Science.gov

Sample records for ischemic cardiomyopathy induced

  1. Assessment of Ischemic Cardiomyopathy Using Cardiovascular Magnetic Resonance Imaging: A Pictorial Review

    PubMed Central

    Olivas-Chacon, Cristina Ivette; Mullins, Carola; Solberg, Agnieszka; Akle, Nassim; Calleros, Jesus E; Ramos-Duran, Luis R

    2015-01-01

    Ischemic heart disease is the leading cause of death worldwide. In the last two decades, cardiovascular magnetic resonance imaging (CMRI) has emerged as the primary imaging tool in the detection and prognostic assessment of ischemic heart disease. In a single study, CMRI allows evaluation of not only myocardial wall perfusion, but also the presence, acuity, and extent of myocardial ischemia and infarction complications. Also, rest and stress perfusion imaging can accurately depict inducible ischemia secondary to significant coronary artery stenosis. We present a pictorial review of the assessment of ischemic cardiomyopathy with an emphasis on CMRI features. PMID:26085960

  2. A Tissue-Engineered Chondrocyte Cell Sheet Induces Extracellular Matrix Modification to Enhance Ventricular Biomechanics and Attenuate Myocardial Stiffness in Ischemic Cardiomyopathy.

    PubMed

    Shudo, Yasuhiro; Cohen, Jeffrey E; MacArthur, John W; Goldstone, Andrew B; Otsuru, Satoru; Trubelja, Alen; Patel, Jay; Edwards, Bryan B; Hung, George; Fairman, Alexander S; Brusalis, Christopher; Hiesinger, William; Atluri, Pavan; Hiraoka, Arudo; Miyagawa, Shigeru; Sawa, Yoshiki; Woo, Y Joseph

    2015-10-01

    There exists a substantial body of work describing cardiac support devices to mechanically support the left ventricle (LV); however, these devices lack biological effects. To remedy this, we implemented a cell sheet engineering approach utilizing chondrocytes, which in their natural environment produce a relatively elastic extracellular matrix (ECM) for a cushioning effect. Therefore, we hypothesized that a chondrocyte cell sheet applied to infarcted and borderzone myocardium will biologically enhance the ventricular ECM and increase elasticity to augment cardiac function in a model of ischemic cardiomyopathy (ICM). Primary articular cartilage chondrocytes of Wistar rats were isolated and cultured on temperature-responsive culture dishes to generate cell sheets. A rodent ICM model was created by ligating the left anterior descending coronary artery. Rats were divided into two groups: cell sheet transplantation (1.0 × 10(7) cells/dish) and no treatment. The cell sheet was placed onto the surface of the heart covering the infarct and borderzone areas. At 4 weeks following treatment, the decreased fibrotic extension and increased elastic microfiber networks in the infarct and borderzone areas correlated with this technology's potential to stimulate ECM formation. The enhanced ventricular elasticity was further confirmed by the axial stretch test, which revealed that the cell sheet tended to attenuate tensile modulus, a parameter of stiffness. This translated to increased wall thickness in the infarct area, decreased LV volume, wall stress, mass, and improvement of LV function. Thus, the chondrocyte cell sheet strengthens the ventricular biomechanical properties by inducing the formation of elastic microfiber networks in ICM, resulting in attenuated myocardial stiffness and improved myocardial function.

  3. A Tissue-Engineered Chondrocyte Cell Sheet Induces Extracellular Matrix Modification to Enhance Ventricular Biomechanics and Attenuate Myocardial Stiffness in Ischemic Cardiomyopathy

    PubMed Central

    Shudo, Yasuhiro; Cohen, Jeffrey E.; MacArthur, John W.; Goldstone, Andrew B.; Otsuru, Satoru; Trubelja, Alen; Patel, Jay; Edwards, Bryan B.; Hung, George; Fairman, Alexander S.; Brusalis, Christopher; Hiesinger, William; Atluri, Pavan; Hiraoka, Arudo; Miyagawa, Shigeru; Sawa, Yoshiki

    2015-01-01

    There exists a substantial body of work describing cardiac support devices to mechanically support the left ventricle (LV); however, these devices lack biological effects. To remedy this, we implemented a cell sheet engineering approach utilizing chondrocytes, which in their natural environment produce a relatively elastic extracellular matrix (ECM) for a cushioning effect. Therefore, we hypothesized that a chondrocyte cell sheet applied to infarcted and borderzone myocardium will biologically enhance the ventricular ECM and increase elasticity to augment cardiac function in a model of ischemic cardiomyopathy (ICM). Primary articular cartilage chondrocytes of Wistar rats were isolated and cultured on temperature-responsive culture dishes to generate cell sheets. A rodent ICM model was created by ligating the left anterior descending coronary artery. Rats were divided into two groups: cell sheet transplantation (1.0 × 107 cells/dish) and no treatment. The cell sheet was placed onto the surface of the heart covering the infarct and borderzone areas. At 4 weeks following treatment, the decreased fibrotic extension and increased elastic microfiber networks in the infarct and borderzone areas correlated with this technology's potential to stimulate ECM formation. The enhanced ventricular elasticity was further confirmed by the axial stretch test, which revealed that the cell sheet tended to attenuate tensile modulus, a parameter of stiffness. This translated to increased wall thickness in the infarct area, decreased LV volume, wall stress, mass, and improvement of LV function. Thus, the chondrocyte cell sheet strengthens the ventricular biomechanical properties by inducing the formation of elastic microfiber networks in ICM, resulting in attenuated myocardial stiffness and improved myocardial function. PMID:26154752

  4. Trypanosomiasis, cardiomyopathy and the risk of ischemic stroke.

    PubMed

    Carod-Artal, Francisco Javier

    2010-05-01

    American (Chagas disease) and African (sleeping sickness) trypanosomiasis are neglected tropical diseases and are a heavy burden in Latin America and Africa, respectively. Chagas disease is an independent risk factor for stroke. Apical aneurysm, heart failure and cardiac arrhythmias are associated with ischemic stroke in chagasic cardiomyopathy. Not all chagasic patients who suffer an ischemic stroke have a severe cardiomyopathy, and stroke may be the first manifestation of Chagas disease. Cardioembolism affecting the middle cerebral artery is the most common stroke subtype. Risk of recurrence is high and careful evaluation of recurrence risk should be addressed. Repolarization changes, low voltage and prolonged QT interval are common electrocardiography alterations in human African trypanosomiasis, and can be found in more than 70% of patients. Epidemiological studies are needed to asses the risk of stroke in African trypanosomiasis perimyocarditis.

  5. [Cardiac resynchronization therapy in non-ischemic cardiomyopathy].

    PubMed

    Weretka, S; Rüb, N; Weig, H J; Laszlo, R; Dörnberger, V; Gawaz, M; Schreieck, J

    2008-01-01

    Cardiac resynchronization therapy is recommended in patients with advanced heart failure (usually NYHA class III or IV) despite optimal pharmacologic therapy, severe systolic dysfunction (eg, left ventricular ejection fraction < 35 percent) and intraventricular conduction delay or echocardiographic indices of dyssynchrony and wide QRS complex (eg, QRS > or = 120 ms). Viral infection is the most common cause of myocarditis and has been implicated in the development of non-ischemic cardiomyopathy. We report on a patient who developed progressive congestive heart failure caused by non-ischemic cardiomyopathy after liver transplantation and reactivation of the underlying hepatitis C. Due to an insufficient response to optimized pharmacological therapy, the patient was successfully treated using cardiac resynchronization therapy.

  6. Non-ischemic diabetic cardiomyopathy may initially exhibit a transient subclinical phase of hyperdynamic myocardial performance.

    PubMed

    Hensel, Kai O

    2016-09-01

    Cardiovascular complications are the key cause for mortality in diabetes mellitus. Besides ischemia-related cardiac malfunction there is growing evidence for non-ischemic diabetes-associated heart failure in both type 1 and type 2 diabetes mellitus. The underlying pathophysiology of non-ischemic diabetic cardiomyopathy (NIDC) is poorly understood and data on myocardial mechanics in early stages of the disease are rare. However, several studies in both human and experimental animal settings have reported prima facie unexplained features indicating myocardial hyperdynamics early in the course of the disease. The new hypothesis is that - other than previously thought - NIDC may be non-linear and initially feature an asymptomatic subclinical phase of myocardial hypercontractility that precedes the long-term development of diabetes-associated cardiac dysfunction and ultimately heart failure. Diabetes-induced metabolic imbalances may lead to a paradoxic inotropic increase and inefficient myocardial mechanics that finally result in a gradual deterioration of myocardial performance. In conclusion, diabetic patients should be screened regularly and early in the course of the disease utilizing ultra-sensitive myocardial deformation imaging in order to identify patients at risk for diabetes-associated heart failure. Moreover, hyperdynamic myocardial deformation might help distinguish non-ischemic from ischemic diabetic cardiomyopathy. Further studies are needed to illuminate the underlying pathophysiological mechanisms, the exact spatiotemporal evolvement of diabetic cardiomyopathy and its long-term relation to clinical outcome parameters. PMID:27515189

  7. Magnetic Resonance Imaging of Non-ischemic Cardiomyopathies: A Pictorial Essay.

    PubMed

    Olivas-Chacon, Cristina I; Mullins, Carola; Stewart, Kevan; Akle, Nassim; Calleros, Jesus E; Ramos-Duran, Luis R

    2015-01-01

    Non-ischemic cardiomyopathies are defined as either primary or secondary diseases of the myocardium resulting in cardiac dysfunction. While primary cardiomyopathies are confined to the heart and can be genetic or acquired, secondary cardiomyopathies show involvement of the heart as a manifestation of an underlying systemic disease including metabolic, inflammatory, granulomatous, infectious, or autoimmune entities. Non-ischemic cardiomyopathies are currently classified as hypertrophic, dilated, restrictive, or unclassifiable, including left ventricular non-compaction. Cardiovascular Magnetic Resonance Imaging (CMRI) not only has the capability to assess cardiac morphology and function, but also the ability to detect edema, hemorrhage, fibrosis, and intramyocardial deposits, providing a valuable imaging tool in the characterization of non-ischemic cardiomyopathies. This pictorial essay shows some of the most important non-ischemic cardiomyopathies with an emphasis on magnetic resonance imaging features.

  8. Magnetic Resonance Imaging of Non-ischemic Cardiomyopathies: A Pictorial Essay

    PubMed Central

    Olivas-Chacon, Cristina I; Mullins, Carola; Stewart, Kevan; Akle, Nassim; Calleros, Jesus E; Ramos-Duran, Luis R

    2015-01-01

    Non-ischemic cardiomyopathies are defined as either primary or secondary diseases of the myocardium resulting in cardiac dysfunction. While primary cardiomyopathies are confined to the heart and can be genetic or acquired, secondary cardiomyopathies show involvement of the heart as a manifestation of an underlying systemic disease including metabolic, inflammatory, granulomatous, infectious, or autoimmune entities. Non-ischemic cardiomyopathies are currently classified as hypertrophic, dilated, restrictive, or unclassifiable, including left ventricular non-compaction. Cardiovascular Magnetic Resonance Imaging (CMRI) not only has the capability to assess cardiac morphology and function, but also the ability to detect edema, hemorrhage, fibrosis, and intramyocardial deposits, providing a valuable imaging tool in the characterization of non-ischemic cardiomyopathies. This pictorial essay shows some of the most important non-ischemic cardiomyopathies with an emphasis on magnetic resonance imaging features. PMID:26199786

  9. [Microvolt T-wave alternans. Ischemic vs. nonischemic dilated cardiomyopathy].

    PubMed

    Klingenheben, Thomas

    2015-03-01

    The use of implantable cardioverter defibrillators (ICD) for primary preventive therapy of sudden arrhythmogenic death has become a mainstay in selected patients with systolic congestive heart failure, particularly in the setting of ischemic and nonischemic cardiomyopathy (Moss et al., N Engl J Med 346:877–883, 2002; Bardy et al., N Engl J Med 352:225–237, 2005). However, more accurate identification of high-risk patients is desirable in order to avoid unnecessary ICD implants. Since currently available risk stratification methods have limited predictive accuracy, development of new techniques is important in order to noninvasively assess arrhythmogenic risk in patients prone to sudden death.Microvolt level T-wave alternans (mTWA) has recently been proposed to assess abnormalities in ventricular repolarization favoring the occurrence of reentrant arrhythmias (Adam et al., J Electrocardiol 17:209–218, 1984; Pastore et al., Circulation 99:1385–1394, 1999). In 1994, a preliminary clinical study by Rosenbaum et al. convincingly demonstrated that mTWA is closely related to arrhythmia induction in the electrophysiology laboratory as well as to the occurrence of spontaneous ventricular tachyarrhythmias during follow-up (Rosenbaum et al., N Engl J Med 330:235–241,1994). More recently, a number of clinical studies have examined its clinical applicability in ischemic and nonischemic cardiomyopathy.

  10. Trimetazidine therapy prevents obesity-induced cardiomyopathy in mice.

    PubMed

    Ussher, John R; Fillmore, Natasha; Keung, Wendy; Mori, Jun; Beker, Donna L; Wagg, Cory S; Jaswal, Jagdip S; Lopaschuk, Gary D

    2014-08-01

    Obesity is a significant risk factor for the development of cardiovascular disease. Inhibiting fatty acid oxidation has emerged as a novel approach for the treatment of ischemic heart disease. Our aim was to determine whether pharmacologic inhibition of 3-ketoacyl-coenzyme A thiolase (3-KAT), which catalyzes the final step of fatty acid oxidation, could improve obesity-induced cardiomyopathy. A 3-week treatment with the 3-KAT inhibitor trimetazidine prevented obesity-induced reduction in both systolic and diastolic function. Therefore, targeting cardiac fatty acid oxidation may be a novel therapeutic approach to alleviate the growing burden of obesity-related cardiomyopathy.

  11. Impact of cardiac magnetic resonance imaging in non-ischemic cardiomyopathies

    PubMed Central

    Kalisz, Kevin; Rajiah, Prabhakar

    2016-01-01

    Non-ischemic cardiomyopathies include a wide spectrum of disease states afflicting the heart, whether a primary process or secondary to a systemic condition. Cardiac magnetic resonance imaging (CMR) has established itself as an important imaging modality in the evaluation of non-ischemic cardiomyopathies. CMR is useful in the diagnosis of cardiomyopathy, quantification of ventricular function, establishing etiology, determining prognosis and risk stratification. Technical advances and extensive research over the last decade have resulted in the accumulation of a tremendous amount of data with regards to the utility of CMR in these cardiomyopathies. In this article, we review CMR findings of various non-ischemic cardiomyopathies and focus on current literature investigating the clinical impact of CMR on risk stratification, treatment, and prognosis. PMID:26981210

  12. The Clinical Status of Stem Cell Therapy for Ischemic Cardiomyopathy

    PubMed Central

    Wang, Xianyun; Zhang, Jun; Zhang, Fan; Li, Jing; Li, Yaqi; Tan, Zirui; Hu, Jie; Qi, Yixin; Yan, Baoyong

    2015-01-01

    Ischemic cardiomyopathy (ICM) is becoming a leading cause of morbidity and mortality in the whole world. Stem cell-based therapy is emerging as a promising option for treatment of ICM. Several stem cell types including cardiac-derived stem cells (CSCs), bone marrow-derived stem cells, mesenchymal stem cells (MSCs), skeletal myoblasts (SMs), and CD34+ and CD 133+ stem cells have been applied in clinical researches. The clinical effect produced by stem cell administration in ICM mainly depends on the transdifferentiation and paracrine effect. One important issue is that low survival and residential rate of transferred stem cells in the infracted myocardium blocks the effective advances in cardiac improvement. Many other factors associated with the efficacy of cell replacement therapy for ICM mainly including the route of delivery, the type and number of stem cell infusion, the timing of injection, patient's physical condition, the particular microenvironment onto which the cells are delivered, and clinical condition remain to be addressed. Here we provide an overview of the pros and cons of these transferred cells and discuss the current state of their therapeutic potential. We believe that stem cell translation will be an ideal option for patients following ischemic heart disease in the future. PMID:26101528

  13. Sepsis-induced Cardiomyopathy

    PubMed Central

    Romero-Bermejo, Francisco J; Ruiz-Bailen, Manuel; Gil-Cebrian, Julián; Huertos-Ranchal, María J

    2011-01-01

    Myocardial dysfunction is one of the main predictors of poor outcome in septic patients, with mortality rates next to 70%. During the sepsis-induced myocardial dysfunction, both ventricles can dilate and diminish its ejection fraction, having less response to fluid resuscitation and catecholamines, but typically is assumed to be reversible within 7-10 days. In the last 30 years, It´s being subject of substantial research; however no explanation of its etiopathogenesis or effective treatment have been proved yet. The aim of this manuscript is to review on the most relevant aspects of the sepsis-induced myocardial dysfunction, discuss its clinical presentation, pathophysiology, etiopathogenesis, diagnostic tools and therapeutic strategies proposed in recent years. PMID:22758615

  14. Coronary-Artery Bypass Surgery in Patients with Ischemic Cardiomyopathy

    PubMed Central

    Velazquez, Eric J.; Lee, Kerry L.; Jones, Robert H.; Al-Khalidi, Hussein R.; Hill, James A.; Panza, Julio A.; Michler, Robert E.; Bonow, Robert O.; Doenst, Torsten; Petrie, Mark C.; Oh, Jae K.; She, Lilin; Moore, Vanessa L.; Desvigne-Nickens, Patrice; Sopko, George; Rouleau, Jean L.

    2016-01-01

    BACKGROUND The survival benefit of a strategy of coronary-artery bypass grafting (CABG) added to guideline-directed medical therapy, as compared with medical therapy alone, in patients with coronary artery disease, heart failure, and severe left ventricular systolic dysfunction remains unclear. METHODS From July 2002 to May 2007, a total of 1212 patients with an ejection fraction of 35% or less and coronary artery disease amenable to CABG were randomly assigned to undergo CABG plus medical therapy (CABG group, 610 patients) or medical therapy alone (medical-therapy group, 602 patients). The primary outcome was death from any cause. Major secondary outcomes included death from cardiovascular causes and death from any cause or hospitalization for cardiovascular causes. The median duration of follow-up, including the current extended-follow-up study, was 9.8 years. RESULTS A primary outcome event occurred in 359 patients (58.9%) in the CABG group and in 398 patients (66.1%) in the medical-therapy group (hazard ratio with CABG vs. medical therapy, 0.84; 95% confidence interval [CI], 0.73 to 0.97; P = 0.02 by log-rank test). A total of 247 patients (40.5%) in the CABG group and 297 patients (49.3%) in the medical-therapy group died from cardiovascular causes (hazard ratio, 0.79; 95% CI, 0.66 to 0.93; P = 0.006 by log-rank test). Death from any cause or hospitalization for cardiovascular causes occurred in 467 patients (76.6%) in the CABG group and in 524 patients (87.0%) in the medical-therapy group (hazard ratio, 0.72; 95% CI, 0.64 to 0.82; P<0.001 by log-rank test). CONCLUSIONS In a cohort of patients with ischemic cardiomyopathy, the rates of death from any cause, death from cardiovascular causes, and death from any cause or hospitalization for cardiovascular causes were significantly lower over 10 years among patients who underwent CABG in addition to receiving medical therapy than among those who received medical therapy alone. (Funded by the National Institutes of

  15. [Stress-induced Takotsubo cardiomyopathy].

    PubMed

    Høst, Ulla; Søgaard, Peter; Hansen, Peter Riis

    2009-09-14

    A case of Takotsubo cardiomyopathy is described in a postmenopausal woman admitted for suspected recent myocardial infarction, triggered by significant social stress during a family Christmas dinner. Coronary angiography showed no significant lesions. Acute echocardiography demonstrated apical ballooning and an ejection fraction of 30%. The clinical course was uneventful and after one month, echocardiography showed complete resolution of the apical ballooning and recovery of left ventricular systolic function.

  16. Risk Stratification for Sudden Cardiac Death In Patients With Non-ischemic Dilated Cardiomyopathy

    PubMed Central

    Shekha, Karthik; Ghosh, Joydeep; Thekkoott, Deepak; Greenberg, Yisachar

    2005-01-01

    Non ischemic dilated cardiomyopathy (NIDCM) is a disorder of myocardium. It has varying etiologies. Albeit the varying etiologies of this heart muscle disorder, it presents with symptoms of heart failure, and rarely as sudden cardiac death (SCD). Manifestations of this disorder are in many ways similar to its counterpart, ischemic dilated cardiomyopathy (IDCM). A proportion of patients with NIDCM carries a grave prognosis and is prone to sudden cardiac death from sustained ventricular arrhythmias. Identification of this subgroup of patients who carry the risk of sudden cardiac death despite adequate medical management is a challenge .Yet another method is a blanket treatment of patients with this disorder with anti arrhythmic medications or anti tachyarrhythmia devices like implantable cardioverter defibrillators (ICD). However this modality of treatment could be a costly exercise even for affluent economies. In this review we try to analyze the existing data of risk stratification of NIDCM and its clinical implications in practice. PMID:16943952

  17. Cardiac magnetic resonance imaging and computed tomography in ischemic cardiomyopathy: an update*

    PubMed Central

    Assunção, Fernanda Boldrini; de Oliveira, Diogo Costa Leandro; Souza, Vitor Frauches; Nacif, Marcelo Souto

    2016-01-01

    Ischemic cardiomyopathy is one of the major health problems worldwide, representing a significant part of mortality in the general population nowadays. Cardiac magnetic resonance imaging (CMRI) and cardiac computed tomography (CCT) are noninvasive imaging methods that serve as useful tools in the diagnosis of coronary artery disease and may also help in screening individuals with risk factors for developing this illness. Technological developments of CMRI and CCT have contributed to the rise of several clinical indications of these imaging methods complementarily to other investigation methods, particularly in cases where they are inconclusive. In terms of accuracy, CMRI and CCT are similar to the other imaging methods, with few absolute contraindications and minimal risks of adverse side-effects. This fact strengthens these methods as powerful and safe tools in the management of patients. The present study is aimed at describing the role played by CMRI and CCT in the diagnosis of ischemic cardiomyopathies. PMID:26929458

  18. Cardiac magnetic resonance imaging and computed tomography in ischemic cardiomyopathy: an update.

    PubMed

    Assunção, Fernanda Boldrini; de Oliveira, Diogo Costa Leandro; Souza, Vitor Frauches; Nacif, Marcelo Souto

    2016-01-01

    Ischemic cardiomyopathy is one of the major health problems worldwide, representing a significant part of mortality in the general population nowadays. Cardiac magnetic resonance imaging (CMRI) and cardiac computed tomography (CCT) are noninvasive imaging methods that serve as useful tools in the diagnosis of coronary artery disease and may also help in screening individuals with risk factors for developing this illness. Technological developments of CMRI and CCT have contributed to the rise of several clinical indications of these imaging methods complementarily to other investigation methods, particularly in cases where they are inconclusive. In terms of accuracy, CMRI and CCT are similar to the other imaging methods, with few absolute contraindications and minimal risks of adverse side-effects. This fact strengthens these methods as powerful and safe tools in the management of patients. The present study is aimed at describing the role played by CMRI and CCT in the diagnosis of ischemic cardiomyopathies. PMID:26929458

  19. Cardiac magnetic resonance imaging and computed tomography in ischemic cardiomyopathy: an update.

    PubMed

    Assunção, Fernanda Boldrini; de Oliveira, Diogo Costa Leandro; Souza, Vitor Frauches; Nacif, Marcelo Souto

    2016-01-01

    Ischemic cardiomyopathy is one of the major health problems worldwide, representing a significant part of mortality in the general population nowadays. Cardiac magnetic resonance imaging (CMRI) and cardiac computed tomography (CCT) are noninvasive imaging methods that serve as useful tools in the diagnosis of coronary artery disease and may also help in screening individuals with risk factors for developing this illness. Technological developments of CMRI and CCT have contributed to the rise of several clinical indications of these imaging methods complementarily to other investigation methods, particularly in cases where they are inconclusive. In terms of accuracy, CMRI and CCT are similar to the other imaging methods, with few absolute contraindications and minimal risks of adverse side-effects. This fact strengthens these methods as powerful and safe tools in the management of patients. The present study is aimed at describing the role played by CMRI and CCT in the diagnosis of ischemic cardiomyopathies.

  20. Sudden cardiac death markers in non-ischemic cardiomyopathy.

    PubMed

    Pimentel, Mauricio; Rohde, Luis Eduardo; Zimerman, André; Zimerman, Leandro Ioschpe

    2016-01-01

    Heart failure is an increasingly prevalent disease associated with high morbidity and mortality. In 30-40% of patients, the etiology is non-ischemic. In this group of patients, the implantable cardioverter-defibrillator (ICD) prevents sudden death and decreases total mortality. However, due to burden of cost, the fact that many ICD patients will never need any therapy, and possible complications involved in implant and follow-up, the device should not be implanted in every patient with non-ischemic heart failure. There is an urgent need to adequately identify patients with highest sudden death risk, in whom the implant is most cost-effective. In the present paper, the authors discuss current available tests for risk stratification of sudden cardiac death in patients with non-ischemic heart failure. PMID:27016256

  1. Could it be Quetiapine-induced Peripartum Cardiomyopathy?

    PubMed Central

    Kaler, Mandeep; Shakur, Rameen; Learner, Hazel I; Deaner, Andrew; Howard, Richard J

    2013-01-01

    Peri-partum Cardiomyopathy (PPCM) is a rare and life threatening complication of pregnancy. There are only two cases registered with the World Health Organization of cases of cardiomyopathy in patients taking Quetiapine. Here we discuss an interesting case of potential Quetiapine induced cardiomyopathy.

  2. Metallothioneins 1 and 2 Modulate Inflammation and Support Remodeling in Ischemic Cardiomyopathy in Mice.

    PubMed

    Duerr, Georg D; Dewald, Daniela; Schmitz, Eva J; Verfuerth, Luise; Keppel, Katharina; Peigney, Christine; Ghanem, Alexander; Welz, Armin; Dewald, Oliver

    2016-01-01

    Aims. Repetitive brief ischemia and reperfusion (I/R) is associated with left ventricular dysfunction during development of ischemic cardiomyopathy. We investigated the role of zinc-donor proteins metallothionein MT1 and MT2 in a closed-chest murine model of I/R. Methods. Daily 15-minute LAD-occlusion was performed for 1, 3, and 7 days in SV129 (WT)- and MT1/2 knockout (MT(-/-))-mice (n = 8-10/group). Hearts were examined with M-mode echocardiography and processed for histological and mRNA studies. Results. Expression of MT1/2 mRNA was transiently induced during repetitive I/R in WT-mice, accompanied by a transient inflammation, leading to interstitial fibrosis with left ventricular dysfunction without infarction. In contrast, MT(-/-)-hearts presented with enhanced apoptosis and small infarctions leading to impaired global and regional pump function. Molecular analysis revealed maladaptation of myosin heavy chain isoforms and antioxidative enzymes in MT1/2(-/-)-hearts. Despite their postponed chemokine induction we found a higher total neutrophil density and macrophage infiltration in small infarctions in MT(-/-)-hearts. Subsequently, higher expression of osteopontin 1 and tenascin C was associated with increased myofibroblast density resulting in predominately nonreversible fibrosis and adverse remodeling in MT1/2(-/-)-hearts. Conclusion. Cardioprotective effects of MT1/2 seem to be exerted via modulation of contractile elements, antioxidative enzymes, inflammatory response, and myocardial remodeling. PMID:27403038

  3. [Dilated cardiomyopathy induced by ectopic atrial tachycardia].

    PubMed

    Velázquez Rodríguez, E; Martínez Enríquez, A

    2000-01-01

    The deleterious effect of chronic or incessant supraventricular tachycardia on ventricular function is well-known and it has been demonstrated than can ultimately lead to dilated cardiomyopathy if unrecognized. Any variety of supraventricular tachycardia with chronic evolution may lead to left ventricular dysfunction, ectopic atrial tachycardia because of its persistent nature, often incessant and poorly responsive to antiarrhythmic drugs is a frequent cause of reversible congestive heart failure in patients without other demonstrable organic heart disease. Five patients (aged 14 to 52 years) were referred with symptoms of heart failure, NYHA functional class II (one patient), class III (one patient) and class IV (3 patients) associated with an incessant ectopic atrial tachycardia. Four patients underwent radiofrequency catheter ablation of the ectopic focus and one patient was treated with amiodarone. All patients were successfully treated and the echocardiographic assessment of left ventricular function indicated regression of the cardiomyopathy picture with recovery of systolic function, (mean left ventricular ejection fraction 39.2 +/- 6.1% before vs mean 62.4 +/- 4.8% after (p < 0.01). The clinical and echocardiographic picture of cardiomyopathy induced by incessant ectopic atrial tachycardia is reversible after successful treatment. This stresses the necessity of recognizing such arrhythmia as cause of primary heart failure. PMID:10959459

  4. Fragmented narrow QRS complex: Predictor of left ventricular dyssynchrony in non-ischemic dilated cardiomyopathy

    PubMed Central

    Yusuf, Jamal; Agrawal, Devendra Kumar; Mukhopadhyay, Saibal; Mehta, Vimal; Trehan, Vijay; Tyagi, Sanjay

    2013-01-01

    Background Cardiac resynchronization therapy is an important therapeutic modality in drug refractory symptomatic patients of heart failure with wide QRS (≥120 ms) on electrocardiogram. However, wide QRS (considered as a marker of electrical dyssynchrony) occurs in only 30% of heart failure patients, making majority of drug refractory heart failure patients ineligible for resynchronization therapy. Significant numbers of patients with narrow QRS have echocardiographic evidence of left ventricular dyssynchrony. However, there is sparse data about additional features on the surface ECG which can predict intraventricular dyssynchrony. This study was undertaken to assess the utility of fragmented narrow QRS complex to predict significant intraventricular dyssynchrony in symptomatic patients of non-ischemic dilated cardiomyopathy. Method 100 symptomatic patients of non-ischemic dilated cardiomyopathy with narrow QRS complexes (50 each with fragmented and normal QRS) were recruited. Tissue Doppler imaging was used to assess intraventricular dyssynchrony as per ‘Yu index’. Results 78% patients (n = 39) in fQRS complex group and 14% (n = 7) in normal QRS complex group had significant intraventricular dyssynchrony (χ2 = 20.61; p < 0.000005). fQRS complexes had 84.78% sensitivity, 79.62% specificity, a positive predictive value of 78% and negative predictive value of 86% to detect intraventricular dyssynchrony. fQRS also had sensitivity and specificity of 93% and 90% respectively to localize the dyssynchronous segment. Conclusion fQRS is a marker of electrical dyssynchrony, which results in significant intraventricular dyssynchrony in patients of non-ischemic dilated cardiomyopathy and a narrow QRS interval. fQRS localizes the dyssynchronous segment and might be useful in identifying patients who can benefit from cardiac resynchronization therapy. PMID:23647897

  5. Metallothioneins 1 and 2 Modulate Inflammation and Support Remodeling in Ischemic Cardiomyopathy in Mice

    PubMed Central

    Dewald, Daniela; Schmitz, Eva J.; Verfuerth, Luise; Keppel, Katharina; Peigney, Christine; Ghanem, Alexander; Welz, Armin; Dewald, Oliver

    2016-01-01

    Aims. Repetitive brief ischemia and reperfusion (I/R) is associated with left ventricular dysfunction during development of ischemic cardiomyopathy. We investigated the role of zinc-donor proteins metallothionein MT1 and MT2 in a closed-chest murine model of I/R. Methods. Daily 15-minute LAD-occlusion was performed for 1, 3, and 7 days in SV129 (WT)- and MT1/2 knockout (MT−/−)-mice (n = 8–10/group). Hearts were examined with M-mode echocardiography and processed for histological and mRNA studies. Results. Expression of MT1/2 mRNA was transiently induced during repetitive I/R in WT-mice, accompanied by a transient inflammation, leading to interstitial fibrosis with left ventricular dysfunction without infarction. In contrast, MT−/−-hearts presented with enhanced apoptosis and small infarctions leading to impaired global and regional pump function. Molecular analysis revealed maladaptation of myosin heavy chain isoforms and antioxidative enzymes in MT1/2−/−-hearts. Despite their postponed chemokine induction we found a higher total neutrophil density and macrophage infiltration in small infarctions in MT−/−-hearts. Subsequently, higher expression of osteopontin 1 and tenascin C was associated with increased myofibroblast density resulting in predominately nonreversible fibrosis and adverse remodeling in MT1/2−/−-hearts. Conclusion. Cardioprotective effects of MT1/2 seem to be exerted via modulation of contractile elements, antioxidative enzymes, inflammatory response, and myocardial remodeling. PMID:27403038

  6. Computer-based assessment of left ventricular wall stiffness in patients with ischemic dilated cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Su, Y.; Teo, S. K.; Tan, R. S.; Lim, C. W.; Zhong, L.

    2013-02-01

    Ischemic dilated cardiomyopathy (IDCM) is a degenerative disease of the myocardial tissue accompanied by left ventricular (LV) structural changes such as interstitial fibrosis. This can induce increased passive stiffness of the LV wall. However, quantification of LV passive wall stiffness in vivo is extremely difficult, particularly in ventricles with complex geometry. Therefore, we sought to (i) develop a computer-based assessment of LV passive wall stiffness from cardiac magnetic resonance (CMR) imaging in terms of a nominal stiffness index (E*); and (ii) investigate whether E* can offer an insight into cardiac mechanics in IDCM. CMR scans were performed in 5 normal subjects and 5 patients with IDCM. For each data sample, an in-house software was used to generate a 1-to-1 corresponding mesh pair of the LV from the ED and ES phases. The E* values are then computed as a function of local ventricular wall strain. We found that E* in the IDCM group (40.66 - 215.12) was at least one order of magnitude larger than the normal control group (1.00 - 6.14). In addition, the IDCM group revealed much higher inhomogeneity of E* values manifested by a greater spread of E* values throughout the LV. In conclusion, there is a substantial elevated ventricular stiffness index in IDCM. This would suggest that E* could be used as discriminator for early detection of disease state. The computational performance per data sample took approximately 25 seconds, which demonstrates its clinical potential as a real-time cardiac assessment tool.

  7. Mechanics of the Mitral Annulus in Chronic Ischemic Cardiomyopathy

    PubMed Central

    Rausch, Manuel K.; Tibayan, Frederick A.; Ingels, Neil B.; Miller, D. Craig; Kuhl, Ellen

    2013-01-01

    Approximately one third of all patients undergoing open-heart surgery for repair of ischemic mitral regurgitation present with residual and recurrent mitral valve leakage upon follow up. A fundamental quantitative understanding of mitral valve remodeling following myocardial infarction may hold the key to improved medical devices and better treatment outcomes. Here we quantify mitral annular strains and curvature in nine sheep 5 ± 1 weeks after controlled inferior myocardial infarction of the left ventricle. We complement our marker-based mechanical analysis of the remodeling mitral valve by common clinical measures of annular geometry before and after the infarct. After 5 ± 1 weeks, the mitral annulus dilated in septal-lateral direction by 15.2% (p=0.003) and in commissure-commissure direction by 14.2% (p<0.001). The septal annulus dilated by 10.4% (p=0.013) and the lateral annulus dilated by 18.4% (p<0.001). Remarkably, in animals with large degree of mitral regurgitation and annular remodeling, the annulus dilated asymmetrically with larger distortions toward the lateral-posterior segment. Strain analysis revealed average tensile strains of 25% over most of the annulus with exception for the lateral-posterior segment, where tensile strains were 50% and higher. Annular dilation and peak strains were closely correlated to the degree of mitral regurgitation. A complementary relative curvature analysis revealed a homogenous curvature decrease associated with significant annular circularization. All curvature profiles displayed distinct points of peak curvature disturbing the overall homogenous pattern. These hinge points may be the mechanistic origin for the asymmetric annular deformation following inferior myocardial infarction. In the future, this new insight into the mechanism of asymmetric annular dilation may support improved device designs and possibly aid surgeons in reconstructing healthy annular geometry during mitral valve repair. PMID:23636575

  8. Reversible catecholamine-induced cardiomyopathy due to pheochromocytoma: case report.

    PubMed

    Satendra, Milan; de Jesus, Cláudia; Bordalo e Sá, Armando L; Rosário, Luís; Rocha, José; Bicha Castelo, Henrique; Correia, Maria José; Nunes Diogo, António

    2014-03-01

    Pheochromocytoma is a tumor originating from chromaffin tissue. It commonly presents with symptoms and signs of catecholamine excess, such as hypertension, tachycardia, headache and sweating. Cardiovascular manifestations include catecholamine-induced cardiomyopathy, which may present as severe left ventricular dysfunction and congestive heart failure. We report a case of pheochromocytoma which was diagnosed following investigation of dilated cardiomyopathy. We highlight the dramatic symptomatic improvement and reversal of cardiomyopathy, with recovery of left ventricular function after treatment.

  9. Concordant and Discordant Cardiac Magnetic Resonance Imaging Delayed Hyperenhancement Patterns in Patients with Ischemic and Non-Ischemic Cardiomyopathy

    PubMed Central

    Kim, Eun Kyoung; Choi, Jin-Oh; Glockner, James; Shapiro, Brian; Choe, Yeon Hyeon; Fine, Nowell; Jang, Shin Yi; Kim, Sung-Mok; Miller, Wayne; Lee, Sang-Chol; Oh, Jae K.

    2016-01-01

    Background and Objectives The diagnosis of ischemic (ICM) and non-ischemic cardiomyopathy (NICM) is conventionally determined by the presence or absence of coronary artery disease (CAD) in the setting of a reduced left systolic function. However the presence of CAD may not always indicate that the actual left ventricular (LV) dysfunction mechanism is ischemia, as other non-ischemic etiologies can be responsible. We investigated patterns of myocardial fibrosis using delayed hyperenhancement (DHE) on cardiac magnetic resonance (CMR) in ICM and NICM. Subjects and Methods Patients with systolic heart failure who underwent a CMR were prospectively analyzed. The heart failure diagnosis was based on the modified Framingham criteria and LVEF <35%. LV dysfunction was classified as ICM or NICM based on coronary anatomy. Results A total of 101 subjects were analyzed; 34 were classified as ICM and 67 as NICM. The DHE pattern was concordant with the conventional diagnosis in 27 (79.4%) of the patients with ICM and 62 (92.5%) of the patients with NCIM. A discordant NICM DHE pattern was present in 8.8% of patients with ICM, and an ICM pattern was detected 6.0% of the patients with NICM. Furthermore, 11.8% of the patients with ICM and 1.5% of those with NICM demonstrated a mixed pattern. Conclusion A subset of patients conventionally diagnosed with ICM or NICM based on coronary anatomy demonstrated a discordant or mixed DHE pattern. CMR-DHE imaging can be helpful to determine the etiology of heart failure in patients with persistent LV systolic dysfunction. PMID:26798384

  10. LV Dyssynchrony Is Helpful in Predicting Ventricular Arrhythmia in Ischemic Cardiomyopathy After Cardiac Resynchronization Therapy

    PubMed Central

    Tsai, Shih-Chuan; Chang, Yu-Cheng; Chiang, Kuo-Feng; Lin, Wan-Yu; Huang, Jin-Long; Hung, Guang-Uei; Kao, Chia-Hung; Chen, Ji

    2016-01-01

    Abstract For patients with coronary artery disease, larger scar burdens are associated with higher risk of ventricular arrhythmia. Left ventricular (LV) dyssynchrony is associated with increased risk of sudden cardiac death in patients with heart failure. The purpose of this study was to assess the values of LV dyssynchrony and myocardial scar assessed by myocardial perfusion SPECT (MPS) in predicting the development of ventricular arrhythmia in ischemic cardiomyopathy. Twenty-two patients (16 males, mean age: 66 ± 13) with irreversible ischemic cardiomyopathy received cardiac resynchronization therapy (CRT) for at least 12 months were enrolled for MPS. Quantitative parameters, including LV dyssynchrony with phase standard deviation (phase SD) and bandwidth, left ventricular ejection fraction (LVEF), and scar (% of total areas), were generated by Emory Cardiac Toolbox. Ventricular tachycardia (VT) and ventricular fibrillation (VF) recorded in the CRT device during follow-up were used as the reference standard of diagnosing ventricular arrhythmia. Stepwise logistic regression analysis was performed for determining the independent predictors of VT/VF and receiver operating characteristic (ROC) curve analysis was used for generating the optimal cut-off values for predicting VT/VF. Nine (41%) of the 22 patients developed VT/VF during the follow-up periods. Patients with VT/VF had significantly lower LVEF, larger scar, larger phase SD, and larger bandwidth (all P < 0.05). Logistic regression analysis showed LVEF and bandwidth were independent predictors of VT/VF. ROC curve analysis showed the areas under the curves were 0.71 and 0.83 for LVEF and bandwidth, respectively. The optimal cut-off values were <36% and > 139° for LVEF and bandwidth, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 39%, 53%, and 100%, respectively, for LVEF; and were 78%, 92%, 88%, and 86%, respectively, for bandwidth. LV

  11. Mitochondria as a Drug Target in Ischemic Heart Disease and Cardiomyopathy

    PubMed Central

    Walters, Andrew M; Porter, George A; Brookes, Paul S.

    2012-01-01

    Ischemic heart disease (IHD) is a significant cause of morbidity and mortality in Western society. Although interventions such as thrombolysis and percutaneous coronary intervention (PCI) have proven efficacious in ischemia and reperfusion (IR) injury, the underlying pathologic process of IHD, laboratory studies suggest further protection is possible, and an expansive research effort is aimed at bringing new therapeutic options to the clinic. Mitochondrial dysfunction plays a key role in the pathogenesis of IR injury and cardiomyopathy (CM). However, despite promising mitochondria-targeted drugs emerging from the lab, very few have successfully completed clinical trials. As such, the mitochondrion is a potential untapped target for new IHD and CM therapies. Notably, there are a number of overlapping therapies for both these diseases, and as such novel therapeutic options for one condition may find use in the other. This review summarizes efforts to date in targeting mitochondria for IHD and CM therapy, and outlines emerging drug targets in this field. PMID:23065345

  12. Anabolic steroid-induced cardiomyopathy underlying acute liver failure in a young bodybuilder

    PubMed Central

    Bispo, Miguel; Valente, Ana; Maldonado, Rosário; Palma, Rui; Glória, Helena; Nóbrega, João; Alexandrino, Paula

    2009-01-01

    Heart failure may lead to subclinical circulatory disturbances and remain an unrecognized cause of ischemic liver injury. We present the case of a previously healthy 40-year-old bodybuilder, referred to our Intensive-Care Unit of Hepatology for treatment of severe acute liver failure, with the suspicion of toxic hepatitis associated with anabolic steroid abuse. Despite the absence of symptoms and signs of congestive heart failure at admission, an anabolic steroid-induced dilated cardiomyopathy with a large thrombus in both ventricles was found to be the underlying cause of the liver injury. Treatment for the initially unrecognized heart failure rapidly restored liver function to normal. To our knowledge, this is the first reported case of severe acute liver failure due to an unrecognized anabolic steroid-induced cardiomyopathy. Awareness of this unique presentation will allow for prompt treatment of this potentially fatal cause of liver failure. PMID:19533818

  13. Coronary microcirculation changes in non-ischemic dilated cardiomyopathy identified by novel perfusion CT

    PubMed Central

    Miller, Wayne L.; Behrenbeck, Thomas R.; McCollough, Cynthia H.; Williamson, Eric E.; Leng, Shuai; Kline, Timothy L.

    2015-01-01

    Intramyocardial microvessels demonstrate functional changes in cardiomyopathies. However, clinical computed tomography (CT) does not have adequate spatial resolution to assess the microvessels. Our hypothesis is that these functional changes manifest as altered heterogeneity of the spatial distribution of arteriolar perfusion territories. Our goal was to determine whether the spatial analysis of perfusion CT could clinically detect changes in the function and structure of the intramyocardial microcirculation in a non-ischemic dilated cardiomyopathy (DCM). Two groups were studied: (1) a Control group (12 male plus 12 female) with no risk factors nor evidence of coronary artery disease, and (2) a DCM group (12 male plus 12 female)with left ventricular ejection fraction ≤40 %and no evidence of coronary artery disease. Using the CT scan, the LV free wall thickness and its radius of curvature were measured. The DCM group was sub divided into those with LV free wall thickness <11.5 mm and those with thickness≥11.5 mm. In themyocardial opacification phase of the CT scan sequence, myocardial perfusion (F) and intramyocardial blood volume (Bv) for multiple intramyocardial regions were computed. No significant differences between the groups were demonstrable in overall myocardial F or Bv. However, the myocardial regional data showed significantly increased spatial heterogeneity in the DCM group when compared to the Control group. The findings demonstrate that altered function of the subresolution intramyocardial microcirculation can be quantified with myocardial perfusion CT and that significant changes in these parameters occur in the DCM subjects with LV wall thickness greater than 11.5 mm. PMID:25712168

  14. Regional Myocardial Sympathetic Denervation Predicts the Risk of Sudden Cardiac Arrest in Ischemic Cardiomyopathy

    PubMed Central

    Fallavollita, James A.; Heavey, Brendan M.; Luisi, Andrew J.; Michalek, Suzanne M.; Baldwa, Sunil; Mashtare, Terry L.; Hutson, Alan D.; deKemp, Robert A.; Haka, Michael S.; Sajjad, Munawwar; Cimato, Thomas R.; Curtis, Anne B.; Cain, Michael E.; Canty, John M.

    2014-01-01

    Objectives The PAREPET (Prediction of ARrhythmic Events with Positron Emission Tomography) study sought to test the hypothesis that quantifying inhomogeneity in myocardial sympathetic innervation could identify patients at highest risk for sudden cardiac arrest (SCA). Background Left ventricular ejection fraction (LVEF) is the only parameter identifying patients at risk of SCA who benefit from an implantable cardiac defibrillator (ICD). Methods We prospectively enrolled 204 subjects with ischemic cardiomyopathy (LVEF ≤35%) eligible for primary prevention ICDs. Positron emission tomography (PET) was used to quantify myocardial sympathetic denervation (11C-meta-hydroxyephedrine [11C-HED]), perfusion (13N-ammonia) and viability (insulin-stimulated 18F-2-deoxyglucose). The primary endpoint was SCA defined as arrhythmic death or ICD discharge for ventricular fibrillation or ventricular tachycardia >240 beats/min. Results After 4.1 years follow-up, cause-specific SCA was 16.2%. Infarct volume (22 ± 7% vs. 19 ± 9% of left ventricle [LV]) and LVEF (24 ± 8% vs. 28 ± 9%) were not predictors of SCA. In contrast, patients developing SCA had greater amounts of sympathetic denervation (33 ± 10% vs. 26 ± 11% of LV; p = 0.001) reflecting viable, denervated myocardium. The lower tertiles of sympathetic denervation had SCA rates of 1.2%/year and 2.2%/year, whereas the highest tertile had a rate of 6.7%/year. Multivariate predictors of SCA were PET sympathetic denervation, left ventricular end-diastolic volume index, creatinine, and no angiotensin inhibition. With optimized cut-points, the absence of all 4 risk factors identified low risk (44% of cohort; SCA <1%/year); whereas ≥2 factors identified high risk (20% of cohort; SCA ~12%/year). Conclusions In ischemic cardiomyopathy, sympathetic denervation assessed using 11C-HED PET predicts cause-specific mortality from SCA independently of LVEF and infarct volume. This may provide an improved approach for the identification

  15. Ischemic changes on rubidium-82 positron emission tomography imaging are associated with left ventricular functional and volumetric change independent of metabolic properties and echocardiographic functional variables in ischemic cardiomyopathy.

    PubMed

    Wong, Raymond C; Cerqueira, Manuel D; Brunken, Richard C

    2012-08-01

    Positron emission tomography (PET) imaging allows identification of stress-induced ischemia and myocardial viability in patients with ischemic cardiomyopathy. We assessed the left ventricular (LV) functional response to vasodilator stress in patients with advanced ischemic cardiomyopathy undergoing pharmacologic stress (PET) perfusion and metabolic imaging. Additionally, we aimed to determine if mitral regurgitation (MR), right ventricular (RV) dysfunction and diastolic function influenced the observed LV responses to pharmacologic stress. In 161 patients (81% men; 65 ± 13 years), PET and echocardiography were performed within a week for noninvasive evaluation of myocardial ischemia and viability (scored using 17-segment model), as well as ventricular and valvular function. Patients were stratified based on ischemic defects in any segments versus hibernation/scar defects only. The LV volumes, EF by gating and transient ischemic dilatation (TID) index were generated automatically. Wall thickening (WT) scores were determined visually. The subgroup with reversible/ischemic segments on PET imaging (N = 55) exhibited greater end-systolic (ESV) and end-diastolic volume (EDV) enlargement during stress (13 ± 22 and 16 ± 43 ml increase respectively, vs. 0 ± 18 ml [P < 0.0001] and 2 ± 24 ml [P = 0.01]), a decrease in LVEF during stress (mean -3% vs. +2%), and greater TID indices (mean 1.13 ± 0.18 vs. 1.02 ± 0.12) compared to hibernation/scar only (N = 92). In addition, mean WT scores during stress declined significantly only in the ischemic subgroup (P < 0.0001 for regional LAD, non-LAD and global wall thickening scores). The prevalence and the severity of MR and RV dysfunction did not differ between groups. By univariate analysis, global and LAD territory segmental ischemia, global sum stress score (SSS), TID index, resting EF, ESV enlargement during stress, as well as global WT changes correlated with post-stress LVEF decline. Multivariate predictors included SSS

  16. G-CSF administration after myocardial infarction in mice attenuates late ischemic cardiomyopathy by enhanced arteriogenesis.

    PubMed

    Deindl, Elisabeth; Zaruba, Marc-Michael; Brunner, Stefan; Huber, Bruno; Mehl, Ursula; Assmann, Gerald; Hoefer, Imo E; Mueller-Hoecker, Josef; Franz, Wolfgang-Michael

    2006-05-01

    Granulocyte-colony stimulating factor (G-CSF) has been shown to improve cardiac function after myocardial infarction (MI) by bone marrow cell mobilization and by protecting cardiomyocytes from apoptotic cell death. However, its role in collateral artery growth (arteriogenesis) has not been elucidated. Here, we investigated the effect of G-CSF on arteriolar growth and cardiac function in a murine MI model. Mice were treated with G-CSF (100 microg/kg/day) directly after MI for 5 consecutive days. G-CSF application resulted in a significant increase of circulating mononuclear cells expressing stem cell markers. Arterioles in the border zone of infarcted myocardium showed an increased expression of ICAM-1 accompanied by an accumulation of bone marrow derived cells and a pronounced proliferation of endothelial and smooth muscle cells. Histology of G-CSF treated mice revealed a lower amount of granulation tissue (67.8 vs. 84.4%) associated with a subsequent reduction in free LV wall thinning and scar extension (23.1 vs. 30.8% of LV). Furthermore, G-CSF treated animals showed a significant improvement of post-MI survival (68.8 vs. 46.2%). Pressure-volume relations revealed a partially restored myocardial function at day 30 (EF: 32.5 vs. 17.2%). Our results demonstrate that G-CSF administration after MI stimulates arteriogenesis and attenuates ischemic cardiomyopathy after MI.

  17. Impact of troponin I-autoantibodies in chronic dilated and ischemic cardiomyopathy.

    PubMed

    Doesch, Andreas O; Mueller, Susanne; Nelles, Manfred; Konstandin, Mathias; Celik, Sultan; Frankenstein, Lutz; Goeser, Stefan; Kaya, Ziya; Koch, Achim; Zugck, Christian; Katus, Hugo A

    2011-01-01

    The aim of this study was to investigate the prognostic value of circulating troponin I (TNI)-autoantibodies in plasma of patients with chronic heart failure. Sera of 390 heart failure patients were tested for the presence of anti-TNI antibodies by enzyme-linked immunosorbent assay (ELISA), including 249 (63.8% of total) patients with dilated cardiomyopathy (DCM) and 141 (36.2% of total) patients with ischemic cardiomyopathy (ICM). A total of 72 patients (18.5% of total) were female and 318 (81.5% of total) were male. Mean patient age was 54.6 ± 11.3 years and mean follow-up time was 3.8 ± 3.2 years. TNI-autoantibodies (titer of ≥1:40) were detected in 73 out of 390 patients (18.7% of total). In TNI-autoantibody positive patients mean left ventricular ejection fraction (LVEF) was 27.6 ± 5.8%, compared to 25.8 ± 5.9% in TNI-autoantibody negative patients, P = 0.03. The combined end-point of death (n = 118, 30.3% of total) or heart transplantation (HTX) (n = 44, 11.3% of total) was reached in 162 patients (41.5% of total). Kaplan-Meier analysis demonstrated superior survival (combined end-point of death or HTX) in patients with DCM versus ICM (P = 0.0198) and TNI-autoantibody positive patients versus TNI-autoantibody negative patients (P = 0.0348). Further subgroup analysis revealed a favorable outcome in TNI-positive patients with heart failure if the patients suffered from DCM (P = 0.0334), whereas TNI-autoantibody status in patients with ICM was not associated with survival (P = 0.8486). In subsequent multivariate Weibull-analysis, a positive TNI serostatus was associated with a significantly lower all-cause mortality in DCM patients (P = 0.0492). The presence of TNI-autoantibodies in plasma is associated with an improved survival in patients with chronic DCM, but not ICM. This might possibly indicate a prophylactic effect of TNI-autoantibodies in this subgroup of patients, encouraging further studies into possible protective

  18. Impact of troponin I-autoantibodies in chronic dilated and ischemic cardiomyopathy.

    PubMed

    Doesch, Andreas O; Mueller, Susanne; Nelles, Manfred; Konstandin, Mathias; Celik, Sultan; Frankenstein, Lutz; Goeser, Stefan; Kaya, Ziya; Koch, Achim; Zugck, Christian; Katus, Hugo A

    2011-01-01

    The aim of this study was to investigate the prognostic value of circulating troponin I (TNI)-autoantibodies in plasma of patients with chronic heart failure. Sera of 390 heart failure patients were tested for the presence of anti-TNI antibodies by enzyme-linked immunosorbent assay (ELISA), including 249 (63.8% of total) patients with dilated cardiomyopathy (DCM) and 141 (36.2% of total) patients with ischemic cardiomyopathy (ICM). A total of 72 patients (18.5% of total) were female and 318 (81.5% of total) were male. Mean patient age was 54.6 ± 11.3 years and mean follow-up time was 3.8 ± 3.2 years. TNI-autoantibodies (titer of ≥1:40) were detected in 73 out of 390 patients (18.7% of total). In TNI-autoantibody positive patients mean left ventricular ejection fraction (LVEF) was 27.6 ± 5.8%, compared to 25.8 ± 5.9% in TNI-autoantibody negative patients, P = 0.03. The combined end-point of death (n = 118, 30.3% of total) or heart transplantation (HTX) (n = 44, 11.3% of total) was reached in 162 patients (41.5% of total). Kaplan-Meier analysis demonstrated superior survival (combined end-point of death or HTX) in patients with DCM versus ICM (P = 0.0198) and TNI-autoantibody positive patients versus TNI-autoantibody negative patients (P = 0.0348). Further subgroup analysis revealed a favorable outcome in TNI-positive patients with heart failure if the patients suffered from DCM (P = 0.0334), whereas TNI-autoantibody status in patients with ICM was not associated with survival (P = 0.8486). In subsequent multivariate Weibull-analysis, a positive TNI serostatus was associated with a significantly lower all-cause mortality in DCM patients (P = 0.0492). The presence of TNI-autoantibodies in plasma is associated with an improved survival in patients with chronic DCM, but not ICM. This might possibly indicate a prophylactic effect of TNI-autoantibodies in this subgroup of patients, encouraging further studies into possible protective

  19. Association between High Endocardial Unipolar Voltage and Improved Left Ventricular Function in Patients with Ischemic Cardiomyopathy

    PubMed Central

    Park, Ki; Lai, Dejian; Handberg, Eileen M.; Perin, Emerson C.; Pepine, Carl J.; Anderson, R. David

    2016-01-01

    We know that endocardial mapping reports left ventricular electrical activity (voltage) and that these data can predict outcomes in patients undergoing traditional revascularization. Because the mapping data from experimental models have also been linked with myocardial viability, we hypothesized an association between increased unipolar voltage in patients undergoing intramyocardial injections and their subsequent improvement in left ventricular performance. For this exploratory analysis, we evaluated 86 patients with left ventricular dysfunction, heart-failure symptoms, possible angina, and no revascularization options, who were undergoing endocardial mapping. Fifty-seven patients received bone marrow mononuclear cell (BMC) injections and 29 patients received cell-free injections of a placebo. The average mapping site voltage was 9.7 ± 2 mV, and sites with voltage of ≥6.9 mV were engaged by needle and injected (with BMC or placebo). For all patients, at 6 months, left ventricular ejection fraction (LVEF) improved, and after covariate adjustment this improvement was best predicted by injection-site voltage. For every 2-mV increase in baseline voltage, we detected a 1.3 increase in absolute LVEF units for all patients (P=0.038). Multiple linear regression analyses confirmed that voltage and the CD34+ count present in bone marrow (but not treatment assignment) were associated with improved LVEF (P=0.03 and P=0.014, respectively). In an exploratory analysis, higher endocardial voltage and bone marrow CD34+ levels were associated with improved left ventricular function among ischemic cardiomyopathy patients. Intramyocardial needle injections, possibly through stimulation of angiogenesis, might serve as a future therapy in patients with reduced left ventricular function and warrants investigation. PMID:27547135

  20. Association between High Endocardial Unipolar Voltage and Improved Left Ventricular Function in Patients with Ischemic Cardiomyopathy.

    PubMed

    Park, Ki; Lai, Dejian; Handberg, Eileen M; Moyé, Lem; Perin, Emerson C; Pepine, Carl J; Anderson, R David

    2016-08-01

    We know that endocardial mapping reports left ventricular electrical activity (voltage) and that these data can predict outcomes in patients undergoing traditional revascularization. Because the mapping data from experimental models have also been linked with myocardial viability, we hypothesized an association between increased unipolar voltage in patients undergoing intramyocardial injections and their subsequent improvement in left ventricular performance. For this exploratory analysis, we evaluated 86 patients with left ventricular dysfunction, heart-failure symptoms, possible angina, and no revascularization options, who were undergoing endocardial mapping. Fifty-seven patients received bone marrow mononuclear cell (BMC) injections and 29 patients received cell-free injections of a placebo. The average mapping site voltage was 9.7 ± 2 mV, and sites with voltage of ≥6.9 mV were engaged by needle and injected (with BMC or placebo). For all patients, at 6 months, left ventricular ejection fraction (LVEF) improved, and after covariate adjustment this improvement was best predicted by injection-site voltage. For every 2-mV increase in baseline voltage, we detected a 1.3 increase in absolute LVEF units for all patients (P=0.038). Multiple linear regression analyses confirmed that voltage and the CD34(+) count present in bone marrow (but not treatment assignment) were associated with improved LVEF (P=0.03 and P=0.014, respectively). In an exploratory analysis, higher endocardial voltage and bone marrow CD34(+) levels were associated with improved left ventricular function among ischemic cardiomyopathy patients. Intramyocardial needle injections, possibly through stimulation of angiogenesis, might serve as a future therapy in patients with reduced left ventricular function and warrants investigation. PMID:27547135

  1. Mapping and ablation of trigger premature ventricular contractions in a case of electrical storm associated with ischemic cardiomyopathy.

    PubMed

    Okada, Taro; Yamada, Takumi; Murakami, Yoshimasa; Yoshida, Naoki; Ninomiya, Yuuichi; Toyama, Junji

    2007-03-01

    We report a case of polymorphic ventricular tachycardia and ventricular fibrillation (PVT/VF) storm associated with ischemic cardiomyopathy (ICM). The electrocardiogram (ECG) monitor revealed frequent premature ventricular contractions (PVCs) initiated PVT/VF. Electroanatomic mapping revealed the plausible origins of PVCs were located in the scar border zone at the posterior septum of the left ventricle. Purkinje-like potentials (PLPs) always preceded PVCs and a decremental property for the PLPs and infarcted myocardium junction was observed. Ablation at these sites eliminated both PVCs and PVT/VF.

  2. Cardiomyopathy induced by incessant fascicular ventricular tachycardia.

    PubMed

    Velázquez-Rodríguez, Enrique; Rodríguez-Piña, Horacio; Pacheco-Bouthillier, Alex; Deras-Mejía, Luz María

    2013-01-01

    A 12-year-old girl with symptoms of fatigue, decreased exercise tolerance and progressive dyspnea (New York Heart Association functional class III) with a possible diagnosis of dilated cardiomyopathy secondary to viral myocarditis. Because of incessant wide QRS tachycardia refractory to antiarrhythmic drugs, she was referred for electrophysiological study. The diagnosis was idiopathic left ventricular tachycardia involving the posterior fascicle of the left bundle branch. After successful treatment with radiofrequency catheter ablation guided by a Purkinje potential radiological and echocardiographic evaluation showed complete reversal of left ventricular function in the first 3 months and no recurrence of arrhythmia during 2 years of follow up.

  3. Role of neuropeptides in cardiomyopathies.

    PubMed

    Dvorakova, Magdalena Chottova; Kruzliak, Peter; Rabkin, Simon W

    2014-11-01

    The role of neuropeptides in cardiomyopathy-associated heart failure has been garnering more attention. Several neuropeptides--Neuropeptide Y (NPY), vasoactive intestinal peptide (VIP), calcitonin gene related peptide (CGRP), substance P (SP) and their receptors have been studied in the various types of cardiomyopathies. The data indicate associations with the strength of the association varying depending on the kind of neuropeptide and the nature of the cardiomyopathy--diabetic, ischemic, inflammatory, stress-induced or restrictive cardiomyopathy. Several neuropeptides appear to alter regulation of genes involved in heart failure. Demonstration of an association is an essential first step in proving causality or establishing a role for a factor in a disease. Understanding the complexity of neuropeptide function should be helpful in establishing new or optimal therapeutic strategies for the treatment of heart failure in cardiomyopathies.

  4. Determinants of Atrial Electromechanical Delay in Patients with Functional Mitral Regurgitation and Non-ischemic Dilated Cardiomyopathy

    PubMed Central

    Bengi Bakal, Ruken; Hatipoglu, Suzan; Sahin, Muslum; Emiroglu, Mehmet Yunus; Bulut, Mustafa; Ozdemir, Nihal

    2014-01-01

    Introduction: Atrial conduction time has important hemodynamic effects on ventricular filling and is accepted as a predictor of atrial fibrillation. In this study we assessed atrial conduction time in patients with non ischemic dilated cardiomyopathy (NIDCMP) and functional mitral regurgitation (MR) and aimed to determine factors predicting atrial conduction time prolongation. Methods: Sixty five patients with non ischemic dilated cardiomyopathy who have moderate to severe MR and 60 control subjects were included in the study. In addition to conventional echocardiographic measures used to asses left ventricle and MR, atrial electromechanical coupling (time interval from the onset of P wave on surface electrocardiogram [ECG] to the beginning of A wave interval with tissue Doppler echocardiography [PA]), intra- and interatrial electromechanical delay (intra and inter AEMD) were measured. Results: The correlations between inter AEMD and left atrial (LA) size, MR volume, isovolumetric relaxation time (IVRT), deceleration time (DT), systolic pulmonary artery pressure (PAPs), E/A ratio and E/e’ were very poor. Similarly, intra AEMD was not correlated to LA size , MR volume, IVRT, DT, PAPs, E/A ratio and E/e’. However, both inter AEMD and intra AEMD had good correlation with left ventricular mass index, tenting area (TA), tenting distance (TD), coaptation septal distance (CSD), sphericity index (SI). Conclusion: Prolongation of inter and intra AEMDs were found to be well correlated with parameters reflecting left ventricular and mitral annular remodeling. PMID:25610556

  5. Human Ischemic Cardiomyopathy Shows Cardiac Nos1 Translocation and its Increased Levels are Related to Left Ventricular Performance

    PubMed Central

    Roselló-Lletí, Esther; Carnicer, Ricardo; Tarazón, Estefanía; Ortega, Ana; Gil-Cayuela, Carolina; Lago, Francisca; González-Juanatey, Jose Ramón; Portolés, Manuel; Rivera, Miguel

    2016-01-01

    The role of nitric oxide synthase 1 (NOS1) as a major modulator of cardiac function has been extensively studied in experimental models; however, its role in human ischemic cardiomyopathy (ICM) has never been analysed. Thus, the objectives of this work are to study NOS1 and NOS-related counterparts involved in regulating physiological function of myocyte, to analyze NOS1 localisation, activity, dimerisation, and its relationship with systolic function in ICM. The study has been carried out on left ventricular tissue obtained from explanted human hearts. Here we demonstrate that the upregulation of cardiac NOS1 is not accompanied by an increase in NOS activity, due in part to the alterations found in molecules involved in the regulation of its activity. We observed partial translocation of NOS1 to the sarcolemma in ischemic hearts, and a direct relationship between its protein levels and systolic ventricular function. Our findings indicate that NOS1 may be significant in the pathophysiology of human ischemic heart disease with a preservative role in maintaining myocardial homeostasis. PMID:27041589

  6. LV Dyssynchrony Is Helpful in Predicting Ventricular Arrhythmia in Ischemic Cardiomyopathy After Cardiac Resynchronization Therapy: A Preliminary Study.

    PubMed

    Tsai, Shih-Chuan; Chang, Yu-Cheng; Chiang, Kuo-Feng; Lin, Wan-Yu; Huang, Jin-Long; Hung, Guang-Uei; Kao, Chia-Hung; Chen, Ji

    2016-02-01

    For patients with coronary artery disease, larger scar burdens are associated with higher risk of ventricular arrhythmia. Left ventricular (LV) dyssynchrony is associated with increased risk of sudden cardiac death in patients with heart failure. The purpose of this study was to assess the values of LV dyssynchrony and myocardial scar assessed by myocardial perfusion SPECT (MPS) in predicting the development of ventricular arrhythmia in ischemic cardiomyopathy. Twenty-two patients (16 males, mean age: 66 ± 13) with irreversible ischemic cardiomyopathy received cardiac resynchronization therapy (CRT) for at least 12 months were enrolled for MPS. Quantitative parameters, including LV dyssynchrony with phase standard deviation (phase SD) and bandwidth, left ventricular ejection fraction (LVEF), and scar (% of total areas), were generated by Emory Cardiac Toolbox. Ventricular tachycardia (VT) and ventricular fibrillation (VF) recorded in the CRT device during follow-up were used as the reference standard of diagnosing ventricular arrhythmia. Stepwise logistic regression analysis was performed for determining the independent predictors of VT/VF and receiver operating characteristic (ROC) curve analysis was used for generating the optimal cut-off values for predicting VT/VF. Nine (41%) of the 22 patients developed VT/VF during the follow-up periods. Patients with VT/VF had significantly lower LVEF, larger scar, larger phase SD, and larger bandwidth (all P < 0.05). Logistic regression analysis showed LVEF and bandwidth were independent predictors of VT/VF. ROC curve analysis showed the areas under the curves were 0.71 and 0.83 for LVEF and bandwidth, respectively. The optimal cut-off values were <36% and > 139° for LVEF and bandwidth, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value were 100%, 39%, 53%, and 100%, respectively, for LVEF; and were 78%, 92%, 88%, and 86%, respectively, for bandwidth. LV

  7. The Effect of Cardiac Rehabilitation Exercise Training on Cardiopulmonary Function in Ischemic Cardiomyopathy With Reduced Left Ventricular Ejection Fraction

    PubMed Central

    2016-01-01

    Objective To observe the effect and safety of cardiac rehabilitation (CR) exercise in ischemic cardiomyopathy and to compare the results between patients with preserved left ventricular ejection fraction (LVEF) and reduced LVEF. Methods Patients with ischemic cardiomyopathy with LVEF <50% were included as subjects. The patients were classified into the preserved LVEF (pLVEF; LVEF 41%–49%) group and the reduced LVEF (rLVEF; LVEF ≤40%) group. Patients underwent hourly aerobic exercise training sessions with an intensity of 60%–85% of heart rate reserve, three times a week for 6 weeks. Graded exercise test and transthoracic echocardiogram were performed in all study patients before and after completion of the CR exercise program. Results After completion of the CR exercise program, both groups (pLVEF, n=30; rLVEF, n=18) showed significant increases in LVEF and VO2max. In the pLVEF group, LVEF and VO2max increased from 45.1%±4.8% to 52.5%±9.6% (p<0.001) and from 24.1±6.3 to 28.1±8.8 mL/kg/min (p=0.002), respectively. In the rLVEF group, LVEF and VO2max increased from 29.7%±7.7% to 37.6%±10.3% (p<0.001) and from 17.6±4.7 to 21.2±5.1 mL/kg/min (p<0.001), respectively. Both groups completed their exercise program safely. Conclusion In both groups, patients with ischemic cardiomyopathy who completed a 6-week supervised CR exercise program demonstrated remarkable improvements in cardiopulmonary function. This result implies that neither of the two groups showed higher efficacy in comparison to each other, but we can conclude that CR exercise in the rLVEF group was as effective and safe as that in the pLVEF group.

