistochemical and immunoblot analyses. Furthermore, the arterial-injected microglia prevented the ischemia-induced decline of the brain-derived neurotrophic factor (BDNF) levels in CA1 neurons. These observations strongly suggest that the arterial-injection of microglia protected CA1 neurons against the ischemia-induced neuronal degeneration. The restoration of the ischemia-induced synaptic deficits and the resultant reduction of the BDNF levels in CA1 neurons, possibly by the

  13. Effects of rosuvastatin and pitavastatin on ischemia-induced myocardial stunning in dogs.

    PubMed

    Satoh, Kumi; Takaguri, Akira; Itagaki, Mai; Kano, Seiichiro; Ichihara, Kazuo

    2008-04-01

    Incomplete recovery of myocardial contraction after reperfusion following brief ischemia is called the "stunning phenomenon" in an animal experiment. A hydrophilic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor (statin) does not affect this phenomenon, but lipophilic statins further reduce the contraction during reperfusion. The effects of novel hydrophilic rosuvastatin and lipophilic pitavastatin on myocardial stunning in dogs were examined. In a preliminary experiment in vitro, pitavastatin reduced L6 cell viability at 10(-6) M and higher, whereas rosuvastatin and pravastatin up to 10(-5) M did not show such effects. An empty capsule or a capsule filled with rosuvastatin (2 mg/kg per day) or pitavastatin (0.4 mg/kg per day) was orally administered to dogs. After 3 weeks, both statins lowered the serum cholesterol level to the same extent. Under pentobarbital anesthesia, dogs were subjected to 15-min ischemia followed by 120-min reperfusion. Ischemia arrested the myocardial contraction in the ischemic area, and reperfusion recovered it but incompletely, showing the stunning phenomenon. Rosuvastatin did not modify the stunning phenomenon, while pitavastatin further deteriorated the myocardial contraction during reperfusion.

  14. What Is Cholesterol?

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Cholesterol KidsHealth > For Teens > Cholesterol Print A A A ... High Cholesterol? en español ¿Qué es el colesterol? Cholesterol Is a Fat in the Blood Cholesterol (kuh- ...

  15. What Is Cholesterol?

    MedlinePlus

    ... Loss Surgery? A Week of Healthy Breakfasts Shyness Cholesterol KidsHealth > For Teens > Cholesterol A A A What's ... High Cholesterol? en español ¿Qué es el colesterol? Cholesterol Is a Fat in the Blood Cholesterol (kuh- ...

  16. Critical Roles of Reactive Oxygen Species in Age-Related Impairment in Ischemia-Induced Neovascularization by Regulating Stem and Progenitor Cell Function

    PubMed Central

    Lam, Yuen Ting

    2016-01-01

    Reactive oxygen species (ROS) regulate bone marrow microenvironment for stem and progenitor cells functions including self-renewal, differentiation, and cell senescence. In response to ischemia, ROS also play a critical role in mediating the mobilization of endothelial progenitor cells (EPCs) from the bone marrow to the sites of ischemic injury, which contributes to postnatal neovascularization. Aging is an unavoidable biological deteriorative process with a progressive decline in physiological functions. It is associated with increased oxidative stress and impaired ischemia-induced neovascularization. This review discusses the roles of ROS in regulating stem and progenitor cell function, highlighting the impact of unbalanced ROS levels on EPC dysfunction and the association with age-related impairment in ischemia-induced neovascularization. Furthermore, it discusses strategies that modulate the oxidative levels of stem and progenitor cells to enhance the therapeutic potential for elderly patients with cardiovascular disease. PMID:26697140

  17. An enzyme-entrapped agarose gel for visualization of ischemia-induced L-glutamate fluxes in hippocampal slices in a flow system.

    PubMed

    Tanaka, Kazuhisa; Shoji, Atushi; Sugawara, Masao

    2015-01-01

    An agarose gel slip containing L-glutamate oxidase (GluOx), horseradish peroxidase (HRP) and a dye DA-64 is proposed as a tool for visualizing ischemia-induced L-glutamate release in hippocampal slices in a flow system. The agarose slip with a detection limit of 6.0 ± 0.8 μmol L(-1) for L-glutamate enabled us to visualize L-glutamate fluxes in a flow system. The leak of a dye from the agarose gel was negligible and a diffusion blur due to spreading of Bindshedler's Green (BG) within the gel was suppressed. Monitoring the time-dependent change of ischemia-induced L-glutamate fluxes at neuronal regions CA1, DG and CA3 of hippocampal slices is demonstrated.

  18. Get Your Cholesterol Checked

    MedlinePlus

    ... Checked Print This Topic En español Get Your Cholesterol Checked Browse Sections The Basics Overview Cholesterol Test ... How often do I need to get my cholesterol checked? The general recommendation is to get your ...

  19. Cholesterol Facts and Statistics

    MedlinePlus

    ... Blood Pressure Salt Million Hearts® WISEWOMAN Program High Cholesterol Facts Recommend on Facebook Tweet Share Compartir As ... the facts about high cholesterol [PDF-281K] . High Cholesterol in the United States 73.5 million adults ( ...

  20. Dietary Fat and Cholesterol

    MedlinePlus

    ... Conditions Nutrition & Fitness Emotional Health Dietary Fat and Cholesterol Posted under Health Guides . Updated 7 March 2017. + ... saturated fat found in red meat. What is cholesterol? Cholesterol is a fatlike substance that’s found in ...

  1. Cell Cholesterol Homeostasis: Mediation by Active Cholesterol

    PubMed Central

    Steck, Theodore L.; Lange, Yvonne

    2010-01-01

    Recent evidence suggests that the major pathways mediating cell cholesterol homeostasis respond to a common signal: active membrane cholesterol. Active cholesterol is that fraction which exceeds the complexing capacity of the polar bilayer lipids. Increments in plasma membrane cholesterol exceeding this threshold have an elevated chemical activity (escape tendency) and redistribute via diverse transport proteins to both circulating plasma lipoproteins and intracellular organelles. Active cholesterol prompts several feedback responses thereby. It is the substrate for its own esterification and for the synthesis of regulatory side-chain oxysterols. It also stimulates manifold pathways that down-regulate the biosynthesis, curtail the ingestion and increase the export of cholesterol. Thus, the abundance of cholesterol is tightly coupled to that of its polar lipid partners through active cholesterol. PMID:20843692

  2. Sulforaphane Improves Ischemia-Induced Detrusor Overactivity by Downregulating the Enhancement of Associated Endoplasmic Reticulum Stress, Autophagy, and Apoptosis in Rat Bladder

    PubMed Central

    Tai, Huai-Ching; Chung, Shiu-Dong; Chien, Chiang-Ting; Yu, Hong-Jeng

    2016-01-01

    Atherosclerosis-associated pelvic ischemia has been reported to be a risk factor for bladder dysfunction and subsequent lower urinary tract symptoms (LUTS) in the elderly population. However, the molecular mechanisms of this association remain unclear. We hypothesized that stress-induced cellular responses might play a role in the pathogenesis of ischemia-induced bladder dysfunction. In the present study, the animal model of bladder ischemia was induced by bilateral partial arterial occlusion (BPAO) in rats. We found that BPAO significantly induced the presence of detrusor overactivity (DO) and upregulated the expression of several molecular reactions, including biomarkers in endoplasmic reticulum stress (78 kDa glucose-regulated protein, GRP78 and C/EBP-homologous protein, CHOP), autophagy (Beclin-1, p62 and LC3 II) and apoptosis (caspase 3). BPAO also disturbed the Kelch-like ECH-associated protein 1–nuclear factor erythroid-2-related factor 2 (Keap1–Nrf2) pathways. These responses might collectively alter muscarinic and purinergic signaling and contribute to the presence of DO in the ischemic bladder. Therapeutically, treatment with neither a muscarinic nor purinergic receptor antagonist restored bladder function. Interestingly, sulforaphane effectively attenuated ischemia-enhanced endoplasmic reticulum stress, autophagy and apoptosis in the bladder, subsequently ameliorated ischemia-induced bladder dysfunction and might emerge as a novel strategy to protect the bladder against ischemia-induced oxidative damage. PMID:27824068

  3. Acute estradiol protects CA1 neurons from ischemia-induced apoptotic cell death via the PI3K/Akt pathway

    PubMed Central

    Jover-Mengual, Teresa; Miyawaki, Takahiro; Latuszek, Adrianna; Alborch, Enrique; Zukin, R. Suzanne; Etgen, Anne M.

    2010-01-01

    Global ischemia arising during cardiac arrest or cardiac surgery causes highly selective, delayed death of hippocampal CA1 neurons. Exogenous estradiol ameliorates global ischemia-induced neuronal death and cognitive impairment in male and female rodents. However, the molecular mechanisms by which a single acute injection of estradiol administered after the ischemic event intervenes in global ischemia-induced apoptotic cell death are unclear. Here we show that acute estradiol acts via the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling cascade to protect CA1 neurons in ovariectomized female rats. We demonstrate that global ischemia promotes early activation of glycogen synthase kinase-3β (GSK3β) and forkhead transcription factor of the O class (FOXO)3A, known Akt targets that are related to cell survival, and activation of caspase-3. Estradiol prevents ischemia-induced dephosphorylation and activation of GSK3β and FOXO3A, and the caspase death cascade. These findings support a model whereby estradiol acts by activation of PI3K/Akt signaling to promote neuronal survival in the face of global ischemia. PMID:20114038

  4. Paraplegia increased cardiac NGF content, sympathetic tonus, and the susceptibility to ischemia-induced ventricular tachycardia in conscious rats

    PubMed Central

    Lujan, Heidi L.; Chen, Ying; DiCarlo, Stephen E.

    2009-01-01

    Midthoracic spinal cord injury is associated with ventricular arrhythmias that are mediated, in part, by enhanced cardiac sympathetic activity. Furthermore, it is well known that sympathetic neurons have a lifelong requirement for nerve growth factor (NGF). NGF is a neurotrophin that supports the survival and differentiation of sympathetic neurons and enhances target innervation. Therefore, we tested the hypothesis that paraplegia is associated with an increased cardiac NGF content, sympathetic tonus, and susceptibility to ischemia-induced ventricular tachyarrhythmias. Intact and paraplegic (6–9 wk posttransection, T5 spinal cord transection) rats were instrumented with a radiotelemetry device for recording arterial pressure, temperature, and ECG, and a snare was placed around the left main coronary artery. Following recovery, the susceptibility to ventricular arrhythmias (coronary artery occlusion) was determined in intact and paraplegic rats. In additional groups of matched intact and paraplegic rats, cardiac nerve growth factor content (ELISA) and cardiac sympathetic tonus were determined. Paraplegia, compared with intact, increased cardiac nerve growth factor content (2,146 ± 286 vs. 180 ± 36 pg/ml, P < 0.05) and cardiac sympathetic tonus (154 ± 4 vs. 68 ± 4 beats/min, P < 0.05) and decreased the ventricular arrhythmia threshold (3.6 ± 0.2 vs. 4.9 ± 0.2 min, P < 0.05). Thus altered autonomic behavior increases the susceptibility to ventricular arrhythmias in paraplegic rats. PMID:19286942

  5. Ginkgo biloba Prevents Transient Global Ischemia-Induced Delayed Hippocampal Neuronal Death Through Antioxidant and Anti-inflammatory Mechanism

    PubMed Central

    Tulsulkar, Jatin; Shah, Zahoor A.

    2012-01-01

    We have previously reported neuroprotective properties of Ginkgo biloba/EGb 761® (EGb 761) in transient and permanent mouse models of brain ischemia. In a quest to extend our studies on EGB 761 and its constituents further, we used a model of transient global ischemia induced delayed hippocampal neuronal death and inflammation. Mice pretreated with different test drugs for 7 days were subjected to eight-minute bilateral common carotid artery occlusion (tBCCAO) at day 8. After 7 days of reperfusion, mice brains were dissected out for TUNEL assay and immunohistochemistry. In-situ detection of fragmented DNA (TUNEL staining) showed that out of all test drugs, only EGb 761 (13.6% ± 3.2) pretreatment protected neurons in the hippocampus against global ischemia (vs. vehicle, 85.1% ± 9.9; p < 0.05). Immunofluorescence-based studies demonstrated that pretreatment with EGb 761 upregulated the expression levels of heme oxygenase 1 (HO1), nuclear factor erythroid 2-related factor 2 (Nrf2), and vascular endothelial growth factor (VEGF) as compared to the vehicle group. In addition, increased number of activated astrocytes and microglia in the vehicle group was observed to be significantly lower in the EGb 761 pretreated group. Together, these results suggest that EGb 761 is a multifunctional neuroprotective agent, and the protection is in part associated with activation of the HO1/Nrf2 pathway, upregulation of VEGF and downregulation of inflammatory mediators such as astrocytes and microglia. PMID:23228346

  6. The Structural Basis of Cholesterol Activity in Membranes

    SciTech Connect

    Olsen, Brett N.; Bielska, Agata; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-10-15

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.

  7. Compared with Acyl-CoA:cholesterol O-acyltransferase (ACAT) 1 and lecithin:cholesterol acyltransferase, ACAT2 displays the greatest capacity to differentiate cholesterol from sitosterol.

    PubMed

    Temel, Ryan E; Gebre, Abraham K; Parks, John S; Rudel, Lawrence L

    2003-11-28

    The capacity of acyl-CoA:cholesterol O-acyltransferase (ACAT) 2 to differentiate cholesterol from the plant sterol, sitosterol, was compared with that of the sterol esterifying enzymes, ACAT1 and lecithin:cholesterol acyltransferase (LCAT). Cholesterol-loaded microsomes from transfected cells containing either ACAT1 or ACAT2 exhibited significantly more ACAT activity than their sitosterol-loaded counterparts. In sitosterol-loaded microsomes, both ACAT1 and ACAT2 were able to esterify sitosterol albeit with lower efficiencies than cholesterol. The mass ratios of cholesterol ester to sitosterol ester formed by ACAT1 and ACAT2 were 1.6 and 7.2, respectively. Compared with ACAT1, ACAT2 selectively esterified cholesterol even when sitosterol was loaded into the microsomes. To further characterize the difference in sterol specificity, ACAT1 and ACAT2 were compared in intact cells loaded with either cholesterol or sitosterol. Despite a lower level of ACAT activity, the ACAT1-expressing cells esterified 4-fold more sitosterol than the ACAT2 cells. The data showed that compared with ACAT1, ACAT2 displayed significantly greater selectively for cholesterol compared with sitosterol. The plasma cholesterol esterification enzyme lecithin:cholesterol acyltransferase was also compared. With recombinant high density lipoprotein particles, the esterification rate of cholesterol by LCAT was only 15% greater than for sitosterol. Thus, LCAT was able to efficiently esterify both cholesterol and sitosterol. In contrast, ACAT2 demonstrated a strong preference for cholesterol rather than sitosterol. This sterol selectivity by ACAT2 may reflect a role in the sorting of dietary sterols during their absorption by the intestine in vivo.

  8. Cooking for Lower Cholesterol

    MedlinePlus

    ... Venous Thromboembolism Aortic Aneurysm More Cooking for Lower Cholesterol Updated:Oct 28,2016 A heart-healthy eating ... content was last reviewed on 04/21/2014. Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  9. Insights into the epigenetic mechanisms involving histone lysine methylation and demethylation in ischemia induced damage and repair has therapeutic implication.

    PubMed

    Chakravarty, Sumana; Jhelum, Priya; Bhat, Unis Ahmad; Rajan, Wenson D; Maitra, Swati; Pathak, Salil S; Patel, Anant B; Kumar, Arvind

    2017-01-01

    Cerebral ischemic stroke is one of the leading causes of death and disability worldwide. Therapeutic interventions to minimize ischemia-induced neural damage are limited due to poor understanding of molecular mechanisms mediating complex pathophysiology in stroke. Recently, epigenetic mechanisms mostly histone lysine (K) acetylation and deacetylation have been implicated in ischemic brain damage and have expanded the dimensions of potential therapeutic intervention to the systemic/local administration of histone deacetylase inhibitors. However, the role of other epigenetic mechanisms such as histone lysine methylation and demethylation in stroke-induced damage and subsequent recovery process is elusive. Here, we established an Internal Carotid Artery Occlusion (ICAO) model in CD1 mouse that resulted in mild to moderate level of ischemic damage to the striatum, as suggested by magnetic resonance imaging (MRI), TUNEL and histopathological staining along with an evaluation of neurological deficit score (NDS), grip strength and rotarod performance. The molecular investigations show dysregulation of a number of histone lysine methylases (KMTs) and few of histone lysine demethylases (KDMs) post-ICAO with significant global attenuation in the transcriptionally repressive epigenetic mark H3K9me2 in the striatum. Administration of Dimethyloxalylglycine (DMOG), an inhibitor of KDM4 or JMJD2 class of histone lysine demethylases, significantly ameliorated stroke-induced NDS by restoring perturbed H3K9me2 levels in the ischemia-affected striatum. Overall, these results highlight the novel role of epigenetic regulatory mechanisms controlling the epigenetic mark H3K9me2 in mediating the stroke-induced striatal damage and subsequent repair following mild to moderate cerebral ischemia.

  10. Casein Kinase 1 Suppresses Activation of REST in Insulted Hippocampal Neurons and Halts Ischemia-Induced Neuronal Death

    PubMed Central

    Kaneko, Naoki; Hwang, Jee-Yeon; Gertner, Michael; Pontarelli, Fabrizio

    2014-01-01

    Repressor Element-1 (RE1) Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF) is a gene-silencing factor that is widely expressed during embryogenesis and plays a strategic role in neuronal differentiation. Recent studies indicate that REST can be activated in differentiated neurons during a critical window of time in postnatal development and in adult neurons in response to neuronal insults such as seizures and ischemia. However, the mechanism by which REST is regulated in neurons is as yet unknown. Here, we show that REST is controlled at the level of protein stability via β-TrCP-dependent, ubiquitin-based proteasomal degradation in differentiated neurons under physiological conditions and identify Casein Kinase 1 (CK1) as an upstream effector that bidirectionally regulates REST cellular abundance. CK1 associates with and phosphorylates REST at two neighboring, but distinct, motifs within the C terminus of REST critical for binding of β-TrCP and targeting of REST for proteasomal degradation. We further show that global ischemia in rats in vivo triggers a decrease in CK1 and an increase in REST in selectively vulnerable hippocampal CA1 neurons. Administration of the CK1 activator pyrvinium pamoate by in vivo injection immediately after ischemia restores CK1 activity, suppresses REST expression, and rescues neurons destined to die. Our results identify a novel and previously unappreciated role for CK1 as a brake on REST stability and abundance in adult neurons and reveal that loss of CK1 is causally related to ischemia-induced neuronal death. These findings point to CK1 as a potential therapeutic target for the amelioration of hippocampal injury and cognitive deficits associated with global ischemia. PMID:24760862

  11. Inhibitory Effects of Isoquinoline Alkaloid Berberine on Ischemia-Induced Apoptosis via Activation of Phosphoinositide 3-Kinase/Protein Kinase B Signaling Pathway

    PubMed Central

    Kim, Mia; Shin, Mal Soon; Lee, Jae Min; Cho, Han Sam; Kim, Chang Ju; Kim, Young Joon; Choi, Hey Ran

    2014-01-01

    Purpose Berberine is a type of isoquinoline alkaloid that has been used to treat various diseases. A neuroprotective effect of berberine against cerebral ischemia has been reported; however, the effects of berberine on apoptosis in relation to reactive astrogliosis and microglia activation under ischemic conditions have not yet been fully evaluated. In the present study, we investigated the effects of berberine on global ischemia-induced apoptosis, and focused on the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling pathway in the hippocampus using gerbils. Methods Gerbils received berberine orally once a day for 14 consecutive days, starting one day after surgery. In this study, a step-down avoidance task was used to assess short-term memory. Furthermore, we employed the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay to evaluate DNA fragmentation, immunohistochemistry to investigate glial fibriallary acidic protein, CD11b, and caspase-3, and western blot to assess PI3K, Akt, Bax, Bcl-2, and cytochrome c. Results Our results revealed that berberine treatment alleviated ischemia-induced short-term memory impairment. Treatment with berbeine also attenuated ischemia-induced apoptosis and inhibited reactive astrogliosis and microglia activation. Furthermore, berberine enhanced phospho-PI3K and phospho-Akt expression in the hippocampus of ischemic gerbils. Conclusions Berberine exerted a neuroprotective effect against ischemic insult by inhibiting neuronal apoptosis via activation of the PI3K/Akt signaling pathway. The antiapoptotic effect of berberine was achieved through inhibition of reactive astrogliosis and microglia activation. Berberine may therefore serve as a therapeutic agent for stroke-induced neurourological problems. PMID:25279238

  12. Controlling Cholesterol with Statins

    MedlinePlus

    ... For Consumers Home For Consumers Consumer Updates Controlling Cholesterol with Statins Share Tweet Linkedin Pin it More ... not, the following tips can help keep your cholesterol in check: Talk with your healthcare provider about ...

  13. Cholesterol - drug treatment

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000314.htm Cholesterol - drug treatment To use the sharing features on ... treatment; Hardening of the arteries - statin Statins for Cholesterol Statins reduce your risk of heart disease, stroke, ...

  14. Cholesterol testing and results

    MedlinePlus

    Cholesterol test results; LDL test results; VLDL test results; HDL test results; Coronary risk profile results; Hyperlipidemia- ... Some cholesterol is considered good and some is considered bad. Different blood tests can be done to measure each ...

  15. Cholesterol and Statins

    MedlinePlus

    ... away from cells and back to the liver. saturated fat and cholesterol in the food you eat can ... care professionals advise a program of reduced dietary saturated fat and cholesterol, together with physical activity and weight ...

  16. All about Cholesterol

    MedlinePlus

    Toolkit No. 6 All About Cholesterol Managing your cholesterol and other blood fats (also called blood lipids) can help you prevent health problems. ... it’s likely that your cholesterol may be off. All of these are risk factors for diabetes, heart ...

  17. Cholesterol and Plants

    ERIC Educational Resources Information Center

    Behrman, E. J.; Gopalan, Venkat

    2005-01-01

    There is a widespread belief among the public and even among chemist that plants do not contain cholesterol. This wrong belief is the result of the fact that plants generally contain only small quantities of cholesterol and that analytical methods for the detection of cholesterol in this range were not developed until recently.

  18. Detecting Elevated Cholesterol Levels

    PubMed Central

    Reimer, H.L.; Elford, R.W.; Shumak, S.

    1991-01-01

    To assess accuracy of blood cholesterol measurements in the office, fingerprick blood cholesterol assays by a dry reagent chemistry analyzer were compared in 151 patients with simultaneous venipuncture cholesterol assays by standard laboratory methods. Compared with the laboratory assay, seven of eight analyzers had total absolute biases less than 5%. Variability in results was comparable to that of community laboratories. PMID:21229050

  19. Indomethacin and cyclosporin a inhibit in vitro ischemia-induced expression of ICAM-1 and chemokines in human brain endothelial cells.

    PubMed

    Zhang, W; Smith, C; Monette, R; Hutchison, J; Stanimirovic, D B

    2000-01-01

    Brain inflammation has been implicated in the development of brain edema and secondary brain damage in ischemia and trauma. Mechanisms involved in leukocyte infiltration across the blood-brain barrier are still unknown. In this study, we show that human cere-bromicrovascular endothelial cells (HCEC) subjected to a 4 h in vitro ischemia (hypoxia + glucose deprivation) followed by a 4-24 h recovery express elevated levels of ICAM-1, IL-8, and MCP-1 mRNAs (semi-quantitative RT-PCR) and secrete increased amounts of the immunoreactive chemokines IL-8 and MCP-1 (ELISA). The ischemia-induced expression of ICAM-1 in HCEC, and the expression/release of IL-8 and MCP-1 in HCEC were abolished by the non-steroid anti-inflammatory drug, indomethacin (100-300 microM). The immunosuppressant cyclosporin A (50 microM) partially reduced the ischemia-stimulated IL-8 and MCP-1 secretion by HCEC. Both indomethacin and cyclosporin A also inhibited the ischemia-induced neutrophil chemotaxis elicited by HCEC media. The study indicates that in vitro ischemia augments the expression of adhesion molecules and leukocyte chemoattractants at the site of the BBB. This ischemic pro-inflammatory activation of HCEC may constitute a key event in initiating post-ischemic inflammation, and it can be suppressed by the anti-inflammatory drugs, indomethacin and cyclosporin A.

  20. Microarray expression profiles of genes in lung tissues of rats subjected to focal cerebral ischemia-induced lung injury following bone marrow-derived mesenchymal stem cell transplantation

    PubMed Central

    Hu, Yue; Xiong, Liu-Lin; Zhang, Piao; Wang, Ting-Hua

    2017-01-01

    Ischemia-induced stroke is the most common disease of the nervous system and is associated with a high mortality rate worldwide. Cerebral ischemia may lead to remote organ dysfunction, particular in the lungs, resulting in lung injury. Nowadays, bone marrow-derived mesenchymal stem cells (BMSCs) are widely studied in clinical trials as they may provide an effective solution to the treatment of neurological and cardiac diseases; however, the underlying molecular mechanisms remain unknown. In this study, a model of permanent focal cerebral ischemia-induced lung injury was successfully established and confirmed by neurological evaluation and lung injury scores. We demonstrated that the transplantation of BMSCs (passage 3) via the tail vein into the lung tissues attenuated lung injury. In order to elucidate the underlying molecular mechanisms, we analyzed the gene expression profiles in lung tissues from the rats with focal cerebral ischemia and transplanted with BMSCs using a Gene microarray. Moreover, the Gene Ontology database was employed to determine gene function. We found that the phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF) were downregulated in the BMSC transplantation groups, compared with the control group. These results suggested that BMSC transplantation may attenuate lung injury following focal cerebral ischemia and that this effect is associated with the downregulation of TGF-β, PDGF and the PI3K-AKT pathway. PMID:27922691

  1. Microarray expression profiles of genes in lung tissues of rats subjected to focal cerebral ischemia-induced lung injury following bone marrow-derived mesenchymal stem cell transplantation.

    PubMed

    Hu, Yue; Xiong, Liu-Lin; Zhang, Piao; Wang, Ting-Hua

    2017-01-01

    Ischemia-induced stroke is the most common disease of the nervous system and is associated with a high mortality rate worldwide. Cerebral ischemia may lead to remote organ dysfunction, particular in the lungs, resulting in lung injury. Nowadays, bone marrow-derived mesenchymal stem cells (BMSCs) are widely studied in clinical trials as they may provide an effective solution to the treatment of neurological and cardiac diseases; however, the underlying molecular mechanisms remain unknown. In this study, a model of permanent focal cerebral ischemia-induced lung injury was successfully established and confirmed by neurological evaluation and lung injury scores. We demonstrated that the transplantation of BMSCs (passage 3) via the tail vein into the lung tissues attenuated lung injury. In order to elucidate the underlying molecular mechanisms, we analyzed the gene expression profiles in lung tissues from the rats with focal cerebral ischemia and transplanted with BMSCs using a Gene microarray. Moreover, the Gene Ontology database was employed to determine gene function. We found that the phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, transforming growth factor-β (TGF-β) and platelet-derived growth factor (PDGF) were downregulated in the BMSC transplantation groups, compared with the control group. These results suggested that BMSC transplantation may attenuate lung injury following focal cerebral ischemia and that this effect is associated with the downregulation of TGF-β, PDGF and the PI3K-AKT pathway.

  2. What Your Cholesterol Levels Mean

    MedlinePlus

    ... Disease Venous Thromboembolism Aortic Aneurysm More What Your Cholesterol Levels Mean Updated:Apr 3,2017 Keeping your ... content was last reviewed on 04/21/2014. Cholesterol • Home • About Cholesterol Introduction Good vs. Bad Cholesterol ...

  3. Home-Use Tests - Cholesterol

    MedlinePlus

    ... Medical Procedures In Vitro Diagnostics Home Use Tests Cholesterol Share Tweet Linkedin Pin it More sharing options ... a home-use test kit to measure total cholesterol. What cholesterol is: Cholesterol is a fat (lipid) ...

  4. Effect of a pre-freezing treatment with cholesterol-loaded cyclodextrins on boar sperm longevity, capacitation dynamics, ability to adhere to porcine oviductal epithelial cells in vitro and DNA fragmentation dynamics.

    PubMed

    Tomás, C; Blanch, E; Fazeli, A; Mocé, E

    2013-01-01

    The aim of this work was to examine how a pre-freezing treatment with cholesterol-loaded cyclodextrins (CLC) affects boar sperm longevity, capacitation dynamics, ability to bind to a porcine telomerase-immortalised oviductal epithelial cell line (TERT-OPEC) in vitro and DNA integrity dynamics after freeze-thawing. Although the samples treated with CLC exhibited lower sperm quality than the control samples (P<0.05) immediately after thawing, these differences disappeared (P>0.05) after long-term incubation (26h at 37 or 16°C). Additionally, the CLC-treated spermatozoa underwent similar capacitation and DNA fragmentation dynamics as the control spermatozoa (P>0.05). However, CLC-treated spermatozoa were better able to bind to TERT-OPEC in vitro (P<0.0001). In conclusion, the pre-freezing treatment of boar spermatozoa with CLC enhanced the ability of the spermatozoa to bind to TERT-OPEC in vitro, which could have an effect on the establishment of the sperm reservoir in the ampullary--isthmic junction in vivo. Additionally, frozen-thawed spermatozoa can be stored at 16°C for at least 6h without a significant observable decline in sperm quality, which could be beneficial for the transport of thawed diluted doses of spermatozoa from the laboratory to the farm.

  5. Regulation of cholesterol homeostasis.

    PubMed

    van der Wulp, Mariëtte Y M; Verkade, Henkjan J; Groen, Albert K

    2013-04-10

    Hypercholesterolemia is an important risk factor for cardiovascular disease. It is caused by a disturbed balance between cholesterol secretion into the blood versus uptake. The pathways involved are regulated via a complex interplay of enzymes, transport proteins, transcription factors and non-coding RNA's. The last two decades insight into underlying mechanisms has increased vastly but there are still a lot of unknowns, particularly regarding intracellular cholesterol transport. After decades of concentration on the liver, in recent years the intestine has come into focus as an important control point in cholesterol homeostasis. This review will discuss current knowledge of cholesterol physiology, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and new (possible) therapeutic options for hypercholesterolemia.

  6. Women and Heart Disease - Physiologic Regulation of Gene Delivery and Expression: Bioreducible Polymers and Ischemia-Inducible Gene Therapies for the Treatment of Ischemic Heart Disease

    PubMed Central

    Yockman, James W.; Bull, David A.

    2009-01-01

    Ischemic heart disease (IHD) is the leading cause of death in the United States today. This year over 750,000 women will have a new or recurrent myocardial infarction. Currently, the mainstay of therapy for IHD is revascularization. Increasing evidence, however, suggests that revascularization alone is insufficient for the longer-term management of many patients with IHD. To address these issues, innovative therapies that extend beyond revascularization to protection of the myocyte and preservation of ventricular function are required. The emergence of gene therapy and proteomics offers the potential for innovative prophylactic and treatment strategies for IHD. The goal of our research is to develop therapeutic gene constructs for the treatment of myocardial ischemia that are clinically safe and effective. Toward this end, we describe the development of physiologic regulation of gene delivery and expression using bioreducible polymers and ischemia-inducible gene therapies for the potential treatment of ischemic heart disease in women. PMID:19422868

  7. Cholesterol - what to ask your doctor

    MedlinePlus

    ... your doctor; What to ask your doctor about cholesterol ... What is my cholesterol level? What should my cholesterol level be? What are HDL ("good") cholesterol and LDL ("bad") cholesterol? Does my cholesterol ...

  8. Global ischemia induces lysosomal-mediated degradation of mTOR and activation of autophagy in hippocampal neurons destined to die

    PubMed Central

    Hwang, Jee-Yeon; Gertner, Michael; Pontarelli, Fabrizio; Court-Vazquez, Brenda; Bennett, Michael Vander Laan; Ofengeim, Dimitry; Zukin, Ruth Suzanne

    2017-01-01

    The mammalian target of rapamycin (mTOR) is a key regulator of cell growth, autophagy, translation, and survival. Dysregulation of mTOR signaling is associated with cancer, diabetes, and autism. However, a role for mTOR signaling in neuronal death is not well delineated. Here we show that global ischemia triggers a transient increase in mTOR phosphorylation at S2448, whereas decreasing p-mTOR and functional activity in selectively vulnerable hippocampal CA1 neurons. The decrease in mTOR coincides with an increase in biochemical markers of autophagy, pS317-ULK-1, pS14-Beclin-1, and LC3-II, a decrease in the cargo adaptor p62, and an increase in autophagic flux, a functional readout of autophagy. This is significant in that autophagy, a catabolic process downstream of mTORC1, promotes the formation of autophagosomes that capture and target cytoplasmic components to lysosomes. Inhibitors of the lysosomal (but not proteasomal) pathway rescued the ischemia-induced decrease in mTOR, consistent with degradation of mTOR via the autophagy/lysosomal pathway. Administration of the mTORC1 inhibitor rapamycin or acute knockdown of mTOR promotes autophagy and attenuates ischemia-induced neuronal death, indicating an inverse causal relation between mTOR, autophagy, and neuronal death. Our findings identify a novel and previously unappreciated mechanism by which mTOR self-regulates its own levels in hippocampal neurons in a clinically relevant model of ischemic stroke. PMID:27935582

  9. Cholesterol and Kir channels

    PubMed Central

    Levitan, Irena

    2009-01-01

    To date, most of the major types of Kir channels, Kir2s, Kir3s, Kir4s and Kir6s, have been found to partition into cholesterol-rich membrane domains and/or to be regulated by changes in the level of membrane cholesterol. Surprisingly, however, in spite of the structural similarities between different Kirs, effects of cholesterol on different types of Kir channels vary from cholesterol-induced decrease in the current density (Kir2 channels) to the loss of channel activity by cholesterol depletion (Kir4 channels) and loss of channel coupling by different mediators (Kir3 and Kir6 channels). Recently, we have gained initial insights into the mechanisms responsible for cholesterol-induced suppression Kir2 channels, but mechanisms underlying cholesterol sensitivity of other Kir channels are mostly unknown. The goal of this review is to present a summary of the current knowledge of the distinct effects of cholesterol on different types of Kir channels in vitro and in vivo. PMID:19548316

  10. Cholesterol and prostate cancer.

    PubMed

    Freeman, Michael R; Solomon, Keith R

    2004-01-01

    Cholesterol is a neutral lipid that accumulates in liquid-ordered, detergent-resistant membrane domains called lipid rafts. Lipid rafts serve as membrane platforms for signal transduction mechanisms that mediate cell growth, survival, and a variety of other processes relevant to cancer. A number of studies, going back many years, demonstrate that cholesterol accumulates in solid tumors and that cholesterol homeostasis breaks down in the prostate with aging and with the transition to the malignant state. This review summarizes the established links between cholesterol and prostate cancer (PCa), with a focus on how accumulation of cholesterol within the lipid raft component of the plasma membrane may stimulate signaling pathways that promote progression to hormone refractory disease. We propose that increases in cholesterol in prostate tumor cell membranes, resulting from increases in circulating levels or from dysregulation of endogenous synthesis, results in the coalescence of raft domains. This would have the effect of sequestering positive regulators of oncogenic signaling within rafts, while maintaining negative regulators in the liquid-disordered membrane fraction. This approach toward examining the function of lipid rafts in prostate cancer cells may provide insight into the role of circulating cholesterol in malignant growth and on the potential relationship between diet and aggressive disease. Large-scale characterization of proteins that localize to cholesterol-rich domains may help unveil signaling networks and pathways that will lead to identification of new biomarkers for disease progression and potentially to novel targets for therapeutic intervention.

  11. Electrochemical oxidation of cholesterol

    PubMed Central

    2015-01-01

    Summary Indirect cholesterol electrochemical oxidation in the presence of various mediators leads to electrophilic addition to the double bond, oxidation at the allylic position, oxidation of the hydroxy group, or functionalization of the side chain. Recent studies have proven that direct electrochemical oxidation of cholesterol is also possible and affords different products depending on the reaction conditions. PMID:25977713

  12. Kids and Cholesterol.

    ERIC Educational Resources Information Center

    Ficklen, Ellen

    1992-01-01

    According to a 1991 National Cholesterol Education Program report, the best way to avoid heart trouble is to take early preventive measures. This means that children over age two should follow the same low-fat, low-cholesterol guidelines already recommended for adults. Sidebars contain a fat glossary and tips for cutting fat in school lunches.…

  13. Cellular Cholesterol Homeostasis in Alzheimer's Disease.

    PubMed

    Chang, Ta Yuan; Yamauchi, Yoshio; Hasan, Mazahir; Chang, Catherine Cy

    2017-03-15

    Alzheimer's disease [AD] is the most common form of dementia in older adults. Currently, there is no cure for AD. The hallmark of AD is the accumulation of extracellular amyloid plaques composed of amyloid beta peptides [Abeta; especially Abeta1-42], and neurofibrillary tangles, composed of hyper-phosphorylated tau, accompanied with chronic neuroinflammation. Abeta are derived from the amyloid precursor protein APP. The oligomeric form of Abeta is probably the most neurotoxic species; its accumulation eventually forms the insoluble and aggregated amyloid plaques. ApoE is the major cholesterol transport protein in the CNS that has three alleles, of which the Apoe4 allele constitutes the major risk factor for late onset AD [LOAD]. In this review we describe the complex relationship between ApoE4, oligomeric Abeta peptides, and cholesterol homeostasis. The review consists of four parts: 1. Key elements involved in cellular cholesterol metabolism and regulation; II. Key elements involved in intracellular cholesterol trafficking; III. Links between ApoE4, Abeta, and disturbance of cholesterol homeostasis in the CNS; IV. Potential lipid based therapeutic targets to treat AD. At the end, we recommend several research topics that we believe would help in better understanding the connection between cholesterol and AD for further investigations.

  14. What Causes High Blood Cholesterol?

    MedlinePlus

    ... the NHLBI on Twitter. What Causes High Blood Cholesterol? Many factors can affect the cholesterol levels in your blood. You can control some ... but not others. Factors You Can Control Diet Cholesterol is found in foods that come from animal ...

  15. Bile acid sequestrants for cholesterol

    MedlinePlus

    ... ency/patientinstructions/000787.htm Bile acid sequestrants for cholesterol To use the sharing features on this page, ... are medicines that help lower your LDL (bad) cholesterol . Too much cholesterol in your blood can stick ...

  16. Cholesterol and Ion Channels

    PubMed Central

    Levitan, Irena; Fang, Yun; Rosenhouse-Dantsker, Avia; Romanenko, Victor

    2010-01-01

    A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K+ channels, voltage-gated K+ channels, Ca+2 sensitive K+ channels, voltage-gated Na+ channels, N-type voltage-gated Ca+2 channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na+ channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K+ channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed. PMID:20213557

  17. Detecting Elevated Cholesterol Levels

    PubMed Central

    Reimer, H.L.; Elford, R.W.; Shumak, S.

    1991-01-01

    The Reflotron dry chemistry reflectance photometer was studied as a case-finding method in physicians' offices. A total of 713 adult patients had their risk factor profiles determined along with fingerprick blood cholesterol measurements. Blood cholesterol levels were classified into three categories, (<5.2 mmol/L), 51%; borderline high (5.2 to 6.1 mmol/L), 28%; and high (≥6.2 mmol/L), 21%. The physicians' predictions from clinical risk factor profiles of which patients had elevated serum cholesterol levels were inaccurate. PMID:21229051

  18. Cholesterol-lowering effect of N-(alpha-methylbenzyl)linoleamide (melinamide) in cholesterol-fed diabetic rats.

    PubMed

    Matsubara, K; Matsuzawa, Y; Jiao, S; Kihara, S; Takama, T; Nakamura, T; Tokunaga, K; Kubo, M; Tarui, S

    1988-08-01

    Cholesterol loading of diabetic rats is known to induce marked hyperlipoproteinaemia, and we have reported that enhancement of the activity of intestinal acyl-CoA:cholesterol acyltransferase (ACAT), one of the key enzymes involved in cholesterol absorption, might play an important role in the development of hypercholesterolaemia in these animals. In the present study, we have shown that treatment with N-(alpha-methylbenzyl)linoleamide (melinamide), a new hypocholesterolaemic drug, caused a substantial decrease of the enhanced intestinal ACAT activity in diabetic rats, but did not affect intestinal cholesterol esterase activity. Furthermore, marked improvement of hypercholesterolaemia in cholesterol-fed diabetic rats occurred concomitantly with the drug treatment. These results suggest that intestinal ACAT activity is closely related to the serum cholesterol level in diabetic rats, and show that melinamide lowers intestinal ACAT activity.

  19. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  20. High blood cholesterol levels

    MedlinePlus

    ... Outlook (Prognosis) High cholesterol levels can lead to hardening of the arteries , also called atherosclerosis. This occurs ... and safe drinking Coronary heart disease Cushing syndrome Hardening of the arteries Hypothyroidism Overweight Stroke Triglyceride level ...

  1. MD-2 binds cholesterol.

    PubMed

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I

    2016-02-19

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis.

  2. MD-2 binds cholesterol

    PubMed Central

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I.

    2016-01-01

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis. PMID:26806306

  3. Cholesterol through the Looking Glass

    PubMed Central

    Kristiana, Ika; Luu, Winnie; Stevenson, Julian; Cartland, Sian; Jessup, Wendy; Belani, Jitendra D.; Rychnovsky, Scott D.; Brown, Andrew J.

    2012-01-01

    How cholesterol is sensed to maintain homeostasis has been explained by direct binding to a specific protein, Scap, or through altering the physical properties of the membrane. The enantiomer of cholesterol (ent-cholesterol) is a valuable tool in distinguishing between these two models because it shares nonspecific membrane effects with native cholesterol (nat-cholesterol), but not specific binding interactions. This is the first study to compare ent- and nat-cholesterol directly on major molecular parameters of cholesterol homeostasis. We found that ent-cholesterol suppressed activation of the master transcriptional regulator of cholesterol metabolism, SREBP-2, almost as effectively as nat-cholesterol. Importantly, ent-cholesterol induced a conformational change in the cholesterol-sensing protein Scap in isolated membranes in vitro, even when steps were taken to eliminate potential confounding effects from endogenous cholesterol. Ent-cholesterol also accelerated proteasomal degradation of the key cholesterol biosynthetic enzyme, squalene monooxygenase. Together, these findings provide compelling evidence that cholesterol maintains its own homeostasis not only via direct protein interactions, but also by altering membrane properties. PMID:22869373

  4. Down-regulation of nuclear HMGB1 reduces ischemia-induced HMGB1 translocation and release and protects against liver ischemia-reperfusion injury.

    PubMed

    Zhao, Guangyuan; Fu, Cheng; Wang, Lu; Zhu, Lan; Yan, Yutao; Xiang, Ying; Zheng, Fang; Gong, Feili; Chen, Song; Chen, Gang

    2017-04-06

    Hepatocyte-specific HMGB1 deletion has been found to worsen the injury and inflammation in liver ischemia-reperfusion injury (IRI), highlighting a role for intracellular HMGB1 in cellular protection. Down-regulation of nuclear HMGB1 by small interfering RNA (siRNA) might not only decrease its injurious extracellular role by reducing its release but also serve to maintain its beneficial intracellular role, thus protecting against IRI. We established a non-lethal liver IRI model in mice via segmental hepatic warm ischemia for 1 h and reperfusion for 6 h. HMGB1-siRNA achieved a reduction of ~60-70% in the nuclear HMGB1 expression in the liver at 48 h post-treatment. Knockdown of nuclear HMGB1 expression dramatically reduced both the degree of nuclear-cytoplasmic translocation of HMGB1 during hepatic ischemia and of HMGB1 release after hepatic reperfusion, resulting in significant preservation of liver function and a marked reduction in pathological damage. Also, HMGB1-siRNA pretreatment markedly inhibited the increases in hepatic expression of TLR4, TLR2, RAGE, TNF-α, IL-1β, IL-6, MCP-1, iNOS, and COX-2 seen in control mice after hepatic reperfusion. We demonstrated for the first time that down-regulation of nuclear HMGB1 reduces ischemia-induced HMGB1 release and protects against liver IRI, which is helpful for better understanding the role of HMGB1 in organ IRI.

  5. Delayed IGF-1 treatment reduced long-term hypoxia-ischemia-induced brain damage and improved behavior recovery of immature rats.

    PubMed

    Zhong, Jin; Zhao, Limin; Du, Yansheng; Wei, Gang; Yao, Wei-Guo; Lee, Wei-Hua

    2009-06-01

    Cerebral hypoxia-ischemia during the perinatal period is the single most important cause of acute newborn mortality and chronic disability. Despite our increasing understanding of the mechanisms of neuronal injury, an effective clinical therapy has yet to be established to mitigate brain damage and improve the prognosis and well-being of these newborn patients. Insulin-like growth factor 1 (IGF-1) is a well-known neurotrophic factor, essential for the survival and functional maturation of immature neurons. This study demonstrated that subcutaneous administration of IGF-1 at 24 and 48 hours of recovery significantly reduced hypoxia-ischemia-induced injury to immature rat brains and improved long-term memory and cognitive behavior. IGF-1's therapeutic effects likely involve its ability to prevent delayed apoptosis, as we demonstrated in primary cortical neuronal cultures under oxygen and glucose deprivation. IGF-1's neuroprotective effects parallel the activities of phosphatidylinositol-3/Akt and its down-stream signaling pathway, suggesting a potential mechanistic link. Overall, evidence from this investigation strongly supports IGF-1's potential therapeutic use in the treatment of hypoxic-ischemic encephalopathy in newborn patients.

  6. Transient ischemia-induced change of CCR7 immunoreactivity in neurons and its new expression in astrocytes in the gerbil hippocampus.

    PubMed

    Lee, Jae-Chul; Ahn, Ji Hyeon; Kim, In Hye; Park, Joon Ha; Yan, Bing Chun; Cho, Geum-Sil; Ohk, Taek Geun; Park, Chan Woo; Cho, Jun Hwi; Kim, Young-Myeong; Lee, Hui Young; Won, Moo-Ho

    2014-01-15

    Chemokines and their receptors are important players in organism homeostasis, development and immune response to inflammatory stimuli. In the present study, we examined effects of ischemia-reperfusion injury on the immunoreactivity and protein levels of chemokine C-C motif receptor 7 (CCR7) in the gerbil hippocampus (CA1-3 regions) after 5 min of transient global cerebral ischemia. CCR7 immunoreactivity was dramatically changed in the pyramidal neurons of the CA1, not CA2/3, region after ischemia-reperfusion. The immunoreactivity was increased after ischemia-reperfusion, and it was barely found from 5 days post-ischemia. In addition, CCR7 immunoreactivity was newly expressed in astrocytes, not microglia, in the ischemic CA1 region from 5 days post-ischemia. However, we did not observe this finding in the ischemic CA2/3 region. Furthermore, CCR7 protein levels in the ischemic CA1 region were changed like the change pattern of its immunoreactivity. These results indicate that both CCR7 immunoreactivity and protein levels are distinctively altered only in the CA1 region after transient cerebral ischemia and that the changes in CCR7 expression may be related to the ischemia-induced delayed neuronal death.

  7. The neuroprotective action of dexmedetomidine on apoptosis, calcium entry and oxidative stress in cerebral ischemia-induced rats: Contribution of TRPM2 and TRPV1 channels

    PubMed Central

    Akpınar, Hatice; Nazıroğlu, Mustafa; Övey, İshak Suat; Çiğ, Bilal; Akpınar, Orhan

    2016-01-01

    Dexmedetomidine (DEX) may act as an antioxidant through regulation of TRPM2 and TRPV1 channel activations in the neurons by reducing cerebral ischemia-induced oxidative stress and apoptosis. The neuroprotective roles of DEX were tested on cerebral ischemia (ISC) in the cultures of rat primary hippocampal and DRG neurons. Fifty-six rats were divided into five groups. A placebo was given to control, sham control, and ISC groups, respectively. In the third group, ISC was induced. The DEX and ISC+DEX groups received intraperitoneal DEX (40 μg/kg) 3, 24, and 48 hours after ISC induction. DEX effectively reversed capsaicin and cumene hydroperoxide/ADP-ribose-induced TRPV1 and TRPM2 densities and cytosolic calcium ion accumulation in the neurons, respectively. In addition, DEX completely reduced ISC-induced oxidative toxicity and apoptosis through intracellular reactive oxygen species production and depolarization of mitochondrial membrane. The DEX and ISC+DEX treatments also decreased the expression levels of caspase 3, caspase 9, and poly (ADP-ribose) polymerase in the hippocampus and DRG. In conclusion, the current results are the first to demonstrate the molecular level effects of DEX on TRPM2 and TRPV1 activation. Therefore, DEX can have remarkable neuroprotective impairment effects in the hippocampus and DRG of ISC-induced rats. PMID:27872485

  8. [The food cholesterol controversy].

    PubMed

    Cichosz, Grazyna; Czeczot, Hanna

    2012-07-01

    Arteriosclerosis of blood vessels, the main cause of heart attack and stroke, is a disease of multifactor pathogenesis. Multiple experimental, clinical and epidemiologic studies indicate that free radicals and lipid oxidation products take part in aterogenesis process. Homocysteine possess also cytotoxic activity leading to degradation of elastine of internal membrane of blood vessels. Deficiency of vitamin folic acid, B12 and B6 cause homocysteine accumulation in human organism. Identifying the arteriosclerosis with oxidation of LDL-cholesterol results with faulty conclusions. Metabolism of cholesterol in human organism depends on content of n-6 and n-3 polyunsaturated fatty acids, phospholipids, fitosterols, food fiber, Lactobacillus and antioxidants in the diet. In aterogenesis antioxidant defficiency, especially long-lasting ones, are more important then amount of fat itself. Considering cholesterol intake with average food and its absorption amounting 25-30%, one can conclude that amount of cholesterol in intestine originates in 90% from liver synthesis, which is excreted with bile, and in more than ten percent--from food. This is why reduction of cholesterol intake with food only little improves blood lipid indexes.

  9. Cholesterol depletion induces autophagy

    SciTech Connect

    Cheng, Jinglei; Ohsaki, Yuki; Tauchi-Sato, Kumi; Fujita, Akikazu; Fujimoto, Toyoshi . E-mail: tfujimot@med.nagoya-u.ac.jp

    2006-12-08

    Autophagy is a mechanism to digest cells' own components, and its importance in many physiological and pathological processes is being recognized. But the molecular mechanism that regulates autophagy is not understood in detail. In the present study, we found that cholesterol depletion induces macroautophagy. The cellular cholesterol in human fibroblasts was depleted either acutely using 5 mM methyl-{beta}-cyclodextrin or 10-20 {mu}g/ml nystatin for 1 h, or metabolically by 20 {mu}M mevastatin and 200 {mu}M mevalonolactone along with 10% lipoprotein-deficient serum for 2-3 days. By any of these protocols, marked increase of LC3-II was detected by immunoblotting and by immunofluorescence microscopy, and the increase was more extensive than that caused by amino acid starvation, i.e., incubation in Hanks' solution for several hours. The induction of autophagic vacuoles by cholesterol depletion was also observed in other cell types, and the LC3-positive membranes were often seen as long tubules, >50 {mu}m in length. The increase of LC3-II by methyl-{beta}-cyclodextrin was suppressed by phosphatidylinositol 3-kinase inhibitors and was accompanied by dephosphorylation of mammalian target of rapamycin. By electron microscopy, autophagic vacuoles induced by cholesterol depletion were indistinguishable from those seen after amino acid starvation. These results demonstrate that a decrease in cholesterol activates autophagy by a phosphatidylinositol 3-kinase-dependent mechanism.

  10. Cholesterol and prostate cancer.

    PubMed

    Pelton, Kristine; Freeman, Michael R; Solomon, Keith R

    2012-12-01

    Prostate cancer risk can be modified by environmental factors, however the molecular mechanisms affecting susceptibility to this disease are not well understood. As a result of a series of recently published studies, the steroidal lipid, cholesterol, has emerged as a clinically relevant therapeutic target in prostate cancer. This review summarizes the findings from human studies as well as animal and cell biology models, which suggest that high circulating cholesterol increases risk of aggressive prostate cancer, while cholesterol lowering strategies may confer protective benefit. Relevant molecular processes that have been experimentally tested and might explain these associations are described. We suggest that these promising results now could be applied prospectively to attempt to lower risk of prostate cancer in select populations.

  11. Cholesterol Metabolism in CKD.

    PubMed

    Reiss, Allison B; Voloshyna, Iryna; De Leon, Joshua; Miyawaki, Nobuyuki; Mattana, Joseph

    2015-12-01

    Patients with chronic kidney disease (CKD) have a substantial risk of developing coronary artery disease. Traditional cardiovascular disease (CVD) risk factors such as hypertension and hyperlipidemia do not adequately explain the high prevalence of CVD in CKD. Both CVD and CKD are inflammatory states and inflammation adversely affects lipid balance. Dyslipidemia in CKD is characterized by elevated triglyceride levels and high-density lipoprotein levels that are both decreased and dysfunctional. This dysfunctional high-density lipoprotein becomes proinflammatory and loses its atheroprotective ability to promote cholesterol efflux from cells, including lipid-overloaded macrophages in the arterial wall. Elevated triglyceride levels result primarily from defective clearance. The weak association between low-density lipoprotein cholesterol level and coronary risk in CKD has led to controversy over the usefulness of statin therapy. This review examines disrupted cholesterol transport in CKD, presenting both clinical and preclinical evidence of the effect of the uremic environment on vascular lipid accumulation. Preventative and treatment strategies are explored.

  12. Lysosomes, cholesterol and atherosclerosis

    PubMed Central

    Jerome, W Gray

    2011-01-01

    Cholesterol-engorged macrophage foam cells are a critical component of the atherosclerotic lesion. Reducing the sterol deposits in lesions reduces clinical events. Sterol accumulations within lysosomes have proven to be particularly hard to mobilize out of foam cells. Moreover, excess sterol accumulation in lysosomes has untoward effects, including a complete disruption of lysosome function. Recently, we demonstrated that treatment of sterol-engorged macrophages in culture with triglyceride-containing particles can reverse many of the effects of cholesterol on lysosomes and dramatically reduce the sterol burden in these cells. This article describes what is known about lysosomal sterol engorgement, discusses the possible mechanisms by which triglyceride could produce its effects, and evaluates the possible positive and negative effects of reducing the lysosomal cholesterol levels in foam cells. PMID:21643524

  13. Cyclodextrins as catalysts for the removal of cholesterol from macrophage foam cells.

    PubMed Central

    Atger, V M; de la Llera Moya, M; Stoudt, G W; Rodrigueza, W V; Phillips, M C; Rothblat, G H

    1997-01-01

    Low concentrations of cyclodextrins (< 1.0 mM) added to serum act catalytically, accelerating the exchange of cholesterol between cells and lipoproteins. J774 macrophages incubated with serum and 2-hydroxypropyl-beta-cyclodextrin (< or = 1 mM) released fivefold more labeled cholesterol than with serum alone. Increased efflux was not accompanied by a change in cell cholesterol mass; thus, cyclodextrin functioned as a cholesterol shuttle, enhancing cholesterol bidirectional flux without changing the equilibrium cholesterol distribution between cells and medium. The addition of phospholipid vesicles to serum and cyclodextrin shifted the equilibrium distribution to favor the medium, producing rapid and extensive depletion of cell cholesterol mass. The combination of serum, phospholipid vesicles, and cyclodextrin also stimulated the rapid clearance of both free and esterified cholesterol from mouse peritoneal macrophages loaded with free and esterified cholesterol. This study: (a) demonstrates that a compound can function as a catalyst to enhance the movement of cholesterol between cells and serum, (b) illustrates the difference between cholesterol exchange and net transport in a cell/serum system, (c) demonstrates how net movement of cholesterol is linked to concentration gradients established by phospholipids, (d) provides a basis for the development of the shuttle/sink model for the first steps in reverse cholesterol transport, (e) validates the model using artificial shuttles (cyclodextrins) and sinks (large unilamellar vesicles), and (f) suggests that cyclodextrin-like cholesterol shuttles might be of pharmacological significance in treating unstable atherosclerotic plaques. PMID:9045882

  14. Cholesterol: Up in Smoke.

    ERIC Educational Resources Information Center

    Raloff, Janet

    1991-01-01

    Discussed is the contribution cooked meat makes to air pollution. The dozens of compounds, including cholesterol, that are released when a hamburger is grilled are described. The potential effects of these emissions on humans and the urban environment are discussed. (KR)

  15. Cholesterol, inflammasomes, and atherogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasma cholesterol levels have been strongly associated with atherogenesis, underscoring the role of lipid metabolism in defining cardiovascular disease risk. However, atherosclerotic plaque is highly dynamic and contains elements of both the innate and adaptive immune system that respond to the abe...

  16. Cholesterol transformations during heat treatment.

    PubMed

    Derewiaka, D; Molińska née Sosińska, E

    2015-03-15

    The aim of the study was to characterise products of cholesterol standard changes during thermal processing. Cholesterol was heated at 120°C, 150°C, 180°C and 220°C from 30 to 180 min. The highest losses of cholesterol content were found during thermal processing at 220°C, whereas the highest content of cholesterol oxidation products was observed at temperature of 150°C. The production of volatile compounds was stimulated by the increase of temperature. Treatment of cholesterol at higher temperatures i.e. 180°C and 220°C led to the formation of polymers and other products e.g. cholestadienes and fragmented cholesterol molecules. Further studies are required to identify the structure of cholesterol oligomers and to establish volatile compounds, which are markers of cholesterol transformations, mainly oxidation.

  17. Cholesterol excretion and colon cancer.

    PubMed

    Broitman, S A

    1981-09-01

    Populations consuming diets high in fat and cholesterol exhibit a greater incidence of colon cancer than those consuming less fat and cholesterol. Lowering elevated serum cholesterol levels experimentally or clinically is associated with increased large-bowel tumorigenesis. Thus, cholesterol lost to the gut, either dietary or endogenously synthesized, appears to have a role in large-bowel cancer. Whether the effect(s) is mediated by increases in fecal bile acid excretion or some other mechanism is not clear.

