Science.gov

Sample records for ischemia-induced cholesterol loading

  1. ORMDL orosomucoid-like proteins are degraded by free-cholesterol-loading-induced autophagy.

    PubMed

    Wang, Shuhui; Robinet, Peggy; Smith, Jonathan D; Gulshan, Kailash

    2015-03-24

    Eukaryotic cells have evolved robust mechanisms to counter excess cholesterol including redistribution of lipids into different compartments and compensatory up-regulation of phospholipid biosynthesis. We demonstrate here that excess cellular cholesterol increased the activity of the endoplasmic reticulum (ER) enzyme serine palmitoyl-CoA transferase (SPT), the rate-limiting enzyme in sphingomyelin synthesis. This increased SPT activity was not due to altered levels of SPTLC1 or SPTLC2, the major subunits of SPT. Instead, cholesterol loading decreased the levels of ORMDL1, a negative regulator of SPT activity, due to its increased turnover. Several lines of evidence demonstrated that free-cholesterol-induced autophagy, which led to increased turnover of ORMDL1. Cholesterol loading induced ORMDL1 redistribution from the ER to cytoplasmic p62 positive autophagosomes. Coimmunoprecipitation analysis of cholesterol-loaded cells showed increased association between ORMDL1 and p62. The lysosomal inhibitor chloroquine or siRNA knockdown of Atg7 inhibited ORMDL1 degradation by cholesterol, whereas proteasome inhibitors showed no effect. ORMDL1 degradation was specific to free-cholesterol loading as autophagy induced by serum starvation or general ER stress did not lead to ORMDL1 degradation. ORMDL proteins are thus previously unidentified responders to excess cholesterol, exiting the ER to activate SPT and increase sphingomyelin biosynthesis, which may buffer excess cellular cholesterol. PMID:25775599

  2. Concentration-dependent Diversification Effects of Free Cholesterol Loading on Macrophage Viability and Polarization

    PubMed Central

    Li, Ningjun; Li, Pin-Lan; Zhang, Fan

    2016-01-01

    The accumulation of free cholesterol in atherosclerotic lesions has been well documented in both animals and humans. In studying the relevance of free cholesterol buildup in atherosclerosis, contradictory results have been generated, indicating that free cholesterol produces both pro- and anti-atherosclerosis effects in macrophages. This inconsistency might stem from the examination of only select concentrations of free cholesterol. In the present study, we sought to investigate the implication of excess free cholesterol loading in the pathophysiology of atherosclerosis across a broad concentration range from (in μg/ml) 0 to 60. Macrophage metabolite measurements and viable cell counting showed that the cell viability increased at lower concentrations of free cholesterol from (in μg/ml) 0 to 20, but gradually decreased at higher concentrations from 20 to 60. FACS (Fluorescence-Activated Cell Sorting) found that lower free cholesterol loading induced anti-inflammatory M2 macrophage polarization. The activation of the PPARγ (Peroxisome Proliferator-Activated Receptor gamma) nuclear factor underscored the stimulation of this M2 phenotype. Nevertheless, higher levels of free cholesterol resulted in pro-inflammatory M1 activation. Moreover, with the application of higher free cholesterol concentrations, macrophage apoptosis and secretion of the inflammatory cytokine IL-1β (Interleukin-1 beta) increased significantly as determined by flow cytometry and ELISA (Enzyme-Linked Immunosorbent Assay) assay, respectively. These results for the first time have demonstrated that free cholesterol could render concentration-dependent diversification effects on macrophage viability, polarization, apoptosis and inflammatory cytokine secretions, thereby reconciling the pros and cons of free cholesterol buildup in atherosclerosis. Understanding these concentration-dependent effects of cholesterol on atherosclerosis will facilitate the development of a free cholesterol-based therapy

  3. Sildenafil attenuates placental ischemia-induced hypertension.

    PubMed

    George, Eric M; Palei, Ana C; Dent, Edward A; Granger, Joey P

    2013-08-15

    Preeclampsia is a complication of pregnancy that is marked by hypertension, proteinuria, and maternal endothelial dysfunction. A central factor in the etiology of the disease is the development of placental hypoxia/ischemia, which releases pathogenic soluble factors. There is currently no effective treatment for preeclampsia, but the phosphodiesterase-5 (PDE-5) inhibitor sildenafil has been suggested, as PDE-5 is enriched in the uterus, and its antagonism could improve uteroplacental function. Here, we report in the reduced uterine perfusion pressure (RUPP) rat model that administration of oral sildenafil is effective in attenuating placental ischemia-induced hypertension during gestation. RUPP animals have significantly elevated arterial pressure compared with control animals (132 ± 3 vs. 100 ± 2 mmHg; P < 0.05). Administration of oral sildenafil (45 mg·kg⁻¹·day⁻¹) had no effect on blood pressure in control rats but decreased pressure in RUPP rats (115 ± 1 mmHg; P < 0.05). RUPP induced changes in placental sFlt-1, and vascular endothelial growth factor (VEGF) was unaffected by sildenafil administration, as was the decrease in free plasma VEGF. RUPP animals had a significant increase in medullary PDE-5/β-actin ratio (1 ± 0.14 vs. 1.63 ± 0.18; P < 0.05) expression with a resulting reduction in renal medullary cGMP (1.5 ± 0.15 vs. 0.99 ± 0.1 pmol/μg protein, P < 0.05) compared with controls. Although sildenafil had no effect on renal medullary cGMP in control animals, it significantly increased cGMP in RUPP animals (1.3 ± 0.1 pmol/μg protein; P < 0.05). These data suggest that sildenafil might provide an effective therapeutic option for the management of hypertension during preeclampsia. PMID:23785075

  4. Cholesterol-loaded nanoparticles ameliorate synaptic and cognitive function in Huntington's disease mice.

    PubMed

    Valenza, Marta; Chen, Jane Y; Di Paolo, Eleonora; Ruozi, Barbara; Belletti, Daniela; Ferrari Bardile, Costanza; Leoni, Valerio; Caccia, Claudio; Brilli, Elisa; Di Donato, Stefano; Boido, Marina M; Vercelli, Alessandro; Vandelli, Maria A; Forni, Flavio; Cepeda, Carlos; Levine, Michael S; Tosi, Giovanni; Cattaneo, Elena

    2015-12-01

    Brain cholesterol biosynthesis and cholesterol levels are reduced in mouse models of Huntington's disease (HD), suggesting that locally synthesized, newly formed cholesterol is less available to neurons. This may be detrimental for neuronal function, especially given that locally synthesized cholesterol is implicated in synapse integrity and remodeling. Here, we used biodegradable and biocompatible polymeric nanoparticles (NPs) modified with glycopeptides (g7) and loaded with cholesterol (g7-NPs-Chol), which per se is not blood-brain barrier (BBB) permeable, to obtain high-rate cholesterol delivery into the brain after intraperitoneal injection in HD mice. We report that g7-NPs, in contrast to unmodified NPs, efficiently crossed the BBB and localized in glial and neuronal cells in different brain regions. We also found that repeated systemic delivery of g7-NPs-Chol rescued synaptic and cognitive dysfunction and partially improved global activity in HD mice. These results demonstrate that cholesterol supplementation to the HD brain reverses functional alterations associated with HD and highlight the potential of this new drug-administration route to the diseased brain.

  5. Cholesterol-Loaded Cyclodextrin Increases the Cholesterol Content of Goat Sperm to Improve Cold and Osmotic Resistance and Maintain Sperm Function after Cryopreservation.

    PubMed

    Salmon, Vianney M; Leclerc, Pierre; Bailey, Janice L

    2016-04-01

    The success of semen cryopreservation depends on sperm membrane integrity and function after thawing. Cholesterol-loaded cyclodextrin (CLC) is used for in vitro incorporation of cholesterol to protect cells against cold temperatures. We hypothesized that CLC treatment also enhances sperm cholesterol content to increase tolerance to osmotic shock and cryoresistance, thereby improving fertility. We confirmed the fact that treatment of goat semen with 3 mg/ml CLC increases sperm cholesterol content using both the Liebermann-Burchard approach and filipin III labeling of membrane cholesterol. Sperm were then treated with or without CLC and cryopreserved. After thawing, sperm cholesterol dramatically fell, even in the presence of CLC, which explains the mechanism of cryocapacitation. CLC treatment, however, maintained a normal prefreeze cholesterol level in sperm after cryopreservation. Furthermore, fresh sperm treated with CLC and subjected to either cold shock or incubated in hypo-, iso-, and hyperosmotic media, designed to mimic stresses associated with freezing/thawing, displayed increased temperature and osmotic tolerance. CLC treatment also improved sperm viability, motility, and acrosome integrity after thawing. Furthermore, CLC treatment did not affect the sperm's ability to undergo in vitro capacitation according to chlortetracycline fluorescence and protein tyrosine phosphorylation. A pilot field trial demonstrated that artificial insemination with sperm that underwent increased cholesterol levels following CLC treatment yielded higher fertility ( ITALIC! P< 0.1) and proliferation ( ITALIC! P< 0.05) rates in vivo than untreated semen from the same ejaculate samples. These observations suggest that CLC treatment could be used to improve cryoprotection during the freezing and thawing of goat sperm. PMID:26888968

  6. 20-HETE contributes to ischemia-induced angiogenesis.

    PubMed

    Chen, Li; Joseph, Gregory; Zhang, Frank F; Nguyen, Huyen; Jiang, Houli; Gotlinger, Katherine H; Falck, John R; Yang, Jing; Schwartzman, Michal L; Guo, Austin M

    2016-08-01

    Angiogenesis is an important adaptation for recovery from peripheral ischemia. Here, we determined whether 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to ischemia-induced angiogenesis and assessed its underlying molecular and cellular mechanisms using a mouse hindlimb-ischemia angiogenesis model. Hindlimb blood flow was measured by Laser Doppler Perfusion Imaging and microvessel density was determined by CD31 and tomato lectin staining. We found that systemic and local administration of a 20-HETE synthesis inhibitor, DDMS, or a 20-HETE antagonist, 6,15-20-HEDGE significantly reduced blood flow recovery and microvessel formation in response to ischemia. 20-HETE production, measured by LC/MS/MS, was markedly increased in ischemic muscles (91±11 vs. 8±2pg/mg in controls), which was associated with prominent upregulation of the 20-HETE synthase, CYP4A12. Immunofluorescence co-localized increased CYP4A12 expression in response to ischemia to CD31-positive EC in the ischemic hindlimb microvessels. We further showed that ischemia increased HIF-1α, VEGF, and VEGFR2 expression in gracilis muscles and that these increases were negated by DDMS and 6,15-20-HEDGE. Lastly, we showed that ERK1/2 of MAPK is a component of 20-HETE regulated ischemic angiogenesis. Taken together, these data indicate that 20-HETE is a critical contributor of ischemia-induced angiogenesis in vivo. PMID:27084395

  7. Placental Growth Factor Administration Abolishes Placental Ischemia-Induced Hypertension.

    PubMed

    Spradley, Frank T; Tan, Adelene Y; Joo, Woo S; Daniels, Garrett; Kussie, Paul; Karumanchi, S Ananth; Granger, Joey P

    2016-04-01

    Preeclampsia is a pregnancy-specific disorder of new-onset hypertension. Unfortunately, the most effective treatment is early delivery of the fetus and placenta. Placental ischemia appears central to the pathogenesis of preeclampsia because placental ischemia/hypoxia induced in animals by reduced uterine perfusion pressure (RUPP) or in humans stimulates release of hypertensive placental factors into the maternal circulation. The anti-angiogenic factor soluble fms-like tyrosine kinase-1 (sFlt-1), which antagonizes and reduces bioavailable vascular endothelial growth factor and placental growth factor (PlGF), is elevated in RUPP rats and preeclampsia. Although PlGF and vascular endothelial growth factor are both natural ligands for sFlt-1, vascular endothelial growth factor also has high affinity to VEGFR2 (Flk-1) causing side effects like edema. PlGF is specific for sFlt-1. We tested the hypothesis that PlGF treatment reduces placental ischemia-induced hypertension by antagonizing sFlt-1 without adverse consequences to the mother or fetus. On gestational day 14, rats were randomized to 4 groups: normal pregnant or RUPP±infusion of recombinant human PlGF (180 μg/kg per day; AG31, a purified, recombinant human form of PlGF) for 5 days via intraperitoneal osmotic minipumps. On day 19, mean arterial blood pressure and plasma sFlt-1 were higher and glomerular filtration rate lower in RUPP than normal pregnant rats. Infusion of recombinant human PlGF abolished these changes seen with RUPP along with reducing oxidative stress. These data indicate that the increased sFlt-1 and reduced PlGF resulting from placental ischemia contribute to maternal hypertension. Our novel finding that recombinant human PlGF abolishes placental ischemia-induced hypertension, without major adverse consequences, suggests a strong therapeutic potential for this growth factor in preeclampsia. PMID:26831193

  8. Effect of cholesterol-loaded-cyclodextrin on sperm viability and acrosome reaction in boar semen cryopreservation.

    PubMed

    Lee, Yong-Seung; Lee, Seunghyung; Lee, Sang-Hee; Yang, Boo-Keun; Park, Choon-Keun

    2015-08-01

    This study was undertaken to examine the effect of cholesterol-loaded-cyclodextrin (CLC) on boar sperm viability and spermatozoa cryosurvival during boar semen cryopreservation, and methyl-β-cyclodextrin (MBCD) was treated for comparing with CLC. Boar semen treated with CLC and MBCD before freezing process to monitor the effect on survival and capacitation status by flow cytometry with appropriate fluorescent probes. Sperm viability was higher in 1.5mg CLC-treated sperm (76.9±1.01%, P<0.05) than un-treated and MBCD-treated sperm before cryopreservation (58.7±1.31% and 60.3±0.31%, respectively). For CTC patterns, F-pattern was higher in CLC treated sperm than MBCD-treated sperm, for B-pattern was higher in CLC-treated sperm than fresh sperm (P<0.05). For AR pattern (an acrosome-reacted sperm) was lower in CLC-treated sperm than MBCD-treated sperm (P<0.05). Moreover, we examined in vitro development of porcine oocytes after in vitro fertilization using CLC-treated frozen-thawed semen, in which CLC treatment prior to freezing and thawing increased the development of oocytes to blastocyst stage in vitro. In conclusion, CLC could protect the viability of spermatozoa from cryodamage prior to cryopreservation in boar semen. PMID:26091957

  9. Phospholipid liposomes acquire apolipoprotein E in atherogenic plasma and block cholesterol loading of cultured macrophages.

    PubMed Central

    Williams, K J; Tall, A R; Bisgaier, C; Brocia, R

    1987-01-01

    A single infusion of phospholipid liposomes promptly and persistently abolished the ability of hypercholesterolemic rabbit plasma to cause cholesteryl ester loading in cultured macrophages. This phospholipid enrichment of plasma caused moderate stimulation of cellular cholesterol efflux and, unexpectedly, almost complete inhibition of cellular uptake of beta-very low density lipoprotein (beta-VLDL), the major cholesteryl ester-rich particle in hypercholesterolemic rabbit plasma. Cell viability and LDL receptor activity were unaffected. Incubation of liposomes with beta-VLDL resulted in transfer of apolipoprotein-E (apoE) to the liposomes; reisolated apoE-phospholipid liposomes then competed efficiently for cellular apoprotein receptors. Thus, a major mechanism by which phospholipid infusions result in diminished accumulation of cholesteryl ester in cultured macrophages is by blocking cellular uptake of beta-VLDL. The liposomes deplete beta-VLDL of apoE, then compete for receptor-mediated uptake. These results suggest a novel mechanism contributing to the known antiatherogenic effect of phospholipid infusions: infused liposomes acquire apoE, then block uptake of atherogenic lipoproteins by arterial wall macrophages. Images PMID:3571495

  10. Addition of cholesterol-loaded cyclodextrins to the thawing extender: effects on boar sperm quality.

    PubMed

    Tomás, C; Gómez-Fernández, J; Gómez-Izquierdo, E; Mocé, E; de Mercado, E

    2014-06-01

    The aim of the present study was to evaluate the effect that the addition of cholesterol-loaded cyclodextrins (CLC) to the thawing extender has on the quality of frozen-thawed boar sperm. Pooled semen (n = 5) from three boars was used for the experiments. The semen was cryopreserved with an egg-yolk-based extender, it was diluted after thawing in Beltsville thawing solution (BTS) supplemented with different concentrations of CLC (0, 12.5, 25, 50 or 100 mg/500 × 10(6) sperm), and these samples were incubated at 37°C for 150 min. The following parameters of sperm quality were evaluated 30 and 150 min after incubation: sperm with intact plasma membrane (SIPM; %), sperm with normal acrosomal ridge (NAR; %), total motile sperm (TMS; %), progressively motile sperm (PMS; %) and kinetic parameters. Both SIPM and NAR increased (p < 0.05) when the thawing extender was supplemented with 12.5, 25 and 50 mg CLC/500 × 10(6) sperm. Nevertheless, motility decreased (p < 0.05) when the concentration of CLC exceeded 12.5 mg CLC/500 × 10(6) sperm. In conclusion, our results suggest that the supplementation of thawing extenders with CLC improves sperm viability and reduces acrosome damage after freezing/thawing.

  11. Cholesterol-mediated anchoring of enzyme-loaded liposomes within disulfide-stabilized polymer carrier capsules.

    PubMed

    Chandrawati, Rona; Städler, Brigitte; Postma, Almar; Connal, Luke A; Chong, Siow-Feng; Zelikin, Alexander N; Caruso, Frank

    2009-10-01

    Polymer capsules containing multiple liposomes, termed capsosomes, are a promising new concept toward the design of artificial cells. Herein, we report on the fundamental aspects underpinning the assembly of capsosomes. A stable and high loading of intact liposomal cargo into a polymer film was achieved by non-covalently sandwiching the liposomes between a tailor-made cholesterol-modified poly(L-lysine) (PLL(c)) precursor layer and a poly(methacrylic acid)-co-(cholesteryl methacrylate) (PMA(c)) capping layer. The film assembly, optimized on planar surfaces, was successfully transferred onto colloidal substrates, and a polymer membrane was subsequently assembled by the alternating adsorption of poly(N-vinyl pyrrolidone) (PVP) and thiol-modified poly(methacrylic acid) (PMA(SH)) onto the pre-adsorbed layer of liposomes. Upon removal of the silica template, stable capsosomes encapsulating the enzyme luciferase or beta-lactamase within their liposomal sub-compartments were obtained at both assembly (pH 4) and physiological conditions (pH 7.4). Excellent retention of the liposomes and the enzymatic cargo within the polymer carrier capsules was observed for up to 14 days. These engineered capsosomes are particularly attractive as autonomous microreactors, which can be utilized to repetitively add smaller reactants to cause successive distinct reactions within the capsosomes and simultaneously release the products to the surrounding environment, bringing these systems one step closer toward constructing artificial cells.

  12. Effect of incubation on freezability of cholesterol-loaded cyclodextrin treated buffalo (Bubalus bubalis) spermatozoa

    PubMed Central

    Lone, S. A.; Prasad, J. K.; Ghosh, S. K.; Das, G. K.; Balamurugan, B.; Katiyar, R.; Verma, M. R.

    2016-01-01

    Aim: The aim of this study was to investigate the effect of incubation on freezability of cholesterol loaded cyclodextrin (CLC) treated buffalo spermatozoa. Materials and Methods: Semen samples with mass motility of 3+ and greater, collected from Murrah buffalo bulls were utilized. Immediately after collection, four equal groups of semen sample were made. Group I was kept as control and diluted with Tris upto concentration of 60×106 sperm/ml, where as Groups II, III, and IV were treated with CLC at 3 mg/120× 106 spermatozoa, incubated at 37°C for action of CLC for 10, 15 and 20 min, respectively, and diluted with tris upto concentration of 60×106 sperm/ml. All groups were subjected to equilibration and freezing. The evaluation of semen samples from all groups was carried out at fresh, pre-freeze and post-thaw stage for progressive motility, viability and hypo-osmotic swelling response (HOS response). Results: At the pre-freeze stage, significantly (p<0.05) higher percentage of progressive motility and viability was observed in treatment groups as compared to control with no significant difference among treatment groups. HOS response was significantly (p<0.05) higher in treatment groups as compared to control at pre-freeze stage. At post-thaw stage, significantly (p<0.05) higher percentage of progressive motility, viability and HOS response was recorded in Group II as compared to control and other treatment groups (III and IV). Group II retained significant post-thaw motility and viability at various post-thaw incubation periods. Conclusion: Incubation period of 10 min for CLC treated buffalo spermatozoa yielded significantly higher results in terms of freezability as compared to incubation for 15 and 20 min. PMID:27051205

  13. Mitochondria: the headquarters in ischemia-induced neuronal death.

    PubMed

    Jordan, Joaquin; de Groot, Piet W J; Galindo, Maria F

    2011-06-01

    Due to a lack of efficient treatments, searching for novel therapies against acute ischemic stroke represents one of the main fields in neuropharmacology. In this review we summarize and discuss the role of mitochondrial participation in ischemia-induced neuronal death. Mitochondria are regarded as the main link between cellular stress signals and the execution of programmed death of nerve cells. Since it was described that the release of mitochondrial proteins such as cytochrome c, apoptosis inducing factor and endonuclease G are key elements in cell death pathways, they have been the focus of cell death studies. Changes in the permeability of the mitochondrial outer membrane result in a non-reversible step in cell death processes. Cytochrome c released from mitochondria binds in the cytoplasm to Apaf-1 to initiate the formation of an apoptosome, which then binds pro-caspase-9. Active caspase-9 cleaves "executioner" caspases, which in turn proceed to cleave key substrates in the cell. Thus, the identification of new targets might enable establishment of novel strategies for therapeutic research, in this case based on the molecular mechanisms of mitochondrial pathways, to improve the development of compounds for treatment of ischemia.

  14. Ischemia-induced Angiogenesis is Attenuated in Aged Rats.

    PubMed

    Tang, Yaohui; Wang, Liuqing; Wang, Jixian; Lin, Xiaojie; Wang, Yongting; Jin, Kunlin; Yang, Guo-Yuan

    2016-08-01

    To study whether focal angiogenesis is induced in aged rodents after permanent distal middle cerebral artery occlusion (MCAO), young adult (3-month-old) and aged (24-month-old) Fisher 344 rats underwent MCAO and sacrificed up to two months after MCAO. Immunohistochemistry and synchrotron radiation microangiography were performed to examine the number of newly formed blood vessels in both young adult and aged rats post-ischemia. We found that the number of capillaries and small arteries in aged brain was the same as young adult brain. In addition, we found that after MCAO, the number of blood vessels in the peri-infarct region of ipsilateral hemisphere in aged ischemic rats was significantly increased compared to the aged sham rats (p<0.05). We also confirmed that ischemia-induced focal angiogenesis occurred in young adult rat brain while the blood vessel density in young adult ischemic brain was significantly higher than that in the aged ischemic brain (p<0.05). Our data suggests that focal angiogenesis in aged rat brain can be induced in response to ischemic brain injury, and that aging impedes brain repairing and remodeling after ischemic stroke, possible due to the limited response of angiogenesis. PMID:27493831

  15. Placental ischemia induces changes in gene expression in chorionic tissue

    PubMed Central

    Garrett, Michael R.; Granger, Joey P.

    2014-01-01

    Preeclampsia is a serious and common hypertensive complication of pregnancy, affecting ~5 to 8 % of pregnancies. The underlying cause of preeclampsia is believed to be placental ischemia, which causes secretion of pathogenic factors into the maternal circulation. While a number of these factors have been identified, it is likely that others remain to be elucidated. Here, we have utilized a relevant preclinical rodent model of placental ischemia-induced hypertension, the reduced uterine perfusion pressure (RUPP) model, to determine the effect of chronic placental ischemia on the underlying chorionic tissue and placental villi. Tissue from control and RUPP rats were isolated on gestational day 19 and mRNA from these tissues was subjected to microarray analysis to determine differential gene expression. At a statistical cutoff of p <0.05, some 2,557 genes were differentially regulated between the two groups. Interestingly, only a small subset (22) of these genes exhibited changes of greater than 50 % versus control, a large proportion of which were subsequently confirmed using qRT-PCR analysis. Network analysis indicated a strong effect on inflammatory pathways, including those involving NF-κB and inflammatory cytokines. Of the most differentially expressed genes, the predominant gene classes were extracellular remodeling proteins, pro-inflammatory proteins, and a coordinated upregulation of the prolactin genes. The functional implications of these novel factors are discussed. PMID:24668059

  16. Transcriptome Analysis of Genes Regulated by Cholesterol Loading in Two Strains of Mouse Macrophages Associates Lysosome Pathway and ER Stress Response with Atherosclerosis Susceptibility

    PubMed Central

    Robinet, Peggy; Smith, Jonathan D.

    2013-01-01

    Cholesterol loaded macrophages in the arterial intima are the earliest histological evidence of atherosclerosis. Studies of mouse models of atherosclerosis have shown that the strain background can have a significant effect on lesion development. We have previously shown that DBA/2 ApoE−/− mice have aortic root lesions 10-fold larger than AKR ApoE−/−mice. The current study analyzes the response to cholesterol loading of macrophages from these two strains. Macrophages from the atherosclerosis susceptible DBA/2 strain had significantly higher levels of total and esterified cholesterol compared to atherosclerosis resistant AKR macrophages, while free cholesterol levels were higher in AKR cells. Gene expression profiles were obtained and data were analyzed for strain, cholesterol loading, and strain-cholesterol loading interaction effects by a fitted linear model. Pathway and transcriptional motif enrichment were identified by gene set enrichment analysis. In addition to observed strain differences in basal gene expression, we identified many transcripts whose expression was significantly altered in response to cholesterol loading, including P2ry13 and P2ry14, Trib3, Hyal1, Vegfa, Ccr5, Ly6a, and Ifit3. Eight pathways were significantly enriched in transcripts regulated by cholesterol loading, among which the lysosome and cytokine-cytokine receptor interaction pathways had the highest number of significantly regulated transcripts. Of the differentially regulated transcripts with a strain-cholesterol loading interaction effect, we identified three genes known to participate in the endoplasmic reticulum (ER) stress response, Ddit3, Trib3 and Atf4. These three transcripts were highly up-regulated by cholesterol in AKR and either down-regulated or unchanged in loaded DBA/2 macrophages, thus associating a robust ER stress response with atherosclerosis resistance. We identified significant transcripts with strain, loading, or strain-loading interaction effect that

  17. Use of cholesterol-loaded cyclodextrin: an alternative for bad cooler stallions.

    PubMed

    Hartwig, F P; Lisboa, F P; Hartwig, F P; Monteiro, G A; Maziero, R R D; Freitas-Dell'Aqua, C P; Alvarenga, M A; Papa, F O; Dell'Aqua, J A

    2014-01-15

    During the cooling process, sperm may suffer irreversible damage that compromises the fertility rate. Incorporating cholesterol-loaded cyclodextrin (CLC) represents a strategy to increase sperm resistance at low temperatures; however, high levels of cholesterol in the cell membrane can interfere with sperm capacitation. The goals of this study were to determine the CLC concentration and cooling temperature that produce optimal kinetic parameters and viability of sperm from stallions identified as bad coolers (BCs) and good coolers (GCs), as well as the effect of adding CLC on the occurrence of the acrosome reaction (ACR) and on the fertility rate of cooled sperm. In experiment 1, each ejaculate was divided into four groups: Control and treated with 1 (CLC-1), 1.5 (CLC-1.5), or 2 mg (CLC-2) of CLC/120 × 10(6) sperm and cooled for 48 hours at 5 °C. In experiment 2, each ejaculate was divided into four groups: Control and CLC-1.5 cooled at 15 °C or 5 °C for 24 hours. For experiment 3, GC and BC stallions were used, and the ejaculates were divided into control and CLC-1.5 cooled at 5 °C for 48 hours. According to experiment, the sperm kinetics (SK) and plasma membrane integrity (PMI) were analyzed before and after 24 and 48 hours of cooling. In experiment 4, the ejaculates were divided into four groups: Control and CLC-1.5 maintained at room temperature or cooled at 5 °C for 24 hours. Each group was incubated with ionophore calcium at 37 °C for 3 hours. The incidence of ACR was analyzed before and after 1, 2, and 3 hours of incubation. For experiment 5, two cycles of 10 mares for a GC stallion and two cycles of 25 for a BC stallion were used. The inseminations were performed with control and CLC-1.5 groups cooled at 5 °C for 24 hours. According to results, all groups treated with CLC exhibited higher PMI compared with controls, and CLC-1.5 and CLC-2 exhibited the best SK results. The cooling temperature of 5 °C was superior to 15 °C when the sperm was treated

  18. The Effects of Phellinus linteus Polysaccharide Extracts on Cholesterol Efflux in Oxidized Low-Density Lipoprotein-Loaded THP-1 Macrophages.

    PubMed

    Li, Xiao-hui; Li, Yan; Cheng, Zhao-yun; Cai, Xi-guo; Wang, Hong-min

    2015-06-01

    The removal of excess cellular cholesterol is critical for maintaining cellular cholesterol homeostasis. Phellinus linteus polysaccharide extracts (PLPEs) is an immunomudulatory agent with a molecular weight of 153 kd. Here, we analyzed the effects of PLPEs on cholesterol efflux in oxidized low-density lipoprotein (ox-LDL)-loaded THP-1 (human acute monocytic leukemia cell line) macrophages. Various concentrations of PLPEs (5, 10, 20, and 100 μg/mL) were used to treat cells. Cholesterol efflux analysis was performed to analyze the cholesterol efflux ratio in PLPE-treated cells. Semiquantitative reverse transcription-polymerase chain reaction and Western blot analysis were conducted to assess the expression of target genes. Low dose of PLPEs (5-20 μg/mL) dose dependently enhanced cholesterol efflux to apolipoprotein A-I (ApoA-I), evidenced by promoting the expression of adenosine 5'-triphosphate (ATP)-binding cassette A1, ATP-binding cassette G1, and peroxisome proliferation-activated receptor γ, key regulators for cholesterol efflux. Moreover, GW9662, a potent antagonist of peroxisome proliferation-activated receptor γ, inhibited PLPE (20 μg/mL)-promoted cholesterol efflux to ApoA-I in a dose-dependent fashion. However, high dose of PLPEs (100 μg/mL) inhibited cholesterol efflux to ApoA-I from ox-LDL-loaded THP-1 macrophages, enhanced the production of superoxide anion, decreased mitochondrial membrane potential and ATP levels, and raised nicotinamide adenine dinucleotide/nicotinamide adenine dinucleotide phosphate oxidase subunits. Thus, these results indicate that low and high doses of PLPEs exhibit opposite effects on cholesterol efflux from ox-LDL-loaded THP-1 cells.

  19. Aqueous extract of Cordyceps alleviates cerebral ischemia-induced short-term memory impairment in gerbils.

    PubMed

    Lee, Sang-Hak; Ko, Il-Gyu; Kim, Sung-Eun; Hwang, Lakkyong; Jin, Jun-Jang; Choi, Hyun-Hee; Kim, Chang-Ju

    2016-04-01

    Cerebral ischemia is caused by reduced cerebral blood flow due to a transient or permanent cerebral artery occlusion. Ischemic injury in the brain leads to neuronal cell death, and eventually causes neurological impairments. Cordyceps, the name given to the fungi on insects, has abundant useful natural products with various biological activities. Cordyceps is known to have nephroprotective, hepatoprotective, anti-inflammatory, antioxidative, and antiapoptotic effects. We investigated the effects of Cordyceps on short-term memory, neuronal apoptosis, and cell proliferation in the hippocampal dentate gyrus following transient global ischemia in gerbils. For this study, a step-down avoidance test, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, immunohistochemistry for caspase-3 and 5-bromo-2'-de-oxyuridine, and western blot for Bax, Bcl-2, brain-derived neurotrophic factor (BDNF), and tyrosin kinase B were performed. In the present study, Cordyceps alleviated cerebral ischemia-induced short-term memory impairment. Cordyceps showed therapeutic effects through inhibiting cerebral ischemia-induced apoptosis in the hippocampus. Cordyceps suppressed cerebral ischemia-induced cell proliferation in the hippocampal dentate gyrus due to the reduced apoptotic neuronal cell death. Cordyceps treatment also enhanced BDNF and TrkB expressions in the hippocampus of ischemic gerbils. It can be suggested that Cordyceps overcomes cerebral ischemia-induced neuronal apoptosis, thus facilitates recovery following cerebral ischemia injury. PMID:27162767

  20. Aqueous extract of Cordyceps alleviates cerebral ischemia-induced short-term memory impairment in gerbils

    PubMed Central

    Lee, Sang-Hak; Ko, Il-Gyu; Kim, Sung-Eun; Hwang, Lakkyong; Jin, Jun-Jang; Choi, Hyun-Hee; Kim, Chang-Ju

    2016-01-01

    Cerebral ischemia is caused by reduced cerebral blood flow due to a transient or permanent cerebral artery occlusion. Ischemic injury in the brain leads to neuronal cell death, and eventually causes neurological impairments. Cordyceps, the name given to the fungi on insects, has abundant useful natural products with various biological activities. Cordyceps is known to have nephroprotective, hepatoprotective, anti-inflammatory, antioxidative, and antiapoptotic effects. We investigated the effects of Cordyceps on short-term memory, neuronal apoptosis, and cell proliferation in the hippocampal dentate gyrus following transient global ischemia in gerbils. For this study, a step-down avoidance test, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay, immunohistochemistry for caspase-3 and 5-bromo-2′-de-oxyuridine, and western blot for Bax, Bcl-2, brain-derived neurotrophic factor (BDNF), and tyrosin kinase B were performed. In the present study, Cordyceps alleviated cerebral ischemia-induced short-term memory impairment. Cordyceps showed therapeutic effects through inhibiting cerebral ischemia-induced apoptosis in the hippocampus. Cordyceps suppressed cerebral ischemia-induced cell proliferation in the hippocampal dentate gyrus due to the reduced apoptotic neuronal cell death. Cordyceps treatment also enhanced BDNF and TrkB expressions in the hippocampus of ischemic gerbils. It can be suggested that Cordyceps overcomes cerebral ischemia-induced neuronal apoptosis, thus facilitates recovery following cerebral ischemia injury. PMID:27162767

  1. Ischemia-induced mitochondrial apoptosis is significantly attenuated by ischemic preconditioning.

    PubMed

    Racay, Peter; Chomova, Maria; Tatarkova, Zuzana; Kaplan, Peter; Hatok, Jozef; Dobrota, Dusan

    2009-09-01

    Ischemic preconditioning (IPC) represents an important adaptation of CNS to sub-lethal ischemia, which results in increased tolerance of CNS to the lethal ischemia. Ischemia-induced mitochondrial apoptosis is considered to be an important event leading to neuronal cell death after cerebral blood flow arrest. In presented study, we have determined the effect of IPC on ischemia/reperfusion-induced mitochondrial apoptosis. Global brain ischemia was induced by permanent occlusion of vertebral arteries and temporal occlusion of carotid arteries for 15 min. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later 15 min of lethal ischemia was induced. With respect to mitochondrial apoptosis initiation, translocation of p53 to mitochondria was observed in hippocampus but not in cerebral cortex. However, level of both apoptotic bax and anti-apoptotic bcl-xl in both hippocampal and cortical mitochondria was unchanged after global brain ischemia. Detection of genomic DNA fragmentation as well as Fluoro-Jade C staining showed that ischemia induces apoptosis in vulnerable CA1 layer of rat hippocampus. IPC abolished completely ischemia-induced translocation of p53 to mitochondria and had significant protective effect on ischemia-induced DNA fragmentation. In addition, significant decrease of Fluoro-Jade C positive cells was observed as well. Our results indicate that IPC abolished almost completely both initiation and execution of mitochondrial apoptosis induced by global brain ischemia. PMID:19283470

  2. Cholesterol loading and ultrastable protein interactions determine the level of tumor marker required for optimal isolation of cancer cells

    PubMed Central

    Jain, Jayati; Veggiani, Gianluca; Howarth, Mark

    2013-01-01

    Cell isolation via antibody-targeted magnetic beads is a powerful tool for research and clinical applications, most recently for isolating circulating tumor cells (CTCs). Nonetheless fundamental features of the cell-bead interface are still unknown. Here we apply a clinically-relevant antibody against the cancer target HER2 (ERBB2) for magnetic cell isolation. We investigate how many target proteins per cell are sufficient for a cell to be isolated. To understand the importance of primary antibody affinity, we compared a series of point mutants with known affinities and show that even starting with sub-nanomolar affinity, improving antibody affinity improved cell isolation. To test the importance of the connection between the primary antibody and the magnetic bead, we compared bridging the antibody to the beads with Protein L, secondary antibody or streptavidin: the high stability streptavidin-biotin linkage improved sensitivity by an order of magnitude. Cytoskeletal polymerization did not have a major effect on cell isolation, but isolation was inhibited by cholesterol depletion and enhanced by cholesterol loading of cells. Analyzing a panel of human cancer cell-lines spanning a wide range of expression showed that the standard approach could only isolate the highest expressing cells. However, our optimization of cholesterol level, primary antibody affinity, and antibody-bead linkage allowed efficient and specific isolation of cells expressing low levels of HER2 or EpCAM. These insights should guide future approaches to cell isolation, either magnetically or using other means, and extend the range of cellular antigens and biomarkers that can be targeted for isolation in cancer research and diagnosis. PMID:23378340

  3. Early immature neuronal death initiates cerebral ischemia-induced neurogenesis in the dentate gyrus.

    PubMed

    Kim, D H; Lee, H E; Kwon, K J; Park, S J; Heo, H; Lee, Y; Choi, J W; Shin, C Y; Ryu, J H

    2015-01-22

    Throughout adulthood, neurons are continuously replaced by new cells in the dentate gyrus (DG) of the hippocampus, and this neurogenesis is increased by various neuronal injuries including ischemic stroke and seizure. While several mechanisms of this injury-induced neurogenesis have been elucidated, the initiation factor remains unclear. Here, we investigated which signal(s) trigger(s) ischemia-induced cell proliferation and neurogenesis in the hippocampal DG region. We found that early apoptotic cell death of the immature neurons occurred in the DG region following transient forebrain ischemia/reperfusion in mice. Moreover, early immature neuronal death in the DG initiated transient forebrain ischemia/reperfusion-induced neurogenesis through glycogen synthase kinase-3β/β-catenin signaling, which was mediated by microglia-derived insulin-like growth factor-1 (IGF-1). Additionally, we observed that the blockade of immature neuronal cell death, early microglial activation, or IGF-1 signaling attenuated ischemia-induced neurogenesis. These results suggest that early immature neuronal cell death initiates ischemia-induced neurogenesis through microglial IGF-1 in mice.

  4. What's Cholesterol?

    MedlinePlus

    ... Most cholesterol is LDL (low-density lipoprotein) cholesterol. LDL cholesterol is more likely to clog blood vessels because ... Here's a way to remember the difference: the LDL cholesterol is the bad kind, so call it "lousy" ...

  5. Egg yolk and glycerol requirements for freezing boar spermatozoa treated with methyl β-cyclodextrin or cholesterol-loaded cyclodextrin.

    PubMed

    Blanch, Eva; Tomás, Cristina; Hernández, Marta; Roca, Jordi; Martínez, Emilio A; Vázquez, Juan M; Mocé, Eva

    2014-04-24

    Egg yolk (EY) and glycerol are common constituents of extenders used for sperm cryopreservation. It has been demonstrated that using cholesterol-loaded cyclodextrins (CLC) improves sperm cryosurvival in several species. However, standard freezing extenders might not be the most appropriate for CLC-treated sperm. This study evaluated the EY and glycerol requirements for freezing CLC-treated boar spermatozoa. Semen samples from 34 ejaculates coming from 4 boars were used. Each ejaculate was split into three aliquots: one was used untreated (control), and the other two were treated with 1 mg of CLC or methyl-β-cyclodextrin/120 × 10(6) sperm for 15 min at 22 C prior to cryopreservation. Our results indicated that reducing the concentration of EY was detrimental for sperm viability after thawing (31.57 ± 2 vs. 19.89% ± 2 for 20 and 10% EY, respectively; P <0.05), even in semen treated with CLC. On the other hand, it was observed that the traditional concentration of glycerol (3%) was not the appropriate for freezing CLC-treated sperm (61.10 ± 3 vs. 47.87% ± 3 viable sperm for control and CLC-treated sperm, respectively; P <0.05). Thus, CLC-treated sperm showed a higher tolerance to high glycerol concentrations (5%) in terms of sperm viability (59.19% ± 3) than non-treated sperm (45.58% ± 3; P<0.05). Therefore, it could be necessary to modify the freezing extenders for CLC-treated sperm. Nevertheless, additional studies will be needed to evaluate alternative cryoprotectants and to determine the effect of high glycerol concentrations on sperm functionality. PMID:24492655

  6. Egg Yolk and Glycerol Requirements for Freezing Boar Spermatozoa Treated with Methyl β-Cyclodextrin or Cholesterol-loaded Cyclodextrin

    PubMed Central

    BLANCH, Eva; TOMÁS, Cristina; HERNÁNDEZ, Marta; ROCA, Jordi; MARTÍNEZ, Emilio A.; VÁZQUEZ, Juan M.; MOCÉ, Eva

    2014-01-01

    Egg yolk (EY) and glycerol are common constituents of extenders used for sperm cryopreservation. It has been demonstrated that using cholesterol-loaded cyclodextrins (CLC) improves sperm cryosurvival in several species. However, standard freezing extenders might not be the most appropriate for CLC-treated sperm. This study evaluated the EY and glycerol requirements for freezing CLC-treated boar spermatozoa. Semen samples from 34 ejaculates coming from 4 boars were used. Each ejaculate was split into three aliquots: one was used untreated (control), and the other two were treated with 1 mg of CLC or methyl-β-cyclodextrin/120 × 106 sperm for 15 min at 22 C prior to cryopreservation. Our results indicated that reducing the concentration of EY was detrimental for sperm viability after thawing (31.57 ± 2 vs. 19.89% ± 2 for 20 and 10% EY, respectively; P <0.05), even in semen treated with CLC. On the other hand, it was observed that the traditional concentration of glycerol (3%) was not the appropriate for freezing CLC-treated sperm (61.10 ± 3 vs. 47.87% ± 3 viable sperm for control and CLC-treated sperm, respectively; P <0.05). Thus, CLC-treated sperm showed a higher tolerance to high glycerol concentrations (5%) in terms of sperm viability (59.19% ± 3) than non-treated sperm (45.58% ± 3; P<0.05). Therefore, it could be necessary to modify the freezing extenders for CLC-treated sperm. Nevertheless, additional studies will be needed to evaluate alternative cryoprotectants and to determine the effect of high glycerol concentrations on sperm functionality. PMID:24492655

  7. Protective effect of cholesterol-loaded cyclodextrin pretreatment against hydrogen peroxide induced oxidative damage in ram sperm.

    PubMed

    Naseer, Zahid; Ahmad, Ejaz; Aksoy, Melih; Küçük, Niyazi; Serin, İlker; Ceylan, Ahmet; Boyacıoğlu, Murat; Kum, Cavit

    2015-08-01

    Three experiments were conducted to determine the protective effect of cholesterol-loaded cyclodextrin (CLC) against hydrogen peroxide (H2O2) or cryo-induced damage in ram sperm. In Experiment 1, the fresh ejaculates were either treated with CLC or remained untreated. Both CLC treated and untreated samples were then incubated with 0, 250 or 500 μM H2O2 at 35°C for 12 h. After incubation period of 12 h, the motility, viability and membrane integrity remained higher in CLC treated sperm even in the presence of 250 or 500 μM H2O2. The H2O2 treatment affected all the sperm parameters adversely (P<0.05). However, compared to CLC untreated counterpart, the motility, viability and membrane integrity remained higher (P<0.05) in treated sperm, even in the presence of 250 or 500 μM H2O2 during 12 h of incubation. In Experiment 2, semen was cryopreserved in the presence or absence of CLC. The post-thaw results revealed that CLC treated sperm has higher (P<0.05) motility, viability and membrane integrity compared to the control. In Experiment 3, lipid peroxidation levels were assessed by determining malondialdehyde (MDA) concentrations during the H2O2-induced oxidative stress in CLC treated and untreated sperm. However, no difference (P>0.05) in MDA level was observed among the groups at any stage of incubation. In conclusion, the CLC incorporation in ram sperm membrane may protects it against H2O2 or cryo-induced oxidative damage. The cryoprotective influence of CLC on ram sperm might be resulted from, at least partly, its antioxidative property.

  8. Alterations in the glutathione metabolism could be implicated in the ischemia-induced small intestinal cell damage in horses

    PubMed Central

    Marañón, Gonzalo; Manley, William; Cayado, Patricia; García, Cruz; de la Muela, Mercedes Sánchez; Vara, Elena

    2009-01-01

    Background Colic could be accompanied by changes in the morphology and physiology of organs and tissues, such as the intestine. This process might be, at least in part, due to the accumulation of oxidative damage induced by reactive oxygen (ROS) and reactive nitrogen species (RNS), secondary to intestinal ischemia. Glutathione (GSH), being the major intracellular thiol, provides protection against oxidative injury. The aim of this study was to investigate whether ischemia-induced intestinal injury could be related with alterations in GSH metabolism. Results Ischemia induced a significant increase in lipid hydroperoxides, nitric oxide and carbon monoxide, and a reduction in reduced glutathione, and adenosine triphosphate (ATP) content, as well as in methionine-adenosyl-transferase and methyl-transferase activities. Conclusion Our results suggest that ischemia induces harmful effects on equine small intestine, probably due to an increase in oxidative damage and proinflammatory molecules. This effect could be mediated, at least in part, by impairment in glutathione metabolism. PMID:19296836

  9. Long-term treadmill exercise overcomes ischemia-induced apoptotic neuronal cell death in gerbils.

    PubMed

    Sim, Young-Je; Kim, Hong; Kim, Jee-Youn; Yoon, Sung-Jin; Kim, Sung-Soo; Chang, Hyun-Kyung; Lee, Taeck-Hyun; Lee, Hee-Hyuk; Shin, Min-Chul; Shin, Mal-Soon; Kim, Chang-Ju

    2005-04-13

    It has been suggested that exercise may ameliorate neurologic impairment by impeding neuronal loss following various brain insults. In the present study, the effect of long-term treadmill exercise on short-term memory and apoptotic neuronal cell death in the hippocampus following transient global ischemia in gerbils was investigated. A step-down inhibitory avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and immunohistochemistry for caspase-3 were used for this study. Ischemia was induced by occlusion of both the common carotid arteries of gerbils for 5 min. Gerbils in the exercise groups were forced to run on a treadmill for 30 min once a day for 4 consecutive weeks. The present results reveal that treadmill exercise for 4 weeks improved short-term memory by suppressing the ischemia-induced apoptotic neuronal cell death in the hippocampus. Here in this study, we show that long-term treadmill exercise for 4 weeks overcomes the ischemia-induced apoptotic neuronal cell death and thus facilitates the recovery of short-term memory impairment induced by ischemic cerebral injury.

  10. Chronic fluoxetine treatment improves ischemia-induced spatial cognitive deficits through increasing hippocampal neurogenesis after stroke.

    PubMed

    Li, Wen-Lei; Cai, Hui-Hui; Wang, Bin; Chen, Ling; Zhou, Qi-Gang; Luo, Chun-Xia; Liu, Na; Ding, Xin-Sheng; Zhu, Dong-Ya

    2009-01-01

    Cognitive deficits, including spatial memory impairment, are very common after ischemic stroke. Neurogenesis in the dentate gyrus (DG) contributes to forming spatial memory in the ischemic brain. Fluoxetine, a selective serotonin reuptake inhibitor, can enhance neurogenesis in the hippocampus in physiological situations and some neurological diseases. However, whether it has effects on ischemia-induced spatial cognitive impairment and hippocampal neurogenesis has not been determined. Here we report that fluoxetine treatment (10 mg kg(-1), i.p.) for 4 weeks promoted the survival of newborn cells in the ischemic hippocampus and, consequently, attenuated spatial memory impairment of mice after focal cerebral ischemia. Disrupting hippocampal neurogenesis blocked the beneficial effect of fluoxetine on ischemia-induced spatial cognitive impairment. These results suggest that chronic fluoxetine treatment benefits spatial cognitive function recovery following ischemic insult, and the improved cognitive function is associated with enhanced newborn cell survival in the hippocampus. Our results raise the possibility that fluoxetine can be used as a drug to treat poststroke spatial cognitive deficits.

  11. Alpinetin enhances cholesterol efflux and inhibits lipid accumulation in oxidized low-density lipoprotein-loaded human macrophages.

    PubMed

    Jiang, Zhengming; Sang, Haiqiang; Fu, Xin; Liang, Ying; Li, Ling

    2015-01-01

    Alpinetin is a natural flavonoid abundantly present in the ginger family. Here, we investigated the effect of alpinetin on cholesterol efflux and lipid accumulation in oxidized low-density lipoprotein (ox-LDL)-treated THP-1 macrophages and human peripheral blood monocyte-derived macrophages (HMDMs). After exposing THP-1 macrophages to alpinetin, cholesterol efflux was determined by liquid scintillator. The mRNA and protein levels of peroxisome proliferator-activated receptor gamma (PPAR-γ), liver X receptor alpha (LXR-α), ATP-binding cassette transporter A1 (ABCA1), and ABCG1 and scavenger receptor class B member 1 were determined by reverse-transcriptase PCR (RT-PCR) and Western blot analysis, respectively. Alpinetin promoted apolipoprotein A-I- and high-density-lipoprotein-mediated cholesterol efflux and elevated PPAR-γ and LXR-α mRNA and protein expression in a dose-dependent fashion in ox-LDL-treated THP-1 macrophages and HMDMs. Small interfering RNA-mediated silencing of PPAR-γ or LXR-α dose dependently reversed alpinetin-increased cholesterol efflux in THP-1 macrophages, indicating the involvement of PPAR-γ and LXR-α in alpinetin-promoted cholesterol efflux. Alpinetin inhibited ox-LDL-induced lipid accumulation and enhanced the expression of ABCA1 and ABCG1 mRNA and protein, which was reversed by specific knockdown of PPAR-γ or LXR-α. Taken together, our results reveal that alpinetin exhibits positive effects on cholesterol efflux and inhibits ox-LDL-induced lipid accumulation, which might be through PPAR-γ/LXR-α/ABCA1/ABCG1 pathway.

  12. CNT loading into cationic cholesterol suspensions show improved DNA binding and serum stability and ability to internalize into cancer cells

    NASA Astrophysics Data System (ADS)

    Chhikara, Bhupender S.; Misra, Santosh K.; Bhattacharya, Santanu

    2012-02-01

    Methods which disperse single-walled carbon nanotubes (SWNTs) in water as ‘debundled’, while maintaining their unique physical properties are highly useful. We present here a family of cationic cholesterol compounds (Chol+) {Cholest-5en-3β-oxyethyl pyridinium bromide (Chol-PB+), Cholest-5en-3β-oxyethyl N-methyl pyrrolidinium bromide (Chol-MPB+), Cholest-5en-3β-oxyethyl N-methyl morpholinium bromide (Chol-MMB+) and Cholest-5en-3β-oxyethyl diazabicyclo octanium bromide (Chol-DOB+)}. Each of these could be easily dispersed in water. The resulting cationic cholesterol (Chol+) suspensions solubilized single-walled carbon nanotubes (SWCNTs) by the non-specific physical adsorption of Chol+ to form stable, transparent, dark aqueous suspensions at room temperature. Electron microscopy reveals the existence of highly segregated CNTs in these samples. Zeta potential measurements showed an increase in potential of cationic cholesterol aggregates on addition of CNTs. The CNT-Chol+ suspensions were capable of forming stable complexes with genes (DNA) efficiently. The release of double-helical DNA from such CNT-Chol+ complexes could be induced upon the addition of anionic micellar solution of SDS. Furthermore, the CNT-based DNA complexes containing cationic cholesterol aggregates showed higher stability in fetal bovine serum media at physiological conditions. Confocal studies confirm that CNT-Chol+ formulations adhere to HeLa cell surfaces and get internalized more efficiently than the cationic cholesterol suspensions alone (devoid of any CNTs). These cationic cholesterol-CNT suspensions therefore appear to be a promising system for further use in biological applications.

  13. About Cholesterol

    MedlinePlus

    ... High Blood Pressure Tools & Resources Stroke More About Cholesterol Updated:Aug 10,2016 It may surprise you ... our bodies to keep us healthy. What is cholesterol and where does it come from? Cholesterol is ...

  14. Modulation of ischemia-induced NMDAR1 activation by environmental enrichment decreases oxidative damage.

    PubMed

    Briones, Teresita L; Rogozinska, Magdalena; Woods, Julie

    2011-12-01

    In this study, we examined whether enriched environment (EE) housing has direct neuroprotective effects on oxidative damage following transient global cerebral ischemia. Fifty-two adult male Wistar rats were included in the study and received either ischemia or sham surgery. Once fully awake, rats in each group were randomly assigned to either: EE housing or socially paired housing (CON). Animals remained in their assigned environment for 7 days, and then were killed. Our data showed that glutamate receptor expression was significantly higher in the hippocampus of the ischemia CON group than in the ischemia EE group. Furthermore, the oxidative DNA damage, protein oxidation, and neurodegeneration in the hippocampus of the ischemia CON group were significantly increased compared to the ischemia EE group. These results suggest that EE housing possibly modulated the ischemia-induced glutamate excitotoxicity, which then attenuated the oxidative damage and neurodegeneration in the ischemia EE rats.

  15. Neutrophil Depletion Attenuates Placental Ischemia-Induced Hypertension in the Rat

    PubMed Central

    Regal, Jean F.; Lillegard, Kathryn E.; Bauer, Ashley J.; Elmquist, Barbara J.; Loeks-Johnson, Alex C.; Gilbert, Jeffrey S.

    2015-01-01

    Preeclampsia is characterized by reduced placental perfusion with placental ischemia and hypertension during pregnancy. Preeclamptic women also exhibit a heightened inflammatory state and greater number of neutrophils in the vasculature compared to normal pregnancy. Since neutrophils are associated with tissue injury and inflammation, we hypothesized that neutrophils are critical to placental ischemia-induced hypertension and fetal demise. Using the reduced uteroplacental perfusion pressure (RUPP) model of placental ischemia-induced hypertension in the rat, we determined the effect of neutrophil depletion on blood pressure and fetal resorptions. Neutrophils were depleted with repeated injections of polyclonal rabbit anti-rat polymorphonuclear leukocyte (PMN) antibody (antiPMN). Rats received either antiPMN or normal rabbit serum (Control) on 13.5, 15.5, 17.5, and 18.5 days post conception (dpc). On 14.5 dpc, rats underwent either Sham surgery or clip placement on ovarian arteries and abdominal aorta to reduce uterine perfusion pressure (RUPP). On 18.5 dpc, carotid arterial catheters were placed and mean arterial pressure (MAP) was measured on 19.5 dpc. Neutrophil-depleted rats had reduced circulating neutrophils from 14.5 to 19.5 dpc compared to Control, as well as decreased neutrophils in lung and placenta on 19.5 dpc. MAP increased in RUPP Control vs Sham Control rats, and neutrophil depletion attenuated this increase in MAP in RUPP rats without any effect on Sham rats. The RUPP-induced increase in fetal resorptions and complement activation product C3a were not affected by neutrophil depletion. Thus, these data are the first to indicate that neutrophils play an important role in RUPP hypertension and that cells of the innate immune system may significantly contribute to pregnancy-induced hypertension. PMID:26135305

  16. Ulinastatin inhibits cerebral ischemia-induced apoptosis in the hippocampus of gerbils

    PubMed Central

    CHO, YOUNG-SAM; SHIN, MAL-SOON; KO, IL-GYU; KIM, SUNG-EUN; KIM, CHANG-JU; SUNG, YUN-HEE; YOON, HYE-SUN; LEE, BONG-JAE

    2015-01-01

    Ulinastatin is a urinary trypsin inhibitor, originally extracted and purified from human urine. Ulinastatin has cytoprotective effects against ischemic injury in several organs. In the present study, the neuroprotective effects of ulinastatin following ischemic cerebral injury in the hippocampus of gerbils was investigated. To induce transient global ischemia in gerbils, the common carotid arteries were occluded using aneurysm clips for 5 min, and the clips were then removed. Ulinastatin was subcutaneously injected into the gerbils once a day for 7 days at doses of 50,000 or 100,000 U/kg. The gerbils were confronted with a step-down avoidance task, following which tissue samples from the gerbils were examined using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, western blot analysis for B-cell lymphoma (Bcl-2) and Bcl-2-associated X protein (Bax), immunohistochemistry for caspase-3 and immunofluorescence for 5-bromo-2′-deoxyuridine. The numbers of TUNEL-positive and caspase-3-positive cells in the hippocampal CA1 region increased following cerebral ischemia. The expression of Bax in the hippocampus increased, while the expression of Bcl-2 in the hippocampus decreased following cerebral ischemia. These results confirmed that apoptosis in the hippocampus was enhanced following cerebral ischemia in gerbils. The levels of cell proliferation in the hippocampal dentate gyrus were also enhanced by ischemia, which is possibly an adaptive mechanism to compensate for excessive levels of apoptosis. Ulinastatin treatment inhibited ischemia-induced apoptosis by suppressing apoptosis-associated molecules, and thus ameliorated ischemia-induced short-term memory impairment. The cell proliferation in the hippocampus was also suppressed following ulinastatin treatment. These results suggested the use of ulinastatin as a therapeutic agent for patients with cerebral stroke. PMID:25891426

  17. Ulinastatin inhibits cerebral ischemia-induced apoptosis in the hippocampus of gerbils.

    PubMed

    Cho, Young-Sam; Shin, Mal-Soon; Ko, Il-Gyu; Kim, Sung-Eun; Kim, Chang-Ju; Sung, Yun-Hee; Yoon, Hye-Sun; Lee, Bong-Jae

    2015-08-01

    Ulinastatin is a urinary trypsin inhibitor, originally extracted and purified from human urine. Ulinastatin has cytoprotective effects against ischemic injury in several organs. In the present study, the neuroprotective effects of ulinastatin following ischemic cerebral injury in the hippocampus of gerbils was investigated. To induce transient global ischemia in gerbils, the common carotid arteries were occluded using aneurysm clips for 5 min, and the clips were then removed. Ulinastatin was subcutaneously injected into the gerbils once a day for 7 days at doses of 50,000 or 100,000 U/kg. The gerbils were confronted with a step-down avoidance task, following which tissue samples from the gerbils were examined using terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) staining, western blot analysis for B-cell lymphoma (Bcl-2) and Bcl-2-associated X protein (Bax), immunohistochemistry for caspase-3 and immunofluorescence for 5-bromo-2'-deoxyuridine. The numbers of TUNEL-positive and caspase-3-positive cells in the hippocampal CA1 region increased following cerebral ischemia. The expression of Bax in the hippocampus increased, while the expression of Bcl-2 in the hippocampus decreased following cerebral ischemia. These results confirmed that apoptosis in the hippocampus was enhanced following cerebral ischemia in gerbils. The levels of cell proliferation in the hippocampal dentate gyrus were also enhanced by ischemia, which is possibly an adaptive mechanism to compensate for excessive levels of apoptosis. Ulinastatin treatment inhibited ischemia-induced apoptosis by suppressing apoptosis-associated molecules, and thus ameliorated ischemia-induced short-term memory impairment. The cell proliferation in the hippocampus was also suppressed following ulinastatin treatment. These results suggested the use of ulinastatin as a therapeutic agent for patients with cerebral stroke.

  18. Alleviation of ischemia-induced brain edema by activation of the central histaminergic system in rats.

    PubMed

    Irisawa, Yumi; Adachi, Naoto; Liu, Keyue; Arai, Tatsuru; Nagaro, Takumi

    2008-09-01

    We have reported that facilitation of central histaminergic activity prevents the development of ischemia-induced brain injury. Since cerebral edema is a major cause of brain damage, we studied effects on brain edema of postischemic administration of L-histidine, a precursor of histamine, and thioperamide, a histamine H(3)-receptor antagonist, both of which enhance central histaminergic activity. Focal cerebral ischemia for 2 h was provoked by transient occlusion of the right middle cerebral artery in rats, and the water content and infarct size were determined 24 h after reperfusion. Changes in the extracellular concentration of histamine were examined in the striatum by a microdialysis procedure, and effects of these compounds were evaluated. Repeated administration of L-histidine (1000 mg/kg x 2, i.p.), immediately and 6 h after reperfusion, reduced the increase in the water contents in ischemic regions. Simultaneous administration of thioperamide (5 mg/kg, s.c.) with L-histidine (1000 mg/kg, i.p.) completely prevented edema formation and alleviated brain infarction, although a single dose of L-histidine, immediately after reperfusion, showed no benefits. The striatal histamine level was gradually increased after reperfusion as well as during ischemia. Simultaneous administration of thioperamide with L-histidine markedly increased the brain histamine concentration, and the value increased up to 230% of that in the saline group 5 - 6 h after reperfusion. L-Histidine alone did not affect the increase in the histamine output after ischemia. These findings suggest that further activation of the central histaminergic system after initiation of cerebral ischemia prevents development of ischemia-induced brain edema.

  19. Preventive magnesium supplement reduces ischemia-induced hearing loss and blood viscosity in the guinea pig.

    PubMed

    Scheibe, F; Haupt, H; Vlastos, G A

    2000-01-01

    The effect of magnesium (Mg) on ischemia-induced hearing loss was investigated in two groups of adult pigmented guinea pigs of either an optimal or suboptimal (physiologically high or low) Mg status maintained by different diets. Total Mg concentrations of the perilymph, cerebrospinal fluid, blood plasma and red blood cells were found to differ significantly between the two groups, as tested in a previous study. Local vascular impairment was produced by unilateral ferromagnetic thrombosis of cochlear blood vessels. Cochlear blood flow (CBF) and hearing function were measured using laser Doppler flowmetry and auditory brain-stem response audiometry, respectively. Ferromagnetic thrombosis resulted in significant reductions of the mean apical CBF in both experimental groups and of the mean basal CBF in the low Mg group compared to the contralateral ears. In the high Mg group, the basal CBF was not decreased. However, the laser Doppler signals revealed considerable interindividual variations and the differences found between the two experimental groups were not significant. In contrast, the hearing loss in the low Mg group was significantly higher than that in the high Mg group. A correlation was found to exist between the vascular impairment and the hearing threshold shift. In a separate series, we also tested the effect of Mg on hemorheology and found both the blood viscosity and blood viscoelasticity to be significantly lower in the high Mg group than in the low Mg group, depending on the shear rates tested. The present findings show that a preventive oral Mg supplement can significantly reduce the rate of ischemia-induced hearing loss and improve blood viscosity in the guinea pig.

  20. Cholesterol (image)

    MedlinePlus

    Cholesterol is a soft, waxy substance that is present in all parts of the body including the ... and obtained from animal products in the diet. Cholesterol is manufactured in the liver and is needed ...

  1. Zoledronate Inhibits Ischemia-Induced Neovascularization by Impairing the Mobilization and Function of Endothelial Progenitor Cells

    PubMed Central

    Tsai, Shih-Hung; Huang, Po-Hsun; Chang, Wei-Chou; Tsai, Hsiao-Ya; Lin, Chih-Pei; Leu, Hsin-Bang; Wu, Tao-Cheng; Chen, Jaw-Wen; Lin, Shing-Jong

    2012-01-01

    Background Bisphosphonates are a class of pharmacologic compounds that are commonly used to treat postmenopausal osteoporosis and malignant osteolytic processes. Studies have shown that bone marrow-derived endothelial progenitor cells (EPCs) play a significant role in postnatal neovascularization. Whether the nitrogen-containing bisphosphonate zoledronate inhibits ischemia-induced neovascularization by modulating EPC functions remains unclear. Methodology/Principal Findings Unilateral hindlimb ischemia was surgically induced in wild-type mice after 2 weeks of treatment with vehicle or zoledronate (low-dose: 30 μg/kg; high-dose: 100 μg/kg). Doppler perfusion imaging demonstrated that the ischemic limb/normal side blood perfusion ratio was significantly lower in wild-type mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in controls 4 weeks after ischemic surgery (control vs. low-dose vs. high-dose: 87±7% vs. *61±18% vs. **49±17%, *p<0.01, **p<0.005 compared to control). Capillary densities were also significantly lower in mice treated with low-dose zoledronate and in mice treated with high-dose zoledronate than in control mice. Flow cytometry analysis showed impaired mobilization of EPC-like cells (Sca-1+/Flk-1+) after surgical induction of ischemia in mice treated with zoledronate but normal levels of mobilization in mice treated with vehicle. In addition, ischemic tissue from mice that received zoledronate treatment exhibited significantly lower levels of the active form of MMP-9, lower levels of VEGF, and lower levels of phosphorylated eNOS and phosphorylated Akt than ischemic tissue from mice that received vehicle. Results of the in vitro studies showed that incubation with zoledronate inhibited the viability, migration, and tube-forming capacities of EPC. Conclusions/Significance Zoledronate inhibited ischemia-induced neovascularization by impairing EPC mobilization and angiogenic functions. These findings suggest

  2. Mitogen and stress-activated kinases 1/2 regulate ischemia-induced hippocampal progenitor cell proliferation and neurogenesis.

    PubMed

    Karelina, K; Liu, Y; Alzate-Correa, D; Wheaton, K L; Hoyt, K R; Arthur, J S C; Obrietan, K

    2015-01-29

    Pathophysiological conditions such as cerebral ischemia trigger the production of new neurons from the neurogenic niche within the subgranular zone (SGZ) of the dentate gyrus. The functional significance of ischemia-induced neurogenesis is believed to be the regeneration of lost cells, thus contributing to post-ischemia recovery. However, the cell signaling mechanisms by which this process is regulated are still under investigation. Here, we investigated the role of mitogen and stress-activated protein kinases (MSK1/2) in the regulation of progenitor cell proliferation and neurogenesis after cerebral ischemia. Using the endothelin-1 model of ischemia, wild-type (WT) and MSK1(-/-)/MSK2(-/-) (MSK dKO) mice were injected with BrdU and sacrificed 2 days, 4 weeks, or 6 weeks later for the analysis of progenitor cell proliferation, neurogenesis, and neuronal morphology, respectively. We report a decrease in SGZ progenitor cell proliferation in MSK dKO mice compared to WT mice. Moreover, MSK dKO mice exhibited reduced neurogenesis and a delayed maturation of ischemia-induced newborn neurons. Further, structural analysis of neuronal arborization revealed reduced branching complexity in MSK dKO compared to WT mice. Taken together, this dataset suggests that MSK1/2 plays a significant role in the regulation of ischemia-induced progenitor cell proliferation and neurogenesis. Ultimately, revealing the cell signaling mechanisms that promote neuronal recovery will lead to novel pharmacological approaches for the treatment of neurodegenerative diseases such as cerebral ischemia.

  3. Treadmill exercise improves short-term memory by suppressing ischemia-induced apoptosis of neuronal cells in gerbils.

    PubMed

    Sim, Young-Je; Kim, Sung-Soo; Kim, Jee-Youn; Shin, Mal-Soon; Kim, Chang-Ju

    2004-12-01

    In the present study, the effect of treadmill exercise on short-term memory, apoptotic neuronal cell death, and cell proliferation in the hippocampal dentate gyrus following transient global ischemia in gerbils was investigated. Step-down inhibitory avoidance task, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay, and immunohistochemistry for caspase-3 and 5-bromo-2'-deoxyuridine (BrdU) were used. Ischemia was induced by the occlusion of both common carotid arteries (CCA) of gerbils for 5 min. Gerbils in exercise groups were forced to run on a treadmill for 30 min once a day for 10 consecutive days. Such treadmill exercise improved short-term memory by suppressing the ischemia-induced apoptotic neuronal cell death in the dentate gyrus. In addition, treadmill running suppressed the ischemia-induced cell proliferation in the dentate gyrus. The present results suggest that treadmill exercise overcomes the ischemia-induced apoptotic neuronal cell death and thus facilitates the recovery following ischemic cerebral injury.

  4. Protection of PC12 cells from chemical ischemia induced oxidative stress by Fagonia arabica.

    PubMed

    Satpute, Ravindra M; Kashyap, Rajpal S; Deopujari, Jayant Y; Purohit, Hemant J; Taori, Girdhar M; Daginawala, Hatim F

    2009-11-01

    Fagonia arabica (Zygophyllaceae) is an important Ayurvedic herb, grows throughout arid regions of India, has been widely used as a folk remedy by the indigenous people for its anti-inflammatory, analgesic and antipyretic effects. In the present study, antioxidant potential of F. arabica and the associated mechanism of antioxidant defence in rat pheochromocytoma (PC12) cells subjected to chemical ischemia was studied. Effect of total extract of F. arabica was studied for its antioxidant potential on the chemical ischemia induced PC12 cells. Alterations in the activities of cellular antioxidant enzymes (SOD, CAT, GSH-Px and GSH-R) were measured. Antioxidant potential of herb (ABTS), extent of lipid peroxidation (MDA and 4-HAE), total antioxidant status (TAS) and total glutathione (reduced, oxidized and their ratio) were evaluated. F. arabica scavenges the free radicals (ABTS(.)+), and showed a concentration dependent antioxidant activity, highest being at 1000 microg/ml. Its treatment with ischemic cells ameliorates the GSH and TAS levels and also helps the cells to restore the activities of the cellular antioxidative enzymes and also reduced the degree of lipid peroxidation. F. arabica scavenges the free radicals and attenuates oxidative stress mediated cell injury during ischemia. PMID:19520135

  5. The Protective Effect of Black Ginseng Against Transient Focal Ischemia-induced Neuronal Damage in Rats

    PubMed Central

    Park, Hyun-Jung; Shim, Hyun Soo; Kim, Kyung Soo

    2011-01-01

    Black ginseng (BG) has been widely used as herbal treatment for improving physiological function. In order to investigate the neuroprotective action of this herbal medicine, we examined the influence of BG on the learning and memory of rats using the Morris water maze, and we studied the effects of BG on the central cholinergic system and neural nitric oxide synthesis in the hippocampus of rats with neuronal and cognitive impairment. After middle cerebral artery occlusion was applied for 2h, the rats were administered BG (100 or 400 mgkg-1, p.o.) daily for 2 weeks, followed by training and performance of the Morris water maze test. The rats with ischemic insults showed impaired learning and memory on the tasks. Treatment with BG produced improvement in the escape latency to find the platform. Further, the BG groups showed a reduced loss of cholinergic immunoreactivity and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d)-positive neurons in the hippocampus compared to that of the ISC group. These results demonstrated that BG has a protective effect against ischemia-induced neuronal and cognitive impairment. Our results suggest that BG might be useful for the treatment of vascular dementia. PMID:22359470

  6. Effect of Cyperus rotundus on ischemia-induced brain damage and memory dysfunction in rats

    PubMed Central

    Dabaghian, Fataneh Hashem; Hashemi, Mehrdad; Entezari, Maliheh; Movassaghi, Shabnam; Goushegir, Seyed Ashrafadin; Kalantari, Samaneh; Movafagh, Abolfazl; Sharifi, Zahra Nadia

    2015-01-01

    Objective(s): Global cerebral ischemia-reperfusion injury causes loss of pyramidal cells in CA1 region of hippocampus. In this study, we investigated the possible neuroprotective effects of the ethanol extract of Cyperus rotundus (EECR) on a model of global transient ischemia in rat, by evaluating the pathophysiology of the hippocampal tissue and spatial memory. Materials and Methods: Treatment group (EECR, 100 mg/kg/day) was gavaged from 4 days before, to 3 days after ischemia. Morris water maze test was performed 1 week after ischemia for 4 days. Brain tissue was prepared for Nissl staining. Results: Our data showed no statistical difference between the treatment and ischemia groups in water maze task. So, treatment of ischemia with EECR cannot improve spatial learning and memory. On the contrary EECR ameliorated the CA1 pyramidal cell loss due to transient global ischemia/reperfusion injury. Conclusion: These results suggest that EECR cannot reduce the ischemia-induced, cognitive impairments seen after transient, global cerebral ischemia but can prevent pyramidal cell loss in CA1 region of hippocampus. PMID:25825638

  7. Prevention of ischemia-induced myocardial platelet deposition by exogenous prostacyclin

    SciTech Connect

    Aherne, T.; Price, D.C.; Yee, E.S.; Hsieh, W.R.; Ebert, P.A.

    1986-07-01

    The antithrombotic effects of prostacyclin infusion on myocardial platelet deposition were studied in a canine model during and after global ischemia. Eleven isolated heart preparations were subjected to 1 hour of cardioplegic arrest under moderate hypothermia (27 to 28/sup 0/C), including a control group (n = 7) and a prostacyclin-treated group (n = 4). The hearts of four other dogs were continuously perfused for 180 minutes. Platelet deposition was measured at 15 minute intervals throughout the 3 hour study. Serial full-thickness myocardial biopsy specimens were analyzed for activity of /sup 111/In-labeled platelets with /sup 99m/Tc-labeled erythrocyte correction for tissue blood content. The pattern of platelet distribution was determined by scintiscans of each heart, taken with a gamma camera at the end of the 60 minute reperfusion period. Substantial myocardial platelet deposition was found in the control hearts after ischemia but not in the prostacyclin-treated group (p less than 0.05). Furthermore, prostacyclin infusion had a significant disaggregatory effect on intracoronary platelet deposits when the precardioplegic and postcardioplegic biopsy specimens were analyzed (p less than 0.05). Three hours of continuous perfusion did not increase tissue /sup 111/In-labeled platelet activity. Ex vivo images showed platelet deposition to be a diffuse patchy process with significantly more /sup 111/In activity in the endocardium than in the epicardium after global ischemia (p less than 0.05). These data show the potent antithrombotic properties of prostacyclin in preventing and disaggregating ischemia-induced intracoronary platelet deposition during and after cardioplegic arrest.

  8. Antioxidant Potential of Fagonia arabica against the Chemical Ischemia-Induced in PC12 Cells.

    PubMed

    Satpute, Ravindra; Bhattacharya, Rahul; S Kashyap, Rajpal; J Purohit, Hemant; Y Deopujari, Jayant; M Taori, Girdhar; F Daginawala, Hatim

    2012-01-01

    The imbalance between pro-oxidants and anti-oxidants leads to generation of oxygen/nitrogen free radicals which are implicated in several neurodegenerative diseases. Fagonia arabica is an ethno-pharmacologically important Ayurvedic herb known to have many medicinal properties like anti-inflammatory, analgesic and antipyretic effects. However, its antioxidant potential has not been investigated so far. The present study was designed to investigate the antioxidant potential of F. arabica and its neuroprotective effect on chemical ischemia induced in PC12 cells. Chemical ischemia was induced through exposing the cells to uncoupler of oxidative phosphorylation sodium azide (5.0 mM) and competitive inhibitor of glycolysis 2-deoxy-glucose (2.0 mM) for 2 h followed by 24 h reperfusion with normal culture medium. Total polyphenolic content (TPC) and antioxidant potential of the herb was measured using DPPH and ABTS•+ scavenging and ferric ion reducing antioxidant potential (FRAP) assays; its effect on neuroprotection and energy metabolism was also studied. The ischemic injury was characterized by impaired energy status as indicated by decreased ATP levels in the cells, accompanied by increased lactic acid content. Both the changes favourably responded to F. arabica and offered considerable neuroprotection from ischemia and helped to maintain the cellular viability and mitochondrial integrity of the cells. F. arabica showed considerable amount of TPC and antioxidant activity. This study reveals the antioxidant potential of F. arabica and its protective efficacy against ischemia/reperfusion mediated cell death. F. arabica thus can be considered for further studies for the development of the prophylactic or therapeutic agent for the treatment of ischemic stroke. PMID:24250453

  9. Hypoxia-ischemia induces DNA synthesis without cell proliferation in dying neurons in adult rodent brain.

    PubMed

    Kuan, Chia-Yi; Schloemer, Aryn J; Lu, Aigang; Burns, Kevin A; Weng, Wei-Lan; Williams, Michael T; Strauss, Kenneth I; Vorhees, Charles V; Flavell, Richard A; Davis, Roger J; Sharp, Frank R; Rakic, Pasko

    2004-11-24

    Recent studies suggest that postmitotic neurons can reenter the cell cycle as a prelude to apoptosis after brain injury. However, most dying neurons do not pass the G1/S-phase checkpoint to resume DNA synthesis. The specific factors that trigger abortive DNA synthesis are not characterized. Here we show that the combination of hypoxia and ischemia induces adult rodent neurons to resume DNA synthesis as indicated by incorporation of bromodeoxyuridine (BrdU) and expression of G1/S-phase cell cycle transition markers. After hypoxia-ischemia, the majority of BrdU- and neuronal nuclei (NeuN)-immunoreactive cells are also terminal deoxynucleotidyl transferase-mediated biotinylated UTP nick end labeling (TUNEL)-stained, suggesting that they undergo apoptosis. BrdU+ neurons, labeled shortly after hypoxia-ischemia, persist for >5 d but eventually disappear by 28 d. Before disappearing, these BrdU+/NeuN+/TUNEL+ neurons express the proliferating cell marker Ki67, lose the G1-phase cyclin-dependent kinase (CDK) inhibitors p16INK4 and p27Kip1 and show induction of the late G1/S-phase CDK2 activity and phosphorylation of the retinoblastoma protein. This contrasts to kainic acid excitotoxicity and traumatic brain injury, which produce TUNEL-positive neurons without evidence of DNA synthesis or G1/S-phase cell cycle transition. These findings suggest that hypoxia-ischemia triggers neurons to reenter the cell cycle and resume apoptosis-associated DNA synthesis in brain. Our data also suggest that the demonstration of neurogenesis after brain injury requires not only BrdU uptake and mature neuronal markers but also evidence showing absence of apoptotic markers. Manipulating the aberrant apoptosis-associated DNA synthesis that occurs with hypoxia-ischemia and perhaps neurodegenerative diseases could promote neuronal survival and neurogenesis.

  10. Antioxidant Potential of Fagonia arabica against the Chemical Ischemia-Induced in PC12 Cells

    PubMed Central

    Satpute, Ravindra; Bhattacharya, Rahul; S Kashyap, Rajpal; J Purohit, Hemant; Y Deopujari, Jayant; M Taori, Girdhar; F. Daginawala, Hatim

    2012-01-01

    The imbalance between pro-oxidants and anti-oxidants leads to generation of oxygen/nitrogen free radicals which are implicated in several neurodegenerative diseases. Fagonia arabica is an ethno-pharmacologically important Ayurvedic herb known to have many medicinal properties like anti-inflammatory, analgesic and antipyretic effects. However, its antioxidant potential has not been investigated so far. The present study was designed to investigate the antioxidant potential of F. arabica and its neuroprotective effect on chemical ischemia induced in PC12 cells. Chemical ischemia was induced through exposing the cells to uncoupler of oxidative phosphorylation sodium azide (5.0 mM) and competitive inhibitor of glycolysis 2-deoxy-glucose (2.0 mM) for 2 h followed by 24 h reperfusion with normal culture medium. Total polyphenolic content (TPC) and antioxidant potential of the herb was measured using DPPH and ABTS•+ scavenging and ferric ion reducing antioxidant potential (FRAP) assays; its effect on neuroprotection and energy metabolism was also studied. The ischemic injury was characterized by impaired energy status as indicated by decreased ATP levels in the cells, accompanied by increased lactic acid content. Both the changes favourably responded to F. arabica and offered considerable neuroprotection from ischemia and helped to maintain the cellular viability and mitochondrial integrity of the cells. F. arabica showed considerable amount of TPC and antioxidant activity. This study reveals the antioxidant potential of F. arabica and its protective efficacy against ischemia/reperfusion mediated cell death. F. arabica thus can be considered for further studies for the development of the prophylactic or therapeutic agent for the treatment of ischemic stroke. PMID:24250453

  11. Phosphatidylcholine: Greasing the Cholesterol Transport Machinery

    PubMed Central

    Lagace, Thomas A.