  8. The Effect of Cardiac Rehabilitation Exercise Training on Cardiopulmonary Function in Ischemic Cardiomyopathy With Reduced Left Ventricular Ejection Fraction

    PubMed Central

    2016-01-01

    Objective To observe the effect and safety of cardiac rehabilitation (CR) exercise in ischemic cardiomyopathy and to compare the results between patients with preserved left ventricular ejection fraction (LVEF) and reduced LVEF. Methods Patients with ischemic cardiomyopathy with LVEF <50% were included as subjects. The patients were classified into the preserved LVEF (pLVEF; LVEF 41%–49%) group and the reduced LVEF (rLVEF; LVEF ≤40%) group. Patients underwent hourly aerobic exercise training sessions with an intensity of 60%–85% of heart rate reserve, three times a week for 6 weeks. Graded exercise test and transthoracic echocardiogram were performed in all study patients before and after completion of the CR exercise program. Results After completion of the CR exercise program, both groups (pLVEF, n=30; rLVEF, n=18) showed significant increases in LVEF and VO2max. In the pLVEF group, LVEF and VO2max increased from 45.1%±4.8% to 52.5%±9.6% (p<0.001) and from 24.1±6.3 to 28.1±8.8 mL/kg/min (p=0.002), respectively. In the rLVEF group, LVEF and VO2max increased from 29.7%±7.7% to 37.6%±10.3% (p<0.001) and from 17.6±4.7 to 21.2±5.1 mL/kg/min (p<0.001), respectively. Both groups completed their exercise program safely. Conclusion In both groups, patients with ischemic cardiomyopathy who completed a 6-week supervised CR exercise program demonstrated remarkable improvements in cardiopulmonary function. This result implies that neither of the two groups showed higher efficacy in comparison to each other, but we can conclude that CR exercise in the rLVEF group was as effective and safe as that in the pLVEF group. PMID:27606271

  9. Neurogenic cardiomyopathy in rabbits with experimentally induced rabies.

    PubMed

    Kesdangsakonwut, S; Sunden, Y; Yamada, K; Nishizono, A; Sawa, H; Umemura, T

    2015-05-01

    Cardiomyopathies have been rarely described in rabbits. Here we report myocardial necrosis of the ventricular wall in rabbits with experimentally induced rabies. Myocardial lesions were found only in rabbits with brain lesions, and the severity of the cardiac lesions was proportional to that of the brain lesions. Neither the frequency nor the cumulative dose of anesthesia was related to the incidence or the severity of the myocardial lesions. The myocardial lesions were characterized by degeneration and/or necrosis of myocardial cells and were accompanied by contraction band necrosis, interstitial fibrosis, and infiltration of inflammatory cells. The brain lesions due to rabies virus infection were most prominent in the cerebral cortex, thalamus, hypothalamus, brainstem, and medulla. Rabies virus antigen was not found in the hearts of any rabbits. Based on these findings, the myocardial lesions were classified as neurogenic cardiomyopathy.

  10. How to think about stress-induced cardiomyopathy?--Think "out of the box"!

    PubMed

    Omerovic, Elmir

    2011-04-01

    Stress-induced cardiomyopathy (SIC) is a novel syndrome with a substantial morbidity and mortality rate. It has become an important differential diagnosis in patients with acute chest pain. The characteristic hallmark of SIC is a development of extensive but reversible left ventricular dysfunction which may cause fulminant heart failure, cardiogenic shock and literally heart rupture leading to death. In spite of the rapidly increasing number of patients, a lot of elementary facts are unknown in regard to epidemiology, pathophysiology, prognosis and optimal treatment. Substantial evidence has been accumulated in the literature during the last couple of years that renders the SIC diagnostic criteria proposed from Mayo Clinic obsolete. In this paper we offer a new set of clinical criteria which we believe better defines the SIC syndrome. Based on the data from the newly established national SIC registry in Sweden, we estimate that as many as 1500-2000 patients annually develop the advanced stage of SIC in our country. It is plausible to assume that the true incidence of SIC is generally much higher if we accept the fact that subclinical and milder forms of SIC in the population do not come to medical attention and that SIC is often mistaken for an acute coronary syndrome. SIC may therefore be the most common form of non-ischemic cardiomyopathy in Sweden and elsewhere. PMID:21401402

  11. Cardiac Magnetic Resonance Scar Imaging for Sudden Cardiac Death Risk Stratification in Patients with Non-Ischemic Cardiomyopathy

    PubMed Central

    Kim, Eun Kyoung; Chattranukulchai, Pairoj

    2015-01-01

    In patients with non-ischemic cardiomyopathy (NICM), risk stratification for sudden cardiac death (SCD) and selection of patients who would benefit from prophylactic implantable cardioverter-defibrillators remains challenging. We aim to discuss the evidence of cardiac magnetic resonance (CMR)-derived myocardial scar for the prediction of adverse cardiovascular outcomes in NICM. From the 15 studies analyzed, with a total of 2747 patients, the average prevalence of myocardial scar was 41%. In patients with myocardial scar, the risk for adverse cardiac events was more than 3-fold higher, and risk for arrhythmic events 5-fold higher, as compared to patients without scar. Based on the available observational, single center studies, CMR scar assessment may be a promising new tool for SCD risk stratification, which merits further investigation. PMID:26175568

  12. Premature Ventricular Complexes and Premature Ventricular Complex Induced Cardiomyopathy.

    PubMed

    Latchamsetty, Rakesh; Bogun, Frank

    2015-09-01

    Presentation, prognosis, and management of premature ventricular complexes (PVCs) vary significantly among patients and depend on PVC characteristics as well as patient comorbidities. Presentation can range from incidental discovery in an asymptomatic patient to debilitating heart failure. Prognosis depends on, among other factors, the presence or absence of structural heart disease, PVC burden and other factors detailed in this review. Our understanding of the clinical significance of frequent PVCs, particularly as it relates to development of cardiomyopathy, has advanced greatly in the past decade. In this article, we explore the mechanisms governing PVC initiation and discuss prevalence and frequency of PVCs in the general population. We also explore prognostic implications based on PVC frequency as well as the presence or absence of underlying heart disease. We then take a focused look at PVC-induced cardiomyopathy and identify predictors for developing cardiomyopathy. Finally, we discuss clinical evaluation and management of patients presenting with frequent PVCs. Management can include clinical observation, addressing reversible causes, lifestyle modification, pharmacotherapy, or catheter ablation.

  13. Active tissue factor and activated factor XI in circulating blood of patients with systolic heart failure due to ischemic cardiomyopathy

    PubMed Central

    Zabczyk, Michał; Butenas, Saulius; Palka, Ilona; Nessler, Jadwiga; Undas, Anetta

    2011-01-01

    INTRODUCTION Elevated clotting factors and thrombin generation have been reported to occur in patients with heart failure (HF). Circulating activated factor XI (FXIa) and active tissue factor (TF) can be detected in acute coronary syndromes and stable angina. OBJECTIVES We investigated circulating FXIa and active TF and their associations in patients with systolic HF due to ischemic cardiomyopathy. PATIENTS AND METHODS In an observational study, we assessed 53 consecutive patients, aged below 75 years, with stable HF associated with documented coronary artery disease (CAD). Atrial fibrillation (LA), recent thromboembolic events, and current anticoagulant therapy were the exclusion criteria. Plasma TF and FXIa activity was determined in clotting assays by measuring the response to inhibitory monoclonal antibodies. RESULTS Coagulant TF activity was detected in 20 patients (37.7%), and FXIa in 22 patients (41.5%). Patients with detectable TF activity and/or FXIa were younger, had a history of myocardial infarction more frequently, significantly higher F1+2 prothrombin fragments, larger LA and right ventricular diastolic diameter, and higher right ventricular systolic pressure than the remaining subjects (P ≤0.01 for all). Circulating FXIa was positively correlated with F1+2 levels (r = 0.69; P <0.001). CONCLUSIONS Circulating active TF and FXIa occurred in about 40% of patients with systolic HF due to ischemic cardiomyopathy. The presence of these factors was associated with enhanced thrombin formation. Associations between both factors and LA diameter and right ventricular parameters might suggest that TF and FXIa predispose to thromboembolic complications of HF. PMID:20864906

  14. Impact of surgical ventricular reconstruction on sphericity index in patients with ischemic cardiomyopathy: follow-up from the STICH trial

    PubMed Central

    Choi, Jin-Oh; Daly, Richard C.; Lin, Grace; Lahr, Brian D.; Wiste, Heather J.; Beaver, Thomas M.; Iacovoni, Attilio; Malinowski, Marcin; Friedrich, Ivar; Rouleau, Jean L.; Favaloro, Roberto R.; Sopko, George; Lang, Irene M.; White, Harvey D.; Milano, Carmelo A.; Jones, Robert H.; Lee, Kerry L.; Velazquez, Eric J.; Oh, Jae K.

    2015-01-01

    Aims We sought to evaluate associations between baseline sphericity index (SI) and clinical outcome, and changes in SI after coronary artery bypass graft surgery (CABG) with or without surgical ventricular reconstruction (SVR) in ischemic cardiomyopathy patients enrolled in the SVR study (Hypothesis 2) of the Surgical Treatment for Ischemic Heart Failure (STICH) trial. Methods and results Among 1,000 patients in the STICH SVR study, we evaluated 546 patients (255 randomized to CABG alone and 291 to CABG+SVR) whose baseline SI values were available. SI was not significantly different between treatment groups at baseline. After 4 months, SI had increased in the CABG+SVR group, but was unchanged in the CABG alone group (0.69 ± 0.10 to 0.77 ± 0.12 versus 0.67 ± 0.07 to 0.66 ± 0.09, respectively; P < 0.001). SI did not significantly change from 4 months to 2 years in either group. Although LV end-systolic volume and ejection fraction improved significantly more in the CABG+SVR group compared to CABG alone, the severity of mitral regurgitation significantly improved only in the CABG alone group and estimated LV filling pressure (E/A ratio) increased only in the CABG+SVR group. Higher baseline SI was associated with worse survival after surgery (hazard ratio = 1.21, 95% confidence interval = 1.02−1.43; P = 0.026). Survival was not significantly different by treatment strategy. Conclusion Although SVR was designed to improve LV geometry, SI worsened after SVR despite improved LV ejection fraction and smaller LV volume. Survival was significantly better in patients with lower SI regardless of treatment strategy. (THE STICH TRIAL: Surgical Treatment for Ischemic Heart Failure trial; NCT00023595) PMID:25779355

  15. Simultaneous interstitial pneumonitis and cardiomyopathy induced by venlafaxine* **

    PubMed Central

    Ferreira, Pedro Gonçalo; Costa, Susana; Dias, Nuno; Ferreira, António Jorge; Franco, Fátima

    2014-01-01

    Venlafaxine is a serotonin-norepinephrine reuptake inhibitor used as an antidepressant. Interindividual variability and herb-drug interactions can lead to drug-induced toxicity. We report the case of a 35-year-old female patient diagnosed with synchronous pneumonitis and acute cardiomyopathy attributed to venlafaxine. The patient sought medical attention due to dyspnea and dry cough that started three months after initiating treatment with venlafaxine for depression. The patient was concomitantly taking Centella asiatica and Fucus vesiculosus as phytotherapeutic agents. Chest CT angiography and chest X-ray revealed parenchymal lung disease (diffuse micronodules and focal ground-glass opacities) and simultaneous dilated cardiomyopathy. Ecocardiography revealed a left ventricular ejection fraction (LVEF) of 21%. A thorough investigation was carried out, including BAL, imaging studies, autoimmune testing, right heart catheterization, and myocardial biopsy. After excluding other etiologies and applying the Naranjo Adverse Drug Reaction Probability Scale, a diagnosis of synchronous pneumonitis/cardiomyopathy associated with venlafaxine was assumed. The herbal supplements taken by the patient have a known potential to inhibit cytochrome P450 enzyme complex, which is responsible for the metabolization of venlafaxine. After venlafaxine discontinuation, there was rapid improvement, with regression of the radiological abnormalities and normalization of the LVEF. This was an important case of drug-induced cardiopulmonary toxicity. The circumstantial intake of inhibitors of the CYP2D6 isoenzyme and the presence of a CYP2D6 slow metabolism phenotype might have resulted in the toxic accumulation of venlafaxine and the subsequent clinical manifestations. Here, we also discuss why macrophage-dominant phospholipidosis was the most likely mechanism of toxicity in this case. PMID:25029655

  16. Direct intracardiac injection of umbilical cord-derived stromal cells and umbilical cord blood-derived endothelial cells for the treatment of ischemic cardiomyopathy

    PubMed Central

    Capriglione, Luiz Guilherme A; Barchiki, Fabiane; Miyague, Lye; Jackowski, Danielle; Fracaro, Letícia; Schittini, Andressa V; Senegaglia, Alexandra C; Rebelatto, Carmen LK; Olandoski, Márcia; Correa, Alejandro; Brofman, Paulo RS

    2015-01-01

    The development of new therapeutic strategies is necessary to reduce the worldwide social and economic impact of cardiovascular disease, which produces high rates of morbidity and mortality. A therapeutic option that has emerged in the last decade is cell therapy. The aim of this study was to compare the effect of transplanting human umbilical cord-derived stromal cells (UCSCs), human umbilical cord blood-derived endothelial cells (UCBECs) or a combination of these two cell types for the treatment of ischemic cardiomyopathy (IC) in a Wistar rat model. IC was induced by left coronary artery ligation, and baseline echocardiography was performed seven days later. Animals with a left ventricular ejection fraction (LVEF) of ≤40% were selected for the study. On the ninth day after IC was induced, the animals were randomized into the following experimental groups: UCSCs, UCBECs, UCSCs plus UCBECs, or vehicle (control). Thirty days after treatment, an echocardiographic analysis was performed, followed by euthanasia. The animals in all of the cell therapy groups, regardless of the cell type transplanted, had less collagen deposition in their heart tissue and demonstrated a significant improvement in myocardial function after IC. Furthermore, there was a trend of increasing numbers of blood vessels in the infarcted area. The median value of LVEF increased by 7.19% to 11.77%, whereas the control group decreased by 0.24%. These results suggest that UCSCs and UCBECs are promising cells for cellular cardiomyoplasty and can be an effective therapy for improving cardiac function following IC. PMID:25576340

  17. Reversal of premature ventricular complex-induced cardiomyopathy following successful radiofrequency catheter ablation.

    PubMed

    Efremidis, Michalis; Letsas, Konstantinos P; Sideris, Antonios; Kardaras, Fotios

    2008-06-01

    Premature ventricular complex (PVC)-induced cardiomyopathy is an underappreciated cause of left-ventricular (LV) dysfunction. The present report describes the case of an elderly man with a very high burden of monomorphic PVCs and LV dysfunction. Elimination of the left ventricular focus following radiofrequency catheter ablation resulted in reversal of cardiomyopathy.

  18. Safety and Efficacy of High Dose AAV9 Encoding SERCA2a Delivered by Molecular Cardiac Surgery with Recirculating Delivery (MCARD) in Ovine Ischemic Cardiomyopathy

    PubMed Central

    Katz, Michael G.; Fargnoli, Anthony S.; Williams, Richard D.; Steuerwald, Nury M.; Isidro, Alice; Ivanina, Anna V.; Sokolova, Inna M.; Bridges, Charles R.

    2014-01-01

    Objective Therapeutic safety and efficacy are the basic prerequisites for clinical gene therapy. Herein we investigate the effect of high dose MCARD-mediated AAV9/SERCA2a gene delivery on clinical parameters, oxidative stress, humoral and cellular immune response, and cardiac remodeling. Methods Ischemic cardiomyopathy was generated in a sheep model. Then animals were assigned to one of two groups: control (n=10), and study (MCARD, n=6). The control had no intervention while the study group received 1014 gc of AAV9.SERCA2a 4 weeks post-infarction. Results Our ischemic model produced reliable infarcts leading to heart failure. The baseline ejection fraction (EF) in the MCARD group was 57.6±1.6 vs. 61.2±1.9 in the control group, (p>0.05). Twelve weeks post-infarction, the MCARD group had superior LV function compared to control: stroke volume index (46.6±1.8 vs. 35.8±2.5 mL/m2, p<0.05), EF (46.2±1.9 vs. 38.7±2.5%, p<0.05); and LV end systolic and end diastolic dimensions [41.3±1.7 vs. 48.2±1.4 mm; 51.2±1.5 vs. 57.6±1.7 mm], p<0.05. Markers of oxidative stress were significantly reduced in the infarct zone in the MCARD group. There was no positive T cell mediated immune response in the MCARD group at any time point. Myocyte hypertrophy was also significantly attenuated in the MCARD group compared to control. Conclusions Cardiac overexpression of the SERCA2a gene via MCARD is a safe therapeutic intervention. It significantly improves LV function, decreases markers of oxidative stress, abrogates myocyte hypertrophy, arrests remodeling and does not induce a T cell mediated immune response. PMID:25037619

  19. Blood flow, flow reserve, and glucose utilization in viable and nonviable myocardium in patients with ischemic cardiomyopathy

    PubMed Central

    Zhang, Xiaoli; Schindler, Thomas H.; Prior, John O.; Sayre, James; Dahlbom, Magnus; Huang, Sung-Cheng

    2016-01-01

    Purpose The aim of the study was to determine whether glucose uptake in viable myocardium of ischemic cardiomyopathy patients depends on rest myocardial blood flow (MBF) and the residual myocardial flow reserve (MFR). Methods Thirty-six patients with ischemic cardiomyopathy (left ventricular ejection fraction 25±10 %) were studied with 13N-ammonia and 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Twenty age-matched normals served as controls. Regional MBF was determined at rest and during dipyridamole hyperemia and regional FDG extraction was estimated from regional FDG to 13N-ammonia activity ratios. Results Rest MBF was reduced in viable (0.42±0.18 ml/min per g) and nonviable regions (0.32±0.09 ml/min per g) relative to remote regions (0.68±0.23 ml/min per g, p<0.001) and to normals (0.63±0.13 ml/min per g). Dipyridamole raised MBFs in controls, remote, viable, and nonviable regions. MBFs at rest (p<0.05) and stress (p<0.05) in viable regions were significantly higher than that in nonviable regions, while MFRs did not differ significantly (p>0.05). Compared to MFR in remote myocardium, MFRs in viable regions were similar (1.39±0.56 vs 1.70±0.45, p>0.05) but were significantly lower in nonviable regions (1.23±0.43, p<0.001). Moreover, the FDG and thus glucose extraction was higher in viable than in remote (1.40±0.14 vs 0.90±0.20, p<0.001) and in nonviable regions (1.13±0.21, p<0.001). The extraction of FDG in viable regions was independent of rest MBF but correlated inversely with MFRs (r=−0.424, p<0.05). No correlation between the FDG extraction and MFR was observed in nonviable regions. Conclusion As in the animal model, decreasing MFRs in viable myocardium are associated with increasing glucose extraction that likely reflects a metabolic adaptation of remodeling hibernating myocytes. PMID:23287994

  20. Transient Cardiomyopathy and Quadriplegia Induced by Ephedrine Decongestant

    PubMed Central

    Kurklinsky, Andrew K.; Chirila, Razvan

    2015-01-01

    Ephedrine decongestant products are widely used. Common side effects include palpitations, nervousness, and headache. More severe adverse reactions include cardiomyopathy and vasospasm. We report the case of an otherwise healthy 37-year-old woman who presented with acute-onset quadriplegia and heart failure. She had a normal chest radiograph on admission, but developed marked pulmonary edema and bilateral effusions the next day. Echocardiography revealed a left ventricular ejection fraction of 0.18 and no obvious intrinsic pathologic condition such as foramen narrowing on spinal imaging. Laboratory screening was positive for methamphetamines in the urine, and the patient admitted to having used, over the past several weeks, multiple ephedrine-containing products for allergy-symptom relief. She was ultimately diagnosed with an acute catecholamine-induced cardiomyopathy and spinal artery vasospasm consequential to excessive use of decongestants. Her symptoms resolved completely with supportive care and appropriate heart-failure management. An echocardiogram 2 weeks after admission showed improvement of the left ventricular ejection fraction to 0.33. Ten months after the event, the patient was entirely asymptomatic and showed further improvement of her ejection fraction to 0.45. To our knowledge, ours is the first report of spinal artery vasospasm resulting in quadriplegia in a human being after ephedrine ingestion. PMID:26664316

  1. Transient Cardiomyopathy and Quadriplegia Induced by Ephedrine Decongestant.

    PubMed

    Snipelisky, David F; Kurklinsky, Andrew K; Chirila, Razvan

    2015-12-01

    Ephedrine decongestant products are widely used. Common side effects include palpitations, nervousness, and headache. More severe adverse reactions include cardiomyopathy and vasospasm. We report the case of an otherwise healthy 37-year-old woman who presented with acute-onset quadriplegia and heart failure. She had a normal chest radiograph on admission, but developed marked pulmonary edema and bilateral effusions the next day. Echocardiography revealed a left ventricular ejection fraction of 0.18 and no obvious intrinsic pathologic condition such as foramen narrowing on spinal imaging. Laboratory screening was positive for methamphetamines in the urine, and the patient admitted to having used, over the past several weeks, multiple ephedrine-containing products for allergy-symptom relief. She was ultimately diagnosed with an acute catecholamine-induced cardiomyopathy and spinal artery vasospasm consequential to excessive use of decongestants. Her symptoms resolved completely with supportive care and appropriate heart-failure management. An echocardiogram 2 weeks after admission showed improvement of the left ventricular ejection fraction to 0.33. Ten months after the event, the patient was entirely asymptomatic and showed further improvement of her ejection fraction to 0.45. To our knowledge, ours is the first report of spinal artery vasospasm resulting in quadriplegia in a human being after ephedrine ingestion.

  2. New Cell Adhesion Molecules in Human Ischemic Cardiomyopathy. PCDHGA3 Implications in Decreased Stroke Volume and Ventricular Dysfunction

    PubMed Central

    Tarazón, Estefanía; García-Manzanares, María; Montero, José Anastasio; Cinca, Juan; Portolés, Manuel; Rivera, Miguel; Roselló-Lletí, Esther

    2016-01-01

    Background Intercalated disks are unique structures in cardiac tissue, in which adherens junctions, desmosomes, and GAP junctions co-localize, thereby facilitating cardiac muscle contraction and function. Protocadherins are involved in these junctions; however, their role in heart physiology is poorly understood. We aimed to analyze the transcriptomic profile of adhesion molecules in patients with ischemic cardiomyopathy (ICM) and relate the changes uncovered with the hemodynamic alterations and functional depression observed in these patients. Methods and Results Twenty-three left ventricular tissue samples from patients diagnosed with ICM (n = 13) undergoing heart transplantation and control donors (CNT, n = 10) were analyzed using RNA sequencing. Forty-two cell adhesion genes involved in cellular junctions were differentially expressed in ICM myocardium. Notably, the levels of protocadherin PCDHGA3 were related with the stroke volume (r = –0.826, P = 0.003), ejection fraction (r = –0.793, P = 0.004) and left ventricular end systolic and diastolic diameters (r = 0.867, P = 0.001; r = 0.781, P = 0.005, respectively). Conclusions Our results support the importance of intercalated disks molecular alterations, closely involved in the contractile function, highlighting its crucial significance and showing gene expression changes not previously described. Specifically, altered PCDHGA3 gene expression was strongly associated with reduced stroke volume and ventricular dysfunction in ICM, suggesting a relevant role in hemodynamic perturbations and cardiac performance for this unexplored protocadherin. PMID:27472518

  3. Selective Serotonin–norepinephrine Reuptake Inhibitors-induced Takotsubo Cardiomyopathy

    PubMed Central

    Vasudev, Rahul; Rampal, Upamanyu; Patel, Hiten; Patel, Kunal; Bikkina, Mahesh; Shamoon, Fayez

    2016-01-01

    Context: Takotsubo translates to “octopus pot” in Japanese. Takotsubo cardiomyopathy (TTC) is characterized by a transient regional systolic dysfunction of the left ventricle. Catecholamine excess is the one most studied and favored theories explaining the pathophysiology of TTC. Case Report: We present the case of a 52-year-old Hispanic female admitted for venlafaxine-induced TTC with a review literature on all the cases of Serotonin–norepinephrine reuptake inhibitors (SNRI)-associated TTC published so far. Conclusion: SNRI inhibit the reuptake of catecholamines into the presynaptic neuron, resulting in a net gain in the concentration of epinephrine and serotonin in the neuronal synapses and causing iatrogenic catecholamine excess, ultimately leading to TTC. PMID:27583240

  4. Acromegaly-induced cardiomyopathy with dobutamine-induced outflow tract obstruction.

    PubMed

    Abdelsalam, Mahmoud A; Nippoldt, Todd B; Geske, Jeffrey B

    2016-01-01

    A 50-year-old man with a history of acromegaly was referred for preoperative cardiac evaluation preceding trans-sphenoidal resection of a pituitary macroadenoma. Dobutamine stress echocardiography was negative for myocardial ischaemia. Resting left ventricular (LV) LV ejection fraction (LVEF) was 64% and there was hypertrophy of ventricular septum (18 mm) without resting LV outflow tract obstruction. With 40 µg/kg/min of dobutamine, the LVEF became hyperdynamic at 80%, and there was a maximal instantaneous LV outflow tract gradient of 77 mm Hg. There was no delayed myocardial enhancement on cardiac MRI and the pattern of hypertrophy was concentric. Acromegaly-induced cardiomyopathy can mimic hypertrophic cardiomyopathy in the setting of dobutamine provocation. Because cardiomyopathy is an important cause of mortality in acromegaly, diagnosis and appropriate management are critical to improve survival. PMID:26961727

  5. Implantation of a Novel Allogeneic Mesenchymal Precursor Cell Type in Patients with Ischemic Cardiomyopathy Undergoing Coronary Artery Bypass Grafting: an Open Label Phase IIa Trial.

    PubMed

    Anastasiadis, Kyriakos; Antonitsis, Polychronis; Westaby, Stephen; Reginald, Ajan; Sultan, Sabena; Doumas, Argirios; Efthimiadis, George; Evans, Martin John

    2016-06-01

    Heart failure is a life-limiting condition affecting over 40 million patients worldwide. Ischemic cardiomyopathy (ICM) is the most common cause. This study investigates in situ cardiac regeneration utilizing precision delivery of a novel mesenchymal precursor cell type (iMP) during coronary artery bypass surgery (CABG) in patients with ischemic cardiomyopathy (LVEF < 40 %). The phase IIa safety study was designed to enroll 11 patients. Preoperative scintigraphy imaging (SPECT) was used to identify hibernating myocardium not suitable for conventional myocardial revascularization for iMP implantation. iMP cells were implanted intramyocardially in predefined viable peri-infarct areas that showed poor perfusion, which could not be grafted due to poor target vessel quality. Postoperatively, SPECT was then used to identify changes in scar area. Intramyocardial implantation of iMP cells with CABG was safe with preliminary evidence of efficacy of improved myocardial contractility and perfusion of nonrevascularized territories resulting in a significant reduction in left ventricular scar area at 12 months after treatment. Clinical improvement was associated with a significant improvement in quality of life at 6 months posttreatment in all patients. The results suggest the potential for in situ myocardial regeneration in ischemic heart failure by delivery of iMP cells. PMID:27037806

  6. Thallium 201 imaging and gated cardiac blood pool scans in patients with ischemic and idiopathic congestive cardiomyopathy. A clinical and pathologic study.

    PubMed

    Bulkley, B H; Hutchins, G M; Bailey, I; Strauss, H W; Pitt, B

    1977-05-01

    In ischemic cardiomyopathy (CM) fibrosis replaces large segments of myocardium, but in idiopathic congestive CM the myocardium contains only small foci of fibrosis or is morphologically normal. As coronary disease and myocardial infarction may be clinically silent, it is not always possible to distinguish ischemic from idiopathic congestive CM during life without cardiac catheterization. To determine whether noninvasive methods, thallium 201 myocardial (Tl) imaging and technetium 99m gated cardiac blood pool scans (GCBPS), could separate the entities, we evaluated radioisotope images of the heart in 13 patients with ischemic, and eight patients with idiopathic congestive CM, and 14 patients with normal hearts. Diagnosis was setablished by cardiac catherterization and/or autopsy in each of the 35 patients. The 14 normals could be readily distinguished from CM, and ischemic could be distinguished from idiopathic dilated CM in 20 of 21 patients. All patients with myocardiopathy showed hypokinetic and dilated left ventricles, but right ventricular dilatation was evident mainly in those with idiopathic CM. Tl images in the ischemic type had defects of greater than 40% of image circumference which corresponded to segmental wall motion abnormalities on GCBPS, whereas those with the idiopathic congestive form were homogeneous or had defects of less than 20% of image circumference. Autopsy studies in 7 of 35 patients correlated Tl defects of greater than 20% of circumference with transmural myocardial fibrosis. PMID:557377

  7. Early Administration of Carvedilol Protected against Doxorubicin-Induced Cardiomyopathy.

    PubMed

    Chen, Yung-Lung; Chung, Sheng-Ying; Chai, Han-Tan; Chen, Chih-Hung; Liu, Chu-Feng; Chen, Yi-Ling; Huang, Tien-Hung; Zhen, Yen-Yi; Sung, Pei-Hsun; Sun, Cheuk-Kwan; Chua, Sarah; Lu, Hung-I; Lee, Fan-Yen; Sheu, Jiunn-Jye; Yip, Hon-Kan

    2015-12-01

    This study tested for the benefits of early administration of carvedilol as protection against doxorubicin (DOX)-induced cardiomyopathy. Thirty male, adult B6 mice were categorized into group 1 (untreated control), group 2 [DOX treatment (15 mg/every other day for 2 weeks, i.p.], and group 3 [carvedilol (15 mg/kg/d, from day 7 after DOX treatment for 28 days)], and euthanized by day 35 after DOX treatment. By day 35, the left ventricular ejection fraction (LVEF) was significantly lower in group 2 than in groups 1 and 3, and significantly lower in group 3 than in group 1, whereas the left ventricular (LV) end-diastolic and LV end-systolic dimensions showed an opposite pattern to the LVEF among the three groups. The protein expressions of fibrotic (Smad3, TGF-β), apoptotic (BAX, cleaved caspase 3, PARP), DNA damage (γ-H2AX), oxidative stress (oxidized protein), mitochondrial damage (cytosolic cytochrome-C), heart failure (brain natriuretic peptide), and hypertrophic (β-MHC) biomarkers of the LV myocardium showed an opposite pattern to the LVEF among the three groups. The protein expressions of antifibrotic (BMP-2, Smad1/5), α-MHC, and phosphorylated-Akt showed an identical pattern to the LVEF among the three groups. The microscopic findings of fibrotic and collagen-deposition areas and the numbers of γ-H2AX(+) and 53BP1(+) cells in the LV myocardium exhibited an opposite pattern, whereas the numbers of endothelial cell (CD31(+), vWF(+)) markers showed an identical pattern to the LVEF among the three groups. Cardiac stem cell markers (C-kit(+) and Sca-1(+) cells) were significantly and progressively increased from group 1 to group 3. Additionally, the in vitro study showed carvedilol treatment significantly inhibited DOX-induced cardiomyoblast DNA (CD90/XRCC1(+), CD90/53BP1(+), and r-H2AX(+) cells) damage. Early carvedilol therapy protected against DOX-induced DNA damage and cardiomyopathy.

  8. Early Administration of Carvedilol Protected against Doxorubicin-Induced Cardiomyopathy.

    PubMed

    Chen, Yung-Lung; Chung, Sheng-Ying; Chai, Han-Tan; Chen, Chih-Hung; Liu, Chu-Feng; Chen, Yi-Ling; Huang, Tien-Hung; Zhen, Yen-Yi; Sung, Pei-Hsun; Sun, Cheuk-Kwan; Chua, Sarah; Lu, Hung-I; Lee, Fan-Yen; Sheu, Jiunn-Jye; Yip, Hon-Kan

    2015-12-01

    This study tested for the benefits of early administration of carvedilol as protection against doxorubicin (DOX)-induced cardiomyopathy. Thirty male, adult B6 mice were categorized into group 1 (untreated control), group 2 [DOX treatment (15 mg/every other day for 2 weeks, i.p.], and group 3 [carvedilol (15 mg/kg/d, from day 7 after DOX treatment for 28 days)], and euthanized by day 35 after DOX treatment. By day 35, the left ventricular ejection fraction (LVEF) was significantly lower in group 2 than in groups 1 and 3, and significantly lower in group 3 than in group 1, whereas the left ventricular (LV) end-diastolic and LV end-systolic dimensions showed an opposite pattern to the LVEF among the three groups. The protein expressions of fibrotic (Smad3, TGF-β), apoptotic (BAX, cleaved caspase 3, PARP), DNA damage (γ-H2AX), oxidative stress (oxidized protein), mitochondrial damage (cytosolic cytochrome-C), heart failure (brain natriuretic peptide), and hypertrophic (β-MHC) biomarkers of the LV myocardium showed an opposite pattern to the LVEF among the three groups. The protein expressions of antifibrotic (BMP-2, Smad1/5), α-MHC, and phosphorylated-Akt showed an identical pattern to the LVEF among the three groups. The microscopic findings of fibrotic and collagen-deposition areas and the numbers of γ-H2AX(+) and 53BP1(+) cells in the LV myocardium exhibited an opposite pattern, whereas the numbers of endothelial cell (CD31(+), vWF(+)) markers showed an identical pattern to the LVEF among the three groups. Cardiac stem cell markers (C-kit(+) and Sca-1(+) cells) were significantly and progressively increased from group 1 to group 3. Additionally, the in vitro study showed carvedilol treatment significantly inhibited DOX-induced cardiomyoblast DNA (CD90/XRCC1(+), CD90/53BP1(+), and r-H2AX(+) cells) damage. Early carvedilol therapy protected against DOX-induced DNA damage and cardiomyopathy. PMID:26511374

  9. Novel MRI-derived quantitative biomarker for cardiac function applied to classifying ischemic cardiomyopathy within a Bayesian rule learning framework

    NASA Astrophysics Data System (ADS)

    Menon, Prahlad G.; Morris, Lailonny; Staines, Mara; Lima, Joao; Lee, Daniel C.; Gopalakrishnan, Vanathi

    2014-03-01

    Characterization of regional left ventricular (LV) function may have application in prognosticating timely response and informing choice therapy in patients with ischemic cardiomyopathy. The purpose of this study is to characterize LV function through a systematic analysis of 4D (3D + time) endocardial motion over the cardiac cycle in an effort to define objective, clinically useful metrics of pathological remodeling and declining cardiac performance, using standard cardiac MRI data for two distinct patient cohorts accessed from CardiacAtlas.org: a) MESA - a cohort of asymptomatic patients; and b) DETERMINE - a cohort of symptomatic patients with a history of ischemic heart disease (IHD) or myocardial infarction. The LV endocardium was segmented and a signed phase-to-phase Hausdorff distance (HD) was computed at 3D uniformly spaced points tracked on segmented endocardial surface contours, over the cardiac cycle. An LV-averaged index of phase-to-phase endocardial displacement (P2PD) time-histories was computed at each tracked point, using the HD computed between consecutive cardiac phases. Average and standard deviation in P2PD over the cardiac cycle was used to prepare characteristic curves for the asymptomatic and IHD cohort. A novel biomarker of RMS error between mean patient-specific characteristic P2PD over the cardiac cycle for each individual patient and the cumulative P2PD characteristic of a cohort of asymptomatic patients was established as the RMS-P2PD marker. The novel RMS-P2PD marker was tested as a cardiac function based feature for automatic patient classification using a Bayesian Rule Learning (BRL) framework. The RMS-P2PD biomarker indices were significantly different for the symptomatic patient and asymptomatic control cohorts (p<0.001). BRL accurately classified 83.8% of patients correctly from the patient and control populations, with leave-one-out cross validation, using standard indices of LV ejection fraction (LV-EF) and LV end-systolic volume

  10. Novel MRI-derived quantitative biomarker for cardiac function applied to classifying ischemic cardiomyopathy within a Bayesian rule learning framework

    PubMed Central

    Menon, Prahlad G.; Morris, Lailonny; Staines, Mara; Lima, Joao; Lee, Daniel C.; Gopalakrishnan, Vanathi

    2015-01-01

    Characterization of regional left ventricular (LV) function may have application in prognosticating timely response and informing choice therapy in patients with ischemic cardiomyopathy. The purpose of this study is to characterize LV function through a systematic analysis of 4D (3D + time) endocardial motion over the cardiac cycle in an effort to define objective, clinically useful metrics of pathological remodeling and declining cardiac performance, using standard cardiac MRI data for two distinct patient cohorts accessed from CardiacAtlas.org: a) MESA – a cohort of asymptomatic patients; and b) DETERMINE – a cohort of symptomatic patients with a history of ischemic heart disease (IHD) or myocardial infarction. The LV endocardium was segmented and a signed phase-to-phase Hausdorff distance (HD) was computed at 3D uniformly spaced points tracked on segmented endocardial surface contours, over the cardiac cycle. An LV-averaged index of phase-to-phase endocardial displacement (P2PD) time-histories was computed at each tracked point, using the HD computed between consecutive cardiac phases. Average and standard deviation in P2PD over the cardiac cycle was used to prepare characteristic curves for the asymptomatic and IHD cohort. A novel biomarker of RMS error between mean patient-specific characteristic P2PD over the cardiac cycle for each individual patient and the cumulative P2PD characteristic of a cohort of asymptomatic patients was established as the RMS-P2PD marker. The novel RMS-P2PD marker was tested as a cardiac function based feature for automatic patient classification using a Bayesian Rule Learning (BRL) framework. The RMS-P2PD biomarker indices were significantly different for the symptomatic patient and asymptomatic control cohorts (p<0.001). BRL accurately classified 83.8% of patients correctly from the patient and control populations, with leave-one-out cross validation, using standard indices of LV ejection fraction (LV-EF) and LV end

  11. Native Myocardial T1 as a Biomarker of Cardiac Structure in Non-Ischemic Cardiomyopathy.

    PubMed

    Shah, Ravi V; Kato, Shingo; Roujol, Sebastien; Murthy, Venkatesh; Bellm, Steven; Kashem, Abyaad; Basha, Tamer; Jang, Jihye; Eisman, Aaron S; Manning, Warren J; Nezafat, Reza

    2016-01-15

    Diffuse myocardial fibrosis is involved in the pathology of nonischemic cardiomyopathy (NIC). Recently, the application of native (noncontrast) myocardial T1 measurement has been proposed as a method for characterizing diffuse interstitial fibrosis. To determine the association of native T1 with myocardial structure and function, we prospectively studied 39 patients with NIC (defined as left ventricular ejection fraction (LVEF) ≤ 50% without cardiac magnetic resonance (CMR) evidence of previous infarction) and 27 subjects with normal LVEF without known overt cardiovascular disease. T1, T2, and extracellular volume fraction (ECV) were determined over 16 segments across the base, mid, and apical left ventricular (LV). NIC participants (57 ± 15 years) were predominantly men (74%), with a mean LVEF 34 ± 10%. Subjects with NIC had a greater native T1 (1,131 ± 51 vs 1,069 ± 29 ms; p <0.0001), a greater ECV (0.28 ± 0.04 vs 0.25 ± 0.02, p = 0.002), and a longer myocardial T2 (52 ± 8 vs 47 ± 5 ms; p = 0.02). After multivariate adjustment, a lower global native T1 time in NIC was associated with a greater LVEF (β = -0.59, p = 0.0003), greater right ventricular ejection fraction (β = -0.47, p = 0.006), and smaller left atrial volume index (β = 0.51, p = 0.001). The regional distribution of native myocardial T1 was similar in patients with and without NIC. In NIC, native myocardial T1 is elevated in all myocardial segments, suggesting a global (not regional) abnormality of myocardial tissue composition. In conclusion, native T1 may represent a rapid, noncontrast alternative to ECV for delineating myocardial tissue remodeling in NIC.

  12. Left Atrial Volume Determinants in Patients with Non-Ischemic Dilated Cardiomyopathy

    PubMed Central

    Mancuso, Frederico José Neves; Moisés, Valdir Ambrósio; Almeida, Dirceu Rodrigues; Poyares, Dalva; Storti, Luciana Julio; Oliveira, Wércules Antonio; Brito, Flavio Souza; de Paola, Angelo Amato Vincenzo; Carvalho, Antonio Carlos Camargo; Campos, Orlando

    2015-01-01

    Background Left atrial volume (LAV) is a predictor of prognosis in patients with heart failure. Objective We aimed to evaluate the determinants of LAV in patients with dilated cardiomyopathy (DCM). Methods Ninety patients with DCM and left ventricular (LV) ejection fraction ≤ 0.50 were included. LAV was measured with real-time three-dimensional echocardiography (eco3D). The variables evaluated were heart rate, systolic blood pressure, LV end-diastolic volume and end-systolic volume and ejection fraction (eco3D), mitral inflow E wave, tissue Doppler e´ wave, E/e´ ratio, intraventricular dyssynchrony, 3D dyssynchrony index and mitral regurgitation vena contracta. Pearson´s coefficient was used to identify the correlation of the LAV with the assessed variables. A multiple linear regression model was developed that included LAV as the dependent variable and the variables correlated with it as the predictive variables. Results Mean age was 52 ± 11 years-old, LV ejection fraction: 31.5 ± 8.0% (16-50%) and LAV: 39.2±15.7 ml/m2. The variables that correlated with the LAV were LV end-diastolic volume (r = 0.38; p < 0.01), LV end-systolic volume (r = 0.43; p < 0.001), LV ejection fraction (r = -0.36; p < 0.01), E wave (r = 0.50; p < 0.01), E/e´ ratio (r = 0.51; p < 0.01) and mitral regurgitation (r = 0.53; p < 0.01). A multivariate analysis identified the E/e´ ratio (p = 0.02) and mitral regurgitation (p = 0.02) as the only independent variables associated with LAV increase. Conclusion The LAV is independently determined by LV filling pressures (E/e´ ratio) and mitral regurgitation in DCM. PMID:25993483

  13. Native Myocardial T1 as a Biomarker of Cardiac Structure in Non-Ischemic Cardiomyopathy.

    PubMed

    Shah, Ravi V; Kato, Shingo; Roujol, Sebastien; Murthy, Venkatesh; Bellm, Steven; Kashem, Abyaad; Basha, Tamer; Jang, Jihye; Eisman, Aaron S; Manning, Warren J; Nezafat, Reza

    2016-01-15

    Diffuse myocardial fibrosis is involved in the pathology of nonischemic cardiomyopathy (NIC). Recently, the application of native (noncontrast) myocardial T1 measurement has been proposed as a method for characterizing diffuse interstitial fibrosis. To determine the association of native T1 with myocardial structure and function, we prospectively studied 39 patients with NIC (defined as left ventricular ejection fraction (LVEF) ≤ 50% without cardiac magnetic resonance (CMR) evidence of previous infarction) and 27 subjects with normal LVEF without known overt cardiovascular disease. T1, T2, and extracellular volume fraction (ECV) were determined over 16 segments across the base, mid, and apical left ventricular (LV). NIC participants (57 ± 15 years) were predominantly men (74%), with a mean LVEF 34 ± 10%. Subjects with NIC had a greater native T1 (1,131 ± 51 vs 1,069 ± 29 ms; p <0.0001), a greater ECV (0.28 ± 0.04 vs 0.25 ± 0.02, p = 0.002), and a longer myocardial T2 (52 ± 8 vs 47 ± 5 ms; p = 0.02). After multivariate adjustment, a lower global native T1 time in NIC was associated with a greater LVEF (β = -0.59, p = 0.0003), greater right ventricular ejection fraction (β = -0.47, p = 0.006), and smaller left atrial volume index (β = 0.51, p = 0.001). The regional distribution of native myocardial T1 was similar in patients with and without NIC. In NIC, native myocardial T1 is elevated in all myocardial segments, suggesting a global (not regional) abnormality of myocardial tissue composition. In conclusion, native T1 may represent a rapid, noncontrast alternative to ECV for delineating myocardial tissue remodeling in NIC. PMID:26684511

  14. Doxorubicin induced dilated cardiomyopathy in a rabbit model: an update.

    PubMed

    Gava, Fábio N; Zacché, Evandro; Ortiz, Edna M G; Champion, Tatiana; Bandarra, Marcio B; Vasconcelos, Rosemeri O; Barbosa, José C; Camacho, Aparecido A

    2013-02-01

    Dilated cardiomyopathy (DCM) is characterized by chamber dilation and cardiac dysfunction. Because of the poor prognosis, models are needed for the investigation of and development of new therapeutic approaches, as well as stem cell therapy. Doxorubicin (DOX), used as chemotherapeutic agent, is reported to be cumulative cardiotoxic causing DCM. The aim of the study was to investigate the onset of systolic dysfunction using echocardiography in rabbits receiving two different doses of DOX (1mg/kg twice a week and 2 mg/kg once a week). Twenty rabbits were treated with doxorubicin in two different doses for 6 weeks and compared with a control group treated with NaCl 0.9%. The effect of doxorubicin on the myocardium was investigated with histological analysis and scanning electron microscopy of left ventricle (LV), as well as in the interventricular septum (IVS) and right ventricle (RV). The results showed a high mortality rate for rabbits receiving 2 mg/kg once a week. A significant reduction in systolic function was present in animals treated with DOX after 6 weeks, with decreased ejection fraction and shortening fraction. Histology and electron microscopy revealed vacuolization, intracytoplasmic granulation, necrosis and interstitial fibrosis in LV, as well as in the IVS and RV. Doxorubicin induced changes are present in the LV, RV and IVS, and the administration at the dose of 1 mg/kg twice a week for only 6 weeks is safe and sufficient to induce DCM in rabbits.

  15. Xenotransplantation of Bone Marrow-Derived Human Mesenchymal Stem Cell Sheets Attenuates Left Ventricular Remodeling in a Porcine Ischemic Cardiomyopathy Model

    PubMed Central

    Kawamura, Masashi; Miyagawa, Shigeru; Fukushima, Satsuki; Saito, Atsuhiro; Toda, Koichi; Daimon, Takashi; Shimizu, Tatsuya; Okano, Teruo

    2015-01-01

    Introduction: Bone marrow-derived autologous human mesenchymal stem cells (MSCs) are one of the most promising cell sources for cell therapy to treat heart failure. The cell sheet technique has allowed transplantation of a large number of cells and enhanced the efficacy of cell therapy. We hypothesized that the transplantation of MSC sheets may be a feasible, safe, and effective treatment for ischemic cardiomyopathy (ICM). Methods and Results: Human MSCs acquired from bone marrow were positive for CD73, CD90, and CD105 and negative for CD11b and CD45 by flow cytometry. Ten MSC sheets were created from a total cell number of 1×108 MSCs using temperature-responsive culture dishes. These were successfully transplanted over the infarct myocardium of porcine ICM models induced by placing an ameroid constrictor on the left anterior descending coronary artery without any procedural-related complications (MSC group=6: sheet transplantation; sham group=6, oral intake of tacrolimus in both groups). Premature ventricular contractions were rarely detected by Holter electrocardiogram (ECG) in the MSC group in the first week after transplantation. On echocardiography, the cardiac performance of the MSC group was significantly better than that of the sham group at 8 weeks after transplantation. On histological examination 8 weeks after transplantation, left ventricular (LV) remodeling was significantly attenuated compared with the sham group (cardiomyocyte size and interstitial fibrosis were measured). Immunohistochemistry of the von Willebrand factor showed that the vascular density in the infarct border area was significantly greater in the MSC group than the sham group. Expression of angiogenesis-related factors in the infarct border area of the MSC group was significantly greater than that of the sham group, as measured by real-time polymerase chain reaction. Conclusions: Bone marrow-derived MSC sheets improved cardiac function and attenuated LV remodeling in ICM without

  16. Dietary Salt Exacerbates Isoproterenol-induced Cardiomyopathy in Rats

    EPA Science Inventory

    Spontaneously Hypertensive Heart Failure rats (SHHFs) take far longer to develop compensated heart failure and congestive decompensation than common surgical models of heart failure. Isoproterenol (ISO) infusion can accelerate cardiomyopathy in young SHHFs, while dietary salt loa...

  17. Patient with Eating Disorder, Carnitine Deficiency and Dilated Cardiomyopathy.

    PubMed

    Fotino, A Domnica; Sherma, A

    2015-01-01

    Dilated cardiomyopathy is characterized by a dilated and poorly functioning left ventricle and can result from several different etiologies including ischemic, infectious, metabolic, toxins, autoimmune processes or nutritional deficiencies. Carnitine deficiency-induced cardiomyopathy (CDIM) is an uncommon cause of dilated cardiomyopathy that can go untreated if not considered. Here, we describe a 30-year-old woman with an eating disorder and recent percutaneous endoscopic gastrotomy (PEG) tube placement for weight loss admitted to the hospital for possible PEG tube infection. Carnitine level was found to be low. Transthoracic echocardiogram (TTE) revealed ejection fraction 15%. Her hospital course was complicated by sepsis from a peripherally inserted central catheter (PICC). She was discharged on a beta-blocker and carnitine supplementation. One month later her cardiac function had normalized. Carnitine deficiency-induced myopathy is an unusual cause of cardiomyopathy and should be considered in adults with decreased oral intake or malabsorption who present with cardiomyopathy. PMID:27159507

  18. Stress-induced cardiomyopathy associated with ipratropium bromide therapy in a patient with chronic obstructive pulmonary disease.

    PubMed

    Melão, Filipa; Nunes, José P L; Vasconcelos, Mariana; Dias, Paula; Almeida, Pedro B; Rodrigues, Rui; Pinho, Teresa; Madureira, António; Maciel, Maria J

    2014-03-01

    Stress-induced cardiomyopathy, also known as 'broken heart syndrome' or Takotsubo cardiomyopathy, is characterized by transient systolic dysfunction of the apical and/or mid segments of the left ventricle, in the absence of significant coronary artery disease. We report the case of a 56-year-old male patient with chronic obstructive pulmonary disease (COPD), with stress-induced cardiomyopathy associated with the use of ipratropium bromide, administered in the context of an acute exacerbation of COPD. PMID:24680554

  19. Short-term vs. long-term heart rate variability in ischemic cardiomyopathy risk stratification

    PubMed Central

    Voss, Andreas; Schroeder, Rico; Vallverdú, Montserrat; Schulz, Steffen; Cygankiewicz, Iwona; Vázquez, Rafael; Bayés de Luna, Antoni; Caminal, Pere

    2013-01-01

    In industrialized countries with aging populations, heart failure affects 0.3–2% of the general population. The investigation of 24 h-ECG recordings revealed the potential of nonlinear indices of heart rate variability (HRV) for enhanced risk stratification in patients with ischemic heart failure (IHF). However, long-term analyses are time-consuming, expensive, and delay the initial diagnosis. The objective of this study was to investigate whether 30 min short-term HRV analysis is sufficient for comparable risk stratification in IHF in comparison to 24 h-HRV analysis. From 256 IHF patients [221 at low risk (IHFLR) and 35 at high risk (IHFHR)] (a) 24 h beat-to-beat time series (b) the first 30 min segment (c) the 30 min most stationary day segment and (d) the 30 min most stationary night segment were investigated. We calculated linear (time and frequency domain) and nonlinear HRV analysis indices. Optimal parameter sets for risk stratification in IHF were determined for 24 h and for each 30 min segment by applying discriminant analysis on significant clinical and non-clinical indices. Long- and short-term HRV indices from frequency domain and particularly from nonlinear dynamics revealed high univariate significances (p < 0.01) discriminating between IHFLR and IHFHR. For multivariate risk stratification, optimal mixed parameter sets consisting of 5 indices (clinical and nonlinear) achieved 80.4% AUC (area under the curve of receiver operating characteristics) from 24 h HRV analysis, 84.3% AUC from first 30 min, 82.2 % AUC from daytime 30 min and 81.7% AUC from nighttime 30 min. The optimal parameter set obtained from the first 30 min showed nearly the same classification power when compared to the optimal 24 h-parameter set. As results from stationary daytime and nighttime, 30 min segments indicate that short-term analyses of 30 min may provide at least a comparable risk stratification power in IHF in comparison to a 24 h analysis period. PMID:24379785

  20. A Dilated Cardiomyopathy Revealing a Neuroblastoma: Which Link?

    PubMed

    Duhil de Bénazé, Gwenaelle; Iserin, Franck; Durand, Philippe; Schleiermacher, Gudrun; Orbach, Daniel

    2016-10-01

    Acute cardiac dysfunctions associated to neuroblastoma have rarely been reported. Cases already described are mainly related to high blood pressure, and rarely to an "acute catecholamine cardiomyopathy" more frequently found in adults with pheochromocytoma or secreting paraganglioma. We here report a case of an 8-month-old infant with severe acute cardiac failure with dilated cardiomyopathy and moderate ischemic myocardial signs, revealing a favorable histoprognosis neuroblastoma. After specific treatment, evolution was favorable, and cardiac function completely recovered. The association of reversible ischemic signs with high plasmatic level of catecholamines suggests the existence of a catecholamine-induced acute cardiac dysfunction which imitates a Tako-Tsubo syndrome in neuroblastoma.

  1. A Dilated Cardiomyopathy Revealing a Neuroblastoma: Which Link?

    PubMed

    Duhil de Bénazé, Gwenaelle; Iserin, Franck; Durand, Philippe; Schleiermacher, Gudrun; Orbach, Daniel

    2016-10-01

    Acute cardiac dysfunctions associated to neuroblastoma have rarely been reported. Cases already described are mainly related to high blood pressure, and rarely to an "acute catecholamine cardiomyopathy" more frequently found in adults with pheochromocytoma or secreting paraganglioma. We here report a case of an 8-month-old infant with severe acute cardiac failure with dilated cardiomyopathy and moderate ischemic myocardial signs, revealing a favorable histoprognosis neuroblastoma. After specific treatment, evolution was favorable, and cardiac function completely recovered. The association of reversible ischemic signs with high plasmatic level of catecholamines suggests the existence of a catecholamine-induced acute cardiac dysfunction which imitates a Tako-Tsubo syndrome in neuroblastoma. PMID:27571126

  2. Real-time three-dimensional echocardiographic study of left ventricular function after infarct exclusion surgery for ischemic cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Qin, J. X.; Shiota, T.; McCarthy, P. M.; Firstenberg, M. S.; Greenberg, N. L.; Tsujino, H.; Bauer, F.; Travaglini, A.; Hoercher, K. J.; Buda, T.; Smedira, N. G.; Thomas, J. D.

    2000-01-01

    BACKGROUND: Infarct exclusion (IE) surgery, a technique of left ventricular (LV) reconstruction for dyskinetic or akinetic LV segments in patients with ischemic cardiomyopathy, requires accurate volume quantification to determine the impact of surgery due to complicated geometric changes. METHODS AND RESULTS: Thirty patients who underwent IE (mean age 61+/-8 years, 73% men) had epicardial real-time 3-dimensional echocardiographic (RT3DE) studies performed before and after IE. RT3DE follow-up was performed transthoracically 42+/-67 days after surgery in 22 patients. Repeated measures ANOVA was used to compare the values before and after IE surgery and at follow-up. Significant decreases in LV end-diastolic (EDVI) and end-systolic (ESVI) volume indices were apparent immediately after IE and in follow-up (EDVI 99+/-40, 67+/-26, and 71+/-31 mL/m(2), respectively; ESVI 72+/-37, 40+/-21, and 42+/-22 mL/m(2), respectively; P:<0.05). LV ejection fraction increased significantly and remained higher (0.29+/-0.11, 0.43+/-0.13, and 0.42+/-0.09, respectively, P:<0.05). Forward stroke volume in 16 patients with preoperative mitral regurgitation significantly improved after IE and in follow-up (22+/-12, 53+/-24, and 58+/-21 mL, respectively, P:<0.005). New York Heart Association functional class at an average 285+/-144 days of clinical follow-up significantly improved from 3.0+/-0.8 to 1.8+/-0.8 (P:<0.0001). Smaller end-diastolic and end-systolic volumes measured with RT3DE immediately after IE were closely related to improvement in New York Heart Association functional class at clinical follow-up (Spearman's rho=0.58 and 0.60, respectively). CONCLUSIONS: RT3DE can be used to quantitatively assess changes in LV volume and function after complicated LV reconstruction. Decreased LV volume and increased ejection fraction imply a reduction in LV wall stress after IE surgery and are predictive of symptomatic improvement.

  3. An Upgrade on the Rabbit Model of Anthracycline-Induced Cardiomyopathy: Shorter Protocol, Reduced Mortality, and Higher Incidence of Overt Dilated Cardiomyopathy

    PubMed Central

    Talavera, Jesús; Fernández-Del-Palacio, María Josefa; García-Nicolás, Obdulio; Seva, Juan; Brooks, Gavin; Moraleda, Jose M.

    2015-01-01

    Current protocols of anthracycline-induced cardiomyopathy in rabbits present with high premature mortality and nephrotoxicity, thus rendering them unsuitable for studies requiring long-term functional evaluation of myocardial function (e.g., stem cell therapy). We compared two previously described protocols to an in-house developed protocol in three groups: Group DOX2 received doxorubicin 2 mg/kg/week (8 weeks); Group DAU3 received daunorubicin 3 mg/kg/week (10 weeks); and Group DAU4 received daunorubicin 4 mg/kg/week (6 weeks). A cohort of rabbits received saline (control). Results of blood tests, cardiac troponin I, echocardiography, and histopathology were analysed. Whilst DOX2 and DAU3 rabbits showed high premature mortality (50% and 33%, resp.), DAU4 rabbits showed 7.6% premature mortality. None of DOX2 rabbits developed overt dilated cardiomyopathy; 66% of DAU3 rabbits developed overt dilated cardiomyopathy and quickly progressed to severe congestive heart failure. Interestingly, 92% of DAU4 rabbits showed overt dilated cardiomyopathy and 67% developed congestive heart failure exhibiting stable disease. DOX2 and DAU3 rabbits showed alterations of renal function, with DAU3 also exhibiting hepatic function compromise. Thus, a shortened protocol of anthracycline-induced cardiomyopathy as in DAU4 group results in high incidence of overt dilated cardiomyopathy, which insidiously progressed to congestive heart failure, associated to reduced systemic compromise and very low premature mortality. PMID:26788502

  4. An Upgrade on the Rabbit Model of Anthracycline-Induced Cardiomyopathy: Shorter Protocol, Reduced Mortality, and Higher Incidence of Overt Dilated Cardiomyopathy.

    PubMed

    Talavera, Jesús; Giraldo, Alejandro; Fernández-Del-Palacio, María Josefa; García-Nicolás, Obdulio; Seva, Juan; Brooks, Gavin; Moraleda, Jose M

    2015-01-01

    Current protocols of anthracycline-induced cardiomyopathy in rabbits present with high premature mortality and nephrotoxicity, thus rendering them unsuitable for studies requiring long-term functional evaluation of myocardial function (e.g., stem cell therapy). We compared two previously described protocols to an in-house developed protocol in three groups: Group DOX2 received doxorubicin 2 mg/kg/week (8 weeks); Group DAU3 received daunorubicin 3 mg/kg/week (10 weeks); and Group DAU4 received daunorubicin 4 mg/kg/week (6 weeks). A cohort of rabbits received saline (control). Results of blood tests, cardiac troponin I, echocardiography, and histopathology were analysed. Whilst DOX2 and DAU3 rabbits showed high premature mortality (50% and 33%, resp.), DAU4 rabbits showed 7.6% premature mortality. None of DOX2 rabbits developed overt dilated cardiomyopathy; 66% of DAU3 rabbits developed overt dilated cardiomyopathy and quickly progressed to severe congestive heart failure. Interestingly, 92% of DAU4 rabbits showed overt dilated cardiomyopathy and 67% developed congestive heart failure exhibiting stable disease. DOX2 and DAU3 rabbits showed alterations of renal function, with DAU3 also exhibiting hepatic function compromise. Thus, a shortened protocol of anthracycline-induced cardiomyopathy as in DAU4 group results in high incidence of overt dilated cardiomyopathy, which insidiously progressed to congestive heart failure, associated to reduced systemic compromise and very low premature mortality.

  5. Acute and Chronic Pheochromocytoma-Induced Cardiomyopathies: Different Prognoses?

    PubMed Central

    Batisse-Lignier, Marie; Pereira, Bruno; Motreff, Pascal; Pierrard, Romain; Burnot, Christelle; Vorilhon, Charles; Maqdasy, Salwan; Roche, Béatrice; Desbiez, Francoise; Clerfond, Guillaume; Citron, Bernard; Lusson, Jean-René; Tauveron, Igor; Eschalier, Romain

    2015-01-01

    Abstract Pheochromocytoma and paraganglioma (PPG) are rare and late-diagnosed catecholamine secreting tumors, which may be associated with unrecognized and/or severe cardiomyopathies. We performed a computer-assisted systematic search of the electronic Medline databases using the MESH terms “myocarditis,” “myocardial infarction,” “Takotsubo,” “stress cardiomyopathy,” “cardiogenic shock”, or “dilated cardiomyopathy,” and “pheochromocytoma” or “paraganglioma” from 1961 to August 2012. All detailed case reports of cardiomyopathy due to a PPG, without coronary stenosis, and revealed by acute symptoms were included and analyzed. A total of 145 cases reports were collected (49 Takotsubo Cardiomyopathies [TTC] and 96 other Catecholamine Cardiomyopathies [CC]). At initial presentation, prevalence of high blood pressure (87.7%), chest pain (49.0%), headaches (47.6%), palpitations (46.9%), sweating (39.3%), and shock (51.0%) were comparable between CC and TTC. Acute pulmonary edema (58.3% vs 38.8%, P = 0.03) was more frequent in CC. There was no difference in proportion of patients with severe left ventricular systolic dysfunction (LV Ejection Fraction [LVEF] < 30%) at initial presentation between both groups (P = 0.15). LVEF recovery before (64.9% vs 40.8%, P = 0.005) and after surgical resection (97.7% vs73.3%, P = 0.001) was higher in the TTC group. Death occurred in 11 cases (7.6%). In multivariate analysis, only TTC was associated with a better LV recovery (0.15 [0.03–0.67], P = 0.03). Pheochromocytoma and paraganglioma can lead to different cardiomyopathies with the same brutal and life-threatening initial clinical presentation but with a different recovery rate. Diagnosis of unexplained dilated cardiomyopathy or TTC should lead clinicians to a specific search for PPG. PMID:26683930

  6. [Ischemic cholangiopathy induced by extended burns].

    PubMed

    Cohen, Laurence; Angot, Emilie; Goria, Odile; Koning, Edith; François, Arnaud; Sabourin, Jean-Christophe

    2013-04-01

    Ischemic cholangiopathy is a recently described entity occurring mainly after hepatic grafts. Very few cases after intensive care unit (ICU) for extended burn injury were reported. We report the case of a 73-year-old woman consulting in an hepatology unit, for a jaundice appearing during a hospitalisation in an intensive care unit and increasing from her leaving from ICU, where she was treated for an extended burn injury. She had no pre-existing biological features of biliary disease. Biological tests were normal. Magnetic resonance imaging acquisitions of biliary tracts pointed out severe stenosing lesions of diffuse cholangiopathy concerning intrahepatic biliary tract, mainly peri-hilar. Biopsie from the liver confirmed the diagnosis, showing a biliary cirrhosis with bile infarcts. This case is the fourth case of ischemic cholangiopathy after extended burn injury, concerning a patient without a prior history of hepatic or biliary illness and appearing after hospitalisation in intensive care unit.

  7. Galactokinase Is a Novel Modifier of Calcineurin-Induced Cardiomyopathy in Drosophila

    PubMed Central

    Lee, Teresa E.; Yu, Lin; Wolf, Matthew J.; Rockman, Howard A.

    2014-01-01

    Activated/uninhibited calcineurin is both necessary and sufficient to induce cardiac hypertrophy, a condition that often leads to dilated cardiomyopathy, heart failure, and sudden cardiac death. We expressed constitutively active calcineurin in the adult heart of Drosophila melanogaster and identified enlarged cardiac chamber dimensions and reduced cardiac contractility. In addition, expressing constitutively active calcineurin in the fly heart using the Gal4/UAS system induced an increase in heart wall thickness. We performed a targeted genetic screen for modifiers of calcineurin-induced cardiac enlargement based on previous calcineurin studies in the fly and identified galactokinase as a novel modifier of calcineurin-induced cardiomyopathy. Genomic deficiencies spanning the galactokinase locus, transposable elements that disrupt galactokinase, and cardiac-specific RNAi knockdown of galactokinase suppressed constitutively active calcineurin-induced cardiomyopathy. In addition, in flies expressing constitutively active calcineurin using the Gal4/UAS system, a transposable element in galactokinase suppressed the increase in heart wall thickness. Finally, genetic disruption of galactokinase suppressed calcineurin-induced wing vein abnormalities. Collectively, we generated a model for discovering novel modifiers of calcineurin-induced cardiac enlargement in the fly and identified galactokinase as a previously unknown regulator of calcineurin-induced cardiomyopathy in adult Drosophila. PMID:25081566

  8. Reversal of Ischemic Cardiomyopathy with Sca-1+ Stem Cells Modified with Multiple Growth Factors

    PubMed Central

    Li, Ning; Pasha, Zeeshan; Ashraf, Muhammad

    2014-01-01

    Background We hypothesized that bone marrow derived Sca-1+ stem cells (BM Sca-1+) transduced with multiple therapeutic cytokines with diverse effects will induce faster angiomyogenic differentiation in the infarcted myocardium. Methods and Results BM Sca-1+ were purified from transgenic male mice expressing GFP. Plasmids encoding for select quartet of growth factors, i.e., human IGF-1, VEGF, SDF-1α and HGF were prepared and used for genetic modification of Sca-1+ cells (GFSca-1+). Scramble transfected cells (ScSca-1+) were used as a control. RT-PCR and western blotting showed significantly higher expression of the growth factors in GFSca-1+. Besides the quartet of the therapeutic growth factors, PCR based growth factor array showed upregulation of multiple angiogenic and prosurvival factors such as Ang-1, Ang-2, MMP9, Cx43, BMP2, BMP5, FGF2, and NGF in GFSca-1+ (p<0.01 vs ScSca-1+). LDH and TUNEL assays showed enhanced survival of GFSca-1+ under lethal anoxia (p<0.01 vs ScSca-1+). MTS assay showed significant increased cell proliferation in GFSca-1+ (p<0.05 vs ScSca-1+). For in vivo study, female mice were grouped to receive the intramyocardial injection of 15 μl DMEM without cells (group-1) or containing 2.5×105 ScSca-1+ (group-2) or GFSca-1+ (group-3) immediately after coronary artery ligation. As indicated by Sry gene, a higher survival of GFSca-1+ in group-3 on day4 (2.3 fold higher vs group-2) was observed with massive mobilization of stem and progenitor cells (cKit+, Mdr1+, Cxcr4+ cells). Heart tissue sections immunostained for actinin and Cx43 at 4 weeks post engraftment showed extensive myofiber formation and expression of gap junctions. Immunostaining for vWF showed increased blood vessel density in both peri-infarct and infarct regions in group-3. Infarct size was attenuated and the global heart function was improved in group-3 as compared to group-2. Conclusions Administration of BM Sca-1+ transduced with multiple genes is a novel approach to treat

  9. [Wasp-sting-induced pheochromozytoma crisis with stress-related cardiomyopathy (Takotsubo)].

    PubMed

    Hausen, S; Treusch, A; Hermes, C; Boekstegers, P

    2014-11-01

    This article presents the case of a patient with sudden onset of heart failure caused by transient severe left ventricular dysfunction with the typical pattern of stress-induced cardiomyopathy (takotsubo cardiomyopathy) who had wasp sting a few hours before admission in the presence of a previously asymptomatic pheochromocytoma. There seems to be correlation between the wasp-venom-induced pheochomocytoma crisis and acute onset of heart failure. Once pheocromocytoma is diagnosed, medical therapy is preferable before surgical treatment. This case demonstrates that a previously asymptomatic pheochromocytoma can become clinically relevant by catecholamine-releasing wasp venom causing stress-related cardiomyopathy and that patient history is mandatory for evaluating the cause of sudden clinical outcome.