  18. Down-regulation of nuclear HMGB1 reduces ischemia-induced HMGB1 translocation and release and protects against liver ischemia-reperfusion injury

    PubMed Central

    Zhao, Guangyuan; Fu, Cheng; Wang, Lu; Zhu, Lan; Yan, Yutao; Xiang, Ying; Zheng, Fang; Gong, Feili; Chen, Song; Chen, Gang

    2017-01-01

    Hepatocyte-specific HMGB1 deletion has been found to worsen the injury and inflammation in liver ischemia-reperfusion injury (IRI), highlighting a role for intracellular HMGB1 in cellular protection. Down-regulation of nuclear HMGB1 by small interfering RNA (siRNA) might not only decrease its injurious extracellular role by reducing its release but also serve to maintain its beneficial intracellular role, thus protecting against IRI. We established a non-lethal liver IRI model in mice via segmental hepatic warm ischemia for 1 h and reperfusion for 6 h. HMGB1-siRNA achieved a reduction of ~60–70% in the nuclear HMGB1 expression in the liver at 48 h post-treatment. Knockdown of nuclear HMGB1 expression dramatically reduced both the degree of nuclear-cytoplasmic translocation of HMGB1 during hepatic ischemia and of HMGB1 release after hepatic reperfusion, resulting in significant preservation of liver function and a marked reduction in pathological damage. Also, HMGB1-siRNA pretreatment markedly inhibited the increases in hepatic expression of TLR4, TLR2, RAGE, TNF-α, IL-1β, IL-6, MCP-1, iNOS, and COX-2 seen in control mice after hepatic reperfusion. We demonstrated for the first time that down-regulation of nuclear HMGB1 reduces ischemia-induced HMGB1 release and protects against liver IRI, which is helpful for better understanding the role of HMGB1 in organ IRI. PMID:28382970

  19. Dietary Sutherlandia and Elderberry Mitigate Cerebral Ischemia-Induced Neuronal Damage and Attenuate p47phox and Phospho-ERK1/2 Expression in Microglial Cells

    PubMed Central

    Chuang, Dennis Y.; Cui, Jiankun; Simonyi, Agnes; Engel, Victoria A.; Chen, Shanyan; Fritsche, Kevin L.; Thomas, Andrew L.; Applequist, Wendy L.; Folk, William R.; Lubahn, Dennis B.; Sun, Albert Y.; Sun, Grace Y.

    2014-01-01

    Sutherlandia (Sutherlandia frutescens) and elderberry (Sambucus spp.) are used to promote health and for treatment of a number of ailments. Although studies with cultured cells have demonstrated antioxidative and anti-inflammatory properties of these botanicals, little is known about their ability to mitigate brain injury. In this study, C57BL/6 J male mice were fed AIN93G diets without or with Sutherlandia or American elderberry for 2 months prior to a 30-min global cerebral ischemia induced by occlusion of the bilateral common carotid arteries (BCCAs), followed by reperfusion for 3 days. Accelerating rotarod assessment at 24 h after BCCA occlusion showed amelioration of sensorimotor impairment in the mice fed the supplemented diets as compared with the ischemic mice fed the control diet. Quantitative digital pathology assessment of brain slides stained with cresyl violet at 3 days after ischemia/reperfusion (I/R) revealed significant reduction in neuronal cell death in both dietary groups. Immunohistochemical staining for ionized calcium-binding adapter molecule-1 demonstrated pronounced activation of microglia in the hippocampus and striatum in the ischemic brains 3 days after I/R, and microglial activation was significantly reduced in animals fed supplemented diets. Mitigation of microglial activation by the supplements was further supported by the decrease in expression of p47phox, a cytosolic subunit of NADPH oxidase, and phospho-ERK1/2, a mitogen-activated protein kinase known to mediate a number of cytoplasmic processes including oxidative stress and neuroinflammatory responses. These results demonstrate neuroprotective effect of Sutherlandia and American elderberry botanicals against oxidative and inflammatory responses to cerebral I/R. PMID:25324465

  20. Facts about Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This fact sheet offers information on blood cholesterol and its implications for a healthy heart. An explanation is given of the known facts about cholesterol and how it affects the body. A chart is provided that lists various foods and their fat and cholesterol contents. (JD)

  1. How to Get Your Cholesterol Tested

    MedlinePlus

    ... Thromboembolism Aortic Aneurysm More How To Get Your Cholesterol Tested Updated:Apr 3,2017 Cholesterol plays a ... factors for heart disease and stroke . How is cholesterol tested? A cholesterol screening measures your level of ...

  2. Cholesterol crystal embolism (atheroembolism).

    PubMed

    Venturelli, Chiara; Jeannin, Guido; Sottini, Laura; Dallera, Nadia; Scolari, Francesco

    2006-01-01

    Cholesterol crystal embolism, known as atheroembolic disease, is caused by showers of cholesterol crystals from an atherosclerotic plaque that occludes small arteries. Embolization can occur spontaneously or as an iatrogenic complication from an invasive vascular procedure (angiography or vascular surgery) and after anticoagulant therapy. The atheroembolism can give rise to different degrees of renal impairment. Some patients show a moderate loss of renal function, others severe renal failure requiring dialysis. Renal outcome can be variable: some patients deteriorate or remain on dialysis, some improve and some remain with chronic renal impairment. Clinically, three types of atheroembolic renal disease have been described: acute, subacute or chronic. More frequently a progressive loss of renal function occurs over weeks. Atheroembolization can involve the skin, gastrointestinal system and central nervous system. The diagnosis is difficult and controversial for the protean extrarenal manifestations. In the past, the diagnosis was often made post-mortem. In the last 10 yrs, awareness of atheroembolic renal disease has improved. The correct diagnosis requires the clinician to be alert. The typical patient is a white male aged >60 yrs with a history of hypertension, smoking and arterial disease. The presence of a classic triad (precipitating event, renal failure and peripheral cholesterol crystal embolization) suggests the diagnosis. This can be confirmed by a biopsy of the target organs. A specific treatment is lacking; however, it is an important diagnosis to make because an aggressive therapeutic approach can be associated with a more favorable clinical outcome.

  3. Cholesterol crystal embolism (atheroembolism)

    PubMed Central

    VENTURELLI, CHIARA; JEANNIN, GUIDO; SOTTINI, LAURA; DALLERA, NADIA; SCOLARI, FRANCESCO

    2006-01-01

    Cholesterol crystal embolism, known as atheroembolic disease, is caused by showers of cholesterol crystals from an atherosclerotic plaque that occludes small arteries. Embolization can occur spontaneously or as an iatrogenic complication from an invasive vascular procedure (angiography or vascular surgery) and after anticoagulant therapy. The atheroembolism can give rise to different degrees of renal impairment. Some patients show a moderate loss of renal function, others severe renal failure requiring dialysis. Renal outcome can be variable: some patients deteriorate or remain on dialysis, some improve and some remain with chronic renal impairment. Clinically, three types of atheroembolic renal disease have been described: acute, subacute or chronic. More frequently a progressive loss of renal function occurs over weeks. Atheroembolization can involve the skin, gastrointestinal system and central nervous system. The diagnosis is difficult and controversial for the protean extrarenal manifestations. In the past, the diagnosis was often made post-mortem. In the last 10 yrs, awareness of atheroembolic renal disease has improved. The correct diagnosis requires the clinician to be alert. The typical patient is a white male aged >60 yrs with a history of hypertension, smoking and arterial disease. The presence of a classic triad (precipitating event, renal failure and peripheral cholesterol crystal embolization) suggests the diagnosis. This can be confirmed by a biopsy of the target organs. A specific treatment is lacking; however, it is an important diagnosis to make because an aggressive therapeutic approach can be associated with a more favorable clinical outcome. PMID:21977265

  4. The cholesterol content of the erythrocyte membrane is an important determinant of phosphatidylserine exposure.

    PubMed

    van Zwieten, Rob; Bochem, Andrea E; Hilarius, Petra M; van Bruggen, Robin; Bergkamp, Ferry; Hovingh, G Kees; Verhoeven, Arthur J

    2012-12-01

    Maintenance of the asymmetric distribution of phospholipids across the plasma membrane is a prerequisite for the survival of erythrocytes. Various stimuli have been shown to induce scrambling of phospholipids and thereby exposure of phosphatidylserine (PS). In two types of patients, both with aberrant plasma cholesterol levels, we observed an aberrant PS exposure in erythrocytes upon stimulation. We investigated the effect of high and low levels of cholesterol on the ATP-dependent flippase, which maintains phospholipid asymmetry, and the ATP-independent scrambling activity, which breaks down phospholipid asymmetry. We analyzed erythrocytes of a patient with spur cell anemia, characterized by elevated plasma cholesterol, and the erythrocytes of Tangier disease patients with very low levels of plasma cholesterol. In normal erythrocytes, loaded with cholesterol or depleted of cholesterol in vitro, the same analyses were performed. Changes in the cholesterol/phospholipid ratio of erythrocytes had marked effects on PS exposure upon cell activation. Excess cholesterol profoundly inhibited PS exposure, whereas cholesterol depletion led to increased PS exposure. The activity of the ATP-dependent flippase was not changed, suggesting a major influence of cholesterol on the outward translocation of PS. The effects of cholesterol were not accompanied by eminent changes in cytoskeletal and membrane proteins. These findings emphasize the importance of cholesterol exchange between circulating plasma and the erythrocyte membrane as determinant for phosphatidylserine exposure in erythrocytes.

  5. Cholesterol metabolism in Huntington disease.

    PubMed

    Karasinska, Joanna M; Hayden, Michael R

    2011-09-06

    The CNS is rich in cholesterol, which is essential for neuronal development and survival, synapse maturation, and optimal synaptic activity. Alterations in brain cholesterol homeostasis are linked to neurodegeneration. Studies have demonstrated that Huntington disease (HD), a progressive and fatal neurodegenerative disorder resulting from polyglutamine expansion in the huntingtin protein, is associated with changes in cellular cholesterol metabolism. Emerging evidence from human and animal studies indicates that attenuated brain sterol synthesis and accumulation of cholesterol in neuronal membranes represent two distinct mechanisms occurring in the presence of mutant huntingtin that influence neuronal survival. Increased knowledge of how changes in intraneuronal cholesterol metabolism influence the pathogenesis of HD will provide insights into the potential application of brain cholesterol regulation as a therapeutic strategy for this devastating disease.

  6. Cholesterol self-powered biosensor.

    PubMed

    Sekretaryova, Alina N; Beni, Valerio; Eriksson, Mats; Karyakin, Arkady A; Turner, Anthony P F; Vagin, Mikhail Yu

    2014-10-07

    Monitoring the cholesterol level is of great importance, especially for people with high risk of developing heart disease. Here we report on reagentless cholesterol detection in human plasma with a novel single-enzyme, membrane-free, self-powered biosensor, in which both cathodic and anodic bioelectrocatalytic reactions are powered by the same substrate. Cholesterol oxidase was immobilized in a sol-gel matrix on both the cathode and the anode. Hydrogen peroxide, a product of the enzymatic conversion of cholesterol, was electrocatalytically reduced, by the use of Prussian blue, at the cathode. In parallel, cholesterol oxidation catalyzed by mediated cholesterol oxidase occurred at the anode. The analytical performance was assessed for both electrode systems separately. The combination of the two electrodes, formed on high surface-area carbon cloth electrodes, resulted in a self-powered biosensor with enhanced sensitivity (26.0 mA M(-1) cm(-2)), compared to either of the two individual electrodes, and a dynamic range up to 4.1 mM cholesterol. Reagentless cholesterol detection with both electrochemical systems and with the self-powered biosensor was performed and the results were compared with the standard method of colorimetric cholesterol quantification.

  7. Food prices and blood cholesterol.

    PubMed

    Rahkovsky, Ilya; Gregory, Christian A

    2013-01-01

    Cardiovascular diseases (CVD) cost Americans billions of dollars per year. High cholesterol levels, which are closely related to dietary habits, are a major contributor to CVD. In this article, we study whether changes in food prices are related to cholesterol levels and whether taxes or subsidies on particular foods would be effective in lowering cholesterol levels and, consequently, CVD costs. We find that prices of vegetables, processed foods, whole milk and whole grains are significantly associated with blood cholesterol levels. Having analyzed the costs and benefits of government interventions, we find that a subsidy of vegetables and whole grains would be an efficient way to reduce CVD expenditures.

  8. [The real measurement of non-HDL-cholesterol: Atherogenic cholesterol].

    PubMed

    Millán, Jesús; Hernández-Mijares, Antonio; Ascaso, Juan F; Blasco, Mariano; Brea, Angel; Díaz, Ángel; González-Santos, Pedro; Mantilla, Teresa; Pedro-Botet, Juan; Pintó, Xavier

    Lowe density lipoproteins (LDL) are the causal agent of cardiovascular diseases. In practice, we identify LDL with cholesterol transported in LDL (cLDL). So, cLDL has become the major target for cardiovascular prevention. Howewer, we have progressive evidences about the role of triglycerides rich lipoproteins, particularly those very low density lipoprotein (VLDL) in promotion and progression of atherosclerosis, that leads cholesterol in VLDL and its remanents as a potential therapeutic target. This feature is particularly important and of a great magnitude, in patients with hypertiglyceridemia. We can to considere, that the non-HDL cholesterol -cLDL+cVLDL+c-remmants+Lp(a)- is the real measurement of atherogenic cholesterol. In addition, non-HDL-cholesterol do not show any variations between postprandial states. In fact, non-HDL-cholesterol should be an excellent marker of atherogenic cholesterol, and an major therapeutic target in patients with atherogenic dyslipidaemia. According with different clinical trials and with the epidemiological and mendelian studies, in patients with high cardiovascular risk, optimal level of cLDL will be under 70mg/dl, and under 100 ng/dl for non-HDL-cholesterol; and in high risk patients, 100mg/dl and 130mg/dl, respectively.

  9. Food combinations for cholesterol lowering.

    PubMed

    Harland, Janice I

    2012-12-01

    Reducing elevated LDL-cholesterol is a key public health challenge. There is substantial evidence from randomised controlled trials (RCT) that a number of foods and food components can significantly reduce LDL-cholesterol. Data from RCT have been reviewed to determine whether effects are additive when two or more of these components are consumed together. Typically components, such as plant stanols and sterols, soya protein, β-glucans and tree nuts, when consumed individually at their target rate, reduce LDL-cholesterol by 3-9 %. Improved dietary fat quality, achieved by replacing SFA with unsaturated fat, reduces LDL-cholesterol and can increase HDL-cholesterol, further improving blood lipid profile. It appears that the effect of combining these interventions is largely additive; however, compliance with multiple changes may reduce over time. Food combinations used in ten 'portfolio diet' studies have been reviewed. In clinical efficacy studies of about 1 month where all foods were provided, LDL-cholesterol is reduced by 22-30 %, whereas in community-based studies of >6 months' duration, where dietary advice is the basis of the intervention, reduction in LDL-cholesterol is about 15 %. Inclusion of MUFA into 'portfolio diets' increases HDL-cholesterol, in addition to LDL-cholesterol effects. Compliance with some of these dietary changes can be achieved more easily compared with others. By careful food component selection, appropriate to the individual, the effect of including only two components in the diet with good compliance could be a sustainable 10 % reduction in LDL-cholesterol; this is sufficient to make a substantial impact on cholesterol management and reduce the need for pharmaceutical intervention.

  10. Epigenetic regulation of cholesterol homeostasis

    PubMed Central

    Meaney, Steve

    2014-01-01

    Although best known as a risk factor for cardiovascular disease, cholesterol is a vital component of all mammalian cells. In addition to key structural roles, cholesterol is a vital biochemical precursor for numerous biologically important compounds including oxysterols and bile acids, as well as acting as an activator of critical morphogenic systems (e.g., the Hedgehog system). A variety of sophisticated regulatory mechanisms interact to coordinate the overall level of cholesterol in cells, tissues and the entire organism. Accumulating evidence indicates that in additional to the more “traditional” regulatory schemes, cholesterol homeostasis is also under the control of epigenetic mechanisms such as histone acetylation and DNA methylation. The available evidence supporting a role for these mechanisms in the control of cholesterol synthesis, elimination, transport and storage are the focus of this review. PMID:25309573

  11. How Is High Blood Cholesterol Treated?

    MedlinePlus

    ... the NHLBI on Twitter. How Is High Blood Cholesterol Treated? High blood cholesterol is treated with lifestyle ... need to follow a heart healthy diet . Lowering Cholesterol Using Therapeutic Lifestyle Changes TLC is a set ...

  12. What Are High Blood Cholesterol and Triglycerides?

    MedlinePlus

    ANSWERS by heart Lifestyle + Risk Reduction Cholesterol What Are High Blood Cholesterol and Triglycerides? Cholesterol travels to the body’s cells through the bloodstream by way of lipoproteins (LDL and ...

  13. Top Five Lifestyle Changes to Reduce Cholesterol

    MedlinePlus

    Top 5 lifestyle changes to improve your cholesterol Lifestyle changes can help reduce cholesterol, keep you off cholesterol-lowering medications or enhance the effect of your medications. Here are five lifestyle ...

  14. Understand Your Risk for High Cholesterol

    MedlinePlus

    ... Aortic Aneurysm More Understand Your Risk for High Cholesterol Updated:Apr 1,2016 LDL (bad) cholesterol is ... content was last reviewed on 04/21/2014. Cholesterol Guidelines: Putting the pieces together Myth vs. Truth – ...

  15. Lateral organization of cholesterol molecules in lipid-cholesterol assemblies.

    SciTech Connect

    Singh, Rajiv R. P.; Slepoy, Alexander; Sengupta, Pinaki; Cox, Daniel L.

    2005-05-01

    We present results of an off-lattice simulation of a two-component planar system, as a model for lateral organization of cholesterol molecules in lipid-cholesterol assemblies. We explore the existence of 'superlattice' structures even in fluid systems, in the absence of an underlying translational long-range order, and study their coupling to hexatic or bond-orientational order. We discuss our results in context of geometric superlattice theories and 'condensation complexes' in understanding a variety of experiments in artificial lipid-cholesterol assemblies.

  16. Cholesterol metabolism and colon cancer.

    PubMed

    Broitman, S A; Cerda, S; Wilkinson, J

    1993-01-01

    While epidemiologic and concordant experimental data indicate a direct relationship between dietary fat (and presumably caloric) intake and the development of colon cancer, the effect of dietary cholesterol on this disease is still not clear. However, there appears to be a developing literature concerning an inverse relationship between serum and plasma cholesterol levels, and the risk for colon cancer. Findings that low serum cholesterol levels are apparent as early as ten years prior to the detection of colon cancer implies that sub clinical disease is probably not involved initially in this process. The possibility of low serum cholesterol as a bio-marker was considered in epidemiologic studies which focused upon obese men with lower than normal serum cholesterol levels who were found to be at increased risk to colon cancer. While the relationship between low serum cholesterol and colonic or intestinal cholesterol metabolism is presently not understood, current genetic studies provide a promising though as yet unexplored potential association. Alterations which occur during the developmental progression of colonic cancer include changes in chromosome 5, which also carries two genes vital to the biosynthesis and regulation of systemic and cellular cholesterol metabolism, 3-hydroxy-3-methylglutaryl coenzyme A synthase, and 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCoA R). Regulation of cholesterol metabolism in intestinal cells in vivo and in vitro varies from that seen in normal fibroblasts or hepatocytes in terms of exogenous sources of cholesterol and how these sources regulate internal synthesis. Colonic cancer cells have been used to assess small bowel enterocyte cholesterol metabolism, which has been possible because of their ability to differentiate in culture, however information regarding true colonic enterocyte cholesterol metabolism is relatively scarce. Colonic cancer cells have been shown to possess a diminished or nonexistent ability to use

  17. The impairment of cholesterol metabolism in Huntington disease.

    PubMed

    Leoni, Valerio; Caccia, Claudio

    2015-08-01

    Huntington disease (HD), an autosomal dominant neurodegenerative disorder caused by an abnormal expansion of CAG trinucleotide repeat in the Huntingtin (HTT) gene, is characterized by extensive neurodegeneration of striatum and cortex and severe diffuse atrophy at MRI. The expression of genes involved in the cholesterol biosynthetic pathway and the amount of cholesterol, lanosterol, lathosterol and 24S-hydroxycholesterol were reduced in murine models of HD. In case of HD-patients, the decrease of plasma 24OHC follows disease progression proportionally to motor and neuropsychiatric dysfunction and MRI brain atrophy, together with lanosterol and lathosterol (markers of cholesterol synthesis), and 27-hydroxycholesterol. A significant reduction of total plasma cholesterol was observed only in advanced stages. It is likely that mutant HTT decreases the maturation of SREBP and the up-regulation LXR and LXR-targeted genes (SREBP, ABCG1 and ABCG4, HMGCoA reductase, ApoE) resulting into a lower synthesis and transport of cholesterol from astrocytes to neurons via ApoE. In primary oligodendrocytes, mutant HTT inhibited the regulatory effect of PGC1α on cholesterol metabolism and on the expression of MBP. HTT seems to play a regulatory role in lipid metabolism. The impairment of the cholesterol metabolism was found to be proportional to the CAG repeat length and to the load of mutant HTT. A dysregulation on PGC1α and mitochondria dysfunction may be involved in an overall reduction of acetyl-CoA and ATP synthesis, contributing to the cerebral and whole body cholesterol impairment. This article is part of a Special Issue entitled Brain Lipids.

  18. Think Again About Cholesterol Survey.

    PubMed

    Catapano, Alberico L; Wiklund, Olov

    2015-12-01

    Cardiovascular disease (CVD) is still the main cause of death in Europe. Elevated plasma cholesterol, specifically low-density lipoprotein cholesterol (LDL-C), is the main causative risk factor for CVD, most prominently associated with coronary heart disease. A widespread disinformation about cholesterol and CVD is one factor underlying a poor compliance to lipid-lowering therapy. To investigate how cholesterol, CVD and cholesterol reduction is perceived in the population, a survey was commissioned by the European Atherosclerosis Society (EAS). Nearly half of people above 25 years of age are most worried about cancer (45%), compared to just over one in four who are worried about heart disease (27%). A majority believe being overweight (72%), blood pressure (70%) and smoking (67%) most affect heart health, far more than note cholesterol (59%) and family history (39%). The majority of adults recognize that high LDL (or "bad") cholesterol should be a health priority for everyone, including those younger than 40 and those who are not overweight. However, 1 in 4 (25%) incorrectly believe that it does not need to be a concern until someone shows signs or symptoms. Although 89% of adults surveyed agreed it is important for people to know whether or not they have high LDL-C, an overwhelming 92% did not know their LDL-C levels or had never had their cholesterol levels tested. A high 63% had never heard of familial hypercholesterolemia: France had the lowest level of awareness (41%) to Denmark with a high 80%, and the association of the disease with high levels of LDL-C is quite poor (only 36%), with Sweden only at 22% versus a high in Spain of 54%. A large part of the people participating in the survey were quite uncertain about the modality of transmission for familial hypercholesterolemia in the family. All in all, this survey highlights the need for more information among citizens for the role of cholesterol in determining CVD.

  19. Lecithin:Cholesterol Acyltransferase (LCAT) Deficiency Promotes Differentiation of Satellite Cells to Brown Adipocytes in a Cholesterol-dependent Manner.

    PubMed

    Nesan, Dinushan; Tavallaee, Ghazaleh; Koh, Deborah; Bashiri, Amir; Abdin, Rawand; Ng, Dominic S

    2015-12-18

    Our laboratory previously reported that lecithin:cholesterol acyltransferase (LCAT) and LDL receptor double knock-out mice (Ldlr(-/-)xLcat(-/-) or DKO) spontaneously develop functioning ectopic brown adipose tissue (BAT) in skeletal muscle, putatively contributing to protection from the diet-induced obesity phenotype. Here we further investigated their developmental origin and the mechanistic role of LCAT deficiency. Gene profiling of skeletal muscle in DKO newborns and adults revealed a classical lineage. Primary quiescent satellite cells (SC) from chow-fed DKO mice, not in Ldlr(-/-)xLcat(+/+) single-knock-out (SKO) or C57BL/6 wild type, were found to (i) express exclusively classical BAT-selective genes, (ii) be primed to express key functional BAT genes, and (iii) exhibit markedly increased ex vivo adipogenic differentiation into brown adipocytes. This gene priming effect was abrogated upon feeding the mice a 2% high cholesterol diet in association with accumulation of excess intracellular cholesterol. Ex vivo cholesterol loading of chow-fed DKO SC recapitulated the effect, indicating that cellular cholesterol is a key regulator of SC-to-BAT differentiation. Comparing adipogenicity of Ldlr(+/+)xLcat(-/-) (LCAT-KO) SC with DKO SC identified a role for LCAT deficiency in priming SC to express BAT genes. Additionally, we found that reduced cellular cholesterol is important for adipogenic differentiation, evidenced by increased induction of adipogenesis in cholesterol-depleted SC from both LCAT-KO and SKO mice. Taken together, we conclude that ectopic BAT in DKO mice is classical in origin, and its development begins in utero. We further showed complementary roles of LCAT deficiency and cellular cholesterol reduction in the SC-to-BAT adipogenesis.

  20. Targeting cancer using cholesterol conjugates

    PubMed Central

    Radwan, Awwad A.; Alanazi, Fares K.

    2013-01-01

    Conjugation of cholesterol moiety to active compounds for either cancer treatment or diagnosis is an attractive approach. Cholesterol derivatives are widely studied as cancer diagnostic agents and as anticancer derivatives either in vitro or in vivo using animal models. In largely growing studies, anticancer agents have been chemically conjugated to cholesterol molecules, to enhance their pharmacokinetic behavior, cellular uptake, target specificity, and safety. To efficiently deliver anticancer agents to the target cells and tissues, many different cholesterol–anticancer conjugates were synthesized and characterized, and their anticancer efficiencies were tested in vitro and in vivo. PMID:24493968

  1. Cholesterol perturbs lipid bilayers nonuniversally.

    PubMed

    Pan, Jianjun; Mills, Thalia T; Tristram-Nagle, Stephanie; Nagle, John F

    2008-05-16

    Cholesterol is well known to modulate the physical properties of biomembranes. Using modern x-ray scattering methods, we have studied the effects of cholesterol on the bending modulus K(C), the thickness D(HH), and the orientational order parameter S(xray) of lipid bilayers. We find that the effects are different for at least three classes of phospholipids characterized by different numbers of saturated hydrocarbon chains. Most strikingly, cholesterol strongly increases K(C) when both chains of the phospholipid are fully saturated but not at all when there are two monounsaturated chains.

  2. Cholesterol Perturbs Lipid Bilayers Nonuniversally

    SciTech Connect

    Pan Jianjun; Mills, Thalia T.; Tristram-Nagle, Stephanie; Nagle, John F.

    2008-05-16

    Cholesterol is well known to modulate the physical properties of biomembranes. Using modern x-ray scattering methods, we have studied the effects of cholesterol on the bending modulus K{sub C}, the thickness D{sub HH}, and the orientational order parameter S{sub xray} of lipid bilayers. We find that the effects are different for at least three classes of phospholipids characterized by different numbers of saturated hydrocarbon chains. Most strikingly, cholesterol strongly increases K{sub C} when both chains of the phospholipid are fully saturated but not at all when there are two monounsaturated chains.

  3. Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport.

    PubMed

    Fernández-Suárez, María E; Escolà-Gil, Joan C; Pastor, Oscar; Dávalos, Alberto; Blanco-Vaca, Francisco; Lasunción, Miguel A; Martínez-Botas, Javier; Gómez-Coronado, Diego

    2016-09-07

    Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [(3)H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [(3)H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages.

  4. Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport

    PubMed Central

    Fernández-Suárez, María E.; Escolà-Gil, Joan C.; Pastor, Oscar; Dávalos, Alberto; Blanco-Vaca, Francisco; Lasunción, Miguel A.; Martínez-Botas, Javier; Gómez-Coronado, Diego

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [3H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [3H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages. PMID:27601313

  5. Cholesterol Inhibits M-type K+ Channels via Protein Kinase C-dependent Phosphorylation in Sympathetic Neurons*

    PubMed Central

    Lee, Seul-Yi; Choi, Hyun-Kyung; Kim, Seong-Tae; Chung, Sungkwon; Park, Myoung Kyu; Cho, Jung-Hwa; Ho, Won-Kyung; Cho, Hana

    2010-01-01

    M-type (KCNQ) potassium channels play an important role in regulating the action potential firing in neurons. Here, we investigated the effect of cholesterol on M current in superior cervical ganglion (SCG) sympathetic neurons, using the patch clamp technique. M current was inhibited in a dose-dependent manner by cholesterol loading with a methyl-β-cyclodextrin-cholesterol complex. This effect was prevented when membrane cholesterol level was restored by including empty methyl-β-cyclodextrin in the pipette solution. Dialysis of cells with AMP-PNP instead of ATP prevented cholesterol action on M currents. Protein kinase C (PKC) inhibitor, calphostin C, abolished cholesterol-induced inhibition whereas the PKC activator, PDBu, mimicked the inhibition of M currents by cholesterol. The in vitro kinase assay showed that KCNQ2 subunits of M channel can be phosphorylated by PKC. A KCNQ2 mutant that is defective in phosphorylation by PKC failed to show current inhibition not only by PDBu but also by cholesterol. These results indicate that cholesterol-induced inhibition of M currents is mediated by PKC phosphorylation. The inhibition of M currents by PDBu and cholesterol was completely blocked by PIP2 loading, indicating that the decrease in PIP2-channel interaction underlies M channel inhibition by PKC-mediated phosphorylation. We conclude that cholesterol specifically regulates M currents in SCG neurons via PKC activation. PMID:20123983

  6. Concise Review: Are Stimulated Somatic Cells Truly Reprogrammed into an ES/iPS-Like Pluripotent State? Better Understanding by Ischemia-Induced Multipotent Stem Cells in a Mouse Model of Cerebral Infarction

    PubMed Central

    Nakagomi, Takayuki; Nakano-Doi, Akiko; Narita, Aya; Matsuyama, Tomohiro

    2015-01-01

    Following the discovery of pluripotent stem (PS) cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells, there has been a great hope that injured tissues can be repaired by transplantation of ES/iPS-derived various specific types of cells such as neural stem cells (NSCs). Although PS cells can be induced by ectopic expression of Yamanaka's factors, it is known that several stimuli such as ischemia/hypoxia can increase the stemness of somatic cells via reprogramming. This suggests that endogenous somatic cells acquire stemness during natural regenerative processes following injury. In this study, we describe whether somatic cells are converted into pluripotent stem cells by pathological stimuli without ectopic expression of reprogramming factors based on the findings of ischemia-induced multipotent stem cells in a mouse model of cerebral infarction. PMID:25945100

  7. Formation of Cholesterol Bilayer Domains Precedes Formation of Cholesterol Crystals in Cholesterol/Dimyristoylphosphatidylcholine Membranes: EPR and DSC Studies

    PubMed Central

    Mainali, Laxman; Raguz, Marija; Subczynski, Witold K.

    2013-01-01

    Saturation-recovery EPR along with DSC were used to determine the cholesterol content at which pure cholesterol bilayer domains (CBDs) and cholesterol crystals begin to form in dimyristoylphosphatidylcholine (DMPC) membranes. To preserve compositional homogeneity throughout the membrane suspension, lipid multilamellar dispersions were prepared using a rapid solvent exchange method. The cholesterol content increased from 0 to 75 mol%. With spin-labeled cholesterol analogs it was shown that the CBDs begin to form at ~50 mol% cholesterol. It was confirmed by DSC that the cholesterol solubility threshold for DMPC membranes is detected at ~66 mol% cholesterol. At levels above this cholesterol content, monohydrate cholesterol crystals start to form. The major finding is that formation of CBDs precedes formation of cholesterol crystals. The region of the phase diagram for cholesterol contents between 50 and 66 mol% is described as a structured one-phase region in which CBDs have to be supported by the surrounding DMPC bilayer saturated with cholesterol. Thus, the phase boundary located at 66 mol% cholesterol separates the structured one-phase region (liquid-ordered phase of DMPC with CBDs) from the two-phase region where the structured liquid-ordered phase of DMPC coexists with cholesterol crystals. It is likely that CBDs are precursors of monohydrate cholesterol crystals. PMID:23834375

  8. Cholesterol's location in lipid bilayers

    SciTech Connect

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R.; Harroun, Thad A.; Katsaras, John

    2016-04-04

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown – at least in some bilayers – to align differently from its canonical upright orientation, where its hydroxyl group is in the vicinity of the lipid–water interface. In this study we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies.

  9. Cholesterol's location in lipid bilayers

    DOE PAGES

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R.; ...

    2016-04-04

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown – at least in some bilayers – to align differently from its canonical upright orientation, where its hydroxyl group is in themore » vicinity of the lipid–water interface. In this study we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies.« less

  10. Americans' Cholesterol Levels Keep Falling

    MedlinePlus

    ... and 2013-2014, the CDC reported. Dr. David Friedman is chief of heart failure services at Long ... for cholesterol treatment, all seem to be working," Friedman said. The study was published online Nov. 30 ...

  11. Global ischemia-induced increases in the gap junctional proteins connexin 32 (Cx32) and Cx36 in hippocampus and enhanced vulnerability of Cx32 knock-out mice.

    PubMed

    Oguro, K; Jover, T; Tanaka, H; Lin, Y; Kojima, T; Oguro, N; Grooms, S Y; Bennett, M V; Zukin, R S

    2001-10-01

    Gap junctions are conductive channels that connect the interiors of coupled cells. In the hippocampus, GABA-containing hippocampal interneurons are interconnected by gap junctions, which mediate electrical coupling and synchronous firing and thereby promote inhibitory transmission. The present study was undertaken to examine the hypothesis that the gap junctional proteins connexin 32 (Cx32; expressed by oligodendrocytes, interneurons, or both), Cx36 (expressed by interneurons), and Cx43 (expressed by astrocytes) play a role in defining cell-specific patterns of neuronal death in hippocampus after global ischemia in mice. Global ischemia did not significantly alter Cx32 and Cx36 mRNA expression and slightly increased Cx43 mRNA expression in the vulnerable CA1, as assessed by Northern blot analysis and in situ hybridization. Global ischemia induced a selective increase in Cx32 and Cx36 but not Cx43 protein abundance in CA1 before onset of neuronal death, as assessed by Western blot analysis. The increase in Cx32 and Cx36 expression was intense and specific to parvalbumin-positive inhibitory interneurons of CA1, as assessed by double immunofluorescence. Protein abundance was unchanged in CA3 and dentate gyrus. The finding of increase in connexin protein without increase in mRNA suggests regulation of Cx32 and Cx36 expression at the translational or post-translational level. Cx32(Y/-) null mice exhibited enhanced vulnerability to brief ischemic insults, consistent with a role for Cx32 gap junctions in neuronal survival. These findings suggest that Cx32 and Cx36 gap junctions may contribute to the survival and resistance of GABAergic interneurons, thereby defining cell-specific patterns of global ischemia-induced neuronal death.

  12. Cholesterol and benign prostate disease.

    PubMed

    Freeman, Michael R; Solomon, Keith R

    2011-01-01

    The origins of benign prostatic diseases, such as benign prostatic hyperplasia (BPH) and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), are poorly understood. Patients suffering from benign prostatic symptoms report a substantially reduced quality of life, and the relationship between benign prostate conditions and prostate cancer is uncertain. Epidemiologic data for BPH and CP/CPPS are limited, however an apparent association between BPH symptoms and cardiovascular disease (CVD) has been consistently reported. The prostate synthesizes and stores large amounts of cholesterol and prostate tissues may be particularly sensitive to perturbations in cholesterol metabolism. Hypercholesterolemia, a major risk factor for CVD, is also a risk factor for BPH. Animal model and clinical trial findings suggest that agents that inhibit cholesterol absorption from the intestine, such as the class of compounds known as polyene macrolides, can reduce prostate gland size and improve lower urinary tract symptoms (LUTS). Observational studies indicate that cholesterol-lowering drugs reduce the risk of aggressive prostate cancer, while prostate cancer cell growth and survival pathways depend in part on cholesterol-sensitive biochemical mechanisms. Here we review the evidence that cholesterol metabolism plays a role in the incidence of benign prostate disease and we highlight possible therapeutic approaches based on this concept.

  13. Cholesterol and Benign Prostate Disease

    PubMed Central

    Freeman, Michael R.; Solomon, Keith R.

    2014-01-01

    The origins of benign prostatic diseases, such as benign prostatic hyperplasia (BPH) and chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS), are poorly understood. Patients suffering from benign prostatic symptoms report a substantially reduced quality of life, and the relationship between benign prostate conditions and prostate cancer is uncertain. Epidemiologic data for BPH and CP/CPPS are limited, however an apparent association bet ween BPH symptoms and cardiovascular disease (CVD) has been consistently reported. The prostate synthesizes and stores large amounts of cholesterol and prostate tissues may be particularly sensitive to perturbations in cholesterol metabolism. Hypercholesterolemi, a major risk factor for CVD, is also a risk factor for BPH. Animal model and clinical trial findings suggest that agents that inhibit cholesterol absorption from the intestine, such as the class of compounds known as polyene macrolides, can reduce prostate gland size and improve lower urinary tract symptoms (LUTS). Observational studies indicate that cholesterol-lowering drugs reduce the risk of aggressive prostate cancer, while prostate cancer cell growth and survival pathways depend in part on cholesterol-sensitive biochemical mechanisms. Here we review the evidence that cholesterol metabolism plays a role in the incidence of benign prostate disease and we highlight possible therapeutic approaches based on this concept. PMID:21862201

  14. Facts about...Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This fact sheet on blood cholesterol examines the connection between cholesterol and heart disease, lists risk factors for heart disease that can and cannot be controlled, points out who can benefit from lowering blood cholesterol, distinguishes between blood and dietary cholesterol, describes low density lipoprotein and high density lipoprotein…

  15. Amperometric determination of serum total cholesterol with nanoparticles of cholesterol esterase and cholesterol oxidase.

    PubMed

    Aggarwal, V; Malik, J; Prashant, A; Jaiwal, P K; Pundir, C S

    2016-05-01

    We describe the preparation of glutaraldehyde cross-linked and functionalized cholesterol esterase nanoparticles (ChENPs) and cholesterol oxidase nanoparticles (ChOxNPs) aggregates and their co-immobilization onto Au electrode for improved amperometric determination of serum total cholesterol. Transmission electron microscope (TEM) images of ChENPs and ChOxNPs showed their spherical shape and average size of 35.40 and 56.97 nm, respectively. Scanning electron microscope (SEM) studies of Au electrode confirmed the co-immobilization of enzyme nanoparticles (ENPs). The biosensor exhibited optimal response at pH 5.5 and 40°C within 5 s when polarized at +0.25 V versus Ag/AgCl. The working/linear range of the biosensor was 10-700 mg/dl for cholesterol. The sensor showed high sensitivity and measured total cholesterol as low as 0.1 mg/dl. The biosensor was evaluated and employed for total cholesterol determination in sera of apparently healthy and diseased persons. The analytical recovery of added cholesterol was 90%, whereas the within-batch and between-batch coefficients of variation (CVs) were less than 2% and less than 3%. There was a good correlation (r = 0.99) between serum cholesterol values as measured by the standard enzymic colorimetric method and the current method. The initial activity of ENPs/working electrode was reduced by 50% during its regular use (200 times) over a period of 60 days when stored dry at 4°C.

  16. Cholesterol-based tethers and markers for model membranes investigation.

    PubMed

    Eicher-Lorka, O; Charkova, T; Matijoška, A; Kuodis, Z; Urbelis, G; Penkauskas, T; Mickevičius, M; Bulovas, A; Valinčius, G

    2016-02-01

    A series of new bifunctional cholesterol compounds for tethered bilayer membrane (tBLM) systems were synthesized and tested. The compounds containing cyclic disulfide group may be used as molecular anchors for phospholipid bilayers. Anchoring occurs through the insertion of the cholesterol moiety into the hydrophobic slab of the phospholipid layer, while the surface density of anchor molecules may be adjusted using disulfides terminated spacers. Five ethylene oxide segments between the disulfide group and the cholesteryl provide hydration of the layer separating solid support and model membrane. Another group of cholesterol derivatives described in this work contains either fluorescence probe or electroactive functional groups. We demonstrated the practical utility of these compounds for visualization of cholesterol extraction from and loading to tBLMs. We demonstrated that electroactive group containing cholesterol derivatives can be reconstituted either into vesicles or tBLMs. In both cases an electrochemical signal can be generated on electrodes from these probes. In general, the newly synthesized compound may be utilized in a variety of applications involving tethered bilayer systems and vesicles.

  17. Cholesterol-Modified Amino-Pullulan Nanoparticles as a Drug Carrier: Comparative Study of Cholesterol-Modified Carboxyethyl Pullulan and Pullulan Nanoparticles

    PubMed Central

    Tao, Xiaojun; Xie, Yongchao; Zhang, Qiufang; Qiu, Ximin; Yuan, Liming; Wen, Yi; Li, Min; Yang, Xiaoping; Tao, Ting; Xie, Minghui; Lv, Yanwei; Wang, Qinyi; Feng, Xing

    2016-01-01

    To search for nano-drug preparations with high efficiency in tumor treatment, we evaluated the drug-loading capacity and cell-uptake toxicity of three kinds of nanoparticles (NPs). Pullulan was grafted with ethylenediamine and hydrophobic groups to form hydrophobic cholesterol-modified amino-pullulan (CHAP) conjugates. Fourier transform infrared spectroscopy and nuclear magnetic resonance were used to identify the CHAP structure and calculate the degree of substitution of the cholesterol group. We compared three types of NPs with close cholesterol hydrophobic properties: CHAP, cholesterol-modified pullulan (CHP), and cholesterol-modified carboxylethylpullulan (CHCP), with the degree of substitution of cholesterol of 2.92%, 3.11%, and 3.46%, respectively. As compared with the two other NPs, CHAP NPs were larger, 263.9 nm, and had a positive surface charge of 7.22 mV by dynamic light-scattering measurement. CHAP NPs showed low drug-loading capacity, 12.3%, and encapsulation efficiency of 70.8%, which depended on NP hydrophobicity and was affected by surface charge. The drug release amounts of all NPs increased in the acid media, with CHAP NPs showing drug-release sensitivity with acid change. Cytotoxicity of HeLa cells was highest with mitoxantrone-loaded CHAP NPs on MTT assay. CHAP NPs may have potential as a high-efficiency drug carrier for tumor treatment. PMID:28335293

  18. [Accuracy of HDL cholesterol measurements].

    PubMed

    Niedmann, P D; Luthe, H; Wieland, H; Schaper, G; Seidel, D

    1983-02-01

    The widespread use of different methods for the determination of HDL-cholesterol (in Europe: sodium phosphotungstic acid/MgCl2) in connection with enzymatic procedures (in the USA: heparin/MnCl2 followed by the Liebermann-Burchard method) but common reference values makes it necessary to evaluate not only accuracy, specificity, and precision of the precipitation step but also of the subsequent cholesterol determination. A high ratio of serum vs. concentrated precipitation reagent (10:1 V/V) leads to the formation of variable amounts of delta-3.5-cholestadiene. This substance is not recognized by cholesterol oxidase but leads to an 1.6 times overestimation by the Liebermann-Burchard method. Therefore, errors in HDL-cholesterol determination should be considered and differences up to 30% may occur between HDL-cholesterol values determined by the different techniques (heparin/MnCl2 - Liebermann-Burchard and NaPW/MgCl2-CHOD-PAP).

  19. [Determination of HDL-cholesterol].

    PubMed

    Herrmann, W; Schütz, C; Reuter, W

    1983-01-01

    For the clinical practice methods of the determination of HDL-cholesterol made their way which are based on the precipitation of apolipoprotein-B-containing lipoproteins and a determination of cholesterol following. The expensive methods of the ultracentrifugation serve as reference methods. The most-spread precipitation techniques (heparin/MCl2, dextran sulphate/CaCl2 or MgCl2 photungstic acid/MgCl2) are comparatively observed with regard to their effectiveness, practicability and methodical and technical conditions (influence of the concentration of the precipitation reagents, pH-value, temperature, incubation and centrifugation conditions). Results of own investigations as well as data from literature are presented to the problem of the harmonization of the cholesterol determination with the precipitation technique. According to the opinion of the authors for the enzymatic determination of cholesterol by means of the CHOD-PAP-method the phosphotungstic acid precipitation well stood the test, whereas for the chemical determination of cholesterol after Liebermann-Burchard in manual or automatized works the precipitation by means of dextran sulphate/CaCl2 (40 g/l, 2.0 mol/l) is to be recommended. The superabundant precipitations with phosphotungstic acid and dextran sulphate/MgCl2 (20 g/l, 2.0 mol/l) achieve higher results in Liebermann-Burchard's reaction likely on account of interferences.

  20. Polarizable multipolar electrostatics for cholesterol

    NASA Astrophysics Data System (ADS)

    Fletcher, Timothy L.; Popelier, Paul L. A.

    2016-08-01

    FFLUX is a novel force field under development for biomolecular modelling, and is based on topological atoms and the machine learning method kriging. Successful kriging models have been obtained for realistic electrostatics of amino acids, small peptides, and some carbohydrates but here, for the first time, we construct kriging models for a sizeable ligand of great importance, which is cholesterol. Cholesterol's mean total (internal) electrostatic energy prediction error amounts to 3.9 kJ mol-1, which pleasingly falls below the threshold of 1 kcal mol-1 often cited for accurate biomolecular modelling. We present a detailed analysis of the error distributions.

  1. Effect of ezetimibe on plasma cholesterol levels, cholesterol absorption, and secretion of biliary cholesterol in laboratory opossums with high and low responses to dietary cholesterol.

    PubMed

    Chan, Jeannie; Kushwaha, Rampratap S; Vandeberg, Jane F; Vandeberg, John L

    2008-12-01

    Partially inbred lines of laboratory opossums differ in plasma low-density lipoprotein cholesterol concentration and cholesterol absorption on a high-cholesterol diet. The aim of the present studies was to determine whether ezetimibe inhibits cholesterol absorption and eliminates the differences in plasma cholesterol and hepatic cholesterol metabolism between high and low responders on a high-cholesterol diet. Initially, we determined that the optimum dose of ezetimibe was 5 mg/(kg d) and treated 6 high- and 6 low-responding opossums with this dose (with equal numbers of controls) for 3 weeks while the opossums consumed a high-cholesterol and low-fat diet. Plasma and low-density lipoprotein cholesterol concentrations decreased significantly (P < .05) in treated but not in untreated high-responding opossums. Plasma cholesterol concentrations increased slightly (P < .05) in untreated low responders but not in treated low responders. The percentage of cholesterol absorption was significantly higher in untreated high responders than in other groups. Livers from high responders with or without treatment were significantly (P < .01) heavier than livers from low responders with or without treatment. Hepatic cholesterol concentrations in untreated high responders were significantly (P < .05) higher than those in low responders with or without treatment (P < .001). The gall bladder bile cholesterol concentrations in untreated high responders were significantly (P < .05) lower than those in other groups. A decrease in biliary cholesterol in low responders treated with ezetimibe was associated with a decrease in hepatic expression of ABCG5 and ABCG8. These studies suggest that ezetimibe decreases plasma cholesterol levels in high responders mainly by decreasing cholesterol absorption and increasing biliary cholesterol concentrations. Because ezetimibe's target is NPC1L1 and NPC1L1 is expressed in the intestine of opossums, its effect on cholesterol absorption may be mediated

  2. Dietary cholesterol supplementation to a plant-based diet suppresses the complete pathway of cholesterol synthesis and induces bile acid production in Atlantic salmon (Salmo salar L.).

    PubMed

    Kortner, Trond M; Björkhem, Ingemar; Krasnov, Aleksei; Timmerhaus, Gerrit; Krogdahl, Åshild

    2014-06-28

    Plants now supply more than 50 % of protein in Norwegian salmon aquafeeds. The inclusion of plant protein in aquafeeds may be associated with decreased lipid digestibility and cholesterol and bile salt levels, indicating that the replacement of fishmeal with plant protein could result in inadequate supplies of cholesterol in fish. A reduction in feed efficiency, fish growth and pathogen resistance is often observed in parallel to alterations in sterol metabolism. Previous studies have indicated that the negative effects induced by plant components can be attenuated when diets are supplemented with cholesterol. The present study evaluated the effects of dietary cholesterol supplementation (1·5 %) in Atlantic salmon fed a plant-based diet for 77 d. The weights of body, intestines and liver were recorded and blood, tissues, faeces, chyme and bile were sampled for the evaluation of effects on growth, nutrient utilisation and metabolism, and transcriptome and metabolite levels, with particular emphasis on sterol metabolism and organ structure and function. Cholesterol supplementation did not affect the growth or organ weights of Atlantic salmon, but seemed to promote the induction of cholesterol and plant sterol efflux in the intestine while suppressing sterol uptake. Cholesterol biosynthesis decreased correspondingly and conversion into bile acids increased. The marked effect of cholesterol supplementation on bile acid synthesis suggests that dietary cholesterol can be used to increase bile acid synthesis in fish. The present study clearly demonstrated how Atlantic salmon adjusted their metabolic functions in response to the dietary load of cholesterol. It has also expanded our understanding of sterol metabolism and turnover, adding to the existing, rather sparse, knowledge of these processes in fish.

  3. Early steps in steroidogenesis: intracellular cholesterol trafficking

    PubMed Central

    Miller, Walter L.; Bose, Himangshu S.

    2011-01-01

    Steroid hormones are made from cholesterol, primarily derived from lipoproteins that enter cells via receptor-mediated endocytosis. In endo-lysosomes, cholesterol is released from cholesterol esters by lysosomal acid lipase (LAL; disordered in Wolman disease) and exported via Niemann-Pick type C (NPC) proteins (disordered in NPC disease). These diseases are characterized by accumulated cholesterol and cholesterol esters in most cell types. Mechanisms for trans-cytoplasmic cholesterol transport, membrane insertion, and retrieval from membranes are less clear. Cholesterol esters and “free” cholesterol are enzymatically interconverted in lipid droplets. Cholesterol transport to the cholesterol-poor outer mitochondrial membrane (OMM) appears to involve cholesterol transport proteins. Cytochrome P450scc (CYP11A1) then initiates steroidogenesis by converting cholesterol to pregnenolone on the inner mitochondrial membrane (IMM). Acute steroidogenic responses are regulated by cholesterol delivery from OMM to IMM, triggered by the steroidogenic acute regulatory protein (StAR). Chronic steroidogenic capacity is determined by CYP11A1 gene transcription. StAR mutations cause congenital lipoid adrenal hyperplasia, with absent steroidogenesis, potentially lethal salt loss, and 46,XY sex reversal. StAR mutations initially destroy most, but not all steroidogenesis; low levels of StAR-independent steroidogenesis are lost later due to cellular damage, explaining the clinical findings. Rare P450scc mutations cause a similar syndrome. This review addresses these early steps in steroid biosynthesis. PMID:21976778

  4. Cholesterol autoxidation in phospholipid membrane bilayers

    SciTech Connect

    Sevanian, A.; McLeod, L.L.

    1987-09-01

    Lipid peroxidation in unilamellar liposomes of known cholesterol-phospholipid composition was monitored under conditions of autoxidation or as induced by a superoxide radical generating system, gamma-irradiation or cumene hydroperoxide. Formation of cholesterol oxidation products was indexed to the level of lipid peroxidation. The major cholesterol oxidation products identified were 7-keto-cholesterol, isomeric cholesterol 5,6-epoxides, isomeric 7-hydroperoxides and isomeric 3,7-cholestane diols. Other commonly encountered products included 3,5-cholestadiene-7-one and cholestane-3 beta, 5 alpha, 6 beta-triol. Superoxide-dependent peroxidation required iron and produced a gradual increase in 7-keto-cholesterol and cholesterol epoxides. Cholesterol oxidation was greatest in liposomes containing high proportions of unsaturated phospholipid to cholesterol (4:1 molar ratio), intermediate with low phospholipid to cholesterol ratios (2:1) and least in liposomes prepared with dipalmitoylphosphatidylcholine and cholesterol. This relationship held regardless of the oxidizing conditions used. Cumene hydroperoxide-dependent lipid peroxidation and/or more prolonged oxidations with other oxidizing systems yielded a variety of products where cholesterol-5 beta,6 beta-epoxide, 7-ketocholesterol and the 7-hydroperoxides were most consistently elevated. Oxyradical initiation of lipid peroxidation produced a pattern of cholesterol oxidation products distinguishable from the pattern derived by cumene hydroperoxide-dependent peroxidation.

  5. Improved Coarse-Grained Modeling of Cholesterol-Containing Lipid Bilayers

    SciTech Connect

    Daily, Michael D.; Olsen, Brett N.; Schlesinger, Paul H.; Ory, Daniel S.; Baker, Nathan A.

    2014-03-24

    In mammalian cells cholesterol is essential for membrane function, but in excess can be cytototoxic. The cellular response to acute cholesterol loading involves biophysical-based mechanisms that regulate cholesterol levels, through modulation of the “activity” or accessibility of cholesterol to extra-membrane acceptors. Experiments and united atom (UA) simulations show that at high concentrations of cholesterol, lipid bilayers thin significantly and cholesterol availability to external acceptors increases substantially. Such cholesterol activation is critical to its trafficking within cells. Here we aim to reduce the computational cost to enable simulation of large and complex systems involved in cholesterol regulation, such as those including oxysterols and cholesterol-sensing proteins. To accomplish this, we have modified the published MARTINI coarse-grained force field to improve its predictions of cholesterol-induced changes in both macroscopic and microscopic properties of membranes. Most notably, MARTINI fails to capture both the (macroscopic) area condensation and membrane thickening seen at less than 30% cholesterol and the thinning seen above 40% cholesterol. The thinning at high concentration is critical to cholesterol activation. Microscopic properties of interest include cholesterol-cholesterol radial distribution functions (RDFs), tilt angle, and accessible surface area. First, we develop an “angle-corrected” model wherein we modify the coarse-grained bond angle potentials based on atomistic simulations. This modification significantly improves prediction of macroscopic properties, most notably the thickening/thinning behavior, and also slightly improves microscopic property prediction relative to MARTINI. Second, we add to the angle correction a “volume correction” by also adjusting phospholipid bond lengths to achieve a more accurate volume per molecule. The angle + volume correction substantially further improves the quantitative

  6. Mechanical modeling of cholesterol crystallization in atherosclerotic plaques base on Micro-OCT images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Luo, Yuemei; Liu, Xinyu; Chen, Si; Cui, Dongyao; Wang, Xianghong; Liu, Linbo

    2016-02-01

    Plaque rupture is the critical cause of cardiovascular thrombosis but this process is still under discussion. Recent studies show that, during crystallization, cholesterol crystals in atheromatous plaques accumulate rapidly in a limited space and may result in plaque rupture. However, the actual role of cholesterol crystals on plaque rupture remains unclear due to the lack of detailed morphological information of cholesterol crystals. In this study, we used a Micro-optical coherence tomography (µOCT) setup with 1-2 µm spatial resolution to extract the geometry of cholesterol crystals from human atherosclerotic artery ex vivo firstly. With measured dimensions of cholesterol crystals by this µOCT system (the average length and thickness of 269.1±80.16 µm and 3.0±0.33 µm), we developed a two-dimensional mechanical model in which rectangular shaped cholesterol crystals distribute at different locations spatially. We predicted the stress on the thin cap induced by the expansion of cholesterol crystals by use of finite-element method. Since a large portion of plaques (58%) rupture at points of peak circumferential stress (PCS), we used PCS as the primary indicator of plaque stability with blood pressure of 14.6 kPa on the lumen. The results demonstrate that loading of the concentrated crystals especially at the cap shoulder destabilize the plaque by proportionally increasing the PCS, while evenly distributed crystals loading along the cap might impose less PCS to the plaque than the concentrated case.

  7. Sericin reduces serum cholesterol in rats and cholesterol uptake into Caco-2 cells.

    PubMed

    Limpeanchob, Nanteetip; Trisat, Kanittaporn; Duangjai, Acharaporn; Tiyaboonchai, Waree; Pongcharoen, Sutatip; Sutheerawattananonda, Manote

    2010-12-08

    A cholesterol lowering effect of sericin was investigated both in vivo and in vitro. Rats were dosed with cholesterol with and without sericin for 14 days. Non-high-density lipoprotein (HDL) and total serum cholesterols were reduced in rats fed high-cholesterol diet with all three tested doses of sericin (10, 100, and 1000 mg kg(-1) day(-1)). The potential mechanism of actions was determined by measuring the uptake of radiolabeled cholesterol into differentiated Caco-2 cells and cholesterol solubility in mixed lipid micelles. Concentration of sericin as low as 25 and 50 μg/mL inhibited 30% of cholesterol uptake into Caco-2 cells whereas no effect was found at higher concentration. Cholesterol micellar solubility was reduced in the presence of sericin. This study suggests the cholesterol lowering effect of sericin results from its inhibition of cholesterol absorption in intestinal cells and its reduction of cholesterol solubility in lipid micelles.

  8. Community Guide to Cholesterol Resources.

    ERIC Educational Resources Information Center

    National Heart and Lung Inst. (DHHS/NIH), Bethesda, MD.

    This guide is divided into two sections, one for physicians and the other for patients. The physician section lists different resources including continuing medical education opportunities on the medical and scientific aspects of cholesterol and heart disease and on the physician's role in diagnosis and patient management. Additional materials on…

  9. Membrane Cholesterol Modulates Superwarfarin Toxicity

    SciTech Connect

    Marangoni, M. Natalia; Martynowycz, Michael W.; Kuzmenko, Ivan; Braun, David; Polak, Paul E.; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L.

    2016-04-26

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content.

  10. High Cholesterol: Medicines to Help You

    MedlinePlus

    ... Consumers Consumer Information by Audience For Women High Cholesterol--Medicines To Help You Share Tweet Linkedin Pin ... side effects for each drug, check Drugs@FDA . Cholesterol Absorption Inhibitors Brand Name Generic Name Zetia Ezetimibe ...

  11. Do You Know Your Cholesterol Levels?

    MedlinePlus

    ... The Health Information Center Do You Know Your Cholesterol Levels? Print-friendly Version (PDF, 6.1 MB) ... Eat Smart Did you know that high blood cholesterol is a serious problem among Latinos? About one ...

  12. What You Need to Know about Cholesterol

    MedlinePlus

    ... 164304.html What You Need to Know About Cholesterol Heart expert explains the difference between good and ... 28, 2017 MONDAY, March 27, 2017 (HealthDay News) -- Cholesterol plays a vital role in your health, so ...

  13. Active membrane cholesterol as a physiological effector.

    PubMed

    Lange, Yvonne; Steck, Theodore L

    2016-09-01

    Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily.

  14. Cholesterol - Multiple Languages: MedlinePlus

    MedlinePlus

    ... Information Translations Cholesterol and Fat Content of Common Foods 一般食品膽固醇及脂肪成份 - 繁體中文 (Chinese - Traditional) Bilingual PDF Chinese Community Health Resource Center Cholesterol ...

  15. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats.