    2015-01-01

    Negative feedback regulation of cholesterol metabolism in mammalian cells ensures a proper balance of cholesterol with other membrane lipids, principal among these being the major phospholipid phosphatidylcholine (PC). Processes such as cholesterol biosynthesis and efflux, cholesteryl ester storage in lipid droplets, and uptake of plasma lipoproteins are tuned to the cholesterol/PC ratio. Cholesterol-loaded macrophages in atherosclerotic lesions display increased PC biosynthesis that buffers against elevated cholesterol levels and may also facilitate cholesterol trafficking to enhance cholesterol sensing and efflux. These same mechanisms could play a generic role in homeostatic responses to acute changes in membrane free cholesterol levels. Here, I discuss the established and emerging roles of PC metabolism in promoting intracellular cholesterol trafficking and membrane lipid homeostasis. PMID:27081313

  12. Mitogen and stress-activated kinases 1/2 regulate ischemia-induced hippocampal progenitor cell proliferation and neurogenesis

    PubMed Central

    Karelina, Kate; Liu, Yujia; Alzate-Correa, Diego; Wheaton, Kelin L.; Hoyt, Kari R.; Arthur, J. Simon C.; Obrietan, Karl

    2016-01-01

    Pathophysiological conditions such as cerebral ischemia trigger the production of new neurons from the neurogenic niche within the subgranular zone (SGZ) of the dentate gyrus. The functional significance of ischemia-induced neurogenesis is believed to be the regeneration of lost cells, thus contributing to post-ischemia recovery. However, the cell signaling mechanisms by which this process is regulated are still under investigation. Here, we investigated the role of mitogen and stress-activated protein kinases (MSK1/2) in the regulation of progenitor cell proliferation and neurogenesis after cerebral ischemia. Using the endothelin-1 model of ischemia, wild type (WT) and MSK1−/−/MSK2−/− (MSK dKO) mice were injected with BrdU and sacrificed 2 days, 4 weeks, or 6 weeks later for the analysis of progenitor cell proliferation, neurogenesis, and neuronal morphology, respectively. We report a decrease in SGZ progenitor cell proliferation in MSK dKO mice compared to WT mice. Moreover, MSK dKO mice exhibited reduced neurogenesis and a delayed maturation of ischemia-induced newborn neurons. Further, structural analysis of neuronal arborization revealed reduced branching complexity in MSK dKO compared to WT mice. Taken together, this dataset suggests that MSK1/2 plays a significant role in the regulation of ischemia-induced progenitor cell proliferation and neurogenesis. Ultimately, revealing the cell signaling mechanisms that promote neuronal recovery will lead to novel pharmacological approaches for the treatment of neurodegenerative diseases such as cerebral ischemia. PMID:25451279

  13. VITRIFICATION OF THAI NATIVE CATTLE OOCYTES: EFFECTS OF ETHYLENE GLYCOL CONCENTRATIONS AND EXPOSURE TIME, LINOLEIC ACID ALBUMIN AND CHOLESTEROL-LOADED METHYL-B-CYCLODEXTRIN.

    PubMed

    Chasombat, Jakkhaphan; Vongpralub, Thevin; Sirisathien, Saksiri; Phasuk, Yupin; Sonseeda, Pronjit

    2015-01-01

    The present study aimed to improve the oocyte vitrification procedure for preservation of Thai native cattle genetic resources. In Experiment I, oocytes were exposed to various doses (2%, 4% and 6%) of ethylene glycol (EG) in vitrification solution I (VS-I) for different equilibration times (10 or 20 min) before being exposed to VS-II and then subjected to vitrification. Experiment II was divided into two parts: (a) oocytes were matured in medium supplemented with linoleic acid albumin (LAA) (1% or 2%) and then vitrified; (b) matured oocytes were preincubated with cholesterol-loaded methyl-β-cyclodextrin (CLC) (1% or 2%) and then vitrified. Equilibration of oocytes by exposure to 6% EG in VS-I for 10 min (Experiment I), and in vitro maturation of immature oocytes in medium supplementation with 2% LAA (Experiment II) were the most effective methods; vitrified/thawed oocytes showed higher rates of survival and subsequent embryonic development compared with the other experimental groups. PMID:26510334

  14. Ischemia induces partial loss of surface membrane polarity and accumulation of putative calcium ionophores.

    PubMed Central

    Molitoris, B A; Wilson, P D; Schrier, R W; Simon, F R

    1985-01-01

    To determine if ischemia induces alterations in renal proximal tubule surface membranes, brush border (BBM) and basolateral membranes (BLM) were isolated simultaneously from the same cortical homogenate after 50 min of renal pedicle clamping. Ischemia caused a selective decrease in the specific activity of BBM marker enzymes leucine aminopeptidase and alkaline phosphatase, but did not effect enrichment (15 times). Neither specific activity nor enrichment (10 times) of BLM NaK-ATPase was altered by ischemia. Contamination of BBM by intracellular organelles was also unchanged, but there was an increase in the specific activity (41.1 vs. 60.0, P less than 0.01) and enrichment (2.3 vs. 4.3, P less than 0.01) of NaK-ATPase in the ischemic BBM fraction. Ischemia increased BLM lysophosphatidylcholine (1.3 vs. 2.5%, P less than 0.05) and phosphatidic acid (0.4 vs. 1.3%, P less than 0.05). Ischemia also decreased BBM sphingomyelin (38.5 vs. 29.6%, P less than 0.01) and phosphatidylserine (16.1 vs. 11.4%, P less than 0.01), and increased phosphatidylcholine (17.2 vs. 29.7%, P less than 0.01), phosphatidylinositol (1.8 vs. 4.6%, P less than 0.01), and lysophosphatidylcholine (1.0 vs. 1.8%, P less than 0.05). The large changes in BBM phospholipids did not result from new phospholipid synthesis, since the specific activity (32P dpm/nmol Pi) of prelabeled individual and total phospholipids was unaltered by ischemia. We next evaluated if these changes were due to inability of ischemic cells to maintain surface membrane polarity. Cytochemical evaluation showed that while NaK-ATPase could be detected only in control BLM, specific deposits of reaction product were present in the BBM of ischemic kidneys. Furthermore, using continuous sucrose gradients, the enzymatic profile of ischemic BBM NaK-ATPase shifted away from ischemic BLM NaK-ATPase and toward the BBM enzymatic marker leucine aminopeptidase. Taken together, these data suggest that NaK-ATPase activity determined enzymatically

  15. PET imaging of ischemia-induced impairment of mitochondrial complex I function in monkey brain

    PubMed Central

    Tsukada, Hideo; Ohba, Hiroyuki; Nishiyama, Shingo; Kanazawa, Masakatsu; Kakiuchi, Takeharu; Harada, Norihiro

    2014-01-01

    To assess the capability of 18F-2-tert-butyl-4-chloro-5-{6-[2-(2-fluoroethoxy)-ethoxy]-pyridin-3-ylmethoxy}-2H-pyridazin-3-one (18F-BCPP-EF), a novel positron emission tomography (PET) probe for mitochondrial complex I (MC-I) activity, as a specific marker of ischemia-induced neuronal death without being disturbed by inflammation, translational research was conducted using an animal PET in ischemic brains of Cynomolgus monkeys (Macaca fascicularis). Focal ischemia was induced by the right middle cerebral artery occlusion for 3 hours, then PET scans were conducted at Day-7 with 15O-gases for regional cerebral blood flow (rCBF) and regional cerebral metabolism of oxygen (rCMRO2), and 18F-BCPP-EF for MC-I with arterial blood sampling. On Day-8, the additional PET scans conducted with 11C-flumazenil (11C-FMZ) for central-type benzodiazepine receptors, 11C-PBR28 for translocator protein, and 18F-fluoro-2-deoxy-D-glucose (18F-FDG) for regional cerebral metabolic rate of glucose (rCMRglc). The total distribution volume (VT) values of 18F-BCPP-EF showed the significant reduction in MC-I activity in the damaged area at Day-7. When correlated with rCBF and rCMRO2, the VT values of 18F-BCPP-EF provided better correlation with rCMRO2 than with rCBF. In the inflammatory regions (region of interest, ROIPBR) of the ischemic hemisphere detected with 11C-PBR28, higher 18F-FDG uptake and lower VT of 18F-BCPP-EF, 11C-FMZ, and rCMRO2 than those in normal contralateral hemisphere were observed. These results strongly suggested that 18F-BCPP-EF could discriminate the neuronal damaged areas with neuroinflammation, where 18F-FDG could not owing to its high uptake into the activated microglia. PMID:24447952

  16. Women and Cholesterol

    MedlinePlus

    ... Blood Pressure Tools & Resources Stroke More Women and Cholesterol Updated:Apr 1,2016 The female sex hormone ... Glossary Related Sites Nutrition Center My Life Check Cholesterol • Home • About Cholesterol • Why Cholesterol Matters • Understand Your ...

  17. Cholesterol IQ Quiz

    MedlinePlus

    ... Pressure High Blood Pressure Tools & Resources Stroke More Cholesterol IQ Quiz Updated:Feb 2,2015 Begin the quiz Cholesterol • Home • About Cholesterol Introduction Good vs. Bad Cholesterol ...

  18. Critical Roles of Reactive Oxygen Species in Age-Related Impairment in Ischemia-Induced Neovascularization by Regulating Stem and Progenitor Cell Function

    PubMed Central

    Lam, Yuen Ting

    2016-01-01

    Reactive oxygen species (ROS) regulate bone marrow microenvironment for stem and progenitor cells functions including self-renewal, differentiation, and cell senescence. In response to ischemia, ROS also play a critical role in mediating the mobilization of endothelial progenitor cells (EPCs) from the bone marrow to the sites of ischemic injury, which contributes to postnatal neovascularization. Aging is an unavoidable biological deteriorative process with a progressive decline in physiological functions. It is associated with increased oxidative stress and impaired ischemia-induced neovascularization. This review discusses the roles of ROS in regulating stem and progenitor cell function, highlighting the impact of unbalanced ROS levels on EPC dysfunction and the association with age-related impairment in ischemia-induced neovascularization. Furthermore, it discusses strategies that modulate the oxidative levels of stem and progenitor cells to enhance the therapeutic potential for elderly patients with cardiovascular disease. PMID:26697140

  19. Direct Renin Inhibition with Aliskiren Improves Ischemia-Induced Neovasculogenesis in Diabetic Animals via the SDF-1 Related Mechanism

    PubMed Central

    Chang, Ting-Ting; Wu, Tao-Cheng; Huang, Po-Hsun; Lin, Chih-Pei; Chen, Jia-Shiong; Lin, Liang-Yu; Lin, Shing-Jong; Chen, Jaw-Wen

    2015-01-01

    Objective Aliskiren is a direct renin inhibitor which is suggested to modify proangiogenic cells in addition to lower blood pressure. Given that angiogenesis is impaired in the presence of diabetes mellitus, we would like to investigate whether and how aliskiren enhances endothelial progenitor cells (EPCs) and improves ischemic-induced neovasculogenesis by an effect independent of blood pressure reduction in diabetic animals. Methods Streptozotocin-induced diabetic mice were administered with either aliskiren (5 or 25 mg/kg/day) using an osmotic pump or hydralazine (2 or 10 mg/kg/day) given in drinking water for two weeks prior to a hind-limb ischemia surgery. Laser Doppler imaging and flow cytometry were used to evaluate the degree of neovasculogenesis and the circulating levels of EPCs, respectively. Results In streptozotocin-induced diabetic mice, aliskiren enhanced the recovery of limb perfusion and capillary density, increased the number of circulating Sca-1+/Flk-1+ EPC-like cells, and elevated the levels of the plasma vascular endothelial growth factor (VEGF) and stromal cell-derived factor (SDF)-1α in a dose-dependent manner, whereas there were no such effects in hydralazine-treated mice. Intraperitoneal administration of anti-SDF-1 neutralizing monoclonal antibodies abolished the effects of aliskiren. Conclusions Independent of the reduction of blood pressure, aliskiren enhanced ischemia-induced neovasculogenesis in a dose-dependent manner via VEGF/SDF-1α related mechanisms in diabetic mice. PMID:26305217

  20. Remote limb preconditioning protects against ischemia-induced neuronal death through ameliorating neuronal oxidative DNA damage and parthanatos.

    PubMed

    Jin, Wei; Xu, Wei; Chen, Jing; Zhang, Xiaoxiao; Shi, Lei; Ren, Chuancheng

    2016-07-15

    Remote limb preconditioning (RPC) ameliorates ischemia-induced cerebral infarction and promotes neurological function recovery; however, the mechanism of RPC hasn't been fully understood, which limits its clinical application. The present study aimed at exploring the underlying mechanism of RPC through testing its effects on neuronal oxidative DNA damage and parthanatos in a rat focal cerebral ischemia model. Infarct volume was investigated by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining, and neuronal survival was evaluated by Nissl staining. Oxidative DNA damage was investigated via analyzing the expression of 8-hydroxy-2'-deoxyguanosine (8-OHdG). Besides, terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling (TUNEL) and DNA laddering were utilized to evaluate neuronal DNA fragmentation. Moreover, we tested whether RPC regulated poly(ADP-ribose) polymer (PAR) and apoptosis inducing factor (AIF) pathway; thus, PAR expression, AIF translocation and AIF/histone H2AX (H2AX) interaction were investigated. The results showed that RPC exerted neuroprotective effects by ameliorating oxidative DNA damage and neuronal parthanatos; additionally, RPC suppressed PAR/AIF pathway through reducing AIF translocation and AIF/H2AX interaction. The present study further exposed neuroprotective mechanism of RPC, and provided new evidence for the research on RPC and ICS. PMID:27288768

  1. Anxiolytic Effects of Royal Sun Medicinal Mushroom, Agaricus brasiliensis (Higher Basidiomycetes) on Ischemia-Induced Anxiety in Rats.

    PubMed

    Zhang, Chunjing; Gao, Xiulan; Sun, Yan; Sun, Xiaojie; Wu, Yanmin; Liu, Ying; Yu, Haitao; Cui, Guangcheng

    2015-01-01

    We investigated the anxiolytic effects Agaricus brasiliensis extract (AbSE) on ischemia-induced anxiety using the plus-maze test and the social interaction test. The animals were treated orally with AbSE (4, 8, and 10 mg/kg/d, respectively) for 30 d, followed by middle cerebral artery occlusion-induced cerebral ischemia. Levels of noradrenaline, dopamine, and serotonin in the cerebral cortex of rats, as well as oxidative stress and plasma corticosterone levels were analyzed, respectively. The rota-rod test was carried out to exclude any false positive results in experimental procedures related to anxiety disorders, and the catalepsy test was carried out to investigate whether AbSE induces catalepsy. Our results demonstrate that oral administration of AbSE presented anxiolytic-like effects in the elevated plus-maze test and the social interaction test. Furthermore, AbSE did not induce extrapyramidal symptoms in the catalepsy test. The mechanism underlying the anxiolytic effect of AbSE might be increased brain monoamine levels and plasma corticosterone levels and decreased oxidative stress in cerebral ischemia/reperfusion rats.

  2. Exercise training exacerbates tourniquet ischemia-induced decreases in GLUT4 expression and muscle atrophy in rats.

    PubMed

    Tsai, Ying-Lan; Hou, Chien-Wen; Liao, Yi-Hung; Chen, Chung-Yu; Lin, Fang-Ching; Lee, Wen-Chih; Chou, Shih-Wei; Kuo, Chia-Hua

    2006-05-15

    The current study determined the interactive effects of ischemia and exercise training on glycogen storage and GLUT4 expression in skeletal muscle. For the first experiment, an acute 1-h tourniquet ischemia was applied to one hindlimb of both the 1-week exercise-trained and untrained rats. The contralateral hindlimb served as control. For the second experiment, 1-h ischemia was applied daily for 1 week to both trained (5 h post-exercise) and untrained rats. GLUT4 mRNA was not affected by acute ischemia, but exercise training lowered GLUT4 mRNA in the acute ischemic muscle. GLUT4 protein levels were elevated by exercise training, but not in the acute ischemic muscle. Exercise training elevated muscle glycogen above untrained levels, but this increase was reversed by chronic ischemia. GLUT4 mRNA and protein levels were dramatically reduced by chronic ischemia, regardless of whether the animals were exercise-trained or not. Chronic ischemia significantly reduced plantaris muscle mass, with a greater decrease found in the exercise-trained rats. In conclusion, the exercise training effect on muscle GLUT4 protein expression was prevented by acute ischemia. Furthermore, chronic ischemia-induced muscle atrophy was exacerbated by exercise training. This result implicates that exercise training could be detrimental to skeletal muscle with severely impaired microcirculation.

  3. All about Cholesterol

    MedlinePlus

    ... are several kinds of fats in your blood. • LDL cholesterol is sometimes called “bad” cholesterol. It can narrow ... medicine to manage blood fats. They help lower LDL cholesterol. They also help lower your risk for a ...

  4. Dietary phytosterols and phytostanols decrease cholesterol levels but increase blood pressure in WKY inbred rats in the absence of salt-loading

    PubMed Central

    2010-01-01

    Background There are safety concerns regarding widespread consumption of phytosterol and phytostanol supplemented food products. The aim of this study was to determine, in the absence of excess dietary salt, the individual effects of excess accumulation of dietary phytosterols and phytostanols on blood pressure in Wistar Kyoto (WKY) inbred rats that have a mutation in the Abcg5 gene and thus over absorb phytosterols and phytostanols. Methods Thirty 35-day old male WKY inbred rats (10/group) were fed a control diet or a diet containing phytosterols or phytostanols (2.0 g/kg diet) for 5 weeks. The sterol composition of the diets, plasma and tissues were analysed by gas chromatography. Blood pressure was measured by the tail cuff method. mRNA levels of several renal blood pressure regulatory genes were measured by real-time quantitative PCR. Results Compared to the control diet, the phytosterol diet resulted in 3- to 4-fold increases in the levels of phytosterols in plasma, red blood cells, liver, aorta and kidney of WKY inbred rats (P < 0.05). The phytostanol diet dramatically increased (> 9-fold) the levels of phytostanols in plasma, red blood cells, liver, aorta and kidney of these rats (P < 0.05). The phytosterol diet decreased cholesterol levels by 40%, 31%, and 19% in liver, aorta and kidney, respectively (P < 0.05). The phytostanol diet decreased cholesterol levels by 15%, 16%, 20% and 14% in plasma, liver, aorta and kidney, respectively (P < 0.05). The phytostanol diet also decreased phytosterol levels by 29% to 54% in plasma and tissues (P < 0.05). Both the phytosterol and phytostanol diets produced significant decreases in the ratios of cholesterol to phytosterols and phytostanols in plasma, red blood cells, liver, aorta and kidney. Rats that consumed the phytosterol or phytostanol diets displayed significant increases in systolic and diastolic blood pressure compared to rats that consumed the control diet (P < 0.05). The phytosterol diet increased renal

  5. The Structural Basis of Cholesterol Activity in Membranes

    SciTech Connect

    Olsen, Brett N.; Bielska, Agata; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-10-15

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity.

  6. The Structural Basis of Cholesterol Accessibility in Membranes

    PubMed Central

    Olsen, Brett N.; Bielska, Agata A.; Lee, Tiffany; Daily, Michael D.; Covey, Douglas F.; Schlesinger, Paul H.; Baker, Nathan A.; Ory, Daniel S.

    2013-01-01

    Although the majority of free cellular cholesterol is present in the plasma membrane, cholesterol homeostasis is principally regulated through sterol-sensing proteins that reside in the cholesterol-poor endoplasmic reticulum (ER). In response to acute cholesterol loading or depletion, there is rapid equilibration between the ER and plasma membrane cholesterol pools, suggesting a biophysical model in which the availability of plasma membrane cholesterol for trafficking to internal membranes modulates ER membrane behavior. Previous studies have predominantly examined cholesterol availability in terms of binding to extramembrane acceptors, but have provided limited insight into the structural changes underlying cholesterol activation. In this study, we use both molecular dynamics simulations and experimental membrane systems to examine the behavior of cholesterol in membrane bilayers. We find that cholesterol depth within the bilayer provides a reasonable structural metric for cholesterol availability and that this is correlated with cholesterol-acceptor binding. Further, the distribution of cholesterol availability in our simulations is continuous rather than divided into distinct available and unavailable pools. This data provide support for a revised cholesterol activation model in which activation is driven not by saturation of membrane-cholesterol interactions but rather by bulk membrane remodeling that reduces membrane-cholesterol affinity. PMID:24138860

  7. Casein kinase 1 suppresses activation of REST in insulted hippocampal neurons and halts ischemia-induced neuronal death.

    PubMed

    Kaneko, Naoki; Hwang, Jee-Yeon; Gertner, Michael; Pontarelli, Fabrizio; Zukin, R Suzanne

    2014-04-23

    Repressor Element-1 (RE1) Silencing Transcription Factor/Neuron-Restrictive Silencer Factor (REST/NRSF) is a gene-silencing factor that is widely expressed during embryogenesis and plays a strategic role in neuronal differentiation. Recent studies indicate that REST can be activated in differentiated neurons during a critical window of time in postnatal development and in adult neurons in response to neuronal insults such as seizures and ischemia. However, the mechanism by which REST is regulated in neurons is as yet unknown. Here, we show that REST is controlled at the level of protein stability via β-TrCP-dependent, ubiquitin-based proteasomal degradation in differentiated neurons under physiological conditions and identify Casein Kinase 1 (CK1) as an upstream effector that bidirectionally regulates REST cellular abundance. CK1 associates with and phosphorylates REST at two neighboring, but distinct, motifs within the C terminus of REST critical for binding of β-TrCP and targeting of REST for proteasomal degradation. We further show that global ischemia in rats in vivo triggers a decrease in CK1 and an increase in REST in selectively vulnerable hippocampal CA1 neurons. Administration of the CK1 activator pyrvinium pamoate by in vivo injection immediately after ischemia restores CK1 activity, suppresses REST expression, and rescues neurons destined to die. Our results identify a novel and previously unappreciated role for CK1 as a brake on REST stability and abundance in adult neurons and reveal that loss of CK1 is causally related to ischemia-induced neuronal death. These findings point to CK1 as a potential therapeutic target for the amelioration of hippocampal injury and cognitive deficits associated with global ischemia. PMID:24760862

  8. The decreased oxygen uptake during progressive exercise in ischemia-induced heart failure is due to reduced cardiac output rate.

    PubMed

    Rolim, N P L; Mattos, K C; Brum, P C; Baldo, M V C; Middlekauff, H R; Negrão, C E

    2006-02-01

    We tested the hypothesis that the inability to increase cardiac output during exercise would explain the decreased rate of oxygen uptake (VO2) in recent onset, ischemia-induced heart failure rats. Nine normal control rats and 6 rats with ischemic heart failure were studied. Myocardial infarction was induced by coronary ligation. VO2 was measured during a ramp protocol test on a treadmill using a metabolic mask. Cardiac output was measured with a flow probe placed around the ascending aorta. Left ventricular end-diastolic pressure was higher in ischemic heart failure rats compared with normal control rats (17 +/- 0.4 vs 8 +/- 0.8 mmHg, P = 0.0001). Resting cardiac index (CI) tended to be lower in ischemic heart failure rats (P = 0.07). Resting heart rate (HR) and stroke volume index (SVI) did not differ significantly between ischemic heart failure rats and normal control rats. Peak VO2 was lower in ischemic heart failure rats (73.72 +/- 7.37 vs 109.02 +/- 27.87 mL min(-1) kg(-1), P = 0.005). The VO2 and CI responses during exercise were significantly lower in ischemic heart failure rats than in normal control rats. The temporal response of SVI, but not of HR, was significantly lower in ischemic heart failure rats than in normal control rats. Peak CI, HR, and SVI were lower in ischemic heart failure rats. The reduction in VO2 response during incremental exercise in an ischemic model of heart failure is due to the decreased cardiac output response, largely caused by depressed stroke volume kinetics.

  9. Ischemia Induced Neuroinflammation is Associated with Disrupted Development of Oligodendrocyte Progenitors in a Model of Periventricular Leukomalacia

    PubMed Central

    Falahati, Sina; Breu, Markus; Waickman, Adam T.; Phillips, Andre W.; Arauz, Edwin J.; Snyder, Sophie; Porambo, Michael; Goeral, Katharina; Comi, Anne; Wilson, Mary Ann; Johnston, Michael V.; Fatemi, Ali

    2013-01-01

    Microglial activation in crossing white matter tracts is a hallmark of noncystic periventricular leukomalacia (PVL), the leading pathology underlying cerebral palsy in prematurely born infants. Recent studies indicate that neuroinflammation within an early time-window can produce long-lasting defects in oligodendroglial maturation, myelination-deficit, as well as disruption of transcription factors important in oligodendroglial maturation. We recently reported an ischemic mouse model of PVL, induced by unilateral neonatal carotid artery ligation, leading to selective long lasting bilateral myelination deficits, ipsilateral thinning of the corpus callosum, ventriculomegaly, as well as evidence of axonopathy. Here, we report that permanent unilateral carotid ligation on postnatal day 5 (P5) in CD-1 mice induces an inflammatory response, as defined by microglial activation and recruitment, as well as significant changes in cytokine expression (increased IL-1b, IL-6, TGF-b1, and TNF-a) following ischemia. Transient reduction in counts of oligodendrocyte progenitor cells (OPCs) at 24 and 48 hours post-ischemia, a shift in OPC cell size and morphology towards the more immature form, as well as likely migration of OPCs were found. These OPC changes were topographically associated with areas showing microglial activation, and OPC counts negatively correlated with increased microglial staining. The presented data shows a striking neuroinflammatory response in an ischemia-induced model of PVL, associated with oligodendroglial injury. Future studies modulating the neuroinflammatory response in this model, may contribute to a better understanding of the interaction between microglia and OPCs in PVL and open opportunities for future therapies. PMID:23445614

  10. Treadmill exercise ameliorates ischemia-induced brain edema while suppressing Na⁺/H⁺ exchanger 1 expression.

    PubMed

    Nishioka, Ryutaro; Sugimoto, Kana; Aono, Hitomi; Mise, Ayano; Choudhury, Mohammed E; Miyanishi, Kazuya; Islam, Afsana; Fujita, Takahiro; Takeda, Haruna; Takahashi, Hisaaki; Yano, Hajime; Tanaka, Junya

    2016-03-01

    Exercise may be one of the most effective and sound therapies for stroke; however, the mechanisms underlying the curative effects remain unclear. In this study, the effects of forced treadmill exercise with electric shock on ischemic brain edema were investigated. Wistar rats were subjected to transient (90 min) middle cerebral artery occlusion (tMCAO). Eighty nine rats with substantially large ischemic lesions were evaluated using magnetic resonance imaging (MRI) and were randomly assigned to exercise and non-exercise groups. The rats were forced to run at 4-6m/s for 10 min/day on days 2, 3 and 4. Brain edema was measured on day 5 by MRI, histochemical staining of brain sections and tissue water content determination (n=7, each experiment). Motor function in some rats was examined on day 30 (n=6). Exercise reduced brain edema (P<0.05-0.001, varied by the methods) and ameliorated motor function (P<0.05). The anti-glucocorticoid mifepristone or the anti-mineralocorticoid spironolactone abolished these effects, but orally administered corticosterone mimicked the ameliorating effects of exercise. Exercise prevented the ischemia-induced expression of mRNA encoding aquaporin 4 (AQP4) and Na(+)/H(+) exchangers (NHEs) (n=5 or 7, P<0.01). Microglia and NG2 glia expressed NHE1 in the peri-ischemic region of rat brains and also in mixed glial cultures. Corticosterone at ~10nM reduced NHE1 and AQP4 expression in mixed glial and pure microglial cultures. Dexamethasone and aldosterone at 10nM did not significantly alter NHE1 and AQP4 expression. Exposure to a NHE inhibitor caused shrinkage of microglial cells. These results suggest that the stressful short-period and slow-paced treadmill exercise suppressed NHE1 and AQP4 expression resulting in the amelioration of brain edema at least partly via the moderate increase in plasma corticosterone levels.

  11. Deletion of Nuclear Factor kappa B p50 Subunit Decreases Inflammatory Response and Mildly Protects Neurons from Transient Forebrain Ischemia-induced Damage

    PubMed Central

    Rolova, Taisia; Dhungana, Hiramani; Korhonen, Paula; Valonen, Piia; Kolosowska, Natalia; Konttinen, Henna; Kanninen, Katja; Tanila, Heikki; Malm, Tarja; Koistinaho, Jari

    2016-01-01

    Transient forebrain ischemia induces delayed death of the hippocampal pyramidal neurons, particularly in the CA2 and medial CA1 area. Early pharmacological inhibition of inflammatory response can ameliorate neuronal death, but it also inhibits processes leading to tissue regeneration. Therefore, research efforts are now directed to modulation of post-ischemic inflammation, with the aim to promote beneficial effects of inflammation and limit adverse effects. Transcription factor NF-κB plays a key role in the inflammation and cell survival/apoptosis pathways. In the brain, NF-κB is predominantly found in the form of a heterodimer of p65 (RelA) and p50 subunit, where p65 has a transactivation domain while p50 is chiefly involved in DNA binding. In this study, we subjected middle-aged Nfkb1 knockout mice (lacking p50 subunit) and wild-type controls of both sexs to 17 min of transient forebrain ischemia and assessed mouse performance in a panel of behavioral tests after two weeks of post-operative recovery. We found that ischemia failed to induce clear memory and motor deficits, but affected spontaneous locomotion in genotype- and sex-specific way. We also show that both the lack of the NF-κB p50 subunit and female sex independently protected CA2 hippocampal neurons from ischemia-induced cell death. Additionally, the NF-κB p50 subunit deficiency significantly reduced ischemia-induced microgliosis, astrogliosis, and neurogenesis. Lower levels of hippocampal microgliosis significantly correlated with faster spatial learning. We conclude that NF-κB regulates the outcome of transient forebrain ischemia in middle-aged subjects in a sex-specific way, having an impact not only on neuronal death but also specific inflammatory responses and neurogenesis. PMID:27493832

  12. Cholesterol testing and results

    MedlinePlus

    ... VLDL cholesterol) Lipoproteins are made of fat and protein. They carry cholesterol, triglycerides, and other fats, called ... Pencina MJ, Navar-Boggan AM, D'Agostino RB Sr, Williams K, Neely B, Sniderman AD, Peterson ED. ...

  13. Cholesterol and Plants

    ERIC Educational Resources Information Center

    Behrman, E. J.; Gopalan, Venkat

    2005-01-01

    There is a widespread belief among the public and even among chemist that plants do not contain cholesterol. This wrong belief is the result of the fact that plants generally contain only small quantities of cholesterol and that analytical methods for the detection of cholesterol in this range were not developed until recently.

  14. Antibodies to cholesterol.

    PubMed Central

    Swartz, G M; Gentry, M K; Amende, L M; Blanchette-Mackie, E J; Alving, C R

    1988-01-01

    Cholesterol-dependent complement activation has been proposed as a factor that might influence the pathogenesis of atherosclerosis. Although antibodies to cholesterol conjugates have been reported, cholesterol is widely regarded as a poorly immunogenic substance. Monoclonal IgM complement-fixing antibodies to cholesterol were obtained in the present study after immunizing mice with liposomes containing high amounts of cholesterol (71 mol % relative to phosphatidylcholine) and lipid A as an adjuvant. Clones were selected for the ability of secreted antibodies to react with liposomes containing 71% cholesterol but not with liposomes containing 43% cholesterol. The antibodies also reacted with crystalline cholesterol in a solid-phase enzyme-linked immunosorbent assay. Binding of monoclonal antibodies to the surface of crystalline cholesterol was demonstrated by electron microscopy by utilizing a second antibody (anti-IgM) labeled with colloidal gold. The immunization period required to induce monoclonal antibodies was very short (3 days) and a high fraction of the hybrid cells (at least 70%) were secreting detectable antibodies to cholesterol. The results demonstrate that cholesterol can be a highly immunogenic molecule and that complement-fixing antibodies to cholesterol can be readily obtained. Images PMID:3162316

  15. Avoiding Christmas cholesterol.

    PubMed

    1991-12-01

    Judging from your response to our September feature on cholesterol testing providing dietary advice has become of paramount importance to OHNs. The Flora Project for Heart Disease Prevention offers information on the risk factors of high cholesterol and has become a major noninstitutional authority on coronary heart disease. With Yuletide in sight The Flora Project offers advice on a cholesterol-clear Christmas.

  16. Effect of a pre-freezing treatment with cholesterol-loaded cyclodextrins on boar sperm longevity, capacitation dynamics, ability to adhere to porcine oviductal epithelial cells in vitro and DNA fragmentation dynamics.

    PubMed

    Tomás, C; Blanch, E; Fazeli, A; Mocé, E

    2013-01-01

    The aim of this work was to examine how a pre-freezing treatment with cholesterol-loaded cyclodextrins (CLC) affects boar sperm longevity, capacitation dynamics, ability to bind to a porcine telomerase-immortalised oviductal epithelial cell line (TERT-OPEC) in vitro and DNA integrity dynamics after freeze-thawing. Although the samples treated with CLC exhibited lower sperm quality than the control samples (P<0.05) immediately after thawing, these differences disappeared (P>0.05) after long-term incubation (26h at 37 or 16°C). Additionally, the CLC-treated spermatozoa underwent similar capacitation and DNA fragmentation dynamics as the control spermatozoa (P>0.05). However, CLC-treated spermatozoa were better able to bind to TERT-OPEC in vitro (P<0.0001). In conclusion, the pre-freezing treatment of boar spermatozoa with CLC enhanced the ability of the spermatozoa to bind to TERT-OPEC in vitro, which could have an effect on the establishment of the sperm reservoir in the ampullary--isthmic junction in vivo. Additionally, frozen-thawed spermatozoa can be stored at 16°C for at least 6h without a significant observable decline in sperm quality, which could be beneficial for the transport of thawed diluted doses of spermatozoa from the laboratory to the farm. PMID:23036662

  17. A Water-Ethanol Extract from the Willow Bracket Mushroom, Phellinus igniarius (Higher Basidiomycetes), Reduces Transient Cerebral Ischemia-Induced Neuronal Death.

    PubMed

    Kim, Jin Hee; Choi, Bo Young; Kim, Hyun Jung; Kim, In Yeol; Lee, Bo Eun; Sohn, Min; Park, Hyoung Jin; Suh, Sang Won

    2015-01-01

    This study investigated the potential neuroprotective effect of a mushroom extract from Phellinus igniarius (Piwep) after transient cerebral ischemia. Ph. Igniarius, which has a history of traditional medicinal use, contains immunomodulatory compounds that have been described to have effects on the human immune system. Using a model of transient cerebral ischemia induced by both common carotid artery occlusion and hypovolemia, a water-ethanol extract precipitate of Ph. Igniarius (Piwep) was delivered intraperitoneally immediately after the insult and was injected subsequently every other day for the experimental course. Neuronal death was examined by Fluoro-Jade B staining 1 week after the insult. Piwep injection lead to decreased hippocampal neuronal death, suppression of oxidative injury, activation of microglia, and disruption of the blood-brain barrier. We conclude that Piwep potently inhibits hippocampal neuronal death following ischemia and may have a high therapeutic potential for ameliorating stroke-induced neuron death in the clinical setting.

  18. A Water-Ethanol Extract from the Willow Bracket Mushroom, Phellinus igniarius (Higher Basidiomycetes), Reduces Transient Cerebral Ischemia-Induced Neuronal Death.

    PubMed

    Kim, Jin Hee; Choi, Bo Young; Kim, Hyun Jung; Kim, In Yeol; Lee, Bo Eun; Sohn, Min; Park, Hyoung Jin; Suh, Sang Won

    2015-01-01

    This study investigated the potential neuroprotective effect of a mushroom extract from Phellinus igniarius (Piwep) after transient cerebral ischemia. Ph. Igniarius, which has a history of traditional medicinal use, contains immunomodulatory compounds that have been described to have effects on the human immune system. Using a model of transient cerebral ischemia induced by both common carotid artery occlusion and hypovolemia, a water-ethanol extract precipitate of Ph. Igniarius (Piwep) was delivered intraperitoneally immediately after the insult and was injected subsequently every other day for the experimental course. Neuronal death was examined by Fluoro-Jade B staining 1 week after the insult. Piwep injection lead to decreased hippocampal neuronal death, suppression of oxidative injury, activation of microglia, and disruption of the blood-brain barrier. We conclude that Piwep potently inhibits hippocampal neuronal death following ischemia and may have a high therapeutic potential for ameliorating stroke-induced neuron death in the clinical setting. PMID:26756300

  19. Women and heart disease--physiologic regulation of gene delivery and expression: bioreducible polymers and ischemia-inducible gene therapies for the treatment of ischemic heart disease.

    PubMed

    Yockman, James W; Kim, Sung Wan; Bull, David A

    2009-08-10

    Ischemic heart disease (IHD) is the leading cause of death in the United States today. This year over 750,000 women will have a new or recurrent myocardial infarction. Currently, the mainstay of therapy for IHD is revascularization. Increasing evidence, however, suggests that revascularization alone is insufficient for the longer-term management of many patients with IHD. To address these issues, innovative therapies that extend beyond revascularization to protection of the myocyte and preservation of ventricular function are required. The emergence of gene therapy and proteomics offers the potential for innovative prophylactic and treatment strategies for IHD. The goal of our research is to develop therapeutic gene constructs for the treatment of myocardial ischemia that are clinically safe and effective. Toward this end, we describe the development of physiologic regulation of gene delivery and expression using bioreducible polymers and ischemia-inducible gene therapies for the potential treatment of ischemic heart disease in women.

  20. Home-Use Tests - Cholesterol

    MedlinePlus

    ... this test does: This is a home-use test kit to measure total cholesterol. What cholesterol is: Cholesterol is a fat (lipid) in your blood. High-density lipoprotein (HDL) ("good" cholesterol) helps protect your heart, but low-density lipoprotein (LDL) ("bad" cholesterol) can clog the arteries of your ...

  1. Children and Cholesterol

    MedlinePlus

    ... a coronary artery procedure; or who suffered a heart attack or sudden cardiac death before age 55. Those with a parent who has a history of high total cholesterol levels (240 mg/dL or higher). Talk to your child’s pediatrician ... Risk Calculator Printable Cholesterol Information Sheets Heart360 Health ...

  2. Cholesterol and Affective Morbidity

    PubMed Central

    Fiedorowicz, Jess G.; Palagummi, Narasimha M.; Behrendtsen, Ole; Coryell, William H.

    2009-01-01

    Depression and mania have been linked with low cholesterol though there has been limited prospective study of cholesterol and subsequent course of affective illness. We studied the relationship between fasting total cholesterol and subsequent depressive and manic symptoms. A total of 131 participants from a prospective cohort study were identified as having had a fasting total cholesterol evaluation at intake. Participants were predominantly inpatients at index visit and were followed for a median of 20 and up to 25 years. Cholesterol was modeled with age, gender, and index use of a mood stabilizer in linear regression to assess its influence on subsequent depressive symptom burden in participants with unipolar disorder as well as depressive and manic symptom burden in participants with bipolar disorder. Among bipolar participants (N=65), low cholesterol predicted a higher proportion of follow-up weeks with manic, but not depressive symptoms. Cholesterol did not appear to predict depressive symptom burden among participants with unipolar depression (N=66). Lower cholesterol levels may predispose individuals with bipolar disorder to a greater burden of manic symptomatology and may provide some insight into the underlying neurobiology. PMID:19969372

  3. Cholesterol and Your Child

    MedlinePlus

    ... traveling together are called lipoproteins . Two kinds — low-density lipoprotein (LDL) and high-density lipoprotein (HDL) — are the ones that most of us have heard about. Low-density lipoproteins , or "bad cholesterol," are the primary cholesterol ...

  4. Electrochemical oxidation of cholesterol

    PubMed Central

    2015-01-01

    Summary Indirect cholesterol electrochemical oxidation in the presence of various mediators leads to electrophilic addition to the double bond, oxidation at the allylic position, oxidation of the hydroxy group, or functionalization of the side chain. Recent studies have proven that direct electrochemical oxidation of cholesterol is also possible and affords different products depending on the reaction conditions. PMID:25977713

  5. What Your Cholesterol Levels Mean

    MedlinePlus

    ... Pressure Tools & Resources Stroke More What Your Cholesterol Levels Mean Updated:Aug 17,2016 How’s your cholesterol? Time to get it checked! Keeping your cholesterol levels healthy is a great way to keep your ...

  6. Cholesterol and Ion Channels

    PubMed Central

    Levitan, Irena; Fang, Yun; Rosenhouse-Dantsker, Avia; Romanenko, Victor

    2010-01-01

    A variety of ion channels, including members of all major ion channel families, have been shown to be regulated by changes in the level of membrane cholesterol and partition into cholesterol-rich membrane domains. In general, several types of cholesterol effects have been described. The most common effect is suppression of channel activity by an increase in membrane cholesterol, an effect that was described for several types of inwardly-rectifying K+ channels, voltage-gated K+ channels, Ca+2 sensitive K+ channels, voltage-gated Na+ channels, N-type voltage-gated Ca+2 channels and volume-regulated anion channels. In contrast, several types of ion channels, such as epithelial amiloride-sensitive Na+ channels and Transient Receptor Potential channels, as well as some of the types of inwardly-rectifying and voltage-gated K+ channels were shown to be inhibited by cholesterol depletion. Cholesterol was also shown to alter the kinetic properties and current-voltage dependence of several voltage-gated channels. Finally, maintaining membrane cholesterol level is required for coupling ion channels to signalling cascades. In terms of the mechanisms, three general mechanisms have been proposed: (i) specific interactions between cholesterol and the channel protein, (ii) changes in the physical properties of the membrane bilayer and (iii) maintaining the scaffolds for protein-protein interactions. The goal of this review is to describe systematically the role of cholesterol in regulation of the major types of ion channels and to discuss these effects in the context of the models proposed. PMID:20213557

  7. Dietary Fat and Cholesterol

    MedlinePlus

    ... Gynecology Medical Conditions Nutrition & Fitness Emotional Health Dietary Fat and Cholesterol Posted under Health Guides . Updated 23 ... warm What are the different types of dietary fat? The four main types of fat found in ...

  8. Get Your Cholesterol Checked

    MedlinePlus

    ... is checked with a blood test called a lipid profile. During the test, a nurse will take ... blood tests that can check cholesterol, but a lipid profile gives the most information. Find out more ...

  9. High Blood Cholesterol

    MedlinePlus

    ... of cholesterol is called plaque. Plaque Buildup Can Lead to… Click for more information Artherosclerosis. Over time, ... disease (CHD). Angina. The buildup of plaque can lead to chest pain called angina. Angina is a ...

  10. Common Misconceptions about Cholesterol

    MedlinePlus

    ... most (and preferably all) days; and stressing the importance of avoiding tobacco products. Learn more about cholesterol ... Privacy Policy Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Low Blood Pressure ...

  11. Cholesterol and Statins

    MedlinePlus

    ... the liver makes ldl & hdl In the liver, triglycerides, cholesterol, and proteins form together to make LDL ... This is especially important for individuals with high triglyceride and/or low HDL levels who are overweight ...

  12. Compounds affecting cholesterol absorption

    NASA Technical Reports Server (NTRS)

    Hua, Duy H. (Inventor); Koo, Sung I. (Inventor); Noh, Sang K. (Inventor)

    2004-01-01

    A class of novel compounds is described for use in affecting lymphatic absorption of cholesterol. Compounds of particular interest are defined by Formula I: ##STR1## or a pharmaceutically acceptable salt thereof.

  13. MD-2 binds cholesterol.

    PubMed

    Choi, Soo-Ho; Kim, Jungsu; Gonen, Ayelet; Viriyakosol, Suganya; Miller, Yury I

    2016-02-19

    Cholesterol is a structural component of cellular membranes, which is transported from liver to peripheral cells in the form of cholesterol esters (CE), residing in the hydrophobic core of low-density lipoprotein. Oxidized CE (OxCE) is often found in plasma and in atherosclerotic lesions of subjects with cardiovascular disease. Our earlier studies have demonstrated that OxCE activates inflammatory responses in macrophages via toll-like receptor-4 (TLR4). Here we demonstrate that cholesterol binds to myeloid differentiation-2 (MD-2), a TLR4 ancillary molecule, which is a binding receptor for bacterial lipopolysaccharide (LPS) and is indispensable for LPS-induced TLR4 dimerization and signaling. Cholesterol binding to MD-2 was competed by LPS and by OxCE-modified BSA. Furthermore, soluble MD-2 in human plasma and MD-2 in mouse atherosclerotic lesions carried cholesterol, the finding supporting the biological significance of MD-2 cholesterol binding. These results help understand the molecular basis of TLR4 activation by OxCE and mechanisms of chronic inflammation in atherosclerosis.

  14. [Neuroprotective activity of the proline-containing dipeptide noopept on the model of brain ischemia induced by the middle cerebral artery occlusion].

    PubMed

    Gavrilova, S A; Us, K S; Ostrovskaia, R U; Koshelev, V B

    2006-01-01

    The influence of noopept (N-phenylacetyl-L-prolylglycine ethyl ester, GVS-111) on the extent of ischemic cortical stroke was investigated in experiments on white mongrel male rats with ischemia induced by a combination of the middle cerebral artery occlusion with ipsilateral common carotid artery ligation. Animals were treated with noopept (0.5 mg/kg, i.p.) according to the following schedule: 15 min and 2, 24, and 48 h after the occlusion. Test rats were decapitated 72 h after occlusion, brains were extracted and frozen, and thin brain slices were stained with 2,3,5-triphenyltetrazolium chloride. The slices were scanned and processed using Auc 1 computer program, which estimates the percentage of damaged area relative to that of the whole ipsilateral hemisphere. The conditions of coagulation the distal segment of middle cerebral artery were selected, which caused necrosis localized in the fronto-parietal and dorso-lateral regions of the brain cortex without any damage of subcortical structures. The extent of the brain damage in control group (treated by saline) was 18.6%, while that in the group treated with noopept was 12.2%, thus demonstrating a decrease in the infarction area by 34.5% (p < 05). The data on noopept efficacy on the model of the extensive ischemic injury of brain cortex show that this drug has good prospects for use in the neuroprotective treatment of stroke. PMID:16995431

  15. Cholesterol depletion induces autophagy

    SciTech Connect

    Cheng, Jinglei; Ohsaki, Yuki; Tauchi-Sato, Kumi; Fujita, Akikazu; Fujimoto, Toyoshi . E-mail: tfujimot@med.nagoya-u.ac.jp

    2006-12-08

    Autophagy is a mechanism to digest cells' own components, and its importance in many physiological and pathological processes is being recognized. But the molecular mechanism that regulates autophagy is not understood in detail. In the present study, we found that cholesterol depletion induces macroautophagy. The cellular cholesterol in human fibroblasts was depleted either acutely using 5 mM methyl-{beta}-cyclodextrin or 10-20 {mu}g/ml nystatin for 1 h, or metabolically by 20 {mu}M mevastatin and 200 {mu}M mevalonolactone along with 10% lipoprotein-deficient serum for 2-3 days. By any of these protocols, marked increase of LC3-II was detected by immunoblotting and by immunofluorescence microscopy, and the increase was more extensive than that caused by amino acid starvation, i.e., incubation in Hanks' solution for several hours. The induction of autophagic vacuoles by cholesterol depletion was also observed in other cell types, and the LC3-positive membranes were often seen as long tubules, >50 {mu}m in length. The increase of LC3-II by methyl-{beta}-cyclodextrin was suppressed by phosphatidylinositol 3-kinase inhibitors and was accompanied by dephosphorylation of mammalian target of rapamycin. By electron microscopy, autophagic vacuoles induced by cholesterol depletion were indistinguishable from those seen after amino acid starvation. These results demonstrate that a decrease in cholesterol activates autophagy by a phosphatidylinositol 3-kinase-dependent mechanism.

  16. Cholesterol Absorption and Metabolism.

    PubMed

    Howles, Philip N

    2016-01-01

    Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases (CVDs) associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport (RCT) has become an area of intense new interest for drug discovery since this process is now considered another key to reducing CVD risk. The ultimate measure of RCT is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results. PMID:27150091

  17. Degradation of plasma membrane phosphatidylcholine appears not to affect the cellular cholesterol distribution.

    PubMed

    Pörn, M I; Ares, M P; Slotte, J P

    1993-08-01

    To clarify the role of possible cholesterol/phosphatidylcholine interactions in cellular cholesterol distribution, we have used a phosphatidylcholine-specific phospholipase C from Bacillus cereus to degrade the cell surface phosphatidylcholine of cultured human fibroblasts. Of cellular phosphatidylcholine, approximately 15% was susceptible to degradation by the phospholipase. In spite of the dramatic redistribution of cellular cholesterol that can be observed after sphingomyelin depletion, the degradation of cell surface phosphatidylcholine did not affect the distribution of cholesterol in fibroblasts. In cholesterol-depleted cells as well as in cholesterol-loaded cells, the size of the cell surface cholesterol pool (susceptible to cholesterol oxidase) remained unchanged after phosphatidylcholine degradation. The rate of cholesterol esterification with [3H]oleic acid and the rate of [3H]cholesterol efflux from fibroblasts to high density lipoproteins also remained unchanged after degradation of plasma membrane phosphatidylcholine. An increase in the level of [3H]cholesterol efflux to high density lipoproteins was observed after degradation of plasma membrane sphingomyelin with exogenous sphingomyelinase, in-contrast to earlier reports, where no such effect was observed. The results suggest that interactions between cholesterol and phosphatidylcholine in the fibroblast plasma membranes are less important than cholesterol/sphingomyelin interactions for the asymmetric distribution of cellular cholesterol.

  18. Dietary Sutherlandia and Elderberry Mitigate Cerebral Ischemia-Induced Neuronal Damage and Attenuate p47phox and Phospho-ERK1/2 Expression in Microglial Cells

    PubMed Central

    Chuang, Dennis Y.; Cui, Jiankun; Simonyi, Agnes; Engel, Victoria A.; Chen, Shanyan; Fritsche, Kevin L.; Thomas, Andrew L.; Applequist, Wendy L.; Folk, William R.; Lubahn, Dennis B.; Sun, Albert Y.; Sun, Grace Y.

    2014-01-01

    Sutherlandia (Sutherlandia frutescens) and elderberry (Sambucus spp.) are used to promote health and for treatment of a number of ailments. Although studies with cultured cells have demonstrated antioxidative and anti-inflammatory properties of these botanicals, little is known about their ability to mitigate brain injury. In this study, C57BL/6 J male mice were fed AIN93G diets without or with Sutherlandia or American elderberry for 2 months prior to a 30-min global cerebral ischemia induced by occlusion of the bilateral common carotid arteries (BCCAs), followed by reperfusion for 3 days. Accelerating rotarod assessment at 24 h after BCCA occlusion showed amelioration of sensorimotor impairment in the mice fed the supplemented diets as compared with the ischemic mice fed the control diet. Quantitative digital pathology assessment of brain slides stained with cresyl violet at 3 days after ischemia/reperfusion (I/R) revealed significant reduction in neuronal cell death in both dietary groups. Immunohistochemical staining for ionized calcium-binding adapter molecule-1 demonstrated pronounced activation of microglia in the hippocampus and striatum in the ischemic brains 3 days after I/R, and microglial activation was significantly reduced in animals fed supplemented diets. Mitigation of microglial activation by the supplements was further supported by the decrease in expression of p47phox, a cytosolic subunit of NADPH oxidase, and phospho-ERK1/2, a mitogen-activated protein kinase known to mediate a number of cytoplasmic processes including oxidative stress and neuroinflammatory responses. These results demonstrate neuroprotective effect of Sutherlandia and American elderberry botanicals against oxidative and inflammatory responses to cerebral I/R. PMID:25324465

  19. Ischemia-Induced Autophagy Contributes to Neurodegeneration in Cerebellar Purkinje Cells in the Developing Rat Brain and in Primary Cortical Neurons In Vitro

    PubMed Central

    Au, Alicia K.; Chen, Yaming; Du, Lina; Smith, Craig M.; Manole, Mioara D.; Baltagi, Sirine A.; Chu, Charleen T.; Aneja, Rajesh K.; Bayır, Hülya; Kochanek, Patrick M.; Clark, Robert S. B.

    2015-01-01

    Increased autophagy/mitophagy is thought to contribute to cerebellar dysfunction in Purkinje cell degeneration mice. Intriguingly, cerebellar Purkinje cells are highly vulnerable to hypoxia-ischemia (HI), related at least in part to their high metabolic activity. Whether or not excessive or supraphysiologic autophagy plays a role in Purkinje cell susceptibility to HI is unknown. Accordingly, we evaluated the role of autophagy in the cerebellum after global ischemia produced by asphyxial cardiac arrest in postnatal day (PND) 16–18 rats, using siRNA-targeted inhibition of Atg7, necessary for microtubule-associated protein light chain 3-II (LC3-II) and Atg12-Atg5 complex formation. Two days before a 9 min asphyxial cardiac arrest or sham surgery, Atg7 or control siRNA was injected intracisternally to target the cerebellum. Treatment with Atg7 siRNA: 1) reduced Atg7 protein expression in the cerebellum by 56%; 2) prevented the typical ischemia-induced formation of LC3-II in the cerebellum 24 h after asphyxial cardiac arrest; 3) improved performance on the beam-balance apparatus on days 1–5; and 4) increased calbindin-labeled Purkinje cell survival assessed on day 14. Improved Purkinje cell survival was more consistent in female vs. male rats, and improved beam-balance performance was only seen in female rats. Similar responses to Atg7 siRNA i.e. reduced autophagy and neurodegeneration vs. control siRNA were seen when exposing sex-segregated green fluorescent protein-LC3 tagged mouse primary cortical neurons to oxygen glucose deprivation in vitro. Thus, inhibition of autophagy after global ischemia in PND 16–18 rats leads to increased survival of Purkinje cells and improved motor performance in a sex-dependent manner. PMID:26071643

  20. CHOLESTEROL AND CHOLESTEROL ESTER CONTENT OF BOVINE COLOSTRUM

    PubMed Central

    Shope, Richard E.; Gowen, John W.

    1928-01-01

    The total amount of cholesterol found in colostrum and milk is comparatively low. The amount of cholesterol found in colostrum declines at an ever decreasing rate as milk secretion develops until at 48 hours the cholesterol is nearly the same as that found in milk 3 months or 7 months after parturition. The morning milk differs from the evening milk in that the cholesterol bound as ester is greater in amount. PMID:19869468

  1. Cholesterol: Up in Smoke.

    ERIC Educational Resources Information Center

    Raloff, Janet

    1991-01-01

    Discussed is the contribution cooked meat makes to air pollution. The dozens of compounds, including cholesterol, that are released when a hamburger is grilled are described. The potential effects of these emissions on humans and the urban environment are discussed. (KR)

  2. Cholesterol, inflammasomes, and atherogenesis

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Plasma cholesterol levels have been strongly associated with atherogenesis, underscoring the role of lipid metabolism in defining cardiovascular disease risk. However, atherosclerotic plaque is highly dynamic and contains elements of both the innate and adaptive immune system that respond to the abe...

  3. Niacin for cholesterol

    MedlinePlus

    ... this page, please enable JavaScript. Niacin is a B-vitamin. When taken as a prescription in larger doses, ... A.M. Editorial team. Related MedlinePlus Health Topics B Vitamins Cholesterol Browse the Encyclopedia A.D.A.M., ...

  4. Cholesterol transport in model membranes

    NASA Astrophysics Data System (ADS)

    Garg, Sumit; Porcar, Lionel; Butler, Paul; Perez-Salas, Ursula

    2010-03-01

    Physiological processes distribute cholesterol unevenly within the cell. The levels of cholesterol are maintained by intracellular transport and a disruption in the cell's ability to keep these normal levels will lead to disease. Exchange rates of cholesterol are generally studied in model systems using labeled lipid vesicles. Initially donor vesicles have all the cholesterol and acceptor vesicles are devoid of it. They are mixed and after some time the vesicles are separated and cholesterol is traced in each vesicle. The studies performed up to date have significant scatter indicating that the methodologies are not consistent. The present work shows in-situ Time-Resolved SANS studies of cholesterol exchange rates in unsaturated PC lipid vesicles. Molecular dynamics simulations were done to investigate the energetic and kinetic behavior of cholesterol in this system. This synergistic approach will provide insight into our efforts to understand cholesterol traffic.

  5. Mitochondria, cholesterol and cancer cell metabolism.

    PubMed

    Ribas, Vicent; García-Ruiz, Carmen; Fernández-Checa, José C

    2016-12-01

    Given the role of mitochondria in oxygen consumption, metabolism and cell death regulation, alterations in mitochondrial function or dysregulation of cell death pathways contribute to the genesis and progression of cancer. Cancer cells exhibit an array of metabolic transformations induced by mutations leading to gain-of-function of oncogenes and loss-of-function of tumor suppressor genes that include increased glucose consumption, reduced mitochondrial respiration, increased reactive oxygen species generation and cell death resistance, all of which ensure cancer progression. Cholesterol metabolism is disturbed in cancer cells and supports uncontrolled cell growth. In particular, the accumulation of cholesterol in mitochondria emerges as a molecular component that orchestrates some of these metabolic alterations in cancer cells by impairing mitochondrial function. As a consequence, mitochondrial cholesterol loading in cancer cells may contribute, in part, to the Warburg effect stimulating aerobic glycolysis to meet the energetic demand of proliferating cells, while protecting cancer cells against mitochondrial apoptosis due to changes in mitochondrial membrane dynamics. Further understanding the complexity in the metabolic alterations of cancer cells, mediated largely through alterations in mitochondrial function, may pave the way to identify more efficient strategies for cancer treatment involving the use of small molecules targeting mitochondria, cholesterol homeostasis/trafficking and specific metabolic pathways. PMID:27455839

  6. Understand Your Risk for High Cholesterol

    MedlinePlus

    ... or trans fats also increases the amount of LDL cholesterol in your blood. If high blood cholesterol runs ... may not be enough to help lower your LDL blood cholesterol. View an animation of cholesterol . More information: Women ...

  7. Overview of Cholesterol and Lipid Disorders

    MedlinePlus

    ... Cholesterol and Lipid Disorders Dyslipidemia Hypolipidemia Cholesterol and triglycerides are important fats (lipids) in the blood. Cholesterol ... needs, but it also obtains cholesterol from food. Triglycerides, which are contained in fat cells, can be ...

  8. Cholesterol Metabolism in CKD.

    PubMed

    Reiss, Allison B; Voloshyna, Iryna; De Leon, Joshua; Miyawaki, Nobuyuki; Mattana, Joseph

    2015-12-01

    Patients with chronic kidney disease (CKD) have a substantial risk of developing coronary artery disease. Traditional cardiovascular disease (CVD) risk factors such as hypertension and hyperlipidemia do not adequately explain the high prevalence of CVD in CKD. Both CVD and CKD are inflammatory states and inflammation adversely affects lipid balance. Dyslipidemia in CKD is characterized by elevated triglyceride levels and high-density lipoprotein levels that are both decreased and dysfunctional. This dysfunctional high-density lipoprotein becomes proinflammatory and loses its atheroprotective ability to promote cholesterol efflux from cells, including lipid-overloaded macrophages in the arterial wall. Elevated triglyceride levels result primarily from defective clearance. The weak association between low-density lipoprotein cholesterol level and coronary risk in CKD has led to controversy over the usefulness of statin therapy. This review examines disrupted cholesterol transport in CKD, presenting both clinical and preclinical evidence of the effect of the uremic environment on vascular lipid accumulation. Preventative and treatment strategies are explored. PMID:26337134

  9. Cholesterol binding to ion channels

    PubMed Central

    Levitan, Irena; Singh, Dev K.; Rosenhouse-Dantsker, Avia

    2014-01-01

    Numerous studies demonstrated that membrane cholesterol is a major regulator of ion channel function. The goal of this review is to discuss significant advances that have been recently achieved in elucidating the mechanisms responsible for cholesterol regulation of ion channels. The first major insight that comes from growing number of studies that based on the sterol specificity of cholesterol effects, show that several types of ion channels (nAChR, Kir, BK, TRPV) are regulated by specific sterol-protein interactions. This conclusion is supported by demonstrating direct saturable binding of cholesterol to a bacterial Kir channel. The second major advance in the field is the identification of putative cholesterol binding sites in several types of ion channels. These include sites at locations associated with the well-known cholesterol binding motif CRAC and its reversed form CARC in nAChR, BK, and TRPV, as well as novel cholesterol binding regions in Kir channels. Notably, in the majority of these channels, cholesterol is suggested to interact mainly with hydrophobic residues in non-annular regions of the channels being embedded in between transmembrane protein helices. We also discuss how identification of putative cholesterol binding sites is an essential step to understand the mechanistic basis of cholesterol-induced channel regulation. Clearly, however, these are only the first few steps in obtaining a general understanding of cholesterol-ion channels interactions and their roles in cellular and organ functions. PMID:24616704

  10. ORMDL orosomucoid-like proteins are degraded by free-cholesterol-loading–induced autophagy

    PubMed Central

    Wang, Shuhui; Robinet, Peggy; Smith, Jonathan D.; Gulshan, Kailash

    2015-01-01

    Eukaryotic cells have evolved robust mechanisms to counter excess cholesterol including redistribution of lipids into different compartments and compensatory up-regulation of phospholipid biosynthesis. We demonstrate here that excess cellular cholesterol increased the activity of the endoplasmic reticulum (ER) enzyme serine palmitoyl-CoA transferase (SPT), the rate-limiting enzyme in sphingomyelin synthesis. This increased SPT activity was not due to altered levels of SPTLC1 or SPTLC2, the major subunits of SPT. Instead, cholesterol loading decreased the levels of ORMDL1, a negative regulator of SPT activity, due to its increased turnover. Several lines of evidence demonstrated that free-cholesterol–induced autophagy, which led to increased turnover of ORMDL1. Cholesterol loading induced ORMDL1 redistribution from the ER to cytoplasmic p62 positive autophagosomes. Coimmunoprecipitation analysis of cholesterol-loaded cells showed increased association between ORMDL1 and p62. The lysosomal inhibitor chloroquine or siRNA knockdown of Atg7 inhibited ORMDL1 degradation by cholesterol, whereas proteasome inhibitors showed no effect. ORMDL1 degradation was specific to free-cholesterol loading as autophagy induced by serum starvation or general ER stress did not lead to ORMDL1 degradation. ORMDL proteins are thus previously unidentified responders to excess cholesterol, exiting the ER to activate SPT and increase sphingomyelin biosynthesis, which may buffer excess cellular cholesterol. PMID:25775599

  11. The cholesterol content of the erythrocyte membrane is an important determinant of phosphatidylserine exposure.

    PubMed

    van Zwieten, Rob; Bochem, Andrea E; Hilarius, Petra M; van Bruggen, Robin; Bergkamp, Ferry; Hovingh, G Kees; Verhoeven, Arthur J

    2012-12-01

    Maintenance of the asymmetric distribution of phospholipids across the plasma membrane is a prerequisite for the survival of erythrocytes. Various stimuli have been shown to induce scrambling of phospholipids and thereby exposure of phosphatidylserine (PS). In two types of patients, both with aberrant plasma cholesterol levels, we observed an aberrant PS exposure in erythrocytes upon stimulation. We investigated the effect of high and low levels of cholesterol on the ATP-dependent flippase, which maintains phospholipid asymmetry, and the ATP-independent scrambling activity, which breaks down phospholipid asymmetry. We analyzed erythrocytes of a patient with spur cell anemia, characterized by elevated plasma cholesterol, and the erythrocytes of Tangier disease patients with very low levels of plasma cholesterol. In normal erythrocytes, loaded with cholesterol or depleted of cholesterol in vitro, the same analyses were performed. Changes in the cholesterol/phospholipid ratio of erythrocytes had marked effects on PS exposure upon cell activation. Excess cholesterol profoundly inhibited PS exposure, whereas cholesterol depletion led to increased PS exposure. The activity of the ATP-dependent flippase was not changed, suggesting a major influence of cholesterol on the outward translocation of PS. The effects of cholesterol were not accompanied by eminent changes in cytoskeletal and membrane proteins. These findings emphasize the importance of cholesterol exchange between circulating plasma and the erythrocyte membrane as determinant for phosphatidylserine exposure in erythrocytes.

  12. Food combinations for cholesterol lowering.

    PubMed

    Harland, Janice I

    2012-12-01

    Reducing elevated LDL-cholesterol is a key public health challenge. There is substantial evidence from randomised controlled trials (RCT) that a number of foods and food components can significantly reduce LDL-cholesterol. Data from RCT have been reviewed to determine whether effects are additive when two or more of these components are consumed together. Typically components, such as plant stanols and sterols, soya protein, β-glucans and tree nuts, when consumed individually at their target rate, reduce LDL-cholesterol by 3-9 %. Improved dietary fat quality, achieved by replacing SFA with unsaturated fat, reduces LDL-cholesterol and can increase HDL-cholesterol, further improving blood lipid profile. It appears that the effect of combining these interventions is largely additive; however, compliance with multiple changes may reduce over time. Food combinations used in ten 'portfolio diet' studies have been reviewed. In clinical efficacy studies of about 1 month where all foods were provided, LDL-cholesterol is reduced by 22-30 %, whereas in community-based studies of >6 months' duration, where dietary advice is the basis of the intervention, reduction in LDL-cholesterol is about 15 %. Inclusion of MUFA into 'portfolio diets' increases HDL-cholesterol, in addition to LDL-cholesterol effects. Compliance with some of these dietary changes can be achieved more easily compared with others. By careful food component selection, appropriate to the individual, the effect of including only two components in the diet with good compliance could be a sustainable 10 % reduction in LDL-cholesterol; this is sufficient to make a substantial impact on cholesterol management and reduce the need for pharmaceutical intervention.

  13. How cholesterol regulates endothelial biomechanics

    PubMed Central

    Hong, Zhongkui; Staiculescu, Marius C.; Hampel, Paul; Levitan, Irena; Forgacs, Gabor

    2012-01-01

    As endothelial cells form the barrier between blood flow and surrounding tissue, many of their functions depend on mechanical integrity, in particular those of the plasma membrane. As component and organizer of the plasma membrane, cholesterol is a regulator of cellular mechanical properties. Disruption of cholesterol balance leads to impairment of endothelial functions and eventually to disease. The mechanical properties of the membrane are strongly affected by the cytoskeleton. As Phosphatidylinositol-4,5-bisphosphate (PIP2) is a key mediator between the membrane and cytoskeleton, it also affects cellular biomechanical properties. Typically, PIP2 is concentrated in cholesterol-rich microdomains, such as caveolae and lipid rafts, which are particularly abundant in the endothelial plasma membrane. We investigated the connection between cholesterol and PIP2 by extracting membrane tethers from bovine aortic endothelial cells (BAEC) at different cholesterol levels and PIP2 conditions. Our results suggest that in BAEC the role of PIP2, as a mediator of membrane-cytoskeleton adhesion, is regulated by cholesterol. Our findings confirm the specific role of cholesterol in endothelial cells and may have implications for cholesterol-dependent vascular pathologies. PMID:23162471

  14. Cholesterol - what to ask your doctor

    MedlinePlus

    ... this page: //medlineplus.gov/ency/patientinstructions/000211.htm Cholesterol - what to ask your doctor To use the ... this page, please enable JavaScript. Your body needs cholesterol to work properly. When you have extra cholesterol ...

  15. What Do My Cholesterol Levels Mean?

    MedlinePlus

    ... Tools & Resources Stroke More What Do My Cholesterol Levels Mean? Updated:Mar 22,2016 High cholesterol can ... a fasting “lipoprotein profile” to measure your cholesterol levels. It assesses several types of fat in the ...

  16. How to Get Your Cholesterol Tested

    MedlinePlus

    ... HDL) cholesterol, low-density lipoprotein (LDL) cholesterol and triglycerides. A small sample of blood will be drawn ... the amount of LDL (bad) cholesterol level and triglycerides can be affected by what you've recently ...

  17. Serum cholesterol selectively regulates glucocorticoid sensitivity through activation of JNK.

    PubMed

    Yang, Nan; Caratti, Giorgio; Ince, Louise M; Poolman, Toryn M; Trebble, Peter J; Holt, Cathy M; Ray, David W; Matthews, Laura C

    2014-11-01

    Glucocorticoids (Gc) are potent anti-inflammatory agents with wide clinical application. We have previously shown that increased serum concentration significantly attenuates regulation of a simple Gc-responsive reporter. We now find that glucocorticoid receptor (GR) regulation of some endogenous transactivated but not transrepressed genes is impaired, suggesting template specificity. Serum did not directly affect GR expression, activity or trafficking, implicating GR crosstalk with other signalling pathways. Indeed, a JNK inhibitor completely abolished the serum effect. We identified the Gc modulating serum component as cholesterol. Cholesterol loading mimicked the serum effect, which was readily reversed by JNK inhibition. Chelation of serum cholesterol with methyl-β-cyclodextrin or inhibition of cellular cholesterol synthesis with simvastatin potentiated the Gc response. To explore the effect in vivo we used ApoE(-/-) mice, a model of hypercholesterolaemia. Consistent with our in vitro studies, we find no impact of elevated cholesterol on the expression of GR, or on the hypothalamic-pituitary-adrenal axis, measured by dexamethasone suppression test. Instead we find selective Gc resistance on some hepatic target genes in ApoE(-/-) mice. Therefore, we have discovered an unexpected role for cholesterol as a selective modulator of Gc action in vivo. Taken together these findings reveal a new environmental constraint on Gc action with relevance to both inflammation and cancer.

  18. Lateral organization of cholesterol molecules in lipid-cholesterol assemblies.

    SciTech Connect

    Singh, Rajiv R. P.; Slepoy, Alexander; Sengupta, Pinaki; Cox, Daniel L.

    2005-05-01

    We present results of an off-lattice simulation of a two-component planar system, as a model for lateral organization of cholesterol molecules in lipid-cholesterol assemblies. We explore the existence of 'superlattice' structures even in fluid systems, in the absence of an underlying translational long-range order, and study their coupling to hexatic or bond-orientational order. We discuss our results in context of geometric superlattice theories and 'condensation complexes' in understanding a variety of experiments in artificial lipid-cholesterol assemblies.

  19. [Structure of allostatic load in railway workers].

    PubMed

    Gorokhova, S G; Pfaf, V F; Muraseyeva, E V; Akhsanova, E R; Prigorovskaya, T S; At'kov, O Yu

    2016-01-01

    The authors studied allostatic load in railway workers, as an indicator of stress effect. Analysis covered biomarkers that form allostatic load index, and their ratio for variable allostatic load index levels. Moderate allostatic load appeared to prevail in the examinees group. Findings are that systolic and diastolic blood pressure, general cholesterol and hemoglobin make major contribution into allostatic load index. Comparison covered models of allostatic load index calculation for variable biomarkers sets.

  20. [Structure of allostatic load in railway workers].

    PubMed

    Gorokhova, S G; Pfaf, V F; Muraseyeva, E V; Akhsanova, E R; Prigorovskaya, T S; At'kov, O Yu

    2016-01-01

    The authors studied allostatic load in railway workers, as an indicator of stress effect. Analysis covered biomarkers that form allostatic load index, and their ratio for variable allostatic load index levels. Moderate allostatic load appeared to prevail in the examinees group. Findings are that systolic and diastolic blood pressure, general cholesterol and hemoglobin make major contribution into allostatic load index. Comparison covered models of allostatic load index calculation for variable biomarkers sets. PMID:27396144

  1. Think Again About Cholesterol Survey.

    PubMed

    Catapano, Alberico L; Wiklund, Olov

    2015-12-01

    Cardiovascular disease (CVD) is still the main cause of death in Europe. Elevated plasma cholesterol, specifically low-density lipoprotein cholesterol (LDL-C), is the main causative risk factor for CVD, most prominently associated with coronary heart disease. A widespread disinformation about cholesterol and CVD is one factor underlying a poor compliance to lipid-lowering therapy. To investigate how cholesterol, CVD and cholesterol reduction is perceived in the population, a survey was commissioned by the European Atherosclerosis Society (EAS). Nearly half of people above 25 years of age are most worried about cancer (45%), compared to just over one in four who are worried about heart disease (27%). A majority believe being overweight (72%), blood pressure (70%) and smoking (67%) most affect heart health, far more than note cholesterol (59%) and family history (39%). The majority of adults recognize that high LDL (or "bad") cholesterol should be a health priority for everyone, including those younger than 40 and those who are not overweight. However, 1 in 4 (25%) incorrectly believe that it does not need to be a concern until someone shows signs or symptoms. Although 89% of adults surveyed agreed it is important for people to know whether or not they have high LDL-C, an overwhelming 92% did not know their LDL-C levels or had never had their cholesterol levels tested. A high 63% had never heard of familial hypercholesterolemia: France had the lowest level of awareness (41%) to Denmark with a high 80%, and the association of the disease with high levels of LDL-C is quite poor (only 36%), with Sweden only at 22% versus a high in Spain of 54%. A large part of the people participating in the survey were quite uncertain about the modality of transmission for familial hypercholesterolemia in the family. All in all, this survey highlights the need for more information among citizens for the role of cholesterol in determining CVD.

  2. Think Again About Cholesterol Survey.

    PubMed

    Catapano, Alberico L; Wiklund, Olov

    2015-12-01

    Cardiovascular disease (CVD) is still the main cause of death in Europe. Elevated plasma cholesterol, specifically low-density lipoprotein cholesterol (LDL-C), is the main causative risk factor for CVD, most prominently associated with coronary heart disease. A widespread disinformation about cholesterol and CVD is one factor underlying a poor compliance to lipid-lowering therapy. To investigate how cholesterol, CVD and cholesterol reduction is perceived in the population, a survey was commissioned by the European Atherosclerosis Society (EAS). Nearly half of people above 25 years of age are most worried about cancer (45%), compared to just over one in four who are worried about heart disease (27%). A majority believe being overweight (72%), blood pressure (70%) and smoking (67%) most affect heart health, far more than note cholesterol (59%) and family history (39%). The majority of adults recognize that high LDL (or "bad") cholesterol should be a health priority for everyone, including those younger than 40 and those who are not overweight. However, 1 in 4 (25%) incorrectly believe that it does not need to be a concern until someone shows signs or symptoms. Although 89% of adults surveyed agreed it is important for people to know whether or not they have high LDL-C, an overwhelming 92% did not know their LDL-C levels or had never had their cholesterol levels tested. A high 63% had never heard of familial hypercholesterolemia: France had the lowest level of awareness (41%) to Denmark with a high 80%, and the association of the disease with high levels of LDL-C is quite poor (only 36%), with Sweden only at 22% versus a high in Spain of 54%. A large part of the people participating in the survey were quite uncertain about the modality of transmission for familial hypercholesterolemia in the family. All in all, this survey highlights the need for more information among citizens for the role of cholesterol in determining CVD. PMID:26671304

  3. Cholesterol Perturbs Lipid Bilayers Nonuniversally

    SciTech Connect

    Pan Jianjun; Mills, Thalia T.; Tristram-Nagle, Stephanie; Nagle, John F.

    2008-05-16

    Cholesterol is well known to modulate the physical properties of biomembranes. Using modern x-ray scattering methods, we have studied the effects of cholesterol on the bending modulus K{sub C}, the thickness D{sub HH}, and the orientational order parameter S{sub xray} of lipid bilayers. We find that the effects are different for at least three classes of phospholipids characterized by different numbers of saturated hydrocarbon chains. Most strikingly, cholesterol strongly increases K{sub C} when both chains of the phospholipid are fully saturated but not at all when there are two monounsaturated chains.

  4. Targeting cancer using cholesterol conjugates

    PubMed Central

    Radwan, Awwad A.; Alanazi, Fares K.

    2013-01-01

    Conjugation of cholesterol moiety to active compounds for either cancer treatment or diagnosis is an attractive approach. Cholesterol derivatives are widely studied as cancer diagnostic agents and as anticancer derivatives either in vitro or in vivo using animal models. In largely growing studies, anticancer agents have been chemically conjugated to cholesterol molecules, to enhance their pharmacokinetic behavior, cellular uptake, target specificity, and safety. To efficiently deliver anticancer agents to the target cells and tissues, many different cholesterol–anticancer conjugates were synthesized and characterized, and their anticancer efficiencies were tested in vitro and in vivo. PMID:24493968

  5. Lecithin:Cholesterol Acyltransferase (LCAT) Deficiency Promotes Differentiation of Satellite Cells to Brown Adipocytes in a Cholesterol-dependent Manner.

    PubMed

    Nesan, Dinushan; Tavallaee, Ghazaleh; Koh, Deborah; Bashiri, Amir; Abdin, Rawand; Ng, Dominic S

    2015-12-18

    Our laboratory previously reported that lecithin:cholesterol acyltransferase (LCAT) and LDL receptor double knock-out mice (Ldlr(-/-)xLcat(-/-) or DKO) spontaneously develop functioning ectopic brown adipose tissue (BAT) in skeletal muscle, putatively contributing to protection from the diet-induced obesity phenotype. Here we further investigated their developmental origin and the mechanistic role of LCAT deficiency. Gene profiling of skeletal muscle in DKO newborns and adults revealed a classical lineage. Primary quiescent satellite cells (SC) from chow-fed DKO mice, not in Ldlr(-/-)xLcat(+/+) single-knock-out (SKO) or C57BL/6 wild type, were found to (i) express exclusively classical BAT-selective genes, (ii) be primed to express key functional BAT genes, and (iii) exhibit markedly increased ex vivo adipogenic differentiation into brown adipocytes. This gene priming effect was abrogated upon feeding the mice a 2% high cholesterol diet in association with accumulation of excess intracellular cholesterol. Ex vivo cholesterol loading of chow-fed DKO SC recapitulated the effect, indicating that cellular cholesterol is a key regulator of SC-to-BAT differentiation. Comparing adipogenicity of Ldlr(+/+)xLcat(-/-) (LCAT-KO) SC with DKO SC identified a role for LCAT deficiency in priming SC to express BAT genes. Additionally, we found that reduced cellular cholesterol is important for adipogenic differentiation, evidenced by increased induction of adipogenesis in cholesterol-depleted SC from both LCAT-KO and SKO mice. Taken together, we conclude that ectopic BAT in DKO mice is classical in origin, and its development begins in utero. We further showed complementary roles of LCAT deficiency and cellular cholesterol reduction in the SC-to-BAT adipogenesis.