  10. Metabolic stress–induced activation of FoxO1 triggers diabetic cardiomyopathy in mice

    PubMed Central

    Battiprolu, Pavan K.; Hojayev, Berdymammet; Jiang, Nan; Wang, Zhao V.; Luo, Xiang; Iglewski, Myriam; Shelton, John M.; Gerard, Robert D.; Rothermel, Beverly A.; Gillette, Thomas G.; Lavandero, Sergio; Hill, Joseph A.

    2012-01-01

    The leading cause of death in diabetic patients is cardiovascular disease; diabetic cardiomyopathy is typified by alterations in cardiac morphology and function, independent of hypertension or coronary disease. However, the molecular mechanism that links diabetes to cardiomyopathy is incompletely understood. Insulin resistance is a hallmark feature of diabetes, and the FoxO family of transcription factors, which regulate cell size, viability, and metabolism, are established targets of insulin and growth factor signaling. Here, we set out to evaluate a possible role of FoxO proteins in diabetic cardiomyopathy. We found that FoxO proteins were persistently activated in cardiac tissue in mice with diabetes induced either genetically or by high-fat diet (HFD). FoxO activity was critically linked with development of cardiomyopathy: cardiomyocyte-specific deletion of FoxO1 rescued HFD-induced declines in cardiac function and preserved cardiomyocyte insulin responsiveness. FoxO1-depleted cells displayed a shift in their metabolic substrate usage, from free fatty acids to glucose, associated with decreased accumulation of lipids in the heart. Furthermore, we found that FoxO1-dependent downregulation of IRS1 resulted in blunted Akt signaling and insulin resistance. Together, these data suggest that activation of FoxO1 is an important mediator of diabetic cardiomyopathy and is a promising therapeutic target for the disease. PMID:22326951

  11. Initial clinical experience of real-time three-dimensional echocardiography in patients with ischemic and idiopathic dilated cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Shiota, T.; McCarthy, P. M.; White, R. D.; Qin, J. X.; Greenberg, N. L.; Flamm, S. D.; Wong, J.; Thomas, J. D.

    1999-01-01

    The geometry of the left ventricle in patients with cardiomyopathy is often sub-optimal for 2-dimensional ultrasound when assessing left ventricular (LV) function and localized abnormalities such as a ventricular aneurysm. The aim of this study was to report the initial experience of real-time 3-D echocardiography for evaluating patients with cardiomyopathy. A total of 34 patients were evaluated with the real-time 3D method in the operating room (n = 15) and in the echocardiographic laboratory (n = 19). Thirteen of 28 patients with cardiomyopathy and 6 other subjects with normal LV function were evaluated by both real-time 3-D echocardiography and magnetic resonance imaging (MRI) for obtaining LV volumes and ejection fractions for comparison. There were close relations and agreements for LV volumes (r = 0.98, p <0.0001, mean difference = -15 +/- 81 ml) and ejection fractions (r = 0.97, p <0.0001, mean difference = 0.001 +/- 0.04) between the real-time 3D method and MRI when 3 cardiomyopathy cases with marked LV dilatation (LV end-diastolic volume >450 ml by MRI) were excluded. In these 3 patients, 3D echocardiography significantly underestimated the LV volumes due to difficulties with imaging the entire LV in a 60 degrees x 60 degrees pyramidal volume. The new real-time 3D echocardiography is feasible in patients with cardiomyopathy and may provide a faster and lower cost alternative to MRI for evaluating cardiac function in patients.

  12. Persimmon leaf flavonoid induces brain ischemic tolerance in mice.

    PubMed

    Miao, Mingsan; Zhang, Xuexia; Wang, Linan

    2013-05-25

    The persimmon leaf has been shown to improve cerebral ischemic outcomes; however, its mechanism of action remains unclear. In this study, mice were subjected to 10 minutes of ischemic preconditioning, and persimmon leaf flavonoid was orally administered for 5 days. Results showed that the persimmon leaf flavonoid significantly improved the content of tissue type plasminogen activator and 6-keto prostaglandin-F1 α in the cerebral cortex, decreased the content of thromboxane B2, and reduced the content of plasminogen activator inhibitor-1 in mice. Following optical microscopy, persimmon leaf flavonoid was also shown to reduce cell swelling and nuclear hyperchromatism in the cerebral cortex and hippocampus of mice. These results suggested that persimmon leaf flavonoid can effectively inhibit brain thrombosis, improve blood supply to the brain, and relieve ischemia-induced pathological damage, resulting in brain ischemic tolerance.

  13. Cardiac incoordination induced by left bundle branch block: its relation with left ventricular systolic function in patients with and without cardiomyopathy

    PubMed Central

    Quintana, Miguel; Saha, Samir; Govind, Satish; Brodin, Lars Åke; del Furia, Francesca; Bertomeu, Vicente

    2008-01-01

    Background Although left bundle branch block (LBBB) alters the electrical activation of the heart, it is unknown how it might change the process of myocardial coordination (MC) and how it may affect the left ventricular (LV) systolic function. The present study assessed the effects of LBBB on MC in patients with LBBB with and without dilated (DCMP) or ischemic cardiomyopathy (ICMP). Methods Tissue Doppler echocardiography (TDE) was performed in 86 individuals: 21 with isolated LBBB, 26 patients with DCMP + LBBB, 19 patients with ICMP + LBBB and in 20 healthy individuals (Controls). MC was assessed analyzing the myocardial velocity profiles obtained from six basal segments of the LV using TDE. The LV systolic function was assessed by standard two-dimensional echocardiography and by TDE. Results Severe alterations in MC were observed in subjects with LBBB as compared with controls (P < 0.01 for all comparisons); these derangements were even worse in patients with DCMP and ICMP (P < 0.001 for comparisons with Controls and P < 0.01 for comparison with individuals with isolated LBBB). Some parameters of MC differed significantly between DCMP and ICMP (P < 0.01). A good or very good correlation coefficient was found between variables of MC and variables of LV systolic function. Conclusion LBBB induces severe derangement in the process of MC that are more pronounced in patients with cardiomyopathies and that significantly correlates with the LV systolic function. The assessment of MC may help in the evaluation of the etiology of dilated cardiomyopathy. PMID:18681971

  14. Doxorubicin-induced dilated cardiomyopathy for modified radical mastectomy: A case managed under cervical epidural anaesthesia

    PubMed Central

    Jain, Anuj; Kishore, Kamal

    2013-01-01

    Doxorubicin (Dox) is an antineoplastic agent used in a wide variety of malignancies. Its use is limited because of a cumulative, dose-dependent irreversible cardiomyopathy. We report a case of Dox induced cardiomyopathy, posted for modified radical mastectomy. The patient had poor LV function along with moderate pulmonary hypertension. Regional anaesthesia was planned as the risk associated with general anaesthesia was more. A cervical epidural was placed and a block adequate for surgery could be achived. The haemodynamic parameters as measured by esophageal doppler showed a stable trend. The surgery could be managed well under cervical epidural and also provided a good postoperative pain relief. PMID:23825820

  15. Tachycardia-Induced Cardiomyopathy in a 1-Month-Old Infant

    PubMed Central

    Mares, Joseph C.; Bar-Cohen, Yaniv

    2012-01-01

    Supraventricular tachycardia (SVT) is the most common arrhythmia in children and is especially common in infants. SVT is typically thought of as an acute condition; however, if unrecognized, a persistent tachyarrhythmia can progress to a state of cardiac contractile dysfunction known as tachycardia-induced cardiomyopathy. A high index of suspicion for an underlying arrhythmia is needed in the workup of any patient with new onset heart failure, and the 12-lead electrocardiogram can aid in the diagnosis. While this may be a rare cause of dilated cardiomyopathy and heart failure in children, the condition is usually reversible and should be considered in infants and young children. PMID:23320236

  16. Prevention of exercised induced cardiomyopathy following Pip-PMO treatment in dystrophic mdx mice

    PubMed Central

    Betts, Corinne A.; Saleh, Amer F.; Carr, Carolyn A.; Hammond, Suzan M.; Coenen-Stass, Anna M. L.; Godfrey, Caroline; McClorey, Graham; Varela, Miguel A.; Roberts, Thomas C.; Clarke, Kieran; Gait, Michael J.; Wood, Matthew J. A.

    2015-01-01

    Duchenne muscular dystrophy (DMD) is a fatal neuromuscular disorder caused by mutations in the Dmd gene. In addition to skeletal muscle wasting, DMD patients develop cardiomyopathy, which significantly contributes to mortality. Antisense oligonucleotides (AOs) are a promising DMD therapy, restoring functional dystrophin protein by exon skipping. However, a major limitation with current AOs is the absence of dystrophin correction in heart. Pip peptide-AOs demonstrate high activity in cardiac muscle. To determine their therapeutic value, dystrophic mdx mice were subject to forced exercise to model the DMD cardiac phenotype. Repeated peptide-AO treatments resulted in high levels of cardiac dystrophin protein, which prevented the exercised induced progression of cardiomyopathy, normalising heart size as well as stabilising other cardiac parameters. Treated mice also exhibited significantly reduced cardiac fibrosis and improved sarcolemmal integrity. This work demonstrates that high levels of cardiac dystrophin restored by Pip peptide-AOs prevents further deterioration of cardiomyopathy and pathology following exercise in dystrophic DMD mice. PMID:25758104

  17. Dietary copper supplementation reverses hypertrophic cardiomyopathy induced by chronic pressure overload in mice

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sustained pressure overload causes cardiac hypertrophy and the transition to heart failure. We show here that dietary supplementation with physiologically relevant levels of copper (Cu) reverses pre-established hypertrophic cardiomyopathy in the presence of pressure overload induced by ascending aor...

  18. Cardiogenic shock induced by Takotsubo cardiomyopathy: A new therapeutic option.

    PubMed

    Silva, Marisa Passos; Vilela, Eduardo Matos; Lopes, Ricardo Ladeiras; de Morais, Gustavo Pires; Fernandes, Paula; Santos, Lino; Dias, Adelaide; Ribeiro, Vasco Gama

    2015-11-01

    Takotsubo cardiomyopathy (TC) is characterized by the sudden onset of reversible left ventricular dysfunction, with a presentation similar to that of an acute coronary syndrome. Although cardiogenic shock is a rare occurrence in TC, if it does occur it may require the use of a left ventricular assist device. We report the use of extracorporeal life support (ECLS) in a patient with TC and refractory cardiogenic shock. With ECLS it was possible to reduce inotropic support, and a normal left ventricular ejection fraction was documented by echocardiography on day 2. This is, to our knowledge, the first reported case of TC with refractory cardiogenic shock treated with ECLS in Portugal.

  19. Sheng-mai-san reduces adriamycin-induced cardiomyopathy in rats.

    PubMed

    You, Jyh-Sheng; Huang, Hui-Feng; Chang, Ying-Ling; Lee, Ying-Shiung

    2006-01-01

    The traditional Chinese medicine prescription "sheng-mai-san (SMS)" has been used for treating patients with coronary heart disease for a long time and was found to have antioxidative effects. Here, we applied adriamycin (doxorubicin, ADR), a highly effective anticancer agent, as an inducer to establish the animal model of dose-related cardiomyopathy due to inhibition of nucleic acid as well as protein synthesis, formation of free radicals, and lipid peroxidation. The objective of this study was to investigate the protective effects of SMS on adriamycin-induced cardiomyopathy. Wistar rats were divided into four groups: CONT (control), ADR, SMS, and ADR + SMS. ADR (cumulative dose, 15 mg/kg) was administered to rats in six equal intraperitoneal injections over a period of 2 weeks and SMS was administered via a feeding tube throughout the mouth once a day for 30 days (cumulative dose, 150 g/kg). At the end of the 5-week post-treatment period, the hearts of the rats were surgically removed for the study of synthesis rates of DNA, RNA and proteins. Besides myocardial antioxidants, lipid peroxidation and morphological ultrastructure were also evaluated. Three weeks after the treatment, cardiomyopathy and congestive heart failure were characterized according to assessment in ascites, congested liver, depressed cardiac function and myocardial cell damage. The results demonstrated that nucleic acid as well as protein synthesis was inhibited, while lipid peroxidation was increased. Myocardial glutathione peroxidase (GSHPx) activity was decreased and electron microscopic examination revealed myocardial lesion indicative of ADR-induced cardiomyopathy. In contrast, administration of SMS before and concurrent with ADR significantly attenuated the myocardial effects. It also lowered mortality as well as the amount of ascites. In addition, indexes in myocardial GSHPx, macromolecular biosynthesis and superoxide dismutase activities were increasing, with a concomitant decrease in

  20. Sheng-mai-san reduces adriamycin-induced cardiomyopathy in rats.

    PubMed

    You, Jyh-Sheng; Huang, Hui-Feng; Chang, Ying-Ling; Lee, Ying-Shiung

    2006-01-01

    The traditional Chinese medicine prescription "sheng-mai-san (SMS)" has been used for treating patients with coronary heart disease for a long time and was found to have antioxidative effects. Here, we applied adriamycin (doxorubicin, ADR), a highly effective anticancer agent, as an inducer to establish the animal model of dose-related cardiomyopathy due to inhibition of nucleic acid as well as protein synthesis, formation of free radicals, and lipid peroxidation. The objective of this study was to investigate the protective effects of SMS on adriamycin-induced cardiomyopathy. Wistar rats were divided into four groups: CONT (control), ADR, SMS, and ADR + SMS. ADR (cumulative dose, 15 mg/kg) was administered to rats in six equal intraperitoneal injections over a period of 2 weeks and SMS was administered via a feeding tube throughout the mouth once a day for 30 days (cumulative dose, 150 g/kg). At the end of the 5-week post-treatment period, the hearts of the rats were surgically removed for the study of synthesis rates of DNA, RNA and proteins. Besides myocardial antioxidants, lipid peroxidation and morphological ultrastructure were also evaluated. Three weeks after the treatment, cardiomyopathy and congestive heart failure were characterized according to assessment in ascites, congested liver, depressed cardiac function and myocardial cell damage. The results demonstrated that nucleic acid as well as protein synthesis was inhibited, while lipid peroxidation was increased. Myocardial glutathione peroxidase (GSHPx) activity was decreased and electron microscopic examination revealed myocardial lesion indicative of ADR-induced cardiomyopathy. In contrast, administration of SMS before and concurrent with ADR significantly attenuated the myocardial effects. It also lowered mortality as well as the amount of ascites. In addition, indexes in myocardial GSHPx, macromolecular biosynthesis and superoxide dismutase activities were increasing, with a concomitant decrease in

  1. Stress Induced Cardiomyopathy with Midventricular Ballooning: A Rare Variant.

    PubMed

    Siddiqui, Muhammad Umer; Desiderio, Michael C; Ricculli, Nicholas; Rusovici, Arthur

    2015-01-01

    Stress cardiomyopathy (SCM) also referred to as the "broken heart syndrome" is a condition in which intense emotional or physical stress can cause fulminant and reversible cardiac muscle weakness. SCM most commonly involves the apical segment of left ventricle but newer and rare variants have recently been seen reported. We here report a case of rare midventricular variant of stress related cardiomyopathy. A 72-year-old female with past medical history, only significant for SVT, presented with an episode of severe substernal chest pain while hiking with her husband. She felt a significant heaviness in her chest and was short of breath. During her hospitalization she was found to have positive cardiac enzymes. EKG showed 1 mm downsloping ST segment changes. Ventriculogram during left heart catheterization revealed dyskinetic midventricle. Patient was diagnosed with midventricular SCM. The patient was placed on ACE inhibitor and beta-blocker and discharged in a well-compensated state. We suggest identifying these patients by standard lab testing, electrocardiography, echocardiography, and left heart coronary angiography and ventriculography. Management of this unique entity is similar to the other variants with close observation and treatment of accompanying heart failure, valvular dysfunction, and any arrhythmias that may develop. PMID:26146502

  2. Pheochromocytoma-Induced Cardiomyopathy is Modulated by the Synergistic Effects of Cell-Secreted Factors

    PubMed Central

    Mobine, Hector R.; Baker, Aaron B.; Wang, Libin; Wakimoto, Hiroko; Jacobsen, Kurt C.; Seidman, Christine E.; Seidman, J.G.; Edelman, Elazer R.

    2009-01-01

    Background Pheochromocytomas are rare tumors derived from the chromaffin cells of the adrenal medulla. While these tumors have long been postulated to induce hypertension and cardiomyopathy through the hypersecretion of catecholamines, catecholamines alone may not fully explain the profound myocardial remodeling induced by these tumors. We sought to determine whether changes in myocardial function in pheochromocytoma-induced cardiomyopathy result solely from catecholamines secretion or from multiple pheochromocytoma-derived factors. Methods and Results Isolated cardiomyocytes incubated with pheochromocytoma-conditioned growth media contracted at a higher frequency than cardiomyocytes incubated with norepinephrine only. Sprague-Dawley rats and Black-6 mice were implanted with agarose-encapsulated pheochromocytoma (PC12) cells, DOPA decarboxylase knock-out PC12 cells deficient in norepinephrine (PC12-KO), or norepinephrine-secreting pumps. PC12 cell implantation increased left ventricular dilation by 35±6 and 9.6±1.4%,and reduced left ventricular fractional shortening by 20±3 and 28±4%, in rats and mice compared to animals dosed only with norepinephrine. Elimination of norepinephrine secretion in PC12-KO cells induced neither cardiac dilation (3.9±1.8% increase vs. control) nor changes in (1.9±0.4% reduction) fractional shortening compared to controls. Conclusions Pheochromocytomas induce a greater degree of cardiomyopathy than equivalent doses of norepinephrine, suggesting pheochromocytoma-induced cardiomyopathy is not solely mediated by norepinephrine, rather pheochromocytoma secretory factors in combination with catecholamines act synergistically to induce greater cardiac damage than catecholamines alone. PMID:19808327

  3. Geometric differences of the mitral apparatus between ischemic and dilated cardiomyopathy with significant mitral regurgitation: real-time three-dimensional echocardiography study

    NASA Technical Reports Server (NTRS)

    Kwan, Jun; Shiota, Takahiro; Agler, Deborah A.; Popovic, Zoran B.; Qin, Jian Xin; Gillinov, Marc A.; Stewart, William J.; Cosgrove, Delos M.; McCarthy, Patrick M.; Thomas, James D.

    2003-01-01

    BACKGROUND: This study was conducted to elucidate the geometric differences of the mitral apparatus in patients with significant mitral regurgitation caused by ischemic cardiomyopathy (ICM-MR) and by idiopathic dilated cardiomyopathy (DCM-MR) by use of real-time 3D echocardiography (RT3DE). METHODS AND RESULTS: Twenty-six patients with ICM-MR caused by posterior infarction, 18 patients with DCM-MR, and 8 control subjects were studied. With the 3D software, commissure-commissure plane and 3 perpendicular anteroposterior (AP) planes were generated for imaging the medial, central, and lateral sides of the mitral valve (MV) during mid systole. In 3 AP planes, the angles between the annular plane and each leaflet (anterior, Aalpha; posterior, Palpha) were measured. In ICM-MR, Aalpha measured in the medial and central planes was significantly larger than that in the lateral plane (39+/-5 degrees, 34+/-6 degrees, and 27+/-5 degrees, respectively; P<0.01), whereas Palpha showed no significant difference in any of the 3 AP planes (61+/-7 degrees, 57+/-7 degrees, and 56+/-7 degrees, P>0.05). In DCM-MR, both Aalpha (38+/-8 degrees, 37+/-9 degrees, and 36+/-7 degrees, P>0.05) and Palpha (59+/-6 degrees, 58+/-5 degrees, and 57+/-6 degrees, P>0.05) revealed no significant differences in the 3 planes. CONCLUSIONS: The pattern of MV deformation from the medial to the lateral side was asymmetrical in ICM-MR, whereas it was symmetrical in DCM-MR. RT3DE is a helpful tool for differentiating the geometry of the mitral apparatus between these 2 different types of functional mitral regurgitation.

  4. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy

    NASA Astrophysics Data System (ADS)

    Liu, Qian; Zhang, Qi; Wang, Kai; Wang, Shengchan; Lu, Dasheng; Li, Zhenzhen; Geng, Jie; Fang, Ping; Wang, Ying; Shan, Qijun

    2015-12-01

    Cardio-renal fibrosis plays key roles in heart failure and chronic kidney disease. We sought to determine the effects of renal denervation (RDN) on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sixty male Sprague Dawley rats were randomly assigned to Control (n = 10) and isoproterenol (ISO)-induced cardiomyopathy group (n = 50). At week 5, 31 survival ISO-induced cardiomyopathy rats were randomized to RDN (n = 15) and Sham group (n = 16). Compared with Control group, ejection fraction was decreased, diastolic interventricular septal thickness and left atrial dimension were increased in ISO-induced cardiomyopathy group at 5 week. After 10 weeks, cardio-renal pathophysiologic results demonstrated that the collagen volume fraction of left atrio-ventricular and kidney tissues reduced significantly in RDN group compared with Sham group. Moreover the pro-fibrosis factors (TGF-β1, MMP2 and Collagen I), inflammatory cytokines (CRP and TNF-α), and collagen synthesis biomarkers (PICP, PINP and PIIINP) concentration significantly decreased in RDN group. Compared with Sham group, RDN group showed that release of noradrenaline and aldosterone were reduced, angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin II type-1 receptor (AT1R) axis was downregulated. Meanwhile, angiotensin-converting enzyme 2 (ACE2)/angiotensin-1-7 (Ang-(1-7))/mas receptor (Mas-R) axis was upregulated. RDN inhibits cardio-renal fibrogenesis through multiple pathways, including reducing SNS over-activity, rebalancing RAAS axis.

  5. Renal Denervation Findings on Cardiac and Renal Fibrosis in Rats with Isoproterenol Induced Cardiomyopathy

    PubMed Central

    Liu, Qian; Zhang, Qi; Wang, Kai; Wang, Shengchan; Lu, Dasheng; Li, Zhenzhen; Geng, Jie; Fang, Ping; Wang, Ying; Shan, Qijun

    2015-01-01

    Cardio-renal fibrosis plays key roles in heart failure and chronic kidney disease. We sought to determine the effects of renal denervation (RDN) on cardiac and renal fibrosis in rats with isoproterenol induced cardiomyopathy. Sixty male Sprague Dawley rats were randomly assigned to Control (n = 10) and isoproterenol (ISO)-induced cardiomyopathy group (n = 50). At week 5, 31 survival ISO-induced cardiomyopathy rats were randomized to RDN (n = 15) and Sham group (n = 16). Compared with Control group, ejection fraction was decreased, diastolic interventricular septal thickness and left atrial dimension were increased in ISO-induced cardiomyopathy group at 5 week. After 10 weeks, cardio-renal pathophysiologic results demonstrated that the collagen volume fraction of left atrio-ventricular and kidney tissues reduced significantly in RDN group compared with Sham group. Moreover the pro-fibrosis factors (TGF-β1, MMP2 and Collagen I), inflammatory cytokines (CRP and TNF-α), and collagen synthesis biomarkers (PICP, PINP and PIIINP) concentration significantly decreased in RDN group. Compared with Sham group, RDN group showed that release of noradrenaline and aldosterone were reduced, angiotensin-converting enzyme (ACE)/angiotensin II (Ang II)/angiotensin II type-1 receptor (AT1R) axis was downregulated. Meanwhile, angiotensin-converting enzyme 2 (ACE2)/angiotensin-1-7 (Ang-(1-7))/mas receptor (Mas-R) axis was upregulated. RDN inhibits cardio-renal fibrogenesis through multiple pathways, including reducing SNS over-activity, rebalancing RAAS axis. PMID:26689945

  6. Sepsis-Induced Takotsubo Cardiomyopathy Leading to Torsades de Pointes

    PubMed Central

    Kamran, Haroon; El-Sherif, Nabil

    2016-01-01

    Background. Takotsubo cardiomyopathy (TCM) is sudden and reversible myocardial dysfunction often attributable to physical or emotional triggers. Case Report. We describe a 51-year-old man presented to emergency department with sepsis from urinary tract infection (UTI). He was placed on cefepime for UTI and non-ST-elevation myocardial infarction protocol given elevated troponins with chest pain. Subsequently, patient was pulseless with torsades de pointes (TdP) and then converted to sinus rhythm with cardioversion. An echocardiogram revealed low ejection fraction with hypokinesis of the apical wall. Over 48 hours, the patient was extubated and stable on 3 L/min nasal cannula. He underwent a cardiac catheterization to evaluate coronary artery disease (CAD) and was found to have mild nonobstructive CAD with no further findings. Conclusion. TCM is a rare disorder presenting with symptoms similar to acute coronary syndrome. Though traditionally elicited by physical and emotional triggers leading to transient left ventricular dysfunction, our case suggests that it may also be triggered by a urinary tract infection and lead to severe QT prolongation and a malignant ventricular arrhythmia in TdP. PMID:27525128

  7. Protective effect of ischemic postconditioning against ischemia reperfusion-induced myocardium oxidative injury in IR rats.

    PubMed

    Zhang, Li; Ma, Jiangwei; Liu, Huajin

    2012-03-27

    Brief episodes of myocardial ischemia-reperfusion (IR) employed during reperfusion after a prolonged ischemic insult may attenuate the total ischemia-reperfusion injury. This phenomenon has been termed ischemic postconditioning. In the present study, we studied the possible effect of ischemic postconditioning on an ischemic reperfusion (IR)-induced myocardium oxidative injury in rat model. Results showed that ischemic postconditioning could improve arrhythmia cordis, reduce myocardium infarction and serum creatin kinase (CK), lactate dehydrogenase (LDH) and aspartate transaminase (AST) activities in IR rats. In addition, ischemic postconditioning could still decrease myocardium malondialdehyde (MDA) level, and increased myocardium Na+-K+-ATPase, Ca2+-Mg2+-ATPase, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px) and glutathione reductase (GR) activities. It can be concluded that ischemic postconditioning possesses strong protective effects against ischemia reperfusion-induced myocardium oxidative injury in IR rats.

  8. Dementia complicated with Takotsubo cardiomyopathy associated with unconsciousness induced by Wernicke's encephalopathy.

    PubMed

    Yanagawa, Youichi; Mikasa, Michita; Nishioka, Kenya; Hirano, Keiko

    2013-05-09

    An 85-year-old woman who had been living alone and eating an unbalanced diet suddenly entered a neighbour's house. Her house was hot and humid due to lack of air conditioning caused by a loss of electrical power. After arrival, the patient exhibited disorientation, paresis of the right upper extremity, a tendency towards right conjugated deviation and perseveration. Electrocardiogram showed ST segment elevation and prolongation of the QT interval. Echocardiography suggested Takotsubo cardiomyopathy. The cardiac wall motion and neurological abnormalities improved after admission. The serum thiamine level was found to be low, which was compatible with a diagnosis of Wernicke's encephalopathy. Hasegawa dementia score was 10 points and the patient was suspected to have frontotemporal dementia. She was transferred to a nursing home with continuing dementia. In this case, psychological stress trigged by poor living circumstances induced by dementia and Wernicke's encephalopathy may result in the occurrence of Takotsubo cardiomyopathy.

  9. Anabolic steroids abuse-induced cardiomyopathy and ischaemic stroke in a young male patient.

    PubMed

    Shamloul, Reham Mohammed; Aborayah, Ahmed Fathy; Hashad, Assem; Abd-Allah, Foad

    2014-02-26

    We report a case of a 37-year-old man presented with acute stroke and hepatorenal impairment which were associated with anabolic-androgenic steroids (AAS) abuse over 2 years. Despite the absence of apparent symptoms and signs of congestive heart failure at presentation, an AAS-induced dilated cardiomyopathy with multiple thrombi in the left ventricle was attributed to be the underlying cause of his condition. Awareness of the complications of AAS led to the prompt treatment of the initially unrecognised dilated cardiomyopathy, and improved the liver and kidney functions. However, the patient was exposed to a second severe ischaemic event, which led to his death. This unique and complex presentation of AAS complications opens for better recognition and treatment of their potentially fatal effects.

  10. Heart-Derived Stem Cells in Miniature Swine with Coronary Microembolization: Novel Ischemic Cardiomyopathy Model to Assess the Efficacy of Cell-Based Therapy

    PubMed Central

    Young, Rebeccah F.; Leiker, Merced M.; Suzuki, Takayuki

    2016-01-01

    A major problem in translating stem cell therapeutics is the difficulty of producing stable, long-term severe left ventricular (LV) dysfunction in a large animal model. For that purpose, extensive infarction was created in sinclair miniswine by injecting microspheres (1.5 × 106 microspheres, 45 μm diameter) in LAD. At 2 months after embolization, animals (n = 11) were randomized to receive allogeneic cardiosphere-derived cells derived from atrium (CDCs: 20 × 106, n = 5) or saline (untreated, n = 6). Four weeks after therapy myocardial function, myocyte proliferation (Ki67), mitosis (phosphor-Histone H3; pHH3), apoptosis, infarct size (TTC), myocyte nuclear density, and cell size were evaluated. CDCs injected into infarcted and remodeled remote myocardium (global infusion) increased regional function and global function contrasting no change in untreated animals. CDCs reduced infarct volume and stimulated Ki67 and pHH3 positive myocytes in infarct and remote regions. As a result, myocyte number (nuclear density) increased and myocyte cell diameter decreased in both infarct and remote regions. Coronary microembolization produces stable long-term ischemic cardiomyopathy. Global infusion of CDCs stimulates myocyte regeneration and improves left ventricular ejection fraction. Thus, global infusion of CDCs could become a new therapy to reverse LV dysfunction in patients with asymptomatic heart failure. PMID:27738436

  11. The effect of long-term amiodarone administration on myocardial fibrosis and evolution of left ventricular remodeling in a porcine model of ischemic cardiomyopathy.

    PubMed

    Zagorianou, Anastasia; Marougkas, Meletios; Drakos, Stavros G; Diakos, Nikolaos; Konstantopoulos, Panagiotis; Perrea, Despina N; Anastasiou-Nana, Maria; Malliaras, Konstantinos

    2016-01-01

    Amiodarone is effective in suppressing arrhythmias in heart failure patients. We investigated the effect of long-term amiodarone administration on myocardial fibrosis and left ventricular (LV) remodeling in a porcine model of ischemic cardiomyopathy. Eighteen infarcted farm pigs were randomized to receive long-term amiodarone administration for 3 months (n = 9) or conventional follow-up (n = 9). Evolution of LV remodeling over 3 months post-myocardial infarction was examined at tissue level (myocyte size, myocardial fibrosis and vascular density assessed by whole-field digital histopathology), organ level (LV structure and function assessed by echocardiography), and systemic level (BNP and MMP-9 levels). Long-term administration of the standard anti-arrhythmic doses of amiodarone was not associated with adverse effects on myocardial fibrosis and other features of adverse cardiac remodeling. This favorable safety profile suggests that long-term anti-arrhythmic therapy with amiodarone warrants further clinical investigation in the subpopulation of heart failure patients with significantly increased burden of arrhythmias. PMID:27652141

  12. Relation of brain natriuretic peptide level to extent of left ventricular scarring in patients with chronic heart failure secondary to ischemic cardiomyopathy.

    PubMed

    Aktas, Mehmet Kemal; Allen, Drew; Jaber, Wael A; Chuang, Hsuan-Hung; Taylor, David O; Yamani, Mohamad H

    2009-01-15

    Multiple factors influence brain natriuretic peptide (BNP) release in patients with heart failure. We hypothesized that extensive myocardial scarring could result in an attenuated BNP response. A total of 115 patients with New York Heart Association class III chronic heart failure and ischemic cardiomyopathy were evaluated for ischemia, hibernation, and myocardial scarring by dipyridamole-rubidium-positron emission tomographic scanning with fluorine-18, 2-fluoro-2-deoxyyglucose. Plasma BNP levels were determined within 2 weeks of the study. Left ventricular dimension and function were evaluated by echocardiography. Patients were categorized as having <33% myocardial scar (n=67) or>or=33% myocardial scar (n=48). BNP measurements were correlated with amount of myocardial scarring. Compared with patients with less scar, those with >or=33% scar had lower BNP levels (mean 317+/-364 vs 635+/-852 pg/ml, median 212 vs 357, p=0.016). Using multiple regression analysis, presence of scarring was associated with decreased BNP response (p=0.022). Further, patients with <33% scar in whom a higher BNP level was noted had more ischemia (51% vs 27%, p=0.01) and greater myocardial hibernation (22+/-14% vs 12+/-7%, p=0.02) compared with patients with >or=33% scar. In conclusion, in patients with chronic heart failure, a decreased BNP response indicated extensive myocardial scarring. PMID:19121444

  13. A Case Report of Carbon Monoxide Poisoning Induced Cardiomyopathy Complicated with Left Ventricular Thrombus

    PubMed Central

    Lee, Seung-Jae; Kang, Ju-Hyun; Kim, Nam-Yong; Baek, In-Woon; Park, Mi-Youn; Shim, Byung-Ju; Koh, Yoon-Seok; Shin, Woo-Seung; Lee, Jong-Min

    2011-01-01

    The heart and the brain, most oxygen-dependent organs, may be severely affected after carbon monoxide (CO) exposure. CO induced cardiotoxicity may occur as a consequence of moderate to severe CO poisoning, including angina attack, myocardial infarct, arrhythmias, and heart failure. We present a rare case of CO poisoning induced cardiomyopathy with left ventricular (LV) thrombus. It is thought that LV thrombus may have been caused severely decreased LV function with dyskinesis. After short-term anticoagulant therapy, echocardiography findings revealed complete recovery of LV dyskinesis and resolution of LV thrombus. PMID:21860722

  14. Reversible Cardiomyopathies

    PubMed Central

    Patel, Harsh; Madanieh, Raef; Kosmas, Constantine E; Vatti, Satya K; Vittorio, Timothy J

    2015-01-01

    Cardiomyopathies (CMs) have many etiological factors that can result in severe structural and functional dysregulation. Fortunately, there are several potentially reversible CMs that are known to improve when the root etiological factor is addressed. In this article, we discuss several of these reversible CMs, including tachycardia-induced, peripartum, inflammatory, hyperthyroidism, Takotsubo, and chronic illness–induced CMs. Our discussion also includes a review on their respective pathophysiology, as well as possible management solutions. PMID:26052233

  15. Cardiac-specific VLCAD deficiency induces dilated cardiomyopathy and cold intolerance

    PubMed Central

    Xiong, Dingding; He, Huamei; James, Jeanne; Tokunaga, Chonan; Powers, Corey; Huang, Yan; Osinska, Hanna; Towbin, Jeffrey A.; Purevjav, Enkhsaikhan; Balschi, James A.; Javadov, Sabzali; McGowan, Francis X.; Strauss, Arnold W.

    2013-01-01

    The very long-chain acyl-CoA dehydrogenase (VLCAD) enzyme catalyzes the first step of mitochondrial β-oxidation. Patients with VLCAD deficiency present with hypoketotic hypoglycemia and cardiomyopathy, which can be exacerbated by fasting and/or cold stress. Global VLCAD knockout mice recapitulate these phenotypes: mice develop cardiomyopathy, and cold exposure leads to rapid hypothermia and death. However, the contribution of different tissues to development of these phenotypes has not been studied. We generated cardiac-specific VLCAD-deficient (cVLCAD−/−) mice by Cre-mediated ablation of the VLCAD in cardiomyocytes. By 6 mo of age, cVLCAD−/− mice demonstrated increased end-diastolic and end-systolic left ventricular dimensions and decreased fractional shortening. Surprisingly, selective VLCAD gene ablation in cardiomyocytes was sufficient to evoke severe cold intolerance in mice who rapidly developed severe hypothermia, bradycardia, and markedly depressed cardiac function in response to fasting and cold exposure (+5°C). We conclude that cardiac-specific VLCAD deficiency is sufficient to induce cold intolerance and cardiomyopathy and is associated with reduced ATP production. These results provide strong evidence that fatty acid oxidation in myocardium is essential for maintaining normal cardiac function under these stress conditions. PMID:24285112

  16. Cardiac-specific VLCAD deficiency induces dilated cardiomyopathy and cold intolerance.

    PubMed

    Xiong, Dingding; He, Huamei; James, Jeanne; Tokunaga, Chonan; Powers, Corey; Huang, Yan; Osinska, Hanna; Towbin, Jeffrey A; Purevjav, Enkhsaikhan; Balschi, James A; Javadov, Sabzali; McGowan, Francis X; Strauss, Arnold W; Khuchua, Zaza

    2014-02-01

    The very long-chain acyl-CoA dehydrogenase (VLCAD) enzyme catalyzes the first step of mitochondrial β-oxidation. Patients with VLCAD deficiency present with hypoketotic hypoglycemia and cardiomyopathy, which can be exacerbated by fasting and/or cold stress. Global VLCAD knockout mice recapitulate these phenotypes: mice develop cardiomyopathy, and cold exposure leads to rapid hypothermia and death. However, the contribution of different tissues to development of these phenotypes has not been studied. We generated cardiac-specific VLCAD-deficient (cVLCAD(-/-)) mice by Cre-mediated ablation of the VLCAD in cardiomyocytes. By 6 mo of age, cVLCAD(-/-) mice demonstrated increased end-diastolic and end-systolic left ventricular dimensions and decreased fractional shortening. Surprisingly, selective VLCAD gene ablation in cardiomyocytes was sufficient to evoke severe cold intolerance in mice who rapidly developed severe hypothermia, bradycardia, and markedly depressed cardiac function in response to fasting and cold exposure (+5°C). We conclude that cardiac-specific VLCAD deficiency is sufficient to induce cold intolerance and cardiomyopathy and is associated with reduced ATP production. These results provide strong evidence that fatty acid oxidation in myocardium is essential for maintaining normal cardiac function under these stress conditions.

  17. Intrathecal Clonidine Pump Failure Causing Acute Withdrawal Syndrome With 'Stress-Induced' Cardiomyopathy.

    PubMed

    Lee, Hwee Min D; Ruggoo, Varuna; Graudins, Andis

    2016-03-01

    Clonidine is a central alpha(2)-agonist antihypertensive used widely for opioid/alcohol withdrawal, attention deficit hyperactivity disorder and chronic pain management. We describe a case of clonidine withdrawal causing life-threatening hypertensive crisis and stress-induced cardiomyopathy. A 47-year-old man with chronic back pain, treated with clonidine for many years via intrathecal pump (550 mcg/24 h), presented following a collapse and complaining of sudden worsening of back pain, severe headache, diaphoresis, nausea and vomiting. A few hours prior to presentation, his subcutaneous pump malfunctioned. On presentation, vital signs included pulse 100 bpm, BP 176/103 mmHg, temperature 37.8 °C and O2 saturation 100 % (room air). Acute clonidine withdrawal with hypertensive crisis was suspected. Intravenous clonidine loading dose and a 50 mcg/h infusion were commenced. Five hours later, severe chest pain, dyspnoea, tachycardia, hypoxia, with BP 180/120 mmHg and pulmonary edema ensued. ECG showed sinus tachycardia with no ST elevation. Repeated intravenous clonidine doses were given (25 mcg every 5-10 min), with ongoing clonidine infusion to control blood pressure. Glyceryl trinitrate infusion, positive pressure ventilation and intravenous benzodiazepines were added. Bedside echocardiogram showed stress-induced cardiomyopathy pattern. Serum troponin-I was markedly elevated. His coronary angiography showed minor irregularities in the major vessels. Over the next 3 days in the ICU, drug infusions were weaned. Discharge was 12 days later on oral clonidine, metoprolol, perindopril, aspirin and oxycodone-SR. Two months later, his echocardiogram was normal. The intrathecal pump was removed. We report a case of stress-induced cardiomyopathy resulting from the sudden cessation of long-term intrathecal clonidine. This was managed by re-institution of clonidine and targeted organ-specific therapies. PMID:26370679

  18. VAD as bridge to recovery in anthracycline-induced cardiomyopathy and HHV6 myocarditis.

    PubMed

    Cavigelli-Brunner, Anna; Schweiger, Martin; Knirsch, Walter; Stiasny, Brian; Klingel, Karin; Kretschmar, Oliver; Hübler, Michael

    2014-09-01

    This report describes an 8-year-old child with acute anthracycline-induced cardiomyopathy triggered by human herpesvirus 6 and the subsequent implantation of an intracorporeal continuous-flow left ventricular assist device (LVAD) and the process to discharge the child from the hospital. After barely 3 months on mechanical support, the device was explanted after thorough examination. Experiences regarding LVAD removal are limited, and no guidelines for echocardiographic and hemodynamic criteria for LVAD removal in children have been published thus far. We present our institutional algorithm for device selection, surveillance in an ambulatory setting, and testing for myocardial recovery, as well as our criteria for LVAD explantation in children.

  19. Extracellular Volume Fraction Is More Closely Associated With Altered Regional Left Ventricular Velocities Than Left Ventricular Ejection Fraction in Non-Ischemic Cardiomyopathy

    PubMed Central

    Collins, Jeremy; Sommerville, Cort; Magrath, Patrick; Spottiswoode, Bruce; Freed, Benjamin H; Benzuly, Keith H; Gordon, Robert; Vidula, Himabindu; Lee, Dan C; Yancy, Clyde; Carr, James; Markl, Michael

    2014-01-01

    Background Non-ischemic cardiomyopathy (NICM) is a common cause of left ventricular (LV) dysfunction and myocardial fibrosis. The purpose of this study was to non-invasively evaluate changes in segmental LV extracellular volume fraction (ECV), LV velocities, myocardial scar, and wall motion in NICM patients. Methods and Results Cardiac MRI including pre- and post-contrast myocardial T1-mapping and velocity quantification (tissue phase mapping, TPM) of the LV (basal, mid-ventricular, apical short axis) was applied in 31 patients with NICM (50±18years). Analysis based on the 16-segment AHA model was employed to evaluate the segmental distribution of ECV, peak systolic and diastolic myocardial velocities, scar determined by late gadolinium enhancement (LGE), and wall motion abnormalities. LV segments with scar or impaired wall motion were significantly associated with elevated ECV (r=0.26, p<0.001) and reduced peak systolic radial velocities (r=−0.43, p<0.001). Regional myocardial velocities and ECV were similar for patients with reduced (n=12, ECV=0.28±0.06) and preserved LV ejection fraction (LVEF) (n=19, ECV=0.30±0.09). Patients with preserved LVEF showed significant relationships between increasing ECV and reduced systolic (r=−0.19, r=−0.30) and diastolic (r=0.34, r=0.26) radial and long-axis peak velocities (p<0.001). Even after excluding myocardial segments with LGE, significant relationships between ECV and segmental LV velocities were maintained indicating the potential of elevated ECV to identify regional diffuse fibrosis not visible by LGE which was associated with impaired regional LV function Conclusions Regionally elevated ECV negatively impacted myocardial velocities. The association of elevated regional ECV with reduced myocardial velocities independent of LVEF suggests a structure-function relationship between altered ECV and segmental myocardial function in NICM. PMID:25552491

  20. Importance of mitral valve repair associated with left ventricular reconstruction for patients with ischemic cardiomyopathy: a real-time three-dimensional echocardiographic study

    NASA Technical Reports Server (NTRS)

    Qin, Jian Xin; Shiota, Takahiro; McCarthy, Patrick M.; Asher, Craig R.; Hail, Melanie; Agler, Deborah A.; Popovic, Zoran B.; Greenberg, Neil L.; Smedira, Nicholas G.; Starling, Randall C.; Young, James B.; Thomas, James D.

    2003-01-01

    BACKGROUND: Left ventricular (LV) reconstruction surgery leads to early improvement in LV function in ischemic cardiomyopathy (ICM) patients. This study was designed to evaluate the impact of mitral valve (MV) repair associated with LV reconstruction on LV function 1-year after surgery in ICM patients assessed by real-time 3-dimensional echocardiography (3DE). METHODS AND RESULTS: Sixty ICM patients who underwent the combination surgery (LV reconstruction in 60, MV repair in 30, and revascularization in 52 patients) were studied. Real-time 3DE was performed and LV volumes were obtained at baseline, discharge, 6-month and >or=12-month follow-up. Reduction in end-diastolic volumes (EDV) by 29% and in end-systolic volumes by 38% were demonstrated immediately after surgery and remained at subsequent follow-up (P<0.0001). The LV ejection fraction significantly increased by about 10% at discharge and was maintained >or=12-month (P<0.0001). Although the LV volumes were significantly larger in patients with MV repair before surgery (EDV, 235+/-87 mL versus 193+/-67 mL, P<0.05), they were similar to LV volumes of the patients without MV repair at subsequent follow-ups. However, the EDV increased from 139+/-24 mL to 227+/-79 mL (P<0.01) in 7 patients with recurrent mitral regurgitation (MR). Improvement in New York Heart Association functional class occurred in 81% patients during late follow-up. CONCLUSIONS: Real-time 3DE demonstrates that LV reconstruction provides significant reduction in LV volumes and improvement in LV function which is sustained throughout the 1-year follow-up with 84% cardiac event free survival. If successful, MV repair may prevent LV redilation, while recurrent MR is associated with increased LV volumes.

  1. Young at Heart: Pioneering Approaches to Model Nonischaemic Cardiomyopathy with Induced Pluripotent Stem Cells

    PubMed Central

    Gowran, Aoife; Rasponi, Marco; Perrucci, Gianluca L.; Righetti, Stefano; Zanobini, Marco; Pompilio, Giulio

    2016-01-01

    A mere 9 years have passed since the revolutionary report describing the derivation of induced pluripotent stem cells from human fibroblasts and the first in-patient translational use of cells obtained from these stem cells has already been achieved. From the perspectives of clinicians and researchers alike, the promise of induced pluripotent stem cells is alluring if somewhat beguiling. It is now evident that this technology is nascent and many areas for refinement have been identified and need to be considered before induced pluripotent stem cells can be routinely used to stratify, treat and cure patients, and to faithfully model diseases for drug screening purposes. This review specifically addresses the pioneering approaches to improve induced pluripotent stem cell based models of nonischaemic cardiomyopathy. PMID:27110250

  2. Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase

    PubMed Central

    Liu, Yan; Asnani, Aarti; Zou, Lin; Bentley, Victoria L.; Yu, Min; Wang, You; Dellaire, Graham; Sarkar, Kumar S.; Dai, Matthew; Chen, Howard H.; Sosnovik, David E.; Shin, Jordan T.; Haber, Daniel A.; Berman, Jason N.; Chao, Wei; Peterson, Randall T.

    2015-01-01

    Doxorubicin is a highly effective anti-cancer chemotherapy agent, but its usage is limited by its cardiotoxicity. To develop a drug that prevents the cardiac toxicity of doxorubicin while preserving its anti-tumor potency, we established a doxorubicin-induced cardiomyopathy model in zebrafish that recapitulated the cardiomyocyte apoptosis and contractility decline observed in patients. Using this model, we screened 3000 compounds and discovered that visnagin (VIS) and diphenylurea (DPU) rescue cardiac performance and circulatory defects caused by doxorubicin treatment in zebrafish. VIS and DPU reduced doxorubicin-induced apoptosis in cultured cardiomyocytes and in vivo in zebrafish and mouse hearts. Furthermore, VIS treatment improved cardiac contractility in doxorubicin-treated mice. Importantly, VIS and DPU caused no reduction in the chemotherapeutic efficacy of doxorubicin in several cultured tumor lines or in zebrafish and mouse xenograft models. Using affinity chromatography, we discovered that VIS binds to mitochondrial malate dehydrogenase (MDH2), one of the key enzymes in the tricarboxylic acid cycle. As with VIS, treatment with the MDH2 inhibitors mebendazole, thyroxine, and iodine prevented doxorubicin cardiotoxicity, as did treatment with malate itself, suggesting that modulation of MDH2 activity is responsible for VIS’s cardioprotective effects. Taken together, this study identified VIS and DPU as potent cardioprotective compounds and implicates MDH2 as a previously undescribed, druggable target for doxorubicin-induced cardiomyopathy. PMID:25504881

  3. Dimethyl α-ketoglutarate inhibits maladaptive autophagy in pressure overload-induced cardiomyopathy.

    PubMed

    Mariño, Guillermo; Pietrocola, Federico; Kong, Yongli; Eisenberg, Tobias; Hill, Joseph A; Madeo, Frank; Kroemer, Guido

    2014-05-01

    It has been a longstanding problem to identify specific and efficient pharmacological modulators of autophagy. Recently, we found that depletion of acetyl-coenzyme A (AcCoA) induced autophagic flux, while manipulations designed to increase cytosolic AcCoA efficiently inhibited autophagy. Thus, the cell permeant ester dimethyl α-ketoglutarate (DMKG) increased the cytosolic concentration of α-ketoglutarate, which was converted into AcCoA through a pathway relying on either of the 2 isocitrate dehydrogenase isoforms (IDH1 or IDH2), as well as on ACLY (ATP citrate lyase). DMKG inhibited autophagy in an IDH1-, IDH2- and ACLY-dependent fashion in vitro, in cultured human cells. Moreover, DMKG efficiently prevented autophagy induced by starvation in vivo, in mice. Autophagy plays a maladaptive role in the dilated cardiomyopathy induced by pressure overload, meaning that genetic inhibition of autophagy by heterozygous knockout of Becn1 suppresses the pathological remodeling of heart muscle responding to hemodynamic stress. Repeated administration of DMKG prevents autophagy in heart muscle responding to thoracic aortic constriction (TAC) and simultaneously abolishes all pathological and functional correlates of dilated cardiomyopathy: hypertrophy of cardiomyocytes, fibrosis, dilation of the left ventricle, and reduced contractile performance. These findings indicate that DMKG may be used for therapeutic autophagy inhibition. PMID:24675140

  4. Restrictive cardiomyopathy

    MedlinePlus

    Cardiomyopathy - restrictive; Infiltrative cardiomyopathy; Idiopathic myocardial fibrosis ... of the heart lining (endocardium), such as endomyocardial fibrosis and Loeffler syndrome (rare) Iron overload (hemochromatosis) Sarcoidosis ...

  5. A Clinical Risk Score to Improve the Diagnosis of Tachycardia-Induced Cardiomyopathy in Childhood.

    PubMed

    Moore, Jeremy P; Wang, Shuo; Albers, Erin L; Salerno, Jack C; Stephenson, Elizabeth A; Shah, Maully J; Pflaumer, Andreas; Czosek, Richard J; Garnreiter, Jason M; Collins, Kathryn; Papez, Andrew L; Sanatani, Shubhayan; Cain, Nicole B; Kannankeril, Prince J; Perry, James C; Mandapati, Ravi; Silva, Jennifer N A; Balaji, Seshadri; Shannon, Kevin M

    2016-10-01

    Tachycardia-induced cardiomyopathy (TIC) is a treatable cause of heart failure in children, but there is little information as to which clinical variables best discriminate TIC from other forms of cardiomyopathy. TIC cases with dilated cardiomyopathy (DC) from 16 participating centers were identified and compared with controls with other forms of DC. Presenting clinical, echocardiographic, and electrocardiographic characteristics were collected. Heart rate (HR) percentile was defined as HR/median HR for age, and PR index as the PR/RR interval. P-wave morphology (PWM) was defined as possible sinus or nonsinus based on a predefined algorithm. Eighty TIC cases and 135 controls were identified. Cases demonstrated lower LV end-diastolic diameter and LV end-systolic diameter than DC controls (4.3 vs 6.5, p <0.001; 7.4 vs 10.9, p <0.001) and were less likely to receive inotropic medication at presentation (p <0.001 for both). Multivariable logistic regression identified HR percentile (OR 2.1 per 10% increase, CI 1.3 to 4.6; p = 0.014), PR index (OR 1.2, CI 1.1 to 1.4; p = 0.004), and nonsinus PWM (OR 104.9, CI 15.2 to 1,659.8; p <0.001) as predictive of TIC status. A risk score using HR percentile >130%, PR index >30%, and nonsinus PWM was associated with a sensitivity of 100% and specificity of 87% for the diagnosis of TIC. Model training and validation area under the curves were similar at 0.97 and 0.94, respectively. In conclusion, pediatric TIC may be accurately discriminated from other forms of DC using simple electrocardiographic parameters. This may allow for rapid diagnosis and early treatment of this condition. PMID:27515893

  6. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis.

    PubMed

    Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2015-01-06

    Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may

  7. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis

    PubMed Central

    Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2015-01-01

    Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX’s cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may

  8. Cannabidiol Protects against Doxorubicin-Induced Cardiomyopathy by Modulating Mitochondrial Function and Biogenesis.

    PubMed

    Hao, Enkui; Mukhopadhyay, Partha; Cao, Zongxian; Erdélyi, Katalin; Holovac, Eileen; Liaudet, Lucas; Lee, Wen-Shin; Haskó, György; Mechoulam, Raphael; Pacher, Pál

    2015-01-01

    Doxorubicin (DOX) is a widely used, potent chemotherapeutic agent; however, its clinical application is limited because of its dose-dependent cardiotoxicity. DOX's cardiotoxicity involves increased oxidative/nitrative stress, impaired mitochondrial function in cardiomyocytes/endothelial cells and cell death. Cannabidiol (CBD) is a nonpsychotropic constituent of marijuana, which is well tolerated in humans, with antioxidant, antiinflammatory and recently discovered antitumor properties. We aimed to explore the effects of CBD in a well-established mouse model of DOX-induced cardiomyopathy. DOX-induced cardiomyopathy was characterized by increased myocardial injury (elevated serum creatine kinase and lactate dehydrogenase levels), myocardial oxidative and nitrative stress (decreased total glutathione content and glutathione peroxidase 1 activity, increased lipid peroxidation, 3-nitrotyrosine formation and expression of inducible nitric oxide synthase mRNA), myocardial cell death (apoptotic and poly[ADP]-ribose polymerase 1 [PARP]-dependent) and cardiac dysfunction (decline in ejection fraction and left ventricular fractional shortening). DOX also impaired myocardial mitochondrial biogenesis (decreased mitochondrial copy number, mRNA expression of peroxisome proliferator-activated receptor γ coactivator 1-alpha, peroxisome proliferator-activated receptor alpha, estrogen-related receptor alpha), reduced mitochondrial function (attenuated complex I and II activities) and decreased myocardial expression of uncoupling protein 2 and 3 and medium-chain acyl-CoA dehydrogenase mRNA. Treatment with CBD markedly improved DOX-induced cardiac dysfunction, oxidative/nitrative stress and cell death. CBD also enhanced the DOX-induced impaired cardiac mitochondrial function and biogenesis. These data suggest that CBD may represent a novel cardioprotective strategy against DOX-induced cardiotoxicity, and the above-described effects on mitochondrial function and biogenesis may

  9. Mitochondrial Peroxiredoxin-3 protects against hyperglycemia induced myocardial damage in Diabetic cardiomyopathy.

    PubMed

    Arkat, Silpa; Umbarkar, Prachi; Singh, Sarojini; Sitasawad, Sandhya L

    2016-08-01

    Mitochondrial oxidative stress has emerged as a key contributor towards the development of diabetic cardiomyopathy. Peroxiredoxin-3 (Prx-3), a mitochondrial antioxidant, scavenges H2O2 and offers protection against ROS related pathologies. We observed a decrease in the expression of Prx-3 in the hearts of streptozotocin (STZ) induced diabetic rats, and also high glucose treated H9c2 cardiac cells, which may augment oxidative stress mediated damage. Hence we hypothesized that overexpression of Prx-3 could prevent the cardiac damage associated with diabetes. In this study we used quercetin (QUE) to achieve Prx-3 induction in vivo, while a Prx-3 overexpressing H9c2 cell line was employed for carrying out in vitro studies. Diabetes was induced in Wistar rats by a single intraperitoneal injection of STZ. Quercetin (50mg/kg body weight) was delivered orally to hyperglycemic and age matched control rats for 2 months. Quercetin treatment induced the myocardial expression of Prx-3 but not Prx-5 both in control and STZ rats. Prx-3 induction by quercetin prevented diabetes induced oxidative stress as confirmed by decrease in expression of markers such as 4-HNE and mitochondrial uncoupling protein, UCP-3. It was also successful in reducing cardiac cell apoptosis, hypertrophy and fibrosis leading to amelioration of cardiac contractility defects. Overexpression of Prx-3 in cultured H9c2 cardiac cells could significantly diminish high glucose inflicted mitochondrial oxidative damage and apoptosis, thus strengthening our hypothesis. These results suggest that diabetes induced cardiomyopathy can be prevented by elevating Prx-3 levels thereby providing extensive protection to the diabetic heart. PMID:27393003

  10. Cardiac deficiency of single cytochrome oxidase assembly factor scox induces p53-dependent apoptosis in a Drosophila cardiomyopathy model

    PubMed Central

    Martínez-Morentin, Leticia; Martínez, Lidia; Piloto, Sarah; Yang, Hua; Schon, Eric A.; Garesse, Rafael; Bodmer, Rolf; Ocorr, Karen; Cervera, Margarita; Arredondo, Juan J.

    2015-01-01

    The heart is a muscle with high energy demands. Hence, most patients with mitochondrial disease produced by defects in the oxidative phosphorylation (OXPHOS) system are susceptible to cardiac involvement. The presentation of mitochondrial cardiomyopathy includes hypertrophic, dilated and left ventricular noncompaction, but the molecular mechanisms involved in cardiac impairment are unknown. One of the most frequent OXPHOS defects in humans frequently associated with cardiomyopathy is cytochrome c oxidase (COX) deficiency caused by mutations in COX assembly factors such as Sco1 and Sco2. To investigate the molecular mechanisms that underlie the cardiomyopathy associated with Sco deficiency, we have heart specifically interfered scox expression, the single Drosophila Sco orthologue. Cardiac-specific knockdown of scox reduces fly lifespan, and it severely compromises heart function and structure, producing dilated cardiomyopathy. Cardiomyocytes with low levels of scox have a significant reduction in COX activity and they undergo a metabolic switch from OXPHOS to glycolysis, mimicking the clinical features found in patients harbouring Sco mutations. The major cardiac defects observed are produced by a significant increase in apoptosis, which is dp53-dependent. Genetic and molecular evidence strongly suggest that dp53 is directly involved in the development of the cardiomyopathy induced by scox deficiency. Remarkably, apoptosis is enhanced in the muscle and liver of Sco2 knock-out mice, clearly suggesting that cell death is a key feature of the COX deficiencies produced by mutations in Sco genes in humans. PMID:25792727

  11. Cardiac deficiency of single cytochrome oxidase assembly factor scox induces p53-dependent apoptosis in a Drosophila cardiomyopathy model.

    PubMed

    Martínez-Morentin, Leticia; Martínez, Lidia; Piloto, Sarah; Yang, Hua; Schon, Eric A; Garesse, Rafael; Bodmer, Rolf; Ocorr, Karen; Cervera, Margarita; Arredondo, Juan J

    2015-07-01

    The heart is a muscle with high energy demands. Hence, most patients with mitochondrial disease produced by defects in the oxidative phosphorylation (OXPHOS) system are susceptible to cardiac involvement. The presentation of mitochondrial cardiomyopathy includes hypertrophic, dilated and left ventricular noncompaction, but the molecular mechanisms involved in cardiac impairment are unknown. One of the most frequent OXPHOS defects in humans frequently associated with cardiomyopathy is cytochrome c oxidase (COX) deficiency caused by mutations in COX assembly factors such as Sco1 and Sco2. To investigate the molecular mechanisms that underlie the cardiomyopathy associated with Sco deficiency, we have heart specifically interfered scox expression, the single Drosophila Sco orthologue. Cardiac-specific knockdown of scox reduces fly lifespan, and it severely compromises heart function and structure, producing dilated cardiomyopathy. Cardiomyocytes with low levels of scox have a significant reduction in COX activity and they undergo a metabolic switch from OXPHOS to glycolysis, mimicking the clinical features found in patients harbouring Sco mutations. The major cardiac defects observed are produced by a significant increase in apoptosis, which is dp53-dependent. Genetic and molecular evidence strongly suggest that dp53 is directly involved in the development of the cardiomyopathy induced by scox deficiency. Remarkably, apoptosis is enhanced in the muscle and liver of Sco2 knock-out mice, clearly suggesting that cell death is a key feature of the COX deficiencies produced by mutations in Sco genes in humans.

  12. Widespread Myocardial Delivery of Heart-Derived Stem Cells by Nonocclusive Triple-Vessel Intracoronary Infusion in Porcine Ischemic Cardiomyopathy: Superior Attenuation of Adverse Remodeling Documented by Magnetic Resonance Imaging and Histology

    PubMed Central

    Tseliou, Eleni; Kanazawa, Hideaki; Dawkins, James; Gallet, Romain; Kreke, Michelle; Smith, Rachel; Middleton, Ryan; Valle, Jackelyn; Marbán, Linda; Kar, Saibal; Makkar, Rajendra; Marbán, Eduardo

    2016-01-01

    Single-vessel, intracoronary infusion of stem cells under stop-flow conditions has proven safe but achieves only limited myocardial coverage. Continuous flow intracoronary delivery to one or more coronary vessels may achieve broader coverage for treating cardiomyopathy, but has not been investigated. Using nonocclusive coronary guiding catheters, we infused allogeneic cardiosphere-derived cells (CDCs) either in a single vessel or sequentially in all three coronary arteries in porcine ischemic cardiomyopathy and used magnetic resonance imaging (MRI) to assess structural and physiological outcomes. Vehicle-infused animals served as controls. Single-vessel stop-flow and continuous-flow intracoronary infusion revealed equivalent effects on scar size and function. Sequential infusion into each of the three major coronary vessels under stop-flow or continuous-flow conditions revealed equal efficacy, but less elevation of necrotic biomarkers with continuous-flow delivery. In addition, multi-vessel delivery resulted in enhanced global and regional tissue function compared to a triple-vessel placebo-treated group. The functional benefits after global cell infusion were accompanied histologically by minimal inflammatory cellular infiltration, attenuated regional fibrosis and enhanced vessel density in the heart. Sequential multi-vessel non-occlusive delivery of CDCs is safe and provides enhanced preservation of left ventricular function and structure. The current findings provide preclinical validation of the delivery method currently undergoing clinical testing in the Dilated cardiomYopathy iNtervention With Allogeneic MyocardIally-regenerative Cells (DYNAMIC) trial of CDCs in heart failure patients. PMID:26784932

  13. Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy.

    PubMed

    Zhang, Ning; Yang, Zheng; Xiang, Shi-Zhao; Jin, Ya-Ge; Wei, Wen-Ying; Bian, Zhou-Yan; Deng, Wei; Tang, Qi-Zhu

    2016-06-01

    Diabetic cardiomyopathy, characterized by the presence of diastolic and/or systolic myocardial dysfunction, is one of the major causes of heart failure. Nobiletin, which is extracted from the fruit peel of citrus, is reported to possess anti-inflammatory, anti-oxidative, and hypolipidemic properties. The purpose of this study was to investigate whether nobiletin exerts the therapeutic effect on streptozotocin-induced diabetic cardiomyopathy (DCM) in mice. 80 experimental male C57BL mice were randomly assigned into four groups: sham + vehicle (VEH/SH), sham + nobiletin (NOB/SH), DCM + vehicle (VEH/DM), and DCM + nobiletin (NOB/DM). Nobiletin treatment ameliorated cardiac dysfunction in the DCM group, as shown by the result of echocardiography and hemodynamic measurements. Nobiletin treatment also blunted the mRNA expression of NADPH oxidase isoforms p67(phox), p22(phox), and p91(phox), and abated oxidative stress. Although administration of diabetic mice with nobiletin did not significantly effect the level of blood glucose, it decreased the TGF-β1, CTGF, fibronectin, and collagen Iα expressions and blunted cardiac fibrosis. In addition, nobiletin inhibited the activation of c-Jun NH2-terminal kinase (JNK), P38, and NF-κB in the cardiac tissue of diabetic mice. Collectively, our study indicates that treatment with nobiletin mitigates cardiac dysfunction and interstitial fibrosis, and these beneficial of nobiletin may belong to the suppression of JNK, P38, and NF-κB signaling pathways.

  14. Patient-specific induced pluripotent stem cells as a model for familial dilated cardiomyopathy.

    PubMed

    Sun, Ning; Yazawa, Masayuki; Liu, Jianwei; Han, Leng; Sanchez-Freire, Veronica; Abilez, Oscar J; Navarrete, Enrique G; Hu, Shijun; Wang, Li; Lee, Andrew; Pavlovic, Aleksandra; Lin, Shin; Chen, Rui; Hajjar, Roger J; Snyder, Michael P; Dolmetsch, Ricardo E; Butte, Manish J; Ashley, Euan A; Longaker, Michael T; Robbins, Robert C; Wu, Joseph C

    2012-04-18

    Characterized by ventricular dilatation, systolic dysfunction, and progressive heart failure, dilated cardiomyopathy (DCM) is the most common form of cardiomyopathy in patients. DCM is the most common diagnosis leading to heart transplantation and places a significant burden on healthcare worldwide. The advent of induced pluripotent stem cells (iPSCs) offers an exceptional opportunity for creating disease-specific cellular models, investigating underlying mechanisms, and optimizing therapy. Here, we generated cardiomyocytes from iPSCs derived from patients in a DCM family carrying a point mutation (R173W) in the gene encoding sarcomeric protein cardiac troponin T. Compared to control healthy individuals in the same family cohort, cardiomyocytes derived from iPSCs from DCM patients exhibited altered regulation of calcium ion (Ca(2+)), decreased contractility, and abnormal distribution of sarcomeric α-actinin. When stimulated with a β-adrenergic agonist, DCM iPSC-derived cardiomyocytes showed characteristics of cellular stress such as reduced beating rates, compromised contraction, and a greater number of cells with abnormal sarcomeric α-actinin distribution. Treatment with β-adrenergic blockers or overexpression of sarcoplasmic reticulum Ca(2+) adenosine triphosphatase (Serca2a) improved the function of iPSC-derived cardiomyocytes from DCM patients. Thus, iPSC-derived cardiomyocytes from DCM patients recapitulate to some extent the morphological and functional phenotypes of DCM and may serve as a useful platform for exploring disease mechanisms and for drug screening. PMID:22517884

  15. Arrhythmia-induced cardiomyopathies: the riddle of the chicken and the egg still unanswered?

    PubMed

    Simantirakis, Emmanuel N; Koutalas, Emmanuel P; Vardas, Panos E

    2012-04-01

    The hypothesis testing of inappropriate fast, irregular, or asynchronous myocardial contraction provoking cardiomyopathy has been the primary focus of numerous research efforts, especially during the last few decades. Rapid ventricular rates resulting from supraventricular arrhythmias and atrial fibrillation (AF), irregularity of heart rhythm-basic element of AF-and asynchrony, as a consequence of right ventricular pacing, bundle branch block, or frequent premature ventricular complexes, have been established as primary causes of arrhythmia-induced cardiomyopathy. The main pathophysiological pathways involved have been clarified, including neurohumoral activation, energy stores depletion, and abnormalities in stress and strain. Unfortunately, from a clinical point of view, patients usually seek medical advice only when symptoms develop, while the causative arrhythmia may be present for months or years, resulting in myocardial remodelling, diastolic, and systolic dysfunction. In some cases, making a definite diagnosis may become a strenuous exercise for the treating physician, as the arrhythmia may not be present and, additionally, therapy must be applied for the diagnosis to be confirmed retrospectively. The diagnostic process is also hardened due to the fact that strict diagnosing criteria are still a matter of discrepancy. Therapy options include pharmaceutical agents trials, catheter-based therapies and, in the context of chronic ventricular pacing, resynchronization. For the majority of patients, partial or complete recovery is expected, although they have to be followed up thoroughly due to the risk of recurrence. Large, randomized controlled trials are more than necessary to optimize patients' stratification and therapeutic strategy choices.