    PubMed

    Zhang, Min; Xie, Zongkai; Gao, Weina; Pu, Lingling; Wei, Jingyu; Guo, Changjiang

    2016-03-01

    Quercetin, a common member of the flavonoid family, is widely present in plant kingdom. Despite that quercetin is implicated in regulating cholesterol metabolism, the molecular mechanism is poorly understood. We hypothesized that quercetin regulates cholesterol homeostasis through regulating the key enzymes involved in hepatic cholesterol metabolism. To test this hypothesis, we compared the profile of key enzymes and transcription factors involved in the hepatic cholesterol metabolism in rats with or without quercetin supplementation. Twenty male Wistar rats were randomly divided into control and quercetin-supplemented groups. Serum total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total bile acids in feces and bile were measured. Hepatic enzymatic activities were determined by activity assay kit and high-performance liquid chromatography-based analyses. The messenger RNA (mRNA) and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. The results showed that the activity of hepatic cholesterol 7α-hydroxylase, a critical enzyme in the conversion of cholesterol to bile acids, was significantly elevated by quercetin. The expression of cholesterol 7α-hydroxylase, as well as liver X receptor α, an important transcription factor, was also increased at both mRNA and protein levels by quercetin. However, quercetin exposure had no impact on the activity of hepatic HMG-CoA reductase, a rate-limiting enzyme in the biosynthesis of cholesterol. We also found that quercetin treatment significantly increased ATP binding cassette transporter G1 mRNA and protein expression in the liver, suggesting that quercetin may increase hepatic cholesterol efflux. Collectively, the results presented here indicate that quercetin regulates hepatic cholesterol metabolism mainly through the pathways that promote cholesterol-to-bile acid conversion and

  16. Transfer of cholesterol by the NPC team.

    PubMed

    Vance, Jean E

    2010-08-04

    The mechanisms of intracellular cholesterol transport are largely unknown. In this issue of Cell Metabolism, Wang et al. (2010) identify amino acid residues on the lumenal lysosomal protein Niemann-Pick C2 (NPC2) that are required for intralysosomal transfer of endocytosed cholesterol to membrane-bound NPC1 via a process that avoids movement of hydrophobic cholesterol through the aqueous phase.

  17. Isolation of Cholesterol from an Egg Yolk

    ERIC Educational Resources Information Center

    Taber, Douglass F.; Li, Rui; Anson, Cory M.

    2011-01-01

    A simple procedure for the isolation of the cholesterol, by hydrolysis and extraction followed by column chromatography, is described. The cholesterol can be further purified by complexation with oxalic acid. It can also be oxidized and conjugated to cholestenone. The source of the cholesterol is one egg yolk, which contains about 200 mg of…

  18. Cholesterol Screening: A Practical Guide to Implementation.

    ERIC Educational Resources Information Center

    Kingery, Paul M.

    1995-01-01

    Dry-chemistry cholesterol analysis has made screening feasible in a variety of settings. The article provides practical tips for the implementation of mass cholesterol screening using a portable dry-chemistry analyzer and discusses issues involved in conducting effective cholesterol screening programs from start to finish. (SM)

  19. Effect of cholesterol supplementation on cryosurvival of goat spermatozoa

    PubMed Central

    Behera, Sunita; Harshan, Hiron M.; Bhai, K. Lekshmi; Ghosh, K. N. Aravinda

    2015-01-01

    Aim: Sperm membrane cholesterol influences cryodamage during cryopreservation. The present study was carried out to evaluate the effect of varying cholesterol levels in Tris based extenders on the freezability of sexually healthy Malabari buck semen. Materials and Methods: A total of 48 ejaculates from two adults healthy sexually healthy Malabari bucks were utilized for the study. The collected and pooled ejaculates were divided into four groups with Group I serving as Control - I, Group II and III were treated with 1 mg and 2 mg of cholesterol-loaded-cyclodextrin (CLC)/120 × 106 spermatozoa, respectively, and Group IV, treated with 1 mg methyl-β-cyclodextrin (MβCD) served as Control - II. Manual freezing was carried out to cryopreserve the treated and control spermatozoa. Results: Treatment of semen samples with CLC resulted in improved maintenance of sperm motility at pre-freeze and post-thaw stages of cryopreservation without affecting hypo-osmotic swelling response. Treatment of semen with 1 mg of CLC/120 × 106 spermatozoa was observed to be better than treatment with 2 mg of CLC/120 × 106 spermatozoa. In general, MβCD treatment was found to result in significantly lower sperm characteristics than those of Control - I and CLC treatment at pre-feeze and post-thaw stages and when incubated up to 4 h. Conclusion: Cholesterol treatment of sexually healthy Malabari buck semen was found to hold promise for improving cryopreservability of spermatozoa. PMID:27047048

  20. HDL functionality in reverse cholesterol transport--Challenges in translating data emerging from mouse models to human disease.

    PubMed

    Lee-Rueckert, Miriam; Escola-Gil, Joan Carles; Kovanen, Petri T

    2016-07-01

    Whereas LDL-derived cholesterol accumulates in atherosclerotic lesions, HDL particles are thought to facilitate removal of cholesterol from the lesions back to the liver thereby promoting its fecal excretion from the body. Because generation of cholesterol-loaded macrophages is inherent to atherogenesis, studies on the mechanisms stimulating the release of cholesterol from these cells and its ultimate excretion into feces are crucial to learn how to prevent lesion development or even induce lesion regression. Modulation of this key anti-atherogenic pathway, known as the macrophage-specific reverse cholesterol transport, has been extensively studied in several mouse models with the ultimate aim of applying the emerging knowledge to humans. The present review provides a detailed comparison and critical analysis of the various steps of reverse cholesterol transport in mouse and man. We attempt to translate this in vivo complex scenario into practical concepts, which could serve as valuable tools when developing novel HDL-targeted therapies.

  1. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY -cholesterol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantifying cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for...

  2. Poly(amidoamine)-Cholesterol Conjugate Nanoparticles Obtained by Electrospraying as Novel Tamoxifen Delivery System

    PubMed Central

    Cavalli, R.; Bisazza, A.; Bussano, R.; Trotta, M.; Civra, A.; Lembo, D.; Ranucci, E.; Ferruti, P.

    2011-01-01

    A new poly(amidoamine)-cholesterol (PAA-cholesterol) conjugate was synthesized, characterized and used to produce nanoparticles by the electrospraying technique. The electrospraying is a method of liquid atomization that consists in the dispersion of a solution into small charged droplets by an electric field. Tuning the electrospraying process parameters spherical PAA-chol nanoparticles formed. The PAA-cholesterol nanoparticles showed sizes lower than 500 nm and spherical shape. The drug incorporation capacity was investigated using tamoxifen, a lipophilic anticancer drug, as model drug. The incorporation of the tamoxifen did not affect the shape and sizes of nanoparticles showing a drug loading of 40%. Tamoxifen-loaded nanoparticles exhibited a higher dose-dependent cytotoxicity than free tamoxifen, while blank nanoparticles did not show any cytotoxic effect at the same concentrations. The electrospray technique might be proposed to produce tamoxifen-loaded PAA-chol nanoparticle in powder form without any excipient in a single step. PMID:21785731

  3. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage

    NASA Astrophysics Data System (ADS)

    Alfonso-García, Alba; Pfisterer, Simon G.; Riezman, Howard; Ikonen, Elina; Potma, Eric O.

    2016-06-01

    We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell.

  4. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage

    PubMed Central

    Alfonso-García, Alba; Pfisterer, Simon G.; Riezman, Howard; Ikonen, Elina; Potma, Eric O.

    2015-01-01

    Abstract. We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell. PMID:26719944

  5. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    NASA Astrophysics Data System (ADS)

    Mandal, Pritam; Noutsi, Pakiza; Chaieb, Sahraoui

    2016-06-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  6. The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis

    PubMed Central

    Horner, Michael A.; Pardee, Keith; Liu, Suya; King-Jones, Kirst; Lajoie, Gilles; Edwards, Aled; Krause, Henry M.; Thummel, Carl S.

    2009-01-01

    Cholesterol homeostasis is required to maintain normal cellular function and avoid the deleterious effects of hypercholesterolemia. Here we show that the Drosophila DHR96 nuclear receptor binds cholesterol and is required for the coordinate transcriptional response of genes that are regulated by cholesterol and involved in cholesterol uptake, trafficking, and storage. DHR96 mutants die when grown on low levels of cholesterol and accumulate excess cholesterol when maintained on a high-cholesterol diet. The cholesterol accumulation phenotype can be attributed to misregulation of npc1b, an ortholog of the mammalian Niemann-Pick C1-like 1 gene NPC1L1, which is essential for dietary cholesterol uptake. These studies define DHR96 as a central regulator of cholesterol homeostasis. PMID:19952106

  7. The Drosophila DHR96 nuclear receptor binds cholesterol and regulates cholesterol homeostasis.

    PubMed

    Horner, Michael A; Pardee, Keith; Liu, Suya; King-Jones, Kirst; Lajoie, Gilles; Edwards, Aled; Krause, Henry M; Thummel, Carl S

    2009-12-01

    Cholesterol homeostasis is required to maintain normal cellular function and avoid the deleterious effects of hypercholesterolemia. Here we show that the Drosophila DHR96 nuclear receptor binds cholesterol and is required for the coordinate transcriptional response of genes that are regulated by cholesterol and involved in cholesterol uptake, trafficking, and storage. DHR96 mutants die when grown on low levels of cholesterol and accumulate excess cholesterol when maintained on a high-cholesterol diet. The cholesterol accumulation phenotype can be attributed to misregulation of npc1b, an ortholog of the mammalian Niemann-Pick C1-like 1 gene NPC1L1, which is essential for dietary cholesterol uptake. These studies define DHR96 as a central regulator of cholesterol homeostasis.

  8. Dietary cholesterol and plasma lipoprotein profiles: Randomized controlled trials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Early work suggested that dietary cholesterol increased plasma total cholesterol concentrations in humans. Given the relationship between elevated plasma cholesterol concentrations and cardiovascular disease risk, dietary guidelines have consistently recommended limiting food sources of cholesterol....

  9. Different shades of cholesterol: Gold nanoparticles supported on MoS2 nanoribbons for enhanced colorimetric sensing of free cholesterol.

    PubMed

    Nirala, Narsingh R; Pandey, Shobhit; Bansal, Anushka; Singh, Vijay K; Mukherjee, Bratindranath; Saxena, Preeti S; Srivastava, Anchal

    2015-12-15

    In the present study, we manifest that traditionally used gold nanoparticles when supported on molybdenum disulfide nanoribbons matrix (MoS2 NRs-Au NPs) show synergistically enhanced intrinsic peroxidase like catalytic activity and can catalyze the oxidation of 3,3',5,5' tetramethyl benzidine by H2O2 to produce a highly sensitive blue shade product depending on level of free cholesterol, when tested on complex system of human serum. Further the system attests appreciable kinetics, owing to Km value as low as 0.015 mM and better loading capacity (Vmax=6.7×10(-6) M s(-1)). Additionally, the proposed system is stable for weeks with ability to perform appreciably in wide pH (3-6) and temperature range (25-60 °C). Utilizing this potential, the present work proposes a cholesterol detection color wheel which is used along with cost effective cholesterol detection strips fabricated out of proposed MoS2 NRs-Au NPs system for quick and reliable detection of free cholesterol using unaided eye.

  10. Fish protein hydrolysates affect cholesterol metabolism in rats fed non-cholesterol and high-cholesterol diets.

    PubMed

    Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro

    2012-03-01

    Fish consumption is well known to provide health benefits in both experimental animals and human subjects. Numerous studies have demonstrated the beneficial effects of various protein hydrolysates on lipid metabolism. In this context, this study examined the effect of fish protein hydrolysates (FPH) on cholesterol metabolism compared with the effect of casein. FPHs were prepared from Alaska pollock meat using papain as a protease. Male Wistar rats were divided into the following four dietary groups of seven rats each: either casein (20%) or FPH (10%) + casein (10%), with or without 0.5% cholesterol and 0.1% sodium cholate. Serum and liver lipid levels, fecal cholesterol and bile acid excretions, and the hepatic expression of genes encoding proteins involved in cholesterol homeostasis were examined. In rats fed the FPH diets compared with casein diets with or without cholesterol and sodium cholate, the indexes of cholesterol metabolism-namely, serum cholesterol, triglyceride, and low-density lipoprotein-cholesterol levels-were significantly lower, whereas fecal cholesterol and bile acid excretions were higher. Rats fed the FPH diets compared with casein with cholesterol exhibited a lower liver cholesterol level via an increased liver cholesterol 7α-hydroxylase (CYP7A1) expression level. This study demonstrates that the intake of FPH has hypocholesterolemic effects through the enhancement of fecal cholesterol and bile acid excretions and CYP7A1 expression levels. Therefore, fish peptides prepared by papain digestion might provide health benefits by decreasing the cholesterol content in the blood, which would contribute to the prevention of circulatory system diseases such as arteriosclerosis.

  11. Peptide mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K.; Johansson, Jan

    2013-04-09

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  12. Evaluating computational models of cholesterol metabolism.

    PubMed

    Paalvast, Yared; Kuivenhoven, Jan Albert; Groen, Albert K

    2015-10-01

    Regulation of cholesterol homeostasis has been studied extensively during the last decades. Many of the metabolic pathways involved have been discovered. Yet important gaps in our knowledge remain. For example, knowledge on intracellular cholesterol traffic and its relation to the regulation of cholesterol synthesis and plasma cholesterol levels is incomplete. One way of addressing the remaining questions is by making use of computational models. Here, we critically evaluate existing computational models of cholesterol metabolism making use of ordinary differential equations and addressed whether they used assumptions and make predictions in line with current knowledge on cholesterol homeostasis. Having studied the results described by the authors, we have also tested their models. This was done primarily by testing the effect of statin treatment in each model. Ten out of eleven models tested have made assumptions in line with current knowledge of cholesterol metabolism. Three out of the ten remaining models made correct predictions, i.e. predicting a decrease in plasma total and LDL cholesterol or increased uptake of LDL upon treatment upon the use of statins. In conclusion, few models on cholesterol metabolism are able to pass a functional test. Apparently most models have not undergone the critical iterative systems biology cycle of validation. We expect modeling of cholesterol metabolism to go through many more model topologies and iterative cycles and welcome the increased understanding of cholesterol metabolism these are likely to bring.

  13. Piperine prevents cholesterol gallstones formation in mice.

    PubMed

    Song, Xiu-Yun; Xu, Shuang; Hu, Jin-Feng; Tang, Jia; Chu, Shi-Feng; Liu, Hang; Han, Ning; Li, Jing-Wei; Zhang, Dong-Ming; Li, Yue-Ting; Chen, Nai-Hong

    2015-03-15

    Biliary cholesterol may contribute to the formation of cholesterol gallstones, and regulation of these levels could be a useful therapeutic strategy for gallstones disease. Piperine (PA) is a potential cholesterol lowering agent. In this study, we assessed the effect and mechanism of PA in preventing cholesterol gallstones formation induced by feeding lithogenic diet containing high cholesterol levels to mice. C57BL/6 inbred mice were fed lithogenic or chow diets for 10 weeks, with or without PA (15, 30 and 60 mg/kg) or ursodeoxycholic acid (UDCA, 60 mg/kg) administration. Cholesterol, phospholipids and crystals in bile, the lipid in serum, pathological changes and proteins expression in liver were analyzed. The results showed that PA could decrease the cholesterol potency and crystals in bile, reduce total cholesterol (TC), triglycerides (TG) and increase high-density lipoprotein/low-density lipoprotein (HDL/LDL) levels in serum. Furthermore, PA treatment reduced liver lipid peroxidation and protected hepatobiliary cells from liver injury by decreasing malondialdehyde (MDA) and increasing superoxide dismutase (SOD). In addition, PA inhibited the expression of ATP-binding cassette transporters G5/8 (ABCG5/8) and liver X receptor (LXR) in liver, and reduced cholesterol transport from the hepatocytes to the gallbladder. It may be the mechanism of PA in preventing cholesterol gallstones formation. PA as a potential drug for prevention cholesterol gallstones merits further investigation.

  14. Cholesterol metabolism and homeostasis in the brain.

    PubMed

    Zhang, Juan; Liu, Qiang

    2015-04-01

    Cholesterol is an essential component for neuronal physiology not only during development stage but also in the adult life. Cholesterol metabolism in brain is independent from that in peripheral tissues due to blood-brain barrier. The content of cholesterol in brain must be accurately maintained in order to keep brain function well. Defects in brain cholesterol metabolism has been shown to be implicated in neurodegenerative diseases, such as Alzheimer's disease (AD), Huntington's disease (HD), Parkinson's disease (PD), and some cognitive deficits typical of the old age. The brain contains large amount of cholesterol, but the cholesterol metabolism and its complex homeostasis regulation are currently poorly understood. This review will seek to integrate current knowledge about the brain cholesterol metabolism with molecular mechanisms.

  15. Regulation of biliary cholesterol secretion in the rat. Role of hepatic cholesterol esterification.

    PubMed Central

    Nervi, F; Bronfman, M; Allalón, W; Depiereux, E; Del Pozo, R

    1984-01-01

    Although the significance of the enterohepatic circulation of bile salts in the solubilization and biliary excretion of cholesterol is well established, little is known about the intrahepatic determinants of biliary cholesterol output. Studies were undertaken to elucidate some of these determinants in the rat. Feeding 1% diosgenin for 1 wk increased biliary cholesterol output and saturation by 400%. Bile flow, biliary bile salt, phospholipid and protein outputs remained in the normal range. When ethynyl estradiol (EE) was injected into these animals, biliary cholesterol output decreased to almost normal levels under circumstances of minor changes in the rates of biliary bile salt and phospholipid outputs. Similarly, when chylomicron cholesterol was intravenously injected into diosgenin-fed animals, biliary cholesterol output significantly decreased as a function of the dose of chylomicron cholesterol administered. Relative rates of hepatic cholesterol synthesis and esterification were measured in isolated hepatocytes. Although hepatic cholesterogenesis increased 300% in diosgenin-fed animals, the contribution of newly synthesized cholesterol to total biliary cholesterol output was only 19 +/- 9%, compared with 12 +/- 6% in control and 15 +/- 5% in diosgenin-fed and EE-injected rats. The rate of oleate incorporation into hepatocytic cholesterol esters was 30% inhibited in diosgenin-fed rats. When EE was injected into these animals, the rate of cholesterol esterification increased to almost 300%. To investigate further the interrelationship between hepatic cholesterol esterification and biliary cholesterol output, we studied 21 diosgenin-fed rats. Six of them received in addition EE and 10 received chylomicron cholesterol. The relationships between biliary cholesterol output as a function of both microsomal acyl-CoA:cholesterol acyltransferase (ACAT) activity and hepatic cholesterol ester concentration were significantly correlated in a reciprocal manner. From these

  16. Cholesterol

    MedlinePlus

    ... Diet Plans Nutrients and Nutritional Info Sugar and Sugar Substitutes Exercise and Fitness Exercise Basics Sports Safety Injury Rehabilitation ... Diet Plans Nutrients and Nutritional Info Sugar and Sugar Substitutes Exercise and Fitness Exercise Basics Sports Safety Injury Rehabilitation ...

  17. igr Genes and Mycobacterium tuberculosis cholesterol metabolism.

    PubMed

    Chang, Jennifer C; Miner, Maurine D; Pandey, Amit K; Gill, Wendy P; Harik, Nada S; Sassetti, Christopher M; Sherman, David R

    2009-08-01

    Recently, cholesterol was identified as a physiologically important nutrient for Mycobacterium tuberculosis survival in chronically infected mice. However, it remained unclear precisely when cholesterol is available to the bacterium and what additional bacterial functions are required for its metabolism. Here, we show that the igr locus, which we previously found to be essential for intracellular growth and virulence of M. tuberculosis, is required for cholesterol metabolism. While igr-deficient strains grow identically to the wild type in the presence of short- and long-chain fatty acids, the growth of these bacteria is completely inhibited in the presence of cholesterol. Interestingly, this mutant is still able to respire under cholesterol-dependent growth inhibition, suggesting that the bacteria can metabolize other carbon sources during cholesterol toxicity. Consistent with this hypothesis, we found that the growth-inhibitory effect of cholesterol in vitro depends on cholesterol import, as mutation of the mce4 sterol uptake system partially suppresses this effect. In addition, the Delta igr mutant growth defect during the early phase of disease is completely suppressed by mutating mce4, implicating cholesterol intoxication as the primary mechanism of attenuation. We conclude that M. tuberculosis metabolizes cholesterol throughout infection.

  18. Cholesterol, the central lipid of mammalian cells

    PubMed Central

    Maxfield, Frederick R.; van Meer, Gerrit

    2010-01-01

    Summary of recent advances Despite its importance for mammalian cell biology and human health, there are many basic aspects of cholesterol homeostasis that are not well understood. Even for the well-characterized delivery of cholesterol to cells via lipoproteins, a novel regulatory mechanism has been discovered recently, involving a serum protein called PCSK9, which profoundly affects lipoproteins and their receptors. Cells can export cholesterol by processes that require the activity of ABC transporters, but the molecular mechanisms for cholesterol transport remain unclear. Cholesterol levels in different organelles vary by 5–10 fold, and the mechanisms for maintaining these differences are now partially understood. Several proteins have been proposed to play a role in the inter-organelle movement of cholesterol, but many aspects of the mechanisms for regulating intracellular transport and distribution of cholesterol remain to be worked out. The endoplasmic reticulum is the main organelle responsible for regulation of cholesterol synthesis, and careful measurements have shown that the proteins responsible for sterol sensing respond over a very narrow range of cholesterol concentrations to provide very precise, switch-like control over cholesterol synthesis. PMID:20627678

  19. The macrophage and its related cholesterol efflux as a HDL function index in atherosclerosis.

    PubMed

    Yamamoto, Suguru; Narita, Ichiei; Kotani, Kazuhiko

    2016-06-01

    The macrophage and its related cholesterol efflux are considered to be a key player in atherosclerotic formation in relation to the function of high-density lipoprotein (HDL). The HDL function can be evaluated by the reaction between lipid-loaded macrophages and lipid-acceptors in the HDL fraction from the plasma, apolipoprotein B-depleted serum, and/or whole serum/plasma. Recent studies have reported that an impaired cholesterol efflux of HDL is observed in patients with cardiometabolic diseases, such as dyslipidemia, diabetes mellitus, and chronic kidney disease. A population-based cohort study has reported an inverse association between the cholesterol efflux capacity of HDL and the incidence of atherosclerotic disease, regardless of the serum HDL-cholesterol level. Moreover, in this paper, when we summarized several clinical interventional studies of statin treatment that examined cholesterol efflux, a potential increase in the efflux in patients treated with statins was implied. However, the effect was not fully defined in the current situation because of the small sample sizes, lack of a unified protocol for measuring the efflux, and short-term intervention periods without cardiovascular outcomes in available studies. Further investigation is necessary to determine the effect of drugs on cholesterol efflux. With additional advanced studies, cholesterol efflux is a promising laboratory index to understand the HDL function.

  20. Matrix metalloproteinase 8 degrades apolipoprotein A-I and reduces its cholesterol efflux capacity.

    PubMed

    Salminen, Aino; Åström, Pirjo; Metso, Jari; Soliymani, Rabah; Salo, Tuula; Jauhiainen, Matti; Pussinen, Pirkko J; Sorsa, Timo

    2015-04-01

    Various cell types in atherosclerotic lesions express matrix metalloproteinase (MMP)-8. We investigated whether MMP-8 affects the structure and antiatherogenic function of apolipoprotein (apo) A-I, the main protein component of HDL particles. Furthermore, we studied serum lipid profiles and cholesterol efflux capacity in MMP-8-deficient mouse model. Incubation of apoA-I (28 kDa) with activated MMP-8 yielded 22 kDa and 25 kDa apoA-I fragments. Mass spectrometric analyses revealed that apoA-I was cleaved at its carboxyl-terminal part. Treatment of apoA-I and HDL with MMP-8 resulted in significant reduction (up to 84%, P < 0.001) in their ability to facilitate cholesterol efflux from cholesterol-loaded THP-1 macrophages. The cleavage of apoA-I by MMP-8 and the reduction in its cholesterol efflux capacity was inhibited by doxycycline. MMP-8-deficient mice had significantly lower serum triglyceride (TG) levels (P = 0.003) and larger HDL particles compared with wild-type (WT) mice. However, no differences were observed in the apoA-I levels or serum cholesterol efflux capacities between the mouse groups. Proteolytic modification of apoA-I by MMP-8 may impair the first steps of reverse cholesterol transport, leading to increased accumulation of cholesterol in the vessel walls. Eventually, inhibition of MMPs by doxycycline may reduce the risk for atherosclerotic vascular diseases.

  1. Reduction of blood serum cholesterol

    NASA Technical Reports Server (NTRS)

    Winitz, M. (Inventor)

    1974-01-01

    By feeding a human subject as the sole source of sustenance a defined diet wherein the carbohydrate consists substantially entirely of glucose, maltose or a polysaccharide of glucose, the blood serum cholesterol level of the human subject is substantially reduced. If 25 percent of the carbohydrate is subsequently supplied in the form of sucrose, an immediate increase from the reduced level is observed. The remainder of the defined diet normally includes a source of amino acids, such as protein or a protein hydrolysate, vitamins, minerals and a source of essential fatty acid.

  2. Imbalanced cholesterol metabolism in Alzheimer's disease.

    PubMed

    Xue-shan, Zhao; Juan, Peng; Qi, Wu; Zhong, Ren; Li-hong, Pan; Zhi-han, Tang; Zhi-sheng, Jiang; Gui-xue, Wang; Lu-shan, Liu

    2016-05-01

    Alzheimer's disease (AD) is a complex and multifactorial neurodegenerative disease that is mainly caused by β-amyloid accumulation. A large number of studies have shown that elevated cholesterol levels may perform a function in AD pathology, and several cholesterol-related gene polymorphisms are associated with this disease. Although numerous studies have shown the important function of cholesterol in AD pathogenesis and development, the underlying mechanism remains unclear. To further elucidate cholesterol metabolism disorder and AD, we first, review metabolism and regulation of the cholesterol in the brain. Second, we summarize the literature stating that hypercholesterolemia is one of the risk factors of AD. Third, we discuss the main mechanisms of abnormal cholesterol metabolism that increase the risk of AD. Finally, the relationships between AD and apolipoprotein E, PCSK9, and LRP1 are discussed in this article.

  3. Molecular Mechanism of Cyclodextrin Mediated Cholesterol Extraction

    PubMed Central

    López, Cesar A.; de Vries, Alex H.; Marrink, Siewert J.

    2011-01-01

    The depletion of cholesterol from membranes, mediated by β-cyclodextrin (β-CD) is well known and documented, but the molecular details of this process are largely unknown. Using molecular dynamics simulations, we have been able to study the CD mediated extraction of cholesterol from model membranes, in particular from a pure cholesterol monolayer, at atomic resolution. Our results show that efficient cholesterol extraction depends on the structural distribution of the CDs on the surface of the monolayer. With a suitably oriented dimer, cholesterol is extracted spontaneously on a nanosecond time scale. Additional free energy calculations reveal that the CDs have a strong affinity to bind to the membrane surface, and, by doing so, destabilize the local packing of cholesterol molecules making their extraction favorable. Our results have implications for the interpretation of experimental measurements, and may help in the rational design of efficient CD based nano-carriers. PMID:21455285

  4. microRNAs and cholesterol metabolism

    PubMed Central

    Moore, Kathryn J.; Rayner, Katey J.; Suárez, Yajaira; Fernández-Hernando, Carlos

    2010-01-01

    Cholesterol metabolism is tightly regulated at the cellular level. In addition to classic transcriptional regulation of cholesterol metabolism (e.g., by SREBP and LXR), members of a class of non-coding RNAs termed microRNAs (miRNAs) have recently been identified to be potent post-transcriptional regulators of lipid metabolism genes, including cholesterol homeostasis. We and others have recently shown that miR-33 regulates cholesterol efflux and HDL biogenesis by downregulating the expression of the ABC transporters, ABCA1 and ABCG1. In addition to miR-33, miR-122 and miR-370 have been shown to play important roles in regulating cholesterol and fatty acid metabolism. These new data suggest important roles of microRNAs in the epigenetic regulation of cholesterol metabolism and have opened new avenues for the treatment of dyslipidemias. PMID:20880716

  5. Cholesterol Oxidation in Fish and Fish Products.

    PubMed

    Dantas, Natalie Marinho; Sampaio, Geni Rodrigues; Ferreira, Fernanda Silva; Labre, Tatiana da Silva; Torres, Elizabeth Aparecida Ferraz da Silva; Saldanha, Tatiana

    2015-12-01

    Fish and fish products are important from a nutritional point of view due to the presence of high biological value proteins and the high content of polyunsaturated fatty acids, especially those of the n-3 series, and above all eicosapentaenoic acid and docosahexaenoic acid. However, these important food products also contain significant amounts of cholesterol. Although cholesterol participates in essential functions in the human body, it is unstable, especially in the presence of light, oxygen, radiation, and high temperatures that can cause the formation of cholesterol oxidation products or cholesterol oxides, which are prejudicial to human health. Fish processing involves high and low temperatures, as well as other methods for microbiological control, which increases shelf life and consequently added value; however, such processes favor the formation of cholesterol oxidation products. This review brings together data on the formation of cholesterol oxides during the preparation and processing of fish into food products which are recognized and recommended for their nutritional properties.

  6. [Diagnostic importance of HDL cholesterol determination].

    PubMed

    Reissner, J; Herrmann, W

    1990-01-01

    The present paper describes the sensitivity to quantification of changes of HDL-cholesterol in serum by two different precipitation and analytical techniques during the treatment of patients. After the precipitation of VLDL and LDL by phosphotungstic acid/magnesium chloride the chemical determination of HDL-cholesterol in serum with the Liebermann-Burchard reaction yields different results in comparison to enzymatic HDL-cholesterol determined in serum supernatant after the precipitation by polyethylene glycol 20.000. Correlation analyses of apolipoprotein A-I with enzymatic HDL-, HDL2-, HDL3-cholesterol or electrophoretic alpha-cholesterol demonstrate that the therapeutically induced changes (by training and diet) of lipid composition are more correctly reflected by the enzymatic determination of HDL-cholesterol after serum precipitation by polyethylene glycol.

  7. Effects of dietary cholesterol and simvastatin on cholesterol synthesis in Smith-Lemli-Opitz syndrome (SLOS)

    PubMed Central

    Chan, Yen-Ming; Merkens, Louise S.; Connor, William E.; Roullet, Jean-Baptiste; Penfield, Jennifer A.; Jordan, Julia M.; Steiner, Robert D.; Jones, Peter J.H.

    2009-01-01

    Deficient cholesterol and/or excessive 7-dehydrocholesterol (7-DHC) may be responsible for the pathology of Smith-Lemli-Opitz syndrome (SLOS). Both high cholesterol diets given to ameliorate cholesterol deficiency while decreasing 7-DHC, and cholesterol-enriched diets plus simvastatin to further decrease sterol synthesis, have been used as potential therapies. However, the effect of dietary cholesterol and simvastatin on cholesterol synthesis in SLOS has not been reported. Twelve SLOS subjects enrolled in the study: Nine had received a high cholesterol diet (HI) for 3 years, and three were studied after 4 weeks on a low cholesterol diet (LO). Cholesterol fractional synthesis rate (FSR) was measured after oral administration of deuterium oxide, using gas-chromatography-isotope ratio mass spectrometry. FSR was lower in HI compared with LO (HI: 1.46±0.62%/d; LO: 4.77±0.95%/d; P<0.001). Three HI subjects were re-tested after 0.8 years taking simvastatin (HI+ST). Simvastatin tended to reduce FSR and significantly decreased (P<0.01) plasma 7-DHC compared to cholesterol supplementation alone. The study demonstrates the utility of the deuterium incorporation method to understand the effect of therapeutic interventions in SLOS. The data suggest that dietary cholesterol supplementation reduces cholesterol synthesis in SLOS and further support the rationale for the combined treatment of SLOS with a cholesterol-enriched diet and simvastatin. PMID:19430384

  8. HIF-1α-mediated upregulation of SERCA2b: The endogenous mechanism for alleviating the ischemia-induced intracellular Ca(2+) store dysfunction in CA1 and CA3 hippocampal neurons.

    PubMed

    Kopach, Olga; Maistrenko, Anastasiia; Lushnikova, Iryna; Belan, Pavel; Skibo, Galina; Voitenko, Nana

    2016-05-01

    Pyramidal neurons of the hippocampus possess differential susceptibility to the ischemia-induced damage with the highest vulnerability of CA1 and the lower sensitivity of CA3 neurons. This damage is triggered by Ca(2+)-dependent excitotoxicity and can result in a delayed cell death that might be potentially suspended through activation of endogenous neuroprotection with the hypoxia-inducible transcription factors (HIF). However, the molecular mechanisms of this neuroprotection remain poorly understood. Here we show that prolonged (30min) oxygen and glucose deprivation (OGD) in situ impairs intracellular Ca(2+) regulation in CA1 rather than in CA3 neurons with the differently altered expression of genes coding Ca(2+)-ATPases: the mRNA level of plasmalemmal Ca(2+)-ATPases (PMCA1 and PMCA2 subtypes) was downregulated in CA1 neurons, whereas the mRNA level of the endoplasmic reticulum Ca(2+)-ATPases (SERCA2b subtype) was increased in CA3 neurons at 4h of re-oxygenation after prolonged OGD. These demonstrate distinct susceptibility of CA1 and CA3 neurons to the ischemic impairments in intracellular Ca(2+) regulation and Ca(2+)-ATPase expression. Stabilization of HIF-1α by inhibiting HIF-1α hydroxylation prevented the ischemic decrease in both PMCA1 and PMCA2 mRNAs in CA1 neurons, upregulated the SERCA2b mRNA level and eliminated the OGD-induced Ca(2+) store dysfunction in these neurons. Cumulatively, these findings reveal the previously unknown HIF-1α-driven upregulation of Ca(2+)-ATPases as a mechanism opposing the ischemic impairments in intracellular Ca(2+) regulation in hippocampal neurons. The ability of HIF-1α to modulate expression of genes coding Ca(2+)-ATPases suggests SERCA2b as a novel target for HIF-1 and may provide potential implications for HIF-1α-stabilizing strategy in activating endogenous neuroprotection.

  9. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway

    SciTech Connect

    Xu, Xiaolin; Li, Qian; Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian; Wang, Yiqing

    2013-11-15

    Highlights: •Arctigenin enhanced cholesterol efflux in oxLDL-loaded THP-1 macrophages. •The expression of ABCA1, ABCG1 and apoE was upregulated in arctigenin-treated cells. •Arctigenin promoted the expression of PPAR-γ and LXR-α. •Inhibition of PPAR-γ or LXR-α reversed arctigenin-mediated biological effects. •Arctigenin promotes cholesterol efflux via activation of PPAR-γ/LXR-α/ABCA1 pathway. -- Abstract: Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α.

  10. Metabolism of adrenal cholesterol in man

    PubMed Central

    Borkowski, Abraham; Delcroix, Claude; Levin, Sam

    1972-01-01

    The kinetics of plasma and adrenal cholesteral equilibration were analyzed in patients undergoing bilateral adrenalectomy for generalized mammary carcinoma. A biological model is proposed to help in the understanding of adrenal cholesterol physiology. It comprises two intracellular compartments: (1) A compartment of free adrenal cholesterol which is small (of the order of 17 mg) but turns over very fast; it is renewed approximately 8 times per day: 3 times by the inflow of free plasma cholesterol, and 5 times by the hydrolysis of esterified adrenal cholesterol, the contribution of adrenal cholesterol synthesis appearing to be relatively small. (2) A compartment of esterified adrenal cholesterol which is 20 times larger; it is constantly renewed by in situ esterification and hydrolysis with a daily fractional turnover rate of the order of 0.25. The direct and selective accumulation of plasma cholesteryl esters is practically absent. Only free adrenal cholesterol returns to plasma, mostly after conversion into steroid “hormones.” However small the synthesis of adrenal cholesterol may be, it seems more important in the zona “reticularis.” On the other hand, the inflow of plasma cholesterol and the turnover of the free adrenal compartment tend to be faster in the zona “fasciculata.” The equilibration of plasma and adrenal cholesterol can proceed unmodified under conditions of ACTH suppression. In one patient with Cushing's disease the size of the two adrenal compartments was clearly increased but their equilibration with plasma cholesterol proceeded normally. In another patient the kinetics of hydrocortisone corresponded to those of free adrenal cholesterol in the control studies. PMID:4338119

  11. Structure of Cholesterol in Lipid Rafts

    NASA Astrophysics Data System (ADS)

    Toppozini, Laura; Meinhardt, Sebastian; Armstrong, Clare L.; Yamani, Zahra; Kučerka, Norbert; Schmid, Friederike; Rheinstädter, Maikel C.

    2014-11-01

    Rafts, or functional domains, are transient nano-or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking, and lipid or protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules, we observe raftlike structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to ordering of the cholesterol molecules in the raftlike structures were observed and indexed by two different structures: a monoclinic structure of ordered cholesterol pairs of alternating direction in equilibrium with cholesterol plaques, i.e., triclinic cholesterol bilayers.

  12. Macrophage-mediated cholesterol handling in atherosclerosis.

    PubMed

    Chistiakov, Dimitry A; Bobryshev, Yuri V; Orekhov, Alexander N

    2016-01-01

    Formation of foam cells is a hallmark at the initial stages of atherosclerosis. Monocytes attracted by pro-inflammatory stimuli attach to the inflamed vascular endothelium and penetrate to the arterial intima where they differentiate to macrophages. Intimal macrophages phagocytize oxidized low-density lipoproteins (oxLDL). Several scavenger receptors (SR), including CD36, SR-A1 and lectin-like oxLDL receptor-1 (LOX-1), mediate oxLDL uptake. In late endosomes/lysosomes of macrophages, oxLDL are catabolysed. Lysosomal acid lipase (LAL) hydrolyses cholesterol esters that are enriched in LDL to free cholesterol and free fatty acids. In the endoplasmic reticulum (ER), acyl coenzyme A: cholesterol acyltransferase-1 (ACAT1) in turn catalyses esterification of cholesterol to store cholesterol esters as lipid droplets in the ER of macrophages. Neutral cholesteryl ester hydrolases nCEH and NCEH1 are involved in a secondary hydrolysis of cholesterol esters to liberate free cholesterol that could be then out-flowed from macrophages by cholesterol ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 and SR-BI. In atherosclerosis, disruption of lipid homoeostasis in macrophages leads to cholesterol accumulation and formation of foam cells.

  13. Dietary plant sterols and cholesterol metabolism.

    PubMed

    Ellegård, Lars H; Andersson, Susan W; Normén, A Lena; Andersson, Henrik A

    2007-01-01

    Plant sterols, naturally occurring in foods of plant origin, reduce cholesterol absorption. Experimental studies show plant sterols to be an important part of the serum-cholesterol lowering effect of certain diets and dietary components. Epidemiological data show that individuals with higher intakes of plant sterols from their habitual diets have lower serum-cholesterol levels. To date, the role of naturally occurring plant sterols for lowering serum cholesterol has probably been underestimated. The consumption of dietary plant sterols should be a part of dietary advice to patients with hypercholesterolemia and the general public for the prevention and management of coronary heart disease.

  14. Impact of cholesterol on disease progression.

    PubMed

    Lin, Chun-Jung; Lai, Cheng-Kuo; Kao, Min-Chuan; Wu, Lii-Tzu; Lo, U-Ging; Lin, Li-Chiung; Chen, Yu-An; Lin, Ho; Hsieh, Jer-Tsong; Lai, Chih-Ho; Lin, Chia-Der

    2015-06-01

    Cholesterol-rich microdomains (also called lipid rafts), where platforms for signaling are provided and thought to be associated with microbe-induced pathogenesis and lead to cancer progression. After treatment of cells with cholesterol disrupting or usurping agents, raft-associated proteins and lipids can be dissociated, and this renders the cell structure nonfunctional and therefore mitigates disease severity. This review focuses on the role of cholesterol in disease progression including cancer development and infectious diseases. Understanding the molecular mechanisms of cholesterol in these diseases may provide insight into the development of novel strategies for controlling these diseases in clinical scenarios.

  15. Cholesterol and late-life cognitive decline.

    PubMed

    van Vliet, Peter

    2012-01-01

    High cholesterol levels are a major risk factor for cardiovascular disease, but their role in dementia and cognitive decline is less clear. This review highlights current knowledge on the role of cholesterol in late-life cognitive function, cognitive decline, and dementia. When measured in midlife, high cholesterol levels associate with an increased risk of late-life dementia and cognitive decline. However, when measured in late-life, high cholesterol levels show no association with cognitive function, or even show an inverse relation. Although statin treatment has been shown to associate with a lower risk of dementia and cognitive decline in observational studies, randomized controlled trials show no beneficial effect of statin treatment on late-life cognitive function. Lowering cholesterol levels may impair brain function, since cholesterol is essential for synapse formation and maturation and plays an important role in the regulation of signal transduction through its function as a component of the cell membrane. However, membrane cholesterol also plays a role in the formation and aggregation of amyloid-β. Factors that influence cholesterol metabolism, such as dietary intake, are shown to play a role in late-life cognitive function and the risk of dementia. In conclusion, cholesterol associates with late-life cognitive function, but the association is strongly age-dependent. There is no evidence that treatment with statins in late-life has a beneficial effect on cognitive function.

  16. Cholesterol modulates Orai1 channel function

    PubMed Central

    Derler, Isabella; Jardin, Isaac; Stathopulos, Peter B.; Muik, Martin; Fahrner, Marc; Zayats, Vasilina; Pandey, Saurabh K.; Poteser, Michael; Lackner, Barbara; Absolonova, Marketa; Schindl, Rainer; Groschner, Klaus; Ettrich, Rüdiger; Ikura, Mitsu; Romanin, Christoph

    2017-01-01

    STIM1 (stromal interaction molecule 1) and Orai proteins are the essential components of Ca2+ release–activated Ca2+ (CRAC) channels. We focused on the role of cholesterol in the regulation of STIM1-mediated Orai1 currents. Chemically induced cholesterol depletion enhanced store-operated Ca2+ entry (SOCE) and Orai1 currents. Furthermore, cholesterol depletion in mucosal-type mast cells augmented endogenous CRAC currents, which were associated with increased degranulation, a process that requires calcium influx. Single point mutations in the Orai1 amino terminus that would be expected to abolish cholesterol binding enhanced SOCE to a similar extent as did cholesterol depletion. The increase in Orai1 activity in cell expressing these cholesterol-binding–deficient mutants occurred without affecting the amount in the plasma membrane or the coupling of STIM1 to Orai1. We detected cholesterol binding to an Orai1 amino-terminal fragment in vitro and to full-length Orai1 in cells. Thus, our data showed that Orai1 senses the amount of cholesterol in the plasma membrane and that the interaction of Orai1 with cholesterol inhibits its activity, thereby limiting SOCE. PMID:26814231

  17. Crystalline domain structure and cholesterol crystal nucleation in single hydrated DPPC:cholesterol:POPC bilayers.

    PubMed

    Ziblat, Roy; Leiserowitz, Leslie; Addadi, Lia

    2010-07-21

    Grazing incidence X-ray diffraction measurements were performed on single hydrated bilayers and monolayers of DPPC:Cholesterol:POPC at varying concentrations. There are substantial differences in the phase and structure behavior of the crystalline domains formed within the bilayers relative to the corresponding monolayers, due to interactions between the opposing leaflets. Depending on the lipid composition, these interactions led to phase separation, changes in molecular tilt angle, or formation of cholesterol crystals. In monolayers, DPPC and cholesterol form a single crystalline phase at all compositions studied. In bilayers, a second crystalline phase appears when cholesterol levels are increased: domains of cholesterol and DPPC form monolayer thick crystals where each of the lipid leaflets diffracts independently, whereas excess cholesterol forms cholesterol bilayer thick crystals at a DPPC:Chol ratio < 46:54 +/- 2 mol %. The nucleation of the cholesterol crystals occurs at concentrations relevant to the actual cell plasma membrane composition.

  18. Neonatal dietary cholesterol and alleles of cholesterol 7-alpha hydroxylase affect piglet cerebrum weight, cholesterol concentration, and behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This experiment was designed to test the effect of polymorphism in the cholesterol 7-alpha hydroxylase (CYP7) gene locus, and dietary cholesterol (C) on cerebrum C in neonatal pigs fed sow's milk formulas. Thirty-six pigs (18 male and 18 female) genetically selected for high (HG), or low (LG) plasma...

  19. ACAT inhibitors: the search for novel cholesterol lowering agents.

    PubMed

    Pal, Palash; Gandhi, Hardik; Giridhar, Rajani; Yadav, Mange Ram

    2013-06-01

    Increased level of serum cholesterol (hyperlipidemia) is the most significant risk factor for the development of atherosclerosis. Cholesterol levels are affected by factors such as rate of endogenous cholesterol synthesis, biliary cholesterol excretion and dietary cholesterol absorption. Acyl CoA: Cholesterol O-acyl transferases (ACAT) are a small family of enzymes that catalyze cholesterol esterification and cholesterol absorption in intestinal mucosal cells and maintain the cholesterol homeostasis in the blood. Inhibition of the ACAT enzymes is one of the attractive targets to treat hyperlipidemia. Literature survey shows that structurally diverse compounds possess ACAT inhibitory properties. In this review, a comprehensive presentation of the literature on diverse ACAT inhibitors has been given.

  20. Involvement of free cholesterol and high-density lipoprotein in development and resistance of the preimplantation bovine embryo to heat shock.

    PubMed

    Moss, J I; Garrett, T J; Hansen, P J

    2012-11-01

    Development of the mammalian preimplantation embryo is susceptible to disruption by elevated temperature. The molecular and biochemical bases for developmental, genetic, and other differences in embryonic resistance to heat shock are largely not known. Here we tested the hypothesis that increasing free cholesterol content could improve embryonic resistance to heat shock. Culture of bovine embryos at 41.0°C for 15 h beginning at 30 h after insemination (1- to 2-cell stage) reduced development to the blastocyst stage. Reduction in embryonic cholesterol content by culture with methyl-β-cyclodextrin (MBCD) reduced development. This effect of MBCD could be abrogated in 1 of 2 experiments if the molecule was loaded with cholesterol before addition to culture medium. Even though culture with cholesterol-loaded MBCD increased free cholesterol content, it did not increase resistance of embryos to heat shock. Treatment of embryos with cholesterol-loaded high density lipoprotein (HDL) increased embryonic resistance to heat shock even though it slightly reduced embryo cholesterol content. It is likely that other actions of HDL (e.g., protection from free radicals) were responsible for the thermoprotective properties of this molecule. A final experiment was performed to determine whether the increased resistance of embryos at d 5 of development to heat shock as compared with the 2-cell embryo was due to changes in free cholesterol content. However, there was no significant difference in cholesterol content between 2-cell embryos and d 5 embryos that were > 16 cells in development. In conclusion, raising cholesterol content does not improve embryonic survival in response to heat shock. Depletion of cholesterol, in contrast, reduces competence of embryos to develop to the blastocyst stage. High density lipoprotein is thermoprotective to embryos and probably acts through a mechanism independent of its actions on embryonic content of free cholesterol.

  1. 21 CFR 862.1175 - Cholesterol (total) test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Cholesterol (total) test system. 862.1175 Section... Systems § 862.1175 Cholesterol (total) test system. (a) Identification. A cholesterol (total) test system is a device intended to measure cholesterol in plasma and serum. Cholesterol measurements are used...

  2. Load cell

    DOEpatents

    Spletzer, Barry L.

    1998-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components.

  3. Load cell

    DOEpatents

    Spletzer, B.L.

    1998-12-15

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components. 16 figs.

  4. Load cell

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs which can be combined to determine any one of the six general load components.

  5. Cholesterol Level: Can It Be Too Low?

    MedlinePlus

    ... low? Can your total cholesterol level be too low? Answers from Francisco Lopez-Jimenez, M.D. A high blood cholesterol level increases your ... better, but in rare cases having a very low level of low-density lipoprotein (LDL, or "bad") ...

  6. Role of cholesterol in Mycobacterium tuberculosis infection.

    PubMed

    Miner, Maurine D; Chang, Jennifer C; Pandey, Amit K; Sassetti, Christopher M; Sherman, David R

    2009-06-01

    Mycobacterium tuberculosis (MTB) acquisition and utilization of nutrients within the host cell is poorly understood, although it has been hypothesized that host lipids probably play an important role in MTB survival. Cholesterol has recently been identified as an important lipid for mycobacterial infection. The mce4 transport system is required for cholesterol import into bacterial cells, and deletion of mce4 locus resulted in severe attenuation in a chronic mouse model of infection. However, it has remained unclear what additional bacterial functions were required for utilization of this sterol. We have found that the igr locus, which was previously found essential for intracellular growth and virulence of MTB, is required for cholesterol metabolism: igr-deficient bacteria cannot grow using cholesterol as a primary carbon source. The growth-inhibitory effect of cholesterol in vitro depends on cholesterol import, as the delta igr mutant growth defect during the early phase of disease is completely suppressed by mutating mce4, implicating cholesterol intoxication as the primary mechanism of attenuation. We conclude that M. tuberculosis metabolizes cholesterol throughout the course of infection, and that degradation of this sterol is crucial for bacterial persistence.

  7. Cholesterol: An Achilles' Heel for Glioblastoma?

    PubMed

    An, Zhenyi; Weiss, William A

    2016-11-14

    In this issue of Cancer Cell, Villa et al. report that survival of glioblastoma cells is dependent on uptake of cholesterol. A synthetic agonist of the Liver X receptor depleted cholesterol in GBM cells, slowing growth of GBM xenografts.

  8. Prosopis farcta beans increase HDL cholesterol and decrease LDL cholesterol in ostriches (Struthio camelus).

    PubMed

    Omidi, Arash; Ansari nik, Hossein; Ghazaghi, Mahmood

    2013-02-01

    Ten blue-neck male ostriches (Struthio camelus) were fed Prosopis farcta beans throughout a 30-day experiment. Blood samples were collected from ostriches on days 0 and 30 to measure levels of high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglyceride, total serum protein, albumin, globulin, cholesterol, calcium, inorganic phosphorus, the activity of aspartate aminotransferase, alanine aminotransferase, and γ-glutamyl transferase (γ-GT). From days 0 to 30, HDL cholesterol, total protein, and globulins levels increased significantly whereas LDL cholesterol, inorganic phosphorus, and γ-GT activity decreased significantly.

  9. Cholesterol-lowering effect of plant sterols.

    PubMed

    AbuMweis, Suhad S; Jones, Peter J H

    2008-12-01

    Plant sterols are plant components that have a chemical structure similar to cholesterol except for the addition of an extra methyl or ethyl group; however, plant sterol absorption in humans is considerably less than that of cholesterol. In fact, plant sterols reduce cholesterol absorption and thus reduce circulating levels of cholesterol. Earlier studies that have tested the efficacy of plant sterols as cholesterol-lowering agents incorporated plant sterols into fat spreads. Later on, plant sterols were added to other food matrices, including juices, nonfat beverages, milk and yogurt, cheese, meat, croissants and muffins, and cereal and chocolate bars. The beneficial physiologic effects of plant sterols could be further enhanced by combining them with other beneficial substances, such as olive and fish oils, fibers, and soy proteins, or with exercise. The addition of plant sterols to the diet is suggested by health experts as a safe and effective way to reduce the risk of coronary heart disease.

  10. Cholesterol granulomas in three meerkats (Suricata suricatta).

    PubMed

    Sladky, K K; Dalldorf, F G; Steinberg, H; Wright, J F; Loomis, M R

    2000-11-01

    Cholesterol granulomas are uncommon pathologic lesions in animals, although they are important intracranial tumors in humans. This report describes cholesterol granulomas associated with multiple organ systems of three captive meerkats. In the most severe case, meerkat No. 1, the pathologic behavior of the cholesterol granuloma was unique in that it appeared to locally invade the cerebrum and calvarium, possibly contributing to neurological deficits observed antemortem. A review of other meerkat necropsies revealed incidental, asymptomatic cholesterol granulomas in organs of two other individuals, meerkat Nos. 2 and 3. Histologically, all lesions were composed of cholesterol clefts admixed with large, foamy macrophages containing hemosiderin, multinucleated giant cells, lymphocytes, plasma cells, and foci of mineralization. Hypercholesterolemia was documented in two of the three meerkats.

  11. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway.

    PubMed

    Xu, Xiaolin; Li, Qian; Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian; Wang, Yiqing

    2013-11-15

    Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α.

  12. Fish protein decreases serum cholesterol in rats by inhibition of cholesterol and bile acid absorption.

    PubMed

    Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro

    2011-05-01

    Fish protein has been shown to decrease serum cholesterol content by inhibiting absorption of cholesterol and bile acid in laboratory animals, though the mechanism underlying this effect is not yet fully understood. The purpose of this study was to elucidate the mechanism underlying the inhibition of cholesterol and bile acid absorption following fish protein intake. Male Wistar rats were divided into 2 dietary groups of 7 rats each, 1 group receiving a diet consisting of 20% casein and the other receiving a diet consisting of 10% casein and 10% fish protein. Both experimental diets also contained 0.5% cholesterol and 0.1% sodium cholate. After the rats had been on their respective diets for 4 wk, their serum and liver cholesterol contents and fecal cholesterol, bile acid, and nitrogen excretion contents were measured. Fish protein consumption decreased serum and liver cholesterol content and increased fecal cholesterol and bile acid excretion and simultaneously increased fecal nitrogen excretion. In addition, fish protein hydrolyzate prepared by in vitro digestion had lower micellar solubility of cholesterol and higher binding capacity for bile acids compared with casein hydrolyzate. These results suggest that the hypocholesterolemic effect of fish protein is mediated by increased fecal cholesterol and bile acid excretion, which is due to the digestion products of fish protein having reduced micellar solubility of cholesterol and increased bile acid binding capacity.

  13. Cholesterol overloading leads to hepatic L02 cell damage through activation of the unfolded protein response.

    PubMed

    Li, Qi; Liu, Zhiguo; Guo, Jianli; Chen, Jiangyuan; Yang, Pu; Tian, Jun; Sun, Jun; Zong, Yiqiang; Qu, Shen

    2009-10-01

    Reported data indicate that cholesterol loading in the liver can cause hepatic injury. To explore the possible mechanisms of cell damage resulting from cholesterol overloading in hepatocytes, cell apoptosis, the unfolded protein response (UPR) and the correlation between them were assessed in the cholesterol-overloaded normal human hepatic cell line L02. L02 cells were incubated with 200 microg/ ml of low density lipoprotein (LDL) for 24 h with or without 20 microg/ml 58035, an inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT). In the LDL+58035 group, the intracellular cholesterol level was dramatically increased, which was measured by an enzymatic combined high performance liquid chromatography assay. Expression of immunoglobulin-binding protein, X-box binding protein 1, activating transcription factor 6, activating transcription factor 4, CCAAT/enhancer-binding protein homologous protein-10, markers of endoplasmic reticulum stress (ERS)/ UPR, were up-regulated as determined using reverse transcription-polymerase chain reaction (RT-PCR) or Western blot analysis. The rate of cell apoptic death increased 21.3+/-2.4%. Meanwhile, the active caspase-3 protein expression was increased 8.4-fold compared to the active caspase-3 protein expression in the controls. Furthermore, 4-phenylbutyric acid, an inhibitor of UPR, partly reduced cell apoptosis and activation of caspase-3. This study suggests that cholesterol overloading in hepatic L02 cells induces ERS and activates the UPR which, in part, leads to the apoptotic damage of cells.

  14. HDL-apolipoprotein A-I exchange is independently associated with cholesterol efflux capacity

    PubMed Central

    Borja, Mark S.; Ng, Kit F.; Irwin, Angela; Hong, Jaekyoung; Wu, Xing; Isquith, Daniel; Zhao, Xue-Qiao; Prazen, Bryan; Gildengorin, Virginia; Oda, Michael N.; Vaisar, Tomáš

    2015-01-01

    HDL is the primary mediator of cholesterol mobilization from the periphery to the liver via reverse cholesterol transport (RCT). A critical first step in this process is the uptake of cholesterol from lipid-loaded macrophages by HDL, a function of HDL inversely associated with prevalent and incident cardiovascular disease. We hypothesized that the dynamic ability of HDL to undergo remodeling and exchange of apoA-I is an important and potentially rate-limiting aspect of RCT. In this study, we investigated the relationship between HDL-apoA-I exchange (HAE) and serum HDL cholesterol (HDL-C) efflux capacity. We compared HAE to the total and ABCA1-specific cholesterol efflux capacity of 77 subjects. We found that HAE was highly correlated with both total (r = 0.69, P < 0.0001) and ABCA1-specific (r = 0.47, P < 0.0001) efflux, and this relationship remained significant after adjustment for HDL-C or apoA-I. Multivariate models of sterol efflux capacity indicated that HAE accounted for approximately 25% of the model variance for both total and ABCA1-specific efflux. We conclude that the ability of HDL to exchange apoA-I and remodel, as measured by HAE, is a significant contributor to serum HDL efflux capacity, independent of HDL-C and apoA-I, indicating that HDL dynamics are an important factor in cholesterol efflux capacity and likely RCT. PMID:26254308

  15. Major Risk Factors for Heart Disease: High Blood Cholesterol

    MedlinePlus

    ... Major Risk Factors for Heart Disease High Blood Cholesterol High blood cholesterol is another major risk factor for heart disease ... can do something about. The higher your blood cholesterol level, the greater your risk for developing heart ...

  16. Cholesterol: Top Five Foods to Lower Your Numbers

    MedlinePlus

    Cholesterol: Top foods to improve your numbers Diet can play an important role in lowering your cholesterol. Here are the top foods to lower your cholesterol and protect your heart. By Mayo Clinic Staff ...

  17. High Blood Cholesterol: What You Need to Know

    MedlinePlus

    ... Audiences Contact The Health Information Center High Blood Cholesterol: What You Need To Know Table of Contents ... Lifestyle Changes (TLC) Drug Treatment Resources Why Is Cholesterol Important? Your blood cholesterol level has a lot ...

  18. Cholesterol-Lowering Supplements: Lower Your Numbers without Prescription Medication

    MedlinePlus

    ... cholesterol and LDL cholesterol May cause nausea, indigestion, gas, diarrhea or constipation; may be ineffective if you take ezetimibe (Zetia), a prescription cholesterol medication Soy protein as a substitute for other high-fat protein sources May reduce ...

  19. Dietary cholesterol and the origin of cholesterol in the brain of developing rats.

    PubMed

    Edmond, J; Korsak, R A; Morrow, J W; Torok-Both, G; Catlin, D H

    1991-09-01

    Milk substitutes containing cholesterol at concentrations lower, equal to or greater than the concentrations found in natural rat milk were fed to artificially reared rat pups from 5 d until 15 or 16 d after birth. Pups reared by their mother served as controls. In one experiment, D7-cholesterol was fed in the milk at four different concentrations. The purpose of the study was to determine whether cholesterol in milk influenced growth and the sterol composition of brain over the period of its most rapid accumulation in this organ. We found that body and brain weights were not different, irrespective of the concentration of cholesterol in the milk substitutes. High concentrations of cholesterol in milk caused a significant increase in cholesterol in liver and plasma, whereas the concentration of cholesterol in brain was not different from the concentration in the brain of controls. The amounts of D7-cholesterol in lung and liver, and in plasma and RBC that pass the brain, were consistent with the concentration fed in the milk and approached 70% of the total content of cholesterol in these organs at the highest concentration fed. Brain, by contrast, contained very small amounts of D7-cholesterol, which could readily be attributed to D7-cholesterol associated with the vascular system of the blood-brain barrier. We found that the sterol composition of brain is not influenced by the concentration of cholesterol in milk and that cholesterol exogenous to brain, even in a hypercholesterolemic condition, does not gain entry to the brain. We conclude that the brain biosynthesizes de novo all the cholesterol it requires.