  6. Lecithin:Cholesterol Acyltransferase (LCAT) Deficiency Promotes Differentiation of Satellite Cells to Brown Adipocytes in a Cholesterol-dependent Manner.

    PubMed

    Nesan, Dinushan; Tavallaee, Ghazaleh; Koh, Deborah; Bashiri, Amir; Abdin, Rawand; Ng, Dominic S

    2015-12-18

    Our laboratory previously reported that lecithin:cholesterol acyltransferase (LCAT) and LDL receptor double knock-out mice (Ldlr(-/-)xLcat(-/-) or DKO) spontaneously develop functioning ectopic brown adipose tissue (BAT) in skeletal muscle, putatively contributing to protection from the diet-induced obesity phenotype. Here we further investigated their developmental origin and the mechanistic role of LCAT deficiency. Gene profiling of skeletal muscle in DKO newborns and adults revealed a classical lineage. Primary quiescent satellite cells (SC) from chow-fed DKO mice, not in Ldlr(-/-)xLcat(+/+) single-knock-out (SKO) or C57BL/6 wild type, were found to (i) express exclusively classical BAT-selective genes, (ii) be primed to express key functional BAT genes, and (iii) exhibit markedly increased ex vivo adipogenic differentiation into brown adipocytes. This gene priming effect was abrogated upon feeding the mice a 2% high cholesterol diet in association with accumulation of excess intracellular cholesterol. Ex vivo cholesterol loading of chow-fed DKO SC recapitulated the effect, indicating that cellular cholesterol is a key regulator of SC-to-BAT differentiation. Comparing adipogenicity of Ldlr(+/+)xLcat(-/-) (LCAT-KO) SC with DKO SC identified a role for LCAT deficiency in priming SC to express BAT genes. Additionally, we found that reduced cellular cholesterol is important for adipogenic differentiation, evidenced by increased induction of adipogenesis in cholesterol-depleted SC from both LCAT-KO and SKO mice. Taken together, we conclude that ectopic BAT in DKO mice is classical in origin, and its development begins in utero. We further showed complementary roles of LCAT deficiency and cellular cholesterol reduction in the SC-to-BAT adipogenesis. PMID:26494623

  7. Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport

    PubMed Central

    Fernández-Suárez, María E.; Escolà-Gil, Joan C.; Pastor, Oscar; Dávalos, Alberto; Blanco-Vaca, Francisco; Lasunción, Miguel A.; Martínez-Botas, Javier; Gómez-Coronado, Diego

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [3H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [3H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages. PMID:27601313

  8. Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport.

    PubMed

    Fernández-Suárez, María E; Escolà-Gil, Joan C; Pastor, Oscar; Dávalos, Alberto; Blanco-Vaca, Francisco; Lasunción, Miguel A; Martínez-Botas, Javier; Gómez-Coronado, Diego

    2016-09-07

    Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [(3)H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [(3)H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages.

  9. Clinically used selective estrogen receptor modulators affect different steps of macrophage-specific reverse cholesterol transport.

    PubMed

    Fernández-Suárez, María E; Escolà-Gil, Joan C; Pastor, Oscar; Dávalos, Alberto; Blanco-Vaca, Francisco; Lasunción, Miguel A; Martínez-Botas, Javier; Gómez-Coronado, Diego

    2016-01-01

    Selective estrogen receptor modulators (SERMs) are widely prescribed drugs that alter cellular and whole-body cholesterol homeostasis. Here we evaluate the effect of SERMs on the macrophage-specific reverse cholesterol transport (M-RCT) pathway, which is mediated by HDL. Treatment of human and mouse macrophages with tamoxifen, raloxifene or toremifene induced the accumulation of cytoplasmic vesicles of acetyl-LDL-derived free cholesterol. The SERMs impaired cholesterol efflux to apolipoprotein A-I and HDL, and lowered ABCA1 and ABCG1 expression. These effects were not altered by the antiestrogen ICI 182,780 nor were they reproduced by 17β-estradiol. The treatment of mice with tamoxifen or raloxifene accelerated HDL-cholesteryl ester catabolism, thereby reducing HDL-cholesterol concentrations in serum. When [(3)H]cholesterol-loaded macrophages were injected into mice intraperitoneally, tamoxifen, but not raloxifene, decreased the [(3)H]cholesterol levels in serum, liver and feces. Both SERMs downregulated liver ABCG5 and ABCG8 protein expression, but tamoxifen reduced the capacity of HDL and plasma to promote macrophage cholesterol efflux to a greater extent than raloxifene. We conclude that SERMs interfere with intracellular cholesterol trafficking and efflux from macrophages. Tamoxifen, but not raloxifene, impair M-RCT in vivo. This effect is primarily attributable to the tamoxifen-mediated reduction of the capacity of HDL to promote cholesterol mobilization from macrophages. PMID:27601313

  10. Cholesterol confusion and statin controversy

    PubMed Central

    DuBroff, Robert; de Lorgeril, Michel

    2015-01-01

    The role of blood cholesterol levels in coronary heart disease (CHD) and the true effect of cholesterol-lowering statin drugs are debatable. In particular, whether statins actually decrease cardiac mortality and increase life expectancy is controversial. Concurrently, the Mediterranean diet model has been shown to prolong life and reduce the risk of diabetes, cancer, and CHD. We herein review current data related to both statins and the Mediterranean diet. We conclude that the expectation that CHD could be prevented or eliminated by simply reducing cholesterol appears unfounded. On the contrary, we should acknowledge the inconsistencies of the cholesterol theory and recognize the proven benefits of a healthy lifestyle incorporating a Mediterranean diet to prevent CHD. PMID:26225201

  11. Cholesterol's location in lipid bilayers

    DOE PAGES

    Marquardt, Drew; Kučerka, Norbert; Wassall, Stephen R.; Harroun, Thad A.; Katsaras, John

    2016-04-04

    It is well known that cholesterol modifies the physical properties of lipid bilayers. For example, the much studied liquid-ordered Lo phase contains rapidly diffusing lipids with their acyl chains in the all trans configuration, similar to gel phase bilayers. Moreover, the Lo phase is commonly associated with cholesterol-enriched lipid rafts, which are thought to serve as platforms for signaling proteins in the plasma membrane. Cholesterol's location in lipid bilayers has been studied extensively, and it has been shown – at least in some bilayers – to align differently from its canonical upright orientation, where its hydroxyl group is in themore » vicinity of the lipid–water interface. In this study we review recent works describing cholesterol's location in different model membrane systems with emphasis on results obtained from scattering, spectroscopic and molecular dynamics studies.« less

  12. Formation of cholesterol bilayer domains precedes formation of cholesterol crystals in cholesterol/dimyristoylphosphatidylcholine membranes: EPR and DSC studies.

    PubMed

    Mainali, Laxman; Raguz, Marija; Subczynski, Witold K

    2013-08-01

    Saturation-recovery EPR along with DSC were used to determine the cholesterol content at which pure cholesterol bilayer domains (CBDs) and cholesterol crystals begin to form in dimyristoylphosphatidylcholine (DMPC) membranes. To preserve compositional homogeneity throughout the membrane suspension, lipid multilamellar dispersions were prepared using a rapid solvent exchange method. The cholesterol content increased from 0 to 75 mol %. With spin-labeled cholesterol analogues, it was shown that the CBDs begin to form at ~50 mol % cholesterol. It was confirmed by DSC that the cholesterol solubility threshold for DMPC membranes is detected at ~66 mol % cholesterol. At levels above this cholesterol content, monohydrate cholesterol crystals start to form. The major finding is that the formation of CBDs precedes formation of cholesterol crystals. The region of the phase diagram for cholesterol contents between 50 and 66 mol % is described as a structured one-phase region in which CBDs have to be supported by the surrounding DMPC bilayer saturated with cholesterol. Thus, the phase boundary located at 66 mol % cholesterol separates the structured one-phase region (liquid-ordered phase of DMPC with CBDs) from the two-phase region where the structured liquid-ordered phase of DMPC coexists with cholesterol crystals. It is likely that CBDs are precursors of monohydrate cholesterol crystals.

  13. Cholesterol-dependent cytolysins.

    PubMed

    Gilbert, Robert J C

    2010-01-01

    The cholesterol-dependent cytolysins (CDCs) are part of a large family of pore-forming proteins that include the human proteins perforin and the complement membrane attack complex. The activity of all family members is focused on membranes, but the proteins are themselves involved in a diverse range of phenomena. An overview of some of these phenomena is provided here, along with an historical perspective of CDCs themselves and how our understanding of their mechanism of action has developed over the years. The way in which pore formation depends on specific characteristics of the membrane under attack as well as of the protein doing the attacking is emphasised. The cholesterol-dependent cytolysins (CDCs) have been the focus of a renewed keen research interest for over ten years now. Their importance has been even further enhanced by the homology now identified between them and the membrane attack complex/perforin (MACPF) family of proteins, which includes several components of the complement cascade as well as perforin itself. In this chapter I aim to provide an overview of our understanding of the interaction between CDCs and other members of what is now called the MACPF/CDC superfamily, with their target membranes. CDCs (also in the past known as thiol-activated toxins or cholesterol-binding toxins) were originally identified from four Gram-positive bacterial genera (Clostridium, Listeria, Bacillus and Streptococcus). Well-known examples include listeriolysin, perfringolysin, streptolysin and pneumoysin. Listeriolysin from L. monocytogenes is responsible for the escape of bacteria from the phagosome to colonise the cytoplasm and has been applied as a protein adjuvant in the development of vaccines against cancer and tuberculosis, for example. Perfringolysin from C. perfringens (Fig. 1A) has become perhaps the most studied CDC4 and has an important role in pathology associated with infection (gangrene). Streptolysin from S. pyogenes is another intensely studied

  14. Facts about...Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This fact sheet on blood cholesterol examines the connection between cholesterol and heart disease, lists risk factors for heart disease that can and cannot be controlled, points out who can benefit from lowering blood cholesterol, distinguishes between blood and dietary cholesterol, describes low density lipoprotein and high density lipoprotein…

  15. Intestinal nuclear receptors in HDL cholesterol metabolism

    PubMed Central

    Degirolamo, Chiara; Sabbà, Carlo; Moschetta, Antonio

    2015-01-01

    The intestine plays a pivotal role in cholesterol homeostasis by functioning as an absorptive and secretory organ in the reverse cholesterol transport pathway. Enterocytes control cholesterol absorption, apoAI synthesis, HDL biogenesis, and nonbiliary cholesterol fecal disposal. Thus, intestine-based therapeutic interventions may hold promise in the management of diseases driven by cholesterol overload. Lipid-sensing nuclear receptors (NRs) are highly expressed in the intestinal epithelium and regulate transcriptionally the handling of cholesterol by the enterocytes. Here, we discuss the NR regulation of cholesterol fluxes across the enterocytes with special emphasis on NR exploitation as a bona fide novel HDL-raising strategy. PMID:25070952

  16. [Role of HDL in Cholesterol Efflux and Reverse Cholesterol Transport].

    PubMed

    Ayaori, Makoto

    2016-01-01

    Low plasma levels of HDL-cholesterol (HDL-C) have been consistently associated with an increased risk of atherosclerotic cardiovascular diseases (CVD), and it is thus considered to be an anti-atherogenic lipoprotein. The development of novel therapies to enhance the atheroprotective properties of HDL may have the potential to further reduce the residual risk. Reverse cholesterol transport (RCT) is believed to be a primary atheroprotective property of HDL and its major protein, apolipoprotein A-I(apoA-I). HDL and apoA-I have been shown to promote the efflux of excess cholesterol from macrophage-derived foam cells via the cholesterol transporters, ATP-binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor class B, type I (SR-BI), and then transport it back to the liver for excretion into bile and eventually into the feces. In this regard, a validated murine assay that quantifies macrophage RCT may be a better predictor of atherosclerosis than the steady-state plasma concentration of HDL-C. Indeed, a recent clinical study demonstrated that the ability of serum HDL to mediate cholesterol efflux from macrophages was independently and negatively associated with the CVD risk even after adjustment for HDL-C levels, suggesting that HDL functionality is more important than its quantity. Therefore, the future development of HDL-targeted therapy should take both aspects into consideration to further reduce the residual risk.

  17. [Role of HDL in Cholesterol Efflux and Reverse Cholesterol Transport].

    PubMed

    Ayaori, Makoto

    2016-01-01

    Low plasma levels of HDL-cholesterol (HDL-C) have been consistently associated with an increased risk of atherosclerotic cardiovascular diseases (CVD), and it is thus considered to be an anti-atherogenic lipoprotein. The development of novel therapies to enhance the atheroprotective properties of HDL may have the potential to further reduce the residual risk. Reverse cholesterol transport (RCT) is believed to be a primary atheroprotective property of HDL and its major protein, apolipoprotein A-I(apoA-I). HDL and apoA-I have been shown to promote the efflux of excess cholesterol from macrophage-derived foam cells via the cholesterol transporters, ATP-binding cassette transporter A1 (ABCA1), ABCG1, and scavenger receptor class B, type I (SR-BI), and then transport it back to the liver for excretion into bile and eventually into the feces. In this regard, a validated murine assay that quantifies macrophage RCT may be a better predictor of atherosclerosis than the steady-state plasma concentration of HDL-C. Indeed, a recent clinical study demonstrated that the ability of serum HDL to mediate cholesterol efflux from macrophages was independently and negatively associated with the CVD risk even after adjustment for HDL-C levels, suggesting that HDL functionality is more important than its quantity. Therefore, the future development of HDL-targeted therapy should take both aspects into consideration to further reduce the residual risk. PMID:27192798

  18. Heterogeneity of cholesterol homeostasis in man. Response to changes in dietary fat quality and cholesterol quantity.

    PubMed Central

    McNamara, D J; Kolb, R; Parker, T S; Batwin, H; Samuel, P; Brown, C D; Ahrens, E H

    1987-01-01

    Studies were carried out to examine the effects of dietary fat and cholesterol on cholesterol homeostasis in man. 75 12-wk studies were carried out during intake of 35% of calories as either saturated or polyunsaturated fat, first low and then high in dietary cholesterol. Dietary fat and cholesterol intakes, plasma lipid and lipoprotein levels, cholesterol absorption and sterol synthesis in isolated blood mononuclear leukocytes were measured during each diet period. In 69% of the studies the subjects compensated for the increased cholesterol intake by decreasing cholesterol fractional absorption and/or endogenous cholesterol synthesis. When an increase in plasma cholesterol levels was observed there was a failure to suppress endogenous cholesterol synthesis. Plasma cholesterol levels were more sensitive to dietary fat quality than to cholesterol quantity. The results demonstrate that the responses to dietary cholesterol and fat are highly individualized and that most individuals have effective feedback control mechanisms. PMID:3584466

  19. Identification of Neutral Cholesterol Ester Hydrolase, a Key Enzyme Removing Cholesterol from Macrophages*S⃞

    PubMed Central

    Okazaki, Hiroaki; Igarashi, Masaki; Nishi, Makiko; Sekiya, Motohiro; Tajima, Makiko; Takase, Satoru; Takanashi, Mikio; Ohta, Keisuke; Tamura, Yoshiaki; Okazaki, Sachiko; Yahagi, Naoya; Ohashi, Ken; Amemiya-Kudo, Michiyo; Nakagawa, Yoshimi; Nagai, Ryozo; Kadowaki, Takashi; Osuga, Jun-ichi; Ishibashi, Shun

    2008-01-01

    Unstable lipid-rich plaques in atherosclerosis are characterized by the accumulation of macrophage foam cells loaded with cholesterol ester (CE). Although hormone-sensitive lipase and cholesteryl ester hydrolase (CEH) have been proposed to mediate the hydrolysis of CE in macrophages, circumstantial evidence suggests the presence of other enzymes with neutral cholesterol ester hydrolase (nCEH) activity. Here we show that the murine orthologue of KIAA1363, designated as neutral cholesterol ester hydrolase (NCEH), is a microsomal nCEH with high expression in murine and human macrophages. The effect of various concentrations of NaCl on its nCEH activity resembles that on endogenous nCEH activity of macrophages. RNA silencing of NCEH decreases nCEH activity at least by 50%; conversely, its overexpression inhibits the CE formation in macrophages. Immunohistochemistry reveals that NCEH is expressed in macrophage foam cells in atherosclerotic lesions. These data indicate that NCEH is responsible for a major part of nCEH activity in macrophages and may be a potential therapeutic target for the prevention of atherosclerosis. PMID:18782767

  20. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice.

    PubMed

    Schonewille, Marleen; Freark de Boer, Jan; Mele, Laura; Wolters, Henk; Bloks, Vincent W; Wolters, Justina C; Kuivenhoven, Jan A; Tietge, Uwe J F; Brufau, Gemma; Groen, Albert K

    2016-08-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins.

  1. Statins increase hepatic cholesterol synthesis and stimulate fecal cholesterol elimination in mice.

    PubMed

    Schonewille, Marleen; Freark de Boer, Jan; Mele, Laura; Wolters, Henk; Bloks, Vincent W; Wolters, Justina C; Kuivenhoven, Jan A; Tietge, Uwe J F; Brufau, Gemma; Groen, Albert K

    2016-08-01

    Statins are competitive inhibitors of HMG-CoA reductase, the rate-limiting enzyme of cholesterol synthesis. Statins reduce plasma cholesterol levels, but whether this is actually caused by inhibition of de novo cholesterol synthesis has not been clearly established. Using three different statins, we investigated the effects on cholesterol metabolism in mice in detail. Surprisingly, direct measurement of whole body cholesterol synthesis revealed that cholesterol synthesis was robustly increased in statin-treated mice. Measurement of organ-specific cholesterol synthesis demonstrated that the liver is predominantly responsible for the increase in cholesterol synthesis. Excess synthesized cholesterol did not accumulate in the plasma, as plasma cholesterol decreased. However, statin treatment led to an increase in cholesterol removal via the feces. Interestingly, enhanced cholesterol excretion in response to rosuvastatin and lovastatin treatment was mainly mediated via biliary cholesterol secretion, whereas atorvastatin mainly stimulated cholesterol removal via the transintestinal cholesterol excretion pathway. Moreover, we show that plasma cholesterol precursor levels do not reflect cholesterol synthesis rates during statin treatment in mice. In conclusion, cholesterol synthesis is paradoxically increased upon statin treatment in mice. However, statins potently stimulate the excretion of cholesterol from the body, which sheds new light on possible mechanisms underlying the cholesterol-lowering effects of statins. PMID:27313057

  2. Excess cholesterol induces mouse egg activation and may cause female infertility

    PubMed Central

    Yesilaltay, Ayce; Dokshin, Gregoriy A.; Busso, Dolores; Wang, Li; Galiani, Dalia; Chavarria, Tony; Vasile, Eliza; Quilaqueo, Linda; Orellana, Juan Andrés; Walzer, Dalia; Shalgi, Ruth; Dekel, Nava; Albertini, David F.; Rigotti, Attilio; Page, David C.; Krieger, Monty

    2014-01-01

    The HDL receptor scavenger receptor, class B type I (SR-BI) controls the structure and fate of plasma HDL. Female SR-BI KO mice are infertile, apparently because of their abnormal cholesterol-enriched HDL particles. We examined the growth and meiotic progression of SR-BI KO oocytes and found that they underwent normal germinal vesicle breakdown; however, SR-BI KO eggs, which had accumulated excess cholesterol in vivo, spontaneously activated, and they escaped metaphase II (MII) arrest and progressed to pronuclear, MIII, and anaphase/telophase III stages. Eggs from fertile WT mice were activated when loaded in vitro with excess cholesterol by a cholesterol/methyl-β-cyclodextrin complex, phenocopying SR-BI KO oocytes. In vitro cholesterol loading of eggs induced reduction in maturation promoting factor and MAPK activities, elevation of intracellular calcium, extrusion of a second polar body, and progression to meiotic stages beyond MII. These results suggest that the infertility of SR-BI KO females is caused, at least in part, by excess cholesterol in eggs inducing premature activation and that cholesterol can activate WT mouse eggs to escape from MII arrest. Analysis of SR-BI KO female infertility raises the possibility that abnormalities in cholesterol metabolism might underlie some cases of human female infertility of unknown etiology. PMID:25368174

  3. Cholesterol-based tethers and markers for model membranes investigation.

    PubMed

    Eicher-Lorka, O; Charkova, T; Matijoška, A; Kuodis, Z; Urbelis, G; Penkauskas, T; Mickevičius, M; Bulovas, A; Valinčius, G

    2016-02-01

    A series of new bifunctional cholesterol compounds for tethered bilayer membrane (tBLM) systems were synthesized and tested. The compounds containing cyclic disulfide group may be used as molecular anchors for phospholipid bilayers. Anchoring occurs through the insertion of the cholesterol moiety into the hydrophobic slab of the phospholipid layer, while the surface density of anchor molecules may be adjusted using disulfides terminated spacers. Five ethylene oxide segments between the disulfide group and the cholesteryl provide hydration of the layer separating solid support and model membrane. Another group of cholesterol derivatives described in this work contains either fluorescence probe or electroactive functional groups. We demonstrated the practical utility of these compounds for visualization of cholesterol extraction from and loading to tBLMs. We demonstrated that electroactive group containing cholesterol derivatives can be reconstituted either into vesicles or tBLMs. In both cases an electrochemical signal can be generated on electrodes from these probes. In general, the newly synthesized compound may be utilized in a variety of applications involving tethered bilayer systems and vesicles.

  4. RADIOAUTOGRAPHY OF CHOLESTEROL IN LUNG

    PubMed Central

    Darrah, Hilary K.; Hedley-Whyte, John; Hedley-Whyte, E. Tessa

    1971-01-01

    30 Swiss albino mice aged 8 days were injected intraperitoneally with 0.2 ml of a solution of 4% N,N-dimethyl-formamide in 5% dextrose in water containing cholesterol-1,2-3H (∼1 mCi/ml). Lung tissue was embedded in an Epon mixture after either acetone and propylene oxide dehydration, partial ethanol and Epon 812 dehydration, or the precipitation of cholesterol by digitonin succeeded by partial dehydration. The distribution of cholesterol-1,2-3H in lung parenchyma in 1µ Epon section radioautograms was compared with that in frozen section radioautograms and was found to be independent of the manner of tissue processing. Grain distribution in the tissue was essentially the same whether 16, 63, 93, or 100% radioactivity was retained in the lung. However, grain distribution in the alveolar spaces differed, presumably due to displacement of pulmonary surfactant, which contains cholesterol. Intracellular distribution of cholesterol, in electron microscope radioautograms, was the same with either 51% or 93% retention of radioactivity in the lung. Loss of radioactivity into the various processing solutions was monitored. The various processing techniques have different drawbacks. PMID:19866763

  5. Effects of toxicologically relevant xenobiotics and the lipid-derived electrophile 4-hydroxynonenal on macrophage cholesterol efflux: silencing carboxylesterase 1 has paradoxical effects on cholesterol uptake and efflux.

    PubMed

    Ross, Matthew K; Borazjani, Abdolsamad; Mangum, Lee C; Wang, Ran; Crow, J Allen

    2014-10-20

    Cholesterol cycles between free cholesterol (unesterified) found predominantly in membranes and cholesteryl esters (CEs) stored in cytoplasmic lipid droplets. Only free cholesterol is effluxed from macrophages via ATP-binding cassette (ABC) transporters to extracellular acceptors. Carboxylesterase 1 (CES1), proposed to hydrolyze CEs, is inactivated by oxon metabolites of organophosphorus pesticides and by the lipid electrophile 4-hydroxynonenal (HNE). We assessed the ability of these compounds to reduce cholesterol efflux from foam cells. Human THP-1 macrophages were loaded with [(3)H]-cholesterol/acetylated LDL and then allowed to equilibrate to enable [(3)H]-cholesterol to distribute into its various cellular pools. The cholesterol-engorged cells were then treated with toxicants in the absence of cholesterol acceptors for 24 h, followed by a 24 h efflux period in the presence of toxicant. A concentration-dependent reduction in [(3)H]-cholesterol efflux via ABCA1 (up to 50%) was found for paraoxon (0.1-10 μM), whereas treatment with HNE had no effect. A modest reduction in [(3)H]-cholesterol efflux via ABCG1 (25%) was found after treatment with either paraoxon or chlorpyrifos oxon (10 μM each) but not HNE. No difference in efflux rates was found after treatments with either paraoxon or HNE when the universal cholesterol acceptor 10% (v/v) fetal bovine serum was used. When the re-esterification arm of the CE cycle was disabled in foam cells, paraoxon treatment increased CE levels, suggesting the neutral CE hydrolysis arm of the cycle had been inhibited by the toxicant. However, paraoxon also partially inhibited lysosomal acid lipase, which generates cholesterol for efflux, and reduced the expression of ABCA1 protein. Paradoxically, silencing CES1 expression in macrophages did not affect the percent of [(3)H]-cholesterol efflux. However, CES1 mRNA knockdown markedly reduced cholesterol uptake by macrophages, with SR-A and CD36 mRNA reduced 3- and 4-fold

  6. Polarizable multipolar electrostatics for cholesterol

    NASA Astrophysics Data System (ADS)

    Fletcher, Timothy L.; Popelier, Paul L. A.

    2016-08-01

    FFLUX is a novel force field under development for biomolecular modelling, and is based on topological atoms and the machine learning method kriging. Successful kriging models have been obtained for realistic electrostatics of amino acids, small peptides, and some carbohydrates but here, for the first time, we construct kriging models for a sizeable ligand of great importance, which is cholesterol. Cholesterol's mean total (internal) electrostatic energy prediction error amounts to 3.9 kJ mol-1, which pleasingly falls below the threshold of 1 kcal mol-1 often cited for accurate biomolecular modelling. We present a detailed analysis of the error distributions.

  7. Effect of ezetimibe on plasma cholesterol levels, cholesterol absorption, and secretion of biliary cholesterol in laboratory opossums with high and low responses to dietary cholesterol.

    PubMed

    Chan, Jeannie; Kushwaha, Rampratap S; Vandeberg, Jane F; Vandeberg, John L

    2008-12-01

    Partially inbred lines of laboratory opossums differ in plasma low-density lipoprotein cholesterol concentration and cholesterol absorption on a high-cholesterol diet. The aim of the present studies was to determine whether ezetimibe inhibits cholesterol absorption and eliminates the differences in plasma cholesterol and hepatic cholesterol metabolism between high and low responders on a high-cholesterol diet. Initially, we determined that the optimum dose of ezetimibe was 5 mg/(kg d) and treated 6 high- and 6 low-responding opossums with this dose (with equal numbers of controls) for 3 weeks while the opossums consumed a high-cholesterol and low-fat diet. Plasma and low-density lipoprotein cholesterol concentrations decreased significantly (P < .05) in treated but not in untreated high-responding opossums. Plasma cholesterol concentrations increased slightly (P < .05) in untreated low responders but not in treated low responders. The percentage of cholesterol absorption was significantly higher in untreated high responders than in other groups. Livers from high responders with or without treatment were significantly (P < .01) heavier than livers from low responders with or without treatment. Hepatic cholesterol concentrations in untreated high responders were significantly (P < .05) higher than those in low responders with or without treatment (P < .001). The gall bladder bile cholesterol concentrations in untreated high responders were significantly (P < .05) lower than those in other groups. A decrease in biliary cholesterol in low responders treated with ezetimibe was associated with a decrease in hepatic expression of ABCG5 and ABCG8. These studies suggest that ezetimibe decreases plasma cholesterol levels in high responders mainly by decreasing cholesterol absorption and increasing biliary cholesterol concentrations. Because ezetimibe's target is NPC1L1 and NPC1L1 is expressed in the intestine of opossums, its effect on cholesterol absorption may be mediated

  8. Dietary cholesterol supplementation to a plant-based diet suppresses the complete pathway of cholesterol synthesis and induces bile acid production in Atlantic salmon (Salmo salar L.).

    PubMed

    Kortner, Trond M; Björkhem, Ingemar; Krasnov, Aleksei; Timmerhaus, Gerrit; Krogdahl, Åshild

    2014-06-28

    Plants now supply more than 50 % of protein in Norwegian salmon aquafeeds. The inclusion of plant protein in aquafeeds may be associated with decreased lipid digestibility and cholesterol and bile salt levels, indicating that the replacement of fishmeal with plant protein could result in inadequate supplies of cholesterol in fish. A reduction in feed efficiency, fish growth and pathogen resistance is often observed in parallel to alterations in sterol metabolism. Previous studies have indicated that the negative effects induced by plant components can be attenuated when diets are supplemented with cholesterol. The present study evaluated the effects of dietary cholesterol supplementation (1·5 %) in Atlantic salmon fed a plant-based diet for 77 d. The weights of body, intestines and liver were recorded and blood, tissues, faeces, chyme and bile were sampled for the evaluation of effects on growth, nutrient utilisation and metabolism, and transcriptome and metabolite levels, with particular emphasis on sterol metabolism and organ structure and function. Cholesterol supplementation did not affect the growth or organ weights of Atlantic salmon, but seemed to promote the induction of cholesterol and plant sterol efflux in the intestine while suppressing sterol uptake. Cholesterol biosynthesis decreased correspondingly and conversion into bile acids increased. The marked effect of cholesterol supplementation on bile acid synthesis suggests that dietary cholesterol can be used to increase bile acid synthesis in fish. The present study clearly demonstrated how Atlantic salmon adjusted their metabolic functions in response to the dietary load of cholesterol. It has also expanded our understanding of sterol metabolism and turnover, adding to the existing, rather sparse, knowledge of these processes in fish.

  9. Dietary cholesterol supplementation to a plant-based diet suppresses the complete pathway of cholesterol synthesis and induces bile acid production in Atlantic salmon (Salmo salar L.).

    PubMed

    Kortner, Trond M; Björkhem, Ingemar; Krasnov, Aleksei; Timmerhaus, Gerrit; Krogdahl, Åshild

    2014-06-28

    Plants now supply more than 50 % of protein in Norwegian salmon aquafeeds. The inclusion of plant protein in aquafeeds may be associated with decreased lipid digestibility and cholesterol and bile salt levels, indicating that the replacement of fishmeal with plant protein could result in inadequate supplies of cholesterol in fish. A reduction in feed efficiency, fish growth and pathogen resistance is often observed in parallel to alterations in sterol metabolism. Previous studies have indicated that the negative effects induced by plant components can be attenuated when diets are supplemented with cholesterol. The present study evaluated the effects of dietary cholesterol supplementation (1·5 %) in Atlantic salmon fed a plant-based diet for 77 d. The weights of body, intestines and liver were recorded and blood, tissues, faeces, chyme and bile were sampled for the evaluation of effects on growth, nutrient utilisation and metabolism, and transcriptome and metabolite levels, with particular emphasis on sterol metabolism and organ structure and function. Cholesterol supplementation did not affect the growth or organ weights of Atlantic salmon, but seemed to promote the induction of cholesterol and plant sterol efflux in the intestine while suppressing sterol uptake. Cholesterol biosynthesis decreased correspondingly and conversion into bile acids increased. The marked effect of cholesterol supplementation on bile acid synthesis suggests that dietary cholesterol can be used to increase bile acid synthesis in fish. The present study clearly demonstrated how Atlantic salmon adjusted their metabolic functions in response to the dietary load of cholesterol. It has also expanded our understanding of sterol metabolism and turnover, adding to the existing, rather sparse, knowledge of these processes in fish. PMID:24635969

  10. Membrane cholesterol modulates cochlear electromechanics.

    PubMed

    Brownell, William E; Jacob, Stefan; Hakizimana, Pierre; Ulfendahl, Mats; Fridberger, Anders

    2011-06-01

    Changing the concentration of cholesterol in the plasma membrane of isolated outer hair cells modulates electromotility and prestin-associated charge movement, suggesting that a similar manipulation would alter cochlear mechanics. We examined cochlear function before and after depletion of membrane cholesterol with methyl-β-cyclodextrin (MβCD) in an excised guinea pig temporal bone preparation. The mechanical response of the cochlear partition to acoustic and/or electrical stimulation was monitored using laser interferometry and time-resolved confocal microscopy. The electromechanical response in untreated preparations was asymmetric with greater displacements in response to positive currents. Exposure to MβCD increased the magnitude and asymmetry of the response, without changing the frequency tuning of sound-evoked mechanical responses or cochlear microphonic potentials. Sodium salicylate reversibly blocked the enhanced electromechanical response in cholesterol depleted preparations. The increase of sound-evoked vibrations during positive current injection was enhanced following MβCD in some preparations. Imaging was used to assess cellular integrity which remained unchanged after several hours of exposure to MβCD in several preparations. The enhanced electromechanical response reflects an increase in outer hair cell electromotility and may reveal features of cholesterol distribution and trafficking in outer hair cells. PMID:21373862

  11. Membrane Cholesterol Modulates Superwarfarin Toxicity.

    PubMed

    Marangoni, M Natalia; Martynowycz, Michael W; Kuzmenko, Ivan; Braun, David; Polak, Paul E; Weinberg, Guy; Rubinstein, Israel; Gidalevitz, David; Feinstein, Douglas L

    2016-04-26

    Superwarfarins are modified analogs of warfarin with additional lipophilic aromatic rings, up to 100-fold greater potency, and longer biological half-lives. We hypothesized that increased hydrophobicity allowed interactions with amphiphilic membranes and modulation of biological responses. We find that superwarfarins brodifacoum and difenacoum increase lactate production and cell death in neuroblastoma cells. In contrast, neither causes changes in glioma cells that have higher cholesterol content. After choleterol depletion, lactate production was increased and cell viability was reduced. Drug-membrane interactions were examined by surface X-ray scattering using Langmuir monolayers of dipalmitoylphosphatidylcholine and/or cholesterol. Specular X-ray reflectivity data revealed that superwarfarins, but not warfarin, intercalate between dipalmitoylphosphatidylcholine molecules, whereas grazing incidence X-ray diffraction demonstrated changes in lateral crystalline order of the film. Neither agent showed significant interactions with monolayers containing >20% cholesterol. These findings demonstrate an affinity of superwarfarins to biomembranes and suggest that cellular responses to these agents are regulated by cholesterol content. PMID:27119638

  12. Early steps in steroidogenesis: intracellular cholesterol trafficking.

    PubMed

    Miller, Walter L; Bose, Himangshu S

    2011-12-01

    Steroid hormones are made from cholesterol, primarily derived from lipoproteins that enter cells via receptor-mediated endocytosis. In endo-lysosomes, cholesterol is released from cholesterol esters by lysosomal acid lipase (LAL; disordered in Wolman disease) and exported via Niemann-Pick type C (NPC) proteins (disordered in NPC disease). These diseases are characterized by accumulated cholesterol and cholesterol esters in most cell types. Mechanisms for trans-cytoplasmic cholesterol transport, membrane insertion, and retrieval from membranes are less clear. Cholesterol esters and "free" cholesterol are enzymatically interconverted in lipid droplets. Cholesterol transport to the cholesterol-poor outer mitochondrial membrane (OMM) appears to involve cholesterol transport proteins. Cytochrome P450scc (CYP11A1) then initiates steroidogenesis by converting cholesterol to pregnenolone on the inner mitochondrial membrane (IMM). Acute steroidogenic responses are regulated by cholesterol delivery from OMM to IMM, triggered by the steroidogenic acute regulatory protein (StAR). Chronic steroidogenic capacity is determined by CYP11A1 gene transcription. StAR mutations cause congenital lipoid adrenal hyperplasia, with absent steroidogenesis, potentially lethal salt loss, and 46,XY sex reversal. StAR mutations initially destroy most, but not all steroidogenesis; low levels of StAR-independent steroidogenesis are lost later due to cellular damage, explaining the clinical findings. Rare P450scc mutations cause a similar syndrome. This review addresses these early steps in steroid biosynthesis. PMID:21976778

  13. Cholesterol autoxidation in phospholipid membrane bilayers

    SciTech Connect

    Sevanian, A.; McLeod, L.L.

    1987-09-01

    Lipid peroxidation in unilamellar liposomes of known cholesterol-phospholipid composition was monitored under conditions of autoxidation or as induced by a superoxide radical generating system, gamma-irradiation or cumene hydroperoxide. Formation of cholesterol oxidation products was indexed to the level of lipid peroxidation. The major cholesterol oxidation products identified were 7-keto-cholesterol, isomeric cholesterol 5,6-epoxides, isomeric 7-hydroperoxides and isomeric 3,7-cholestane diols. Other commonly encountered products included 3,5-cholestadiene-7-one and cholestane-3 beta, 5 alpha, 6 beta-triol. Superoxide-dependent peroxidation required iron and produced a gradual increase in 7-keto-cholesterol and cholesterol epoxides. Cholesterol oxidation was greatest in liposomes containing high proportions of unsaturated phospholipid to cholesterol (4:1 molar ratio), intermediate with low phospholipid to cholesterol ratios (2:1) and least in liposomes prepared with dipalmitoylphosphatidylcholine and cholesterol. This relationship held regardless of the oxidizing conditions used. Cumene hydroperoxide-dependent lipid peroxidation and/or more prolonged oxidations with other oxidizing systems yielded a variety of products where cholesterol-5 beta,6 beta-epoxide, 7-ketocholesterol and the 7-hydroperoxides were most consistently elevated. Oxyradical initiation of lipid peroxidation produced a pattern of cholesterol oxidation products distinguishable from the pattern derived by cumene hydroperoxide-dependent peroxidation.

  14. Early steps in steroidogenesis: intracellular cholesterol trafficking

    PubMed Central

    Miller, Walter L.; Bose, Himangshu S.

    2011-01-01

    Steroid hormones are made from cholesterol, primarily derived from lipoproteins that enter cells via receptor-mediated endocytosis. In endo-lysosomes, cholesterol is released from cholesterol esters by lysosomal acid lipase (LAL; disordered in Wolman disease) and exported via Niemann-Pick type C (NPC) proteins (disordered in NPC disease). These diseases are characterized by accumulated cholesterol and cholesterol esters in most cell types. Mechanisms for trans-cytoplasmic cholesterol transport, membrane insertion, and retrieval from membranes are less clear. Cholesterol esters and “free” cholesterol are enzymatically interconverted in lipid droplets. Cholesterol transport to the cholesterol-poor outer mitochondrial membrane (OMM) appears to involve cholesterol transport proteins. Cytochrome P450scc (CYP11A1) then initiates steroidogenesis by converting cholesterol to pregnenolone on the inner mitochondrial membrane (IMM). Acute steroidogenic responses are regulated by cholesterol delivery from OMM to IMM, triggered by the steroidogenic acute regulatory protein (StAR). Chronic steroidogenic capacity is determined by CYP11A1 gene transcription. StAR mutations cause congenital lipoid adrenal hyperplasia, with absent steroidogenesis, potentially lethal salt loss, and 46,XY sex reversal. StAR mutations initially destroy most, but not all steroidogenesis; low levels of StAR-independent steroidogenesis are lost later due to cellular damage, explaining the clinical findings. Rare P450scc mutations cause a similar syndrome. This review addresses these early steps in steroid biosynthesis. PMID:21976778

  15. Topographic heterogeneity in cholesterol biosynthesis.

    PubMed

    Lange, Y; Muraski, M F

    1988-07-01

    We have examined the membrane topography of cholesterol biosynthesis in cultured human fibroblasts. We fed the cells with radioacetate and then interrupted the biosynthetic pathway so as to trap labeled intermediates in their subcellular locations. We analyzed homogenates of human fibroblasts labeled biosynthetically from radioacetate by centrifugation to equilibrium on sucrose gradients. The following two methods were used to interrupt cholesterol biosynthesis: incubation at 10 degrees C and treatment with 4,4,10 beta-trimethyl-trans-decal-3 beta-ol, a specific inhibitor of oxidosqualene cyclase. Incubation at 10 degrees C caused the accumulation of radiolanosterol at the expense of cholesterol. The lanosterol appeared predominantly at an unusually buoyant density (20% (w/w) sucrose; d = 1.08 g/cm3) as well as at the density normally labeled at 37 degrees C (30% sucrose; d = 1.13 g/cm3). 4,4,10 beta-Trimethyl-trans-decal-3 beta-ol treatment caused the accumulation of labeled squalene and squalene 2,3-oxide. Reversal of the block permitted the label to progress rapidly as a wave into lanosterol and ultimately into cholesterol. The profiles of the three precursors did not coincide, suggesting that they were mostly in different membranes. Squalene was uniquely confined to a density of 1.18 g/cm3 (40% sucrose) while squalene 2,3-oxide appeared in peaks of density 1.08 g/cm3 and 1.13 g/cm3 (20% and 30% sucrose). Lanosterol was in a peak of density 1.13 g/cm3. Pulse-chase experiments showed that lanosterol synthesized in the membranes at 20% sucrose moved rapidly to the membranes at 30% sucrose where it was converted to cholesterol. The density gradient profiles of the following organelle markers also were monitored: plasma membrane, cholesterol mass; Golgi apparatus, galactosyltransferase; endoplasmic reticulum, RNA, 3-hydroxy-3-methylglutaryl-coenzyme A reductase and cytochrome c reductase; peroxisomes, catalase. None of these markers appeared at the buoyant density

  16. Improved Coarse-Grained Modeling of Cholesterol-Containing Lipid Bilayers

    SciTech Connect

    Daily, Michael D.; Olsen, Brett N.; Schlesinger, Paul H.; Ory, Daniel S.; Baker, Nathan A.

    2014-03-24

    In mammalian cells cholesterol is essential for membrane function, but in excess can be cytototoxic. The cellular response to acute cholesterol loading involves biophysical-based mechanisms that regulate cholesterol levels, through modulation of the “activity” or accessibility of cholesterol to extra-membrane acceptors. Experiments and united atom (UA) simulations show that at high concentrations of cholesterol, lipid bilayers thin significantly and cholesterol availability to external acceptors increases substantially. Such cholesterol activation is critical to its trafficking within cells. Here we aim to reduce the computational cost to enable simulation of large and complex systems involved in cholesterol regulation, such as those including oxysterols and cholesterol-sensing proteins. To accomplish this, we have modified the published MARTINI coarse-grained force field to improve its predictions of cholesterol-induced changes in both macroscopic and microscopic properties of membranes. Most notably, MARTINI fails to capture both the (macroscopic) area condensation and membrane thickening seen at less than 30% cholesterol and the thinning seen above 40% cholesterol. The thinning at high concentration is critical to cholesterol activation. Microscopic properties of interest include cholesterol-cholesterol radial distribution functions (RDFs), tilt angle, and accessible surface area. First, we develop an “angle-corrected” model wherein we modify the coarse-grained bond angle potentials based on atomistic simulations. This modification significantly improves prediction of macroscopic properties, most notably the thickening/thinning behavior, and also slightly improves microscopic property prediction relative to MARTINI. Second, we add to the angle correction a “volume correction” by also adjusting phospholipid bond lengths to achieve a more accurate volume per molecule. The angle + volume correction substantially further improves the quantitative

  17. Mechanical modeling of cholesterol crystallization in atherosclerotic plaques base on Micro-OCT images (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Luo, Yuemei; Liu, Xinyu; Chen, Si; Cui, Dongyao; Wang, Xianghong; Liu, Linbo

    2016-02-01

    Plaque rupture is the critical cause of cardiovascular thrombosis but this process is still under discussion. Recent studies show that, during crystallization, cholesterol crystals in atheromatous plaques accumulate rapidly in a limited space and may result in plaque rupture. However, the actual role of cholesterol crystals on plaque rupture remains unclear due to the lack of detailed morphological information of cholesterol crystals. In this study, we used a Micro-optical coherence tomography (µOCT) setup with 1-2 µm spatial resolution to extract the geometry of cholesterol crystals from human atherosclerotic artery ex vivo firstly. With measured dimensions of cholesterol crystals by this µOCT system (the average length and thickness of 269.1±80.16 µm and 3.0±0.33 µm), we developed a two-dimensional mechanical model in which rectangular shaped cholesterol crystals distribute at different locations spatially. We predicted the stress on the thin cap induced by the expansion of cholesterol crystals by use of finite-element method. Since a large portion of plaques (58%) rupture at points of peak circumferential stress (PCS), we used PCS as the primary indicator of plaque stability with blood pressure of 14.6 kPa on the lumen. The results demonstrate that loading of the concentrated crystals especially at the cap shoulder destabilize the plaque by proportionally increasing the PCS, while evenly distributed crystals loading along the cap might impose less PCS to the plaque than the concentrated case.

  18. Inherited Cholesterol Disorder Significantly Boosts Heart Risks

    MedlinePlus

    ... genetic disorder that causes high levels of "bad" LDL cholesterol have an increased risk for heart disease and ... in previous studies. Compared to people with average LDL cholesterol levels (less than 130 mg/dL), those with ...

  19. High Cholesterol: Medicines to Help You

    MedlinePlus

    ... Consumer Information by Audience For Women High Cholesterol--Medicines To Help You Share Tweet Linkedin Pin it ... Test to check your cholesterol (LDL-C) Combination Medicines Brand Name Generic Name Advicor Niacin and Lovastatin ...

  20. Do You Know Your Cholesterol Levels?

    MedlinePlus

    ... Health Information Center Do You Know Your Cholesterol Levels? Print-friendly Version (PDF, 6.1 MB) Spanish ... Syndrome? My Family Plan To Lower Blood Cholesterol Levels My Heart Health Card Play It Smart, Take ...

  1. Active membrane cholesterol as a physiological effector.

    PubMed

    Lange, Yvonne; Steck, Theodore L

    2016-09-01

    Sterols associate preferentially with plasma membrane sphingolipids and saturated phospholipids to form stoichiometric complexes. Cholesterol in molar excess of the capacity of these polar bilayer lipids has a high accessibility and fugacity; we call this fraction active cholesterol. This review first considers how active cholesterol serves as an upstream regulator of cellular sterol homeostasis. The mechanism appears to utilize the redistribution of active cholesterol down its diffusional gradient to the endoplasmic reticulum and mitochondria, where it binds multiple effectors and directs their feedback activity. We have also reviewed a broad literature in search of a role for active cholesterol (as opposed to bulk cholesterol or lipid domains such as rafts) in the activity of diverse membrane proteins. Several systems provide such evidence, implicating, in particular, caveolin-1, various kinds of ABC-type cholesterol transporters, solute transporters, receptors and ion channels. We suggest that this larger role for active cholesterol warrants close attention and can be tested easily.

  2. Temporal Effects of Mechanical Loading on Deformation-Induced Damage in Skeletal Muscle Tissue

    PubMed Central

    Stekelenburg, A.; Strijkers, G. J.; Rijpkema, J. J. M.; Baaijens, F. P. T.; Bader, D. L.; Nicolay, K.; Oomens, C. W. J.

    2010-01-01

    Mechanical loading of soft tissues covering bony prominences can cause skeletal muscle damage, ultimately resulting in a severe pressure ulcer termed deep tissue injury. Recently, by means of an experimental-numerical approach, it was shown that local tissue deformations cause tissue damage once a deformation threshold is exceeded. In the present study, the effects of load exposure time and intermittent load relief on the development of deformation-induced muscle damage were investigated. The data showed that a 2 h loading period caused more damage than 10 min loading. Intermittent load reliefs of 2 min during a 2 h loading period had minimal effect on the evolution of skeletal muscle damage. In addition, a local deformation threshold for damage was found, which was similar for each of the loading regimes applied in this study. For short loading periods, these results imply that local tissue deformations determine whether muscle damage will develop and the exposure time influences the amount of tissue damage. Temporary load reliefs were inefficient in reducing deformation-induced damage, but may still influence the development of ischemia-induced damage during longer loading periods. PMID:20232152

  3. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats.

    PubMed

    Zhang, Min; Xie, Zongkai; Gao, Weina; Pu, Lingling; Wei, Jingyu; Guo, Changjiang

    2016-03-01

    Quercetin, a common member of the flavonoid family, is widely present in plant kingdom. Despite that quercetin is implicated in regulating cholesterol metabolism, the molecular mechanism is poorly understood. We hypothesized that quercetin regulates cholesterol homeostasis through regulating the key enzymes involved in hepatic cholesterol metabolism. To test this hypothesis, we compared the profile of key enzymes and transcription factors involved in the hepatic cholesterol metabolism in rats with or without quercetin supplementation. Twenty male Wistar rats were randomly divided into control and quercetin-supplemented groups. Serum total cholesterol, triglyceride, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and total bile acids in feces and bile were measured. Hepatic enzymatic activities were determined by activity assay kit and high-performance liquid chromatography-based analyses. The messenger RNA (mRNA) and protein expressions were determined by reverse transcriptase polymerase chain reaction and Western blot analyses, respectively. The results showed that the activity of hepatic cholesterol 7α-hydroxylase, a critical enzyme in the conversion of cholesterol to bile acids, was significantly elevated by quercetin. The expression of cholesterol 7α-hydroxylase, as well as liver X receptor α, an important transcription factor, was also increased at both mRNA and protein levels by quercetin. However, quercetin exposure had no impact on the activity of hepatic HMG-CoA reductase, a rate-limiting enzyme in the biosynthesis of cholesterol. We also found that quercetin treatment significantly increased ATP binding cassette transporter G1 mRNA and protein expression in the liver, suggesting that quercetin may increase hepatic cholesterol efflux. Collectively, the results presented here indicate that quercetin regulates hepatic cholesterol metabolism mainly through the pathways that promote cholesterol-to-bile acid conversion and

  4. Isolation of Cholesterol from an Egg Yolk

    ERIC Educational Resources Information Center

    Taber, Douglass F.; Li, Rui; Anson, Cory M.

    2011-01-01

    A simple procedure for the isolation of the cholesterol, by hydrolysis and extraction followed by column chromatography, is described. The cholesterol can be further purified by complexation with oxalic acid. It can also be oxidized and conjugated to cholestenone. The source of the cholesterol is one egg yolk, which contains about 200 mg of…

  5. Cholesterol Screening: A Practical Guide to Implementation.

    ERIC Educational Resources Information Center

    Kingery, Paul M.

    1995-01-01

    Dry-chemistry cholesterol analysis has made screening feasible in a variety of settings. The article provides practical tips for the implementation of mass cholesterol screening using a portable dry-chemistry analyzer and discusses issues involved in conducting effective cholesterol screening programs from start to finish. (SM)

  6. Non-cholesterol sterols and cholesterol metabolism in sitosterolemia.

    PubMed

    Othman, Rgia A; Myrie, Semone B; Jones, Peter J H

    2013-12-01

    Sitosterolemia (STSL) is a rare autosomal recessive disease, manifested by extremely elevated plant sterols (PS) in plasma and tissue, leading to xanthoma and premature atherosclerotic disease. Therapeutic approaches include limiting PS intake, interrupting enterohepatic circulation of bile acid using bile acid binding resins such as cholestyramine, and/or ileal bypass, and inhibiting intestinal sterol absorption by ezetimibe (EZE). The objective of this review is to evaluate sterol metabolism in STSL and the impact of the currently available treatments on sterol trafficking in this disease. The role of PS in initiation of xanthomas and premature atherosclerosis is also discussed. Blocking sterols absorption with EZE has revolutionized STSL patient treatment as it reduces circulating levels of non-cholesterol sterols in STSL. However, none of the available treatments including EZE have normalized plasma PS concentrations. Future studies are needed to: (i) explore where cholesterol and non-cholesterol sterols accumulate, (ii) assess to what extent these sterols in tissues can be mobilized after blocking their absorption, and (iii) define the factors governing sterol flux.

  7. A sensitive assay for ABCA1-mediated cholesterol efflux using BODIPY -cholesterol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Studies have shown a negative association between cellular cholesterol efflux and coronary artery disease (CAD). Standard protocol for quantifying cholesterol efflux involves labeling cells with [(3)H]cholesterol and measuring release of the labeled sterol. Using [(3)H]cholesterol is not ideal for...

  8. Percentage of Adults with High Cholesterol Whose LDL Cholesterol Levels Are Adequately Controlled

    MedlinePlus

    ... of Adults with High Cholesterol Whose LDL Cholesterol Levels are Adequately Controlled High cholesterol can double a ... with High Cholesterol that is Controlled by Education Level 8k4c-k22f Download these data » Click on legends ...

  9. Effect of cholesterol supplementation on cryosurvival of goat spermatozoa

    PubMed Central

    Behera, Sunita; Harshan, Hiron M.; Bhai, K. Lekshmi; Ghosh, K. N. Aravinda

    2015-01-01

    Aim: Sperm membrane cholesterol influences cryodamage during cryopreservation. The present study was carried out to evaluate the effect of varying cholesterol levels in Tris based extenders on the freezability of sexually healthy Malabari buck semen. Materials and Methods: A total of 48 ejaculates from two adults healthy sexually healthy Malabari bucks were utilized for the study. The collected and pooled ejaculates were divided into four groups with Group I serving as Control - I, Group II and III were treated with 1 mg and 2 mg of cholesterol-loaded-cyclodextrin (CLC)/120 × 106 spermatozoa, respectively, and Group IV, treated with 1 mg methyl-β-cyclodextrin (MβCD) served as Control - II. Manual freezing was carried out to cryopreserve the treated and control spermatozoa. Results: Treatment of semen samples with CLC resulted in improved maintenance of sperm motility at pre-freeze and post-thaw stages of cryopreservation without affecting hypo-osmotic swelling response. Treatment of semen with 1 mg of CLC/120 × 106 spermatozoa was observed to be better than treatment with 2 mg of CLC/120 × 106 spermatozoa. In general, MβCD treatment was found to result in significantly lower sperm characteristics than those of Control - I and CLC treatment at pre-feeze and post-thaw stages and when incubated up to 4 h. Conclusion: Cholesterol treatment of sexually healthy Malabari buck semen was found to hold promise for improving cryopreservability of spermatozoa. PMID:27047048

  10. Treating ram sperm with cholesterol-loaded cyclodextrins improves cryosurvival

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Diluted ram sperm can be held for 24 h at 5º C prior to cryopreservation without impacting cryosurvival rates, however, the effects this storage has on subsequent fertility is unknown. These studies were conducted to evaluate the fertility of semen held for 24 h (to mimic shipping semen to a cryopr...

  11. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage

    NASA Astrophysics Data System (ADS)

    Alfonso-García, Alba; Pfisterer, Simon G.; Riezman, Howard; Ikonen, Elina; Potma, Eric O.

    2016-06-01

    We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell.

  12. D38-cholesterol as a Raman active probe for imaging intracellular cholesterol storage.

    PubMed

    Alfonso-García, Alba; Pfisterer, Simon G; Riezman, Howard; Ikonen, Elina; Potma, Eric O

    2016-06-01

    We generated a highly deuterated cholesterol analog (D38-cholesterol) and demonstrated its use for selective vibrational imaging of cholesterol storage in mammalian cells. D38-cholesterol produces detectable signals in stimulated Raman scattering (SRS) imaging, is rapidly taken up by cells, and is efficiently metabolized by acyl-CoA cholesterol acyltransferase to form cholesteryl esters. Using hyperspectral SRS imaging of D38-cholesterol, we visualized cholesterol storage in lipid droplets. We found that some lipid droplets accumulated preferentially unesterified D38-cholesterol, whereas others stored D38-cholesteryl esters. In steroidogenic cells, D38-cholesteryl esters and triacylglycerols were partitioned into distinct sets of lipid droplets. Thus, hyperspectral SRS imaging of D38-cholesterol demonstrates a heterogeneous incorporation of neutral lipid species, i.e., free cholesterol, cholesteryl esters, and triacylglycerols, between individual lipid droplets in a cell.

  13. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    NASA Astrophysics Data System (ADS)

    Mandal, Pritam; Noutsi, Pakiza; Chaieb, Sahraoui

    2016-06-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low.

  14. Relationship between plasma cholesterol levels and cholesterol esterification in isolated human mononuclear cells

    SciTech Connect

    Dallongeville, J.; Davignon, J.; Lussier-Cacan, S. )

    1990-01-01

    The authors studied the relationship between plasma lipoprotein concentrations and cholesterol esterification in freshly isolated human mononuclear cells from 27 normolipidemic and 32 hyperlipidemic individuals. Cells were either incubated for 5 hours with radiolabeled oleate immediately after isolation or were preincubated for 18 hours in the presence of exogenous cholesterol, and then incubated with ({sup 14}C)sodium-oleate-albumin complex. In the absence of exogenous cholesterol, control and hypercholesterolemic subjects had similarly low values of intracellular cholesterol esterification. In the presence of exogenous cholesterol, both hypertriglyceridemic and hypercholesterolemic subjects had higher cholesterol esterification than controls. There was a significant correlation between the rate of cholesterol esterification and plasma total cholesterol. These results suggest that plasma cholesterol levels may regulate mononuclear cell intra-cellular cholesterol esterification in humans.

  15. Fish protein hydrolysates affect cholesterol metabolism in rats fed non-cholesterol and high-cholesterol diets.

    PubMed

    Hosomi, Ryota; Fukunaga, Kenji; Arai, Hirofumi; Kanda, Seiji; Nishiyama, Toshimasa; Yoshida, Munehiro

    2012-03-01

    Fish consumption is well known to provide health benefits in both experimental animals and human subjects. Numerous studies have demonstrated the beneficial effects of various protein hydrolysates on lipid metabolism. In this context, this study examined the effect of fish protein hydrolysates (FPH) on cholesterol metabolism compared with the effect of casein. FPHs were prepared from Alaska pollock meat using papain as a protease. Male Wistar rats were divided into the following four dietary groups of seven rats each: either casein (20%) or FPH (10%) + casein (10%), with or without 0.5% cholesterol and 0.1% sodium cholate. Serum and liver lipid levels, fecal cholesterol and bile acid excretions, and the hepatic expression of genes encoding proteins involved in cholesterol homeostasis were examined. In rats fed the FPH diets compared with casein diets with or without cholesterol and sodium cholate, the indexes of cholesterol metabolism-namely, serum cholesterol, triglyceride, and low-density lipoprotein-cholesterol levels-were significantly lower, whereas fecal cholesterol and bile acid excretions were higher. Rats fed the FPH diets compared with casein with cholesterol exhibited a lower liver cholesterol level via an increased liver cholesterol 7α-hydroxylase (CYP7A1) expression level. This study demonstrates that the intake of FPH has hypocholesterolemic effects through the enhancement of fecal cholesterol and bile acid excretions and CYP7A1 expression levels. Therefore, fish peptides prepared by papain digestion might provide health benefits by decreasing the cholesterol content in the blood, which would contribute to the prevention of circulatory system diseases such as arteriosclerosis. PMID:22181072

  16. Peptide mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K.; Johansson, Jan

    2013-04-09

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  17. Does cholesterol lowering prevent stroke?

    PubMed

    Henry, R Y; Kendall, M J

    1998-10-01

    The importance of lowering plasma cholesterol to reduce the incidence of coronary events is well established. However, in the prevention of stroke disease, control of hypertension has been the main aim of treatment and lipid lowering therapy has not hitherto been considered to be desirable or necessary. In this review, the evidence from large multicentre trials, imaging studies and meta-analyses is presented. It shows convincingly that HMG-CoA reductase inhibitors (Statins) reduce stroke risk. PMID:9875681

  18. Poly(amidoamine)-Cholesterol Conjugate Nanoparticles Obtained by Electrospraying as Novel Tamoxifen Delivery System.

    PubMed

    Cavalli, R; Bisazza, A; Bussano, R; Trotta, M; Civra, A; Lembo, D; Ranucci, E; Ferruti, P

    2011-01-01

    A new poly(amidoamine)-cholesterol (PAA-cholesterol) conjugate was synthesized, characterized and used to produce nanoparticles by the electrospraying technique. The electrospraying is a method of liquid atomization that consists in the dispersion of a solution into small charged droplets by an electric field. Tuning the electrospraying process parameters spherical PAA-chol nanoparticles formed. The PAA-cholesterol nanoparticles showed sizes lower than 500 nm and spherical shape. The drug incorporation capacity was investigated using tamoxifen, a lipophilic anticancer drug, as model drug. The incorporation of the tamoxifen did not affect the shape and sizes of nanoparticles showing a drug loading of 40%. Tamoxifen-loaded nanoparticles exhibited a higher dose-dependent cytotoxicity than free tamoxifen, while blank nanoparticles did not show any cytotoxic effect at the same concentrations. The electrospray technique might be proposed to produce tamoxifen-loaded PAA-chol nanoparticle in powder form without any excipient in a single step. PMID:21785731

  19. Different shades of cholesterol: Gold nanoparticles supported on MoS2 nanoribbons for enhanced colorimetric sensing of free cholesterol.

    PubMed

    Nirala, Narsingh R; Pandey, Shobhit; Bansal, Anushka; Singh, Vijay K; Mukherjee, Bratindranath; Saxena, Preeti S; Srivastava, Anchal

    2015-12-15

    In the present study, we manifest that traditionally used gold nanoparticles when supported on molybdenum disulfide nanoribbons matrix (MoS2 NRs-Au NPs) show synergistically enhanced intrinsic peroxidase like catalytic activity and can catalyze the oxidation of 3,3',5,5' tetramethyl benzidine by H2O2 to produce a highly sensitive blue shade product depending on level of free cholesterol, when tested on complex system of human serum. Further the system attests appreciable kinetics, owing to Km value as low as 0.015 mM and better loading capacity (Vmax=6.7×10(-6) M s(-1)). Additionally, the proposed system is stable for weeks with ability to perform appreciably in wide pH (3-6) and temperature range (25-60 °C). Utilizing this potential, the present work proposes a cholesterol detection color wheel which is used along with cost effective cholesterol detection strips fabricated out of proposed MoS2 NRs-Au NPs system for quick and reliable detection of free cholesterol using unaided eye.

  20. Regulation of biliary cholesterol secretion in the rat. Role of hepatic cholesterol esterification.

    PubMed Central

    Nervi, F; Bronfman, M; Allalón, W; Depiereux, E; Del Pozo, R

    1984-01-01

    Although the significance of the enterohepatic circulation of bile salts in the solubilization and biliary excretion of cholesterol is well established, little is known about the intrahepatic determinants of biliary cholesterol output. Studies were undertaken to elucidate some of these determinants in the rat. Feeding 1% diosgenin for 1 wk increased biliary cholesterol output and saturation by 400%. Bile flow, biliary bile salt, phospholipid and protein outputs remained in the normal range. When ethynyl estradiol (EE) was injected into these animals, biliary cholesterol output decreased to almost normal levels under circumstances of minor changes in the rates of biliary bile salt and phospholipid outputs. Similarly, when chylomicron cholesterol was intravenously injected into diosgenin-fed animals, biliary cholesterol output significantly decreased as a function of the dose of chylomicron cholesterol administered. Relative rates of hepatic cholesterol synthesis and esterification were measured in isolated hepatocytes. Although hepatic cholesterogenesis increased 300% in diosgenin-fed animals, the contribution of newly synthesized cholesterol to total biliary cholesterol output was only 19 +/- 9%, compared with 12 +/- 6% in control and 15 +/- 5% in diosgenin-fed and EE-injected rats. The rate of oleate incorporation into hepatocytic cholesterol esters was 30% inhibited in diosgenin-fed rats. When EE was injected into these animals, the rate of cholesterol esterification increased to almost 300%. To investigate further the interrelationship between hepatic cholesterol esterification and biliary cholesterol output, we studied 21 diosgenin-fed rats. Six of them received in addition EE and 10 received chylomicron cholesterol. The relationships between biliary cholesterol output as a function of both microsomal acyl-CoA:cholesterol acyltransferase (ACAT) activity and hepatic cholesterol ester concentration were significantly correlated in a reciprocal manner. From these

  1. Enriching membrane cholesterol improves stability and cryosurvival of buffalo spermatozoa.

    PubMed

    Rajoriya, J S; Prasad, J K; Ramteke, S S; Perumal, P; Ghosh, S K; Singh, M; Pande, Megha; Srivastava, N

    2016-01-01

    Buffalo spermatozoa are comparatively more susceptible to freezing hazards than cattle spermatozoa. In recent times incubation of spermatozoa with cholesterol-loaded-cyclodextrins (CLC) has shown improvements in semen quality in several species. Therefore, this study was undertaken to evaluate the incubation level of CLC at which maximum benefit is derived for the buffalo spermatozoa. For the study, 120 million spermatozoa were incubated in 2, 3 and 4 mg/mL of CLC (Gr II, III and IV, respectively) and cholesterol and phospholipids content, their ratio, flow cytometric evaluation of plasma membrane integrity (PMI), plasma membrane fluidity and extent of cryoinjury (Chlortetracycline, CTC assay) were compared with an untreated control (Gr I). Additionally the ability of cholesterol-loaded-spermatozoa to undergo induced acrosome reaction (IAR) using ionophore calcium (A23187) was evaluated in frozen-thaw samples. Data show a significant and linear increase (CV=0.88) in cholesterol content of spermatozoa in Gr II, III and IV and a significant decrease in phospholipids content at frozen-thaw stage in Gr IV than Gr III spermatozoa. The study revealed a significant improvement in PMI and significant reduction in plasma membrane fluidity and cryoinjury of CLC treated spermatozoa at progressive stages in three groups compared to control. Nevertheless, spermatozoa of Gr II, III and IV were significantly less responsive to ionophore calcium (A23187) than Gr I. This study shows for the first time that incubation of buffalo bull spermatozoa with CLC (3mg/120×10(6)) prior to processing permits greater numbers of sperm to survive cryopreservation while allowing spermatozoa to capacitate and the acrosome to react to AR inducer ionophore calcium (A23187).

  2. Matrix metalloproteinase 8 degrades apolipoprotein A-I and reduces its cholesterol efflux capacity.

    PubMed

    Salminen, Aino; Åström, Pirjo; Metso, Jari; Soliymani, Rabah; Salo, Tuula; Jauhiainen, Matti; Pussinen, Pirkko J; Sorsa, Timo

    2015-04-01

    Various cell types in atherosclerotic lesions express matrix metalloproteinase (MMP)-8. We investigated whether MMP-8 affects the structure and antiatherogenic function of apolipoprotein (apo) A-I, the main protein component of HDL particles. Furthermore, we studied serum lipid profiles and cholesterol efflux capacity in MMP-8-deficient mouse model. Incubation of apoA-I (28 kDa) with activated MMP-8 yielded 22 kDa and 25 kDa apoA-I fragments. Mass spectrometric analyses revealed that apoA-I was cleaved at its carboxyl-terminal part. Treatment of apoA-I and HDL with MMP-8 resulted in significant reduction (up to 84%, P < 0.001) in their ability to facilitate cholesterol efflux from cholesterol-loaded THP-1 macrophages. The cleavage of apoA-I by MMP-8 and the reduction in its cholesterol efflux capacity was inhibited by doxycycline. MMP-8-deficient mice had significantly lower serum triglyceride (TG) levels (P = 0.003) and larger HDL particles compared with wild-type (WT) mice. However, no differences were observed in the apoA-I levels or serum cholesterol efflux capacities between the mouse groups. Proteolytic modification of apoA-I by MMP-8 may impair the first steps of reverse cholesterol transport, leading to increased accumulation of cholesterol in the vessel walls. Eventually, inhibition of MMPs by doxycycline may reduce the risk for atherosclerotic vascular diseases.

  3. Novel technique for generating macrophage foam cells for in vitro reverse cholesterol transport studies[S

    PubMed Central

    Sengupta, Bhaswati; Narasimhulu, Chandrakala Aluganti; Parthasarathy, Sampath

    2013-01-01

    Generation of foam cells, an essential step for reverse cholesterol transport studies, uses the technique of receptor-dependent macrophage loading with radiolabeled acetylated LDL. In this study, we used the ability of a biologically relevant detergent molecule, lysophosphatidylcholine (lyso-PtdCho), to form mixed micelles with cholesterol or cholesteryl ester (CE) to generate macrophage foam cells. Fluorescent or radiolabeled cholesterol/lyso-PtdCho mixed micelles were prepared and incubated with RAW 264.7 or mouse peritoneal macrophages. Results showed that such micelles were quite stable at 4°C and retained the solubilized cholesterol during one month of storage. Macrophages incubated with cholesterol or CE (unlabeled, fluorescently labeled, or radiolabeled)/lyso-PtdCho mixed micelles accumulated CE as documented by microscopy, lipid staining, labeled oleate incorporation, and by TLC. Such foam cells unloaded cholesterol when incubated with HDL but not with oxidized HDL. We propose that stable cholesterol or CE/lyso-PtdCho micelles would offer advantages over existing methods. PMID:24115226

  4. Reduction of blood serum cholesterol

    NASA Technical Reports Server (NTRS)

    Winitz, M. (Inventor)

    1974-01-01

    By feeding a human subject as the sole source of sustenance a defined diet wherein the carbohydrate consists substantially entirely of glucose, maltose or a polysaccharide of glucose, the blood serum cholesterol level of the human subject is substantially reduced. If 25 percent of the carbohydrate is subsequently supplied in the form of sucrose, an immediate increase from the reduced level is observed. The remainder of the defined diet normally includes a source of amino acids, such as protein or a protein hydrolysate, vitamins, minerals and a source of essential fatty acid.

  5. Polarized cholesterol and phospholipid efflux in cultured gall-bladder epithelial cells: evidence for an ABCA1-mediated pathway.

    PubMed Central

    Lee, Jin; Shirk, Andrew; Oram, John F; Lee, Sum P; Kuver, Rahul

    2002-01-01

    Gall-bladder epithelial cells (GBEC) are exposed to high concentrations of cholesterol in bile. Whereas cholesterol absorption by GBEC is established, the fate of this absorbed cholesterol is not known. The aim of this study was to determine whether ABCA1 (ATP-binding cassette transporter A1) mediates cholesterol efflux in GBEC. Polarized canine GBEC were cultured on porous membrane filters allowing separate access to apical (AP) and basolateral (BL) compartments. After AP loading of cells with model bile and [14C]cholesterol, cholesterol efflux was measured. Cholesterol loading together with 8-bromo-cAMP treatment, which increased ABCA1 expression, led to a significant increase in cholesterol efflux with apolipoprotein A-I (apoA-I) as the acceptor. Cholesterol efflux was observed predominantly into the BL compartment. Similar results were found for phospholipid efflux. Confocal immunofluorescence microscopy showed a predominantly BL ABCA1 localization. Interestingly, apoA-I added to either the AP or the BL compartments elicited BL lipid efflux with cAMP treatment. No paracellular or transcellular passage of 125I-apoA-I occurred. Ligands for the nuclear hormone receptors liver X receptor alpha (LXRalpha) and retinoid X receptor (RXR) elicited AP and BL cholesterol efflux, suggesting the involvement of both ABCA1- and non-ABCA1-mediated pathways. In summary, BL cholesterol/phospholipid efflux consistent with an ABCA1-mediated mechanism occurs in GBEC. This efflux pathway is stimulated by cAMP and by LXRalpha/RXR ligands, and in the case of the cAMP pathway appears to involve a role for biliary apoA-I. PMID:12023891

  6. Cholesterol Oxidation in Fish and Fish Products.

    PubMed

    Dantas, Natalie Marinho; Sampaio, Geni Rodrigues; Ferreira, Fernanda Silva; Labre, Tatiana da Silva; Torres, Elizabeth Aparecida Ferraz da Silva; Saldanha, Tatiana

    2015-12-01

    Fish and fish products are important from a nutritional point of view due to the presence of high biological value proteins and the high content of polyunsaturated fatty acids, especially those of the n-3 series, and above all eicosapentaenoic acid and docosahexaenoic acid. However, these important food products also contain significant amounts of cholesterol. Although cholesterol participates in essential functions in the human body, it is unstable, especially in the presence of light, oxygen, radiation, and high temperatures that can cause the formation of cholesterol oxidation products or cholesterol oxides, which are prejudicial to human health. Fish processing involves high and low temperatures, as well as other methods for microbiological control, which increases shelf life and consequently added value; however, such processes favor the formation of cholesterol oxidation products. This review brings together data on the formation of cholesterol oxides during the preparation and processing of fish into food products which are recognized and recommended for their nutritional properties.

  7. Structure of Cholesterol in Lipid Rafts

    NASA Astrophysics Data System (ADS)

    Toppozini, Laura; Meinhardt, Sebastian; Armstrong, Clare L.; Yamani, Zahra; Kučerka, Norbert; Schmid, Friederike; Rheinstädter, Maikel C.

    2014-11-01

    Rafts, or functional domains, are transient nano-or mesoscopic structures in the plasma membrane and are thought to be essential for many cellular processes such as signal transduction, adhesion, trafficking, and lipid or protein sorting. Observations of these membrane heterogeneities have proven challenging, as they are thought to be both small and short lived. With a combination of coarse-grained molecular dynamics simulations and neutron diffraction using deuterium labeled cholesterol molecules, we observe raftlike structures and determine the ordering of the cholesterol molecules in binary cholesterol-containing lipid membranes. From coarse-grained computer simulations, heterogenous membranes structures were observed and characterized as small, ordered domains. Neutron diffraction was used to study the lateral structure of the cholesterol molecules. We find pairs of strongly bound cholesterol molecules in the liquid-disordered phase, in accordance with the umbrella model. Bragg peaks corresponding to ordering of the cholesterol molecules in the raftlike structures were observed and indexed by two different structures: a monoclinic structure of ordered cholesterol pairs of alternating direction in equilibrium with cholesterol plaques, i.e., triclinic cholesterol bilayers.

  8. Macrophage-mediated cholesterol handling in atherosclerosis.

    PubMed

    Chistiakov, Dimitry A; Bobryshev, Yuri V; Orekhov, Alexander N

    2016-01-01

    Formation of foam cells is a hallmark at the initial stages of atherosclerosis. Monocytes attracted by pro-inflammatory stimuli attach to the inflamed vascular endothelium and penetrate to the arterial intima where they differentiate to macrophages. Intimal macrophages phagocytize oxidized low-density lipoproteins (oxLDL). Several scavenger receptors (SR), including CD36, SR-A1 and lectin-like oxLDL receptor-1 (LOX-1), mediate oxLDL uptake. In late endosomes/lysosomes of macrophages, oxLDL are catabolysed. Lysosomal acid lipase (LAL) hydrolyses cholesterol esters that are enriched in LDL to free cholesterol and free fatty acids. In the endoplasmic reticulum (ER), acyl coenzyme A: cholesterol acyltransferase-1 (ACAT1) in turn catalyses esterification of cholesterol to store cholesterol esters as lipid droplets in the ER of macrophages. Neutral cholesteryl ester hydrolases nCEH and NCEH1 are involved in a secondary hydrolysis of cholesterol esters to liberate free cholesterol that could be then out-flowed from macrophages by cholesterol ATP-binding cassette (ABC) transporters ABCA1 and ABCG1 and SR-BI. In atherosclerosis, disruption of lipid homoeostasis in macrophages leads to cholesterol accumulation and formation of foam cells. PMID:26493158

  9. Rapid labeling of lipoproteins in plasma with radioactive cholesterol. Application for measurement of plasma cholesterol esterification

    SciTech Connect

    Yen, F.T.; Nishida, T. )

    1990-02-01

    In order to efficiently and rapidly label lipoproteins in plasma with ({sup 3}H)cholesterol, micelles consisting of lysophosphatidylcholine (lysoPC) and ({sup 3}H)cholesterol (molar ratio, 50:1) were prepared. When trace amounts of these micelles were injected into plasma, ({sup 3}H)cholesterol rapidly equilibrated among the plasma lipoproteins, as compared to ({sup 3}H)cholesterol from an albumin-stabilized emulsion. The distributions of both ({sup 3}H)cholesterol and unlabeled free cholesterol in plasma lipoproteins were similar in labeled plasma samples. This method of labeling can be used for the measurement of cholesterol esterification, or lecithin:cholesterol acyltransferase activity, in small amounts (20-40 microliters) of plasma samples.

  10. Black pepper and piperine reduce cholesterol uptake and enhance translocation of cholesterol transporter proteins.

    PubMed

    Duangjai, Acharaporn; Ingkaninan, Kornkanok; Praputbut, Sakonwun; Limpeanchob, Nanteetip

    2013-04-01

    Black pepper (Piper nigrum L.) lowers blood lipids in vivo and inhibits cholesterol uptake in vitro, and piperine may mediate these effects. To test this, the present study aimed to compare actions of black pepper extract and piperine on (1) cholesterol uptake and efflux in Caco-2 cells, (2) the membrane/cytosol distribution of cholesterol transport proteins in these cells, and (3) the physicochemical properties of cholesterol micelles. Piperine or black pepper extract (containing the same amount of piperine) dose-dependently reduced cholesterol uptake into Caco-2 cells in a similar manner. Both preparations reduced the membrane levels of NPC1L1 and SR-BI proteins but not their overall cellular expression. Micellar cholesterol solubility of lipid micelles was unaffected except by 1 mg/mL concentration of black pepper extract. These data suggest that piperine is the active compound in black pepper and reduces cholesterol uptake by internalizing the cholesterol transporter proteins.

  11. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway

    SciTech Connect

    Xu, Xiaolin; Li, Qian; Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian; Wang, Yiqing

    2013-11-15

    Highlights: •Arctigenin enhanced cholesterol efflux in oxLDL-loaded THP-1 macrophages. •The expression of ABCA1, ABCG1 and apoE was upregulated in arctigenin-treated cells. •Arctigenin promoted the expression of PPAR-γ and LXR-α. •Inhibition of PPAR-γ or LXR-α reversed arctigenin-mediated biological effects. •Arctigenin promotes cholesterol efflux via activation of PPAR-γ/LXR-α/ABCA1 pathway. -- Abstract: Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α.

  12. Pigs fed cholesterol neonatally have increased cerebrum cholesterol as young adults.

    PubMed

    Boleman, S L; Graf, T L; Mersmann, H J; Su, D R; Krook, L P; Savell, J W; Park, Y W; Pond, W G

    1998-12-01

    Sixty-eight female neonatal pigs selected for seven (Experiment 1) or eight (Experiment 2) generations for high (HG) or low (LG) plasma cholesterol were used to test the hypothesis that neonatal dietary cholesterol fed during the first 4 or 8 wk of postnatal life increases the cholesterol content of the cerebrum in young adulthood following free access to a high-fat (15%), high-cholesterol (0.5%) diet from 8 to 20 or 24 wk of age. Pigs were removed from their dams at 1 d of age and given free access to a sow-milk replacer diet containing 9.5% coconut fat and 0 or 0.5 % cholesterol. All pigs (except four HG and four LG pigs in Experiment 2, which were deprived of cholesterol throughout the study) were fed the high-fat, high-cholesterol diet from 8 wk to termination at 20 or 24 wk of age. Cerebrum weight and cholesterol concentration were higher in pigs fed cholesterol neonatally than in those deprived of cholesterol neonatally in both experiments, but weight and cholesterol concentration were unaffected by genetic line. Cholesterol concentrations in longissimus and semitendinosus muscles and in subcutaneous fat were unaffected by diet or genetic line. We conclude that dietary cholesterol deprivation during the first 4 to 8 wk of life in piglets is associated with lower cholesterol concentration and total content in the young adult cerebrum than in pigs supplemented with cholesterol in early life. These data support previous observations and suggest the possibility of a metabolic need for neonatal dietary cholesterol in normal brain development. PMID:9868199

  13. Neonatal dietary cholesterol and alleles of cholesterol 7-alpha hydroxylase affect piglet cerebrum weight, cholesterol concentration, and behavior

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This experiment was designed to test the effect of polymorphism in the cholesterol 7-alpha hydroxylase (CYP7) gene locus, and dietary cholesterol (C) on cerebrum C in neonatal pigs fed sow's milk formulas. Thirty-six pigs (18 male and 18 female) genetically selected for high (HG), or low (LG) plasma...