  16. Myocardial Expression Analysis of Osteopontin and Its Splice Variants in Patients Affected by End-Stage Idiopathic or Ischemic Dilated Cardiomyopathy

    PubMed Central

    Cabiati, Manuela; Svezia, Benedetta; Matteucci, Marco; Botta, Luca; Pucci, Angela; Rinaldi, Mauro; Caselli, Chiara; Lionetti, Vincenzo; Del Ry, Silvia

    2016-01-01

    Osteopontin (OPN) is a phosphoglycoprotein of cardiac extracellular matrix and it is still poorly defined whether its expression changes in failing heart of different origin. The full-length OPN-a and its isoforms (OPN-b, OPN-c) transcriptomic profile were evaluated in myocardium of patients with dilated or ischemic cardiomyopathy (DCM n = 8; LVEF% = 17.5±3; ICM n = 8; LVEF% = 19.5±5.2) and in auricle of valvular patients (VLP n = 5; LVEF%≥50), by Real-time PCR analysis. OPN-a and thrombin mRNA levels resulted significantly higher in DCM compared to ICM patients (DCM:31.3±7.4, ICM:2.7±1.1, p = 0.0002; DCM:19.1±4.9, ICM:5.4±2.2, p = 0.007, respectively). Although both genes’ mRNA levels increased in patients with LVEF<50% (DCM+ICM) with respect to VLP with LVEF>50%, a significant increase in OPN (p = 0.0004) and thrombin (p = 0.001) expression was observed only in DCM. In addition, a correlation between OPN-a and thrombin was found in patients with LVEF<50% (r = 0.6; p = 0.003). The mRNA pattern was confirmed by OPN-a cardiac protein concentration (VLP:1.127±0.26; DCM:1.29±0.22; ICM:1.00±0.077 ng/ml). The OPN splice variants expression were detectable only in ICM (OPN-b: 0.357±0.273; OPN-c: 0.091±0.033) and not in DCM patients. A significant correlation was observed between collagen type I, evaluated by immunohistochemistry analysis, and both OPN-a mRNA expression (r = 0.87, p = 0.002) and OPN protein concentrations (r = 0.77, p = 0.016). Concluding, OPN-a and thrombin mRNA resulted dependent on the origin of heart failure while OPN-b and OPN-c highlighted a different expression for DCM and ICM patients, suggesting their correlation with different clinical-pathophysiological setting. PMID:27479215

  17. Prediction of Appropriate Shocks Using 24-Hour Holter Variables and T-Wave Alternans After First Implantable Cardioverter-Defibrillator Implantation in Patients With Ischemic or Nonischemic Cardiomyopathy.

    PubMed

    Seegers, Joachim; Bergau, Leonard; Expósito, Pascal Muñoz; Bauer, Axel; Fischer, Thomas H; Lüthje, Lars; Hasenfuß, Gerd; Friede, Tim; Zabel, Markus

    2016-07-01

    In patients treated with implantable cardioverter defibrillator (ICD), prediction of both overall survival and occurrence of shocks is important if improved patient selection is desired. We prospectively studied the predictive value of biomarkers and indexes of cardiac and renal function and spectral microvolt T-wave alternans testing and 24-hour Holter variables in a population who underwent first ICD implantation. Consecutive patients in sinus rhythm with ischemic or dilated cardiomyopathy scheduled for primary or secondary prophylactic ICD implantation were enrolled. Exercise microvolt T-wave alternans and 24-hour Holter for number of ventricular premature contractions (VPCs), deceleration capacity, heart rate variability, and heart rate turbulence were done. Death of any cause and first appropriate ICD shock were defined as end points. Over 33 ± 15 months of follow-up, 36 of 253 patients (14%) received appropriate shocks and 39 of 253 patients (15%) died. Only 3 of 253 patients (1%) died after receiving at least 1 appropriate shock. In univariate analyses, New York Heart Association class, ejection fraction, N-terminal pro brain-type natriuretic peptide (NT-proBNP), renal function, ICD indication, deceleration capacity, heart rate variability, and heart rate turbulence were predictive of all-cause mortality and VPC number and deceleration capacity predicted first appropriate shock. NT-proBNP (≥1,600 pg/ml) was identified as the only independent predictor of all-cause mortality (hazard ratio 3.0, confidence interval 1.3 to 7.3, p = 0.014). In contrast, VPC number predicted appropriate shocks (hazard ratio 2.3, confidence interval 1.0 to 5.5, p = 0.047) as the only independent risk marker. In conclusion, NT-proBNP is a strong independent predictor of mortality in a typical prospective cohort of newly implanted patients with ICD, among many electrocardiographic and clinical variables studied. Number of VPCs was identified as a predictor of appropriate shocks

  18. Myocardial Expression Analysis of Osteopontin and Its Splice Variants in Patients Affected by End-Stage Idiopathic or Ischemic Dilated Cardiomyopathy.

    PubMed

    Cabiati, Manuela; Svezia, Benedetta; Matteucci, Marco; Botta, Luca; Pucci, Angela; Rinaldi, Mauro; Caselli, Chiara; Lionetti, Vincenzo; Del Ry, Silvia

    2016-01-01

    Osteopontin (OPN) is a phosphoglycoprotein of cardiac extracellular matrix and it is still poorly defined whether its expression changes in failing heart of different origin. The full-length OPN-a and its isoforms (OPN-b, OPN-c) transcriptomic profile were evaluated in myocardium of patients with dilated or ischemic cardiomyopathy (DCM n = 8; LVEF% = 17.5±3; ICM n = 8; LVEF% = 19.5±5.2) and in auricle of valvular patients (VLP n = 5; LVEF%≥50), by Real-time PCR analysis. OPN-a and thrombin mRNA levels resulted significantly higher in DCM compared to ICM patients (DCM:31.3±7.4, ICM:2.7±1.1, p = 0.0002; DCM:19.1±4.9, ICM:5.4±2.2, p = 0.007, respectively). Although both genes' mRNA levels increased in patients with LVEF<50% (DCM+ICM) with respect to VLP with LVEF>50%, a significant increase in OPN (p = 0.0004) and thrombin (p = 0.001) expression was observed only in DCM. In addition, a correlation between OPN-a and thrombin was found in patients with LVEF<50% (r = 0.6; p = 0.003). The mRNA pattern was confirmed by OPN-a cardiac protein concentration (VLP:1.127±0.26; DCM:1.29±0.22; ICM:1.00±0.077 ng/ml). The OPN splice variants expression were detectable only in ICM (OPN-b: 0.357±0.273; OPN-c: 0.091±0.033) and not in DCM patients. A significant correlation was observed between collagen type I, evaluated by immunohistochemistry analysis, and both OPN-a mRNA expression (r = 0.87, p = 0.002) and OPN protein concentrations (r = 0.77, p = 0.016). Concluding, OPN-a and thrombin mRNA resulted dependent on the origin of heart failure while OPN-b and OPN-c highlighted a different expression for DCM and ICM patients, suggesting their correlation with different clinical-pathophysiological setting. PMID:27479215

  19. Efficacy of different doses of atorvastatin treatment on serum levels of 8-hydroxy-guanin (8-OHdG) and cardiac function in patients with ischemic cardiomyopathy

    PubMed Central

    Jin, Yu; Qiu, Chunguang; Zheng, Qiangsun; Liu, Ling; Liu, Zhiqiang; Wang, Yi

    2015-01-01

    Objective: To compare the efficacy of 40 mg and l0 mg atorvastatin on serum levels of 8-Hydroxy-Guanin (8-OHdG) and the cardiac function in patients with ischemic cardiomyopathy (ICM). Methods: One hundred twenty three hospitalized ICM patients and 120 healthy controls were included in this study. All subjects were randomly divided into two groups: 10 mg/d atorvastatin group (n=62) and 40 mg/d atorvastatin group (n=61). Serum levels of C-reactive protein (CRP), creatine kinase, glutamic-pyruvic transaminase, lipids and B-type natriuretic peptide (BNP) were tested in all subjects both at the initial phase and the terminal phase of this study. Adverse drug reaction events were recorded in this study. Echocardiographic method was applied to compare the cardiac function before and after treatment in the double blind study. Serum 8-OHdG levels were tested by enzyme-linked immunosorbent assay (ELISA) before and after treatment, and the results in atorvastatin treatment groups were compared with the healthy controls. Results: Serum 8-OHdG levels in ICM patients were significantly higher than that in normal control groups (p<0.05). There was significant difference of Serum 8-OHdG levels in 40 mg/d atorvastatin group (p<0.05), but was no significant difference in 10 mg/d atorvastatin group before and after the treatment. The 8-OHdG level in 40 mg/d atorvastatin group was significantly lower than that in 10 mg/d atorvastatin group before the treatment as well as after the treatment (p<0.05). The systolic and diastolic function improved significantly in 40 mg/d atorvastatin group before and after treatment, as well as in comparison with 10 mg/d atorvastatin group (p<0.05). Conclusion: Serum 8-OHdG possibly plays an important role in the pathogenesis of ICM. Atorvastatin is safe and effective in ICM treatment; furthermore atorvastatin which also has independent lipid lowering effect, is significantly better in the dose of 40 mg/day. PMID:25878611

  20. [Blood Content of Markers of Inflammation and Cytokines in Patients With Alcoholic Cardiomyopathy and Ischemic Heart Disease at Various Stages of Heart Failure].

    PubMed

    Panchenko, L F; Moiseev, V S; Pirozhkov, S V; Terebilina, N N; Naumova, T A; Baronets, V Iu; Goncharov, A S

    2015-01-01

    We conducted a comparative study of content proinflammatory cytokines, biomarkers of inflammatory process, biochemical indicators of congestive heart failure (CHF) and hemodynamic parameters in patients with alcoholic cardiomyopathy (ACMP) and ischemic heart disease (IHD) with various NYHA classes. We examined 62 men with ACMP (n = 45) and IHD (n = 17) and NYHA class III-IV CHF. Patients of both groups had lowered ejection fraction (EF), dilated cardiac chambers, and increased left ventricular (LV) myocardial mass index (MMI). Relative LV wall thickness was within normal limits but in the ACMP group it was significantly lower than in IHD group what corresponded to the eccentric type of myocardial hypertrophy. Higher NYHA class was associated with lower EF and larger end diastolic and end systolic LV dimensions. In ACMP it was also associated with larger dimension of the right ventricle while in IHD--with substantially larger (by 30%) dimension of atria. Substantial amount of endotoxin found in blood plasma of patients with IHD corresponded to the conception of increased intestinal permeability of in CHF. Alcohol abuse was an aggravating factor of endotoxin transmission and its concentration in patients with ACMP was 3 times higher than in patients with IHD. Patients with ACMP had substantially elevated blood concentrations of interleukins (IL) 6, 8, 12, tumor necrosis factor α (TNF-α), and its soluble receptor s-TNF-R; they also had twofold elevation of C-reactive protein concentration. ACMP was associated with manifold rise of blood content of brain natriuretic peptide (BNP). Patients with IHD also had elevated blood concentrations of IL 6, 8 and 12 but their values were 1.5-2 times lower than ACMP group. Blood content of TNF-α and s-TNF-R in IHD group was within normal limits. Higher NYHA class in ACMP patients was associated with higher concentrations of IL 6 and 8, TNF-a, and BNP. In both groups of patients contents of IL-12, s-TNF-R, TGF-1β and factors of

  1. Hypoxia Inducible Factor 1 as a Therapeutic Target in Ischemic Stroke

    PubMed Central

    Shi, H

    2010-01-01

    In stroke research, a significant focus is to develop therapeutic strategies that prevent neuronal death and improve recovery. Yet, few successful therapeutic strategies have emerged. Hypoxia-inducible factor 1 (HIF-1) is a key regulator in hypoxia. It has been suggested to be an important player in neurological outcomes following ischemic stroke due to the functions of its downstream genes. These include genes that promote glucose metabolism, angiogenesis, erythropoiesis, and cell survival. Many lines of evidence have shown that HIF-1 is induced in ischemic brains. Importantly, it seems that HIF-1 is primarily induced in the salvageable tissue of an ischemic brain, penumbra. However, the effect of HIF-1 on neuronal tissue injuries is still debatable based on evidence from in vitro and preclinical studies. Furthermore, it is of importance to understand the mechanism of HIF-1 degradation after its induction in ischemic brain. This review provides a present understanding of the mechanism of HIF-1 induction in ischemic neurons and the potential effect of HIF-1 on ischemic brain tissue. The author also elaborates on potential therapeutic approaches through understanding of the induction mechanism and of the potential role of HIF-1 in ischemic stroke. PMID:19903149

  2. Thrombin induces ischemic LTP (iLTP): implications for synaptic plasticity in the acute phase of ischemic stroke

    PubMed Central

    Stein, Efrat Shavit; Itsekson-Hayosh, Zeev; Aronovich, Anna; Reisner, Yair; Bushi, Doron; Pick, Chaim G.; Tanne, David; Chapman, Joab; Vlachos, Andreas; Maggio, Nicola

    2015-01-01

    Acute brain ischemia modifies synaptic plasticity by inducing ischemic long-term potentiation (iLTP) of synaptic transmission through the activation of N-Methyl-D-aspartate receptors (NMDAR). Thrombin, a blood coagulation factor, affects synaptic plasticity in an NMDAR dependent manner. Since its activity and concentration is increased in brain tissue upon acute stroke, we sought to clarify whether thrombin could mediate iLTP through the activation of its receptor Protease-Activated receptor 1 (PAR1). Extracellular recordings were obtained in CA1 region of hippocampal slices from C57BL/6 mice. In vitro ischemia was induced by acute (3 minutes) oxygen and glucose deprivation (OGD). A specific ex vivo enzymatic assay was employed to assess thrombin activity in hippocampal slices, while OGD-induced changes in prothrombin mRNA levels were assessed by (RT)qPCR. Upon OGD, thrombin activity increased in hippocampal slices. A robust potentiation of excitatory synaptic strength was detected, which occluded the ability to induce further LTP. Inhibition of either thrombin or its receptor PAR1 blocked iLTP and restored the physiological, stimulus induced LTP. Our study provides important insights on the early changes occurring at excitatory synapses after ischemia and indicates the thrombin/PAR1 pathway as a novel target for developing therapeutic strategies to restore synaptic function in the acute phase of ischemic stroke. PMID:25604482

  3. Metallothionein as a compensatory component prevents intermittent hypoxia-induced cardiomyopathy in mice

    SciTech Connect

    Yin, Xia; Zhou, Shanshan; Zheng, Yang; Tan, Yi; Kong, Maiying; Wang, Bo; Feng, Wenke; Epstein, Paul N.; Cai, Jun; Cai, Lu

    2014-05-15

    Obstructive sleep apnea (OSA) causes chronic intermittent hypoxia (IH) to induce cardiovascular disease, which may be related to oxidative damage. Metallothionein (MT) has been extensively proved to be an endogenous and highly inducible antioxidant protein expressed in the heart. Therefore, we tested the hypotheses that oxidative stress plays a critical role in OSA induced cardiac damage and MT protects the heart from OSA-induced cardiomyopathy. To mimic hypoxia/reoxygenation events that occur in adult OSA patients, mice were exposed to IH for 3 days to 8 weeks. The IH paradigm consisted of alternating cycles of 20.9% O{sub 2}/8% O{sub 2} F{sub I}O{sub 2} (30 episodes per hour) with 20 s at the nadir F{sub I}O{sub 2} for 12 h a day during daylight. IH significantly increased the ratio of heart weight to tibia length at 4 weeks with a decrease in cardiac function from 4 to 8 weeks. Cardiac oxidative damage and fibrosis were observed after 4 and 8 weeks of IH exposures. Endogenous MT expression was up-regulated in response to 3-day IH, but significantly decreased at 4 and 8 weeks of IH. In support of MT as a major compensatory component, mice with cardiac overexpression of MT gene and mice with global MT gene deletion were completely resistant, and highly sensitive, respectively, to chronic IH induced cardiac effects. These findings suggest that chronic IH induces cardiomyopathy characterized by oxidative stress-mediated cardiac damage and the antioxidant MT protects the heart from such pathological and functional changes. - Highlights: • The effect of intermittent hypoxia (IH) on cardiac metallothionein (MT) • Cardiac MT expression was up-regulated in response to 3-day IH. • Exposure to 4- or 8-week IH downregulated cardiac MT expression. • Overexpression of cardiac MT protects from IH-induced cardiac damage. • Global deletion of MT gene made the heart more sensitive to IH damage.

  4. Astragalus polysaccharide improves cardiac function in doxorubicin-induced cardiomyopathy through ROS-p38 signaling

    PubMed Central

    Zhou, Liangliang; Chen, Lanping; Wang, Jing; Deng, Yijun

    2015-01-01

    Doxorubicin (DOX) is widely used as an antitumor agent, but it is significantly challenged by clinical workers due to the severe and acute cardiotoxitity. Astragalus polysaccharide (APS) is characterized by an anti-inflammation and anti-oxidant features. In the current study, we explored the effects and specific mechanisms of APS on DOX-induced-cardiomyopathy in mouse primary myocardial cells. To explore the effect of DOX on ROS production, DHE staining and flow cytometry analysis were used in primary cardiomyocytes treated with 1 μM DOX for 24 h. MTT assay was applied to determine the effect of DOX on cell viability. The effects of DOX on rat cardiomyocytes apoptosis by Hoechst staining and annexin V-PI staining, while caspase3 activity was determined using an assay kit. Two-dimensional echocardiography of rats was performed to determine left ventricular fraction and relative wall thickness. Activation of p38 and Akt was analyzed using western blot. ROS production was significantly enhanced by DOX stimulation in primary cardiomyocytes. DOX reduced rat cardiomyocytes viability in a time- and dose-dependent manner. DOX induced apoptosis in rat cardiomyocytes via activation of caspase-3. Cardiac function was significantly impaired by enhanced p38 activation. APS treatment reduced DOX-induced rat cardiomyocytes apoptosis by decreasing ROS production. To conclude, APS reduced DOX-induced cell apoptosis and ROS production by reduced activation of p38 signaling pathway. PMID:26885153

  5. Nobiletin attenuates cardiac dysfunction, oxidative stress, and inflammatory in streptozotocin: induced diabetic cardiomyopathy.

    PubMed

    Zhang, Ning; Yang, Zheng; Xiang, Shi-Zhao; Jin, Ya-Ge; Wei, Wen-Ying; Bian, Zhou-Yan; Deng, Wei; Tang, Qi-Zhu

    2016-06-01

    Diabetic cardiomyopathy, characterized by the presence of diastolic and/or systolic myocardial dysfunction, is one of the major causes of heart failure. Nobiletin, which is extracted from the fruit peel of citrus, is reported to possess anti-inflammatory, anti-oxidative, and hypolipidemic properties. The purpose of this study was to investigate whether nobiletin exerts the therapeutic effect on streptozotocin-induced diabetic cardiomyopathy (DCM) in mice. 80 experimental male C57BL mice were randomly assigned into four groups: sham + vehicle (VEH/SH), sham + nobiletin (NOB/SH), DCM + vehicle (VEH/DM), and DCM + nobiletin (NOB/DM). Nobiletin treatment ameliorated cardiac dysfunction in the DCM group, as shown by the result of echocardiography and hemodynamic measurements. Nobiletin treatment also blunted the mRNA expression of NADPH oxidase isoforms p67(phox), p22(phox), and p91(phox), and abated oxidative stress. Although administration of diabetic mice with nobiletin did not significantly effect the level of blood glucose, it decreased the TGF-β1, CTGF, fibronectin, and collagen Iα expressions and blunted cardiac fibrosis. In addition, nobiletin inhibited the activation of c-Jun NH2-terminal kinase (JNK), P38, and NF-κB in the cardiac tissue of diabetic mice. Collectively, our study indicates that treatment with nobiletin mitigates cardiac dysfunction and interstitial fibrosis, and these beneficial of nobiletin may belong to the suppression of JNK, P38, and NF-κB signaling pathways. PMID:27160937

  6. NecroX-7 prevents oxidative stress-induced cardiomyopathy by inhibition of NADPH oxidase activity in rats

    SciTech Connect

    Park, Joonghoon; Park, Eok; Ahn, Bong-Hyun; Kim, Hyoung Jin; Park, Ji-hoon; Koo, Sun Young; Kwak, Hyo-Shin; Park, Heui Sul; Kim, Dong Wook; Song, Myoungsub; Yim, Hyeon Joo; Seo, Dong Ook; Kim, Soon Ha

    2012-08-15

    Oxidative stress is one of the causes of cardiomyopathy. In the present study, NecroXs, novel class of mitochondrial ROS/RNS scavengers, were evaluated for cardioprotection in in vitro and in vivo model, and the putative mechanism of the cardioprotection of NecroX-7 was investigated by global gene expression profiling and subsequent biochemical analysis. NecroX-7 prevented tert-butyl hydroperoxide (tBHP)-induced death of H9C2 rat cardiomyocytes at EC{sub 50} = 0.057 μM. In doxorubicin (DOX)-induced cardiomyopathy in rats, NecroX-7 significantly reduced the plasma levels of creatine kinase (CK-MB) and lactate dehydrogenase (LDH) which were increased by DOX treatment (p < 0.05). Microarray analysis revealed that 21 genes differentially expressed in tBHP-treated H9C2 cells were involved in ‘Production of reactive oxygen species’ (p = 0.022), and they were resolved by concurrent NecroX-7 treatment. Gene-to-gene networking also identified that NecroX-7 relieved cell death through Ncf1/p47phox and Rac2 modulation. In subsequent biochemical analysis, NecroX-7 inhibited NADPH oxidase (NOX) activity by 53.3% (p < 0.001). These findings demonstrate that NecroX-7, in part, provides substantial protection of cardiomyopathy induced by tBHP or DOX via NOX-mediated cell death. -- Highlights: ► NecroX-7 prevented tert-butyl hydroperoxide-induced in vitro cardiac cell death. ► NecroX-7 ameliorated doxorubicin-induced in vivo cardiomyopathy. ► NecroX-7 prevented oxidative stress and necrosis-enriched transcriptional changes. ► NecroX-7 effectively inhibited NADPH oxidase activation. ► Cardioprotection of Necro-7 was brought on by modulation of NADPH oxidase activity.

  7. Aberrant sialylation causes dilated cardiomyopathy and stress-induced heart failure.

    PubMed

    Deng, Wei; Ednie, Andrew R; Qi, Jianyong; Bennett, Eric S

    2016-09-01

    Dilated cardiomyopathy (DCM), the third most common cause of heart failure, is often associated with arrhythmias and sudden cardiac death if not controlled. The majority of DCM is of unknown etiology. Protein sialylation is altered in human DCM, with responsible mechanisms not yet described. Here we sought to investigate the impact of clinically relevant changes in sialylation on cardiac function using a novel model for altered glycoprotein sialylation that leads to DCM and to chronic stress-induced heart failure (HF), deletion of the sialyltransferase, ST3Gal4. We previously reported that 12- to 20-week-old ST3Gal4 (-/-) mice showed aberrant cardiac voltage-gated ion channel sialylation and gating that contribute to a pro-arrhythmogenic phenotype. Here, echocardiography supported by histology revealed modest dilated and thinner-walled left ventricles without increased fibrosis in ST3Gal4 (-/-) mice starting at 1 year of age. Cardiac calcineurin expression in younger (16-20 weeks old) ST3Gal4 (-/-) hearts was significantly reduced compared to WT. Transverse aortic constriction (TAC) was used as a chronic stressor on the younger mice to determine whether the ability to compensate against a pathologic insult is compromised in the ST3Gal4 (-/-) heart, as suggested by previous reports describing the functional implications of reduced cardiac calcineurin levels. TAC'd ST3Gal4 (-/-) mice presented with significantly reduced systolic function and ventricular dilation that deteriorated into congestive HF within 6 weeks post-surgery, while constricted WT hearts remained well-adapted throughout (ejection fraction, ST3Gal4 (-/-) = 34 ± 5.2 %; WT = 53.8 ± 7.4 %; p < 0.05). Thus, a novel, sialo-dependent model for DCM/HF is described in which clinically relevant reduced sialylation results in increased arrhythmogenicity and reduced cardiac calcineurin levels that precede cardiomyopathy and TAC-induced HF, suggesting a causal link among aberrant sialylation

  8. Depletion of T lymphocytes ameliorates cardiac fibrosis in streptozotocin-induced diabetic cardiomyopathy.

    PubMed

    Abdullah, Chowdhury S; Li, Zhao; Wang, Xiuqing; Jin, Zhu-Qiu

    2016-10-01

    T cell infiltration has been associated with increased coronary heart disease risk in patients with diabetes mellitus. Effect of modulation of T cell trafficking on diabetes-induced cardiac fibrosis has yet to be determined. Therefore, our aim was to investigate the circulatory T cell depletion-mediated cardioprotection in streptozotocin-induced diabetic cardiomyopathy. Fingolimod (FTY720), an immunomodulatory drug, was tested in wild-type (WT) C57BL/6 and recombination activating gene 1 (Rag1) knockout (KO) mice without mature lymphocytes in streptozotocin-induced type 1 diabetic model. FTY720 (0.3mg/kg/day) was administered intraperitoneally daily for the first 4weeks with interim 3weeks then resumed for another 4weeks in 11weeks study period. T lymphocyte counts, cardiac histology, function, and fibrosis were examined in diabetic both WT and KO mice. FTY720 reduced both CD4(+) and CD8(+) T cells in diabetic WT mice. FTY720-treated diabetic WT mouse myocardium showed reduction in CD3 T cell infiltration and decreased expression of S1P1 and TGF-β1 in cardiac tissue. Fibrosis was reduced after FTY720 treatment in diabetic WT mice. Rag1 KO mice exhibited no CD4(+) and CD8(+) T cells in the blood and CD3 T cells in the heart. Diabetic Rag1 KO mouse hearts appeared no fibrosis and exhibited preserved myocardial contractility. FTY720-induced antifibrosis was abolished in diabetic Rag1 KO mice. These findings demonstrate that chronic administration with FTY720 induces lymphopenia and protects diabetic hearts in WT mice whereas FTY720 increases cardiac fibrosis and myocardial dysfunction in diabetic Rag1 KO mice without mature lymphocytes. PMID:27494688

  9. Autoantibodies in dilated cardiomyopathy induce vascular endothelial growth factor expression in cardiomyocytes

    SciTech Connect

    Saygili, Erol; Noor-Ebad, Fawad; Schröder, Jörg W.; Mischke, Karl; Saygili, Esra; Rackauskas, Gediminas; Marx, Nikolaus; Kelm, Malte; Rana, Obaida R.

    2015-09-11

    Background: Autoantibodies have been identified as major predisposing factors for dilated cardiomyopathy (DCM). Patients with DCM show elevated serum levels of vascular endothelial growth factor (VEGF) whose source is unknown. Besides its well-investigated effects on angiogenesis, evidence is present that VEGF signaling is additionally involved in fibroblast proliferation and cardiomyocyte hypertrophy, hence in cardiac remodeling. Whether autoimmune effects in DCM impact cardiac VEGF signaling needs to be elucidated. Methods: Five DCM patients were treated by the immunoadsorption (IA) therapy on five consecutive days. The eluents from the IA columns were collected and prepared for cell culture. Cardiomyocytes from neonatal rats (NRCM) were incubated with increasing DCM-immunoglobulin-G (IgG) concentrations for 48 h. Polyclonal IgG (Venimmun N), which was used to restore IgG plasma levels in DCM patients after the IA therapy was additionally used for control cell culture purposes. Results: Elevated serum levels of VEGF decreased significantly after IA (Serum VEGF (ng/ml); DCM pre-IA: 45 ± 9.1 vs. DCM post–IA: 29 ± 6.7; P < 0.05). In cell culture, pretreatment of NRCM by DCM-IgG induced VEGF expression in a time and dose dependent manner. Biologically active VEGF that was secreted by NRCM significantly increased BNP mRNA levels in control cardiomyocytes and induced cell-proliferation of cultured cardiac fibroblast (Fibroblast proliferation; NRCM medium/HC-IgG: 1 ± 0.0 vs. NRCM medium/DCM-IgG 100 ng/ml: 5.6 ± 0.9; P < 0.05). Conclusion: The present study extends the knowledge about the possible link between autoimmune signaling in DCM and VEGF induction. Whether this observation plays a considerable role in cardiac remodeling during DCM development needs to be further elucidated. - Highlights: • Mechanisms of remodeling in dilated cardiomyopathy (DCM) are not fully understood. • Autoantibodies have been identified as major predisposing factors

  10. Particulate matter inhalation exacerbates cardiopulmonary injury in a rat model of isoproterenol-induced cardiomyopathy

    EPA Science Inventory

    Ambient particulate matter (PM) exposure is linked to cardiovascular events and death, especially among individuals with heart disease. A model of toxic cardiomyopathy was developed in Spontaneously Hypertensive Heart Failure (SHHF) rats to explore potential mechanisms. Rats were...

  11. Cardiomyopathy Induced by Pulmonary Sequestration in a 50-Year-Old Man

    PubMed Central

    Chatelain, Shaun; Comp, Robert A.; Grace, R. Randal

    2015-01-01

    A 50-year-old black man presented at the emergency department with midsternal, nonradiating chest pressure and chronic dyspnea on exertion. Four years before the current admission, he had been diagnosed with nonischemic cardiomyopathy at another facility. After our complete evaluation, we suspected that his symptoms arose from left-to-left shunting in association with pulmonary sequestration, a congenital malformation. Our preliminary diagnosis of secondary dilated cardiomyopathy was confirmed by normalization of the patient's ventricular size and function after lobectomy. To our knowledge, this patient is the oldest on record to present with cardiomyopathy consequent to pulmonary sequestration. His case is highly unusual because of his age and the rapid resolution of his symptoms after lobectomy. We believe that pulmonary sequestration should be included in the differential diagnosis of dilated cardiomyopathy. PMID:25873803

  12. Cardiomyopathy induced by pulmonary sequestration in a 50-year-old man.

    PubMed

    Chatelain, Shaun; Comp, Robert A; Grace, R Randal; Sabbath, Adam M

    2015-02-01

    A 50-year-old black man presented at the emergency department with midsternal, nonradiating chest pressure and chronic dyspnea on exertion. Four years before the current admission, he had been diagnosed with nonischemic cardiomyopathy at another facility. After our complete evaluation, we suspected that his symptoms arose from left-to-left shunting in association with pulmonary sequestration, a congenital malformation. Our preliminary diagnosis of secondary dilated cardiomyopathy was confirmed by normalization of the patient's ventricular size and function after lobectomy. To our knowledge, this patient is the oldest on record to present with cardiomyopathy consequent to pulmonary sequestration. His case is highly unusual because of his age and the rapid resolution of his symptoms after lobectomy. We believe that pulmonary sequestration should be included in the differential diagnosis of dilated cardiomyopathy.

  13. PACAP38/PAC1 Signaling Induces Bone Marrow-Derived Cells Homing to Ischemic Brain

    PubMed Central

    Lin, Chen-Huan; Chiu, Lian; Lee, Hsu-Tung; Chiang, Chun-Wei; Liu, Shih-Ping; Hsu, Yung-Hsiang; Lin, Shinn-Zong; Hsu, Chung Y; Hsieh, Chia-Hung; Shyu, Woei-Cherng

    2015-01-01

    Understanding stem cell homing, which is governed by environmental signals from the surrounding niche, is important for developing effective stem cell-based repair strategies. The molecular mechanism by which the brain under ischemic stress recruits bone marrow-derived cells (BMDCs) to the vascular niche remains poorly characterized. Here we report that hypoxia-inducible factor-1α (HIF-1α) activation upregulates pituitary adenylate cyclase-activating peptide 38 (PACAP38), which in turn activates PACAP type 1 receptor (PAC1) under hypoxia in vitro and cerebral ischemia in vivo. BMDCs homing to endothelial cells in the ischemic brain are mediated by HIF-1α activation of the PACAP38-PAC1 signaling cascade followed by upregulation of cellular prion protein and α6-integrin to enhance the ability of BMDCs to bind laminin in the vascular niche. Exogenous PACAP38 confers a similar effect in facilitating BMDCs homing into the ischemic brain, resulting in reduction of ischemic brain injury. These findings suggest a novel HIF-1α-activated PACAP38-PAC1 signaling process in initiating BMDCs homing into the ischemic brain for reducing brain injury and enhancing functional recovery after ischemic stroke. Stem Cells 2015;33:1153–1172 PMID:25523790

  14. BPA-induced DNA hypermethylation of the master mitochondrial gene PGC-1α contributes to cardiomyopathy in male rats.

    PubMed

    Jiang, Ying; Xia, Wei; Yang, Jie; Zhu, Yingshuang; Chang, Huailong; Liu, Juan; Huo, Wenqian; Xu, Bing; Chen, Xi; Li, Yuanyuan; Xu, Shunqing

    2015-03-01

    Implication of environmental endocrine disruptors, such as bisphenol A (BPA), on the development of cardiopathy has been poorly investigated. The aim of the study was to investigate the effects of long-term exposure to BPA at the reference dose on the myocardium of rats, and the underlying mechanisms. Male rats received corn oil or 50 μg/kg/day of BPA since delactation. At 24 and 48 weeks (wk), cardiac function and mitochondrial function were examined. The mRNA expression and the methylation status of PCG-1α, a major regulator of mitochondrial biogenesis in cardiac muscle, were also tested. At 48 wk, BPA-exposed rats displayed cardiomyopathy, characterized by myocardium hypertrophy, cardiomyocyte enlargement, and impairment of cardiac function. At 24 wk, significantly reduced ATP production, dissipated mitochondrial membrane potential (Ψm) and declined mitochondrial respiratory complex (MRC) activity in cardiomyocytes were observed in BPA-exposed rats compared with the control rats, indicating a decrease in mitochondrial function occurs before the development of cardiomyopathy. Additionally, BPA exposure decreased the expression of PGC-1α and induced hypermethylation of PGC-1 α in heart tissue in 24- and 48-week-old rats. The change in methylation of PGC-1α was observed more pronounced in BPA-exposed rats at 48 wk. Overall, long-term BPA exposure induces cardiomyopathy in male rats, and the underlying mechanism may involve the impairment of cardiac mitochondrial function and the disturbance of methylation of PGC-1α.

  15. Candidate gene expression analysis of toxin-induced dilated cardiomyopathy in the turkey (Meleagris gallopavo).

    PubMed

    Lin, K-C; Gyenai, K; Pyle, R L; Geng, T; Xu, J; Smith, E J

    2006-12-01

    Dilated cardiomyopathy (DCM), a heart disease, affects many vertebrates including humans and poultry. The disease can be either idiopathic (IDCM) or toxin-induced (TIDCM). Although genetic and other studies of IDCM are extensive, the specific etiology of TIDCM is still unknown. In this study, we compared mRNA levels of cardiac troponin T (cTnT) and phospholamban (PLN) in turkeys affected and unaffected by TIDCM. Cardiac TnT and PLN were chosen because their altered expression has been observed in IDCM-affected birds. A total of 72 birds, 44 affected and 28 unaffected with TIDCM, were used. Differences in the mRNA levels of cTnT and PLN between affected and unaffected turkeys were significant only for cTnT. The sequence of the turkey PLN showed significant similarity at the nucleotide level to the reference chicken sequence and to those of other species. In addition to implicating cTnT in TIDCM, the present work describes a partial turkey PLN coding sequence that could be useful for future studies.

  16. The right heart in athletes. Evidence for exercise-induced arrhythmogenic right ventricular cardiomyopathy.

    PubMed

    Heidbüchel, H; La Gerche, A

    2012-06-01

    Although 'athlete's heart' usually constitutes a balanced dilation and hypertrophy of all four chambers, there is increasing evidence that intense endurance activity may particularly tax the right ventricle (RV), both acutely and chronically. We review the evidence that the high wall stress of the RV during intense sports may explain observed B-type natriuretic peptide (BNP) elevations immediately after a race, may lead to cellular disruption and leaking of cardiac enzymes, and may even result in transient RV dilatation and dysfunction. Over time, this could lead to chronic remodelling and a pro-arrhythmic state resembling arrhythmogenic RV cardiomyopathy (ARVC) in some cases. ARVC in high-endurance athletes most often develops in the absence of underlying desmosomal abnormalities, probably only as a result of excessive RV wall stress during exercise. Therefore, we have labelled this syndrome 'exercise-induced ARVC'. Sports cardiologists should be aware that excessive sports activity can lead to cardiac sports injuries in some individuals, just like orthopaedic specialists are familiar with musculoskeletal sports injuries. This does not negate the fact that moderate exercise has positive cardiovascular effects and should be encouraged. PMID:22782727

  17. Doxorubicin Cardiomyopathy

    PubMed Central

    Chatterjee, Kanu; Zhang, Jianqing; Honbo, Norman; Karliner, Joel S.

    2010-01-01

    Established doxorubicin cardiomyopathy is a lethal disease. When congestive heart failure develops, mortality is approximately 50%. Extensive research has been done to understand the mechanism and pathophysiology of doxorubicin cardiomyopathy, and considerable knowledge and experience has been gained. Unfortunately, no effective treatment for established doxorubicin cardiomyopathy is presently available. Extensive research has been done and is being done to discover preventive treatments. However an effective and clinically applicable preventive treatment is yet to be discovered. PMID:20016174

  18. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies.

    PubMed

    Wang, Gang; McCain, Megan L; Yang, Luhan; He, Aibin; Pasqualini, Francesco Silvio; Agarwal, Ashutosh; Yuan, Hongyan; Jiang, Dawei; Zhang, Donghui; Zangi, Lior; Geva, Judith; Roberts, Amy E; Ma, Qing; Ding, Jian; Chen, Jinghai; Wang, Da-Zhi; Li, Kai; Wang, Jiwu; Wanders, Ronald J A; Kulik, Wim; Vaz, Frédéric M; Laflamme, Michael A; Murry, Charles E; Chien, Kenneth R; Kelley, Richard I; Church, George M; Parker, Kevin Kit; Pu, William T

    2014-06-01

    Study of monogenic mitochondrial cardiomyopathies may yield insights into mitochondrial roles in cardiac development and disease. Here, we combined patient-derived and genetically engineered induced pluripotent stem cells (iPSCs) with tissue engineering to elucidate the pathophysiology underlying the cardiomyopathy of Barth syndrome (BTHS), a mitochondrial disorder caused by mutation of the gene encoding tafazzin (TAZ). Using BTHS iPSC-derived cardiomyocytes (iPSC-CMs), we defined metabolic, structural and functional abnormalities associated with TAZ mutation. BTHS iPSC-CMs assembled sparse and irregular sarcomeres, and engineered BTHS 'heart-on-chip' tissues contracted weakly. Gene replacement and genome editing demonstrated that TAZ mutation is necessary and sufficient for these phenotypes. Sarcomere assembly and myocardial contraction abnormalities occurred in the context of normal whole-cell ATP levels. Excess levels of reactive oxygen species mechanistically linked TAZ mutation to impaired cardiomyocyte function. Our study provides new insights into the pathogenesis of Barth syndrome, suggests new treatment strategies and advances iPSC-based in vitro modeling of cardiomyopathy.

  19. The protective role of neuregulin-1: A potential therapy for sepsis-induced cardiomyopathy.

    PubMed

    Zhou, Qin; Pan, Xia; Wang, Long; Wang, Xi; Xiong, Dongsheng

    2016-10-01

    The extremely high mortality of sepsis in intensive care units, caused primarily by sepsis-induced cardiomyopathy, is a pressing issue. Current studies have revealed the importance of the neuregulin-1 (NRG-1)/ErbB signaling axis at the cardiovascular level and the positive effect of NRG-1 on cardiac function in patients with heart failure. To investigate the protective mechanism of NRG-1 against myocardial injury in septic rats, a cecal ligation and puncture (CLP) model was applied. Animals were administered either a vehicle or recombinant human NRG-1 (rhNRG-1, 10μg/kg). Their survival rates were noted 24h after CLP. The hemodynamic method was used to evaluate their cardiac function. The myocardial morphology was observed. An enzyme-linked immunosorbent assay was used to detect the level of cardiac troponin-T (cTn-T), cytokines, and angiotensin II (Ang II) in the serum and myocardium. Compared with the vehicle, rhNRG-1 improved survival of rats and prevented hemodynamic derangement, as reflected in the increased mean arterial pressure, left ventricular systolic pressure, ±dp/dt max, and decreased left ventricular end-diastolic pressure (P<0.05). Furthermore, the serum levels of cTn-T and pro-inflammatory cytokines (tumor necrosis factor alpha (TNF-α), interleukin (IL)-1β, and IL-6) were significantly increased in vehicle-treated rats but reduced in rhNRG-1-treated rats. The latter also showed decreased concentration of macrophage inhibitory factor and Ang II in the myocardium (P<0.05). These results suggest that NRG-1 improved cardiac function and protected cardiomyocytes of rats from CLP-induced sepsis by suppressing the immune inflammatory response and excessive activation of the renin-angiotensin-aldosterone system. Ultimately, NRG-1 increased the survival rate of rats.

  20. [Levosimendan for septic shock with takotsubo cardiomyopathy].

    PubMed

    Schlürmann, C-N; Reinöhl, J; Kalbhenn, J

    2016-01-01

    As a stress-induced disease, takotsubo cardiomyopathy can also occur in septic syndromes; however, the hemodynamic management is fundamentally different from the treatment approaches for classical septic cardiomyopathy, as beta mimetics can increase the heart failure symptoms in takotsubo cardiomyopathy. This article reports the case of an 82-year-old female patient who presented with acute abdomen due to adhesion ileus and takotsubo cardiomyopathy, developed severe septic shock with peritonitis and could be successfully hemodynamically stabilized with levosimendan.

  1. Mitochondrial Cardiomyopathies

    PubMed Central

    El-Hattab, Ayman W.; Scaglia, Fernando

    2016-01-01

    Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20–40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia. PMID:27504452

  2. Mitochondrial Cardiomyopathies.

    PubMed

    El-Hattab, Ayman W; Scaglia, Fernando

    2016-01-01

    Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia. PMID:27504452

  3. Prevalence and risk factors of sepsis-induced cardiomyopathy: A retrospective cohort study.

    PubMed

    Sato, Ryota; Kuriyama, Akira; Takada, Tadaaki; Nasu, Michitaka; Luthe, Sarah Kyuragi

    2016-09-01

    The aim of the study is to evaluate the epidemiology and clinical features of sepsis-induced cardiomyopathy (SICM).A retrospective cohort study was conducted.A total of 210 adult patients with sepsis or septic shock admitted to a Japanese tertiary care hospital from January 1, 2013, to December 31, 2015, who underwent transthoracic echocardiography (TTE) on admission.The definition of SICM was ejection fraction (EF) < 50% and a ≥10% decrease compared to the baseline EF which recovered within 2 weeks, in sepsis or septic shock patients.Our primary outcome was the incidence rate of SICM. Our secondary outcomes were the in-hospital mortality rate and length of intensive care unit (ICU) stay according to the presence or absence of SICM. In total, 29 patients (13.8%) were diagnosed with SICM. The prevalence rate of SICM was significantly higher in male than in female (P = 0.02). Multivariate logistic regression analyses revealed that the incidence of SICM was associated with younger age (odds ratio [OR], 0.97; 95% confidence interval [CI], 0.95-0.99), higher lactate level on admission (OR, 1.18; 95% CI, 1.05-1.32) and history of heart failure (HF) (OR, 3.77; 95% CI, 1.37-10.40). There were no significant differences in the in-hospital and 30-day mortality between patients with and without SICM (24.1% vs 12.7%, P = 0.15; 20.7% vs 12.1%, P = 0.23). Lengths of hospital and ICU stay were significantly longer in patients with SICM than in those without SICM (median, 43 vs 26 days, P = 0.04; 9 vs 5 days, P < 0.01).SICM developed in 13.8% of patients with sepsis and septic shock. A younger age, higher lactate levels on admission and history of HF were risk factors. PMID:27684877

  4. Preventive Effects of Antioxidants and Exercise on Muscle Atrophy Induced by Ischemic Reperfusion

    PubMed Central

    Umei, Namiko; Ono, Takeya; Oki, Sadaaki; Otsuka, Akira; Otao, Hiroshi; Tsumiyama, Wakako; Tasaka, Atsushi; Ishikura, Hideki; Aihara, Kazuki; Sato, Yuta; Shimizu, Michele Eisemann

    2014-01-01

    [Purpose] This study aimed to determine whether muscle atrophy induced by ischemic reperfusion injury in rats can be prevented by the administration of antioxidants and exercise. [Subjects] Rats were randomly divided into five groups: non-treated, ischemic, exercise, ascorbic acid and exercise, and tocopherol and exercise. [Methods] The relative weight ratio of the soleus muscle and the length of the soleus muscle fiber cross-section minor axis were used for the evaluation of muscle atrophy. Pain was assessed as the weight-bearing ratio of the ischemic side. A multiple comparison test and the paired t-test were used for the statistical analyses. [Results] Compared with the non-treated group, the relative weight ratios of the soleus muscle and the lengths of the soleus muscle fiber cross-section minor axis significantly decreased in the other groups. Excluding the non-treated group, the relative weight ratios of the soleus muscle were heaviest in the tocopherol and exercise group. Excluding the non-treated group, the lengths of the soleus muscle fiber cross-section minor axis were longest in the tocopherol and exercise group, followed by the ischemic, exercise, and ascorbic acid and exercise groups. The amount of antioxidant substances did not decrease on the weight-bearing ratio of the ischemic side. [Conclusion] In this study, using an experimental rat model, we confirmed that antioxidants and exercise effect muscle atrophy induced by ischemic reperfusion. The results show that muscle regeneration was facilitated by phagocytosis in the tocopherol and exercise group. PMID:25540491

  5. Stress cardiac MR imaging: the role of stress functional assessment and perfusion imaging in the evaluation of ischemic heart disease.

    PubMed

    Al Sayari, Saeed; Kopp, Sebastien; Bremerich, Jens

    2015-03-01

    Stress cardiac magnetic resonance imaging can provide valuable information for the diagnosis and management of ischemic heart disease (IHD). It plays an important role in the initial diagnosis in patients with acute chest pain, in the diagnosis of complications post myocardial infarction (MI), in the assessment of the right ventricle after an acute MI, to detect complications due to or after interventions, in prediction of myocardial recovery, to detect inducible ischemia in patients with known IHD, in differentiating ischemic from non-ischemic dilated cardiomyopathy, and in risk stratification.

  6. Stress cardiac MR imaging: the role of stress functional assessment and perfusion imaging in the evaluation of ischemic heart disease.

    PubMed

    Al Sayari, Saeed; Kopp, Sebastien; Bremerich, Jens

    2015-03-01

    Stress cardiac magnetic resonance imaging can provide valuable information for the diagnosis and management of ischemic heart disease (IHD). It plays an important role in the initial diagnosis in patients with acute chest pain, in the diagnosis of complications post myocardial infarction (MI), in the assessment of the right ventricle after an acute MI, to detect complications due to or after interventions, in prediction of myocardial recovery, to detect inducible ischemia in patients with known IHD, in differentiating ischemic from non-ischemic dilated cardiomyopathy, and in risk stratification. PMID:25727000

  7. Reversible T-wave inversions and neurogenic myocardial stunning in a patient with recurrent stress-induced cardiomyopathy.

    PubMed

    Akutsu, Yasushi; Kaneko, Kyouichi; Kodama, Yusuke; Li, Hui-Ling; Suyama, Jumpei; Toshida, Tsutomu; Kayano, Hiroyuki; Shinozuka, Akira; Gokan, Takehiko; Kobayashi, Youichi

    2014-05-01

    A 72-year-old female was diagnosed as a stress-induced cardiomyopathy from apical ballooning pattern of left ventricular dysfunction without coronary artery stenosis after the mental stress. ECG showed the transient T-wave inversions after the ST-segment elevations. By the mental stress after 1 year, she showed a transient dysfunction with similar ECG changes again. T-wave inversions recovered earlier, and cardiac sympathetic dysfunction showed a lighter response corresponding to the less severe dysfunction than those after the first onset. Wellens' ECG pattern was associated with the degree of neurogenic myocardial stunning with sympathetic hyperinnervation caused by mental stress. PMID:24147830

  8. Potent Paracrine Effects of human induced Pluripotent Stem Cell-derived Mesenchymal Stem Cells Attenuate Doxorubicin-induced Cardiomyopathy

    PubMed Central

    Zhang, Yuelin; Liang, Xiaoting; Liao, Songyan; Wang, Weixin; Wang, Junwen; Li, Xiang; Ding, Yue; Liang, Yingmin; Gao, Fei; Yang, Mo; Fu, Qingling; Xu, Aimin; Chai, Yuet-Hung; He, Jia; Tse, Hung-Fat; Lian, Qizhou

    2015-01-01

    Transplantation of bone marrow mesenchymal stem cells (BM-MSCs) can protect cardiomyocytes against anthracycline-induced cardiomyopathy (AIC) through paracrine effects. Nonetheless the paracrine effects of human induced pluripotent stem cell-derived MSCs (iPSC-MSCs) on AIC are poorly understood. In vitro studies reveal that doxorubicin (Dox)-induced reactive oxidative stress (ROS) generation and cell apoptosis in neonatal rat cardiomyocytes (NRCMs) are significantly reduced when treated with conditioned medium harvested from BM-MSCs (BM-MSCs-CdM) or iPSC-MSCs (iPSC-MSCs-CdM). Compared with BM-MSCs-CdM, NRCMs treated with iPSC-MSCs-CdM exhibit significantly less ROS and cell apoptosis in a dose-dependent manner. Transplantation of BM-MSCs-CdM or iPSC-MSCs-CdM into mice with AIC remarkably attenuated left ventricular (LV) dysfunction and dilatation. Compared with BM-MSCs-CdM, iPSC-MSCs-CdM treatment showed better alleviation of heart failure, less cardiomyocyte apoptosis and fibrosis. Analysis of common and distinct cytokines revealed that macrophage migration inhibitory factor (MIF) and growth differentiation factor-15 (GDF-15) were uniquely overpresented in iPSC-MSC-CdM. Immunodepletion of MIF and GDF-15 in iPSC-MSCs-CdM dramatically decreased cardioprotection. Injection of GDF-15/MIF cytokines could partially reverse Dox-induced heart dysfunction. We suggest that the potent paracrine effects of iPSC-MSCs provide novel “cell-free” therapeutic cardioprotection against AIC, and that MIF and GDF-15 in iPSC-MSCs-CdM are critical for these enhanced cardioprotective effects. PMID:26057572

  9. Reversal of ventricular premature beat induced cardiomyopathy by radiofrequency catheter ablation.

    PubMed

    Blaauw, Y; Pison, L; van Opstal, J M; Dennert, R M; Heesen, W F; Crijns, H J G M

    2010-10-01

    Frequent monomorphic ventricular premature beats (VPBs) may lead to left ventricular dysfunction. We describe two patients with frequent monomorphic VPBs and dilated cardiomyopathy in whom left ventricular function normalised after elimination of the VPBs by radiofrequency catheter ablation. The recent literature on this topic is summarised and potential candidates for catheter ablation are discussed. (Neth Heart J 2010;18:493-8.).

  10. CNS disease triggering Takotsubo stress cardiomyopathy.

    PubMed

    Finsterer, Josef; Wahbi, Karim

    2014-12-15

    There are a number of hereditary and non-hereditary central nervous system (CNS) disorders, which directly or indirectly affect the heart (brain-heart disorders). The most well-known of these CNS disorders are epilepsy, stroke, infectious or immunological encephalitis/meningitis, migraine, and traumatic brain injury. In addition, a number of hereditary and non-hereditary neurodegenerative disorders may impair cardiac functions. Affection of the heart may manifest not only as arrhythmias, myocardial infarction, autonomic impairment, systolic dysfunction/heart failure, arterial hypertension, or pulmonary hypertension, but also as stress cardiomyopathy (Takotsubo syndrome, TTS). CNS disease triggering TTS includes subarachnoid bleeding, epilepsy, ischemic stroke, intracerebral bleeding, migraine, encephalitis, traumatic brain injury, PRES syndrome, or ALS. Usually, TTS is acutely precipitated by stress triggered by various different events. TTS is one of the cardiac abnormalities most frequently induced by CNS disorders. Appropriate management of TTS from CNS disorders is essential to improve the outcome of affected patients. PMID:25213573

  11. What's Cardiomyopathy

    MedlinePlus

    ... or more chambers of the heart. Usually, the enlargement begins in one of the two lower pumping ... idiopathic hypertrophic subaortic stenosis (IHSS) and asymmetrical septal hypertrophy (ASH), non-obstructive hypertrophic cardiomyopathy (HCM) The second ...

  12. Ischemic conditioning-induced endogenous brain protection: Applications Pre-, Per- or Post-Stroke

    PubMed Central

    Wang, Yuechun; Reis, Cesar; Applegate, Richard; Stier, Gary; Martin, Robert; Zhang, John H.

    2015-01-01

    In the area of brain injury and neurodegenerative diseases, a plethora of experimental and clinical evidence strongly indicates the promise of therapeutically exploiting the endogenous adaptive system at various levels like triggers, mediators and the end-effectors to stimulate and mobilize intrinsic protective capacities against brain injuries. It is believed that ischemic pre- or post-conditioning are actually the strongest known interventions to stimulate the innate neuroprotective mechanism to prevent or reverse neurodegenerative diseases including stoke and traumatic brain injury. Recently, studies showed the effectiveness of ischemic per-conditioning in some organs. Therefore the term ischemic conditioning, including all interventions applied pre-, per- and post- ischemia, which spans therapeutic windows in 3 time periods, has recently been broadly accepted by scientific communities. In addition, it is extensively acknowledged that ischemia-mediated protection not only affects the neurons but also all the components of the neurovascular network (consisting of neurons, glial cells, vascular endothelial cells, pericytes, smooth muscle cells, and venule/veins). The concept of cerebroprotection has been widely used in place of neuroprotection. Intensive studies on the cellular signaling pathways involved in ischemic conditioning have improved the mechanistic understanding of tolerance to cerebral ischemia. This has added impetus to exploration for potential pharmacologic mimetics, which could possibly induce and maximize inherent protective capacities. However, most of these studies were performed in rodents, and the efficacy of these mimetics remains to be evaluated in human patients. Several classical signaling pathways involving apoptosis, inflammation, or oxidation have been elaborated in the past decades. Newly characterized mechanisms are emerging with the advances in biotechnology and conceptual renewal. In this review we are going to focus on those

  13. Ischemic conditioning-induced endogenous brain protection: Applications pre-, per- or post-stroke.

    PubMed

    Wang, Yuechun; Reis, Cesar; Applegate, Richard; Stier, Gary; Martin, Robert; Zhang, John H

    2015-10-01

    In the area of brain injury and neurodegenerative diseases, a plethora of experimental and clinical evidence strongly indicates the promise of therapeutically exploiting the endogenous adaptive system at various levels like triggers, mediators and the end-effectors to stimulate and mobilize intrinsic protective capacities against brain injuries. It is believed that ischemic pre-conditioning and post-conditioning are actually the strongest known interventions to stimulate the innate neuroprotective mechanism to prevent or reverse neurodegenerative diseases including stroke and traumatic brain injury. Recently, studies showed the effectiveness of ischemic per-conditioning in some organs. Therefore the term ischemic conditioning, including all interventions applied pre-, per- and post-ischemia, which spans therapeutic windows in 3 time periods, has recently been broadly accepted by scientific communities. In addition, it is extensively acknowledged that ischemia-mediated protection not only affects the neurons but also all the components of the neurovascular network (consisting of neurons, glial cells, vascular endothelial cells, pericytes, smooth muscle cells, and venule/veins). The concept of cerebroprotection has been widely used in place of neuroprotection. Intensive studies on the cellular signaling pathways involved in ischemic conditioning have improved the mechanistic understanding of tolerance to cerebral ischemia. This has added impetus to exploration for potential pharmacologic mimetics, which could possibly induce and maximize inherent protective capacities. However, most of these studies were performed in rodents, and the efficacy of these mimetics remains to be evaluated in human patients. Several classical signaling pathways involving apoptosis, inflammation, or oxidation have been elaborated in the past decades. Newly characterized mechanisms are emerging with the advances in biotechnology and conceptual renewal. In this review we are going to focus on

  14. Indomethacin preconditioning induces ischemic tolerance by modifying zinc availability in the brain.

    PubMed

    Lee, Joo-Yong; Oh, Shin Bi; Hwang, Jung-Jin; Suh, Nayoung; Jo, Dong-Gyu; Kim, Jong S; Koh, Jae-Young

    2015-09-01

    Intracellular zinc overload causes neuronal injury during the course of neurological disorders, whereas mild levels of zinc are beneficial to neurons. Previous reports indicated that non-steroidal anti-inflammatory drugs, including indomethacin and aspirin, can reduce the risk of ischemic stroke. This study found that chronic pretreatment of rats with indomethacin, a non-selective cyclooxygenase inhibitor, provided tolerance to ischemic injuries in an animal model of stroke by eliciting moderate zinc elevation in neurons. Consecutive intraperitoneal injection of indomethacin (3mg/kg/day for 28 days) led to modest increases in intraneuronal zinc as well as synaptic zinc content, with no significant stimulation of neuronal death. Furthermore, indomethacin induced the expressions of intracellular zinc homeostatic and neuroprotective proteins, rendering the brain resistant against ischemic damages and improving neurological outcomes. However, administration of a zinc-chelator, N,N,N',N'-tetra(2-picolyl)ethylenediamine (TPEN; 15 mg/kg/day), immediately after indomethacin administration eliminated the beneficial actions of the drug. Therefore, indomethacin preconditioning can modulate intracellular zinc availability, contributing to ischemic tolerance in the brain after stroke.

  15. Pilocarpine-Induced Status Epilepticus in Rats Involves Ischemic and Excitotoxic Mechanisms

    PubMed Central

    Fabene, Paolo Francesco; Merigo, Flavia; Galiè, Mirco; Benati, Donatella; Bernardi, Paolo; Farace, Paolo; Nicolato, Elena; Marzola, Pasquina; Sbarbati, Andrea

    2007-01-01

    The neuron loss characteristic of hippocampal sclerosis in temporal lobe epilepsy patients is thought to be the result of excitotoxic, rather than ischemic, injury. In this study, we assessed changes in vascular structure, gene expression, and the time course of neuronal degeneration in the cerebral cortex during the acute period after onset of pilocarpine-induced status epilepticus (SE). Immediately after 2 hr SE, the subgranular layers of somatosensory cortex exhibited a reduced vascular perfusion indicative of ischemia, whereas the immediately adjacent supragranular layers exhibited increased perfusion. Subgranular layers exhibited necrotic pathology, whereas the supergranular layers were characterized by a delayed (24 h after SE) degeneration apparently via programmed cell death. These results indicate that both excitotoxic and ischemic injuries occur during pilocarpine-induced SE. Both of these degenerative pathways, as well as the widespread and severe brain damage observed, should be considered when animal model-based data are compared to human pathology. PMID:17971868

  16. Transient ischemic attack induced by melted solid lipid microparticles protects rat brains from permanent focal ischemia.

    PubMed

    Tsai, M-J; Kuo, Y-M; Tsai, Y-H

    2014-09-01

    This study aims to develop a transient ischemic attack (TIA) model in conscious animals and uses this model to investigate the effect of TIA on subsequent permanent ischemia. TIA was induced by injecting designed temperature-sensitive melted solid lipid microparticles with a melting point around body temperature into male Wistar rats via arterial cannulation. Neurologic deficit was monitored immediately after the injection without anesthesia. According to the clinical definition of TIA, rats were divided into neurologic symptom durations <24-h, 24-48-h and ≥48-h groups. The lipid microparticle-induced infarct volumes were small in the <24-h and 24-48-h groups, while the volumes were five times larger in the ≥48-h group. Permanent ischemic stroke was induced 3d after the induction of TIA by injecting a different kind of embolic particle manufactured by blending chitin and PLGA. The <24-h group had less severe neurologic deficits and smaller infarct volumes than that of 24-48-h and control (without prior lipid microparticle treatment) rats. Taken together, we successfully develop a TIA animal model which allows us to monitor the neurologic deficit in real-time. By adopting this model, we validate that TIA (<24h) preconditioning protects the brain from subsequent permanent ischemic stroke.

  17. Tumorigenic development of induced pluripotent stem cells in ischemic mouse brain.

    PubMed

    Yamashita, Toru; Kawai, Hiromi; Tian, Fengfeng; Ohta, Yasuyuki; Abe, Koji

    2011-01-01

    Induced pluripotent stem (iPS) cells may provide cures for various neurological diseases. However, undifferentiated iPS cells have high tumorigenicity, and evaluation of the cells fates, especially in pathologic condition model, is needed. In this study, we demonstrated the effect of ischemic condition to undifferentiated iPS cells fates in a mouse model of transient middle cerebral artery occlusion (MCAO). Undifferentiated iPS cells were characterized with immunofluorescent staining. The iPS cells (5 × 10⁵) were injected into ipsilateral striatum and cortex after 24 h of MCAO. Histological analysis was performed from 3 to 28 days after cell transplantation. iPS cells in ischemic brain formed teratoma with higher probability (p < 0.05) and larger volume (p < 0.01) compared with those in intact brain. Among the four transcriptional factors to produce iPS cells, c-Myc, Oct3/4, and Sox2 strongly expressed in iPS-derived tumors in ischemic brain (p < 0.01). Additionally, expression of matrix metalloproteinase-9 (MMP-9) and phosphorylated vascular endothelial growth factor receptor2 (phospho-VEGFR2) were significantly increased in iPS-derived tumors in the ischemic brain (p < 0.05). These results suggest that the transcriptional factors might increase expression of MMP-9 and activate VEGFR2, promoting teratoma formation in the ischemic brain. We strongly propose that the safety of iPS cells should be evaluated not only in normal condition, but also in a pathologic, disease model.

  18. Acute chemotherapy-induced cardiomyopathy treated with intracorporeal left ventricular assist device in an 8-year-old child.

    PubMed

    Schweiger, Martin; Dave, Hitendu; Lemme, Frithjof; Cavigelli-Brunner, Anna; Romanchenko, Olga; Heineking, Bea; Hofmann, Michael; Bürki, Chrstoph; Stiasny, Brian; Hübler, Michael

    2013-01-01

    Evolution of ventricular assist devices (VADs) leading to miniaturization has made intracorporeal implantation in children feasible. Ventricular assist device therapy for anthracycline-induced cardiomyopathy (CMP) in adults has been reported. We report the case of an 8-year-old child (body surface area 0.97 m) presenting with anthracycline-induced CMP being successfully treated with an intracorporeal left ventricular assist device (LVAD) as a bridge to candidacy/recovery. We present our institutional algorithm, which advises intracorporeal LVAD implantation for long-term ventricular assist, in children with a body surface area >0.6 m. Advantages are better mobilization and the possibility to discharge home, leading to enhanced quality of life.

  19. Pheochromocytoma-Induced Inverted Takotsubo-Like Cardiomyopathy Leading to Cardiogenic Shock Successfully Treated With Extracorporeal Membrane Oxygenation.

    PubMed

    Flam, Benjamin; Broomé, Michael; Frenckner, Björn; Bränström, Robert; Bell, Max

    2015-09-01

    Pheochromocytoma classically displays a variety of rather benign symptoms, such as headache, palpitations, and sweating, although severe cardiac manifestations have been described. We report a case of pheochromocytoma-induced inverted takotsubo-like cardiomyopathy leading to shock and cardiac arrest successfully treated with extracorporeal membrane oxygenation (ECMO) as a bridge to pharmacological therapy and curative adrenalectomy. A previously healthy 46-year-old woman presented to the emergency department with abdominal pain, dyspnea, nausea, and vomiting. Clinical evaluation revealed cardiorespiratory failure with hypoxia and severe metabolic acidosis. Computed tomography (CT) scan showed pulmonary edema and a left adrenal mass. Transthoracic echocardiography (TTE) displayed severe left ventricular dysfunction with inverted takotsubo contractile pattern. Despite mechanical ventilation and inotropic and vasopressor support, asystolic cardiac arrest ensued. The patient was resuscitated using manual chest compressions followed by venoarterial ECMO. Repeated TTEs demonstrated resolution of the cardiomyopathy within a few days. Laboratory results indicated transient renal and hepatic dysfunction, and CT scan of the brain displayed occipital infarctions. Biochemical testing and radionuclide scintigraphy confirmed a pheochromocytoma. Pharmacological adrenergic blockade was instituted prior to delayed adrenalectomy after which the diagnosis was histopathologically verified. The patient recovered after rehabilitation. We conclude that pheochromocytoma should be considered in patients presenting with unexplained cardiovascular compromise, especially if they display (inverted) takotsubo contractile pattern. Timely, adequate management might involve ECMO as a bridge to pharmacological therapy and curative surgery.

  20. Zn2+ -induced ERK activation mediates PARP-1-dependent ischemic-reoxygenation damage to oligodendrocytes.

    PubMed

    Domercq, Maria; Mato, Susana; Soria, Federico N; Sánchez-gómez, M Victoria; Alberdi, Elena; Matute, Carlos

    2013-03-01

    Much of the cell death following episodes of anoxia and ischemia in the mammalian central nervous system has been attributed to extracellular accumulation of glutamate and ATP, which causes a rise in [Ca(2+)](i), loss of mitochondrial potential, and cell death. However, restoration of blood flow and reoxygenation are frequently associated with exacerbation of tissue injury (the oxygen paradox). Herein we describe a novel signaling pathway that is activated during ischemia-like conditions (oxygen and glucose deprivation; OGD) and contributes to ischemia-induced oligodendroglial cell death. OGD induced a retarded and sustained increase in extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation after restoring glucose and O(2) (reperfusion-like conditions). Blocking the ERK1/2 pathway with the MEK inhibitor UO126 largely protected oligodendrocytes against ischemic insults. ERK1/2 activation was blocked by the high-affinity Zn(2+) chelator TPEN, but not by antagonists of AMPA/kainate or P2X7 receptors that were previously shown to be involved in ischemic oligodendroglial cell death. Using a high-affinity Zn(2+) probe, we showed that ischemia induced an intracellular Zn(2+) rise in oligodendrocytes, and that incubation with TPEN prevented mitochondrial depolarization and ROS generation after ischemia. Accordingly, exposure to TPEN and the antioxidant Trolox reduced ischemia-induced oligodendrocyte death. Moreover, UO126 blocked the ischemia-induced increase in poly-[ADP]-ribosylation of proteins, and the poly[ADP]-ribose polymerase 1 (PARP-1) inhibitor DPQ significantly inhibited ischemia-induced oligodendroglial cell death-demonstrating that PARP-1 was required downstream in the Zn(2+)-ERK oligodendrocyte cell death pathway. Chelation of cytosolic Zn(2+), blocking ERK signaling, and antioxidants may be beneficial for treating CNS white matter ischemia-reperfusion injury. Importantly, all the inhibitors of this pathway protected oligodendrocytes when applied

  1. Sarco“MiR” friend or foe: a perspective on the mechanisms of doxorubicin-induced cardiomyopathy

    PubMed Central

    Saddic, Louis A.

    2016-01-01

    Anthracyclines are a class of chemotherapeutics used to treat a variety of human cancers including both solid tumors such as breast, ovarian, and lung, as well as malignancies of the blood including leukemia and lymphoma. Despite being extremely effective anti-cancer agents, the application of these drugs is offset by side effects, most notably cardiotoxicity. Many patients treated with doxorubicin (DOX), one of the most common anthracyclines used in oncology, will develop radiographic signs and/or symptoms of cardiomyopathy. Since more and more patients treated with these drugs are surviving their malignancies and manifesting with heart disease, there is particular interest in understanding the mechanisms of anthracycline-induced injury and developing ways to prevent and treat its most feared complication, heart failure. MicroRNAs (miRNAs) are small noncoding RNAs that regulate the expression of mRNAs. Since miRNAs can regulate many mRNAs in a single network they tend to play a crucial role in the pathogenesis of several diseases, including heart failure. Here we present a perspective on a recent work by Roca-Alonso and colleagues who demonstrate a cardioprotective function of the miR-30 family members following DOX-induced cardiac injury. They provide evidence for direct targeting of these miRNAs on key elements of the β-adrenergic pathway and further show that this interaction regulates cardiac function and apoptosis. These experiments deliver fresh insights into the biology of toxin-induced cardiomyopathy and suggest the potential for novel therapeutic targets. PMID:27294099

  2. Aging aggravates ischemic stroke-induced brain damage in mice with chronic peripheral infection.

    PubMed

    Dhungana, Hiramani; Malm, Tarja; Denes, Adam; Valonen, Piia; Wojciechowski, Sara; Magga, Johanna; Savchenko, Ekaterina; Humphreys, Neil; Grencis, Richard; Rothwell, Nancy; Koistinaho, Jari

    2013-10-01

    Ischemic stroke is confounded by conditions such as atherosclerosis, diabetes, and infection, all of which alter peripheral inflammatory processes with concomitant impact on stroke outcome. The majority of the stroke patients are elderly, but the impact of interactions between aging and inflammation on stroke remains unknown. We thus investigated the influence of age on the outcome of stroke in animals predisposed to systemic chronic infection. Th1-polarized chronic systemic infection was induced in 18-22 month and 4-month-old C57BL/6j mice by administration of Trichuris muris (gut parasite). One month after infection, mice underwent permanent middle cerebral artery occlusion and infarct size, brain gliosis, and brain and plasma cytokine profiles were analyzed. Chronic infection increased the infarct size in aged but not in young mice at 24 h. Aged, ischemic mice showed altered plasma and brain cytokine responses, while the lesion size correlated with plasma prestroke levels of RANTES. Moreover, the old, infected mice exhibited significantly increased neutrophil recruitment and upregulation of both plasma interleukin-17α and tumor necrosis factor-α levels. Neither age nor infection status alone or in combination altered the ischemia-induced brain microgliosis. Our results show that chronic peripheral infection in aged animals renders the brain more vulnerable to ischemic insults, possibly by increasing the invasion of neutrophils and altering the inflammation status in the blood and brain. Understanding the interactions between age and infections is crucial for developing a better therapeutic regimen for ischemic stroke and when modeling it as a disease of the elderly.