  20. Physiological and pathological implications of cholesterol.

    PubMed

    Cortes, Victor A; Busso, Dolores; Maiz, Alberto; Arteaga, Antonio; Nervi, Flavio; Rigotti, Attilio

    2014-01-01

    Cholesterol has evolved to fulfill sophisticated biophysical, cell signaling and endocrine requirements of animal systems. At a cellular level, cholesterol is found in membranes, where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signaling functions. At an organismal level, cholesterol is the precursor for all steroid hormones, including gluco- and mineralo-corticoids, sex hormones and vitamin D, all of which regulate carbohydrate, sodium, reproductive and bone homeostasis, respectively. This sterol is also the precursor for bile acids, which are important for intestinal absorption of dietary lipids as well as energy and glucose metabolic regulation. Importantly, complex mechanisms maintain cholesterol within physiological ranges and the disregulation of these mechanisms results in embryonic or adult diseases, caused by either excessive or reduced tissue cholesterol levels. The causative role of cholesterol in these diseases has been demonstrated by diverse genetic and pharmacologic animal models that are commented in this review.

  1. Cholesterol Asymmetry in Synaptic Plasma Membranes

    PubMed Central

    Wood, W. Gibson; Igbavboa, Urule; Müller, Walter E.; Eckert, Gunter P.

    2010-01-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: 1) chronic ethanol consumption; 2) statins; 3) aging; and 4) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density-lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, p-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. PMID:21214553

  2. Proteins and cholesterol-rich domains.

    PubMed

    Epand, Richard M

    2008-01-01

    Biological membranes are composed of many molecular species of lipids and proteins. These molecules do not mix ideally. In the plane of the membrane components are segregated into domains that are enriched in certain lipids and proteins. Cholesterol is a membrane lipid that is not uniformly distributed in the membrane. Proteins play an important role in determining cholesterol distribution. Certain types of protein lipidation are known to cause the lipoprotein to sequester with cholesterol and to stabilize cholesterol-rich domains. However, proteins that are excluded from such domains also contribute to the redistribution of cholesterol. One of the motifs that favor interaction with cholesterol is the CRAC motif. The role of the CRAC motif of the gp41 fusogenic protein of HIV is discussed. The distribution of the multianionic lipid, phosphatidylinositol(4,5)bis-phosphate (PtnIns(4,5)P2), is also not uniform in cell membranes. This lipid has several functions in the cell, including a morphological role in determining the sites of attachment of the actin cytoskeleton to the plasma membrane. PtnIns(4,5)P2 is sequestered by proteins having clusters of cationic residues in their sequence. Certain proteins containing cationic clusters also contain moieties such as myristoylation or a CRAC segment that would also endow them with the ability to sequester to a cholesterol-rich domain. These proteins interact with PtnIns(4,5)P2 in a cholesterol-dependent manner forming domains that are enriched in both cholesterol and in PtnIns(4,5)P2 but can also be distinct from liquid-ordered raft-like domains.

  3. Cellular Cholesterol Transport Proteins in Diabetic Nephropathy

    PubMed Central

    Tsun, Joseph G. S.; Yung, Susan; Chau, Mel K. M.; Shiu, Sammy W. M.; Chan, Tak Mao; Tan, Kathryn C. B.

    2014-01-01

    Background Lipid accumulation has been shown to accelerate renal injury, and the intracellular accumulation of lipids may be caused by alterations in synthesis as well as lipid uptake and efflux. We have investigated the role of cellular cholesterol transport proteins including adenosine triphosphate binding cassette transporter A1 (ABCA1), G1 (ABCG1) and scavenger receptor class B type I (SR-BI) in diabetic nephropathy. Methods Protein expression and the ability to mediate cholesterol efflux of ABCA1, ABCG1 and SR-BI was determined in human renal mesangial cells and proximal tubular epithelial cells cultured under normal or high glucose conditions. Renal expression of these cholesterol transporters was examined in a murine model of streptozotocin-induced type 1 diabetes. Results ABCA1, ABCG1 and SR-BI were expressed in both human renal mesangial cells and proximal tubular epithelial cells, and mediated cholesterol efflux to apolipoprotein AI and HDL. In vitro, hyperglycemia reduced the expression and the ability to mediate cholesterol efflux of all three cholesterol transporters (p<0.05). In vivo studies showed that intra-renal accumulation of lipids was increased in diabetic mice, particularly in mice with nephropathy. This was associated with a significant reduction in the expression of ABCA1, ABCG1 and SR-BI in the kidneys. These changes were already seen in diabetic mice without nephropathy and preceded the development of nephropathy. Diabetic mice with nephropathy had the lowest level of these cholesterol transporters. Conclusion Inducing diabetes with streptozotocin significantly reduced renal expression of ABCA1, ABCG1 and SR-BI. Defects in cholesterol export pathway in renal cells could therefore promote cholesterol accumulation and might contribute to the development of diabetic nephropathy. PMID:25181357

  4. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    PubMed Central

    Mandal, Pritam; Noutsi, Pakiza; Chaieb, Sahraoui

    2016-01-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low. PMID:27245215

  5. Effect of dietary cholesterol and fat on cell cholesterol transfer to postprandial plasma in hyperlipidemic men.

    PubMed

    Sutherland, Wayne H F; de Jong, Sylvia A; Walker, Robert J

    2007-10-01

    Postprandial chylomicrons are potent ultimate acceptors of cell membrane cholesterol and are believed to accelerate reverse cholesterol transport (RCT). We compared the effects of meals rich in polyunsaturated fat (PUFA) and either high (605 mg) or low (151 mg) in cholesterol and a meal rich in dairy fat (DF) in the form of cream on net in vitro transport of red blood cell (RBC) membrane cholesterol to 4 and 6 h postprandial plasma in eight normotriglyceridemic (NTG-H) and eight hypertriglyceridemic (HTG-H) men with mild to moderate hypercholesterolemia. In HTG-H men, cell cholesterol accumulation in 6-h postprandial plasma was significantly (P = 0.02) less after the PUFA-HC meal compared with the other meals. The significant (P < 0.001) increase in cell plus endogenous cholesterol accumulation in the triglyceride-rich lipoprotein (TRL) fraction of 4 h postprandial plasma incubated with RBC was significantly (P = 0.007) higher after the PUFA-HC meal compared with DF meal in HTG-H men. In NTG-H men, cholesterol accumulation in plasma and plasma lipoproteins in the presence and absence of RBC was not significantly affected by the type of meal ingested. These data suggest that addition of large amounts of cholesterol to a PUFA meal may impair diffusion-mediated transport of cell membrane cholesterol to postprandial plasma and that replacing DF with PUFA in a meal increases postprandial lipemia and may potentially increase cholesterol accumulation in atherogenic postprandial TRL in HTG-H men.

  6. Relative activity of cholesterol in OPPC/cholesterol/sphingomyelin mixtures measured with an acoustic sensor.

    PubMed

    Melzak, Kathryn A; Gizeli, Electra

    2009-03-01

    Acoustic devices are sensitive to the mole fraction of cholesterol present in liposomes adsorbed to the device surface as a result of the different mechanical properties of the liposomes. This fact was exploited to develop an acoustic assay to determine the relative affinity of cholesterol for different lipid mixtures. In the assay described here, the initial rate of beta-cyclodextrin-induced removal of cholesterol was measured for liposomes having a range of compositions. The initial rate of cholesterol removal was found to be directly proportional to the concentration of beta-cyclodextrin (betaCD) present over the range of 0-7.5 mg/ml (0-6.6 mM), consistent with other assays measuring the betaCD-accelerated transfer of cholesterol between liposomes. The affinity of cholesterol for 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (OPPC) liposomes with a sphingomyelin mole fraction, chi(SPM), of 0.2 was found to be 1.4x higher than that for pure OPPC liposomes. For liposomes composed only of OPPC and cholesterol in varying ratios, the initial rate of cholesterol removal was determined as a function of cholesterol mole fraction (chi(C)). The initial rate of removal showed an increase at chi(C) = 0.13, consistent with phase diagrams showing the start of liquid ordered domain formation, but no such increase at chi(C) = 0.25, in contrast to the predictions of the umbrella model for OPPC/cholesterol interactions.

  7. Cholesterol distribution in living cells: fluorescence imaging using dehydroergosterol as a fluorescent cholesterol analog.

    PubMed Central

    Mukherjee, S; Zha, X; Tabas, I; Maxfield, F R

    1998-01-01

    Cholesterol is an important constituent of most mammalian cell membranes and its concentration in various cellular membranes is tightly regulated. Although there is much information about cholesterol distribution and trafficking in cells, it is primarily derived from indirect measurements, and the results obtained using different approaches are often conflicting. A cholesterol analog that faithfully mimics the properties of cholesterol and can be followed in living cells would thus be very useful. In this study, we report the fluorescence imaging of such an analog, dehydroergosterol (DHE), in living cells. DHE differs from cholesterol in having three additional double bonds and an extra methyl group. In model systems, DHE closely mimics the behavior of native cholesterol. Using triple-labeling studies, we show that DHE colocalizes extensively with endocytosed transferrin, an endocytic recycling compartment marker, and with a marker for the trans-Golgi network, Tac-TGN38. This distribution of DHE is qualitatively similar to that observed when cells are labeled with the fluorescent cholesterol-binding polyene antibiotic, filipin, although there are differences in apparent proportions of DHE and filipin that are localized at the plasma membrane. Another cholesterol derivative, 25-NBD-cholesterol, has a structure that is compromised by the presence of a bulky NBD group and does not distribute to the same organelles as DHE or filipin. In addition, we show in this manuscript that kinetic processes can be followed in living cells by monitoring recovery of DHE fluorescence in a photobleached region over time. Our observations provide evidence for the presence of a large intracellular cholesterol pool in the endocytic recycling compartment and the trans-Golgi network that might play important roles in the trafficking of lipids, lipid-anchored proteins, and transmembrane proteins that preferentially partition into cholesterol-enriched membrane domains. In addition, this

  8. Dietary Phospholipids and Intestinal Cholesterol Absorption

    PubMed Central

    Cohn, Jeffrey S.; Kamili, Alvin; Wat, Elaine; Chung, Rosanna W. S.; Tandy, Sally

    2010-01-01

    Experiments carried out with cultured cells and in experimental animals have consistently shown that phospholipids (PLs) can inhibit intestinal cholesterol absorption. Limited evidence from clinical studies suggests that dietary PL supplementation has a similar effect in man. A number of biological mechanisms have been proposed in order to explain how PL in the gut lumen is able to affect cholesterol uptake by the gut mucosa. Further research is however required to establish whether the ability of PLs to inhibit cholesterol absorption is of therapeutic benefit. PMID:22254012

  9. Acyl-coenzyme A:cholesterol acyltransferases

    PubMed Central

    Chang, Ta-Yuan; Li, Bo-Liang; Chang, Catherine C. Y.; Urano, Yasuomi

    2009-01-01

    The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as drug targets for atherosclerosis and for Alzheimer's disease. PMID:19141679

  10. Genetic therapies to lower cholesterol.

    PubMed

    Khoo, Bernard

    2015-01-01

    This review surveys the state-of-the-art in genetic therapies for familial hypercholesterolaemia (FH), caused most commonly by mutations in the LDL receptor (LDLR) gene. FH manifests as highly elevated low density lipoprotein (LDL) cholesterol levels and consequently accelerated atherosclerosis. Modern pharmacological therapies for FH are insufficiently efficacious to prevent premature cardiovascular disease, can cause significant adverse effects and can be expensive. Genetic therapies for FH have been mooted since the mid 1990s but gene replacement strategies using viral vectors have so far been unsuccessful. Other strategies involve knocking down the expression of Apolipoprotein B100 (APOB100) and the protease PCSK9 which designates LDLR for degradation. The antisense oligonucleotide mipomersen, which knocks down APOB100, is currently marketed (with restrictions) in the USA, but is not approved in Europe due to its adverse effects. To address this problem, we have devised a novel therapeutic concept, APO-skip, which is based on modulation of APOB splicing, and which has the potential to deliver a cost-effective, efficacious and safe therapy for FH.

  11. The role of cholesterol absorption and hepatic cholesterol content in high and low responses to dietary cholesterol and fat in pedigreed baboons (Papio species).

    PubMed

    Kushwaha, R S; Rice, K S; Lewis, D S; McGill, H C; Carey, K D

    1993-06-01

    Selective breeding has produced baboon families with low and high plasma cholesterol responses to dietary cholesterol and fat. We used 12 high- and 12 low-responding (mainly in low-density lipoprotein [LDL] cholesterol) pedigreed baboons to determine whether cholesterol absorption and hepatic cholesterol concentration are associated with these responses. We measured cholesterol absorption first on the chow diet, which was low in cholesterol and fat, and after 3 and 13 weeks on the challenge diets, which contained 0.45 mg cholesterol/kcal and 40% of calories as either coconut oil or corn oil. Plasma, lipoprotein, and hepatic cholesterol concentrations were measured 1 week after cholesterol absorption measurements. High-responding baboons had higher percentage cholesterol absorption than low-responding baboons on both chow and challenge diets, regardless of the type of dietary fat. Both high and low responders had higher percentage cholesterol absorption with corn oil than with coconut oil. High responders also had higher hepatic cholesterol concentrations than low responders on chow and after consuming the challenge diets for 4 weeks. After consuming the challenge diets for 14 weeks, low responders fed coconut oil had hepatic cholesterol levels equal to those of high responders, while low responders fed corn oil continued to have low hepatic cholesterol levels. Thus, percentage cholesterol absorption is consistently higher in high-responding baboons regardless of diet, but hepatic cholesterol concentration varies with duration of challenge and type of fat. The results suggest that both cholesterol absorption and hepatic cholesterol concentration regulate cholesterolemic responses to diet, but by different mechanisms.

  12. [Cholesterol and atherosclerosis. Historical considerations and treatment].

    PubMed

    Zárate, Arturo; Manuel-Apolinar, Leticia; Basurto, Lourdes; De la Chesnaye, Elsa; Saldívar, Iván

    2016-01-01

    Cholesterol is a precursor of steroid hormones and an essential component of the cell membrane, however, altered regulation of the synthesis, absorption and excretion of cholesterol predispose to cardiovascular diseases of atherosclerotic origin. Despite, the recognition of historical events for 200 years, starting with Michel Chevreul naming «cholesterol»; later on, Lobstein coining the term atherosclerosis and Marchand introducing it, Anichkov identifying cholesterol in atheromatous plaque, and Brown and Goldstein discovering LDL receptor; as well as the emerging of different drugs, such as fibrates, statins and cetrapibs this decade, promising to increase HDL and the most recent ezetimibe and anti-PCSK9 to inhibit the degradation of LDL receptor, however morbidity has not been reduced in cardiovascular disease.

  13. HDL Function, Dysfunction, and Reverse Cholesterol Transport

    PubMed Central

    Fisher, Edward A.; Feig, Jonathan E.; Hewing, Bernd; Hazen, Stanley L.; Smith, Jonathan D.

    2012-01-01

    Although high HDL-cholesterol levels are associated with decreased cardiovascular risk in epidemiological studies, recent genetic and pharmacological findings have raised doubts about the beneficial effects of HDL. Raising HDL levels in animal models by infusion or over expression of apolipoprotein A-I has shown clear vascular improvements, such as delayed atherosclerotic lesion progression and accelerated lesion regression, along with increased reverse cholesterol transport. Inflammation and other factors, such as myeloperoxidase mediated oxidation, can impair HDL production and HDL function, in regard to its reverse cholesterol transport, antioxidant, and anti-inflammatory activities. Thus, tests of HDL function, which have not yet been developed as routine diagnostic assays, may prove useful and be a better predictor of cardiovascular risk than HDL-cholesterol levels. PMID:23152494

  14. SNAREs and cholesterol movement for steroidogenesis.

    PubMed

    Kraemer, Fredric B; Shen, Wen-Jun; Azhar, Salman

    2017-02-05

    Steroidogenesis is a complex process through which cholesterol traffics to mitochondria and is converted via a series of enzymatic steps to steroid hormones. Although the rate-limiting step in this process is the movement of cholesterol from the outer to the inner mitochondrial membrane via the actions of StAR, a continuous supply of cholesterol must be delivered to the outer mitochondrial membrane during active steroidogenesis and this is derived from multiple sources, including lipoprotein uptake, endogenous cholesterol synthesis and release from stores within cytoplasmic lipid droplets. A number of mechanisms have been suggested to contribute to cholesterol trafficking to mitochondria; however, there is no definitive consensus and this is particularly so in regards to trafficking from cytoplasmic lipid droplets. In this paper we review experiments in which we have surveyed the expression of SNARE proteins in steroidogenic tissue and cells and examined the role of SNAREs in mediating cholesterol movement from lipid droplets to the mitochondria based on multiple studies that identified SNAREs as components of cytoplasmic lipid droplets. We established and characterized an in vitro mitochondria reconstitution assay system that enabled us to examine the impact of adding recombinant SNARE proteins specifically on the movement of cholesterol from model lipid droplets to the outer mitochondrial membrane. Using this reconstitution assay system in combination with siRNA knockdown experiments in rat primary granulosa cells or in steroidogenic cell lines, we showed that several SNARE proteins are important components in the trafficking of cholesterol from lipid droplets to the mitochondria for steroidogenesis.

  15. Human paraoxonase 1 overexpression in mice stimulates HDL cholesterol efflux and reverse cholesterol transport

    PubMed Central

    Ikhlef, Souade; Berrougui, Hicham; Kamtchueng Simo, Olivier; Zerif, Echarki

    2017-01-01

    This study was aimed to investigate the effect of human PON1 overexpression in mice on cholesterol efflux and reverse cholesterol transport. PON1 overexpression in PON1-Tg mice induced a significant 3-fold (p<0.0001) increase in plasma paraoxonase activity and a significant ~30% (p<0.0001) increase in the capacity of HDL to mediate cholesterol efflux from J774 macrophages compared to wild-type mice. It also caused a significant 4-fold increase (p<0.0001) in the capacity of macrophages to transfer cholesterol to apoA-1, a significant 2-fold (p<0.0003) increase in ABCA1 mRNA and protein expression, and a significant increase in the expression of PPARγ (p<0.0003 and p<0.04, respectively) and LXRα (p<0.0001 and p<0.01, respectively) mRNA and protein compared to macrophages from wild-type mice. Moreover, transfection of J774 macrophages with human PON1 also increased ABCA1, PPARγ and LXRα protein expression and stimulates macrophages cholesterol efflux to apo A1. In vivo measurements showed that the overexpression of PON1 significantly increases the fecal elimination of macrophage-derived cholesterol in PON1-Tg mice. Overall, our results suggested that the overexpression of PON1 in mice may contribute to the regulation of the cholesterol homeostasis by improving the capacity of HDL to mediate cholesterol efflux and by stimulating reverse cholesterol transport. PMID:28278274

  16. Cholesterol modulates the dimer interface of the β₂-adrenergic receptor via cholesterol occupancy sites.

    PubMed

    Prasanna, Xavier; Chattopadhyay, Amitabha; Sengupta, Durba

    2014-03-18

    The β2-adrenergic receptor is an important member of the G-protein-coupled receptor (GPCR) superfamily, whose stability and function are modulated by membrane cholesterol. The recent high-resolution crystal structure of the β2-adrenergic receptor revealed the presence of possible cholesterol-binding sites in the receptor. However, the functional relevance of cholesterol binding to the receptor remains unexplored. We used MARTINI coarse-grained molecular-dynamics simulations to explore dimerization of the β2-adrenergic receptor in lipid bilayers containing cholesterol. A novel (to our knowledge) aspect of our results is that receptor dimerization is modulated by membrane cholesterol. We show that cholesterol binds to transmembrane helix IV, and cholesterol occupancy at this site restricts its involvement at the dimer interface. With increasing cholesterol concentration, an increased presence of transmembrane helices I and II, but a reduced presence of transmembrane helix IV, is observed at the dimer interface. To our knowledge, this study is one of the first to explore the correlation between cholesterol occupancy and GPCR organization. Our results indicate that dimer plasticity is relevant not just as an organizational principle but also as a subtle regulatory principle for GPCR function. We believe these results constitute an important step toward designing better drugs for GPCR dimer targets.

  17. Dietary Cholesterol Impairs Memory and Memory Increases Brain Cholesterol and Sulfatide Levels

    PubMed Central

    Darwish, Deya S.; Wang, Desheng; Konat, Gregory W.; Schreurs, Bernard G.

    2011-01-01

    Cholesterol and sulfatides play many important roles in learning and memory. To date, our observations about the effects of cholesterol on learning have been assessed during response acquisition i.e., the learning of a new memory. Here we report for the first time on the effect of a cholesterol diet on a previously formed memory. Rabbits were given trace conditioning of the nictitating membrane response for ten days, then fed a 2% cholesterol diet for eight weeks, and then assessed for memory recall of the initially learned task. We show that dietary cholesterol had an adverse effect on memory recall. Second, we investigated whether dietary cholesterol caused an increase in brain cholesterol and sulfatide levels in four major brain structures (hippocampus, frontal lobe, brainstem, and cerebellum) using a technique for analyzing myelin and myelin-free fractions separately. Although our data confirm previous findings that dietary cholesterol does not directly affect cholesterol and establish that it does not affect sulfatide levels in the brain, these levels did increase rather significantly in the hippocampus and frontal lobe as a function of learning and memory. PMID:20141286

  18. Role of cholesterol in parasitic infections

    PubMed Central

    Bansal, Devendra; Bhatti, Harinderpal Singh; Sehgal, Rakesh

    2005-01-01

    The requirement of cholesterol for internalization of eukaryotic pathogens like protozoa (Leishmaniasis, Malaria and Toxoplasmosis) and the exchange of cholesterol along with other metabolites during reproduction in Schistosomes (helminths) under variable circumstances are poorly understood. In patients infected with some other helminthes, alterations in the lipid profile have been observed. Also, the mechanisms involved in lipid changes especially in membrane proteins related to parasite infections remain uncertain. Present review of literature shows that parasites induce significant changes in lipid parameters, as has been shown in the in vitro study where substitution of serum by lipid/cholesterol in medium and in experimental models (in vivo). Thus changes in lipid profile occur in patients having active infections with most of the parasites. Membrane proteins are probably involved in such reactions. All parasites may be metabolising cholesterol, but the exact relationship with pathogenic mechanism is not clear. So far, studies suggest that there may be some factors or enzymes, which allow the parasite to breakup and consume lipid/cholesterol. Further studies are needed for better understanding of the mechanisms involved in vivo. The present review analysis the various studies till date and the role of cholesterol in pathogenesis of different parasitic infections. PMID:15882457

  19. Development of cholesterol biosensor based on immobilized cholesterol esterase and cholesterol oxidase on oxygen electrode for the determination of total cholesterol in food samples.

    PubMed

    Basu, Anjan Kumar; Chattopadhyay, Parimal; Roychoudhuri, Utpal; Chakraborty, Runu

    2007-05-01

    The development of a cholesterol biosensor by co-immobilization of cholesterol esterase (ChEt) and cholesterol oxidase (ChOX) on oxygen electrode is described. The electrode consists of gold cathode and Ag/AgCl anode. The enzymes were immobilized by cross-linking with glutaraldehyde and Bovine Serum Albumin (BSA). The immobilized enzymatic membrane was attached to the tip of the electrode by a push cap system. The optimum pH and temperature of the sensor was determined, these are 6 and 25 degrees C respectively. The developed sensor was calibrated from 1-75 mg/dl of cholesterol palmiate and found linear in the range of 2-50 mg/dL. The calibration curve was drawn with V(i) (ppm/min)(initial velocity) vs different concentrations of cholesterol palmiate (mg/dL). The application of the sensor to determine the total cholesterol in different real food samples such as egg, meat was investigated. The immobilized enzymatic layer can be reused over 30 times and the stability of the enzymatic layer was studied up to 9 weeks.

  20. Obesity, Cholesterol Metabolism and Breast Cancer Pathogenesis

    PubMed Central

    McDonnell, Donald P.; Park, Sunghee; Goulet, Matthew T.; Jasper, Jeff; Wardell, Suzanne E.; Chang, Ching-yi; Norris, John D.; Guyton, John R.; Nelson, Erik R.

    2014-01-01

    Obesity and altered lipid metabolism are risk factors for breast cancer in pre- and post-menopausal women. These pathologic relationships have been attributed in part to the impact of cholesterol on the biophysical properties of cell membranes and to the influence of these changes on signaling events initiated at the membrane. However, more recent studies have indicated that the oxysterol 27-hydroxycholesterol (27HC), and not cholesterol per se, may be the primary biochemical link between lipid metabolism and cancer. The enzyme responsible for production of 27HC from cholesterol, CYP27A1, is expressed primarily in the liver and in macrophages. In addition significantly elevated expression of this enzyme within breast tumors has also been observed. It is believed that 27HC, acting through the liver X receptor (LXR) in macrophages and possibly other cells is involved in maintaining organismal cholesterol homeostasis. It has also been shown recently that 27HC is an estrogen receptor (ER) agonist in breast cancer cells and that it stimulates the growth and metastasis of tumors in several models of breast cancer. These findings provide the rationale for the clinical evaluation of pharmaceutical approaches that interfere with cholesterol/27HC synthesis as a means to mitigate the impact of cholesterol on breast cancer pathogenesis. PMID:25060521

  1. Human carotid atherosclerotic lesion protein components decrease cholesterol biosynthesis rate in macrophages through 3-hydroxy-3-methylglutaryl-CoA reductase regulation.

    PubMed

    Cohen, Elad; Aviram, Michael; Khatib, Soliman; Rosenblat, Mira; Vaya, Jacob

    2015-01-01

    Atherosclerosis is characterized by the formation of cholesterol-loaded macrophages, which are turned into foam cells, the hallmark of early atherogenesis. As part of ongoing research on the interactions among human carotid lesion components and blood elements, the effect of plaque homogenate on macrophage cholesterol biosynthesis rate was examined. Human carotid plaques were ground, extracted with phosphate-buffered saline (homogenate), and then added to the macrophage medium. This extract decreased macrophage cholesterol biosynthesis rate up to 50% in a dose-dependent manner. Cholesterol or lipoproteins were separated from the homogenate and added to the MQ medium. Unlike the homogenate, neither free cholesterol nor the lipoproteins were able to inhibit cholesterol biosynthesis rate under the above experimental concentration, suggesting that the homogenate-induced cholesterol biosynthesis inhibition in our experimental system was not owing to the feedback inhibition of cholesterol. Furthermore, the homogenate remaining after lipoprotein removal (lipoprotein-deficient homogenate) also decreased cholesterol biosynthesis rate, whereas boiled homogenate or phospholipids extracted from the homogenate decreased macrophage cholesterol biosynthesis rate only partially. Finally, cholesterol biosynthesis inhibition was achieved only upon using the precursor [(3)H]acetate, but not [(14)C]mevalonate, suggesting that 3-hydroxy-3-methylglutaryl-CoA reductase (HMGCoA Reductase), the rate-limiting enzyme in the cholesterol biosynthesis pathway, is involved in the above antiatherogenic effect of the homogenate, whereas the treatment with homogenate decreased HMGCoA Reductase mRNA. Proteins and phospholipids from human carotid lesion homogenate decrease cholesterol biosynthesis rate in macrophages secondary to HMGCoA Reductase feedback regulation. Such an effect may delay foam cell formation and atherosclerosis progression.

  2. The transport of cholesterol through the plasma in normal man.

    PubMed

    Myant, N B

    1983-09-30

    This review includes a brief account of the routes of entry of cholesterol into the plasma by (a) secretion of lipoproteins and (b) uptake of tissue free cholesterol by lipoproteins in the interstitial fluid, the metabolic transformation undergone by cholesterol within the plasma, with particular reference to the esterification of plasma free cholesterol by lecithin:cholesteryl acyltransferase and the redistribution of esterified cholesterol from high-density to low-density and very-low-density lipoprotein, and the routes by which cholesterol is removed from the plasma by bulk transport. The review end with a balance sheet showing the approximate amounts of cholesterol entering and leaving the plasma by different routes.

  3. The Role of Macrophage Lipophagy in Reverse Cholesterol Transport

    PubMed Central

    2017-01-01

    Macrophage cholesterol efflux is a central step in reverse cholesterol transport, which helps to maintain cholesterol homeostasis and to reduce atherosclerosis. Lipophagy has recently been identified as a new step in cholesterol ester hydrolysis that regulates cholesterol efflux, since it mobilizes cholesterol from lipid droplets of macrophages via autophagy and lysosomes. In this review, we briefly discuss recent advances regarding the mechanisms of the cholesterol efflux pathway in macrophage foam cells, and present lipophagy as a therapeutic target in the treatment of atherosclerosis. PMID:28345315

  4. miR-758 regulates cholesterol efflux through post-transcriptional repression of ABCA1

    PubMed Central

    Ramirez, Cristina M.; Dávalos, Alberto; Goedeke, Leigh; Salerno, Alessandro G.; Warrier, Nikhil; Cirera-Salinas, Daniel; Suárez, Yajaira; Fernández-Hernando, Carlos

    2012-01-01

    Objective The ATP-binding cassette transporter A1 (ABCA1) is a major regulator of macrophage cholesterol efflux and protects cells from excess intracellular cholesterol accumulation, however the mechanism involved in posttranscriptional regulation of ABCA1 is poorly understood. We previously showed miR-33 was one regulator. Here we investigated the potential contribution of other microRNAs (miRNAs) to post-transcriptionally regulate ABCA1 and macrophage cholesterol efflux. Methods and Results We performed a bioinformatic analaysis for identifying miRNA target prediction sites in ABCA1 gene and an unbiased genome-wide screen to identify miRNAs modulated by cholesterol excess in mouse peritoneal macrophages. Quantitative real-time RT-PCR confirmed that miR-758 is repressed in cholesterol-loaded macrophages. Under physiological conditions, high dietary fat excess in mice repressed mir-758 both in peritoneal macrophages and, to a lesser extent in the liver. In mouse and human cells in vitro, miR-758 repressed the expression of ABCA1 and conversely the inhibition of this miRNA by using anti-miR-758 increased ABCA1 expression. In mouse cells, mir-758 reduced cellular cholesterol efflux to apoA1 and anti-miR-758 increased it. miR-758 directly targets the 3′UTR of Abca1 as assessed by 3′UTR luciferase reporter assays. Interestingly, miR-758 is highly expressed in the brain where also target several genes involved in neurological functions including SLC38A1, NTM, EPHA7 and MYT1L. Conclusion We identified miR-758 as a novel miRNA that post-transcriptionally controls ABCA1 levels in different cells and regulates macrophage cellular cholesterol efflux to apoA1, opening new avenues to increase apoA1 and raise HDL levels. PMID:21885853

  5. Thermotropic lipid phase separations in human erythrocyte ghosts and cholesterol-enriched rat liver plasma membranes.

    PubMed

    Gordon, L M; Mobley, P W

    1984-01-01

    Electron spin resonance (ESR) studies of human erythrocyte ghosts labeled with 5-nitroxide stearate, I(12,3), indicate that a temperature-dependent lipid phase separation occurs with a high onset at 38 degrees C. Cooling below 38 degrees C induces I(12,3) clustering. Similar phase separations were previously identified in human platelet and cholesterol-loaded [cholesterol/phospholipid molar ratio (C/P) = 0.85] rat liver plasma membranes [L.M. Gordon et al., 1983; J. Membrane Biol. 76; 139-149]; these were attributed to redistribution of endogenous lipid components such that I(12,3) is excluded from cholesterol-rich domains and tends to reside in cholesterol-poor domains. Further enrichment of rat liver plasma membranes to C/P ratios of 0.94-0.98 creates an "artificial" system equivalent to human erythrocyte ghosts (C/P = 0.90), using such criteria as probe flexibility, temperature dependent I(12,3) clustering; and polarity of the probe environment. Consequently, cholesterol-rich and -poor domains probably exist in both erythrocyte ghosts and high cholesterol liver membranes at physiologic temperatures. The temperature dependence of cold-induced hypertonic lysis of intact human erythrocytes was examined by incubating cells in 0.9 M sucrose for 10 min at 1 degree C intervals between 9 and 46 degrees C (Stage 1), and then subjecting them to 0 degrees C for 10 min (Stage 2). Plots of released hemoglobin are approx. sigmoidal, with no lysis below 18 degrees C and maximal lysis above 40 degrees C. The protective effect of low temperatures during Stage 1 may be due to the formation of cholesterol-rich domains that alter the bilayer distribution and/or conformation of critical membrane-associated proteins.

  6. Cholesterol-Independent Effects of Methyl-β-Cyclodextrin on Chemical Synapses

    PubMed Central

    Ormerod, Kiel G.; Coorssen, Jens R.; Mercier, A. Joffre

    2012-01-01

    The cholesterol chelating agent, methyl-β-cyclodextrin (MβCD), alters synaptic function in many systems. At crayfish neuromuscular junctions, MβCD is reported to reduce excitatory junctional potentials (EJPs) by impairing impulse propagation to synaptic terminals, and to have no postsynaptic effects. We examined the degree to which physiological effects of MβCD correlate with its ability to reduce cholesterol, and used thermal acclimatization as an alternative method to modify cholesterol levels. MβCD impaired impulse propagation and decreased EJP amplitude by 40% (P<0.05) in preparations from crayfish acclimatized to 14°C but not from those acclimatized to 21°C. The reduction in EJP amplitude in the cold-acclimatized group was associated with a 49% reduction in quantal content (P<0.05). MβCD had no effect on input resistance in muscle fibers but decreased sensitivity to the neurotransmitter L-glutamate in both warm- and cold-acclimatized groups. This effect was less pronounced and reversible in the warm-acclimatized group (90% reduction in cold, P<0.05; 50% reduction in warm, P<0.05). MβCD reduced cholesterol in isolated nerve and muscle from cold- and warm-acclimatized groups by comparable amounts (nerve: 29% cold, 25% warm; muscle: 20% cold, 18% warm; P<0.05). This effect was reversed by cholesterol loading, but only in the warm-acclimatized group. Thus, effects of MβCD on glutamate-sensitivity correlated with its ability to reduce cholesterol, but effects on impulse propagation and resulting EJP amplitude did not. Our results indicate that MβCD can affect both presynaptic and postsynaptic properties, and that some effects of MβCD are unrelated to cholesterol chelation. PMID:22590538

  7. Enhanced vascular permeability facilitates entry of plasma HDL and promotes macrophage-reverse cholesterol transport from skin in mice.

    PubMed

    Kareinen, Ilona; Cedó, Lídia; Silvennoinen, Reija; Laurila, Pirkka-Pekka; Jauhiainen, Matti; Julve, Josep; Blanco-Vaca, Francisco; Escola-Gil, Joan Carles; Kovanen, Petri T; Lee-Rueckert, Miriam

    2015-02-01

    Reverse cholesterol transport (RCT) pathway from macrophage foam cells initiates when HDL particles cross the endothelium, enter the interstitial fluid, and induce cholesterol efflux from these cells. We injected [(3)H]cholesterol-loaded J774 macrophages into the dorsal skin of mice and measured the transfer of macrophage-derived [(3)H]cholesterol to feces [macrophage-RCT (m-RCT)]. Injection of histamine to the macrophage injection site increased locally vascular permeability, enhanced influx of intravenously administered HDL, and stimulated m-RCT from the histamine-treated site. The stimulatory effect of histamine on m-RCT was abolished by prior administration of histamine H1 receptor (H1R) antagonist pyrilamine, indicating that the histamine effect was H1R-dependent. Subcutaneous administration of two other vasoactive mediators, serotonin or bradykinin, and activation of skin mast cells to secrete histamine and other vasoactive compounds also stimulated m-RCT. None of the studied vasoactive mediators affected serum HDL levels or the cholesterol-releasing ability of J774 macrophages in culture, indicating that acceleration of m-RCT was solely due to increased availability of cholesterol acceptors in skin. We conclude that disruption of the endothelial barrier by vasoactive compounds enhances the passage of HDL into interstitial fluid and increases the rate of RCT from peripheral macrophage foam cells, which reveals a novel tissue cholesterol-regulating function of these compounds.

  8. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes

    PubMed Central

    Storey, Stephen M.; McIntosh, Avery L.; Huang, Huan; Landrock, Kerstin K.; Martin, Gregory G.; Landrock, Danilo; Payne, H. Ross; Atshaves, Barbara P.; Kier, Ann B.

    2012-01-01

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2

  9. Intracellular cholesterol-binding proteins enhance HDL-mediated cholesterol uptake in cultured primary mouse hepatocytes.

    PubMed

    Storey, Stephen M; McIntosh, Avery L; Huang, Huan; Landrock, Kerstin K; Martin, Gregory G; Landrock, Danilo; Payne, H Ross; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2012-04-15

    A major gap in our knowledge of rapid hepatic HDL cholesterol clearance is the role of key intracellular factors that influence this process. Although the reverse cholesterol transport pathway targets HDL to the liver for net elimination of free cholesterol from the body, molecular details governing cholesterol uptake into hepatocytes are not completely understood. Therefore, the effects of sterol carrier protein (SCP)-2 and liver fatty acid-binding protein (L-FABP), high-affinity cholesterol-binding proteins present in hepatocyte cytosol, on HDL-mediated free cholesterol uptake were examined using gene-targeted mouse models, cultured primary hepatocytes, and 22-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-amino]-23,24-bisnor-5-cholen-3β-ol (NBD-cholesterol). While SCP-2 overexpression enhanced NBD-cholesterol uptake, counterintuitively, SCP-2/SCP-x gene ablation also 1) enhanced the rapid molecular phase of free sterol uptake detectable in <1 min and initial rate and maximal uptake of HDL free cholesterol and 2) differentially enhanced free cholesterol uptake mediated by the HDL3, rather than the HDL2, subfraction. The increased HDL free cholesterol uptake was not due to increased expression or distribution of the HDL receptor [scavenger receptor B1 (SRB1)], proteins regulating SRB1 [postsynaptic density protein (PSD-95)/Drosophila disk large tumor suppressor (dlg)/tight junction protein (ZO1) and 17-kDa membrane-associated protein], or other intracellular cholesterol trafficking proteins (steroidogenic acute response protein D, Niemann Pick C, and oxysterol-binding protein-related proteins). However, expression of L-FABP, the single most prevalent hepatic cytosolic protein that binds cholesterol, was upregulated twofold in SCP-2/SCP-x null hepatocytes. Double-immunogold electron microscopy detected L-FABP sufficiently close to SRB1 for direct interaction, similar to SCP-2. These data suggest a role for L-FABP in HDL cholesterol uptake, a finding confirmed with SCP-2

  10. A computational and functional study elicits the ameliorating effect of the Chinese herbal formula Huo Luo Xiao Ling Dan on experimental ischemia-induced myocardial injury in rats via inhibition of apoptosis

    PubMed Central

    Han, Xiang-Dong; Zhou, Zhi-Wei; Yang, Wei; Ye, Hang-Cheng; Xu, Ying-Zi; Huang, Yun-Feng; Zhang, Tong; Zhou, Shu-Feng

    2015-01-01

    rise/descent of left ventricular pressure levels. Administration of HLXLD significantly ameliorated coronary artery ligation-induced tissue damage in the left ventricle, with restored arrangement of myocardial fibers and recovered myoplasm in rats. Furthermore, HLXLD markedly increased the expression level of Bcl-2 but decreased the level of cleaved caspase 3. Taken together, administration of HLXLD attenuated acute myocardial ischemia-induced damage in cardiomyocytes and inhibited apoptotic death of cardiomyocytes, thereby exerting a cardioprotective effect in rats with IHD. These findings suggest that HLXLD may represent a promising herbal formula for the treatment of cardiovascular disease by counteracting apoptotic cell death via multiple active compounds. More studies are warranted to fully elucidate the mechanisms of action, identify the therapeutic targets, and validate the efficacy and safety of HLXLD in the treatment of IHD. PMID:25733819

  11. A biosensor for cholesterol based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence.

    PubMed

    Zhang, Meihe; Yuan, Ruo; Chai, Yaqin; Chen, Shihong; Zhong, Huaan; Wang, Cun; Cheng, Yinfeng

    2012-02-15

    A novel cholesterol biosensor was prepared based on gold nanoparticles-catalyzed luminol electrogenerated chemiluminescence (ECL). Firstly, l-cysteine-reduced graphene oxide composites were modified on the surface of a glassy carbon electrode. Then, gold nanoparticles (AuNPs) were self-assembled on it. Subsequently, cholesterol oxidase (ChOx) was adsorbed on the surface of AuNPs to construct a cholesterol biosensor. The stepwise fabrication processes were characterized with cyclic voltammetry and atomic force microscopy. The ECL behaviors of the biosensor were also investigated. It was found that AuNPs not only provided larger surface area for higher ChOx loading but also formed the nano-structured interface on the electrode surface to improve the analytical performance of the ECL biosensor for cholesterol. Besides, based on the efficient catalytic ability of AuNPs to luminol ECL, the response of the biosensor to cholesterol was linear range from 3.3 μM to 1.0 mM with a detection limit of 1.1 μM (S/N=3). In addition, the prepared ECL biosensor exhibited satisfying reproducibility, stability and selectivity. Taking into account the advantages of ECL, we confidently expect that ECL would have potential applications in biotechnology and clinical diagnosis.

  12. Signal transduction pathways provide opportunities to enhance HDL and apoAI-dependent reverse cholesterol transport.

    PubMed

    Mulay, Vishwaroop; Wood, Peta; Rentero, Carles; Enrich, Carlos; Grewal, Thomas

    2012-02-01

    Binding of High Density Lipoprotein (HDL) and its major apolipoprotein A-I (apoA-I) to cell surface receptors is believed to initiate a plethora of signaling cascades that promote atheroprotective cell behavior, including the removal of excess cholesterol from lipid-loaded macrophages. More specifically, HDL and apoA-I binding to scavenger receptor BI (SR-BI) and ATP-binding cassette (ABC) transporter A1 has been shown to activate protein kinase A and C (PKA, PKC), Rac/Rho GTPases, Janus Kinase 2 (JAK2), calmodulin as well as mitogen-activated protein kinases (MAPK). Some of these signaling events upregulate mobilization of cholesterol from cellular pools, while others promote efflux pathways through increased expression, stability, and cell surface localization of SR-BI and ABCA1. This review aims to summarize the current knowledge of HDL- and apoA-I -induced signal transduction pathways that are linked to cholesterol efflux and discusses the underlying mechanisms that could couple ligand binding to SR-BI and ABCA1 with signaling and cholesterol export. Additional focus is given on the potential of pharmacological intervention to modulate the activity of signaling cascades for the inhibition or regression of cholesterol accumulation in atherosclerotic lesions.

  13. CHOLESTEROL UPTAKE IN THE SERUM OF NORMAL AND HOSPITALIZED INDIVIDUALS.

    DTIC Science & Technology

    cardiovascular disease . All sera dissolved additional cholesterol. Sera from the hospitalized group dissolved at least as much additional cholesterol as did sera from the normal group. This finding suggests that in atherosclerosis the reserve cholesterol transport capacity is not diminished. This statement, however, must be accepted within the limitations of the method and the unknown effects of therapeutic regimens. The amount of additional cholesterol dissolved by a sample of serum is not correlated with the original concentration of cholesterol in the serum.

  14. Metabolism of adrenal cholesterol in man

    PubMed Central

    Borkowski, Abraham; Delcroix, Claude; Levin, Sam

    1972-01-01

    The synthesis of adrenal cholesterol, its esterification and the synthesis of the glucocorticosteroid hormones were studied in vitro on human adrenal tissue. It was found that the synthesis of adrenal cholesterol may normally be small in the zona “fasciculata,” particularly when compared with the synthesis of the glucocorticosteroid hormones, that it is several times higher in the zona “reticularis” where esterified cholesterol is less abundant, and that under ACTH stimulation it increases strikingly and proportionally to the degree of esterified adrenal cholesterol depletion. On the other hand, the relative rate of esterification as well as the concentration of free adrenal cholesterol are remarkably stable: they do not differ according to the adrenal zonation and are unaffected by ACTH. Furthermore, from a qualitative point of view, the relative proportions of Δ1 and Δ2 cholesteryl esters formed in situ are similar to those anticipated from their relative concentrations, suggesting that the characteristic fatty acid distribution of the adrenal cholesteryl esters results from an in situ esterification rather than from a selective uptake of the plasma cholesteryl esters. Besides, the in vitro esterification reveals a propensity to the formation of the most unsaturated cholesteryl esters. Regarding hydrocortisone and corticosterone, their synthesis tends to be more elevated in the zona “fasciculata.” Despite its higher cholesterol concentration the zona “fasciculata” should not therefore be viewed as a quiescent functional complement to the zona “reticularis” and the cortical distribution of glucocorticosteroid hormone synthesis is quite distinct from that of adrenal cholesterol synthesis. PMID:4338120

  15. A novel alkyne cholesterol to trace cellular cholesterol metabolism and localization[S

    PubMed Central

    Hofmann, Kristina; Thiele, Christoph; Schött, Hans-Frieder; Gaebler, Anne; Schoene, Mario; Kiver, Yuriy; Friedrichs, Silvia; Lütjohann, Dieter; Kuerschner, Lars

    2014-01-01

    Cholesterol is an important lipid of mammalian cells and plays a fundamental role in many biological processes. Its concentration in the various cellular membranes differs and is tightly regulated. Here, we present a novel alkyne cholesterol analog suitable for tracing both cholesterol metabolism and localization. This probe can be detected by click chemistry employing various reporter azides. Alkyne cholesterol is accepted by cellular enzymes from different biological species (Brevibacterium, yeast, rat, human) and these enzymes include cholesterol oxidases, hydroxylases, and acyl transferases that generate the expected metabolites in in vitro and in vivo assays. Using fluorescence microscopy, we studied the distribution of cholesterol at subcellular resolution, detecting the lipid in the Golgi and at the plasma membrane, but also in the endoplasmic reticulum and mitochondria. In summary, alkyne cholesterol represents a versatile, sensitive, and easy-to-use tool for tracking cellular cholesterol metabolism and localization as it allows for manifold detection methods including mass spectrometry, thin-layer chromatography/fluorography, and fluorescence microscopy. PMID:24334219

  16. Cholesterol content and methods for cholesterol determination in meat and poultry

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Available data for cholesterol content of beef, pork, poultry, and processed meat products were reported. Although the cholesterol concentration in meat and poultry can be influenced by various factors, effects of animal species, muscle fiber type, and muscle fat content are focused on in this revi...

  17. Cholesterol and markers of cholesterol turnover in multiple sclerosis: relationship with disease outcomes.

    PubMed

    Zhornitsky, Simon; McKay, Kyla A; Metz, Luanne M; Teunissen, Charlotte E; Rangachari, Manu

    2016-01-01

    Multiple sclerosis (MS) is a chronic central nervous system disease that is associated with progressive loss of myelin and subsequent axonal degeneration. Cholesterol is an essential component of mammalian cellular and myelin membranes. In this systematic review, we examined the relationship between levels of cholesterol and markers of cholesterol turnover in circulation and/or cerebrospinal fluid (CSF) and disease outcomes in adults with clinically isolated syndrome (CIS) or confirmed MS. Studies suggest that elevated levels of circulating low density lipoprotein cholesterol (LDL), total cholesterol, and particularly, apolipoprotein B and oxidized LDL are associated with adverse clinical and MRI outcomes in MS. These relationships were observed as early as CIS. The studies also suggest that oxysterols, cholesterol precursors, and apolipoprotein E may be markers of specific disease processes in MS, but more research is required to elucidate these processes and relationships. Taken together, the data indicate that cholesterol and markers of cholesterol turnover have potential to be used clinically as biomarkers of disease activity and may even be implicated in the pathogenesis of MS.

  18. Potential of BODIPY-cholesterol for analysis of cholesterol transport and diffusion in living cells.

    PubMed

    Wüstner, Daniel; Lund, Frederik W; Röhrl, Clemens; Stangl, Herbert

    2016-01-01

    Cholesterol is an abundant and important lipid component of cellular membranes. Analysis of cholesterol transport and diffusion in living cells is hampered by the technical challenge of designing suitable cholesterol probes which can be detected for example by optical microscopy. One strategy is to use intrinsically fluorescent sterols, as dehydroergosterol (DHE), having minimal chemical alteration compared to cholesterol but giving low fluorescence signals in the UV region of the spectrum. Alternatively, one can use dye-tagged cholesterol analogs and in particular BODIPY-cholesterol (BChol), whose synthesis and initial characterization was pioneered by Robert Bittman. Here, we give a general overview of the properties and applications but also limitations of BODIPY-tagged cholesterol probes for analyzing intracellular cholesterol trafficking. We describe our own experiences and collaborative efforts with Bob Bittman for studying diffusion in the plasma membrane (PM) and uptake of BChol in a quantitative manner. For that purpose, we used a variety of fluorescence approaches including fluorescence correlation spectroscopy and its imaging variants, fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP). We also describe pulse-chase studies from the PM using BChol in direct comparison to DHE. Based on the gathered imaging data, we present a two-step kinetic model for sterol transport between PM and recycling endosomes. In addition, we highlight the suitability of BChol for determining transport of lipoprotein-derived sterol using electron microscopy (EM) and show that this approach ideally complements fluorescence studies.

  19. A diet rich in leafy vegetable fiber improves cholesterol metabolism in high-cholesterol fed rats.

    PubMed

    Ezz El-Arab, A M

    2009-10-01

    In the present study, the hypocholesterolemic effect of leaf vegetable (Jew's mallow) was studied in high-cholesterol fed rats. The animals were fed diets supplemented with cholesterol (0.25%) for 4 weeks. Leaf vegetable diet produced an important hypocholesterolemic action: it led to a significant lowering (p<0.05) of cholesterol in the plasma and liver, as well as of the atherogenic index and a significant increase (p<0.05) in cecal short chain fatty acids, with respect to the control group. Concurrently, total fecal neutral sterols in the excretion increased (p<0.05) and apparent absorption of dietary cholesterol was significantly depressed (-58%). The consumption of leaf vegetable (Jew's mallow) with a hypercholesterolemic diet improved the lipidemic profile and increased excretion of the total cholesterol end-products.

  20. [Trans-intestinal cholesterol excretion (TICE): a new route for cholesterol excretion].

    PubMed

    Blanchard, Claire; Moreau, François; Cariou, Bertrand; Le May, Cédric

    2014-10-01

    The small intestine plays a crucial role in dietary and biliary cholesterol absorption, as well as its lymphatic secretion as chylomicrons (lipoprotein exogenous way). Recently, a new metabolic pathway called TICE (trans-intestinal excretion of cholesterol) that plays a central role in cholesterol metabolism has emerged. TICE is an inducible way, complementary to the hepatobiliary pathway, allowing the elimination of the plasma cholesterol directly into the intestine lumen through the enterocytes. This pathway is poorly characterized but several molecular actors of TICE have been recently identified. Although it is a matter of debate, two independent studies suggest that TICE is involved in the anti-atherogenic reverse cholesterol transport pathway. Thus, TICE is an innovative drug target to reduce -cardiovascular diseases.

  1. NPC1, intracellular cholesterol trafficking and atherosclerosis.

    PubMed

    Yu, Xiao-Hua; Jiang, Na; Yao, Ping-Bo; Zheng, Xi-Long; Cayabyab, Francisco S; Tang, Chao-Ke

    2014-02-15

    Post-lysosomal cholesterol trafficking is an important, but poorly understood process that is essential to maintain lipid homeostasis. Niemann-Pick type C1 (NPC1), an integral membrane protein on the limiting membrane of late endosome/lysosome (LE/LY), is known to accept cholesterol from NPC2 and then mediate cholesterol transport from LE/LY to endoplasmic reticulum (ER) and plasma membrane in a vesicle- or oxysterol-binding protein (OSBP)-related protein 5 (ORP5)-dependent manner. Mutations in the NPC1 gene can be found in the majority of NPC patients, who accumulate massive amounts of cholesterol and other lipids in the LE/LY due to a defect in intracellular lipid trafficking. Liver X receptor (LXR) is the major positive regulator of NPC1 expression. Atherosclerosis is the pathological basis of coronary heart disease, one of the major causes of death worldwide. NPC1 has been shown to play a critical role in the atherosclerotic progression. In this review, we have summarized the role of NPC1 in regulating intracellular cholesterol trafficking and atherosclerosis.

  2. Localization of cholesterol in sphingomyelinase-treated fibroblasts.

    PubMed

    Pörn, M I; Slotte, J P

    1995-05-15

    The distribution of cellular unesterified cholesterol was studied in fibroblasts, which had been depleted of plasma membrane sphingomyelin by exposure to exogenous sphingomyelinase. This treatment has previously been shown to induce an increase in cholesterol esterification, a decrease in the biosynthesis of cholesterol, and a decreased susceptibility of cell cholesterol to oxidation with cholesterol oxidase. When the cellular localization of cholesterol was studied with fluorescent filipin staining, sphingomyelin depletion did not cause any visible changes in the filipin-cholesterol staining pattern, suggesting that the major part of cellular cholesterol was retained in the plasma membrane after sphingomyelinase treatment. After the oxidation of cell-surface cholesterol with cholesterol oxidase, the plasma membrane was no longer stained by filipin, but the plasma membrane cholesterol of sphingomyelin-depleted cells appeared to be resistant to oxidation with cholesterol oxidase when sphingomyelinase was used as an oxidation-promoting agent. However, the use of hypotonic buffer or phosphatidylcholine-specific phospholipase C together with cholesterol oxidase resulted in a complete oxidation of the cell-surface cholesterol in sphingomyelin-depleted cells, as evidenced by the filipin-cholesterol staining pattern. Similar results were obtained when [3H]cholesterol-labelled fibroblasts were used for determination of the susceptibility to cholesterol oxidation. The kinetics of [3H]cholesterol oxidation in sphingomyelin-depleted cells with cholesterol oxidase in hypotonic buffer indicated that approximately 85% of the cellular cholesterol still resided in the plasma membrane after sphingomyelin depletion. These results are contradictory to earlier reports on sphingomyelinase-induced changes in cellular cholesterol distribution and suggest that minor changes in the kinetics of cholesterol transport from the plasma membrane to the endoplasmic reticulum may be responsible

  3. Enzymatic Quantification of Cholesterol and Cholesterol Esters from Silicone Hydrogel Contact Lenses

    PubMed Central

    Pucker, Andrew D.; Thangavelu, Mirunalni

    2010-01-01

    Purpose. The purpose of this work was to develop an enzymatic method of quantification of cholesterol and cholesterol esters derived from contact lenses, both in vitro and ex vivo. Methods. Lotrafilcon B (O2 Optix; CIBA Vision, Inc., Duluth, GA) and galyfilcon A (Acuvue Advance; Vistakon, Inc., Jacksonville, FL) silicone hydrogel contact lenses were independently incubated in cholesterol oleate solutions varying in concentrations. After incubation, the lenses were removed and underwent two separate 2:1 chloroform-methanol extractions. After in vitro studies, 10 human subjects wore both lotrafilcon B and galyfilcon A contact lenses for 7 days. The lenses also underwent two separate 2:1 chloroform-methanol extractions. All in vitro and ex vivo samples were quantified with a cholesterol esterase enzymatic reaction. Results. Calibration curves from quantifications of in vitro contact lens samples soaked in successively decreasing concentrations of cholesterol oleate yielded coefficients of determination (R2) of 0.99 (lotrafilcon B) and 0.97 (galyfilcon A). For in vitro contact lens samples, galyfilcon A was associated with an average cholesterol oleate extraction of 39.85 ± 48.65 μg/lens, whereas lotrafilcon B was associated with 5.86 ± 3.36 μg/lens (P = 0.05) across both extractions and all incubation concentrations. For ex vivo contact lens samples, there was significantly more cholesterol and cholesterol esters deposited on galyfilcon A (5.77 ± 1.87 μg/lens) than on lotrafilcon B (2.03 ± 1.62 μg/lens; P = 0.0005). Conclusions. This is an efficient and simple method of quantifying total cholesterol extracted from silicone hydrogel contact lenses and, potentially, the meibum and/or tear film. Certain silicone hydrogel materials demonstrate more affinity for cholesterol and its esters than do others. PMID:20089871

  4. The Interpretation of Cholesterol Balance Derived Synthesis Data and Surrogate Noncholesterol Plasma Markers for Cholesterol Synthesis under Lipid Lowering Therapies

    PubMed Central

    Stellaard, Frans

    2017-01-01

    The cholesterol balance procedure allows the calculation of cholesterol synthesis based on the assumption that loss of endogenous cholesterol via fecal excretion and bile acid synthesis is compensated by de novo synthesis. Under ezetimibe therapy hepatic cholesterol is diminished which can be compensated by hepatic de novo synthesis and hepatic extraction of plasma cholesterol. The plasma lathosterol concentration corrected for total cholesterol concentration (R_Lath) as a marker of de novo cholesterol synthesis is increased during ezetimibe treatment but unchanged under treatment with ezetimibe and simvastatin. Cholesterol balance derived synthesis data increase during both therapies. We hypothesize the following. (1) The cholesterol balance data must be applied to the hepatobiliary cholesterol pool. (2) The calculated cholesterol synthesis value is the sum of hepatic de novo synthesis and the net plasma—liver cholesterol exchange rate. (3) The reduced rate of biliary cholesterol absorption is the major trigger for the regulation of hepatic cholesterol metabolism under ezetimibe treatment. Supportive experimental and literature data are presented that describe changes of cholesterol fluxes under ezetimibe, statin, and combined treatments in omnivores and vegans, link plasma R_Lath to liver function, and define hepatic de novo synthesis as target for regulation of synthesis. An ezetimibe dependent direct hepatic drug effect cannot be excluded. PMID:28321334

  5. Molecular events linking cholesterol to Alzheimer’s disease and inclusion body myositis in a rabbit model

    PubMed Central

    Liu, Qing Yan; Koukiekolo, Roger; Zhang, Dong Ling; Smith, Brandon; Ly, Dao; Lei, Joy X; Ghribi, Othman

    2016-01-01

    Alzheimer’s disease (AD) is the most common neurodegenerative disorder, characterized by cognitive impairment and dementia, resulting from progressive synaptic dysfunction, loss and neuronal cell death. Inclusion body myositis (IBM) is a skeletal muscle degenerative disease, displaying progressive proximal and distal muscle weakness, in association with muscle fiber atrophy, degeneration and death. Studies have shown that the late onset version of AD (LOAD) and sporadic IBM (sIBM) in muscle share many pathological features, including the presence of extracellular plaques of β-amyloid peptides and intracellular tangles of hyperphosphorylated tau proteins. High blood cholesterol is suggested to be a risk factor for LOAD. Many neuropathological changes of LOAD can be reproduced by feeding rabbits a 2% enriched cholesterol diet for 12 weeks. The cholesterol fed rabbit model also simultaneously develops sIBM like pathology, which makes it an ideal model to study the molecular mechanisms common to the development of both diseases. In the present study, we determined the changes of gene expression in rabbit brain and muscle during the progression of LOAD and sIBM pathology using a custom rabbit nucleotide microarray, followed by qRT-PCR analyses. Out of 869 unique transcripts screened, 47 genes showed differential expression between the control and the cholesterol-treated group during the 12 week period and 19 changed transcripts appeared to be common to LOAD and sIBM. The most notable changes are the upregulation of the hemoglobin gene family and the downregulation of the genes required for mitochondrial oxidative phosphorylation in both brain and muscle tissues throughout the time course. The significant overlap on the changes of gene expression in the brain and muscle of rabbits fed with cholesterol-enriched diet supports the notion that LOAD and sIBM may share a common etiology. PMID:27073745

  6. PPARγ activation redirects macrophage cholesterol from fecal excretion to adipose tissue uptake in mice via SR-BI

    PubMed Central

    Toh, Sue-Anne; Millar, John S.; Billheimer, Jeffrey; Fuki, Ilia; Naik, Snehal U.; Macphee, Colin; Walker, Max; Rader, Daniel J.