  14. A computational and functional study elicits the ameliorating effect of the Chinese herbal formula Huo Luo Xiao Ling Dan on experimental ischemia-induced myocardial injury in rats via inhibition of apoptosis.

    PubMed

    Han, Xiang-Dong; Zhou, Zhi-Wei; Yang, Wei; Ye, Hang-Cheng; Xu, Ying-Zi; Huang, Yun-Feng; Zhang, Tong; Zhou, Shu-Feng

    2015-01-01

    of rise/descent of left ventricular pressure levels. Administration of HLXLD significantly ameliorated coronary artery ligation-induced tissue damage in the left ventricle, with restored arrangement of myocardial fibers and recovered myoplasm in rats. Furthermore, HLXLD markedly increased the expression level of Bcl-2 but decreased the level of cleaved caspase 3. Taken together, administration of HLXLD attenuated acute myocardial ischemia-induced damage in cardiomyocytes and inhibited apoptotic death of cardiomyocytes, thereby exerting a cardioprotective effect in rats with IHD. These findings suggest that HLXLD may represent a promising herbal formula for the treatment of cardiovascular disease by counteracting apoptotic cell death via multiple active compounds. More studies are warranted to fully elucidate the mechanisms of action, identify the therapeutic targets, and validate the efficacy and safety of HLXLD in the treatment of IHD.

  15. Total cholesterol, low density lipoprotein cholesterol, and high density lipoprotein cholesterol and coronary heart disease in Scotland.

    PubMed Central

    Hargreaves, A D; Logan, R L; Thomson, M; Elton, R A; Oliver, M F; Riemersma, R A

    1991-01-01

    OBJECTIVE--To investigate long term changes in total cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol concentrations and in measures of other risk factors for coronary heart disease and to assess their importance for the development of coronary heart disease in Scottish men. DESIGN--Longitudinal study entailing follow up in 1988-9 of men investigated during a study in 1976. SETTING--Edinburgh, Scotland. SUBJECTS--107 men from Edinburgh who had taken part in a comparative study of risk factors for heart disease with Swedish men in 1976 when aged 40. INTERVENTION--The men were invited to attend a follow up clinic in 1988-9 for measurement of cholesterol concentrations and other risk factor measurements. Eighty three attended and 24 refused to or could not attend. MAIN OUTCOME MEASURES--Changes in total cholesterol, high density lipoprotein cholesterol, and low density lipoprotein cholesterol concentrations, body weight, weight to height index, prevalence of smoking, and alcohol intake; number of coronary artery disease events. RESULTS--Mean serum total cholesterol concentration increased over the 12 years mainly due to an increase in the low density lipoprotein cholesterol fraction (from 3.53 (SD 0.09) to 4.56 (0.11) mmol/l) despite a reduction in high density lipoprotein cholesterol concentration. Body weight and weight to height index increased. Fewer men smoked more than 15 cigarettes/day in 1988-9 than in 1976. Blood pressure remained stable and fasting triglyceride concentrations did not change. The frequency of corneal arcus doubled. Alcohol consumption decreased significantly. Eleven men developed clinical coronary heart disease. High low density lipoprotein and low high density lipoprotein cholesterol concentrations in 1976, but not total cholesterol concentration, significantly predicted coronary heart disease (p = 0.05). Almost all of the men who developed coronary heart disease were smokers (91% v 53%, p less than

  16. Prosopis farcta beans increase HDL cholesterol and decrease LDL cholesterol in ostriches (Struthio camelus).

    PubMed

    Omidi, Arash; Ansari nik, Hossein; Ghazaghi, Mahmood

    2013-02-01

    Ten blue-neck male ostriches (Struthio camelus) were fed Prosopis farcta beans throughout a 30-day experiment. Blood samples were collected from ostriches on days 0 and 30 to measure levels of high-density lipoprotein (HDL) cholesterol, low-density lipoprotein (LDL) cholesterol, triglyceride, total serum protein, albumin, globulin, cholesterol, calcium, inorganic phosphorus, the activity of aspartate aminotransferase, alanine aminotransferase, and γ-glutamyl transferase (γ-GT). From days 0 to 30, HDL cholesterol, total protein, and globulins levels increased significantly whereas LDL cholesterol, inorganic phosphorus, and γ-GT activity decreased significantly.

  17. Analysis of cholesterol trafficking with fluorescent probes

    PubMed Central

    Maxfield, Frederick R.; Wüstner, Daniel

    2013-01-01

    Cholesterol plays an important role in determining the biophysical properties of biological membranes, and its concentration is tightly controlled by homeostatic processes. The intracellular transport of cholesterol among organelles is a key part of the homeostatic mechanism, but sterol transport processes are not well understood. Fluorescence microscopy is a valuable tool for studying intracellular transport processes, but this method can be challenging for lipid molecules because addition of a fluorophore may alter the properties of the molecule greatly. We discuss the use of fluorescent molecules that can bind to cholesterol to reveal its distribution in cells. We also discuss the use of intrinsically fluorescent sterols that closely mimic cholesterol, as well as some minimally modified fluorophore-labeled sterols. Methods for imaging these sterols by conventional fluorescence microscopy and by multiphoton microscopy are described. Some label-free methods for imaging cholesterol itself are also discussed briefly. PMID:22325611

  18. Dysregulation of Plasmalogen Homeostasis Impairs Cholesterol Biosynthesis.

    PubMed

    Honsho, Masanori; Abe, Yuichi; Fujiki, Yukio

    2015-11-27

    Plasmalogen biosynthesis is regulated by modulating fatty acyl-CoA reductase 1 stability in a manner dependent on cellular plasmalogen level. However, physiological significance of the regulation of plasmalogen biosynthesis remains unknown. Here we show that elevation of the cellular plasmalogen level reduces cholesterol biosynthesis without affecting the isoprenylation of proteins such as Rab and Pex19p. Analysis of intermediate metabolites in cholesterol biosynthesis suggests that the first oxidative step in cholesterol biosynthesis catalyzed by squalene monooxygenase (SQLE), an important regulator downstream HMG-CoA reductase in cholesterol synthesis, is reduced by degradation of SQLE upon elevation of cellular plasmalogen level. By contrast, the defect of plasmalogen synthesis causes elevation of SQLE expression, resulting in the reduction of 2,3-epoxysqualene required for cholesterol synthesis, hence implying a novel physiological consequence of the regulation of plasmalogen biosynthesis.

  19. Cholesterol-lowering effect of plant sterols.

    PubMed

    AbuMweis, Suhad S; Jones, Peter J H

    2008-12-01

    Plant sterols are plant components that have a chemical structure similar to cholesterol except for the addition of an extra methyl or ethyl group; however, plant sterol absorption in humans is considerably less than that of cholesterol. In fact, plant sterols reduce cholesterol absorption and thus reduce circulating levels of cholesterol. Earlier studies that have tested the efficacy of plant sterols as cholesterol-lowering agents incorporated plant sterols into fat spreads. Later on, plant sterols were added to other food matrices, including juices, nonfat beverages, milk and yogurt, cheese, meat, croissants and muffins, and cereal and chocolate bars. The beneficial physiologic effects of plant sterols could be further enhanced by combining them with other beneficial substances, such as olive and fish oils, fibers, and soy proteins, or with exercise. The addition of plant sterols to the diet is suggested by health experts as a safe and effective way to reduce the risk of coronary heart disease. PMID:18937893

  20. Cholesterol granulomas in three meerkats (Suricata suricatta).

    PubMed

    Sladky, K K; Dalldorf, F G; Steinberg, H; Wright, J F; Loomis, M R

    2000-11-01

    Cholesterol granulomas are uncommon pathologic lesions in animals, although they are important intracranial tumors in humans. This report describes cholesterol granulomas associated with multiple organ systems of three captive meerkats. In the most severe case, meerkat No. 1, the pathologic behavior of the cholesterol granuloma was unique in that it appeared to locally invade the cerebrum and calvarium, possibly contributing to neurological deficits observed antemortem. A review of other meerkat necropsies revealed incidental, asymptomatic cholesterol granulomas in organs of two other individuals, meerkat Nos. 2 and 3. Histologically, all lesions were composed of cholesterol clefts admixed with large, foamy macrophages containing hemosiderin, multinucleated giant cells, lymphocytes, plasma cells, and foci of mineralization. Hypercholesterolemia was documented in two of the three meerkats.

  1. Cholesterol in myelin biogenesis and hypomyelinating disorders.

    PubMed

    Saher, Gesine; Stumpf, Sina Kristin

    2015-08-01

    The largest pool of free cholesterol in mammals resides in myelin membranes. Myelin facilitates rapid saltatory impulse propagation by electrical insulation of axons. This function is achieved by ensheathing axons with a tightly compacted stack of membranes. Cholesterol influences myelination at many steps, from the differentiation of myelinating glial cells, over the process of myelin membrane biogenesis, to the functionality of mature myelin. Cholesterol emerged as the only integral myelin component that is essential and rate-limiting for the development of myelin in the central and peripheral nervous system. Moreover, disorders that interfere with sterol synthesis or intracellular trafficking of cholesterol and other lipids cause hypomyelination and neurodegeneration. This review summarizes recent results on the roles of cholesterol in CNS myelin biogenesis in normal development and under different pathological conditions. This article is part of a Special Issue entitled Brain Lipids.

  2. Cholesterol granulomas in three meerkats (Suricata suricatta).

    PubMed

    Sladky, K K; Dalldorf, F G; Steinberg, H; Wright, J F; Loomis, M R

    2000-11-01

    Cholesterol granulomas are uncommon pathologic lesions in animals, although they are important intracranial tumors in humans. This report describes cholesterol granulomas associated with multiple organ systems of three captive meerkats. In the most severe case, meerkat No. 1, the pathologic behavior of the cholesterol granuloma was unique in that it appeared to locally invade the cerebrum and calvarium, possibly contributing to neurological deficits observed antemortem. A review of other meerkat necropsies revealed incidental, asymptomatic cholesterol granulomas in organs of two other individuals, meerkat Nos. 2 and 3. Histologically, all lesions were composed of cholesterol clefts admixed with large, foamy macrophages containing hemosiderin, multinucleated giant cells, lymphocytes, plasma cells, and foci of mineralization. Hypercholesterolemia was documented in two of the three meerkats. PMID:11105964

  3. Short ischemia induces rat kidney mitochondria dysfunction.

    PubMed

    Baniene, Rasa; Trumbeckas, Darius; Kincius, Marius; Pauziene, Neringa; Raudone, Lina; Jievaltas, Mindaugas; Trumbeckaite, Sonata

    2016-02-01

    Renal artery clamping itself induces renal ischemia which subsequently causes renal cell injury and can lead to renal failure. The duration of warm ischemia that would be safe for postoperative kidney function during partial nephrectomy remains under investigations. Mitochondria play an important role in pathophysiology of ischemia-reperfusion induced kidney injury, however relation between ischemia time and mitochondrial dysfunction are not fully elucidated. Thus, the effects of renal ischemia (20 min, 40 min and 60 min) on mitochondrial functions were investigated by using in vitro rat ischemia model. Thus, electronmicroscopy showed that at short (20 min) ischemia mitochondria start to swell and the damage increases with the duration of ischemia. In accordance with this, a significant decrease in mitochondrial oxidative phosphorylation capacity was observed already after 20 min of ischemia with both, complex I dependent substrate glutamate/malate (52%) and complex II dependent substrate succinate (44%) which further decreased with the prolonged time of ischemia. The diminished state 3 respiration rate was associated with the decrease in mitochondrial Complex I activity and the release of cytochrome c. Mitochondrial Ca(2+) uptake was diminished by 37-49% after 20-60 min of ischemia and caspase-3 activation increased by 1.15-2.32-fold as compared to control. LDH activity changed closely with increasing time of renal ischemia. In conclusion, even short time (20 min) of warm ischemia in vitro leads to renal mitochondrial injury which increases progressively with the duration of ischemia. PMID:26782060

  4. Characteristics and Functional Relevance of Apolipoprotein-A1 and Cholesterol Binding in Mammary Gland Tissues and Epithelial Cells

    PubMed Central

    Ontsouka, Edgar Corneille; Huang, Xiao; Stieger, Bruno; Albrecht, Christiane

    2013-01-01

    Cholesterol in milk is derived from the circulating blood through a complex transport process involving the mammary alveolar epithelium. Details of the mechanisms involved in this transfer are unclear. Apolipoprotein-AI (apoA-I) is an acceptor of cellular cholesterol effluxed by the ATP-binding cassette (ABC) transporter A1 (ABCA1). We aimed to 1) determine the binding characteristics of 125I-apoA-I and 3H-cholesterol to enriched plasma membrane vesicles (EPM) isolated from lactating and non-lactating bovine mammary glands (MG), 2) optimize the components of an in vitro model describing cellular 3H-cholesterol efflux in primary bovine mammary epithelial cells (MeBo), and 3) assess the vectorial cholesterol transport in MeBo using Transwell® plates. The amounts of isolated EPM and the maximal binding capacity of 125I-apoA-I to EPM differed depending on the MG’s physiological state, while the kinetics of 3H-cholesterol and 125I-apoA-I binding were similar. 3H-cholesterol incorporated maximally to EPM after 25±9 min. The time to achieve the half-maximum binding of 125I-apoA-I at equilibrium was 3.3±0.6 min. The dissociation constant (KD) of 125I-apoA-I ranged between 40–74 nmol/L. Cholesterol loading to EPM increased both cholesterol content and 125I-apoA-I binding. The ABCA1 inhibitor Probucol displaced 125I-apoA-I binding to EPM and reduced 3H-cholesterol efflux in MeBo. Time-dependent 3H-cholesterol uptake and efflux showed inverse patterns. The defined binding characteristics of cholesterol and apoA-I served to establish an efficient and significantly shorter cholesterol efflux protocol that had been used in MeBo. The application of this protocol in Transwell® plates with the upper chamber mimicking the apical (milk-facing) and the bottom chamber corresponding to the basolateral (blood-facing) side of cells showed that the degree of 3H-cholesterol efflux in MeBo differed significantly between the apical and basolateral aspects. Our findings support the

  5. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway.

    PubMed

    Xu, Xiaolin; Li, Qian; Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian; Wang, Yiqing

    2013-11-15

    Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α.

  6. Arctigenin promotes cholesterol efflux from THP-1 macrophages through PPAR-γ/LXR-α signaling pathway.

    PubMed

    Xu, Xiaolin; Li, Qian; Pang, Liewen; Huang, Guoqian; Huang, Jiechun; Shi, Meng; Sun, Xiaotian; Wang, Yiqing

    2013-11-15

    Cholesterol efflux from macrophages is a critical mechanism to prevent the development of atherosclerosis. Here, we sought to investigate the effects of arctigenin, a bioactive component of Arctium lappa, on the cholesterol efflux in oxidized low-density lipoprotein (oxLDL)-loaded THP-1 macrophages. Our data showed that arctigenin significantly accelerated apolipoprotein A-I- and high-density lipoprotein-induced cholesterol efflux in both dose- and time-dependent manners. Moreover, arctigenin treatment enhanced the expression of ATP binding cassette transporter A1 (ABCA1), ABCG1, and apoE, all of which are key molecules in the initial step of cholesterol efflux, at both mRNA and protein levels. Arctigenin also caused a concentration-dependent elevation in the expression of peroxisome proliferator-activated receptor-gamma (PPAR-γ) and liver X receptor-alpha (LXR-α). The arctigenin-mediated induction of ABCA1, ABCG1, and apoE was abolished by specific inhibition of PPAR-γ or LXR-α using small interfering RNA technology. Our results collectively indicate that arctigenin promotes cholesterol efflux in oxLDL-loaded THP-1 macrophages through upregulation of ABCA1, ABCG1 and apoE, which is dependent on the enhanced expression of PPAR-γ and LXR-α. PMID:24140409

  7. HDL-apolipoprotein A-I exchange is independently associated with cholesterol efflux capacity

    PubMed Central

    Borja, Mark S.; Ng, Kit F.; Irwin, Angela; Hong, Jaekyoung; Wu, Xing; Isquith, Daniel; Zhao, Xue-Qiao; Prazen, Bryan; Gildengorin, Virginia; Oda, Michael N.; Vaisar, Tomáš

    2015-01-01

    HDL is the primary mediator of cholesterol mobilization from the periphery to the liver via reverse cholesterol transport (RCT). A critical first step in this process is the uptake of cholesterol from lipid-loaded macrophages by HDL, a function of HDL inversely associated with prevalent and incident cardiovascular disease. We hypothesized that the dynamic ability of HDL to undergo remodeling and exchange of apoA-I is an important and potentially rate-limiting aspect of RCT. In this study, we investigated the relationship between HDL-apoA-I exchange (HAE) and serum HDL cholesterol (HDL-C) efflux capacity. We compared HAE to the total and ABCA1-specific cholesterol efflux capacity of 77 subjects. We found that HAE was highly correlated with both total (r = 0.69, P < 0.0001) and ABCA1-specific (r = 0.47, P < 0.0001) efflux, and this relationship remained significant after adjustment for HDL-C or apoA-I. Multivariate models of sterol efflux capacity indicated that HAE accounted for approximately 25% of the model variance for both total and ABCA1-specific efflux. We conclude that the ability of HDL to exchange apoA-I and remodel, as measured by HAE, is a significant contributor to serum HDL efflux capacity, independent of HDL-C and apoA-I, indicating that HDL dynamics are an important factor in cholesterol efflux capacity and likely RCT. PMID:26254308

  8. HDL-apolipoprotein A-I exchange is independently associated with cholesterol efflux capacity.

    PubMed

    Borja, Mark S; Ng, Kit F; Irwin, Angela; Hong, Jaekyoung; Wu, Xing; Isquith, Daniel; Zhao, Xue-Qiao; Prazen, Bryan; Gildengorin, Virginia; Oda, Michael N; Vaisar, Tomáš

    2015-10-01

    HDL is the primary mediator of cholesterol mobilization from the periphery to the liver via reverse cholesterol transport (RCT). A critical first step in this process is the uptake of cholesterol from lipid-loaded macrophages by HDL, a function of HDL inversely associated with prevalent and incident cardiovascular disease. We hypothesized that the dynamic ability of HDL to undergo remodeling and exchange of apoA-I is an important and potentially rate-limiting aspect of RCT. In this study, we investigated the relationship between HDL-apoA-I exchange (HAE) and serum HDL cholesterol (HDL-C) efflux capacity. We compared HAE to the total and ABCA1-specific cholesterol efflux capacity of 77 subjects. We found that HAE was highly correlated with both total (r = 0.69, P < 0.0001) and ABCA1-specific (r = 0.47, P < 0.0001) efflux, and this relationship remained significant after adjustment for HDL-C or apoA-I. Multivariate models of sterol efflux capacity indicated that HAE accounted for approximately 25% of the model variance for both total and ABCA1-specific efflux. We conclude that the ability of HDL to exchange apoA-I and remodel, as measured by HAE, is a significant contributor to serum HDL efflux capacity, independent of HDL-C and apoA-I, indicating that HDL dynamics are an important factor in cholesterol efflux capacity and likely RCT.

  9. Physiological and pathological implications of cholesterol.

    PubMed

    Cortes, Victor A; Busso, Dolores; Maiz, Alberto; Arteaga, Antonio; Nervi, Flavio; Rigotti, Attilio

    2014-01-01

    Cholesterol has evolved to fulfill sophisticated biophysical, cell signaling and endocrine requirements of animal systems. At a cellular level, cholesterol is found in membranes, where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signaling functions. At an organismal level, cholesterol is the precursor for all steroid hormones, including gluco- and mineralo-corticoids, sex hormones and vitamin D, all of which regulate carbohydrate, sodium, reproductive and bone homeostasis, respectively. This sterol is also the precursor for bile acids, which are important for intestinal absorption of dietary lipids as well as energy and glucose metabolic regulation. Importantly, complex mechanisms maintain cholesterol within physiological ranges and the disregulation of these mechanisms results in embryonic or adult diseases, caused by either excessive or reduced tissue cholesterol levels. The causative role of cholesterol in these diseases has been demonstrated by diverse genetic and pharmacologic animal models that are commented in this review. PMID:24389193

  10. Cholesterol Asymmetry in Synaptic Plasma Membranes

    PubMed Central

    Wood, W. Gibson; Igbavboa, Urule; Müller, Walter E.; Eckert, Gunter P.

    2010-01-01

    Lipids are essential for the structural and functional integrity of membranes. Membrane lipids are not randomly distributed but are localized in different domains. A common characteristic of these membrane domains is their association with cholesterol. Lipid rafts and caveolae are examples of cholesterol enriched domains, which have attracted keen interest. However, two other important cholesterol domains are the exofacial and cytofacial leaflets of the plasma membrane. The two leaflets that make up the bilayer differ in their fluidity, electrical charge, lipid distribution, and active sites of certain proteins. The synaptic plasma membrane (SPM) cytofacial leaflet contains over 85% of the total SPM cholesterol as compared with the exofacial leaflet. This asymmetric distribution of cholesterol is not fixed or immobile but can be modified by different conditions in vivo: 1) chronic ethanol consumption; 2) statins; 3) aging; and 4) apoE isoform. Several potential candidates have been proposed as mechanisms involved in regulation of SPM cholesterol asymmetry: apoE, low-density-lipoprotein receptor, sterol carrier protein-2, fatty acid binding proteins, polyunsaturated fatty acids, p-glycoprotein and caveolin-1. This review examines cholesterol asymmetry in SPM, potential mechanisms of regulation and impact on membrane structure and function. PMID:21214553

  11. Perturbed cholesterol homeostasis in aging spinal cord.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging.

  12. Tau pathology induces intraneuronal cholesterol accumulation.

    PubMed

    Glöckner, Frauke; Ohm, Thomas G

    2014-09-01

    Epidemiologic and experimental data suggest the involvement of cholesterol metabolism in the development and progression of Alzheimer disease and Niemann-Pick type C disease, but not of frontotemporal dementias. In these 3 neurodegenerative diseases, however, protein tau hyperphosphorylation and aggregation into neurofibrillary tangles are observed. To elucidate the relationship between cholesterol and tau, we compared sterol levels of neurons burdened with neurofibrillary tangles with those of their unaffected neighbors using semiquantitative filipin fluorescence microscopy in mice expressing P301L mutant human tau (a well-described model of FTDP-17) and in P301L transgenic mice lacking apolipoprotein E (the major cholesterol transporter in the brain). Cellular unesterified cholesterol was higher in neurons affected by tau pathology irrespective of apolipoprotein E deficiency. This argues for an impact of tau pathology on cellular cholesterol homeostasis. We suggest that there is a bidirectional mode of action: Disturbances in cellular cholesterol metabolism may promote tau pathology, but tau pathology may also alter neuronal cholesterol homeostasis; once it is established, a vicious cycle may promote neurofibrillary tangle formation.

  13. Protein kinase activators alter glial cholesterol esterification

    SciTech Connect

    Jeng, I.; Dills, C.; Klemm, N.; Wu, C.

    1986-05-01

    Similar to nonneural tissues, the activity of glial acyl-CoA cholesterol acyltransferase is controlled by a phosphorylation and dephosphorylation mechanism. Manipulation of cyclic AMP content did not alter the cellular cholesterol esterification, suggesting that cyclic AMP is not a bioregulator in this case. Therefore, the authors tested the effect of phorbol-12-myristate 13-acetate (PMA) on cellular cholesterol esterification to determine the involvement of protein kinase C. PMA has a potent effect on cellular cholesterol esterification. PMA depresses cholesterol esterification initially, but cells recover from inhibition and the result was higher cholesterol esterification, suggesting dual effects of protein kinase C. Studies of other phorbol analogues and other protein kinase C activators such as merezein indicate the involvement of protein kinase C. Oleoyl-acetyl glycerol duplicates the effect of PMA. This observation is consistent with a diacyl-glycerol-protein kinase-dependent reaction. Calcium ionophore A23187 was ineffective in promoting the effect of PMA. They concluded that a calcium-independent and protein C-dependent pathway regulated glial cholesterol esterification.

  14. Physiological and pathological implications of cholesterol.

    PubMed

    Cortes, Victor A; Busso, Dolores; Maiz, Alberto; Arteaga, Antonio; Nervi, Flavio; Rigotti, Attilio

    2014-01-01

    Cholesterol has evolved to fulfill sophisticated biophysical, cell signaling and endocrine requirements of animal systems. At a cellular level, cholesterol is found in membranes, where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signaling functions. At an organismal level, cholesterol is the precursor for all steroid hormones, including gluco- and mineralo-corticoids, sex hormones and vitamin D, all of which regulate carbohydrate, sodium, reproductive and bone homeostasis, respectively. This sterol is also the precursor for bile acids, which are important for intestinal absorption of dietary lipids as well as energy and glucose metabolic regulation. Importantly, complex mechanisms maintain cholesterol within physiological ranges and the disregulation of these mechanisms results in embryonic or adult diseases, caused by either excessive or reduced tissue cholesterol levels. The causative role of cholesterol in these diseases has been demonstrated by diverse genetic and pharmacologic animal models that are commented in this review.

  15. Cholesterol-sensitive Modulation of Transcytosis

    PubMed Central

    Leyt, Julieta; Melamed-Book, Naomi; Vaerman, Jean-Pierre; Cohen, Shulamit; Weiss, Aryeh M.

    2007-01-01

    Cholesterol-rich membrane domains (e.g., lipid rafts) are thought to act as molecular sorting machines, capable of coordinating the organization of signal transduction pathways within limited regions of the plasma membrane and organelles. The significance of these domains in polarized postendocytic sorting is currently not understood. We show that dimeric IgA stimulates the incorporation of its receptor into cholesterol-sensitive detergent-resistant membranes confined to the basolateral surface/basolateral endosomes. A fraction of human transferrin receptor was also found in basolateral detergent-resistant membranes. Disrupting these membrane domains by cholesterol depletion (using methyl-β-cyclodextrin) before ligand-receptor internalization caused depolarization of traffic from endosomes, suggesting that cholesterol in basolateral lipid rafts plays a role in polarized sorting after endocytosis. In contrast, cholesterol depletion performed after ligand internalization stimulated cargo transcytosis. It also stimulated caveolin-1 phosphorylation on tyrosine 14 and the appearance of the activated protein in dimeric IgA-containing apical organelles. We propose that cholesterol depletion stimulates the coupling of transcytotic and caveolin-1 signaling pathways, consequently prompting the membranes to shuttle from endosomes to the plasma membrane. This process may represent a unique compensatory mechanism required to maintain cholesterol balance on the cell surface of polarized epithelia. PMID:17392516

  16. Perturbed cholesterol homeostasis in aging spinal cord.

    PubMed

    Parkinson, Gemma M; Dayas, Christopher V; Smith, Doug W

    2016-09-01

    The spinal cord is vital for the processing of sensorimotor information and for its propagation to and from both the brain and the periphery. Spinal cord function is affected by aging, however, the mechanisms involved are not well-understood. To characterize molecular mechanisms of spinal cord aging, microarray analyses of gene expression were performed on cervical spinal cords of aging rats. Of the metabolic and signaling pathways affected, cholesterol-associated pathways were the most comprehensively altered, including significant downregulation of cholesterol synthesis-related genes and upregulation of cholesterol transport and metabolism genes. Paradoxically, a significant increase in total cholesterol content was observed-likely associated with cholesterol ester accumulation. To investigate potential mechanisms for the perturbed cholesterol homeostasis, we quantified the expression of myelin and neuroinflammation-associated genes and proteins. Although there was minimal change in myelin-related expression, there was an increase in phagocytic microglial and astrogliosis markers, particularly in the white matter. Together, these results suggest that perturbed cholesterol homeostasis, possibly as a result of increased inflammatory activation in spinal cord white matter, may contribute to impaired spinal cord function with aging. PMID:27459933

  17. Load cell

    DOEpatents

    Spletzer, B.L.

    1998-12-15

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components. 16 figs.

  18. Load cell

    DOEpatents

    Spletzer, Barry L.

    2001-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs which can be combined to determine any one of the six general load components.

  19. Load cell

    DOEpatents

    Spletzer, Barry L.

    1998-01-01

    A load cell combines the outputs of a plurality of strain gauges to measure components of an applied load. Combination of strain gauge outputs allows measurement of any of six load components without requiring complex machining or mechanical linkages to isolate load components. An example six axis load cell produces six independent analog outputs, each directly proportional to one of the six general load components.

  20. Cholesterol content in European bovine milk fats.

    PubMed

    Precht, D

    2001-02-01

    Data about the cholesterol content in edible fats like bovine milk fat are important for balancing the cholesterol intake with food. A comparison of 3 different cholesterol determination methods showed that with the direct analysis by a 25 m long TAP steel capillary column the same results could be obtained as with a time-consuming saponification standard method including thin-layer chromatographic cleaning and subsequent silylation. On the other hand with a rapid direct method using a short packed column 21% unsaponifiables as e.g. minor sterols or hydrocarbons could be found in the "cholesterol peak". The analysis of 1142 German milk fats led to a mean cholesterol content of 265.6 +/- 20.0 mg/100 g fat (range: 204.4 to 382.5). For 165 milk fats from other 12 EU-countries, a similar mean cholesterol content of 258.5 +/- 19.9 mg/100 g fat (range: 215.0 to 331.6) was detected. Compared with sufficiently fed cows, underfed cows demonstrated an approx. 10.1% lower mean cholesterol content (238.7 +/- 9.7 mg/100 g fat). On the other hand, during the first 7 days post partum, the colostrum showed a significantly higher mean cholesterol content of 327.2 +/- 99.0 mg/100 g fat (n = 15; range: 213.1 to 583.9). Further, with special conditions as feeding of rape-seed the cholesterol content can be significantly lowered by 8-13%. An extraordinary lowering up to 50% can be reached by dry fractionation of milk fat (stearin "hard" fraction).

  1. Tissue storage and control of cholesterol metabolism in man on high cholesterol diets.

    PubMed

    Quintão, E C; Brumer, S; Stechhahn, K

    1977-03-01

    The possibility of accumulation of tissue cholesterol in human beings submitted to high cholesterol feeding was investigated in liver biopsies and through fecal sterol balance studies. Feeding to 10 individuals 3.1 to 3.4 g/day of cholesterol for 3 weeks raised the mean serum level from 293 to 349 mg/100 ml, namely 19%, whereas the liver cholesterol content was 417 mg/100 g of wet weight. In 10 control cases eating 0.1--0.4 g/day of cholesterol serum cholesterol remained stable throughout the experimental period and the liver cholesterol content was 256 mg/100 g. Difference of liver colesterol level between the two groups was 62%. In 7 patients submitted to two periods of balance investigation on a cholesterol-free synthetic formula diet respectively prior to (PI) and after (PIII) eating the high cholesterol solid food from 4 to 15 weeks (PII), fecal steroid excretion in PIII exceeded PI in 3 patients. Such data are a direct evidence for the existence of an efficient system to release acutely stored cholesterol. In one patient bile acid excretion accounted for the difference between PIII and PI. PMID:849375

  2. Tissue storage and control of cholesterol metabolism in man on high cholesterol diets.

    PubMed

    Quintão, E C; Brumer, S; Stechhahn, K

    1977-03-01

    The possibility of accumulation of tissue cholesterol in human beings submitted to high cholesterol feeding was investigated in liver biopsies and through fecal sterol balance studies. Feeding to 10 individuals 3.1 to 3.4 g/day of cholesterol for 3 weeks raised the mean serum level from 293 to 349 mg/100 ml, namely 19%, whereas the liver cholesterol content was 417 mg/100 g of wet weight. In 10 control cases eating 0.1--0.4 g/day of cholesterol serum cholesterol remained stable throughout the experimental period and the liver cholesterol content was 256 mg/100 g. Difference of liver colesterol level between the two groups was 62%. In 7 patients submitted to two periods of balance investigation on a cholesterol-free synthetic formula diet respectively prior to (PI) and after (PIII) eating the high cholesterol solid food from 4 to 15 weeks (PII), fecal steroid excretion in PIII exceeded PI in 3 patients. Such data are a direct evidence for the existence of an efficient system to release acutely stored cholesterol. In one patient bile acid excretion accounted for the difference between PIII and PI.

  3. Cholesterol Depletion from a Ceramide/Cholesterol Mixed Monolayer: A Brewster Angle Microscope Study

    PubMed Central

    Mandal, Pritam; Noutsi, Pakiza; Chaieb, Sahraoui

    2016-01-01

    Cholesterol is crucial to the mechanical properties of cell membranes that are important to cells’ behavior. Its depletion from the cell membranes could be dramatic. Among cyclodextrins (CDs), methyl beta cyclodextrin (MβCD) is the most efficient to deplete cholesterol (Chol) from biomembranes. Here, we focus on the depletion of cholesterol from a C16 ceramide/cholesterol (C16-Cer/Chol) mixed monolayer using MβCD. While the removal of cholesterol by MβCD depends on the cholesterol concentration in most mixed lipid monolayers, it does not depend very much on the concentration of cholesterol in C16-Cer/Chol monolayers. The surface pressure decay during depletion were described by a stretched exponential that suggested that the cholesterol molecules are unable to diffuse laterally and behave like static traps for the MβCD molecules. Cholesterol depletion causes morphology changes of domains but these disrupted monolayers domains seem to reform even when cholesterol level was low. PMID:27245215

  4. Cholesterol homeostasis in cardiovascular disease and recent advances in measuring cholesterol signatures.

    PubMed

    Seo, Hong Seog; Choi, Man Ho

    2015-09-01

    Despite the biochemical importance of cholesterol, its abnormal metabolism has serious cellular consequences that lead to endocrine disorders such as cardiovascular disease (CVD). Nevertheless, the impact of blood cholesterol as a CVD risk factor is still debated, and treatment with cholesterol-lowering drugs remains controversial, particularly in older patients. Although, the prevalence of CVD increases with age, the underlying mechanisms for this phenomenon are not well understood, and metabolic changes have not been confirmed as predisposing factors of atherogenesis. The quantification of circulating biomarkers for cholesterol homeostasis is therefore warranted, and reference values for cholesterol absorption and synthesis should be determined in order to establish CVD risk factors. The traditional lipid profile is often derived rather than directly measured and lacks a universal standard to interpret the results. In contrast, mass spectrometry-based cholesterol profiling can accurately measure free cholesterol as a biologically active component. This approach allows to detect alterations in various metabolic pathways that control cholesterol homeostasis, by quantitative analysis of cholesterol and its precursors/metabolites as well as dietary sterols. An overview of the mechanism of cholesterol homeostasis under different physiological conditions may help to identify predictive biomarkers of concomitant atherosclerosis and conventional CVD risk factors.

  5. Raising HDL cholesterol in women

    PubMed Central

    Eapen, Danny J; Kalra, Girish L; Rifai, Luay; Eapen, Christina A; Merchant, Nadya; Khan, Bobby V

    2010-01-01

    High-density lipoprotein cholesterol (HDL-C) concentration is essential in the determination of coronary heart disease (CHD) risk in women. This is especially true in the postmenopausal state, where lipid profiles and CHD risk mimic that of age-matched men. Thus, interventions designed to reduce CHD risk by raising HDL-C levels may have particular significance during the transition to menopause. This review discusses HDL-C-raising therapies and the role of HDL in the primary prevention of CHD in women. Lifestyle-based interventions such as dietary change, aerobic exercise regimens, and smoking cessation are initial steps that are effective in raising HDL-C, and available data suggest women respond similarly to men with these interventions. When combined with pharmacotherapy, the effects of these lifestyle alterations are further amplified. Though studies demonstrating gender-specific differences in therapy are limited, niacin continues to be the most effective agent in raising HDL-C levels, especially when used in combination with fibrate or statin therapy. Emerging treatments such as HDL mimetic therapy show much promise in further raising HDL-C levels and improving cardiovascular outcomes. PMID:21072287

  6. Genetic therapies to lower cholesterol.

    PubMed

    Khoo, Bernard

    2015-01-01

    This review surveys the state-of-the-art in genetic therapies for familial hypercholesterolaemia (FH), caused most commonly by mutations in the LDL receptor (LDLR) gene. FH manifests as highly elevated low density lipoprotein (LDL) cholesterol levels and consequently accelerated atherosclerosis. Modern pharmacological therapies for FH are insufficiently efficacious to prevent premature cardiovascular disease, can cause significant adverse effects and can be expensive. Genetic therapies for FH have been mooted since the mid 1990s but gene replacement strategies using viral vectors have so far been unsuccessful. Other strategies involve knocking down the expression of Apolipoprotein B100 (APOB100) and the protease PCSK9 which designates LDLR for degradation. The antisense oligonucleotide mipomersen, which knocks down APOB100, is currently marketed (with restrictions) in the USA, but is not approved in Europe due to its adverse effects. To address this problem, we have devised a novel therapeutic concept, APO-skip, which is based on modulation of APOB splicing, and which has the potential to deliver a cost-effective, efficacious and safe therapy for FH.

  7. Lecithin:Cholesterol Acyltransferase Deficiency Protects against Cholesterol-induced Hepatic Endoplasmic Reticulum Stress in Mice*

    PubMed Central

    Hager, Lauren; Li, Lixin; Pun, Henry; Liu, Lu; Hossain, Mohammad A.; Maguire, Graham F.; Naples, Mark; Baker, Chris; Magomedova, Lilia; Tam, Jonathan; Adeli, Khosrow; Cummins, Carolyn L.; Connelly, Philip W.; Ng, Dominic S.

    2012-01-01

    We recently reported that lecithin:cholesterol acyltransferase (LCAT) knock-out mice, particularly in the LDL receptor knock-out background, are hypersensitive to insulin and resistant to high fat diet-induced insulin resistance (IR) and obesity. We demonstrated that chow-fed Ldlr−/−xLcat+/+ mice have elevated hepatic endoplasmic reticulum (ER) stress, which promotes IR, compared with wild-type controls, and this effect is normalized in Ldlr−/−xLcat−/− mice. In the present study, we tested the hypothesis that hepatic ER cholesterol metabolism differentially regulates ER stress using these models. We observed that the Ldlr−/−xLcat+/+ mice accumulate excess hepatic total and ER cholesterol primarily attributed to increased reuptake of biliary cholesterol as we observed reduced biliary cholesterol in conjunction with decreased hepatic Abcg5/g8 mRNA, increased Npc1l1 mRNA, and decreased Hmgr mRNA and nuclear SREBP2 protein. Intestinal NPC1L1 protein was induced. Expression of these genes was reversed in the Ldlr−/−xLcat−/− mice, accounting for the normalization of total and ER cholesterol and ER stress. Upon feeding a 2% high cholesterol diet (HCD), Ldlr−/−xLcat−/− mice accumulated a similar amount of total hepatic cholesterol compared with the Ldlr−/−xLcat+/+ mice, but the hepatic ER cholesterol levels remained low in conjunction with being protected from HCD-induced ER stress and IR. Hepatic ER stress correlates strongly with hepatic ER free cholesterol but poorly with hepatic tissue free cholesterol. The unexpectedly low ER cholesterol seen in HCD-fed Ldlr−/−xLcat−/− mice was attributable to a coordinated marked up-regulation of ACAT2 and suppressed SREBP2 processing. Thus, factors influencing the accumulation of ER cholesterol may be important for the development of hepatic insulin resistance. PMID:22500017

  8. Acyl-coenzyme A:cholesterol acyltransferases

    PubMed Central

    Chang, Ta-Yuan; Li, Bo-Liang; Chang, Catherine C. Y.; Urano, Yasuomi

    2009-01-01

    The enzymes acyl-coenzyme A (CoA):cholesterol acyltransferases (ACATs) are membrane-bound proteins that utilize long-chain fatty acyl-CoA and cholesterol as substrates to form cholesteryl esters. In mammals, two isoenzymes, ACAT1 and ACAT2, encoded by two different genes, exist. ACATs play important roles in cellular cholesterol homeostasis in various tissues. This chapter summarizes the current knowledge on ACAT-related research in two areas: 1) ACAT genes and proteins and 2) ACAT enzymes as drug targets for atherosclerosis and for Alzheimer's disease. PMID:19141679

  9. Triglycerides, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol in rats exposed to premium motor spirit fumes

    PubMed Central

    Aberare, Ogbevire L.; Okuonghae, Patrick; Mukoro, Nathaniel; Dirisu, John O.; Osazuwa, Favour; Odigie, Elvis; Omoregie, Richard

    2011-01-01

    Background: Deliberate and regular exposure to premium motor spirit fumes is common and could be a risk factor for liver disease in those who are occupationally exposed. A possible association between premium motor spirit fumes and plasma levels of triglyceride, total cholesterol, high density lipoprotein cholesterol and low density lipoprotein cholesterol using a rodent model could provide new insights in the pathology of diseases where cellular dysfunction is an established risk factor. Aim: The aim of this study was to evaluate the possible effect of premium motor spirit fumes on lipids and lipoproteins in workers occupationally exposed to premium motor spirit fumes using rodent model. Materials and Methods: Twenty-five Wister albino rats (of both sexes) were used for this study between the 4th of August and 7th of September, 2010. The rats were divided into five groups of five rats each. Group 1 rats were not exposed to premium motor spirit fumes (control group), group 2 rats were exposed for 1 hour daily, group 3 for 3 hours daily, group 4 for 5 hours daily and group 5 for 7 hours daily. The experiment lasted for a period of 4 weeks. Blood samples obtained from all the groups after 4 weeks of exposure were used for the estimation of plasma levels of triglyceride, total cholesterol, high density lipoprotein- cholesterol and low density lipoprotein- cholesterol. Result: Results showed significant increase in means of plasma total cholesterol and low density lipoprotein levels (P<0.05). The mean triglyceride and total body weight were significantly lower (P<0.05) in the exposed group when compared with the unexposed. The plasma level of high density lipoprotein, the ratio of low density lipoprotein to high density lipoprotein and the ratio of total cholesterol to high density lipoprotein did not differ significantly in exposed subjects when compared with the control group. Conclusion: These results showed that frequent exposure to petrol fumes may be highly

  10. A fluorescent cholesterol analogue for observation of free cholesterol in the plasma membrane of live cells.

    PubMed

    Ogawa, Yoshikatsu; Tanaka, Mutsuo

    2016-01-01

    Free cholesterol in mammalian cells resides mostly in the plasma membrane, where it plays an important role in cellular homeostasis. We synthesized a new fluorescent cholesterol analogue that retained an intact alkyl chain and the sterane backbone of cholesterol. The hydroxyl group of cholesterol was converted into an amino group that was covalently linked to the fluorophore tetramethylrhodamine to retain the ability to form hydrogen bonds with adjacent molecules. Incubating live MDCK (Madin-Darby canine kidney) cells with our fluorescent cholesterol analogue resulted in the generation of intense signals that were detected by microscopy at the plasma membrane. Incubation with the analogue exerted minimal, if any, influence on cell growth, indicating that it could serve as a useful tool for analyzing free cholesterol at the plasma membrane.

  11. [Cholesterol and atherosclerosis. Historical considerations and treatment].

    PubMed

    Zárate, Arturo; Manuel-Apolinar, Leticia; Basurto, Lourdes; De la Chesnaye, Elsa; Saldívar, Iván

    2016-01-01

    Cholesterol is a precursor of steroid hormones and an essential component of the cell membrane, however, altered regulation of the synthesis, absorption and excretion of cholesterol predispose to cardiovascular diseases of atherosclerotic origin. Despite, the recognition of historical events for 200 years, starting with Michel Chevreul naming «cholesterol»; later on, Lobstein coining the term atherosclerosis and Marchand introducing it, Anichkov identifying cholesterol in atheromatous plaque, and Brown and Goldstein discovering LDL receptor; as well as the emerging of different drugs, such as fibrates, statins and cetrapibs this decade, promising to increase HDL and the most recent ezetimibe and anti-PCSK9 to inhibit the degradation of LDL receptor, however morbidity has not been reduced in cardiovascular disease. PMID:26774359

  12. [Cholesterol and atherosclerosis. Historical considerations and treatment].

    PubMed

    Zárate, Arturo; Manuel-Apolinar, Leticia; Basurto, Lourdes; De la Chesnaye, Elsa; Saldívar, Iván

    2016-01-01

    Cholesterol is a precursor of steroid hormones and an essential component of the cell membrane, however, altered regulation of the synthesis, absorption and excretion of cholesterol predispose to cardiovascular diseases of atherosclerotic origin. Despite, the recognition of historical events for 200 years, starting with Michel Chevreul naming «cholesterol»; later on, Lobstein coining the term atherosclerosis and Marchand introducing it, Anichkov identifying cholesterol in atheromatous plaque, and Brown and Goldstein discovering LDL receptor; as well as the emerging of different drugs, such as fibrates, statins and cetrapibs this decade, promising to increase HDL and the most recent ezetimibe and anti-PCSK9 to inhibit the degradation of LDL receptor, however morbidity has not been reduced in cardiovascular disease.

  13. HDL Function, Dysfunction, and Reverse Cholesterol Transport

    PubMed Central

    Fisher, Edward A.; Feig, Jonathan E.; Hewing, Bernd; Hazen, Stanley L.; Smith, Jonathan D.

    2012-01-01

    Although high HDL-cholesterol levels are associated with decreased cardiovascular risk in epidemiological studies, recent genetic and pharmacological findings have raised doubts about the beneficial effects of HDL. Raising HDL levels in animal models by infusion or over expression of apolipoprotein A-I has shown clear vascular improvements, such as delayed atherosclerotic lesion progression and accelerated lesion regression, along with increased reverse cholesterol transport. Inflammation and other factors, such as myeloperoxidase mediated oxidation, can impair HDL production and HDL function, in regard to its reverse cholesterol transport, antioxidant, and anti-inflammatory activities. Thus, tests of HDL function, which have not yet been developed as routine diagnostic assays, may prove useful and be a better predictor of cardiovascular risk than HDL-cholesterol levels. PMID:23152494

  14. A computational and functional study elicits the ameliorating effect of the Chinese herbal formula Huo Luo Xiao Ling Dan on experimental ischemia-induced myocardial injury in rats via inhibition of apoptosis

    PubMed Central

    Han, Xiang-Dong; Zhou, Zhi-Wei; Yang, Wei; Ye, Hang-Cheng; Xu, Ying-Zi; Huang, Yun-Feng; Zhang, Tong; Zhou, Shu-Feng

    2015-01-01

    rise/descent of left ventricular pressure levels. Administration of HLXLD significantly ameliorated coronary artery ligation-induced tissue damage in the left ventricle, with restored arrangement of myocardial fibers and recovered myoplasm in rats. Furthermore, HLXLD markedly increased the expression level of Bcl-2 but decreased the level of cleaved caspase 3. Taken together, administration of HLXLD attenuated acute myocardial ischemia-induced damage in cardiomyocytes and inhibited apoptotic death of cardiomyocytes, thereby exerting a cardioprotective effect in rats with IHD. These findings suggest that HLXLD may represent a promising herbal formula for the treatment of cardiovascular disease by counteracting apoptotic cell death via multiple active compounds. More studies are warranted to fully elucidate the mechanisms of action, identify the therapeutic targets, and validate the efficacy and safety of HLXLD in the treatment of IHD. PMID:25733819

  15. Serum cholesterol concentration and coronary heart disease in population with low cholesterol concentrations.

    PubMed Central

    Chen, Z; Peto, R; Collins, R; MacMahon, S; Lu, J; Li, W

    1991-01-01

    OBJECTIVE--To examine the relation between serum cholesterol concentration and mortality (from coronary heart disease and from other causes) below the range of cholesterol values generally seen in Western populations. DESIGN--Prospective observational study based on 8-13 years of follow up of subjects in a population with low cholesterol concentrations. SETTING--Urban Shanghai, China. SUBJECTS--9021 Chinese men and women aged 35-64 at baseline. MAIN OUTCOME MEASURE--Death from coronary heart disease and other causes. RESULTS--The average serum cholesterol concentration was 4.2 mmol/l at baseline examination, and only 43 (7%) of the deaths that occurred during 8-13 years of follow up were attributed to coronary heart disease. There was a strongly positive, and apparently independent, relation between serum cholesterol concentration and death from coronary heart disease (z = 3.47, p less than 0.001), and within the range of usual serum cholesterol concentration studied (3.8-4.7 mmol/l) there was no evidence of any threshold. After appropriate adjustment for the regression dilution bias, a 4 (SD 1)% difference in usual cholesterol concentration was associated with a 21 (SD 6)% (95% confidence interval 9% to 35%) difference in mortality from coronary heart disease. There was no significant relation between serum cholesterol concentration and death from stroke or all types of cancer. The 79 deaths due to liver cancer or other chronic liver disease were inversely related to cholesterol concentration at baseline. CONCLUSION--Blood cholesterol concentration was directly related to mortality from coronary heart disease even in those with what was, by Western standards, a "low" cholesterol concentration. There was no good evidence of an adverse effect of cholesterol on other causes of death. PMID:1888927

  16. Effect of 6-O-α-maltosyl-β cyclodextrin and its cholesterol inclusion complex on cellular cholesterol levels and ABCA1 and ABCG1 expression in mouse mastocytoma P-815 cells.

    PubMed

    Okada, Yasuyo; Ueyama, Kiyomi; Nishikawa, Jyun-ichi; Semma, Masanori; Ichikawa, Atsushi

    2012-08-01

    We have previously described 6-O-α-maltosyl-β cyclodextrin (Mal-βCD), which forms soluble inclusion complex with cholesterol. Here we further investigated the effect of Mal-βCD and cholesterol/Mal-βCD inclusion complex (CLM) on cellular cholesterol levels in a mouse mast cell line, mastocytoma P-815 cells (P-815 cells). Mal-βCD removes cellular cholesterol forming inclusion complexes, while Mal-βCD-induced lack of cellular cholesterol was replenished by the addition of CLM without cytotoxicity. Reduction and replenishment of cellular cholesterol in Mal-βCD- and/or CLM-treated P-815 cells, respectively, were demonstrated by LC/MS and fluorescence microscopy with filipin III. CLM rather than free Mal-βCD and free cholesterol was efficiently incorporated into P-815 cells and its incorporation was inhibited by incubation at low temperature, or with sodium azide and cytochalasin D. P-815 cells have been confirmed to express ATP-binding cassette (ABC) transporters, ABCA1, ABCG1, and P-glycoprotein (P-gp), by Western blot and mRNA analysis. Cholesterol reduction by Mal-βCD abolishes the mRNA and protein expression of ABCA1 and ABCG1, but not of P-gp. Cholesterol loading by CLM restores the diminished ABCA1 and ABCG1 mRNA expression in Mal-βCD-treated P-815 cells. However, both Mal-βCD and CLM had no effect on P-gp activity measured by the rhodamine 123 efflux assay. These results indicate that alteration of cholesterol levels with Mal-βCD or CLM led to down- or up-regulation of ABCA1 and ABCG1 expression in P-815 cells.

  17. Obesity, cholesterol metabolism, and breast cancer pathogenesis.

    PubMed

    McDonnell, Donald P; Park, Sunghee; Goulet, Matthew T; Jasper, Jeff; Wardell, Suzanne E; Chang, Ching-Yi; Norris, John D; Guyton, John R; Nelson, Erik R

    2014-09-15

    Obesity and altered lipid metabolism are risk factors for breast cancer in pre- and post-menopausal women. These pathologic relationships have been attributed in part to the impact of cholesterol on the biophysical properties of cell membranes and to the influence of these changes on signaling events initiated at the membrane. However, more recent studies have indicated that the oxysterol 27-hydroxycholesterol (27HC), and not cholesterol per se, may be the primary biochemical link between lipid metabolism and cancer. The enzyme responsible for production of 27HC from cholesterol, CYP27A1, is expressed primarily in the liver and in macrophages. In addition, significantly elevated expression of this enzyme within breast tumors has also been observed. It is believed that 27HC, acting through the liver X receptor in macrophages and possibly other cells, is involved in maintaining organismal cholesterol homeostasis. It has also been shown recently that 27HC is an estrogen receptor agonist in breast cancer cells and that it stimulates the growth and metastasis of tumors in several models of breast cancer. These findings provide the rationale for the clinical evaluation of pharmaceutical approaches that interfere with cholesterol/27HC synthesis as a means to mitigate the impact of cholesterol on breast cancer pathogenesis. Cancer Res; 74(18); 4976-82. ©2014 AACR. PMID:25060521

  18. Cholesterol suppresses antimicrobial effect of statins

    PubMed Central

    Haeri, Mohammad Reza; White, Kenneth; Qharebeglou, Mohammad; Ansar, Malek Moein

    2015-01-01

    Objective(s): Isoprenoid biosynthesis is a key metabolic pathway to produce a wide variety of biomolecules such as cholesterol and carotenoids, which target cell membranes. On the other hand, it has been reported that statins known as inhibitors of isoprenoid biosynthesis and cholesterol lowering agents, may have a direct antimicrobial effect on the some bacteria. The exact action of statins in microbial metabolism is not clearly understood. It is possible that statins inhibit synthesis or utilization of some sterol precursor necessary for bacterial membrane integrity. Accordingly, this study was designed in order to examine if statins inhibit the production of a compound, which can be used in the membrane, and whether cholesterol would replace it and rescue bacteria from toxic effects of statins. Materials and Methods: To examine the possibility we assessed antibacterial effect of statins with different classes; lovastatin, simvastatin, and atorvastatin, alone and in combination with cholesterol on two Gram-positive (Staphylococcus aureus and Enterococcus faecalis) and two Gram-negative (Pseudomonas aeruginosa and Escherichia coli) bacteria using gel diffusion assay. Results: Our results showed that all of the statins except for lovastatin had significant antibacterial property in S. aureus, E. coli, and Enter. faecalis. Surprisingly, cholesterol nullified the antimicrobial action of effective statins in statin-sensitive bacteria. Conclusion: It is concluded that statins may deprive bacteria from a metabolite responsible for membrane stability, which is effectively substituted by cholesterol. PMID:26877857

  19. Impaired cholesterol esterification in primary brain cultures of the lysosomal cholesterol storage disorder (LCSD) mouse mutant

    SciTech Connect

    Patel, S.C.; Suresh, S.; Weintroub, H.; Brady, R.O.; Pentchev, P.G.

    1987-02-27

    Esterification of cholesterol was investigated in primary neuroglial cultures obtained from newborn lysosomal cholesterol storage disorder (LCSD) mouse mutants. An impairment in /sup 3/H-oleic acid incorporation into cholesteryl esters was demonstrated in cultures of homozygous LCSD brain. Primary cultures derived from other phenotypically normal pups of the carrier breeders esterified cholesterol at normal levels or at levels which were intermediary between normal and deficient indicating a phenotypic expression of the LCSD heterozygote genotype. These observations on LCSD mutant brain cells indicate that the defect in cholesterol esterification is closely related to the primary genetic defect and is expressed in neuroglial cells in culture.

  20. Stereoselective recognition of monolayers of cholesterol, ent-cholesterol, and epicholesterol by an antibody.

    PubMed

    Geva, M; Izhaky, D; Mickus, D E; Rychnovsky, S D; Addadi, L

    2001-04-01

    The interaction between a monoclonal antibody and four distinct monolayers with varying degrees of structural, chemical, and stereochemical similarity were studied and quantified. The antibody, raised and selected against cholesterol monohydrate crystals, interacts with cholesterol monolayers stereospecifically, but not enantiospecifically. Monolayers of ent-cholesterol molecules, which are chemically identical to cholesterol and whose structure is the exact mirror image of the cholesterol monolayer, interact with the antibody to the same extent as the cholesterol monolayers. The affinity of the antibody for both enantiomeric monolayers is extremely high. However, the antibody does not interact with monolayers of epicholesterol, which is an epimer of cholesterol: The hydroxy group in epicholesterol is in the 3alpha position rather than in the 3beta position, imposing a different angle between the hydroxy group and the rigid steroid backbone, and a different packing of the molecules. Monolayers of triacontanol, a long-chain primary aliphatic alcohol, interact with the antibody to a lesser extent than the cholesterol and ent-cholesterol monolayers, presumably due to the structural flexibility of the triacontanol molecule. The lack of chiral discrimination by the antibody is thus correlated to the level at which the chirality is exposed at the surface of the monolayers.

  1. The N-terminal Domain of NPC1L1 Protein Binds Cholesterol and Plays Essential Roles in Cholesterol Uptake*

    PubMed Central

    Zhang, Jin-Hui; Ge, Liang; Qi, Wei; Zhang, Liqing; Miao, Hong-Hua; Li, Bo-Liang; Yang, Maojun; Song, Bao-Liang

    2011-01-01

    Niemann-Pick C1-like 1 (NPC1L1) is a multitransmembrane protein playing a crucial role in dietary and biliary cholesterol absorption. Cholesterol promotes the formation and endocytosis of NPC1L1-flotillin-cholesterol membrane microdomains, which is an early step in cholesterol uptake. How cholesterol is sensed in this step is unknown. Here, we find that the N-terminal domain (NTD) of NPC1L1 binds cholesterol. Mutation of residue Leu-216 in NPC1L1-NTD eliminates cholesterol binding, decreases the formation of NPC1L1-flotillin-cholesterol membrane microdomains, and prevents NPC1L1-mediated cholesterol uptake in culture cells and mice livers. NPC1L1-NTD specifically binds cholesterol but not plant sterols, which may account for the selective cholesterol absorption in intestine. Furthermore, 25- or 27-hydroxycholesterol competes with cholesterol to bind NPC1L1-NTD and inhibits the cholesterol induced endocytosis of NPC1L1. Together, these results demonstrate that plasma membrane-localized NPC1L1 binds exogenous cholesterol via its NTD, and facilitates the formation of NPC1L1-flotillin-cholesterol membrane microdomains that are then internalized into cells through the clathrin-AP2 pathway. Our study uncovers the mechanism of cholesterol sensing by NPC1L1 and proposes a mechanism for selective cholesterol absorption. PMID:21602275

  2. Coordinately Regulated Alternative Splicing of Genes Involved in Cholesterol Biosynthesis and Uptake

    PubMed Central

    Naidoo, Devesh; Rudel, Lawrence L.; Temel, Ryan E.; McDaniel, Allison L.; Marshall, Stephanie M.; Krauss, Ronald M.

    2011-01-01

    Genes involved in cholesterol biosynthesis and uptake are transcriptionally regulated in response to cellular sterol content in a coordinated manner. A number of these genes, including 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) and LDL receptor (LDLR), undergo alternative splicing, resulting in reductions of enzyme or protein activity. Here we demonstrate that cellular sterol depletion suppresses, and sterol loading induces, alternative splicing of multiple genes involved in the maintenance of cholesterol homeostasis including HMGCR and LDLR, the key regulators of cellular cholesterol biosynthesis and uptake, respectively. These changes were observed in both in vitro studies of the HepG2 human hepatoma derived cell line, as well as in vivo studies of St. Kitts vervets, also known as African green monkeys, a commonly used primate model for investigating cholesterol metabolism. These effects are mediated in part by sterol regulation of polypyrimidine tract binding protein 1 (PTBP1), since knock-down of PTBP1 eliminates sterol induced changes in alternative splicing of several of these genes. Single nucleotide polymorphisms (SNPs) that influence HMGCR and LDLR alternative splicing (rs3846662 and rs688, respectively), have been associated with variation in plasma LDL-cholesterol levels. Sterol-induced changes in alternative splicing are blunted in carriers of the minor alleles for each of these SNPs, indicating an interaction between genetic and non-genetic regulation of this process. Our results implicate alternative splicing as a novel mechanism of enhancing the robust transcriptional response to conditions of cellular cholesterol depletion or accumulation. Thus coordinated regulation of alternative splicing may contribute to cellular cholesterol homeostasis as well as plasma LDL levels. PMID:21559365

  3. Mitochondrial regulation of macrophage cholesterol homeostasis.

    PubMed

    Graham, Annette

    2015-12-01

    This review explores the relationship between mitochondrial structure and function in the regulation of macrophage cholesterol metabolism and proposes that mitochondrial dysfunction contributes to loss of the elegant homeostatic mechanisms which normally maintain cellular sterol levels within defined limits. Mitochondrial sterol 27-hydroxylase (CYP27A1) can generate oxysterol activators of liver X receptors which heterodimerise with retinoid X receptors, enhancing the transcription of ATP binding cassette transporters (ABCA1, ABCG1, and ABCG4), that can remove excess cholesterol via efflux to apolipoproteins A-1, E, and high density lipoprotein, and inhibit inflammation. The activity of CYP27A1 is regulated by the rate of supply of cholesterol substrate to the inner mitochondrial membrane, mediated by a complex of proteins. The precise identity of this dynamic complex remains controversial, even in steroidogenic tissues, but may include steroidogenic acute regulatory protein and the 18 kDa translocator protein, together with voltage-dependent anion channels, ATPase AAA domain containing protein 3A, and optic atrophy type 1 proteins. Certainly, overexpression of StAR and TSPO proteins can enhance macrophage cholesterol efflux to apoA-I and/or HDL, while perturbations in mitochondrial function, or changes in the expression of mitochondrial fusion proteins, alter the efficiency of cholesterol efflux. Molecules which can sustain or improve mitochondrial function or increase the activity of the protein complex involved in cholesterol transfer may have utility in resolving the problem of dysregulated macrophage cholesterol homeostasis, a condition which may contribute to inflammation, atherosclerosis, nonalcoholic steatohepatitis, osteoblastic bone resorption, and some disorders of the central nervous system.

  4. The absorption of cholesterol and the sterol balance in the Tarahumara Indians of Mexico fed cholesterol-free and high cholesterol diets.

    PubMed

    McMurry, M P; Connor, W E; Lin, D S; Cerqueira, M T; Connor, S L

    1985-06-01

    The Tarahumara Indians of Mexico are habituated to a very low cholesterol, low fat diet and have lifelong low plasma cholesterol concentrations. To study cholesterol metabolism in these unusual people, 8 Tarahumara men were fed sequentially a cholesterol-free diet and then a diet containing 900 mg cholesterol under controlled conditions. The intestinal absorption of cholesterol, fecal steroid excretion and sterol balance were determined. During the high cholesterol diet period, the plasma cholesterol level increased from 113 +/- 8 mg/dl to 147 +/- 11 mg/dl (means +/- SD). Cholesterol biosynthesis decreased from 14.0 +/- 0.7 to 7.1 +/- 1.0 mg/kg/day (means +/- SE). The intestinal absorption of cholesterol was 27.7 +/- 6.7% (means +/- SE) during both dietary periods. Compared to other cultures, Tarahumaras had a reduced ability to absorb dietary cholesterol and higher total sterol turnover primarily because of an increased bile acid output. The total sterol disposition over three weeks of the high cholesterol diet accounted for all the absorbed dietary cholesterol.

  5. Aspirin Prevention of Cholesterol Gallstone Formation in Prairie Dogs

    NASA Astrophysics Data System (ADS)

    Lee, Sum P.; Carey, Martin C.; Lamont, J. Thomas

    1981-03-01

    When prairie dogs (Cynomys ludovicianus) are fed a diet containing cholesterol, a marked increase in gallbladder mucin secretion parallels the evolution of cholesterol supersaturated bile. Gelation of mucin precedes the precipitation of cholesterol liquid and solid crystals and the development of gallstones. Aspirin given to prairie dogs inhibited mucin hypersecretion and gel accumulation and prevented gallstone formation without influencing the cholesterol content of supersaturated bile. This suggests that gallbladder mucin is a nucleation matrix for cholesterol gallstones.

  6. Cholesterol derivatives based charged liposomes for doxorubicin delivery: preparation, in vitro and in vivo characterization.

    PubMed

    Nie, Yu; Ji, Li; Ding, Hong; Xie, Li; Li, Li; He, Bin; Wu, Yao; Gu, Zhongwei

    2012-01-01

    Cholesterol plays a critical role in liposome composition. It has great impact on the behavior of liposome in vitro and in vivo. In order to verify the possible effects from cholesterol charge, surface shielding and chemical nature, two catalogs of liposomes with charged and PEGylated cholesterols were synthesized. Anionic liposomes (AL) and cationic liposomes (CL) were prepared, with charges from hemisuccinate and lysine in cholesterol derivatives, respectively. Characteristics of different formulated liposomes were investigated after doxorubicin encapsulation, using neutral liposomes (NL) as control. Results showed that after PEGylation, AL and CL liposomes displayed prolonged retention release profile, while kept similar size distribution, encapsulation efficiency, low cytotoxicity and hemolysis comparing with NL. Confocal laser scanning microscopy and flow cytometry experiments confirmed the significantly higher cell uptake from AL and CL vesicles than the NL in mouse breast carcinoma and melanoma cells, human epithelial carcinoma and hepatoma cells. It was in accordance with our corresponding cellular mortality studies of DOX-loaded liposomes. The in vivo anti-tumor effect experiments from charged liposomes also presented much higher tumor inhibition effect (70% vs 45%, p < 0.05) than NL liposomes. This is the first time reporting anti-cancer effect from charged cholesterol liposome with/without PEGylation. It may give deeper understanding on the liposome formulation which is critical for liposome associated drug research and development.

  7. Cholesterol Derivatives Based Charged Liposomes for Doxorubicin Delivery: Preparation, In Vitro and In Vivo Characterization

    PubMed Central

    Nie, Yu; Ji, Li; Ding, Hong; Xie, Li; Li, Li; He, Bin; Wu, Yao; Gu, Zhongwei

    2012-01-01

    Cholesterol plays a critical role in liposome composition. It has great impact on the behavior of liposome in vitro and in vivo. In order to verify the possible effects from cholesterol charge, surface shielding and chemical nature, two catalogs of liposomes with charged and PEGylated cholesterols were synthesized. Anionic liposomes (AL) and cationic liposomes (CL) were prepared, with charges from hemisuccinate and lysine in cholesterol derivatives, respectively. Characteristics of different formulated liposomes were investigated after doxorubicin encapsulation, using neutral liposomes (NL) as control. Results showed that after PEGylation, AL and CL liposomes displayed prolonged retention release profile, while kept similar size distribution, encapsulation efficiency, low cytotoxicity and hemolysis comparing with NL. Confocal laser scanning microscopy and flow cytometry experiments confirmed the significantly higher cell uptake from AL and CL vesicles than the NL in mouse breast carcinoma and melanoma cells, human epithelial carcinoma and hepatoma cells. It was in accordance with our corresponding cellular mortality studies of DOX-loaded liposomes. The in vivo anti-tumor effect experiments from charged liposomes also presented much higher tumor inhibition effect (70% vs 45%, p < 0.05) than NL liposomes. This is the first time reporting anti-cancer effect from charged cholesterol liposome with/without PEGylation. It may give deeper understanding on the liposome formulation which is critical for liposome associated drug research and development. PMID:23227125

  8. Prevention of cholesterol gallstones by inhibiting hepatic biosynthesis and intestinal absorption of cholesterol

    PubMed Central

    Wang, Helen H; Portincasa, Piero; de Bari, Ornella; Liu, Kristina J; Garruti, Gabriella; Neuschwander-Tetri, Brent A; Wang, David Q.-H

    2013-01-01

    Cholesterol cholelithiasis is a multifactorial disease influenced by a complex interaction of genetic and environmental factors, and represents a failure of biliary cholesterol homeostasis in which the physical-chemical balance of cholesterol solubility in bile is disturbed. The primary pathophysiologic event is persistent hepatic hypersecretion of biliary cholesterol, which has both hepatic and small intestinal components. The majority of the environmental factors are probably related to Western-type dietary habits, including excess cholesterol consumption. Laparoscopic cholecystectomy, one of the most commonly performed surgical procedures in the US, is nowadays a major treatment for gallstones. However, it is invasive and can cause surgical complications, and not all patients with symptomatic gallstones are candidates for surgery. The hydrophilic bile acid, ursodeoxycholic acid (UDCA) has been employed as first-line pharmacological therapy in a subgroup of symptomatic patients with small, radiolucent cholesterol gallstones. Long-term administration of UDCA can promote the dissolution of cholesterol gallstones. However, the optimal use of UDCA is not always achieved in clinical practice because of failure to titrate the dose adequately. Therefore, the development of novel, effective, and noninvasive therapies is crucial for reducing the costs of health care associated with gallstones. In this review, we summarize recent progress in investigating the inhibitory effects of ezetimibe and statins on intestinal absorption and hepatic biosynthesis of cholesterol, respectively, for the treatment of gallstones, as well as in elucidating their molecular mechanisms by which combination therapy could prevent this very common liver disease worldwide. PMID:23419155

  9. Potential of BODIPY-cholesterol for analysis of cholesterol transport and diffusion in living cells.

    PubMed

    Wüstner, Daniel; Lund, Frederik W; Röhrl, Clemens; Stangl, Herbert

    2016-01-01

    Cholesterol is an abundant and important lipid component of cellular membranes. Analysis of cholesterol transport and diffusion in living cells is hampered by the technical challenge of designing suitable cholesterol probes which can be detected for example by optical microscopy. One strategy is to use intrinsically fluorescent sterols, as dehydroergosterol (DHE), having minimal chemical alteration compared to cholesterol but giving low fluorescence signals in the UV region of the spectrum. Alternatively, one can use dye-tagged cholesterol analogs and in particular BODIPY-cholesterol (BChol), whose synthesis and initial characterization was pioneered by Robert Bittman. Here, we give a general overview of the properties and applications but also limitations of BODIPY-tagged cholesterol probes for analyzing intracellular cholesterol trafficking. We describe our own experiences and collaborative efforts with Bob Bittman for studying diffusion in the plasma membrane (PM) and uptake of BChol in a quantitative manner. For that purpose, we used a variety of fluorescence approaches including fluorescence correlation spectroscopy and its imaging variants, fluorescence recovery after photobleaching (FRAP) and fluorescence loss in photobleaching (FLIP). We also describe pulse-chase studies from the PM using BChol in direct comparison to DHE. Based on the gathered imaging data, we present a two-step kinetic model for sterol transport between PM and recycling endosomes. In addition, we highlight the suitability of BChol for determining transport of lipoprotein-derived sterol using electron microscopy (EM) and show that this approach ideally complements fluorescence studies.

  10. Phase separation of cholesterol and the interaction of ethanol with phosphatidylserine-cholesterol bilayer membranes.

    PubMed

    Bach, D; Borochov, N; Wachtel, E

    2002-02-01

    Thermotropic and structural effects of ethanol on phosphatidylserine (PS) membranes containing up to 0.4 mol fraction cholesterol were investigated by differential scanning calorimetry, X-ray diffraction and fluorescence spectroscopy. It was found that in the presence of cholesterol, 10% (v/v) added ethanol depresses the melting temperature of the phospholipid by approximately 2 degrees C, similar to what was observed in the absence of cholesterol. Below the melting temperature the progressive disordering effect of added cholesterol is weakly enhanced by the presence of ethanol. In the liquid crystalline state, the marked decrease in the thickness of the bilayer which ethanol causes in the absence of cholesterol (Chem. Phys. Lipids 92 (1998) 127), is also observed in its presence. We conclude that, in contrast to what has been observed for zwitterionic phospholipids, high concentrations of cholesterol do not diminish the interaction of ethanol with PS membranes. With addition of 10% (v/v) ethanol, crystalline cholesterol diffraction, an indication of phase separation of the sterol, appears at mol fraction cholesterol 0.34, as compared to 0.3 in the absence of ethanol (Chem. Phys. Lipids 92 (1998) 71).

  11. A diet rich in leafy vegetable fiber improves cholesterol metabolism in high-cholesterol fed rats.

    PubMed

    Ezz El-Arab, A M

    2009-10-01

    In the present study, the hypocholesterolemic effect of leaf vegetable (Jew's mallow) was studied in high-cholesterol fed rats. The animals were fed diets supplemented with cholesterol (0.25%) for 4 weeks. Leaf vegetable diet produced an important hypocholesterolemic action: it led to a significant lowering (p<0.05) of cholesterol in the plasma and liver, as well as of the atherogenic index and a significant increase (p<0.05) in cecal short chain fatty acids, with respect to the control group. Concurrently, total fecal neutral sterols in the excretion increased (p<0.05) and apparent absorption of dietary cholesterol was significantly depressed (-58%). The consumption of leaf vegetable (Jew's mallow) with a hypercholesterolemic diet improved the lipidemic profile and increased excretion of the total cholesterol end-products. PMID:20387744

  12. A diet rich in leafy vegetable fiber improves cholesterol metabolism in high-cholesterol fed rats.

    PubMed

    Ezz El-Arab, A M

    2009-10-01

    In the present study, the hypocholesterolemic effect of leaf vegetable (Jew's mallow) was studied in high-cholesterol fed rats. The animals were fed diets supplemented with cholesterol (0.25%) for 4 weeks. Leaf vegetable diet produced an important hypocholesterolemic action: it led to a significant lowering (p<0.05) of cholesterol in the plasma and liver, as well as of the atherogenic index and a significant increase (p<0.05) in cecal short chain fatty acids, with respect to the control group. Concurrently, total fecal neutral sterols in the excretion increased (p<0.05) and apparent absorption of dietary cholesterol was significantly depressed (-58%). The consumption of leaf vegetable (Jew's mallow) with a hypercholesterolemic diet improved the lipidemic profile and increased excretion of the total cholesterol end-products.

  13. [Trans-intestinal cholesterol excretion (TICE): a new route for cholesterol excretion].

    PubMed

    Blanchard, Claire; Moreau, François; Cariou, Bertrand; Le May, Cédric

    2014-10-01

    The small intestine plays a crucial role in dietary and biliary cholesterol absorption, as well as its lymphatic secretion as chylomicrons (lipoprotein exogenous way). Recently, a new metabolic pathway called TICE (trans-intestinal excretion of cholesterol) that plays a central role in cholesterol metabolism has emerged. TICE is an inducible way, complementary to the hepatobiliary pathway, allowing the elimination of the plasma cholesterol directly into the intestine lumen through the enterocytes. This pathway is poorly characterized but several molecular actors of TICE have been recently identified. Although it is a matter of debate, two independent studies suggest that TICE is involved in the anti-atherogenic reverse cholesterol transport pathway. Thus, TICE is an innovative drug target to reduce -cardiovascular diseases.

  14. Glucagon receptor antagonism induces increased cholesterol absorption.

    PubMed

    Guan, Hong-Ping; Yang, Xiaodong; Lu, Ku; Wang, Sheng-Ping; Castro-Perez, Jose M; Previs, Stephen; Wright, Michael; Shah, Vinit; Herath, Kithsiri; Xie, Dan; Szeto, Daphne; Forrest, Gail; Xiao, Jing Chen; Palyha, Oksana; Sun, Li-Ping; Andryuk, Paula J; Engel, Samuel S; Xiong, Yusheng; Lin, Songnian; Kelley, David E; Erion, Mark D; Davis, Harry R; Wang, Liangsu

    2015-11-01

    Glucagon and insulin have opposing action in governing glucose homeostasis. In type 2 diabetes mellitus (T2DM), plasma glucagon is characteristically elevated, contributing to increased gluconeogenesis and hyperglycemia. Therefore, glucagon receptor (GCGR) antagonism has been proposed as a pharmacologic approach to treat T2DM. In support of this concept, a potent small-molecule GCGR antagonist (GRA), MK-0893, demonstrated dose-dependent efficacy to reduce hyperglycemia, with an HbA1c reduction of 1.5% at the 80 mg dose for 12 weeks in T2DM. However, GRA treatment was associated with dose-dependent elevation of plasma LDL-cholesterol (LDL-c). The current studies investigated the cause for increased LDL-c. We report findings that link MK-0893 with increased glucagon-like peptide 2 and cholesterol absorption. There was not, however, a GRA-related modulation of cholesterol synthesis. These findings were replicated using structurally diverse GRAs. To examine potential pharmacologic mitigation, coadministration of ezetimibe (a potent inhibitor of cholesterol absorption) in mice abrogated the GRA-associated increase of LDL-c. Although the molecular mechanism is unknown, our results provide a novel finding by which glucagon and, hence, GCGR antagonism govern cholesterol metabolism.

  15. Dual roles for cholesterol in mammalian cells.

    PubMed

    Xu, Fang; Rychnovsky, Scott D; Belani, Jitendra D; Hobbs, Helen H; Cohen, Jonathan C; Rawson, Robert B

    2005-10-11

    The structural features of sterols required to support mammalian cell growth have not been fully defined. Here, we use mutant CHO cells that synthesize only small amounts of cholesterol to test the capacity of various sterols to support growth. Sterols with minor modifications of the side chain (e.g., campesterol, beta-sitosterol, and desmosterol) supported long-term growth of mutant cells, but sterols with more complex modifications of the side chain, the sterol nucleus, or the 3-hydroxy group did not. After 60 days in culture, the exogenous sterol comprised >90% of cellular sterols. Inactivation of residual endogenous synthesis with the squalene epoxidase inhibitor NB-598 prevented growth in beta-sitosterol and greatly reduced growth in campesterol. Growth of cells cultured in beta-sitosterol and NB-598 was restored by adding small amounts of cholesterol to the medium. Surprisingly, enantiomeric cholesterol also supported cell growth, even in the presence of NB-598. Thus, sterols fulfill two roles in mammalian cells: (i) a bulk membrane requirement in which phytosterols can substitute for cholesterol and (ii) other processes that specifically require small amounts of cholesterol but are not enantioselective. PMID:16199524

  16. LDL cholesterol: controversies and future therapeutic directions.

    PubMed

    Ridker, Paul M

    2014-08-16

    Lifelong exposure to raised concentrations of LDL cholesterol increases cardiovascular event rates, and the use of statin therapy as an adjunct to diet, exercise, and smoking cessation has proven highly effective in reducing the population burden associated with hyperlipidaemia. Yet, despite consistent biological, genetic, and epidemiological data, and evidence from randomised trials, there is controversy among national guidelines and clinical practice with regard to LDL cholesterol, its measurement, the usefulness of population-based screening, the net benefit-to-risk ratio for different LDL-lowering drugs, the benefit of treatment targets, and whether aggressive lowering of LDL is safe. Several novel therapies have been introduced for the treatment of people with genetic defects that result in loss of function within the LDL receptor, a major determinant of inherited hyperlipidaemias. Moreover, the usefulness of monoclonal antibodies that extend the LDL-receptor lifecycle (and thus result in substantial lowering of LDL cholesterol below the levels achieved with statins alone) is being assessed in phase 3 trials that will enrol more than 60,000 at-risk patients worldwide. These trials represent an exceptionally rapid translation of genetic observations into clinical practice and will address core questions of how low LDL cholesterol can be safely reduced, whether the mechanism of LDL-cholesterol lowering matters, and whether ever more aggressive lipid-lowering provides a safe, long-term mechanism to prevent atherothrombotic complications.