  3. Interaction of heritable and estrogen-induced thrombophilia: possible etiologies for ischemic optic neuropathy and ischemic stroke.

    PubMed

    Glueck, C J; Fontaine, R N; Wang, P

    2001-02-01

    Our specific aim was to assess how thrombophilic exogenous estrogens interacted with heritable thrombophilias leading to non-arteritic ischemic optic neuropathy (NAION) and ischemic stroke. Coagulation measures were performed in a 74 year old patient and her immediate family. The proband had a 47 year history of 9 previous thrombotic episodes, and developed unilateral NAION 4 years after starting estrogen replacement therapy (ERT). The proband was heterozygous for two thrombophilic gene mutations (G20210A prothrombin gene, platelet glycoprotein IIIa P1A1/A2 polymorphism), and homozygous for the C677T mutation in the methylenetetrahydrofolate reductase (MTHFR) gene. Of 238 normal controls, none had these 3 gene mutations together. The proband's mother and brother had deep venous thrombosis (DVT). The proband's brother, sister, nephew, daughter, and two granddaughters were homozygous for the C677T MTHFR mutation. The proband's brother was heterozygous for the G20210A prothrombin gene mutation. The proband's niece was heterozygous for the G20210A prothrombin gene mutation, homozygous for the C677T MTHFR mutation, homozygous for the hypofibrinolytic 4G polymorphism of the plasminogen activator inhibitor-1 (PAI-1) gene, and heterozygous for the platelet glycoprotein IIIa P1A1/A2 polymorphism. Of 238 normal controls, none had the niece's combination of 4 gene mutations. When ERT-mediated thrombophilia was superimposed on the proband's heritable thrombophilias, unilateral ischemic optic neuropathy developed, her tenth thrombotic event over a 5 decade period. When estrogen-progestin oral contraceptives were given to the proband's niece, she had an ischemic stroke at age 22. Exogenous estrogen-mediated thrombophilia superimposed on heritable thrombophilia and hypofibrinolysis is associated with arterial and venous thrombi, and appears to be a preventable, and potentially reversible etiology for ischemic optic neuropathy and ischemic stroke. PMID:11246543

  4. [Peripartum cardiomyopathy].

    PubMed

    Mouquet, Frédéric; Bouabdallaoui, Nadia

    2015-01-01

    The peripartum cardiomyopathy is a rare form of dilated cardiomyopathy resulting from alteration of angiogenesis toward the end of pregnancy. The diagnosis is based on the association of clinical heart failure and systolic dysfunction assessed by echocardiography or magnetic resonance imaging. Diagnoses to rule out are myocardial infarction, amniotic liquid embolism, myocarditis, inherited cardiomyopathy, and history of treatment by anthracycline. Risk factors are advance maternal age (>30), multiparity, twin pregnancy, African origin, obesity, preeclampsia, gestational hypertension, and prolonged tocolytic therapy. Treatment of acute phase is identical to usual treatment of acute systolic heart failure. After delivery, VKA treatment should be discussed in case of systolic function <25% because of higher risk of thrombus. A specific treatment by bromocriptine can be initiated on a case-by-case basis. Complete recovery of systolic function is observed in 50% of cases. The mortality risk is low. Subsequent pregnancy should be discouraged, especially if systolic function did not recover.

  5. [Peripartum cardiomyopathy].

    PubMed

    Bouabdallaoui, Nadia; de Groote, Pascal; Mouquet, Frédéric

    2009-06-01

    The peripartum cardiomyopathy is a rare form of dilated cardiomyopathy. Its etiology remains unclear and is likely multifactorial. The diagnosis is based on the association of clinical heart failure and systolic dysfunction assessed by echocardiography or magnetic resonance imaging. Diagnosis to rule out are myocardial infarction, myocarditis, inherited cardiomyopathy, history of treatment by anthracycline. Risk factors are advance maternal age (> 30), multiparity, twin pregnancy, african origin, obesity, pre-eclampsia, gestational hypertension, and prolonged tocolytic therapy. Treatment of acute phase is identical to usual treatment of acute systolic heart failure. Angiotensin converting enzyme inhibitor and VKA are contra indicated during pregnancy. After delivery, VKA treatment should be discussed in case of systolic function < 25 % because of higher risk of thrombus. Complete recovery of systolic function is observed in 50 % of the case. The mortality risk is low. Subsequent pregnancy should be discouraged, especially if systolic function did not recover.

  6. Atypical transient stress-induced cardiomyopathies with an inverted Takotsubo pattern in sepsis and in the postpartal state.

    PubMed

    Lee, Sahng; Lee, Kyung Jin; Yoon, Hyeon Soo; Kang, Ki-Woon; Lee, Young Sook; Lee, Jun Wan

    2010-01-01

    Several cases of inverted Takotsubo cardiomyopathy--a variant form with hyperdynamic left ventricular apex and akinesia of the left ventricular base and mid-portion--have been reported recently, especially in association with cerebrovascular accidents and catecholamine cardiomyopathies. Herein, we describe 2 cases of inverted Takotsubo cardiomyopathy: one that occurred in a middle-aged woman who had a septic condition, and another in a young woman who was in the postpartal state. Such cases have not been reported previously.

  7. Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury

    PubMed Central

    Zhang, Xiangnan; Yuan, Yang; Jiang, Lei; Zhang, Jingying; Gao, Jieqiong; Shen, Zhe; Zheng, Yanrong; Deng, Tian; Yan, Haijing; Li, Wenlu; Hou, Wei-Wei; Lu, Jianxin; Shen, Yao; Dai, Haibing; Hu, Wei-Wei; Zhang, Zhuohua; Chen, Zhong

    2014-01-01

    Transient cerebral ischemia leads to endoplasmic reticulum (ER) stress. However, the contributions of ER stress to cerebral ischemia are not clear. To address this issue, the ER stress activators tunicamycin (TM) and thapsigargin (TG) were administered to transient middle cerebral artery occluded (tMCAO) mice and oxygen-glucose deprivation-reperfusion (OGD-Rep.)-treated neurons. Both TM and TG showed significant protection against ischemia-induced brain injury, as revealed by reduced brain infarct volume and increased glucose uptake rate in ischemic tissue. In OGD-Rep.-treated neurons, 4-PBA, the ER stress releasing mechanism, counteracted the neuronal protection of TM and TG, which also supports a protective role of ER stress in transient brain ischemia. Knocking down the ER stress sensor Eif2s1, which is further activated by TM and TG, reduced the OGD-Rep.-induced neuronal cell death. In addition, both TM and TG prevented PARK2 loss, promoted its recruitment to mitochondria, and activated mitophagy during reperfusion after ischemia. The neuroprotection of TM and TG was reversed by autophagy inhibition (3-methyladenine and Atg7 knockdown) as well as Park2 silencing. The neuroprotection was also diminished in Park2+/− mice. Moreover, Eif2s1 and downstream Atf4 silencing reduced PARK2 expression, impaired mitophagy induction, and counteracted the neuroprotection. Taken together, the present investigation demonstrates that the ER stress induced by TM and TG protects against the transient ischemic brain injury. The PARK2-mediated mitophagy may be underlying the protection of ER stress. These findings may provide a new strategy to rescue ischemic brains by inducing mitophagy through ER stress activation. PMID:25126734

  8. Embryonic stem cell therapy of heart failure in genetic cardiomyopathy.

    PubMed

    Yamada, Satsuki; Nelson, Timothy J; Crespo-Diaz, Ruben J; Perez-Terzic, Carmen; Liu, Xiao-Ke; Miki, Takashi; Seino, Susumu; Behfar, Atta; Terzic, Andre

    2008-10-01

    Pathogenic causes underlying nonischemic cardiomyopathies are increasingly being resolved, yet repair therapies for these commonly heritable forms of heart failure are lacking. A case in point is human dilated cardiomyopathy 10 (CMD10; Online Mendelian Inheritance in Man #608569), a progressive organ dysfunction syndrome refractory to conventional therapies and linked to mutations in cardiac ATP-sensitive K(+) (K(ATP)) channel subunits. Embryonic stem cell therapy demonstrates benefit in ischemic heart disease, but the reparative capacity of this allogeneic regenerative cell source has not been tested in inherited cardiomyopathy. Here, in a Kir6.2-knockout model lacking functional K(ATP) channels, we recapitulated under the imposed stress of pressure overload the gene-environment substrate of CMD10. Salient features of the human malignant heart failure phenotype were reproduced, including compromised contractility, ventricular dilatation, and poor survival. Embryonic stem cells were delivered through the epicardial route into the left ventricular wall of cardiomyopathic stressed Kir6.2-null mutants. At 1 month of therapy, transplantation of 200,000 cells per heart achieved teratoma-free reversal of systolic dysfunction and electrical synchronization and halted maladaptive remodeling, thereby preventing end-stage organ failure. Tracked using the lacZ reporter transgene, stem cells engrafted into host heart. Beyond formation of cardiac tissue positive for Kir6.2, transplantation induced cell cycle activation and halved fibrotic zones, normalizing sarcomeric and gap junction organization within remuscularized hearts. Improved systemic function induced by stem cell therapy translated into increased stamina, absence of anasarca, and benefit to overall survivorship. Embryonic stem cells thus achieve functional repair in nonischemic genetic cardiomyopathy, expanding indications to the therapy of heritable heart failure. Disclosure of potential conflicts of interest is

  9. Full GMP-Compliant Validation of Bone Marrow-Derived Human CD133+ Cells as Advanced Therapy Medicinal Product for Refractory Ischemic Cardiomyopathy

    PubMed Central

    Belotti, Daniela; Gaipa, Giuseppe; Bassetti, Beatrice; Cabiati, Benedetta; Spaltro, Gabriella; Biagi, Ettore; Parma, Matteo; Biondi, Andrea; Cavallotti, Laura; Gambini, Elisa; Pompilio, Giulio

    2015-01-01

    According to the European Medicine Agency (EMA) regulatory frameworks, Advanced Therapy Medicinal Products (ATMP) represent a new category of drugs in which the active ingredient consists of cells, genes, or tissues. ATMP-CD133 has been widely investigated in controlled clinical trials for cardiovascular diseases, making CD133+ cells one of the most well characterized cell-derived drugs in this field. To ensure high quality and safety standards for clinical use, the manufacturing process must be accomplished in certified facilities following standard operative procedures (SOPs). In the present work, we report the fully compliant GMP-grade production of ATMP-CD133 which aims to address the treatment of chronic refractory ischemic heart failure. Starting from bone marrow (BM), ATMP-CD133 manufacturing output yielded a median of 6.66 × 106 of CD133+ cells (range 2.85 × 106–30.84 × 106), with a viability ranged between 96,03% and 99,97% (median 99,87%) and a median purity of CD133+ cells of 90,60% (range 81,40%–96,20%). Based on these results we defined our final release criteria for ATMP-CD133: purity ≥ 70%, viability ≥ 80%, cellularity between 1 and 12 × 106 cells, sterile, and endotoxin-free. The abovementioned criteria are currently applied in our Phase I clinical trial (RECARDIO Trial). PMID:26495296

  10. Full GMP-compliant validation of bone marrow-derived human CD133(+) cells as advanced therapy medicinal product for refractory ischemic cardiomyopathy.

    PubMed

    Belotti, Daniela; Gaipa, Giuseppe; Bassetti, Beatrice; Cabiati, Benedetta; Spaltro, Gabriella; Biagi, Ettore; Parma, Matteo; Biondi, Andrea; Cavallotti, Laura; Gambini, Elisa; Pompilio, Giulio

    2015-01-01

    According to the European Medicine Agency (EMA) regulatory frameworks, Advanced Therapy Medicinal Products (ATMP) represent a new category of drugs in which the active ingredient consists of cells, genes, or tissues. ATMP-CD133 has been widely investigated in controlled clinical trials for cardiovascular diseases, making CD133(+) cells one of the most well characterized cell-derived drugs in this field. To ensure high quality and safety standards for clinical use, the manufacturing process must be accomplished in certified facilities following standard operative procedures (SOPs). In the present work, we report the fully compliant GMP-grade production of ATMP-CD133 which aims to address the treatment of chronic refractory ischemic heart failure. Starting from bone marrow (BM), ATMP-CD133 manufacturing output yielded a median of 6.66 × 10(6) of CD133(+) cells (range 2.85 × 10(6)-30.84 × 10(6)), with a viability ranged between 96,03% and 99,97% (median 99,87%) and a median purity of CD133(+) cells of 90,60% (range 81,40%-96,20%). Based on these results we defined our final release criteria for ATMP-CD133: purity ≥ 70%, viability ≥ 80%, cellularity between 1 and 12 × 10(6) cells, sterile, and endotoxin-free. The abovementioned criteria are currently applied in our Phase I clinical trial (RECARDIO Trial).

  11. Astrocytic Toll-Like Receptor 3 Is Associated with Ischemic Preconditioning- Induced Protection against Brain Ischemia in Rodents

    PubMed Central

    Li, Yang; Xu, Xu-lin; Guo, Lian-jun; Lu, Qing; Wang, Jian

    2014-01-01

    Background Cerebral ischemic preconditioning (IPC) protects brain against ischemic injury. Activation of Toll-like receptor 3 (TLR3) signaling can induce neuroprotective mediators, but whether astrocytic TLR3 signaling is involved in IPC-induced ischemic tolerance is not known. Methods IPC was modeled in mice with three brief episodes of bilateral carotid occlusion. In vitro, IPC was modeled in astrocytes by 1-h oxygen-glucose deprivation (OGD). Injury and components of the TLR3 signaling pathway were measured after a subsequent protracted ischemic event. A neutralizing antibody against TLR3 was used to evaluate the role of TLR3 signaling in ischemic tolerance. Results IPC in vivo reduced brain damage from permanent middle cerebral artery occlusion in mice and increased expression of TLR3 in cortical astrocytes. IPC also reduced damage in isolated astrocytes after 12-h OGD. In astrocytes, IPC or 12-h OGD alone increased TLR3 expression, and 12-h OGD alone increased expression of phosphorylated NFκB (pNFκB). However, IPC or 12-h OGD alone did not alter the expression of Toll/interleukin receptor domain-containing adaptor-inducing IFNβ (TRIF) or phosphorylated interferon regulatory factor 3 (pIRF3). Exposure to IPC before OGD increased TRIF and pIRF3 expression but decreased pNFκB expression. Analysis of cytokines showed that 12-h OGD alone increased IFNβ and IL-6 secretion; 12-h OGD preceded by IPC further increased IFNβ secretion but decreased IL-6 secretion. Preconditioning with TLR3 ligand Poly I:C increased pIRF3 expression and protected astrocytes against ischemic injury; however, cells treated with a neutralizing antibody against TLR3 lacked the IPC- and Poly I:C-induced ischemic protection and augmentation of IFNβ. Conclusions The results suggest that IPC-induced ischemic tolerance is mediated by astrocytic TLR3 signaling. This reprogramming of TLR3 signaling by IPC in astrocytes may play an important role in suppression of the post-ischemic

  12. Dissociation of mitochondrial from sarcoplasmic reticular stress in Drosophila cardiomyopathy induced by molecularly distinct mitochondrial fusion defects

    PubMed Central

    Bhandari, Poonam; Song, Moshi; Dorn, Gerald W

    2015-01-01

    Mitochondrial dynamism (fusion and fission) is responsible for remodeling interconnected mitochondrial networks in some cell types. Adult cardiac myocytes lack mitochondrial networks, and their mitochondria are inherently “fragmented”. Mitochondrial fusion/fission is so infrequent in cardiomyocytes as to not be observable under normal conditions, suggesting that mitochondrial dynamism may be dispensable in this cell type. However, we previously observed that cardiomyocyte-specific genetic suppression of mitochondrial fusion factors optic atrophy 1 (Opa1) and mitofusin/MARF evokes cardiomyopathy in Drosophila hearts. We posited that fusion-mediated remodeling of mitochondria may be critical for cardiac homeostasis, although never directly observed. Alternately, we considered that inner membrane Opa1 and outer membrane mitofusin/MARF might have other as-yet poorly described roles that affect mitochondrial and cardiac function. Here we compared heart tube function in three models of mitochondrial fragmentation in Drosophila cardiomyocytes: Drp1 expression, Opa1 RNAi, and mitofusin MARF RNA1. Mitochondrial fragmentation evoked by enhanced Drp1-mediated fission did not adversely impact heart tube function. In contrast, RNAi-mediated suppression of either Opa1 or mitofusin/MARF induced cardiac dysfunction associated with mitochondrial depolarization and ROS production. Inhibiting ROS by overexpressing superoxide dismutase (SOD) or suppressing ROMO1 prevented mitochondrial and heart tube dysfunction provoked by Opa1 RNAi, but not by mitofusin/MARF RNAi. In contrast, enhancing the ability of endoplasmic/sarcoplasmic reticulum to handle stress by expressing Xbp1 rescued the cardiomyopathy of mitofusin/MARF insufficiency without improving that caused by Opa1 deficiency. We conclude that decreased mitochondrial size is not inherently detrimental to cardiomyocytes. Rather, preservation of mitochondrial function by Opa1 located on the inner mitochondrial membrane, and

  13. TLR3 deficiency induces chronic inflammatory cardiomyopathy in resistant mice following coxsackievirus B3 infection: role for IL-4

    PubMed Central

    Abston, Eric D.; Coronado, Michael J.; Bucek, Adriana; Onyimba, Jennifer A.; Brandt, Jessica E.; Frisancho, J. Augusto; Kim, Eunyong; Bedja, Djahida; Sung, Yoon-kyu; Radtke, Andrea J.; Gabrielson, Kathleen L.; Mitzner, Wayne

    2013-01-01

    Recent findings indicate that TLR3 polymorphisms increase susceptibility to enteroviral myocarditis and inflammatory dilated cardiomyopathy (iDCM) in patients. TLR3 signaling has been found to inhibit coxsackievirus B3 (CVB3) replication and acute myocarditis in mouse models, but its role in the progression from myocarditis to iDCM has not been previously investigated. In this study we found that TLR3 deficiency increased acute (P = 5.9 × 10−9) and chronic (P = 6.0 × 10−7) myocarditis compared with WT B6.129, a mouse strain that is resistant to chronic myocarditis and iDCM. Using left ventricular in vivo hemodynamic assessment, we found that TLR3-deficient mice developed progressively worse chronic cardiomyopathy. TLR3 deficiency significantly increased viral replication in the heart during acute myocarditis from day 3 through day 12 after infection, but infectious virus was not detected in the heart during chronic disease. TLR3 deficiency increased cytokines associated with a T helper (Th)2 response, including IL-4 (P = 0.03), IL-10 (P = 0.008), IL-13 (P = 0.002), and TGF-β1 (P = 0.005), and induced a shift to an immunoregulatory phenotype in the heart. However, IL-4-deficient mice had improved heart function during acute CVB3 myocarditis by echocardiography and in vivo hemodynamic assessment compared with wild-type mice, indicating that IL-4 impairs cardiac function during myocarditis. IL-4 deficiency increased regulatory T-cell and macrophage populations, including FoxP3+ T cells (P = 0.005) and Tim-3+ macrophages (P = 0.004). Thus, TLR3 prevents the progression from myocarditis to iDCM following CVB3 infection by reducing acute viral replication and IL-4 levels in the heart. PMID:23255589

  14. CITED4 induces physiologic hypertrophy and promotes functional recovery after ischemic injury

    PubMed Central

    Bezzerides, Vassilios J.; Platt, Colin; Paruchuri, Kaavya; Oh, Nul Loren; Xiao, Chunyang; Cao, Yunshan; Mann, Nina; Spiegelman, Bruce M.

    2016-01-01

    The mechanisms by which exercise mediates its multiple cardiac benefits are only partly understood. Prior comprehensive analyses of the cardiac transcriptional components and microRNAs dynamically regulated by exercise suggest that the CBP/p300-interacting protein CITED4 is a downstream effector in both networks. While CITED4 has documented functional consequences in neonatal cardiomyocytes in vitro, nothing is known about its effects in the adult heart. To investigate the impact of cardiac CITED4 expression in adult animals, we generated transgenic mice with regulated, cardiomyocyte-specific CITED4 expression. Cardiac CITED4 expression in adult mice was sufficient to induce an increase in heart weight and cardiomyocyte size with normal systolic function, similar to the effects of endurance exercise training. After ischemia-reperfusion, CITED4 expression did not change initial infarct size but mediated substantial functional recovery while reducing ventricular dilation and fibrosis. Forced cardiac expression of CITED4 also induced robust activation of the mTORC1 pathway after ischemic injury. Moreover, pharmacological inhibition of mTORC1 abrogated CITED4’s effects in vitro and in vivo. Together, these data establish CITED4 as a regulator of mTOR signaling that is sufficient to induce physiologic hypertrophy at baseline and mitigate adverse ventricular remodeling after ischemic injury. PMID:27430023

  15. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy

    PubMed Central

    Lin, Bo; Li, Yang; Han, Lu; Kaplan, Aaron D.; Ao, Ying; Kalra, Spandan; Bett, Glenna C. L.; Rasmusson, Randall L.; Denning, Chris; Yang, Lei

    2015-01-01

    ABSTRACT Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD), and is characterized by progressive weakness in skeletal and cardiac muscles. Currently, dilated cardiomyopathy due to cardiac muscle loss is one of the major causes of lethality in late-stage DMD patients. To study the molecular mechanisms underlying dilated cardiomyopathy in DMD heart, we generated cardiomyocytes (CMs) from DMD and healthy control induced pluripotent stem cells (iPSCs). DMD iPSC-derived CMs (iPSC-CMs) displayed dystrophin deficiency, as well as the elevated levels of resting Ca2+, mitochondrial damage and cell apoptosis. Additionally, we found an activated mitochondria-mediated signaling network underlying the enhanced apoptosis in DMD iPSC-CMs. Furthermore, when we treated DMD iPSC-CMs with the membrane sealant Poloxamer 188, it significantly decreased the resting cytosolic Ca2+ level, repressed caspase-3 (CASP3) activation and consequently suppressed apoptosis in DMD iPSC-CMs. Taken together, using DMD patient-derived iPSC-CMs, we established an in vitro model that manifests the major phenotypes of dilated cardiomyopathy in DMD patients, and uncovered a potential new disease mechanism. Our model could be used for the mechanistic study of human muscular dystrophy, as well as future preclinical testing of novel therapeutic compounds for dilated cardiomyopathy in DMD patients. PMID:25791035

  16. Modeling and study of the mechanism of dilated cardiomyopathy using induced pluripotent stem cells derived from individuals with Duchenne muscular dystrophy.

    PubMed

    Lin, Bo; Li, Yang; Han, Lu; Kaplan, Aaron D; Ao, Ying; Kalra, Spandan; Bett, Glenna C L; Rasmusson, Randall L; Denning, Chris; Yang, Lei

    2015-05-01

    Duchenne muscular dystrophy (DMD) is caused by mutations in the dystrophin gene (DMD), and is characterized by progressive weakness in skeletal and cardiac muscles. Currently, dilated cardiomyopathy due to cardiac muscle loss is one of the major causes of lethality in late-stage DMD patients. To study the molecular mechanisms underlying dilated cardiomyopathy in DMD heart, we generated cardiomyocytes (CMs) from DMD and healthy control induced pluripotent stem cells (iPSCs). DMD iPSC-derived CMs (iPSC-CMs) displayed dystrophin deficiency, as well as the elevated levels of resting Ca(2+), mitochondrial damage and cell apoptosis. Additionally, we found an activated mitochondria-mediated signaling network underlying the enhanced apoptosis in DMD iPSC-CMs. Furthermore, when we treated DMD iPSC-CMs with the membrane sealant Poloxamer 188, it significantly decreased the resting cytosolic Ca(2+) level, repressed caspase-3 (CASP3) activation and consequently suppressed apoptosis in DMD iPSC-CMs. Taken together, using DMD patient-derived iPSC-CMs, we established an in vitro model that manifests the major phenotypes of dilated cardiomyopathy in DMD patients, and uncovered a potential new disease mechanism. Our model could be used for the mechanistic study of human muscular dystrophy, as well as future preclinical testing of novel therapeutic compounds for dilated cardiomyopathy in DMD patients.

  17. 3-nitrotyrosine, a biomarker for cardiomyocyte apoptosis induced by diabetic cardiomyopathy in a rat model.

    PubMed

    Zhang, Ya-Li; Wei, Jin-Ru

    2013-10-01

    The aim of this study was to investigate whether 3-nitrotyrosine (3-NT) may serve as a predictive biomarker for cardiomyocyte apoptosis in a diabetic cardiomyopathic rat model. Using male Sprague-Dawley (SD) rats in a prospective, randomized, controlled study, a diabetic type II animal model was established by injection with streptozotocin. The diabetic group and the diabetic cardiomyopathy (DCM) group were administered valsartan. This study revealed the following: i) The ratio of heart/body weight increased in the DCM, diabetes administered with valsartan (D+V) and DCM+V groups compared with the N group. ii) The expression index (EI) of 3-NT correlated positively with the apoptotic index (AI) of the cardiomyocytes, whereas 3-NT in the serum did not reflect changes in the AI. iii) The AI of the DCM group was the highest of the assessed groups. The AI of the DCM group was higher than that in the D+V group, and the AI of the DCM+V group was higher than that of the N group. iv) The EI of 3-NT increased with a higher AI. The higher the EI of 3-NT, the higher the AI observed in rat cardiomyocytes. Both the EI of 3-NT and the AI of the DCM group were higher than in the other groups. However, both the EI of 3-NT and the AI in the DCM group markedly decreased for the DCM+V group. 3-NT in the myocardial tissue of rats was deemed to be a successful biomarker for predicting cardiomyocyte apoptosis in SD rats. 3-NT levels were significantly increased and related to cardiomyocyte apoptosis. Valsartan post-treatment reversed the increase of 3-NT and apoptosis in diabetic cardiomyopathy.

  18. Tetanus-induced re-activation of evoked spiking in the post-ischemic dentate gyrus.

    PubMed

    Henrich-Noack, P; Gorkin, A G; Krautwald, K; Pforte, C; Schröder, U H; Reymann, K G

    2005-01-01

    This study aimed at investigating and influencing the basic electrophysiological functions and neuronal plasticity in the dentate gyrus in freely moving rats at several time-points after global ischemia. Although neuronal death was induced selectively in the cornu ammonis, subfield 1 (CA1)-region of the hippocampus, we found an additional loss of the population spike in the dentate gyrus after stimulation of the perforant path. Input/output-measurements revealed that as early as 1 day post-ischemia population spike generation in the granular cell layer is greatly decreased when compared with pre-ischemic values and to sham-operated animals, despite an apparently intact morphology of granular cells as evidenced by Nissl-staining. In contrast, the synaptic transmission (excitatory postsynaptic field potential) shows no significant difference when comparing values before and after ischemia and ischemic and sham-operated animals. Despite reduced output function, indicated by very small population spike amplitudes, long lasting potentiation can be induced 10 days after ischemia. Surprisingly, even "silent" populations of neurons, which appear selectively post-ischemia and do not show any evoked population spike, can be re-activated by tetanisation which is followed by a normal appearing long-term potentiation. However, this functional recovery seems to be partial and transient under current conditions: population spike-values do not reach pre-ischemic values and return to the low pre-tetanic baseline values the next day. Electrophysiological measurements ex vivo after ischemia indicate that the neuronal dysfunction in the dentate gyrus is not due to locally destroyed structures but that the activity of granular cells is merely suppressed only under in vivo conditions. In summary, global ischemia leaves a neighboring morphologically intact input area, functionally impaired. However, neuronal function can be partially regenerated by electrophysiological tetanic

  19. Effects of ischemic preconditioning on ischemia/reperfusion-induced arrhythmias by upregulatation of connexin 43 expression

    PubMed Central

    2011-01-01

    Background The susceptibility of hypertrophied myocardium to ischemia-reperfusion injury is associated with increased risk of postoperative arrhythmias. We investigate the effects of ischemic preconditioning (IP) on post-ischemic reperfusion arrhythmias in hypertrophic rabbit hearts. Methods Thirty-three rabbit models of myocardial hypertrophy were randomly divided into three groups of 11 each: non-ischemia-reperfusion group (group A), ischemia-reperfusion group (group B), and ischemic preconditioning group (group C). Another ten healthy rabbits with normal myocardium served as the healthy control group. Rabbit models of myocardial hypertrophy were induced by abdominal aortic banding. Surface electrocardiogram (ECG) was recorded and Curtis-Ravingerova score was used for arrhythmia quantification. Connexin 43 (Cx43) expression was assessed by immunohistochemistry. Results Ratios of heart weight to body weight and left ventricular weight to body weight increase significantly in the three groups compared with the healthy control group (p < 0.05). Arrhythmia incidence in group C is significantly lower than group B (p < 0.05). Curtis-Ravingerova score in group C is lower than group B (p < 0.05). Cx43 expression area in group A is smaller by comparison with the healthy control group (p < 0.05). Cx43 expression area and fluorescence intensity in group B are reduced by 60.9% and 23.9%, respectively, compared with group A (p < 0.05). In group C, Cx43 expression area increases by 32.5% compared with group B (p < 0.05), and decreases by 54.8% compared with group A (p < 0.05). Conclusions The incidence of ischemia/reperfusion-induced arrhythmias in hypertrophic rabbit hearts decreases after IP, which plays an important protecting role on the electrophysiology of hypertrophied myocardium by up-regulating the expression of Cx43. PMID:21635761

  20. Molecular imaging of induced pluripotent stem cell immunogenicity with in vivo development in ischemic myocardium.

    PubMed

    Liu, Zhiqiang; Wen, Xinyu; Wang, Haibin; Zhou, Jin; Zhao, Mengge; Lin, Qiuxia; Wang, Yan; Li, Junjie; Li, Dexue; Du, Zhiyan; Yao, Anning; Cao, Feng; Wang, Changyong

    2013-01-01

    Whether differentiation of induced pluripotent stem cells (iPSCs) in ischemic myocardium enhances their immunogenicity, thereby increasing their chance for rejection, is unclear. Here, we dynamically demonstrated the immunogenicity and rejection of iPSCs in ischemic myocardium using bioluminescent imaging (BLI). Murine iPSCs were transduced with a tri-fusion (TF) reporter gene consisting of firefly luciferase-red fluorescent protein-truncated thymidine kinase (fluc-mrfp-tTK). Ascorbic acid (Vc) were used to induce iPSCs to differentiate into cardiomyocytes (CM). iPSCs and iPS-CMs were intramyocardially injected into immunocompetent or immunosuppressed allogenic murine with myocardial infarction. BLI was performed to track transplanted cells. Immune cell infiltration was evaluated by immunohistochemistry. Syngeneic iPSCs were also injected and evaluated. The results demonstrated that undifferentiated iPSCs survived and proliferated in allogenic immunocompetent recipients early post-transplantation, accompanying with mild immune cell infiltration. With in vivo differentiation, a progressive immune cell infiltration could be detected. While transplantation of allogenic iPSC-CMs were observed an acute rejection from receipts. In immune-suppressed recipients, the proliferation of iPSCs could be maintained and intramyocardial teratomas were formed. Transplantation of syngeneic iPSCs and iPSC-CMs were also observed progressive immune cell infiltration. This study demonstrated that iPSC immunogenicity increases with in vivo differentiation, which will increase their chance for rejection in iPSC-based therapy.

  1. Ischemia-induced mitochondrial apoptosis is significantly attenuated by ischemic preconditioning.

    PubMed

    Racay, Peter; Chomova, Maria; Tatarkova, Zuzana; Kaplan, Peter; Hatok, Jozef; Dobrota, Dusan

    2009-09-01

    Ischemic preconditioning (IPC) represents an important adaptation of CNS to sub-lethal ischemia, which results in increased tolerance of CNS to the lethal ischemia. Ischemia-induced mitochondrial apoptosis is considered to be an important event leading to neuronal cell death after cerebral blood flow arrest. In presented study, we have determined the effect of IPC on ischemia/reperfusion-induced mitochondrial apoptosis. Global brain ischemia was induced by permanent occlusion of vertebral arteries and temporal occlusion of carotid arteries for 15 min. Rats were preconditioned by 5 min of sub-lethal ischemia and 2 days later 15 min of lethal ischemia was induced. With respect to mitochondrial apoptosis initiation, translocation of p53 to mitochondria was observed in hippocampus but not in cerebral cortex. However, level of both apoptotic bax and anti-apoptotic bcl-xl in both hippocampal and cortical mitochondria was unchanged after global brain ischemia. Detection of genomic DNA fragmentation as well as Fluoro-Jade C staining showed that ischemia induces apoptosis in vulnerable CA1 layer of rat hippocampus. IPC abolished completely ischemia-induced translocation of p53 to mitochondria and had significant protective effect on ischemia-induced DNA fragmentation. In addition, significant decrease of Fluoro-Jade C positive cells was observed as well. Our results indicate that IPC abolished almost completely both initiation and execution of mitochondrial apoptosis induced by global brain ischemia. PMID:19283470

  2. Metabolic imaging of patients with cardiomyopathy

    SciTech Connect

    Geltman, E.M. )

    1991-09-01

    The cardiomyopathies comprise a diverse group of illnesses that can be characterized functionally by several techniques. However, the delineation of derangements of regional perfusion and metabolism have been accomplished only relatively recently with positron emission tomography (PET). Regional myocardial accumulation and clearance of 11C-palmitate, the primary myocardial substrate under most conditions, demonstrate marked spatial heterogeneity when studied under fasting conditions or with glucose loading. PET with 11C-palmitate permits the noninvasive differentiation of patients with nonischemic from ischemic dilated cardiomyopathy, since patients with ischemic cardiomyopathy demonstrate large zones of intensely depressed accumulation of 11C-palmitate, probably reflecting prior infarction. Patients with hypertrophic cardiomyopathy and Duchenne's muscular dystrophy demonstrate relatively unique patterns of myocardial abnormalities of perfusion and metabolism. The availability of new tracers and techniques for the evaluation of myocardial metabolism (11C-acetate), perfusion (H2(15)O), and autonomic tone (11-C-hydroxyephedrine) should facilitate further understanding of the pathogenesis of the cardiomyopathies.

  3. Ischemic Preconditioning Mediates Neuroprotection against Ischemia in Mouse Hippocampal CA1 Neurons by Inducing Autophagy

    PubMed Central

    Zhang, Xuebin; Huang, Huiling; Wang, Jin; Wang, Yajing; Tong, Xiaoguang; Wang, Jinhuan; Wu, Jialing

    2015-01-01

    The hippocampal CA1 region is sensitive to hypoxic and ischemic injury but can be protected by ischemic preconditioning (IPC). However, the mechanism through which IPC protects hippocampal CA1 neurons is still under investigation. Additionally, the role of autophagy in determining the fate of hippocampal neurons is unclear. Here, we examined whether IPC induced autophagy to alleviate hippocampal CA1 neuronal death in vitro and in vivo with oxygen glucose deprivation (OGD) and bilateral carotid artery occlusion (BCCAO) models. Survival of hippocampal neurons increased from 51.5% ± 6.3% in the non-IPC group (55 min of OGD) to 77.3% ± 7.9% in the IPC group (15 min of OGD, followed by 55 min of OGD 24 h later). The number of hippocampal CA1 layer neurons increased from 182 ± 26 cells/mm2 in the non-IPC group (20 min of BCCAO) to 278 ± 55 cells/mm2 in the IPC group (1 min × 3 BCCAO, followed by 20 min of BCCAO 24 h later). Akt phosphorylation and microtubule-associated protein light chain 3 (LC3)-II/LC3-I expression were increased in the preconditioning group. Moreover, the protective effects of IPC were abolished only by inhibiting the activity of autophagy, but not by blocking the activation of Akt in vitro. Using in vivo experiments, we found that LC3 expression was upregulated, accompanied by an increase in neuronal survival in hippocampal CA1 neurons in the preconditioning group. The neuroprotective effects of IPC on hippocampal CA1 neurons were completely inhibited by treatment with 3-MA. In contrast, hippocampal CA3 neurons did not show changes in autophagic activity or beneficial effects of IPC. These data suggested that IPC may attenuate ischemic injury in hippocampal CA1 neurons through induction of Akt-independent autophagy. PMID:26325184

  4. Cardiomyopathy induced by artificial cardiac pacing: myth or reality sustained by evidence?

    PubMed Central

    Ferrari, Andrés Di Leoni; Borges, Anibal Pires; Albuquerque, Luciano Cabral; Sussenbach, Carolina Pelzer; da Rosa, Priscila Raupp; Piantá, Ricardo Medeiros; Wiehe, Mario; Goldani, Marco Antônio

    2014-01-01

    Implantable cardiac pacing systems are a safe and effective treatment for symptomatic irreversible bradycardia. Under the proper indications, cardiac pacing might bring significant clinical benefit. Evidences from literature state that the action of the artificial pacing system, mainly when the ventricular lead is located at the apex of the right ventricle, produces negative effects to cardiac structure (remodeling, dilatation) and function (dissinchrony). Patients with previously compromised left ventricular function would benefit the least with conventional right ventricle apical pacing, and are exposed to the risk of developing higher incidence of morbidity and mortality for heart failure. However, after almost 6 decades of cardiac pacing, just a reduced portion of patients in general would develop these alterations. In this context, there are not completely clear some issues related to cardiac pacing and the development of this cardiomyopathy. Causality relationships among QRS widening with a left bundle branch block morphology, contractility alterations within the left ventricle, and certain substrates or clinical (previous systolic dysfunction, structural heart disease, time from implant) or electrical conditions (QRS duration, percentage of ventricular stimulation) are still subjecte of debate. This review analyses contemporary data regarding this new entity, and discusses alternatives of how to use cardiac pacing in this context, emphasizing cardiac resynchronization therapy. PMID:25372916

  5. Yogurt Containing the Probacteria Lactobacillus acidophilus Combined with Natural Antioxidants Mitigates Doxorubicin-Induced Cardiomyopathy in Rats.

    PubMed

    Abu-Elsaad, Nashwa M; Abd Elhameed, Ahmed G; El-Karef, Amr; Ibrahim, Tarek M

    2015-09-01

    Probiotics and antioxidants have a definite improving effect in cardiovascular diseases. This study aims at mitigating doxorubicin toxicity on cardiac function through consuming a functional food. Five groups of adult male Sprague-Dawley rats were used along 22 weeks. Group I received 30 g/kg/day food enriched with yogurt, green tea extract, and carrots (80, 0.84, and 100 g/kg diet, respectively) from the first week, group II received carvedilol 30 mg/kg/day orally from week 17, group III received both carvedilol and tested food, and groups IV and V were +ve and -ve control groups, respectively. In week 17, cardiomyopathy was induced by i.p. injection of 2.5 mg/kg doxorubicin every 48 h for 2 weeks. Histopathological and electrophysiological examinations and biochemical analysis were done. Lipid peroxidation, antioxidant effect, heart failure compensatory mediators, and proinflammatory cytokines were assessed. Tested food normalized time between the start of Q wave and the end of T wave on electrocardiogram (QT interval) and heart rate compared to the doxorubicin group (P<.05). It also improved hypertrophy indicated by a significant (P<.05) decrease in heart/body weight ratio, angiotensin-II (Ang-II), and atrial natriuretic peptide (ANP) serum levels. Histopathological examination of cardiac sections from the tested food group revealed less marked vacuolization and low perivascular fibrosis percentage (0.7803 ± 0.04). A significant (P<.001) decrease in serum creatine kinase-membrane bound, lactate dehydrogenase, triglycerides, cholesterol, low-density lipoprotein cholesterol, and tissue malondialdehyde (MDA) levels was observed in addition to an increase in serum Na(+)/K(+) ATP1A1 and cardiac reduced glutathione (GSH) levels. Tested food also lowered the inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) serum levels significantly (P<.01). Probiotic food containing Lactobacillus acidophilus, green tea, and carrots can improve

  6. Harnessing the hypoxia-inducible factor in cancer and ischemic disease.

    PubMed

    Brahimi-Horn, M Christiane; Pouysségur, Jacques

    2007-02-01

    The alpha/beta-heterodimeric transcription factor hypoxia-inducible factor (HIF) functions when the oxygen level in tissues is low, i.e. when the tissue microenvironment becomes hypoxic, and is non-functional when the level of oxygen is high. Certain pathophysiological conditions such as ischemic disorders and cancer encounter low levels of local tissue oxygenation due to a defective or insufficient vasculature. Highly proliferating tumour cells rapidly form into a mass that becomes located too far from the vasculature to be nourished and oxygenated. Under such conditions HIF activates or represses a vast array of genes that in particular, initiate the formation of new blood vessels and modify metabolism. In this way the tumour mass re-establishes conditions favourable for further proliferation. Interest is being expressed in the direct repression or stimulation of HIF activity, respectively, in the treatment of cancer and of ischemic disorders. The modulation of other HIF-target genes implicated, in particular, in tumour metabolism and intracellular pH control may also prove to be useful in cancer therapy. However, before going further a better understanding of the basics of the HIF signalling pathway is essential. This review will introduce the reader to the molecular mechanisms that regulate HIF and some of the biological consequences of its action, in particular in tumour metabolism, growth and invasion. Approaches to either enforce tumour regression or increase blood vessel formation through the targeting of HIF or its downstream effectors will also be discussed. PMID:17101119

  7. TIGAR contributes to ischemic tolerance induced by cerebral preconditioning through scavenging of reactive oxygen species and inhibition of apoptosis.

    PubMed

    Zhou, Jun-Hao; Zhang, Tong-Tong; Song, Dan-Dan; Xia, Yun-Fei; Qin, Zheng-Hong; Sheng, Rui

    2016-01-01

    Previous study showed that TIGAR (TP53-induced glycolysis and apoptosis regulator) protected ischemic brain injury via enhancing pentose phosphate pathway (PPP) flux and preserving mitochondria function. This study was aimed to study the role of TIGAR in cerebral preconditioning. The ischemic preconditioning (IPC) and isoflurane preconditioning (ISO) models were established in primary cultured cortical neurons and in mice. Both IPC and ISO increased TIGAR expression in cortical neurons. Preconditioning might upregulate TIGAR through SP1 transcription factor. Lentivirus mediated knockdown of TIGAR significantly abolished the ischemic tolerance induced by IPC and ISO. ISO also increased TIGAR in mouse cortex and hippocampus and alleviated subsequent brain ischemia-reperfusion injury, while the ischemic tolerance induced by ISO was eliminated with TIGAR knockdown in mouse brain. ISO increased the production of NADPH and glutathione (GSH), and scavenged reactive oxygen species (ROS), while TIGAR knockdown decreased GSH and NADPH production and increased the level of ROS. Supplementation of ROS scavenger NAC and PPP product NADPH effectively rescue the neuronal injury caused by TIGAR deficiency. Notably, TIGAR knockdown inhibited ISO-induced anti-apoptotic effects in cortical neurons. These results suggest that TIGAR participates in the cerebral preconditioning through reduction of ROS and subsequent cell apoptosis. PMID:27256465

  8. TIGAR contributes to ischemic tolerance induced by cerebral preconditioning through scavenging of reactive oxygen species and inhibition of apoptosis

    PubMed Central

    Zhou, Jun-Hao; Zhang, Tong-Tong; Song, Dan-Dan; Xia, Yun-Fei; Qin, Zheng-Hong; Sheng, Rui

    2016-01-01

    Previous study showed that TIGAR (TP53-induced glycolysis and apoptosis regulator) protected ischemic brain injury via enhancing pentose phosphate pathway (PPP) flux and preserving mitochondria function. This study was aimed to study the role of TIGAR in cerebral preconditioning. The ischemic preconditioning (IPC) and isoflurane preconditioning (ISO) models were established in primary cultured cortical neurons and in mice. Both IPC and ISO increased TIGAR expression in cortical neurons. Preconditioning might upregulate TIGAR through SP1 transcription factor. Lentivirus mediated knockdown of TIGAR significantly abolished the ischemic tolerance induced by IPC and ISO. ISO also increased TIGAR in mouse cortex and hippocampus and alleviated subsequent brain ischemia-reperfusion injury, while the ischemic tolerance induced by ISO was eliminated with TIGAR knockdown in mouse brain. ISO increased the production of NADPH and glutathione (GSH), and scavenged reactive oxygen species (ROS), while TIGAR knockdown decreased GSH and NADPH production and increased the level of ROS. Supplementation of ROS scavenger NAC and PPP product NADPH effectively rescue the neuronal injury caused by TIGAR deficiency. Notably, TIGAR knockdown inhibited ISO-induced anti-apoptotic effects in cortical neurons. These results suggest that TIGAR participates in the cerebral preconditioning through reduction of ROS and subsequent cell apoptosis. PMID:27256465

  9. TARGETED DELETION OF INDUCIBLE HEAT SHOCK PROTEIN 70 ABROGATES THE LATE INFARCT-SPARING EFFECT OF MYOCARDIAL ISCHEMIC PRECONDITIONING

    EPA Science Inventory

    Abstract submitted for 82nd annual meeting of the American Association for Thoracic Surgery, May 4-8, 2002 in Washington D.C.

    Targeted Deletion of Inducible Heat Shock Protein 70 Abrogates the Late Infarct-Sparing Effect of Myocardial Ischemic Preconditioning

    Craig...

  10. APACHE II score, rather than cardiac function, may predict poor prognosis in patients with stress-induced cardiomyopathy.

    PubMed

    Joe, Byung-Hyun; Jo, Uk; Kim, Hyun-Soo; Park, Chang-Bum; Hwang, Hui-Jeong; Sohn, Il-Suk; Jin, Eun-Sun; Cho, Jin-Man; Park, Jeong-Hwan; Kim, Chong-Jin

    2012-01-01

    While the disease course of stress-induced cardiomyopathy (SIC) is usually benign, it can be fatal. The prognostic factors to predict poorer outcome are not well established, however. We analyzed the Acute Physiology And Chronic Health Evaluation (APACHE) II score to assess its value for predicting poor prognosis in patients with SIC. Thirty-seven consecutive patients with SIC were followed prospectively during their hospitalization. Clinical factors, including APACHE II score, coronary angiogram, echocardiography and cardiac enzymes at presentation were analyzed. Of the 37 patients, 27 patients (73%) were women. The mean age was 66.1 ± 15.6 yr, and the most common presentation was chest pain (38%). Initial echocardiographic left ventricular ejection fraction (EF) was 42.5% ± 9.3%, and the wall motion score index (WMSI) was 1.9 ± 0.3. Six patients (16%) expired during the follow-up period of hospitalization. Based on the analysis of characteristics and clinical factors, the only predictable variable in prognosis was APACHE II score. The patients with APACHE II score greater than 20 had tendency to expire than the others (P = 0.001). Based on present study, APACHE II score more than 20, rather than cardiac function, is associated with mortality in patients with SIC.

  11. Mutant hypoxia inducible factor-1α improves angiogenesis and tissue perfusion in ischemic rabbit skeletal muscle.

    PubMed

    Li, Mingyan; Liu, Cheng; Bin, Jianping; Wang, Yuegang; Chen, Jianwei; Xiu, Jiancheng; Pei, Jingxian; Lai, Yanxian; Chen, Dongdong; Fan, Caixia; Xie, Jiajia; Tao, Yu; Wu, Pingsheng

    2011-01-01

    Hypoxia-inducible factor-1α (HIF-1α) is one of the most potent angiogenic growth factors. It regulates genes involved in angiogenesis, but is inactivated rapidly by normoxia. Ad-HIF-1α-Trip was constructed by transforming Pro402, Pro564, and Asn803 in HIF-1α to alanine in order to delay degradation and create a constitutive transcriptional activator. In this study, we investigated whether Ad-HIF-1α-Trip could induce functional mature angiogenesis and the possible mechanisms involved. We found that Ad-HIF-1α-Trip increased the expression of multiple angiogenic genes in cultured HMVEC-Ls, including VEGF, PLGF, PAI-1, and PDGF. In a rabbit model of acute hind limb ischemia, Ad-HIF-1α-Trip improved tissue perfusion and collateral vessels, as measured by contrast-enhanced ultrasound (CEU), CT angiography, and vascular casting. Ad-HIF-1α-Trip also produced more histologically identifiable capillaries, which were verified by immunostaining, compared with controls. Interestingly, inhibition of CBP/p300 by curcumin prevented HIF-1α from inducing the expression of several angiogenic genes. The present study suggests that Ad-HIF-1α-Trip can induce mature angiogenesis and improve tissue perfusion in ischemic rabbit skeletal muscle. CBP/p300, which interacts with the transactivation domains of HIF-1α, is important for HIF-1α-induced transcription of angiogenic genes. PMID:20937289

  12. Burn-induced subepicardial injury in frog heart: a simple model mimicking ST segment changes in ischemic heart disease

    PubMed Central

    KAZAMA, Itsuro

    2015-01-01

    To mimic ischemic heart disease in humans, several animal models have been created, mainly in rodents by surgically ligating their coronary arteries. In the present study, by simply inducing burn injuries on the bullfrog heart, we reproduced abnormal ST segment changes in the electrocardiogram (ECG), mimicking those observed in ischemic heart disease, such as acute myocardial infarction and angina pectoris. The “currents of injury” created by a voltage gradient between the intact and damaged areas of the myocardium, negatively deflected the ECG vector during the diastolic phase, making the ST segment appear elevated during the systolic phase. This frog model of heart injury would be suitable to explain the mechanisms of ST segment changes observed in ischemic heart disease. PMID:26346747

  13. Peripartum cardiomyopathy.

    PubMed

    Okeke, Tc; Ezenyeaku, Cct; Ikeako, Lc

    2013-07-01

    Peripartum cardiomyopathy (PPCM) is a rare form of unexplained cardiac failure of unknown origin, unique to the pregnant woman with highly variable outcome associated with high morbidity and mortality. PPCM is fraught with controversies in its definition, epidemiology, pathophysiology, diagnosis and management. PPCM is frequently under diagnosed, inadequately treated and without a laid down follow-up regimen, thus, the aim of this review. Publications on PPCM were accessed using Medline, Google scholar and Pubmed databases. Relevant materials on PPCM, selected references from internet services, journals, textbooks, and lecture notes on PPCM were also accessed and critically reviewed. PPCM is multifactorial in origin. It is a diagnosis of exclusion and should be based on classic echocardiographic criteria. The outcome of PPCM is also highly variable with high morbidity and mortality rates. Future pregnancies are not recommended in women with persistent ventricular dysfunction because the heart cannot tolerate increased cardiovascular workload associated with the pregnancy. Although, multiparity is associated with PPCM, there is an increased risk of fetal prematurity and fetal loss. PPCM is a rare form of dilated cardiomyopathy of unknown origin, unique to pregnant women. The pathophysiology is poorly understood. Echocardiography is central to diagnosis of PPCM and effective treatment monitoring in patients of PPCM. The outcome is highly variable and related to reversal of ventricular dysfunction. PMID:24116305

  14. Medication-induced Takotsubo Cardiomyopathy presenting with cardiogenic shock-utility of extracorporeal membrane oxygenation (ECMO): case report and review of the literature.

    PubMed

    Rojas-Marte, Geurys; John, Jinu; Sadiq, Adnan; Moskovits, Norbert; Saunders, Paul; Shani, Jacob

    2015-01-01

    Takotsubo cardiomyopathy (TTC) is a transient condition that affects the myocardium and is seen mostly in post-menopausal women secondary to an emotional or physical stressor; however, certain drugs have been described as cause of this syndrome. We report the case of a young female with medication--induced TTC, who presented with cardiogenic shock as initial manifestation, treated successfully with extracorporeal membrane oxygenation (ECMO). To our knowledge, this is the first case in the literature describing the use of ECMO in cardiogenic shock due to medication-induced TTC.

  15. Fatty acid nitroalkenes induce resistance to ischemic cardiac injury by modulating mitochondrial respiration at complex II

    PubMed Central

    Koenitzer, Jeffrey R.; Bonacci, Gustavo; Woodcock, Steven R.; Chen, Chen-Shan; Cantu-Medellin, Nadiezhda; Kelley, Eric E.; Schopfer, Francisco J.

    2015-01-01

    Nitro-fatty acids (NO2-FA) are metabolic and inflammatory-derived electrophiles that mediate pleiotropic signaling actions. It was hypothesized that NO2-FA would impact mitochondrial redox reactions to induce tissue-protective metabolic shifts in cells. Nitro-oleic acid (OA-NO2) reversibly inhibited complex II-linked respiration in isolated rat heart mitochondria in a pH-dependent manner and suppressed superoxide formation. Nitroalkylation of Fp subunit was determined by BME capture and the site of modification by OA-NO2 defined by mass spectrometric analysis. These effects translated into reduced basal and maximal respiration and favored glycolytic metabolism in H9C2 cardiomyoblasts as assessed by extracellular H+ and O2 flux analysis. The perfusion of NO2-FA induced acute cardioprotection in an isolated perfused heart ischemia/reperfusion (IR) model as evidenced by significantly higher rate-pressure products. Together these findings indicate that NO2-FA can promote cardioprotection by inducing a shift from respiration to glycolysis and suppressing reactive species formation in the post-ischemic interval. PMID:26722838

  16. Protective effects of ginsenoside Rb3 on oxygen and glucose deprivation-induced ischemic injury in PC12 cells

    PubMed Central

    Zhu, Jun-rong; Tao, Yi-fu; Lou, Shen; Wu, Zi-mei

    2010-01-01

    Aim: To investigate the protective effects of ginsenoside Rb3, a triterpenoid saponin isolated from the leaves of Panax notoginseng, on ischemic and reperfusion injury model of PC12 cells and elucidate the related mechanisms. Methods: PC12 cells exposed to oxygen and glucose deprivation (OGD) and restoration (OGD-Rep) were used as an in vitro model of ischemia and reperfusion. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and lactate dehydrogenase (LDH) leakage were used to evaluate the protective effects of ginsenoside Rb3. Cellular apoptosis and mitochondrial membrane potential (MMP) were analyzed using flow cytometry. Intracellular calcium ion concentration ([Ca2+]i) was detected using fluorophotometer system. Caspase-3, -8, and -9 activities were measured using assay kits with an ELISA reader. Western blotting assay was used to evaluate the release of cytochrome c and expression of caspase-3, Bcl-2 and Bax proteins. Results: It was shown that ginsenoside Rb3 (0.1–10 μmol/L) significantly increased cell viability and inhibited LDH release in a dose-dependent manner on the ischemic model. In addition, ginsenoside Rb3 also significantly inhibited ischemic injury-induced apoptosis, [Ca2+]i elevation, and decrease of MMP. Meanwhile, pretreatment with ginsenoside Rb3 significantly induced an increase of Bcl-2 protein expression and a decrease of cytosolic cytochrome c, cleaved-caspase 3 and Bax protein expression, the caspase-3, -8, and -9 activity were also inhibited. Conclusion: The results indicated that ginsenoside Rb3 could markedly protected OGD-Rep induced ischemic injury and the mechanisms maybe related to its suppression of the intracellular Ca2+ elevation and inhibition of apoptosis and caspase activity. Ginsenoside Rb3 could be a promising candidate in the development of a novel class of anti-ischemic agent. PMID:20140005

  17. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy.

    PubMed

    Cashman, Timothy J; Josowitz, Rebecca; Johnson, Bryce V; Gelb, Bruce D; Costa, Kevin D

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new

  18. Human Engineered Cardiac Tissues Created Using Induced Pluripotent Stem Cells Reveal Functional Characteristics of BRAF-Mediated Hypertrophic Cardiomyopathy

    PubMed Central

    Johnson, Bryce V.; Gelb, Bruce D.; Costa, Kevin D.

    2016-01-01

    Hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death that often goes undetected in the general population. HCM is also prevalent in patients with cardio-facio-cutaneous syndrome (CFCS), which is a genetic disorder characterized by aberrant signaling in the RAS/MAPK signaling cascade. Understanding the mechanisms of HCM development in such RASopathies may lead to novel therapeutic strategies, but relevant experimental models of the human condition are lacking. Therefore, the objective of this study was to develop the first 3D human engineered cardiac tissue (hECT) model of HCM. The hECTs were created using human cardiomyocytes obtained by directed differentiation of induced pluripotent stem cells derived from a patient with CFCS due to an activating BRAF mutation. The mutant myocytes were directly conjugated at a 3:1 ratio with a stromal cell population to create a tissue of defined composition. Compared to healthy patient control hECTs, BRAF-hECTs displayed a hypertrophic phenotype by culture day 6, with significantly increased tissue size, twitch force, and atrial natriuretic peptide (ANP) gene expression. Twitch characteristics reflected increased contraction and relaxation rates and shorter twitch duration in BRAF-hECTs, which also had a significantly higher maximum capture rate and lower excitation threshold during electrical pacing, consistent with a more arrhythmogenic substrate. By culture day 11, twitch force was no longer different between BRAF and wild-type hECTs, revealing a temporal aspect of disease modeling with tissue engineering. Principal component analysis identified diastolic force as a key factor that changed from day 6 to day 11, supported by a higher passive stiffness in day 11 BRAF-hECTs. In summary, human engineered cardiac tissues created from BRAF mutant cells recapitulated, for the first time, key aspects of the HCM phenotype, offering a new in vitro model for studying intrinsic mechanisms and screening new

  19. Modeling structural and functional deficiencies of RBM20 familial dilated cardiomyopathy using human induced pluripotent stem cells.

    PubMed

    Wyles, Saranya P; Li, Xing; Hrstka, Sybil C; Reyes, Santiago; Oommen, Saji; Beraldi, Rosanna; Edwards, Jessica; Terzic, Andre; Olson, Timothy M; Nelson, Timothy J

    2016-01-15

    Dilated cardiomyopathy (DCM) is a leading cause of heart failure. In families with autosomal-dominant DCM, heterozygous missense mutations were identified in RNA-binding motif protein 20 (RBM20), a spliceosome protein induced during early cardiogenesis. Dermal fibroblasts from two unrelated patients harboring an RBM20 R636S missense mutation were reprogrammed to human induced pluripotent stem cells (hiPSCs) and differentiated to beating cardiomyocytes (CMs). Stage-specific transcriptome profiling identified differentially expressed genes ranging from angiogenesis regulator to embryonic heart transcription factor as initial molecular aberrations. Furthermore, gene expression analysis for RBM20-dependent splice variants affected sarcomeric (TTN and LDB3) and calcium (Ca(2+)) handling (CAMK2D and CACNA1C) genes. Indeed, RBM20 hiPSC-CMs exhibited increased sarcomeric length (RBM20: 1.747 ± 0.238 µm versus control: 1.404 ± 0.194 µm; P < 0.0001) and decreased sarcomeric width (RBM20: 0.791 ± 0.609 µm versus control: 0.943 ± 0.166 µm; P < 0.0001). Additionally, CMs showed defective Ca(2+) handling machinery with prolonged Ca(2+) levels in the cytoplasm as measured by greater area under the curve (RBM20: 814.718 ± 94.343 AU versus control: 206.941 ± 22.417 AU; P < 0.05) and higher Ca(2+) spike amplitude (RBM20: 35.281 ± 4.060 AU versus control:18.484 ± 1.518 AU; P < 0.05). β-adrenergic stress induced with 10 µm norepinephrine demonstrated increased susceptibility to sarcomeric disorganization (RBM20: 86 ± 10.5% versus control: 40 ± 7%; P < 0.001). This study features the first hiPSC model of RBM20 familial DCM. By monitoring human cardiac disease according to stage-specific cardiogenesis, this study demonstrates RBM20 familial DCM is a developmental disorder initiated by molecular defects that pattern maladaptive cellular mechanisms of pathological cardiac remodeling. Indeed, hiPSC-CMs recapitulate RBM20 familial DCM phenotype in a dish and establish a tool

  20. Conventional protein kinase Cβ-mediated phosphorylation inhibits collapsin response-mediated protein 2 proteolysis and alleviates ischemic injury in cultured cortical neurons and ischemic stroke-induced mice.

    PubMed

    Yang, Xuan; Zhang, Xinxin; Li, Yun; Han, Song; Howells, David W; Li, Shujuan; Li, Junfa

    2016-05-01

    We previously reported that conventional protein kinase C (cPKC)β participated in hypoxic preconditioning-induced neuroprotection against cerebral ischemic injury, and collapsin response-mediated protein 2 (CRMP2) was identified as a cPKCβ interacting protein. In this study, we explored the regulation of CRMP2 phosphorylation and proteolysis by cPKCβ, and their role in ischemic injury of oxygen-glucose deprivation (OGD)-treated cortical neurons and brains of mice with middle cerebral artery occlusion-induced ischemic stroke. The results demonstrated that cPKCβ-mediated CRMP2 phosphorylation via the cPKCβ-selective activator 12-deoxyphorbol 13-phenylacetate 20-acetate (DOPPA) and inhibition of calpain-mediated CRMP2 proteolysis by calpeptin and a fusing peptide containing TAT peptide and the calpain cleavage site of CRMP2 (TAT-CRMP2) protected neurons against OGD-induced cell death through inhibiting CRMP2 proteolysis in cultured cortical neurons. The OGD-induced nuclear translocation of the CRMP2 breakdown product was inhibited by DOPPA, calpeptin, and TAT-CRMP2 in cortical neurons. In addition, both cPKCβ activation and CRMP2 proteolysis inhibition by hypoxic preconditioning and intracerebroventricular injections of DOPPA, calpeptin, and TAT-CRMP2 improved the neurological deficit in addition to reducing the infarct volume and proportions of cells with pyknotic nuclei in the peri-infact region of mice with ischemic stroke. These results suggested that cPKCβ modulates CRMP2 phosphorylation and proteolysis, and cPKCβ activation alleviates ischemic injury in the cultured cortical neurons and brains of mice with ischemic stroke through inhibiting CRMP2 proteolysis by phosphorylation. Focal cerebral ischemia induces a large flux of Ca(2+) to activate calpain which cleaves collapsin response mediator (CRMP) 2 into breakdown product (BDP). Inhibition of CRMP2 cleavage by calpeptin and TAT-CRMP2 alleviates ischemic injury. Conventional protein kinase C (c

  1. Incidence of dilated cardiomyopathy

    PubMed Central

    Abelmann, Walter H.

    1985-01-01

    Full reliable data on the incidence and prevalence of dilated cardiomyopathy are not available. In the United States, at least 0.7% of cardiac deaths are attributable to cardiomyopathy. Dilated cardiomyopathy probably contributes the great majority of these cases. The mortality rate for cardiomyopathy in males is twice that of females, and for blacks it is 2.4 times that of whites. Cardiomyopathy was diagnosed in 0.67% of patients discharged from hospitals in 1979 with diagnoses of disease of the circulatory system. Cardiomyopathy accounted for 1% of general cardiologists' and for 7% of academic cardiologists' patient encounters. In Scandinavia, population surveys suggested an annual incidence of dilated cardiomyopathy ranging from 0.73 to 7.5 cases per 100,000 population; for Tokyo this figure is 2.6. The prevalence of cardiomyopathy in underdeveloped and in tropical countries is considerably higher than in developed countries.

  2. Neuroprotection of a novel synthetic caffeic acid-syringic acid hybrid compound against experimentally induced transient cerebral ischemic damage.

    PubMed

    Kim, In Hye; Yan, Bing Chun; Park, Joon Ha; Yeun, Go Heum; Yim, Yongbae; Ahn, Ji Hyeon; Lee, Jae-Chul; Hwang, In Koo; Cho, Jun Hwi; Kim, Young-Myeong; Lee, Yun Lyul; Park, Jeong Ho; Won, Moo-Ho

    2013-03-01

    We investigated effects of caffeic acid, syringic acid, and their synthesis on transient cerebral ischemic damage in the gerbil hippocampal CA1 region. In the 10 mg/kg caffeic acid-, syringic acid-, and 20 mg/kg syringic-treated ischemia groups, we did not find any significant neuroprotection in the ischemic hippocampal CA region. In the 20 mg/kg caffeic acid- and 10 mg/kg caffeic acid-syringic acid-treated ischemia groups, moderate neuroprotection was found in the hippocampal CA1 region. In the 20 mg/kg caffeic acid-syringic acid-treated ischemia group, a strong neuroprotective effect was found in the ischemic hippocampal CA1 region: about 89 % of hippocampal CA1 region pyramidal neurons survived. We also observed changes in glial cells (astrocytes and microglia) in the ischemic hippocampal CA1 region in all the groups. Among them, the distribution pattern of the glial cells was only in the 20 mg/kg caffeic acid-syringic acid-treated ischemia group similar to that in the sham group (control). In brief, 20 mg/kg caffeic acid-syringic acid showed a strong neuroprotective effect with an inhibition of glia activation in the hippocampal CA1 region induced by transient cerebral ischemia.

  3. Pacing-induced regional differences in adenosine receptors mRNA expression in a swine model of dilated cardiomyopathy.

    PubMed

    Del Ry, Silvia; Cabiati, Manuela; Lionetti, Vincenzo; Aquaro, Giovanni D; Martino, Alessandro; Mattii, Letizia; Morales, Maria-Aurora

    2012-01-01

    The adenosinergic system is essential in the mediation of intrinsic protection and myocardial resistance to insult; it may be considered a cardioprotective molecule and adenosine receptors (ARs) represent potential therapeutic targets in the setting of heart failure (HF). The aim of the study was to test whether differences exist between mRNA expression of ARs in the anterior left ventricle (LV) wall (pacing site: PS) compared to the infero septal wall (opposite region: OS) in an experimental model of dilated cardiomyopathy. Cardiac tissue was collected from LV PS and OS of adult male minipigs with pacing-induced HF (n = 10) and from a control group (C, n = 4). ARs and TNF-α mRNA expression was measured by Real Time-PCR and the results were normalized with the three most stably expressed genes (GAPDH, HPRT1, TBP). Immunohistochemistry analysis was also performed. After 3 weeks of pacing higher levels of expression for each analyzed AR were observed in PS except for A(1)R (A(1)R: C = 0.6±0.2, PS = 0.1±0.04, OS = 0.04±0.01, p<0.0001 C vs. PS and OS respectively; A(2A)R: C = 1.04±0.59, PS = 2.62±0.79, OS = 2.99±0.79; A(2B)R: C = 1.2±0.1, PS = 5.59±2.3, OS = 1.59±0.46; A(3)R: C = 0.76±0.18, PS = 8.40±3.38, OS = 4.40±0.83). Significant contractile impairment and myocardial hypoperfusion were observed at PS after three weeks of pacing as compared to OS. TNF-α mRNA expression resulted similar in PS (6.3±2.4) and in OS (5.9±2.7) although higher than in control group (3.4±1.5). ARs expression was mainly detected in cardiomyocytes. This study provided new information on ARs local changes in the setting of LV dysfunction and on the role of these receptors in relation to pacing-induced abnormalities of myocardial perfusion and contraction. These results suggest a possible therapeutic role of adenosine in patients with HF and dyssynchronous LV contraction.