    2011-01-01

    PPARγ agonists, used in the treatment of Type 2 diabetes, can raise HDL-cholesterol, therefore could potentially stimulate macrophage-to-feces reverse cholesterol transport (RCT). We aimed to test whether PPARγ activation promotes macrophage RCT in vivo. Macrophage RCT was assessed in mice using cholesterol loaded/3H-cholesterol labeled macrophages. PPARγ agonist GW7845 (20 mg/kg/day) did not change 3H-tracer plasma appearance, but surprisingly decreased fecal 3H-free sterol excretion by 43% (P < 0.01) over 48 h. Total free cholesterol efflux from macrophages to serum (collected from control and GW7845 groups) was not different, although ABCA1-mediated efflux was significantly higher with GW7845. To determine the effect of PPARγ activation on HDL cholesterol uptake by different tissues, the metabolic fate of HDL labeled with 3H-cholesteryl ether (CE) was also measured. We observed two-fold increase in HDL derived 3H-CE uptake by adipose tissue (P < 0.005) with concomitant 22% decrease in HDL derived 3H-CE uptake by the liver (P < 0.05) in GW7845 treated wild type mice. This was associated with a significant increase in SR-BI protein expression in adipose tissue, but not liver. The same experiment in SR-BI knockout mice, showed no difference in HDL derived 3H-CE uptake by adipose tissue or liver. In conclusion, PPARγ activation decreases the fecal excretion of macrophage derived cholesterol in mice. This is not due to inhibition of cholesterol efflux from macrophages, but rather involves redirection of effluxed cholesterol from liver towards adipose tissue uptake via SR-BI. This represents a novel mechanism for regulation of RCT and may extend the therapeutic implications of these ligands. PMID:21291868

  7. CHOBIMALT: A Cholesterol-Based Detergent†

    PubMed Central

    Howell, Stanley C.; Mittal, Ritesh; Huang, Lijun; Travis, Benjamin; Breyer, Richard M.; Sanders, Charles R.

    2010-01-01

    Cholesterol and its hemisuccinate and sulfate derivatives are widely used in studies of purified membrane proteins, but are difficult to solubilize in aqueous solution, even in the presence of detergent micelles. Other cholesterol derivatives do not form conventional micelles and lead to viscous solutions. To address these problems a cholesterol-based detergent, CHOBIMALT, has been synthesized and characterized. At concentrations above 3–4μM, CHOBIMALT forms micelles without the need for elevated temperatures or sonic disruption. Diffusion and fluorescence measurements indicated that CHOBIMALT micelles are large (210 ± 30 kDa). The ability to solubilize a functional membrane protein was explored using a G-protein coupled receptor, the human kappa opioid receptor type 1 (hKOR1). While CHOBIMALT alone was not found to be effective as a surfactant for membrane extraction, when added to classical detergent micelles CHOBIMALT was observed to dramatically enhance the thermal stability of solubilized hKOR1. PMID:20919740

  8. Aspirin Increases the Solubility of Cholesterol in Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Alsop, Richard; Barrett, Matthew; Zheng, Sonbo; Dies, Hannah; Rheinstadter, Maikel

    2014-03-01

    Aspirin (ASA) is often prescribed for patients with high levels of cholesterol for the secondary prevention of myocardial events, a regimen known as the Low-Dose Aspirin Therapy. We have recently shown that Aspirin partitions in lipid bilayers. However, a direct interplay between ASA and cholesterol has not been investigated. Cholesterol is known to insert itself into the membrane in a dispersed state at moderate concentrations (under ~37.5%) and decrease fluidity of membranes. We prepared model lipid membranes containing varying amounts of both ASA and cholesterol molecules. The structure of the bilayers as a function of ASA and cholesterol concentration was determined using high-resolution X-ray diffraction. At cholesterol levels of more than 40mol%, immiscible cholesterol plaques formed. Adding ASA to the membranes was found to dissolve the cholesterol plaques, leading to a fluid lipid bilayer structure. We present first direct evidence for an interaction between ASA and cholesterol on the level of the cell membrane.

  9. [Basic mechanisms: absorption and excretion of cholesterol and other sterols].

    PubMed

    Cofan Pujol, Montserrat

    2014-01-01

    Cholesterol is of vital importance for vertebrate cell membrane structure and function. It is obvious that adequate regulation of cholesterol homeostasis is essential. Hypercholesterolemia promotes atherosclerosis and thereby represents a major risk factor for cardiovascular disease. The liver has been considered the major site of control in maintenance of cholesterol homeostasis. The liver facilitates clearance of (very) low density lipoprotein particles and cholesterol-containing chylomicron remnants, synthesizes cholesterol, synthesizes and secretes (nascent) high density lipoprotein particles, secretes cholesterol and bile salts to bile, and is involved in reverse cholesterol transport. In recent years, however, the importance of the intestine in many aspects of cholesterol physiology is increasingly recognized. It has become apparent that direct secretion of cholesterol from the blood compartment into the intestine, or transintestinal cholesterol excretion, plays a major role in disposal of cholesterol via the feces. This review will discuss current knowledge on the physiology of cholesterol homeostasis, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and therapeutic options for hypercholesterolemia.

  10. Cholesterol Mediates Membrane Curvature during Fusion Events

    NASA Astrophysics Data System (ADS)

    Ivankin, Andrey; Kuzmenko, Ivan; Gidalevitz, David

    2012-06-01

    Biomembranes undergo extensive shape changes as they perform vital cellular functions. The mechanisms by which lipids and proteins control membrane curvature remain unclear. We use x-ray reflectivity, grazing incidence x-ray diffraction, and epifluorescence microscopy to study binding of HIV-1 glycoprotein gp41’s membrane-bending domain to DPPC/cholesterol monolayers of various compositions at the air-liquid interface. The results offer a new insight into how membrane curvature could be regulated by cholesterol during fusion of the viral lipid envelope and the host cell membranes.

  11. Phospholipid transfer protein deficiency in mice impairs macrophage reverse cholesterol transport in vivo

    PubMed Central

    Si, Yanhong; Zhang, Ying; Chen, Xiaofeng; Zhai, Lei; Zhou, Guanghai; Yu, Ailing; Cao, Haijun

    2016-01-01

    Phospholipid transfer protein is expressed in various cell types and secreted into plasma, where it transfers phospholipids between lipoproteins and modulates the composition of high-density lipoprotein particles. Phospholipid transfer protein deficiency in vivo can lower high-density lipoprotein cholesterol level significantly and impact the biological quality of high-density lipoprotein. Considering high-density lipoprotein was a critical determinant for reverse cholesterol transport, we investigated the role of systemic phospholipid transfer protein deficiency in macrophage reverse cholesterol transport in vivo. After the littermate phospholipid transfer protein KO and WT mice were fed high-fat diet for one month, they were injected intraperitoneally with 3H-cholesterol-labeled and acLDL-loaded macrophages. Then the appearance of 3H-tracer in plasma, liver, bile, intestinal wall, and feces over 48 h was determined. Plasma lipid analysis indicated phospholipid transfer protein deficiency lowered total cholesterol, high-density lipoprotein-C and apolipoprotein A1 levels significantly but increased triglyceride level in mice. The isotope tracing experiment showed 3H-cholesterol of plasma was decreased by 68% for male and 62% for female, and 3H-tracer of bile was decreased by 37% for male and 21% for female in phospholipid transfer protein KO mice compared with WT mice. However, there was no difference in liver, and 3H-tracer of intestinal wall was increased by 43% for male and 27% for female. Finally, 3H-tracer of fecal excretion in phospholipid transfer protein KO mice was reduced significantly by 36% for male and 43% for female during 0–24 h period, but there was no significant difference during 24–48 h period. Meanwhile, Western Blot analysis showed the expressions of reverse cholesterol transport -related protein liver X receptor α (LXRα), ATP binding cassette transporter A1, and cholesterol 7α-hydroxylase A1 were upregulated in liver of

  12. Sustained release Curcumin loaded Solid Lipid Nanoparticles

    PubMed Central

    Jourghanian, Parisa; Ghaffari, Solmaz; Ardjmand, Mehdi; Haghighat, Setareh; Mohammadnejad, Mahdieh

    2016-01-01

    Purpose: curcumin is poorly water soluble drug with low bioavailability. Use of lipid systems in lipophilic substances increases solubility and bioavailability of poorly soluble drugs. The aim of this study was to prepare curcumin loaded Solid Lipid Nanoparticles (SLNs) with high loading efficiency, small particle size and prolonged release profile with enhanced antibacterial efficacy. Methods: to synthesize stable SLNs, freeze- Drying was done using mannitol as cryoprotectant. Cholesterol was used as carrier because of good tolerability and biocompatibility. SLNs were prepared using high pressure homogenization method. Results: optimized SLNs had 112 and 163 nm particle size before and after freeze drying, respectively. The prepared SLNs had 71% loading efficiency. 90% of loaded curcumin was released after 48 hours. Morphologic study for formulation was done by taking SEM pictures of curcumin SLNs. Results show the spherical shape of curcumin SLNs. DSC studies were performed to determine prolonged release mechanism. Antimicrobial studies were done to compare the antimicrobial efficacy of curcumin SLNs with free curcumin. DSC studies showed probability of formation of hydrogen bonds between cholesterol and curcumin which resulted in prolonged release of curcumin. Lipid structure of cholesterol could cause enhanced permeability in studied bacteria to increase antibacterial characteristics of curcumin. Conclusion: the designed curcumin SLNs could be candidate for formulation of different dosage forms or cosmeceutical products. PMID:27123413

  13. Serum cholesterol and variant in cholesterol-related gene CETP predict white matter microstructure.

    PubMed

    Warstadt, Nicholus M; Dennis, Emily L; Jahanshad, Neda; Kohannim, Omid; Nir, Talia M; McMahon, Katie L; de Zubicaray, Greig I; Montgomery, Grant W; Henders, Anjali K; Martin, Nicholas G; Whitfield, John B; Jack, Clifford R; Bernstein, Matt A; Weiner, Michael W; Toga, Arthur W; Wright, Margaret J; Thompson, Paul M

    2014-11-01

    Several common genetic variants influence cholesterol levels, which play a key role in overall health. Myelin synthesis and maintenance are highly sensitive to cholesterol concentrations, and abnormal cholesterol levels increase the risk for various brain diseases, including Alzheimer's disease. We report significant associations between higher serum cholesterol (CHOL) and high-density lipoprotein levels and higher fractional anisotropy in 403 young adults (23.8 ± 2.4 years) scanned with diffusion imaging and anatomic magnetic resonance imaging at 4 Tesla. By fitting a multi-locus genetic model within white matter areas associated with CHOL, we found that a set of 18 cholesterol-related, single-nucleotide polymorphisms implicated in Alzheimer's disease risk predicted fractional anisotropy. We focused on the single-nucleotide polymorphism with the largest individual effects, CETP (rs5882), and found that increased G-allele dosage was associated with higher fractional anisotropy and lower radial and mean diffusivities in voxel-wise analyses of the whole brain. A follow-up analysis detected white matter associations with rs5882 in the opposite direction in 78 older individuals (74.3 ± 7.3 years). Cholesterol levels may influence white matter integrity, and cholesterol-related genes may exert age-dependent effects on the brain.

  14. Lysosomal membrane glycoproteins bind cholesterol and contribute to lysosomal cholesterol export

    PubMed Central

    Li, Jian; Pfeffer, Suzanne R

    2016-01-01

    LAMP1 and LAMP2 proteins are highly abundant, ubiquitous, mammalian proteins that line the lysosome limiting membrane, and protect it from lysosomal hydrolase action. LAMP2 deficiency causes Danon’s disease, an X-linked hypertrophic cardiomyopathy. LAMP2 is needed for chaperone-mediated autophagy, and its expression improves tissue function in models of aging. We show here that human LAMP1 and LAMP2 bind cholesterol in a manner that buries the cholesterol 3β-hydroxyl group; they also bind tightly to NPC1 and NPC2 proteins that export cholesterol from lysosomes. Quantitation of cellular LAMP2 and NPC1 protein levels suggest that LAMP proteins represent a significant cholesterol binding site at the lysosome limiting membrane, and may signal cholesterol availability. Functional rescue experiments show that the ability of human LAMP2 to facilitate cholesterol export from lysosomes relies on its ability to bind cholesterol directly. DOI: http://dx.doi.org/10.7554/eLife.21635.001 PMID:27664420

  15. Cholesterol homeostasis: How do cells sense sterol excess?

    PubMed

    Howe, Vicky; Sharpe, Laura J; Alexopoulos, Stephanie J; Kunze, Sarah V; Chua, Ngee Kiat; Li, Dianfan; Brown, Andrew J

    2016-09-01

    Cholesterol is vital in mammals, but toxic in excess. Consequently, elaborate molecular mechanisms have evolved to maintain this sterol within narrow limits. How cells sense excess cholesterol is an intriguing area of research. Cells sense cholesterol, and other related sterols such as oxysterols or cholesterol synthesis intermediates, and respond to changing levels through several elegant mechanisms of feedback regulation. Cholesterol sensing involves both direct binding of sterols to the homeostatic machinery located in the endoplasmic reticulum (ER), and indirect effects elicited by sterol-dependent alteration of the physical properties of membranes. Here, we examine the mechanisms employed by cells to maintain cholesterol homeostasis.

  16. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice.

    PubMed

    Bura, Kanwardeep S; Lord, Caleb; Marshall, Stephanie; McDaniel, Allison; Thomas, Gwyn; Warrier, Manya; Zhang, Jun; Davis, Matthew A; Sawyer, Janet K; Shah, Ramesh; Wilson, Martha D; Dikkers, Arne; Tietge, Uwe J F; Collet, Xavier; Rudel, Lawrence L; Temel, Ryan E; Brown, J Mark

    2013-06-01

    Reverse cholesterol transport (RCT) can proceed through the classic hepatobiliary route or through the nonbiliary transintestinal cholesterol efflux (TICE) pathway. Scavenger receptor class B type I (SR-BI) plays a critical role in the classic hepatobiliary route of RCT. However, the role of SR-BI in TICE has not been studied. To examine the role of intestinal SR-BI in TICE, sterol balance was measured in control mice and mice transgenically overexpressing SR-BI in the proximal small intestine (SR-BI(hApoCIII-ApoAIV-Tg)). SR-BI(hApoCIII-ApoAIV-Tg) mice had significantly lower plasma cholesterol levels compared with wild-type controls, yet SR-BI(hApoCIII-ApoAIV-Tg) mice had normal fractional cholesterol absorption and fecal neutral sterol excretion. Both in the absence or presence of ezetimibe, intestinal SR-BI overexpression had no impact on the amount of cholesterol excreted in the feces. To specifically study effects of intestinal SR-BI on TICE we crossed SR-BI(hApoCIII-ApoAIV-Tg) mice into a mouse model that preferentially utilized the TICE pathway for RCT (Niemann-Pick C1-like 1 liver transgenic), and likewise found no alterations in cholesterol absorption or fecal sterol excretion. Finally, mice lacking SR-BI in all tissues also exhibited normal cholesterol absorption and fecal cholesterol disposal. Collectively, these results suggest that SR-BI is not rate limiting for intestinal cholesterol absorption or for fecal neutral sterol loss through the TICE pathway.

  17. Unexpected inhibition of cholesterol 7 alpha-hydroxylase by cholesterol in New Zealand white and Watanabe heritable hyperlipidemic rabbits.

    PubMed Central

    Xu, G; Salen, G; Shefer, S; Ness, G C; Nguyen, L B; Parker, T S; Chen, T S; Zhao, Z; Donnelly, T M; Tint, G S

    1995-01-01

    We investigated the effect of cholesterol feeding on plasma cholesterol concentrations, hepatic activities and mRNA levels of HMG-CoA reductase and cholesterol 7 alpha-hydroxylase and hepatic LDL receptor function and mRNA levels in 23 New Zealand White (NZW) and 17 Watanabe heritable hyperlipidemic (WHHL) rabbits. Plasma cholesterol concentrations were 9.9 times greater in WHHL than NZW rabbits and rose significantly in both groups when cholesterol was fed. Baseline liver cholesterol levels were 50% higher but rose only 26% in WHHL as compared with 3.6-fold increase with the cholesterol diet in NZW rabbits. In both rabbit groups, hepatic total HMG-CoA reductase activity was similar and declined > 60% without changing enzyme mRNA levels after cholesterol was fed. In NZW rabbits, cholesterol feeding inhibited LDL receptor function but not mRNA levels. As expected, receptor-mediated LDL binding was reduced in WHHL rabbits. Hepatic cholesterol 7 alpha-hydroxylase activity and mRNA levels were 2.8 and 10.4 times greater in NZW than WHHL rabbits. Unexpectedly, cholesterol 7 alpha-hydroxylase activity was reduced 53% and mRNA levels were reduced 79% in NZW rabbits with 2% cholesterol feeding. These results demonstrate that WHHL as compared with NZW rabbits have markedly elevated plasma and higher liver cholesterol concentrations, less hepatic LDL receptor function, and very low hepatic cholesterol 7 alpha-hydroxylase activity and mRNA levels. Feeding cholesterol to NZW rabbits increased plasma and hepatic concentrations greatly, inhibited LDL receptor-mediated binding, and unexpectedly suppressed cholesterol 7 alpha-hydroxylase activity and mRNA to minimum levels similar to WHHL rabbits. Dietary cholesterol accumulates in the plasma of NZW rabbits, and WHHL rabbits are hypercholesterolemic because reduced LDL receptor function is combined with decreased catabolism of cholesterol to bile acids. Images PMID:7706454

  18. Regulation of biliary cholesterol secretion. Functional relationship between the canalicular and sinusoidal cholesterol secretory pathways in the rat.

    PubMed Central

    Nervi, F; Marinović, I; Rigotti, A; Ulloa, N

    1988-01-01

    The functional interrelationship between biliary cholesterol secretion, sinusoidal lipoprotein cholesterol secretion and bile salt synthesis was studied in the rat. Diosgenin, fructose, and colestipol in the diet were used to, respectively, influence biliary cholesterol output, VLDL production and bile salt synthesis. In the acute bile fistula rat, biliary cholesterol output was 700% increased by diosgenin and 50% decreased by fructose. In the rats fed both diosgenin and fructose, biliary cholesterol secretion was increased only by approximately 200%, whereas biliary bile salts and phospholipid outputs were unchanged. In the isolated perfused liver, VLDL-cholesterol output was 50% reduced by diosgenin alone, but was unchanged following feeding of diosgenin plus fructose. However, the livers of rats fed diosgenin plus fructose exhibited a 700% increase in VLDL-triglyceride production and a 200% increase in VLDL-cholesterol output. A significant reciprocal relationship between VLDL-cholesterol secretion and the coupling ratio of cholesterol to bile salts in bile was observed. Colestipol added to the diet maintained both sinusoidal and biliary cholesterol outputs within the normal range. In the chronic bile fistula rat, colestipol increased bile salt synthesis by 100% while diosgenin and fructose diets had no effect. Similarly, the addition of fructose to the colestipol diet did not decrease bile salt synthesis. These data suggest a reciprocal relationship between biliary cholesterol secretion and hepatic secretion of cholesterol as VLDL particles. The free cholesterol pool used for bile salt synthesis seems functionally unrelated to the pool from which VLDL-cholesterol and biliary cholesterol originate. These findings support the idea that metabolic compartmentalization of hepatic cholesterol is a major determinant of the quantity of cholesterol available for recruitment by the bile salt-dependent biliary cholesterol secretory mechanism. PMID:3198756

  19. Impaired HDL2-mediated cholesterol efflux is associated with metabolic syndrome in families with early onset coronary heart disease and low HDL-cholesterol level

    PubMed Central

    Paavola, Timo; Kuusisto, Sanna; Jauhiainen, Matti; Kakko, Sakari; Kangas-Kontio, Tiia; Metso, Jari; Soininen, Pasi; Ala-Korpela, Mika; Bloigu, Risto; Hannuksela, Minna L.; Savolainen, Markku J.

    2017-01-01

    Objective The potential of high-density lipoproteins (HDL) to facilitate cholesterol removal from arterial foam cells is a key function of HDL. We studied whether cholesterol efflux to serum and HDL subfractions is impaired in subjects with early coronary heart disease (CHD) or metabolic syndrome (MetS) in families where a low HDL-cholesterol level (HDL-C) predisposes to early CHD. Methods HDL subfractions were isolated from plasma by sequential ultracentrifugation. THP-1 macrophages loaded with acetyl-LDL were used in the assay of cholesterol efflux to total HDL, HDL2, HDL3 or serum. Results While cholesterol efflux to serum, total HDL and HDL3 was unchanged, the efflux to HDL2 was 14% lower in subjects with MetS than in subjects without MetS (p<0.001). The efflux to HDL2 was associated with components of MetS such as plasma HDL-C (r = 0.76 in men and r = 0.56 in women, p<0.001 for both). The efflux to HDL2 was reduced in men with early CHD (p<0.01) only in conjunction with their low HDL-C. The phospholipid content of HDL2 particles was a major correlate with the efflux to HDL2 (r = 0.70, p<0.001). A low ratio of HDL2 to total HDL was associated with MetS (p<0.001). Conclusion Our results indicate that impaired efflux to HDL2 is a functional feature of the low HDL-C state and MetS in families where these risk factors predispose to early CHD. The efflux to HDL2 related to the phospholipid content of HDL2 particles but the phospholipid content did not account for the impaired efflux in cardiometabolic disease, where a combination of low level and poor quality of HDL2 was observed. PMID:28207870

  20. Cholesterol-rich Fluid Membranes Solubilize Ceramide Domains

    PubMed Central

    Castro, Bruno M.; Silva, Liana C.; Fedorov, Alexander; de Almeida, Rodrigo F. M.; Prieto, Manuel

    2009-01-01

    A uniquely sensitive method for ceramide domain detection allowed us to study in detail cholesterol-ceramide interactions in lipid bilayers with low (physiological) ceramide concentrations, ranging from low or no cholesterol (a situation similar to intracellular membranes, such as endoplasmic reticulum) to high cholesterol (similar to mammalian plasma membrane). Diverse fluorescence spectroscopy and microscopy experiments were conducted showing that for low cholesterol amounts ceramide segregates into gel domains that disappear upon increasing cholesterol levels. This was observed in different raft (sphingomyelin/cholesterol-containing) and non-raft (sphingomyelin-absent) membranes, i.e. mimicking different types of cell membranes. Cholesterol-ceramide interactions have been described mainly as raft sphingomyelin-dependent. Here sphingomyelin independence is demonstrated. In addition, ceramide-rich domains re-appear when either cholesterol is converted by cholesterol oxidase to cholestenone or the temperature is decreased. Ceramide is more soluble in cholesterol-rich fluid membranes than in cholesterol-poor ones, thereby increasing the chemical potential of cholesterol. Ceramide solubility depends on the average gel-fluid transition temperature of the remaining membrane lipids. The inability of cholestenone-rich membranes to dissolve ceramide gel domains shows that the cholesterol ordering and packing properties are fundamental to the mixing process. We also show that the solubility of cholesterol in ceramide domains is low. The results are rationalized by a ternary phospholipid/ceramide/cholesterol phase diagram, providing the framework for the better understanding of biochemical phenomena modulated by cholesterol-ceramide interactions such as cholesterol oxidase activity, lipoprotein metabolism, and lipid targeting in cancer therapy. It also suggests that the lipid compositions of different organelles are such that ceramide gel domains are not formed unless a

  1. Effects of apolipoproteins on the kinetics of cholesterol exchange

    SciTech Connect

    Letizia, J.Y.; Phillips, M.C. )

    1991-01-22

    The effects of apolipoproteins on the kinetics of cholesterol exchange have been investigated by monitoring the transfer of ({sup 14}C)cholesterol from donor phospholipid/cholesterol complexes containing human apolipoproteins A, B, or C. Negatively charged discoidal and vesicular particles containing purified apolipoproteins complexed with lipid and a trace of ({sup 14}C)cholesterol were incubated with a 10-fold excess of neutral, acceptor, small unilamellar vesicles. The donor and acceptor particles were separated by chromatogrphy of DEAE-Sepharose, and the rate of movement of labeled cholesterol was analyzed as a first-order exchange process. The kinetics of exchange of cholesterol from both vesicular and discoidal complexes that contain apoproteins are consistent with an aqueous diffusion mechanism, as has been established previously for PC/cholesterol SUV. Apolipoproteins A-I, A-II, reduced and carboxymethylated A-11, and B-100 present in SUV at the same lipid/protein (w/w) ratio all enhance the rate of cholesterol exchange to about the same degree. Cholesterol molecules exchange more rapidly from discoidal complexes. Generally, as the diameter of apoprotein/phospholipid/cholesterol discs decreases, t{sub 1/2} for cholesterol exchange decreases. Since small bilayer discs have a relatively high ratio of boundary to face surface area, cholesterol molecules desorb more rapidly than from larger discs. The modulation of lipid packing by the apoprotein molecules present at the surface of lipoprotein particles affects the rate of cholesterol exchange from such particles.

  2. Genetic Evidence Implicates the Immune System and Cholesterol Metabolism in the Aetiology of Alzheimer's Disease

    PubMed Central

    Hamshere, Marian L.; Harold, Denise; Moskvina, Valentina; Ivanov, Dobril; Pocklington, Andrew; Abraham, Richard; Hollingworth, Paul; Sims, Rebecca; Gerrish, Amy; Pahwa, Jaspreet Singh; Jones, Nicola; Stretton, Alexandra; Morgan, Angharad R.; Lovestone, Simon; Powell, John; Proitsi, Petroula; Lupton, Michelle K.; Brayne, Carol; Rubinsztein, David C.; Gill, Michael; Lawlor, Brian; Lynch, Aoibhinn; Morgan, Kevin; Brown, Kristelle S.; Passmore, Peter A.; Craig, David; McGuinness, Bernadette; Todd, Stephen; Holmes, Clive; Mann, David; Smith, A. David; Love, Seth; Kehoe, Patrick G.; Mead, Simon; Fox, Nick; Rossor, Martin; Collinge, John; Maier, Wolfgang; Jessen, Frank; Schürmann, Britta; van den Bussche, Hendrik; Heuser, Isabella; Peters, Oliver; Kornhuber, Johannes; Wiltfang, Jens; Dichgans, Martin; Frölich, Lutz; Hampel, Harald; Hüll, Michael; Rujescu, Dan; Goate, Alison M.; Kauwe, John S. K.; Cruchaga, Carlos; Nowotny, Petra; Morris, John C.; Mayo, Kevin; Livingston, Gill; Bass, Nicholas J.; Gurling, Hugh; McQuillin, Andrew; Gwilliam, Rhian; Deloukas, Panos; Al-Chalabi, Ammar; Shaw, Christopher E.; Singleton, Andrew B.; Guerreiro, Rita; Mühleisen, Thomas W.; Nöthen, Markus M.; Moebus, Susanne; Jöckel, Karl-Heinz; Klopp, Norman; Wichmann, H.-Erich; Rüther, Eckhard; Carrasquillo, Minerva M.; Pankratz, V. Shane; Younkin, Steven G.; Hardy, John; O'Donovan, Michael C.; Owen, Michael J.; Williams, Julie

    2010-01-01

    Background Late Onset Alzheimer's disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes. Methodology We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset. Principal Findings We found a significant overrepresentation of association signals in pathways related to cholesterol metabolism and the immune response in both of the two largest genome-wide association studies for LOAD. Significance Processes related to cholesterol metabolism and the innate immune response have previously been implicated by pathological and epidemiological studies of Alzheimer's disease, but it has been unclear whether those findings reflected primary aetiological events or consequences of the disease process. Our independent evidence from two large studies now demonstrates that these processes are aetiologically relevant, and suggests that they may be suitable targets for novel and existing therapeutic approaches. PMID:21085570

  3. Cholesterol granuloma and other petrous apex lesions.

    PubMed

    Isaacson, Brandon

    2015-04-01

    This article presents the latest information on the presentation, diagnosis, imaging characteristics, management, and outcomes for petrous apex cholesterol granulomas. An in-depth review of the pathophysiology and surgical approaches is presented along with a summary of other petrous apex lesions and their imaging characteristics.

  4. Niacin to Boost Your HDL "Good" Cholesterol

    MedlinePlus

    ... to increase your HDL cholesterol or correct a vitamin deficiency, niacin is sold in higher doses that are ... Version. http://www.merckmanuals.com/professional/nutritional-disorders/vitamin-deficiency%2c-dependency%2c-and-toxicity/niacin?qt=niacin& ...

  5. miRNA Modulation of Cholesterol Homeostasis

    PubMed Central

    Fernández-Hernando, Carlos; Moore, Kathryn J.

    2012-01-01

    Although the roles of the SREBP1 and SREBP2 transcription factors in regulating fatty acid and cholesterol synthesis and uptake have been known for some time, it was recently discovered that two related microRNAs, miR-33a and miR-33b, are embedded in these genes. Studies indicate that miR-33a and miR-33b act with their host genes, Srebp2 and Srebp1, respectively, to reciprocally regulate cholesterol homeostasis and fatty acid metabolism in a negative feedback loop. miR-33 has been shown to post-transcriptionally repress key genes involved in cellular cholesterol export and HDL metabolism (Abca1, Abcg1, Npc1), fatty acid oxidation (Crot, Cpt1a, Hadhb, Ampk), and glucose metabolism (Sirt6, Irs2). Delivery of inhibitors of miR-33 in vitro and in vivo relieves repression of these genes resulting in up-regulation of the associated metabolic pathways. In mouse models, miR-33 antagonism has proven has proven to be an effective strategy for increasing plasma HDL cholesterol and fatty acid oxidation, and protecting from atherosclerosis. These exciting findings have opened up promising new avenues for the development of therapeutics to treat dyslipidemia and other metabolic disorders. PMID:22011750

  6. ARH missense polymorphisms and plasma cholesterol levels.

    PubMed

    Hubacek, Jaroslav A; Hyatt, Tommy

    2004-01-01

    Mutations in a putative low-density lipoprotein (LDL) receptor adaptor protein called ARH have been recently described in patients with autosomal recessive hypercholesterolemia (ARH). ARH plays a tissue-specific role in determination of LDL receptor function. In the ARH gene three mismatched polymorphisms have been detected: Pro202Ser, Pro202His and Arg238Trp. These are of putative interest in plasma cholesterol level determination. To evaluate the effect of polymorphisms on plasma cholesterol levels, all polymorphisms were analyzed by PCR and restriction enzyme analysis by MnII, HpyCH4IV and SacII in 100 Caucasian males with high (>90%, 6.29 +/- 0.89 mmol/l), and 100 males with low (<10%, 3.60 +/- 0.57 mmol/l), total plasma cholesterol levels. No significant differences were observed in frequencies of ARH genotypes or alleles between these two extreme groups. These results suggest that ARH polymorphisms are unlikely to be important genetic determinants of plasma cholesterol levels.

  7. Garbanzo diet lowers cholesterol in hamsters

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cholesterol-lowering potential of diets with 22% protein from Chickpea (Cicer arietinum, European variety of Garbanzo, Kabuli Chana), Bengal gram (Cicer arietinum, Asian variety of Garbanzo, Desi Chana, smaller in size, yellow to black color), lentils, soy protein isolate, hydrolyzed salmon protein...

  8. Optimization of drug loading to improve physical stability of paclitaxel-loaded long-circulating liposomes.

    PubMed

    Kannan, Vinayagam; Balabathula, Pavan; Divi, Murali K; Thoma, Laura A; Wood, George C

    2015-01-01

    The effect of formulation and process parameters on drug loading and physical stability of paclitaxel-loaded long-circulating liposomes was evaluated. The liposomes were prepared by hydration-extrusion method. The formulation parameters such as total lipid content, cholesterol content, saturated-unsaturated lipid ratio, drug-lipid ratio and process parameters such as extrusion pressure and number of extrusion cycles were studied and their impact on drug loading and physical stability was evaluated. A proportionate increase in drug loading was observed with increase in the total phospholipid content. Cholesterol content and saturated lipid content in the bilayer showed a negative influence on drug loading. The short-term stability evaluation of liposomes prepared with different drug-lipid ratios demonstrated that 1:60 as the optimum drug-lipid ratio to achieve a loading of 1-1.3 mg/mL without the risk of physical instability. The vesicle size decreased with an increase in the extrusion pressure and number of extrusion cycles, but no significant trends were observed for drug loading with changes in process pressure or number of cycles. The optimization of formulation and process parameters led to a physically stable formulation of paclitaxel-loaded long-circulating liposomes that maintain size, charge and integrity during storage.

  9. 1 in 7 Obese People Has Normal Blood Pressure, Cholesterol

    MedlinePlus

    ... in 7 Obese People Has Normal Blood Pressure, Cholesterol But that doesn't mean the excess weight ... people studied, 14 percent had normal blood sugar, cholesterol and blood pressure readings, the study found. Doctors ...

  10. CDC Vital Signs: High Blood Pressure and Cholesterol

    MedlinePlus

    ... the MMWR Science Clips High Blood Pressure and Cholesterol Out of Control Recommend on Facebook Tweet Share ... cdc.gov/GISCVH2/ High Blood Pressure and High Cholesterol Among US Adults SOURCES: National Health and Nutrition ...

  11. Genetic connections between neurological disorders and cholesterol metabolism

    PubMed Central

    Björkhem, Ingemar; Leoni, Valerio; Meaney, Steve

    2010-01-01

    Cholesterol is an essential component of both the peripheral and central nervous systems of mammals. Over the last decade, evidence has accumulated that disturbances in cholesterol metabolism are associated with the development of various neurological conditions. In addition to genetically defined defects in cholesterol synthesis, which will be covered in another review in this Thematic Series, defects in cholesterol metabolism (cerebrotendinous xanthomatosis) and intracellular transport (Niemann Pick Syndrome) lead to neurological disease. A subform of hereditary spastic paresis (type SPG5) and Huntington's disease are neurological diseases with mutations in genes that are of importance for cholesterol metabolism. Neurodegeneration is generally associated with disturbances in cholesterol metabolism, and presence of the E4 isoform of the cholesterol transporter apolipoprotein E as well as hypercholesterolemia are important risk factors for development of Alzheimer's disease. In the present review, we discuss the links between genetic disturbances in cholesterol metabolism and the above neurological disorders. PMID:20466796

  12. Cholesterol paradox: a correlate does not a surrogate make.

    PubMed

    DuBroff, Robert

    2017-03-01

    The global campaign to lower cholesterol by diet and drugs has failed to thwart the developing pandemic of coronary heart disease around the world. Some experts believe this failure is due to the explosive rise in obesity and diabetes, but it is equally plausible that the cholesterol hypothesis, which posits that lowering cholesterol prevents cardiovascular disease, is incorrect. The recently presented ACCELERATE trial dumbfounded many experts by failing to demonstrate any cardiovascular benefit of evacetrapib despite dramatically lowering low-density lipoprotein cholesterol and raising high-density lipoprotein cholesterol in high-risk patients with coronary disease. This clinical trial adds to a growing volume of knowledge that challenges the validity of the cholesterol hypothesis and the utility of cholesterol as a surrogate end point. Inadvertently, the cholesterol hypothesis may have even contributed to this pandemic. This perspective critically reviews this evidence and our reluctance to acknowledge contradictory information.

  13. From evolution to revolution: miRNAs as pharmacological targets for modulating cholesterol efflux and reverse cholesterol transport.

    PubMed

    Dávalos, Alberto; Fernández-Hernando, Carlos

    2013-09-01

    There has been strong evolutionary pressure to ensure that an animal cell maintains levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies.

  14. Cholesterol oxidase-based determination, by continuous-flow analysis, of total and free cholesterol in serum.

    PubMed

    Lie, R F; Schmitz, J M; Pierre, K J; Gochman, N

    1976-10-01

    We describe a continuous-flow, automated determination of total cholesterol in serum, which is based on enzymatic hydrolysis of cholesterol esters, oxidation of cholesterol by cholesterol oxidase, and colorimetric measurement of liberated perioxide with 4-aminoantipyrine, phenol, and peroxidase. Free cholesterol is determined with the same AutoAnalyzer II manifold and reagents, except that cholesterol esterase is omitted from the reagent. Cholesterol-in-serum materials that have been assayed by an established method are used for calibration. We found this approach to be necessary because primary cholesterol standards in organic solvents are incompatible with the aqueous reagent. Results of the enzymatic total cholesterol method correlated well with those by an AutoAnalyzer II method which involves an extraction with isopropanol and the Liebermann-Burchard color reaction (total cholesterol, g/liter, yenz= 0991xlb +0.05;r=0.996). Results of the enzymatic free cholesterol procedure agreed satisfactorily with one in which free cholesterol is precipitated as the digitonide and subsequently analyzed colorimetrically with the Liebermann-Burchard reaction (free cholesterol, %, yenz = 0.982xdig -0.7;r= 0.956).

  15. Total cholesterol, high density lipoprotein cholesterol and choline esterase in overseas and Japanese university students.

    PubMed

    Nakamura, S

    1985-04-01

    Serum lipids were studied in 97 overseas and 282 Japanese university students. As compared with Japanese, serum total cholesterol levels were low and high density lipoprotein/total cholesterol ratio was high in the overseas students, especially in Chinese and Korean students. 30-39-year-old Chinese students, moreover, showed elevated high density lipoprotein levels. Choline esterase levels were significantly lower in 30-39-year-old Chinese and Korean students than in Japanese and Taiwanese.

  16. Cryptosporidium parvum scavenges LDL-derived cholesterol and micellar cholesterol internalized into enterocytes

    PubMed Central

    Ehrenman, Karen; Wanyiri, Jane W.; Bhat, Najma; Ward, Honorine D.; Coppens, Isabelle

    2013-01-01

    Cryptosporidium spp. are responsible for devastating diarrhea in immunodeficient individuals. In the intestinal tract, the developmental stages of the parasite are confined to the apical surfaces of epithelial cells. Upon invasion, Cryptosporidium incorporates the microvillous membrane of the enterocyte to form the parasitophorous vacuole (PV) and sequesters itself from the host cytoplasm by rearranging the host cytoskeleton. Cryptosporidium parvum has minimal anabolic capabilities and relies on transporters and salvage pathways to meet its basic metabolic requirements. The cholesterol salvage pathway is crucial for the development of protozoan parasites. In this study, we have examined the sources of cholesterol from C. parvum infecting enterocytes. We illustrated that the intracellular stages of Cryptosporidium as well as the oocysts shed by the host, contain cholesterol. Incubation of infected enterocytes in lipoprotein-free medium impairs parasite development and results in substantial decrease in cholesterol content associated with the PV. Among lipoproteins, LDL constitutes an important source of cholesterol for Cryptosporidium. Dietary cholesterol incorporated into micelles is internalized into enterocytes by the NPC1L1 transporter. We showed that C. parvum also obtains cholesterol from micelles in enterocytes. Pharmacological blockade of NPC1L1 function by ezetimibe or moderate down-regulation of NPC1L1 expression decreases parasite infectivity. These observations indicate that, despite its dual sequestration from the intestinal lumen and the host cytoplasm, C. parvum can, in fact, obtain cholesterol both from the gut’s lumen and the host cell. This study highlights the evolutionary advantages for epicellular pathogens to access to nutrients from the outside and inside of the host cell. PMID:23311949

  17. Polymer sorbent with the properties of an artificial cholesterol receptor

    NASA Astrophysics Data System (ADS)

    Polyakova, I. V.; Ezhova, N. M.; Osipenko, A. A.; Pisarev, O. A.

    2015-02-01

    A cholesterol-imprinted polymer sorbent and the corresponding reticular control copolymer were synthesized from hydroxyethyl methacrylate and ethyleneglycol dimethacrylate. The sorption isotherms of cholesterol were analyzed using the generalized Langmuir and Freundlich equations. In the case of the imprinted reticular polymer, cholesterol sorption occurred on the energetically homogeneous binding centers, forming one monolayer, while the nonspecific sorption of cholesterol on the control copolymer occurred with energetically nonhomogeneous binding of the sorbate and depended on the physicochemical conditions of sorption.

  18. Elevated Cholesterol in the Coxiella burnetii Intracellular Niche Is Bacteriolytic

    PubMed Central

    Mulye, Minal; Samanta, Dhritiman; Winfree, Seth; Heinzen, Robert A.

    2017-01-01

    ABSTRACT Coxiella burnetii is an intracellular bacterial pathogen and a significant cause of culture-negative endocarditis in the United States. Upon infection, the nascent Coxiella phagosome fuses with the host endocytic pathway to form a large lysosome-like vacuole called the parasitophorous vacuole (PV). The PV membrane is rich in sterols, and drugs perturbing host cell cholesterol homeostasis inhibit PV formation and bacterial growth. Using cholesterol supplementation of a cholesterol-free cell model system, we found smaller PVs and reduced Coxiella growth as cellular cholesterol concentration increased. Further, we observed in cells with cholesterol a significant number of nonfusogenic PVs that contained degraded bacteria, a phenotype not observed in cholesterol-free cells. Cholesterol had no effect on axenic Coxiella cultures, indicating that only intracellular bacteria are sensitive to cholesterol. Live-cell microscopy revealed that both plasma membrane-derived cholesterol and the exogenous cholesterol carrier protein low-density lipoprotein (LDL) traffic to the PV. To test the possibility that increasing PV cholesterol levels affects bacterial survival, infected cells were treated with U18666A, a drug that traps cholesterol in lysosomes and PVs. U18666A treatment led to PVs containing degraded bacteria and a significant loss in bacterial viability. The PV pH was significantly more acidic in cells with cholesterol or cells treated with U18666A, and the vacuolar ATPase inhibitor bafilomycin blocked cholesterol-induced PV acidification and bacterial death. Additionally, treatment of infected HeLa cells with several FDA-approved cholesterol-altering drugs led to a loss of bacterial viability, a phenotype also rescued by bafilomycin. Collectively, these data suggest that increasing PV cholesterol further acidifies the PV, leading to Coxiella death. PMID:28246364

  19. Templated cocrystallization of cholesterol and phytosterols from microemulsions

    NASA Astrophysics Data System (ADS)

    Rozner, Shoshana; Popov, Inna; Uvarov, Vladimir; Aserin, Abraham; Garti, Nissim

    2009-08-01

    A major cause of cardiovascular disease is high cholesterol (CH) levels in the blood, a potential solution to which is the intake of phytosterols (PS) known as CH-reducing agents. One mechanism proposed for PS activity is the mutual cocrystallization of CH and PS from dietary mixed micelles (DMM), a process that removes excess CH from the transporting micelles. In this study, microemulsions (MEs) were used both as a model system for cocrystallization mimicking DMM and as a possible alternative pathway, based on the competitive solubilization of CH and PS, to reduce solubilized CH transport levels from the ME. The effects of different CH/PS ratios, aqueous dilution, and lecithin-based MEs on sterol crystallization were studied. The precipitated crystals from the ME-loaded system with PS alone and from that loaded with 1:1 or 1:3 CH/PS mixtures were significantly influenced by ME microstructure and by dilution with aqueous phase (X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC) results). No new polymorphic structures were detected apart from the corresponding sterol hydrates. Mixed crystal morphology and the habit of the precipitated sterols were strongly affected by the CH/PS ratio and the structures of the diluted ME. As the amount of PS in the mixture increased or as the ME aqueous dilution proceeded, precipitated crystal shape became more needle-like. The mixed sterols seemed to be forming eutectic solids.

  20. Liver LXRα expression is crucial for whole body cholesterol homeostasis and reverse cholesterol transport in mice

    PubMed Central

    Zhang, Yuan; Breevoort, Sarah R.; Angdisen, Jerry; Fu, Mingui; Schmidt, Daniel R.; Holmstrom, Sam R.; Kliewer, Steven A.; Mangelsdorf, David J.; Schulman, Ira G.

    2012-01-01

    Liver X receptors (LXRα and LXRβ) are important regulators of cholesterol and lipid metabolism, and their activation has been shown to inhibit cardiovascular disease and reduce atherosclerosis in animal models. Small molecule agonists of LXR activity are therefore of great therapeutic interest. However, the finding that such agonists also promote hepatic lipogenesis has led to the idea that hepatic LXR activity is undesirable from a therapeutic perspective. To investigate whether this might be true, we performed gene targeting to selectively delete LXRα in hepatocytes. Liver-specific deletion of LXRα in mice substantially decreased reverse cholesterol transport, cholesterol catabolism, and cholesterol excretion, revealing the essential importance of hepatic LXRα for whole body cholesterol homeostasis. Additionally, in a pro-atherogenic background, liver-specific deletion of LXRα increased atherosclerosis, uncovering an important function for hepatic LXR activity in limiting cardiovascular disease. Nevertheless, synthetic LXR agonists still elicited anti-atherogenic activity in the absence of hepatic LXRα, indicating that the ability of agonists to reduce cardiovascular disease did not require an increase in cholesterol excretion. Furthermore, when non-atherogenic mice were treated with synthetic LXR agonists, liver-specific deletion of LXRα eliminated the detrimental effect of increased plasma triglycerides, while the beneficial effect of increased plasma HDL was unaltered. In sum, these observations suggest that therapeutic strategies that bypass the liver or limit the activation of hepatic LXRs should still be beneficial for the treatment of cardiovascular disease. PMID:22484817

  1. 25-Hydroxycholesterol Increases the Availability of Cholesterol in Phospholipid Membranes

    SciTech Connect

    Olsen, Brett N.; Schlesinger, Paul H.; Ory, Daniel S.; Baker, Nathan A.

    2011-02-01

    Side-chain oxysterols are enzymatically generated oxidation products of cholesterol that serve a central role in mediating cholesterol homeostasis. Recent work has shown that side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), alter membrane structure in very different ways from cholesterol, suggesting a possible mechanism for how these oxysterols regulate cholesterol homeostasis. Here we extend our previous work, using molecular dynamics simulations of 25-HC and cholesterol mixtures in 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers to examine interactions between 25-HC and cholesterol in the same bilayer. When added to cholesterol-containing membranes, 25-HC causes larger changes in membrane structure than when added to cholesterol-free membranes, demonstrating interactions between the two sterols. We also find that the presence of 25-HC changes the position, orientation, and solvent accessibility of cholesterol, shifting it into the water interface and therefore its availability to external acceptors. This is consistent with experimental results showing that oxysterols can trigger cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. These interactions provide a potential mechanism for 25-HC-mediated regulation of cholesterol trafficking and homeostasis through direct modulation of cholesterol availability.

  2. Implementation of a Pilot School-site Cholesterol Reduction Intervention.

    ERIC Educational Resources Information Center

    Resnicow, Ken; And Others

    1989-01-01

    A school-based cholesterol-reduction intervention for primary grade students in New York City public schools offered a workshop to teach those with high total serum cholesterol values to identify negative health consequences of high-fat diets. Results indicate that school-site cholesterol reduction interventions for high-risk individuals are…

  3. Understanding Lipoproteins as Transporters of Cholesterol and Other Lipids

    ERIC Educational Resources Information Center

    Biggerstaff, Kyle D.; Wooten, Joshua S.

    2004-01-01

    A clear picture of lipoprotein metabolism is essential for understanding the pathophysiology of atherosclerosis. Many students are taught that low-density lipoprotein-cholesterol is "bad" and high-density lipoprotein-cholesterol is "good." This misconception leads to students thinking that lipoproteins are types of cholesterol rather than…

  4. Enzymic determination of plasma cholesterol on discrete automatic analysers.

    PubMed

    Nobbs, B T; Smith, J M; Walker, A W

    1977-09-01

    Enzymic procedures for the determination of plasma cholesterol, using cholesterol esterase and cholesterol oxidase, have been adapted to the Vickers D-300, Vickers M,-300, and Vitatron AKES discrete analysers. The results obtained by these methods have been compared to those obtained by manual and continuous flow Liebermann-Burchard methods. The enzymic methods were found to be accurate, precise and of adequate sensitivity.

  5. Realization of an efficient cholesterol biosensor using ZnO nanostructured thin film.

    PubMed

    Batra, Neha; Tomar, Monika; Gupta, Vinay

    2012-12-21

    A zinc oxide (ZnO) nanostructured thin film synthesized by a vapour phase transport technique on a platinum coated silicon (Pt/Si) substrate has been successfully utilized for the detection of cholesterol. Amperometric and photometric studies reveal that the prepared bioelectrode ChOx/ZnO/Pt/Si is highly sensitive to the detection of cholesterol over a wide concentration range, 0.12-12.93 mM (5-500 mg dl(-1)). The higher sensitivity is attributed to the large surface area of ZnO thin film for effective loading of ChOx besides its high electron communication capability. A relatively low value of the enzyme's kinetic parameter (Michaelis-Menten constant, 1.08 mM) indicates an enhanced affinity of the enzyme (ChOx) towards the analyte (cholesterol). The prepared bioelectrode is found to exhibit a long shelf life of more than 10 weeks, having negligible interference from the presence of other biomolecules present in human serum indicating potential application of the ZnO nanostructured thin film for cholesterol sensing.

  6. Effects of Cholesterol-altering Pharmaceuticals on Cholesterol Metabolism, Steroidogenesis, and Gene Expression in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Pharmaceuticals that target cholesterol biosynthesis and uptake are among the most widely prescribed drugs and have been detected in the aquatic environment. Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome pr...

  7. Localization of human acyl-coenzyme A: cholesterol acyltransferase-1 (ACAT-1) in macrophages and in various tissues.

    PubMed

    Sakashita, N; Miyazaki, A; Takeya, M; Horiuchi, S; Chang, C C; Chang, T Y; Takahashi, K

    2000-01-01

    To investigate the distribution of acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT-1) in various human tissues, we examined tissues of autopsy cases immunohistochemically. ACAT-1 was demonstrated in macrophages, antigen-presenting cells, steroid hormone-producing cells, neurons, cardiomyocytes, smooth muscle cells, mesothelial cells, epithelial cells of the urinary tracts, thyroid follicles, renal tubules, pituitary, prostatic, and bronchial glands, alveolar and intestinal epithelial cells, pancreatic acinar cells, and hepatocytes. These findings showed that ACAT-1 is present in a variety of human tissues examined. The immunoreactivities are particularly prominent in the macrophages, steroid hormone-producing cells, followed by hepatocytes, and intestinal epithelia. In cultured human macrophages, immunoelectron microscopy revealed that ACAT-1 was located mainly in the tubular rough endoplasmic reticulum; immunoblot analysis showed that the ACAT-1 protein content did not change with or without cholesterol loading; however, on cholesterol loading, about 30 to 40% of the total immunoreactivity appeared in small-sized vesicles. These vesicles were also enriched in 78-kd glucose-regulated protein (GRP 78), a specific marker for the endoplasmic reticulum. Immunofluorescent microscopy demonstrated extensive colocalization of ACAT-1 and GRP 78 signals in both the tubular and vesicular endoplasmic reticulum before and after cholesterol loading. These results raise the possibility that foam cell formation may activate an endoplasmic reticulum vesiculation process, producing vesicles enriched in the ACAT-1 protein.

  8. Recombinant human serum amyloid A (apoSAAp) binds cholesterol and modulates cholesterol flux.

    PubMed

    Liang, J S; Sipe, J D

    1995-01-01

    During acute inflammation, the serum amyloid A (apoSAA) proteins apoSAA1 and apoSAA2 are transiently associated with high density lipoproteins (HDL) in concentrations of as much as 1000-fold more than their concentrations during homeostasis; however, their effect on HDL function is unclear. Recombinant apoSAAp, a hybrid of the closely related human apoSAA1 and apoSAA2 isoforms, was found to exhibit a high affinity for cholesterol. The adsorption of apoSAAp to polystyrene microtiter wells at physiological pH, temperature, and salt concentration was inhibited and reversed by cholesterol. ApoSAAp, to a greater extent than apoA-I, albumin, or fetal bovine serum, enhanced diffusion of cholesterol from HDL across a membrane that retained molecules > 3.5 kDa. Cholesterol from 25 nM to 125 microM inhibited binding of [3H]cholesterol to 167 nM apoSAAp. A cholesterol binding assay was developed to determine the dissociation constant for binding of [3H]cholesterol to apoSAAp; Kd = 1.7 +/- 0.3 x 10(-7) M and the maximum binding capacity (Bmax) is 1.1 +/- 0.1 mol/mol. After binding cholesterol, the apparent size of apoSAAp as determined by gel filtration on Sephacryl S-100 was increased from 12 to 23 kDa. ApoSAAp enhanced free [14C]cholesterol uptake from tissue culture medium by HepG2 cells, an effect that was dose dependent and blocked by polyclonal antibodies to human apoSAA1 and apoSAA2. ApoSAAp, unlike apoA-I, was taken up from serum-free medium by HepG2 cells and appeared to be degraded by cell-associated enzymes. Unlike peritoneal exudate cells, human HepG2 hepatoma cells do not secrete an enzyme that degrades apoSAAp. These results suggest that apoSAA can potentially serve as a transient cholesterol-binding protein.

  9. Understanding Cholesterol and Heart Health | NIH MedlinePlus the Magazine

    MedlinePlus

    ... this page please turn Javascript on. Feature: High Cholesterol Understanding Cholesterol and Heart Health Past Issues / Summer 2012 Table ... both types of lipoproteins is important. High Blood Cholesterol and Triglycerides High blood cholesterol is a condition ...

  10. Dietary cholesterol supplementation improves growth and behavioral response of pigs selected for genetically high and low serum cholesterol.

    PubMed

    Schoknecht, P A; Ebner, S; Pond, W G; Zhang, S; McWhinney, V; Wong, W W; Klein, P D; Dudley, M; Goddard-Finegold, J; Mersmann, H J

    1994-02-01

    We hypothesized that, in pigs selected for low (L) or high (H) serum cholesterol for four generations, neonatal endogenous cholesterol synthesis would be sufficient to meet requirements for brain and body growth. In Experiment 1, eight 16-wk-old L pigs received a diet with or without 200 mg cholesterol/100 g diet for 35 d. Supplemented pigs grew approximately 25% faster and had a significantly greater concentration of free cholesterol in the cerebrum. In Experiment 2, 16 H and 16 L newborn pigs were fed a milk replacer with or without 200 mg cholesterol/100 g diet for 28 d. Pigs fed cholesterol had greater average daily gain (P < or = 0.09), significantly reduced liver 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity, and significantly increased cerebral cholesterol content than pigs not fed cholesterol. One of three indices of exploratory behavior was significantly greater in the L pigs that received cholesterol compared with L pigs that did not receive cholesterol. These data suggest that these neonatal pigs are unable to produce sufficient cholesterol to meet requirements for normal growth and brain development and are dependent on dietary cholesterol in milk.

  11. The effects of polyoxyethylated cholesterol on fecal bile acids and nitrogen and on cholesterol balance in rats.

    PubMed

    Amorosa, L E; Martucci, C P; Stevenson, N R; Khachadurian, A K

    1991-03-01

    Polyoxyethylated cholesterol (POEC) is a water soluble derivative of cholesterol which decreases cholesterol absorption in rats without affecting body weight, fatty acid excretion, or intestinal histology. In the present study rat feces were analyzed for cholic, deoxycholic, chenodeoxycholic, muricholic and lithocholic acid following 3 months of feeding a standard or a 2% enriched cholesterol diet with or without 1.5% POEC. In rats maintained on the cholesterol free diet, POEC increased total bile acids (mg/day) by 50% from 14 +/- 3 to 21 +/- 3 (mean +/- SEM) but only the increase in chenodeoxycholic acid was significant (P less than 0.05). The corresponding POEC effect in the 2% cholesterol diet was 31% (70 +/- 8 to 93 +/- 3, P less than 0.01). Fecal nitrogen and serum cholesterol did not vary among groups. Comparing these data with neutral steroid excretion previously determined showed that POEC in the cholesterol-free diet increased the negative cholesterol balance more than three-fold (34 +/- 7 vs 118 +/- 13 P less than 0.01). In rats fed 2% cholesterol, POEC caused a negative cholesterol balance of 222 +/- 8 compared to the control of 27 +/- 52 (P less than 0.01). The data indicate that POEC exerts complex effects in the intestinal tract which increase both bile acid and cholesterol excretion.

  12. Improvements in cholesterol-related knowledge and behavior and plasma cholesterol levels in youths during the 1980s.

    PubMed

    Frank, E; Winkleby, M; Fortmann, S P; Rockhill, B; Farquhar, J W

    1993-01-01

    This article examines cholesterol-related knowledge, cholesterol-related behaviors, and plasma cholesterol levels in 12-24-year-olds, using data collected from four community-based cross-sectional surveys conducted 1979-1980, 1981-1982, 1985-1986, and 1989-1990. Participants included 1,552 individuals from randomly sampled households in two control cities (San Luis Obispo and Modesto, California) of the Stanford Five-City Project. Over the eleven-year study period, cholesterol-related knowledge improved in both control cities (P < .0002). Cholesterol-related behavior (P < .0003) and plasma cholesterol levels (P < .002) significantly improved only in San Luis Obispo (a college city with more 19-24-year-olds and a better-educated population than Modesto). In general, knowledge and behavior scores and plasma cholesterol levels were lower in these 12-24-year-olds than in 25-74-year-olds, although trends at all ages were similar over time and by demographic variables. Although the cholesterol-related interventions that began in the mid-1980s primarily targeted adults, these 12-24-year-olds' cholesterol-related knowledge improved (as did, to a lesser extent, their cholesterol-related behavior and plasma cholesterol levels). These findings have implications for upcoming youth-related cholesterol interventions.

  13. Impact of android overweight or obesity and insulin resistance on basal and postprandial SR-BI and ABCA1-mediated serum cholesterol efflux capacities.