  17. Plasma cholesterol transport in anhepatic rats.

    PubMed Central

    Quarfordt, S H; Landis, B; Cucchiaro, G; Yamaguchi, Y; Oswald, B

    1992-01-01

    The plasma appearance of newly synthesized cholesterol in anhepatic laboratory diet-fed rats was 10% of the intact rat. In intact rats this cholesterol was mainly ester in lower density lipoproteins, but for anhepatic rats it was virtually only free in high density lipoprotein. Chylomicron cholesterol ester was removed much more slowly from anhepatic than control plasma and returned primarily as free in high density lipoproteins, with the control return 10 times the anhepatic return. Lower density lipoprotein cholesterol ester transfer to an extravascular pool in anhepatic rats was less than 10% of controls. The liver was responsible for 95% of the extravascular lower density lipoprotein ester pool and only 50% of the for high density lipoprotein ester. Despite decreased anhepatic lipoprotein catabolism, the mass of both plasma low and high density lipoproteins progressively decreased indicating an even greater decrease in influx. The anhepatic fractional catabolic rate of apo A1 was similar to controls, but that of apo E was considerably less. Despite the unchanged catabolism of apo A1 and the reduced catabolism of apo E, plasma apo A1 decreased less than apo E after hepatectomy. The anhepatic data confirm the pivotal role of the liver in maintaining plasma low and high density lipoprotein cholesterol concentrations. They suggest that, in addition to its anabolic and catabolic functions, the liver also acts as a reservoir buffering changes in plasma concentration. Images PMID:1569195

  18. Localization of cholesterol in sphingomyelinase-treated fibroblasts.

    PubMed Central

    Pörn, M I; Slotte, J P

    1995-01-01

    The distribution of cellular unesterified cholesterol was studied in fibroblasts, which had been depleted of plasma membrane sphingomyelin by exposure to exogenous sphingomyelinase. This treatment has previously been shown to induce an increase in cholesterol esterification, a decrease in the biosynthesis of cholesterol, and a decreased susceptibility of cell cholesterol to oxidation with cholesterol oxidase. When the cellular localization of cholesterol was studied with fluorescent filipin staining, sphingomyelin depletion did not cause any visible changes in the filipin-cholesterol staining pattern, suggesting that the major part of cellular cholesterol was retained in the plasma membrane after sphingomyelinase treatment. After the oxidation of cell-surface cholesterol with cholesterol oxidase, the plasma membrane was no longer stained by filipin, but the plasma membrane cholesterol of sphingomyelin-depleted cells appeared to be resistant to oxidation with cholesterol oxidase when sphingomyelinase was used as an oxidation-promoting agent. However, the use of hypotonic buffer or phosphatidylcholine-specific phospholipase C together with cholesterol oxidase resulted in a complete oxidation of the cell-surface cholesterol in sphingomyelin-depleted cells, as evidenced by the filipin-cholesterol staining pattern. Similar results were obtained when [3H]cholesterol-labelled fibroblasts were used for determination of the susceptibility to cholesterol oxidation. The kinetics of [3H]cholesterol oxidation in sphingomyelin-depleted cells with cholesterol oxidase in hypotonic buffer indicated that approximately 85% of the cellular cholesterol still resided in the plasma membrane after sphingomyelin depletion. These results are contradictory to earlier reports on sphingomyelinase-induced changes in cellular cholesterol distribution and suggest that minor changes in the kinetics of cholesterol transport from the plasma membrane to the endoplasmic reticulum may be responsible

  19. Localization of cholesterol in sphingomyelinase-treated fibroblasts.

    PubMed

    Pörn, M I; Slotte, J P

    1995-05-15

    The distribution of cellular unesterified cholesterol was studied in fibroblasts, which had been depleted of plasma membrane sphingomyelin by exposure to exogenous sphingomyelinase. This treatment has previously been shown to induce an increase in cholesterol esterification, a decrease in the biosynthesis of cholesterol, and a decreased susceptibility of cell cholesterol to oxidation with cholesterol oxidase. When the cellular localization of cholesterol was studied with fluorescent filipin staining, sphingomyelin depletion did not cause any visible changes in the filipin-cholesterol staining pattern, suggesting that the major part of cellular cholesterol was retained in the plasma membrane after sphingomyelinase treatment. After the oxidation of cell-surface cholesterol with cholesterol oxidase, the plasma membrane was no longer stained by filipin, but the plasma membrane cholesterol of sphingomyelin-depleted cells appeared to be resistant to oxidation with cholesterol oxidase when sphingomyelinase was used as an oxidation-promoting agent. However, the use of hypotonic buffer or phosphatidylcholine-specific phospholipase C together with cholesterol oxidase resulted in a complete oxidation of the cell-surface cholesterol in sphingomyelin-depleted cells, as evidenced by the filipin-cholesterol staining pattern. Similar results were obtained when [3H]cholesterol-labelled fibroblasts were used for determination of the susceptibility to cholesterol oxidation. The kinetics of [3H]cholesterol oxidation in sphingomyelin-depleted cells with cholesterol oxidase in hypotonic buffer indicated that approximately 85% of the cellular cholesterol still resided in the plasma membrane after sphingomyelin depletion. These results are contradictory to earlier reports on sphingomyelinase-induced changes in cellular cholesterol distribution and suggest that minor changes in the kinetics of cholesterol transport from the plasma membrane to the endoplasmic reticulum may be responsible

  20. Melatonin directly interacts with cholesterol and alleviates cholesterol effects in dipalmitoylphosphatidylcholine monolayers.

    PubMed

    Choi, Youngjik; Attwood, Simon J; Hoopes, Matthew I; Drolle, Elizabeth; Karttunen, Mikko; Leonenko, Zoya

    2014-01-01

    Melatonin is a pineal hormone that has been shown to have protective effects in several diseases that are associated with cholesterol dysregulation, including cardiovascular disease, Alzheimer's disease, and certain types of cancers. Cholesterol is a major membrane constituent with both a structural and functional influence. It is also known that melatonin readily partitions into cellular membranes. We investigated the effects of melatonin and cholesterol on the structure and physical properties of a 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) monolayer as a simple membrane model using the Langmuir-Blodgett (L-B) monolayer technique and molecular dynamics (MD) simulations. We report that melatonin increases the area per lipid and elastic compressibility of the DPPC monolayer in a concentration dependent manner, while cholesterol has the opposite effect. When both melatonin and cholesterol were present in the monolayer, the compression isotherms showed normalization of the area per molecule towards that of the pure DPPC monolayer, thus indicating that melatonin counteracts and alleviates cholesterol's effects. Atomistic MD simulations of melatonin enriched DPPC systems correlate with our experimental findings and illustrate the structural effects of both cholesterol and melatonin. Our results suggest that melatonin is able to lessen the influence of cholesterol through two different mechanisms. Firstly, we have shown that melatonin has a fluidizing effect on monolayers comprising only lipid molecules. Secondly, we also observe that melatonin interacts directly with cholesterol. Our findings suggest a direct nonspecific interaction of melatonin may be a mechanism involved in reducing cholesterol associated membrane effects, thus suggesting the existence of a new mechanism of melatonin's action. This may have important biological relevance in addition to the well-known anti-oxidative and receptor binding effects. PMID:24651707

  1. Enzymatic Quantification of Cholesterol and Cholesterol Esters from Silicone Hydrogel Contact Lenses

    PubMed Central

    Pucker, Andrew D.; Thangavelu, Mirunalni

    2010-01-01

    Purpose. The purpose of this work was to develop an enzymatic method of quantification of cholesterol and cholesterol esters derived from contact lenses, both in vitro and ex vivo. Methods. Lotrafilcon B (O2 Optix; CIBA Vision, Inc., Duluth, GA) and galyfilcon A (Acuvue Advance; Vistakon, Inc., Jacksonville, FL) silicone hydrogel contact lenses were independently incubated in cholesterol oleate solutions varying in concentrations. After incubation, the lenses were removed and underwent two separate 2:1 chloroform-methanol extractions. After in vitro studies, 10 human subjects wore both lotrafilcon B and galyfilcon A contact lenses for 7 days. The lenses also underwent two separate 2:1 chloroform-methanol extractions. All in vitro and ex vivo samples were quantified with a cholesterol esterase enzymatic reaction. Results. Calibration curves from quantifications of in vitro contact lens samples soaked in successively decreasing concentrations of cholesterol oleate yielded coefficients of determination (R2) of 0.99 (lotrafilcon B) and 0.97 (galyfilcon A). For in vitro contact lens samples, galyfilcon A was associated with an average cholesterol oleate extraction of 39.85 ± 48.65 μg/lens, whereas lotrafilcon B was associated with 5.86 ± 3.36 μg/lens (P = 0.05) across both extractions and all incubation concentrations. For ex vivo contact lens samples, there was significantly more cholesterol and cholesterol esters deposited on galyfilcon A (5.77 ± 1.87 μg/lens) than on lotrafilcon B (2.03 ± 1.62 μg/lens; P = 0.0005). Conclusions. This is an efficient and simple method of quantifying total cholesterol extracted from silicone hydrogel contact lenses and, potentially, the meibum and/or tear film. Certain silicone hydrogel materials demonstrate more affinity for cholesterol and its esters than do others. PMID:20089871

  2. The molecular-scale arrangement and mechanical strength of phospholipid/cholesterol mixed bilayers investigated by frequency modulation atomic force microscopy in liquid

    NASA Astrophysics Data System (ADS)

    Asakawa, Hitoshi; Fukuma, Takeshi

    2009-07-01

    Cholesterols play key roles in controlling molecular fluidity in a biological membrane, yet little is known about their molecular-scale arrangements in real space. In this study, we have directly imaged lipid-cholesterol complexes in a model biological membrane consisting of dipalmitoylphosphatidylcholine (DPPC) and cholesterols by frequency modulation atomic force microscopy (FM-AFM) in phosphate buffer solution. FM-AFM images of a DPPC/cholesterol bilayer in the liquid-ordered phase showed higher energy dissipation values compared to those measured on a nanoscale DPPC domain in the gel phase, reflecting the increased molecular fluidity due to the insertion of cholesterols. Molecular-resolution FM-AFM images of a DPPC/cholesterol bilayer revealed the existence of a rhombic molecular arrangement (lattice constants: a = 0.46 nm, b = 0.71 nm) consisting of alternating rows of DPPC and cholesterols as well as the increased defect density and reduced molecular ordering. The mechanical strength of a DPPC/cholesterol bilayer was quantitatively evaluated by measuring a loading force required to penetrate the membrane with an AFM tip. The result revealed the significant decrease of mechanical strength upon insertion of cholesterols. Based on the molecular-scale arrangement found in this study, we propose a model to explain the reduced mechanical strength in relation to the formation of lipid-ion networks.

  3. CHOBIMALT: A Cholesterol-Based Detergent†

    PubMed Central

    Howell, Stanley C.; Mittal, Ritesh; Huang, Lijun; Travis, Benjamin; Breyer, Richard M.; Sanders, Charles R.

    2010-01-01

    Cholesterol and its hemisuccinate and sulfate derivatives are widely used in studies of purified membrane proteins, but are difficult to solubilize in aqueous solution, even in the presence of detergent micelles. Other cholesterol derivatives do not form conventional micelles and lead to viscous solutions. To address these problems a cholesterol-based detergent, CHOBIMALT, has been synthesized and characterized. At concentrations above 3–4μM, CHOBIMALT forms micelles without the need for elevated temperatures or sonic disruption. Diffusion and fluorescence measurements indicated that CHOBIMALT micelles are large (210 ± 30 kDa). The ability to solubilize a functional membrane protein was explored using a G-protein coupled receptor, the human kappa opioid receptor type 1 (hKOR1). While CHOBIMALT alone was not found to be effective as a surfactant for membrane extraction, when added to classical detergent micelles CHOBIMALT was observed to dramatically enhance the thermal stability of solubilized hKOR1. PMID:20919740

  4. CHOBIMALT: a cholesterol-based detergent.

    PubMed

    Howell, Stanley C; Mittal, Ritesh; Huang, Lijun; Travis, Benjamin; Breyer, Richard M; Sanders, Charles R

    2010-11-01

    Cholesterol and its hemisuccinate and sulfate derivatives are widely used in studies of purified membrane proteins but are difficult to solubilize in aqueous solution, even in the presence of detergent micelles. Other cholesterol derivatives do not form conventional micelles and lead to viscous solutions. To address these problems, a cholesterol-based detergent, CHOBIMALT, has been synthesized and characterized. At concentrations above 3−4 μM, CHOBIMALT forms micelles without the need for elevated temperatures or sonic disruption. Diffusion and fluorescence measurements indicated that CHOBIMALT micelles are large (210±30 kDa). The ability to solubilize a functional membrane protein was explored using a G-protein coupled receptor, the human kappa opioid receptor type 1 (hKOR1). While CHOBIMALT alone was not found to be effective as a surfactant for membrane extraction, when added to classical detergent micelles CHOBIMALT was observed to dramatically enhance the thermal stability of solubilized hKOR1.

  5. Aspirin Increases the Solubility of Cholesterol in Lipid Membranes

    NASA Astrophysics Data System (ADS)

    Alsop, Richard; Barrett, Matthew; Zheng, Sonbo; Dies, Hannah; Rheinstadter, Maikel

    2014-03-01

    Aspirin (ASA) is often prescribed for patients with high levels of cholesterol for the secondary prevention of myocardial events, a regimen known as the Low-Dose Aspirin Therapy. We have recently shown that Aspirin partitions in lipid bilayers. However, a direct interplay between ASA and cholesterol has not been investigated. Cholesterol is known to insert itself into the membrane in a dispersed state at moderate concentrations (under ~37.5%) and decrease fluidity of membranes. We prepared model lipid membranes containing varying amounts of both ASA and cholesterol molecules. The structure of the bilayers as a function of ASA and cholesterol concentration was determined using high-resolution X-ray diffraction. At cholesterol levels of more than 40mol%, immiscible cholesterol plaques formed. Adding ASA to the membranes was found to dissolve the cholesterol plaques, leading to a fluid lipid bilayer structure. We present first direct evidence for an interaction between ASA and cholesterol on the level of the cell membrane.

  6. [Basic mechanisms: absorption and excretion of cholesterol and other sterols].

    PubMed

    Cofan Pujol, Montserrat

    2014-01-01

    Cholesterol is of vital importance for vertebrate cell membrane structure and function. It is obvious that adequate regulation of cholesterol homeostasis is essential. Hypercholesterolemia promotes atherosclerosis and thereby represents a major risk factor for cardiovascular disease. The liver has been considered the major site of control in maintenance of cholesterol homeostasis. The liver facilitates clearance of (very) low density lipoprotein particles and cholesterol-containing chylomicron remnants, synthesizes cholesterol, synthesizes and secretes (nascent) high density lipoprotein particles, secretes cholesterol and bile salts to bile, and is involved in reverse cholesterol transport. In recent years, however, the importance of the intestine in many aspects of cholesterol physiology is increasingly recognized. It has become apparent that direct secretion of cholesterol from the blood compartment into the intestine, or transintestinal cholesterol excretion, plays a major role in disposal of cholesterol via the feces. This review will discuss current knowledge on the physiology of cholesterol homeostasis, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and therapeutic options for hypercholesterolemia. PMID:24461630

  7. [Basic mechanisms: absorption and excretion of cholesterol and other sterols].

    PubMed

    Cofan Pujol, Montserrat

    2014-01-01

    Cholesterol is of vital importance for vertebrate cell membrane structure and function. It is obvious that adequate regulation of cholesterol homeostasis is essential. Hypercholesterolemia promotes atherosclerosis and thereby represents a major risk factor for cardiovascular disease. The liver has been considered the major site of control in maintenance of cholesterol homeostasis. The liver facilitates clearance of (very) low density lipoprotein particles and cholesterol-containing chylomicron remnants, synthesizes cholesterol, synthesizes and secretes (nascent) high density lipoprotein particles, secretes cholesterol and bile salts to bile, and is involved in reverse cholesterol transport. In recent years, however, the importance of the intestine in many aspects of cholesterol physiology is increasingly recognized. It has become apparent that direct secretion of cholesterol from the blood compartment into the intestine, or transintestinal cholesterol excretion, plays a major role in disposal of cholesterol via the feces. This review will discuss current knowledge on the physiology of cholesterol homeostasis, with emphasis on cholesterol absorption, cholesterol synthesis and fecal excretion, and therapeutic options for hypercholesterolemia.

  8. Cholesterol granuloma of the breast mimicking malignancy

    PubMed Central

    Khan, Roobina; Narula, Varsha; Jain, Anshu; Maheshwari, Veena

    2013-01-01

    Cholesterol granuloma of the breast is an unusual non-neoplastic condition which frequently resembles malignancy clinically as well as radiologically. We herein report a case of a 28-year-old woman who presented with a lump in the upper outer quadrant of right breast. Physical examination and ultrasonography strongly suggested a carcinomatous lesion, but histopathological examination confirmed the diagnosis to be cholestrol granulomas. This article highlights the perplexing clinical presentation of cholesterol granulomas and affirms the role of histopathological examination in diagnosing these lesions correctly. PMID:23925685

  9. Molecular events linking cholesterol to Alzheimer’s disease and inclusion body myositis in a rabbit model

    PubMed Central

    Liu, Qing Yan; Koukiekolo, Roger; Zhang, Dong Ling; Smith, Brandon; Ly, Dao; Lei, Joy X; Ghribi, Othman

    2016-01-01

    Alzheimer’s disease (AD) is the most common neurodegenerative disorder, characterized by cognitive impairment and dementia, resulting from progressive synaptic dysfunction, loss and neuronal cell death. Inclusion body myositis (IBM) is a skeletal muscle degenerative disease, displaying progressive proximal and distal muscle weakness, in association with muscle fiber atrophy, degeneration and death. Studies have shown that the late onset version of AD (LOAD) and sporadic IBM (sIBM) in muscle share many pathological features, including the presence of extracellular plaques of β-amyloid peptides and intracellular tangles of hyperphosphorylated tau proteins. High blood cholesterol is suggested to be a risk factor for LOAD. Many neuropathological changes of LOAD can be reproduced by feeding rabbits a 2% enriched cholesterol diet for 12 weeks. The cholesterol fed rabbit model also simultaneously develops sIBM like pathology, which makes it an ideal model to study the molecular mechanisms common to the development of both diseases. In the present study, we determined the changes of gene expression in rabbit brain and muscle during the progression of LOAD and sIBM pathology using a custom rabbit nucleotide microarray, followed by qRT-PCR analyses. Out of 869 unique transcripts screened, 47 genes showed differential expression between the control and the cholesterol-treated group during the 12 week period and 19 changed transcripts appeared to be common to LOAD and sIBM. The most notable changes are the upregulation of the hemoglobin gene family and the downregulation of the genes required for mitochondrial oxidative phosphorylation in both brain and muscle tissues throughout the time course. The significant overlap on the changes of gene expression in the brain and muscle of rabbits fed with cholesterol-enriched diet supports the notion that LOAD and sIBM may share a common etiology. PMID:27073745

  10. Implementation of cellulomonas cholesterol oxidase for total serum cholesterol determination by the endpoint method.

    PubMed

    Srisawasdi, Pornpen; Chaichanajarernkul, Upsorn; Teerakranjana, Narumon; Kroll, Martin H

    2008-01-01

    Cellulomonas has been shown to be a good source of cholesterol oxidase in addition to Streptomyces for serum cholesterol determination by the endpoint method, inexpensive in cost, and showing excellent performance. For clinical use, we have assessed the reliability of Cellulomonas reagent for cholesterol determination. We constructed the user-defined endpoint methods on three automated analyzers. The analytical performances (linearity, precision, recovery, interference, stability, and comparison with the standardized method) of Cellulomonas cholesterol reagents were evaluated and compared to those of Streptomyces reagents. Linearity (18.1-23.3 mmol/L) and stability of reagents (6-11 weeks) depended on the analyzers being used. The average within-run and between-day % coefficients of variation (CVs) ranged from 1.44 to 2.45 and 1.98 to 2.99, respectively, and were within National Cholesterol Education Program analytical criteria (cholesterol recovery while lipemia generated a positive interference with all methods. Cellulomonas enzyme is analytically reliable when used for serum cholesterol determination by the endpoint method. Its analytical performance is equivalent to Streptomyces enzymes and meets the analytical goals. It has an advantage over the other enzymes in that it does not ship in the frozen state.

  11. A new framework for reverse cholesterol transport: Non-biliary contributions to reverse cholesterol transport

    PubMed Central

    Temel, Ryan E; Brown, J Mark

    2010-01-01

    Reduction of low-density lipoprotein-cholesterol through statin therapy has only modestly decreased coronary heart disease (CHD)-associated mortality in developed countries, which has prompted the search for alternative therapeutic strategies for CHD. Major efforts are now focused on therapies that augment high-density lipoprotein (HDL)-mediated reverse cholesterol transport (RCT), and ultimately increase the fecal disposal of cholesterol. The process of RCT has long been thought to simply involve HDL-mediated delivery of peripheral cholesterol to the liver for biliary excretion out of the body. However, recent studies have revealed a novel pathway for RCT that does not rely on biliary secretion. This non-biliary pathway rather involves the direct excretion of cholesterol by the proximal small intestine. Compared to RCT therapies that augment biliary sterol loss, modulation of non-biliary fecal sterol loss through the intestine is a much more attractive therapeutic strategy, given that excessive biliary cholesterol secretion can promote gallstone formation. However, we are at an early stage in understanding the molecular mechanisms regulating the non-biliary pathway for RCT, and much additional work is required in order to effectively target this pathway for CHD prevention. The purpose of this review is to discuss our current understanding of biliary and non-biliary contributions to RCT with particular emphasis on the possibility of targeting the intestine as an inducible cholesterol secretory organ. PMID:21157970

  12. Lysosomal membrane glycoproteins bind cholesterol and contribute to lysosomal cholesterol export

    PubMed Central

    Li, Jian; Pfeffer, Suzanne R

    2016-01-01

    LAMP1 and LAMP2 proteins are highly abundant, ubiquitous, mammalian proteins that line the lysosome limiting membrane, and protect it from lysosomal hydrolase action. LAMP2 deficiency causes Danon’s disease, an X-linked hypertrophic cardiomyopathy. LAMP2 is needed for chaperone-mediated autophagy, and its expression improves tissue function in models of aging. We show here that human LAMP1 and LAMP2 bind cholesterol in a manner that buries the cholesterol 3β-hydroxyl group; they also bind tightly to NPC1 and NPC2 proteins that export cholesterol from lysosomes. Quantitation of cellular LAMP2 and NPC1 protein levels suggest that LAMP proteins represent a significant cholesterol binding site at the lysosome limiting membrane, and may signal cholesterol availability. Functional rescue experiments show that the ability of human LAMP2 to facilitate cholesterol export from lysosomes relies on its ability to bind cholesterol directly. DOI: http://dx.doi.org/10.7554/eLife.21635.001 PMID:27664420

  13. cDNA cloning of cholesterol 24-hydroxylase, a mediator of cholesterol homeostasis in the brain

    PubMed Central

    Lund, Erik G.; Guileyardo, Joseph M.; Russell, David W.

    1999-01-01

    The turnover of cholesterol in the brain is thought to occur via conversion of excess cholesterol into 24S-hydroxycholesterol, an oxysterol that is readily secreted from the central nervous system into the plasma. To gain molecular insight into this pathway of cholesterol metabolism, we used expression cloning to isolate cDNAs that encode murine and human cholesterol 24-hydroxylases. DNA sequence analysis indicates that both proteins are localized to the endoplasmic reticulum, share 95% identity, and represent a new cytochrome P450 subfamily (CYP46). When transfected into cultured cells, the cDNAs produce an enzymatic activity that converts cholesterol into 24S-hydroxycholesterol, and to a lesser extent, 25-hydroxycholesterol. The cholesterol 24-hydroxylase gene contains 15 exons and is located on human chromosome 14q32.1. Cholesterol 24-hydroxylase is expressed predominantly in the brain as judged by RNA and protein blotting. In situ mRNA hybridization and immunohistochemistry localize the expression of this P450 to neurons in multiple subregions of the brain. The concentrations of 24S-hydroxycholesterol in serum are low in newborn mice, reach a peak between postnatal days 12 and 15, and thereafter decline to baseline levels. In contrast, cholesterol 24-hydroxylase protein is first detected in the brain of mice at birth and continues to accumulate with age. We conclude that the cloned cDNAs encode cholesterol 24-hydroxylases that synthesize oxysterols in neurons of the brain and that secretion of 24S-hydroxycholesterol from this tissue in the mouse is developmentally regulated. PMID:10377398

  14. An amperometric cholesterol biosensor based on epoxy resin membrane bound cholesterol oxidase

    PubMed Central

    Pundir, C.S.; Narang, Jagriti; Chauhan, Nidhi; Sharma, Preety; Sharma, Renu

    2012-01-01

    Background & objectives: The use of epoxy resin membrane as a support for immobilization of enzyme has resulted into improved sensitivity and stability of biosensors for uric acid, ascorbic acid and polyphenols. The present work was aimed to prepare an improved amperometric biosensor for determination of serum cholesterol required in the diagnostics and management of certain pathological conditions. Methods: Epoxy resin membrane with immobilized cholesterol oxidase was mounted on the cleaned platinum (Pt) electrode with a parafilm to construct a working electrode. This working electrode along with Ag/AgCl as reference and Ag wire as an auxiliary electrode were connected through a three terminal electrometer to construct a cholesterol biosensor. Results: The sensor showed optimum response within 25 sec at pH 7.0 and 45°C. The linear working range of biosensor was 1.0 to 8.0 mM cholesterol. Km and Imax for cholesterol were 5.0 mM and 9.09 μA, respectively. The biosensor measured serum cholesterol. The minimum detection limit of the sensor was 1.0 mM. The mean analytical recoveries of added cholesterol in serum (2.84 and 4.13 mM) were 91.4±2.8 and 92.3±3.1 per cent (n=6), respectively. Within and between assay coefficient of variation (CV) were <2 and <4 per cent, respectively. Biosensor had a storage life of 6 months at 4°C. Interpretation & conclusions: The use of epoxy resin membrane as a support for immobilization of cholesterol oxidase has resulted into an improved amperometric cholesterol biosensor. The present biosensor had an advantage over the existing biosensors as it worked at comparatively lower potential. PMID:23168704

  15. Intestinal SR-BI does not impact cholesterol absorption or transintestinal cholesterol efflux in mice.

    PubMed

    Bura, Kanwardeep S; Lord, Caleb; Marshall, Stephanie; McDaniel, Allison; Thomas, Gwyn; Warrier, Manya; Zhang, Jun; Davis, Matthew A; Sawyer, Janet K; Shah, Ramesh; Wilson, Martha D; Dikkers, Arne; Tietge, Uwe J F; Collet, Xavier; Rudel, Lawrence L; Temel, Ryan E; Brown, J Mark

    2013-06-01

    Reverse cholesterol transport (RCT) can proceed through the classic hepatobiliary route or through the nonbiliary transintestinal cholesterol efflux (TICE) pathway. Scavenger receptor class B type I (SR-BI) plays a critical role in the classic hepatobiliary route of RCT. However, the role of SR-BI in TICE has not been studied. To examine the role of intestinal SR-BI in TICE, sterol balance was measured in control mice and mice transgenically overexpressing SR-BI in the proximal small intestine (SR-BI(hApoCIII-ApoAIV-Tg)). SR-BI(hApoCIII-ApoAIV-Tg) mice had significantly lower plasma cholesterol levels compared with wild-type controls, yet SR-BI(hApoCIII-ApoAIV-Tg) mice had normal fractional cholesterol absorption and fecal neutral sterol excretion. Both in the absence or presence of ezetimibe, intestinal SR-BI overexpression had no impact on the amount of cholesterol excreted in the feces. To specifically study effects of intestinal SR-BI on TICE we crossed SR-BI(hApoCIII-ApoAIV-Tg) mice into a mouse model that preferentially utilized the TICE pathway for RCT (Niemann-Pick C1-like 1 liver transgenic), and likewise found no alterations in cholesterol absorption or fecal sterol excretion. Finally, mice lacking SR-BI in all tissues also exhibited normal cholesterol absorption and fecal cholesterol disposal. Collectively, these results suggest that SR-BI is not rate limiting for intestinal cholesterol absorption or for fecal neutral sterol loss through the TICE pathway.

  16. Regulation of biliary cholesterol secretion. Functional relationship between the canalicular and sinusoidal cholesterol secretory pathways in the rat.

    PubMed Central

    Nervi, F; Marinović, I; Rigotti, A; Ulloa, N

    1988-01-01

    The functional interrelationship between biliary cholesterol secretion, sinusoidal lipoprotein cholesterol secretion and bile salt synthesis was studied in the rat. Diosgenin, fructose, and colestipol in the diet were used to, respectively, influence biliary cholesterol output, VLDL production and bile salt synthesis. In the acute bile fistula rat, biliary cholesterol output was 700% increased by diosgenin and 50% decreased by fructose. In the rats fed both diosgenin and fructose, biliary cholesterol secretion was increased only by approximately 200%, whereas biliary bile salts and phospholipid outputs were unchanged. In the isolated perfused liver, VLDL-cholesterol output was 50% reduced by diosgenin alone, but was unchanged following feeding of diosgenin plus fructose. However, the livers of rats fed diosgenin plus fructose exhibited a 700% increase in VLDL-triglyceride production and a 200% increase in VLDL-cholesterol output. A significant reciprocal relationship between VLDL-cholesterol secretion and the coupling ratio of cholesterol to bile salts in bile was observed. Colestipol added to the diet maintained both sinusoidal and biliary cholesterol outputs within the normal range. In the chronic bile fistula rat, colestipol increased bile salt synthesis by 100% while diosgenin and fructose diets had no effect. Similarly, the addition of fructose to the colestipol diet did not decrease bile salt synthesis. These data suggest a reciprocal relationship between biliary cholesterol secretion and hepatic secretion of cholesterol as VLDL particles. The free cholesterol pool used for bile salt synthesis seems functionally unrelated to the pool from which VLDL-cholesterol and biliary cholesterol originate. These findings support the idea that metabolic compartmentalization of hepatic cholesterol is a major determinant of the quantity of cholesterol available for recruitment by the bile salt-dependent biliary cholesterol secretory mechanism. PMID:3198756

  17. The Hippo pathway, p53 and cholesterol.

    PubMed

    Aylon, Yael; Oren, Moshe

    2016-09-01

    ASBTRACT Increased rates of cholesterol and lipid synthesis have long been recognized as important aspects of the metabolic rewiring that occurs during cancerous transformation. Many genes encoding enzymes involved in cholesterol and fatty acid biogenesis are transcriptional targets of the sterol regulatory element-binding proteins (SREBPs). The SREBPs act as a hub for metabolic and proliferation-related signals; their activity is the focus of a tug-of-war between tumor suppressors, who generally inhibit SREBP function, and oncogenes, who often promote, and rely on, SREBP activity. The Hippo pathway plays a central role in coordinating cell proliferation and organ size, whereas p53 is a crucial tumor suppressor that maintains metabolic homeostasis and orchestrates cellular stress responses. Together, the Hippo and p53 signaling pathways cooperate on multiple levels to fine-tune SREPB activity and regulate cholesterol/lipid levels. Cholesterol biosynthesis inhibitors such as statins are appealing conceptually, but have yet to show an indisputable effect on cancer development. Fortunately, the complex regulation surrounding the Hippo-p53-SREBP network potentially provides a broad interface for additional novel cancer-targeting interventions. PMID:27419353

  18. The Success Story of LDL Cholesterol Lowering.

    PubMed

    Pedersen, Terje R

    2016-02-19

    We can look back at >100 years of cholesterol research that has brought medicine to a stage where people at risk of severe or fatal coronary heart disease have a much better prognosis than before. This progress has not come about without resistance. Perhaps one of the most debated topics in medicine, the cholesterol controversy, could only be brought to rest through the development of new clinical research methods that were capable of taking advantage of the amazing achievements in basic and pharmacological science after the second World War. It was only after understanding the biochemistry and physiology of cholesterol synthesis, transport and clearance from the blood that medicine could take advantage of drugs and diets to reduce the risk of atherosclerotic diseases. This review points to the highlights of the history of low-density lipoprotein-cholesterol lowering, with the discovery of the low-density lipoprotein receptor and its physiology and not only the development of statins as the stellar moments but also the development of clinical trial methodology as an effective tool to provide scientifically convincing evidence. PMID:26892969

  19. Genetic defects in postsqualene cholesterol biosynthesis.

    PubMed

    Moebius, F F; Fitzky, B U; Glossmann, H

    2000-04-01

    In humans and mice, four different genetic defects in the nine biosynthetic steps from lanosterol to cholesterol have been identified. They impair the activity of a putative C3-sterol dehydrogenase (Nshdl, X-linked dominant bare patches/striated mutation in mice), the sterol delta 8-delta 7 isomerase/EBP (Ebp, X-linked dominant tattered mutation in mice; chondrodysplasia punctata (CDPX2) in humans), the delta 24-sterol reductase (autosomal recessive desmosterolosis) and the delta 7-sterol reductase (DHCR7 gene, autosomal recessive Smith-Lemli-Opitz syndrome in humans). These inborn errors in postsqualene cholesterol metabolism result in dysmorphogenetic syndromes of variable severity. The X-linked dominant mutations result in mosaicism in females, as a result of X-inactivation, and midgestational lethality in males. The mechanisms by which the depletion of cholesterol or the accumulation of intermediates impair morphogenetic programs are unclear. So far, no cellular processes that require an intact cholesterol biosynthetic pathway have been identified, although the morphogenetic hedgehog-patched signaling cascade is a candidate. PMID:10707051

  20. Serum cholesterol concentrations among Navajo Indians.

    PubMed

    Sugarman, J R; Gilbert, T J; Percy, C A; Peter, D G

    1992-01-01

    Navajo Indians have been reported by earlier investigators to have low concentrations of serum lipids and a low prevalence of hyperlipidemia, as well as low rates of ischemic heart disease. However, no data on serum lipid concentrations among Navajos have been reported for more than two decades. The authors conducted a study to determine the distribution of concentrations of serum total cholesterol (TC), high density lipoprotein cholesterol, low density lipoprotein cholesterol, and triglyceride among persons 25-74 years old living in a representative community on the Navajo Indian reservation. Data are reported for 255 subjects, 105 men and 150 women, ages 25-74 years. The authors compared these data to those for the general population as determined by the second National Health and Nutrition Examination Survey (NHANES II). TC concentrations among Navajo men were similar to those from NHANES II. TC concentrations among younger Navajo women were similar to those for women younger than 55 years from NHANES II, but were significantly lower among older Navajo women. While 27.6 percent of men ages 25-74 years studied in NHANES II had TC concentrations greater than 240 milligrams per deciliter, 33.8 percent of Navajo men had similarly elevated TC. However, the prevalence of serum TC concentrations greater than 240 milligrams per deciliter among Navajo women (17.5 percent) was about half that among women studied in NHANES II (32.9 percent). A similar pattern was found for low density lipoprotein cholesterol. The researchers concluded that Navajo Indians are no longer characterized by low serum lipid concentrations, that increased cholesterol concentrations may be a harbinger of increasing rates of atherosclerotic coronary heart disease among Navajos, and that attention should be directed to primary prevention of hyperlipidemia in Navajo Indian communities. PMID:1738814

  1. Role of Cholesterol Pathways in Norovirus Replication▿

    PubMed Central

    Chang, Kyeong-Ok

    2009-01-01

    Norwalk virus (NV) is a prototype strain of the noroviruses (family Caliciviridae) that have emerged as major causes of acute gastroenteritis worldwide. I have developed NV replicon systems using reporter proteins such as a neomycin-resistant protein (NV replicon-bearing cells) and a green fluorescent protein (pNV-GFP) and demonstrated that these systems were excellent tools to study virus replication in cell culture. In the present study, I first performed DNA microarray analysis of the replicon-bearing cells to identify cellular factors associated with NV replication. The analysis demonstrated that genes in lipid (cholesterol) or carbohydrate metabolic pathways were significantly (P < 0.001) changed by the gene ontology analysis. Among genes in the cholesterol pathways, I found that mRNA levels of hydroxymethylglutaryl-coenzyme A (HMG-CoA) synthase, squalene epoxidase, and acyl-CoA:cholesterol acyltransferase (ACAT), ACAT2, small heterodimer partner, and low-density lipoprotein receptor (LDLR)-related proteins were significantly changed in the cells. I also found that the inhibition of cholesterol biosynthesis using statins (an HMG-CoA reductase inhibitor) significantly increased the levels of NV proteins and RNA, whereas inhibitors of ACAT significantly reduced the replication of NV in replicon-bearing cells. Up- or downregulation of virus replication with these agents significantly correlated with the mRNA level of LDLR in replicon-bearing cells. Finally, I found that the expression of LDLR promoted NV replication in trans by transfection study with pNV-GFP. I conclude that the cholesterol pathways such as LDLR expression and ACAT activity may be crucial in the replication of noroviruses in cells, which may provide potential therapeutic targets for viral infection. PMID:19515767

  2. To Your Health: NLM update transcript - Cholesterol screening for kids?

    MedlinePlus

    ... transcript102416.html To Your Health: NLM update Transcript Cholesterol screening for kids? : 10/24/2016 To use ... the need for children to be screened for cholesterol levels in their bloodstream, finds a recent article ...

  3. Talk with Your Health Care Provider about High Cholesterol

    MedlinePlus

    ... you do? Always ask your provider what your cholesterol numbers are and write them down. Discuss these ... provider may prescribe medicine to help lower your cholesterol. y y Take your medicine every day, or ...

  4. Biliary cholesterol transport and precipitation: introduction and overview of conference.

    PubMed

    Strasberg, S M; Harvey, P R

    1990-09-01

    Cholesterol is secreted into bile as cholesterol-phospholipid vesicles. The cholesterol and phospholipid are subsequently exposed to the bile salts contained in the bile, which leads to the process of micellation. Two situations may arise depending on whether there is enough bile salt in proportion to cholesterol to complete this "maturation" process. If the cholesterol saturation is low, at equilibrium the bile salts will have completely micellized the vesicles. On the other hand, if bile is saturated with cholesterol, the micellation process is incomplete and vesicles and micelles will be present at equilibrium. The residual vesicle in this latter situation may have a higher cholesterol/phospholipid ratio because of the greater propensity of phospholipid to be micellized. This situation may result in cholesterol nucleation. The mechanism of nucleation from vesicles and the possible role of nucleating and antinucleating proteins in this process have been discussed.

  5. Sustained release Curcumin loaded Solid Lipid Nanoparticles

    PubMed Central

    Jourghanian, Parisa; Ghaffari, Solmaz; Ardjmand, Mehdi; Haghighat, Setareh; Mohammadnejad, Mahdieh

    2016-01-01

    Purpose: curcumin is poorly water soluble drug with low bioavailability. Use of lipid systems in lipophilic substances increases solubility and bioavailability of poorly soluble drugs. The aim of this study was to prepare curcumin loaded Solid Lipid Nanoparticles (SLNs) with high loading efficiency, small particle size and prolonged release profile with enhanced antibacterial efficacy. Methods: to synthesize stable SLNs, freeze- Drying was done using mannitol as cryoprotectant. Cholesterol was used as carrier because of good tolerability and biocompatibility. SLNs were prepared using high pressure homogenization method. Results: optimized SLNs had 112 and 163 nm particle size before and after freeze drying, respectively. The prepared SLNs had 71% loading efficiency. 90% of loaded curcumin was released after 48 hours. Morphologic study for formulation was done by taking SEM pictures of curcumin SLNs. Results show the spherical shape of curcumin SLNs. DSC studies were performed to determine prolonged release mechanism. Antimicrobial studies were done to compare the antimicrobial efficacy of curcumin SLNs with free curcumin. DSC studies showed probability of formation of hydrogen bonds between cholesterol and curcumin which resulted in prolonged release of curcumin. Lipid structure of cholesterol could cause enhanced permeability in studied bacteria to increase antibacterial characteristics of curcumin. Conclusion: the designed curcumin SLNs could be candidate for formulation of different dosage forms or cosmeceutical products. PMID:27123413

  6. Ezetimibe and Simvastatin Reduce Cholesterol Levels in Zebrafish Larvae Fed a High-Cholesterol Diet

    PubMed Central

    Baek, Ji Sun; Fang, Longhou; Li, Andrew C.; Miller, Yury I.

    2012-01-01

    Cholesterol-fed zebrafish is an emerging animal model to study metabolic, oxidative, and inflammatory vascular processes relevant to pathogenesis of human atherosclerosis. Zebrafish fed a high-cholesterol diet (HCD) develop hypercholesterolemia and are characterized by profound lipoprotein oxidation and vascular lipid accumulation. Using optically translucent zebrafish larvae has the advantage of monitoring vascular pathology and assessing the efficacy of drug candidates in live animals. Thus, we investigated whether simvastatin and ezetimibe, the principal drugs used in management of hypercholesterolemia in humans, would also reduce cholesterol levels in HCD-fed zebrafish larvae. We found that ezetimibe was well tolerated by zebrafish and effectively reduced cholesterol levels in HCD-fed larvae. In contrast, simvastatin added to water was poorly tolerated by zebrafish larvae and, when added to food, had little effect on cholesterol levels in HCD-fed larvae. Combination of low doses of ezetimibe and simvastatin had an additive effect in reducing cholesterol levels in zebrafish. These results suggest that ezetimibe exerts in zebrafish a therapeutic effect similar to that in humans and that the hypercholesterolemic zebrafish can be used as a low-cost and informative model for testing new drug candidates and for investigating mechanisms of action for existing drugs targeting dyslipidemia. PMID:22693663

  7. Metabolism of low-density lipoprotein free cholesterol by human plasma lecithin-cholesterol acyltransferase

    SciTech Connect

    Fielding, P.E.; Miida, Takashi; Fielding, C.J. )

    1991-09-03

    The metabolism of cholesterol derived from ({sup 3}H) cholesterol-labeled low-density lipoprotein (LDL) was determined in human blood plasma. LDL-derived free cholesterol first appeared in large {alpha}-migrating HDL (HDL{sub 2}) and was then transferred to small {alpha}-HDL (HDL{sub 3}) for esterification. The major part of such esters was retained within HDL of increasing size in the course of lecithin-cholesterol acyltransferase (LCAT) activity; the balance was recovered in LDL. Transfer of preformed cholesteryl esters within HDL contributed little to the labeled cholesteryl ester accumulating HDL{sub 2}. When cholesterol for esterification was derived instead from cell membranes, a significantly smaller proportion of this cholesteryl ester was subsequently recovered in LDL. These data suggest compartmentation of cholesteryl esters within plasma that have been formed from cell membrane or LDL free cholesterol, and the role for HDL{sub 2} as a relatively unreactive sink for LCAT-derived cholesteryl esters.

  8. Cholesterol determination using protein-templated fluorescent gold nanocluster probes.

    PubMed

    Chen, Xi; Baker, Gary A

    2013-11-12

    We describe the development of a fluorescent biosensor platform for soluble cholesterol based on bovine serum albumin-stabilized gold nanocluster probes co-dissolved with cholesterol oxidase (ChOx) in a surfactant emulsion system. Selective enzymatic oxidation of cholesterol to cholest-4-en-3-one by ChOx produces stoichiometric amounts of H2O2 by-product, generating a quenching response signaling the presence of cholesterol at clinically relevant levels (LOD ∼12 μM).

  9. 25-Hydroxycholesterol Increases the Availability of Cholesterol in Phospholipid Membranes

    SciTech Connect

    Olsen, Brett N.; Schlesinger, Paul H.; Ory, Daniel S.; Baker, Nathan A.

    2011-02-01

    Side-chain oxysterols are enzymatically generated oxidation products of cholesterol that serve a central role in mediating cholesterol homeostasis. Recent work has shown that side-chain oxysterols, such as 25-hydroxycholesterol (25-HC), alter membrane structure in very different ways from cholesterol, suggesting a possible mechanism for how these oxysterols regulate cholesterol homeostasis. Here we extend our previous work, using molecular dynamics simulations of 25-HC and cholesterol mixtures in 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers to examine interactions between 25-HC and cholesterol in the same bilayer. When added to cholesterol-containing membranes, 25-HC causes larger changes in membrane structure than when added to cholesterol-free membranes, demonstrating interactions between the two sterols. We also find that the presence of 25-HC changes the position, orientation, and solvent accessibility of cholesterol, shifting it into the water interface and therefore its availability to external acceptors. This is consistent with experimental results showing that oxysterols can trigger cholesterol trafficking from the plasma membrane to the endoplasmic reticulum. These interactions provide a potential mechanism for 25-HC-mediated regulation of cholesterol trafficking and homeostasis through direct modulation of cholesterol availability.

  10. Carbon Inverse Opal Rods for Nonenzymatic Cholesterol Detection.

    PubMed

    Zhong, Qifeng; Xie, Zhuoying; Ding, Haibo; Zhu, Cun; Yang, Zixue; Gu, Zhongze

    2015-11-18

    Carbon inverse opal rods made from silica photonic crystal rods are used for nonenzymatic cholesterol sensing. The characteristic reflection peak originating from the physical periodic structure works as sensing signals for quantitatively estimating cholesterol concentrations. Carbon inverse opal rods work both in cholesterol standard solutions and human serum. They are suitable for practical use in clinical diagnose. PMID:26415111

  11. Understanding Lipoproteins as Transporters of Cholesterol and Other Lipids

    ERIC Educational Resources Information Center

    Biggerstaff, Kyle D.; Wooten, Joshua S.

    2004-01-01

    A clear picture of lipoprotein metabolism is essential for understanding the pathophysiology of atherosclerosis. Many students are taught that low-density lipoprotein-cholesterol is "bad" and high-density lipoprotein-cholesterol is "good." This misconception leads to students thinking that lipoproteins are types of cholesterol rather than…

  12. Carbon Inverse Opal Rods for Nonenzymatic Cholesterol Detection.

    PubMed

    Zhong, Qifeng; Xie, Zhuoying; Ding, Haibo; Zhu, Cun; Yang, Zixue; Gu, Zhongze

    2015-11-18

    Carbon inverse opal rods made from silica photonic crystal rods are used for nonenzymatic cholesterol sensing. The characteristic reflection peak originating from the physical periodic structure works as sensing signals for quantitatively estimating cholesterol concentrations. Carbon inverse opal rods work both in cholesterol standard solutions and human serum. They are suitable for practical use in clinical diagnose.

  13. Dietary cholesterol and the plasma lipids and lipoproteins in the Tarahumara Indians: a people habituated to a low cholesterol diet after weaning.

    PubMed

    McMurry, M P; Connor, W E; Cerqueira, M T

    1982-04-01

    Eight Tarahumara Indian men participated in a metabolic study to measure the responsiveness of their plasma cholesterol levels to dietary cholesterol. They were fed isocaloric cholesterol-free and high cholesterol diets containing 20% fat, 15% protein, and 65% carbohydrate calories. On admission to the study, the Tarahumaras had a low mean plasma cholesterol concentration (120 mg/dl), reflecting their habitual low cholesterol diet. After 3 wk of a cholesterol-free diet their cholesterol levels were 113 mg/dl. The men were then fed a high cholesterol diet (1000 mg/day) which increased the mean total plasma cholesterol to 147 mg/dl (p less than 0.01) and also increased the low-density lipoprotein cholesterol concentration. Tarahumaras, habituated to a low cholesterol diet after weaning, had the typical hypercholesterolemic response to a high cholesterol diet that has been previously observed in subjects whose lifelong diet was high in cholesterol content.

  14. Templated cocrystallization of cholesterol and phytosterols from microemulsions

    NASA Astrophysics Data System (ADS)

    Rozner, Shoshana; Popov, Inna; Uvarov, Vladimir; Aserin, Abraham; Garti, Nissim

    2009-08-01

    A major cause of cardiovascular disease is high cholesterol (CH) levels in the blood, a potential solution to which is the intake of phytosterols (PS) known as CH-reducing agents. One mechanism proposed for PS activity is the mutual cocrystallization of CH and PS from dietary mixed micelles (DMM), a process that removes excess CH from the transporting micelles. In this study, microemulsions (MEs) were used both as a model system for cocrystallization mimicking DMM and as a possible alternative pathway, based on the competitive solubilization of CH and PS, to reduce solubilized CH transport levels from the ME. The effects of different CH/PS ratios, aqueous dilution, and lecithin-based MEs on sterol crystallization were studied. The precipitated crystals from the ME-loaded system with PS alone and from that loaded with 1:1 or 1:3 CH/PS mixtures were significantly influenced by ME microstructure and by dilution with aqueous phase (X-ray powder diffraction (XRD) and differential scanning calorimetry (DSC) results). No new polymorphic structures were detected apart from the corresponding sterol hydrates. Mixed crystal morphology and the habit of the precipitated sterols were strongly affected by the CH/PS ratio and the structures of the diluted ME. As the amount of PS in the mixture increased or as the ME aqueous dilution proceeded, precipitated crystal shape became more needle-like. The mixed sterols seemed to be forming eutectic solids.

  15. Effects of Cholesterol-altering Pharmaceuticals on Cholesterol Metabolism, Steroidogenesis, and Gene Expression in the Fathead Minnow (Pimephales promelas)

    EPA Science Inventory

    Pharmaceuticals that target cholesterol biosynthesis and uptake are among the most widely prescribed drugs and have been detected in the aquatic environment. Fibrates are a class of pharmaceuticals that indirectly modulate cholesterol biosynthesis through effects on peroxisome pr...

  16. Cholesterol dependence of collagen and echovirus 1 trafficking along the novel α2β1 integrin internalization pathway.

    PubMed

    Siljamäki, Elina; Rintanen, Nina; Kirsi, Maija; Upla, Paula; Wang, Wei; Karjalainen, Mikko; Ikonen, Elina; Marjomäki, Varpu

    2013-01-01

    We have previously shown that soluble collagen and a human pathogen, echovirus 1 (EV1) cluster α2β1 integrin on the plasma membrane and cause their internalization into cytoplasmic endosomes. Here we show that cholesterol plays a major role not only in the uptake of α2β1 integrin and its ligands but also in the formation of α2 integrin-specific multivesicular bodies (α2-MVBs) and virus infection. EV1 infection and α2β1 integrin internalization were totally halted by low amounts of the cholesterol-aggregating drugs filipin or nystatin. Inhibition of cholesterol synthesis and accumulation of lanosterol after ketoconazole treatment inhibited uptake of collagen, virus and clustered integrin, and prevented formation of multivesicular bodies and virus infection. Loading of lipid starved cells with cholesterol increased infection to some extent but could not completely restore EV1 infection to control levels. Cold Triton X-100 treatment did not solubilize the α2-MVBs suggesting, together with cholesterol labeling, that the cytoplasmic endosomes were enriched in detergent-resistant lipids in contrast to αV integrin labeled control endosomes in the clathrin pathway. Cholesterol aggregation leading to increased ion permeability caused a significant reduction in EV1 uncoating in endosomes as judged by sucrose gradient centrifugation and by neutral red-based uncoating assay. In contrast, the replication step was not dependent on cholesterol in contrast to the reports on several other viruses. In conclusion, our results showed that the integrin internalization pathway is dependent on cholesterol for uptake of collagen, EV1 and integrin, for maturation of endosomal structures and for promoting EV1 uncoating. The results thus provide novel information for developing anti-viral strategies and more insight into collagen and integrin trafficking. PMID:23393580

  17. Effect of plant sterol-enriched diets on plasma and egg yolk cholesterol concentrations and cholesterol metabolism in laying hens.

    PubMed

    Liu, X; Zhao, H L; Thiessen, S; House, J D; Jones, P J H

    2010-02-01

    Egg exists as a major dietary source of cholesterol in Western diets. In North America, laying hen diets are usually devoid of cholesterol when diets are formulated to exclude animal-based products. Hence, laying hens meet their physiological cholesterol requirement through de novo synthesis. Plant sterols exert a cholesterol-lowering effect in humans by interfering with intestinal sterol absorption. However, it is unknown whether plant sterol supplementation could be effective in reducing intestinal reabsorption of biliary cholesterol in laying hens, thus modulating whole body cholesterol in favor of lower plasma and yolk cholesterol content. The current study was designed to investigate the effect of diets enriched with 0, 0.5, 1, and 2% plant sterols on cholesterol absorption, synthesis, as well as plasma, liver, and egg yolk cholesterol concentrations in laying hens. After 8 wk of plant sterol intervention (first 2 wk were acclimatization), feed intake, BW, egg weight, egg yolk weight, egg production, Haugh units, liver mass, plasma, and hepatic cholesterol concentrations did not differ as a function of plant sterol supplementation. Egg cholesterol concentrations (mg/g) fluctuated during the 6-wk experimental period. At wk 6, a minor reduction in egg yolk cholesterol concentration (mg per g of yolk, P<0.05, vs. control) was observed in hens fed 1 and 2% cholesterol-enriched diets, respectively. However, such result failed to affect total egg cholesterol content. No statistical difference was observed across treatments over 6 wk. Neither cholesterol absorption rates nor synthesis differed as a function of treatment. Results suggested that overall cholesterol content in egg yolk was not affected by feeding hens plant sterol-enriched diets over 6 wk. PMID:20075279

  18. Understanding Cholesterol and Heart Health | NIH MedlinePlus the Magazine

    MedlinePlus

    ... cholesterol throughout the body: Low-density lipoproteins (LDL): LDL cholesterol sometimes is called "bad" cholesterol. A high LDL ... or even death. The higher the level of LDL cholesterol in your blood, the GREATER your chance is ...

  19. Effects of statins and cholesterol on memory functions in mice.

    PubMed

    Ghodke, Ravindra M; Tour, Nagesh; Devi, Kshama

    2012-12-01

    Studies on influence of lipid lowering therapies have generated wide controversial results on the role of cholesterol on memory function. However recent studies revealed that cholesterol lowering treatment substantially reduce the risk of dementia. The objectives of this study were to analyze the effect of statins on memory function and to establish the relationship between increase/decrease in cholesterol synthesis, total cholesterol level and memory function in animals. We examined the relationship between biosynthesis of cholesterol and memory function using two statins (lipophilic simvastatin and hydrophilic pravastatin) and high cholesterol diet in mice for 15 days and 4 months. Memory performance was evaluated with two different behavioral tests and various biochemical parameters such as serum cholesterol, whole brain cholesterol, brain 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) activity and brain acetylcholine esterase (AChE) activity. We found that statin treatment for 4 months, but not for 15 days, showed significant improvement in memory function whereas high cholesterol diet showed significant impairment of memory. However long-term statin treatment showed significant decrease in serum cholesterol level as well as brain AChE level. Moreover high cholesterol diet showed significant decrease in memory function with an increase in serum cholesterol level as well as brain AChE level. There is no direct correlation between brain cholesterol level, as well as HMG-CoA activity with memory function regulation. However there is definite link between plasma cholesterol level and AChE level. A long-standing plasma cholesterol alteration may be essential to regulate memory function which in turn might be mediated through AChE modulated pathway.

  20. Effects of saturated and unsaturated fats given with and without dietary cholesterol on hepatic cholesterol synthesis and hepatic lipid metabolism.

    PubMed

    Bochenek, W; Rodgers, J B

    1978-01-27

    Hepatic cholesterol synthesis was studied in rats after consuming diets of varying neutral lipid and cholesterol content. Cholesterol synthesis was evaluated by measuring 3-hydroxy-3-methylglutaryl-CoA reductase and by determining the rate of 3H-labeled sterol production from [3H]mevalonate. Results were correlated with sterol balance data and hepatic lipid content. Hepatic cholesterol synthesis was relatively great when cholesterol was excluded from the diet. The source of neutral dietary lipids, saturated vs. unsaturated, produced no change in hepatic sterol synthesis. Values for fecal sterol outputs and hepatic cholesterol levels were also similar in rats consuming either saturated or unsaturated fats. When 1% cholesterol was added to the diet, hepatic cholesterol synthesis was suppressed but the degree of suppression was greater in rats consuming unsaturated vs. saturated fats. This was associated with greater accumulation of cholesterol in livers from rats consuming unsaturates and a reduction in fecal neutral sterol output in this group as opposed to results from rats on saturated fats. Cholesterol consumption also altered the fatty acid composition of hepatic phospholipids producing decreases in the percentages of essential polyunsaturated fatty acids. It is concluded that dietary cholesterol alters cholesterol and fatty acid metabolism in the liver and that this effect is enhanced by dietary unsaturated fats.

  1. Walking and serum cholesterol in adults.

    PubMed Central

    Tucker, L A; Friedman, G M

    1990-01-01

    We measured the association between walking for exercise and the ratio of total cholesterol/HDL cholesterol in 3,621 adults. After controlling for age, gender, income, body fat, alcohol use, exercise other than walking, and cigarette smoking, adults in the high, moderate, and low duration walking categories were compared to those in the no walking-no exercise category. The relative risk for total/HDL ratios of 5.0 or more were .46 (95% CI = .27, .80), .48 (95% total/HDL ratios of 5.0 or more were .46 (95% CI = .27, .80), .48 (95% CI = .30, .76), and 1.11 (95% CI = .81, 1.53) respectively. PMID:2382750

  2. Lipid rafts, cholesterol, and the brain

    PubMed Central

    Korade, Zeljka; Kenworthy, Anne K.

    2008-01-01

    Summary Lipid rafts are specialized membrane microdomains that serve as organizing centers for assembly of signaling molecules, influence membrane fluidity and trafficking of membrane proteins, and regulate different cellular processes such as neurotransmission and receptor trafficking. In this article, we provide an overview of current methods for studying lipid rafts and models for how lipid rafts might form and function. Next, we propose a potential mechanism for regulating lipid rafts in the brain via local control of cholesterol biosynthesis by neurotrophins and their receptors. Finally, we discuss evidence that altered cholesterol metabolism and/or lipid rafts play a critical role in the pathophysiology of multiple CNS disorders, including Smith-Lemli-Opitz syndrome, Huntington, Alzheimer's, and Niemman-Pick Type C diseases. PMID:18402986

  3. Cholesterol efflux capacity: An introduction for clinicians.

    PubMed

    Anastasius, Malcolm; Kockx, Maaike; Jessup, Wendy; Sullivan, David; Rye, Kerry-Anne; Kritharides, Leonard

    2016-10-01

    Epidemiologic studies have shown an inverse correlation between high-density lipoprotein (HDL) cholesterol (HDL-C) levels and cardiovascular disease outcomes. However, the hypothesis of a causal relationship between HDL-C and cardiovascular disease has been challenged by genetic and clinical studies. Serum cholesterol efflux capacity (CEC) is an important measure of HDL function in humans. Recent large clinical studies have shown a correlation between in vitro CEC and cardiovascular disease prevalence and incidence, which appears to be independent of HDL-C concentration. The present review summarizes recent large clinical studies and introduces important methodological considerations. Further studies are required to standardize and establish the reproducibility of this measure of HDL function and clarify whether modulating CEC will emerge as a useful therapeutic target. PMID:27659883

  4. Rapid cholesterol nucleation time and cholesterol gall stone formation after subtotal or total colectomy in humans.

    PubMed Central

    Makino, I; Chijiiwa, K; Higashijima, H; Nakahara, S; Kishinaka, M; Kuroki, S; Mibu, R

    1994-01-01

    Changes in biliary lipid composition, pH, ionised calcium, total and unconjugated bilirubin, and cholesterol nucleation time of gall bladder bile samples were examined in six patients who had undergone subtotal or total colectomy between five months and seven years previously, and values were compared with those in control patients with no gall stones. The colectomy group mainly comprised patients with ulcerative colitis and familial adenomatosis coli, in whom only a short length of the terminal ileum (mean (SEM) 2.25 (0.57) cm) had been resected. The reconstruction procedures were ileoanal anastomosis in two patients, terminal ileostomy in two, ileorectal anastomosis in one, and J shaped ileal pouch-anal anastomosis in one patient. The distributions of age, sex, and relative body weight were similar in the two groups. The gall bladder bile was lithogenic in the post colectomy group--these patients had a significantly increased cholesterol saturation index (p < 0.01) and rapid cholesterol nucleation time (p < 0.05) compared with the control group. A significant increase in the molar percentage of cholesterol and a decrease in that of total bile acid associated with significantly decreased secondary bile acids (p < 0.05) were observed in the post colectomy group. Gall stones formed in two of six patients after colectomy were cholesterol stones containing more than 80% cholesterol by dry weight. Total and unconjugated bilirubin, pH, and ionised calcium values were similar in the two groups. The results indicate that after total or subtotal colectomy the composition of gall bladder bile increases the risk of cholesterol gall stone formation. PMID:7829016

  5. Cholesterol in serum lipoprotein fractions after spaceflight

    NASA Technical Reports Server (NTRS)

    Leach, Carolyn S.; Johnson, Philip C., Jr.; Krauhs, Jane M.; Cintron, Nitza M.

    1988-01-01

    Results are reported from blood-lipid measurements obtained from 125 Space Shuttle crew members before and after space flight. The data are presented in tables and discussed in detail. The main differences noted between preflight and postflight values are a 12.8-percent decrease in high-density lipoproteins on postflight day 1 and significant decreases in total cholesterol and both high- and low-density lipoproteins later in the 23-day postflight period.

  6. Potent and selective mediators of cholesterol efflux

    DOEpatents

    Bielicki, John K; Johansson, Jan

    2015-03-24

    The present invention provides a family of non-naturally occurring polypeptides having cholesterol efflux activity that parallels that of full-length apolipoproteins (e.g., Apo AI and Apo E), and having high selectivity for ABAC1 that parallels that of full-length apolipoproteins. The invention also provides compositions comprising such polypeptides, methods of identifying, screening and synthesizing such polypeptides, and methods of treating, preventing or diagnosing diseases and disorders associated with dyslipidemia, hypercholesterolemia and inflammation.

  7. Cholesterol - Multiple Languages: MedlinePlus

    MedlinePlus

    ... 繁體中文) French (français) Hindi (हिन्दी) Japanese (日本語) Korean (한국어) Portuguese (português) Russian (Русский) Somali (af Soomaali) ... コレステロール - 日本語 (Japanese) Bilingual PDF Health Information Translations Korean (한국어) Cholesterol 콜레스테롤 - 한국어 (Korean) Bilingual PDF Health ...

  8. Human plasma lecithin-cholesterol acyltransferase

    SciTech Connect

    Jauhiainen, M.; Stevenson, K.J.; Dolphin, P.J.

    1988-05-15

    Lecithin-cholesterol acyltransferase (LCAT) is a plasma enzyme which catalyzes the transacylation of the fatty acid at the sn-2 position of lecithin to cholesterol forming lysolecithin and cholesteryl ester. The substrates for and products of this reaction are present within the plasma lipoproteins upon which the enzyme acts to form the majority of cholesteryl ester in human plasma. The authors proposed a covalent catalytic mechanism of action for LCAT in which serine and histidine residues mediate lecithin cleavage and two cysteine residues cholesterol esterification. With the aid of sulfhydryl reactive trivalent organoarsenical compounds which are specific for vicinal thiols they have probed the geometry of the catalytic site. They conclude that the two catalytic cysteine residues of LCAT (Cys/sup 31/ and Cys /sup 184/) are vicinal with a calculated distance between their sulfur atoms of 3.50-3.62 A. The additional residue alkylated by teh bifunctional reagent is within the catalytic site and may represent a previously identified catalytic serine or histidine residue.

  9. HDL and cholesterol handling in the brain.

    PubMed

    Vitali, Cecilia; Wellington, Cheryl L; Calabresi, Laura

    2014-08-01

    Cholesterol is an essential component of both the peripheral nervous system and central nervous system (CNS) of mammals. Brain cholesterol is synthesized in situ by astrocytes and oligodendrocytes and is almost completely isolated from other pools of cholesterol in the body, but a small fraction can be taken up from the circulation as 27-hydroxycholesterol, or via the scavenger receptor class B type I. Glial cells synthesize native high-density lipoprotein (HDL)-like particles, which are remodelled by enzymes and lipid transfer proteins, presumably as it occurs in plasma. The major apolipoprotein constituent of HDL in the CNS is apolipoprotein E, which is produced by astrocytes and microglia. Apolipoprotein A-I, the major protein component of plasma HDL, is not synthesized in the CNS, but can enter and become a component of CNS lipoproteins. Low HDL-C levels have been shown to be associated with cognitive impairment and various neurodegenerative diseases. On the contrary, no clear association with brain disorders has been shown in genetic HDL defects, with the exception of Tangier disease. Mutations in a wide variety of lipid handling genes can result in human diseases, often with a neuronal phenotype caused by dysfunctional intracellular lipid trafficking.

  10. Neurosteroids: oligodendrocyte mitochondria convert cholesterol to pregnenolone

    SciTech Connect

    Hu, Z.Y.; Bourreau, E.; Jung-Testas, I.; Robel, P.; Baulieu, E.E.

    1987-12-01

    Oligodendrocyte mitochondria from 21-day-old Sprague-Dawley male rats were incubated with 100 nM (/sup 3/H)cholesterol. It yielded (/sup 3/H)pregnenolone at a rate of 2.5 +/- 0.7 and 5-(/sup 3/H)pregnene-3..beta..,20..cap alpha..-diol at a rate of 2.5 +/- 1.1 pmol per mg of protein per hr. Cultures of glial cells from 19- to 21-day-old fetuses (a mixed population of astrocytes and oligodendrocytes) were incubated for 24 hr with (/sup 3/H)mevalonolactone. (/sup 3/H)Cholesterol, (/sup 3/H)pregnenolone, and 5-(/sup 3/H)pregnene-3..beta..,20..cap alpha..-diol were characterized in cellular extracts. The formation of the /sup 3/H-labeled steroids was increased by dibutyryl cAMP (0.2 mM) added to the culture medium. The active cholesterol side-chain cleavage mechanism, recently suggested immunohistochemically and already observed in cultures of C6 glioma cells, reinforces the concept of neurosteroids applied to ..delta../sup 5/-3..beta..-hydroxysteroids previously isolated from brain.

  11. Dietary cholesterol, heart disease risk and cognitive dissonance.

    PubMed

    McNamara, Donald J

    2014-05-01

    In the 1960s, the thesis that dietary cholesterol contributes to blood cholesterol and heart disease risk was a rational conclusion based on the available science at that time. Fifty years later the research evidence no longer supports this hypothesis yet changing the dietary recommendation to limit dietary cholesterol has been a slow and at times contentious process. The preponderance of the clinical and epidemiological data accumulated since the original dietary cholesterol restrictions were formulated indicate that: (1) dietary cholesterol has a small effect on the plasma cholesterol levels with an increase in the cholesterol content of the LDL particle and an increase in HDL cholesterol, with little effect on the LDL:HDL ratio, a significant indicator of heart disease risk, and (2) the lack of a significant relationship between cholesterol intake and heart disease incidence reported from numerous epidemiological surveys. Over the last decade, many countries and health promotion groups have modified their dietary recommendations to reflect the current evidence and to address a now recognised negative consequence of ineffective dietary cholesterol restrictions (such as inadequate choline intake). In contrast, health promotion groups in some countries appear to suffer from cognitive dissonance and continue to promote an outdated and potentially hazardous dietary recommendation based on an invalidated hypothesis. This review evaluates the evidence for and against dietary cholesterol restrictions and the potential consequences of such restrictions.

  12. Effects of Charged Cholesterol Derivatives on Aβ40 Amyloid Formation.

    PubMed

    Elbassal, Esmail A; Liu, Haiyang; Morris, Clifford; Wojcikiewicz, Ewa P; Du, Deguo

    2016-01-14

    Understanding of the mechanistic progess of amyloid-β peptide (Aβ) aggregation is critical for elucidating the underlying pathogenesis of Alzheimer's disease (AD). Herein, we report for the first time the effects of two cholesterol derivatives, negatively charged cholesterol sulfate (cholesterol-SO4) and positively charged 3β-[N-(dimethylaminoethane)carbamoyl]-cholesterol (DC-cholesterol), on the fibrillization of Aβ40. Our results demonstrate that both of the nonvesicular forms of cholesterol-SO4 and DC-cholesterol moderately accelerate the aggregation rate of Aβ40. This effect is similar to that observed for unmodified cholesterol, indicating the importance of hydrophobic interactions in binding of Aβ40 to these steroid molecules. Furthermore, we show that the vesicles formed at higher concentrations of anionic cholesterol-SO4 facilitate Aβ40 aggregation rate markedly. In contrast, the cationic DC-cholesterol vesicles show the ability to inhibit Aβ40 fibril formation under appropriate experimental conditions. The results suggest that the electrostatic interactions between Aβ40 and the charged vesicles can be of great importance in regulating Aβ40-vesicle interaction. Our results also indicate that the structural properties of the aggregates of the cholesterol derivatives, including the surface charge and the size of the vesicles, are critical in regulating the effects of these vesicles on Aβ40 aggregation kinetics.

  13. Cholesterol in the retina: the best is yet to come

    PubMed Central

    Pikuleva, Irina A.; Curcio, Christine A.

    2014-01-01

    Historically understudied, cholesterol in the retina is receiving more attention now because of genetic studies showing that several cholesterol-related genes are risk factors for age-related macular degeneration (AMD) and because eye pathology studies showing high cholesterol content of drusen, aging Bruch's membrane, and newly found subretinal lesions. The challenge before us is determining how the cholesterol-AMD link is realized. Meeting this challenge will require an excellent understanding these genes’ roles in retinal physiology and how chorioretinal cholesterol is maintained. In the first half of this review, we will succinctly summarize physico-chemical properties of cholesterol, its distribution in the human body, general principles of maintenance and metabolism, and differences in cholesterol handling in human and mouse that impact on experimental approaches. This information will provide a backdrop to the second part of the review focusing on unique aspects of chorioretinal cholesterol homeostasis, aging in Bruch's membrane, cholesterol in AMD lesions, a model for lesion biogenesis, a model for macular vulnerability based on vascular biology, and alignment of AMD-related genes and pathobiology using cholesterol and an atherosclerosis-like progression as unifying features. We conclude with recommendations for the most important research steps we can take towards delineating the cholesterol-AMD link. PMID:24704580

  14. Human FABP1 T94A variant enhances cholesterol uptake.

    PubMed

    Huang, Huan; McIntosh, Avery L; Landrock, Kerstin K; Landrock, Danilo; Storey, Stephen M; Martin, Gregory G; Gupta, Shipra; Atshaves, Barbara P; Kier, Ann B; Schroeder, Friedhelm

    2015-07-01

    Although expression of the human liver fatty acid binding protein (FABP1) T94A variant alters serum lipoprotein cholesterol levels in human subjects, nothing is known whereby the variant elicits these effects. This issue was addressed by in vitro cholesterol binding assays using purified recombinant wild-type (WT) FABP1 T94T and T94A variant proteins and in cultured primary human hepatocytes expressing the FABP1 T94T (genotyped as TT) or T94A (genotyped as CC) proteins. The human FABP1 T94A variant protein had 3-fold higher cholesterol-binding affinity than the WT FABP1 T94T as shown by NBD-cholesterol fluorescence binding assays and by cholesterol isothermal titration microcalorimetry (ITC) binding assays. CC variant hepatocytes also exhibited 30% higher total FABP1 protein. HDL- and LDL-mediated NBD-cholesterol uptake was faster in CC variant than TT WT human hepatocytes. VLDL-mediated uptake of NBD-cholesterol did not differ between CC and TT human hepatocytes. The increased HDL- and LDL-mediated NBD-cholesterol uptake was not associated with any significant change in mRNA levels of SCARB1, LDLR, CETP, and LCAT encoding the key proteins in lipoprotein cholesterol uptake. Thus, the increased HDL- and LDL-mediated NBD-cholesterol uptake by CC hepatocytes may be associated with higher affinity of T94A protein for cholesterol and/or increased total T94A protein level. PMID:25732850

  15. High Cholesterol Deteriorates Bone Health: New Insights into Molecular Mechanisms

    PubMed Central

    Mandal, Chandi C.

    2015-01-01

    Many epidemiological studies show a positive connection between cardiovascular diseases and risk of osteoporosis, suggesting a role of hyperlipidemia and/or hypercholesterolemia in regulating osteoporosis. The majority of the studies indicated a correlation between high cholesterol and high LDL-cholesterol level with low bone mineral density, a strong predictor of osteoporosis. Similarly, bone metastasis is a serious complication of cancer for patients. Several epidemiological and basic studies have established that high cholesterol is associated with increased cancer risk. Moreover, osteoporotic bone environment predisposes the cancer cells for metastatic growth in the bone microenvironment. This review focuses on how cholesterol and cholesterol-lowering drugs (statins) regulate the functions of bone residential osteoblast and osteoclast cells to augment or to prevent bone deterioration. Moreover, this study provides an insight into molecular mechanisms of cholesterol-mediated bone deterioration. It also proposes a potential mechanism by which cellular cholesterol boosts cancer-induced bone metastasis. PMID:26557105

  16. The role of the lymphatic system in cholesterol transport

    PubMed Central

    Huang, Li-Hao; Elvington, Andrew; Randolph, Gwendalyn J.

    2015-01-01

    Reverse cholesterol transport (RCT) is the pathway for removal of peripheral tissue cholesterol and involves transport of cholesterol back to liver for excretion, starting from cellular cholesterol efflux facilitated by lipid-free apolipoprotein A1 (ApoA1) or other lipidated high-density lipoprotein (HDL) particles within the interstitial space. Extracellular cholesterol then is picked up and transported through the lymphatic vasculature before entering into bloodstream. There is increasing evidence supporting a role for enhanced macrophage cholesterol efflux and RCT in ameliorating atherosclerosis, and recent data suggest that these processes may serve as better diagnostic biomarkers than plasma HDL levels. Hence, it is important to better understand the processes governing ApoA1 and HDL influx into peripheral tissues from the bloodstream, modification and facilitation of cellular cholesterol removal within the interstitial space, and transport through the lymphatic vasculature. New findings will complement therapeutic strategies for the treatment of atherosclerotic vascular disease. PMID:26388772

  17. Step by Step: Eating To Lower Your High Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This booklet offers advice for adults who want to lower their blood cholesterol level. The first section, "What You Need To Know about High Blood Cholesterol," discusses blood cholesterol and why it matters, what cholesterol numbers mean, and what affects blood cholesterol levels. Section 2, "What You Need To Do To Lower Blood Cholesterol,"…

  18. Membrane cholesterol modulates galanin-GalR2 interaction.

    PubMed

    Pang, L; Graziano, M; Wang, S

    1999-09-14

    The neuropeptide galanin mediates a number of diverse physiological and pathophysiological actions via interaction with membrane-bound receptors. The role that membrane cholesterol plays in modulating the interaction between galanin and one of the three cloned galanin receptor subtypes (GalR2) expressed in Chinese hamster ovary (CHO) cells was examined. Reduction of membrane cholesterol by treatment with methyl-beta-cyclodextrin (CD) or by culturing cells in lipoprotein-deficient serum markedly decreased galanin binding to the receptor. Addition of cholesterol back to CD-treated, cholesterol-depleted membranes restored galanin binding to control levels. Hill analysis suggests that the GalR2 binds multiple molecules of cholesterol (n >/= 3) in a positively cooperative manner. This interaction appears to be cholesterol-specific as only cholesterol and a limited number of cholesterol analogues were able to rescue galanin binding. The inability of some of these analogues to rescue the binding activity also suggests that binding of galanin to GalR2 is independent of membrane fluidity as, like cholesterol, cholesterol analogues generally rigidize membranes. In addition, treatment of the membranes with other modulators of membrane fluidity, e.g. ethanol, did not affect galanin binding to the GalR2. In contrast, treatment of membranes, with filipin, a molecule that clusters cholesterol within the membranes, or with cholesterol oxidase resulted in markedly reduced galanin binding. Incubation of membranes with 100 microM GTP-gamma-S did not alter the IC(50) for CD in the prebinding assay treatment suggesting that the effect of cholesterol was independent of G protein interaction. Preincubation of intact cells with CD also drastically impaired the ability of galanin to activate intracellular inositol phosphate accumulation in GalR2-transfected CHO cells. These data detail a new mechanism for the regulation of galanin receptor signaling which may link altered functions of Gal

  19. Increased hepatic cholesterol esterification with essential fatty acid deficiency (EFAD): relationship to plasma lipoprotein (LP) cholesterol content

    SciTech Connect

    Ney, D.M.; Ziboh, V.A.; Schneeman, B.O.

    1986-03-01

    EFAD in the rat is associated with hepatic accumulation of esterified cholesterol and altered distribution of cholesterol between plasma and hepatic tissue. Little is known regarding the impact of EFAD on LP composition. To determine the relationship between hepatic cholesterol esterification and plasma lP composition in control (C) and EFAD male Wistar rats, the authors induced EFAD with continuous intragastric (IG) infusion of EFA-free solutions containing 3.5% of calories as triolein for 7 and 14 days. C animals received IG infusion of solutions containing 3.5% of calories as linoleic acid. Data in the EFAD groups reveal: (i) marked decreases in hepatic EFAs and increases in monoenoic acids; (ii) progressive increases in hepatic content of triglyceride and esterified cholesterol with 7 and 14 days of feeding; (iii) assay of acyl CoA:cholesterol acyltransferase activity in hepatic tissue using /sup 14/C-cholesterol demonstrates an increase in hepatic cholesterol esterification when compared to C animals. Increased hepatic cholesterol esterification correlates with elevated levels of esterified cholesterol in plasma VLDL and HDL particles. These data indicate that the elevated levels of cholesterol esters in LP particles is due, at least in part, to increased hepatic cholesterol esterification with EFAD.