  4. The possible antianginal effect of allopurinol in vasopressin-induced ischemic model in rats.

    PubMed

    Al-Zahrani, Yahya A; Al-Harthi, Sameer E; Khan, Lateef M; El-Bassossy, Hani M; Edris, Sherif M; A Sattar, Mai A Alim

    2015-10-01

    The anti-anginal effects of allopurinol were assessed in experimental model rats of angina and their effects were evaluated with amlodipine. In the vasopressin-induced angina model, oral administration of allopurinol in dose of 10 mg/kg revealed remarkably analogous effects in comparison with amlodipine such as dose-dependent suppression of vasopressin-triggered time, duration and severity of ST depression. In addition, allopurinol produced dose dependent suppression of plasma Malondialdehyde (MDA) level, systolic blood pressure, cardiac contractility and cardiac oxygen consumption; while in contrast, amlodipine minimally suppressed the elevation of plasma MDA level. Endothelial NO synthase (eNOS) expression, serum nitrate were strikingly increased, however lipid profile was significantly reduced. Seemingly, allopurinol was found to be more potent than amlodipine - a calcium channel antagonist. To conclude, it was explicitly observed and verified that on the ischemic electrocardiography (ECG) changes in angina pectoris model in rats, allopurinol exerts a significant protective effects, reminiscent of enhancement of vascular oxidative stress, function of endothelial cells, improved coronary blood flow in addition to the potential enhancement in myocardial stress. Moreover, our findings were in conformity with several human studies. PMID:26594114

  5. Myocardial infarction induced by oral terazosin in a patient with predisposing structural cardiomyopathy: case report.

    PubMed

    Vidal Margenat, Alejandro; Ferrando-Castagnetto, Federico; Martínez, Fabián; Lluberas, Natalia; Vignolo, Gustavo

    2016-06-28

    We describe a 71-year-old male patient who developed acute myocardial infarction (AMI) due to a dynamic left ventricular outflow tract obstruction induced by terazosin. After receiving terazosin, the patient had a syncope followed by angina. The electrocardiogram showed Q waves and ST segment elevation in the precordial and inferior leads. Coronary angiography evidenced a chronically occluded left anterior descending artery. Doppler-echocardiography revealed apical akinesia, hyperdynamic basal segments, systolic anterior motion of the mitral valve (SAM) and dynamic left ventricular outflow tract obstruction. Therapy with intravenous fluids and atenolol resulted in marked clinical improvement. Acute myocardial infarction resulted from low coronary perfusion pressure in a patient with a chronically diminished coronary reserve.

  6. Radiation-induced cardiomyopathy as a function of radiation beam gating to the cardiac cycle

    NASA Astrophysics Data System (ADS)

    Gladstone, David J.; Flanagan, Michael F.; Southworth, Jean B.; Hadley, Vaughn; Thibualt, Melissa Wei; Hug, Eugen B.; Hoopes, P. Jack

    2004-04-01

    Portions of the heart are often unavoidably included in the primary treatment volume during thoracic radiotherapy, and radiation-induced heart disease has been observed as a treatment-related complication. Such complications have been observed in humans following radiation therapy for Hodgkin's disease and treatment of the left breast for carcinoma. Recent attempts have been made to prevent re-stenosis following angioplasty procedures using external beam irradiation. These attempts were not successful, however, due to the large volume of heart included in the treatment field and subsequent cardiac morbidity. We suggest a mechanism for sparing the heart from radiation damage by synchronizing the radiation beam with the cardiac cycle and delivering radiation only when the heart is in a relatively hypoxic state. We present data from a rat model testing this hypothesis and show that radiation damage to the heart can be altered by synchronizing the radiation beam with the cardiac cycle. This technique may be useful in reducing radiation damage to the heart secondary to treatment for diseases such as Hodgkin's disease and breast cancer.

  7. Cardiomyopathy confers susceptibility to particulate matter-induced oxidative stress, vagal dominance, arrhythmia, and pulmonary inflammation in heart failure-prone rats

    PubMed Central

    Carll, Alex P.; Haykal-Coates, Najwa; Winsett, Darrell W.; Hazari, Mehdi S.; Ledbetter, Allen D.; Richards, Judy H.; Cascio, Wayne E.; Costa, Daniel L.; Farraj, Aimen K.

    2016-01-01

    Acute exposure to ambient fine particulate matter (PM2.5) is tied to cardiovascular morbidity and mortality, especially among those with prior cardiac injury. The mechanisms and pathophysiologic events precipitating these outcomes remain poorly understood but may involve inflammation, oxidative stress, arrhythmia, and autonomic nervous system imbalance. Cardiomyopathy results from cardiac injury, is the leading cause of heart failure, and can be induced in heart failure-prone rats through sub-chronic infusion of isoproterenol (ISO). To test whether cardiomyopathy confers susceptibility to inhaled PM2.5 and can elucidate potential mechanisms, we investigated the cardiophysiologic, ventilatory, inflammatory, and oxidative effects of a single nose-only inhalation of a metal-rich PM2.5 (580 μg/m3, 4h) in ISO-pretreated (35 days * 1.0 mg/kg/day sc) rats. During the 5 days post-treatment, ISO-treated rats had decreased HR and BP and increased pre-ejection period (PEP, an inverse correlate of contractility) relative to saline-treated rats. Before inhalation exposure, ISO-pretreated rats had increased PR and ventricular repolarization time (QT) and heterogeneity (Tp-Te). Relative to clean air, PM2.5 further prolonged PR-interval and decreased systolic BP during inhalation exposure; increased tidal volume, expiratory time, heart rate variability (HRV) parameters of parasympathetic tone, and atrioventricular block arrhythmias over the hours post-exposure; increased pulmonary neutrophils, macrophages, and total antioxidant status one day post-exposure; and decreased pulmonary glutathione peroxidase 8 weeks after exposure, with all effects occurring exclusively in ISO-pretreated rats but not saline-pretreated rats. Ultimately, our findings indicate that cardiomyopathy confers susceptibility to the oxidative, inflammatory, ventilatory, autonomic, and arrhythmogenic effects of acute PM2.5 inhalation. PMID:25600220

  8. Takotsubo Cardiomyopathy: A New Perspective in Asthma

    PubMed Central

    Marmoush, Fady Y.; Barbour, Mohamad F.; Noonan, Thomas E.; Al-Qadi, Mazen O.

    2015-01-01

    Takotsubo cardiomyopathy (TCM) is an entity of reversible cardiomyopathy known for its association with physical or emotional stress and may mimic myocardial infarction. We report an exceedingly rare case of albuterol-induced TCM with moderate asthma exacerbation. An interesting association that may help in understanding the etiology of TCM in the asthmatic population. Although the prognosis of TCM is excellent, it is crucial to recognize beta agonists as a potential stressor. PMID:26246918

  9. Obesity Cardiomyopathy: Pathophysiologic Factors and Nosologic Reevaluation.

    PubMed

    Bhatheja, Samit; Panchal, Hemang B; Ventura, Hector; Paul, Timir K

    2016-08-01

    Cardiovascular disease in populations with obesity is a major concern because of its epidemic proportion. Obesity leads to the development of cardiomyopathy directly via inflammatory mediators and indirectly by obesity-induced hypertension, diabetes and coronary artery diseases. The aim of this review article is to re-visit the available knowledge and the evidence on pathophysiologic mechanisms of obesity-related cardiomyopathy and to propose its placement into a specific category of myocardial disease. PMID:27524223

  10. A Novel Murine Model of Parvovirus Associated Dilated Cardiomyopathy Induced by Immunization with VP1-Unique Region of Parvovirus B19

    PubMed Central

    Šimoliūnas, Egidijus; Rinkūnaitė, Ieva; Smalinskaitė, Luka; Podkopajev, Andrej; Bironaitė, Daiva; Weis, Cleo-Aron; Marx, Alexander; Bukelskienė, Virginija; Gretz, Norbert; Grabauskienė, Virginija; Labeit, Dittmar; Labeit, Siegfried

    2016-01-01

    Background. Parvovirus B19 (B19V) is a common finding in endomyocardial biopsy specimens from myocarditis and dilated cardiomyopathy patients. However, current understanding of how B19V is contributing to cardiac damage is rather limited due to the lack of appropriate mice models. In this work we demonstrate that immunization of BALB/c mice with the major immunogenic determinant of B19V located in the unique sequence of capsid protein VP1 (VP1u) is an adequate model to study B19V associated heart damage. Methods and Results. We immunized mice in the experimental group with recombinant VP1u; immunization with cardiac myosin derived peptide served as a positive reference and phosphate buffered saline served as negative control. Cardiac function and dimensions were followed echocardiographically 69 days after immunization. Progressive dilatation of left ventricle and decline of ejection fraction were observed in VP1u- and myosin-immunized mice. Histologically, severe cardiac fibrosis and accumulation of heart failure cells in lungs were observed 69 days after immunization. Transcriptomic profiling revealed ongoing cardiac remodeling and immune process in VP1u- and myosin-immunized mice. Conclusions. Immunization of BALB/c mice with VP1u induces dilated cardiomyopathy in BALB/c mice and it could be used as a model to study clinically relevant B19V associated cardiac damage. PMID:27812527

  11. Deletion of interleukin-6 alleviated interstitial fibrosis in streptozotocin-induced diabetic cardiomyopathy of mice through affecting TGFβ1 and miR-29 pathways

    PubMed Central

    Zhang, Yang; Wang, Jing-Hao; Zhang, Yi-Yuan; Wang, Ying-Zhe; Wang, Jin; Zhao, Yue; Jin, Xue-Xin; Xue, Gen-Long; Li, Peng-Hui; Sun, Yi-Lin; Huang, Qi-He; Song, Xiao-Tong; Zhang, Zhi-Ren; Gao, Xu; Yang, Bao-Feng; Du, Zhi-Min; Pan, Zhen-Wei

    2016-01-01

    Interleukin 6 (IL-6) has been shown to be an important regulator of cardiac interstitial fibrosis. In this study, we explored the role of interleukin-6 in the development of diabetic cardiomyopathy and the underlying mechanisms. Cardiac function of IL-6 knockout mice was significantly improved and interstitial fibrosis was apparently alleviated in comparison with wildtype (WT) diabetic mice induced by streptozotocin (STZ). Treatment with IL-6 significantly promoted the proliferation and collagen production of cultured cardiac fibroblasts (CFs). High glucose treatment increased collagen production, which were mitigated in CFs from IL-6 KO mice. Moreover, IL-6 knockout alleviated the up-regulation of TGFβ1 in diabetic hearts of mice and cultured CFs treated with high glucose or IL-6. Furthermore, the expression of miR-29 reduced upon IL-6 treatment, while increased in IL-6 KO hearts. Overexpression of miR-29 blocked the pro-fibrotic effects of IL-6 on cultured CFs. In summary, deletion of IL-6 is able to mitigate myocardial fibrosis and improve cardiac function of diabetic mice. The mechanism involves the regulation of IL-6 on TGFβ1 and miR-29 pathway. This study indicates the therapeutic potential of IL-6 suppression on diabetic cardiomyopathy disease associated with fibrosis. PMID:26972749

  12. RIP3 induces ischemic neuronal DNA degradation and programmed necrosis in rat via AIF

    PubMed Central

    Xu, Yang; Wang, Jingye; Song, Xinghui; Qu, Lindi; Wei, Ruili; He, Fangping; Wang, Kai; Luo, Benyan

    2016-01-01

    We have reported that nuclear translocation of Receptor-interacting protein 3 (RIP3) involves in neuronal programmed necrosis after 20-min global cerebral ischemia/reperfusion (I/R) injury. Herein, the underlying mechanisms and the nuclear role of RIP3 were investigated further. The necroptosis inhibitor necrostatin-1 (Nec-1), the autophagy inhibitor 3-methyladenine (3-MA), and the caspase-3 inhibitor acetyl-L-aspartyl-L-methionyl-L-glutaminyl-L-aspart-1-al (Ac-DMQD-CHO) were administered intracerebroventricularly 1 h before ischemia. Protein expression, location and interaction was determined by western blot, immunofluorescence or immunoprecipitation. Most CA1 neuronal death induced by 20-min global cerebral I/R injury was TUNEL-positive. Neuronal death and rat mortality rates were greatly inhibited by Nec-1 and 3-MA pre-treatment, but not by Ac-DMQD-CHO. And no activation of caspase-3 was detected after I/R injury. Caspase-8 was expressed richly in GFAP-positive astrocytes and Iba-1-positive microglia, but was not detected in Neun-positive neurons. The nuclear translocation and co-localization of RIP3 and AIF, and their interaction were detected after I/R injury. These processes were inhibited by Nec-1 and 3-MA pre-treatment, but not by Ac-DMQD-CHO. The formation of an RIP3-AIF complex and its nuclear translocation are critical to ischemic neuronal DNA degradation and programmed necrosis. Neurons are more likely to enter the programmed necrosis signal pathway for the loss of caspase-8 suppression. PMID:27377128

  13. Endogenous hydrogen sulfide mediates the cardioprotection induced by ischemic postconditioning in the early reperfusion phase

    PubMed Central

    HUANG, YI-E; TANG, ZHI-HAN; XIE, WEI; SHEN, XIN-TIAN; LIU, MI-HUA; PENG, XIANG-PING; ZHAO, ZHAN-ZHI; NIE, DE-BO; LIU, LU-SHAN; JIANG, ZHI-SHENG

    2012-01-01

    Hydrogen sulfide (H2S), produced by cystanthionine-γ-lysase (CSE) in the cardiovascular system, has been suggested to be the third gasotransmitter in addition to nitric oxide (NO) and carbon monoxide (CO). The present study aimed to investigate the role of H2S in ischemic postconditioning (IPO) during the early period of reperfusion. IPO with 6 episodes of 10 sec reperfusion followed by 6 episodes of 10 sec ischemia (IPO 2’) was administered when reperfusion was initiated. Cardiodynamics and the concentration of H2S were measured at 1, 2, 3, 4, 5, 10, 20, 30, 60, 90 and 120 min of reperfusion. Lactate dehydrogenase (LDH) levels and infarct size were determined at the end of the reperfusion. The concentration of H2S was stable during the whole experiment in the control group, whereas it reached a peak at the first minute of reperfusion in the ischemia-reperfusion (IR) group. The concentration of H2S at the first minute of reperfusion in the IPO 2’ group was higher compared to that of the IR group, which correlated with cardioprotection including improved heart contractile function and reduced infarct size and LDH levels. However, the above effects of IPO 2’ were attenuated by pre-treatment with blockade of endogenous H2S production with DL-propargylglycine for 20 min prior to global ischemia. Furthermore, we found that other forms of IPO, IPO commencing at 1 min after reperfusion (delayed IPO) or lasting only for 1 min (IPO 1’), failed to increase the concentration of H2S and protect the myocardium. We conclude that the peak of endogenous H2S in the early reperfusion phase is the key to cardioprotection induced by IPO. PMID:23226785

  14. The Loss of Myocardial Benefit following Ischemic Preconditioning Is Associated with Dysregulation of Iron Homeostasis in Diet-Induced Diabetes

    PubMed Central

    Berenshtein, Eduard; Eliashar, Ron; Chevion, Mordechai

    2016-01-01

    Whether the diabetic heart benefits from ischemic preconditioning (IPC), similar to the non-diabetic heart, is a subject of controversy. We recently proposed new roles for iron and ferritin in IPC-protection in Type 1-like streptozotocin-induced diabetic rat heart. Here, we investigated iron homeostasis in Cohen diabetic sensitive rat (CDs) that develop hyperglycemia when fed on a high-sucrose/low-copper diet (HSD), but maintain normoglycemia on regular-diet (RD). Control Cohen-resistant rats (CDr) maintain normoglycemia on either diet. The IPC procedure improved the post-ischemic recovery of normoglycemic hearts (CDr-RD, CDr-HSD and CDs-RD). CDs-HSD hearts failed to show IPC-associated protection. The recovery of these CDs-HSD hearts following I/R (without prior IPC) was better than their RD controls. During IPC ferritin levels increased in normoglycemic hearts, and its level was maintained nearly constant during the subsequent prolonged ischemia, but decayed to its baseline level during the reperfusion phase. In CDs-HSD hearts the baseline levels of ferritin and ferritin-saturation with iron were notably higher than in the controls, and remained unchanged during the entire experiment. This unique and abnormal pattern of post-ischemic recovery of CDs-HSD hearts is associated with marked changes in myocardial iron homeostasis, and suggests that iron and iron-proteins play a causative role/s in the etiology of diabetes-associated cardiovascular disorders. PMID:27458721

  15. Intravenous Administration of Cilostazol Nanoparticles Ameliorates Acute Ischemic Stroke in a Cerebral Ischemia/Reperfusion-Induced Injury Model.

    PubMed

    Nagai, Noriaki; Yoshioka, Chiaki; Ito, Yoshimasa; Funakami, Yoshinori; Nishikawa, Hiroyuki; Kawabata, Atsufumi

    2015-01-01

    It was reported that cilostazol (CLZ) suppressed disruption of the microvasculature in ischemic areas. In this study, we have designed novel injection formulations containing CLZ nanoparticles using 0.5% methylcellulose, 0.2% docusate sodium salt, and mill methods (CLZnano dispersion; particle size 81 ± 59 nm, mean ± S.D.), and investigated their toxicity and usefulness in a cerebral ischemia/reperfusion-induced injury model (MCAO/reperfusion mice). The pharmacokinetics of injections of CLZnano dispersions is similar to that of CLZ solutions prepared with 2-hydroxypropyl-β-cyclodextrin, and no changes in the rate of hemolysis of rabbit red blood cells, a model of cell injury, were observed with CLZnano dispersions. In addition, the intravenous injection of 0.6 mg/kg CLZnano dispersions does not affect the blood pressure and blood flow, and the 0.6 mg/kg CLZnano dispersions ameliorate neurological deficits and ischemic stroke in MCAO/reperfusion mice. It is possible that the CLZnano dispersions will provide effective therapy for ischemic stroke patients, and that injection preparations of lipophilic drugs containing drug nanoparticles expand their therapeutic usage. PMID:26690139

  16. The Loss of Myocardial Benefit following Ischemic Preconditioning Is Associated with Dysregulation of Iron Homeostasis in Diet-Induced Diabetes.

    PubMed

    Vinokur, Vladimir; Weksler-Zangen, Sarah; Berenshtein, Eduard; Eliashar, Ron; Chevion, Mordechai

    2016-01-01

    Whether the diabetic heart benefits from ischemic preconditioning (IPC), similar to the non-diabetic heart, is a subject of controversy. We recently proposed new roles for iron and ferritin in IPC-protection in Type 1-like streptozotocin-induced diabetic rat heart. Here, we investigated iron homeostasis in Cohen diabetic sensitive rat (CDs) that develop hyperglycemia when fed on a high-sucrose/low-copper diet (HSD), but maintain normoglycemia on regular-diet (RD). Control Cohen-resistant rats (CDr) maintain normoglycemia on either diet. The IPC procedure improved the post-ischemic recovery of normoglycemic hearts (CDr-RD, CDr-HSD and CDs-RD). CDs-HSD hearts failed to show IPC-associated protection. The recovery of these CDs-HSD hearts following I/R (without prior IPC) was better than their RD controls. During IPC ferritin levels increased in normoglycemic hearts, and its level was maintained nearly constant during the subsequent prolonged ischemia, but decayed to its baseline level during the reperfusion phase. In CDs-HSD hearts the baseline levels of ferritin and ferritin-saturation with iron were notably higher than in the controls, and remained unchanged during the entire experiment. This unique and abnormal pattern of post-ischemic recovery of CDs-HSD hearts is associated with marked changes in myocardial iron homeostasis, and suggests that iron and iron-proteins play a causative role/s in the etiology of diabetes-associated cardiovascular disorders. PMID:27458721

  17. Intravenous Administration of Cilostazol Nanoparticles Ameliorates Acute Ischemic Stroke in a Cerebral Ischemia/Reperfusion-Induced Injury Model

    PubMed Central

    Nagai, Noriaki; Yoshioka, Chiaki; Ito, Yoshimasa; Funakami, Yoshinori; Nishikawa, Hiroyuki; Kawabata, Atsufumi

    2015-01-01

    It was reported that cilostazol (CLZ) suppressed disruption of the microvasculature in ischemic areas. In this study, we have designed novel injection formulations containing CLZ nanoparticles using 0.5% methylcellulose, 0.2% docusate sodium salt, and mill methods (CLZnano dispersion; particle size 81 ± 59 nm, mean ± S.D.), and investigated their toxicity and usefulness in a cerebral ischemia/reperfusion-induced injury model (MCAO/reperfusion mice). The pharmacokinetics of injections of CLZnano dispersions is similar to that of CLZ solutions prepared with 2-hydroxypropyl-β-cyclodextrin, and no changes in the rate of hemolysis of rabbit red blood cells, a model of cell injury, were observed with CLZnano dispersions. In addition, the intravenous injection of 0.6 mg/kg CLZnano dispersions does not affect the blood pressure and blood flow, and the 0.6 mg/kg CLZnano dispersions ameliorate neurological deficits and ischemic stroke in MCAO/reperfusion mice. It is possible that the CLZnano dispersions will provide effective therapy for ischemic stroke patients, and that injection preparations of lipophilic drugs containing drug nanoparticles expand their therapeutic usage. PMID:26690139

  18. Endoplasmic reticulum stress induced by tunicamycin and thapsigargin protects against transient ischemic brain injury: Involvement of PARK2-dependent mitophagy.

    PubMed

    Zhang, Xiangnan; Yuan, Yang; Jiang, Lei; Zhang, Jingying; Gao, Jieqiong; Shen, Zhe; Zheng, Yanrong; Deng, Tian; Yan, Haijing; Li, Wenlu; Hou, Wei-Wei; Lu, Jianxin; Shen, Yao; Dai, Haibing; Hu, Wei-Wei; Zhang, Zhuohua; Chen, Zhong

    2014-10-01

    Transient cerebral ischemia leads to endoplasmic reticulum (ER) stress. However, the contributions of ER stress to cerebral ischemia are not clear. To address this issue, the ER stress activators tunicamycin (TM) and thapsigargin (TG) were administered to transient middle cerebral artery occluded (tMCAO) mice and oxygen-glucose deprivation-reperfusion (OGD-Rep.)-treated neurons. Both TM and TG showed significant protection against ischemia-induced brain injury, as revealed by reduced brain infarct volume and increased glucose uptake rate in ischemic tissue. In OGD-Rep.-treated neurons, 4-PBA, the ER stress releasing mechanism, counteracted the neuronal protection of TM and TG, which also supports a protective role of ER stress in transient brain ischemia. Knocking down the ER stress sensor Eif2s1, which is further activated by TM and TG, reduced the OGD-Rep.-induced neuronal cell death. In addition, both TM and TG prevented PARK2 loss, promoted its recruitment to mitochondria, and activated mitophagy during reperfusion after ischemia. The neuroprotection of TM and TG was reversed by autophagy inhibition (3-methyladenine and Atg7 knockdown) as well as Park2 silencing. The neuroprotection was also diminished in Park2(+/-) mice. Moreover, Eif2s1 and downstream Atf4 silencing reduced PARK2 expression, impaired mitophagy induction, and counteracted the neuroprotection. Taken together, the present investigation demonstrates that the ER stress induced by TM and TG protects against the transient ischemic brain injury. The PARK2-mediated mitophagy may be underlying the protection of ER stress. These findings may provide a new strategy to rescue ischemic brains by inducing mitophagy through ER stress activation.

  19. A Pig Model of Ischemic Mitral Regurgitation Induced by Mitral Chordae Tendinae Rupture and Implantation of an Ameroid Constrictor

    PubMed Central

    Tian, Yi; Yuan, Wei-Min; Peng, Peng; Yang, Jian-Zhong; Zhang, Bao-Jie; Zhang, Hui-Dong; Wu, Ai-Li; Tang, Yue

    2014-01-01

    A miniature pig model of ischemic mitral regurgitation (IMR) was developed by posterior mitral chordae tendinae rupture and implantation of an ameroid constrictor. A 2.5-mm ameroid constrictor was placed around the left circumflex coronary artery (LCX) of male Tibetan miniature pigs to induce ischemia, while the posterior mitral chordae tendinae was also ruptured. X-ray coronary angiography, ECG analysis, echocardiography, and magnetic resonance imaging (MRI) were used to evaluate heart structure and function in pigs at baseline and one, two, four and eight weeks after the operation. Blood velocity of the mitral regurgitation was found to be between medium and high levels. Angiographic analyses revealed that the LCX closure was 10–20% at one week, 30–40% at two weeks and 90–100% at four weeks subsequent ameroid constrictor implantation. ECG analysis highlighted an increase in the diameter of the left atria (LA) at two weeks post-operation as well as ischemic changes in the left ventricle (LV) and LA wall at four weeks post-operation. Echocardiography and MRI further detected a gradual increase in LA and LV volumes from two weeks post-operation. LV end diastolic and systolic volumes as well as LA end diastolic and systolic volume were also significantly higher in pig hearts post-operation when compared to baseline. Pathological changes were observed in the heart, which included scar tissue in the ischemic central area of the LV. Transmission electron microscopy highlighted the presence of contraction bands and edema surrounding the ischemia area, including inflammatory cell infiltration within the ischemic area. We have developed a pig model of IMR using the posterior mitral chordae tendineae rupture technique and implantation of an ameroid constrictor. The pathological features of this pig IMR model were found to mimic the natural history and progression of IMR in patients. PMID:25479001

  20. Ischemic Stroke

    MedlinePlus

    A stroke is a medical emergency. There are two types - ischemic and hemorrhagic. Ischemic stroke is the most common type. It is usually ... are at risk for having a more serious stroke. Symptoms of stroke are Sudden numbness or weakness ...

  1. [Arrhythmic cardiomyopathy. Case report].

    PubMed

    Streangă, Violeta; Dimitriu, A G; Iordache, C; Georgescu, G; Grecu, Mihaela

    2004-01-01

    An 11 year-old boy was admitted with incessant sinus node reentrant tachycardia and secondary dilated arrhythmic cardiomyopathy, treated by radiofrequency ablation. Two years later he was admitted with incessant automatic atrial tachycardia and arrhythmic cardiomyopathy; a second catheter ablation procedure failed, but the third one, performed four month later, was successfully and resulted in a restoration of a normal sinus rhythm and a complete regression of arrhythmic cardiomyopathy.

  2. Lysine and Arginine Reduce the Effects of Cerebral Ischemic Insults and Inhibit Glutamate-Induced Neuronal Activity in Rats

    PubMed Central

    Kondoh, Takashi; Kameishi, Makiko; Mallick, Hruda Nanda; Ono, Taketoshi; Torii, Kunio

    2010-01-01

    Intravenous administration of arginine was shown to be protective against cerebral ischemic insults via nitric oxide production and possibly via additional mechanisms. The present study aimed at evaluating the neuroprotective effects of oral administration of lysine (a basic amino acid), arginine, and their combination on ischemic insults (cerebral edema and infarction) and hemispheric brain swelling induced by transient middle cerebral artery occlusion/reperfusion in rats. Magnetic resonance imaging and 2,3,5-triphenyltetrazolium chloride staining were performed 2 days after ischemia induction. In control animals, the major edematous areas were observed in the cerebral cortex and striatum. The volumes associated with cortical edema were significantly reduced by lysine (2.0 g/kg), arginine (0.6 g/kg), or their combined administration (0.6 g/kg each). Protective effects of these amino acids on infarction were comparable to the inhibitory effects on edema formation. Interestingly, these amino acids, even at low dose (0.6 g/kg), were effective to reduce hemispheric brain swelling. Additionally, the effects of in vivo microiontophoretic (juxtaneuronal) applications of these amino acids on glutamate-evoked neuronal activity in the ventromedial hypothalamus were investigated in awake rats. Glutamate-induced neuronal activity was robustly inhibited by microiontophoretic applications of lysine or arginine onto neuronal membranes. Taken together, our results demonstrate the neuroprotective effects of oral ingestion of lysine and arginine against ischemic insults (cerebral edema and infarction), especially in the cerebral cortex, and suggest that suppression of glutamate-induced neuronal activity might be the primary mechanism associated with these neuroprotective effects. PMID:20589237

  3. Astrocyte-mediated ischemic tolerance.

    PubMed

    Hirayama, Yuri; Ikeda-Matsuo, Yuri; Notomi, Shoji; Enaida, Hiroshi; Kinouchi, Hiroyuki; Koizumi, Schuichi

    2015-03-01

    Preconditioning (PC) using a preceding sublethal ischemic insult is an attractive strategy for protecting neurons by inducing ischemic tolerance in the brain. Although the underlying molecular mechanisms have been extensively studied, almost all studies have focused on neurons. Here, using a middle cerebral artery occlusion model in mice, we show that astrocytes play an essential role in the induction of brain ischemic tolerance. PC caused activation of glial cells without producing any noticeable brain damage. The spatiotemporal pattern of astrocytic, but not microglial, activation correlated well with that of ischemic tolerance. Interestingly, such activation in astrocytes lasted at least 8 weeks. Importantly, inhibiting astrocytes with fluorocitrate abolished the induction of ischemic tolerance. To investigate the underlying mechanisms, we focused on the P2X7 receptor as a key molecule in astrocyte-mediated ischemic tolerance. P2X7 receptors were dramatically upregulated in activated astrocytes. PC-induced ischemic tolerance was abolished in P2X7 receptor knock-out mice. Moreover, our results suggest that hypoxia-inducible factor-1α, a well known mediator of ischemic tolerance, is involved in P2X7 receptor-mediated ischemic tolerance. Unlike previous reports focusing on neuron-based mechanisms, our results show that astrocytes play indispensable roles in inducing ischemic tolerance, and that upregulation of P2X7 receptors in astrocytes is essential. PMID:25740510

  4. Ischemic colitis induced by the newly reformulated multicomponent weight-loss supplement Hydroxycut®

    PubMed Central

    Sherid, Muhammed; Samo, Salih; Sulaiman, Samian; Gaziano, Joseph H

    2013-01-01

    Ischemic colitis accounts for 6%-18% of causes of acute lower gastrointestinal bleeding. It is more often multifactorial and more common in elderly. Drugs are considered important causative agents of this disease with different mechanisms. In this paper, we describe a 37-year-old otherwise healthy female presented with sudden onset diffuse abdominal pain and bloody stool. Radiologic, colonoscopic and histopathologic findings were all consistent with ischemic colitis. Her only suspected factor was hydroxycut which she had been taking for a period of 1 mo prior to her presentation. Her condition improved uneventfully after cessation of hydroxycut, bowel rest, intravenous hydration, and antibiotics. This is a first case of ischemic colitis with clear relationship with hydroxycut use (Naranjo score of 7). Our case demonstrates the importance of questioning patients regarding the usage of dietary supplements; especially since many patients consider them safe and do not disclose their use voluntarily to their physicians. Hydroxycut has to be considered as a potential trigger for otherwise unexplained ischemic colitis. PMID:23596542

  5. Type II secretory phospholipase A2 binds to ischemic flip-flopped cardiomyocytes and subsequently induces cell death.

    PubMed

    Nijmeijer, R; Willemsen, M; Meijer, C J L M; Visser, C A; Verheijen, R H; Gottlieb, R A; Hack, C E; Niessen, H W M

    2003-11-01

    Type II secretory phospholipase A2 (sPLA2) is a cardiovascular risk factor. We recently found depositions of sPLA2 in the necrotic center of infarcted human myocardium and normally appearing cardiomyocytes adjacent to the border zone. The consequences of binding of sPLA2 to ischemic cardiomyocytes are not known. To explore a potential effect of sPLA2 on ischemic cardiomyocytes at a cellular level we used an in vitro model. The cardiomyocyte cell line H9c2 or adult cardiomyocytes were isolated from rabbits that were incubated with sPLA2 in the presence of metabolic inhibitors to mimic ischemia-reperfusion conditions. Cell viability was established with the use of annexin V and propidium iodide or 7-aminoactinomycin D. Metabolic inhibition induced an increase of the number of flip-flopped cells, including a population that did not stain with propidium iodide and that was caspase-3 negative. sPLA2 bound to the flip-flopped cells, including those negative for caspase-3. sPLA2 binding induced cell death in these latter cells. In addition, sPLA2 potentiated the binding of C-reactive protein (CRP) to these cells. We conclude that by binding to flip-flopped cardiomyocytes, including those that are caspase-3 negative and presumably reversibly injured, sPLA2 may induce cell death and tag these cells with CRP.

  6. Clinical Characteristics and Treatment of Cardiomyopathies in Children.

    PubMed

    Price, Jack F; Jeewa, Aamir; Denfield, Susan W

    2016-01-01

    Cardiomyopathies are diseases of the heart muscle, a term introduced in 1957 to identify a group of myocardial diseases not attributable to coronary artery disease. The definition has since been modified to refer to structural and or functional abnormalities of the myocardium where other known causes of myocardial dysfunction, such as systemic hypertension, valvular disease and ischemic heart disease, have been excluded. In this review, we discuss the pathophysiology, clinical assessment and therapeutic strategies for hypertrophic, dilated and hypertrophic cardiomyopathies, with a particular focus on aspects unique to children.

  7. KR-31378, a potassium-channel opener, induces the protection of retinal ganglion cells in rat retinal ischemic models.

    PubMed

    Choi, Anho; Choi, Jun-Sub; Yoon, Yone-Jung; Kim, Kyung-A; Joo, Choun-Ki

    2009-04-01

    KR-31378 is a newly developed K(ATP)-channel opener. To investigate the ability of KR-31378 to protect retinal ganglion cells (RGC), experiments were conducted using two retinal ischemia models. Retinal ischemia was induced by transient high intraocular pressure (IOP) for acute ischemia and by three episcleral vein occlusion for chronic retinal ischemia. KR-31378 was injected intraperitoneally and administered orally in the acute and chronic ischemia models, respectively. Under the condition of chronic ischemia, RGC density in the KR-31378-treated group was statistically higher than that in the non-treated group, and IOP was reduced. In the acute retinal ischemia model, 90% of RGC were degenerated after one week in non-treated retina, but, RGC in KR-31378-treated retina were protected from ischemic damage in a dose-dependent manner and showed inhibited glial fibrillary acidic protein (GFAP) expression. Furthermore, the KR-31378 protective effect was inhibited by glibenclamide treatment in acute ischemia. These findings indicate that systemic KR-31378 treatment may protect against ischemic injury-induced ganglion cell loss in glaucoma.

  8. A vicious cycle of acute catecholamine cardiomyopathy and circulatory collapse secondary to pheochromocytoma

    PubMed Central

    Otusanya, Olufisayo; Goraya, Harmeen; Iyer, Priyanka; Landi, Kristen; Tibb, Amit; Msaouel, Pavlos

    2015-01-01

    Acute catecholamine cardiomyopathy is an uncommon, life-threatening manifestation of pheochromocytoma. The massive release of catecholamines from the adrenal medulla and their toxic effects on the coronary vessels and the cardiac myocytes play a significant role in the pathogenesis of cardiomyopathy in patients with pheochromocytoma. Severe manifestations, such as acute catecholamine cardiomyopathy, may be the initial presentation, especially in unsuspected and untreated pheochromocytoma cases. The clinical course of catecholamine-induced cardiomyopathy is unpredictable as patients may rapidly deteriorate into circulatory collapse and multisystem crisis. We report a case of a 25-year-old man who presented with catecholamine-induced cardiomyopathy. PMID:26512333

  9. Photodynamic impact induces ischemic tolerance in models in vivo and in vitro

    NASA Astrophysics Data System (ADS)

    Demyanenko, Svetlana; Sharifulina, Svetlana; Berezhnaya, Elena; Kovaleva, Vera; Neginskaya, Maria; Zhukovskaya, Ludmila

    2016-04-01

    Ischemic tolerance determines resistance to lethal ischemia gained by a prior sublethal stimulus (i.e., preconditioning). We reproduced this effect in two variants. In vitro the preliminary short (5 s) photodynamic treatment (PDT) (photosensitizer Photosens, 10 nM, 30 min preincubation; laser: 670 nm, 100 mW/cm2) significantly reduced the necrosis of neurons and glial cells in the isolated crayfish stretch receptor, which was caused by following 30-min PDT by 66% and 46%, respectively. In vivo PDT of the rat cerebral cortex with hydrophilic photosensitizer Rose Bengal (i.v. administration, laser irradiation: 532 nm, 60 mW/cm2, 3 mm beam diameter, 30 min) caused occlusion of small brain vessels and local photothrombotic infarct (PTI). It is a model of ischemic stroke. Cerebral tissue edema and global necrosis of neurons and glial cells occurred in the infarction core, which was surrounded by a 1.5 mm transition zone, penumbra. The maximal pericellular edema, hypo- and hyperchromia of neurons were observed in penumbra 24 h after PTI. The repeated laser irradiation of the contralateral cerebral cortex also caused PTI but lesser as compared with single PDT. Preliminary unilateral PTI provided ischemic tolerance: at 14 day after second exposure the PTI volume significantly decreased by 24% than in the case of a single exposure. Sensorimotor deficits in PDT-treated rats was registered using the behavioral tests. The preliminary PTI caused the preconditioning effect.

  10. A case of juvenile acromegaly that was initially diagnosed as severe congestive heart failure from acromegaly-induced dilated cardiomyopathy.

    PubMed

    Sue, Mariko; Yoshihara, Aya; Okubo, Yoichiro; Ishikawa, Mayumi; Ando, Yasuyo; Hiroi, Naoki; Shibuya, Kazutoshi; Yoshino, Gen

    2010-01-01

    Acromegaly is characterized by chronic hypersecretion of growth hormone (GH) and is associated with increased mortality rate because of the potential complications such as cardiovascular disease, respiratory disease, or malignancy, which are probably caused by the long-term exposure of tissues to excess GH, for at least 10 years, before diagnosis and treatment. A 22-year-old man with a 2-month history of fatigue was admitted to our hospital because of chest discomfort, dyspnea, and pitting edema of the lower limbs experienced over a 1-month period. On admission, his height and body weight were 186 cm and 138.5 kg, respectively, with a BMI of 39.8 kg/m(2). He showed acromegalic features and elevated serum GH and IGF-1 levels, which were 11.5 ng/mL and 960 ng/mL, respectively. There was no GH suppression in the 75-g oral glucose tolerance test. Pituitary magnetic resonance imaging (MRI) revealed microadenoma. Chest X-ray revealed cardiomegaly, and echocardiogram showed dilated left ventricular (LV) cavity and diffuse hypokinesis with extremely decreased ejection fraction (EF). He was diagnosed as having acromegaly with congestive heart failure from diastolic cardiomyopathy. After the successful transsphenoidal resection of the pituitary adenoma, the level of GH was normalized. However, the cardiac dysfunction did not show any improvement even after the administration of β-blockers, angiotensin-converting enzyme inhibitor (ACE-I), or diuretics. The patient was re-hospitalized, and he died of cardiac failure at the age of 25 years. Patients with acromegaly have been reported to have about 30% higher mortality rate, and cardiovascular disease accounts for 60% of the deaths. We report a case of a patient with juvenile acromegaly who was diagnosed with severe cardiac failure at the time of diagnosis and failed to recover cardiac function even after the successful resection of the pituitary adenoma. Immediate diagnosis and treatment are required for better control of

  11. Involvement of inducible nitric oxide synthase in the loss of cardioprotection by ischemic postconditioning in hypothyroid rats.

    PubMed

    Jeddi, Sajad; Zaman, Jalal; Zadeh-Vakili, Azita; Zarkesh, Maryam; Ghasemi, Asghar

    2016-04-15

    Cardioprotection by ischemic postconditioning (IPost) is negated in hypothyroidism; the underlying mechanisms however are unknown. This study aimed at determining whether changes in Bax, Bcl-2, eNOS, and iNOS gene expressions are involved in the negating effects of IPost against ischemia-reperfusion (IR) injury in hypothyroidism. The hearts from control and hypothyroid rats were perfused in Langendorff apparatus and exposed to 30 min ischemia, followed by 120 min reperfusion and IPost. In a subgroup of hypothyroid rats, ischemia duration was extended to 40 min. Hemodynamic parameters, infarct size, and gene expressions were measured. Compared to controls, hypothyroid rats with 30 min ischemia had higher recovery of post-ischemic LVDP and ± dp/dt, confirmed by decreased CK and LDH levels (187 ± 16 vs. 485 ± 41 and 191 ± 9 vs. 702 ± 48 U/L, respectively; p<0.05), decreased infarct size (6.7 ± 1.1 vs. 46.1 ± 1.7%; p<0.05), and a reduced DNA laddering pattern. Recovery of post-ischemic LVDP and ± dp/dt decreased and infarct size increased following extension of ischemia period in hypothyroid rats. IPost increased eNOS and Bcl-2 expression by 3.2-fold and 3.7-fold and decreased Bax and iNOS expression by 79% and 38%, respectively; it also reduced IR-induced DNA laddering pattern in controls, whereas no change was observed in hypothyroid rats, regardless of the ischemia period. In conclusion, hearts from hypothyroid rats were resistant to IR injury, partly due to the lower expression of iNOS and subsequent reduction in apoptosis after IR. In hypothyroid rats, IPost was not associated with further reduction in iNOS expression and failed to provide additional cardioprotection against ischemia. PMID:26774797

  12. A Combination of Remote Ischemic Perconditioning and Cerebral Ischemic Postconditioning Inhibits Autophagy to Attenuate Plasma HMGB1 and Induce Neuroprotection Against Stroke in Rat.

    PubMed

    Wang, Jue; Han, Dong; Sun, Miao; Feng, Juan

    2016-04-01

    Remote ischemic perconditioning (RIPerC) and ischemic postconditioning (IPOC) are well-acknowledged neuroprotective procedures during ischemic injury. The present study established a combined RIPerC and IPOC (RIPerC + IPOC) model in rats and studied how it would regulate the autophagy process and affect HMGB1 levels in a rat model of middle cerebral artery occlusion (MCAO). Rats with MCAO were treated with RIPerC by fastening and release of the left hind limb to achieve 4 cycles of 5 min remote ischemia reperfusion, 40 min prior to cerebral reperfusion, and then treated with IPOC by exposing the cerebral middle artery to 3 cycles of 30 s reperfusion/30 s occlusion at the onset of cerebral reperfusion. Infarction volumes, neurological deficits, and pathological changes were assessed 24 h after ischemia. The autophagy activator rapamycin (RAP) and the autophagy inhibitor 3-methyladenine (3-MA) were administrated for further mechanism. The expression and location of HMGB1 and the autophagy-related proteins like LC3, Beclin1, and P62 as well as plasma HMGB1 levels were measured. Our results suggested that RIPerC + IPOC attenuated plasma HMGB1 levels to intensify its neuroprotective effect against cerebral ischemic reperfusion injury via inhibiting the autophagy process. PMID:26852332

  13. Myocardial metabolic, hemodynamic, and electrocardiographic significance of reversible thallium-201 abnormalities in hypertrophic cardiomyopathy

    SciTech Connect

    Cannon, R.O. 3d.; Dilsizian, V.; O'Gara, P.T.; Udelson, J.E.; Schenke, W.H.; Quyyumi, A.; Fananapazir, L.; Bonow, R.O. )

    1991-05-01

    Exercise-induced abnormalities during thallium-201 scintigraphy that normalize at rest frequently occur in patients with hypertrophic cardiomyopathy. However, it is not known whether these abnormalities are indicative of myocardial ischemia. Fifty patients with hypertrophic cardiomyopathy underwent exercise {sup 201}Tl scintigraphy and, during the same week, measurement of myocardial lactate metabolism and hemodynamics during pacing stress. Thirty-seven patients (74%) had one or more {sup 201}Tl abnormalities that completely normalized after 3 hours of rest; 26 had regional myocardial {sup 201}Tl defects, and 26 had apparent left ventricular cavity dilatation with exercise, with 15 having coexistence of these abnormal findings. Of the 37 patients with reversible {sup 201}Tl abnormalities, 27 (73%) had metabolic evidence of myocardial ischemia during rapid atrial pacing compared with four of 13 patients (31%) with normal {sup 201}Tl scans (p less than 0.01). Eleven patients had apparent cavity dilatation as their only {sup 201}Tl abnormality; their mean postpacing left ventricular end-diastolic pressure was significantly higher than that of the 13 patients with normal {sup 201}Tl studies (33 +/- 5 versus 21 +/- 10 mm Hg, p less than 0.001). There was no correlation between the angiographic presence of systolic septal or epicardial coronary arterial compression and the presence or distribution of {sup 201}Tl abnormalities. Patients with ischemic ST segment responses to exercise had an 80% prevalence rate of reversible {sup 201}Tl abnormalities and a 70% prevalence rate of pacing-induced ischemia. However, 69% of patients with nonischemic ST segment responses had reversible {sup 201}Tl abnormalities, and 55% had pacing-induced ischemia. Reversible {sup 201}Tl abnormalities during exercise stress are markers of myocardial ischemia in hypertrophic cardiomyopathy and most likely identify relatively underperfused myocardium.

  14. Nutrition in Pediatric Cardiomyopathy

    PubMed Central

    Miller, Tracie L.; Neri, Daniela; Extein, Jason; Somarriba, Gabriel; Strickman-Stein, Nancy

    2007-01-01

    Pediatric cardiomyopathies are heterogeneous groups of serious disorders of the heart muscle and are responsible for significant morbidity and mortality among children who have the disease. While enormous improvements have been made in the treatment and survival of children with congenital heart disease, parallel strides have not been made in the outcomes for cardiomyopathies. Thus, ancillary therapies, such as nutrition and nutritional interventions, that may not cure but may potentially improve cardiac function and quality of life, are imperative to consider in children with all types of cardiomyopathy. Growth failure is one of the most significant clinical problems of children with cardiomyopathy with nearly one-third of children with this disorder manifesting some degree of growth failure during the course of their illness. Optimal intake of macronutrients can help improve cardiac function. In addition, several specific nutrients have been shown to correct myocardial abnormalities that often occur with cardiomyopathy and heart failure. In particular, antioxidants that can protect against free radical damage that often occurs in heart failure and nutrients that augment myocardial energy production are important therapies that have been explored more in adults with cardiomyopathy than in the pediatric population. Future research directions should pay particular attention to the effect of overall nutrition and specific nutritional therapies on clinical outcomes and quality of life in children with pediatric cardiomyopathy. PMID:18159216

  15. Probucol inhibits LPS-induced microglia activation and ameliorates brain ischemic injury in normal and hyperlipidemic mice

    PubMed Central

    Jung, Yeon Suk; Park, Jung Hwa; Kim, Hyunha; Kim, So Young; Hwang, Ji Young; Hong, Ki Whan; Bae, Sun Sik; Choi, Byung Tae; Lee, Sae-Won; Shin, Hwa Kyoung

    2016-01-01

    Aim: Increasing evidence suggests that probucol, a lipid-lowering agent with anti-oxidant activities, may be useful for the treatment of ischemic stroke with hyperlipidemia via reduction in cholesterol and neuroinflammation. In this study we examined whether probucol could protect against brain ischemic injury via anti-neuroinflammatory action in normal and hyperlipidemic mice. Methods: Primary mouse microglia and murine BV2 microglia were exposed to lipopolysaccharide (LPS) for 3 h, and the release NO, PGE2, IL-1β and IL-6, as well as the changes in NF-κB, MAPK and AP-1 signaling pathways were assessed. ApoE KO mice were fed a high-fat diet containing 0.004%, 0.02%, 0.1% (wt/wt) probucol for 10 weeks, whereas normal C57BL/6J mice received probucol (3, 10, 30 mg·kg-1·d-1, po) for 4 d. Then all the mice were subjected to focal cerebral ischemia through middle cerebral artery occlusion (MCAO). The neurological deficits were scored 24 h after the surgery, and then brains were removed for measuring the cerebral infarct size and the production of pro-inflammatory mediators. Results: In LPS-treated BV2 cells and primary microglial cells, pretreatment with probucol (1, 5, 10 μmol/L) dose-dependently inhibited the release of NO, PGE2, IL-1β and IL-6, which occurred at the transcription levels. Furthermore, the inhibitory actions of probucol were associated with the downregulation of the NF-κB, MAPK and AP-1 signaling pathways. In the normal mice with MCAO, pre-administration of probucol dose-dependently decreased the infarct volume and improved neurological function. These effects were accompanied by the decreased production of pro-inflammatory mediators (iNOS, COX-2, IL-1, IL-6). In ApoE KO mice fed a high-fat diet, pre-administration of 0.1% probucol significantly reduced the infarct volume, improved the neurological deficits following MCAO, and decreased the total- and LDL-cholesterol levels. Conclusion: Probucol inhibits LPS-induced microglia activation and

  16. Non-invasive evaluation of arrhythmic risk in dilated cardiomyopathy: From imaging to electrocardiographic measures

    PubMed Central

    Iacoviello, Massimo; Monitillo, Francesco

    2014-01-01

    Malignant ventricular arrhythmias are a major adverse event and worsen the prognosis of patients affected by ischemic and non-ischemic dilated cardiomyopathy. The main parameter currently used to stratify arrhythmic risk and guide decision making towards the implantation of a cardioverter defibrillator is the evaluation of the left ventricular ejection fraction. However, this strategy is characterized by several limitations and consequently additional parameters have been suggested in order to improve arrhythmic risk stratification. The aim of this review is to critically revise the prognostic significance of non-invasive diagnostic tools in order to better stratify the arrhythmic risk prognosis of dilated cardiomyopathy patients. PMID:25068017

  17. Cardiac-Specific Over-Expression of Epidermal Growth Factor Receptor 2 (ErbB2) Induces Pro-Survival Pathways and Hypertrophic Cardiomyopathy in Mice

    PubMed Central

    Guo, Xin; Belmonte, Frances; Kang, Byunghak; Bedja, Djahida; Pin, Scott; Tsuchiya, Noriko; Gabrielson, Kathleen

    2012-01-01

    Background Emerging evidence shows that ErbB2 signaling has a critical role in cardiomyocyte physiology, based mainly on findings that blocking ErbB2 for cancer therapy is toxic to cardiac cells. However, consequences of high levels of ErbB2 activity in the heart have not been previously explored. Methodology/Principal Findings We investigated consequences of cardiac-restricted over-expression of ErbB2 in two novel lines of transgenic mice. Both lines develop striking concentric cardiac hypertrophy, without heart failure or decreased life span. ErbB2 transgenic mice display electrocardiographic characteristics similar to those found in patients with Hypertrophic Cardiomyopathy, with susceptibility to adrenergic-induced arrhythmias. The hypertrophic hearts, which are 2–3 times larger than those of control littermates, express increased atrial natriuretic peptide and β-myosin heavy chain mRNA, consistent with a hypertrophic phenotype. Cardiomyocytes in these hearts are significantly larger than wild type cardiomyocytes, with enlarged nuclei and distinctive myocardial disarray. Interestingly, the over-expression of ErbB2 induces a concurrent up-regulation of multiple proteins associated with this signaling pathway, including EGFR, ErbB3, ErbB4, PI3K subunits p110 and p85, bcl-2 and multiple protective heat shock proteins. Additionally, ErbB2 up-regulation leads to an anti-apoptotic shift in the ratio of bcl-xS/xL in the heart. Finally, ErbB2 over-expression results in increased activation of the translation machinery involving S6, 4E-BP1 and eIF4E. The dependence of this hypertrophic phenotype on ErbB family signaling is confirmed by reduction in heart mass and cardiomyocyte size, and inactivation of pro-hypertrophic signaling in transgenic animals treated with the ErbB1/2 inhibitor, lapatinib. Conclusions/Significance These studies are the first to demonstrate that increased ErbB2 over-expression in the heart can activate protective signaling pathways and induce a

  18. Computational identification of conserved transcription factor binding sites upstream of genes induced in rat brain by transient focal ischemic stroke

    PubMed Central

    Pulliam, John V.K.; Xu, Zhenfeng; Ford, Gregory D.; Liu, Cuimei; Li, Yonggang; Stovall, Kyndra; Cannon, Virginetta S.; Tewolde, Teclemichael; Moreno, Carlos S.; Ford, Byron D.

    2013-01-01

    Microarray analysis has been used to understand how gene regulation plays a critical role in neuronal injury, survival and repair following ischemic stroke. To identify the transcriptional regulatory elements responsible for ischemia-induced gene expression, we examined gene expression profiles of rat brains following focal ischemia and performed computational analysis of consensus transcription factor binding sites (TFBS) in the genes of the dataset. In this study, rats were sacrificed 24 h after middle cerebral artery occlusion (MCAO) stroke and gene transcription in brain tissues following ischemia/reperfusion was examined using Affymetrix GeneChip technology. The CONserved transcription FACtor binding site (CONFAC) software package was used to identify over-represented TFBS in the upstream promoter regions of ischemia-induced genes compared to control datasets. CONFAC identified 12 TFBS that were statistically over-represented from our dataset of ischemia-induced genes, including three members of the Ets-1 family of transcription factors (TFs). Microarray results showed that mRNA for Ets-1 was increased following tMCAO but not pMCAO. Immunohistochemical analysis of Ets-1 protein in rat brains following MCAO showed that Ets-1 was highly expressed in neurons in the brain of sham control animals. Ets-1 protein expression was virtually abolished in injured neurons of the ischemic brain but was unchanged in peri-infarct brain areas. These data indicate that TFs, including Ets-1, may influence neuronal injury following ischemia. These findings could provide important insights into the mechanisms that lead to brain injury and could provide avenues for the development of novel therapies. PMID:23246490

  19. HSP70.1 AND -70.3 ARE REQUIRED FOR LATE-PHASE PROTECTION INDUCED BY ISCHEMIC PRECONDITIONING OF MOUSE HEARTS

    EPA Science Inventory

    Heat-Shock Proteins 70.1 and 70.3 Are Required for Late-phase Protection
    Induced by Ischemic Preconditioning of the Mouse Heart
    Craig R. Hampton 1 , Akira Shimamoto 1 , Christine L. Rothnie 1 , Jeaneatte Griscavage-Ennis 1 ,
    Albert Chong 1 , David J. Dix 2 , Edward D. Ve...

  20. Oenanthe Javanica Extract Protects Against Experimentally Induced Ischemic Neuronal Damage via its Antioxidant Effects

    PubMed Central

    Park, Joon Ha; Cho, Jeong Hwi; Kim, In Hye; Ahn, Ji Hyeon; Lee, Jae-Chul; Chen, Bai Hui; Shin, Bich-Na; Tae, Hyun-Jin; Yoo, Ki-Yeon; Hong, SeongKweon; Kang, Il Jun; Won, Moo-Ho; Kim, Jong-Dai

    2015-01-01

    Background: Water dropwort (Oenanthe javanica) as a popular traditional medicine in Asia shows various biological properties including antioxidant activity. In this study, we firstly examined the neuroprotective effect of Oenanthe javanica extract (OJE) in the hippocampal cornus ammonis 1 region (CA1 region) of the gerbil subjected to transient cerebral ischemia. Methods: Gerbils were established by the occlusion of common carotid arteries for 5 min. The neuroprotective effect of OJE was estimated by cresyl violet staining. In addition, 4 antioxidants (copper, zinc superoxide dismutase [SOD], manganese SOD, catalase, and glutathione peroxidase) immunoreactivities were investigated by immunohistochemistry. Results: Pyramidal neurons in the CA1 region showed neuronal death at 5 days postischemia; at this point in time, all antioxidants immunoreactivities disappeared in CA1 pyramidal neurons and showed in many nonpyramidal cells. Treatment with 200 mg/kg, not 100 mg/kg, OJE protected CA1 pyramidal neurons from ischemic damage. In addition, 200 mg/kg OJE treatment increased or maintained antioxidants immunoreactivities. Especially, among the antioxidants, glutathione peroxidase immunoreactivity was effectively increased in the CA1 pyramidal neurons of the OJE-treated sham-operated and ischemia-operated groups. Conclusion: Our present results indicate that treatment with OJE can protect neurons from transient ischemic damage and that the neuroprotective effect may be closely associated with increased or maintained intracellular antioxidant enzymes by OJE. PMID:26521793

  1. The first description of cardiac magnetic resonance findings in a severe scorpion envenomation: Is it a stress-induced (Takotsubo) cardiomyopathy like?

    PubMed

    Miranda, Carlos H; Braggion-Santos, Maria F; Schmidt, André; Pazin-Filho, Antônio; Cupo, Palmira

    2015-06-01

    There are more than 1 million cases of scorpion envenomation worldwide. Severe complications due to myocardial depression can happen in some patients, mainly children. A catecholamine-induced myocarditis probably causes this cardiac dysfunction. We describe a case of a 7-year-old boy with a severe scorpion envenomation complicated by pulmonary edema in which the cardiac magnetic resonance (CMR)was performed during the acute phase. The CMR showed an apical ballooning in the left ventricle associated with a left ventricle ejection fraction of 29% and a global edema of the midmyocardium and apical myocardiumin the T2-weighted triple inversion recovery images. The CMR was repeated after 7 months and showed complete recovery of the wall motion in the apical region and of the myocardial function (left ventricle ejection fraction, 60%) associated with normalization of the signal in the T2-weighted triple inversion recovery images. These clinical and laboratory findings, mainly the CMR images, are similar to those observed in stress-induced cardiomyopathy (Takotsubo) reinforcing the hypothesis that the catecholamine's excess has a pivotal function in the pathophysiology of the cardiac dysfunction in these 2 conditions. PMID:25601163

  2. How Is Cardiomyopathy Treated?

    MedlinePlus

    ... arrest Stopping the disease from getting worse Heart-Healthy Lifestyle Changes Your doctor may suggest lifestyle changes to manage a condition that’s causing your cardiomyopathy including: Heart-healthy eating Aiming for a healthy weight Managing stress ...

  3. Cardiomyopathy from 1,1-Difluoroethane Inhalation.

    PubMed

    Kumar, Suwen; Joginpally, Tejaswini; Kim, David; Yadava, Mrinal; Norgais, Konchok; Laird-Fick, Heather S

    2016-10-01

    Consumer aerosol products can be inhaled for their psychoactive effects, but with attendant adverse health effects including "sudden sniffing death." Cardiomyopathy has rarely been described in association with 1,1-difluoroethane (DFE), a common aerosol propellant. We report a 33-year-old male who developed acute myocardial injury and global hypokinesis along with rhabdomyolysis, acute kidney injury, and fulminant hepatitis after 2 days' nearly continuous huffing. Workup for other causes, including underlying coronary artery disease, was negative. His cardiac function improved over time. The exact mechanism of DFE's effects is uncertain but may include catecholamine-induced cardiomyopathy, coronary vasospasm, or direct cellular toxicity.

  4. Cardiomyopathy from 1,1-Difluoroethane Inhalation.

    PubMed

    Kumar, Suwen; Joginpally, Tejaswini; Kim, David; Yadava, Mrinal; Norgais, Konchok; Laird-Fick, Heather S

    2016-10-01

    Consumer aerosol products can be inhaled for their psychoactive effects, but with attendant adverse health effects including "sudden sniffing death." Cardiomyopathy has rarely been described in association with 1,1-difluoroethane (DFE), a common aerosol propellant. We report a 33-year-old male who developed acute myocardial injury and global hypokinesis along with rhabdomyolysis, acute kidney injury, and fulminant hepatitis after 2 days' nearly continuous huffing. Workup for other causes, including underlying coronary artery disease, was negative. His cardiac function improved over time. The exact mechanism of DFE's effects is uncertain but may include catecholamine-induced cardiomyopathy, coronary vasospasm, or direct cellular toxicity. PMID:26613951

  5. Up-regulation of hypoxia-inducible factor-1α enhanced the cardioprotective effects of ischemic postconditioning in hyperlipidemic rats.

    PubMed

    Li, Xiaoyu; Zhao, Huanxin; Wu, Ye; Zhang, Suli; Zhao, Xiaoqin; Zhang, Yan; Wang, Jin; Wang, Jie; Liu, Huirong

    2014-02-01

    Hyperlipidemia is an independent risk factor in the development of ischemic heart disease, which can increase myocardial susceptibility to ischemia/reperfusion (I/R) injury. Ischemic postconditioning (PostC) has now been demonstrated as a novel strategy to harness nature's protection against myocardial I/R injury in normal conditions. However, the effect of PostC on hyperlipidemic animals remains elusive. It has been shown in our previous study that PostC reduces the myocardial I/R injury, and hypoxia-inducible factor-1α (HIF-1α) may play an important role in the cardioprotective mechanisms of PostC on normal rats. Here, we tested the hypothesis that the cardioprotection of PostC on hyperlipidemic rats is associated with the up-regulated HIF-1α expression. Male Wistar rats were fed with a high-fat diet for 8 weeks, and then randomly divided into five groups: sham, I/R, dimethyloxalylglycine (DMOG) + I/R, PostC, and DMOG + PostC group. The detrimental indices induced by I/R injury included infarct size, plasma creatine kinase (CK) activity and caspase-3 activity. The results showed that PostC could reduce the infarct size, when compared with the I/R group, which was consistent with the significant lower levels of plasma CK activity and caspase-3 activity, and that it increased the expression of HIF-1α in hyperlipidemic rats. When DMOG was given before PostC to up-regulate HIF-1α protein level, the degree of I/R injury was attenuated. In conclusion, these data suggested that the up-regulation of HIF-1α may be one of the cardioprotective mechanisms of PostC against I/R injury in hyperlipidemic rats.

  6. Biventricular Takotsubo Cardiomyopathy

    PubMed Central

    Daoko, Joseph; Rajachandran, Manu; Savarese, Ronald; Orme, Joseph

    2013-01-01

    Biventricular takotsubo cardiomyopathy is associated with more hemodynamic instability than is isolated left ventricular takotsubo cardiomyopathy; medical management is more invasive and the course of hospitalization is longer. In March 2011, a 62-year-old woman presented at our emergency department with abdominal pain, nausea, and vomiting. On hospital day 2, she experienced chest pain. An electrocardiogram and cardiac enzyme levels suggested an acute myocardial infarction. She underwent cardiac angiography and was found to have severe left ventricular systolic dysfunction involving the mid and apical segments, which resulted in a left ventricular ejection fraction of 0.10 to 0.15 in the absence of obstructive coronary artery disease. Her hospital course was complicated by cardiogenic shock that required hemodynamic support with an intra-aortic balloon pump and dobutamine. A transthoracic echocardiogram revealed akinesis of the mid-to-distal segments of the left ventricle and mid-to-apical dyskinesis of the right ventricular free wall characteristic of biventricular takotsubo cardiomyopathy. After several days of medical management, the patient was discharged from the hospital in stable condition. To the best of our knowledge, this is the first review of the literature on biventricular takotsubo cardiomyopathy that compares its hemodynamic instability and medical management requirements with those of isolated left ventricular takotsubo cardiomyopathy. Herein, we discuss the case of our patient, review the pertinent medical literature, and convey the prevalence and importance of right ventricular involvement in patients with takotsubo cardiomyopathy. PMID:23914028

  7. Leptin ameliorates ischemic necrosis of the femoral head in rats with obesity induced by a high-fat diet

    PubMed Central

    Zhou, Lu; Jang, Kyu Yun; Moon, Young Jae; Wagle, Sajeev; Kim, Kyoung Min; Lee, Kwang Bok; Park, Byung-Hyun; Kim, Jung Ryul

    2015-01-01

    Obesity is a risk factor for ischemic necrosis of the femoral head (INFH). The purpose of this study was to determine if leptin treatment of INFH stimulates new bone formation to preserve femoral head shape in rats with diet-induced obesity. Rats were fed a high-fat diet (HFD) or normal chow diet (NCD) for 16 weeks to induce progressive development of obesity. Avascular necrosis of the femoral head (AVN) was surgically induced. Adenovirus-mediated introduction of the leptin gene was by intravenous injection 2 days before surgery-induced AVN. At 6 weeks post-surgery, radiologic and histomorphometric assessments were performed. Leptin signaling in tissues was examined by Western blot. Osteogenic markers were analyzed by real-time RT-PCR. Radiographs showed better preservation of femoral head architecture in the HFD-AVN-Leptin group than the HFD-AVN and HFD-AVN-LacZ groups. Histology and immunohistochemistry revealed the HFD-AVN-Leptin group had significantly increased osteoblastic proliferation and vascularity in infarcted femoral heads compared with the HFD-AVN and HFD-AVN-LacZ groups. Intravenous injection of leptin enhanced serum VEGF levels and activated HIF-1α pathways. Runx 2 and its target genes were significantly upregulated in the HFD-AVN-Leptin group. These results indicate that leptin resistance is important in INFH pathogenesis. Leptin therapy could be a new strategy for INFH. PMID:25797953

  8. Delayed treatment with NSC23766 in streptozotocin-induced diabetic rats ameliorates post-ischemic neuronal apoptosis through suppression of mitochondrial p53 translocation.

    PubMed

    Liao, Juan; Ye, Zhi; Huang, Guoqing; Xu, Chang; Guo, Qulian; Wang, E

    2014-10-01

    NSC23766, a specific inhibitor of Rac1, has recently been shown to protect against cerebral ischemic injury, although the effects of NSC23766 in a diabetic model have not been examined. Therefore, the aim of our study was to investigate if NSC23766 provided neuroprotection in streptozotocin-induced diabetic rats and to determine the potential mechanism through which NSC23766 works. Diabetic Sprague-Dawley rats were subjected to right middle cerebral artery occlusion (MCAO) for 90 min. NSC23766 (10 or 30 mg kg(-1)) or isotonic saline were administered intraperitoneally twice daily starting 24 h after cerebral ischemia, for three consecutive days. Cerebral infarct volume, neurological deficit scores, neuronal apoptosis, and the release of cytochrome c, as well as the generation of ROS and mitochondrial integrity, were evaluated 96 h after reperfusion. In addition, the mitochondrial translocation of p53 and the expression of p53-upregulated modulator of apoptosis (PUMA) in the mitochondria of the cerebral ischemic cortex were determined by western blotting. NSC23766 not only ameliorated post-ischemic neuronal apoptosis but also decreased cerebral ischemia-induced mitochondrial p53 translocation and the expression of PUMA in mitochondria in diabetic rats. Thus, our data indicate that NSC23766 has therapeutic potential against cerebral ischemic reperfusion injury and that NSC23766 significantly ameliorates neuronal apoptosis by suppressing mitochondrial p53 translocation in streptozotocin-induced diabetic rats.

  9. Granulocyte-colony stimulating factor therapy to induce neovascularization in ischemic heart disease.

    PubMed

    Ripa, Rasmus Sejersten

    2012-03-01

    Cell based therapy for ischemic heart disease has the potential to reduce post infarct heart failure and chronic ischemia. Treatment with granulocyte-colony stimulating factor (G-CSF) mobilizes cells from the bone marrow to the peripheral blood. Some of these cells are putative stem or progenitor cells. G-CSF is injected subcutaneously. This therapy is intuitively attractive compared to other cell based techniques since repeated catheterizations and ex vivo cell purification and expansion are avoided. Previous preclinical and early clinical trials have indicated that treatment with G-CSF leads to improved myocardial perfusion and function in acute or chronic ischemic heart disease. The hypothesis of this thesis is that patient with ischemic heart disease will benefit from G-CSF therapy. We examined this hypothesis in two clinical trials with G-CSF treatment to patients with either acute myocardial infarction or severe chronic ischemic heart disease. In addition, we assed a number of factors that could potentially affect the effect of cell based therapy. Finally, we intended to develop a method for in vivo cell tracking in the heart. Our research showed that subcutaneous G-CSF along with gene therapy do not improve myocardial function in patients with chronic ischemia despite a large increase in circulation bone marrow-derived cells. Also, neither angina pectoris nor exercise capacity was improved compared to placebo treatment. We could not identify differences in angiogenic factors or bone marrow-derived cells in the blood that could explain the neutral effect of G-CSF. Next, we examined G-CSF as adjunctive therapy following ST segment elevation myocardial infarction. We did not find any effect of G-CSF neither on the primary endpoint--regional myocardial function--nor on left ventricular ejection fraction (secondary endpoint) compared to placebo treatment. In subsequent analyses, we found significant differences in the types of cells mobilized from the bone marrow

  10. Remote ischemic perconditioning attenuates ischemia/reperfusion-induced downregulation of AQP2 in rat kidney.

    PubMed

    Kristensen, Marie Louise V; Kierulf-Lassen, Casper; Nielsen, Per Mose; Krag, Søren; Birn, Henrik; Nejsum, Lene N; Nørregaard, Rikke

    2016-07-01

    Renal ischemia/reperfusion (I/R) can lead to impaired urine concentration ability and increased fractional excretion of sodium (FeNa). Local ischemic preconditioning improves renal water and sodium handling after I/R injury. Here, we investigate whether remote ischemic perconditioning (rIPeC) prevents dysregulation of renal water and salt handling in response to I/R injury and mechanisms that may be involved. Rats were subjected to right nephrectomy and randomized into a sham group or an I/R group. In the I/R group, rats were subjected to 37 min of renal ischemia and 3 days of reperfusion. rIPeC was applied to the abdominal aorta. Blood and urine were collected on day 3 postoperatively for clearance studies. The expression of aquaporins (AQPs) and the sodium transporter Na-K-ATPase were analyzed using immunoblotting and immunohistochemistry. I/R injury resulted in polyuria, increased FeNa, and decreased urine osmolality compared to sham rats. rIPeC attenuated the increase in FeNa and the decrease in urine osmolality. Expression of AQP1, AQP2, phosphorylated AQP2 (pAQP2), and Na-K-ATPase was downregulated in I/R rats. rIPeC attenuated the reductions in AQP2 and pAQP2 expression. Immunohistochemistry revealed decreased labeling of Na-K-ATPase in the outer medulla in I/R kidneys compared to kidneys from sham and I/R + rIPeC rats. After renal ischemia, the expression of Na-K-ATPase was substantially reduced in the outer medullary thick ascending limb. In conclusion, our data suggest that rIPeC might prevent dysregulation of renal water and salt handling via regulation of AQP2 expression and phosphorylation as well as via regulation of Na-K-ATPase expression in I/R rat kidneys. PMID:27405971

  11. In situ biospectroscopic investigation of rapid ischemic and postmortem induced biochemical alterations in the rat brain.