    PubMed

    Attia, Nesrine; Fournier, Natalie; Vedie, Benoît; Cambillau, Michèle; Beaune, Philippe; Ziegler, Olivier; Grynberg, Alain; Paul, Jean-Louis; Guerci, Bruno

    2010-04-01

    Since android overweight/obesity and insulin resistance are independent risk factors for cardiovascular disease, we investigated their impact on basal and postprandial scavenger receptor BI (SR-BI) and ATP binding cassette transporter A1 (ABCA1)-mediated serum cholesterol efflux. Twelve android overweight to obese and 9 normal weight controls women underwent body composition analysis by dual energy X-ray absorptiometry, a euglycemic hyperinsulinemic clamp, and an oral fat load with blood sampling at initial time (T0), 4h (T4) and 10h (T10) after the fat load. Serum lipids and HDL-parameters, capacities of serum to promote cholesterol efflux from SR-BI expressing Fu5AH hepatoma cells or from ABCA1-expressing J774 macrophages and to abilities of serum to induce a net removal of cholesterol from macrophage foam cells were measured at T0, T4 and T10. Sera from overweight/obese exhibited moderately decreased SR-BI-mediated cholesterol efflux capacities, in accordance with reduced HDL concentrations, but importantly increased ABCA1-mediated cholesterol efflux and increased cholesterol extraction capacities over the postprandial period, partly related to higher prebeta-HDL concentrations. In multiple regression analyses, android obesity-related parameters and HDL-PL or prebeta-HDL levels remained the only independent correlates for SR-BI or ABCA1-dependent fractional cholesterol efflux while only prebeta-HDL levels remained correlated to cholesterol extraction capacities. Our results suggest that android overweight/obesity may not result in an impaired cholesterol efflux capacity.

  14. Cholesterol in serum lipoprotein fractions after spaceflight

    NASA Technical Reports Server (NTRS)

    Leach, Carolyn S.; Johnson, Philip C., Jr.; Krauhs, Jane M.; Cintron, Nitza M.

    1988-01-01

    Results are reported from blood-lipid measurements obtained from 125 Space Shuttle crew members before and after space flight. The data are presented in tables and discussed in detail. The main differences noted between preflight and postflight values are a 12.8-percent decrease in high-density lipoproteins on postflight day 1 and significant decreases in total cholesterol and both high- and low-density lipoproteins later in the 23-day postflight period.

  15. Potent and selective mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K; Johansson, Jan

    2015-03-24

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  16. Carcinogenic Potential of Cholesterol Oxidation Products

    DTIC Science & Technology

    1980-04-15

    oxidation products of cholesterol. Subsequent pilot experiments revealed an increase in the incidence of liver tumors after brief inclusion in the diet of...similar properties. 3. To determine whether the nature of the total diet influences the liver tumor incidence in experimental mice on a regimen containing...females. We purchased the mice from the Charles River Laboratories, Inc., Wilmington, Mass. They were placed on the experimental diets shortly after

  17. Parvovirus capsid disorders cholesterol-rich membranes.

    PubMed

    Pakkanen, Kirsi; Kirjavainen, Sanna; Mäkelä, Anna R; Rintanen, Nina; Oker-Blom, Christian; Jalonen, Tuula O; Vuento, Matti

    2009-02-06

    In this study canine parvovirus, CPV, was found to induce disorder in DPPC:cholesterol membranes in acidic conditions. This acidicity-induced fluidizing effect is suggested to originate from the N-terminus of the viral capsid protein VP1. In accordance with the model membrane studies, a fluidizing effect was seen also in the endosomal membranes during CPV infection implying an important functional role of the fluidization in the endocytic entry of the virus.

  18. Cholesterol impairment contributes to neuroserpin aggregation

    NASA Astrophysics Data System (ADS)

    Giampietro, Costanza; Lionetti, Maria Chiara; Costantini, Giulio; Mutti, Federico; Zapperi, Stefano; La Porta, Caterina A. M.

    2017-03-01

    Intraneural accumulation of misfolded proteins is a common feature of several neurodegenerative pathologies including Alzheimer’s and Parkinson’s diseases, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is a rare disease due to a point mutation in neuroserpin which accelerates protein aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol depletion induced either by prolonged exposure to statins or by inhibiting the sterol reg-ulatory binding-element protein (SREBP) pathway also enhances aggregation of neuroserpin proteins. These findings can be explained considering a computational model of protein aggregation under non-equilibrium conditions, where a decrease in the rate of protein clearance improves aggregation. Decreasing cholesterol in cell membranes affects their biophysical properties, including their ability to form the vesicles needed for protein clearance, as we illustrate by a simple mathematical model. Taken together, these results suggest that cholesterol reduction induces neuroserpin aggregation, even in absence of specific neuroserpin mutations. The new mechanism we uncover could be relevant also for other neurodegenerative diseases associated with protein aggregation.

  19. Cholesterol impairment contributes to neuroserpin aggregation

    PubMed Central

    Giampietro, Costanza; Lionetti, Maria Chiara; Costantini, Giulio; Mutti, Federico; Zapperi, Stefano; La Porta, Caterina A. M.

    2017-01-01

    Intraneural accumulation of misfolded proteins is a common feature of several neurodegenerative pathologies including Alzheimer’s and Parkinson’s diseases, and Familial Encephalopathy with Neuroserpin Inclusion Bodies (FENIB). FENIB is a rare disease due to a point mutation in neuroserpin which accelerates protein aggregation in the endoplasmic reticulum (ER). Here we show that cholesterol depletion induced either by prolonged exposure to statins or by inhibiting the sterol reg-ulatory binding-element protein (SREBP) pathway also enhances aggregation of neuroserpin proteins. These findings can be explained considering a computational model of protein aggregation under non-equilibrium conditions, where a decrease in the rate of protein clearance improves aggregation. Decreasing cholesterol in cell membranes affects their biophysical properties, including their ability to form the vesicles needed for protein clearance, as we illustrate by a simple mathematical model. Taken together, these results suggest that cholesterol reduction induces neuroserpin aggregation, even in absence of specific neuroserpin mutations. The new mechanism we uncover could be relevant also for other neurodegenerative diseases associated with protein aggregation. PMID:28255164

  20. Human plasma lecithin-cholesterol acyltransferase

    SciTech Connect

    Jauhiainen, M.; Stevenson, K.J.; Dolphin, P.J.

    1988-05-15

    Lecithin-cholesterol acyltransferase (LCAT) is a plasma enzyme which catalyzes the transacylation of the fatty acid at the sn-2 position of lecithin to cholesterol forming lysolecithin and cholesteryl ester. The substrates for and products of this reaction are present within the plasma lipoproteins upon which the enzyme acts to form the majority of cholesteryl ester in human plasma. The authors proposed a covalent catalytic mechanism of action for LCAT in which serine and histidine residues mediate lecithin cleavage and two cysteine residues cholesterol esterification. With the aid of sulfhydryl reactive trivalent organoarsenical compounds which are specific for vicinal thiols they have probed the geometry of the catalytic site. They conclude that the two catalytic cysteine residues of LCAT (Cys/sup 31/ and Cys /sup 184/) are vicinal with a calculated distance between their sulfur atoms of 3.50-3.62 A. The additional residue alkylated by teh bifunctional reagent is within the catalytic site and may represent a previously identified catalytic serine or histidine residue.

  1. LOADING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1958-10-01

    A device is presented for loading or charging bodies of fissionable material into a reactor. This device consists of a car, mounted on tracks, into which the fissionable materials may be placed at a remote area, transported to the reactor, and inserted without danger to the operating personnel. The car has mounted on it a heavily shielded magazine for holding a number of the radioactive bodies. The magazine is of a U-shaped configuration and is inclined to the horizontal plane, with a cap covering the elevated open end, and a remotely operated plunger at the lower, closed end. After the fissionable bodies are loaded in the magazine and transported to the reactor, the plunger inserts the body at the lower end of the magazine into the reactor, then is withdrawn, thereby allowing gravity to roll the remaining bodies into position for successive loading in a similar manner.

  2. Effect of cholesterol nanodomains on monolayer morphology and dynamics.

    PubMed

    Kim, Kyuhan; Choi, Siyoung Q; Zell, Zachary A; Squires, Todd M; Zasadzinski, Joseph A

    2013-08-13

    At low mole fractions, cholesterol segregates into 10- to 100-nm-diameter nanodomains dispersed throughout primarily dipalmitoylphosphatidylcholine (DPPC) domains in mixed DPPC:cholesterol monolayers. The nanodomains consist of 6:1 DPPC:cholesterol "complexes" that decorate and lengthen DPPC domain boundaries, consistent with a reduced line tension, λ. The surface viscosity of the monolayer, ηs, decreases exponentially with the area fraction of the nanodomains at fixed surface pressure over the 0.1- to 10-Hz range of frequencies common to respiration. At fixed cholesterol fraction, the surface viscosity increases exponentially with surface pressure in similar ways for all cholesterol fractions. This increase can be explained with a free-area model that relates ηs to the pure DPPC monolayer compressibility and collapse pressure. The elastic modulus, G', initially decreases with cholesterol fraction, consistent with the decrease in λ expected from the line-active nanodomains, in analogy to 3D emulsions. However, increasing cholesterol further causes a sharp increase in G' between 4 and 5 mol% cholesterol owing to an evolution in the domain morphology, so that the monolayer is elastic rather than viscous over 0.1-10 Hz. Understanding the effects of small mole fractions of cholesterol should help resolve the controversial role cholesterol plays in human lung surfactants and may give clues as to how cholesterol influences raft formation in cell membranes.

  3. Cholesterol in the retina: the best is yet to come

    PubMed Central

    Pikuleva, Irina A.; Curcio, Christine A.

    2014-01-01

    Historically understudied, cholesterol in the retina is receiving more attention now because of genetic studies showing that several cholesterol-related genes are risk factors for age-related macular degeneration (AMD) and because eye pathology studies showing high cholesterol content of drusen, aging Bruch's membrane, and newly found subretinal lesions. The challenge before us is determining how the cholesterol-AMD link is realized. Meeting this challenge will require an excellent understanding these genes’ roles in retinal physiology and how chorioretinal cholesterol is maintained. In the first half of this review, we will succinctly summarize physico-chemical properties of cholesterol, its distribution in the human body, general principles of maintenance and metabolism, and differences in cholesterol handling in human and mouse that impact on experimental approaches. This information will provide a backdrop to the second part of the review focusing on unique aspects of chorioretinal cholesterol homeostasis, aging in Bruch's membrane, cholesterol in AMD lesions, a model for lesion biogenesis, a model for macular vulnerability based on vascular biology, and alignment of AMD-related genes and pathobiology using cholesterol and an atherosclerosis-like progression as unifying features. We conclude with recommendations for the most important research steps we can take towards delineating the cholesterol-AMD link. PMID:24704580

  4. Dietary cholesterol, heart disease risk and cognitive dissonance.

    PubMed

    McNamara, Donald J

    2014-05-01

    In the 1960s, the thesis that dietary cholesterol contributes to blood cholesterol and heart disease risk was a rational conclusion based on the available science at that time. Fifty years later the research evidence no longer supports this hypothesis yet changing the dietary recommendation to limit dietary cholesterol has been a slow and at times contentious process. The preponderance of the clinical and epidemiological data accumulated since the original dietary cholesterol restrictions were formulated indicate that: (1) dietary cholesterol has a small effect on the plasma cholesterol levels with an increase in the cholesterol content of the LDL particle and an increase in HDL cholesterol, with little effect on the LDL:HDL ratio, a significant indicator of heart disease risk, and (2) the lack of a significant relationship between cholesterol intake and heart disease incidence reported from numerous epidemiological surveys. Over the last decade, many countries and health promotion groups have modified their dietary recommendations to reflect the current evidence and to address a now recognised negative consequence of ineffective dietary cholesterol restrictions (such as inadequate choline intake). In contrast, health promotion groups in some countries appear to suffer from cognitive dissonance and continue to promote an outdated and potentially hazardous dietary recommendation based on an invalidated hypothesis. This review evaluates the evidence for and against dietary cholesterol restrictions and the potential consequences of such restrictions.

  5. Effect of honey on serum cholesterol and lipid values.

    PubMed

    Münstedt, Karsten; Hoffmann, Sven; Hauenschild, Annette; Bülte, Michael; von Georgi, Richard; Hackethal, Andreas

    2009-06-01

    Small studies have suggested that honey benefits patients with high cholesterol concentrations. The present study aimed to confirm this finding in a larger group of subjects. Sixty volunteers with high cholesterol, stratified according to gender and hydroxymethylglutaryl-coenzyme A reductase inhibitor (statin) treatment (yes/no), were randomized to receive 75 g of honey solution or a honey-comparable sugar solution once daily over a period of 14 days. Baseline measurements, including body mass index (BMI) and lipid profile, were obtained, and subjects also completed dietary questionnaires and the Inventory for the Assessment of Negative Bodily Affect-Trait form (INKA-h) questionnaire. Measurements were repeated 2 weeks later. BMI and high-density lipoprotein (HDL) cholesterol values were significantly correlated (r = -0.487; P < .001) as were BMI and a lower ratio of low-density lipoprotein (LDL) cholesterol to HDL cholesterol (r = 0.420; P < .001), meaning that subjects with a high BMI had a lower HDL cholesterol value. INKA-h scores and LDL cholesterol values were also significantly correlated (r = 0.273, P = .042). Neither solution influenced significantly cholesterol or triglyceride values in the total group; in women, however, the LDL cholesterol value increased in the sugar solution subgroup but not in the women taking honey. Although ingesting honey did not reduce LDL cholesterol values in general, women may benefit from substituting honey for sugar in their diet. Reducing the BMI lowers the LDL cholesterol value, and psychological interventions also seem important and merit further investigation.

  6. LXR driven induction of HDL-cholesterol is independent of intestinal cholesterol absorption and ABCA1 protein expression.

    PubMed

    Kannisto, Kristina; Gåfvels, Mats; Jiang, Zhao-Yan; Slätis, Katharina; Hu, Xiaoli; Jorns, Carl; Steffensen, Knut R; Eggertsen, Gösta

    2014-01-01

    We investigated whether: (1) liver X receptor (LXR)-driven induction of high-density lipoprotein cholesterol (HDL-C) and other LXR-mediated effects on cholesterol metabolism depend on intestinal cholesterol absorption; and (2) combined treatment with the LXR agonist GW3965 and the cholesterol absorption inhibitor ezetimibe results in synergistic effects on cholesterol metabolism that could be beneficial for treatment of atherosclerosis. Mice were fed 0.2 % cholesterol and treated with GW3965+ezetimibe, GW3965 or ezetimibe. GW3965+ezetimibe treatment elevated serum HDL-C and Apolipoprotein (Apo) AI, effectively reduced the intestinal cholesterol absorption and increased the excretion of faecal neutral sterols. No changes in intestinal ATP-binding cassette (ABC) A1 or ABCG5 protein expression were observed, despite increased mRNA expression, while hepatic ABCA1 was slightly reduced. The combined treatment caused a pronounced down-regulation of intestinal Niemann-Pick C1-like 1 (NPC1L1) and reduced hepatic and intestinal cholesterol levels. GW3965 did not affect the intestinal cholesterol absorption, but increased serum HDL-C and ApoAI levels. GW3965 also increased Apoa1 mRNA levels in primary mouse hepatocytes and HEPA1-6 cells. Ezetimibe reduced the intestinal cholesterol absorption, ABCA1 and ABCG5, but did not affect the serum HDL-C or ApoAI levels. Thus, the LXR-driven induction of HDL-C and ApoAI was independent of the intestinal cholesterol absorption and increased expression of intestinal or hepatic ABCA1 was not required. Inhibited influx of cholesterol via NPC1L1 and/or low levels of intracellular cholesterol prevented post-transcriptional expression of intestinal ABCA1 and ABCG5, despite increased mRNA levels. Combined LXR activation and blocked intestinal cholesterol absorption induced effective faecal elimination of cholesterol.

  7. Preparation of cholesterol oxidase nanoparticles and their application in amperometric determination of cholesterol

    NASA Astrophysics Data System (ADS)

    Chawla, Sheetal; Rawal, Rachna; Sonia; Ramrati; Pundir, C. S.

    2013-09-01

    The nanoparticle (NP) aggregates of commercial cholesterol oxidase (ChOx) were prepared by desolvation method. The formation and characterization of ChOxNP aggregates were studied by transmission electron microscopy and scanning electron microscopy. NP aggregates were more stable, active and had a higher shelf life than that of free enzyme. An amperometric cholesterol biosensor was constructed by immobilizing ChOxNPs onto Au electrode. The biosensor showed optimum response within 8 s at pH 6.0 and 35 °C, when polarized at +0.27 V versus Ag/AgCl. The biosensor possesses high sensitivity and measures cholesterol concentrations as low as 1.56 mg/dl. The working linear range was 12.5-700 mg/dl for cholesterol. The biosensor was evaluated and employed for measurement of total cholesterol in human serum. The enzyme electrode lost 50 % of its initial activity during its regular use for 180 times over a period of 90 days when stored in 0.1 M sodium phosphate buffer, pH 7.0 at 4 °C.

  8. Some observations on the cholesterol esterifying and cholesterol ester hydrolyzing activities in dog plasma.

    PubMed

    Yamamoto, K; Kamo-Yamada, F; Cho, S; Sugano, M

    1980-05-01

    Cholesterol esterification and cholesterol ester hydrolysis in dog plasma were investigated. Esterification proceeded linearly for 60 min, and the amounts of cholesterol esterified were in the range of 0.13-0.18 mumol/ml/h. No change of acyl composition had occurred in newly formed cholesterol esters during incubation. With the addition of Na taurocholate (10 mM), complete inhibition of the esterifying activity and maximal activation of the hydrolase activity were observed. Approximately 50% of cholesterol esters present in plasma was hydrolyzed in 10 min of incubation, and the reaction was completed within 60 min. The maximal rate of hydrolysis was estimated to be 4.0-5.4 mumol/ml/h, and polyunsaturated esters were hydrolyzed more rapidly than saturated ones. The esterifying activity was detected in high density (HDL) and very high density lipoproteins (VHDL), while the hydrolytic activity was found only in VHDL. Each lipoprotein fraction served as a good substrate for hydrolysis, while HDL was the sole substrate for esterification. The optimal pH of the hydrolytic activity in VHDL lay in a broad range between 6.8 and 7.2 and the apparent Km was determined as 12.5 x 10(-3) mM for cholesteryl oleate.

  9. Microwave assisted direct saponification for the simultaneous determination of cholesterol and cholesterol oxides in shrimp.

    PubMed

    Souza, Hugo A L; Mariutti, Lilian R B; Bragagnolo, Neura

    2016-03-22

    A novel microwave-assisted direct saponification method for the simultaneous determination of cholesterol and cholesterol oxides in shrimp was developed and validated. Optimal saponification conditions, determined by means of an experimental design, were achieved using 500mg of sample and 20mL of 1mol/L KOH ethanol solution for 16min at 45°C at maximum power at 200W and magnetic stirring at 120rpm. Higher extraction of cholesterol oxides in a reduced saponification time (∼75 times) was achieved in comparison with the direct cold saponification method. The new method showed low detection (≤0.57μg/mL) and quantification (≤1.73μg/mL) limits, good repeatability (≤10.50% intraday and ≤8.56% interday) and low artifact formation (evaluated by using a deuterated cholesterol-D6 standard). Raw, salted and dried-salted shrimps were successfully analyzed by the validated method. The content of cholesterol oxides increased after salting and decreased after drying.

  10. Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function.

    PubMed

    Martin, Laura A; Kennedy, Barry E; Karten, Barbara

    2016-04-01

    Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology.

  11. Free phytosterols facilitate excretion of endogenous cholesterol in gerbils.

    PubMed

    Hayes, K C; Pronczuk, Andrzej; Wijendran, Vasuki; Beer, Michael

    2005-05-01

    To determine whether phytosterols (PST) facilitate excretion of whole body cholesterol and whether dietary fat or enhancing gallbladder contraction with curcumin might influence this process, four experiments were conducted in gerbils. In Experiment 1, naive gerbils received cholesterol-free purified diets with 30% energy from fat and 0% or 0.75% free PST from tall oil for 4 weeks. In Experiment 2, body cholesterol pools were expanded by feeding a diet containing 0.3% cholesterol for 3 weeks. Subsequently, PST was provided in either fat-free or normal-fat diets without cholesterol for only 2 h each morning, followed by a low-fat diet for the rest of the day and food restriction overnight. In Experiment 3, gerbils were preloaded with cholesterol, followed by either PST alone or PST+curcumin to enhance gallbladder contraction. In Experiment 4, curcumin or curcumin+PST were fed with 30% as fat and 0.15% cholesterol throughout the study. Because of the small whole body cholesterol pool in Experiment 1, the impact of PST was limited. When whole body cholesterol was expanded in Experiments 2 and 3, subsequent reductions of liver esterified cholesterol by PST were significant. In the presence of dietary fat, PST caused a greater reduction (23%) than in a fat-free diet (8%) compared to respective controls. Curcumin (Experiments 3 and 4) proved ineffective in reducing liver or plasma cholesterol pools, and the 3:1 ratio between PST/diet cholesterol was less effective at blocking cholesterol absorption than a 5:1 ratio previously employed. Thus, free PST removed whole body cholesterol, which was enhanced by concomitant fat intake, but was unaffected by a gallbladder contracting agent.

  12. Isotope dilution/mass spectrometry of serum cholesterol with (3,4-/sup 13/C)cholesterol: proposed definitive method

    SciTech Connect

    Pelletier, O.; Wright, L.A.; Breckenridge, W.C.

    1987-08-01

    We describe a new gas-chromatographic/mass-spectrometric (GC/MS) isotope-dilution method for determination of serum cholesterol. The method has been fully optimized and documented to provide the high accuracy and precision expected for a Definitive Method. In the presence of (3,4-/sup 13/C)cholesterol, cholesteryl esters in serum are hydrolyzed under optimum conditions and the entire cholesterol pool is extracted and derivatized to silyl ethers. The cholesterol derivatives are resolved from other sterols by gas-liquid chromatography on a fused silica column, and selected ions characteristic of cholesterol and the (3,4-/sup 13/C)cholesterol are monitored with a GC/MS quandrupole system. We estimated the cholesterol content of samples by bracketing each sample with standards of comparable cholesterol concentration that also contained the (3,4-/sup 13/C)cholesterol. The procedure was highly reproducible (CV less than 0.5%), better accuracy and precision being obtained with (3,4-/sup 13/C)cholesterol than with heptadeuterated cholesterol. Mean values per gram of dry serum for one serum pool assayed by this method and that of the National Bureau of Standards differed by 0.5%. We conclude that the method satisfies the criteria for a Definitive Method.

  13. Carbohydrate Loading.

    ERIC Educational Resources Information Center

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  14. The cholesterol transporter ABCG1 links cholesterol homeostasis and tumour immunity.

    PubMed

    Sag, Duygu; Cekic, Caglar; Wu, Runpei; Linden, Joel; Hedrick, Catherine C

    2015-02-27

    ATP-binding cassette transporter G1 (ABCG1) promotes cholesterol efflux from cells and regulates intracellular cholesterol homeostasis. Here we demonstrate a role of ABCG1 as a mediator of tumour immunity. Abcg1(-/-) mice have dramatically suppressed subcutaneous MB49-bladder carcinoma and B16-melanoma growth and prolonged survival. We show that reduced tumour growth in Abcg1(-/-) mice is myeloid cell intrinsic and is associated with a phenotypic shift of the macrophages from a tumour-promoting M2 to a tumour-fighting M1 within the tumour. Abcg1(-/-) macrophages exhibit an intrinsic bias towards M1 polarization with increased NF-κB activation and direct cytotoxicity for tumour cells in vitro. Overall, our study demonstrates that the absence of ABCG1 inhibits tumour growth through modulation of macrophage function within the tumour, and illustrates a link between cholesterol homeostasis and cancer.

  15. A new model of reverse cholesterol transport: enTICEing strategies to stimulate intestinal cholesterol excretion.

    PubMed

    Temel, Ryan E; Brown, J Mark

    2015-07-01

    Cardiovascular disease (CVD) remains the largest cause of mortality in most developed countries. Although recent failed clinical trials and Mendelian randomization studies have called into question the high-density lipoprotein (HDL) hypothesis, it remains well accepted that stimulating the process of reverse cholesterol transport (RCT) can prevent or even regress atherosclerosis. The prevailing model for RCT is that cholesterol from the artery wall must be delivered to the liver where it is secreted into bile before leaving the body through fecal excretion. However, many studies have demonstrated that RCT can proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE). The goal of this review is to discuss the current state of knowledge of the TICE pathway, with emphasis on points of therapeutic intervention.

  16. Inhibition of T cell receptor signaling by cholesterol sulfate, a naturally occurring derivative of membrane cholesterol

    PubMed Central

    Wang, Feng; Beck-García, Katharina; Zorzin, Carina; Schamel, Wolfgang W. A.; Davis, Mark M.

    2016-01-01

    Most adaptive immune responses require the activation of specific T cells through the T cell antigen receptor–CD3 complex (TCR). Here we show that cholesterol sulfate (CS), a naturally occurring analog of cholesterol, inhibits CD3 ITAM phosphorylation, a crucial first step in T cell activation. Biochemical studies show that CS disrupted TCR multimers, apparently by displacing cholesterol, known to bind TCRβ. Moreover, CS-deficient mice displayed a heightened sensitivity to a self-antigen, whereas increasing CS content by intrathymic injection inhibited thymic selection, indicating that this molecule is an intrinsic regulator of thymocyte development. These results reveal a regulatory role for CS in TCR signaling and thymic selection, highlighting the importance of the membrane microenvironment in modulating cell surface receptor activation. PMID:27213689

  17. Cholesterol removal from various samples by cholesterol-imprinted monosize microsphere-embedded cryogels.

    PubMed

    Çaktü, Kıvılcım; Baydemir, Gözde; Ergün, Bahar; Yavuz, Handan

    2014-12-01

    Cholesterol-imprinted monosize poly(glycidyl methacrylate-N-methacryloyl-(L)-tyrosine methylester) microspheres were embedded into the poly(hydroxyethyl methacrylate) (PHEMA) cryogels and the resulting composite cryogel was used for the selective removal of cholesterol. Composite cryogels were characterized by swelling tests, multipoint BET apparatus, SEM, FTIR and elemental analysis studies. Specific surface area of the PHEMA cryogel was increased from 13 to 72.7 m(2)/g by embedding of microspheres. Composite cryogels removed 80% of cholesterol from homogenized milk. The maximum adsorption capacity was found as 42.7 mg/g for intestinal mimicking solution. After 20 adsorption-desorption cycles, there was no remarkable decrease in the adsorption capacity.

  18. Control of Angiogenesis by AIBP-mediated Cholesterol Efflux

    PubMed Central

    Fang, Longhou; Choi, Soo-Ho; Baek, Ji Sun; Liu, Chao; Almazan, Felicidad; Ulrich, Florian; Wiesner, Philipp; Taleb, Adam; Deer, Elena; Pattison, Jennifer; Torres-Vázquez, Jesús; Li, Andrew C.; Miller, Yury I.

    2013-01-01

    Cholesterol is a structural component of the cell, indispensable for normal cellular function, but its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (ApoA-I) and to the ApoA-I-containing high-density lipoprotein (HDL)1-3. Maintaining efficient cholesterol efflux is essential for normal cellular function4-6. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that ApoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells (EC) to HDL and thereby regulates angiogenesis. AIBP/HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 dimerization and signaling, and inhibits VEGF-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Remarkably, Aibp regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell autonomous regulator of zebrafish angiogenesis. Aibp knockdown results in dysregulated sprouting/branching angiogenesis, while forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1/Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1/Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from EC and that effective cholesterol efflux is critical for proper angiogenesis. PMID:23719382

  19. The Effects of Cholesterol on Learning and Memory

    PubMed Central

    Schreurs, Bernard G.

    2010-01-01

    Cholesterol is vital to normal brain function including learning and memory but that involvement is as complex as the synthesis, metabolism and excretion of cholesterol itself. Dietary cholesterol influences learning tasks from water maze to fear conditioning even though cholesterol does not cross the blood brain barrier. Excess cholesterol has many consequences including peripheral pathology that can signal brain via cholesterol metabolites, proinflammatory mediators and antioxidant processes. Manipulations of cholesterol within the central nervous system through genetic, pharmacological, or metabolic means circumvent the blood brain barrier and affect learning and memory but often in animals already otherwise compromised. The human literature is no less complex. Cholesterol reduction using statins improves memory in some cases but not others. There is also controversy over statin use to alleviate memory problems in Alzheimer’s disease. Correlations of cholesterol and cognitive function are mixed and association studies find some genetic polymorphisms are related to cognitive function but others are not. In sum, the field is in flux with a number of seemingly contradictory results and many complexities. Nevertheless, understanding cholesterol effects on learning and memory is too important to ignore. PMID:20470821

  20. Cholesterol: Its Regulation and Role in Central Nervous System Disorders

    PubMed Central

    Orth, Matthias; Bellosta, Stefano

    2012-01-01

    Cholesterol is a major constituent of the human brain, and the brain is the most cholesterol-rich organ. Numerous lipoprotein receptors and apolipoproteins are expressed in the brain. Cholesterol is tightly regulated between the major brain cells and is essential for normal brain development. The metabolism of brain cholesterol differs markedly from that of other tissues. Brain cholesterol is primarily derived by de novo synthesis and the blood brain barrier prevents the uptake of lipoprotein cholesterol from the circulation. Defects in cholesterol metabolism lead to structural and functional central nervous system diseases such as Smith-Lemli-Opitz syndrome, Niemann-Pick type C disease, and Alzheimer's disease. These diseases affect different metabolic pathways (cholesterol biosynthesis, lipid transport and lipoprotein assembly, apolipoproteins, lipoprotein receptors, and signaling molecules). We review the metabolic pathways of cholesterol in the CNS and its cell-specific and microdomain-specific interaction with other pathways such as the amyloid precursor protein and discuss potential treatment strategies as well as the effects of the widespread use of LDL cholesterol-lowering drugs on brain functions. PMID:23119149

  1. Mathematically modelling the dynamics of cholesterol metabolism and ageing.

    PubMed

    Morgan, A E; Mooney, K M; Wilkinson, S J; Pickles, N A; Mc Auley, M T

    2016-07-01

    Cardiovascular disease (CVD) is the leading cause of morbidity and mortality in the UK. This condition becomes increasingly prevalent during ageing; 34.1% and 29.8% of males and females respectively, over 75 years of age have an underlying cardiovascular problem. The dysregulation of cholesterol metabolism is inextricably correlated with cardiovascular health and for this reason low density lipoprotein cholesterol (LDL-C) and high density lipoprotein cholesterol (HDL-C) are routinely used as biomarkers of CVD risk. The aim of this work was to use mathematical modelling to explore how cholesterol metabolism is affected by the ageing process. To do this we updated a previously published whole-body mathematical model of cholesterol metabolism to include an additional 96 mechanisms that are fundamental to this biological system. Additional mechanisms were added to cholesterol absorption, cholesterol synthesis, reverse cholesterol transport (RCT), bile acid synthesis, and their enterohepatic circulation. The sensitivity of the model was explored by the use of both local and global parameter scans. In addition, acute cholesterol feeding was used to explore the effectiveness of the regulatory mechanisms which are responsible for maintaining whole-body cholesterol balance. It was found that our model behaves as a hypo-responder to cholesterol feeding, while both the hepatic and intestinal pools of cholesterol increased significantly. The model was also used to explore the effects of ageing in tandem with three different cholesterol ester transfer protein (CETP) genotypes. Ageing in the presence of an atheroprotective CETP genotype, conferring low CETP activity, resulted in a 0.6% increase in LDL-C. In comparison, ageing with a genotype reflective of high CETP activity, resulted in a 1.6% increase in LDL-C. Thus, the model has illustrated the importance of CETP genotypes such as I405V, and their potential role in healthy ageing.

  2. Effects of cholesterol on plasma membrane lipid order in MCF-7 cells by two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Zeng, Yixiu; Chen, Jianling; Yang, Hongqin; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-09-01

    Lipid rafts are cholesterol- and glycosphingolipids- enriched microdomains on plasma membrane surface of mammal cells, involved in a variety of cellular processes. Depleting cholesterol from the plasma membrane by drugs influences the trafficking of lipid raft markers. Optical imaging techniques are powerful tools to study lipid rafts in live cells due to its noninvasive feature. In this study, breast cancer cells MCF-7 were treated with different concentrations of MβCD to deplete cholesterol and an environmentally sensitive fluorescence probe, Laurdan was loaded to image lipid order by two-photon microscopy. The generalized polarization (GP) values were calculated to distinguish the lipid order and disorder phase. GP images and GP distributions of native and cholesterol-depleted MCF-7 cells were obtained. Our results suggest that even at low concentration (0.5 mM) of MβCD, the morphology of the MCF-7 cells changes. Small high GP areas (lipid order phase) decrease more rapidly than low GP areas (lipid disorder phase), indicating that lipid raft structure was altered more severely than nonraft domains. The data demonstrates that cholesterol dramatically affect raft coverage and plasma membrane fluidity in living cells.

  3. Molecular Dynamics Simulation and Experimental Studies of Gold Nanoparticle Templated HDL-like Nanoparticles for Cholesterol Metabolism Therapeutics.

    PubMed

    Lai, Cheng-Tsung; Sun, Wangqiang; Palekar, Rohun U; Thaxton, C Shad; Schatz, George C

    2017-01-18

    High-density lipoprotein (HDL) plays an important role in the transport and metabolism of cholesterol. Mimics of HDL are being explored as potentially powerful therapeutic agents for removing excess cholesterol from arterial plaques. Gold nanoparticles (AuNPs) functionalized with apolipoprotein A-I and with the lipids 1,2-dipalmitoyl-sn-glycero-3-phosphocholine and 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine-N-[3-(2-pyridyldithio)propionate] have been demonstrated to be robust acceptors of cellular cholesterol. However, detailed structural information about this functionalized HDL AuNP is still lacking. In this study, we have used X-ray photoelectron spectroscopy and lecithin/cholesterol acyltransferase activation experiments together with coarse-grained and all-atom molecular dynamics simulations to model the structure and cholesterol uptake properties of the HDL AuNP construct. By simulating different apolipoprotein-loaded AuNPs, we find that lipids are oriented differently in regions with and without apoA-I. We also show that in this functionalized HDL AuNP, the distribution of cholesteryl ester maintains a reverse concentration gradient that is similar to the gradient found in native HDL.

  4. Effects of a Saturated Fat and High Cholesterol Diet on Memory and Hippocampal Morphology in the Middle-Aged Rat

    PubMed Central

    Granholm, Ann-Charlotte; Bimonte-Nelson, Heather A.; Moore, Alfred B.; Nelson, Matthew E.; Freeman, Linnea R.; Sambamurti, Kumar

    2009-01-01

    Diets rich in cholesterol and/or saturated fats have been shown to be detrimental to cognitive performance. Therefore, we fed a cholesterol (2%) and saturated fat (hydrogenated coconut oil, Sat Fat 10%) diet to 16-month old rats for 8 weeks to explore the effects on the working memory performance of middle-aged rats. Lipid profiles revealed elevated plasma triglycerides, total cholesterol, HDL, and LDL for the Sat-Fat group as compared to an iso-caloric control diet (12% soybean oil). Weight gain and food consumption were similar in both groups. Sat-Fat treated rats committed more working memory errors in the water radial arm maze, especially at higher memory loads. Cholesterol, amyloid-β peptide of 40 (Aβ40) or 42 (Aβ42) residues, and nerve growth factor in cortical regions was unaffected, but hippocampal Map-2 staining was reduced in rats fed a Sat-Fat diet, indicating a loss of dendritic integrity. Map-2 reduction correlated with memory errors. Microglial activation, indicating inflammation and/or gliosis, was also observed in the hippocampus of Sat-Fat fed rats. These data suggest that saturated fat, hydrogenated fat and cholesterol can profoundly impair memory and hippocampal morphology. PMID:18560126

  5. Free cholesterol accumulation in macrophage membranes activates Toll-like receptors and p38 mitogen-activated protein kinase and induces cathepsin K.

    PubMed

    Sun, Yu; Ishibashi, Minako; Seimon, Tracie; Lee, Mingsum; Sharma, Sudarshana M; Fitzgerald, Katherine A; Samokhin, Andriy O; Wang, Yibin; Sayers, Scott; Aikawa, Masanori; Jerome, W Gray; Ostrowski, Michael C; Bromme, Dieter; Libby, Peter; Tabas, Ira A; Welch, Carrie L; Tall, Alan R

    2009-02-27

    The molecular events linking lipid accumulation in atherosclerotic plaques to complications such as aneurysm formation and plaque disruption are poorly understood. BALB/c-Apoe(-/-) mice bearing a null mutation in the Npc1 gene display prominent medial erosion and atherothrombosis, whereas their macrophages accumulate free cholesterol in late endosomes and show increased cathepsin K (Ctsk) expression. We now show increased cathepsin K immunostaining and increased cysteinyl proteinase activity using near infrared fluorescence imaging over proximal aortas of Apoe(-/-), Npc1(-/-) mice. In mechanistic studies, cholesterol loading of macrophage plasma membranes (cyclodextrin-cholesterol) or endosomal system (AcLDL+U18666A or Npc1 null mutation) activated Toll-like receptor (TLR) signaling, leading to sustained phosphorylation of p38 mitogen-activated protein kinase and induction of p38 targets, including Ctsk, S100a8, Mmp8, and Mmp14. Studies in macrophages from knockout mice showed major roles for TLR4, following plasma membrane cholesterol loading, and for TLR3, after late endosomal loading. TLR signaling via p38 led to phosphorylation and activation of the transcription factor Microphthalmia transcription factor, acting at E-box elements in the Ctsk promoter. These studies suggest that free cholesterol enrichment of either plasma or endosomal membranes in macrophages leads to activation of signaling via various TLRs, prolonged p38 mitogen-activated protein kinase activation, and induction of Mmps, Ctsk, and S100a8, potentially contributing to plaque complications.

  6. LOADED WAVEGUIDES

    DOEpatents

    Mullett, L.B.; Loach, B.G.; Adams, G.L.

    1958-06-24

    >Loaded waveguides are described for the propagation of electromagnetic waves with reduced phase velocities. A rectangular waveguide is dimensioned so as to cut-off the simple H/sub 01/ mode at the operating frequency. The waveguide is capacitance loaded, so as to reduce the phase velocity of the transmitted wave, by connecting an electrical conductor between directly opposite points in the major median plane on the narrower pair of waveguide walls. This conductor may take a corrugated shape or be an aperature member, the important factor being that the electrical length of the conductor is greater than one-half wavelength at the operating frequency. Prepared for the Second U.N. International ConferThe importance of nuclear standards is duscussed. A brief review of the international callaboration in this field is given. The proposal is made to let the International Organization for Standardization (ISO) coordinate the efforts from other groups. (W.D.M.)

  7. Effect of dietary cholesterol and cholesterol oxides on blood cholesterol, lipids, and the development of atherosclerosis in rabbits.

    PubMed

    Hur, Sun Jin; Min, Byungrok; Nam, Ki Chang; Lee, Eun Joo; Ahn, Dong Uk

    2013-06-17

    Two studies were conducted to determine the effects of dietary cholesterol (CHO) and cholesterol oxides (COPs) on the development of atherosclerosis and the changes in fatty acid and blood characteristics in rabbits. In the first study, forty male New Zealand white rabbits were divided into 5 groups and fed commercial rabbit chow with no added CHO or COPs, 1 g CHO, 0.9 g CHO + 0.1 g COPs, 0.8 g CHO + 0.2 g COPs, or 0.5 g CHO + 0.5 g COPs per kg diet. In the second study, 24 male New Zealand White rabbits were divided into 3 groups and fed a diet containing 2 g CHO, 1.6 g CHO + 0.4 g COPs, or 1.2 g CHO + 0.8 g COPs per kg diet. All diets induced atherosclerotic lesions in the rabbits' ascending thoracic aorta. The serum CHO and triglyceride levels (p < 0.05) increased significantly with the increased levels of CHO in the diets. Dietary CHO or COPs did not influence high-density lipoprotein CHO levels. The ratio of saturated fatty acid to unsaturated fatty acid increased as the level of dietary CHO and COPs increased.

  8. Variability of cholesterol accessibility in human red blood cells measured using a bacterial cholesterol-binding toxin

    PubMed Central

    Chakrabarti, Rima S; Ingham, Sally A; Kozlitina, Julia; Gay, Austin; Cohen, Jonathan C; Radhakrishnan, Arun; Hobbs, Helen H

    2017-01-01

    Cholesterol partitions into accessible and sequestered pools in cell membranes. Here, we describe a new assay using fluorescently-tagged anthrolysin O, a cholesterol-binding bacterial toxin, to measure accessible cholesterol in human red blood cells (RBCs). Accessible cholesterol levels were stable within individuals, but varied >10 fold among individuals. Significant variation was observed among ethnic groups (Blacks>Hispanics>Whites). Variation in accessibility of RBC cholesterol was unrelated to the cholesterol content of RBCs or plasma, but was associated with the phospholipid composition of the RBC membranes and with plasma triglyceride levels. Pronase treatment of RBCs only modestly altered cholesterol accessibility. Individuals on hemodialysis, who have an unexplained increase in atherosclerotic risk, had significantly higher RBC cholesterol accessibility. Our data indicate that RBC accessible cholesterol is a stable phenotype with significant inter-individual variability. Factors both intrinsic and extrinsic to the RBC contribute to variation in its accessibility. This assay provides a new tool to assess cholesterol homeostasis among tissues in humans. DOI: http://dx.doi.org/10.7554/eLife.23355.001 PMID:28169829

  9. Low-density lipoprotein cholesterol level in patients with acute myocardial infarction having percutaneous coronary intervention (the cholesterol paradox).

    PubMed

    Cho, Kyung Hoon; Jeong, Myung Ho; Ahn, Youngkeun; Kim, Young Jo; Chae, Shung Chull; Hong, Taek Jong; Seong, In Whan; Chae, Jei Keon; Kim, Chong Jin; Cho, Myeong Chan; Seung, Ki Bae; Park, Seung Jung

    2010-10-15

    The relation between low-density lipoprotein (LDL) cholesterol levels and clinical outcomes after percutaneous coronary intervention (PCI) in patients with acute myocardial infarction (AMI) has not been described. A total of 9,571 eligible patients (mean age 62.6 ± 12.5 years, 6,967 men) who underwent PCI with a final diagnosis of AMI from the Korea Acute Myocardial Infarction Registry (KAMIR) were divided into 5 groups according to LDL cholesterol level: < 70, 70 to 99, 100 to 129, 130 to 159, and ≥ 160 mg/dl. Clinical outcomes in hospital and 1 and 12 months after PCI in patients with AMI were examined. Age and co-morbidities decreased as LDL cholesterol increased. Patients with higher LDL cholesterol levels had favorable hemodynamic status and laboratory findings. Lifesaving medications, including lipid-lowering drugs, were underused in patients with lower LDL cholesterol levels. Clinical outcomes in hospital and 1 and 12 months after PCI showed better results as LDL cholesterol increased, except for patients with LDL cholesterol levels ≥ 160 mg/dl. In a Cox proportional-hazards model, LDL cholesterol level was not an independent predictor of mortality at 12 months, after adjusting for clinical characteristics including demographics and biologic data. In conclusion, the cholesterol paradox in patients with AMI is related to confounding by baseline characteristics associated with survival. More intensive treatment including lipid-lowering therapy for AMI in patients with lower LDL cholesterol level may result in better clinical outcomes.

  10. From Evolution to Revolution: miRNAs as Pharmacological Targets for Modulating Cholesterol Efflux and Reverse Cholesterol Transport

    PubMed Central

    Dávalos, Alberto; Fernández-Hernando, Carlos

    2013-01-01

    There has been strong evolutionary pressure to ensure that an animal cell maintain levels of cholesterol within tight limits for normal function. Imbalances in cellular cholesterol levels are a major player in the development of different pathologies associated to dietary excess. Although epidemiological studies indicate that elevated levels of high-density lipoprotein (HDL)-cholesterol reduce the risk of cardiovascular disease, recent genetic evidence and pharmacological therapies to raise HDL levels do not support their beneficial effects. Cholesterol efflux as the first and probably the most important step in reverse cholesterol transport is an important biological process relevant to HDL function. Small non-coding RNAs (microRNAs), post-transcriptional control different aspects of cellular cholesterol homeostasis including cholesterol efflux. miRNA families miR-33, miR-758, miR-10b, miR-26 and miR-106b directly modulates cholesterol efflux by targeting the ATP-binding cassette transporter A1 (ABCA1). Pre-clinical studies with anti-miR therapies to inhibit some of these miRNAs have increased cellular cholesterol efflux, reverse cholesterol transport and reduce pathologies associated to dyslipidemia. Although miRNAs as therapy have benefits from existing antisense technology, different obstacles need to be solved before we incorporate such research into clinical care. Here we focus on the clinical potential of miRNAs as therapeutic target to increase cholesterol efflux and reverse cholesterol transport as a new alternative to ameliorate cholesterol-related pathologies. PMID:23435093

  11. Membrane cholesterol access into a G-protein-coupled receptor

    NASA Astrophysics Data System (ADS)

    Guixà-González, Ramon; Albasanz, José L.; Rodriguez-Espigares, Ismael; Pastor, Manuel; Sanz, Ferran; Martí-Solano, Maria; Manna, Moutusi; Martinez-Seara, Hector; Hildebrand, Peter W.; Martín, Mairena; Selent, Jana

    2017-02-01

    Cholesterol is a key component of cell membranes with a proven modulatory role on the function and ligand-binding properties of G-protein-coupled receptors (GPCRs). Crystal structures of prototypical GPCRs such as the adenosine A2A receptor (A2AR) have confirmed that cholesterol finds stable binding sites at the receptor surface suggesting an allosteric role of this lipid. Here we combine experimental and computational approaches to show that cholesterol can spontaneously enter the A2AR-binding pocket from the membrane milieu using the same portal gate previously suggested for opsin ligands. We confirm the presence of cholesterol inside the receptor by chemical modification of the A2AR interior in a biotinylation assay. Overall, we show that cholesterol's impact on A2AR-binding affinity goes beyond pure allosteric modulation and unveils a new interaction mode between cholesterol and the A2AR that could potentially apply to other GPCRs.

  12. Transport of circulating serum cholesterol by human renal cell carcinoma

    SciTech Connect

    Clayman, R.V.; Figenshau, R.S.; Prigge, W.F.; Forstrom, L.; Gebhard, R.L.

    1987-06-01

    Clear cell renal cancer contains a large quantity of cholesterol ester (300-mg./gm. protein). To determine whether abnormalities in cholesterol transport could account for this sterol accumulation, the uptake, release, and imaging capabilities of intravenously injected /sup 131/I-6-iodomethyl-29-norcholesterol, a cholesterol analogue, were studied preoperatively in five patients with clear cell renal cancer. At surgery, samples of the liver, tumor, adrenal, and non-tumor kidney were obtained for analysis. /sup 131/I-sterol uptake by the tumor, when normalized for cholesterol content, was less than for adrenal, liver or kidney. In contrast, release of preloaded /sup 131/I-sterol from the human tumors was consistently slower than for normal kidney. The reduced release of free cholesterol from renal cancer cells may, in part, be responsible for the accumulation of cholesterol in human renal cancer.

  13. Hospital employee cholesterol screening: modification of dietary behavior.

    PubMed

    Barrere, C C

    1994-06-01

    1. The author used a survey tool to measure attitudes of individuals toward health and social factors specific to a low fat/low cholesterol diet. 2. Participants attending the cholesterol screening were healthy and already motivated to be aware of their cholesterol counts. The percent of diet pattern change was not influenced by knowledge of either a low, borderline, or high cholesterol level. 3. Although further testing of this instrument is needed, raw individual scores seem to indicate that motivated screening participants feel a diet low in fat and cholesterol has positive health implications and is not a social inconvenience. 4. There was no significant difference between the traditional and goal setting teaching methods in teaching hospital employee cholesterol screening participants to reduce dietary fat intake.

  14. Membrane cholesterol access into a G-protein-coupled receptor

    PubMed Central

    Guixà-González, Ramon; Albasanz, José L.; Rodriguez-Espigares, Ismael; Pastor, Manuel; Sanz, Ferran; Martí-Solano, Maria; Manna, Moutusi; Martinez-Seara, Hector; Hildebrand, Peter W.; Martín, Mairena; Selent, Jana

    2017-01-01

    Cholesterol is a key component of cell membranes with a proven modulatory role on the function and ligand-binding properties of G-protein-coupled receptors (GPCRs). Crystal structures of prototypical GPCRs such as the adenosine A2A receptor (A2AR) have confirmed that cholesterol finds stable binding sites at the receptor surface suggesting an allosteric role of this lipid. Here we combine experimental and computational approaches to show that cholesterol can spontaneously enter the A2AR-binding pocket from the membrane milieu using the same portal gate previously suggested for opsin ligands. We confirm the presence of cholesterol inside the receptor by chemical modification of the A2AR interior in a biotinylation assay. Overall, we show that cholesterol's impact on A2AR-binding affinity goes beyond pure allosteric modulation and unveils a new interaction mode between cholesterol and the A2AR that could potentially apply to other GPCRs. PMID:28220900

  15. The perspective on cholesterol-lowering mechanisms of probiotics.

    PubMed

    Ishimwe, Nestor; Daliri, Eric B; Lee, Byong H; Fang, Fang; Du, Guocheng

    2015-01-01

    The use of probiotics as food components combats not only cardiovascular diseases but also many gastrointestinal tract disorders. Their health benefits along with their increased global market have interested scientists for better formulation and appropriate administration to the consumers. However, the lack of clear elucidation of their cholesterol-lowering mechanisms has complicated their proper dosage and administration to the beneficiaries. In this review, proposed mechanisms of cholesterol reduction such as deconjugation of bile via bile salt hydrolase activity, binding of cholesterol to probiotic cellular surface and incorporation into their cell membrane, production of SCFAs from oligosaccharides, coprecipitation of cholesterol with deconjugated bile, and cholesterol conversion to coprostanol have been discussed. Also, hypocholesterolemic effects on human- and animal-trial results, commonly used probiotics and synbiotics with effect on serum cholesterol regulation, types of bile salt hydrolase genes, and substrate specificities have been discussed.

  16. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol.

    PubMed Central

    Feigenson, G W; Buboltz, J T

    2001-01-01

    A ternary phase diagram is proposed for the hydrated lamellar lipid mixture dipalmitoylphosphatidylcholine/dilauroylphosphatidylcholine/cholesterol (DPPC/DLPC/cholesterol) at room temperature. The entire composition space has been thoroughly mapped by complementary experimental techniques, revealing interesting phase behavior that has not been previously described. Confocal fluorescence microscopy shows a regime of coexisting DPPC-rich ordered and DLPC-rich fluid lamellar phases, having an upper boundary at apparently constant cholesterol mole fraction chi(chol) approximately 0.16. Fluorescence resonance energy transfer experiments confirm the identification and extent of this two-phase regime and, furthermore, reveal a 1-phase regime between chi(chol) approximately 0.16 and 0.25, consisting of ordered and fluid nanoscopic domains. Dipyrene-PC excimer/monomer measurements confirm the new regime between chi(chol) approximately 0.16 and 0.25 and also show that rigidly ordered phases seem to disappear around chi(chol) approximately 0.25. This study should be considered as a step toward a more complete understanding of lateral heterogeneity within biomembranes. Cholesterol may play a role in domain separation on the nanometer scale. PMID:11371452

  17. Mechanisms of Alcohol Induced Effects on Cellular Cholesterol Dynamics

    DTIC Science & Technology

    2004-09-01

    lipids to SCP-2 tant role in the reduced risk of coronary heart disease in with cholesterol binding being most affected [3]. The asso- moderate alcohol...Avdulov NA, Chochina SV, lgbavboa U, Wood 234:25-33;1976. lipoproteins and coronary heart disease : The WG. Cholesterol effmux to high density lipopro... Cholesterol Efflux in Human Aortic Cells 3 Risk of coronary heart disease (CHD) morbidity and mortality is reduced by moderate alcohol consumption

  18. Interaction of G protein coupled receptors and cholesterol.

    PubMed

    Gimpl, Gerald

    2016-09-01

    G protein coupled receptors (GPCRs) form the largest receptor superfamily in eukaryotic cells. Owing to their seven transmembrane helices, large parts of these proteins are embedded in the cholesterol-rich plasma membrane bilayer. Thus, GPCRs are always in proximity to cholesterol. Some of them are functionally dependent on the specific presence of cholesterol. Over the last years, enormous progress on receptor structures has been achieved. While lipophilic ligands other than cholesterol have been shown to bind either inside the helix bundle or at the receptor-lipid interface, the binding site of cholesterol was either a single transmembrane helix or a groove between two or more transmembrane helices. A clear preference for one of the two membrane leaflets has not been observed. Not surprisingly, many hydrophobic residues (primarily leucine and isoleucine) were found to be involved in cholesterol binding. In most cases, the rough β-face of cholesterol contacted the transmembrane helix bundle rather than the surrounding lipid matrix. The polar hydroxy group of cholesterol was localized near the water-membrane interface with potential hydrogen bonding to residues in receptor loop regions. Although a canonical motif, designated as CCM site, was detected as a specific cholesterol binding site in case of the β2AR, this site was not found to be occupied by cholesterol in other GPCRs possessing the same motif. Cholesterol-receptor interactions can increase the compactness of the receptor structure and are able to enhance the conformational stability towards active or inactive receptor states. Overall, all current data suggest a high plasticity of cholesterol interaction sites in GPCRs.

  19. Cholesterol enhances classical conditioning of the rabbit heart rate response

    PubMed Central

    Schreurs, Bernard G.; Smith-Bell, Carrie A.; Darwish, Deya S.; Wang, Desheng; Burhans, Lauren B.; Gonzales-Joekes, Jimena; Deci, Stephen; Stankovic, Goran; Sparks, D. Larry

    2007-01-01

    The cholesterol-fed rabbit is a model of atherosclerosis and has been proposed as an animal model of Alzheimer's disease. Feeding rabbits cholesterol has been shown to increase the number of beta amyloid immunoreactive neurons in the cortex. Addition of copper to the drinking water of cholesterol-fed rabbits can increase this number still further and may lead to plaque-like structures. Classical conditioning of the nictitating membrane response in cholesterol-fed rabbits is retarded in the presence of these plaque-like structures but may be facilitated in their absence. In a factorial design, rabbits fed 2% cholesterol or a normal diet (0% cholesterol) for 8 weeks with or without copper added to the drinking water were given trace classical conditioning using a tone and periorbital electrodermal stimulation to study the effects of cholesterol and copper on classical conditioning of heart rate and the nictitating membrane response. Cholesterol-fed rabbits showed significant facilitation of heart rate conditioning and conditioning-specific modification of heart rate relative to normal diet controls. Consistent with previous research, cholesterol had minimal effects on classical conditioning of the nictitating membrane response when periorbital electrodermal stimulation was used as the unconditioned stimulus. Immunohistochemical analysis showed a significant increase in the number of beta amyloid positive neurons in the cortex, hippocampus and amygdala of the cholesterol-fed rabbits. Supplementation of drinking water with copper increased the number of beta amyloid positive neurons in the cortex of cholesterol-fed rabbits but did not produce plaque-like structures or have a significant effect on heart rate conditioning. The data provide additional support for our finding that, in the absence of plaques, dietary cholesterol may facilitate learning and memory. PMID:17466388

  20. Cholesterol enhances classical conditioning of the rabbit heart rate response.

    PubMed

    Schreurs, Bernard G; Smith-Bell, Carrie A; Darwish, Deya S; Wang, Desheng; Burhans, Lauren B; Gonzales-Joekes, Jimena; Deci, Stephen; Stankovic, Goran; Sparks, D Larry

    2007-07-19

    The cholesterol-fed rabbit is a model of atherosclerosis and has been proposed as an animal model of Alzheimer's disease. Feeding rabbits cholesterol has been shown to increase the number of beta amyloid immunoreactive neurons in the cortex. Addition of copper to the drinking water of cholesterol-fed rabbits can increase this number still further and may lead to plaque-like structures. Classical conditioning of the nictitating membrane response in cholesterol-fed rabbits is retarded in the presence of these plaque-like structures but may be facilitated in their absence. In a factorial design, rabbits fed 2% cholesterol or a normal diet (0% cholesterol) for 8 weeks with or without copper added to the drinking water were given trace classical conditioning using a tone and periorbital electrodermal stimulation to study the effects of cholesterol and copper on classical conditioning of heart rate and the nictitating membrane response. Cholesterol-fed rabbits showed significant facilitation of heart rate conditioning and conditioning-specific modification of heart rate relative to normal diet controls. Consistent with previous research, cholesterol had minimal effects on classical conditioning of the nictitating membrane response when periorbital electrodermal stimulation was used as the unconditioned stimulus. Immunohistochemical analysis showed a significant increase in the number of beta amyloid positive neurons in the cortex, hippocampus and amygdala of the cholesterol-fed rabbits. Supplementation of drinking water with copper increased the number of beta amyloid positive neurons in the cortex of cholesterol-fed rabbits but did not produce plaque-like structures or have a significant effect on heart rate conditioning. The data provide additional support for our finding that, in the absence of plaques, dietary cholesterol may facilitate learning and memory.

  1. Cholesterol granuloma (Xanthomatous metritis) in the uterus of a cat.

    PubMed

    Zanghì, A; Nicòtina, P A; Catone, G; Gimbo, A

    1999-10-01

    A case of uterine cholesterol granuloma in a 12-year old mixed breed cat is reported. The lesions were found in the endometrium of the left uterine horn as scattered, raised nodules or foci. Histologically, mononuclear cell infiltrates were seen to surround cholesterol crystals, in both the endometrium and the smooth muscle layer, reaching the serosa. The findings support the role of haemorrhage in promoting chronic inflammatory reactions around interstitial cholesterol ester precipitates.

  2. [Plant sterols, cholesterol precursors and oxysterols: small amounts, big effects].

    PubMed

    Olkkonen, Vesa M; Gylling, Helena; Ikonen, Elina

    2015-01-01

    Noncholesterol sterols are present in the body in very low concentrations compared with cholesterol. Minor structural changes in sterols give them completely individual biological activities. Steroid hormones are the best known example of this. The knowledge of other relatives of cholesterol, particularly plant sterols, cholesterol precursors and oxysterols, their properties, physiological effects, significance in disease processes and diagnostic applications has recently undergone a rapid increase.

  3. [Prostate cancer dependance upon cholesterol, statins and diet].

    PubMed

    Pilch, Paweł; Radziszewski, Piotr; Maciukiewicz, Piotr

    2012-01-01

    The aim of the work is to analyze the influence of higher cholesterol and LDL level on risk of prostate cancer. The work is based on the available literature in that field. The metabolism of cholesterol is mainly regulated by the statins, which may thus inhibit prostate cancer growth. Keeping the appropriate body mass and level of cholesterol by proper diet and physical exercises may be the prophylaxis of prostate cancer.