  20. A New Model of Reverse Cholesterol Transport: EnTICEing Strategies to Stimulate Intestinal Cholesterol Excretion

    PubMed Central

    Temel, Ryan E.; Brown, J. Mark

    2015-01-01

    Cardiovascular disease (CVD) remains the largest cause of mortality in most developed countries. Although recent failed clinical trials and Mendelian randomization studies have called into question the high density lipoprotein (HDL) hypothesis, it remains well accepted that stimulating the process of reverse cholesterol transport (RCT) can prevent or even regress atherosclerosis. The prevailing model for RCT is that cholesterol from the artery wall must be delivered to the liver where it is secreted into bile before leaving the body through fecal excretion. However, many studies have demonstrated that RCT can proceed through a non-biliary pathway known as transintestinal cholesterol excretion (TICE). The goal of this review is to discuss the current state of knowledge of the TICE pathway, with emphasis on points of therapeutic intervention. PMID:25930707

  1. Human scavenger receptor class B type II (SR-BII) and cellular cholesterol efflux.

    PubMed Central

    Mulcahy, Jane V; Riddell, Dave R; Owen, James S

    2004-01-01

    Although studies in recombinant cells indicate that scavenger receptor class B, type I (SR-BI) can promote cholesterol efflux, investigations in transgenic mice overexpressing or deficient in SR-BI endorse its physiological function as selectively sequestering cholesteryl esters from high-density lipoproteins (HDLs). Less clear is the role of SR-BII, a splice variant of the SR-B gene that differs only in the C-terminal cytoplasmic domain. Here, we identify several putative signalling motifs in the C-terminus of human SR-BII, which are absent from SR-BI, and hypothesize that these motifs interact with signalling molecules to mobilize stored cholesteryl esters and/or promote the efflux of intracellular free cholesterol. 'Pull-down' assays using a panel of tagged SH3 (Src homology 3) domains showed that cytoplasmic SR-BII, but not cytoplasmic SR-BI, bound the SH3 domain of phospholipase C-gamma1; this interaction was not, however, detected under more physiological conditions. Specific anti-peptide antisera identified SR-BII in human monocyte/macrophage THP-1 cells and, in recombinant cells, revealed receptor localization to caveolae, a plasma membrane microdomain that concentrates signal-transducer molecules and acts as a conduit for cholesterol flux between cells and lipoproteins. Consistent with its caveolar localization, expression of human SR-BII in recombinant Chinese hamster ovary cells (CHO-SR-BII) was associated with increased HDL-mediated cholesterol efflux. Nevertheless, when CHO-SR-BII cells were pre-loaded with cholesteryl [(3)H]oleate and incubated with HDL, cholesteryl ester stores were not reduced compared with control cells. We conclude that although human SR-BII is expressed by macrophages, contains cytoplasmic signalling motifs and localizes to caveolae, its ability to stimulate cholesterol efflux does not reflect enhanced hydrolysis of stored cholesteryl esters. PMID:14570588

  2. Direct Regulation of Prokaryotic Kir Channel by Cholesterol*

    PubMed Central

    Singh, Dev K.; Rosenhouse-Dantsker, Avia; Nichols, Colin G.; Enkvetchakul, Decha; Levitan, Irena

    2009-01-01

    Our earlier studies have shown that channel activity of Kir2 subfamily of inward rectifiers is strongly suppressed by the elevation of cellular cholesterol. The goal of this study is to determine whether cholesterol suppresses Kir channels directly. To achieve this goal, purified prokaryotic Kir (KirBac1.1) channels were incorporated into liposomes of defined lipid composition, and channel activity was assayed by 86Rb+ uptake. Our results show that 86Rb+ flux through KirBac1.1 is strongly inhibited by cholesterol. Incorporation of 5% (mass cholesterol/phospholipid) cholesterol into the liposome suppresses 86Rb+ flux by >50%, and activity is completely inhibited at 12–15%. However, epicholesterol, a stereoisomer of cholesterol with similar physical properties, has significantly less effect on KirBac-mediated 86Rb+ uptake than cholesterol. Furthermore, analysis of multiple sterols suggests that cholesterol-induced inhibition of KirBac1.1 channels is mediated by specific interactions rather than by changes in the physical properties of the lipid bilayer. In contrast to the inhibition of KirBac1.1 activity, cholesterol had no effect on the activity of reconstituted KscA channels (at up to 250 μg/mg of phospholipid). Taken together, these observations demonstrate that cholesterol suppresses Kir channels in a pure protein-lipid environment and suggest that the interaction is direct and specific. PMID:19740741

  3. Control of Angiogenesis by AIBP-mediated Cholesterol Efflux

    PubMed Central

    Fang, Longhou; Choi, Soo-Ho; Baek, Ji Sun; Liu, Chao; Almazan, Felicidad; Ulrich, Florian; Wiesner, Philipp; Taleb, Adam; Deer, Elena; Pattison, Jennifer; Torres-Vázquez, Jesús; Li, Andrew C.; Miller, Yury I.

    2013-01-01

    Cholesterol is a structural component of the cell, indispensable for normal cellular function, but its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (ApoA-I) and to the ApoA-I-containing high-density lipoprotein (HDL)1-3. Maintaining efficient cholesterol efflux is essential for normal cellular function4-6. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that ApoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells (EC) to HDL and thereby regulates angiogenesis. AIBP/HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 dimerization and signaling, and inhibits VEGF-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Remarkably, Aibp regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell autonomous regulator of zebrafish angiogenesis. Aibp knockdown results in dysregulated sprouting/branching angiogenesis, while forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1/Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1/Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from EC and that effective cholesterol efflux is critical for proper angiogenesis. PMID:23719382

  4. Phytosterol ester constituents affect micellar cholesterol solubility in model bile.

    PubMed

    Brown, Andrew W; Hang, Jiliang; Dussault, Patrick H; Carr, Timothy P

    2010-09-01

    Plant sterols and stanols (phytosterols) and their esters are nutraceuticals that lower LDL cholesterol, but the mechanisms of action are not fully understood. We hypothesized that intact esters and simulated hydrolysis products of esters (phytosterols and fatty acids in equal ratios) would differentially affect the solubility of cholesterol in model bile mixed micelles in vitro. Sodium salts of glycine- and taurine-conjugated bile acids were sonicated with phosphatidylcholine and either sterol esters or combinations of sterols and fatty acids to determine the amount of cholesterol solubilized into micelles. Intact sterol esters did not solubilize into micelles, nor did they alter cholesterol solubility. However, free sterols and fatty acids altered cholesterol solubility independently (no interaction effect). Equal contents of cholesterol and either campesterol, stigmasterol, sitosterol, or stigmastanol (sitostanol) decreased cholesterol solubility in micelles by approximately 50% compared to no phytosterol present, with stigmasterol performing slightly better than sitosterol. Phytosterols competed with cholesterol in a dose-dependent manner, demonstrating a 1:1 M substitution of phytosterol for cholesterol in micelle preparations. Unsaturated fatty acids increased the micelle solubility of sterols as compared with saturated or no fatty acids. No differences were detected in the size of the model micelles. Together, these data indicate that stigmasterol combined with saturated fatty acids may be more effective at lowering cholesterol micelle solubility in vivo.

  5. The Effects of Cholesterol on Learning and Memory

    PubMed Central

    Schreurs, Bernard G.

    2010-01-01

    Cholesterol is vital to normal brain function including learning and memory but that involvement is as complex as the synthesis, metabolism and excretion of cholesterol itself. Dietary cholesterol influences learning tasks from water maze to fear conditioning even though cholesterol does not cross the blood brain barrier. Excess cholesterol has many consequences including peripheral pathology that can signal brain via cholesterol metabolites, proinflammatory mediators and antioxidant processes. Manipulations of cholesterol within the central nervous system through genetic, pharmacological, or metabolic means circumvent the blood brain barrier and affect learning and memory but often in animals already otherwise compromised. The human literature is no less complex. Cholesterol reduction using statins improves memory in some cases but not others. There is also controversy over statin use to alleviate memory problems in Alzheimer’s disease. Correlations of cholesterol and cognitive function are mixed and association studies find some genetic polymorphisms are related to cognitive function but others are not. In sum, the field is in flux with a number of seemingly contradictory results and many complexities. Nevertheless, understanding cholesterol effects on learning and memory is too important to ignore. PMID:20470821

  6. Cholesterol depletion increases membrane stiffness of aortic endothelial cells.

    PubMed

    Byfield, Fitzroy J; Aranda-Espinoza, Helim; Romanenko, Victor G; Rothblat, George H; Levitan, Irena

    2004-11-01

    This study has investigated the effect of cellular cholesterol on membrane deformability of bovine aortic endothelial cells. Cellular cholesterol content was depleted by exposing the cells to methyl-beta-cyclodextrin or enriched by exposing the cells to methyl-beta-cyclodextrin saturated with cholesterol. Control cells were treated with methyl-beta-cyclodextrin-cholesterol at a molar ratio that had no effect on the level of cellular cholesterol. Mechanical properties of the cells with different cholesterol contents were compared by measuring the degree of membrane deformation in response to a step in negative pressure applied to the membrane by a micropipette. The experiments were performed on substrate-attached cells that maintained normal morphology. The data were analyzed using a standard linear elastic half-space model to calculate Young elastic modulus. Our observations show that, in contrast to the known effect of cholesterol on membrane stiffness of lipid bilayers, cholesterol depletion of bovine aortic endothelial cells resulted in a significant decrease in membrane deformability and a corresponding increase in the value of the elastic coefficient of the membrane, indicating that cholesterol-depleted cells are stiffer than control cells. Repleting the cells with cholesterol reversed the effect. An increase in cellular cholesterol to a level higher than that of normal cells, however, had no effect on the elastic properties of bovine aortic endothelial cells. We also show that although cholesterol depletion had no apparent effect on the intensity of F-actin-specific fluorescence, disrupting F-actin with latrunculin A abrogated the stiffening effect. We suggest that cholesterol depletion increases the stiffness of the membrane by altering the properties of the submembrane F-actin and/or its attachment to the membrane.

  7. Retinal Hypercholesterolemia Triggers Cholesterol Accumulation and Esterification in Photoreceptor Cells.

    PubMed

    Saadane, Aicha; Mast, Natalia; Dao, Tung; Ahmad, Baseer; Pikuleva, Irina A

    2016-09-23

    The process of vision is impossible without the photoreceptor cells, which have a unique structure and specific maintenance of cholesterol. Herein we report on the previously unrecognized cholesterol-related pathway in the retina discovered during follow-up characterizations of Cyp27a1(-/-)Cyp46a1(-/-) mice. These animals have retinal hypercholesterolemia and convert excess retinal cholesterol into cholesterol esters, normally present in the retina in very small amounts. We established that in the Cyp27a1(-/-)Cyp46a1(-/-) retina, cholesterol esters are generated by and accumulate in the photoreceptor outer segments (OS), which is the retinal layer with the lowest cholesterol content. Mouse OS were also found to express the cholesterol-esterifying enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT1), but not lecithin-cholesterol acyltransferase (LCAT), and to differ from humans in retinal expression of ACAT1. Nevertheless, cholesterol esters were discovered to be abundant in human OS. We suggest a mechanism for cholesterol ester accumulation in the OS and that activity impairment of ACAT1 in humans may underlie the development of subretinal drusenoid deposits, a hallmark of age-related macular degeneration, which is a common blinding disease. We generated Cyp27a1(-/-)Cyp46a1(-/-)Acat1(-/-) mice, characterized their retina by different imaging modalities, and confirmed that unesterified cholesterol does accumulate in their OS and that there is photoreceptor apoptosis and OS degeneration in this line. Our results provide insights into the retinal response to local hypercholesterolemia and the retinal significance of cholesterol esterification, which could be cell-specific and both beneficial and detrimental for retinal structure and function.

  8. Retinal Hypercholesterolemia Triggers Cholesterol Accumulation and Esterification in Photoreceptor Cells.

    PubMed

    Saadane, Aicha; Mast, Natalia; Dao, Tung; Ahmad, Baseer; Pikuleva, Irina A

    2016-09-23

    The process of vision is impossible without the photoreceptor cells, which have a unique structure and specific maintenance of cholesterol. Herein we report on the previously unrecognized cholesterol-related pathway in the retina discovered during follow-up characterizations of Cyp27a1(-/-)Cyp46a1(-/-) mice. These animals have retinal hypercholesterolemia and convert excess retinal cholesterol into cholesterol esters, normally present in the retina in very small amounts. We established that in the Cyp27a1(-/-)Cyp46a1(-/-) retina, cholesterol esters are generated by and accumulate in the photoreceptor outer segments (OS), which is the retinal layer with the lowest cholesterol content. Mouse OS were also found to express the cholesterol-esterifying enzyme acyl-coenzyme A:cholesterol acyltransferase (ACAT1), but not lecithin-cholesterol acyltransferase (LCAT), and to differ from humans in retinal expression of ACAT1. Nevertheless, cholesterol esters were discovered to be abundant in human OS. We suggest a mechanism for cholesterol ester accumulation in the OS and that activity impairment of ACAT1 in humans may underlie the development of subretinal drusenoid deposits, a hallmark of age-related macular degeneration, which is a common blinding disease. We generated Cyp27a1(-/-)Cyp46a1(-/-)Acat1(-/-) mice, characterized their retina by different imaging modalities, and confirmed that unesterified cholesterol does accumulate in their OS and that there is photoreceptor apoptosis and OS degeneration in this line. Our results provide insights into the retinal response to local hypercholesterolemia and the retinal significance of cholesterol esterification, which could be cell-specific and both beneficial and detrimental for retinal structure and function. PMID:27514747

  9. LOADING DEVICE

    DOEpatents

    Ohlinger, L.A.

    1958-10-01

    A device is presented for loading or charging bodies of fissionable material into a reactor. This device consists of a car, mounted on tracks, into which the fissionable materials may be placed at a remote area, transported to the reactor, and inserted without danger to the operating personnel. The car has mounted on it a heavily shielded magazine for holding a number of the radioactive bodies. The magazine is of a U-shaped configuration and is inclined to the horizontal plane, with a cap covering the elevated open end, and a remotely operated plunger at the lower, closed end. After the fissionable bodies are loaded in the magazine and transported to the reactor, the plunger inserts the body at the lower end of the magazine into the reactor, then is withdrawn, thereby allowing gravity to roll the remaining bodies into position for successive loading in a similar manner.

  10. Cholesterol Metabolism and Prostate Cancer Lethality.

    PubMed

    Stopsack, Konrad H; Gerke, Travis A; Sinnott, Jennifer A; Penney, Kathryn L; Tyekucheva, Svitlana; Sesso, Howard D; Andersson, Swen-Olof; Andrén, Ove; Cerhan, James R; Giovannucci, Edward L; Mucci, Lorelei A; Rider, Jennifer R

    2016-08-15

    Cholesterol metabolism has been implicated in prostate cancer pathogenesis. Here, we assessed the association of intratumoral mRNA expression of cholesterol synthesis enzymes, transporters, and regulators in tumor specimen at diagnosis and lethal prostate cancer, defined as mortality or metastases from prostate cancer in contrast to nonlethal disease without evidence of metastases after at least 8 years of follow-up. We analyzed the prospective prostate cancer cohorts within the Health Professionals Follow-up Study (n = 249) and the Physicians' Health Study (n = 153) as well as expectantly managed patients in the Swedish Watchful Waiting Study (n = 338). The expression of squalene monooxygenase (SQLE) was associated with lethal cancer in all three cohorts. Men with high SQLE expression (>1 standard deviation above the mean) were 8.3 times (95% confidence interval, 3.5 to 19.7) more likely to have lethal cancer despite therapy compared with men with the mean level of SQLE expression. Absolute SQLE expression was associated with lethal cancer independently from Gleason grade and stage, as was a SQLE expression ratio in tumor versus surrounding benign prostate tissue. Higher SQLE expression was tightly associated with increased histologic markers of angiogenesis. Collectively, this study establishes the prognostic value of intratumoral cholesterol synthesis as measured via SQLE, its second rate-limiting enzyme. SQLE expression at cancer diagnosis is prognostic for lethal prostate cancer both after curative-intent prostatectomy and in a watchful waiting setting, possibly by facilitating micrometastatic disease. Cancer Res; 76(16); 4785-90. ©2016 AACR.

  11. Cholesterol and family history: when genetics matters.

    PubMed

    Vengoechea, Jaime; McKelvey, Kent D

    2015-02-01

    Familial hypercholesterolemia (FH) is an inherited, autosomal codominant disease that increases the risk for cardiovascular mortality by 100 fold. Patients usually have LDL levels above 300 mg/dl. Although signs such as tendon xanthomas, xanthelasmas and corneal arcus may suggest the diagnosis, genetic testing is the'most accurate way of diagnosing FH. Genetic testing has been shown to be a cost-efficient method to screen individuals and their relatives for FH. Establishing an accurate diagnosis is important: high potency statins are first-choice agents, the treatment goal is at least a 50% reduction in LDL cholesterol, and LDL apheresis may be indicated.

  12. Frontal sinus cholesterol granuloma: Case report

    PubMed Central

    Deep, Nicholas L.; Chaaban, Mohamad R.; Chaudhry, Ajaz L.

    2014-01-01

    A case report of a massive cholesterol granuloma (CG) of the frontal sinus in a 15-year-old male subject treated endoscopically is reported. CGs are slowly expanding, cystic lesions that are rarely observed in the frontal sinus. Frontal sinus CGs characteristically present with proptosis, diplopia, and a unilateral painless expanding mass above the orbit. Patients frequently report a history of chronic nasal obstruction or head trauma. Although the pathogenesis is unclear, it is likely multifactorial in etiology. Surgical resection via endoscopic sinus surgery has been gaining popularity because of the minimally invasive approach and lower rates of recurrence. PMID:24612824

  13. Effects of cholesterol on plasma membrane lipid order in MCF-7 cells by two-photon microscopy

    NASA Astrophysics Data System (ADS)

    Zeng, Yixiu; Chen, Jianling; Yang, Hongqin; Wang, Yuhua; Li, Hui; Xie, Shusen

    2014-09-01

    Lipid rafts are cholesterol- and glycosphingolipids- enriched microdomains on plasma membrane surface of mammal cells, involved in a variety of cellular processes. Depleting cholesterol from the plasma membrane by drugs influences the trafficking of lipid raft markers. Optical imaging techniques are powerful tools to study lipid rafts in live cells due to its noninvasive feature. In this study, breast cancer cells MCF-7 were treated with different concentrations of MβCD to deplete cholesterol and an environmentally sensitive fluorescence probe, Laurdan was loaded to image lipid order by two-photon microscopy. The generalized polarization (GP) values were calculated to distinguish the lipid order and disorder phase. GP images and GP distributions of native and cholesterol-depleted MCF-7 cells were obtained. Our results suggest that even at low concentration (0.5 mM) of MβCD, the morphology of the MCF-7 cells changes. Small high GP areas (lipid order phase) decrease more rapidly than low GP areas (lipid disorder phase), indicating that lipid raft structure was altered more severely than nonraft domains. The data demonstrates that cholesterol dramatically affect raft coverage and plasma membrane fluidity in living cells.

  14. Influence of infant and juvenile diets on serum cholesterol, lipoprotein cholesterol, and apolipoprotein concentrations in juvenile baboons (Papio sp.).

    PubMed

    Mott, G E; McMahan, C A; Kelley, J L; Farley, C M; McGill, H C

    1982-11-01

    The long-term effects of infant diet (breast milk or formula containing 2, 30, or 60 mg/dl cholesterol) and subsequent dietary cholesterol (1 mg/kcal) and fat (saturated or unsaturated) on serum lipid and apolipoprotein concentrations were estimated using 82 juvenile baboons 4-6 years of age. A significant interaction of infant diet (breast vs formula) with type of fat (saturated vs unsaturated) at 4-6 years of age was observed on HDL cholesterol and apolipoprotein A-I (apoA-I) concentrations. That is, animals breast-fed as infants had higher HDL cholesterol and apoA-I concentrations when fed unsaturated fat from weaning to 4-6 years of age than those fed saturated fat (77 vs 68 mg/dl). In contrast, animals fed formulas in infancy followed by a diet containing unsaturated fat had lower HDL cholesterol and apoA-I concentrations at 4-6 years of age than did those fed saturated fat (67 vs 78 mg/dl). However, breast feeding or feeding formulas containing various levels of cholesterol for 3 months during infancy did not result in statistically significant differences in total serum cholesterol, VLDL + LDL cholesterol and apolipoprotein B (apoB) concentrations. Dietary cholesterol after infancy significantly increased serum total cholesterol, VLDL + LDL and HDL cholesterol, apoA-I and apoB concentrations. All of these response variables also were higher in animals fed saturated fat compared to those fed unsaturated fat on the same level of cholesterol. At 4-6 years of age, regardless of diet, females had significantly higher serum VLDL + LDL cholesterol (57 vs 43 mg/dl) and apoB concentrations (39 vs 30 mg/dl) than did males.

  15. Transport of circulating serum cholesterol by human renal cell carcinoma

    SciTech Connect

    Clayman, R.V.; Figenshau, R.S.; Prigge, W.F.; Forstrom, L.; Gebhard, R.L.

    1987-06-01

    Clear cell renal cancer contains a large quantity of cholesterol ester (300-mg./gm. protein). To determine whether abnormalities in cholesterol transport could account for this sterol accumulation, the uptake, release, and imaging capabilities of intravenously injected /sup 131/I-6-iodomethyl-29-norcholesterol, a cholesterol analogue, were studied preoperatively in five patients with clear cell renal cancer. At surgery, samples of the liver, tumor, adrenal, and non-tumor kidney were obtained for analysis. /sup 131/I-sterol uptake by the tumor, when normalized for cholesterol content, was less than for adrenal, liver or kidney. In contrast, release of preloaded /sup 131/I-sterol from the human tumors was consistently slower than for normal kidney. The reduced release of free cholesterol from renal cancer cells may, in part, be responsible for the accumulation of cholesterol in human renal cancer.

  16. Fractionation of livers following diosgenin treatment to elevate biliary cholesterol.

    PubMed

    Roman, I D; Thewles, A; Coleman, R

    1995-03-01

    The plant saponin, diosgenin, is known to induce a marked increase in biliary cholesterol/phospholipid ratio. We reasoned that putative biliary lipid supply vesicles might be similarly enriched with cholesterol. Seven-day diosgenin feeding to rats resulted in significantly increased biliary cholesterol and cholesterol/phospholipid ratio, but had no effect on total cholesterol or phospholipid content of the liver. Subcellular fractionation of livers showed no selective increase in any fraction (nuclear, mitochondrial, lysosomal, microsomal) of the homogenate. Further subfractionation of microsomal or nuclear (plasma membrane) fractions also showed no difference between control and diosgenin groups. Thus, no intracellular vesicle fraction has been identified with the provision of the enhanced biliary cholesterol and the results are discussed in terms of the possible involvement of cytosolic lipid-binding proteins as putative lipid carriers to the canalicular membrane as an alternative to the presence of the lipid in lipid supply vesicles.

  17. Ternary phase diagram of dipalmitoyl-PC/dilauroyl-PC/cholesterol: nanoscopic domain formation driven by cholesterol.

    PubMed Central

    Feigenson, G W; Buboltz, J T

    2001-01-01

    A ternary phase diagram is proposed for the hydrated lamellar lipid mixture dipalmitoylphosphatidylcholine/dilauroylphosphatidylcholine/cholesterol (DPPC/DLPC/cholesterol) at room temperature. The entire composition space has been thoroughly mapped by complementary experimental techniques, revealing interesting phase behavior that has not been previously described. Confocal fluorescence microscopy shows a regime of coexisting DPPC-rich ordered and DLPC-rich fluid lamellar phases, having an upper boundary at apparently constant cholesterol mole fraction chi(chol) approximately 0.16. Fluorescence resonance energy transfer experiments confirm the identification and extent of this two-phase regime and, furthermore, reveal a 1-phase regime between chi(chol) approximately 0.16 and 0.25, consisting of ordered and fluid nanoscopic domains. Dipyrene-PC excimer/monomer measurements confirm the new regime between chi(chol) approximately 0.16 and 0.25 and also show that rigidly ordered phases seem to disappear around chi(chol) approximately 0.25. This study should be considered as a step toward a more complete understanding of lateral heterogeneity within biomembranes. Cholesterol may play a role in domain separation on the nanometer scale. PMID:11371452

  18. The Regulation of Reverse Cholesterol Transport and Cellular Cholesterol Homeostasis by MicroRNAs

    PubMed Central

    DiMarco, Diana M.; Fernandez, Maria Luz

    2015-01-01

    MicroRNAs (miRNAs) are small, non-coding RNAs that have the ability to post-transcriptionally regulate gene expression. Hundreds of miRNAs have been identified in humans and they are involved in the regulation of almost every process, including cholesterol transport, metabolism, and maintenance of cholesterol homeostasis. Because of their small size and their ability to very specifically regulate gene expression, miRNAs are attractive targets for the regulation of dyslipidemias and other lipid-related disorders. However, the complex interactions between miRNAs, transcription factors, and gene expression raise great potential for side effects as a result of miRNA overexpression or inhibition. Many dietary components can also target specific miRNAs, altering the expression of downstream genes. Therefore, much more research is necessary to fully understand the role(s) of each miRNA in the body and how they may be impacted by diet and health. The present review aims to summarize the known roles of miRNAs in the regulation of reverse cholesterol transport and the maintenance of cholesterol homeostasis, as well as the potential clinical consequences of their manipulation. PMID:26226008

  19. Carbohydrate Loading.

    ERIC Educational Resources Information Center

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  20. Cholesterol enhances classical conditioning of the rabbit heart rate response

    PubMed Central

    Schreurs, Bernard G.; Smith-Bell, Carrie A.; Darwish, Deya S.; Wang, Desheng; Burhans, Lauren B.; Gonzales-Joekes, Jimena; Deci, Stephen; Stankovic, Goran; Sparks, D. Larry

    2007-01-01

    The cholesterol-fed rabbit is a model of atherosclerosis and has been proposed as an animal model of Alzheimer's disease. Feeding rabbits cholesterol has been shown to increase the number of beta amyloid immunoreactive neurons in the cortex. Addition of copper to the drinking water of cholesterol-fed rabbits can increase this number still further and may lead to plaque-like structures. Classical conditioning of the nictitating membrane response in cholesterol-fed rabbits is retarded in the presence of these plaque-like structures but may be facilitated in their absence. In a factorial design, rabbits fed 2% cholesterol or a normal diet (0% cholesterol) for 8 weeks with or without copper added to the drinking water were given trace classical conditioning using a tone and periorbital electrodermal stimulation to study the effects of cholesterol and copper on classical conditioning of heart rate and the nictitating membrane response. Cholesterol-fed rabbits showed significant facilitation of heart rate conditioning and conditioning-specific modification of heart rate relative to normal diet controls. Consistent with previous research, cholesterol had minimal effects on classical conditioning of the nictitating membrane response when periorbital electrodermal stimulation was used as the unconditioned stimulus. Immunohistochemical analysis showed a significant increase in the number of beta amyloid positive neurons in the cortex, hippocampus and amygdala of the cholesterol-fed rabbits. Supplementation of drinking water with copper increased the number of beta amyloid positive neurons in the cortex of cholesterol-fed rabbits but did not produce plaque-like structures or have a significant effect on heart rate conditioning. The data provide additional support for our finding that, in the absence of plaques, dietary cholesterol may facilitate learning and memory. PMID:17466388

  1. [Regulation of glucosamine synthetase activity by cholesterol and hydrocortisone].

    PubMed

    Sharaev, P N; Ivanov, V G; Bogdanov, N G

    1988-09-01

    The effects of cholesterol and hydrocortisone (cortisol) on the activity of purified glucosamine synthetase from rat liver was studied in vitro. It was found that the enzyme activity is increased by cholesterol and inhibited by hydrocortisone. These steroids block the allosteric effect of vitamin K1 on the enzyme. There is evidence testifying to the allosteric type of cholesterol and hydrocortisone effects on glucosamine synthetase. PMID:3203113

  2. Cholesterol granuloma (Xanthomatous metritis) in the uterus of a cat.

    PubMed

    Zanghì, A; Nicòtina, P A; Catone, G; Gimbo, A

    1999-10-01

    A case of uterine cholesterol granuloma in a 12-year old mixed breed cat is reported. The lesions were found in the endometrium of the left uterine horn as scattered, raised nodules or foci. Histologically, mononuclear cell infiltrates were seen to surround cholesterol crystals, in both the endometrium and the smooth muscle layer, reaching the serosa. The findings support the role of haemorrhage in promoting chronic inflammatory reactions around interstitial cholesterol ester precipitates.

  3. Cholesterol biosynthesis and ER stress in peroxisome deficiency.

    PubMed

    Faust, Phyllis L; Kovacs, Werner J

    2014-03-01

    Cholesterol biosynthesis is a multi-step process involving more than 20 enzymes in several subcellular compartments. The pre-squalene segment of the cholesterol/isoprenoid biosynthetic pathway is localized in peroxisomes. This review intends to highlight recent findings illustrating the important role peroxisomes play in cholesterol biosynthesis and maintenance of cholesterol homeostasis. Disruption of the Pex2 gene leads to peroxisome deficiency and widespread metabolic dysfunction. The Pex2(-/-) mouse model for Zellweger syndrome enabled us to evaluate the role of peroxisomes in cholesterol biosynthesis. These studies have shown that Pex2(-/-) mice exhibit low levels of cholesterol in plasma and liver. Pex2(-/-) mice were unable to maintain normal cholesterol homeostasis despite activation of SREBP-2, the master transcriptional regulator of cholesterol biosynthesis, and increased protein levels and activities of cholesterol biosynthetic enzymes. The SREBP-2 pathway remained activated even after normalization of hepatic cholesterol levels in response to bile acid feeding as well as in extrahepatic tissues and the liver of neonatal and longer surviving Pex2 mutants, where cholesterol levels were normal. Several studies have shown that endoplasmic reticulum (ER) stress can dysregulate lipid metabolism via SREBP activation independently of intracellular cholesterol concentration. We demonstrated that peroxisome deficiency activates endoplasmic reticulum stress pathways in Pex2(-/-) mice, especially the integrated stress response mediated by PERK and ATF4 signaling, and thereby leads to dysregulation of the SREBP-2 pathway. Our findings suggest that functional peroxisomes are necessary to prevent chronic ER stress and dysregulation of the endogenous sterol response pathway. The constitutive activation of ER stress pathways might contribute to organ pathology and metabolic dysfunction in peroxisomal disorder patients.

  4. A review on lecithin:cholesterol acyltransferase deficiency.

    PubMed

    Saeedi, Ramesh; Li, Min; Frohlich, Jiri

    2015-05-01

    Lecithin cholesterol acyl transferase (LCAT) is a plasma enzyme which esterifies cholesterol, and plays a key role in the metabolism of high-density lipoprotein cholesterol (HDL-C). Genetic disorders of LCAT are associated with lipoprotein abnormalities including low levels of HDL-C and presence of lipoprotein X, and clinical features mainly corneal opacities, changes in erythrocyte morphology and renal failure. Recombinant LCAT is being developed for the treatment of patients with LCAT deficiency. PMID:25172171

  5. Cholesterol granuloma of the paratesticular tissue: A case report

    PubMed Central

    Unal, Dursun; Kilic, Metin; Oner, Sedat; Erkinuresin, Taskın; Demirbas, Murat; Coban, Soner; Aydos, Mustafa Murat

    2015-01-01

    A 38-year-old man was admitted to our clinic with an enlarging right scrotal mass that had been present for 7 years. Right radical inguinal orchiectomy was performed and a histopathological diagnosis confirmed a very rare case of cholesterol granuloma of the paratesticular tissue. It can be very difficult to preoperatively distinguish testicular tumours from cholesterol granulomas of the testis or epididymis. Cholesterol granuloma should be kept in mind in patients with large and non-tender scrotal masses. PMID:26225185

  6. Cholesterol granuloma of the paratesticular tissue: A case report.

    PubMed

    Unal, Dursun; Kilic, Metin; Oner, Sedat; Erkinuresin, Taskın; Demirbas, Murat; Coban, Soner; Aydos, Mustafa Murat

    2015-01-01

    A 38-year-old man was admitted to our clinic with an enlarging right scrotal mass that had been present for 7 years. Right radical inguinal orchiectomy was performed and a histopathological diagnosis confirmed a very rare case of cholesterol granuloma of the paratesticular tissue. It can be very difficult to preoperatively distinguish testicular tumours from cholesterol granulomas of the testis or epididymis. Cholesterol granuloma should be kept in mind in patients with large and non-tender scrotal masses.

  7. Improving referral compliance after public cholesterol screening.

    PubMed Central

    Maiman, L A; Hildreth, N G; Cox, C; Greenland, P

    1992-01-01

    BACKGROUND. Noncompliance with referral to a physician for retesting and diagnosis is a concern in public cholesterol screening. METHODS. Participants (n = 2109) were referred by a health professional or lay communicator and randomly assigned to a coupon offer, referral reminder letter, or control group. A questionnaire was completed at screening, and a telephone interview was conducted 5 months later. RESULTS. Physician visit rates showed no professional or lay differences. For "no history" subjects, the behavioral interventions were effective compared with controls (coupon = 60.7% and reminder = 57.7% vs control = 46.1%). With professional counseling, only the coupon was effective; for lay counseling, both coupon and reminder yielded higher visit rates. Adjusted for sociodemographics, heart disease risk factors, and health perceptions, the intervention effects remained (professional-coupon offer: odds ratio [OR] = 1.94, 95% confidence interval [CI] = 1.21, 3.09; professional-reminder letter: OR = 1.04, 95% CI = 0.67, 1.63; lay-coupon offer: OR = 2.52, 95% CI = 1.52, 4.18; and lay-reminder letter: OR = 3.10, 95% CI = 1.83, 5.22). CONCLUSIONS. For unaware participants, lay counselors and referral follow-up efforts tailored to specific cholesterol risk groups are indicated. PMID:1316721

  8. Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling.

    PubMed

    Huang, Yen-Ning; Lin, Ching-I; Liao, Hsiang; Liu, Chin-Yu; Chen, Yue-Hua; Chiu, Wan-Chun; Lin, Shyh-Hsiang

    2016-07-22

    Epidemiological investigations have shown that Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. It has been indicated that the cholesterol concentration in the brain of AD patients is higher than that in normal people. In this study, we investigated the effects of cholesterol concentrations, 0, as the control, 3.125, 12.5, and 25μM, on cholesterol metabolism, neuron survival, AD-related protein expressions, and cell morphology and apoptosis using SH-SY5Y human neuroblastoma cells. We observed that expressions of cholesterol hydroxylase (Cyp46), flotillin-2 (a marker of lipid raft content), and truncated tyrosine kinase B (TrkBtc) increased, while expressions of brain-derived neurotrophic factor (BDNF) and full-length TrkB (TrkBfl) decreased as the concentration of cholesterol loading increased. Down-regulation of the PI3K-Akt-glycogen synthase kinase (GSK)-3β cascade and cell apoptosis were also observed at higher concentrations of cholesterol, along with elevated levels of β-amyloid (Aβ), β-secretase (BACE), and reactive oxygen species (ROS). In conclusion, we found that cholesterol overload in neuronal cells imbalanced the cholesterol homeostasis and increased the protein expressions causing cell apoptosis, which illustrates the neurodegenerative pathology of abnormally elevated cholesterol concentrations found in AD patients.

  9. Retracted: Advances in the physiological and pathological implications of cholesterol.

    PubMed

    Cortes, Victor A; Busso, Dolores; Mardones, Pablo; Maiz, Alberto; Arteaga, Antonio; Nervi, Flavio; Rigotti, Attilio

    2013-11-01

    Cholesterol has evolved to fulfill sophisticated biophysical, cell signalling, and endocrine functions in animal systems. At the cellular level, cholesterol is found in membranes where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signalling functions. At the organismal level, cholesterol is the precursor of all steroid hormones, including gluco- and mineralo-corticoids, sex hormones, and vitamin D, which regulate carbohydrate, sodium, reproductive, and bone homeostasis, respectively. This sterol is also the immediate precursor of bile acids, which are important for intestinal absorption of dietary lipids as well as energy homeostasis and glucose regulation. Complex mechanisms maintain cholesterol within physiological ranges and the dysregulation of these mechanisms results in embryonic or adult diseases, caused by either excessive or reduced tissue cholesterol levels. The causative role of cholesterol in these conditions has been demonstrated by genetic and pharmacological manipulations in animal models of human disease that are discussed herein. Importantly, the understanding of basic aspects of cholesterol biology has led to the development of high-impact pharmaceutical therapies during the past century. The continuing effort to offer successful treatments for prevalent cholesterol-related diseases, such as atherosclerosis and neurodegenerative disorders, warrants further interdisciplinary research in the coming decades. PMID:23445165

  10. Cholesterol and Copper Affect Learning and Memory in the Rabbit

    PubMed Central

    Schreurs, Bernard G.

    2013-01-01

    A rabbit model of Alzheimer's disease based on feeding a cholesterol diet for eight weeks shows sixteen hallmarks of the disease including beta amyloid accumulation and learning and memory changes. Although we have shown that feeding 2% cholesterol and adding copper to the drinking water can retard learning, other studies have shown that feeding dietary cholesterol before learning can improve acquisition and feeding cholesterol after learning can degrade long-term memory. We explore the development of this model, the issues surrounding the role of copper, and the particular contributions of the late D. Larry Sparks. PMID:24073355

  11. microRNAs: a connection between cholesterol metabolism and neurodegeneration

    PubMed Central

    Goedeke, Leigh; Fernández-Hernando, Carlos

    2014-01-01

    Dysregulation of cholesterol metabolism in the brain has been associated with many neurodegenerative disorders such as Alzheimer’s disease, Niemann-Pick type C disease, Smith-Lemli-Opitz syndrome, Hungtington’s disease and Parkinson’s disease. Specifically, genes involved in cholesterol biosynthesis (24-dehydrocholesterol reductase, DHCR24) and cholesterol efflux (ATP-binding cassete transporter, ABCA1, and apolipoprotein E, APOE) have been associated with developing Alzheimer’s disease. Indeed, APOE was the first gene variation found to increase the risk of Alzheimer’s disease and remains the risk gene with the greatest known impact. Mutations in another cholesterol biosynthetic gene, 7-dehydrocholesterol reductase (DHCR7), cause Smith-Lemli-Opitz syndrome and impairment in cellular cholesterol trafficking caused by mutations in the NPC1 protein results in Niemann-Pick type C disease. Taken together, these findings provide strong evidence that cholesterol metabolism needs to be controlled at very tight levels in the brain. Recent studies have implicated microRNAs (miRNAs) as novel regulators of cholesterol metabolism in several tissues. These small non-coding RNAs regulate gene expression at the post-transcriptional level by either suppressing translation or inducing mRNA degradation. This review article focuses on how cholesterol homeostasis is regulated by miRNAs and their potential implication in several neurodegenerative disorders, such as Alzheimer’s disease. Finally, we also discuss how antagonizing miRNA expression could be a potential therapy for treating cholesterol related diseases. PMID:24907491

  12. Effect of doxazosin on cholesterol synthesis in cell culture

    SciTech Connect

    D'Eletto, R.D.; Javitt, N.B.

    1989-01-01

    The effect of doxazosin on cholesterol synthesis was determined by measuring the content of deuterium-enriched cholesterol in rabbit fibroblasts with and without receptors for low-density lipoproteins (LDL) and in hepatoma (Hep G2 cells). Doxazosin, at concentrations of 5-20 mumol/L, increased LDL binding to hepatic cells in a dose-related manner. Also, in these hepatic cells, doxazosin produced dose-related decreases in both newly synthesized cholesterol and cholesterol ester. In rabbit fibroblasts that were LDL receptor negative, de novo cholesterol synthesis was markedly reduced by increasing concentrations of doxazosin. Taken together, these results suggest that doxazosin may have a direct inhibitory effect on cholesterol synthesis independent of the LDL receptor. The inhibition of cholesterol synthesis by doxazosin may cause cells to compensate by upregulating the LDL receptor, thereby increasing the importation of lipoprotein cholesterol and reducing LDL cholesterol in the medium. This hypothesis supports findings in the clinical setting whereby doxazosin has a beneficial effect on the lipid profile, and suggests a useful additional property for this antihypertensive agent.

  13. MicroRNAs: a connection between cholesterol metabolism and neurodegeneration.

    PubMed

    Goedeke, Leigh; Fernández-Hernando, Carlos

    2014-12-01

    Dysregulation of cholesterol metabolism in the brain has been associated with many neurodegenerative disorders such as Alzheimer's disease, Niemann-Pick type C disease, Smith-Lemli-Opitz syndrome, Hungtington's disease and Parkinson's disease. Specifically, genes involved in cholesterol biosynthesis (24-dehydrocholesterol reductase, DHCR24) and cholesterol efflux (ATP-binding cassete transporter, ABCA1, and apolipoprotein E, APOE) have been associated with developing Alzheimer's disease. Indeed, APOE was the first gene variation found to increase the risk of Alzheimer's disease and remains the risk gene with the greatest known impact. Mutations in another cholesterol biosynthetic gene, 7-dehydrocholesterol reductase (DHCR7), cause Smith-Lemli-Opitz syndrome and impairment in cellular cholesterol trafficking caused by mutations in the NPC1 protein results in Niemann-Pick type C disease. Taken together, these findings provide strong evidence that cholesterol metabolism needs to be controlled at very tight levels in the brain. Recent studies have implicated microRNAs (miRNAs) as novel regulators of cholesterol metabolism in several tissues. These small non-coding RNAs regulate gene expression at the post-transcriptional level by either suppressing translation or inducing mRNA degradation. This review article focuses on how cholesterol homeostasis is regulated by miRNAs and their potential implication in several neurodegenerative disorders, such as Alzheimer's disease. Finally, we also discuss how antagonizing miRNA expression could be a potential therapy for treating cholesterol related diseases.

  14. Transfer of cholesterol from macrophages to lymphocytes in culture.

    PubMed

    de Bittencourt Júnior, P I; Curi, R

    1998-02-01

    A major feature of macrophage metabolism is its capacity to produce and export cholesterol. Several reports have shown that the manipulation of lymphocyte cholesterol content elicits important changes in lymphocyte proliferation. These findings lead to an inquiry as to whether macrophage-derived cholesterol released into the lymphocyte surroundings may be transferred to the latter thus affecting lymphocyte function. In this study, cholesterol transfer from macrophages to lymphocytes was examined in vitro using rat cells in culture. The findings indicate that there may be a significant transfer of cholesterol from [4-14C]cholesterol labeled resident peritoneal macrophages to mesenteric lymph node resting lymphocytes (up to 173.9 +/- 2.7 pmol/10(7) lymphocytes/10(7) macrophages when co-cultivated for 48 h), in a lipoprotein-dependent manner. This represents the mass transfer of ca. 17 nmoles of cholesterol molecules per 10(7) lymphocytes from 10(7) macrophages (calculated on the basis of specific radioactivity incorporated into macrophages after the pre-labelling period), which suggests that macrophages are capable of replacing the whole lymphocyte cholesterol pool every 21 h. Moreover, an 111%-increase in the total cholesterol content of lymphocytes was found after co-cultivation with macrophages for 48 h. When compared to peritoneal cells, monocytes/macrophages obtained from circulating blood leukocytes presented a much higher cholesterol transfer capacity to lymphocytes (3.06 +/- 0.10 nmol/10(7) lymphocytes/10(7) macrophages co-cultivated for 24 h). Interestingly, inflammatory macrophages dramatically reduced their cholesterol transfer ability (by up to 91%, as compared to resident macrophages). Cholesterol transfer may involve a humoral influence, since it is not only observed when cells are co-cultivated in a single-well chamber system (cells in direct contact), but also in a two-compartment system (where cells can communicate but not by direct contact). Co

  15. Cholesterol Assimilation by Lactobacillus Probiotic Bacteria: An In Vitro Investigation

    PubMed Central

    Jones, Mitchell L.; Shah, Divya; Jain, Poonam; Saha, Shyamali; Prakash, Satya

    2014-01-01

    Excess cholesterol is associated with cardiovascular diseases (CVD), an important cause of mortality worldwide. Current CVD therapeutic measures, lifestyle and dietary interventions, and pharmaceutical agents for regulating cholesterol levels are inadequate. Probiotic bacteria have demonstrated potential to lower cholesterol levels by different mechanisms, including bile salt hydrolase activity, production of compounds that inhibit enzymes such as 3-hydroxy-3-methylglutaryl coenzyme A, and cholesterol assimilation. This work investigates 11 Lactobacillus strains for cholesterol assimilation. Probiotic strains for investigation were selected from the literature: Lactobacillus reuteri NCIMB 11951, L. reuteri NCIMB 701359, L. reuteri NCIMB 702655, L. reuteri NCIMB 701089, L. reuteri NCIMB 702656, Lactobacillus fermentum NCIMB 5221, L. fermentum NCIMB 8829, L. fermentum NCIMB 2797, Lactobacillus rhamnosus ATCC 53103 GG, Lactobacillus acidophilus ATCC 314, and Lactobacillus plantarum ATCC 14917. Cholesterol assimilation was investigated in culture media and under simulated intestinal conditions. The best cholesterol assimilator was L. plantarum ATCC 14917 (15.18 ± 0.55 mg/1010 cfu) in MRS broth. L. reuteri NCIMB 701089 assimilated over 67% (2254.70 ± 63.33 mg/1010 cfu) of cholesterol, the most of all the strains, under intestinal conditions. This work demonstrates that probiotic bacteria can assimilate cholesterol under intestinal conditions, with L. reuteri NCIMB 701089 showing great potential as a CVD therapeutic. PMID:25295259

  16. Major Risk Factors for Heart Disease: High Blood Cholesterol

    MedlinePlus

    ... lipoprotein profile test will also measure levels of triglycerides, another fatty substance in the blood. (See "What Are Triglycerides?" .) * Cholesterol levels are measured in milligrams (mg) of ...

  17. Malformation syndromes caused by disorders of cholesterol synthesis

    PubMed Central

    Porter, Forbes D.; Herman, Gail E.

    2011-01-01

    Cholesterol homeostasis is critical for normal growth and development. In addition to being a major membrane lipid, cholesterol has multiple biological functions. These roles include being a precursor molecule for the synthesis of steroid hormones, neuroactive steroids, oxysterols, and bile acids. Cholesterol is also essential for the proper maturation and signaling of hedgehog proteins, and thus cholesterol is critical for embryonic development. After birth, most tissues can obtain cholesterol from either endogenous synthesis or exogenous dietary sources, but prior to birth, the human fetal tissues are dependent on endogenous synthesis. Due to the blood-brain barrier, brain tissue cannot utilize dietary or peripherally produced cholesterol. Generally, inborn errors of cholesterol synthesis lead to both a deficiency of cholesterol and increased levels of potentially bioactive or toxic precursor sterols. Over the past couple of decades, a number of human malformation syndromes have been shown to be due to inborn errors of cholesterol synthesis. Herein, we will review clinical and basic science aspects of Smith-Lemli-Opitz syndrome, desmosterolosis, lathosterolosis, HEM dysplasia, X-linked dominant chondrodysplasia punctata, Congenital Hemidysplasia with Ichthyosiform erythroderma and Limb Defects Syndrome, sterol-C-4 methyloxidase-like deficiency, and Antley-Bixler syndrome. PMID:20929975

  18. Aspirin inhibits formation of cholesterol rafts in fluid lipid membranes.

    PubMed

    Alsop, Richard J; Toppozini, Laura; Marquardt, Drew; Kučerka, Norbert; Harroun, Thad A; Rheinstädter, Maikel C

    2015-03-01

    Aspirin and other non-steroidal anti-inflammatory drugs have a high affinity for phospholipid membranes, altering their structure and biophysical properties. Aspirin has been shown to partition into the lipid head groups, thereby increasing membrane fluidity. Cholesterol is another well known mediator of membrane fluidity, in turn increasing membrane stiffness. As well, cholesterol is believed to distribute unevenly within lipid membranes leading to the formation of lipid rafts or plaques. In many studies, aspirin has increased positive outcomes for patients with high cholesterol. We are interested if these effects may be, at least partially, the result of a non-specific interaction between aspirin and cholesterol in lipid membranes. We have studied the effect of aspirin on the organization of 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) membranes containing cholesterol. Through Langmuir-Blodgett experiments we show that aspirin increases the area per lipid and decreases compressibility at 32.5 mol% cholesterol, leading to a significant increase of fluidity of the membranes. Differential scanning calorimetry provides evidence for the formation of meta-stable structures in the presence of aspirin. The molecular organization of lipids, cholesterol and aspirin was studied using neutron diffraction. While the formation of rafts has been reported in binary DPPC/cholesterol membranes, aspirin was found to locally disrupt membrane organization and lead to the frustration of raft formation. Our results suggest that aspirin is able to directly oppose the formation of cholesterol structures through non-specific interactions with lipid membranes.

  19. Retracted: Advances in the physiological and pathological implications of cholesterol.

    PubMed

    Cortes, Victor A; Busso, Dolores; Mardones, Pablo; Maiz, Alberto; Arteaga, Antonio; Nervi, Flavio; Rigotti, Attilio

    2013-11-01

    Cholesterol has evolved to fulfill sophisticated biophysical, cell signalling, and endocrine functions in animal systems. At the cellular level, cholesterol is found in membranes where it increases both bilayer stiffness and impermeability to water and ions. Furthermore, cholesterol is integrated into specialized lipid-protein membrane microdomains with critical topographical and signalling functions. At the organismal level, cholesterol is the precursor of all steroid hormones, including gluco- and mineralo-corticoids, sex hormones, and vitamin D, which regulate carbohydrate, sodium, reproductive, and bone homeostasis, respectively. This sterol is also the immediate precursor of bile acids, which are important for intestinal absorption of dietary lipids as well as energy homeostasis and glucose regulation. Complex mechanisms maintain cholesterol within physiological ranges and the dysregulation of these mechanisms results in embryonic or adult diseases, caused by either excessive or reduced tissue cholesterol levels. The causative role of cholesterol in these conditions has been demonstrated by genetic and pharmacological manipulations in animal models of human disease that are discussed herein. Importantly, the understanding of basic aspects of cholesterol biology has led to the development of high-impact pharmaceutical therapies during the past century. The continuing effort to offer successful treatments for prevalent cholesterol-related diseases, such as atherosclerosis and neurodegenerative disorders, warrants further interdisciplinary research in the coming decades.

  20. The 2015 Dietary Guidelines Advisory Committee Report Concerning Dietary Cholesterol.

    PubMed

    Williams, Kim A; Krause, Amanda J; Shearer, Sarah; Devries, Stephen

    2015-11-01

    The most recent 2015 Dietary Guidelines Advisory Committee report indicated that "cholesterol is not considered a nutrient of concern for overconsumption." However, this statement may be too general as it does not acknowledge conflicting findings in literature regarding cardiovascular risk in certain populations. Current research suggests that dietary cholesterol may increase an subject's risk of developing diabetes, increases a diabetic patient's risk of cardiovascular disease, and may worsen coronary risk factors in subjects who are "hyper-responders" to dietary cholesterol. In conclusion, we suggest that a more cautious approach to dietary cholesterol intake is warranted, especially in high-risk populations. PMID:26341187

  1. Cholesterol granuloma of the petrous apex: CT diagnosis

    SciTech Connect

    Lo, W.W.M.; Solti-Bohman, L.G.; Brackmann, D.E.; Gruskin, P.

    1984-12-01

    Cholesterol granuloma of the petrous apex is a readily recognizable and treatable entity that is more common than previously realized. Cholesterol granuloma grows slowly in the petrous apex as a mass lesion until it produces hearing loss, tinnitus, vertigo, and facial twitching. Twelve cases of cholesterol granuloma of the petrous apex are illustrated; ten of these analyzed in detail, especially with respect to CT findings. A sharply and smoothly marginated expansile lesion in the petrous apex, isodense with plain and nonenhancing on CT, is in all probability a cholesterol granuloma. Preoperative recognition by CT is important for planning proper treatment.

  2. Neonatal dietary cholesterol and alleles of cholesterol 7-alpha hydroxylase affect piglet cerebrum weight, cholesterol concentration, and behavior.

    PubMed

    Pond, Wilson G; Mersmann, Harry J; Su, Dairong; McGlone, John J; Wheeler, Matthew B; Smith, E O'Brian

    2008-02-01

    This experiment was designed to test the effect of polymorphism in the cholesterol 7-alpha hydroxylase (CYP7) gene locus and dietary cholesterol (C) on cerebrum C in neonatal pigs fed sow's milk formulas. Thirty-six pigs (18 male and 18 female) genetically selected for high (HG) or low (LG) plasma total C were weaned at 24-36 h after birth and assigned in a 2 x 2 x 2 factorial arrangement of treatments with 2 diets (0 or 0.5% C), 2 sexes, and 2 genotypes (HG and LG). Individually housed pigs consumed diets ad libitum for 42 d. Open-field behavior was tested at wk 2 and 4. All pigs were killed at 42 d of age, the cerebrum was weighed, and C content and concentration measured. All data were analyzed by general linear model ANOVA. Cerebrum weight was greater in HG than LG pigs (P < 0.03) but was not affected by diet or sex. Pigs fed C tended to have a higher cerebrum C concentration than those deprived (P = 0.12). At 2 wk, LG pigs explored a novel open-field environment less often (P < 0.001) than did HG pigs. At 4 wk, some LG pigs explored the open field but fewer (P < 0.001) vs. HG pigs retreated back to the safe area. There were no genotype x diet, genotype x sex, or diet x sex interactions affecting cerebrum weight, or C content or concentration. Polymorphism in the CYP7 gene locus affected cerebrum weight and behavior and dietary C tended to increase cerebrum C concentration in neonatal pigs. These findings in neonatal pigs have considerable potential importance in human infant nutrition and behavioral development.

  3. Impaired Cholesterol Efflux Capacity of High-Density Lipoprotein Isolated From Interstitial Fluid in Type 2 Diabetes Mellitus—Brief Report

    PubMed Central

    Tietge, Uwe J.F.; Dikkers, Arne; Parini, Paolo; Angelin, Bo; Rudling, Mats

    2016-01-01

    Objective— Patients with type 2 diabetes mellitus (T2D) have an increased risk of cardiovascular disease, the mechanism of which is incompletely understood. Their high-density lipoprotein (HDL) particles in plasma have been reported to have impaired cholesterol efflux capacity. However, the efflux capacity of HDL from interstitial fluid (IF), the starting point for reverse cholesterol transport, has not been studied. We here investigated the cholesterol efflux capacity of HDL from IF and plasma from T2D patients and healthy controls. Approach and Results— HDL was isolated from IF and peripheral plasma from 35 T2D patients and 35 age- and sex-matched healthy controls. Cholesterol efflux to HDL was determined in vitro, normalized for HDL cholesterol, using cholesterol-loaded macrophages. Efflux capacity of plasma HDL was 10% lower in T2D patients than in healthy controls, in line with previous observations. This difference was much more pronounced for HDL from IF, where efflux capacity was reduced by 28% in T2D. Somewhat surprisingly, the efflux capacity of HDL from IF was lower than that of plasma HDL, by 15% and 32% in controls and T2D patients, respectively. Conclusion— These data demonstrate that (1) HDL from IF has a lower cholesterol efflux capacity than plasma HDL and (2) the efflux capacity of HDL from IF is severely impaired in T2D when compared with controls. Because IF comprises the compartment where reverse cholesterol transport is initiated, the marked reduction in cholesterol efflux capacity of IF-HDL from T2D patients may play an important role for their increased risk to develop atherosclerosis. PMID:27034474

  4. LOADED WAVEGUIDES

    DOEpatents

    Mullett, L.B.; Loach, B.G.; Adams, G.L.

    1958-06-24

    >Loaded waveguides are described for the propagation of electromagnetic waves with reduced phase velocities. A rectangular waveguide is dimensioned so as to cut-off the simple H/sub 01/ mode at the operating frequency. The waveguide is capacitance loaded, so as to reduce the phase velocity of the transmitted wave, by connecting an electrical conductor between directly opposite points in the major median plane on the narrower pair of waveguide walls. This conductor may take a corrugated shape or be an aperature member, the important factor being that the electrical length of the conductor is greater than one-half wavelength at the operating frequency. Prepared for the Second U.N. International ConferThe importance of nuclear standards is duscussed. A brief review of the international callaboration in this field is given. The proposal is made to let the International Organization for Standardization (ISO) coordinate the efforts from other groups. (W.D.M.)

  5. Cholesterol esterification by ACAT2 is essential for efficient intestinal cholesterol absorption: evidence from thoracic lymph duct cannulation[S

    PubMed Central

    Nguyen, Tam M.; Sawyer, Janet K.; Kelley, Kathryn L.; Davis, Matthew A.; Rudel, Lawrence L.

    2012-01-01

    The hypothesis tested in this study was that cholesterol esterification by ACAT2 would increase cholesterol absorption efficiency by providing cholesteryl ester (CE) for incorporation into chylomicrons. The assumption was that absorption would be proportional to Acat2 gene dosage. Male ACAT2+/+, ACAT2+/−, and ACAT2−/− mice were fed a diet containing 20% of energy as palm oil with 0.2% (w/w) cholesterol. Cholesterol absorption efficiency was measured by fecal dual-isotope and thoracic lymph duct cannulation (TLDC) methods using [3H]sitosterol and [14C]cholesterol tracers. Excellent agreement among individual mice was found for cholesterol absorption measured by both techniques. Cholesterol absorption efficiency in ACAT2−/− mice was 16% compared with 46–47% in ACAT2+/+ and ACAT2+/− mice. Chylomicrons from ACAT2+/+ and ACAT2+/− mice carried ∼80% of total sterol mass as CE, whereas ACAT2−/− chylomicrons carried >90% of sterol mass in the unesterified form. The total percentage of chylomicron mass as CE was reduced from 12% in the presence of ACAT2 to ∼1% in ACAT2−/− mice. Altogether, the data demonstrate that ACAT2 increases cholesterol absorption efficiency by providing CE for chylomicron transport, but one copy of the Acat2 gene, providing ∼50% of ACAT2 mRNA and enzyme activity, was as effective as two copies in promoting cholesterol absorption. PMID:22045928

  6. A new subgroup of lectin-bound biliary proteins binds to cholesterol crystals, modifies crystal morphology, and inhibits cholesterol crystallization.

    PubMed Central

    Busch, N; Lammert, F; Marschall, H U; Matern, S

    1995-01-01

    Biliary proteins inhibiting or promoting cholesterol crystallization are assumed to play a major role in cholesterol gallstone pathogenesis. We now report a new group of biliary proteins that bind to cholesterol crystals, modify crystal morphology, and inhibit cholesterol crystallization. Various glycoprotein mixtures were extracted from abnormal human gallbladder bile using lectin affinity chromatography on concanavalin A, lentil, and Helix pomatia columns and were added to supersaturated model bile. Independent of the protein mixtures added, from the cholesterol crystals harvested, the same four GPs were isolated having molecular masses of 16, 28, 63, and 74 kD, respectively. Each protein was purified using preparative SDS-PAGE, and influence on cholesterol crystallization in model bile was tested at 10 microg/ml. Crystal growth was reduced by 76% (GP63), 65% (GP16), 55% (GP74), and 40% (GP28), respectively. Thus, these glycoproteins are the most potent biliary inhibitors of cholesterol crystallization known so far. Evidence that the inhibiting effect on cholesterol crystallization is mediated via protein-crystal interaction was further provided from scanning electron microscopy studies. Crystals grown in presence of inhibiting proteins showed significantly more ordered structures. Incidence of triclinic crystals and regular aggregates was shifted from 30 to 70% compared with controls. These observations may have important implications for understanding the role of biliary proteins in cholesterol crystallization and gallstone pathogenesis. Images PMID:8675674

  7. Whole body and tissue cholesterol turnover in the baboon

    SciTech Connect

    Dell, R.B.; Mott, G.E.; Jackson, E.M.; Ramakrishnan, R.; Carey, K.D.; McGill, H.C. Jr.; Goodman, D.S.

    1985-03-01

    Cholesterol turnover was studied in four baboons by injecting (/sup 14/C)cholesterol 186 days and (/sup 3/H)cholesterol 4 days before necropsy, and fitting a two- or three-pool model to the resulting specific activity-time data. At necropsy, cholesterol mass and specific activity were determined for the total body and for many tissues. The principal aim of this study was to estimate the extent of cholesterol synthesis in the side pools of the model, by computing the amount of side pool synthesis needed to equal the measured total body cholesterol. Central pool synthesis varied from 61 to 89% of the total cholesterol production rate. Moreover, the finding that the measured total body cholesterol fell within the range obtained from the kinetic analysis by using reasonable assumptions, provides evidence for the physiological validity of the model. A second aim of this study was to explore cholesterol turnover in various tissues. A pool model predicts that rapidly turning over tissues will have higher specific activities at early times and lower specific activities at later times after injection of tracer relative to slowly turning over tissues, except where significant synthesis occurs. Results in all four baboons were similar. Turnover rates for the different tissues loosely fell into three groups which were turning over at fast, intermediate, and slow rates. Finally, the magnitude of variation of cholesterol specific activity was moderate for several distributed tissues (fat, muscle, arteries, and the alimentary tract), but was small for liver. Cholesterol turnover in serial biopsies of skin, muscle, and fat could, however, be fitted with a single pool to estimate tissue turnover rates.

  8. Biliary lipid secretion in health and in cholesterol gallstone disease.

    PubMed

    Carey, M C; Mazer, N A

    1984-01-01

    The secretory compartment for biliary lecithin and cholesterol secretion probably resides in the smooth endoplasmic reticulum of the hepatocyte. The secretory compartment for bile salts lies predominantly in the enterohepatic circulation which fluxes bile salts continuously through the smooth endoplasmic reticulum compartment and extracts lipids for secretion into bile. Most of bile lecithin is newly synthesized by the liver; most of bile cholesterol is derived from extrahepatic sources. Both cholesterol and lecithin secretion are coupled to bile salt secretion and describe output curves which can be fitted by rectangular hyperbolae: since bile salt secretion is a linear function of input, the relative proportions of cholesterol to bile salts plus lecithin in bile increase at low bile salt outputs. In health, an adequate bile salt (+ lecithin) secretion coupled with normal cholesterol secretion maintains the relative composition of bile in a stable state: fasting compositions usually lie within the micellar zone or metastable supersaturated zone of a triangular coordinate-phase diagram plot. In cholesterol gallstone disease, mean bile salt (+ lecithin) secretion rates are subnormal and/or mean cholesterol secretion rates are supranormal, especially in the fasting state. If individuals are obese there is also enhanced hypersecretion of biliary cholesterol. Either or both secretory defects lead to an elevation and persistence of cholesterol supersaturation of bile. The physical state of the secreted lipids in bile is complex and fluctuant, and probably involves vesicle structures and mixed micelles at high water and cholesterol concentrations and predominantly micellar structures at low water and cholesterol concentrations. In lithogenic bile, the physical state, proportions and nucleation potential of the lipid aggregates are probably different.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. LDL Cholesterol, Statins And PCSK 9 Inhibitors

    PubMed Central

    Gupta, Sanjiv

    2015-01-01

    Reduction of low density lipoprotein cholesterol (LDLc) is of vital importance for the prevention of atherosclerotic cardiovascular disease (ASCVD). Statin is the most effective therapy today to lower LDLc by inhibiting HMG-CoA-reductase. However despite intensive statin therapy, there remains a residual risk of recurrent myocardial infarction in about 20–30% cases. Moreover a few patients develop statin intolerance. For severe hypercholesterolemia, statins alone or in combination of ezetimibe, niacin and fenofibrate have been advocated. For homozygous familial hypercholesterolemia (HOFH), a microsomal triglyceride transfer protein MTP inhibitor (Lopitamide) and antisense oligonucleotide (ASO) (Mipomersen) have recently been approved by FDA, USA through ‘Risk evaluation and Mitigation Strategy (REMS)’. Possible future therapies include PCSK-9 inhibitors which have excellent lipid lowering properties. Three monoclonal antibodies (PCSK 9 Inhibitors) alirocumab, evolocumab and Bococizumab are under advanced clinical stage IV trials and awaiting approval by FDA and European Medicines Agency. PMID:26432726

  10. LDL cholesterol, statins and PCSK 9 inhibitors.

    PubMed

    Gupta, Sanjiv

    2015-01-01

    Reduction of low density lipoprotein cholesterol (LDLc) is of vital importance for the prevention of atherosclerotic cardiovascular disease (ASCVD). Statin is the most effective therapy today to lower LDLc by inhibiting HMG-CoA-reductase. However despite intensive statin therapy, there remains a residual risk of recurrent myocardial infarction in about 20-30% cases. Moreover a few patients develop statin intolerance. For severe hypercholesterolemia, statins alone or in combination of ezetimibe, niacin and fenofibrate have been advocated. For homozygous familial hypercholesterolemia (HOFH), a microsomal triglyceride transfer protein MTP inhibitor (Lopitamide) and antisense oligonucleotide (ASO) (Mipomersen) have recently been approved by FDA, USA through 'Risk evaluation and Mitigation Strategy (REMS)'. Possible future therapies include PCSK-9 inhibitors which have excellent lipid lowering properties. Three monoclonal antibodies (PCSK 9 Inhibitors) alirocumab, evolocumab and Bococizumab are under advanced clinical stage IV trials and awaiting approval by FDA and European Medicines Agency. PMID:26432726

  11. [Determination of cholesterol in natural bezoar by gas chromatography].

    PubMed

    Zhang, Q; Yan, K; Qian, L

    1991-07-01

    A gas chromatographic method for the determination of free and total cholesterol in natural bezoar has been established in this report. The method is simple, specific and accurate. The free and total cholesterol contents in three kinds of bezoar are between 0.072% to 0.214% and 0.546% to 0.608% respectively.

  12. Preparation of intravenous cholesterol tracer using current good manufacturing practices.

    PubMed

    Lin, Xiaobo; Ma, Lina; Racette, Susan B; Swaney, William P; Ostlund, Richard E

    2015-12-01

    Studies of human reverse cholesterol transport require intravenous infusion of cholesterol tracers. Because insoluble lipids may pose risk and because it is desirable to have consistent doses of defined composition available over many months, we investigated the manufacture of cholesterol tracer under current good manufacturing practice (CGMP) conditions appropriate for phase 1 investigation. Cholesterol tracer was prepared by sterile admixture of unlabeled cholesterol or cholesterol-d7 in ethanol with 20% Intralipid(®). The resulting material was filtered through a 1.2 micron particulate filter, stored at 4°C, and tested at time 0, 1.5, 3, 6, and 9 months for sterility, pyrogenicity, autoxidation, and particle size and aggregation. The limiting factor for stability was a rise in thiobarbituric acid-reacting substances of 9.6-fold over 9 months (P < 0.01). The emulsion was stable with the Z-average intensity-weighted mean droplet diameter remaining at 60 nm over 23 months. The zeta potential (a measure of negative surface charge protecting from aggregation) was unchanged at -36.2. Rapid cholesterol pool size was 25.3 ± 1.3 g. Intravenous cholesterol tracer was stable at 4°C for 9 months postproduction. CGMP manufacturing methods can be achieved in the academic setting and need to be considered for critical components of future metabolic studies.

  13. Effects of ion interactions with a cholesterol-rich bilayer.

    PubMed

    Mao, Lingxue; Yang, Linlin; Zhang, Qiansen; Jiang, Hualiang; Yang, Huaiyu

    Previous molecular dynamics (MD) simulations of ion-lipid interactions have focused on pure phospholipid bilayers. Many functional microdomains in membranes have a complex composition of cholesterol and phospholipids. Here, we reveal the distinctiveness of the interactions and the effects of the ions on a cholesterol-rich bilayer by performing MD simulations of a cholesterol-rich bilayer with a Na(+)/K(+) mixture or a Na(+)/K(+)/Ca(2+)/Mg(2+) mixture. The simulations reveal that Ca(2+) maintains its dominant role in the interaction with the cholesterol-rich bilayer, but the binding affinity of Mg(2+) to the cholesterol-rich bilayer is even weaker than the affinities of Na(+) and K(+), whereas its interaction with pure phospholipid bilayers is strong and is only slightly weaker than that of Ca(2+). Additionally, it was found that the presence of additional divalent cations induces the headgroups of phospholipids to be more perpendicular to the membrane surface, reducing the lateral movement of lipids and slightly altering the ordering and packing of the cholesterol-rich bilayer, different from divalent cations, which strongly influence that ordering and packing of pure phospholipid bilayers. Therefore, this study indicates that cholesterol in the membrane could affect the interactions between membrane and cations. The findings could be helpful in understanding the biological processes relevant to regulation of cations in cholesterol-rich regions.

  14. Chronic inflammatory demyelinating polyradiculoneuropathy with cholesterol deposits in a dog.

    PubMed

    Piñeyro, Pablo; Sponenberg, D Philip; Pancotto, Theresa; King, Rosalind H M; Jortner, Bernard S

    2015-11-01

    Chronic inflammatory demyelinating polyradiculoneuropathy occurred in an 11-year-old Labrador Retriever dog. Spinal cord compression resulted from massive radiculitis with prominent cholesterol granulomas. Cholesterol deposition and associated granuloma formation is unique in chronic inflammatory demyelinating polyradiculoneuropathy, in both its human and canine expressions.

  15. Cholesterol-Lowering Effect of Calcium Alginate in Rats.

    PubMed

    Idota, Yoko; Kogure, Yumi; Kato, Takako; Ogawa, Mana; Kobayashi, Shoko; Kakinuma, Chihaya; Yano, Kentaro; Arakawa, Hiroshi; Miyajima, Chihiro; Kasahara, Fumiyoshi; Ogihara, Takuo

    2016-01-01

    We examined whether calcium alginate (Ca-Alg) reduces blood cholesterol levels in rats fed a high-cholesterol diet. First, we examined taurocholate adsorption in vitro by various types of sodium alginate (Na-Alg). High molecular-weight, guluronic acid-rich Na-Alg showed the greatest adsorption of taurocholate, and therefore the corresponding Ca-Alg was chosen for the in vivo study. Rats were fed a high-cholesterol diet or a Ca-Alg-containing diet for 2 weeks. Body weight and diet intake were measured, and the general condition of the animals was monitored during this period. After 14 d, the plasma concentration of cholesterol, portal plasma concentration of bile acid, and bile acid in feces were measured. The plasma concentration of cholesterol was significantly reduced in rats fed a 2% Ca-Alg-containing diet. Furthermore, the portal concentration of bile acid was significantly lowered in the 2% Ca-Alg group. A tendency for a Ca-Alg concentration-dependent increase in fecal excretion of bile acid was also seen, although it was not statistically significant. While several changes in biochemical parameters and histopathological findings were observed, all the values remained within the physiological range. These results indicate that Ca-Alg is effective in reducing plasma cholesterol. A possible mechanism would be enhanced fecal excretion of bile acid due to reduced intestinal reabsorption, which in turn might stimulate bile acid synthesis from cholesterol in the liver, leading to a decrease in plasma cholesterol.

  16. Endosome to Golgi Transport of Ricin Is Regulated by Cholesterol

    PubMed Central

    Grimmer, Stine; Iversen, Tore-Geir; van Deurs, Bo; Sandvig, Kirsten

    2000-01-01

    We have here studied the role of cholesterol in transport of ricin from endosomes to the Golgi apparatus. Ricin is endocytosed even when cells are depleted for cholesterol by using methyl-β-cyclodextrin (mβCD). However, as here shown, the intracellular transport of ricin from endosomes to the Golgi apparatus, measured by quantifying sulfation of a modified ricin molecule, is strongly inhibited when the cholesterol content of the cell is reduced. On the other hand, increasing the level of cholesterol by treating cells with mβCD saturated with cholesterol (mβCD/chol) reduced the intracellular transport of ricin to the Golgi apparatus even more strongly. The intracellular transport routes affected include both Rab9-independent and Rab9-dependent pathways to the Golgi apparatus, since both sulfation of ricin after induced expression of mutant Rab9 (mRab9) to inhibit late endosome to Golgi transport and sulfation of a modified mannose 6-phosphate receptor (M6PR) were inhibited after removal or addition of cholesterol. Furthermore, the structure of the Golgi apparatus was affected by increased levels of cholesterol, as visualized by pronounced vesiculation and formation of smaller stacks. Thus, our results indicate that transport of ricin from endosomes to the Golgi apparatus is influenced by the cholesterol content of the cell. PMID:11102518

  17. Influence of cholesterol on survival after stroke: retrospective study.

    PubMed Central

    Dyker, A. G.; Weir, C. J.; Lees, K. R.

    1997-01-01

    OBJECTIVE: To investigate the association between serum cholesterol concentration and cerebrovascular disease. DESIGN: Retrospective study. SETTING: Acute stroke unit of inner city general hospital. SUBJECTS: 977 patients with acute stroke. MAIN OUTCOME MEASURES: Serum total cholesterol concentration, type of stroke investigated by computed tomography or magnetic resonance imaging, three month outcome (good (alive at home) or bad (dead or in care)), long term mortality. RESULTS: After adjustment for known prognostic factors, higher serum cholesterol concentrations were associated with reduced long term mortality after stroke (relative hazard 0.91 (95% confidence interval 0.84 to 0.98) per mmol/l increase in cholesterol) independently of stroke type, vascular territory and extent, age, and hyperglycaemia. Three month outcome was also influenced independently by serum cholesterol (P = 0.024). CONCLUSIONS: Our data suggest an association between poor stroke outcome and lower serum cholesterol concentration. Until a prospective controlled study has confirmed the benefits of lowering cholesterol concentration in elderly subjects, the application of cholesterol lowering guidelines cannot be justified as secondary prevention of acute stroke. PMID:9169402

  18. Preparation of intravenous cholesterol tracer using current good manufacturing practices.

    PubMed

    Lin, Xiaobo; Ma, Lina; Racette, Susan B; Swaney, William P; Ostlund, Richard E

    2015-12-01

    Studies of human reverse cholesterol transport require intravenous infusion of cholesterol tracers. Because insoluble lipids may pose risk and because it is desirable to have consistent doses of defined composition available over many months, we investigated the manufacture of cholesterol tracer under current good manufacturing practice (CGMP) conditions appropriate for phase 1 investigation. Cholesterol tracer was prepared by sterile admixture of unlabeled cholesterol or cholesterol-d7 in ethanol with 20% Intralipid(®). The resulting material was filtered through a 1.2 micron particulate filter, stored at 4°C, and tested at time 0, 1.5, 3, 6, and 9 months for sterility, pyrogenicity, autoxidation, and particle size and aggregation. The limiting factor for stability was a rise in thiobarbituric acid-reacting substances of 9.6-fold over 9 months (P < 0.01). The emulsion was stable with the Z-average intensity-weighted mean droplet diameter remaining at 60 nm over 23 months. The zeta potential (a measure of negative surface charge protecting from aggregation) was unchanged at -36.2. Rapid cholesterol pool size was 25.3 ± 1.3 g. Intravenous cholesterol tracer was stable at 4°C for 9 months postproduction. CGMP manufacturing methods can be achieved in the academic setting and need to be considered for critical components of future metabolic studies. PMID:26416797

  19. The intestine as a regulator of cholesterol homeostasis in diabetes.

    PubMed

    Tomkin, Gerald H

    2008-09-01

    The chylomicron influences very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) composition but itself is atherogenic. Thus abnormalities of chylomicron production are of interest particularly in conditions such as diabetes which confer major cardiovascular risk. Intestinal function is abnormal in diabetes and is a major cause of the dyslipidaemia found in this condition. Studies have suggested that cholesterol absorption is decreased in diabetes and cholesterol synthesis increased. Molecular mechanisms involved in insulin resistance in the intestine and its effect on cholesterol homeostasis in diabetes are described. Abnormalities in triglyceride synthesis and alterations genes regulating cholesterol absorption and intestinal synthesis are discussed. In particular, increase in apolipoprotein B48 synthesis has been demonstrated in animal models of diabetes and insulin resistance. Intestinal mRNA expression of Niemann Pick C1-like 1, protein is increased in both experimental and human diabetes suggesting that an increase in cholesterol transportation does occur. mRNA expression of the ATP binding cassette proteins (ABC) G5 and G8, two proteins working in tandem to excrete cholesterol have been shown to be decreased suggesting increased delivery of cholesterol for absorption. Expression of microsomal triglyceride transfer protein, which assembles the chylomicron particle, is increased in diabetes leading to increase in both number and cholesterol content. In conclusion, diabetes is associated with considerable dysfunction of the intestine leading to abnormal chylomicron composition which may play a major part in the premature development of atherosclerosis.

  20. Control of lipid membrane stability by cholesterol content.

    PubMed Central

    Raffy, S; Teissié, J

    1999-01-01

    Cholesterol has a concentration-dependent effect on membrane organization. It is able to control the membrane permeability by inducing conformational ordering of the lipid chains. A systematic investigation of lipid bilayer permeability is described in the present work. It takes advantage of the transmembrane potential difference modulation induced in vesicles when an external electric field is applied. The magnitude of this modulation is under the control of the membrane electrical permeability. When brought to a critical value by the external field, the membrane potential difference induces a new membrane organization. The membrane is then permeable and prone to solubilized membrane protein back-insertion. This is obtained for an external field strength, which depends on membrane native permeability. This approach was used to study the cholesterol effect on phosphatidylcholine bilayers. Studies have been performed with lipids in gel and in fluid states. When cholesterol is present, it does not affect electropermeabilization and electroinsertion in lipids in the fluid state. When lipids are in the gel state, cholesterol has a dose-dependent effect. When present at 6% (mol/mol), cholesterol prevents electropermeabilization and electroinsertion. When cholesterol is present at more than 12%, electropermeabilization and electroinsertion are obtained under milder field conditions. This is tentatively explained by a cholesterol-induced alteration of the hydrophobic barrier of the bilayer core. Our results indicate that lipid membrane permeability is affected by the cholesterol content. PMID:10096902

  1. Dysfunction of the cholesterol biosynthetic pathway in Huntington's disease.

    PubMed

    Valenza, Marta; Rigamonti, Dorotea; Goffredo, Donato; Zuccato, Chiara; Fenu, Simone; Jamot, Laure; Strand, Andrew; Tarditi, Alessia; Woodman, Ben; Racchi, Marco; Mariotti, Caterina; Di Donato, Stefano; Corsini, Alberto; Bates, Gillian; Pruss, Rebecca; Olson, James M; Sipione, Simonetta; Tartari, Marzia; Cattaneo, Elena

    2005-10-26

    The expansion of a polyglutamine tract in the ubiquitously expressed huntingtin protein causes Huntington's disease (HD), a dominantly inherited neurodegenerative disease. We show that the activity of the cholesterol biosynthetic pathway is altered in HD. In particular, the transcription of key genes of the cholesterol biosynthetic pathway is severely affected in vivo in brain tissue from HD mice and in human postmortem striatal and cortical tissue; this molecular dysfunction is biologically relevant because cholesterol biosynthesis is reduced in cultured human HD cells, and total cholesterol mass is significantly decreased in the CNS of HD mice and in brain-derived ST14A cells in which the expression of mutant huntingtin has been turned on. The transcription of the genes of the cholesterol biosynthetic pathway is regulated via the activity of sterol regulatory element-binding proteins (SREBPs), and we found an approximately 50% reduction in the amount of the active nuclear form of SREBP in HD cells and mouse brain tissue. As a consequence, mutant huntingtin reduces the transactivation of an SRE-luciferase construct even under conditions of SREBP overexpression or in the presence of an exogenous N-terminal active form of SREBP. Finally, the addition of exogenous cholesterol to striatal neurons expressing mutant huntingtin prevents their death in a dose-dependent manner. We conclude that the cholesterol biosynthetic pathway is impaired in HD cells, mice, and human subjects, and that the search for HD therapies should also consider cholesterol levels as both a potential target and disease biomarker. PMID:16251441

  2. LDL-cholesterol signaling induces breast cancer proliferation and invasion.

    PubMed

    dos Santos, Catarina Rodrigues; Domingues, Germana; Matias, Inês; Matos, João; Fonseca, Isabel; de Almeida, José Mendes; Dias, Sérgio

    2014-01-15

    Lipids and cholesterol in particular, have long been associated with breast cancer (BC) onset and progression. However, the causative effects of elevated lipid levels and breast cancer remain largely undisclosed and were the subject of the present study.We took advantage of well-established in vitro and in vivo models of cholesterol enrichment to exploit the mechanism involved in LDL-cholesterol favouring BC growth and invasiveness. We analyzed its effects in models that mimic different BC subtypes and stages.Our data show that LDL-cholesterol (but not HDL-cholesterol) promotes BC cells proliferation, migration and loss of adhesion, hallmarks of the epithelial to mesenchymal transition. In vivo studies modeling cholesterol levels showed that breast tumors are consistently larger and more proliferative in hypercholesterolemic mice, which also have more frequently lung metastases. Microarray analysis revealed an over expression of intermediates of Akt and ERK pathways suggesting a survival response induced by LDL, confirmed by WB analyses. Gene expression analysis also evidenced an activation of ErbB2 signaling pathway and decreased expression of adhesion molecules (cadherin-related family member3, CD226, Claudin 7 and Ocludin) in the cells exposed to LDL.Together, the present work shows novel mechanistic evidence that high LDL-cholesterol levels promote BC progression. These data provide rationale for the clinical control of cholesterol levels in BC patients.