    PubMed

    Hackett, Mark J; Britz, Carter J; Paterson, Phyllis G; Nichol, Helen; Pickering, Ingrid J; George, Graham N

    2015-02-18

    Rapid advances in imaging technologies have pushed novel spectroscopic modalities such as Fourier transform infrared spectroscopy (FTIR) and X-ray absorption spectroscopy (XAS) at the sulfur K-edge to the forefront of direct in situ investigation of brain biochemistry. However, few studies have examined the extent to which sample preparation artifacts confound results. Previous investigations using traditional analyses, such as tissue dissection, homogenization, and biochemical assay, conducted extensive research to identify biochemical alterations that occur ex vivo during sample preparation. In particular, altered metabolism and oxidative stress may be caused by animal death. These processes were a concern for studies using biochemical assays, and protocols were developed to minimize their occurrence. In this investigation, a similar approach was taken to identify the biochemical alterations that are detectable by two in situ spectroscopic methods (FTIR, XAS) that occur as a consequence of ischemic conditions created during humane animal killing. FTIR and XAS are well suited to study markers of altered metabolism such as lactate and creatine (FTIR) and markers of oxidative stress such as aggregated proteins (FTIR) and altered thiol redox (XAS). The results are in accordance with previous investigations using biochemical assays and demonstrate that the time between animal death and tissue dissection results in ischemic conditions that alter brain metabolism and initiate oxidative stress. Therefore, future in situ biospectroscopic investigations utilizing FTIR and XAS must take into consideration that brain tissue dissected from a healthy animal does not truly reflect the in vivo condition, but rather reflects a state of mild ischemia. If studies require the levels of metabolites (lactate, creatine) and markers of oxidative stress (thiol redox) to be preserved as close as possible to the in vivo condition, then rapid freezing of brain tissue via decapitation into

  12. Right ventricular cardiomyopathies: a multidisciplinary approach to diagnosis.

    PubMed

    Limongelli, Giuseppe; Rea, Alessandra; Masarone, Daniele; Francalanci, M Paola; Anastasakis, Aris; Calabro', Raffaele; Giovanna, Russo Maria; Bossone, Eduardo; Elliott, Perry Mark; Pacileo, Giuseppe

    2015-01-01

    The physiological importance of the right ventricle (RV) has been underestimated over the past years. Finally in the early 1950s through the 1970s, cardiac surgeons recognized the importance of RV function. Since then, the importance of RV function has been recognized in many acquired cardiac heart disease. RV can be mainly or together with left ventricle (LV) affected by inherited or acquired cardiomyopathy. In fact, RV morphological and functional remodeling occurs more common during cardiomyopathies than in ischemic cardiomyopathies and more closely parallels LV dysfunction. Moreover, there are some cardiomyopathy subtypes showing a predominant or exclusive involvement of the RV, and they are probably less known by cardiologists. The clinical approach to right ventricular cardiomyopathies is often challenging. Imaging is the first step to raise the suspicion and to guide the diagnostic process. In the differential diagnosis, cardiologists should consider athlete's heart, congenital heart diseases, multisystemic disorders, and inherited arrhythmias. However, a multiparametric and multidisciplinary approach, involving cardiologists, experts in imaging, geneticists, and pathologists with a specific expertise in these heart muscle disorders is required.

  13. Correlation of simultaneous differential gene expression in the blood and heart with known mechanisms of adriamycin-induced cardiomyopathy in the rat.

    PubMed

    Brown, H Roger; Ni, Hong; Benavides, Gina; Yoon, Lawrence; Hyder, Karim; Giridhar, Jaisri; Gardner, Guy; Tyler, Ronald D; Morgan, Kevin T

    2002-01-01

    As the genomes of mammalian species become sequenced and gene functions are ascribed, the use of differential gene expression (DGE) to evaluate organ function will become common in the experimental evaluation of new drug therapies. The ability to translate this technology into useful information for human exposures depends on tissue sampling that is impractical or generally not possible in man. The possibility that the DGE of nucleated cells, reticulocytes, or platelets in blood may present the necessary link with target organ toxicity provides an opportunity to correlate preclinical with clinical outcomes. Adriamycin is highly effective alone and more frequently in combination with other chemotherapeutic agents in the treatment of a variety of susceptible malignancies. Adriamycin-induced cardiomyopathy was examined as an endpoint to measure the utility of DOE on whole blood as a predictor of cardiac toxicity. Statistically significant gene changes were observed between relevant blood and cardiac gene profiles that corroborated the accepted mechanisms of toxicity (oxidative stress, effects on carnitine transport, DNA intercalation). There were, however, clear indications that other target organs (bone marrow and intestinal tract) were affected. The divergent expression of some genes between the blood and the heart on day 7 may also indicate the timing and mechanism of development of the cardiomyopathy and confirm current therapeutic approaches for its prevention. The data demonstrate that whole blood gene expression particularly in relation to oxidative stress, in conjunction with standard hematology and clinical chemistry, may be useful in monitoring and predicting cardiac damage secondary to adriamycin administration. Appendices A & B, referenced in this paper, are not printed in this issue of Toxicologic Pathology. They are available as downloadable text files at http://taylorandfrancis.metapress.com/openurl.asp?genre=journal&issn=0192-6233. To access them

  14. [Using L-carnitine to improve the adaptation of young athletes to physical load and the correction of stress-induced cardiomyopathy].

    PubMed

    Balykova, L A; Shirokova, A A; Soldatov, O M; Shchekina, N V; Urziaeva, A N

    2014-01-01

    The mechanisms of L-carnitine action and ergogenic pleiotropic effects of drugs, which play important role in sports medicine are described. Results of a comparative, parallel-group randomized clinical trial of L-carnitine (Elkar, PikFarma) in young athletes (football players, walkers) are reported. Elkar increases the body adaptation to physical stress and has a pronounced therapeutic effect in athletes with stress-induced cardiomyopathy by reducing the representation of potentially dangerous arrhythmia (sinus bradycardia less than 2 - 5 centile, 2nd degree atrioventricular block type II, T-wave inversion in more than 2 leads, and/or ST segment depression) and severity of benign ECG disturbances and hemodynamic changes, and decreasing the concentration of biochemical markers of myocardial damage (troponin, natriuretic peptide, creatine phosphokinase MB fraction) and cortisol. In general, Elkar contributed to a significant reduction in symptoms of cardiac remodeling in 75% of patients and had a weak effect in 25% of patents. It is concluded that the use of Elkar in playing sports and sports coaching quality of endurance is appropriate, especially in terms of myocardial remodeling. PMID:25518523

  15. Virus-induced dilated cardiomyopathy is characterized by increased levels of fibrotic extracellular matrix proteins and reduced amounts of energy-producing enzymes.

    PubMed

    Nishtala, Krishnatej; Phong, Truong Q; Steil, Leif; Sauter, Martina; Salazar, Manuela G; Kandolf, Reinhard; Kroemer, Heyo K; Felix, Stephan B; Völker, Uwe; Klingel, Karin; Hammer, Elke

    2011-11-01

    The most relevant clinical phenotype resulting from chronic enteroviral myocarditis is dilated cardiomyopathy (DCM). Mice of the susceptible mouse strain A.BY/SnJ mimick well human DCM since they develop as a consequence of persistent infection and chronic inflammation a dilation of the heart ventricle several weeks after coxsackievirus B3 (CVB3) infection. Therefore, this model is well suited for the analysis of changes in the heart proteome associated with DCM. Here, we present a proteomic survey of the dilated hearts based on differential fluorescence gel electrophoresis and liquid chromatography-mass spectrometric centered methods in comparison to age-matched non-infected hearts. In total, 101 distinct proteins, which belong to categories immunity and defense, cell structure and associated proteins, energy metabolism and protein metabolism/modification differed in their levels in both groups. Levels of proteins involved in fatty acid metabolism and electron transport chain were found to be significantly reduced in infected mice suggesting a decrease in energy production in CVB3-induced DCM. Furthermore, proteins associated with muscle contraction (MLRV, MLRc2, MYH6, MyBPC3), were present in significantly altered amounts in infected mice. A significant increase in the level of extracellular matrix proteins in the dilated hearts indicates cardiac remodeling due to fibrosis.

  16. Increased gene expression of catecholamine-synthesizing enzymes in adrenal glands contributes to high circulating catecholamines in pigs with tachycardia-induced cardiomyopathy.

    PubMed

    Tomaszek, A; Kiczak, L; Bania, J; Paslawska, U; Zacharski, M; Janiszewski, A; Noszczyk-Nowak, A; Dziegiel, P; Kuropka, P; Ponikowski, P; Jankowska, E A

    2015-04-01

    High levels of circulating catecholamines have been established as fundamental pathophysiological elements of heart failure (HF). However, it is unclear whether the increased gene expression of catecholamine-synthesis enzymes in the adrenal glands contributes to these hormone abnormalities in large animal HF models. We analyzed the mRNA levels of catecholamine-synthesizing enzymes: tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AAAD), dopamine-β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) in adrenal glands of 18 pigs with chronic systolic non-ischaemic HF (tachycardia-induced cardiomyopathy due to right ventricle pacing) and 6 sham-operated controls. Pigs with severe HF demonstrated an increased expression of TH and DBH (but neither AAAD nor PNMT) as compared to animals with milder HF and controls (P<0.05 in all cases). The increased adrenal mRNA expression of TH and DBH was accompanied by a reduced left ventricle ejection fraction (LVEF) (P<0.001) and an elevated plasma B-type natriuretic peptide (BNP) (P<0.01), the other indices reflecting HF severity. There was a positive relationship between the increased adrenal mRNA expression of TH and DBH, and the high levels of circulating adrenaline and noradrenaline (all P<0.05). The association with noradrenaline remained significant also when adjusted for LVEF and plasma BNP, suggesting a significant contribution of adrenals to the circulating pool of catecholamines in subjects with systolic HF. PMID:25903953

  17. Increased gene expression of catecholamine-synthesizing enzymes in adrenal glands contributes to high circulating catecholamines in pigs with tachycardia-induced cardiomyopathy.

    PubMed

    Tomaszek, A; Kiczak, L; Bania, J; Paslawska, U; Zacharski, M; Janiszewski, A; Noszczyk-Nowak, A; Dziegiel, P; Kuropka, P; Ponikowski, P; Jankowska, E A

    2015-04-01

    High levels of circulating catecholamines have been established as fundamental pathophysiological elements of heart failure (HF). However, it is unclear whether the increased gene expression of catecholamine-synthesis enzymes in the adrenal glands contributes to these hormone abnormalities in large animal HF models. We analyzed the mRNA levels of catecholamine-synthesizing enzymes: tyrosine hydroxylase (TH), aromatic L-amino acid decarboxylase (AAAD), dopamine-β-hydroxylase (DBH) and phenylethanolamine N-methyltransferase (PNMT) in adrenal glands of 18 pigs with chronic systolic non-ischaemic HF (tachycardia-induced cardiomyopathy due to right ventricle pacing) and 6 sham-operated controls. Pigs with severe HF demonstrated an increased expression of TH and DBH (but neither AAAD nor PNMT) as compared to animals with milder HF and controls (P<0.05 in all cases). The increased adrenal mRNA expression of TH and DBH was accompanied by a reduced left ventricle ejection fraction (LVEF) (P<0.001) and an elevated plasma B-type natriuretic peptide (BNP) (P<0.01), the other indices reflecting HF severity. There was a positive relationship between the increased adrenal mRNA expression of TH and DBH, and the high levels of circulating adrenaline and noradrenaline (all P<0.05). The association with noradrenaline remained significant also when adjusted for LVEF and plasma BNP, suggesting a significant contribution of adrenals to the circulating pool of catecholamines in subjects with systolic HF.

  18. [Using L-carnitine to improve the adaptation of young athletes to physical load and the correction of stress-induced cardiomyopathy].

    PubMed

    Balykova, L A; Shirokova, A A; Soldatov, O M; Shchekina, N V; Urziaeva, A N

    2014-01-01

    The mechanisms of L-carnitine action and ergogenic pleiotropic effects of drugs, which play important role in sports medicine are described. Results of a comparative, parallel-group randomized clinical trial of L-carnitine (Elkar, PikFarma) in young athletes (football players, walkers) are reported. Elkar increases the body adaptation to physical stress and has a pronounced therapeutic effect in athletes with stress-induced cardiomyopathy by reducing the representation of potentially dangerous arrhythmia (sinus bradycardia less than 2 - 5 centile, 2nd degree atrioventricular block type II, T-wave inversion in more than 2 leads, and/or ST segment depression) and severity of benign ECG disturbances and hemodynamic changes, and decreasing the concentration of biochemical markers of myocardial damage (troponin, natriuretic peptide, creatine phosphokinase MB fraction) and cortisol. In general, Elkar contributed to a significant reduction in symptoms of cardiac remodeling in 75% of patients and had a weak effect in 25% of patents. It is concluded that the use of Elkar in playing sports and sports coaching quality of endurance is appropriate, especially in terms of myocardial remodeling.

  19. Isoflurane Preconditioning Induces Neuroprotection by Up-Regulation of TREK1 in a Rat Model of Spinal Cord Ischemic Injury

    PubMed Central

    Wang, Kun; Kong, Xiangang

    2016-01-01

    This study aimed to explore the neuroprotection and mechanism of isoflurane on rats with spinal cord ischemic injury. Total 40 adult male Sprague-Dawley rats were divided into the four groups (n=10). Group A was sham-operation group; group B was ischemia group; group C was isoflurane preconditioning group; group D was isoflurane preconditioning followed by ischemia treatment group. Then the expressions of TWIK-related K+ channel 1 (TREK1) in the four groups were detected by immunofluorescent assay, real time-polymerase chain reactions (RT-PCR) and western blot. The primary neurons of rats were isolated and cultured under normal and hypoxic conditions. Besides, the neurons under two conditions were transfected with green fluorescent protein (GFP)-TREK1 and lentivirual to overexpress and silence TREK1. Additionally, the neurons were treated with isoflurane or not. Then caspase-3 activity and cell cycle of neurons under normal and hypoxic conditions were detected. Furthermore, nicotinamide adenine dinucleotide hydrate (NADH) was detected using NAD+/NADH quantification colorimetric kit. Results showed that the mRNA and protein expressions of TREK1 increased significantly in group C and D. In neurons, when TREK1 silenced, isoflurane treatment improved the caspase-3 activity. In hypoxic condition, the caspase-3 activity and sub-G1 cell percentage significantly increased, however, when TREK1 overexpressed the caspase-3 activity and sub-G1 cell percentage decreased significantly. Furthermore, both isoflurane treatment and overexpression of TREK1 significantly decreased NADH. In conclusion, isoflurane-induced neuroprotection in spinal cord ischemic injury may be associated with the up-regulation of TREK1. PMID:27469140

  20. Isoflurane Preconditioning Induces Neuroprotection by Up-Regulation of TREK1 in a Rat Model of Spinal Cord Ischemic Injury.

    PubMed

    Wang, Kun; Kong, Xiangang

    2016-09-01

    This study aimed to explore the neuroprotection and mechanism of isoflurane on rats with spinal cord ischemic injury. Total 40 adult male Sprague-Dawley rats were divided into the four groups (n=10). Group A was sham-operation group; group B was ischemia group; group C was isoflurane preconditioning group; group D was isoflurane preconditioning followed by ischemia treatment group. Then the expressions of TWIK-related K⁺ channel 1 (TREK1) in the four groups were detected by immunofluorescent assay, real time-polymerase chain reactions (RT-PCR) and western blot. The primary neurons of rats were isolated and cultured under normal and hypoxic conditions. Besides, the neurons under two conditions were transfected with green fluorescent protein (GFP)-TREK1 and lentivirual to overexpress and silence TREK1. Additionally, the neurons were treated with isoflurane or not. Then caspase-3 activity and cell cycle of neurons under normal and hypoxic conditions were detected. Furthermore, nicotinamide adenine dinucleotide hydrate (NADH) was detected using NAD+/NADH quantification colorimetric kit. Results showed that the mRNA and protein expressions of TREK1 increased significantly in group C and D. In neurons, when TREK1 silenced, isoflurane treatment improved the caspase-3 activity. In hypoxic condition, the caspase-3 activity and sub-G1 cell percentage significantly increased, however, when TREK1 overexpressed the caspase-3 activity and sub-G1 cell percentage decreased significantly. Furthermore, both isoflurane treatment and overexpression of TREK1 significantly decreased NADH. In conclusion, isoflurane-induced neuroprotection in spinal cord ischemic injury may be associated with the up-regulation of TREK1. PMID:27469140

  1. Cerebroprotective Effect of Moringa oleifera against Focal Ischemic Stroke Induced by Middle Cerebral Artery Occlusion

    PubMed Central

    Wattanathorn, Jintanaporn; Tong-Un, Terdthai; Muchimapura, Supaporn; Wannanon, Panakaporn; Jittiwat, Jinatta

    2013-01-01

    The protection against ischemic stroke is still required due to the limitation of therapeutic efficacy. Based on the role of oxidative stress in stroke pathophysiology, we determined whether Moringa oleifera, a plant possessing potent antioxidant activity, protected against brain damage and oxidative stress in animal model of focal stroke. M. oleifera leaves extract at doses of 100, 200 and 400 mg·kg−1 was orally given to male Wistar rats (300–350 g) once daily at a period of 2 weeks before the occlusion of right middle cerebral artery (Rt.MCAO) and 3 weeks after Rt.MCAO. The determinations of neurological score and temperature sensation were performed every 7 days throughout the study period, while the determinations of brain infarction volume, MDA level, and the activities of SOD, CAT, and GSH-Px were performed 24 hr after Rt.MCAO. The results showed that all doses of extract decreased infarction volume in both cortex and subcortex. The protective effect of medium and low doses of extract in all areas occurred mainly via the decreased oxidative stress. The protective effect of the high dose extract in striatum and hippocampus occurred via the same mechanism, whereas other mechanisms might play a crucial role in cortex. The detailed mechanism required further exploration. PMID:24367723

  2. Cerebroprotective effect of Moringa oleifera against focal ischemic stroke induced by middle cerebral artery occlusion.

    PubMed

    Kirisattayakul, Woranan; Wattanathorn, Jintanaporn; Tong-Un, Terdthai; Muchimapura, Supaporn; Wannanon, Panakaporn; Jittiwat, Jinatta

    2013-01-01

    The protection against ischemic stroke is still required due to the limitation of therapeutic efficacy. Based on the role of oxidative stress in stroke pathophysiology, we determined whether Moringa oleifera, a plant possessing potent antioxidant activity, protected against brain damage and oxidative stress in animal model of focal stroke. M. oleifera leaves extract at doses of 100, 200 and 400 mg·kg(-1) was orally given to male Wistar rats (300-350 g) once daily at a period of 2 weeks before the occlusion of right middle cerebral artery (Rt.MCAO) and 3 weeks after Rt.MCAO. The determinations of neurological score and temperature sensation were performed every 7 days throughout the study period, while the determinations of brain infarction volume, MDA level, and the activities of SOD, CAT, and GSH-Px were performed 24 hr after Rt.MCAO. The results showed that all doses of extract decreased infarction volume in both cortex and subcortex. The protective effect of medium and low doses of extract in all areas occurred mainly via the decreased oxidative stress. The protective effect of the high dose extract in striatum and hippocampus occurred via the same mechanism, whereas other mechanisms might play a crucial role in cortex. The detailed mechanism required further exploration. PMID:24367723

  3. Danhong injection attenuates cardiac injury induced by ischemic and reperfused neuronal cells through regulating arginine vasopressin expression and secretion.

    PubMed

    Yang, Mingzhu; Orgah, John; Zhu, Jie; Fan, Guanwei; Han, Jihong; Wang, Xiaoying; Zhang, Boli; Zhu, Yan

    2016-07-01

    Ischemic stroke is associated with cardiac myocyte vulnerability through some unknown mechanisms. Arginine vasopressin (AVP) may exert considerable function in the relationship of brain damage and heart failure. Danhong injection (DHI) can protect both stroke and heart failure patients with good efficacy in clinics. The aim of this study is to investigate the mechanism of DHI in heart and brain co-protection effects to determine whether AVP plays key role in this course. In the present study, we found that both the supernatant from oxygen-glucose deprivation (OGD) and reperfused primary rat neuronal cells (PRNCs) and AVP treatment caused significant reduction in cell viability and mitochondrial activity in primary rat cardiac myocytes (RCMs). Besides, DHI had the same protective effects with conivaptan, a dual vasopressin V1A and V2 receptor antagonist, in reducing the RCM damage induced by overdose AVP. DHI significantly decreased the injury of both PRNCs and RCMs. Meanwhile, the AVP level was elevated dramatically in OGD and reperfusion PRNCs, and DHI was able to decrease the AVP expression in the injured PRNCs. Therefore, our present results suggested that OGD and reperfusion PRNCs might induce myocyte injury by elevating the AVP expression in PRNCs. The ability of DHI to reinstate AVP level may be one of the mechanisms of its brain and heart co-protection effects.

  4. Danhong injection attenuates cardiac injury induced by ischemic and reperfused neuronal cells through regulating arginine vasopressin expression and secretion.

    PubMed

    Yang, Mingzhu; Orgah, John; Zhu, Jie; Fan, Guanwei; Han, Jihong; Wang, Xiaoying; Zhang, Boli; Zhu, Yan

    2016-07-01

    Ischemic stroke is associated with cardiac myocyte vulnerability through some unknown mechanisms. Arginine vasopressin (AVP) may exert considerable function in the relationship of brain damage and heart failure. Danhong injection (DHI) can protect both stroke and heart failure patients with good efficacy in clinics. The aim of this study is to investigate the mechanism of DHI in heart and brain co-protection effects to determine whether AVP plays key role in this course. In the present study, we found that both the supernatant from oxygen-glucose deprivation (OGD) and reperfused primary rat neuronal cells (PRNCs) and AVP treatment caused significant reduction in cell viability and mitochondrial activity in primary rat cardiac myocytes (RCMs). Besides, DHI had the same protective effects with conivaptan, a dual vasopressin V1A and V2 receptor antagonist, in reducing the RCM damage induced by overdose AVP. DHI significantly decreased the injury of both PRNCs and RCMs. Meanwhile, the AVP level was elevated dramatically in OGD and reperfusion PRNCs, and DHI was able to decrease the AVP expression in the injured PRNCs. Therefore, our present results suggested that OGD and reperfusion PRNCs might induce myocyte injury by elevating the AVP expression in PRNCs. The ability of DHI to reinstate AVP level may be one of the mechanisms of its brain and heart co-protection effects. PMID:27107944

  5. Cardiomyopathy and Cerebrovascular Accident Associated with Anabolic-Androgenic Steroid Use.

    ERIC Educational Resources Information Center

    Mochizuki, Ronald M.; Richter, Kenneth J.

    1988-01-01

    A case report is presented of a 32 year-old male bodybuilder who sustained an ischemic cerebrovascular accident and showed signs of cardiomyopathy. Although no cause was found, the man had been taking steroids for 16 years. Harmful effects of steroid use are discussed. (IAH)

  6. Treatment of Chagas Cardiomyopathy

    PubMed Central

    Botoni, Fernando A.; Ribeiro, Antonio Luiz P.; Marinho, Carolina Coimbra; Lima, Marcia Maria Oliveira; Nunes, Maria do Carmo Pereira; Rocha, Manoel Otávio C.

    2013-01-01

    Chagas' disease (ChD), caused by the protozoa Trypanosoma cruzi (T. cruzi), was discovered and described by the Brazilian physician Carlos Chagas in 1909. After a century of original description, trypanosomiasis still brings much misery to humanity and is classified as a neglected tropical disease prevalent in underdeveloped countries, particularly in South America. It is an increasing worldwide problem due to the number of cases in endemic areas and the migration of infected subjects to more developed regions, mainly North America and Europe. Despite its importance, chronic chagas cardiomyopathy (CCC) pathophysiology is yet poorly understood, and independently of its social, clinical, and epidemiological importance, the therapeutic approach of CCC is still transposed from the knowledge acquired from other cardiomyopathies. Therefore, the objective of this review is to describe the treatment of Chagas cardiomyopathy with emphasis on its peculiarities. PMID:24350293

  7. Alcoholic cardiomyopathy: Pathophysiologic insights

    PubMed Central

    Piano, Mariann R.; Phillips, Shane A.

    2014-01-01

    Alcoholic cardiomyopathy is a specific heart muscle disease found in individuals with a history of long-term heavy alcohol consumption. Alcoholic cardiomyopathy is associated with a number of adverse histological, cellular, and structural changes within the myocardium. Several mechanisms are implicated in mediating the adverse effects of ethanol, including the generation of oxidative stress, apoptotic cell death, impaired mitochondrial bioenergetics/stress, derangements in fatty acid metabolism and transport, and accelerated protein catabolism. In this review, we discuss the evidence for such mechanisms and present the potential importance of drinking patterns, genetic susceptibility, nutritional factors, race, and sex. The purpose of this review is to provide a mechanistic paradigm for future research in the area of alcoholic cardiomyopathy. PMID:24671642

  8. Remote Ischemic Preconditioning for the Prevention of Contrast-Induced Acute Kidney Injury in Diabetics Receiving Elective Percutaneous Coronary Intervention

    PubMed Central

    Balbir Singh, Gillian; Ann, Soe Hee; Park, Jongha; Chung, Hyun Chul; Lee, Jong Soo; Kim, Eun-Sook; Choi, Jung Il; Lee, Jiho; Kim, Shin-Jae; Shin, Eun-Seok

    2016-01-01

    Objective Remote ischemic preconditioning (RIPC) induces transient episodes of ischemia by the occlusion of blood flow in non-target tissue, before a subsequent ischemia-reperfusion injury. When RIPC is applied before percutaneous coronary intervention (PCI), the kidneys may be protected against ischemia-reperfusion injury and subsequently contrast-induced acute kidney injury (CI-AKI). The aim of this study was to evaluate the efficacy of RIPC for the prevention of CI-AKI in patients with diabetes with pre-existing chronic kidney disease (CKD) undergoing elective PCI. Methods This randomized, double-blind, sham-controlled study enrolled patients with diabetes scheduled for elective PCI with eGFR ≤60 ml/min/1.73 m2 or urinary albumin creatinine ratio of >300 mg/g to receive either RIPC or the sham ischemic preconditioning. Results One hundred and two patients (68.9 ± 8.2 years old, 47.1% men) were included. Baseline eGFR, creatinine and serum NGAL was similar between RIPC and control groups (48.5 ± 12 ml/min vs. 46.6 ± 10 ml/min, p = 0.391; 1.42 ± 0.58 mg/dl vs. 1.41 ± 0.34 mg/dl, p = 0.924; and 136.0 ± 45.0 ng/ml vs. 137.6 ± 43.3 ng/ml, p = 0.961, respectively). CI-AKI occurred in 13.7% (14/102) of the total subjects, with both RIPC and control groups having an equal incidence of 13.7% (7/51). No significant differences were seen in creatinine, NGAL, cardiac enzymes (troponin T, CKMB) and hs-CRP between the groups post-procedure. Conclusions In this study, RIPC applied prior to elective PCI was not effective in preventing CI-AKI in patients with diabetes with pre-existing CKD. Trial Registration ClinicalTrials.gov NCT02329444 PMID:27723839

  9. [Lipoprotein lipase and diabetic cardiomyopathy].

    PubMed

    Liu, Xiang-Yu; Yin, Wei-Dong; Tang, Chao-Ke

    2014-02-01

    Lipoprotein lipase (LPL) hydrolyzes plasma triglyceride-rich lipoproteins into free fatty acids (FFA) to provide energy for cardiac tissue. During diabetes, cardiac energy supply is insufficient due to defected utilization of glucose. As a compensation of cardiac energy supply, FFAs are released through the hydrolysis of very low density lipoprotein (VLDL) and chylomicrons (CM) due to activation of LPL activity. In diabetic patients, activated LPL activity and elevated FFAs result in the intracellular accumulation of reactive oxygen species and lipids in myocardium and potentially induce the diabetic cardiomyopathy (DCM). The present review summarizes the regulatory mechanisms of myocardial LPL and the pathogenesis of DCM induced by LPL and provides novel therapeutic targets and pathways for DCM. PMID:24873138

  10. Resveratrol Mitigates Rat Retinal Ischemic Injury: The Roles of Matrix Metalloproteinase-9, Inducible Nitric Oxide, and Heme Oxygenase-1

    PubMed Central

    Liu, Xiao-Qian; Wu, Bing-Jhih; Pan, Wynn H.T.; Liu, Jorn-Hon; Chen, Mi-Mi; Chao, Fang-Ping

    2013-01-01

    Abstract Purpose Retinal ischemia-associated ocular disorders, such as retinal occlusive disorders, neovascular age-related macular degeneration, proliferative diabetic retinopathy, and glaucoma are vision-threatening. In this study, we examined whether and by what mechanisms resveratrol, a polyphenol found in red wine, is able to protect against retinal ischemia/reperfusion injury. Methods In vivo rat retinal ischemia was induced by high intraocular pressure (HIOP), namely, 120 mmHg for 60 min. The mechanism and management was evaluated by electroretinogram (ERG) b-wave amplitudes measurement, immunohistochemistry, and real-time polymerase chain reaction. Results The HIOP-induced retinal ischemic changes were characterized by a decrease in ERG b-wave amplitudes, a loss of choline acetyltransferase immunolabeling of amacrine cell bodies/neuronal processes, and increased vimentin immunoreactivity, which is a marker of Müller cells, together with upregulation of matrix metalloproteinase-9 (MMP-9), heme oxygenase-1 (HO-1), and inducible nitric oxide (iNOS), and downregulation of Thy-1, both at the mRNA level. The detrimental effects due to the ischemia were concentration-dependent (weaker effect at 0.05 nmole) and/or significantly (at 0.5 nmole) altered when resveratrol was applied 15 min before or after retina ischemia. Conclusion This study supports the hypothesis that resveratrol may be able to protect the retina against ischemia by downregulation of MMP-9 and iNOS, and upregulation of HO-1. PMID:23075401

  11. Dilated Cardiomyopathy Mutation (R134W) in Mouse Cardiac Troponin T Induces Greater Contractile Deficits against α-Myosin Heavy Chain than against β-Myosin Heavy Chain

    PubMed Central

    Gollapudi, Sampath K.; Chandra, Murali

    2016-01-01

    Many studies have demonstrated that depressed myofilament Ca2+ sensitivity is common to dilated cardiomyopathy (DCM) in humans. However, it remains unclear whether a single determinant—such as myofilament Ca2+ sensitivity—is sufficient to characterize all cases of DCM because the severity of disease varies widely with a given mutation. Because dynamic features dominate in the heart muscle, alterations in dynamic contractile parameters may offer better insight on the molecular mechanisms that underlie disparate effects of DCM mutations on cardiac phenotypes. Dynamic features are dominated by myofilament cooperativity that stem from different sources. One such source is the strong tropomyosin binding region in troponin T (TnT), which is known to modulate crossbridge (XB) recruitment dynamics in a myosin heavy chain (MHC)-dependent manner. Therefore, we hypothesized that the effects of DCM-linked mutations in TnT on contractile dynamics would be differently modulated by α- and β-MHC. After reconstitution with the mouse TnT equivalent (TnTR134W) of the human DCM mutation (R131W), we measured dynamic contractile parameters in detergent-skinned cardiac muscle fiber bundles from normal (α-MHC) and transgenic mice (β-MHC). TnTR134W significantly attenuated the rate constants of tension redevelopment, XB recruitment dynamics, XB distortion dynamics, and the magnitude of length-mediated XB recruitment only in α-MHC fiber bundles. TnTR134W decreased myofilament Ca2+ sensitivity to a greater extent in α-MHC (0.14 pCa units) than in β-MHC fiber bundles (0.08 pCa units). Thus, our data demonstrate that TnTR134W induces a more severe DCM-like contractile phenotype against α-MHC than against β-MHC background. PMID:27757084

  12. Echocardiographic Characterization of a Murine Model of Hypertrophic Obstructive Cardiomyopathy Induced by Cardiac-specific Overexpression of Epidermal Growth Factor Receptor 2.

    PubMed

    Sørensen, Lars L; Bedja, Djahida; Sysa-Shah, Polina; Liu, Hongyun; Maxwell, Amanda; Yi, Xu; Pozios, Iraklis; Olsen, Niels T; Abraham, Theodore P; Abraham, Roselle; Gabrielson, Kathleen

    2016-01-01

    Although rare, hypertrophic cardiomyopathy (HCM) with midventricular obstruction is often associated with severe symptoms and complications. None of the existing HCM animal models display this particular phenotype. Our group developed a mouse line that overexpresses the ErbB2 receptor (ErbB2(tg)) in cardiomyocytes; we previously showed that the ErbB2 receptor induces cardiomyocyte hypertrophy, myocyte disarray, and fibrosis compatible with HCM. In the current study, we sought to further echocardiographically characterize the ErbB2(tg) mouse line as a model of HCM. Compared with their wild-type littermates, ErbB2(tg) mice show increased left ventricular (LV) mass, concentric LV hypertrophy, and papillary muscle hypertrophy. This hypertrophy was accompanied by diastolic dysfunction, expressed as reduced E:A ratio, prolonged deceleration time, and elevated E:e' ratio. In addition, ErbB2(tg) mice consistently showed midcavity obstruction with elevated LV gradients, and the flow profile revealed a prolonged pressure increase and a delayed peak, indicating dynamic obstruction. The ejection fraction was increased in ErbB2(tg) mice, due to reduced end-diastolic and end-systolic LV volumes. Furthermore, systolic radial strain and systolic radial strain rate but not systolic circumferential strain and longitudinal strain were decreased in ErbB2(tg) compared with wild-type mice. In conclusion, the phenotype of the ErbB2(tg) mouse model is consistent with midventricular HCM in many important aspects, including massive LV hypertrophy, diastolic dysfunction, and midcavity obstruction. This pattern is unique for a small animal model, suggesting that ErbB2(tg) mice may be well suited for research into the hemodynamics and treatment of this rare form of HCM. PMID:27538857

  13. Cardiomyopathy Following Latrodectus Envenomation

    PubMed Central

    Levine, Michael; Canning, Josh; Chase, Robyn; Ruha, Anne-Michelle

    2010-01-01

    Latrodectus envenomations are common throughout the United States and the world. While many envenomations can result in catecholamine release with resultant hypertension and tachycardia, myocarditis is very rare. We describe a case of a 22-year-old male who sustained a Latrodectus envenomation complicated by cardiomyopathy. PMID:21293781

  14. Children's Cardiomyopathy Foundation

    MedlinePlus

    ... on pediatric cardiomyopathy. The hope is that one day every affected child can be cured to live a full and active life. “A Cause for Today… A Cure for Tomorrow” CCF News & Updates Make this holiday season extra sweet and give from the heart to ...

  15. Myocardial mechanics in cardiomyopathies.

    PubMed

    Modesto, Karen; Sengupta, Partho P

    2014-01-01

    Cardiomyopathies are a heterogeneous group of diseases that can be phenotypically recognized by specific patterns of ventricular morphology and function. The authors summarize recent clinical observations that mechanistically link the multidirectional components of left ventricular (LV) deformation with morphological phenotypes of cardiomyopathies for offering key insights into the transmural heterogeneity of myocardial function. Subendocardial dysfunction predominantly alters LV longitudinal shortening, lengthening and suction performance and contributes to the phenotypic patterns of heart failure (HF) with preserved ejection fraction (EF) seen with hypertrophic and restrictive patterns of cardiomyopathy. On the other hand, a more progressive transmural disease results in reduction of LV circumferential and twist mechanics leading to the phenotypic pattern of dilated cardiomyopathy and the clinical syndrome of HF with reduced (EF). A proper characterization of LV transmural mechanics, energetics, and space-time distributions of pressure and shear stress may allow recognition of early functional changes that can forecast progression or reversal of LV remodeling. Furthermore, the interactions between LV muscle and fluid mechanics hold the promise for offering newer mechanistic insights and tracking impact of novel therapies.

  16. Rewarming from therapeutic hypothermia induces cortical neuron apoptosis in a swine model of neonatal hypoxic-ischemic encephalopathy.

    PubMed

    Wang, Bing; Armstrong, Jillian S; Lee, Jeong-Hoo; Bhalala, Utpal; Kulikowicz, Ewa; Zhang, Hui; Reyes, Michael; Moy, Nicole; Spicer, Dawn; Zhu, Junchao; Yang, Zeng-Jin; Koehler, Raymond C; Martin, Lee J; Lee, Jennifer K

    2015-05-01

    The consequences of therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy are poorly understood. Adverse effects from suboptimal rewarming could diminish neuroprotection from hypothermia. Therefore, we tested whether rewarming is associated with apoptosis. Piglets underwent hypoxia-asphyxia followed by normothermic or hypothermic recovery at 2 hours. Hypothermic groups were divided into those with no rewarming, rewarming at 0.5 °C/hour, or rewarming at 4 °C/hour. Neurodegeneration at 29 hours was assessed by hematoxylin and eosin staining, TUNEL assay, and immunoblotting for cleaved caspase-3. Rewarmed piglets had more apoptosis in motor cortex than did those that remained hypothermic after hypoxia-asphyxia. Apoptosis in piriform cortex was greater in hypoxic-asphyxic, rewarmed piglets than in naive/sham piglets. Caspase-3 inhibitor suppressed apoptosis with rewarming. Rapidly rewarmed piglets had more caspase-3 cleavage in cerebral cortex than did piglets that remained hypothermic or piglets that were rewarmed slowly. We conclude that rewarming from therapeutic hypothermia can adversely affect the newborn brain by inducing apoptosis through caspase mechanisms.

  17. Rewarming from therapeutic hypothermia induces cortical neuron apoptosis in a swine model of neonatal hypoxic-ischemic encephalopathy.

    PubMed

    Wang, Bing; Armstrong, Jillian S; Lee, Jeong-Hoo; Bhalala, Utpal; Kulikowicz, Ewa; Zhang, Hui; Reyes, Michael; Moy, Nicole; Spicer, Dawn; Zhu, Junchao; Yang, Zeng-Jin; Koehler, Raymond C; Martin, Lee J; Lee, Jennifer K

    2015-05-01

    The consequences of therapeutic hypothermia for neonatal hypoxic-ischemic encephalopathy are poorly understood. Adverse effects from suboptimal rewarming could diminish neuroprotection from hypothermia. Therefore, we tested whether rewarming is associated with apoptosis. Piglets underwent hypoxia-asphyxia followed by normothermic or hypothermic recovery at 2 hours. Hypothermic groups were divided into those with no rewarming, rewarming at 0.5 °C/hour, or rewarming at 4 °C/hour. Neurodegeneration at 29 hours was assessed by hematoxylin and eosin staining, TUNEL assay, and immunoblotting for cleaved caspase-3. Rewarmed piglets had more apoptosis in motor cortex than did those that remained hypothermic after hypoxia-asphyxia. Apoptosis in piriform cortex was greater in hypoxic-asphyxic, rewarmed piglets than in naive/sham piglets. Caspase-3 inhibitor suppressed apoptosis with rewarming. Rapidly rewarmed piglets had more caspase-3 cleavage in cerebral cortex than did piglets that remained hypothermic or piglets that were rewarmed slowly. We conclude that rewarming from therapeutic hypothermia can adversely affect the newborn brain by inducing apoptosis through caspase mechanisms. PMID:25564240

  18. Antenatal hypoxia induces epigenetic repression of glucocorticoid receptor and promotes ischemic-sensitive phenotype in the developing heart.

    PubMed

    Xiong, Fuxia; Lin, Thant; Song, Minwoo; Ma, Qingyi; Martinez, Shannalee R; Lv, Juanxiu; MataGreenwood, Eugenia; Xiao, Daliao; Xu, Zhice; Zhang, Lubo

    2016-02-01

    Large studies in humans and animals have demonstrated a clear association of an adverse intrauterine environment with an increased risk of cardiovascular disease later in life. Yet mechanisms remain largely elusive. The present study tested the hypothesis that gestational hypoxia leads to promoter hypermethylation and epigenetic repression of the glucocorticoid receptor (GR) gene in the developing heart, resulting in increased heart susceptibility to ischemia and reperfusion injury in offspring. Hypoxic treatment of pregnant rats from day 15 to 21 of gestation resulted in a significant decrease of GR exon 14, 15, 16, and 17 transcripts, leading to down-regulation of GR mRNA and protein in the fetal heart. Functional cAMP-response elements (CREs) at -4408 and -3896 and Sp1 binding sites at -3425 and -3034 were identified at GR untranslated exon 1 promoters. Hypoxia significantly increased CpG methylation at the CREs and Sp1 binding sites and decreased transcription factor binding to GR exon 1 promoter, accounting for the repression of the GR gene in the developing heart. Of importance, treatment of newborn pups with 5-aza-2'-deoxycytidine reversed hypoxia-induced promoter methylation, restored GR expression and prevented hypoxia-mediated increase in ischemia and reperfusion injury of the heart in offspring. The findings demonstrate a novel mechanism of epigenetic repression of the GR gene in fetal stress-mediated programming of ischemic-sensitive phenotype in the heart. PMID:26779948

  19. The role and regulation of hypoxia-inducible factor-1alpha expression in brain development and neonatal hypoxic-ischemic brain injury.

    PubMed

    Fan, Xiyong; Heijnen, Cobi J; van der Kooij, Michael A; Groenendaal, Floris; van Bel, Frank

    2009-12-11

    During neonatal hypoxic-ischemic brain injury, activation of transcription of a series of genes is induced to stimulate erythropoiesis, anti-apoptosis, apoptosis, necrosis and angiogenesis. A key factor mediating these gene transcriptions is hypoxia-inducible factor-1alpha (HIF-1alpha). During hypoxia, HIF-1alpha protein is stabilized and heterodimerizes with HIF-1beta to form HIF-1, subsequently regulating the expression of target genes. HIF-1alpha participates in early brain development and proliferation of neuronal precursor cells. Under pathological conditions, HIF-1alpha is known to play an important role in neonatal hypoxic-ischemic brain injury: on the one hand, HIF-1alpha has neuroprotective effects whereas it can also have neurotoxic effects. HIF-1alpha regulates the transcription of erythropoietin (EPO), which induces several pathways associated with neuroprotection. HIF-1alpha also promotes the expression of vascular endothelial cell growth factor (VEGF), which is related to neovascularization in hypoxic-ischemic brain areas. In addition, HIF-1alpha has an anti-apoptotic effect by increasing the expression of anti-apoptotic factors such as EPO during mild hypoxia. The neurotoxic effects of HIF-1alpha are represented by its participation in the apoptotic process by increasing the stability of the tumor suppressor protein p53 during severe hypoxia. Moreover, HIF-1alpha plays a role in cell necrosis, by interacting with calcium and calpain. HIF-1alpha can also exacerbate brain edema via increasing the permeability of the blood-brain barrier (BBB). Given these properties, HIF-1alpha has both neuroprotective and neurotoxic effects after hypoxia-ischemia. These events are cell type specific and related to the severity of hypoxia. Unravelling of the complex functions of HIF-1alpha may be important when designing neuroprotective therapies for hypoxic-ischemic brain injury.

  20. Findings of Cardiac Magnetic Resonance Imaging in Hypertrophic Cardiomyopathy after 16 Years

    PubMed Central

    Kim, Gee-Hee; Jang, Bo-Hyun; Lee, Hyeong-Han; Hong, Solim; Eum, Sang-Hoon; Jeon, Howook; Moon, Donggyu

    2016-01-01

    A 58-year-old man had been diagnosed with non-obstructive hypertrophic cardiomyopathy (HCMP) according to echocardiography findings 16 years ago. Echocardiography showed ischemic cardiomyopathy (CMP)-like features with decreased systolic function but a non-dilated chamber. Coronary angiography was performed but showed a normal coronary artery. Cardiac magnetic resonance imaging (MRI) revealed multifocal transmural and subepicardial delayed-enhancing areas at the anteroseptal, septal, and inferoseptal left ventricular (LV) wall, and wall thinning and decreased motion of the anteroseptal LV wall. Findings of ischemic CMP-like features by echocardiography suggested microvascular dysfunction. This late stage of HCMP carries a high risk of sudden death. Cardiac MRI evaluation may be necessary in cases of ischemic CMP-like features in HCMP. In this case, the diagnosis of end-stage HCMP with microvascular dysfunction was confirmed by using cardiac MRI after a follow-up period of more than 16 years. PMID:27721955

  1. Cognitive Dysfunction and Hippocampal Damage Induced by Hypoxic-Ischemic Brain Injury and Prolonged Febrile Convulsions in Immature Rats

    PubMed Central

    Byeon, Jung Hye; Kim, Gun-Ha; Kim, Joo Yeon; Sun, Woong; Kim, Hyun

    2015-01-01

    Objective Perinatal hypoxic-ischemic encephalopathy (HIE) and prolonged febrile seizures (pFS) are common neurologic problems that occur during childhood. However, there is insufficient evidence from experimental studies to conclude that pFS directly induces hippocampal injury. We studied cognitive function and histological changes in a rat model and investigated which among pFS, HIE, or a dual pathologic effect is most detrimental to the health of children. Methods A rat model of HIE at postnatal day (PD) 7 and a pFS model at PD10 were used. Behavioral and cognitive functions were investigated by means of weekly open field tests from postnatal week (PW) 3 to PW7, and by daily testing with the Morris water maze test at PW8. Pathological changes in the hippocampus were observed in the control, pFS, HIE, and HIE+pFS groups at PW9. Results The HIE priming group showed a seizure-prone state. The Morris water maze test revealed a decline in cognitive function in the HIE and HIE+pFS groups compared with the pFS and control groups. Additionally, the HIE and HIE+pFS groups showed significant hippocampal neuronal damage, astrogliosis, and volume loss, after maturation. The pFS alone induced minimal hippocampal neuronal damage without astrogliosis or volume loss. Conclusion Our findings suggest that pFS alone causes no considerable memory or behavioral impairment, or cellular change. In contrast, HIE results in lasting memory impairment and neuronal damage, gliosis, and tissue loss. These findings may contribute to the understanding of the developing brain concerning conditions caused by HIE or pFS. PMID:26279809

  2. The cannabinoid receptor type 2 promotes cardiac myocyte and fibroblast survival and protects against ischemia/reperfusion-induced cardiomyopathy.

    PubMed

    Defer, Nicole; Wan, Jinghong; Souktani, Richard; Escoubet, Brigitte; Perier, Magali; Caramelle, Philippe; Manin, Sylvie; Deveaux, Vanessa; Bourin, Marie-Claude; Zimmer, Andreas; Lotersztajn, Sophie; Pecker, Françoise; Pavoine, Catherine

    2009-07-01

    Post-myocardial infarction (MI) heart failure is a major public health problem in Western countries and results from ischemia/reperfusion (IR)-induced cell death, remodeling, and contractile dysfunction. Ex vivo studies have demonstrated the cardioprotective anti-inflammatory effect of the cannabinoid type 2 (CB2) receptor agonists within hours after IR. Herein, we evaluated the in vivo effect of CB2 receptors on IR-induced cell death, fibrosis, and cardiac dysfunction and investigated the target role of cardiac myocytes and fibroblasts. The infarct size was increased 24 h after IR in CB2(-/-) vs. wild-type (WT) hearts and decreased when WT hearts were injected with the CB2 agonist JWH133 (3 mg/kg) at reperfusion. Compared with WT hearts, CB2(-/-) hearts showed widespread injury 3 d after IR, with enhanced apoptosis and remodeling affecting the remote myocardium. Finally, CB2(-/-) hearts exhibited exacerbated fibrosis, associated with left ventricular dysfunction 4 wk after IR, whereas their WT counterparts recovered normal function. Cardiac myocytes and fibroblasts isolated from CB2(-/-) hearts displayed a higher H(2)O(2)-induced death than WT cells, whereas 1 microM JWH133 triggered survival effects. Furthermore, H(2)O(2)-induced myofibroblast activation was increased in CB2(-/-) fibroblasts but decreased in 1 microM JWH133-treated WT fibroblasts, compared with that in WT cells. Therefore, CB2 receptor activation may protect against post-IR heart failure through direct inhibition of cardiac myocyte and fibroblast death and prevention of myofibroblast activation.

  3. Women and heart disease--physiologic regulation of gene delivery and expression: bioreducible polymers and ischemia-inducible gene therapies for the treatment of ischemic heart disease.

    PubMed

    Yockman, James W; Kim, Sung Wan; Bull, David A

    2009-08-10

    Ischemic heart disease (IHD) is the leading cause of death in the United States today. This year over 750,000 women will have a new or recurrent myocardial infarction. Currently, the mainstay of therapy for IHD is revascularization. Increasing evidence, however, suggests that revascularization alone is insufficient for the longer-term management of many patients with IHD. To address these issues, innovative therapies that extend beyond revascularization to protection of the myocyte and preservation of ventricular function are required. The emergence of gene therapy and proteomics offers the potential for innovative prophylactic and treatment strategies for IHD. The goal of our research is to develop therapeutic gene constructs for the treatment of myocardial ischemia that are clinically safe and effective. Toward this end, we describe the development of physiologic regulation of gene delivery and expression using bioreducible polymers and ischemia-inducible gene therapies for the potential treatment of ischemic heart disease in women.

  4. Plasma from human volunteers subjected to remote ischemic preconditioning protects human endothelial cells from hypoxia-induced cell damage.

    PubMed

    Weber, Nina C; Riedemann, Isabelle; Smit, Kirsten F; Zitta, Karina; van de Vondervoort, Djai; Zuurbier, Coert J; Hollmann, Markus W; Preckel, Benedikt; Albrecht, Martin

    2015-03-01

    Short repeated cycles of peripheral ischemia/reperfusion (I/R) can protect distant organs from subsequent prolonged I/R injury; a phenomenon known as remote ischemic preconditioning (RIPC). A RIPC-mediated release of humoral factors might play a key role in this protection and vascular endothelial cells are potential targets for these secreted factors. In the present study, RIPC-plasma obtained from healthy male volunteers was tested for its ability to protect human umbilical endothelial cells (HUVEC) from hypoxia-induced cell damage. 10 healthy male volunteers were subjected to a RIPC-protocol consisting of 4 × 5 min inflation/deflation of a blood pressure cuff located at the upper arm. Plasma was collected before (T0; control), directly after (T1) and 1 h after (T2) the RIPC procedure. HUVEC were subjected to 24 h hypoxia damage and simultaneously incubated with 5% of the respective RIPC-plasma. Cell damage was evaluated by lactate dehydrogenase (LDH)-measurements. Western blot experiments of hypoxia inducible factor 1 alpha (HIF1alpha), phosphorylated signal transducer and activator of transcription 5 (STAT5), protein kinase B (AKT) and extracellular signal-related kinase 1/2 (ERK-1/2) were performed. Furthermore, the concentrations of hVEGF were evaluated in the RIPC-plasma by sandwich ELISA. Hypoxia-induced cell damage was significantly reduced by plasma T1 (p = 0.02 vs T0). The protective effect of plasma T1 was accompanied by an augmentation of the intracellular HIF1alpha (p = 0.01 vs T0) and increased phosphorylation of ERK-1/2 (p = 0.03 vs T0). Phosphorylation of AKT and STAT5 remained unchanged. Analysis of the protective RIPC-plasma T1 showed significantly reduced levels of hVEGF (p = 0.01 vs T0). RIPC plasma protects endothelial cells from hypoxia-induced cell damage and humoral mediators as well as intracellular HIF1alpha may be involved.

  5. A Pharmacogenetic Discovery: Cystamine Protects Against Haloperidol-Induced Toxicity and Ischemic Brain Injury.

    PubMed

    Zhang, Haili; Zheng, Ming; Wu, Manhong; Xu, Dan; Nishimura, Toshihiko; Nishimura, Yuki; Giffard, Rona; Xiong, Xiaoxing; Xu, Li Jun; Clark, J David; Sahbaie, Peyman; Dill, David L; Peltz, Gary

    2016-05-01

    Haloperidol is an effective antipsychotic agent, but it causes Parkinsonian-like extrapyramidal symptoms in the majority of treated subjects. To address this treatment-limiting toxicity, we analyzed a murine genetic model of haloperidol-induced toxicity (HIT). Analysis of a panel of consomic strains indicated that a genetic factor on chromosome 10 had a significant effect on susceptibility to HIT. We analyzed a whole-genome SNP database to identify allelic variants that were uniquely present on chromosome 10 in the strain that was previously shown to exhibit the highest level of susceptibility to HIT. This analysis implicated allelic variation within pantetheinase genes (Vnn1 and Vnn3), which we propose impaired the biosynthesis of cysteamine, could affect susceptibility to HIT. We demonstrate that administration of cystamine, which is rapidly metabolized to cysteamine, could completely prevent HIT in the murine model. Many of the haloperidol-induced gene expression changes in the striatum of the susceptible strain were reversed by cystamine coadministration. Since cystamine administration has previously been shown to have other neuroprotective actions, we investigated whether cystamine administration could have a broader neuroprotective effect. Cystamine administration caused a 23% reduction in infarct volume after experimentally induced cerebral ischemia. Characterization of this novel pharmacogenetic factor for HIT has identified a new approach for preventing the treatment-limiting toxicity of an antipsychotic agent, which could also be used to reduce the extent of brain damage after stroke. PMID:26993135

  6. Potential impact of silymarin in combination with chlorogenic acid and/or melatonin in combating cardiomyopathy induced by carbon tetrachloride

    PubMed Central

    Al-Rasheed, Nouf M.; Al-Rasheed, Nawal M.; Faddah, L.M.; Mohamed, Azza M.; Mohammad, Raeesa A.; Al-Amin, Maha

    2013-01-01

    The aim of this study was to investigate the effective role of silymarin either alone or in combination with chlorogenic acid and/or melatonin against the toxic impact of carbon tetrachloride (CCl4) induced cardiac infarction. CCl4 (l.2 ml/kg body weight) was administered as a single dose intraperitoneally. The results revealed that the administration of silymarin alone or in combination with chlorogenic acid (CGA) and/or melatonin for 21 consecutive days, 24 h after CCl4 injection to rats, markedly ameliorated the increases in serum markers of cardiac infarction, including troponin T and creatine kinase-MB (CK-MB), as well as increases in the pro-inflammatory biomarkers, including interleukin-6 (IL-6), interferon-γ (IFN-γ) in serum and tumor necrosis factor-α (TNF-α) and C-reactive protein in cardiac tissue compared to CCl4 intoxicated rats. The used agents also successfully modulated the alteration in vascular endothelial growth factor (VEGF) in serum and the oxidative DNA damage and the increase in the apoptosis marker caspase 3 in cardiac tissue in response to CCl4 toxicity. The present biochemical results are supported by histo-pathological examination. The current results proved that treatment with silymarin in combination with CGA and melatonin was the most effective one in ameliorating the toxicity of CCl4 induced cardiac damage and this may support the use of this combination as an effective drug to treat cardiac damage induced by toxic agents. PMID:24955012

  7. Advances in the Treatment of Ischemic Diseases by Mesenchymal Stem Cells

    PubMed Central

    Li, Shujing; Wang, Xianyun; Li, Jing; Zhang, Jun; Zhang, Fan; Hu, Jie; Qi, Yixin; Yan, Baoyong; Li, Quanhai

    2016-01-01

    Ischemic diseases are a group of diseases, including ischemic cerebrovascular disease, ischemic cardiomyopathy (ICM), and diabetic foot as well as other diseases which are becoming a leading cause of morbidity and mortality in the whole world. Mesenchymal stem cells (MSCs) have been used to treat a variety of ischemic diseases in animal models and clinical trials. Lots of recent publications demonstrated that MSCs therapy was safe and relieved symptoms in patients of ischemic disease. However, many factors could influence therapeutic efficacy including route of delivery, MSCs' survival and residential rate in vivo, timing of transplantation, particular microenvironment, and patient's clinical condition. In this review, the current status, therapeutic potential, and the detailed factors of MSCs-based therapeutics for ischemic cerebrovascular disease, ICM, and diabetic foot are presented and discussed. We think that MSCs transplantation would constitute an ideal option for patients with ischemic diseases. PMID:27293445

  8. Advances in the Treatment of Ischemic Diseases by Mesenchymal Stem Cells.

    PubMed

    Li, Shujing; Wang, Xianyun; Li, Jing; Zhang, Jun; Zhang, Fan; Hu, Jie; Qi, Yixin; Yan, Baoyong; Li, Quanhai

    2016-01-01

    Ischemic diseases are a group of diseases, including ischemic cerebrovascular disease, ischemic cardiomyopathy (ICM), and diabetic foot as well as other diseases which are becoming a leading cause of morbidity and mortality in the whole world. Mesenchymal stem cells (MSCs) have been used to treat a variety of ischemic diseases in animal models and clinical trials. Lots of recent publications demonstrated that MSCs therapy was safe and relieved symptoms in patients of ischemic disease. However, many factors could influence therapeutic efficacy including route of delivery, MSCs' survival and residential rate in vivo, timing of transplantation, particular microenvironment, and patient's clinical condition. In this review, the current status, therapeutic potential, and the detailed factors of MSCs-based therapeutics for ischemic cerebrovascular disease, ICM, and diabetic foot are presented and discussed. We think that MSCs transplantation would constitute an ideal option for patients with ischemic diseases. PMID:27293445

  9. Advances in the Treatment of Ischemic Diseases by Mesenchymal Stem Cells.

    PubMed

    Li, Shujing; Wang, Xianyun; Li, Jing; Zhang, Jun; Zhang, Fan; Hu, Jie; Qi, Yixin; Yan, Baoyong; Li, Quanhai

    2016-01-01

    Ischemic diseases are a group of diseases, including ischemic cerebrovascular disease, ischemic cardiomyopathy (ICM), and diabetic foot as well as other diseases which are becoming a leading cause of morbidity and mortality in the whole world. Mesenchymal stem cells (MSCs) have been used to treat a variety of ischemic diseases in animal models and clinical trials. Lots of recent publications demonstrated that MSCs therapy was safe and relieved symptoms in patients of ischemic disease. However, many factors could influence therapeutic efficacy including route of delivery, MSCs' survival and residential rate in vivo, timing of transplantation, particular microenvironment, and patient's clinical condition. In this review, the current status, therapeutic potential, and the detailed factors of MSCs-based therapeutics for ischemic cerebrovascular disease, ICM, and diabetic foot are presented and discussed. We think that MSCs transplantation would constitute an ideal option for patients with ischemic diseases.

  10. The indirect NMDAR inhibitor flupirtine induces sustained post-ischemic recovery, neuroprotection and angioneurogenesis

    PubMed Central

    Jaeger, Hanna M.; Pehlke, Jens R.; Kaltwasser, Britta; Kilic, Ertugrul; Bähr, Mathias; Hermann, Dirk M.; Doeppner, Thorsten R.

    2015-01-01

    N-methyl-D-aspartate receptor (NMDAR) activation induces excitotoxicity, contributing to post-stroke brain injury. Hitherto, NMDAR deactivation failed in clinical trials due to insufficient pre-clinical study designs and drug toxicity. Flupirtine is an indirect NMDAR antagonist being used as analgesic in patients. Taking into account its tolerability profile, we evaluated effects of flupirtine on post-stroke tissue survival, neurological recovery and brain remodeling. Mice were exposed to stroke and intraperitoneally treated with saline (control) or flupirtine at various doses (1-10 mg/kg) and time-points (0-12 hours). Tissue survival and cell signaling were studied on day 2, whereas neurological recovery and tissue remodeling were analyzed until day 84. Flupirtine induced sustained neuroprotection, when delivered up to 9 hours. The latter yielded enhanced neurological recovery that persisted over three months and which was accompanied by enhanced angioneurogenesis. On the molecular level, inhibition of calpain activation was noted, which was associated with increased signal-transducer-and-activator-of-transcription-6 (STAT6) abundance, reduced N-terminal-Jun-kinase and NF-κB activation, as well as reduced proteasomal activity. Consequently, blood-brain-barrier integrity was stabilized, oxidative stress was reduced and brain leukocyte infiltration was diminished. In view of its excellent tolerability, considering its sustained effects on neurological recovery, brain tissue survival and remodeling, flupirtine is an attractive candidate for stroke therapy. PMID:26050199

  11. Acid evoked thermal hyperalgesia involves peripheral P2Y1 receptor mediated TRPV1 phosphorylation in a rodent model of thrombus induced ischemic pain

    PubMed Central

    2014-01-01

    Background We previously developed a thrombus-induced ischemic pain (TIIP) animal model, which was characterized by chronic bilateral mechanical allodynia without thermal hyperalgesia (TH). On the other hand we had shown that intraplantar injection of acidic saline facilitated ATP-induced pain, which did result in the induction of TH in normal rats. Because acidic pH and increased ATP are closely associated with ischemic conditions, this study is designed to: (1) examine whether acidic saline injection into the hind paw causes the development of TH in TIIP, but not control, animals; and (2) determine which peripheral mechanisms are involved in the development of this TH. Results Repeated intraplantar injection of pH 4.0 saline, but not pH 5.5 and 7.0 saline, for 3 days following TIIP surgery resulted in the development of TH. After pH 4.0 saline injections, protein levels of hypoxia inducible factor-1α (HIF-1α) and carbonic anhydrase II (CA II) were elevated in the plantar muscle indicating that acidic stimulation intensified ischemic insults with decreased tissue acidity. At the same time point, there were no changes in the expression of TRPV1 in hind paw skin, whereas a significant increase in TRPV1 phosphorylation (pTRPV1) was shown in acidic saline (pH 4.0) injected TIIP (AS-TIIP) animals. Moreover, intraplantar injection of chelerythrine (a PKC inhibitor) and AMG9810 (a TRPV1 antagonist) effectively alleviated the established TH. In order to investigate which proton- or ATP-sensing receptors contributed to the development of TH, amiloride (an ASICs blocker), AMG9810, TNP-ATP (a P2Xs antagonist) or MRS2179 (a P2Y1 antagonist) were pre-injected before the pH 4.0 saline. Only MRS2179 significantly prevented the induction of TH, and the increased pTRPV1 ratio was also blocked in MRS2179 injected animals. Conclusion Collectively these data show that maintenance of an acidic environment in the ischemic hind paw of TIIP rats results in the phosphorylation of

  12. Minocycline attenuates both OGD-induced HMGB1 release and HMGB1-induced cell death in ischemic neuronal injury in PC12 cells

    SciTech Connect

    Kikuchi, Kiyoshi; Kawahara, Ko-ichi; Biswas, Kamal Krishna; Ito, Takashi; Tancharoen, Salunya; Morimoto, Yoko; Matsuda, Fumiyo; Oyama, Yoko; Takenouchi, Kazunori; Miura, Naoki; Arimura, Noboru; Nawa, Yuko; Meng, Xiaojie; Shrestha, Binita; Arimura, Shinichiro; and others

    2009-07-24

    High mobility group box-1 (HMGB1), a non-histone DNA-binding protein, is massively released into the extracellular space from neuronal cells after ischemic insult and exacerbates brain tissue damage in rats. Minocycline is a semisynthetic second-generation tetracycline antibiotic which has recently been shown to be a promising neuroprotective agent. In this study, we found that minocycline inhibited HMGB1 release in oxygen-glucose deprivation (OGD)-treated PC12 cells and triggered the activation of p38mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK1/2). The ERK kinase (MEK)1/2 inhibitor U-0126 and p38MAPK inhibitor SB203580 blocked HMGB1 release in response to OGD. Furthermore, HMGB1 triggered cell death in a dose-dependent fashion. Minocycline significantly rescued HMGB1-induced cell death in a dose-dependent manner. In light of recent observations as well as the good safety profile of minocycline in humans, we propose that minocycline might play a potent neuroprotective role through the inhibition of HMGB1-induced neuronal cell death in cerebral infarction.

  13. The First Case of Severe Takotsubo Cardiomyopathy Associated with 5-Fluorouracil in a Patient with Abnormalities of Both Dihydropyrimidine Dehydrogenase (DPYD) and Thymidylate Synthase (TYMS) Genes

    PubMed Central

    Smith, Melissa; Maloney, Antonio

    2016-01-01

    5-Fluorouracil (5-FU) is the backbone of the chemotherapy regimens approved for treatment of many malignancies, especially colorectal cancer (CRC). The incidence of cardiotoxicity associated with 5-FU ranges between 1.5% to 18% and is most commonly manifested as anginal symptoms. Cardiomyopathy is very rarely reported with 5-FU and capecitabine. A 35-year-old Caucasian male with T3, N1, M0 rectal cancer after the initial neoadjuvant chemoradiation with 5FU/LV followed by surgical abdominoperineal resection (APR), began mFOLFOX6 in the adjuvant setting. Following the first treatment, he developed severe cardiomyopathy, with a drop in ejection fraction (EF) to 19% from normal. The cardiac workup showed no ischemic or other etiologies to explain this cardiac event. He was a nonsmoker and only occasionally drank alcohol. He had no previous or family history of heart disease and had normal cholesterol level. He was treated for severe congestive heart failure (CHF). When the patient presented to us for second opinion, we decided to examine him for dihydropyrimidine dehydrogenase (DPD) deficiency and thymidylate synthase (TYMS) polymorphism. The patient was found to be heterozygous for the c.85T>C mutation, resulting in reduced DPYD enzymatic activity and homozygous for TYMS 5’TSER genotype 2R/2R *f. Our group first identified and reported P453L (1358C>T) type DPYD germline mutation in a patient who developed 5-FU induced cardiotoxicity. In this paper, we describe the first case of cardiomyopathy related to DPD deficiency and homozygous polymorphism of TYMS in a patient with colon cancer following 5-FU containing regimen. Fluorouracil-related cardiomyopathy has to be anticipated and treated to prevent the serious consequence of cardiac dysfunction. The prospective testing for DPD deficiency in patients might prevent DPD-deficient patients from severe toxicity or even death, and therefore the development of a unified screening method is warranted. PMID:27752409

  14. Sustained (rh)VEGF(165) release from a sprayed fibrin biomatrix induces angiogenesis, up-regulation of endogenous VEGF-R2, and reduces ischemic flap necrosis.

    PubMed

    Mittermayr, Rainer; Morton, Tatjana; Hofmann, Martina; Helgerson, Sam; van Griensven, Martijn; Redl, Heinz

    2008-01-01

    This study investigated (1) the release of recombinant human vascular endothelial growth factor ([rh]VEGF(165)) from an in vitro fibrin matrix, (2) the effects of (rh)VEGF(165) released from an in vivo fibrin matrix on ischemic flap necrosis in the rat dorsal skin flap model, and (3) the effects of (rh)VEGF(165) released from an in vivo fibrin matrix on VEGF-R2 expression in transgenic VEGF-R2/luc mice. In vitro fibrin matrices were spiked with (rh)VEGF(165) and demonstrated (rh)VEGF(165) release over 88 hours with 66% recovery. Ischemic dorsal flaps were treated with a fibrin sealant (FS), FS spiked with (rh)VEGF(165), or left untreated. Flaps treated with FS spiked with (rh)VEGF(165) showed greater viability than controls as measured by planimetric analysis. Immunohistochemical analyses revealed stronger neovascularization than that exhibited by controls. Transgenic mice implanted with FS spiked with (rh)VEGF(165) had significant increases in VEGF-R2 expression relative to controls at days 5-13 after implantation. Conclusions drawn from this work are that (1) (rh)VEGF(165) is released from an in vitro fibrin matrix at clinically appropriate times, (2) (rh)VEGF(165) increases the viability of tissue flaps in vivo, and (3) (rh)VEGF(165) induces the expression of VEGF-R2 expression. This work demonstrates the clinical ability of sprayed FS to locally deliver growth factors to ischemic tissue of patients.