  4. Potential role of nonstatin cholesterol lowering agents.

    PubMed

    Trapani, Laura; Segatto, Marco; Ascenzi, Paolo; Pallottini, Valentina

    2011-11-01

    Although statins, 3β-hydroxy-3β-methylglutaryl coenzyme A reductase (HMGR) inhibitors, have revolutionized the management of cardiovascular diseases by lowering serum low density lipoproteins, many patients suffer from their side effects. Whether the statin side effects are related to their intrinsic toxicity or to the decrease of HMGR main isoprenoid end products, which are essential compounds for cell viability, is still debated. In addition to HMGR, the key and rate limiting step of cholesterol synthesis, many enzymes are involved in this multi-step pathway whose inhibition could be taken into account for a "nonstatin approach" in the management of hypercholesterolemia. In particular, due to their unique position downstream from HMGR, the inhibition of squalene synthase, farnesyl diphosphate farnesyltransferase (FDFT1), squalene epoxidase (SQLE), and oxidosqualene cyclase:lanosterol synthase (OSC) should decrease plasma levels of cholesterol without affecting ubiquinone, dolichol, and isoprenoid metabolism. Thus, although FDFT1, SQLE and OSC are little studied, they should be considered as perspective targets for the development of novel drugs against hypercholesterolemia. Here, structure-function relationships of FDFT1, SQLE, and OSC are reviewed highlighting the advantages that the downstream inhibition of HMGR could provide when compared to the statin-based therapy.

  5. Cholesterol granuloma of the maxillary sinus.

    PubMed

    Chao, Ting-Kuang

    2006-06-01

    Cholesterol granuloma (CG) of the maxillary sinus is very rare. In this study, the searching of the literature was performed with the keywords of cholesterol granuloma and maxillary sinus. All retrieved literature were reviewed throughout to identify and analyze all individual characteristics. Two additional cases in our hospital were also included. The result showed that, in the overall 37 cases, the ratio of male to female was about 3:1. Caucasian (14/37) and Turkish (10/37) were reported more frequently. CG of maxillary sinus had an opposite sex predilection compared with the fungus balls of the maxillary sinus. In addition, the comorbidity of these two diseases was found only in one patient in the literature. These results suggested that the different mechanisms other than poor aeration of the maxillary sinus played a role in the formation of CG of maxillary sinus. The diagnosis for CG of the maxillary sinus before operation is difficult, but the clear golden yellow rhinorrhea and hemorrhagic signs may provide a good diagnostic evidence. The symptoms were vague and about half of the patients presented with non-specific symptoms. Therefore, it seemed reasonable that CG of the maxillary sinus was under diagnosed in the clinical practice. Treatment consists of complete excision via Caldwell-Luc or endoscopic approach and provides a good prognosis. Bilateral involvements are rare but possible in this disease entity.

  6. Cholesterol 7α-hydroxylase protects the liver from inflammation and fibrosis by maintaining cholesterol homeostasis.

    PubMed

    Liu, Hailiang; Pathak, Preeti; Boehme, Shannon; Chiang, John Y L

    2016-10-01

    Cholesterol 7α-hydroxylase (CYP7A1) plays a critical role in control of bile acid and cholesterol homeostasis. Bile acids activate farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5) to regulate lipid, glucose, and energy metabolism. However, the role of bile acids in hepatic inflammation and fibrosis remains unclear. In this study, we showed that adenovirus-mediated overexpression of Cyp7a1 ameliorated lipopolysaccharide (LPS)-induced inflammatory cell infiltration and pro-inflammatory cytokine production in WT and TGR5-deficient (Tgr5(-/-)) mice, but not in FXR-deficient (Fxr(-/-)) mice, suggesting that bile acid signaling through FXR protects against hepatic inflammation. Nuclear factor κ light-chain enhancer of activated B cells (NF-κB)-luciferase reporter assay showed that FXR agonists significantly inhibited TNF-α-induced NF-κB activity. Furthermore, chromatin immunoprecipitation and mammalian two-hybrid assays showed that ligand-activated FXR interacted with NF-κB and blocked recruitment of steroid receptor coactivator-1 to cytokine promoter and resulted in inhibition of NF-κB activity. Methionine/choline-deficient (MCD) diet increased hepatic inflammation, free cholesterol, oxidative stress, apoptosis, and fibrosis in CYP7A1-deficient (Cyp7a1(-/-)) mice compared with WT mice. Remarkably, adenovirus-mediated overexpression of Cyp7a1 effectively reduced hepatic free cholesterol and oxidative stress and reversed hepatic inflammation and fibrosis in MCD diet-fed Cyp7a1(-/-) mice. Current studies suggest that increased Cyp7a1 expression and bile acid synthesis ameliorate hepatic inflammation through activation of FXR, whereas reduced bile acid synthesis aggravates MCD diet-induced hepatic inflammation and fibrosis. Maintaining bile acid and cholesterol homeostasis is important for protecting against liver injury and nonalcoholic fatty liver disease.

  7. Cholesterol turnover and metabolism in two patients with abetalipoproteinemia

    SciTech Connect

    Goodman, D.S.; Deckelbaum, R.J.; Palmer, R.H.; Dell, R.B.; Ramakrishnan, R.; Delpre, G.; Beigel, Y.; Cooper, M.

    1983-12-01

    Total body turnover of cholesterol was studied in two patients with abetalipoproteinemia, a 32-year-old man and a 31-year-old woman. The patients received (14C)cholesterol intravenously, and the resulting specific activity-time curves (for 40 and 30 weeks, respectively) were fitted with a three-pool model. Parameters were compared with those from studies of cholesterol turnover in 82 normal and hyperlipidemic subjects. A three-pool model gave the best fit for the abetalipoproteinemic patients, as well as for the 82 previously studied subjects, suggesting general applicability of this model. Cholesterol production rates in the two abetalipoproteinemic subjects (0.82 and 0.89 g/day) were close to values predicted for persons of their body weight. Thus, total body turnover rate of cholesterol was quite normal in abetalipoproteinemia, confirming previous reports. Very low values (9.2 and 8.4 g) were found for M1, the size of the rapidly exchanging compartment pool 1, in the two abetalipoproteinemic subjects. These values were well below the values predicted (from the comparison study population) for normal persons of this size with low plasma cholesterol levels. For one patient, total body exchangeable cholesterol was very low, although not significantly below the predicted values for a person of his size. In the second patient, the observed estimate for total body exchangeable cholesterol was well within the range of values predicted for persons of her size with low to extremely low cholesterol levels.

  8. Cholesterol granuloma of the petrous apex: CT diagnosis

    SciTech Connect

    Lo, W.W.M.; Solti-Bohman, L.G.; Brackmann, D.E.; Gruskin, P.

    1984-12-01

    Cholesterol granuloma of the petrous apex is a readily recognizable and treatable entity that is more common than previously realized. Cholesterol granuloma grows slowly in the petrous apex as a mass lesion until it produces hearing loss, tinnitus, vertigo, and facial twitching. Twelve cases of cholesterol granuloma of the petrous apex are illustrated; ten of these analyzed in detail, especially with respect to CT findings. A sharply and smoothly marginated expansile lesion in the petrous apex, isodense with plain and nonenhancing on CT, is in all probability a cholesterol granuloma. Preoperative recognition by CT is important for planning proper treatment.

  9. Retracted: Advances in the physiological and pathological implications of cholesterol.

    PubMed

    Cortes, Victor A; Busso, Dolores; Mardones, Pablo; Maiz, Alberto; Arteaga, Antonio; Nervi, Flavio; Rigotti, Attilio

    2013-11-01

    Cholesterol has evolved to fulfill sophisticated biophysical, cell signalling, and endocrine functions in animal systems. At the cellular level, cholesterol is found in membranes where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signalling functions. At the organismal level, cholesterol is the precursor of all steroid hormones, including gluco- and mineralo-corticoids, sex hormones, and vitamin D, which regulate carbohydrate, sodium, reproductive, and bone homeostasis, respectively. This sterol is also the immediate precursor of bile acids, which are important for intestinal absorption of dietary lipids as well as energy homeostasis and glucose regulation. Complex mechanisms maintain cholesterol within physiological ranges and the dysregulation of these mechanisms results in embryonic or adult diseases, caused by either excessive or reduced tissue cholesterol levels. The causative role of cholesterol in these conditions has been demonstrated by genetic and pharmacological manipulations in animal models of human disease that are discussed herein. Importantly, the understanding of basic aspects of cholesterol biology has led to the development of high-impact pharmaceutical therapies during the past century. The continuing effort to offer successful treatments for prevalent cholesterol-related diseases, such as atherosclerosis and neurodegenerative disorders, warrants further interdisciplinary research in the coming decades.

  10. Aspirin inhibits formation of cholesterol rafts in fluid lipid membranes.

    PubMed

    Alsop, Richard J; Toppozini, Laura; Marquardt, Drew; Kučerka, Norbert; Harroun, Thad A; Rheinstädter, Maikel C

    2015-03-01

    Aspirin and other non-steroidal anti-inflammatory drugs have a high affinity for phospholipid membranes, altering their structure and biophysical properties. Aspirin has been shown to partition into the lipid head groups, thereby increasing membrane fluidity. Cholesterol is another well known mediator of membrane fluidity, in turn increasing membrane stiffness. As well, cholesterol is believed to distribute unevenly within lipid membranes leading to the formation of lipid rafts or plaques. In many studies, aspirin has increased positive outcomes for patients with high cholesterol. We are interested if these effects may be, at least partially, the result of a non-specific interaction between aspirin and cholesterol in lipid membranes. We have studied the effect of aspirin on the organization of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) membranes containing cholesterol. Through Langmuir-Blodgett experiments we show that aspirin increases the area per lipid and decreases compressibility at 32.5 mol% cholesterol, leading to a significant increase of fluidity of the membranes. Differential scanning calorimetry provides evidence for the formation of meta-stable structures in the presence of aspirin. The molecular organization of lipids, cholesterol and aspirin was studied using neutron diffraction. While the formation of rafts has been reported in binary DPPC/cholesterol membranes, aspirin was found to locally disrupt membrane organization and lead to the frustration of raft formation. Our results suggest that aspirin is able to directly oppose the formation of cholesterol structures through non-specific interactions with lipid membranes.

  11. X-ray insight into cholesterol-phospholipid interactions

    NASA Astrophysics Data System (ADS)

    Gidalevitz, David

    2009-03-01

    The mechanism of nonideal cholesterol-lipids mixing yet remains controversial. We report on a systematic study of cholesterol-phospholipid interactions in lipid monolayers using Langmuir isotherms, synchrotron X-ray reflectivity (XR), and grazing-incidence X-ray diffraction (GIXD) techniques. Lipid monolayers consisted of cholesterol-DPPC mixtures with cholesterol mole fractions χCHOL varying from 0 to 1. GIXD reveals that at both χCHOL and χDPPC above .85 mixed films exhibit packing order of a prevalent lipid. In between, cholesterol seizes places in DPPC crystalline lattice at the stoichiometry similar as that of the mixture inducing short-range regular-hexagonal packing order with increasing spacing between molecules as a function of cholesterol content. XR shows that cholesterol tends to stay in DPPC acyl chains at low χCHOL while gradually descending to a subphase at higher χCHOL accompanied by rearrangement of DPPC headgroups. Thus, a desire of highly nonpolar cholesterol to avoid contacts with polar water molecules and/or DPPC headgroups defines a mode of cholesterol-lipid interactions.

  12. Melittin-Lipid Bilayer Interactions and the Role of Cholesterol

    PubMed Central

    Wessman, Per; Strömstedt, Adam A.; Malmsten, Martin; Edwards, Katarina

    2008-01-01

    The membrane-destabilizing effect of the peptide melittin on phosphatidylcholine membranes is modulated by the presence of cholesterol. This investigation shows that inclusion of 40 mol % cholesterol in 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine or 1,2-dioleoyl-sn-glycero-3-phosphocholine liposomes reduces melittin's affinity for the membrane. It is significant that the presence of cholesterol does not increase the amount of membrane-associated melittin needed to cause maximum leakage from, or major structural rearrangements of, the liposomes. Furthermore, comparison of microscopy and leakage data suggests that melittin-induced leakage occurs via different mechanisms in the cholesterol-free and cholesterol-supplemented systems. In the absence of cholesterol, leakage of carboxyfluorescein takes place from intact liposomes in a manner compatible with the presence of small melittin-induced pores. In the presence of cholesterol, on the other hand, adsorption of the peptide causes complete membrane disruption and the formation of long-lived open-bilayer structures. Moreover, in the case of cholesterol-supplemented systems, melittin induces pronounced liposome aggregation. Cryotransmission electron microscopy was used, together with ellipsometry, circular dichroism, turbidity, and leakage measurements, to investigate the effects of melittin on phosphatidylcholine membranes in the absence and presence of cholesterol. The melittin partitioning behavior in the membrane systems was estimated by means of steady-state fluorescence spectroscopy measurements. PMID:18658211

  13. Nonlinear Longitudinal Trajectories of Cholesterol and Neuropsychological Function

    PubMed Central

    Wendell, Carrington R.; Waldstein, Shari R.; Zonderman, Alan B.

    2014-01-01

    Objective: Prior literature has identified inconsistent longitudinal associations between total cholesterol and cognitive decline. Here we examined prospective nonlinear relations of coincident trajectories of total cholesterol and cognitive function among persons free of stroke, dementia, and other neurological disease. Method: Up to 1,601 participants from the Baltimore Longitudinal Study of Aging (aged 19 to 93, 51% male, 75% white) underwent fasting cholesterol measurement and neuropsychological assessment on up to 12 occasions (M = 3.2, SD = 2.1) over up to 19 years (M = 6.4, SD = 5.3) of follow-up. Mixed-effects regression analyses were adjusted for age, sex, race, education, systolic blood pressure, body mass index, cardiovascular disease, lipid-lowering medication use, smoking, alcohol use, and depressive symptoms. Results: Analyses revealed significant longitudinal associations between quadratic total cholesterol and performance on measures of global mental status, verbal learning, executive function, and language (all p’s < .05). In general, higher total cholesterol was associated with poorer middle-aged or “young-old” (60-69 years) cognitive performance, but better “old-old” (80-89 years) cognitive performance. Linear models also revealed an association between lower total cholesterol and accelerated decline in visual memory performance. Conclusions: Overall, results indicate nonlinear longitudinal relations of total cholesterol to cognitive decline. Whereas higher cholesterol levels were associated with cognitive decline in the middle-aged or young-old, lower cholesterol levels were related to cognitive decline among old-old participants. PMID:24188111

  14. Cholesterol and its derivatives in Sonic Hedgehog signaling and Cancer

    PubMed Central

    Riobo, Natalia A.

    2012-01-01

    The connection between the Hedgehog pathway and cholesterol has been recognized since the early days that shaped our current understanding of this unique pathway. Cholesterol and related lipids are intricately linked to HH signaling: from the role of cholesterol in HH biosynthesis to the modulation of HH signal reception and transduction by other sterols, passing by the phylogenetic relationships among many components of the HH pathway that resemble or contain lipid-binding domains. Here I review the connections between HH signaling, cholesterol and its derivatives and analyze the potential implications for HH-dependent cancers. PMID:22832232

  15. Malformation syndromes caused by disorders of cholesterol synthesis

    PubMed Central

    Porter, Forbes D.; Herman, Gail E.

    2011-01-01

    Cholesterol homeostasis is critical for normal growth and development. In addition to being a major membrane lipid, cholesterol has multiple biological functions. These roles include being a precursor molecule for the synthesis of steroid hormones, neuroactive steroids, oxysterols, and bile acids. Cholesterol is also essential for the proper maturation and signaling of hedgehog proteins, and thus cholesterol is critical for embryonic development. After birth, most tissues can obtain cholesterol from either endogenous synthesis or exogenous dietary sources, but prior to birth, the human fetal tissues are dependent on endogenous synthesis. Due to the blood-brain barrier, brain tissue cannot utilize dietary or peripherally produced cholesterol. Generally, inborn errors of cholesterol synthesis lead to both a deficiency of cholesterol and increased levels of potentially bioactive or toxic precursor sterols. Over the past couple of decades, a number of human malformation syndromes have been shown to be due to inborn errors of cholesterol synthesis. Herein, we will review clinical and basic science aspects of Smith-Lemli-Opitz syndrome, desmosterolosis, lathosterolosis, HEM dysplasia, X-linked dominant chondrodysplasia punctata, Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects Syndrome, sterol-C-4 methyloxidase-like deficiency, and Antley-Bixler syndrome. PMID:20929975

  16. Cereal grains, alpha tocotrienol and cholesterol metabolism in the rat.

    PubMed

    McIntosh, G H; Bulman, F H; Russell, G R

    1992-06-01

    The influence of alpha (α)-tocotrienol, the main vitamer of vitamin E in barley and oats, on cholesterol synthesis has been studied in laboratory rats. Both oats and barley lowered plasma cholesterol relative lo wheat, which had no such effect, and the change has been attributed to an inhibitory influence of a -tocotrienol on cholesterol synthesis rate. Vitamin E was stripped from oats and barley by a petroleum ether extraction procedure and the grains compared with their unstripped equivalents. In the oats feeding experiment this resulted in a higher plasma cholesterol and lower liver cholesterol synthesis rate. The barley experiment produced no significant response. Pure α-tocotrienol was gavaged into rats fed a semipurified diet without vitamin E, at the rate of 380 μg/rat/day for 28 days. There was no significant influence on plasma cholesterol level or on liver cholesterol synthesis rate. From these studies it is concluded that a -tocotrienol does not influence cholesterol synthesis rate significantly. Therefore, it is unlikely lo be a factor in oats and barley responsible for the plasma cholesterol lowering observed.

  17. Investigating the allosterism of acyl-CoA:cholesterol acyltransferase (ACAT) by using various sterols: in vitro and intact cell studies.

    PubMed

    Liu, Jay; Chang, Catherine C Y; Westover, Emily J; Covey, Douglas F; Chang, Ta-Yuan

    2005-10-15

    ACAT1 (acyl-CoA:cholesterol acyltransferase 1) is thought to have two distinct sterol-binding sites: a substrate-binding site and an allosteric-activator site. In the present work, we investigated the structural features of various sterols as substrates and/or activators in vitro. The results show that without cholesterol, the plant sterol sitosterol is a poor substrate for ACAT. In the presence of cholesterol, ACAT1-mediated esterification of sitosterol is highly activated while ACAT2-mediated esterification of sitosterol is only moderately activated. For ACAT1, we show that the stereochemistry of the 3-hydroxy group at steroid ring A is a critical structural feature for a sterol to serve as a substrate, but less critical for activation. Additionally, enantiomeric cholesterol, which has the same biophysical properties as cholesterol in membranes, fails to activate ACAT1. Thus ACAT1 activation by cholesterol is the result of stereo-specific interactions between cholesterol and ACAT1, and is not related to the biophysical properties of phospholipid membranes. To demonstrate the relevance of the ACAT1 allosteric model in intact cells, we showed that sitosterol esterification in human macrophages is activated upon cholesterol loading. We further show that the activation is not due to an increase in ACAT1 protein content, but is partly due to an increase in the cholesterol content in the endoplasmic reticulum where ACAT1 resides. Together, our results support the existence of a distinct sterol-activator site in addition to the sterol-substrate site of ACAT1 and demonstrate the applicability of the ACAT1 allosteric model in intact cells.

  18. Hypocholesterolaemic mechanism of bitter melon aqueous extracts via inhibition of pancreatic cholesterol esterase and reduction of cholesterol micellar solubility.

    PubMed

    Su, Jianhui; Wang, Hongxin; Ma, Chaoyang; Liu, Chengxiang; Gao, Chuanzhong; Nie, Rongjing; Tanver Rahman, Md Ramim

    2016-01-01

    This study investigated the hypocholesterolaemic effects of bitter melon aqueous extracts (BMAE) in vitro, the inhibitory effects of BMAE on pancreatic cholesterol esterase (CEase) and incorporation of cholesterol into micelles were investigated. BMAE decreased the in vitro micellar solubility of cholesterol in a dose-dependent manner. The conformation of CEase was investigated by means of circular dichroism (CD) and fluorescence. The result revealed the decrease of α-helix contents, increase of β-sheet and exposure of aromatic amino acid residuals. The incorporation of cholesterol into micelles was inhibited by BMAE. A complex was observed by transmission electron microscopy (TEM), which indicated interaction between cholesterol and BMAE. The result revealed that BMAE can play a role in decreased intestinal cholesterol absorption via inhibition of CEase, and of micelle formation.

  19. Recovery and purification of cholesterol from cholesterol-β-cyclodextrin inclusion complex using ultrasound-assisted extraction.

    PubMed

    Li, Yong; Chen, Youliang; Li, Hua

    2017-01-01

    Response surface methodology was used to optimize ultrasound-assisted ethanol extraction (UAE) of cholesterol from cholesterol-β-cyclodextrin (C-β-CD) inclusion complex prepared from duck yolk oil. The best extraction conditions were solvent-solid ratio 10mL/g, ultrasonic power 251W, extraction temperature 56°C and sonication time 36min. Under these conditions, the highest cholesterol extraction yield and cholesterol content obtained 98.12±0.25% and 43.38±0.61mg/g inclusion complex, respectively. As compared with Reflux extraction and Soxhlet extraction, the UAE was more efficient and economical. To increase the purity of crude cholesterol extraction, silica gel column chromatography and crystallization were carried out. Finally, cholesterol was obtained at 95.1% purity, 71.7% recovery and 22.0% yield.

  20. Neonatal dietary cholesterol and alleles of cholesterol 7-alpha hydroxylase affect piglet cerebrum weight, cholesterol concentration, and behavior.

    PubMed

    Pond, Wilson G; Mersmann, Harry J; Su, Dairong; McGlone, John J; Wheeler, Matthew B; Smith, E O'Brian

    2008-02-01

    This experiment was designed to test the effect of polymorphism in the cholesterol 7-alpha hydroxylase (CYP7) gene locus and dietary cholesterol (C) on cerebrum C in neonatal pigs fed sow's milk formulas. Thirty-six pigs (18 male and 18 female) genetically selected for high (HG) or low (LG) plasma total C were weaned at 24-36 h after birth and assigned in a 2 x 2 x 2 factorial arrangement of treatments with 2 diets (0 or 0.5% C), 2 sexes, and 2 genotypes (HG and LG). Individually housed pigs consumed diets ad libitum for 42 d. Open-field behavior was tested at wk 2 and 4. All pigs were killed at 42 d of age, the cerebrum was weighed, and C content and concentration measured. All data were analyzed by general linear model ANOVA. Cerebrum weight was greater in HG than LG pigs (P < 0.03) but was not affected by diet or sex. Pigs fed C tended to have a higher cerebrum C concentration than those deprived (P = 0.12). At 2 wk, LG pigs explored a novel open-field environment less often (P < 0.001) than did HG pigs. At 4 wk, some LG pigs explored the open field but fewer (P < 0.001) vs. HG pigs retreated back to the safe area. There were no genotype x diet, genotype x sex, or diet x sex interactions affecting cerebrum weight, or C content or concentration. Polymorphism in the CYP7 gene locus affected cerebrum weight and behavior and dietary C tended to increase cerebrum C concentration in neonatal pigs. These findings in neonatal pigs have considerable potential importance in human infant nutrition and behavioral development.

  1. Sphingomyelin Phosphodiesterase Acid-like 3A (SMPDL3A) Is a Novel Nucleotide Phosphodiesterase Regulated by Cholesterol in Human Macrophages*

    PubMed Central

    Traini, Mathew; Quinn, Carmel M.; Sandoval, Cecilia; Johansson, Erik; Schroder, Kate; Kockx, Maaike; Meikle, Peter J.; Jessup, Wendy; Kritharides, Leonard

    2014-01-01

    Cholesterol-loaded foam cell macrophages are prominent in atherosclerotic lesions and play complex roles in both inflammatory signaling and lipid metabolism, which are underpinned by large scale reprogramming of gene expression. We performed a microarray study of primary human macrophages that showed that transcription of the sphingomyelin phosphodiesterase acid-like 3A (SMPDL3A) gene is up-regulated after cholesterol loading. SMPDL3A protein expression in and secretion from primary macrophages are stimulated by cholesterol loading, liver X receptor ligands, and cyclic AMP, and N-glycosylated SMPDL3A protein is detectable in circulating blood. We demonstrate for the first time that SMPDL3A is a functional phosphodiesterase with an acidic pH optimum. We provide evidence that SMPDL3A is not an acid sphingomyelinase but unexpectedly is active against nucleotide diphosphate and triphosphate substrates at acidic and neutral pH. SMPDL3A is a major source of nucleotide phosphodiesterase activity secreted by liver X receptor-stimulated human macrophages. Extracellular nucleotides such as ATP may activate pro-inflammatory responses in immune cells. Increased expression and secretion of SMPDL3A by cholesterol-loaded macrophage foam cells in lesions may decrease local concentrations of pro-inflammatory nucleotides and potentially represent a novel anti-inflammatory axis linking lipid metabolism with purinergic signaling in atherosclerosis. PMID:25288789

  2. Ceramide displaces cholesterol from lipid rafts and decreases the association of the cholesterol binding protein caveolin-1.

    PubMed

    Yu, Cuijuan; Alterman, Michail; Dobrowsky, Rick T

    2005-08-01

    Addition of exogenous ceramide causes a significant displacement of cholesterol in lipid raft model membranes. However, whether ceramide-induced cholesterol displacement is sufficient to alter the protein composition of caveolin-enriched lipid raft membranes is unknown. Therefore, we examined whether increasing endogenous ceramide levels with bacterial sphingomyelinase (bSMase) depleted cholesterol and changed the protein composition of caveolin-enriched membranes (CEMs) isolated from immortalized Schwann cells. bSMase increased ceramide levels severalfold and decreased the cholesterol content of detergent-insoluble CEMs by 25-50% within 2 h. To examine the effect of ceramide on the protein composition of the CEMs, we performed a quantitative proteomic analysis using stable isotope labeling of cells in culture and matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Although ceramide rapidly depleted lipid raft cholesterol, the levels of the cholesterol binding protein caveolin-1 (Cav-1) decreased by 25% only after 8 h. Importantly, replenishing the cells with cholesterol rapidly reversed the loss of Cav-1 from the CEMs. Ceramide-induced cholesterol depletion increased the association of 5'-nucleotidase and ATP synthase beta-subunit with the CEMs but had a minimal effect on changing the abundance of other lipid raft proteins, such as flotillin-1 and G-proteins. These results suggest that the ceramide-induced loss of cholesterol from CEMs may contribute to altering the lipid raft proteome.

  3. Cholesterol and the interaction of proteins with membrane domains.

    PubMed

    Epand, Richard M

    2006-07-01

    Cholesterol is not uniformly distributed in biological membranes. One of the factors influencing the formation of cholesterol-rich domains in membranes is the unequal lateral distribution of proteins in membranes. Certain proteins are found in cholesterol-rich domains. In some of these cases, it is as a consequence of the proteins interacting directly with cholesterol. There are several structural features of a protein that result in the protein preferentially associating with cholesterol-rich domains. One of the best documented of these is certain types of lipidations. In addition, however, there are segments of a protein that can preferentially sequester cholesterol. We discuss two examples of these cholesterol-recognition elements: the cholesterol recognition/interaction amino acid consensus (CRAC) domain and the sterol-sensing domain (SSD). The requirements for a CRAC motif are quite flexible and predict that a large number of sequences could recognize cholesterol. There are, however, certain proteins that are known to interact with cholesterol-rich domains of cell membranes that have CRAC motifs, and synthetic peptides corresponding to these segments also promote the formation of cholesterol-rich domains. Modeling studies have provided a rationale for certain requirements of the CRAC motif. The SSD is a larger protein segment comprising five transmembrane domains. The amino acid sequence YIYF is found in several SSD and in certain other proteins for which there is evidence that they interact with cholesterol-rich domains. The CRAC sequences as well as YIYF are generally found adjacent to a transmembrane helical segment. These regions appear to have a strong influence of the localization of certain proteins into domains in biological membranes. In addition to the SSD, there is also a domain found in soluble proteins, the START domain, that binds lipids. Certain proteins with START domains specifically bind cholesterol and are believed to function in

  4. Regulation of cholesterol synthesis in four colonic adenocarcinoma cell lines.

    PubMed

    Cerda, S R; Wilkinson, J; Broitman, S A

    1995-12-01

    Colon tumor cells, unlike normal human fibroblasts, exhibited an uncoupling of low density lipoprotein (LDL)-derived cholesterol from cellular growth, when endogenous cholesterol synthesis was inhibited by mevinolin, a hydroxymethylglutaryl-CoA reductase (HMG-CoAR) competitive inhibitor [Fabricant, M., and Broitman, S.A. (1990) Cancer Res. 50, 632-636]. Further evaluation of cholesterol metabolism was conducted in two undifferentiated (SW480, SW1417) and two differentiated (HT29, CACO2) colonic adenocarcinoma (adeno-CA) cell lines and an untransformed human fibroblast, AG1519A. Cells grown in monolayer culture to near subconfluency were used to assess endogenous cholesterol synthesis by 14C-acetate incorporation, in response to the following treatments in lipoprotein-deficient serum (LPDS)-supplemented minimum essential medium (MEM): LPDS alone, LDL, mevinolin, mevinolin with LDL, and 25-hydroxy-cholesterol (25-OH-CH). Complete fetal bovine serum (FBS)-supplemented MEM was used as control. All colon tumor lines exhibited similarly high endogenous cholesterol synthesis in both FBS and LPDS relative to the fibroblasts which demonstrated low basal levels in FBS and maximal synthesis in LPDS. LDL treatment did not inhibit cholesterol synthesis in colon tumor cells, but suppressed that in the fibroblast by 70%. Sterol repression of cholesterol synthesis mediated by 25-OH-CH occurred in all cells. Mevinolin caused a reduction in cholesterol synthesis in the colonic cancer cell lines, which was not further decreased by concurrent addition of LDL. In contrast, in mevinolin-treated fibroblasts, LDL further inhibited cholesterol synthesis. When the effect of cell density on cholesterol synthesis regulation was evaluated under conditions of sparse density in SW480 and SW147, results indicated that (i) basal rates of cholesterol synthesis were higher, (ii) LDL inhibited cholesterol synthesis more effectively, and (iii) mevinolin or 25-OH-CH had a more pronounced effect than in

  5. Whole body and tissue cholesterol turnover in the baboon

    SciTech Connect

    Dell, R.B.; Mott, G.E.; Jackson, E.M.; Ramakrishnan, R.; Carey, K.D.; McGill, H.C. Jr.; Goodman, D.S.

    1985-03-01

    Cholesterol turnover was studied in four baboons by injecting (/sup 14/C)cholesterol 186 days and (/sup 3/H)cholesterol 4 days before necropsy, and fitting a two- or three-pool model to the resulting specific activity-time data. At necropsy, cholesterol mass and specific activity were determined for the total body and for many tissues. The principal aim of this study was to estimate the extent of cholesterol synthesis in the side pools of the model, by computing the amount of side pool synthesis needed to equal the measured total body cholesterol. Central pool synthesis varied from 61 to 89% of the total cholesterol production rate. Moreover, the finding that the measured total body cholesterol fell within the range obtained from the kinetic analysis by using reasonable assumptions, provides evidence for the physiological validity of the model. A second aim of this study was to explore cholesterol turnover in various tissues. A pool model predicts that rapidly turning over tissues will have higher specific activities at early times and lower specific activities at later times after injection of tracer relative to slowly turning over tissues, except where significant synthesis occurs. Results in all four baboons were similar. Turnover rates for the different tissues loosely fell into three groups which were turning over at fast, intermediate, and slow rates. Finally, the magnitude of variation of cholesterol specific activity was moderate for several distributed tissues (fat, muscle, arteries, and the alimentary tract), but was small for liver. Cholesterol turnover in serial biopsies of skin, muscle, and fat could, however, be fitted with a single pool to estimate tissue turnover rates.

  6. The Hedgehog Receptor Patched Is Involved in Cholesterol Transport

    PubMed Central

    Bidet, Michel; Joubert, Olivier; Lacombe, Benoit; Ciantar, Marine; Nehmé, Rony; Mollat, Patrick; Brétillon, Lionel; Faure, Hélène; Bittman, Robert; Ruat, Martial; Mus-Veteau, Isabelle

    2011-01-01

    Background Sonic hedgehog (Shh) signaling plays a crucial role in growth and patterning during embryonic development, and also in stem cell maintenance and tissue regeneration in adults. Aberrant Shh pathway activation is involved in the development of many tumors, and one of the most affected Shh signaling steps found in these tumors is the regulation of the signaling receptor Smoothened by the Shh receptor Patched. In the present work, we investigated Patched activity and the mechanism by which Patched inhibits Smoothened. Methodology/Principal Findings Using the well-known Shh-responding cell line of mouse fibroblasts NIH 3T3, we first observed that enhancement of the intracellular cholesterol concentration induces Smoothened enrichment in the plasma membrane, which is a crucial step for the signaling activation. We found that binding of Shh protein to its receptor Patched, which involves Patched internalization, increases the intracellular concentration of cholesterol and decreases the efflux of a fluorescent cholesterol derivative (BODIPY-cholesterol) from these cells. Treatment of fibroblasts with cyclopamine, an antagonist of Shh signaling, inhibits Patched expression and reduces BODIPY-cholesterol efflux, while treatment with the Shh pathway agonist SAG enhances Patched protein expression and BODIPY-cholesterol efflux. We also show that over-expression of human Patched in the yeast S. cerevisiae results in a significant boost of BODIPY-cholesterol efflux. Furthermore, we demonstrate that purified Patched binds to cholesterol, and that the interaction of Shh with Patched inhibits the binding of Patched to cholesterol. Conclusion/Significance Our results suggest that Patched may contribute to cholesterol efflux from cells, and to modulation of the intracellular cholesterol concentration. This activity is likely responsible for the inhibition of the enrichment of Smoothened in the plasma membrane, which is an important step in Shh pathway activation. PMID

  7. The cholesterol-lowering effect of coconut flakes in humans with moderately raised serum cholesterol.

    PubMed

    Trinidad, Trinidad P; Loyola, Anacleta S; Mallillin, Aida C; Valdez, Divinagracia H; Askali, Faridah C; Castillo, Joan C; Resaba, Rosario L; Masa, Dina B

    2004-01-01

    This study investigated the effect of coconut flakes on serum cholesterol levels of humans with moderately raised serum cholesterol in 21 subjects. The serum total cholesterol of subjects differed and ranged from 259 to 283 mg/dL. The study was conducted in a double-blind randomized crossover design on a 14-week period, consisting of four 2-week experimental periods, with each experimental period separated by a 2-week washout period. The test foods were as follows: corn flakes as the control food, oat bran flakes as the reference food, and corn flakes with 15% and 25% dietary fiber from coconut flakes (made from coconut flour production). Results showed a significant percent reduction in serum total and low-density lipoprotein (LDL) cholesterol (in mg/dL) for all test foods, except for corn flakes, as follows: oat bran flakes, 8.4 +/- 1.4 and 8.8 +/- 6.0, respectively; 15% coconut flakes, 6.9 +/- 1.1 and 11.0 +/- 4.0, respectively; and 25% coconut flakes, 10.8 +/- 1.3 and 9.2 +/- 5.4, respectively. Serum triglycerides were significantly reduced for all test foods: corn flakes, 14.5 +/- 6.3%; oat bran flakes, 22.7 +/- 2.9%; 15% coconut flakes, 19.3 +/- 5.7%; and 25% coconut flakes, 21.8 +/- 6.0%. Only 60% of the subjects were considered for serum triglycerides reduction (serum triglycerides >170 mg/dL). In conclusion, both 15% and 25% coconut flakes reduced serum total and LDL cholesterol and serum triglycerides of humans with moderately raised serum cholesterol levels. Coconut flour is a good source of both soluble and insoluble dietary fiber, and both types of fiber may have significant role in the reduction of the above lipid biomarker. To our knowledge, this is the first study conducted to show a relationship between dietary fiber from a coconut by-product and a lipid biomarker. Results from this study serves as a good basis in the development of coconut flakes/flour as a functional food, justifying the increased production of coconut and coconut by-products.

  8. Step by Step: Eating To Lower Your High Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This booklet offers advice for adults who want to lower their blood cholesterol level. The first section, "What You Need To Know about High Blood Cholesterol," discusses blood cholesterol and why it matters, what cholesterol numbers mean, and what affects blood cholesterol levels. Section 2, "What You Need To Do To Lower Blood…

  9. Cholesterol Translocation in a Phospholipid Membrane

    NASA Astrophysics Data System (ADS)

    Choubey, Amit; Kalia, Rajiv; Malmstadt, Noah; Nakano, Aiichiro; Vashistha, Priya

    2013-03-01

    Cholesterol (CHOL) molecules play a key role in modulating the rigidity of cell membranes, and controlling intracellular transport and signal transduction. Using all-atom molecular dynamics and the parallel replica approach, we study the process of CHOL interleaflet transport (flip-flop) in a dipalmitoylphosphatidycholine (DPPC)-CHOL bilayer, the effect of this process on mechanical stress across the bilayer, and the role of CHOL in inducing molecular order in the respective bilayer leaflets. The simulations are carried out at physiologically relevant CHOL concentration (30%), temperature 323 K and pressure 1 bar. CHOL flip-flop events are observed with a rate constant of 3 ×104 s-1. Once a flip-flop event is triggered, a CHOL molecule takes an average of 73 nanoseconds to migrate from one bilayer leaflet to the other.

  10. Health benefits of almonds beyond cholesterol reduction.

    PubMed

    Kamil, Alison; Chen, C-Y Oliver

    2012-07-11

    Almonds are rich in monounsaturated fat, fiber, α-tocopherol, minerals such as magnesium and copper, and phytonutrients, albeit being energy-dense. The favorable fat composition and fiber contribute to the hypocholesterolemic benefit of almond consumption. By virtue of their unique nutrient composition, almonds are likely to benefit other modifiable cardiovascular and diabetes risks, such as body weight, glucose homeostasis, inflammation, and oxidative stress. This paper briefly reviews the nutrient composition and hypocholesterolemic benefits; the effects of almond consumption on body weight, glucose regulation, oxidative stress, and inflammation, based on the data of clinical trials, will then be discussed. Although more studies are definitely warranted, the emerging evidence supports that almond consumption beneficially influences chronic degenerative disease risk beyond cholesterol reduction, particularly in populations with metabolic syndrome and type 2 diabetes mellitus.

  11. Apolipoprotein A-I Helsinki promotes intracellular acyl-CoA cholesterol acyltransferase (ACAT) protein accumulation.

    PubMed

    Toledo, Juan D; Garda, Horacio A; Cabaleiro, Laura V; Cuellar, Angela; Pellon-Maison, Magali; Gonzalez-Baro, Maria R; Gonzalez, Marina C

    2013-05-01

    Reverse cholesterol transport is a process of high antiatherogenic relevance in which apolipoprotein AI (apoA-I) plays an important role. The interaction of apoA-I with peripheral cells produces through mechanisms that are still poorly understood the mobilization of intracellular cholesterol depots toward plasma membrane. In macrophages, these mechanisms seem to be related to the modulation of the activity of acyl-CoA cholesterol acyltransferase (ACAT), the enzyme responsible for the intracellular cholesterol ester biosynthesis that is stored in lipid droplets. The activation of ACAT and the accumulation of lipid droplets play a key role in the transformation of macrophages into foam cells, leading to the formation of atheroma or atherosclerotic plaque. ApoA-I Helsinki (or ∆K107) is a natural apoA-I variant with a lysine deletion in the central protein region, carriers of which have increased atherosclerosis risk. We herein show that treatment of cultured RAW macrophages or CHOK1 cells with ∆K107, but not with wild-type apoA-I or a variant containing a similar deletion at the C-terminal region (∆K226), lead to a marked increase (more than 10 times) in the intracellular ACAT1 protein level as detected by western blot analysis. However, we could only detect a slight increase in cholesteryl ester produced by ∆K107 mainly when Chol loading was supplied by low-density lipoprotein (LDL). Although a similar choline-phospholipid efflux is evoked by these apoA-I variants, the change in phosphatidylcholine/sphyngomyelin distribution produced by wild-type apoA-I is not observed with either ∆K107 or ∆K226.

  12. Interleukin-10 increases reverse cholesterol transport in macrophages through its bidirectional interaction with liver X receptor α

    SciTech Connect

    Halvorsen, Bente; Holm, Sverre; Yndestad, Arne; Scholz, Hanne; Sagen, Ellen Lund; Nebb, Hilde; Holven, Kirsten B.; Dahl, Tuva B.; Aukrust, Pål

    2014-08-08

    Highlights: • IL-10 promotes reverse cholesterol efflux from lipid loaded macrophages. • IL-10 increases the expression of ABCA-1 and ABCG-1. • IL-10 exhibits cross-talk with the nuclear receptor LXRα. - Abstract: Interleukin (IL)-10 is a prototypical anti-inflammatory cytokine that has been shown to attenuate atherosclerosis development. In addition to its anti-inflammatory properties, the anti-atherogenic effect of IL-10 has recently also been suggested to reflect a complex effect of IL-10 on lipid metabolism in macrophages. In the present study we examined the effects of IL-10 on cholesterol efflux mechanism in lipid-loaded THP-1 macrophages. Our main findings were: (i) IL-10 significantly enhanced cholesterol efflux induced by fetal-calf serum, high-density lipoprotein (HDL){sub 2} and apolipoprotein A-1. (ii) The IL-10-mediated effects on cholesterol efflux were accompanied by an increased IL-10-mediated expression of the ATP-binding cassette transporters ABCA1 and ABCG1, that was further enhanced when the cells were co-activated with the liver X receptor (LXR)α agonist (22R)-hydroxycholesterol. (iii) The effect of LXRα activation on the IL-10-mediated effects on the ATP-binding cassette transporters seems to include enhancing effects on the IL-10 receptor 1 (IL10R1) expression and interaction with STAT-3 signaling. (iv) These enhancing effects on ABCA1 and ABCG1 was not seen when the cells were stimulated with the IL-10 family members IL-22 and IL-24. This study suggests that the anti-atherogenic properties of IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-talk with LXRα activation.

  13. Cholesterol balance in prion diseases and Alzheimer's disease.

    PubMed

    Hannaoui, Samia; Shim, Su Yeon; Cheng, Yo Ching; Corda, Erica; Gilch, Sabine

    2014-11-20

    Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI) anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer's disease (AD): whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD.

  14. Statins: Are These Cholesterol-Lowering Drugs Right for You?

    MedlinePlus

    Statins: Are these cholesterol-lowering drugs right for you? Find out whether your risk factors for heart disease make you a good candidate ... Staff Statins are drugs that can lower your cholesterol. They work by blocking a substance your body ...

  15. The Rafts of the Medusa: cholesterol targeting in cancer therapy.

    PubMed

    Freeman, M R; Di Vizio, D; Solomon, K R

    2010-07-01

    In this issue of Oncogene, Mollinedo and co-workers present promising evidence that cholesterol-sensitive signaling pathways involving lipid rafts can be therapeutically targeted in multiple myeloma. Because the pathways considered in their study are used by other types of tumor cells, one implication of this report is that cholesterol-targeting approaches may be applicable to other malignancies.

  16. [Phytosterols: another way to reduce LDL cholesterol levels].

    PubMed

    Bitzur, Rafael; Cohen, Hofit; Kamari, Yehuda; Harats, Dror

    2013-12-01

    Phytosterols are sterols found naturally in various oils from plants. Phytosterols compete with cholesterol for a place in the mixed micelles, needed for cholesterol absorption by the small intestine. As a result, cholesterol absorption, either from food or from bile salts is lowered by about 50%, leading to a towering of about 10% of blood cholesterol level, despite an increase in hepatic cholesterol synthesis. This reduction is achieved when phytosterols are given both as monotherapy, and in addition to statin therapy. The average Western diet contains about 400-800 mg of phytosterols per day, while the dose needed for lowering the blood cholesterol level is about 2-3 grams per day. Therefore, for the purpose of reducing blood cholesterol, they should be given either as phytosterol-enriched food or as supplements. The reduction in the level of LDL-choLesterol achieved with phytosterols may reduce the risk of coronary disease by about 25%. Hence, the American Heart Association recommended the consumption of phytosterols, as part of a balanced diet, for towering blood cholesterol levels.

  17. Effects of ion interactions with a cholesterol-rich bilayer.

    PubMed

    Mao, Lingxue; Yang, Linlin; Zhang, Qiansen; Jiang, Hualiang; Yang, Huaiyu

    Previous molecular dynamics (MD) simulations of ion-lipid interactions have focused on pure phospholipid bilayers. Many functional microdomains in membranes have a complex composition of cholesterol and phospholipids. Here, we reveal the distinctiveness of the interactions and the effects of the ions on a cholesterol-rich bilayer by performing MD simulations of a cholesterol-rich bilayer with a Na(+)/K(+) mixture or a Na(+)/K(+)/Ca(2+)/Mg(2+) mixture. The simulations reveal that Ca(2+) maintains its dominant role in the interaction with the cholesterol-rich bilayer, but the binding affinity of Mg(2+) to the cholesterol-rich bilayer is even weaker than the affinities of Na(+) and K(+), whereas its interaction with pure phospholipid bilayers is strong and is only slightly weaker than that of Ca(2+). Additionally, it was found that the presence of additional divalent cations induces the headgroups of phospholipids to be more perpendicular to the membrane surface, reducing the lateral movement of lipids and slightly altering the ordering and packing of the cholesterol-rich bilayer, different from divalent cations, which strongly influence that ordering and packing of pure phospholipid bilayers. Therefore, this study indicates that cholesterol in the membrane could affect the interactions between membrane and cations. The findings could be helpful in understanding the biological processes relevant to regulation of cations in cholesterol-rich regions.

  18. Cholesterol Balance in Prion Diseases and Alzheimer’s Disease

    PubMed Central

    Hannaoui, Samia; Shim, Su Yeon; Cheng, Yo Ching; Corda, Erica; Gilch, Sabine

    2014-01-01

    Prion diseases are transmissible and fatal neurodegenerative disorders of humans and animals. They are characterized by the accumulation of PrPSc, an aberrantly folded isoform of the cellular prion protein PrPC, in the brains of affected individuals. PrPC is a cell surface glycoprotein attached to the outer leaflet of the plasma membrane by a glycosyl-phosphatidyl-inositol (GPI) anchor. Specifically, it is associated with lipid rafts, membrane microdomains enriched in cholesterol and sphinoglipids. It has been established that inhibition of endogenous cholesterol synthesis disturbs lipid raft association of PrPC and prevents PrPSc accumulation in neuronal cells. Additionally, prion conversion is reduced upon interference with cellular cholesterol uptake, endosomal export, or complexation at the plasma membrane. Altogether, these results demonstrate on the one hand the importance of cholesterol for prion propagation. On the other hand, growing evidence suggests that prion infection modulates neuronal cholesterol metabolism. Similar results were reported in Alzheimer’s disease (AD): whereas amyloid β peptide formation is influenced by cellular cholesterol, levels of cholesterol in the brains of affected individuals increase during the clinical course of the disease. In this review, we summarize commonalities of alterations in cholesterol homeostasis and discuss consequences for neuronal function and therapy of prion diseases and AD. PMID:25419621

  19. Influence of cholesterol on survival after stroke: retrospective study.

    PubMed Central

    Dyker, A. G.; Weir, C. J.; Lees, K. R.

    1997-01-01

    OBJECTIVE: To investigate the association between serum cholesterol concentration and cerebrovascular disease. DESIGN: Retrospective study. SETTING: Acute stroke unit of inner city general hospital. SUBJECTS: 977 patients with acute stroke. MAIN OUTCOME MEASURES: Serum total cholesterol concentration, type of stroke investigated by computed tomography or magnetic resonance imaging, three month outcome (good (alive at home) or bad (dead or in care)), long term mortality. RESULTS: After adjustment for known prognostic factors, higher serum cholesterol concentrations were associated with reduced long term mortality after stroke (relative hazard 0.91 (95% confidence interval 0.84 to 0.98) per mmol/l increase in cholesterol) independently of stroke type, vascular territory and extent, age, and hyperglycaemia. Three month outcome was also influenced independently by serum cholesterol (P = 0.024). CONCLUSIONS: Our data suggest an association between poor stroke outcome and lower serum cholesterol concentration. Until a prospective controlled study has confirmed the benefits of lowering cholesterol concentration in elderly subjects, the application of cholesterol lowering guidelines cannot be justified as secondary prevention of acute stroke. PMID:9169402

  20. Making Aggressive Prostate Cancer Quiescent by Abrogating Cholesterol Esterification

    DTIC Science & Technology

    2015-10-01

    precursor to hormone synthesis. While cholesterol accumulation is known to be a hallmark of atherosclerosis , its exact role in cancer progression...molecule inhibitors of cholesterol accumulation, e.g. avasimibe, have gone through clinical trials to treat atherosclerosis but failed due to the lack of

  1. Control of lipid membrane stability by cholesterol content.

    PubMed Central

    Raffy, S; Teissié, J

    1999-01-01

    Cholesterol has a concentration-dependent effect on membrane organization. It is able to control the membrane permeability by inducing conformational ordering of the lipid chains. A systematic investigation of lipid bilayer permeability is described in the present work. It takes advantage of the transmembrane potential difference modulation induced in vesicles when an external electric field is applied. The magnitude of this modulation is under the control of the membrane electrical permeability. When brought to a critical value by the external field, the membrane potential difference induces a new membrane organization. The membrane is then permeable and prone to solubilized membrane protein back-insertion. This is obtained for an external field strength, which depends on membrane native permeability. This approach was used to study the cholesterol effect on phosphatidylcholine bilayers. Studies have been performed with lipids in gel and in fluid states. When cholesterol is present, it does not affect electropermeabilization and electroinsertion in lipids in the fluid state. When lipids are in the gel state, cholesterol has a dose-dependent effect. When present at 6% (mol/mol), cholesterol prevents electropermeabilization and electroinsertion. When cholesterol is present at more than 12%, electropermeabilization and electroinsertion are obtained under milder field conditions. This is tentatively explained by a cholesterol-induced alteration of the hydrophobic barrier of the bilayer core. Our results indicate that lipid membrane permeability is affected by the cholesterol content. PMID:10096902

  2. Cholesterol: fa(s)t-food for enterovirus genome replication.

    PubMed

    Strating, Jeroen R P; van der Schaar, Hilde M; van Kuppeveld, Frank J M

    2013-11-01

    Hijacking and remodeling of host membranes is an obligatory step in the replicative cycle of (+)RNA viruses, including enteroviruses. Ilnytska et al. unveiled in Cell Host & Microbe that enteroviruses usurp clathrin-mediated endocytosis to shuttle cholesterol to sites of genome replication and that cholesterol is needed for efficient replication.

  3. Comparison of 9 methods for the determination of cholesterol.

    PubMed

    Haeckel, R; Sonntag, O; Külpmann, W R; Feldmann, U

    1979-08-01

    Seven enzymatic procedures for the determination of cholesterol in serum were compared with the Liebermann-Burchard- and a gas-chromatographic method. Using a decision matrix all methods could be ranked according to reliability and practicability . With the exception of the cholesterol oxidase-coupled Kageyama principle and the Liebermann-Burchard procedure, all the other methods showed similar reliability.

  4. Fluorometric enzymatic determination of total cholesterol in serum.

    PubMed

    Huang, H; Kauan, J W; Guilbault, G G

    1975-10-01

    We describe a fluorometric enzymatic method for determining total serum cholesterol, based on hydrolysis of cholesterol esters to free cholesterol by cholesterol ester hydrolase (EC 3.1.1.13). The free cholesterol formed, as well as that initially present, is then oxidized by cholesterol oxidase (EC 1.1.3.6) to cholest-4-en-3-one with simultaneous production of hydrogen peroxide. The latter catalytically oxidizes homovanillic acid in the presence of peroxidase (EC 1.11.1.7) to form the highly fluorescent 2,2'-dihydroxy-3,3'-dimethoxy-biphenyl-5,5'-diacetic acid. A calibration curve is constructed from data on a series of standard cholesterol solutions vs. the corresponding fluorescence change (deltaf/5 min). This curve is linear up to 4.0 g of total serum cholesterol per liter of serum. The method is specific, precise, accurate, rapid, and simple, and results correlate well with those obtained by both the Liebermann-Burchard procedure and the colorimetric enzymatic method (correlation coefficients, 0.984 and 0.981, respectively).

  5. Attenuation of the lysosomal death pathway by lysosomal cholesterol accumulation.

    PubMed

    Appelqvist, Hanna; Nilsson, Cathrine; Garner, Brett; Brown, Andrew J; Kågedal, Katarina; Ollinger, Karin

    2011-02-01

    In the past decade, lysosomal membrane permeabilization (LMP) has emerged as a significant component of cell death signaling. The mechanisms by which lysosomal stability is regulated are not yet fully understood, but changes in the lysosomal membrane lipid composition have been suggested to be involved. Our aim was to investigate the importance of cholesterol in the regulation of lysosomal membrane permeability and its potential impact on apoptosis. Treatment of normal human fibroblasts with U18666A, an amphiphilic drug that inhibits cholesterol transport and causes accumulation of cholesterol in lysosomes, rescued cells from lysosome-dependent cell death induced by the lysosomotropic detergent O-methyl-serine dodecylamide hydrochloride (MSDH), staurosporine (STS), or cisplatin. LMP was decreased by pretreating cells with U18666A, and there was a linear relationship between the cholesterol content of lysosomes and their resistance to permeabilization induced by MSDH. U18666A did not induce changes in expression or localization of 70-kDa heat shock proteins (Hsp70) or antiapoptotic Bcl-2 proteins known to protect the lysosomal membrane. Induction of autophagy also was excluded as a contributor to the protective mechanism. By using Chinese hamster ovary (CHO) cells with lysosomal cholesterol overload due to a mutation in the cholesterol transporting protein Niemann-Pick type C1 (NPC1), the relationship between lysosomal cholesterol accumulation and protection from lysosome-dependent cell death was confirmed. Cholesterol accumulation in lysosomes attenuates apoptosis by increasing lysosomal membrane stability.

  6. Assimilation (in vitro) of cholesterol by yogurt bacteria.

    PubMed

    Dilmi-Bouras, Abdelkader

    2006-01-01

    A considerable variation is noticed between the different species studied and even between the strains of the same species, in the assimilation of cholesterol in synthetic media, in presence of different concentrations of bile salts and under anaerobiosis conditions. The obtained results show that certain strains of Streptococcus thermophilus and Lactobacillus bulgaricus resist bile salts and assimilate appreciable cholesterol quantities in their presence. The study of associations shows that only strains assimilating cholesterol in a pure state remain active when they are put in associations, but there is no additional effect. However, the symbiotic effect between Streptococcus thermophilus and Lactobacillus bulgaricus of yogurt, with regard to bile salts, is confirmed. The lactic fermenters of yogurt (Y2) reduce the levels of total cholesterol, HDL-cholesterol and LDL-cholesterol, in a well-balanced way. In all cases, the assimilated quantity of HDL-cholesterol is lower than that of LDL-cholesterol. Moreover, yogurt Y2 keeps a significant number of bacteria, superior to 10(8) cells ml(-1), and has a good taste 10 days after its production.

  7. Prickly pear (Opuntia sp.) pectin alters hepatic cholesterol metabolism without affecting cholesterol absorption in guinea pigs fed a hypercholesterolemic diet.

    PubMed

    Fernandez, M L; Lin, E C; Trejo, A; McNamara, D J

    1994-06-01

    Prickly pear pectin intake decreases plasma LDL concentrations by increasing hepatic apolipoprotein B/E receptor expression in guinea pigs fed a hypercholesterolemic diet. To investigate whether prickly pear pectin has an effect on cholesterol absorption and on enzymes responsible for hepatic cholesterol homeostasis, guinea pigs were fed one of three semipurified diets, each containing 15 g lard/100 g diet: 1) the lard-basal diet with no added cholesterol or prickly pear pectin (LB diet); 2) the LB diet with 0.25 g added cholesterol/100 g diet (LC diet); or 3) the LC diet containing 2.5 g prickly pear pectin/100 g diet, added at the expense of cellulose (LC-P diet). Animals fed the LB diet had the lowest plasma LDL and hepatic cholesterol concentrations, followed by animals fed the LC-P diet (P < 0.001). Hepatic 3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase activity was highest in the group fed the LB diet, with similar values for animals in the other two groups. A positive correlation existed between plasma LDL cholesterol concentration and hepatic acyl CoA:cholesterol acyltransferase activity (r = 0.87, P < 0.001). Cholesterol absorption was not different among the three dietary groups. These results indicate that the decreased plasma and hepatic cholesterol concentrations of animals fed prickly pear pectin are not explained by differences in cholesterol absorption but rather are due to mechanisms that alter hepatic cholesterol homeostasis, resulting in lower plasma LDL concentrations.

  8. High serum total cholesterol--an indicator for monitoring cholesterol lowering efforts: U.S. adults, 2005-2006.

    PubMed

    Schober, Susan E; Carroll, Margaret D; Lacher, David A; Hirsch, Rosemarie

    2007-12-01

    Elevated serum total cholesterol is a major and modifiable risk factor for heart disease, the lead-ing cause of death in the United States (1,2). Reducing mean total serum cholesterol levels among adults to less than 200 mg/dL and reducing the proportion who have levels of 240 mg/dL or higher to less than 17% are national Healthy People 2010 objectives (3). Age-adjusted mean serum cholesterol levels among adults aged 20-74 years declined from 222 mg/dL in 1960-1962 to 203 mg/dL in 1999-2002 (4). Among adults aged 20 years and older, the percent of the population with high serum total cholesterol levels (240 mg/dL or higher) declined from 20% during 1988-1994 to 17% during 1999-2002 (4). In individual patients, a high serum total cholesterol level indicates a potential increased risk for heart disease, but further evaluation of other risk factors and the specific components of cholesterol provide the basis for determining the need for initiating therapeutic lifestyle changes or treatment with medication (5). Low-density-lipoprotein (LDL) is the cholesterol component associated with arterial blockage, and it is the primary clinical target for cholesterol management. High-density-lipoprotein (HDL) may help to protect individuals from developing heart disease. In populations, comparisons of total cholesterol levels over time can show if population groups are experiencing improvement in cholesterol levels, and knowledge of trends in levels of total cholesterol can help identify subgroups where additional prevention efforts may be needed.

  9. Immobilization of cholesterol oxidase on cellulose acetate membrane for free cholesterol biosensor development.

    PubMed

    Wang, Shenqi; Li, Shipu; Yu, Yaoting

    2004-01-01

    This article describes the immobilization of cholesterol oxidase on a cellulose acetate (CA) membrane activated by Sodium periodate, ethylenediamine, and glutaraldehyde etc. The properties of the immobilized enzyme membrane were investigated. The factors affecting the activity of immobilized enzyme such as the concentration of glutaraldehyde, the concentration of enzyme used during immobilization, temperature, pH, and immobilizing time etc. were also studied. The immobilized COD membrane has been used to construct fibre-optic fluorescent biosensor.

  10. Paraganglioma presenting as cholesterol granuloma of the petrous apex.

    PubMed

    Heman-Ackah, Selena E; Huang, Tina C

    2013-09-01

    We report the unique finding of a petrous apex cholesterol granuloma associated with a paraganglioma, also known as a glomus jugulare tumor, in a 52-year-old woman who presented to our department with pulsatile tinnitus, hearing loss, aural fullness, and disequilibrium. She had been treated for a petrous apex cholesterol granuloma 20 years earlier, at which time she had undergone drainage of the granuloma via subtotal petrous apicectomy. When she came to our facility approximately 20 years later, she had signs and symptoms consistent with a jugular paraganglioma, which was likely to have been present at the time of her initial presentation for the cholesterol granuloma. In fact, microscopic bleeding from the paraganglioma might have led to the formation of the cholesterol granuloma. The metachronous presentation of these two entities, which to our knowledge has not been reported previously in the literature, indicates the potential association of paragangliomas with the formation of cholesterol granulomas of the petrous apex.