  3. Strategies for increasing house staff management of cholesterol with inpatients.

    PubMed

    Boekeloo, B O; Becker, D M; Levine, D M; Belitsos, P C; Pearson, T A

    1990-01-01

    This study tested the effectiveness of two conceptually different chart audit-based approaches to modifying physicians' clinical practices to conform with quality-assurance standards. The objective was to increase intern utilization of cholesterol management opportunities in the inpatient setting. Using a clinical trial study design, 29 internal medicine interns were randomly assigned to four intervention groups identified by the intervention they received: control, reminder checklists (checklists), patient-specific feedback (feedback), or both interventions (combined). Over a nine-month period, intern management of high blood cholesterol levels in internal medicine inpatients (n = 459) was monitored by postdischarge chart audit. During both a baseline and subsequent intervention period, interns documented significantly more cholesterol management for inpatients with coronary artery disease (CAD) than without CAD. During baseline, 27.3%, 24.3%, 21.7%, 12.4%, 5.4%, and 2.7% of all inpatient charts had intern documentation concerning a low-fat hospital diet, cholesterol history, screening blood cholesterol level assessment, follow-up lipid profile, nutritionist consult, and preventive cardiology consult, respectively. The feedback intervention significantly increased overall intern-documented cholesterol management among inpatients with CAD. The checklists significantly decreased overall intern-documented cholesterol management. Feedback appears to be an effective approach to increasing intern cholesterol management in inpatients.

  4. Thermo-induced vesicular dynamics of membranes containing cholesterol derivatives.

    PubMed

    Yoda, Tsuyoshi; Vestergaard, Mun'delanji C; Hamada, Tsutomu; Le, Phuc Thi Minh; Takagi, Masahiro

    2012-08-01

    Membrane structural organization is an intrinsic property of a cell membrane. Any changes in lipid composition, and/or any stimuli that affect molecular packing induce structural re-organization. It membrane dynamics provide a means by which changes in structure organization can be determined, upon a change in the membrane internal or external environment. Here, we report on the effect of thermo-stress on membranes containing cholesterol liquid crystal (LC) compounds cholesterol benzoate (BENZO) and oxidized cholesterols. We have (1) revealed that lipid vesicles containing this artificial cholesterol derivative (BENZO) is thermo-responsive, and that this thermo-sensitivity is significantly similar to naturally oxy-cholesterols (2) elucidated the mechanism behind the membrane perturbation. Using Langmuir monolayer experiments, we have demonstrated that membrane perturbation was due to an increase in the molecular surface area, (3) discussed the similarities between cholesterol benzoate in the cholesterol LC state and in lipid bilayer membranes. Last, (4) drawing from previously reported findings, our new data on membrane dynamics, and the discussion above, we propose that artificial cholesterol derivatives such as BENZO, open new possibilities for controlled and tailored design using model membrane systems. Examples could include the development of membrane technology and provide a trigger for progress in thermo-tropical liquid crystal engineering.

  5. Cholesterol oxidase catalyzed oxidation of cholesterol in mixed lipid monolayers: effects of surface pressure and phospholipid composition on catalytic activity.

    PubMed

    Grönberg, L; Slotte, J P

    1990-04-01

    The catalytic activity of cholesterol oxidase from Streptomyces sp. in mixed monolayers of 1-palmitoyl-2-oleoylphosphatidylcholine (POPC), N-oleoylsphingomyelin (O-SPM), and cholesterol (CHL) has been determined at lateral surface pressures between 10 and 30 mN/m. The highest cholesterol oxidase activity (determined at 37 degrees C) was observed at surface pressures around 20 mN/m in a POPC/CHL monolayer (50:50 mol %). Above and below this surface pressure, the enzyme activity decreased markedly. A similar optimal activity vs surface pressure relationship was observed also for an O-SPM/CHL monolayer (50:50 mol %). The activity of cholesterol oxidase toward cholesterol in the O-SPM/CHL monolayer was, however, less than in the corresponding POPC mixed monolayer. The surface activity of cholesterol oxidase decreased markedly when the temperature was lowered to 20 degrees C, and hardly any enzyme activity was observed in an O-SPM/CHL monolayer at 25 mN/m or above. With a monolayer containing POPC/O-SPM/CHL (42:18:40 mol %), maximal cholesterol oxidase activity was observed at the lowest surface pressure tested (i.e., 10 mN/m), and the catalytic activity decreased markedly with increasing lateral surface pressures in the monolayer. The results of this study show (i) that the activity of cholesterol oxidase in general is highly dependent on the lateral surface pressure in the substrate membranes and (ii) that sphingomyelin, by interacting tightly with cholesterol, can prevent or restrain the accessibility of cholesterol for oxidation by cholesterol oxidase.

  6. Cholesterol and Sphingomyelin-Containing Model Condensed Lipid Monolayers: Heterogeneities Involving Ordered Microdomains Assessed by Two Cholesterol Derivatives.

    PubMed

    Lecompte, Marie-France; Gaibelet, Gérald; Lebrun, Chantal; Tercé, François; Collet, Xavier; Orlowski, Stéphane

    2015-11-01

    Lipid monolayers are often considered as model membranes, but they are also the physiologic lipid part of the peripheral envelope of lipoproteins and cytosolic lipid bodies. However, their structural organization is still rather elusive, in particular when both cholesterol and sphingomyelin are present. To investigate such structural organization of hemimembranes, we measured, using alternative current voltammetry, the differential capacitance of condensed phosphatidylcholine-based monolayers as a function of applied potential, which is sensitive to their lipid composition and molecular arrangement. Especially, monolayers containing both sphingomyelin and cholesterol, at 15% w/w, presented specific characteristics of the differential capacitance versus potential curves recorded, which was indicative of specific interactions between these two lipid components. We then compared the behavior of two cholesterol derivatives (at 15% w/w), 21-methylpyrenyl-cholesterol (Pyr-met-Chol) and 22-nitrobenzoxadiazole-cholesterol (NBD-Chol), with that of cholesterol when present in model monolayers. Indeed, these two probes were chosen because of previous findings reporting opposite behaviors within bilayer membranes regarding their interaction with ordered lipids, with only Pyr-met-Chol mimicking cholesterol well. Remarkably, in monolayers containing sphingomyelin or not, Pyr-met-Chol and NBD-Chol presented contrasting behaviors, and Pyr-met-Chol mimicked cholesterol only in the presence of sphingomyelin. These two observations (i.e., optimal amounts of sphingomyelin and cholesterol, and the ability to discriminate between Pyr-met-Chol and NBD-Chol) can be interpreted by the existence of heterogeneities including ordered patches in sphingomyelin- and cholesterol-containing monolayers. Since such monolayer lipid arrangement shares some properties with the raft-type lipid microdomains well-described in sphingomyelin- and cholesterol-containing bilayer membranes, our data thus

  7. Decreasing Outer Hair Cell Membrane Cholesterol Increases Cochlear Electromechanics

    NASA Astrophysics Data System (ADS)

    Brownell, William E.; Jacob, Stefan; Hakizimana, Pierre; Ulfendahl, Mats; Fridberger, Anders

    2011-11-01

    The effect of decreasing membrane cholesterol on the mechanical response of the cochlea to acoustic and/or electrical stimulation was monitored using laser interferometry. In contrast to pharmacological interventions that typically decrease cochlear electromechanics, reducing membrane cholesterol increased the response. The electromechanical response in untreated preparations was asymmetric with greater displacements in response to positive currents and cholesterol depletion increased the asymmetry. The results confirm that outer hair cell electromotility is enhanced by low membrane cholesterol. The asymmetry of the response indicates the outer hair cell resting membrane potential is hyperpolarized relative to the voltage of maximum gain for the outer hair cell voltage-displacement function. The magnitude of the response increase suggests a non-uniform distribution of cholesterol along the lateral wall of normal adult outer hair cells.

  8. SND1 overexpression deregulates cholesterol homeostasis in hepatocellular carcinoma.

    PubMed

    Navarro-Imaz, Hiart; Rueda, Yuri; Fresnedo, Olatz

    2016-09-01

    SND1 is a multifunctional protein participating, among others, in gene transcription and mRNA metabolism. SND1 is overexpressed in cancer cells and promotes viability and tumourigenicity of hepatocellular carcinoma cells. This study shows that cholesterol synthesis is increased in SND1-overexpressing hepatoma cells. Neither newly synthesised nor extracellularly supplied cholesterol are able to suppress this increase; however, inhibition of cholesterol esterification reverted the activated state of sterol-regulatory element-binding protein 2 (SREBP2) and cholesterogenesis. These results highlight SND1 as a potential regulator of cellular cholesterol distribution and homeostasis in hepatoma cells, and support the rationale for the therapeutic use of molecules that influence cholesterol management when SND1 is overexpressed. PMID:27238764

  9. Limiting Cholesterol Biosynthetic Flux Spontaneously Engages Type I IFN Signaling.

    PubMed

    York, Autumn G; Williams, Kevin J; Argus, Joseph P; Zhou, Quan D; Brar, Gurpreet; Vergnes, Laurent; Gray, Elizabeth E; Zhen, Anjie; Wu, Nicholas C; Yamada, Douglas H; Cunningham, Cameron R; Tarling, Elizabeth J; Wilks, Moses Q; Casero, David; Gray, David H; Yu, Amy K; Wang, Eric S; Brooks, David G; Sun, Ren; Kitchen, Scott G; Wu, Ting-Ting; Reue, Karen; Stetson, Daniel B; Bensinger, Steven J

    2015-12-17

    Cellular lipid requirements are achieved through a combination of biosynthesis and import programs. Using isotope tracer analysis, we show that type I interferon (IFN) signaling shifts the balance of these programs by decreasing synthesis and increasing import of cholesterol and long chain fatty acids. Genetically enforcing this metabolic shift in macrophages is sufficient to render mice resistant to viral challenge, demonstrating the importance of reprogramming the balance of these two metabolic pathways in vivo. Unexpectedly, mechanistic studies reveal that limiting flux through the cholesterol biosynthetic pathway spontaneously engages a type I IFN response in a STING-dependent manner. The upregulation of type I IFNs was traced to a decrease in the pool size of synthesized cholesterol and could be inhibited by replenishing cells with free cholesterol. Taken together, these studies delineate a metabolic-inflammatory circuit that links perturbations in cholesterol biosynthesis with activation of innate immunity. PMID:26686653

  10. Effect of extracorporeal ultraviolet blood irradiation on blood cholesterol level

    NASA Astrophysics Data System (ADS)

    Zalesskaya, G. A.; Laskina, O. V.; Mitkovskaya, N. P.; Kirkovsky, V. V.

    2012-07-01

    We have studied the effect of extracorporeal ultraviolet blood irradiation on cholesterol metabolism in patients with cardiovascular diseases. We have carried out a comprehensive analysis of the spectral characteristics of blood and plasma, gas-exchange and oximetry parameters, and the results of a complete blood count and chemistry panel before and after UV blood irradiation. We have assessed the changes in concentrations of cholesterols (total cholesterol, low-density lipoprotein (LDL) cholesterol, triglycerides) in the blood of the patients in response to a five-day course of UV blood irradiation. The changes in the spectral characteristics of blood and plasma, the chemistry panel, the gas composition, and the fractional hemoglobin composition initiated by absorption of UV radiation are used to discuss the molecular mechanisms for the effect of therapeutic doses of UV radiation on blood cholesterols.

  11. Abrogating Cholesterol Esterification Suppresses Growth and Metastasis of Pancreatic Cancer

    PubMed Central

    Li, Junjie; Gu, Dongsheng; Lee, Steve Seung-Young; Song, Bing; Bandyopadhyay, Shovik; Chen, Shaoxiong; Konieczny, Stephen F.; Ratliff, Timothy L.; Liu, Xiaoqi; Xie, Jingwu; Cheng, Ji-Xin

    2016-01-01

    Cancer cells are known to execute reprogramed metabolism of glucose, amino acids, and lipids. Here, we report a significant role of cholesterol metabolism in cancer metastasis. By employing label-free Raman spectromicroscopy, we found an aberrant accumulation of cholesteryl ester in human pancreatic cancer specimens and cell lines, mediated by acyl-CoA cholesterol acyltransferase-1 (ACAT-1) enzyme. Expression of ACAT-1 showed a correlation with poor patient survival. Abrogation of cholesterol esterification, either by an ACAT-1 inhibitor or by shRNA knockdown, significantly suppressed tumor growth and metastasis in an orthotopic mouse model of pancreatic cancer. Mechanically, ACAT-1 inhibition increased intracellular free cholesterol level, which was associated with elevated endoplasmic reticulum stress and caused apoptosis. Collectively, our results demonstrate a new strategy for treating metastatic pancreatic cancer by inhibiting cholesterol esterification. PMID:27132508

  12. Effect of medicinal plants on the crystallization of cholesterol

    NASA Astrophysics Data System (ADS)

    Saraswathi, N. T.; Gnanam, F. D.

    1997-08-01

    One of the least desirable calcifications in the human body is the mineral deposition in atherosclerosis plaques. These plaques principally consist of lipids such as cholesterol, cholesteryl esters, phospholipids and triglycerides. Chemical analysis of advanced plaques have shown the presence of considerable amounts of free cholesterol identified as cholesterol monohydrate crystals. Cholesterol has been crystallized in vitro. The extracts of some of the Indian medicinal plants detailed below were used as additives to study their effect on the crystallization behaviour of cholesterol. It has been found that many of the herbs have inhibitory effect on the crystallization such as nucleation, crystal size and habit modification. The inhibitory effect of the plants are graded as Commiphora mughul > Aegle marmeleos > Cynoden dactylon > Musa paradisiaca > Polygala javana > Alphinia officinarum > Solanum trilobatum > Enicostemma lyssopifolium.

  13. Blood Cholesterol Measurement in Clinical Laboratories in the United States. Current Status. A Report from the Laboratory Standardization Panel of the National Cholesterol Education Program.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    Precise and accurate cholesterol measurements are required to identify and treat individuals with high blood cholesterol levels. However, the current state of reliability of blood cholesterol measurements suggests that considerable inaccuracy in cholesterol testing exists. This report describes the Laboratory Standardization Panel findings on the…

  14. Interleukin-10 increases reverse cholesterol transport in macrophages through its bidirectional interaction with liver X receptor α

    SciTech Connect

    Halvorsen, Bente; Holm, Sverre; Yndestad, Arne; Scholz, Hanne; Sagen, Ellen Lund; Nebb, Hilde; Holven, Kirsten B.; Dahl, Tuva B.; Aukrust, Pål

    2014-08-08

    Highlights: • IL-10 promotes reverse cholesterol efflux from lipid loaded macrophages. • IL-10 increases the expression of ABCA-1 and ABCG-1. • IL-10 exhibits cross-talk with the nuclear receptor LXRα. - Abstract: Interleukin (IL)-10 is a prototypical anti-inflammatory cytokine that has been shown to attenuate atherosclerosis development. In addition to its anti-inflammatory properties, the anti-atherogenic effect of IL-10 has recently also been suggested to reflect a complex effect of IL-10 on lipid metabolism in macrophages. In the present study we examined the effects of IL-10 on cholesterol efflux mechanism in lipid-loaded THP-1 macrophages. Our main findings were: (i) IL-10 significantly enhanced cholesterol efflux induced by fetal-calf serum, high-density lipoprotein (HDL){sub 2} and apolipoprotein A-1. (ii) The IL-10-mediated effects on cholesterol efflux were accompanied by an increased IL-10-mediated expression of the ATP-binding cassette transporters ABCA1 and ABCG1, that was further enhanced when the cells were co-activated with the liver X receptor (LXR)α agonist (22R)-hydroxycholesterol. (iii) The effect of LXRα activation on the IL-10-mediated effects on the ATP-binding cassette transporters seems to include enhancing effects on the IL-10 receptor 1 (IL10R1) expression and interaction with STAT-3 signaling. (iv) These enhancing effects on ABCA1 and ABCG1 was not seen when the cells were stimulated with the IL-10 family members IL-22 and IL-24. This study suggests that the anti-atherogenic properties of IL-10 may include enhancing effects on cholesterol efflux mechanism that involves cross-talk with LXRα activation.

  15. Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid.

    PubMed

    Correia, Marta; Casal, Susana; Vinagre, João; Seruca, Raquel; Figueiredo, Ceu; Touati, Eliette; Machado, José C

    2014-05-01

    Helicobacter pylori colonizes half of the world population and is associated with gastric cancer. We have previously demonstrated that docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid known for its anti-inflammatory and antitumor effects, directly inhibits H. pylori growth in vitro and in mice. Nevertheless, the concentration of DHA shown to reduce H. pylori mice gastric colonization was ineffective in vitro. Related to the auxotrophy of H. pylori for cholesterol, we hypothesize that other mechanisms, in addition to DHA direct antibacterial effect, must be responsible for the reduction of the infection burden. In the present study we investigated if DHA affects also H. pylori growth, by reducing the availability of membrane cholesterol in the epithelial cell for H. pylori uptake. Levels of cholesterol in gastric epithelial cells and of cholesteryl glucosides in H. pylori were determined by thin layer chromatography and gas chromatography. The consequences of epithelial cells' cholesterol depletion on H. pylori growth were assessed in liquid cultures. We show that H. pylori uptakes cholesterol from epithelial cells. In addition, DHA lowers cholesterol levels in epithelial cells, decreases its de novo synthesis, leading to a lower synthesis of cholesteryl glucosides by H. pylori. A previous exposition of H. pylori to cholesterol influences the bacterium response to the direct inhibitory effect of DHA. Overall, our results suggest that a direct effect of DHA on H. pylori survival is modulated by its access to epithelial cell cholesterol, supporting the notion that cholesterol enhances the resistance of H. pylori. The cholesterol-dependent resistance of H. pylori to antimicrobial compounds raises new important aspects for the development of new anti-bacterial strategies. PMID:24447914

  16. Resveratrol Protects Rabbits Against Cholesterol Diet-Induced Hyperlipidaemia.

    PubMed

    Tanko, Y; Jimoh, A; Ahmed, A; Mohammed, A; Ayo, J O

    2016-01-01

    The excessive consumption of high cholesterol diet has been associated with an increased incidence oflipidaemia. Lipidaemia is enhanced by formation of oxidative stress, lipid peroxidation and hyperglycaemia. The aim ofthese experiments was to investigate the protective effect of resveratrol co-administered with cholesterol diet inducedhyperlipidaemia in rabbits. Thirty rabbits divided into six groups of five animal (group= 5) each: group 1 = normal control,group 2 = cholesterol diet/high fat diet group only (HFD), group 3 = resveratrol 200 mg/kg (R200), group 4 = resveratrol400 mg/kg (R400), group 5 = HFD + R200 and group 6 = HFD + R400. The normal group was fed with standard animalfeeds only; while the HFD groups were fed with standard animal feeds + cholesterol diet (10% Groundnut oil, 20%Groundnut mill and 2% cholesterol). Resveratrol-treated rabbits received resveratrol suspended in 10 g/Lcarboxymethylcellulose (CMC) and the control group received the vehicle only, CMC. The preparations were administeredfor 8 weeks of experimental protocol. At the end of the study period, the animals were sacrificed. Blood and plasma sampleswere collected. Serum evaluation of lipid profile such as total cholesterol (TC), triacylglycerol (Tg), low density lipoproteincholesterol (LDP-c) and high density lipoprotein cholesterol (HDL-c) were also assessed. The results obtained showsignificant (P < 0.05) decrease in total cholesterol (TC), Low density lipoprotein cholesterol (LDP-c), total triacylglyceroland an increase in high density lipoprotein cholesterol (HDL-c) in resveratrol treated groups compared to HFD group only.In conclusion, the findings indicated that Resveratrol may contain polar products able to lower plasma lipid concentrationsand might be beneficial in treatment of hyperlipidemia and atherosclerosis. PMID:27574767

  17. Helicobacter pylori's cholesterol uptake impacts resistance to docosahexaenoic acid.

    PubMed

    Correia, Marta; Casal, Susana; Vinagre, João; Seruca, Raquel; Figueiredo, Ceu; Touati, Eliette; Machado, José C

    2014-05-01

    Helicobacter pylori colonizes half of the world population and is associated with gastric cancer. We have previously demonstrated that docosahexaenoic acid (DHA), an n-3 polyunsaturated fatty acid known for its anti-inflammatory and antitumor effects, directly inhibits H. pylori growth in vitro and in mice. Nevertheless, the concentration of DHA shown to reduce H. pylori mice gastric colonization was ineffective in vitro. Related to the auxotrophy of H. pylori for cholesterol, we hypothesize that other mechanisms, in addition to DHA direct antibacterial effect, must be responsible for the reduction of the infection burden. In the present study we investigated if DHA affects also H. pylori growth, by reducing the availability of membrane cholesterol in the epithelial cell for H. pylori uptake. Levels of cholesterol in gastric epithelial cells and of cholesteryl glucosides in H. pylori were determined by thin layer chromatography and gas chromatography. The consequences of epithelial cells' cholesterol depletion on H. pylori growth were assessed in liquid cultures. We show that H. pylori uptakes cholesterol from epithelial cells. In addition, DHA lowers cholesterol levels in epithelial cells, decreases its de novo synthesis, leading to a lower synthesis of cholesteryl glucosides by H. pylori. A previous exposition of H. pylori to cholesterol influences the bacterium response to the direct inhibitory effect of DHA. Overall, our results suggest that a direct effect of DHA on H. pylori survival is modulated by its access to epithelial cell cholesterol, supporting the notion that cholesterol enhances the resistance of H. pylori. The cholesterol-dependent resistance of H. pylori to antimicrobial compounds raises new important aspects for the development of new anti-bacterial strategies.

  18. Chlamydia trachomatis growth depends on eukaryotic cholesterol esterification and is affected by Acyl-CoA:cholesterol acyltransferase inhibition

    PubMed Central

    Peters, Jan; Byrne, Gerald I.

    2015-01-01

    Chlamydia trachomatis is auxotrophic for a variety of essential metabolites. Inhibitors that interrupt host cell catabolism may inhibit chlamydial growth and reveal Chlamydia metabolite requirements. We used the known indoleamine-2,3-dioxygenase (IDO)-inhibitor 4-phenyl imidazole (4-PI) to reverse Interferon (IFN)-γ-induced chlamydial growth inhibition. However, at elevated inhibitor concentrations chlamydial growth was arrested even in the absence of IFN-γ. Since 4-PI is known to interfere with cholesterol metabolism, the effect of cholesterol add-back was tested. Chlamydia growth was restored in the presence of cholesterol in serum-containing, but not serum-free medium suggesting that cholesterol and other serum components are required for growth recovery. When serum factors were tested, either cholesteryl linoleate or the combination of cholesterol and linoleic acid restored chlamydial growth. However, growth was not restored when either cholesterol or linoleic acid were added alone, suggesting that the production of cholesteryl esters from cholesterol and fatty acids was affected by 4-PI treatment. In eukaryotic cells, the enzyme Acyl-CoA:cholesterol acyltransferase (ACAT) catalyzes the production of cholesteryl esters. When HeLa cells were treated with the ACAT-specific inhibitor 4-hydroxycinnamicacid amide C. trachomatis growth was interrupted, but was restored by the addition of cholesteryl linoleate, suggesting that ACAT activity is necessary for intracellular Chlamydia growth. PMID:25883118

  19. High Blood Cholesterol Q&A Dr. Michael Lauer | NIH MedlinePlus the Magazine

    MedlinePlus

    ... this page please turn Javascript on. Feature: High Cholesterol High Blood Cholesterol Q&A with Dr. Michael Lauer Past Issues / ... heavier and older, what does recent research on cholesterol and heart health tell us that Americans need ...

  20. Self-assembled nanoparticles of cholesterol-conjugated carboxymethyl curdlan as a novel carrier of epirubicin

    NASA Astrophysics Data System (ADS)

    Li, Lei; Gao, Fu-ping; Tang, Hong-bo; Bai, Yong-gang; Li, Rui-feng; Li, Xue-min; Liu, Ling-rong; Wang, Yin-song; Zhang, Qi-qing

    2010-07-01

    The purpose of this study was to develop nanoparticles made of cholesterol-conjugated carboxymethyl curdlan (CCMC) entrapping epirubicin (EPB) and establish their in vitro and in vivo potential. CCMC was synthesized and characterized by Fourier transform infrared spectra (FT-IR) and proton nuclear magnetic resonance spectra (1H NMR). The degrees of substitution (DS) of the cholesterol moiety were 2.3, 3.5 and 6.4, respectively. EPB-loaded CCMC-3.5 nanoparticles were prepared by the remote loading method. The physicochemical characteristics, drug loading efficiency and drug release kinetics of EPB-loaded CCMC-3.5 nanoparticles were characterized. The in vitro release profiles revealed that EPB release was sensitive to the pH as well as the drug loading contents. The cellular cytotoxicity and cellular uptake were accessed by using human cervical carcinoma (HeLa) cells. The EPB-loaded CCMC-3.5 nanoparticles were found to be more cytotoxic and have a broader distribution within the cells than the free EPB. The in vivo pharmacokinetics and biodistribution were investigated after intravenous injection in rats. Promisingly, a 4.0-fold increase in the mean residence time (MRT), a 4.31-fold increase in the half-life time and a 6.69-fold increase in the area under the curve (\\mathrm {AUC}_{0 \\to \\infty }) of EPB were achieved for the EPB-loaded CCMC-3.5 self-assembled nanoparticles compared with the free EPB. The drug level was significantly increased in liver at 24 and 72 h however, it decreased in heart at 8 and 24 h compared with the free EPB. The in vivo anti-tumor study indicated that the EPB-loaded CCMC-3.5 self-assembled nanoparticles showed greater anti-tumor efficacy than the free EPB. Taken together, the novel CCMC self-assembled nanoparticles might have potential application as anti-cancer drug carriers in a drug delivery system due to good results in vitro and in vivo.

  1. Apoprotein E phenotype determines serum cholesterol in infants during both high-cholesterol breast feeding and low-cholesterol formula feeding.

    PubMed

    Kallio, M J; Salmenperä, L; Siimes, M A; Perheentupa, J; Gylling, H; Miettinen, T A

    1997-04-01

    Our objective was to establish the role of the apoprotein (apo) E phenotype in determining serum cholesterol levels in infants fed exclusively on high-fat, high-cholesterol human milk and in those fed a low-cholesterol, high-unsaturated fat formula. The total and lipoprotein cholesterol, apoB, and triglyceride concentrations in serum were quantified and related to the apoE phenotype in 151 infants at birth and at 2, 6, 9, and 12 months of age. Forty-four had the E3/4 or 4/4 phenotype (E4 group), 94 had the E3/3 phenotype (E3 group), and 13 had the E2/3 or 2/4 phenotype (E2 group). In cord blood, cholesterol concentrations tended to be higher in the E4 than in the E2 group. With exclusive breast-feeding, the concentrations rose significantly faster and higher in the E4 group than in the E3 group or, especially, the E2 group. The values (mmol/L, mean +/- SEM) were 1.6 +/- 0.15, 1.5 +/- 0.05, 1.4 +/- 0.1 (P = n.s.) at birth; 4.2 +/- 0.1, 3.8 +/- 0.08, 3.4 +/- 0.2 (P < 0.001) at 2 months; 4.4 +/- 0.15, 3.9 +/- 0.1, 3.4 +/- 0.15 (P < 0.001) at 4 months; 4.3 +/- 0.17, 4.0 +/- 0.13, 3.7 +/- 0.26 (P < 0.001) at 6 months; 4.8 +/- 0.28, 4.4 +/- 0.11, 3.8 +/- 0.05 (P < 0.001) at 9 months; and 4.7 +/- 0.11, 4.4 +/- 0.08, 4.1 +/- 0.19 (P < 0.001) at 12 months, for the E4, E3, and E2 groups, respectively. Increases in LDL cholesterol and LDL apoB behaved similarly. The total triglyceride, and total HDL, HDL2, and HDL3 cholesterol concentrations did not depend on the apoE phenotype. Among infants fed high-fat, high-cholesterol human milk, the total and LDL-cholesterol concentrations and the LDL apoB concentration of those with the apoE phenotype 4/4 or 3/4 rose faster and to higher levels than in other infants. Among formula-fed infants, receiving a low-cholesterol, high-unsaturated fat diet, the differences between the apoE groups were smaller.

  2. Development of a Cell-Based, High-Throughput Screening Assay for Cholesterol Efflux Using a Fluorescent Mimic of Cholesterol

    PubMed Central

    Zhang, Jun; Cai, Sutang; Peterson, Blake R.; Kris-Etherton, Penny M.

    2011-01-01

    Abstract Reverse cholesterol transport is the process by which extrahepatic cells, including macrophage-derived foam cells in arterial atherosclerotic plaque, transport excessive cholesterol back to the liver for bile acid synthesis and excretion, thus lowering the peripheral lipid burden. Cholesterol efflux from peripheral cells is the first step in this process, and finding drugs and interventions that promote this event is an important endeavor. Radioisotope-labeled cholesterol traditionally has been employed in measuring efflux efficiency, but this reagent has limitations for high-throughput screening. We developed an alternative method to measure cholesterol efflux in macrophage-derived foam cells using a novel fluorescent cholesterol mimic comprising the Pennsylvania Green fluorophore, attached by a linker containing a glutamic acid residue, to a derivative of N-alkyl-3β-cholesterylamine. Compared with the traditional radioisotope-based assay, this fluorescence-based assay gave similar results in the presence of known modulators of cholesterol efflux, such as cyclic AMP, and different cholesterol acceptors. When the fluorescent probe was employed in a high-throughput screening format, a variety of chemicals and bioactive compounds with known and unknown effects on cholesterol efflux could be tested simultaneously by plate-reader in a short period of time. Treatment of THP-1-derived macrophages with inhibitors of the membrane transporter ATP-binding cassette A1, such as glyburide or a specific antibody, significantly reduced the export of this fluorescent compound, indicating that ATP-binding cassette A1 represents the primary mediator of its cellular efflux. This fluorescent mimic of cholesterol provides a safe, sensitive, and reproducible alternative to radioactive assays in efflux experiments and has great potential as a valuable tool when incorporated into a drug discovery program. PMID:21050070

  3. Absorption and transport of cholesterol autoxidation derivatives in rabbits

    SciTech Connect

    Peng, S.K.; Morin, R.J.; Phillips, G.A.; Xia, G.Z.

    1986-03-01

    Spontaneously autoxidized products of cholesterol have been demonstrated to be angiotoxic and possibly atherogenic. This study investigates the absorption and transport of these cholesterol oxidation derivatives (COD's) as compared to cholesterol. /sup 14/C-labeled cholesterol autoxidized by incubation in a 60/sup 0/C water bath for 5 weeks, then suspended in gelatin and given to New Zealand white rabbits by gastric gavage. Rabbits were sacrificed 24 hours after treatment. COD's were separated by thin layer chromatography (TLC) and radioactivities of each COD and cholesterol were measured. Percentages of each COD and cholesterol in the original mixture before administration and in the rabbits' serum after administration are almost identical, suggesting that the rates of absorption of COD's are not significantly different from that of cholesterol. Lipoproteins were fractionated by ultracentrifugation into VLDL, LDL and HDL. Radioactivities of each COD separated by TLC in each lipoprotein fraction showed that cholestane-3..beta..,5..cap alpha..,6..beta..-triol, 7..cap alpha..- and 7..beta..-hydroxycholesterol and 7-ketocholesterol were predominantly present in VLDL (3 x serum concentration) and 25-hydroxycholesterol was predominantly in LDL (2.5 x serum concentration). HDL contained only minute amounts of COD's. The increased levels of COD's in VLDL and LDL may contribute to the atherogenicity of these lipoprotein.

  4. Regulation of cholesterol esterification by protein kinase C

    SciTech Connect

    Jeng, I.; Dills, C.; Klemm, N.; Wu, C.

    1986-03-05

    They have recently identified acyl-CoA cholesterol acyltransferase as the key enzyme for cholesterol esterification in the central nervous system. They found that the activity of glial acyl-CoA cholesterol acyltransferase could be controlled by a phosphorylation-dephosphorylation mechanism. However, repeated attempts to identify cyclic AMP as the bioregulator for this reaction failed. Recently, they have studied the possible involvement of protein kinase C in the regulation of glial cholesterol esterification. Phorbol-12-myristate 13-acetate (PMA) can activate cellular cholesterol esterification in a complex, time-dependent manner. Phorbol analogues inactive toward protein kinase C are also ineffective in this assay. Furthermore, oleoyl-acetyl-glycerol mimics the effect of PMA, confirming the proposal that protein kinase C mediates the effect of these compounds and that the natural bioregulator is probably diacylglycerol. Receptor-mediated polyphosphatidyl-inositol cleavage often produces diacylglycerol and inositol triphosphate. The synergic effects of these two compounds are known to be necessary to elicit other biological responses. Their preliminary studies using calcium ionophore A23187 indicates that Ca/sup + +/ is not required for cellular cholesterol esterification. In sum, glial cholesterol esterification is probably regulated by a calcium-independent and protein kinase C-dependent reaction.

  5. Low HDL cholesterol, aggression and altered central serotonergic activity.

    PubMed

    Buydens-Branchey, L; Branchey, M; Hudson, J; Fergeson, P

    2000-03-01

    Many studies support a significant relation between low cholesterol levels and poor impulse, aggression and mood control. Evidence exists also for a causal link between low brain serotonin (5-HT) activity and these behaviors. Mechanisms linking cholesterol and hostile or self-destructive behavior are unknown, but it has been suggested that low cholesterol influences 5-HT function. This study was designed to explore the relationship between plasma cholesterol, measures of impulsivity and aggression, and indices of 5-HT function in personality disordered cocaine addicts. Thirty-eight hospitalized male patients (age 36.8+/-7.1) were assessed with the DSM-III-R, the Buss-Durkee Hostility Inventory (BDHI), the Barratt Impulsiveness Scale (BIS) and the Brown-Goodwin Assessment for Life History of Aggression. Fasting basal cholesterol (total, LDL and HDL) was determined 2 weeks after cocaine discontinuation. On the same day 5-HT function was assessed by neuroendocrine (cortisol and prolactin) and psychological (NIMH and 'high' self-rating scales) responses following meta-chlorophenylpiperazine (m-CPP) challenges. Reduced neuroendocrine responses, 'high' feelings and increased 'activation-euphoria' following m-CPP have been interpreted as indicating 5-HT alterations in a variety of psychiatric conditions. Significantly lower levels of HDL cholesterol were found in patients who had a history of aggression (P=0.005). Lower levels of HDL cholesterol were also found to be significantly associated with more intense 'high' and 'activation-euphoria' responses as well as with blunted cortisol responses to m-CPP (P=0.033, P=0.025 and P=0.018, respectively). This study gives further support to existing evidence indicating that in some individuals, the probability of exhibiting impulsive and violent behaviors may be increased when cholesterol is low. It also suggests that low cholesterol and alterations in 5-HT activity may be causally related.

  6. Cholesterol Depletion Alters Cardiomyocyte Subcellular Signaling and Increases Contractility

    PubMed Central

    McIntosh, Victoria J.; Abou Samra, Abdul B.; Mohammad, Ramzi M.; Lasley, Robert D.

    2016-01-01

    Membrane cholesterol levels play an important factor in regulating cell function. Sarcolemmal cholesterol is concentrated in lipid rafts and caveolae, which are flask-shaped invaginations of the plasma membrane. The scaffolding protein caveolin permits the enrichment of cholesterol in caveolae, and caveolin interactions with numerous proteins regulate their function. The purpose of this study was to determine whether acute reductions in cardiomyocyte cholesterol levels alter subcellular protein kinase activation, intracellular Ca2+ and contractility. Methods: Ventricular myocytes, isolated from adult Sprague Dawley rats, were treated with the cholesterol reducing agent methyl-β-cyclodextrin (MβCD, 5 mM, 1 hr, room temperature). Total cellular cholesterol levels, caveolin-3 localization, subcellular, ERK and p38 mitogen activated protein kinase (MAPK) signaling, contractility, and [Ca2+]i were assessed. Results: Treatment with MβCD reduced cholesterol levels by ~45 and shifted caveolin-3 from cytoskeleton and triton-insoluble fractions to the triton-soluble fraction, and increased ERK isoform phosphorylation in cytoskeletal, cytosolic, triton-soluble and triton-insoluble membrane fractions without altering their subcellular distributions. In contrast the primary effect of MβCD was on p38 subcellular distribution of p38α with little effect on p38 phosphorylation. Cholesterol depletion increased cardiomyocyte twitch amplitude and the rates of shortening and relaxation in conjunction with increased diastolic and systolic [Ca2+]i. Conclusions: These results indicate that acute reductions in membrane cholesterol levels differentially modulate basal cardiomyocyte subcellular MAPK signaling, as well as increasing [Ca2+]i and contractility. PMID:27441649

  7. Antiatherogenic activity of extracts of Argania spinosa L. pericarp: beneficial effects on lipid peroxidation and cholesterol homeostasis.

    PubMed

    Berrougui, Hicham; Cherki, Mounia; Koumbadinga, Geremy Abdull; Isabelle, Maxim; Douville, Jasmin; Spino, Claude; Khalil, Abdelouahed

    2007-09-01

    Prevention of lipoprotein oxidation by natural compounds may prevent atherosclerosis via reducing early atherogenesis. In this study, we investigated for the first time the beneficial properties of methanolic extract of argania pericarp (MEAP) towards atherogenesis by protecting human low-density lipoprotein (LDL) against oxidation while promoting high-density lipoprotein (HDL)-mediated cholesterol efflux. By measuring the formation of malondialdehyde (MDA) and conjugated diene as well as the lag phase and the progression rate of lipid peroxidation, the MEAP was found to possess an inhibitory effect. In addition, MEAP reduced the rate of disappearance of alpha-tocopherol as well as the apoB electrophoretic mobility in a dose-dependent manner. These effects are related to the free radical scavenging and copper-chelating effects of MEAP. In terms of cell viability, MEAP has shown a cytotoxic effect (0-40 microg/mL). Incubation of 3H-cholesterol-loaded J774 macrophages with HDL in the presence of increasing concentrations of MEAP enhanced HDL-mediated cholesterol efflux independently of ABCA1 receptor pathways. Our findings suggest that argania seed pericarp provides a source of natural antioxidants that inhibit LDL oxidation and enhance cholesterol efflux and thus can prevent development of cardiovascular diseases. PMID:18066138

  8. Cholesterol management in theory and practice.

    PubMed

    Gotto, A M

    1997-12-16

    The preponderance of evidence confirms the importance of aggressive lipid modification in patients at risk for coronary heart disease (CHD). However, data suggest that this information is underimplemented in the clinical setting, even in patients with existing CHD, in whom the greatest benefit of such treatment has been shown. The fact that many practitioners do not pursue a proven treatment strategy in patients who qualify must be redressed through education and reinforcement of existing recommendations. In the present review, the current clinical and mechanistic understanding of the benefit of aggressive lipid management is summarized, with a focus on the clinical implications of recent findings. These include growing public awareness of cholesterol as a modifiable CHD risk factor, recommendations for earlier and more aggressive intervention in patients with existing disease, and discussion of the cost-effectiveness of lipid-regulating therapy. Despite the secular trend of declining CHD morbidity and mortality rates in recent years, CHD remains the leading cause of death in both men and women in the United States. It is imperative to prevent any reduction in public focus on primary and secondary prevention.

  9. Nanosecond Lipid Dynamics in Membranes Containing Cholesterol

    SciTech Connect

    Armstrong, Clare L; Haeussler, Wolfgang; Seydel, Tilo; Katsaras, John; Rheinstadter, Maikel C

    2014-01-01

    Lipid dynamics in the cholesterol-rich (40 mol%) liquid-ordered (lo) phase of dimyristoylphosphatidylcholine membranes were studied using neutron spin-echo and neutron backscattering. Recent theoretical and experimental evidence supports the notion of the liquid-ordered phase in phospholipid membranes as a locally structured liquid, with small ordered domains of a highly dynamic nature in equilibrium with a disordered matrix [S. Meinhardt, R. L. C. Vink and F. Schmid, Proc. Natl. Acad. Sci. U. S. A., 2013, 110(12), 4476 4481, C. L. Armstrong et al., PLoS One, 2013, 8(6), e66162]. This local structure was found to have a pronounced impact on the membranes' dynamical properties. We found that the long-wavelength dynamics in the liquid-ordered phase, associated with the elastic properties of the membranes, were faster by two orders of magnitude as compared to the liquid disordered phase. At the same time, collective nanoscale diffusion was significantly slower. The presence of a soft-mode (a slowing down) in the longwavelength dispersion relationship suggests an upper size limit for the ordered lipid domain of ~220 A. Moreover, from the relaxation rate of the collective lipid diffusion of lipid lipid distances, the lifetime of these domains was estimated to be about 100 nanoseconds.

  10. Lipid-based transfection reagents can interfere with cholesterol biosynthesis.

    PubMed

    Danielli, Mauro; Marinelli, Raúl A

    2016-02-15

    Lipid-based transfection reagents are widely used for delivery of small interfering RNA into cells. We examined whether the commonly used commercial transfection reagents DharmaFECT-4 and Lipofectamine 2000 can interfere with lipid metabolism by studying cholesterogenesis. Cholesterol de novo synthesis from [(14)C]acetate was assessed in human hepatocyte-derived Huh-7 cells. The results revealed that DharmaFECT, but not Lipofectamine, markedly inhibited cholesterol biosynthesis by approximately 70%. Cell viability was not significantly altered. These findings suggest that caution is required in the choice of certain lipid-based transfection reagents for gene silencing experiments, particularly when assessing cholesterol metabolism.

  11. Assessing Cholesterol Storage in Live Cells and C. elegans by Stimulated Raman Scattering Imaging of Phenyl-Diyne Cholesterol

    NASA Astrophysics Data System (ADS)

    Lee, Hyeon Jeong; Zhang, Wandi; Zhang, Delong; Yang, Yang; Liu, Bin; Barker, Eric L.; Buhman, Kimberly K.; Slipchenko, Lyudmila V.; Dai, Mingji; Cheng, Ji-Xin

    2015-01-01

    We report a cholesterol imaging method using rationally synthesized phenyl-diyne cholesterol (PhDY-Chol) and stimulated Raman scattering (SRS) microscope. The phenyl-diyne group is biologically inert and provides a Raman scattering cross section that is 88 times larger than the endogenous C = O stretching mode. SRS microscopy offers an imaging speed that is faster than spontaneous Raman microscopy by three orders of magnitude, and a detection sensitivity of 31 μM PhDY-Chol (~1,800 molecules in the excitation volume). Inside living CHO cells, PhDY-Chol mimics the behavior of cholesterol, including membrane incorporation and esterification. In a cellular model of Niemann-Pick type C disease, PhDY-Chol reflects the lysosomal accumulation of cholesterol, and shows relocation to lipid droplets after HPβCD treatment. In live C. elegans, PhDY-Chol mimics cholesterol uptake by intestinal cells and reflects cholesterol storage. Together, our work demonstrates an enabling platform for study of cholesterol storage and trafficking in living cells and vital organisms.

  12. Assessing Cholesterol Storage in Live Cells and C. elegans by Stimulated Raman Scattering Imaging of Phenyl-Diyne Cholesterol

    PubMed Central

    Lee, Hyeon Jeong; Zhang, Wandi; Zhang, Delong; Yang, Yang; Liu, Bin; Barker, Eric L.; Buhman, Kimberly K.; Slipchenko, Lyudmila V.; Dai, Mingji; Cheng, Ji-Xin

    2015-01-01

    We report a cholesterol imaging method using rationally synthesized phenyl-diyne cholesterol (PhDY-Chol) and stimulated Raman scattering (SRS) microscope. The phenyl-diyne group is biologically inert and provides a Raman scattering cross section that is 88 times larger than the endogenous C = O stretching mode. SRS microscopy offers an imaging speed that is faster than spontaneous Raman microscopy by three orders of magnitude, and a detection sensitivity of 31 μM PhDY-Chol (~1,800 molecules in the excitation volume). Inside living CHO cells, PhDY-Chol mimics the behavior of cholesterol, including membrane incorporation and esterification. In a cellular model of Niemann-Pick type C disease, PhDY-Chol reflects the lysosomal accumulation of cholesterol, and shows relocation to lipid droplets after HPβCD treatment. In live C. elegans, PhDY-Chol mimics cholesterol uptake by intestinal cells and reflects cholesterol storage. Together, our work demonstrates an enabling platform for study of cholesterol storage and trafficking in living cells and vital organisms. PMID:25608867

  13. Individual Variation in the Effects of Dietary Cholesterol on Plasma Lipoproteins and Cellular Cholesterol Homeostasis in Man

    PubMed Central

    Mistry, P.; Miller, N. E.; Laker, M.; Hazzard, W. R.; Lewis, B.

    1981-01-01

    The effects of dietary cholesterol on plasma lipoproteins and cholesterol homeostasis in blood mononuclear cells have been examined in healthy adults. Addition of 1,500 mg of cholesterol to the daily diet of 37 subjects for 14 d was associated with a wide range of response of plasma total cholesterol concentration (from −6 to +75 mg/dl; mean change, +29 mg/dl; P < 0.001). Increases in plasma cholesterol reflected increased cholesterol concentrations in intermediate density lipoprotein (IDL; 1.006-1.019 g/ml), low density lipoprotein (LDL; 1.019-1.063 g/ml), and the HDL2 subclass (1.063-1.125 g/ml) of high density lipoprotein, which on average accounted for 20, 58, and 22%, respectively, of the total increment. Similar responses occurred in 14 other subjects given 750 mg cholesterol per day for 28 d. Plasma apolipoprotein B concentrations in IDL and LDL also increased. These effects on plasma lipoproteins were accompanied by three changes in freshly isolated blood mononuclear cells: (a) an increase in cell cholesterol content (mean change, +17%; P < 0.01); (b) suppression of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase activity (−32%; P < 0.001); and (c) reduction of LDL receptor activity (−74%; P < 0.01), quantified as the rate of degradation of 125I-LDL to noniodide trichloroacetic acid-soluble material. These results provide the first direct evidence for the modulation of LDL receptor activity and HMG CoA reductase activity in a peripheral cell type in response to a dietary perturbation of human lipoprotein metabolism. The percentage increase in LDL cholesterol was negatively correlated with the percentage decrease in HMG CoA reductase activity (r = −0.49, P < 0.01). An additional negative correlation existed between the increment in plasma cholesterol concentration and the capacity of cells to degrade 125I-LDL after derepression by preincubation for 72 h in lipoprotein-deficient medium (r = −0.74, P < 0.001). Thus, differences between

  14. [Cholesterol content in chicken meat and chicken products].

    PubMed

    Rincón, A M; Carrillo de Padilla, F; Araujo de Vizcarrondo, C; Martín, E

    1997-03-01

    High cholesterol saturated lipids ingestion has been linked to the increment of coronary diseases, particularly atherosclerosis. In this study, samples of viscera and chicken meat, as well as manufactured chicken products are characterized from the point of view of their sterol content, specially cholesterol, with the purpose to determine their nutritional quality and to contribute with the development of Venezuelan food composition tables. Gas-liquid chromatography was the method chosen for the separation and quantification of cholesterol and fitosterols eventually present. The method involves lipids extraction, direct saponification, extraction of the unsaponifiable matter and its injection in the gas chromatograph. The average cholesterol values in mg/100 g. wet sample were: 31.13 (manufactured chicken breast); 57,35 (ham like type of product made with chicken); 69.02 (chicken sausages); 60.46 (chicken "bologna").

  15. Embedding Aβ42 in heterogeneous membranes depends on cholesterol asymmetries.

    PubMed

    Liguori, Nicoletta; Nerenberg, Paul S; Head-Gordon, Teresa

    2013-08-20

    Using a coarse-grained lipid and peptide model, we show that the free energy stabilization of amyloid-β in heterogeneous lipid membranes is predicted to have a dependence on asymmetric distributions of cholesterol compositions across the membrane leaflets. We find that a highly asymmetric cholesterol distribution that is depleted on the exofacial leaflet but enhanced on the cytofacial leaflet of the model lipid membrane thermodynamically favors membrane retention of a fully embedded Aβ peptide. However, in the case of cholesterol redistribution that increases concentration of cholesterol on the exofacial layer, typical of aging or Alzheimer's disease, the free energy favors peptide extrusion of the highly reactive N-terminus into the extracellular space that may be vulnerable to aggregation, oligomerization, or deleterious oxidative reactivity. PMID:23972842

  16. Are You Taking the Right Treatment for Your High Cholesterol?

    MedlinePlus

    ... Babies & toddlers Baby activity centers Baby bathtubs Baby bottles Baby carriers Baby clothes Baby food Baby formulas ... many still believe that simply cutting cholesterol-laden eggs out of their diet will do the trick. ...

  17. Helical synthetic peptides that stimulate cellular cholesterol efflux

    SciTech Connect

    Bielicki, John K.; Natarajan, Pradeep

    2010-04-06

    The present invention provides peptides comprising at least one amphipathic alpha helix and having an cholesterol mediating activity and a ABCA stabilization activity. The invention further provides methods of using such peptides.

  18. High Blood Cholesterol: What You Need to Know

    MedlinePlus

    ... keep cholesterol from building up in the arteries Triglycerides--another form of fat in your blood If ... help to lower your risk for heart disease. Triglycerides can also raise heart disease risk. Levels that ...

  19. Alternative to decrease cholesterol in sheep milk cheeses.

    PubMed

    Gómez-Cortés, P; Viturro, E; Juárez, M; de la Fuente, M A

    2015-12-01

    The presence of cholesterol in foods is of nutritional interest because high levels of this molecule in human plasma are associated with an increasing risk of cardiovascular disease and nowadays consumers are demanding healthier products. The goal of this experiment was to diminish the cholesterol content of Manchego, the most popular Spanish cheese manufactured from ewes milk. For this purpose three bulk milks coming from dairy ewe fed with 0 (Control), 3 and 6% of linseed supplement on their diet were used. Nine cheeses (3 per bulk milk) were manufactured and ripened for 3 months. Cholesterol of ewes milk cheese from 6% to 12% linseed supplemented diets decreased by 9.6% and 16.1% respectively, therefore supplying a healthier profile. In a second experiment, different sources of unsaturated fatty acids (rich in oleic, linoleic and α-linolenic acids) were supplemented to dairy ewes and no significant differences were found on cheese cholesterol levels. PMID:26041199

  20. Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling.

    PubMed

    Huang, Pengxiang; Nedelcu, Daniel; Watanabe, Miyako; Jao, Cindy; Kim, Youngchang; Liu, Jing; Salic, Adrian

    2016-08-25

    In vertebrates, sterols are necessary for Hedgehog signaling, a pathway critical in embryogenesis and cancer. Sterols activate the membrane protein Smoothened by binding its extracellular, cysteine-rich domain (CRD). Major unanswered questions concern the nature of the endogenous, activating sterol and the mechanism by which it regulates Smoothened. We report crystal structures of CRD complexed with sterols and alone, revealing that sterols induce a dramatic conformational change of the binding site, which is sufficient for Smoothened activation and is unique among CRD-containing receptors. We demonstrate that Hedgehog signaling requires sterol binding to Smoothened and define key residues for sterol recognition and activity. We also show that cholesterol itself binds and activates Smoothened. Furthermore, the effect of oxysterols is abolished in Smoothened mutants that retain activation by cholesterol and Hedgehog. We propose that the endogenous Smoothened activator is cholesterol, not oxysterols, and that vertebrate Hedgehog signaling controls Smoothened by regulating its access to cholesterol. PMID:27545348

  1. A Cholesterol Recognition Motif in Human Phospholipid Scramblase 1

    PubMed Central

    Posada, Itziar M.D.; Fantini, Jacques; Contreras, F. Xabier; Barrantes, Francisco; Alonso, Alicia; Goñi, Félix M.

    2014-01-01

    Human phospholipid scramblase 1 (SCR) catalyzes phospholipid transmembrane (flip-flop) motion. This protein is assumed to bind the membrane hydrophobic core through a transmembrane domain (TMD) as well as via covalently bound palmitoyl residues. Here, we explore the possible interaction of the SCR TMD with cholesterol by using a variety of experimental and computational biophysical approaches. Our findings indicate that SCR contains an amino acid segment at the C-terminal region that shows a remarkable affinity for cholesterol, although it lacks the CRAC sequence. Other 3-OH sterols, but not steroids lacking the 3-OH group, also bind this region of the protein. The newly identified cholesterol-binding region is located partly at the C-terminal portion of the TMD and partly in the first amino acid residues in the SCR C-terminal extracellular coil. This finding could be related to the previously described affinity of SCR for cholesterol-rich domains in membranes. PMID:25229146

  2. Trypanosoma cruzi infection results in an increase in intracellular cholesterol

    PubMed Central

    Johndrow, Christopher; Nelson, Randin; Tanowitz, Herbert; Weiss, Louis; Nagajyothi, Fnu

    2014-01-01

    Chagasic cardiomyopathy caused by Trypanosoma cruzi is a major health concern in Latin America and among immigrant populations in non-endemic areas. T. cruzi has a high affinity for host lipoproteins and uses the low density lipoprotein receptor (LDLr) for invasion. Herein, we report that T. cruzi infection is associated with an accumulation of LDL and cholesterol in tissues in both acute and chronic murine Chagas disease. Similar findings were observed in tissue samples from a human case of Chagasic cardiomyopathy. T. cruzi infection of cultured cells displayed increased invasion with increasing cholesterol levels in the medium. Studies of infected host cells demonstrated alterations in their cholesterol regulation. T. cruzi invasion/infection via LDLr appears to be involved in changes in intracellular cholesterol homeostasis. The observed changes in intracellular lipids and associated oxidative stress due to these elevated lipids may contribute to the development of Chagasic cardiomyopathy. PMID:24486184

  3. On the Interaction between Digitonin and Cholesterol in Langmuir Monolayers.

    PubMed

    Wojciechowski, Kamil; Orczyk, Marta; Gutberlet, Thomas; Brezesinski, Gerald; Geue, Thomas; Fontaine, Philippe

    2016-09-01

    In this article, we describe the effect of a highly hemolytic saponin, digitonin, on model lipids cholesterol and dipalmitoylphosphatidylcholine (DPPC) using a combination of tensiometric (surface pressure and dilatational surface elasticity), spectroscopic (infrared reflection absorption spectroscopy, IRRAS), microscopic (fluorescence microscopy), and scattering techniques (neutron reflectivity, NR, and grazing incidence X-ray diffraction, GIXD). The monolayers of individual lipids and their 10:9 (mol/mol) mixture were exposed to an aqueous solution of digitonin (10(-4) M) by subphase exchange using a setup developed recently in our laboratory. The results confirm that digitonin can adsorb onto both bare and lipid-covered water-air interfaces. In the case of DPPC, a relatively weak interaction can be observed, but the presence of cholesterol drastically enhances the effect of digitonin. The latter is shown to dissociate the weak cholesterol-DPPC complexes and to bind cholesterol in an additional layer attached to the original lipid monolayer.

  4. Motivational effect of cholesterol measurement in general practice health checks.

    PubMed Central

    Robertson, I; Phillips, A; Mant, D; Thorogood, M; Fowler, G; Fuller, A; Yudkin, P; Woods, M

    1992-01-01

    A randomized trial was conducted in five general practices in and around Aylesbury, Buckinghamshire to assess the motivational effect of cholesterol measurement on compliance with advice to reduce dietary fat intake and to stop smoking. The advice was given by practice nurses during health checks for cardiovascular risk factors. A total of 578 patients were recruited to the study and randomized into two groups. Both groups were given the same advice and were followed up after a median of three months, but the intervention group was also given immediate feedback on their cholesterol concentration. Follow up was completed for 88.2% of subjects, and those who were not followed up were assumed not to have changed their behaviour. The mean fall in total cholesterol at follow up was 0.11 mmol l-1 (95% confidence interval 0.03 to 0.18) in the intervention group who were told their cholesterol result and 0.02 mmol l-1 (95% CI -0.06 to 0.10) in the control group who were not. The proportion of smokers who were not smoking at follow up was 10.7% and 10.1% in the two groups, respectively. Patients in the intervention group with an initial total cholesterol level of 6.50 mmol l-1 or greater showed a mean fall of 6.2% in cholesterol level whereas those with an initial cholesterol level of less than 5.20 mmol l-1 experienced a mean increase of 3.6%, but as differences of this magnitude were also seen in the control group they probably reflect regression to the mean rather than an effect of knowledge of cholesterol level.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1472394

  5. Discovery of the cellular and molecular basis of cholesterol control.

    PubMed

    Schekman, Randy

    2013-09-10

    The cellular control of cholesterol metabolism mediated by lipoproteins was first appreciated in pioneering work published in a 1974 PNAS Classic by Michael Brown and Joseph Goldstein. We know from this paper that the LDL binds to a cell surface receptor and dampens the activity of a key enzyme in cholesterol biosynthesis and that a receptor deficiency is responsible for a major genetic cause of hypercholesterolemia and premature atherosclerosis.

  6. Linkage between cholesterol 7alpha-hydroxylase and high plasma low-density lipoprotein cholesterol concentrations.

    PubMed Central

    Wang, J; Freeman, D J; Grundy, S M; Levine, D M; Guerra, R; Cohen, J C

    1998-01-01

    Interindividual differences in plasma low-density lipoprotein cholesterol (LDL-C) levels reflect both environmental variation and genetic polymorphism, but the specific genes involved and their relative contributions to the variance in LDL-C are not known. In this study we investigated the relationship between plasma LDL-C concentrations and three genes with pivotal roles in LDL metabolism: the low-density lipoprotein receptor (LDLR), apolipoprotein B (APOB), and cholesterol 7alpha-hydroxylase (CYP7). Analysis of 150 nuclear families indicated statistically significant linkage between plasma LDL-C concentrations and CYP7, but not LDLR or APOB. Further sibling pair analyses using individuals with high plasma LDL-C concentrations as probands indicated that the CYP7 locus was linked to high plasma LDL-C, but not to low plasma LDL-C concentrations. This finding was replicated in an independent sample. DNA sequencing revealed two linked polymorphisms in the 5' flanking region of CYP7. The allele defined by these polymorphisms was associated with increased plasma LDL-C concentrations, both in sibling pairs and in unrelated individuals. Taken together, these findings indicate that polymorphism in CYP7 contributes to heritable variation in plasma LDL-C concentrations. Common polymorphisms in LDLR and APOB account for little of the heritable variation in plasma LDL-C concentrations in the general population. PMID:9502769

  7. Comparative effects of cholesterol and cholesterol sulfate on hydration and ordering of dimyristoylphosphatidylcholine membranes.

    PubMed Central

    Faure, C; Tranchant, J F; Dufourc, E J

    1996-01-01

    The comparative effect of cholesterol (CH) versus cholesterol sulfate (CS) on dimyristoylphosphatidylcholine (DMPC) membranes has been investigated by optical microscopy, freeze-fracture electron microscopy, x-ray diffraction, and solid state 2H and 31P nuclear magnetic resonance (NMR). The sulfate analogue extends the lamellar phase domain toward high water contents, and substitution of 30 mol % CH by CS in DMPC lamellae induces the trapping of 30 wt % additional water. The greater swelling of the CS-containing systems is evidenced by determination of lamellar repeat distances at maximal hydration: 147 +/- 4 A and 64 +/- 2 A in the presence of CS and CH, respectively. 2H-NMR of heavy water demonstrates that CS binds approximately 12 more water molecules at the interface than CH whereas NMR of deuterium-labeled DMPC chains reveals that 30 mol % CS orders the membrane as 15 mol % CH at high temperature and disorders much more than CH at low temperatures. The various effects of CS versus CH are discussed by taking into account attractive Van der Waals forces and repulsive steric/electrostatic interactions of the negatively charged sulfate group. Images FIGURE 2 PMID:8785293

  8. Prenatal Ethanol Exposure Increases Brain Cholesterol Content in Adult Rats

    PubMed Central

    Barceló-Coblijn, Gwendolyn; Wold, Loren E.; Ren, Jun; Murphy, Eric J.

    2013-01-01

    Fetal alcohol syndrome is the most severe expression of the fetal alcohol spectrum disorders (FASD). Although alterations in fetal and neonate brain fatty acid composition and cholesterol content is known to change in animal models of FASD, the persistence of these alterations into adulthood is unknown. To address this question, we determined the effect of prenatal ethanol exposure on individual phospholipid class fatty acid composition, individual phospholipid class mass, and cholesterol mass in brains from 25-week-old rats that were exposed to ethanol during gestation beginning at gestational day 2. While total phospholipid mass was unaffected, phosphatidylinositol and cardiolipin mass was decreased 14 and 43%, respectively. Exposure to prenatal ethanol modestly altered brain phospholipid fatty acid composition, and the most consistent change was a significant 1.1-fold increase in total PUFA, in the n-3/n-6 ratio, and in the 22:6 n-3 content in ethanolamine glycerophospholipids and in phosphatidylserine. In contrast, prenatal ethanol consumption significantly increased brain cholesterol mass 1.4-fold and the phospholipid to cholesterol ratio was significantly increased 1.3-fold. These results indicate that brain cholesterol mass was significantly increased in adult rats exposed prenatally to ethanol, but changes in phospholipid mass and phospholipid fatty acid composition were extremely limited. Importantly, suppression of post-natal ethanol consumption was not sufficient to reverse the large increase in cholesterol observed in the adult rats. PMID:23996454

  9. The Role of Cholesterol in Driving IAPP-Membrane Interactions.

    PubMed

    Sciacca, Michele F M; Lolicato, Fabio; Di Mauro, Giacomo; Milardi, Danilo; D'Urso, Luisa; Satriano, Cristina; Ramamoorthy, Ayyalusamy; La Rosa, Carmelo

    2016-07-12

    Our knowledge of the molecular events underlying type 2 diabetes mellitus-a protein conformational disease characterized by the aggregation of islet amyloid polypeptide (IAPP) in pancreatic β cells-is limited. However, amyloid-mediated membrane damage is known to play a key role in IAPP cytotoxicity, and therefore the effects of lipid composition on modulating IAPP-membrane interactions have been the focus of intense research. In particular, membrane cholesterol content varies with aging and consequently with adverse environmental factors such as diet and lifestyle, but its role in the development of the disease is controversial. In this study, we employ a combination of experimental techniques and in silico molecular simulations to shed light on the role of cholesterol in IAPP aggregation and the related membrane disruption. We show that if anionic POPC/POPS vesicles are used as model membranes, cholesterol has a negligible effect on the kinetics of IAPP fibril growth on the surface of the bilayer. In addition, cholesterol inhibits membrane damage by amyloid-induced poration on membranes, but enhances leakage through fiber growth on the membrane surface. Conversely, if 1:2 DOPC/DPPC raft-like model membranes are used, cholesterol accelerates fiber growth. Next, it enhances pore formation and suppresses fiber growth on the membrane surface, leading to leakage. Our results highlight a twofold effect of cholesterol on the amyloidogenicity of IAPP and help explain its debated role in type 2 diabetes mellitus. PMID:27410742

  10. Cholesterol-dependent Conformational Plasticity in GPCR Dimers

    PubMed Central

    Prasanna, Xavier; Sengupta, Durba; Chattopadhyay, Amitabha

    2016-01-01

    The organization and function of the serotonin1A receptor, an important member of the GPCR family, have been shown to be cholesterol-dependent, although the molecular mechanism is not clear. We performed a comprehensive structural and dynamic analysis of dimerization of the serotonin1A receptor by coarse-grain molecular dynamics simulations totaling 3.6 ms to explore the molecular details of its cholesterol-dependent association. A major finding is that the plasticity and flexibility of the receptor dimers increase with increased cholesterol concentration. In particular, a dimer interface formed by transmembrane helices I-I was found to be sensitive to cholesterol. The modulation of dimer interface appears to arise from a combination of direct cholesterol occupancy and indirect membrane effects. Interestingly, the presence of cholesterol at the dimer interface is correlated with increased dimer plasticity and flexibility. These results represent an important step in characterizing the molecular interactions in GPCR organization with potential relevance to therapeutic interventions. PMID:27535203

  11. Europium tetracycline biosensor for the determination of cholesterol

    NASA Astrophysics Data System (ADS)

    Courrol, Lilia Coronato; Silva, Flávia Rodrigues de Oliveira; Samad, Ricardo Elgul; Mansano, Ronaldo Domingues; Vieira, Nilson Dias, Jr.

    2007-02-01

    Development of cholesterol biosensors is of great importance in clinical analysis because the concentration of cholesterol in blood is a fundamental parameter for the prevention and diagnosis of a number of clinical disorders such as heart disease, hypertension and arteriosclerosis. In general, determination of cholesterol is based on spectrophotometry; but this method involves complicated procedures and the cost is high because expensive enzyme must be used in each assay. We report here the observation, for the first time, of the enhancement of Europium-Tetracycline complex emission in cholesterol solutions. This enhancement was initially observed with the addition of the enzyme cholesterol oxidase, which produces H IIO II, the agent driver of the Europium tetracycline complex, to the solution. However, it was found that the enzyme is not needed to enhance the luminescence. A calibration curve was determined, resulting in an easy-handling immobilization method with a cheap stable material. This method shows that the complex can be used as a sensor to determine cholesterol in biological systems with good selectivity, fast response, miniature size, and reproducible results.

  12. Amyloid precursor protein controls cholesterol turnover needed for neuronal activity

    PubMed Central

    Pierrot, Nathalie; Tyteca, Donatienne; D'auria, Ludovic; Dewachter, Ilse; Gailly, Philippe; Hendrickx, Aurélie; Tasiaux, Bernadette; Haylani, Laetitia El; Muls, Nathalie; N'Kuli, Francisca; Laquerrière, Annie; Demoulin, Jean-Baptiste; Campion, Dominique; Brion, Jean-Pierre; Courtoy, Pierre J; Kienlen-Campard, Pascal; Octave, Jean-Noël

    2013-01-01

    Perturbation of lipid metabolism favours progression of Alzheimer disease, in which processing of Amyloid Precursor Protein (APP) has important implications. APP cleavage is tightly regulated by cholesterol and APP fragments regulate lipid homeostasis. Here, we investigated whether up or down regulation of full-length APP expression affected neuronal lipid metabolism. Expression of APP decreased HMG-CoA reductase (HMGCR)-mediated cholesterol biosynthesis and SREBP mRNA levels, while its down regulation had opposite effects. APP and SREBP1 co-immunoprecipitated and co-localized in the Golgi. This interaction prevented Site-2 protease-mediated processing of SREBP1, leading to inhibition of transcription of its target genes. A GXXXG motif in APP sequence was critical for regulation of HMGCR expression. In astrocytes, APP and SREBP1 did not interact nor did APP affect cholesterol biosynthesis. Neuronal expression of APP decreased both HMGCR and cholesterol 24-hydroxylase mRNA levels and consequently cholesterol turnover, leading to inhibition of neuronal activity, which was rescued by geranylgeraniol, generated in the mevalonate pathway, in both APP expressing and mevastatin treated neurons. We conclude that APP controls cholesterol turnover needed for neuronal activity. PMID:23554170

  13. Cholesterol-dependent Conformational Plasticity in GPCR Dimers.

    PubMed

    Prasanna, Xavier; Sengupta, Durba; Chattopadhyay, Amitabha

    2016-01-01

    The organization and function of the serotonin1A receptor, an important member of the GPCR family, have been shown to be cholesterol-dependent, although the molecular mechanism is not clear. We performed a comprehensive structural and dynamic analysis of dimerization of the serotonin1A receptor by coarse-grain molecular dynamics simulations totaling 3.6 ms to explore the molecular details of its cholesterol-dependent association. A major finding is that the plasticity and flexibility of the receptor dimers increase with increased cholesterol concentration. In particular, a dimer interface formed by transmembrane helices I-I was found to be sensitive to cholesterol. The modulation of dimer interface appears to arise from a combination of direct cholesterol occupancy and indirect membrane effects. Interestingly, the presence of cholesterol at the dimer interface is correlated with increased dimer plasticity and flexibility. These results represent an important step in characterizing the molecular interactions in GPCR organization with potential relevance to therapeutic interventions. PMID:27535203

  14. Serine palmitoyltransferase (SPT) deficient mice absorb less cholesterol.

    PubMed

    Li, Zhiqiang; Park, Tae-Sik; Li, Yan; Pan, Xiaoyue; Iqbal, Jahangir; Lu, David; Tang, Weiqing; Yu, Liqing; Goldberg, Ira J; Hussain, M Mahmood; Jiang, Xian-Cheng

    2009-04-01

    Serine palmitoyltransferase (SPT) is the key enzyme for the biosynthesis of sphingolipids. It has been reported that oral administration of myriocin (an SPT inhibitor) decreases plasma sphingomyelin (SM) and cholesterol levels, and reduces atherosclerosis in apoE knockout (KO) mice. We studied cholesterol absorption in myriocin-treated WT or apoE KO animals and found that, after myriocin treatment, the mice absorbed significantly less cholesterol than controls, with no observable pathological changes in the small intestine. More importantly, we found that heterozygous Sptlc1 (a subunit of SPT) KO mice also absorbed significantly less cholesterol than controls. To understand the mechanism, we measured protein levels of Niemann-Pick C1-like 1 (NPC1L1), ABCG5, and ABCA1, three key factors involved in intestinal cholesterol absorption. We found that NPC1L1 and ABCA1 were decreased, whereas ABCG5 was increased in the SPT deficient small intestine. SM levels on the apical membrane were also measured and they were significantly decreased in SPT deficient mice, compared with controls. In conclusion, SPT deficiency might reduce intestinal cholesterol absorption by altering NPC1L1 and ABCG5 protein levels in the apical membranes of enterocytes through lowering apical membrane SM levels. This may be also true for ABCA1 which locates on basal membrane of enterocytes. Manipulation of SPT activity could thus provide a novel alternative treatment for dyslipidemia. PMID:19416652

  15. Hydrated cholesterol: Phospholipid domains probed by synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Solomonov, I.; Daillant, J.; Fragneto, G.; Kjaer, K.; Micha, J. S.; Rieutord, F.; Leiserowitz, L.

    2009-10-01

    X-ray scattering experiments on mixed films of cholesterol and phospholipids at air-water and Si solid-water interfaces were undertaken to glean information on pathological crystallization of cholesterol bilayers. Grazing-incidence X-ray diffraction patterns at the air-water interface of various cholesterol:dipalmitoyl-phosphatidylcholine (Ch:DPPC) monolayer mixtures compressed beyond monolayer collapse yielded the established 10×7.5 Å2 Ch bilayer motif, for Ch:DPPC molar ratios higher than 2.5:1. Attempts to obtain a diffraction signal from various Ch:phospholipid film mixtures at the Si solid-water interface, indicative of the presence of the Ch bilayer motif, were unsuccessful. Only after removal of sufficient water from the cell was a weak diffraction signal obtained suggestive of a cholesterol film two bilayers thick. Off-specular X-ray reflectivity measurements made on a 1.75:1 mixture of Ch and bovine cardiac phosphatidylcholine (BCPC) deposited as a bilayer on a Si wafer and placed in a cell filled with water yielded positive results. The derived electron density profile showed the presence of a bilayer mixture consistent with a phase separation of cholesterol and BCPC, and possible formation of a crystalline cholesterol bilayer within the hydrated mixed bilayer, but not a proof thereof.

  16. Cholesterol in brain disease: sometimes determinant and frequently implicated

    PubMed Central

    Martín, Mauricio G; Pfrieger, Frank; Dotti, Carlos G

    2014-01-01

    Cholesterol is essential for neuronal physiology, both during development and in the adult life: as a major component of cell membranes and precursor of steroid hormones, it contributes to the regulation of ion permeability, cell shape, cell–cell interaction, and transmembrane signaling. Consistently, hereditary diseases with mutations in cholesterol-related genes result in impaired brain function during early life. In addition, defects in brain cholesterol metabolism may contribute to neurological syndromes, such as Alzheimer's disease (AD), Huntington's disease (HD), and Parkinson's disease (PD), and even to the cognitive deficits typical of the old age. In these cases, brain cholesterol defects may be secondary to disease-causing elements and contribute to the functional deficits by altering synaptic functions. In the first part of this review, we will describe hereditary and non-hereditary causes of cholesterol dyshomeostasis and the relationship to brain diseases. In the second part, we will focus on the mechanisms by which perturbation of cholesterol metabolism can affect synaptic function. PMID:25223281

  17. Danshensu Promotes Cholesterol Efflux in RAW264.7 Macrophages.

    PubMed

    Gao, Hui; Li, Lingyan; Li, Lan; Gong, Bo; Dong, Pengzhi; Fordjour, Patrick Asare; Zhu, Yan; Fan, Guanwei

    2016-09-01

    Contemporary research suggests that macrophage foam cell and cholesterol efflux defect play pivotal role in atherogenesis. We reported on the heretofore unknown therapeutic effect of Danshensu (DSS) in reducing intracellular cholesterol level and unraveled the mechanism of DSS promotes cholesterol efflux. Oxidized low-density lipoprotein stimulation of Raw264.7 cells into foam cells, which were treated with DSS and co-treated with Simvastatin and Rosiglitazone. PPARγ, ABCA1, ABCG1, SR-BI, CD36, and LXR-α mRNA were quantified by Real-Time PCR. Western blotting was used to determine protein expression of PPARγ, ABCA1 and CD36. Cellular cholesterol handling was studied by measurement of intracellular lipid droplets concentration and cholesterol efflux. DSS significantly reduced scavenger receptor CD36 and its orthologue SR-BI. In addition, DSS stimulated the upregulation of cellular cholesterol exporters ABCA1 and ABCG1 to reduce intracellular lipid accumulation. DSS can reduce lipid deposition in Raw264.7 foam cells by balancing CD36 and ABCA1 protein expression. PMID:27514857

  18. Serine palmitoyltransferase (SPT) deficient mice absorb less cholesterol.

    PubMed

    Li, Zhiqiang; Park, Tae-Sik; Li, Yan; Pan, Xiaoyue; Iqbal, Jahangir; Lu, David; Tang, Weiqing; Yu, Liqing; Goldberg, Ira J; Hussain, M Mahmood; Jiang, Xian-Cheng

    2009-04-01

    Serine palmitoyltransferase (SPT) is the key enzyme for the biosynthesis of sphingolipids. It has been reported that oral administration of myriocin (an SPT inhibitor) decreases plasma sphingomyelin (SM) and cholesterol levels, and reduces atherosclerosis in apoE knockout (KO) mice. We studied cholesterol absorption in myriocin-treated WT or apoE KO animals and found that, after myriocin treatment, the mice absorbed significantly less cholesterol than controls, with no observable pathological changes in the small intestine. More importantly, we found that heterozygous Sptlc1 (a subunit of SPT) KO mice also absorbed significantly less cholesterol than controls. To understand the mechanism, we measured protein levels of Niemann-Pick C1-like 1 (NPC1L1), ABCG5, and ABCA1, three key factors involved in intestinal cholesterol absorption. We found that NPC1L1 and ABCA1 were decreased, whereas ABCG5 was increased in the SPT deficient small intestine. SM levels on the apical membrane were also measured and they were significantly decreased in SPT deficient mice, compared with controls. In conclusion, SPT deficiency might reduce intestinal cholesterol absorption by altering NPC1L1 and ABCG5 protein levels in the apical membranes of enterocytes through lowering apical membrane SM levels. This may be also true for ABCA1 which locates on basal membrane of enterocytes. Manipulation of SPT activity could thus provide a novel alternative treatment for dyslipidemia.

  19. Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan as a novel carrier for paclitaxel

    NASA Astrophysics Data System (ADS)

    Wang, Yin-song; Jiang, Qian; Li, Rong-shan; Liu, Ling-long; Zhang, Qi-qing; Wang, Yu-mei; Zhao, Jing

    2008-04-01

    Self-assembled nanoparticles of cholesterol-modified O-carboxymethyl chitosan (CCMC) were prepared to be used as a novel carrier for paclitaxel (PTX) in this study. CCMC-6.9 was synthesized by the covalent conjugation of cholesterol to O-carboxymethyl chitosan with the succinyl linkage and the degree of substitution (DS) of the cholesterol moiety was 6.9%. CCMC-6.9 formed self-assembled nanoparticles with a size of 209.5 nm in aqueous media. Paclitaxel-loaded CCMC-6.9 self-assembled nanoparticles were prepared using a dialysis method and their characteristics were analyzed by dynamic laser light scattering (LLS), transmission electron microscopy (TEM) and ultraviolet spectroscopy (UV). PTX-loaded CCMC-6.9 self-assembled nanoparticles were almost spherical in shape and their size increased from 245.6 to 355.3 nm with PTX-loading content increasing from 18.7% to 34.9%. In vitro release of PTX from CCMC-6.9 self-assembled nanoparticles was carried out by the dynamic dialysis method. PTX continuously released in phosphate buffered saline (PBS) solutions for 84 h at 37 °C and its release was sensitive to the pH of the release media. The biodistribution of PTX-loaded CCMC-6.9 self-assembled nanoparticles was studied in female Balb/c mice. Compared with PTX in the solution of Cremophor EL (polyethoxylated castor oil)/ethanol (PTX-Cre), CCMC-6.9 self-assembled nanoparticles significantly increased the uptake of PTX in plasma, liver and spleen, but decreased the uptake in heart and kidney. These results suggest that CCMC-6.9 self-assembled nanoparticles can effectively solubilize PTX and modify its tissue biodistribution, which may be advantageous in enhancing the therapeutic index and reducing the toxicity of PTX.

  20. Influence of total cholesterol, high density lipoprotein cholesterol, and triglycerides on risk of cerebrovascular disease: the Copenhagen City Heart Study.

    PubMed Central

    Lindenstrøm, E.; Boysen, G.; Nyboe, J.