  11. Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling.

    PubMed

    York, Autumn G; Williams, Kevin J; Argus, Joseph P; Zhou, Quan D; Brar, Gurpreet; Vergnes, Laurent; Gray, Elizabeth E; Zhen, Anjie; Wu, Nicholas C; Yamada, Douglas H; Cunningham, Cameron R; Tarling, Elizabeth J; Wilks, Moses Q; Casero, David; Gray, David H; Yu, Amy K; Wang, Eric S; Brooks, David G; Sun, Ren; Kitchen, Scott G; Wu, Ting-Ting; Reue, Karen; Stetson, Daniel B; Bensinger, Steven J

    2015-12-17

    Cellular lipid requirements are achieved through a combination of biosynthesis and import programs. Using isotope tracer analysis, we show that type I interferon (IFN) signaling shifts the balance of these programs by decreasing synthesis and increasing import of cholesterol and long chain fatty acids. Genetically enforcing this metabolic shift in macrophages is sufficient to render mice resistant to viral challenge, demonstrating the importance of reprogramming the balance of these two metabolic pathways in vivo. Unexpectedly, mechanistic studies reveal that limiting flux through the cholesterol biosynthetic pathway spontaneously engages a type I IFN response in a STING-dependent manner. The upregulation of type I IFNs was traced to a decrease in the pool size of synthesized cholesterol and could be inhibited by replenishing cells with free cholesterol. Taken together, these studies delineate a metabolic-inflammatory circuit that links perturbations in cholesterol biosynthesis with activation of innate immunity.

  12. Limiting cholesterol biosynthetic flux spontaneously engages type I IFN signaling

    PubMed Central

    York, Autumn G.; Williams, Kevin J.; Argus, Joseph P.; Zhou, Quan D.; Brar, Gurpreet; Vergnes, Laurent; Gray, Elizabeth E.; Zhen, Anjie; Wu, Nicholas C.; Yamada, Douglas H.; Cunningham, Cameron R.; Tarling, Elizabeth J.; Wilks, Moses Q.; Casero, David; Gray, David H.; Yu, Amy K.; Wang, Eric S.; Brooks, David G.; Sun, Ren; Kitchen, Scott G.; Wu, Ting-Ting; Reue, Karen; Stetson, Daniel B.; Bensinger, Steven J.

    2015-01-01

    Summary Cellular lipid requirements are achieved through a combination of biosynthesis and import programs. Using isotope tracer analysis, we show that type I interferon (IFN) signaling shifts the balance of these programs by decreasing synthesis and increasing import of cholesterol and long chain fatty acids. Genetically enforcing this metabolic shift in macrophages is sufficient to render mice resistant to viral challenge, demonstrating the importance of reprogramming the balance of these two metabolic pathways in vivo. Unexpectedly, mechanistic studies reveal that limiting flux through the cholesterol biosynthetic pathway spontaneously engages a type I IFN response in a STING-dependent manner. The upregulation of type I IFNs was traced to a decrease in the pool size of synthesized cholesterol, and could be inhibited by replenishing cells with free cholesterol. Taken together, these studies delineate a metabolic-inflammatory circuit that links perturbations in cholesterol biosynthesis with activation of innate immunity. PMID:26686653

  13. Effect of extracorporeal ultraviolet blood irradiation on blood cholesterol level

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Laskina, O. V.; Mitkovskaya, N. P.; Kirkovsky, V. V.

    2012-07-01

    We have studied the effect of extracorporeal ultraviolet blood irradiation on cholesterol metabolism in patients with cardiovascular diseases. We have carried out a comprehensive analysis of the spectral characteristics of blood and plasma, gas-exchange and oximetry parameters, and the results of a complete blood count and chemistry panel before and after UV blood irradiation. We have assessed the changes in concentrations of cholesterols (total cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides) in the blood of the patients in response to a five-day course of UV blood irradiation. The changes in the spectral characteristics of blood and plasma, the chemistry panel, the gas composition, and the fractional hemoglobin composition initiated by absorption of UV radiation are used to discuss the molecular mechanisms for the effect of therapeutic doses of UV radiation on blood cholesterols.

  14. Do proteins facilitate the formation of cholesterol-rich domains?

    PubMed

    Epand, Richard M

    2004-11-03

    Both biological and model membranes can exhibit the formation of domains. A brief review of some of the diverse methodologies used to identify the presence of domains in membranes is given. Some of these domains are enriched in cholesterol. The segregation of lipids into cholesterol-rich domains can occur in both pure lipid systems as well as membranes containing peptides and proteins. Peptides and proteins can promote the formation of cholesterol-rich domains not only by preferentially interacting with cholesterol and being sequestered into these regions of the membrane, but also indirectly as a consequence of being excluded from cholesterol-rich domains. The redistribution of components is dictated by the thermodynamics of the system. The formation of domains in a biological membrane is a consequence of all of the intermolecular interactions including those among lipid molecules as well as between lipids and proteins.

  15. Can Cholesterol Metabolism Modulation Affect Brain Function and Behavior?

    PubMed

    Cartocci, Veronica; Servadio, Michela; Trezza, Viviana; Pallottini, Valentina

    2017-02-01

    Cholesterol is an important component for cell physiology. It regulates the fluidity of cell membranes and determines the physical and biochemical properties of proteins. In the central nervous system, cholesterol controls synapse formation and function and supports the saltatory conduction of action potential. In recent years, the role of cholesterol in the brain has caught the attention of several research groups since a breakdown of cholesterol metabolism has been associated with different neurodevelopmental and neurodegenerative diseases, and interestingly also with psychiatric conditions. The aim of this review is to summarize the current knowledge about the connection between cholesterol dysregulation and various neurologic and psychiatric disorders based on clinical and preclinical studies. J. Cell. Physiol. 232: 281-286, 2017. © 2016 Wiley Periodicals, Inc.

  16. Decreasing Outer Hair Cell Membrane Cholesterol Increases Cochlear Electromechanics

    NASA Astrophysics Data System (ADS)

    Brownell, William E.; Jacob, Stefan; Hakizimana, Pierre; Ulfendahl, Mats; Fridberger, Anders

    2011-11-01

    The effect of decreasing membrane cholesterol on the mechanical response of the cochlea to acoustic and/or electrical stimulation was monitored using laser interferometry. In contrast to pharmacological interventions that typically decrease cochlear electromechanics, reducing membrane cholesterol increased the response. The electromechanical response in untreated preparations was asymmetric with greater displacements in response to positive currents and cholesterol depletion increased the asymmetry. The results confirm that outer hair cell electromotility is enhanced by low membrane cholesterol. The asymmetry of the response indicates the outer hair cell resting membrane potential is hyperpolarized relative to the voltage of maximum gain for the outer hair cell voltage-displacement function. The magnitude of the response increase suggests a non-uniform distribution of cholesterol along the lateral wall of normal adult outer hair cells.

  17. Regulation of cerebral cholesterol metabolism in Alzheimer disease.

    PubMed

    Reiss, Allison B; Voloshyna, Iryna

    2012-03-01

    Alzheimer disease (AD) is an age-related neurodegenerative disorder that manifests as a progressive loss of memory and deterioration of higher cognitive functions. Alzheimer disease is characterized by accumulation in the brain of the β-amyloid peptide generated by β- and γ-secretase processing of amyloid precursor protein. Epidemiological studies have linked elevated plasma cholesterol and lipoprotein levels in midlife with AD development. Cholesterol-fed animal models exhibit neuropathologic features of AD including accumulation of β-amyloid peptide. Specific isoforms of the cholesterol transporter apolipoprotein E are associated with susceptibility to AD. Although multiple lines of evidence indicate a role for cholesterol in AD, the exact impact and mechanisms involved remain largely unknown. This review summarizes the current state of our knowledge of the influence of cholesterol and lipid pathways in AD pathogenesis in vitro and in vivo.

  18. Abrogating cholesterol esterification suppresses growth and metastasis of pancreatic cancer

    PubMed Central

    Li, J; Gu, D; Lee, S S-Y; Song, B; Bandyopadhyay, S; Chen, S; Konieczny, S F; Ratliff, T L; Liu, X; Xie, J; Cheng, J-X

    2016-01-01

    Cancer cells are known to execute reprogramed metabolism of glucose, amino acids and lipids. Here, we report a significant role of cholesterol metabolism in cancer metastasis. By using label-free Raman spectromicroscopy, we found an aberrant accumulation of cholesteryl ester in human pancreatic cancer specimens and cell lines, mediated by acyl-CoA cholesterol acyltransferase-1 (ACAT-1) enzyme. Expression of ACAT-1 showed a correlation with poor patient survival. Abrogation of cholesterol esterification, either by an ACAT-1 inhibitor or by shRNA knockdown, significantly suppressed tumor growth and metastasis in an orthotopic mouse model of pancreatic cancer. Mechanically, ACAT-1 inhibition increased intracellular free cholesterol level, which was associated with elevated endoplasmic reticulum stress and caused apoptosis. Collectively, our results demonstrate a new strategy for treating metastatic pancreatic cancer by inhibiting cholesterol esterification. PMID:27132508

  19. Effect of medicinal plants on the crystallization of cholesterol

    NASA Astrophysics Data System (ADS)

    Saraswathi, N. T.; Gnanam, F. D.

    1997-08-01

    One of the least desirable calcifications in the human body is the mineral deposition in atherosclerosis plaques. These plaques principally consist of lipids such as cholesterol, cholesteryl esters, phospholipids and triglycerides. Chemical analysis of advanced plaques have shown the presence of considerable amounts of free cholesterol identified as cholesterol monohydrate crystals. Cholesterol has been crystallized in vitro. The extracts of some of the Indian medicinal plants detailed below were used as additives to study their effect on the crystallization behaviour of cholesterol. It has been found that many of the herbs have inhibitory effect on the crystallization such as nucleation, crystal size and habit modification. The inhibitory effect of the plants are graded as Commiphora mughul > Aegle marmeleos > Cynoden dactylon > Musa paradisiaca > Polygala javana > Alphinia officinarum > Solanum trilobatum > Enicostemma lyssopifolium.

  20. Blood Cholesterol Measurement in Clinical Laboratories in the United States. Current Status. A Report from the Laboratory Standardization Panel of the National Cholesterol Education Program.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    Precise and accurate cholesterol measurements are required to identify and treat individuals with high blood cholesterol levels. However, the current state of reliability of blood cholesterol measurements suggests that considerable inaccuracy in cholesterol testing exists. This report describes the Laboratory Standardization Panel findings on the…

  1. Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid.

    PubMed

    Correia, Marta; Casal, Susana; Vinagre, João; Seruca, Raquel; Figueiredo, Ceu; Touati, Eliette; Machado, José C

    2014-05-01

    Helicobacter pylori colonizes half of the world population and is associated with gastric cancer. We have previously demonstrated that docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid known for its anti-inflammatory and antitumor effects, directly inhibits H. pylori growth in vitro and in mice. Nevertheless, the concentration of DHA shown to reduce H. pylori mice gastric colonization was ineffective in vitro. Related to the auxotrophy of H. pylori for cholesterol, we hypothesize that other mechanisms, in addition to DHA direct antibacterial effect, must be responsible for the reduction of the infection burden. In the present study we investigated if DHA affects also H. pylori growth, by reducing the availability of membrane cholesterol in the epithelial cell for H. pylori uptake. Levels of cholesterol in gastric epithelial cells and of cholesteryl glucosides in H. pylori were determined by thin layer chromatography and gas chromatography. The consequences of epithelial cells' cholesterol depletion on H. pylori growth were assessed in liquid cultures. We show that H. pylori uptakes cholesterol from epithelial cells. In addition, DHA lowers cholesterol levels in epithelial cells, decreases its de novo synthesis, leading to a lower synthesis of cholesteryl glucosides by H. pylori. A previous exposition of H. pylori to cholesterol influences the bacterium response to the direct inhibitory effect of DHA. Overall, our results suggest that a direct effect of DHA on H. pylori survival is modulated by its access to epithelial cell cholesterol, supporting the notion that cholesterol enhances the resistance of H. pylori. The cholesterol-dependent resistance of H. pylori to antimicrobial compounds raises new important aspects for the development of new anti-bacterial strategies.

  2. The Role of Dietary Cholesterol in Lipoprotein Metabolism and Related Metabolic Abnormalities: A Mini-review.

    PubMed

    Kapourchali, Fatemeh Ramezani; Surendiran, Gangadaran; Goulet, Amy; Moghadasian, Mohammed H

    2016-10-25

    Cholesterol plays a vital role in cell biology. Dietary cholesterol or "exogenous" cholesterol accounts for approximately one-third of the pooled body cholesterol, and the remaining 70% is synthesized in the body (endogenous cholesterol). Increased dietary cholesterol intake may result in increased serum cholesterol in some individuals, while other subjects may not respond to dietary cholesterol. However, diet-increased serum cholesterol levels do not increase the low-density lipoprotein/high-density lipoprotein (LDL/HDL) cholesterol ratio, nor do they decrease the size of LDL particles or HDL cholesterol levels. Elevated levels of LDL cholesterol, reduced HDL cholesterol levels, and small, dense LDL particles are independent risk factors for coronary artery disease. Dietary cholesterol is the primary approach for treatment of conditions such as the Smith-Lemli-Opitz syndrome. Recent studies have highlighted mechanisms for absorption of dietary cholesterol. These studies have help understand how dietary and/or pharmaceutical agents inhibit cholesterol absorption and thereby reduce LDL cholesterol concentrations. In this article, various aspects of cholesterol metabolism, including dietary sources, absorption, and abnormalities in cholesterol metabolism, have been summarized and discussed.

  3. Photoaffinity labeling with cholesterol analogues precisely maps a cholesterol-binding site in voltage-dependent anion channel-1.

    PubMed

    Budelier, Melissa M; Cheng, Wayland Wl; Bergdoll, Lucie; Chen, Zi-Wei; Janetka, James W; Abramson, Jeff; Krishnan, Kathiresan; Mydock-McGrane, Laurel; Covey, Douglas F; Whitelegge, Julian P; Evers, Alex S

    2017-04-10

    Voltage-dependent anion channel-1 (VDAC1) is a highly regulated β-barrel membrane protein that mediates transport of ions and metabolites between the mitochondria and cytosol of the cell. VDAC1 co-purifies with cholesterol and is functionally regulated by cholesterol, among other endogenous lipids. Molecular modeling studies based on NMR observations have suggested five cholesterol-binding sites in VDAC1, but direct experimental evidence for these sites is lacking. Here, to determine the sites of cholesterol binding, we photolabeled purified mouse VDAC1 (mVDAC1) with photoactivatable cholesterol analogues and analyzed the photolabeled sites with both top-down mass spectrometry (MS), and bottom-up MS paired with a clickable, stable isotope labeled tag, FLI-tag. Using cholesterol analogues with a diazirine in either the 7 position of the steroid ring (LKM38) or the aliphatic tail (KK174), we mapped a binding pocket in mVDAC1 localized to T83 and E73, respectively. When E73 was mutated to a glutamine, KK174 no longer photolabeled this residue, but instead labeled the nearby Y62 within this same binding pocket. The combination of analytical strategies employed in this work permits detailed molecular mapping of a cholesterol binding site in a protein, including an orientation of the sterol within the site. Our work raises the interesting possibility that cholesterol-mediated regulation of VDAC1 may be facilitated through a specific binding site at the functionally important E73 residue.

  4. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains.

    PubMed

    Fantini, Jacques; Barrantes, Francisco J

    2013-01-01

    The plasma membrane of eukaryotic cells contains several types of lipids displaying high biochemical variability in both their apolar moiety (e.g., the acyl chain of glycerolipids) and their polar head (e.g., the sugar structure of glycosphingolipids). Among these lipids, cholesterol is unique because its biochemical variability is almost exclusively restricted to the oxidation of its polar -OH group. Although generally considered the most rigid membrane lipid, cholesterol can adopt a broad range of conformations due to the flexibility of its isooctyl chain linked to the polycyclic sterane backbone. Moreover, cholesterol is an asymmetric molecule displaying a planar α face and a rough β face. Overall, these structural features open up a number of possible interactions between cholesterol and membrane lipids and proteins, consistent with the prominent regulatory functions that this unique lipid exerts on membrane components. The aim of this review is to describe how cholesterol interacts with membrane lipids and proteins at the molecular/atomic scale, with special emphasis on transmembrane domains of proteins containing either the consensus cholesterol-binding motifs CRAC and CARC or a tilted peptide. Despite their broad structural diversity, all these domains bind cholesterol through common molecular mechanisms, leading to the identification of a subset of amino acid residues that are overrepresented in both linear and three-dimensional membrane cholesterol-binding sites.

  5. Evaluation of the high density lipoprotein cholesterol protective effect against atherogenesis in rabbits fed cholesterol supplemented diets.

    PubMed

    Neuman, M P; Neuman, J; Mosso, H E; Ibarra, R; Rodríguez, S; Scavini, L M; Achille, A; Pecorini, V

    1990-01-01

    Plasma high density lipoprotein cholesterol (HDL-C) was evaluated in 15 rabbits fed cholesterol supplemented diets to assess its protective effect on the atherogenic process. From a baseline level of 29 +/- 11 mg/dl (mean +/- SD) the maximum attained for HDL-C was twofold in only three rabbits, whereas total cholesterol (TC) increased 20 fold. Plasma TC/HDL-C ratio rose 80 fold from the baseline (2.4 +/- 0.9) and it was the best parameter that correlated with aortic cholesterol accumulation and pathological scores. Aortic TC content increased 10 fold and free cholesterol/cholesterol esters ratio decreased 20 fold. Pathological studies showed that aortic lesion scores rose from 0 to 4. It can be concluded that the high correlations obtained when TC/HDL-C ratio was plotted against both aortic cholesterol deposition and lesion scores, support the theory of the reverse cholesterol transport and the effectiveness of this index to predict the degree of the atherogenic process. On the other hand, the poor response of HDL-C in this model encourages future research using drugs to increase this parameter in order to normalize TC/HDL-C ratio and avoid lesions.

  6. High Blood Cholesterol Q&A Dr. Michael Lauer | NIH MedlinePlus the Magazine

    MedlinePlus

    ... this page please turn Javascript on. Feature: High Cholesterol High Blood Cholesterol Q&A with Dr. Michael Lauer Past Issues / ... heavier and older, what does recent research on cholesterol and heart health tell us that Americans need ...

  7. Cholesterol Levels: What You Need to Know | NIH MedlinePlus the Magazine

    MedlinePlus

    ... this page please turn Javascript on. Feature: High Cholesterol Cholesterol Levels: What You Need to Know Past Issues / Summer 2012 Table of Contents Measuring Cholesterol Levels Learn more at MedlinePlus: https://medlineplus.gov/ ...

  8. All in the Family: When High Blood Cholesterol Occurs in Families

    MedlinePlus

    ... page please turn Javascript on. Feature: High Cholesterol All in the Family: When High Blood Cholesterol Occurs ... A / Cholesterol Levels: What You Need to Know / All In The Family Summer 2012 Issue: Volume 7 ...

  9. Alterations in cholesterol absorption and synthesis characterize Framingham offspring study participants with coronary heart disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Data is limited on measures influencing cholesterol homeostasis in subjects at high risk of developing cardiovascular disease (CVD) relative to established risk factors. To address this, we quantified circulating indicators of cholesterol homeostasis (plasma phytosterols and cholesterol precursor co...

  10. Type I diabetes mellitus decreases in vivo macrophage-to-feces reverse cholesterol transport despite increased biliary sterol secretion in mice

    PubMed Central

    Freark de Boer, Jan; Annema, Wijtske; Schreurs, Marijke; van der Veen, Jelske N.; van der Giet, Markus; Nijstad, Niels; Kuipers, Folkert; Tietge, Uwe J. F.

    2012-01-01

    Type I diabetes mellitus (T1DM) increases atherosclerotic cardiovascular disease; however, the underlying pathophysiology is still incompletely understood. We investigated whether experimental T1DM impacts HDL-mediated reverse cholesterol transport (RCT). C57BL/6J mice with alloxan-induced T1DM had higher plasma cholesterol levels (P < 0.05), particularly within HDL, and increased hepatic cholesterol content (P < 0.001). T1DM resulted in increased bile flow (2.1-fold; P < 0.05) and biliary secretion of bile acids (BA, 10.5-fold; P < 0.001), phospholipids (4.5-fold; P < 0.001), and cholesterol (5.5-fold; P < 0.05). Hepatic cholesterol synthesis was unaltered, whereas BA synthesis was increased in T1DM (P < 0.001). Mass fecal BA output was significantly higher in T1DM mice (1.5-fold; P < 0.05), fecal neutral sterol excretion did not change due to increased intestinal cholesterol absorption (2.1-fold; P < 0.05). Overall in vivo macrophage-to-feces RCT, using [3H]cholesterol-loaded primary mouse macrophage foam cells, was 20% lower in T1DM (P < 0.05), mainly due to reduced tracer excretion within BA (P < 0.05). In vitro experiments revealed unchanged cholesterol efflux toward T1DM HDL, whereas scavenger receptor class BI-mediated selective uptake from T1DM HDL was lower in vitro and in vivo (HDL kinetic experiments) (P < 0.05), conceivably due to increased glycation of HDL-associated proteins (+65%, P < 0.01). In summary, despite higher mass biliary sterol secretion T1DM impairs macrophage-to-feces RCT, mainly by decreasing hepatic selective uptake, a mechanism conceivably contributing to increased cardiovascular disease in T1DM. PMID:22180634

  11. Sesamin enhances cholesterol efflux in RAW264.7 macrophages.

    PubMed

    Liu, Nan; Wu, Chongming; Sun, Lizhong; Zheng, Jun; Guo, Peng

    2014-06-06

    Foam cells formation as a result of the uncontrolled cytophagy of modified cholesterol by macrophages plays a key role in the occurrence and development of atherosclerosis. Sesamin is an active constituent of Sesamum indicum which has been shown to possess multiple pharmacological activities. In this work, we investigated the effects of sesamin on foam cell formation and cholesterol efflux in RAW264.7 macrophages. Sesamin dose-dependently inhibited the enhanced cholesterol accumulation elicited by oxidized low-density lipoprotein cholesterol (oxLDL) in RAW264.7 cells. Treatment with sesamin (10 μM) significantly enhanced cholesterol efflux mediated by high-density lipoprotein (HDL). Realtime quantitative PCR and luciferase assays showed that sesamin significantly increased the mRNA levels of PPARγ, LXRα, and ABCG1, and increased the transcriptional activity of PPARγ. The stimulating effect of sesamin on cholesterol efflux was substantially inhibited by the co-treatment with GW9662, a potent inhibitor of PPARγ. These results suggest that sesamin is a new inhibitor of foam cell formation that may stimulate cholesterol efflux through upregulation of the PPARγ-LXRα-ABCG1 pathway.

  12. Cholesterol sulfate in human physiology: what's it all about?

    PubMed

    Strott, Charles A; Higashi, Yuko

    2003-07-01

    Cholesterol sulfate is quantitatively the most important known sterol sulfate in human plasma, where it is present in a concentration that overlaps that of the other abundant circulating steroid sulfate, dehydroepiandrosterone (DHEA) sulfate. Although these sulfolipids have similar production and metabolic clearance rates, they arise from distinct sources and are metabolized by different pathways. While the function of DHEA sulfate remains an enigma, cholesterol sulfate has emerged as an important regulatory molecule. Cholesterol sulfate is a component of cell membranes where it has a stabilizing role, e.g., protecting erythrocytes from osmotic lysis and regulating sperm capacitation. It is present in platelet membranes where it supports platelet adhesion. Cholesterol sulfate can regulate the activity of serine proteases, e.g., those involved in blood clotting, fibrinolysis, and epidermal cell adhesion. As a result of its ability to regulate the activity of selective protein kinase C isoforms and modulate the specificity of phosphatidylinositol 3-kinase, cholesterol sulfate is involved in signal transduction. Cholesterol sulfate functions in keratinocyte differentiation, inducing genes that encode for key components involved in development of the barrier. The accumulating evidence demonstrating a regulatory function for cholesterol sulfate appears solid; the challenge now is to work out the molecular mechanisms whereby this interesting molecule carries out its various roles.

  13. Has westernization influenced serum cholesterol levels in Bougainvillian males?

    PubMed

    Iser, D J; Avera, K

    1993-12-01

    This study was performed to see if there was any difference in cholesterol levels between three socioeconomic groups of Bougainvillian males, each with different levels of exposure to western influences. Serum cholesterol levels were measured in 50 subjects from each of 1) village people leading a traditional lifestyle, 2) town dwellers exposed to western influences, and 3) mine workers who regularly dined in the company mess. Mean cholesterol levels were significantly higher in the mine workers (5.3 +/- SD 0.9 mmol/l) and the town dwellers (4.8 +/- SD 0.8 mmol/l) than in the village people (3.7 +/- SD 1.0 mmol/l). There was a positive correlation between serum cholesterol level and age in two groups, the town dwellers and the village people, even though the latter group had a low mean cholesterol level. There was a significant correlation between body mass index (BMI) and serum cholesterol level for the entire group as well as the town dwellers and mine workers. The higher mean cholesterol levels in the mine workers and town dwellers than in the village people may reflect a difference in lifestyle, particularly in diet, between these groups, and may represent an increased risk for ischaemic heart disease.

  14. Cholesterol depletion impairs contractile machinery in neonatal rat cardiomyocytes

    PubMed Central

    Hissa, Barbara; Oakes, Patrick W.; Pontes, Bruno; Ramírez-San Juan, Guillermina; Gardel, Margaret L.

    2017-01-01

    Cholesterol regulates numerous cellular processes. Depleting its synthesis in skeletal myofibers induces vacuolization and contraction impairment. However, little is known about how cholesterol reduction affects cardiomyocyte behavior. Here, we deplete cholesterol by incubating neonatal cardiomyocytes with methyl-beta-cyclodextrin. Traction force microscopy shows that lowering cholesterol increases the rate of cell contraction and generates defects in cell relaxation. Cholesterol depletion also increases membrane tension, Ca2+ spikes frequency and intracellular Ca2+ concentration. These changes can be correlated with modifications in caveolin-3 and L-Type Ca2+ channel distributions across the sarcolemma. Channel regulation is also compromised since cAMP-dependent PKA activity is enhanced, increasing the probability of L-Type Ca2+ channel opening events. Immunofluorescence reveals that cholesterol depletion abrogates sarcomeric organization, changing spacing and alignment of α-actinin bands due to increase in proteolytic activity of calpain. We propose a mechanism in which cholesterol depletion triggers a signaling cascade, culminating with contraction impairment and myofibril disruption in cardiomyocytes. PMID:28256617

  15. Cholesterol transport and regulation in the mammary gland.

    PubMed

    Ontsouka, Edgar C; Albrecht, Christiane

    2014-03-01

    The milk-producing alveolar epithelial cells secrete milk that remains after birth the principal source of nutrients for neonates. Milk secretion and composition are highly regulated processes via integrated actions of hormones and local factors which involve specific receptors and downstream signal transduction pathways. Overall milk composition is similar among mammalian species, although the content of individual constituents such as lipids may significantly differ from one species to another. The milk lipid fraction is essentially composed of triglycerides, which represent more than 95 % of the total lipids in human and commercialized bovine milk. Though sterols, including cholesterol, which is the major milk sterol, represent less than 0.5 % of the total milk lipid fraction, they are of key importance for several biological processes. Cholesterol is required for the formation of biological membranes especially in rapidly growing organisms, and for the synthesis of sterol-based compounds. Cholesterol found in milk originates predominantly from blood uptake and, to a certain extent, from local synthesis in the mammary tissue. The present review summarizes current knowledge on cellular mechanisms and regulatory processes determining intra- and transcellular cholesterol transport in the mammary gland. Cholesterol exchanges between the blood, the mammary alveolar cells and the milk, and the likely role of active cholesterol transporters in these processes are discussed. In this context, the hormonal regulation and signal transduction pathways promoting active cholesterol transport as well as potential regulatory crosstalks are highlighted.

  16. Pathogen roid rage: cholesterol utilization by Mycobacterium tuberculosis.

    PubMed

    Wipperman, Matthew F; Sampson, Nicole S; Thomas, Suzanne T

    2014-01-01

    The ability of science and medicine to control the pathogen Mycobacterium tuberculosis (Mtb) requires an understanding of the complex host environment within which it resides. Pathological and biological evidence overwhelmingly demonstrate how the mammalian steroid cholesterol is present throughout the course of infection. Better understanding Mtb requires a more complete understanding of how it utilizes molecules like cholesterol in this environment to sustain the infection of the host. Cholesterol uptake, catabolism and broader utilization are important for maintenance of the pathogen in the host and it has been experimentally validated to contribute to virulence and pathogenesis. Cholesterol is catabolized by at least three distinct sub-pathways, two for the ring system and one for the side chain, yielding dozens of steroid intermediates with varying biochemical properties. Our ability to control this worldwide infectious agent requires a greater knowledge of how Mtb uses cholesterol to its advantage throughout the course of infection. Herein, the current state of knowledge of cholesterol metabolism by Mtb is reviewed from a biochemical perspective with a focus on the metabolic genes and pathways responsible for cholesterol steroid catabolism.

  17. Multifunctional sensing film used for fiber optic cholesterol sensor

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Huang, Jun; Li, Mingtian; Zhou, Xuan

    2008-12-01

    In this paper, by using ethyl silicate, ethanol and fluorescence indicator as the precursors, the multifunctional optic biosensing (MOBS) film containing cholesterol oxidase and the fluorescence indicator was prepared by sol-gel method. This biosensing film has both the function of biocatalyst and oxygen biosensing and can be used as the effective biosensing materials for fiber optic cholesterol sensor. The fiber optical cholesterol sensor based on fluorescence quenching was designed and fabricated using lock-in amplifying technology to realize the detection of cholesterol concentration. The experimental results showed that the best precursor proportion in volume ratio is: ethyl silicate: ethanol: 0.01 M HCl = 5: 8: 1.6. The drying rate of the sol could be controlled by using formamide as the controlling drier. When 16% of formamide were added in the mixing system, the cracks of the film could be reduced greatly and the immobilization of cholesterol oxidase and the fluorescence indicator could be improved effectively. A linear relationship between phase delay φ and the cholesterol concentration was observed in the range of 100 to 500 mg/dL. Since the cholesterol concentration is in the range of 140 to 200 mg/dL in the blood of healthy people, it will be possible for the sensor to be used in clinical detection. The biosensor with MOBS film has the response time of about 30 s, which is rather fast for a biosensor, and the relative deviation of +/-5.03%. This biosensor also has good stability.

  18. Hedgehog signaling stimulates the conversion of cholesterol to steroids.

    PubMed

    Tang, Chao; Pan, Yibin; Luo, Huan; Xiong, Wenyi; Zhu, Haibin; Ruan, Hongfeng; Wang, Jirong; Zou, Chaochun; Tang, Lanfang; Iguchi, Takuma; Long, Fanxin; Wu, Ximei

    2015-03-01

    Cholesterol modification of Hedgehog (Hh) ligands is fundamental for the activity of Hh signaling, and cholesterol biosynthesis is also required for intracellular Hh signaling transduction. Here, we investigated the roles and underlying mechanism of Hh signaling in metabolism of cholesterol. The main components of the Hh pathway are abundantly expressed in both human cytotrophoblasts and trophoblast-like cells. Activation of Hh signaling induces the conversion of cholesterol to progesterone (P4) and estradiol (E2) through up-regulating the expression of steroidogenic enzymes including P450 cholesterol side chain cleavage enzyme (P450scc), 3β-hydroxysteroid dehydrogenase type 1 (3β-HSD1), and aromatase. Moreover, inhibition of Hh signaling attenuates not only Hh-induced expression of steroidogenic enzymes but also the conversion of cholesterol to P4 and E2. Whereas Gli3 is required for Hh-induced P450scc expression, Gli2 mediates the induction of 3β-HSD1 and aromatase. Finally, in ovariectomized nude mice, systemic inhibition of Hh signaling by cyclopamine suppresses circulating P4 and E2 levels derived from a trophoblast-like choricarcinoma xenograft, and attenuates uterine response to P4 and E2. Together these results uncover a hitherto uncharacterized role of Hh signaling in metabolism of cholesterol.

  19. Lipid bilayer thickness determines cholesterol's location in model membranes

    SciTech Connect

    Marquardt, Drew; Heberle, Frederick A.; Greathouse, Denise V.; Koeppe, II, Roger E.; Standaert, Robert F.; Van Oosten, Brad J.; Harroun, Thad A.; Kinnun, Jacob J.; Williams, Justin A.; Wassall, Stephen R.; Katsaras, John

    2016-10-11

    Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of different lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. Finally, these results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.

  20. Pathogen ‘Roid Rage: Cholesterol Utilization by Mycobacterium tuberculosis

    PubMed Central

    Wipperman, Matthew F.; Sampson, Nicole S.; Thomas, Suzanne, T.

    2014-01-01

    The ability of science and medicine to control the pathogen Mycobacterium tuberculosis (Mtb) requires an understanding of the complex host environment within which it resides. Pathological and biological evidence overwhelmingly demonstrate how the mammalian steroid cholesterol is present throughout the course of infection. Better understanding Mtb requires a more complete understanding of how it utilizes molecules like cholesterol in this environment to sustain the infection of the host. Cholesterol uptake, catabolism, and broader utilization are important for maintenance of the pathogen in the host and it has been experimentally validated to contribute to virulence and pathogenesis. Cholesterol is catabolized by at least three distinct sub-pathways, two for the ring system and one for the side chain, yielding dozens of steroid intermediates with varying biochemical properties. Our ability to control this worldwide infectious agent requires a greater knowledge of how Mtb uses cholesterol to its advantage throughout the course of infection. Herein, the current state of knowledge of cholesterol metabolism by Mtb is reviewed from a biochemical perspective with a focus on the metabolic genes and pathways responsible for cholesterol steroid catabolism. PMID:24611808

  1. Lipid bilayer thickness determines cholesterol's location in model membranes

    DOE PAGES

    Marquardt, Drew; Heberle, Frederick A.; Greathouse, Denise V.; ...

    2016-10-11

    Cholesterol is an essential biomolecule of animal cell membranes, and an important precursor for the biosynthesis of certain hormones and vitamins. It is also thought to play a key role in cell signaling processes associated with functional plasma membrane microdomains (domains enriched in cholesterol), commonly referred to as rafts. In all of these diverse biological phenomena, the transverse location of cholesterol in the membrane is almost certainly an important structural feature. Using a combination of neutron scattering and solid-state 2H NMR, we have determined the location and orientation of cholesterol in phosphatidylcholine (PC) model membranes having fatty acids of differentmore » lengths and degrees of unsaturation. The data establish that cholesterol reorients rapidly about the bilayer normal in all the membranes studied, but is tilted and forced to span the bilayer midplane in the very thin bilayers. The possibility that cholesterol lies flat in the middle of bilayers, including those made from PC lipids containing polyunsaturated fatty acids (PUFAs), is ruled out. Finally, these results support the notion that hydrophobic thickness is the primary determinant of cholesterol's location in membranes.« less

  2. [Oil of Piper longum unsaponifiable matter prevents cholesterol gallstone formation].

    PubMed

    Xu, Shuang; Hu, Jin-Feng; Chu, Shi-Feng; Han, Ning; Li, Jing-Wei; Li, Yue-Ting; Chen, Nai-Hong

    2013-07-01

    To observe the effect of various doses of oil of Piper longum unsaponifiable matter (OPUM) to cholesterol gallstones in experimental mice. C57BL/6 mice (n = 60) were randomly divided into 6 groups: control group, model group, OPUM (15, 30 and 60 mg x kg(-1)) group and ursodeoxycholic acid (UDCA, 60 mg x kg(-1)) group, administered for 10 weeks. The level of serum lipid and liver function enzymes were tested. The gallbladder was removed and bile was obtained by centrifugation. Next, the levels of the bile total cholesterol (TC), phospholipid (PL) and bile acid (TBA) were measured. The indicators of lipid peroxidation were determined and cholesterol saturation index (CSI) was calculated. The liver histological changes were observed by HE staining. The results showed that serum TC, TG (triglycerides) and AST (aspartate transaminase) contents, gallbladder cholesterol crystallization and CSI increased significantly (P < 0.05). In addition, the activity of SOD decreased significantly and MDA content increased significantly in liver (P < 0.05). HE staining results showed that the hepatic cord disorder and intracellular lipid droplets increased significantly. All results indicate that lithogenic diet lead to the formation of cholesterol gallstones. In OPUM (30 and 60 mg x kg(-1)) group, serum TC, TG and AST content, gallbladder cholesterol crystallization and CSI decreased significantly, the activity of SOD increased significantly and MDA content decreased significantly. HE staining results showed that OPUM can improve the morphology of liver cell, reduce the degree of hepatic cord disorders and restore the cell morphology close to normal. The cause of OPUM prevents cholesterol gallstone formation maybe due to protect the integrity of the liver cells, lower CSI, and reduce cholesterol crystal formation and hence prevent cholesterol gallstone formation.

  3. Injected phytosterols/stanols suppress plasma cholesterol levels in hamsters.

    PubMed

    Vanstone, C A.; Raeini-Sarjaz, M; Jones, P J.H.

    2001-10-01

    Although plant sterols are known to suppress intestinal cholesterol absorption, whether plasma and hepatic lipid levels are influenced through non-gut related internal mechanisms has not been established. To examine this question 50 male hamsters were divided into 5 groups and fed semi-purified diets containing 20% energy as fat and 0.25% (w/w) cholesterol ad libitum for 60 days. The control group (i) received diet alone, while four additional groups consumed the diet plus one of four equivalent phytosterol mixtures (5 mg/kg/day) given either as (ii) tall oil phytosterols/stanols mixed with diet (oralSA), (iii) tall oil phytosterols/stanols subcutaneously injected (subSA), (iv) soybean oil phytosterols alone mixed with diet (oralSE), or (v) soybean oil subcutaneous injected phytosterols alone (subSE). The control group and both orally supplemented groups also received placebo subcutaneous sham injections. Neither food consumption, body weight, nor liver weight differed across treatment groups. Subcutaneous administration of SA and SE decreased plasma total cholesterol levels by 21% and 23% (p < 0.0001) and non-apolipoprotein-A cholesterol concentrations by 22% and 15% (p < 0.0002), respectively, compared to control. HDL cholesterol and TG concentrations remained unchanged across all groups, except for a decline of 25% (p < 0.0001) in HDL concentration in the subSE group versus control. Plasma campesterol levels were lower (p < 0.05) in the subSA group relative to all other groups. Plasma campesterol:cholesterol and campesterol:sitosterol ratios were, however, higher (p < 0.0001) for both the oral and subSE groups. Hepatic cholesterol levels were higher (p < 0.0001) in the oral and subSE phytosterol groups by 30% and 31%, respectively, relative to control. We conclude that low doses of subcutaneously administered plant sterols reduce circulating cholesterol levels through mechanisms other than inhibiting intestinal cholesterol absorption.

  4. Unnecessary repeated total cholesterol tests in biochemistry laboratory

    PubMed Central

    Demir, Suleyman; Zorbozan, Nergiz; Basak, Elif

    2016-01-01

    Introduction We aimed to determine the number of repeated cholesterol (RC) tests and the ratio of unnecessary-repeated cholesterol (URC) tests among patients admitted to Pamukkale University Hospital (Denizli, Turkey) and provide solutions to avoid URC testing. Materials and methods Total cholesterol (T-cholesterol) tests (N = 86,817) between June 2014 and May 2015 were evaluated. The tests performed more than once per patient were determined as RC test (N = 28,811). RC test with an interval shorter than 4 weeks were determined as URC test (N = 3968) according to the shortest retest interval stated in ACC/AHA blood cholesterol guideline. RC testing included internal medicine, surgery and paediatric outpatients and inpatients. Reference change value (RCV) of total cholesterol was calculated. Results The 33.1% of the T-cholesterol tests were RC tests (N = 28,811), 13.7% of them were URC tests (N = 3968). Our RCV value was 25%. The percentage change between consecutive tests was less than RCV in 86.1% (N = 3418) of URC tests. URC tests were performed more frequently in patients with desirable total cholesterol value (P < 0.001). Conclusion There is a significant part of repeated T-cholesterol tests requested in our hospital. URC test requests can be evaluated by laboratories and the obtained data should be shared with clinicians. Laboratories can calculate RCV for the tests they performed and report this value with the test result. To prevent from URC tests, a warning plug-in can be added to hospital information software in accordance with guidelines to prevent from URC test requests. PMID:26981021

  5. Effect of Cholesterol Reduction on Receptor Signaling in Neurons*

    PubMed Central

    Fukui, Kenji; Ferris, Heather A.; Kahn, C. Ronald

    2015-01-01

    Diabetes mellitus is associated with a variety of complications, including alterations in the central nervous system (CNS). We have recently shown that diabetes results in a reduction of cholesterol synthesis in the brain due to decreased insulin stimulation of SREBP2-mediated cholesterol synthesis in neuronal and glial cells. In the present study, we explored the effects of the decrease in cholesterol on neuronal cell function using GT1-7 hypothalamic cells subjected to cholesterol depletion in vitro using three independent methods: 1) exposure to methyl-β-cyclodextrin, 2) treatment with the HMG-CoA reductase inhibitor simvastatin, and 3) shRNA-mediated knockdown of SREBP2. All three methods produced 20–31% reductions in cellular cholesterol content, similar to the decrease in cholesterol synthesis observed in diabetes. All cholesterol-depleted neuron-derived cells, independent of the method of reduction, exhibited decreased phosphorylation/activation of IRS-1 and AKT following stimulation by insulin, insulin-like growth factor-1, or the neurotrophins (NGF and BDNF). ERK phosphorylation/activation was also decreased after methyl-β-cyclodextrin and statin treatment but increased in cells following SREBP2 knockdown. In addition, apoptosis in the presence of amyloid-β was increased. Reduction in cellular cholesterol also resulted in increased basal autophagy and impairment of induction of autophagy by glucose deprivation. Together, these data indicate that a reduction in neuron-derived cholesterol content, similar to that observed in diabetic brain, creates a state of insulin and growth factor resistance that could contribute to CNS-related complications of diabetes, including increased risk of neurodegenerative diseases, such as Alzheimer disease. PMID:26370080

  6. Cholesterol Depletion Alters Cardiomyocyte Subcellular Signaling and Increases Contractility

    PubMed Central

    McIntosh, Victoria J.; Abou Samra, Abdul B.; Mohammad, Ramzi M.; Lasley, Robert D.

    2016-01-01

    Membrane cholesterol levels play an important factor in regulating cell function. Sarcolemmal cholesterol is concentrated in lipid rafts and caveolae, which are flask-shaped invaginations of the plasma membrane. The scaffolding protein caveolin permits the enrichment of cholesterol in caveolae, and caveolin interactions with numerous proteins regulate their function. The purpose of this study was to determine whether acute reductions in cardiomyocyte cholesterol levels alter subcellular protein kinase activation, intracellular Ca2+ and contractility. Methods: Ventricular myocytes, isolated from adult Sprague Dawley rats, were treated with the cholesterol reducing agent methyl-β-cyclodextrin (MβCD, 5 mM, 1 hr, room temperature). Total cellular cholesterol levels, caveolin-3 localization, subcellular, ERK and p38 mitogen activated protein kinase (MAPK) signaling, contractility, and [Ca2+]i were assessed. Results: Treatment with MβCD reduced cholesterol levels by ~45 and shifted caveolin-3 from cytoskeleton and triton-insoluble fractions to the triton-soluble fraction, and increased ERK isoform phosphorylation in cytoskeletal, cytosolic, triton-soluble and triton-insoluble membrane fractions without altering their subcellular distributions. In contrast the primary effect of MβCD was on p38 subcellular distribution of p38α with little effect on p38 phosphorylation. Cholesterol depletion increased cardiomyocyte twitch amplitude and the rates of shortening and relaxation in conjunction with increased diastolic and systolic [Ca2+]i. Conclusions: These results indicate that acute reductions in membrane cholesterol levels differentially modulate basal cardiomyocyte subcellular MAPK signaling, as well as increasing [Ca2+]i and contractility. PMID:27441649

  7. Stability of cholesterol gall stones after 165 years of burial.

    PubMed

    Wu, Alan H B; Bellantoni, Nicholas F

    2003-05-01

    A woman who died in 1837 was exhumed for the purposes of moving the grave to another location. During the excavation, small white deposits of stone were uncovered in the right abdominal region, inferior to the rib cage and superior to the ilium blade. These stones were analyzed for cholesterol, bilirubin, and calcium following solubilization using methyl tert-butyl ether as a solvent. The results of these clinical chemistry analyses showed that these stones consisted primarily of cholesterol. Under these particular soil conditions encountered in this case, cholesterol gall stones are stable for at least 165 years.

  8. Lipid-based transfection reagents can interfere with cholesterol biosynthesis.

    PubMed

    Danielli, Mauro; Marinelli, Raúl A

    2016-02-15

    Lipid-based transfection reagents are widely used for delivery of small interfering RNA into cells. We examined whether the commonly used commercial transfection reagents DharmaFECT-4 and Lipofectamine 2000 can interfere with lipid metabolism by studying cholesterogenesis. Cholesterol de novo synthesis from [(14)C]acetate was assessed in human hepatocyte-derived Huh-7 cells. The results revealed that DharmaFECT, but not Lipofectamine, markedly inhibited cholesterol biosynthesis by approximately 70%. Cell viability was not significantly altered. These findings suggest that caution is required in the choice of certain lipid-based transfection reagents for gene silencing experiments, particularly when assessing cholesterol metabolism.

  9. Nanosecond Lipid Dynamics in Membranes Containing Cholesterol

    SciTech Connect

    Armstrong, Clare L; Haeussler, Wolfgang; Seydel, Tilo; Katsaras, John; Rheinstadter, Maikel C

    2014-01-01

    Lipid dynamics in the cholesterol-rich (40 mol%) liquid-ordered (lo) phase of dimyristoylphosphatidylcholine membranes were studied using neutron spin-echo and neutron backscattering. Recent theoretical and experimental evidence supports the notion of the liquid-ordered phase in phospholipid membranes as a locally structured liquid, with small ordered domains of a highly dynamic nature in equilibrium with a disordered matrix [S. Meinhardt, R. L. C. Vink and F. Schmid, Proc. Natl. Acad. Sci. U. S. A., 2013, 110(12), 4476 4481, C. L. Armstrong et al., PLoS One, 2013, 8(6), e66162]. This local structure was found to have a pronounced impact on the membranes' dynamical properties. We found that the long-wavelength dynamics in the liquid-ordered phase, associated with the elastic properties of the membranes, were faster by two orders of magnitude as compared to the liquid disordered phase. At the same time, collective nanoscale diffusion was significantly slower. The presence of a soft-mode (a slowing down) in the longwavelength dispersion relationship suggests an upper size limit for the ordered lipid domain of ~220 A. Moreover, from the relaxation rate of the collective lipid diffusion of lipid lipid distances, the lifetime of these domains was estimated to be about 100 nanoseconds.

  10. Cholesterol-lowering drugs: science and marketing.

    PubMed

    Garattini, Livio; Padula, Anna

    2017-02-01

    Long-term use of statin therapy is essential to obtain clinical benefits, but adherence is often suboptimal and some patients are also reported to fail because of 'statin resistance'. The identification of PCSK9 as a key factor in the LDL clearance pathway has led to the development of new monoclonal antibodies. Here we critically review the economic evaluations published in Europe and focused on statins. We searched the PubMed database to select the studies published from July 2006 to June 2016 and finally selected 19 articles. Overall, the majority of studies were conducted from a third-party payer's viewpoint and recurred to modelling. Most studies were sponsored by industry and funding seemed to play a pivotal role in the study design. Patients resistant to LDL-C level reduction were considered only in a few studies. The place in therapy of the new class of biologic should be considered a kind of 'third line' for cholesterol-lowering, after patients have failed with restricted dietary regimens and then with current drug therapies. Otherwise they could result in hardly sustainable expenses even for developed countries.

  11. Statins: Cholesterol guidelines and Indian perspective

    PubMed Central

    Menon, Anil S.; Kotwal, Narendra; Singh, Yashpal; Girish, R.

    2015-01-01

    Statins have become an important drug in preventing the occurrence of atherosclerotic cardiovascular disease (ASCVD). The effectiveness of statins in reducing ASCVD has been established in large-scale clinical trials. The lipid management guidelines have been periodically modified due to accumulating evidence about the proportionate benefit achieved with a progressive reduction in cholesterol levels with higher doses of statins and even in those at low risk of development of ASCVD. The current American College of Cardiology/American Heart Association guidelines have based its recommendations from data gathered exclusively from randomized controlled trials. It has simplified the use of statins, but also raised questions regarding the validity of its cardiovascular event risk prediction tool. Epidemiology of cardiovascular disease in India differs from the western population; there is an increased the prevalence of metabolic syndrome and atherogenic dyslipidemia phenotype a group not addressed in the current guidelines. The guidelines are based on trials, which do not have a representative South Asian population. This article reviews the relevant literature, and examines the issues involved in adopting the guidelines to the Indian population. PMID:26425462

  12. Assessing Cholesterol Storage in Live Cells and C. elegans by Stimulated Raman Scattering Imaging of Phenyl-Diyne Cholesterol

    NASA Astrophysics Data System (ADS)

    Lee, Hyeon Jeong; Zhang, Wandi; Zhang, Delong; Yang, Yang; Liu, Bin; Barker, Eric L.; Buhman, Kimberly K.; Slipchenko, Lyudmila V.; Dai, Mingji; Cheng, Ji-Xin

    2015-01-01

    We report a cholesterol imaging method using rationally synthesized phenyl-diyne cholesterol (PhDY-Chol) and stimulated Raman scattering (SRS) microscope. The phenyl-diyne group is biologically inert and provides a Raman scattering cross section that is 88 times larger than the endogenous C = O stretching mode. SRS microscopy offers an imaging speed that is faster than spontaneous Raman microscopy by three orders of magnitude, and a detection sensitivity of 31 μM PhDY-Chol (~1,800 molecules in the excitation volume). Inside living CHO cells, PhDY-Chol mimics the behavior of cholesterol, including membrane incorporation and esterification. In a cellular model of Niemann-Pick type C disease, PhDY-Chol reflects the lysosomal accumulation of cholesterol, and shows relocation to lipid droplets after HPβCD treatment. In live C. elegans, PhDY-Chol mimics cholesterol uptake by intestinal cells and reflects cholesterol storage. Together, our work demonstrates an enabling platform for study of cholesterol storage and trafficking in living cells and vital organisms.

  13. Significance of the percentage of cholesterol efflux capacity and total cholesterol efflux capacity in patients with or without coronary artery disease.

    PubMed

    Norimatsu, Kenji; Kuwano, Takashi; Miura, Shin-Ichiro; Shimizu, Tomohiko; Shiga, Yuhei; Suematsu, Yasunori; Miyase, Yuiko; Adachi, Sen; Nakamura, Ayumi; Imaizumi, Satoshi; Iwata, Atsushi; Nishikawa, Hiroaki; Uehara, Yoshinari; Saku, Keijiro

    2017-01-01

    We hypothesized that cholesterol efflux capacity is more useful than the lipid profile as a marker of the presence and the severity of coronary artery disease (CAD). Therefore, we investigated the associations between the presence and the severity of CAD and both the percentage of cholesterol efflux capacity and total cholesterol efflux capacity and the lipid profile including the high-density lipoprotein cholesterol (HDL-C) level in patients who underwent coronary computed tomography angiography (CTA). The subjects consisted of 204 patients who were clinically suspected to have CAD and underwent CTA. We isolated HDL from plasma by ultracentrifugation and measured the percentage of cholesterol efflux capacity using (3)H-cholesterol-labeled J774 macrophage cells and calculated total cholesterol efflux capacity as follows: the percentage of cholesterol efflux capacity/100× HDL-C levels. While the percentage of cholesterol efflux capacity was not associated with the presence or the severity of CAD, total cholesterol efflux capacity and HDL-C in patients with CAD were significantly lower than those in patients without CAD. In addition, total cholesterol efflux capacity and HDL-C, but not the percentage of cholesterol efflux capacity, significantly decreased as the number of coronary arteries with significant stenosis increased. Total cholesterol efflux capacity was positively correlated with HDL-C, whereas the percentage of cholesterol efflux capacity showed only weak association. In a logistic regression analysis, the presence of CAD was independently associated with total cholesterol efflux capacity, in addition to age and gender. Finally, a receiver-operating characteristic curve analysis indicated that the areas under the curves for total cholesterol efflux capacity and HDL-C were similar. In conclusion, the percentage of cholesterol efflux capacity using the fixed amount of isolated HDL was not associated with CAD. On the other hand, the calculated total

  14. Helical synthetic peptides that stimulate cellular cholesterol efflux

    DOEpatents

    Bielicki, John K.; Natarajan, Pradeep

    2010-04-06

    The present invention provides peptides comprising at least one amphipathic alpha helix and having an cholesterol mediating activity and a ABCA stabilization activity. The invention further provides methods of using such peptides.

  15. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling

    SciTech Connect

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-01

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol.

  16. Alternative to decrease cholesterol in sheep milk cheeses.

    PubMed

    Gómez-Cortés, P; Viturro, E; Juárez, M; de la Fuente, M A

    2015-12-01

    The presence of cholesterol in foods is of nutritional interest because high levels of this molecule in human plasma are associated with an increasing risk of cardiovascular disease and nowadays consumers are demanding healthier products. The goal of this experiment was to diminish the cholesterol content of Manchego, the most popular Spanish cheese manufactured from ewes milk. For this purpose three bulk milks coming from dairy ewe fed with 0 (Control), 3 and 6% of linseed supplement on their diet were used. Nine cheeses (3 per bulk milk) were manufactured and ripened for 3 months. Cholesterol of ewes milk cheese from 6% to 12% linseed supplemented diets decreased by 9.6% and 16.1% respectively, therefore supplying a healthier profile. In a second experiment, different sources of unsaturated fatty acids (rich in oleic, linoleic and α-linolenic acids) were supplemented to dairy ewes and no significant differences were found on cheese cholesterol levels.

  17. Uniform particles of pure and silica-coated cholesterol.

    PubMed

    Uskoković, Vuk; Matijević, Egon

    2007-11-15

    Uniform crystalline colloidal cholesterol particles of narrow size distribution were obtained by precipitation. The method consisted of adding a miscible non-solvent (water) into cholesterol solutions of different alcohols and acetone, without any additives. The properties of the resulting particles depended in a sensitive way on the concentration of all reactants, temperature, pH, ionic strength, and aging time. The major observed effects were due to the solubility of cholesterol, which was strongly affected by the solvent mixture and temperature. Precipitation in 1-propanol/water system yielded stable dispersions of well-defined particles, which were used to evaluate the effects of different experimental parameters on their properties. Aging of stable dispersions resulted in multi-layered aggregation of the primary platelets, the degree and rate of which process was strongly affected by temperature. Finally, it was shown that the colloidal cholesterol particles could be coated with homogeneous silica layers in order to alter their surface characteristics.

  18. Contributions of other sterols to the estimation of cholesterol.

    PubMed

    Munster, D J; Lever, M; Carrell, R W

    1976-04-15

    The responses of 5alpha-cholestan-3beta-ol, 5alpha-cholest-7-ene-3beta-ol and cholesta-5,7-dien-3beta-ol, normally found in human serum, were examined by: (1) the Liebermann-Burchard reaction, (2) the Zak (ferric chloride) reaction, (3) an enzymatic cholesterol method monitored by estimating the amount of hydrogen peroxide produced, (4) an enzymatic cholesterol method monitored by observing the change in absorbance at 240 nm, and (5) gas chromatography. The results show that none of these methods is specific for cholesterol; contributions from the sterols examined range from zero to more than 150% relative to cholesterol. For the first four methods contributions depend on the conditions under which each test is performed.

  19. Vertically aligned carbon nanotube probes for monitoring blood cholesterol

    NASA Astrophysics Data System (ADS)

    Roy, Somenath; Vedala, Harindra; Choi, Wonbong

    2006-02-01

    Detection of blood cholesterol is of great clinical significance. The amperometric detection technique was used for the enzymatic assay of total cholesterol. Multiwall carbon nanotubes (MWNTs), vertically aligned on a silicon platform, promote heterogeneous electron transfer between the enzyme and the working electrode. Surface modification of the MWNT with a biocompatible polymer, polyvinyl alcohol (PVA), converted the hydrophobic nanotube surface into a highly hydrophilic one, which facilitates efficient attachment of biomolecules. The fabricated working electrodes showed a linear relationship between cholesterol concentration and the output signal. The efficacy of the multiwall carbon nanotubes in promoting heterogeneous electron transfer was evident by distinct electrochemical peaks and higher signal-to-noise ratio as compared to the Au electrode with identical enzyme immobilization protocol. The selectivity of the cholesterol sensor in the presence of common interferents present in human blood, e.g. uric acid, ascorbic acid and glucose, is also reported.

  20. Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel

    NASA Astrophysics Data System (ADS)

    Wang, Yin-song; Jiang, Qian; Li, Rong-shan; Liu, Ling-long; Zhang, Qi-qing; Wang, Yu-mei; Zhao, Jing

    2008-04-01

    Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan (CCMC) were prepared to be used as a novel carrier for paclitaxel (PTX) in this study. CCMC-6.9 was synthesized by the covalent conjugation of cholesterol to O-carboxymethyl chitosan with the succinyl linkage and the degree of substitution (DS) of the cholesterol moiety was 6.9%. CCMC-6.9 formed self-assembled nanoparticles with a size of 209.5 nm in aqueous media. Paclitaxel-loaded CCMC-6.9 self-assembled nanoparticles were prepared using a dialysis method and their characteristics were analyzed by dynamic laser light scattering (LLS), transmission electron microscopy (TEM) and ultraviolet spectroscopy (UV). PTX-loaded CCMC-6.9 self-assembled nanoparticles were almost spherical in shape and their size increased from 245.6 to 355.3 nm with PTX-loading content increasing from 18.7% to 34.9%. In vitro release of PTX from CCMC-6.9 self-assembled nanoparticles was carried out by the dynamic dialysis method. PTX continuously released in phosphate buffered saline (PBS) solutions for 84 h at 37 °C and its release was sensitive to the pH of the release media. The biodistribution of PTX-loaded CCMC-6.9 self-assembled nanoparticles was studied in female Balb/c mice. Compared with PTX in the solution of Cremophor EL (polyethoxylated castor oil)/ethanol (PTX-Cre), CCMC-6.9 self-assembled nanoparticles significantly increased the uptake of PTX in plasma, liver and spleen, but decreased the uptake in heart and kidney. These results suggest that CCMC-6.9 self-assembled nanoparticles can effectively solubilize PTX and modify its tissue biodistribution, which may be advantageous in enhancing the therapeutic index and reducing the toxicity of PTX.