    1994-01-01

    OBJECTIVE--To estimate the influence of plasma total cholesterol, high density lipoprotein cholesterol, and triglycerides on risk of cerebrovascular disease. DESIGN--The Copenhagen City Heart Study is a prospective observational survey with two cardiovascular examinations at five year intervals. Non-fasting plasma lipids were measured in participants once at each examination, along with other variables. The Cox regression model was used to establish the effect of the factors recorded on cerebrovascular events of mostly, but not exclusively, ischaemic origin. SUBJECTS--19,698 women and men at least 20 years old, randomly selected after age stratification from an area of central Copenhagen. MAIN OUTCOME MEASURES--Initial cases of stroke and transient ischaemic attack recorded from hospital records and death certificates from 1976 through 1988. RESULTS--660 non-haemorrhagic and 33 haemorrhagic events were recorded. Total cholesterol was positively associated with risk of non-haemorrhagic events, but only for levels > 8 mmol/l, corresponding to the upper 5% of the distribution in the study population. For lower plasma cholesterol values the relative risk remained nearly constant. Plasma triglyceride concentration was significantly, positively associated with risk of non-haemorrhagic events. The relative risk corresponding to an increase of 1 mmol/l was 1.12 (95% confidence interval 1.07 to 1.16). There was a negative, log linear association between high density lipoprotein cholesterol and risk of non-haemorrhagic events (0.53 (0.34 to 0.83)). There was no indication that the effects of plasma lipids were different in women and men. CONCLUSIONS--The pattern of the association between plasma cholesterol and risk of ischaemic cerebrovascular disease was not log linear, and the increased risk was confined to the upper 5% of the cholesterol distribution. Further studies should concentrate on the association between plasma cholesterol and verified haemorrhagic stroke. PMID

  1. Amelioration of cholesterol induced atherosclerosis by normalizing gene expression, cholesterol profile and antioxidant enzymes by Vigna unguiculata.

    PubMed

    Janeesh, P A; Abraham, Annie

    2013-06-01

    Cardiovascular diseases, especially atherosclerosis, have found to be the dreadful diseases worldwide and therapeutic interventions using plant sources have wide therapeutic value. Vigna unguiculata (VU) leaves have been used as food and therapeutics. Hence, our study was designed to evaluate the hypolipidemic as well as anti-atherogenic potential of VU leaves in normalizing atherogenic gene expression, cholesterol profile, generation of reactive oxygen species (ROS) and antioxidant enzyme system on cholesterol fed rabbit model. For the study New Zealand white rabbits were randomly divided into four groups of six animals each and experimental period was three months; group -i - ND [normal diet (40 g feed)], group-ii- ND (normal diet) +EAVU [ethyl acetate fraction of Vigna unguiculata (150 mg/kg body weight)], group -iii- ND [normal diet ]+ CFD [cholesterol fed diet (cholesterol 1 % of 40 g feed and cholic acid 0.5 % of 40 g feed)] and group-iv - ND [normal diet] +CFD [cholesterol fed diet ]+EAVU [ethyl acetate fraction of Vigna unguiculata (150 mg/kg body weight)]. Atherosclerosis was induced by feeding the rabbit with cholesterol (1 % of 40 g feed) and cholic acid (0.5 % of 40 g feed). Supplementation of EAVU normalized cholesterol profile, generation of reactive oxygen species (ROS), lipid peroxidation products like thiobarbituric acid reactive substance (TBARS), antioxidant system and important genes of cardiovascular diseases like interleukin-10 (IL 10), paraoxanase-1 (PON I), interleukin-6 (IL 6), and cyclooxygenase-2 (Cox 2) to near normal level as compared with normal diet. The result obtained showed the antioxidant as well as anti-atherogenic potential of Vigna unguiculata leaves in ameliorating cholesterol induced atherosclerosis, and thus it is good task to include VU leaves in daily diet for the prevention of cardiovascular diseases especially atherosclerosis.

  2. Effects of dietary cholesterol supplementation on growth and cholesterol metabolism of rainbow trout (Oncorhynchus mykiss) fed diets with cottonseed meal or rapeseed meal.

    PubMed

    Deng, Junming; Zhang, Xi; Long, Xiaowen; Tao, Linli; Wang, Zhen; Niu, Guoyi; Kang, Bin

    2014-12-01

    This study was conducted to evaluate the effects of cholesterol on growth and cholesterol metabolism of rainbow trout (Oncorhynchus mykiss) fed diets with cottonseed meal (CSM) or rapeseed meal (RSM). Four experimental diets were formulated to contain 550 g kg(-1) CSM or 450 g kg(-1) RSM with or without 9 g kg(-1) supplemental cholesterol. Growth rate and feed utilization efficiency of fish fed diets with 450 g kg(-1) RSM were inferior to fish fed diets with 550 g kg(-1) CSM regardless of cholesterol level. Dietary cholesterol supplementation increased the growth rate of fish fed diets with RSM, and growth rate and feed utilization efficiency of fish fed diets with CSM. Similarly, dietary cholesterol supplementation increased the plasma total cholesterol (TC), high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, and triiodothyronine levels, but decreased the plasma triglycerides and cortisol levels of fish fed diets with RSM or CSM. In addition, supplemental cholesterol increased the free cholesterol and TC levels in intestinal contents, but decreased the hepatic 3-hydroxy-3-methyl-glutaryl-CoA reductase activity of fish fed diets with RSM or CSM. These results indicate that 9 g kg(-1) cholesterol supplementation seems to improve the growth of rainbow trout fed diets with CSM or RSM, and the growth-promoting action may be related to the alleviation of the negative effects caused by antinutritional factors and/or make up for the deficiency of endogenous cholesterol in rainbow trout.

  3. Inhibition of cholesterol synthesis by atorvastatin in homozygous familial hypercholesterolaemia.

    PubMed

    Raal, F J; Pappu, A S; Illingworth, D R; Pilcher, G J; Marais, A D; Firth, J C; Kotze, M J; Heinonen, T M; Black, D M

    2000-06-01

    Patients with homozygous familial hypercholesterolaemia (HoFH) have markedly elevated low density lipoprotein (LDL) cholesterol levels that are refractory to standard doses of lipid-lowering drug therapy. In the present study we evaluated the effect of atorvastatin on steady state concentrations of plasma lipids and mevalonic acid (MVA), as well as on 24-h urinary excretion of MVA in patients with well characterized HoFH. Thirty-five HoFH patients (18 males; 17 females) received 40 mg and then 80 mg atorvastatin/day. The dose of atorvastatin was increased further to 120 mg/day in 20 subjects and to 160 mg/day in 13 subjects who had not achieved LDL cholesterol goal, or in whom the dose of atorvastatin had not exceeded 2.5 mg/kg body wt per day. LDL cholesterol levels were reduced by 17% at the 40 mg/day and by 28% at the 80 mg/day dosage (P<0.01). Reduction in LDL cholesterol in the five receptor negative patients was similar to that achieved in the 30 patients with residual LDL receptor activity. Plasma MVA and 24-h urinary excretion of MVA, as markers of in vivo cholesterol synthesis, were elevated at baseline and decreased markedly with treatment. Urinary MVA excretion decreased by 57% at the 40 mg/day dose and by 63% at the 80 mg/day dosage (P<0. 01). There was a correlation between reduction in LDL cholesterol and reduction in urinary MVA excretion; those patients with the highest basal levels of MVA excretion and thus the highest rates of cholesterol synthesis having the greatest reduction in LDL cholesterol (r=0.38; P=0.02). Increasing the dose of atorvastatin to 120 and 160 mg/day did not result in any further reduction in LDL cholesterol or urinary MVA excretion suggesting a plateau effect with no further inhibition of cholesterol synthesis at doses of atorvastatin greater than 80 mg/day. PMID:10856535

  4. Elastic deformation and failure of lipid bilayer membranes containing cholesterol.

    PubMed Central

    Needham, D; Nunn, R S

    1990-01-01

    Giant bilayer vesicles were reconstituted from several lipids and lipid/cholesterol (CHOL) mixtures: stearolyloleoylphosphatidylcholine (SOPC), bovine sphingomyelin (BSM), diarachidonylphosphatidylcholine (DAPC), SOPC/CHOL, BSM/CHOL, DAPC/CHOL, and extracted red blood cell (RBC) lipids with native cholesterol. Single-walled vesicles were manipulated by micropipette suction and several membrane material properties were determined. The properties measured were the elastic area compressibility modulus K, the critical areal strain alpha c, and the tensile strength tau lys, from which the failure energy or membrane toughness Tf was calculated. The elastic area expansion moduli for these lipid and lipid/cholesterol bilayers ranged from 57 dyn/cm for DAPC to 1,734 dyn/cm for BSM/CHOL. The SOPC/CHOL series and RBC lipids had intermediate values. The results indicated that the presence of cholesterol is the single most influential factor in increasing bilayer cohesion, but only for lipids where both chains are saturated, or mono- or diunsaturated. Multiple unsaturation in both lipid chains inhibits the condensing effect of cholesterol in bilayers. The SOPC/CHOL system was studied in more detail. The area expansion modulus showed a nonlinear increase with increasing cholesterol concentration up to a constant plateau, indicating a saturation limit for cholesterol in the bilayer phase of approximately 55 mol% CHOL. The membrane compressibility was modeled by a property-averaging composite theory involving two bilayer components, namely, uncomplexed lipid and a lipid/cholesterol complex of stoichiometry 1/1.22. The area expansion modulus of this molecular composite membrane was evaluated by a combination of the expansion moduli of each component scaled by their area fractions in the bilayer. Bilayer toughness, which is the energy stored in the bilayer at failure, showed a maximum value at approximately 40 mol% CHOL. This breakdown energy was found to be only a fraction of the

  5. Patterns of cholesterol metabolism: pathophysiological and therapeutic implications for dyslipidemias and the metabolic syndrome.

    PubMed

    Lupattelli, G; De Vuono, S; Mannarino, E

    2011-09-01

    Investigating cholesterol metabolism, which derives from balancing cholesterol synthesis and absorption, opens new perspectives in the pathogenesis of dyslipidemias and the metabolic syndrome (MS). Cholesterol metabolism is studied by measuring plasma levels of campesterol, sitosterol and cholestanol, that is, plant sterols which are recognised as surrogate cholesterol-absorption markers and lathosterol or squalene, that is, cholesterol precursors, which are considered surrogate cholesterol-synthesis markers. This article presents current knowledge on cholesterol synthesis and absorption, as evaluated by means of cholesterol precursors and plant sterols, and discusses patterns of cholesterol balance in the main forms of primary hyperlipidaemia and MS. Understanding the mechanism(s) underlying these patterns of cholesterol synthesis and absorption will help to predict the response to hypolipidemic treatment, which can then be tailored to ensure the maximum clinical benefit for patients.

  6. Interferon-β promotes macrophage foam cell formation by altering both cholesterol influx and efflux mechanisms.

    PubMed

    Boshuizen, Marieke C S; Hoeksema, Marten A; Neele, Annette E; van der Velden, Saskia; Hamers, Anouk A J; Van den Bossche, Jan; Lutgens, Esther; de Winther, Menno P J

    2016-01-01

    Foam cell formation is a crucial event in atherogenesis. While interferon-β (IFNβ) is known to promote atherosclerosis in mice, studies on the role of IFNβ on foam cell formation are minimal and conflicting. We therefore extended these studies using both in vitro and in vivo approaches and examined IFNβ's function in macrophage foam cell formation. To do so, murine bone marrow-derived macrophages (BMDMs) and human monocyte-derived macrophages were loaded with acLDL overnight, followed by 6h IFNβ co-treatment. This increased lipid content as measured by Oil red O staining. We next analyzed the lipid uptake pathways of IFNβ-stimulated BMDMs and observed increased endocytosis of DiI-acLDL as compared to controls. These effects were mediated via SR-A, as its gene expression was increased and inhibition of SR-A with Poly(I) blocked the IFNβ-induced increase in Oil red O staining and DiI-acLDL endocytosis. The IFNβ-induced increase in lipid content was also associated with decreased ApoA1-mediated cholesterol efflux, in response to decreased ABCA1 protein and gene expression. To validate our findings in vivo, LDLR(-/-) mice were put on chow or a high cholesterol diet for 10weeks. 24 and 8h before sacrifice mice were injected with IFNβ or PBS, after which thioglycollate-elicited peritoneal macrophages were collected and analyzed. In accordance with the in vitro data, IFNβ increased lipid accumulation. In conclusion, our experimental data support the pro-atherogenic role of IFNβ, as we show that IFNβ promotes macrophage foam cell formation by increasing SR-A-mediated cholesterol influx and decreasing ABCA1-mediated efflux mechanisms.

  7. Allostatic load and work conditions.

    PubMed

    Schnorpfeil, Pia; Noll, Alexander; Schulze, Renate; Ehlert, Ulrike; Frey, Karl; Fischer, Joachim E

    2003-08-01

    Adverse work characteristics and poor social support have been associated with an increased risk for cardiovascular disease and other adverse health outcomes in otherwise apparently healthy adults. We undertook a cross-sectional study to evaluate the relationship between objective health status and work characteristics in industrial workers in Germany. Volunteers (n=324) were recruited from a representative random sample (n=537) of employees of an airplane manufacturing plant. Psychosocial work characteristics were assessed by the 52-item, 13-subscale salutogenetic subjective work analysis (SALSA) questionnaire, which assesses potentially salutogenic and pathogenic conditions. Factor analysis revealed three factors: decision latitude, job demands and social support. Biological health status was determined by the revised allostatic load score with 14 components: body-mass index, waist-to-hip ratio; systolic and diastolic blood pressure; plasma levels of C-reactive protein (CRP), tumor-necrosis factor-alpha, HDL, cholesterol, dehydroepiandrosterone sulfate; glycosylated hemoglobin; urinary cortisol, epinephrine, norepinephrine, and albumin. Score points were given for values in the high-risk quartile (maximum=14). General linear models revealed that older individuals and men had significantly higher allostatic load scores than younger participants or women. Of the SALSA factors, only job demands related significantly to allostatic load. The effect of demands was stronger in older individuals. Post-hoc analysis showed possible positive associations between high job demands and blood pressure or CRP, and between low social support and nocturnal excretion of cortisol or plasma levels of CRP. We conclude that this cross-sectional study on industrial employees found a weak association between a health summary score based on objective medical data and self-reported adverse work characteristics. PMID:12821013

  8. Monomethylarsonous acid inhibited endogenous cholesterol biosynthesis in human skin fibroblasts

    SciTech Connect

    Guo, Lei; Xiao, Yongsheng; Wang, Yinsheng

    2014-05-15

    Human exposure to arsenic in drinking water is a widespread public health concern, and such exposure is known to be associated with many human diseases. The detailed molecular mechanisms about how arsenic species contribute to the adverse human health effects, however, remain incompletely understood. Monomethylarsonous acid [MMA(III)] is a highly toxic and stable metabolite of inorganic arsenic. To exploit the mechanisms through which MMA(III) exerts its cytotoxic effect, we adopted a quantitative proteomic approach, by coupling stable isotope labeling by amino acids in cell culture (SILAC) with LC-MS/MS analysis, to examine the variation in the entire proteome of GM00637 human skin fibroblasts following acute MMA(III) exposure. Among the ∼ 6500 unique proteins quantified, ∼ 300 displayed significant changes in expression after exposure with 2 μM MMA(III) for 24 h. Subsequent analysis revealed the perturbation of de novo cholesterol biosynthesis, selenoprotein synthesis and Nrf2 pathways evoked by MMA(III) exposure. Particularly, MMA(III) treatment resulted in considerable down-regulation of several enzymes involved in cholesterol biosynthesis. In addition, real-time PCR analysis showed reduced mRNA levels of select genes in this pathway. Furthermore, MMA(III) exposure contributed to a distinct decline in cellular cholesterol content and significant growth inhibition of multiple cell lines, both of which could be restored by supplementation of cholesterol to the culture media. Collectively, the present study demonstrated that the cytotoxicity of MMA(III) may arise, at least in part, from the down-regulation of cholesterol biosynthesis enzymes and the resultant decrease of cellular cholesterol content. - Highlights: • MMA(III)-induced perturbation of the entire proteome of GM00637 cells is studied. • Quantitative proteomic approach revealed alterations of multiple cellular pathways. • MMA(III) inhibits de novo cholesterol biosynthesis. • MMA

  9. Does dietary vitamin E or C decrease egg yolk cholesterol?

    PubMed

    Mohiti-Asli, Maziar; Zaghari, Mojtaba

    2010-12-01

    An experiment was conducted to determine the effect of dietary vitamin E and C on serum metabolites, yolk cholesterol, egg quality, and performance of layer hens. One hundred sixty-eight commercial Hy-Line W-36 layer hens were randomly divided into seven groups and six replicates with four hens in each. Dietary treatments were introduced after the pre-experimental period (10 days) to adjust egg production. Treatments were levels of vitamin E or C (100, 200, and 400 mg/kg diet) supplementation to the basal diet for 4 weeks, whereas the control group received no supplementation. Egg production, egg weight, and feed consumption were recorded during the study. Shell thickness, Haugh unit score, yolk color, yolk weight, yolk cholesterol, and blood parameters were measured at the end of experiment. There was no significant effect of dietary vitamin E or C on hen performance. Egg yolk cholesterol concentrations decreased linearly by antioxidant vitamin supplementation (P < 0.01). Egg yolk cholesterol reduction did not have any negative effect on egg production rate. Antioxidants, especially vitamin C, increased serum glucose concentration (P < 0.05). Serum total cholesterol content did not change by vitamin supplementation but cholesterol in high-density lipoprotein (HDL-C) decreased and cholesterol in low-density lipoprotein (LDL-C) increased (P < 0.05), as dietary vitamin E or C supplementation increased in diets. These results are in conflict with the previous hypothesis that antioxidants have a role in LDL-C removal from the blood or increasing HDL-C. Vitamin E was more effective than vitamin C in this case and if these results are confirmed by further studies, they may result to revision in researchers' point of view about antioxidant especially in human medicine. PMID:20127202

  10. Enhanced cholesterol reduction by simvastatin in diltiazem-treated patients

    PubMed Central

    Rowland Yeo, K; Yeo, W W; Wallis, E J; Ramsay, L E

    1999-01-01

    Aims To investigate whether an interaction between diltiazem and the 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase inhibitor simvastatin may enhance the cholesterol-lowering response to simvastatin in diltiazem-treated patients. Methods One hundred and thirty-five patients attending the Sheffield hypertension clinic who started consecutively on simvastatin for primary or secondary prevention of coronary heart disease (CHD) during the 2 years June, 1996—May 1998 were surveyed. From the clinic records we extracted and recorded absolute and percentage cholesterol responses to the starting dose of simvastatin and coprescription of diltiazem. Results The cholesterol reduction for the 19 patients on diltiazem was 33.3% compared with 24.7% in the remaining 116 patients (median difference 8.6%, 95% CI 1.1–12.2%, P < 0.02). The interindividual variability of cholesterol response to simvastatin was greater for patients not taking diltiazem than for those patients taking diltiazem. The ratio of the variances in response for the nondiltiazem group relative to the diltiazem group was 1.34 at 10 mg simvastatin daily (not significant, 95% CI 0.16–4.11), and 3.42 at 20 mg daily (P < 0.01, 95% CI 1.26–7.18). Concurrent diltiazem therapy (P < 0.04), age (P = 0.001) and starting dose of simvastatin (P = 0.002) were found to be significant independent predictors of percentage cholesterol response. Conclusions Patients who take both simvastatin and diltiazem may need lower doses of simvastatin to achieve the recommended reduction in cholesterol. The pharmacokinetic and pharmacodynamic aspects of this interaction need further study to confirm an enhanced effect on cholesterol reduction, and exclude an increased risk of adverse events. PMID:10583033

  11. Curcumin Ameliorates Ischemia-Induced Limb Injury Through Immunomodulation.

    PubMed

    Liu, Yang; Chen, Lianyu; Shen, Yi; Tan, Tao; Xie, Nanzi; Luo, Ming; Li, Zhihong; Xie, Xiaoyun

    2016-01-01

    BACKGROUND The prevalence of peripheral arterial disease (PAD) is increasing worldwide. Currently, there is no effective treatment for PAD. Curcumin is an ingredient of turmeric that has antioxidant, anti-inflammation, and anticancer properties. In the present study we investigated the potential effect of curcumin in protecting against ischemic limb injury. MATERIAL AND METHODS We used an established hindlimb ischemia mouse model in our study. Curcumin was administrated through intraperitoneal (I.P.) injection. Immunohistochemical staining and ELISA assays were performed. Treadmill training was used to evaluate skeletal muscle functions of animals. RESULTS Our experiments using in vivo treadmill training showed that curcumin treatment improved the running capacity of animals after ischemic injury. Histological analysis revealed that curcumin treatment significantly reduced the skeletal muscle damage and fibrosis associated with ischemic injury. In order to determine the cellular and molecular mechanisms underlying curcumin-mediated tissue protection, immunohistochemical staining and ELISA assays were performed. The results showed that curcumin treatment led to less macrophage infiltration and less local inflammatory responses as demonstrated by decreasing TNF-α, IL-1, and IL-6 levels. Further immunofluorescent staining of tissue slides indicated that curcumin treatment inhibited the NF-κB signaling pathway. Finally, curcumin can inhibit NF-kB activation induced by LPS in macrophages. CONCLUSIONS Our study results show that curcumin treatment can ameliorate hindlimb injury following ischemic surgery, which suggests that curcumin could be used for PAD treatment. PMID:27302110

  12. Ischemia-induced spreading depolarization in the retina.

    PubMed

    Srienc, Anja I; Biesecker, Kyle R; Shimoda, Angela M; Kur, Joanna; Newman, Eric A

    2016-09-01

    Cortical spreading depolarization is a metabolically costly phenomenon that affects the brain in both health and disease. Following severe stroke, subarachnoid hemorrhage, or traumatic brain injury, cortical spreading depolarization exacerbates tissue damage and enlarges infarct volumes. It is not known, however, whether spreading depolarization also occurs in the retina in vivo. We report now that spreading depolarization episodes are generated in the in vivo rat retina following retinal vessel occlusion produced by photothrombosis. The properties of retinal spreading depolarization are similar to those of cortical spreading depolarization. Retinal spreading depolarization waves propagate at a velocity of 3.0 ± 0.1 mm/min and are associated with a negative shift in direct current potential, a transient cessation of neuronal spiking, arteriole constriction, and a decrease in tissue O2 tension. The frequency of retinal spreading depolarization generation in vivo is reduced by administration of the NMDA antagonist MK-801 and the 5-HT(1D) agonist sumatriptan. Branch retinal vein occlusion is a leading cause of vision loss from vascular disease. Our results suggest that retinal spreading depolarization could contribute to retinal damage in acute retinal ischemia and demonstrate that pharmacological agents can reduce retinal spreading depolarization frequency after retinal vessel occlusion. Blocking retinal spreading depolarization generation may represent a therapeutic strategy for preserving vision in branch retinal vein occlusion patients.

  13. Curcumin Ameliorates Ischemia-Induced Limb Injury Through Immunomodulation

    PubMed Central

    Liu, Yang; Chen, Lianyu; Shen, Yi; Tan, Tao; Xie, Nanzi; Luo, Ming; Li, Zhihong; Xie, Xiaoyun

    2016-01-01

    Background The prevalence of peripheral arterial disease (PAD) is increasing worldwide. Currently, there is no effective treatment for PAD. Curcumin is an ingredient of turmeric that has antioxidant, anti-inflammation, and anticancer properties. In the present study we investigated the potential effect of curcumin in protecting against ischemic limb injury. Material/Methods We used an established hindlimb ischemia mouse model in our study. Curcumin was administrated through intraperitoneal (I.P.) injection. Immunohistochemical staining and ELISA assays were performed. Treadmill training was used to evaluate skeletal muscle functions of animals. Results Our experiments using in vivo treadmill training showed that curcumin treatment improved the running capacity of animals after ischemic injury. Histological analysis revealed that curcumin treatment significantly reduced the skeletal muscle damage and fibrosis associated with ischemic injury. In order to determine the cellular and molecular mechanisms underlying curcumin-mediated tissue protection, immunohistochemical staining and ELISA assays were performed. The results showed that curcumin treatment led to less macrophage infiltration and less local inflammatory responses as demonstrated by decreasing TNF-α, IL-1, and IL-6 levels. Further immunofluorescent staining of tissue slides indicated that curcumin treatment inhibited the NF-κB signaling pathway. Finally, curcumin can inhibit NF-κB activation induced by LPS in macrophages. Conclusions Our study results show that curcumin treatment can ameliorate hindlimb injury following ischemic surgery, which suggests that curcumin could be used for PAD treatment. PMID:27302110

  14. Ischemia-induced spreading depolarization in the retina.

    PubMed

    Srienc, Anja I; Biesecker, Kyle R; Shimoda, Angela M; Kur, Joanna; Newman, Eric A

    2016-09-01

    Cortical spreading depolarization is a metabolically costly phenomenon that affects the brain in both health and disease. Following severe stroke, subarachnoid hemorrhage, or traumatic brain injury, cortical spreading depolarization exacerbates tissue damage and enlarges infarct volumes. It is not known, however, whether spreading depolarization also occurs in the retina in vivo. We report now that spreading depolarization episodes are generated in the in vivo rat retina following retinal vessel occlusion produced by photothrombosis. The properties of retinal spreading depolarization are similar to those of cortical spreading depolarization. Retinal spreading depolarization waves propagate at a velocity of 3.0 ± 0.1 mm/min and are associated with a negative shift in direct current potential, a transient cessation of neuronal spiking, arteriole constriction, and a decrease in tissue O2 tension. The frequency of retinal spreading depolarization generation in vivo is reduced by administration of the NMDA antagonist MK-801 and the 5-HT(1D) agonist sumatriptan. Branch retinal vein occlusion is a leading cause of vision loss from vascular disease. Our results suggest that retinal spreading depolarization could contribute to retinal damage in acute retinal ischemia and demonstrate that pharmacological agents can reduce retinal spreading depolarization frequency after retinal vessel occlusion. Blocking retinal spreading depolarization generation may represent a therapeutic strategy for preserving vision in branch retinal vein occlusion patients. PMID:27389181

  15. PCSK9 LNA antisense oligonucleotides induce sustained reduction of LDL cholesterol in nonhuman primates.

    PubMed

    Lindholm, Marie W; Elmén, Joacim; Fisker, Niels; Hansen, Henrik F; Persson, Robert; Møller, Marianne R; Rosenbohm, Christoph; Ørum, Henrik; Straarup, Ellen M; Koch, Troels

    2012-02-01

    Proprotein convertase subtilisin/kexin type 9 (PCSK9) has emerged as a therapeutic target for the reduction of low-density lipoprotein cholesterol (LDL-C). PCSK9 increases the degradation of the LDL receptor, resulting in high LDL-C in individuals with high PCSK9 activity. Here, we show that two locked nucleic acid (LNA) antisense oligonucleotides targeting PCSK9 produce sustained reduction of LDL-C in nonhuman primates after a loading dose (20 mg/kg) and four weekly maintenance doses (5 mg/kg). PCSK9 messenger RNA (mRNA) and serum PCSK9 protein were reduced by 85% which resulted in a 50% reduction in circulating LDL-C. Serum total cholesterol (TC) levels were reduced to the same extent as LDL-C with no reduction in high-density lipoprotein levels, demonstrating a specific pharmacological effect on LDL-C. The reduction in hepatic PCSK9 mRNA correlated with liver LNA oligonucleotide content. This verified that anti-PCSK9 LNA oligonucleotides regulated LDL-C through an antisense mechanism. The compounds were well tolerated with no observed effects on toxicological parameters (liver and kidney histology, alanine aminotransferase, aspartate aminotransferase, urea, and creatinine). The pharmacologic evidence and initial safety profile of the compounds used in this study indicate that LNA antisense oligonucleotides targeting PCSK9 provide a viable therapeutic strategy and are potential complements to statins in managing high LDL-C.

  16. Insoluble fraction of buckwheat (Fagopyrum esculentum Moench) protein possessing cholesterol-binding properties that reduce micelle cholesterol solubility and uptake by Caco-2 cells.

    PubMed

    Metzger, Brandon T; Barnes, David M; Reed, Jess D

    2007-07-25

    Buckwheat (Fagopyrum esculentum Moench) protein (BWP) exhibits hypocholesterolemic activity in several animal models by increasing fecal excretion of neutral and acidic sterols. In the current study, the ability of BWP to disrupt micelle cholesterol solubility by sequestration of cholesterol was investigated. When BWP (0.2%) was incubated with cholesterol and micelle lipid components prior to micelle formation, cholesterol solubility was reduced 40%. In contrast, cholesterol solubility was not decreased when BWP (0.2%) was incubated after micelle formation and incorporation of soluble cholesterol. Buckwheat flour, from which BWP was derived, had no significant effect on cholesterol solubility. Cholesterol uptake in Caco-2 cells from micelles made in the presence of BWP (0.2%) was reduced by 47, 36, 35, and 33% when compared with buckwheat flour, bovine serum albumin, casein, and gelatin, respectively. Reduction in cholesterol uptake in Caco-2 cells was dose-dependent, with maximum reductions at 0.1-0.4% BWP. In cholesterol-binding experiments, 83% of the cholesterol was associated with an insoluble BWP fraction, indicating strong cholesterol-binding capacity that disrupts solubility and uptake by Caco-2 cells.

  17. 3 Benzyl-6-chloropyrone: a suicide inhibitor of cholesterol esterase

    SciTech Connect

    Saint, C.; Gallo, I.; Kantorow, M.; Bailey, J.M.

    1986-05-01

    Cholesterol, absorbed from the intestine, appears in lymph as the ester. Cholesterol esterase is essential for this process, since depletion of the enzyme blocks and repletion restores, absorption. Selective inhibitors of cholesterol esterase may thus prove useful in reducing cholesterol uptake. A series of potential suicide substrates were synthesized which, following cleavage by the enzyme, would attack the putative nucleophile in the active site. One of these, 3-benzyl-6-chloropyrone (3BCP), inhibited both synthesis and hydrolysis of /sup 14/C-cholesteryl oleate with an I/sub 50/ of approximately 150 ..mu..M. The inactivation was time-dependent and characteristic of a suicide mechanism. The ..cap alpha.. pyrone structure (lactone analog) is cleaved by a serine-hydroxyl in the active site. This generates an enoyl chloride which inactivates the imidazole believed to play a part in the catalytic function of the enzyme. Inhibition by 3BCP is selective for cholesterol esterase. The activity of pancreatic lipase as not affected by concentrations up to 1 mM.

  18. Treating elevated cholesterol levels: the great Satan in perspective.

    PubMed

    Gibaldi, M; Kradjan, W

    1996-03-01

    The purpose of this review is to provide perspective on the developments leading to the recognition of high cholesterol levels as a risk factor for coronary heart disease (CHD). Another objective is to consider the unfolding controversies regarding the relative value of cholesterol-lowering drug therapy in primary and secondary prevention. Should physicians use lipid-lowering drugs to treat patients with elevated cholesterol levels but no clinical evidence of coronary disease, or limit intervention to patients with a previous history of angina, coronary angioplasty, coronary artery bypass surgery, or myocardial infarction? This review finds inadequate data to support a recommendation for screening large populations for the presence of elevated cholesterol levels or for primary prevention in those known to have high cholesterol. On the other hand, there is mounting evidence to support vigorous intervention in those with known coronary disease. Further study is needed to determine whether a subset of patients with one or more well-defined risk factors would benefit from primary prevention.

  19. Successful topical dissolution of cholesterol gallbladder stones using ethyl propionate.

    PubMed

    Hofmann, A F; Amelsberg, A; Esch, O; Schteingart, C D; Lyche, K; Jinich, H; Vansonnenberg, E; D'Agostino, H B

    1997-06-01

    Topical dissolution of cholesterol gallbladder stones using methyl tert-butyl ether (MTBE) is useful in symptomatic patients judged too ill for surgery. Previous studies showed that ethyl propionate (EP), a C5 ester, dissolves cholesterol gallstones rapidly in vitro, but differs from MTBE in being eliminated so rapidly by the liver that blood levels remain undetectable. Our aim was to test EP as a topical dissolution agent for cholesterol gallbladder stones. Five high-risk patients underwent topical dissolution of gallbladder stones by EP. In three patients, the solvent was instilled via a cholecystostomy tube placed previously to treat acute cholecystitis; in two patients, a percutaneous transhepatic catheter was placed in the gallbladder electively. Gallstone dissolution was assessed by chromatography, by gravimetry, and by catheter cholecystography. Total dissolution of gallstones was obtained in four patients after 6-10 hr of lavage; in the fifth patient, partial gallstone dissolution facilitated basketing of the stones. In two patients, cholesterol dissolution was measured and averaged 30 mg/min. Side effects were limited to one episode of transient hypotension and pain at the infusion site; no patient developed somnolence or nausea. Gallstone elimination was associated with relief of symptoms. EP is an acceptable alternative to MTBE for topical dissolution of cholesterol gallbladder stones in high-risk patients. The lower volatility and rapid hepatic extraction of EP suggest that it may be preferable to MTBE in this investigational procedure.

  20. Constitutive hippocampal cholesterol loss underlies poor cognition in old rodents

    PubMed Central

    Martin, Mauricio G; Ahmed, Tariq; Korovaichuk, Alejandra; Venero, Cesar; Menchón, Silvia A; Salas, Isabel; Munck, Sebastian; Herreras, Oscar; Balschun, Detlef; Dotti, Carlos G

    2014-01-01

    Cognitive decline is one of the many characteristics of aging. Reduced long-term potentiation (LTP) and long-term depression (LTD) are thought to be responsible for this decline, although the precise mechanisms underlying LTP and LTD dampening in the old remain unclear. We previously showed that aging is accompanied by the loss of cholesterol from the hippocampus, which leads to PI3K/Akt phosphorylation. Given that Akt de-phosphorylation is required for glutamate receptor internalization and LTD, we hypothesized that the decrease in cholesterol in neuronal membranes may contribute to the deficits in LTD typical of aging. Here, we show that cholesterol loss triggers p-Akt accumulation, which in turn perturbs the normal cellular and molecular responses induced by LTD, such as impaired AMPA receptor internalization and its reduced lateral diffusion. Electrophysiology recordings in brain slices of old mice and in anesthetized elderly rats demonstrate that the reduced hippocampal LTD associated with age can be rescued by cholesterol perfusion. Accordingly, cholesterol replenishment in aging animals improves hippocampal-dependent learning and memory in the water maze test. PMID:24878762

  1. Peroxisomal cholesterol biosynthesis and Smith-Lemli-Opitz syndrome

    SciTech Connect

    Weinhofer, Isabelle; Kunze, Markus; Stangl, Herbert; Porter, Forbes D.; Berger, Johannes . E-mail: johannes.berger@meduniwien.ac.at

    2006-06-23

    Smith-Lemli-Opitz syndrome (SLOS), caused by 7-dehydrocholesterol-reductase (DHCR7) deficiency, shows variable severity independent of DHCR7 genotype. To test whether peroxisomes are involved in alternative cholesterol synthesis, we used [1-{sup 14}C]C24:0 for peroxisomal {beta}-oxidation to generate [1-{sup 14}C]acetyl-CoA as cholesterol precursor inside peroxisomes. The HMG-CoA reductase inhibitor lovastatin suppressed cholesterol synthesis from [2-{sup 14}C]acetate and [1-{sup 14}C]C8:0 but not from [1-{sup 14}C]C24:0, implicating a peroxisomal, lovastatin-resistant HMG-CoA reductase. In SLOS fibroblasts lacking DHCR7 activity, no cholesterol was formed from [1-{sup 14}C]C24:0-derived [1-{sup 14}C]acetyl-CoA, indicating that the alternative peroxisomal pathway also requires this enzyme. Our results implicate peroxisomes in cholesterol biosynthesis but provide no link to phenotypic variation in SLOS.

  2. Vesicle Origami and the Influence of Cholesterol on Lipid Packing.

    PubMed

    Tanasescu, Radu; Lanz, Martin A; Mueller, Dennis; Tassler, Stephanie; Ishikawa, Takashi; Reiter, Renate; Brezesinski, Gerald; Zumbuehl, Andreas

    2016-05-17

    The artificial phospholipid Pad-PC-Pad was analyzed in 2D (monolayers at the air/water interface) and 3D (aqueous lipid dispersions) systems. In the gel phase, the two leaflets of a Pad-PC-Pad bilayer interdigitate completely, and the hydrophobic bilayer region has a thickness comparable to the length of a single phospholipid acyl chain. This leads to a stiff membrane with no spontaneous curvature. Forced into a vesicular structure, Pad-PC-Pad has faceted geometry, and in its extreme form, tetrahedral vesicles were found as predicted a decade ago. Above the main transition temperature, a noninterdigitated Lα phase with fluid chains has been observed. The addition of cholesterol leads to a slight decrease of the main transition temperature and a gradual decrease in the transition enthalpy until the transition vanishes at 40 mol % cholesterol in the mixture. Additionally, cholesterol pulls the chains apart, and a noninterdigitated gel phase is observed. In monolayers, cholesterol has an ordering effect on liquid-expanded phases and disorders condensed phases. The wavenumbers of the methylene stretching vibration indicate the formation of a liquid-ordered phase in mixtures with 40 mol % cholesterol. PMID:27142706

  3. Translocator Protein 2 Is Involved in Cholesterol Redistribution during Erythropoiesis*

    PubMed Central

    Fan, Jinjiang; Rone, Malena B.; Papadopoulos, Vassilios

    2009-01-01

    Translocator protein (TSPO) is an 18-kDa cholesterol- and drug-binding protein conserved from bacteria to humans. While surveying for Tspo-like genes, we identified its paralogous gene, Tspo2, encoding an evolutionarily conserved family of proteins that arose by gene duplications before the divergence of avians and mammals. Comparative analysis of Tspo1 and Tspo2 functions suggested that Tspo2 has become subfunctionalized, typical of duplicated genes, characterized by the loss of diagnostic drug ligand-binding but retention of cholesterol-binding properties, hematopoietic tissue- and erythroid cell-specific distribution, and subcellular endoplasmic reticulum and nuclear membrane localization. Expression of Tspo2 in erythroblasts is strongly correlated with the down-regulation of the enzymes involved in cholesterol biosynthesis. Overexpression of TSPO2 in erythroid cells resulted in the redistribution of intracellular free cholesterol, an essential step in nucleus expulsion during erythrocyte maturation. Taken together, these data identify the TSPO2 family of proteins as mediators of cholesterol redistribution-dependent erythroblast maturation during mammalian erythropoiesis. PMID:19729679

  4. LDL–cholesterol transport to the endoplasmic reticulum: current concepts

    PubMed Central

    Pfisterer, Simon G.; Peränen, Johan; Ikonen, Elina

    2016-01-01

    Purpose of review In this article, we summarize the present information related to the export of LDL-derived cholesterol from late endosomes, with a focus on Nieman-Pick disease, type C1 (NPC1) cholesterol delivery toward the endoplasmic reticulum (ER). We review data suggesting that several pathways may operate in parallel, including membrane transport routes and membrane contact sites (MCSs). Recent findings There is increasing appreciation that MCSs provide an important mechanism for intermembrane lipid transfer. In late endosome–ER contacts, three protein bridges involving oxysterol binding protein related protein (ORP)1L-vesicle associated membrane protein-associated protein (VAP), steroidogenic acute regulatory protein (StAR)D3-VAP and ORP5-NPC1 proteins have been reported. How much they contribute to the flux of LDL–cholesterol to the ER is currently open. Studies for lipid transfer via MCSs have been most advanced in Saccharomyces cerevisiae. Recently, a new sterol-binding protein family conserved between yeast and man was identified. Its members localize at MCSs and were named lipid transfer protein anchored at membrane contact sites (Lam) proteins. In yeast, sterol transfer between the ER and the yeast lysosome may be facilitated by a Lam protein. Summary Increasing insights into the role of MCSs in directional sterol delivery between membranes propose that they might provide routes for LDL–cholesterol transfer to the ER. Future work should reveal which specific contacts may operate for this, and how they are controlled by cholesterol homeostatic machineries. PMID:27054443

  5. Acrolein impairs the cholesterol transport functions of high density lipoproteins.

    PubMed

    Chadwick, Alexandra C; Holme, Rebecca L; Chen, Yiliang; Thomas, Michael J; Sorci-Thomas, Mary G; Silverstein, Roy L; Pritchard, Kirkwood A; Sahoo, Daisy

    2015-01-01

    High density lipoproteins (HDL) are considered athero-protective, primarily due to their role in reverse cholesterol transport, where they transport cholesterol from peripheral tissues to the liver for excretion. The current study was designed to determine the impact of HDL modification by acrolein, a highly reactive aldehyde found in high abundance in cigarette smoke, on the cholesterol transport functions of HDL. HDL was chemically-modified with acrolein and immunoblot and mass spectrometry analyses confirmed apolipoprotein crosslinking, as well as acrolein adducts on apolipoproteins A-I and A-II. The ability of acrolein-modified HDL (acro-HDL) to serve as an acceptor of free cholesterol (FC) from COS-7 cells transiently expressing SR-BI was significantly decreased. Further, in contrast to native HDL, acro-HDL promotes higher neutral lipid accumulation in murine macrophages as judged by Oil Red O staining. The ability of acro-HDL to mediate efficient selective uptake of HDL-cholesteryl esters (CE) into SR-BI-expressing cells was reduced compared to native HDL. Together, the findings from our studies suggest that acrolein modification of HDL produces a dysfunctional particle that may ultimately promote atherogenesis by impairing functions that are critical in the reverse cholesterol transport pathway.

  6. Treating elevated cholesterol levels: the great Satan in perspective.

    PubMed

    Gibaldi, M; Kradjan, W

    1996-03-01

    The purpose of this review is to provide perspective on the developments leading to the recognition of high cholesterol levels as a risk factor for coronary heart disease (CHD). Another objective is to consider the unfolding controversies regarding the relative value of cholesterol-lowering drug therapy in primary and secondary prevention. Should physicians use lipid-lowering drugs to treat patients with elevated cholesterol levels but no clinical evidence of coronary disease, or limit intervention to patients with a previous history of angina, coronary angioplasty, coronary artery bypass surgery, or myocardial infarction? This review finds inadequate data to support a recommendation for screening large populations for the presence of elevated cholesterol levels or for primary prevention in those known to have high cholesterol. On the other hand, there is mounting evidence to support vigorous intervention in those with known coronary disease. Further study is needed to determine whether a subset of patients with one or more well-defined risk factors would benefit from primary prevention. PMID:8690811

  7. Constitutive hippocampal cholesterol loss underlies poor cognition in old rodents.

    PubMed

    Martin, Mauricio G; Ahmed, Tariq; Korovaichuk, Alejandra; Venero, Cesar; Menchón, Silvia A; Salas, Isabel; Munck, Sebastian; Herreras, Oscar; Balschun, Detlef; Dotti, Carlos G

    2014-05-30

    Cognitive decline is one of the many characteristics of aging. Reduced long-term potentiation (LTP) and long-term depression (LTD) are thought to be responsible for this decline, although the precise mechanisms underlying LTP and LTD dampening in the old remain unclear. We previously showed that aging is accompanied by the loss of cholesterol from the hippocampus, which leads to PI3K/Akt phosphorylation. Given that Akt de-phosphorylation is required for glutamate receptor internalization and LTD, we hypothesized that the decrease in cholesterol in neuronal membranes may contribute to the deficits in LTD typical of aging. Here, we show that cholesterol loss triggers p-Akt accumulation, which in turn perturbs the normal cellular and molecular responses induced by LTD, such as impaired AMPA receptor internalization and its reduced lateral diffusion. Electrophysiology recordings in brain slices of old mice and in anesthetized elderly rats demonstrate that the reduced hippocampal LTD associated with age can be rescued by cholesterol perfusion. Accordingly, cholesterol replenishment in aging animals improves hippocampal-dependent learning and memory in the water maze test.

  8. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis.

    PubMed

    Ossoli, Alice; Pavanello, Chiara; Calabresi, Laura

    2016-06-01

    Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system. PMID:27302716

  9. High-Density Lipoprotein, Lecithin: Cholesterol Acyltransferase, and Atherosclerosis

    PubMed Central

    Ossoli, Alice; Pavanello, Chiara

    2016-01-01

    Epidemiological data clearly show the existence of a strong inverse correlation between plasma high-density lipoprotein cholesterol (HDL-C) concentrations and the incidence of coronary heart disease. This relation is explained by a number of atheroprotective properties of HDL, first of all the ability to promote macrophage cholesterol transport. HDL are highly heterogeneous and are continuously remodeled in plasma thanks to the action of a number of proteins and enzymes. Among them, lecithin:cholesterol acyltransferase (LCAT) plays a crucial role, being the only enzyme able to esterify cholesterol within lipoproteins. LCAT is synthetized by the liver and it has been thought to play a major role in reverse cholesterol transport and in atheroprotection. However, data from animal studies, as well as human studies, have shown contradictory results. Increased LCAT concentrations are associated with increased HDL-C levels but not necessarily with atheroprotection. On the other side, decreased LCAT concentration and activity are associated with decreased HDL-C levels but not with increased atherosclerosis. These contradictory results confirm that HDL-C levels per se do not represent the functionality of the HDL system. PMID:27302716

  10. Specific binding of ethanol to cholesterol in organic solvents.

    PubMed

    Daragan, V A; Voloshin, A M; Chochina, S V; Khazanovich, T N; Wood, W G; Avdulov, N A; Mayo, K H

    2000-07-01

    Although ethanol has been reported to affect cholesterol homeostasis in biological membranes, the molecular mechanism of action is unknown. Here, nuclear magnetic resonance (NMR) spectroscopic techniques have been used to investigate possible direct interactions between ethanol and cholesterol in various low dielectric solvents (acetone, methanol, isopropanol, DMF, DMSO, chloroform, and CCl(4)). Measurement of (13)C chemical shifts, spin-lattice and multiplet relaxation times, as well as self-diffusion coefficients, indicates that ethanol interacts weakly, yet specifically, with the HC-OH moiety and the two flanking methylenes in the cyclohexanol ring of cholesterol. This interaction is most strong in the least polar-solvent carbon tetrachloride where the ethanol-cholesterol equilibrium dissociation constant is estimated to be 2 x 10(-3) M. (13)C-NMR spin-lattice relaxation studies allow insight into the geometry of this complex, which is best modeled with the methyl group of ethanol sandwiched between the two methylenes in the cyclohexanol ring and the hydroxyl group of ethanol hydrogen bonded to the hydroxyl group of cholesterol.

  11. Effect of cellular cholesterol depletion on rabies virus infection.

    PubMed

    Hotta, Kozue; Bazartseren, Boldbarrtar; Kaku, Yoshihiro; Noguchi, Akira; Okutani, Akiko; Inoue, Satoshi; Yamada, Akio

    2009-01-01

    Although there are several reports on candidates for rabies virus (RABV) receptor, possible roles played by these receptor candidates in determination of highly neurotropic nature of RABV have not been well understood. Since these candidate receptors for RABV were reported to be frequently associated with cholesterol-rich microdomains characterized by lipid rafts and caveolae structures, we attempted to determine whether the disturbance of microdomains caused by the cholesterol depletion showed any effects on RABV infection. When the cellular cholesterol was depleted by methyl-beta-cyclodextrin (MBCD) treatment, increase in RABV adsorption and infection, but not multiplication rather than suppression was observed in both BHK-21 and HEp-2 cells. These effects exerted by MBCD treatment on RABV infection could be reversed by cholesterol reconstitution. These results suggest that RABV enters BHK-21 or HEp-2 cells through ports of entry other than those located on cholesterol-rich microdomains and raise the possibility that RABV uses different mechanisms to enter the non-neuronal cells. PMID:19010362

  12. HDL-Mediated Cellular Cholesterol Efflux Assay Method.

    PubMed

    Hafiane, Anouar; Genest, Jacques

    2015-01-01

    Biomarkers of high-density lipoprotein (HDL) function may provide mechanistic insights and better cardiovascular risk discrimination than HDL-cholesterol mass. The purpose of this work is to describe a simplified experimental protocol that can be used in the determination of cholesterol efflux from macrophages cultured cells and be brought to a medium throughput volume. The cellular cholesterol efflux assay is designed to quantify the rate of cholesterol efflux from cultured cells to an acceptor particle or to plasma. This assay is multi step, cell based assay. Various factors, if not carefully controlled may influence the accuracy and reproducibility of the assay. Attempts were made to address factors influencing this assay and to provide a standardized method that is relatively rapid and scalable. We demonstrate that further centrifugation of the HDL fraction is necessary to avoid apolipoprotein B contamination when using polyethylene glycol (PEG) method. We demonstrate also no effect on cholesterol efflux efficiency when using PEG with plasma or serum. This method has been previously applied in our laboratory in context of cardiovascular research, cardiovascular disease and pharmacologic therapies. PMID:26663796

  13. Cholesterol 7 alpha-hydroxylase activity is increased by dietary modification with psyllium hydrocolloid, pectin, cholesterol and cholestyramine in rats.

    PubMed

    Matheson, H B; Colón, I S; Story, J A

    1995-03-01

    Sources of dietary fiber known to alter cholesterol metabolism and/or bile acid pool size were fed to rats, and activity of the rate-limiting step in bile acid synthesis, cholesterol 7 alpha-hydroxylase, was measured. In the first experiment, semipurified diets containing 5% cellulose, psyllium hydrocolloid, pectin or oat bran as dietary fiber sources or 2% cholestyramine were fed to groups of 10 male Wistar rats for 4 wk. In the second experiment, groups of six rats were fed diets containing 5% cellulose, rice bran, oat bran or psyllium with and without 0.25% cholesterol. In the first experiment, the activity of cholesterol 7 alpha-hydroxylase (pmol.min-1.mg protein-1) was highest in the cholestyramine-treated group (95.6 +/- 3.6), followed by groups fed psyllium (35.5 +/- 3.5) or pectin (36.0 +/- 4.5), which exhibited more than twice the enzyme activity of groups fed cellulose (16.9 +/- 1.9) or oat bran (12.3 +/- 2.0). In the second experiment, feeding cholesterol resulted in significantly higher enzyme activity when cellulose (65%), oat bran (118%) and rice bran (60%) were fed, but no difference in activity was observed when cholesterol was added to the psyllium-containing diet. Higher activity of cholesterol 7 alpha-hydroxylase when pectin or psyllium rather than cellulose was fed may explain the almost twofold higher bile acid pool sizes previously reported in response to feeding either of these fibers. These data support the hypothesis that the hypocholesterolemic effect of soluble fibers is modulated through increased synthesis and therefore pool size of bile acids.

  14. Wheat germ policosanol failed to lower plasma cholesterol in subjects with normal to mildly elevated cholesterol concentrations.

    PubMed

    Lin, Yuguang; Rudrum, Mike; van der Wielen, Reggy P J; Trautwein, Elke A; McNeill, Gerald; Sierksma, Aafje; Meijer, Gert W

    2004-10-01

    Sugar cane policosanol, a mixture of long-chain primary alcohols (approximately 67% as octacosanol), has been reported to lower plasma low-density lipoprotein (LDL)-cholesterol. We investigated the effect of wheat germ policosanol (WGP) on plasma lipid profiles in 58 adults (30 men and 28 women, aged 49 +/- 11 years) with normal to mildly elevated plasma cholesterol concentrations in a double-blind, randomized, parallel placebo-controlled study. Subjects consumed chocolate pellets with or without 20 mg/d WGP for 4 weeks. Plasma lipid concentrations, routine blood chemistry and hematology were determined at the start and the end of the study. The initial plasma total, LDL-cholesterol, high-density lipoprotein (HDL)-cholesterol, and triacylglycerol concentrations in the WGP and the control groups were identical. Over the 4 weeks, neither the WGP nor the control treatment significantly changed plasma total cholesterol, LDL- and HDL-cholesterol, or triacylglycerol concentrations when compared to baseline values. In addition, there was no significant difference in plasma lipid profiles between the WGP and the control groups at the end of the study. WGP did not result in any adverse effects as indicated by plasma activities of L-gamma-glutamyltransferase (gamma-GT), ALT, AST, bilirubin concentrations, and blood cell profiles. Chemical analysis showed that WGP consists of 8% hexacosanol, 67% octacosanol, 12% triacosanol, and 13% other long-chain alcohols, which is similar to the composition of sugar cane policosanol. In conclusion, WGP at 20 mg/d had no beneficial effects on blood lipid profiles. It therefore seems unlikely that the long chain (C24-34) alcohols have any cholesterol-lowering activity.

  15. Catabolism and biotechnological applications of cholesterol degrading bacteria.

    PubMed

    García, J L; Uhía, I; Galán, B

    2012-11-01

    Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials.

  16. Nuclear receptors and cholesterol metabolism in the intestine.

    PubMed

    Moschetta, Antonio

    2015-02-01

    Nuclear receptors are involved in many important function and mediate signaling by factors including hormones, vitamins and a number of endogenous ligands and xenobiotics, several of which are involved in lipid metabolism. This review focuses on the liver X receptor (LXR), which is an important regulator of whole-body cholesterol, fatty acid, and glucose homeostasis that binds to LXR response elements as a heterodimer with retinoid X receptors, and the farnesoid X receptor (FXR), which is a bile acid receptor involved in feedback inhibition of bile acid synthesis, and thus cholesterol catabolism. These nuclear receptors regulate gene programs that control intestinal and hepatic lipid homeostasis through their effects on cholesterol transport and catabolism.

  17. The Observation of Highly Ordered Domains in Membranes with Cholesterol

    SciTech Connect

    Armstrong, Clare L; Marquardt, Drew; Dies, Hannah; Kucerka, Norbert; Yamani, Zahra; Harroun, Thad; Katsaras, John; Shi, A-C; Rheinstadter, Maikel C

    2013-01-01

    Rafts, or functional domains, are transient nano- or mesoscopic structures in the exoplasmic leaflet of the plasma membrane, and are thought to be essential for many cellular processes. Using neutron diffraction and computer modelling, we present evidence for the existence of highly ordered lipid domains in the cholesterol-rich (32.5 mol%) liquid-ordered (lo) phase of dipalmitoylphosphatidylcholine membranes. The liquid ordered phase in one-component lipid membranes has previously been thought to be a homogeneous phase. The presence of highly ordered lipid domains embedded in a disordered lipid matrix implies non-uniform distribution of cholesterol between the two phases. The experimental results are in excellent agreement with recent computer simulations of DPPC/cholesterol complexes [Meinhardt, Vink and Schmid (2013). Proc Natl Acad Sci USA 110(12): 4476 4481], which reported the existence of nanometer size lo domains in a liquid disordered lipid environment.

  18. Catabolism and biotechnological applications of cholesterol degrading bacteria.

    PubMed

    García, J L; Uhía, I; Galán, B

    2012-11-01

    Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials. PMID:22309478

  19. Derivation of a Molecular Mechanics Force Field for Cholesterol

    SciTech Connect

    Cournia, Zoe; Vaiana, Andrea C.; Smith, Jeremy C.; Ullmann, G. Matthias M.

    2004-01-01

    As a necessary step toward realistic cholesterol:biomembrane simulations, we have derived CHARMM molecular mechanics force-field parameters for cholesterol. For the parametrization we use an automated method that involves fitting the molecular mechanics potential to both vibrational frequencies and eigenvector projections derived from quantum chemical calculations. Results for another polycyclic molecule, rhodamine 6G, are also given. The usefulness of the method is thus demonstrated by the use of reference data from two molecules at different levels of theory. The frequency-matching plots for both cholesterol and rhodamine 6G show overall agreement between the CHARMM and quantum chemical normal modes, with frequency matching for both molecules within the error range found in previous benchmark studies.

  20. High levels of confusion for cholesterol awareness campaigns.

    PubMed

    Hall, Danika V

    2008-09-15

    Earlier this year, two industry-sponsored advertising campaigns for cholesterol awareness that target the general public were launched in Australia. These campaigns aimed to alert the public to the risks associated with having high cholesterol and encouraged cholesterol testing for wider groups than those specified by the National Heart Foundation. General practitioners should be aware of the potential for the two campaigns to confuse the general public as to who should be tested, and where. The campaign sponsors (Unilever Australasia and Pfizer) each have the potential to benefit by increased market share for their products, and increased profits. These disease awareness campaigns are examples of what is increasingly being termed "condition branding" by pharmaceutical marketing experts. PMID:18803537

  1. Spectral study of some fatty acid-cholesterol mixtures

    NASA Astrophysics Data System (ADS)

    Honciuc, Maria; Carbunescu, Eugenia G.; Popa, Carmen; Slavnicu, Elena; Badragan, Iulian

    2000-02-01

    This paper analyses the behavior of fatty acid-cholesterol mixtures, components of biological membranes, under the influence of the electromagnetic filed. The mixtures acid lauric-cholesterol, prepared in this layers of 24 micrometers , have a liquid crystal behavior at room temperature. Spectra obtained in the range (330 divided by 800) nm put into evidence some regions of resonance between the oscillatory system characterizing the textures and the electromagnetic field. The result are discussed in terms of Maxwell's formalism. A good agreement between experiment and theory was obtained for the lauric acid. The impurification with cholesterol leads to a greater disorder in the system and the agreement with the theory is no more satisfactory.

  2. Pregnane X receptor prevents hepatorenal toxicity from cholesterol metabolites

    PubMed Central

    Sonoda, Junichiro; Chong, Ling Wa; Downes, Michael; Barish, Grant D.; Coulter, Sally; Liddle, Christopher; Lee, Chih-Hao; Evans, Ronald M.

    2005-01-01

    Efficient detoxification and clearance of cholesterol metabolites such as oxysterols, bile alcohols, and bile acids are critical for survival because they can promote liver and cardiovascular disease. We report here that loss of the nuclear xenobiotic receptor PXR (pregnane X receptor), a regulator of enterohepatic drug metabolism and clearance, results in an unexpected acute lethality associated with signs of severe hepatorenal failure when mice are fed with a diet that elicits accumulation of cholesterol and its metabolites. Induction of a distinct drug clearance program by a high-affinity ligand for the related nuclear receptor, the constitutive androstane receptor, does not overcome the lethality, indicating the unique requirement of PXR for detoxification. We propose that the PXR signaling pathway protects the body from toxic dietary cholesterol metabolites, and, by extension, PXR ligands may ameliorate human diseases such as cholestatic liver diseases and the associating acute renal failure. PMID:15671183

  3. Catabolism and biotechnological applications of cholesterol degrading bacteria

    PubMed Central

    García, J. L.; Uhía, I.; Galán, B.

    2012-01-01

    Summary Cholesterol is a steroid commonly found in nature with a great relevance in biology, medicine and chemistry, playing an essential role as a structural component of animal cell membranes. The ubiquity of cholesterol in the environment has made it a reference biomarker for environmental pollution analysis and a common carbon source for different microorganisms, some of them being important pathogens such as Mycobacterium tuberculosis. This work revises the accumulated biochemical and genetic knowledge on the bacterial pathways that degrade or transform this molecule, given that the characterization of cholesterol metabolism would contribute not only to understand its role in tuberculosis but also to develop new biotechnological processes that use this and other related molecules as starting or target materials. PMID:22309478

  4. Intracellular cholesterol transport proteins enhance hydrolysis of HDL-CEs and facilitate elimination of cholesterol into bile.

    PubMed

    Wang, Jing; Bie, Jinghua; Ghosh, Shobha

    2016-09-01

    While HDL-associated unesterified or free cholesterol (FC) is thought to be rapidly secreted into the bile, the fate of HDL-associated cholesteryl esters (HDL-CEs) that represent >80% of HDL-cholesterol, is only beginning to be understood. In the present study, we examined the hypothesis that intracellular cholesterol transport proteins [sterol carrier protein 2 (SCP2) and fatty acid binding protein-1 (FABP1)] not only facilitate CE hydrolase-mediated hydrolysis of HDL-CEs, but also enhance elimination of cholesterol into bile. Adenovirus-mediated overexpression of FABP1 or SCP2 in primary hepatocytes significantly increased hydrolysis of HDL-[(3)H]CE, reduced resecretion of HDL-CE-derived FC as nascent HDL, and increased its secretion as bile acids. Consistently, the flux of [(3)H]cholesterol from HDL-[(3)H]CE to biliary bile acids was increased by overexpression of SCP2 or FABP1 in vivo and reduced in SCP2(-/-) mice. Increased flux of HDL-[(3)H]CE to biliary FC was noted with FABP1 overexpression and in SCP2(-/-) mice that have increased FABP1 expression. Lack of a significant decrease in the flux of HDL-[(3)H]CE to biliary FC or bile acids in FABP1(-/-) mice indicates the likely compensation of its function by an as yet unidentified mechanism. Taken together, these studies demonstrate that FABP1 and SCP2 facilitate the preferential movement of HDL-CEs to bile for final elimination. PMID:27381048

  5. Cholesterol Hydroperoxides as Substrates for Cholesterol-Metabolizing Cytochromes P450 and Alternative Sources of 25-Hydroxycholesterol and other Oxysterols

    PubMed Central

    Mast, Natalia

    2015-01-01

    The interaction of primary autoxidation products of cholesterol, 25- and 20ξ-hydroperoxides, with the four principal cholesterol-metabolizing cytochrome P450 enzymes is reported. Addition of cholesterol 25-hydroperoxide to CYP27A1 and CYP11A1 induced well-defined spectral changes while generating 25-hydroxycholesterol as major product along with small amounts of triols. The 20ξ-hydroperoxides induced spectral shifts in CYP27A1 and CYP11A1, yet glycol metabolites were detected only with CYP11A1. CYP7A1 and CYP46A1 failed to give metabolites with any of the hydroperoxides. A P450 hydroperoxide-shunt reaction is proposed, where the hydroperoxides serve both as donor for reduced oxygen and as substrate. For the first time, CYP27A1 is shown to mediate the reduction of cholesterol 25-hydroperoxide to 25-hydroxycholesterol, a role of potential significance for cholesterol-rich tissues with high oxidative stress. CYP27A1 may participate in these tissues in removal of harmful autoxidation products, while providing a complementary source for 25-hydroxycholesterol, a modulator of immune cell function and mediator of viral cell entry. PMID:26230055

  6. Biliary excretion of lecithin and cholesterol in the dog

    PubMed Central

    Wheeler, Henry O.; King, Katherine K.

    1972-01-01

    The biliary excretion rates of bile acid, lecithin, and cholesterol were measured in unanesthetized dogs after interruption of enterohepatic circulation and during infusions of sodium taurocholate, sodium glycocholate, sodium dehydrocholate, SC2644 (a bicyclic organic acid with high choleretic potency), and secretin. Both lecithin output and cholesterol output were directly related to bile acid excretion rate. The curves describing these relationships were concave downward. Molar concentration ratios of lecithin-to-bile acid declined gradually from approximately 0.4 to 0.2 as bile acid output increased from approximately 1 to 70 μmoles/min. Cholesterol-to-lecithin molar ratios were highest (0.05-0.15) at very low rates of bile acid excretion, but descended rapidly to a plateau (0.03-0.04) which was constant over the entire range of bile acid excretion rates from 10 to 70 μmoles/min. Similar lipid excretion patterns were observed during glycocholate infusion, but secretin-induced choleresis and dehydrocholate-induced choleresis were unaccompanied by any increments in lecithin or cholesterol excretion and SC2644 (which caused a marked increase in canalicular bile production as measured by erythritol clearance) caused a depression of lipid excretion. The data are consistent with the view that lecithin moves passively from cell membranes to intracanalicular micelles, that transport of cholesterol is coupled to lecithin transport, and that there is also a small amount of independent passive transport of cholesterol from membranes to micelles. A model developed on these assumptions has been shown to behave in a fashion consistent with the entire range of these observations. PMID:5024035

  7. The diversity of receptor recognition in cholesterol-dependent cytolysins.

    PubMed

    Tabata, Atsushi; Ohkura, Kazuto; Ohkubo, Yukimasa; Tomoyasu, Toshifumi; Ohkuni, Hisashi; Whiley, Robert A; Nagamune, Hideaki

    2014-03-01

    Cholesterol-dependent cytolysins (CDCs) are bacterial pore-forming toxins secreted mainly by pathogenic Gram-positive bacteria. CDCs generally recognize and bind to membrane cholesterol to create pores and lyse target cells. However, in contrast to typical CDCs such as streptolysin O, several atypical CDCs have been reported. The first of these was intermedilysin, which is secreted by Streptococcus intermedius and has human cell-specificity, human CD59 (huCD59) being its receptor. In the study reported here, the diversity of receptor recognition among CDCs was investigated and multi-receptor recognition characteristics were identified within this toxin family. Streptococcus mitis-derived human platelet aggregation factor (Sm-hPAF) secreted by S. mitis strain Nm-65 isolated from a patient with Kawasaki disease was previously shown to hemolyze erythrocytes in a species-dependent manner, its maximum activity being in human cells. In the present study, it was found that Sm-hPAF recognizes both membrane cholesterol and huCD59 as receptors for triggering pore-formation. Moreover, vaginolysin (VLY) of Gardnerella vaginalis showed similar characteristics to Sm-hPAF regarding receptor recognition. On the basis of the results presented here, the mode of receptor recognition of CDCs can be categorized into the following three groups: (i) Group I, comprising typical CDCs with high affinity to cholesterol and no or very little affinity to huCD59; (ii) Group II, including atypical CDCs such as ILY, with no or very little affinity to cholesterol and high affinity to huCD59; and (iii) Group III, which contains atypical CDCs such as Sm-hPAF and VLY with affinity to both cholesterol and huCD59.

  8. The biosynthesis, absorption, and origin of cholesterol and plant sterols in the Florida land crab.

    PubMed

    Douglass, T S; Connor, W E; Lin, D S

    1981-08-01

    In order to study the biosynthesis, composition, and origin of sterols in the Florida land crabs, Cardisoma guanhumi (Latreille), we fed 17 male crabs either a cholesterol-free or a high cholesterol diet for 2 to 7 weeks. The origin of sterols in these crabs, whether from biosynthesis or from the diet, was determined by tahree procedures: the incorporation of isotopic mevalonate into the cholesterol when the diet was cholesterol-free; the absorption of isotopic cholesterol and sitosterol from the diet; the cholesterol and plant sterol concentrations of hepatopancreas, plasma, and muscle under conditions of cholesterol-free and high cholesterol diets. In addition, the interconversion of cholesterol and sitosterol was investigated. Dietary sterols of plant and animal sources were readily absorbed and provided the major source of sterols for this species of crab. The biosynthesis of cholesterol from mevalonate in this crab was minimal. However, cholesterol was synthesized from dietary sitosterol by dealkylation. Cholesterol and the three plant sterols (24 epsilon-methyl cholesterol, stigmasterol, and sitosterol) were found in the hepatopancreas, plasma, and muscle of the crab. Plant sterols contributed from 9 to 37% of the total sterols in the hepatopancreas, plasma, and muscle of the crabs fed a cholesterol-free diet.

  9. Acute sterol o-acyltransferase 2 (SOAT2) knockdown rapidly mobilizes hepatic cholesterol for fecal excretion.

    PubMed

    Marshall, Stephanie M; Gromovsky, Anthony D; Kelley, Kathryn L; Davis, Matthew A; Wilson, Martha D; Lee, Richard G; Crooke, Rosanne M; Graham, Mark J; Rudel, Lawrence L; Brown, J Mark; Temel, Ryan E

    2014-01-01

    The primary risk factor for atherosclerotic cardiovascular disease is LDL cholesterol, which can be reduced by increasing cholesterol excretion from the body. Fecal cholesterol excretion can be driven by a hepatobiliary as well as a non-biliary pathway known as transintestinal cholesterol efflux (TICE). We previously showed that chronic knockdown of the hepatic cholesterol esterifying enzyme sterol O-acyltransferase 2 (SOAT2) increased fecal cholesterol loss via TICE. To elucidate the initial events that stimulate TICE, C57Bl/6 mice were fed a high cholesterol diet to induce hepatic cholesterol accumulation and were then treated for 1 or 2 weeks with an antisense oligonucleotide targeting SOAT2. Within 2 weeks of hepatic SOAT2 knockdown (SOAT2HKD), the concentration of cholesteryl ester in the liver was reduced by 70% without a reciprocal increase in hepatic free cholesterol. The rapid mobilization of hepatic cholesterol stores resulted in a ∼ 2-fold increase in fecal neutral sterol loss but no change in biliary cholesterol concentration. Acute SOAT2HKD increased plasma cholesterol carried primarily in lipoproteins enriched in apoB and apoE. Collectively, our data suggest that acutely reducing SOAT2 causes hepatic cholesterol to be swiftly mobilized and packaged onto nascent lipoproteins that feed cholesterol into the TICE pathway for fecal excretion.

  10. Acute Sterol O-Acyltransferase 2 (SOAT2) Knockdown Rapidly Mobilizes Hepatic Cholesterol for Fecal Excretion

    PubMed Central

    Marshall, Stephanie M.; Gromovsky, Anthony D.; Kelley, Kathryn L.; Davis, Matthew A.; Wilson, Martha D.; Lee, Richard G.; Crooke, Rosanne M.; Graham, Mark J.; Rudel, Lawrence L.

    2014-01-01

    The primary risk factor for atherosclerotic cardiovascular disease is LDL cholesterol, which can be reduced by increasing cholesterol excretion from the body. Fecal cholesterol excretion can be driven by a hepatobiliary as well as a non-biliary pathway known as transintestinal cholesterol efflux (TICE). We previously showed that chronic knockdown of the hepatic cholesterol esterifying enzyme sterol O-acyltransferase 2 (SOAT2) increased fecal cholesterol loss via TICE. To elucidate the initial events that stimulate TICE, C57Bl/6 mice were fed a high cholesterol diet to induce hepatic cholesterol accumulation and were then treated for 1 or 2 weeks with an antisense oligonucleotide targeting SOAT2. Within 2 weeks of hepatic SOAT2 knockdown (SOAT2HKD), the concentration of cholesteryl ester in the liver was reduced by 70% without a reciprocal increase in hepatic free cholesterol. The rapid mobilization of hepatic cholesterol stores resulted in a ∼2-fold increase in fecal neutral sterol loss but no change in biliary cholesterol concentration. Acute SOAT2HKD increased plasma cholesterol carried primarily in lipoproteins enriched in apoB and apoE. Collectively, our data suggest that acutely reducing SOAT2 causes hepatic cholesterol to be swiftly mobilized and packaged onto nascent lipoproteins that feed cholesterol into the TICE pathway for fecal excretion. PMID:24901470

  11. Cholesterol catabolism as a therapeutic target in Mycobacterium tuberculosis

    PubMed Central

    Ouellet, Hugues; Johnston, Jonathan B.; Ortiz de Montellano, Paul R.

    2011-01-01

    Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that infects 10 million worldwide and kills 2 million people every year. The uptake and utilization of nutrients by Mtb within the host cell is still poorly understood, although lipids play an important role in Mtb persistence. The recent identification of a large regulon of cholesterol catabolic genes suggests that Mtb can use host sterol for infection and persistence. In this review, we report on recent progress in elucidation of the Mtb cholesterol catabolic reactions and their potential utility as targets for tuberculosis therapeutic agents. PMID:21924910

  12. A critical analysis of the role of cholesterol in atherogenesis.

    PubMed

    Sloop, G D

    1999-02-01

    Serum hypercholesterolemia is theorized to accelerate atherogenesis by augmenting cholesterol accumulation (insudation) in the arterial intima. The author views this theory as an example of what the noted philosopher of science Imre Lakatos called 'degenerative science', because data have forced several modifications of the theory. Although the theory that some fraction of intimal cholesterol causes atherosclerosis is not yet disproved, the author favors the hypothesis that serum hypercholesterolemia accelerates atherogenesis and contributes to symptomatic atherosclerosis by increasing blood viscosity and the mechanical fragility of atherosclerotic plaques, making them vulnerable to rupture and thrombosis.

  13. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine.

    PubMed

    Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki

    2016-01-01

    Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux

  14. Ezetimibe Promotes Brush Border Membrane-to-Lumen Cholesterol Efflux in the Small Intestine

    PubMed Central

    Nakano, Takanari; Inoue, Ikuo; Takenaka, Yasuhiro; Ono, Hiraku; Katayama, Shigehiro; Awata, Takuya; Murakoshi, Takayuki

    2016-01-01

    Ezetimibe inhibits Niemann-Pick C1-like 1 (NPC1L1), an apical membrane cholesterol transporter of enterocytes, thereby reduces intestinal cholesterol absorption. This treatment also increases extrahepatic reverse cholesterol transport via an undefined mechanism. To explore this, we employed a trans-intestinal cholesterol efflux (TICE) assay, which directly detects circulation-to-intestinal lumen 3H-cholesterol transit in a cannulated jejunal segment, and found an increase of TICE by 45%. To examine whether such increase in efflux occurs at the intestinal brush border membrane(BBM)-level, we performed luminal perfusion assays, similar to TICE but the jejunal wall was labelled with orally-given 3H-cholesterol, and determined elevated BBM-to-lumen cholesterol efflux by 3.5-fold with ezetimibe. Such increased efflux probably promotes circulation-to-lumen cholesterol transit eventually; thus increases TICE. Next, we wondered how inhibition of NPC1L1, an influx transporter, resulted in increased efflux. When we traced orally-given 3H-cholesterol in mice, we found that lumen-to-BBM 3H-cholesterol transit was rapid and less sensitive to ezetimibe treatment. Comparison of the efflux and fractional cholesterol absorption revealed an inverse correlation, indicating the efflux as an opposite-regulatory factor for cholesterol absorption efficiency and counteracting to the naturally-occurring rapid cholesterol influx to the BBM. These suggest that the ezetimibe-stimulated increased efflux is crucial in reducing cholesterol absorption. Ezetimibe-induced increase in cholesterol efflux was approximately 2.5-fold greater in mice having endogenous ATP-binding cassette G5/G8 heterodimer, the major sterol efflux transporter of enterocytes, than the knockout counterparts, suggesting that the heterodimer confers additional rapid BBM-to-lumen cholesterol efflux in response to NPC1L1 inhibition. The observed framework for intestinal cholesterol fluxes may provide ways to modulate the flux

  15. Effects of Ilex latifolia and Camellia sinensis on cholesterol and circulating immune complexes in rats fed with a high-cholesterol diet.

    PubMed

    Luo, Xian-Yang; Li, Na-Na; Liang, Yue-Rong

    2013-01-01

    Hypercholesterolaemia is one of the risk factors for atherosclerosis and subsequent cardiovascular disease. Here, we investigated the effects of dietary supplementation with Ilex latifolia or green tea (Camellia sinensis) on the levels of plasma total cholesterol, high-density lipoprotein cholesterol and circulating immune complexes in Sprague Dawley rats fed with a high-cholesterol diet. We demonstrated that daily administration by gavage of I. latifolia or C. sinensis at doses of 1.0 or 2.0 g/kg body weight for 30 days resulted in a significant decrease in plasma total cholesterol levels and circulating immune complexes and an increase in high-density lipoprotein cholesterol in rats fed with a high-cholesterol diet compared with levels in the high-cholesterol diet control group. C. sinensis was more effective than I. latifolia. I. latifolia and C. sinensis could be used as food supplements to protect against the development of hypercholesterolaemia.

  16. Two cholesterol derivative-based PEGylated liposomes as drug delivery system, study on pharmacokinetics and drug delivery to retina

    NASA Astrophysics Data System (ADS)

    Geng, Shengyong; Yang, Bin; Wang, Guowu; Qin, Geng; Wada, Satoshi; Wang, Jin-Ye

    2014-07-01

    In this study, two cholesterol derivatives, (4-cholesterocarbonyl-4‧-(N,N,N-triethylamine butyloxyl bromide) azobenzene (CAB) and 4-cholesterocarbonyl-4‧-(N,N-diethylamine butyloxyl) azobenzene (ACB), one of which is positively charged while the other is neutral, were synthesized and incorporated with phospholipids and cholesterol to form doxorubicin (DOX)-loaded liposomes. PEGylation was achieved by including 1,2-distearoyl-sn-glycero-3-phosphatiylethanol-amine-N-[methoxy-(polyethylene glycol)-2000 (DSPE-PEG2000). Our results showed that PEGylated liposomes displayed significantly improved stability and the drug leakage was decreased compared to the non-PEGylated ones in vitro. The in vivo study with rats also revealed that the pharmacokinetics and circulation half-life of DOX were significantly improved when liposomes were PEGylated (p < 0.05). In particular, the neutral cholesterol derivative ACB played some role in improving liposomes’ stability in systemic circulation compared to the conventional PC liposome and the positively charged CAB liposome, with or without PEGylation. In addition, in the case of local drug delivery, the positively charged PEG-liposome not only delivered much more of the drug into the rats’ retinas (p < 0.001), but also maintained much longer drug retention time compared to the neutral PEGylated liposomes.

  17. Targeted next-generation sequencing to diagnose disorders of HDL cholesterol[S

    PubMed Central

    Sadananda, Singh N.; Foo, Jia Nee; Toh, Meng Tiak; Cermakova, Lubomira; Trigueros-Motos, Laia; Chan, Teddy; Liany, Herty; Collins, Jennifer A.; Gerami, Sima; Singaraja, Roshni R.; Hayden, Michael R.; Francis, Gordon A.; Frohlich, Jiri; Khor, Chiea Chuen; Brunham, Liam R.

    2015-01-01

    A low level of HDL cholesterol (HDL-C) is a common clinical scenario and an important marker for increased cardiovascular risk. Many patients with very low or very high HDL-C have a rare mutation in one of several genes, but identification of the molecular abnormality in patients with extreme HDL-C is rarely performed in clinical practice. We investigated the accuracy and diagnostic yield of a targeted next-generation sequencing (NGS) assay for extreme levels of HDL-C. We developed a targeted NGS panel to capture the exons, intron/exon boundaries, and untranslated regions of 26 genes with highly penetrant effects on plasma lipid levels. We sequenced 141 patients with extreme HDL-C levels and prioritized variants in accordance with medical genetics guidelines. We identified 35 pathogenic and probably pathogenic variants in HDL genes, including 21 novel variants, and performed functional validation on a subset of these. Overall, a molecular diagnosis was established in 35.9% of patients with low HDL-C and 5.2% with high HDL-C, and all prioritized variants identified by NGS were confirmed by Sanger sequencing. Our results suggest that a molecular diagnosis can be identified in a substantial proportion of patients with low HDL-C using targeted NGS. PMID:26255038

  18. The amount of dietary cholesterol changes the mode of effects of (n-3) polyunsaturated fatty acid on lipoprotein cholesterol in hamsters.

    PubMed

    Lin, Mei-Huei; Lu, Shao-Chun; Huang, Po-Chao; Liu, Young-Chau; Liu, Shyun-Yeu

    2004-01-01

    This study was designed to investigate the effects of the interaction between dietary (n-3) polyunsaturated fatty acids (PUFA) and different dietary cholesterol content on plasma and liver cholesterol in hamsters. Male Syrian hamsters consumed diets containing an incremental increase in dietary cholesterol content (0, 0.025, 0.05, 0.1 and 0.2%, w/w) with either (n-3) PUFA (21 g/100 g fatty acids) or (n-6) PUFA (37.4 g/100 g fatty acids) fat for 6 weeks. In hamsters fed the nonatherogenic diet (0 or 0.025% dietary cholesterol), very low density lipoprotein (VLDL)-cholesterol levels in the (n-3) PUFA group were not sign