  15. Ischemic Colitis

    PubMed Central

    FitzGerald, James F.; Hernandez III, Luis O.

    2015-01-01

    Most clinicians associate ischemic colitis with elderly patients who have underlying cardiovascular comorbidities. While the majority of cases probably occur in this population, the disease can present in younger patients as a result of different risk factors, making the diagnosis challenging. While a majority of patients respond to medical management, surgery is required in approximately 20% of the cases and is associated with high morbidity and mortality. PMID:26034405

  16. Effect of atropine and gammahydroxybutyrate on ischemically induced changes in the level of radioactivity in (/sup 3/H)inositol phosphates in gerbil brain in vivo

    SciTech Connect

    Wikiel, H.; Halat, G.; Strosznajder, J.

    1988-05-01

    Brain ischemia in gerbils was induced by ligation of both common carotid arteries for 1 min or 10 min. Sham-operated animals served as controls. Intracerebral injection of (3H)inositol into gerbil brain 16 hr before ischemic insult resulted in equilibration of the label between inositol lipids and water-soluble inositol phosphate. A short ischemic period (1 min) resulted in a statistically significant increase in the radioactivity of inositol triphosphate (IP3) and inositol monophosphate (IP), by about 48% and 79%, respectively, with little change in that of the intermediate inositol biphosphate (IP2), which increased by about 16%. When the ischemic period was prolonged (10 min), an increase in the radioactivity of inositol monophosphate exclusively, by about 84%, was observed. The level of radioactivity in inositol phosphates IP2 and IP3 decreased by about 50%, probably as a consequence of phosphatase activation by the ischemic insult. The agonist of the cholinergic receptor, carbachol, injected intracerebrally (40 micrograms per animal) increased accumulation of radioactivity in all inositol phosphates. The level of radioactivity in IP3, IP2, and IP was elevated by about 40, 23, and 147%, respectively. The muscarinic cholinergic antagonist, atropine, injected intraperitoneally in doses of 100 mg/kg body wt. depressed phosphoinositide metabolism in control animals. The level of radioactivity in water-soluble inositol metabolites in the brain of animals pretreated with atropine was evidently about 32% lower than in untreated animals. Pretreatment with atropine decreased the radioactivity of all inositol phosphates in the brain of animals subjected to 1-min ischemia and the radioactivity of IP in the case of 10-min brain ischemia.

  17. A case and review of acromegaly-induced cardiomyopathy and the relationship between growth hormone and heart failure: cause or cure or neither or both?

    PubMed

    Schwarz, Ernst R; Jammula, Praveen; Gupta, Rajiv; Rosanio, Salvatore

    2006-12-01

    Growth hormone plays an integral role in the development and maintenance of structure and function of the heart. Specific involvement of the heart in acromegaly is termed acromegalic cardiomyopathy, manifested as concentric left ventricular hypertrophy and diastolic dys-function. Left untreated, it ultimately progresses to systolic heart failure. Heart failure from acromegalic cardiomyopathy is one of the most common causes of death in acromegaly. Current treatment options include different approaches to lower elevated growth hormone levels with improvement in symptoms, exercise tolerance, and echocardiographic improvement in regression of left ventricular hypertrophy and indices of diastolic dysfunction. On the other hand, growth hormone is essential for cardiac growth and function and exerts beneficial and protective effects on the cardiovascular system. Its potential role as adjunctive therapy in the treatment of heart failure as derived from experimental studies and clinical trials is discussed.

  18. Hypophosphorylation of ribosomal protein S6 is a molecular mechanism underlying ischemic tolerance induced by either hibernation or preconditioning.

    PubMed

    Miyake, Shin-ichi; Wakita, Hideaki; Bernstock, Joshua D; Castri, Paola; Ruetzler, Christl; Miyake, Junko; Lee, Yang-Ja; Hallenbeck, John M

    2015-12-01

    Thirteen-lined ground squirrels (Ictidomys tridecemlineatus) have an extraordinary capacity to withstand prolonged and profound reductions in blood flow and oxygen delivery to the brain without incurring any cellular damage. As such, the hibernation torpor of I. tridecemlineatus provides a valuable model of tolerance to ischemic stress. Herein, we report that during hibernation torpor, a marked reduction in the phosphorylation of the ribosomal protein S6 (rpS6) occurs within the brains of I. tridecemlineatus. Of note, rpS6 phosphorylation was shown to increase in the brains of rats that underwent an occlusion of the middle cerebral artery. However, such an increase was attenuated after the implementation of an ischemic preconditioning paradigm. In addition, cultured cortical neurons treated with the rpS6 kinase (S6K) inhibitors, D-glucosamine or PF4708671, displayed a decrease in rpS6 phosphorylation and a subsequent increase in tolerance to oxygen/glucose deprivation, an in vitro model of ischemic stroke. Collectively, such evidence suggests that the down-regulation of rpS6 signal transduction may account for a substantial part of the observed increase in cellular tolerance to brain ischemia that occurs during hibernation torpor and after ischemic preconditioning. Further identification and characterization of the mechanisms used by hibernating species to increase ischemic tolerance may eventually clarify how the loss of homeostatic control that occurs during and after cerebral ischemia in the clinic can ultimately be minimized and/or prevented. Mammalian hibernation provides a valuable model of tolerance to ischemic stress. Herein, we demonstrate that marked reductions in the phosphorylation of ribosomal protein S6 (rpS6), extracellular signal-regulated kinase family of mitogen-activated protein (MAP) kinase p44/42 (p44/42MAPK) and ribosomal protein S6 kinase (S6K) occur within the brains of both hibernating squirrels and rats, which have undergone an ischemic

  19. hiPSC MODELING OF INHERITED CARDIOMYOPATHIES

    PubMed Central

    Jung, Gwanghyun; Bernstein, Daniel

    2014-01-01

    Opinion Statement Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) represent a powerful new model system to study the basic mechanisms of inherited cardiomyopathies. hiPSC-CMs have been utilized to model several cardiovascular diseases, achieving the most success in the inherited arrhythmias, including long QT and Timothy syndromes (1,2) and arrhythmogenic right ventricular dysplasia (ARVD) (3). Recently, studies have applied hiPSC-CMs to the study of both dilated (DCM) (4) and hypertrophic (HCM) cardiomyopathies (5,6), providing new insights into basic mechanisms of disease. However, hiPSC-CMs do not recapitulate many of the structural and functional aspects of mature human cardiomyocytes, instead mirroring an immature, embryonic or fetal, phenotype. Thus, much work remains to better understand these differences as well as to develop methods to induce hiPSC-CMs into a fully mature phenotype. Despite these limitations, hiPSC-CMs represent the best current in vitro correlate of the human heart and an invaluable tool in the search for mechanisms underlying cardiomyopathy and for screening new pharmacologic therapies. PMID:24838688

  20. Takotsubo cardiomyopathy following lightning strike.

    PubMed

    Dundon, B K; Puri, R; Leong, D P; Worthley, M I

    2008-07-01

    Lightning strike is the most common environmental cause of sudden cardiac death, but may also be associated with a myriad of injuries to various organ systems. Direct myocardial injury may be manifest as electrocardiographic alterations or elevation in cardiac-specific isoenzymes; however, significant electrical cardiac trauma appears uncommon. A case is presented of severe acute cardiomyopathy in a "Takotsubo" distribution causing cardiogenic shock following lightning strike in a previously healthy 37-year-old woman. Although rarely identified in this context, Takotsubo cardiomyopathy (also known as "transient left ventricular apical ballooning syndrome") is characterised by transient cardiac dysfunction, electrocardiographic changes that may mimic acute myocardial infarction and minimal release of cardiac-specific enzymes in the absence of obstructive coronary artery disease. The condition is associated with a substantial female bias (up to 90% of cases) in reported series, and despite occasionally dramatic presentations recovery of left ventricular function is almost universal over days to weeks. In rare instances, however, the syndrome has been associated with more catastrophic complications such as papillary muscle or cardiac free wall rupture, necessitating emergency surgical intervention to preserve life. In clinical practice, non-lethal lightning strike-induced cardiac injury is frequently associated with small elevations of cardiac isoenzymes without overt clinical sequelae; however, the incidence of silent myocardial mechanical dysfunction remains unknown. Cases such as the one presented highlight the potential for serious, albeit usually transient, cardiac sequelae from lightning strike injury and remind us that our mothers' advice to remain indoors during thunderstorms is probably worth heeding. PMID:18573973

  1. Takotsubo cardiomyopathy following lightning strike.

    PubMed

    Dundon, Benjamin K; Puri, Rishi; Leong, Darryl P; Worthley, Matthew Ian

    2009-01-01

    Lightning strike is the most common environmental cause of sudden cardiac death, but it may also be associated with a myriad of injuries to various organ systems. Direct myocardial injury may be manifest as electrocardiographic alterations or elevation in cardiac-specific isoenzymes; however, significant electrical cardiac trauma appears uncommon. A case is presented of severe acute cardiomyopathy in a "Takotsubo" distribution causing cardiogenic shock following lightning strike in a previously healthy 37-year-old woman. Although rarely identified in this context, Takotsubo cardiomyopathy (also known as "transient left ventricular apical ballooning syndrome") is characterised by transient cardiac dysfunction, electrocardiographic changes that may mimic acute myocardial infarction and minimal release of cardiac-specific enzymes in the absence of obstructive coronary artery disease. The condition is associated with a substantial female bias (up to 90% of cases) in reported series, and despite occasionally dramatic presentations recovery of left ventricular function is almost universal over days to weeks. In rare instances, however, the syndrome has been associated with more catastrophic complications such as papillary muscle or cardiac free wall rupture, necessitating emergency surgical intervention to preserve life. In clinical practice, non-lethal lightning strike-induced cardiac injury is frequently associated with small elevations of cardiac isoenzymes without overt clinical sequelae; however, the incidence of silent myocardial mechanical dysfunction remains unknown. Cases such as the one presented highlight the potential for serious, albeit usually transient, cardiac sequelae from lightning strike injury and remind us that our mothers' advice to remain indoors during thunderstorms is probably worth heeding. PMID:21686980

  2. Alcoholic cardiomyopathy : The result of dosage and individual predisposition.

    PubMed

    Maisch, B

    2016-09-01

    The individual amount of alcohol consumed acutely or chronically decides on harm or benefit to a person's health. Available data suggest that one to two drinks in men and one drink in women will benefit the cardiovascular system over time, one drink being 17.6 ml 100 % alcohol. Moderate drinking can reduce the incidence and mortality of coronary artery disease, heart failure, diabetes, ischemic and hemorrhagic stroke. More than this amount can lead to alcoholic cardiomyopathy, which is defined as alcohol toxicity to the heart muscle itself by ethanol and its metabolites. Historical examples of interest are the Munich beer heart and the Tübingen wine heart. Associated with chronic alcohol abuse but having different etiologies are beriberi heart disease (vitamin B1 deficiency) and cardiac cirrhosis as hyperdynamic cardiomyopathies, arsenic poising in the Manchester beer epidemic, and cobalt intoxication in Quebec beer drinker's disease. Chronic heavy alcohol abuse will also increase blood pressure and cause a downregulation of the immune system that could lead to increased susceptibility to infections, which in turn could add to the development of heart failure. Myocardial tissue analysis resembles idiopathic cardiomyopathy or chronic myocarditis. In the diagnostic work-up of alcoholic cardiomyopathy, the confirmation of alcohol abuse by carbohydrate deficient transferrin (CDT) and increased liver enzymes, and the involvement of the heart by markers of heart failure (e.g., NT-proBNP) and of necrosis (e.g., troponins or CKMb) is mandatory. Treatment of alcoholic cardiomyopathy consists of alcohol abstinence and heart failure medication. PMID:27582365

  3. New method of posterior scallop augmentation for ischemic mitral regurgitation.

    PubMed

    Aoki, Masakazu; Ito, Toshiaki

    2015-03-01

    We report a new method of posterior middle scallop (P2) augmentation for ischemic mitral regurgitation to achieve deep coaptation. First, P2 was divided straight at the center and partially detached from the annulus in a reverse T shape. A narrow pentagon-shaped section of pericardium was sutured to the divided P2 and annular defect. The tip of the pentagon was attached directly to the papillary muscle, thus creating a very large P2 scallop. A standard-sized ring was placed. We adopted this technique in 2 patients with advanced ischemic cardiomyopathy, and no mitral regurgitation was observed during a 1-year follow-up. PMID:25742844

  4. Putative role of ischemic postconditioning in a rat model of limb ischemia and reperfusion: involvement of hypoxia-inducible factor-1α expression.

    PubMed

    Wang, T; Zhou, Y T; Chen, X N; Zhu, A X

    2014-09-01

    Hypoxia-inducible factor-1α (HIF-1α) is one of the most potent angiogenic growth factors. It improves angiogenesis and tissue perfusion in ischemic skeletal muscle. In the present study, we tested the hypothesis that ischemic postconditioning is effective for salvaging ischemic skeletal muscle resulting from limb ischemia-reperfusion injury, and that the mechanism involves expression of HIF-1α. Wistar rats were randomly divided into three groups (n=36 each): sham-operated (group S), hindlimb ischemia-reperfusion (group IR), and ischemic postconditioning (group IPO). Each group was divided into subgroups (n=6) according to reperfusion time: immediate (0 h, T0), 1 h (T1), 3 h (T3), 6 h (T6), 12 h (T12), and 24 h (T24). In the IPO group, three cycles of 30-s reperfusion and 30-s femoral aortic reocclusion were carried out before reperfusion. At all reperfusion times (T0-T24), serum creatine kinase (CK) and lactate dehydrogenase (LDH) activities, as well as interleukin (IL)-6, IL-10, and tumor necrosis factor-α (TNF-α) concentrations, were measured in rats after they were killed. Histological and immunohistochemical methods were used to assess the skeletal muscle damage and HIF-1α expression in skeletal muscle ischemia. In groups IR and IPO, serum LDH and CK activities and TNF-α, IL-6, and IL-10 concentrations were all significantly increased compared to group S, and HIF-1α expression was up-regulated (P<0.05 or P<0.01). In group IPO, serum LDH and CK activities and TNF-α and IL-6 concentrations were significantly decreased, IL-10 concentration was increased, HlF-1α expression was down-regulated (P<0.05 or P<0.01), and the pathological changes were reduced compared to group IR. The present study suggests that ischemic postconditioning can reduce skeletal muscle damage caused by limb ischemia-reperfusion and that its mechanisms may be related to the involvement of HlF-1α in the limb ischemia-reperfusion injury-triggered inflammatory response. PMID:25075575

  5. Hypertrophic Cardiomyopathy: A Review

    PubMed Central

    Houston, Brian A; Stevens, Gerin R

    2014-01-01

    Hypertrophic cardiomyopathy (HCM) is a global disease with cases reported in all continents, affecting people of both genders and of various racial and ethnic origins. Widely accepted as a monogenic disease caused by a mutation in 1 of 13 or more sarcomeric genes, HCM can present catastrophically with sudden cardiac death (SCD) or ventricular arrhythmias or insidiously with symptoms of heart failure. Given the velocity of progress in both the fields of heart failure and HCM, we present a review of the approach to patients with HCM, with particular attention to those with HCM and the clinical syndrome of heart failure. PMID:25657602

  6. Cilostazol prevents retinal ischemic damage partly via inhibition of tumor necrosis factor-α-induced nuclear factor-kappa B/activator protein-1 signaling pathway

    PubMed Central

    Ishizuka, Fumiya; Shimazawa, Masamitsu; Egashira, Yusuke; Ogishima, Hiromi; Nakamura, Shinsuke; Tsuruma, Kazuhiro; Hara, Hideaki

    2013-01-01

    Cilostazol is a specific inhibitor of phosphodiesterase III and is widely used to treat ischemic symptoms of peripheral vascular disease. We evaluated the protective effects of cilostazol in a murine model of ocular ischemic syndrome in which retinal ischemia was induced by 5-h unilateral ligation of both the pterygopalatine artery (PPA) and the external carotid artery (ECA) in anesthetized mice. The effects of cilostazol (30 mg/kg, p.o.) on ischemia/reperfusion (I/R)-induced retinal damage were examined by histological, retinal vascular permeability, and electrophysiological analyses. Using immunoblotting, the protective mechanism for cilostazol was evaluated by examining antiinflammatory effects of cilostazol on the expression of tumor necrosis factors-α (TNF-α) and tight junction proteins (ZO-1 and claudin-5), and the phosphorylations of nuclear factor-kappa B (NF-κB) and c-Jun. The histological analysis revealed that I/R decreased the cell number in the ganglion cell layer (GCL) and the thicknesses of the inner plexiform layer (IPL) and inner nuclear layer (INL), and that cilostazol attenuated these decreases. Additionally, cilostazol prevented the hyperpermeability of blood vessels. Electroretinogram (ERG) measurements revealed that cilostazol prevented the I/R-induced reductions in a-, b-, and oscillatory potential (OP) wave amplitudes seen at 5 days after I/R. Cilostazol inhibited the increased expression of TNF-α and the phosphorylation levels of NF-κB and c-Jun in the retina after I/R. In addition, cilostazol prevented TNF-α-induced reduction of ZO-1 and claudin-5 expression in human retinal microvascular endothelial cells (HRMECs). These findings indicate that cilostazol may prevent I/R-induced retinal damage partly through inhibition of TNF-α-induced NF-κB/AP-1 signaling pathway. PMID:25505560

  7. Diazoxide preconditioning of endothelial progenitor cells from streptozotocin-induced type 1 diabetic rats improves their ability to repair diabetic cardiomyopathy.

    PubMed

    Ali, Muhammad; Mehmood, Azra; Anjum, Muhammad Sohail; Tarrar, Moazzam Nazir; Khan, Shaheen N; Riazuddin, Sheikh

    2015-12-01

    Type 1 diabetes mellitus (DM) is a strong risk factor for the development of diabetic cardiomyopathy (DCM) which is the leading cause of morbidity and mortality in the type 1 diabetic patients. Stem cells may act as a therapeutic agent for the repair of DCM. However, deteriorated functional abilities and survival of stem cells derived from type 1 diabetic subjects need to be overcome for obtaining potential outcome of the stem cell therapy. Diazoxide (DZ) a highly selective mitochondrial ATP-sensitive K(+) channel opener has been previously shown to improve the ability of mesenchymal stem cells for the repair of heart failure. In the present study, we evaluated the effects of DZ preconditioning in improving the ability of streptozotocin-induced type 1 diabetes affected bone marrow-derived endothelial progenitor cells (DM-EPCs) for the repair of DCM in the type 1 diabetic rats. DM-EPCs were characterized by immunocytochemistry, flow cytometry, and reverse transcriptase PCR for endothelial cell-specific markers like vWF, VE cadherin, VEGFR2, PECAM, CD34, and eNOS. In vitro studies included preconditioning of DM-EPCs with 200 μM DZ for 30 min followed by exposure to either 200 μM H2O2 for 2 h (for oxidative stress induction) or 30 mM glucose media (for induction of hyperglycemic stress) for 48 h. Non-preconditioned EPCs with and without exposure to H2O2 and 30 mM high glucose served as controls. These cells were then evaluated for survival (by MTT and XTT cell viability assays), senescence, paracrine potential (by ELISA for VEGF), and alteration in gene expression [VEGF, stromal derived factor-1α (SDF-1α), HGF, bFGF, Bcl2, and Caspase-3]. DZ preconditioned DM-EPCs demonstrated significantly increased survival and VEGF release while reduced cell injury and senescence. Furthermore, DZ preconditioned DM-EPCs exhibited up-regulated expression of prosurvival genes (VEGF, SDF-1α, HGF, bFGF, and Bcl2) on exposure to H2O2, and VEGF and Bcl2 on exposure to hyperglycemia

  8. Hypertrophic cardiomyopathy: a review.

    PubMed

    Hensley, Nadia; Dietrich, Jennifer; Nyhan, Daniel; Mitter, Nanhi; Yee, May-Sann; Brady, MaryBeth

    2015-03-01

    Hypertrophic cardiomyopathy (HCM) is a relatively common disorder that anesthesiologists encounter among patients in the perioperative period. Fifty years ago, HCM was thought to be an obscure disease. Today, however, our understanding and ability to diagnose patients with HCM have improved dramatically. Patients with HCM have genotypic and phenotypic variability. Indeed, a subgroup of these patients exhibits the HCM genotype but not the phenotype (left ventricular hypertrophy). There are a number of treatment modalities for these patients, including pharmacotherapy to control symptoms, implantable cardiac defibrillators to manage malignant arrhythmias, and surgical myectomy and septal ablation to decrease the left ventricular outflow obstruction. Accurate diagnosis is vital for the perioperative management of these patients. Diagnosis is most often made using echocardiographic assessment of left ventricular hypertrophy, left ventricular outflow tract gradients, systolic and diastolic function, and mitral valve anatomy and function. Cardiac magnetic resonance imaging also has a diagnostic role by determining the extent and location of left ventricular hypertrophy and the anatomic abnormalities of the mitral valve and papillary muscles. In this review on hypertrophic cardiomyopathy for the noncardiac anesthesiologist, we discuss the clinical presentation and genetic mutations associated with HCM, the critical role of echocardiography in the diagnosis and the assessment of surgical interventions, and the perioperative management of patients with HCM undergoing noncardiac surgery and management of the parturient with HCM. PMID:25695573

  9. Genetics of inherited cardiomyopathy

    PubMed Central

    Jacoby, Daniel; McKenna, William J.

    2012-01-01

    During the past two decades, numerous disease-causing genes for different cardiomyopathies have been identified. These discoveries have led to better understanding of disease pathogenesis and initial steps in the application of mutation analysis in the evaluation of affected individuals and their family members. As knowledge of the genetic abnormalities, and insight into cellular and organ biology has grown, so has appreciation of the level of complexity of interaction between genotype and phenotype across disease states. What were initially thought to be one-to-one gene-disease correlates have turned out to display important relational plasticity dependent in large part on the genetic and environmental backgrounds into which the genes of interest express. The current state of knowledge with regard to genetics of cardiomyopathy represents a starting point to address the biology of disease, but is not yet developed sufficiently to supplant clinically based classification systems or, in most cases, to guide therapy to any significant extent. Future work will of necessity be directed towards elucidation of the biological mechanisms of both rare and common gene variants and environmental determinants of plasticity in the genotype–phenotype relationship with the ultimate goal of furthering our ability to identify, diagnose, risk stratify, and treat this group of disorders which cause heart failure and sudden death in the young. PMID:21810862

  10. Prevention of rt-PA induced blood-brain barrier component degradation by the poly(ADP-ribose)polymerase inhibitor PJ34 after ischemic stroke in mice.

    PubMed

    Teng, Fei; Beray-Berthat, Virginie; Coqueran, Bérard; Lesbats, Clémentine; Kuntz, Mélanie; Palmier, Bruno; Garraud, Marie; Bedfert, Cyrielle; Slane, Niamh; Bérézowski, Vincent; Szeremeta, Frédéric; Hachani, Johan; Scherman, Daniel; Plotkine, Michel; Doan, Bich-Thuy; Marchand-Leroux, Catherine; Margaill, Isabelle

    2013-10-01

    Recombinant tissue plasminogen activator (rt-PA) is the only pharmacological treatment approved for thrombolysis in patients suffering from ischemic stroke, but its administration aggravates the risk of hemorrhagic transformations. Experimental data demonstrated that rt-PA increases the activity of poly(ADP-ribose)polymerase (PARP). The aim of the present study was to investigate whether PJ34, a potent (PARP) inhibitor, protects the blood-brain barrier components from rt-PA toxicity. In our mouse model of cerebral ischemia, administration of rt-PA (10 mg/kg, i.v.) 6h after ischemia aggravated the post-ischemic degradation of ZO-1, claudin-5 and VE-cadherin, increased the hemorrhagic transformations (assessed by brain hemoglobin content and magnetic resonance imaging). Furthermore, rt-PA also aggravated ischemia-induced functional deficits. Combining PJ34 with rt-PA preserved the expression of ZO-1, claudin-5 and VE-cadherin, reduced the hemorrhagic transformations and improved the sensorimotor performances. In vitro studies also demonstrated that PJ34 crosses the blood-brain barrier and may thus exert its protective effect by acting on endothelial and/or parenchymal cells. Thus, co-treatment with a PARP inhibitor seems to be a promising strategy to reduce rt-PA-induced vascular toxicity after stroke.

  11. DIGE Proteome Analysis Reveals Suitability of Ischemic Cardiac In Vitro Model for Studying Cellular Response to Acute Ischemia and Regeneration

    PubMed Central

    Haas, Sina; Jahnke, Heinz-Georg; Moerbt, Nora; von Bergen, Martin; Aharinejad, Seyedhossein; Andrukhova, Olena; Robitzki, Andrea A.

    2012-01-01

    Proteomic analysis of myocardial tissue from patient population is suited to yield insights into cellular and molecular mechanisms taking place in cardiovascular diseases. However, it has been limited by small sized biopsies and complicated by high variances between patients. Therefore, there is a high demand for suitable model systems with the capability to simulate ischemic and cardiotoxic effects in vitro, under defined conditions. In this context, we established an in vitro ischemia/reperfusion cardiac disease model based on the contractile HL-1 cell line. To identify pathways involved in the cellular alterations induced by ischemia and thereby defining disease-specific biomarkers and potential target structures for new drug candidates we used fluorescence 2D-difference gel electrophoresis. By comparing spot density changes in ischemic and reperfusion samples we detected several protein spots that were differentially abundant. Using MALDI-TOF/TOF-MS and ESI-MS the proteins were identified and subsequently grouped by functionality. Most prominent were changes in apoptosis signalling, cell structure and energy-metabolism. Alterations were confirmed by analysis of human biopsies from patients with ischemic cardiomyopathy. With the establishment of our in vitro disease model for ischemia injury target identification via proteomic research becomes independent from rare human material and will create new possibilities in cardiac research. PMID:22384053

  12. Mitochondrial dysfunction in uremic cardiomyopathy

    PubMed Central

    Taylor, David; Bhandari, Sunil

    2015-01-01

    Uremic cardiomyopathy (UCM) is characterized by metabolic remodelling, compromised energetics, and loss of insulin-mediated cardioprotection, which result in unsustainable adaptations and heart failure. However, the role of mitochondria and the susceptibility of mitochondrial permeability transition pore (mPTP) formation in ischemia-reperfusion injury (IRI) in UCM are unknown. Using a rat model of chronic uremia, we investigated the oxidative capacity of mitochondria in UCM and their sensitivity to ischemia-reperfusion mimetic oxidant and calcium stressors to assess the susceptibility to mPTP formation. Uremic animals exhibited a 45% reduction in creatinine clearance (P < 0.01), and cardiac mitochondria demonstrated uncoupling with increased state 4 respiration. Following IRI, uremic mitochondria exhibited a 58% increase in state 4 respiration (P < 0.05), with an overall reduction in respiratory control ratio (P < 0.01). Cardiomyocytes from uremic animals displayed a 30% greater vulnerability to oxidant-induced cell death determined by FAD autofluorescence (P < 0.05) and reduced mitochondrial redox state on exposure to 200 μM H2O2 (P < 0.01). The susceptibility to calcium-induced permeability transition showed that maximum rates of depolarization were enhanced in uremia by 79%. These results demonstrate that mitochondrial respiration in the uremic heart is chronically uncoupled. Cardiomyocytes in UCM are characterized by a more oxidized mitochondrial network, with greater susceptibility to oxidant-induced cell death and enhanced vulnerability to calcium-induced mPTP formation. Collectively, these findings indicate that mitochondrial function is compromised in UCM with increased vulnerability to calcium and oxidant-induced stressors, which may underpin the enhanced predisposition to IRI in the uremic heart. PMID:25587120

  13. Diabetic cardiomyopathy, causes and effects

    PubMed Central

    Boudina, Sihem

    2010-01-01

    Diabetes is associated with increased incidence of heart failure even after controlling for coronary artery disease and hypertension. Thus, as diabetic cardiomyopathy has become an increasingly recognized entity among clinicians, a better understanding of its pathophysiology is necessary for early diagnosis and the development of treatment strategies for diabetes-associated cardiovascular dysfunction. We will review recent basic and clinical research into the manifestations and the pathophysiological mechanisms of diabetic cardiomyopathy. The discussion will be focused on the structural, functional and metabolic changes that occur in the myocardium in diabetes and how these changes may contribute to the development of diabetic cardiomyopathy in affected humans and relevant animal models. PMID:20180026

  14. Takotsubo cardiomyopathy (Broken heart syndrome).

    PubMed

    Javed, Aqib; Chitkara, Kamal; Mahmood, Arslan; Kainat, Aleesha

    2015-11-01

    Takotsubo cardiomyopathy is an acute reversible cardiomyopathy characterised by transient regional left ventricular (LV) motion abnormalities. It is diagnosed on a coronary angiography and left ventriculography. We report the case of a 50-year-old lady who presented with sudden onset of chest pain, with no history of cardiac disease and no risk factors. Remarkably though, she had lost her husband the previous night. Coronary and LV angiography was done which revealed findings typical of takotsubo cardiomyopathy. We report this case for its rarity. Informed consent was taken from the patient before undertaking and reporting this study. PMID:26564308

  15. Cardiorespiratory and cardiovascular interactions in cardiomyopathy patients using joint symbolic dynamic analysis.

    PubMed

    Giraldo, Beatriz F; Rodriguez, Javier; Caminal, Pere; Bayes-Genis, Antonio; Voss, Andreas

    2015-01-01

    Cardiovascular diseases are the first cause of death in developed countries. Using electrocardiographic (ECG), blood pressure (BP) and respiratory flow signals, we obtained parameters for classifying cardiomyopathy patients. 42 patients with ischemic (ICM) and dilated (DCM) cardiomyopathies were studied. The left ventricular ejection fraction (LVEF) was used to stratify patients with low risk (LR: LVEF>35%, 14 patients) and high risk (HR: LVEF≤ 35%, 28 patients) of heart attack. RR, SBP and TTot time series were extracted from the ECG, BP and respiratory flow signals, respectively. The time series were transformed to a binary space and then analyzed using Joint Symbolic Dynamic with a word length of three, characterizing them by the probability of occurrence of the words. Extracted parameters were then reduced using correlation and statistical analysis. Principal component analysis and support vector machines methods were applied to characterize the cardiorespiratory and cardiovascular interactions in ICM and DCM cardiomyopathies, obtaining an accuracy of 85.7%. PMID:26736261

  16. Sickle cell anemia mice develop a unique cardiomyopathy with restrictive physiology.

    PubMed

    Bakeer, Nihal; James, Jeanne; Roy, Swarnava; Wansapura, Janaka; Shanmukhappa, Shiva Kumar; Lorenz, John N; Osinska, Hanna; Backer, Kurt; Huby, Anne-Cecile; Shrestha, Archana; Niss, Omar; Fleck, Robert; Quinn, Charles T; Taylor, Michael D; Purevjav, Enkhsaikhan; Aronow, Bruce J; Towbin, Jeffrey A; Malik, Punam

    2016-08-30

    Cardiopulmonary complications are the leading cause of mortality in sickle cell anemia (SCA). Elevated tricuspid regurgitant jet velocity, pulmonary hypertension, diastolic, and autonomic dysfunction have all been described, but a unifying pathophysiology and mechanism explaining the poor prognosis and propensity to sudden death has been elusive. Herein, SCA mice underwent a longitudinal comprehensive cardiac analysis, combining state-of-the-art cardiac imaging with electrocardiography, histopathology, and molecular analysis to determine the basis of cardiac dysfunction. We show that in SCA mice, anemia-induced hyperdynamic physiology was gradually superimposed with restrictive physiology, characterized by progressive left atrial enlargement and diastolic dysfunction with preserved systolic function. This phenomenon was absent in WT mice with experimentally induced chronic anemia of similar degree and duration. Restrictive physiology was associated with microscopic cardiomyocyte loss and secondary fibrosis detectable as increased extracellular volume by cardiac-MRI. Ultrastructural mitochondrial changes were consistent with severe chronic hypoxia/ischemia and sarcomere diastolic-length was shortened. Transcriptome analysis revealed up-regulation of genes involving angiogenesis, extracellular-matrix, circadian-rhythm, oxidative stress, and hypoxia, whereas ion-channel transport and cardiac conduction were down-regulated. Indeed, progressive corrected QT prolongation, arrhythmias, and ischemic changes were noted in SCA mice before sudden death. Sudden cardiac death is common in humans with restrictive cardiomyopathies and long QT syndromes. Our findings may thus provide a unifying cardiac pathophysiology that explains the reported cardiac abnormalities and sudden death seen in humans with SCA. PMID:27503873

  17. Sickle cell anemia mice develop a unique cardiomyopathy with restrictive physiology

    PubMed Central

    Bakeer, Nihal; James, Jeanne; Roy, Swarnava; Wansapura, Janaka; Shanmukhappa, Shiva Kumar; Lorenz, John N.; Osinska, Hanna; Backer, Kurt; Huby, Anne-Cecile; Shrestha, Archana; Niss, Omar; Fleck, Robert; Quinn, Charles T.; Taylor, Michael D.; Purevjav, Enkhsaikhan; Aronow, Bruce J.; Towbin, Jeffrey A.; Malik, Punam

    2016-01-01

    Cardiopulmonary complications are the leading cause of mortality in sickle cell anemia (SCA). Elevated tricuspid regurgitant jet velocity, pulmonary hypertension, diastolic, and autonomic dysfunction have all been described, but a unifying pathophysiology and mechanism explaining the poor prognosis and propensity to sudden death has been elusive. Herein, SCA mice underwent a longitudinal comprehensive cardiac analysis, combining state-of-the-art cardiac imaging with electrocardiography, histopathology, and molecular analysis to determine the basis of cardiac dysfunction. We show that in SCA mice, anemia-induced hyperdynamic physiology was gradually superimposed with restrictive physiology, characterized by progressive left atrial enlargement and diastolic dysfunction with preserved systolic function. This phenomenon was absent in WT mice with experimentally induced chronic anemia of similar degree and duration. Restrictive physiology was associated with microscopic cardiomyocyte loss and secondary fibrosis detectable as increased extracellular volume by cardiac-MRI. Ultrastructural mitochondrial changes were consistent with severe chronic hypoxia/ischemia and sarcomere diastolic-length was shortened. Transcriptome analysis revealed up-regulation of genes involving angiogenesis, extracellular-matrix, circadian-rhythm, oxidative stress, and hypoxia, whereas ion-channel transport and cardiac conduction were down-regulated. Indeed, progressive corrected QT prolongation, arrhythmias, and ischemic changes were noted in SCA mice before sudden death. Sudden cardiac death is common in humans with restrictive cardiomyopathies and long QT syndromes. Our findings may thus provide a unifying cardiac pathophysiology that explains the reported cardiac abnormalities and sudden death seen in humans with SCA. PMID:27503873

  18. Molecular etiology of idiopathic cardiomyopathy

    PubMed Central

    Arimura, T; Hayashi, T; Kimura, A

    2007-01-01

    Summary Idiopathic cardiomyopathy (ICM) is a primary cardiac disorder associated with abnormalities of ventricular wall thickness, size of ventricular cavity, contraction, relaxation, conduction and rhythm. Over the past two decades, molecular genetic analyses have revealed that mutations in the various genes cause ICM and such information concerning the genetic basis of ICM enables us to speculate the pathogenesis of this heterogeous cardiac disease. This review focuses on the molecular pathogenesis, i.e., genetic abnormalities and functional alterations due to the mutations especially in sarcomere/cytoskeletal components, in three characteristic features of ICM, hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM) and restrictive cardiomyopathy (RCM). Understanding the functional abnormalities of the sarcomere/cytoskeletal components, in ICM, has unraveled the function of these components not only as a contractile unit but also as a pivot for transduction of biochemical signals. PMID:18646564

  19. Calcium Ions in Inherited Cardiomyopathies.

    PubMed

    Deftereos, Spyridon; Papoutsidakis, Nikolaos; Giannopoulos, Georgios; Angelidis, Christos; Raisakis, Konstantinos; Bouras, Georgios; Davlouros, Periklis; Panagopoulou, Vasiliki; Goudevenos, John; Cleman, Michael W; Lekakis, John

    2016-01-01

    Inherited cardiomyopathies are a known cause of heart failure, although the pathways and mechanisms leading from mutation to the heart failure phenotype have not been elucidated. There is strong evidence that this transition is mediated, at least in part, by abnormal intracellular Ca(2+) handling, a key ion in ventricular excitation, contraction and relaxation. Studies in human myocytes, animal models and in vitro reconstituted contractile protein complexes have shown consistent correlations between Ca(2+) sensitivity and cardiomyopathy phenotype, irrespective of the causal mutation. In this review we present the available data about the connection between mutations linked to familial hypertrophic (HCM), dilated (DCM) and restrictive (RCM) cardiomyopathy, right ventricular arrhythmogenic cardiomyopathy/dysplasia (ARVC/D) as well as left ventricular non-compaction and the increase or decrease in Ca(2+) sensitivity, together with the results of attempts to reverse the manifestation of heart failure by manipulating Ca(2+) homeostasis. PMID:26411603

  20. Takotsubo Cardiomyopathy Coexisting with Acute Pericarditis and Myocardial Bridge

    PubMed Central

    Sezavar, Seyed Hashem; Riahi Beni, Hassan; Ghanavati, Reza; Hajahmadi, Marjan

    2016-01-01

    Takotsubo cardiomyopathy (TCM) is a stress-induced cardiomyopathy that occurs primarily in postmenopausal women. It mimics clinical picture of acute coronary syndrome with nonobstructive coronary arteries and a characteristic transient left (or bi-) ventricular apical ballooning at angiography. The exact pathogenesis of TCM is not well recognized. Hereby we present an unusual case of TCM that presents with signs and symptoms of acute pericarditis and was also found to have a coexisting coronary muscle bridge on coronary angiography. We discuss the impact of these associations in better understanding of the pathogenesis of TCM. PMID:27437150

  1. Misconceptions and Facts About Hypertrophic Cardiomyopathy.

    PubMed

    Argulian, Edgar; Sherrid, Mark V; Messerli, Franz H

    2016-02-01

    Hypertrophic cardiomyopathy is the most common genetic heart disease. Once considered relentless, untreatable, and deadly, it has become a highly treatable disease with contemporary management. Hypertrophic cardiomyopathy is one of cardiology's "great masqueraders." Mistakes and delays in diagnosis abound. Hypertrophic cardiomyopathy commonly "masquerades" as asthma, anxiety, mitral prolapse, and coronary artery disease. However, once properly diagnosed, patients with hypertrophic cardiomyopathy can be effectively managed to improve both symptoms and survival. This review highlights some of the misconceptions about hypertrophic cardiomyopathy. Providers at all levels should have awareness of hypertrophic cardiomyopathy to promptly diagnose and properly manage these individuals. PMID:26299316

  2. Alcoholic cardiomyopathy: pathophysiologic insights.

    PubMed

    Piano, Mariann R; Phillips, Shane A

    2014-12-01

    Alcoholic cardiomyopathy (ACM) is a specific heart muscle disease found in individuals with a history of long-term heavy alcohol consumption. ACM is associated with a number of adverse histological, cellular, and structural changes within the myocardium. Several mechanisms are implicated in mediating the adverse effects of ethanol, including the generation of oxidative stress, apoptotic cell death, impaired mitochondrial bioenergetics/stress, derangements in fatty acid metabolism and transport, and accelerated protein catabolism. In this review, we discuss the evidence for such mechanisms and present the potential importance of drinking patterns, genetic susceptibility, nutritional factors, race, and sex. The purpose of this review is to provide a mechanistic paradigm for future research in the area of ACM.

  3. [Left ventricular hypertrophy in the cat - "when hypertrophic cardiomyopathy is not hypertrophic cardiomyopathy"].

    PubMed

    Glaus, T; Wess, G

    2010-07-01

    According to WHO classification hypertrophic cardiomyopathy (HCM) is a primary genetic cardiomyopathy. Echocardiographically HCM is characterized by symmetric, asymmetric or focal left ventricular hypertrophy (LVH) without recognizable underlying physical cause. However, echocardiographically HCM in cats may not be distinguishable from other causes of a thick appearing left ventricle. Hypovolemia can look like a hypertrophied ventricle but is basically only pseudohypertrophic. Well recognized and logical physical causes of LVH include systemic hypertension and outflow obstruction. LVH similar to HCM may also be found in feline hyperthyroidism. The context of the disease helps to differentiate these physical / physiological causes of LVH. Difficult to distinguish from HCM, particularly when based on a snapshot of a single echocardiographic exam, are myocarditis and induced HCM>. Only the clinical and echocardiographic course allow a reasonably confident etiological diagnosis and the differentiation between HCM and secondary LVH. PMID:20582898

  4. Exercise Rehabilitation in Pediatric Cardiomyopathy

    PubMed Central

    Somarriba, Gabriel; Extein, Jason; Miller, Tracie L.

    2008-01-01

    Children with cardiomyopathy carry significant risk of morbidity and mortality. New research and technology have brought about significant advancements to the diagnosis and clinical management of children with cardiomyopathy. However, currently heart transplantation remains the standard of care for children with symptomatic and progressive cardiomyopathy. Cardiovascular rehabilitation programs have yielded success in improving cardiac function, overall physical activity, and quality of life in adults with congestive heart failure from a variety of conditions. There is encouraging and emerging data on its effects in children with chronic illness and with its proven benefits in other pediatric disorders, the implementation of a program for with cardiomyopathy should be considered. Exercise rehabilitation programs may improve specific endpoints such quality of life, cardiovascular function and fitness, strength, flexibility, and metabolic risk. With the rapid rise in pediatric obesity, children with cardiomyopathy may be at similar risk for developing these modifiable risk factors. However, there are potentially more detrimental effects of inactivity in this population of children. Future research should focus on the physical and social effects of a medically supervised cardiac rehabilitation program with correct determination of the dosage and intensity of exercise for optimal benefits in this special population of children. It is imperative that more detailed recommendations for children with cardiomyopathy be made available with evidence-based research. PMID:18496603

  5. Ischemic preconditioning protects against ischemic brain injury

    PubMed Central

    Ma, Xiao-meng; Liu, Mei; Liu, Ying-ying; Ma, Li-li; Jiang, Ying; Chen, Xiao-hong

    2016-01-01

    In this study, we hypothesized that an increase in integrin αvβ3 and its co-activator vascular endothelial growth factor play important neuroprotective roles in ischemic injury. We performed ischemic preconditioning with bilateral common carotid artery occlusion for 5 minutes in C57BL/6J mice. This was followed by ischemic injury with bilateral common carotid artery occlusion for 30 minutes. The time interval between ischemic preconditioning and lethal ischemia was 48 hours. Histopathological analysis showed that ischemic preconditioning substantially diminished damage to neurons in the hippocampus 7 days after ischemia. Evans Blue dye assay showed that ischemic preconditioning reduced damage to the blood-brain barrier 24 hours after ischemia. This demonstrates the neuroprotective effect of ischemic preconditioning. Western blot assay revealed a significant reduction in protein levels of integrin αvβ3, vascular endothelial growth factor and its receptor in mice given ischemic preconditioning compared with mice not given ischemic preconditioning 24 hours after ischemia. These findings suggest that the neuroprotective effect of ischemic preconditioning is associated with lower integrin αvβ3 and vascular endothelial growth factor levels in the brain following ischemia. PMID:27335560

  6. Epac2-deficiency leads to more severe retinal swelling, glial reactivity and oxidative stress in transient middle cerebral artery occlusion induced ischemic retinopathy.

    PubMed

    Liu, Jin; Yeung, Patrick Ka Kit; Cheng, Lu; Lo, Amy Cheuk Yin; Chung, Stephen Sum Man; Chung, Sookja Kim

    2015-06-01

    Ischemia occurs in diabetic retinopathy with neuronal loss, edema, glial cell reactivity and oxidative stress. Epacs, consisting of Epac1 and Epac2, are cAMP mediators playing important roles in maintenance of endothelial barrier and neuronal functions. To investigate the roles of Epacs in the pathogenesis of ischemic retinopathy, transient middle cerebral artery occlusion (tMCAO) was performed on Epac1-deficient (Epac1 (-/-)) mice, Epac2-deficient (Epac2 (-/-)) mice, and their wild type counterparts (Epac1 (+/+) and Epac2 (+/+)). Two-hour occlusion and 22-hour reperfusion were conducted to induce ischemia/reperfusion injury to the retina. After tMCAO, the contralateral retinae displayed similar morphology between different genotypes. Neuronal loss, retinal edema and increase in immunoreactivity for aquaporin 4 (AQP4), glial fibrillary acidic protein (GFAP), peroxiredoxin 6 (Prx6) were observed in ipsilateral retinae. Epac2 (-/-) ipsilateral retinae showed more neuronal loss in retinal ganglion cell layer, increased retinal thickness and stronger immunostaining of AQP4, GFAP, and Prx6 than those of Epac2 (+/+). However, Epac1 (-/-) ipsilateral retinae displayed similar pathology as those in Epac1 (+/+) mice. Our observations suggest that Epac2-deficiency led to more severe ischemic retinopathy after retinal ischemia/reperfusion injury.

  7. Acute ischemic stroke update.

    PubMed

    Baldwin, Kathleen; Orr, Sean; Briand, Mary; Piazza, Carolyn; Veydt, Annita; McCoy, Stacey

    2010-05-01

    thrombolectomy are being developed, and neuroprotective therapies such as the use of magnesium, statins, and induced hypothermia are being explored. As treatment interventions become more clearly defined in special subgroups of patients, outcomes in patients with acute ischemic stroke will likely continue to improve.

  8. Probucol plus cilostazol attenuate hypercholesterolemia‑induced exacerbation in ischemic brain injury via anti-inflammatory effects.

    PubMed

    Kim, Ji Hyun; Hong, Ki Whan; Bae, Sun Sik; Shin, Yong-Il; Choi, Byung Tae; Shin, Hwa Kyoung

    2014-09-01

    Probucol, a lipid-lowering agent with anti-oxidant properties, is involved in protection against atherosclerosis, while cilostazol, an antiplatelet agent, has diverse neuroprotective properties. In this study, we investigated the anti-inflammatory effects of probucol and cilostazol on focal cerebral ischemia with hypercholesterolemia. Apolipoprotein E (ApoE) knockout (KO) mice were fed a high-fat diet (HFD) with or without 0.3% probucol and/or 0.2% cilostazol for 10 weeks. To assess the protective effects of the combined therapy of probucol and cilostazol on ischemic injury, the mice received 40 min of middle cerebral artery occlusion (MCAO). Infarct volumes, neurobehavioral deficits and neuroinflammatory mediators were subsequently evaluated 48 h after reperfusion. Probucol alone and probucol plus cilostazol significantly decreased total- and low-density lipoprotein (LDL)-cholesterol in ApoE KO with HFD. MCAO resulted in significantly larger infarct volumes in ApoE KO mice provided with HFD compared to those fed a regular diet, although these volumes were significantly reduced in the probucol plus cilostazol group. Consistent with a smaller infarct size, probucol alone and the combined treatment of probucol and cilostazol improved neurological and motor function. In addition, probucol alone and probucol plus cilostazol decreased MCP-1 expression and CD11b and GFAP immuno-reactivity in the ischemic cortex. These findings suggested that the inhibitory effects of probucol plus cilostazol in MCP-1 expression in the ischemic brain with hypercholesterolemia allowed the identification of one of the mechanisms responsible for anti-inflammatory action. Probucol plus cilostazol may therefore serve as a therapeutic strategy for reducing the impact of stroke in hypercholesterolemic subjects.

  9. TORSADES DE POINTES ASSOCIATED WITH TAKOTSUBO CARDIOMYOPATHY IN AN ANOREXIA NERVOSA PATIENT DURING EMERGENCE FROM GENERAL ANESTHESIA.

    PubMed

    Kawano, Hiroaki; Kinoshita, Michiko; Kondo, Akio; Yamada, Yasuhito; Inoue, Masaya

    2016-06-01

    Takotsubo cardiomyopathy, also known as stress-induced cardiomyopathy, is a disease in which the patient exhibits transient, reversible left ventricular dysfunction that is triggered by physical or emotional stress. Prolongation of QT interval, a risk factor for arrhythmia and sudden death, has been reported to be prevalent among patients with Takotsubo cardiomyopathy and is also observed in those with severe anorexia nervosa. In this report, we describe the rare case of a 30-year-old female patient with anorexia nervosa who developed Torsades de Pointes associated with Takotsubo cardiomyopathy during emergence from general anesthesia for emergency exploratory laparotomy. PMID:27487642

  10. Genetics Home Reference: familial dilated cardiomyopathy

    MedlinePlus

    ... Related Dilated Cardiomyopathy Genetic Testing Registry (1 link) Primary dilated cardiomyopathy ClinicalTrials.gov (1 link) ClinicalTrials.gov Scientific articles on PubMed (1 link) PubMed OMIM (36 links) ...

  11. CPG15, a new factor upregulated after ischemic brain injury, contributes to neuronal network re-establishment after glutamate-induced injury.

    PubMed

    Han, Yu; Chen, Xianhua; Shi, Fumin; Li, Shujing; Huang, Jia; Xie, Minhao; Hu, Lingchuan; Hoidal, John R; Xu, Ping

    2007-04-01

    Candidate plasticity-related gene 15 (cpg15) encodes a protein that regulates dendritic and axonal arbor growth and synaptic maturation. In the present study, we investigated the potential role of CPG15 in regulating the neuronal network re-establishment after ischemic brain injury. In the mouse model with transient global ischemia (TGI), CPG15 transcripts and proteins were determined using RT-PCR and Western blot analyses. Cell proliferation was observed using 5'-bromo-2'-deoxyuridine-5'-monophosphate (BrdU) labeling. Double immunostaining and depletion of soluble CPG15 proteins were performed to examine the cellular distribution of CPG15 and the role of soluble CPG15 in the neurite outgrowth during the neuronal network re-establishment in primarily cultured hippocampal cells after glutamate-induced injury. We demonstrated that CPG15 expression in the hippocampus was upregulated at 1-2 weeks after TGI. In the dentate gyrus, the number of CPG15 and BrdU positive cells increased concurrently after the injury. During the neuronal network re-establishment after the glutamate-induced injury of primarily cultured hippocampal cells, CPG15 was mainly located at the ends and turn-off regions of the growth cones and in the vesicles. Depletion of soluble CPG15 proteins secreted from the hippocampal cells in the culture media significantly reduced the neurite outgrowth and neuron-neuron connection. The results indicate that CPG15 may function as a new factor required in re-establishment of neuronal network after the injury. Our findings will be important in developing a new strategy to enhance endogenous neurogenesis after an ischemic brain injury. PMID:17439354

  12. Peripartum cardiomyopathy and dilated cardiomyopathy: different at heart

    PubMed Central

    Bollen, Ilse A. E.; Van Deel, Elza D.; Kuster, Diederik W. D.; Van Der Velden, Jolanda

    2015-01-01

    Peripartum cardiomyopathy (PPCM) is a severe cardiac disease occurring in the last month of pregnancy or in the first 5 months after delivery and shows many similar clinical characteristics as dilated cardiomyopathy (DCM) such as ventricle dilation and systolic dysfunction. While PPCM was believed to be DCM triggered by pregnancy, more and more studies show important differences between these diseases. While it is likely they share part of their pathogenesis such as increased oxidative stress and an impaired microvasculature, discrepancies seen in disease progression and outcome indicate there must be differences in pathogenesis as well. In this review, we compared studies in DCM and PPCM to search for overlapping and deviating disease etiology, pathogenesis and outcome in order to understand why these cardiomyopathies share similar clinical features but have different underlying pathologies. PMID:25642195

  13. Peripartum cardiomyopathy and dilated cardiomyopathy: different at heart.

    PubMed

    Bollen, Ilse A E; Van Deel, Elza D; Kuster, Diederik W D; Van Der Velden, Jolanda

    2014-01-01

    Peripartum cardiomyopathy (PPCM) is a severe cardiac disease occurring in the last month of pregnancy or in the first 5 months after delivery and shows many similar clinical characteristics as dilated cardiomyopathy (DCM) such as ventricle dilation and systolic dysfunction. While PPCM was believed to be DCM triggered by pregnancy, more and more studies show important differences between these diseases. While it is likely they share part of their pathogenesis such as increased oxidative stress and an impaired microvasculature, discrepancies seen in disease progression and outcome indicate there must be differences in pathogenesis as well. In this review, we compared studies in DCM and PPCM to search for overlapping and deviating disease etiology, pathogenesis and outcome in order to understand why these cardiomyopathies share similar clinical features but have different underlying pathologies. PMID:25642195

  14. Cardiac arrhythmias in hypertrophic cardiomyopathy.

    PubMed Central

    Bjarnason, I; Hardarson, T; Jonsson, S

    1982-01-01

    This study was designed to assess the prevalence of cardiac arrhythmias in a group of relatives of patients who had come to necropsy with hypertrophic cardiomyopathy. Another aim of the study was to assess the validity of an interventricular septal thickness of 1.3 cm or more, measured by echocardiography, as a diagnostic criterion of hypertrophic cardiomyopathy among relatives of cases proven at necropsy. Fifty close relatives of eight deceased patients were examined. By the above definition 22 relatives had hypertrophic cardiomyopathy and 28 did not. A comparison of the prevalence and types of cardiac arrhythmias, as shown by 24 hour ambulatory electrocardiographic monitoring, was made between the two groups and a third apparently healthy group of 40 people. The patients with hypertrophic cardiomyopathy showed a significant increase in supraventricular extrasystoles/24 hours, supraventricular arrhythmias, high grade ventricular arrhythmia, and the number of patients with more than 10 ventricular extrasystoles every 24 hours when compared with the other groups. There was no significant difference between normal relatives and controls. The prevalence and types of arrhythmia in these patients were similar to those found by other investigators using different diagnostic criteria. These results support the contention that these patients do indeed have hypertrophic cardiomyopathy and suggest that all close relatives of necropsy proven cases should be examined by echocardiography and subsequently by ambulatory electrocardiographic monitoring if the interventricular septal thickness is 1.3 more. PMID:7201843

  15. Nerve Growth Factor Protects the Ischemic Heart via Attenuation of the Endoplasmic Reticulum Stress Induced Apoptosis by Activation of Phosphatidylinositol 3-Kinase

    PubMed Central

    Wei, Ke; Liu, Li; Xie, Fei; Hao, Xuechao; Luo, Jie; Min, Su

    2015-01-01

    Background: Increased expression of nerve growth factor (NGF) has been found in the myocardium suffered from ischemia and reperfusion (I/R). The pro-survival activity of NGF on ischemic heart has been supposed to be mediated by phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) signaling pathway. Endoplasmic reticulum (ER) stress, which is activated initially as a defensive response to eliminate the accumulated unfolded proteins, has shown a critical involvement in the ischemia induced myocardial apoptosis. This study was aimed to investigate whether NGF induced heart protection against I/R injury includes a mechanism of attenuation of ER stress-induced myocardial apoptosis by activation of PI3K/Akt pathway. Methods: Isolated adult rat hearts were perfused with a Langendörff perfusion system. Hearts in the Sham group were subjected to 225 min of continuous Krebs-Henseleit buffer (KHB) perfusion without ischemia. Hearts in I/R group were perfused with KHB for a 75-min of equilibration period followed by 30 min of global ischemia and 120 min of KHB reperfusion. Hearts in the NGF group accepted 45 min of euilibration perfusion and 30 min of NGF pretreatment (with a final concentration of 100 ng/ml in the KHB) before 30 min of global ischemia and 120 min of reperfusion. Hearts in K252a and LY294002 groups were pretreated with either a TrkA inhibitor, K252a or a phosphatidyl inositol 3-kinase inhibitor, LY294002 for 30 min before NGF (100 ng/ml) administration. Cardiac hemodynamics were measured from the beginning of the perfusion. Cardiac enzymes and cardiac troponin I (cTnI) were assayed before ischemia and at the end of reperfusion. Myocardial apoptosis rate was measured by TUNEL staining, and expression of glucose-related protein 78 (GRP78), CCAAT/enhancer-binding protein homologous protein (CHOP), caspase-12, total- and phospho-(Ser473)-Akt were assessed by Western blot analyses. Results: NGF pretreatment significantly improved the recovery of post

  16. Potential Role of Nuclear Factor κB in Diabetic Cardiomyopathy

    PubMed Central

    Lorenzo, O.; Picatoste, B.; Ares-Carrasco, S.; Ramírez, E.; Egido, J.; Tuñón, J.

    2011-01-01

    Diabetic cardiomyopathy entails the cardiac injury induced by diabetes independently of any vascular disease or hypertension. Some transcription factors have been proposed to control the gene program involved in the setting and development of related processes. Nuclear factor-kappa B is a pleiotropic transcription factor associated to the regulation of many heart diseases. However, the nuclear factor-kappa B role in diabetic cardiomyopathy is under investigation. In this paper, we review the nuclear factor-kappa B pathway and its role in several processes that have been linked to diabetic cardiomyopathy, such as oxidative stress, inflammation, endothelial dysfunction, fibrosis, hypertrophy and apoptosis. PMID:21772665

  17. Cardiomyocyte GTP Cyclohydrolase 1 Protects the Heart Against Diabetic Cardiomyopathy.

    PubMed

    Wu, Hsiang-En; Baumgardt, Shelley L; Fang, Juan; Paterson, Mark; Liu, Yanan; Du, Jianhai; Shi, Yang; Qiao, Shigang; Bosnjak, Zeljko J; Warltier, David C; Kersten, Judy R; Ge, Zhi-Dong

    2016-01-01

    Diabetic cardiomyopathy increases the risk of heart failure and death. At present, there are no effective approaches to preventing its development in the clinic. Here we report that reduction of cardiac GTP cyclohydrolase 1 (GCH1) degradation by genetic and pharmacological approaches protects the heart against diabetic cardiomyopathy. Diabetic cardiomyopathy was induced in C57BL/6 wild-type mice and transgenic mice with cardiomyocyte-specific overexpression of GCH1 with streptozotocin, and control animals were given citrate buffer. We found that diabetes-induced degradation of cardiac GCH1 proteins contributed to adverse cardiac remodeling and dysfunction in C57BL/6 mice, concomitant with decreases in tetrahydrobiopterin, dimeric and phosphorylated neuronal nitric oxide synthase, sarcoplasmic reticulum Ca(2+) handling proteins, intracellular [Ca(2+)]i, and sarcoplasmic reticulum Ca(2+) content and increases in phosphorylated p-38 mitogen-activated protein kinase and superoxide production. Interestingly, GCH-1 overexpression abrogated these detrimental effects of diabetes. Furthermore, we found that MG 132, an inhibitor for 26S proteasome, preserved cardiac GCH1 proteins and ameliorated cardiac remodeling and dysfunction during diabetes. This study deepens our understanding of impaired cardiac function in diabetes, identifies GCH1 as a modulator of cardiac remodeling and function, and reveals a new therapeutic target for diabetic cardiomyopathy. PMID:27295516

  18. Cardiomyocyte GTP Cyclohydrolase 1 Protects the Heart Against Diabetic Cardiomyopathy

    PubMed Central

    Wu, Hsiang-En; Baumgardt, Shelley L.; Fang, Juan; Paterson, Mark; Liu, Yanan; Du, Jianhai; Shi, Yang; Qiao, Shigang; Bosnjak, Zeljko J.; Warltier, David C.; Kersten, Judy R.; Ge, Zhi-Dong

    2016-01-01

    Diabetic cardiomyopathy increases the risk of heart failure and death. At present, there are no effective approaches to preventing its development in the clinic. Here we report that reduction of cardiac GTP cyclohydrolase 1 (GCH1) degradation by genetic and pharmacological approaches protects the heart against diabetic cardiomyopathy. Diabetic cardiomyopathy was induced in C57BL/6 wild-type mice and transgenic mice with cardiomyocyte-specific overexpression of GCH1 with streptozotocin, and control animals were given citrate buffer. We found that diabetes-induced degradation of cardiac GCH1 proteins contributed to adverse cardiac remodeling and dysfunction in C57BL/6 mice, concomitant with decreases in tetrahydrobiopterin, dimeric and phosphorylated neuronal nitric oxide synthase, sarcoplasmic reticulum Ca2+ handling proteins, intracellular [Ca2+]i, and sarcoplasmic reticulum Ca2+ content and increases in phosphorylated p-38 mitogen-activated protein kinase and superoxide production. Interestingly, GCH-1 overexpression abrogated these detrimental effects of diabetes. Furthermore, we found that MG 132, an inhibitor for 26S proteasome, preserved cardiac GCH1 proteins and ameliorated cardiac remodeling and dysfunction during diabetes. This study deepens our understanding of impaired cardiac function in diabetes, identifies GCH1 as a modulator of cardiac remodeling and function, and reveals a new therapeutic target for diabetic cardiomyopathy. PMID:27295516

  19. Dilated cardiomyopathy: an anaesthetic challenge.

    PubMed

    Kaur, Haramritpal; Khetarpal, Ranjana; Aggarwal, Shobha

    2013-06-01

    Idiopathic dilated cardiomyopathy is a primary myocardial disease of unknown etiology characterized by left ventricular or biventricular dilation and impaired contractility. Depending upon diagnostic criteria used, the reported annual incidence varies between 5 and 8 cases per 100,000 populations. Dilated cardiomyopathy is defined by presence of: a) fractional myocardial shortening less than 25% (>2SD) and/or ejection fraction less than 45% (>2SD) and b) Left Ventricular End Diastolic Diameter (LVEDD) greater than 117% excluding any known cause of myocardial disease. Such cases are always a challenge to the anesthesiologist as they are most commonly complicated by progressive cardiac failure. We report the anesthetic management of a patient with dilated cardiomyopathy undergoing surgery for carcinoma breast. PMID:23905133

  20. Melatonin Counteracts at a Transcriptional Level the Inflammatory and Apoptotic Response Secondary to Ischemic Brain Injury Induced by Middle Cerebral Artery Blockade in Aging Rats

    PubMed Central

    Paredes, Sergio D.; Rancan, Lisa; Kireev, Roman; González, Alberto; Louzao, Pedro; González, Pablo; Rodríguez-Bobada, Cruz; García, Cruz; Vara, Elena; Tresguerres, Jesús A.F.

    2015-01-01

    Abstract Aging increases oxidative stress and inflammation. Melatonin counteracts inflammation and apoptosis. This study investigated the possible protective effect of melatonin on the inflammatory and apoptotic response secondary to ischemia induced by blockade of the right middle cerebral artery (MCA) in aging male Wistar rats. Animals were subjected to MCA obstruction. After 24 h or 7 days of procedure, 14-month-old nontreated and treated rats with a daily dose of 10 mg/kg melatonin were sacrificed and right and left hippocampus and cortex were collected. Rats aged 2 and 6 months, respectively, were subjected to the same brain injury protocol, but they were not treated with melatonin. mRNA expression of interleukin-1 beta (IL-1β), tumor necrosis factor alpha (TNF-α), Bcl-2-associated death promoter (BAD), Bcl-2-associated X protein (BAX), glial fibrillary acidic protein (GFAP), B-cell lymphoma 2 (Bcl-2), and sirtuin 1 was measured by reverse transcription–polymerase chain reaction. In nontreated animals, a significant time-dependent increase in IL-1β, TNF-α, BAD, and BAX was observed in the ischemic area of both hippocampus and cortex, and to a lesser extent in the contralateral hemisphere. Hippocampal GFAP was also significantly elevated, while Bcl-2 and sirtuin 1 decreased significantly in response to ischemia. Aging aggravated these changes. Melatonin administration was able to reverse significantly these alterations. In conclusion, melatonin may ameliorate the age-dependent inflammatory and apoptotic response secondary to ischemic cerebral injury. PMID:26594596

  1. Takotsubo Cardiomyopathy Associated with Thyrotoxicosis: A Case Report and Review of the Literature

    PubMed Central

    El-Maouche, Diala; Choudhary, Chitra; Zinsmeister, Bruce; Burman, Kenneth D.

    2014-01-01

    Background: Takotsubo or stress-induced cardiomyopathy is a form of reversible cardiomyopathy commonly associated with emotional or physical stress. Thyrotoxicosis has been identified as a rare cause of Takotsubo cardiomyopathy, with only 12 cases reported in the literature. Here, we report a case of thyroid storm presenting with Takotsubo cardiomyopathy in the setting of Graves' disease. Patient Findings: A 71-year-old woman presented with abdominal pain, vomiting, confusion, and history of weight loss. She was initially diagnosed and treated for diabetic ketoacidosis at another hospital and was transferred to our hospital one day after initial presentation because of concern for acute coronary syndrome. A diagnosis of Takotsubo cardiomyopathy was made on the basis of cardiac catheterization. At that time, she was diagnosed and treated for thyroid storm. Follow-up 7 weeks later revealed improvement of her cardiac function and near-normalization of thyroid hormone levels. Summary: In this patient, who presented with symptoms of heart failure, acute coronary syndrome was initially considered, but the diagnosis of Takotsubo cardiomyopathy associated with thyroid storm was ultimately made based on cardiac catheterization and laboratory investigation. Conclusions: Thyrotoxicosis is associated with adverse disturbances in the cardiovascular system. Takotsubo cardiomyopathy could be a presenting manifestation of thyroid storm, perhaps related to excess catecholamine levels or sensitivity. PMID:23560557

  2. TNF, acting through inducibly expressed TNFR2, drives activation and cell cycle entry of c-Kit+ cardiac stem cells in ischemic heart disease.

    PubMed

    Al-Lamki, Rafia S; Lu, Wanhua; Wang, Jun; Yang, Jun; Sargeant, Timothy J; Wells, Richard; Suo, Chenqu; Wright, Penny; Goddard, Martin; Huang, Qunhua; Lebastchi, Amir H; Tellides, George; Huang, Yingqun; Min, Wang; Pober, Jordan S; Bradley, John R

    2013-09-01

    TNF, signaling through TNFR2, has been implicated in tissue repair, a process that in the heart may be mediated by activated resident cardiac stem cells (CSCs). The objective of our study is to determine whether ligation of TNFR2 can induce activation of resident CSCs in the setting of ischemic cardiac injury. We show that in human cardiac tissue affected by ischemia heart disease (IHD), TNFR2 is expressed on intrinsic CSCs, identified as c-kit(+)/CD45(-)/VEGFR2(-) interstitial round cells, which are activated as determined by entry to cell cycle and expression of Lin-28. Wild-type mouse heart organ cultures subjected to hypoxic conditions both increase cardiac TNF expression and show induced TNFR2 and Lin-28 expression in c-kit(+) CSCs that have entered cell cycle. These CSC responses are enhanced by exogenous TNF. TNFR2(-/-) mouse heart organ cultures subjected to hypoxia increase cardiac TNF but fail to induce CSC activation. Similarly, c-kit(+) CSCs isolated from mouse hearts exposed to hypoxia or TNF show induction of Lin-28, TNFR2, cell cycle entry, and cardiogenic marker, α-sarcomeric actin (α-SA), responses more pronounced by hypoxia in combination with TNF. Knockdown of Lin-28 by siRNA results in reduced levels of TNFR2 expression, cell cycle entry, and diminished expression of α-SA. We conclude that hypoxia-induced c-kit(+) CSC activation is mediated by TNF/TNFR2/Lin-28 signaling. These observations suggest that TNFR2 signaling in resident c-kit(+) CSCs induces cardiac repair, findings which provide further understanding of the unanticipated harmful effects of TNF blockade in human IHD.

  3. Diffusion Tensor Imaging of White Matter Injury Caused by Prematurity-Induced Hypoxic-Ischemic Brain Damage

    PubMed Central

    Zhang, Fuyong; Liu, Chunli; Qian, Linlin; Hou, Haifeng; Guo, Zhengyi

    2016-01-01

    Background This investigation aimed to evaluate changes in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) of white matter injury (WMI) in preterm neonates with hypoxic-ischemic encephalopathy (HIE) using diffusion tension imaging (DTI). Material/Methods Thirty-eight neonates less than 37 weeks of gestation with leukoencephalopathy (as observation group) and 38 full-term infants with no leukoencephalopathy (as control group) were selected from the Neonatal Care Center in Taian Central Hospital from January 2012 to December 2013. A DTI scan was obtained within 1 week after birth. Results In the observation group, on both sides the ADC values in regions of interest (ROI) of white matter, lesions were greater and FA values were lower than in the control group. ADC and FA values in genu and splenum of corpus callosum were statistically different between the mild and severe injury groups (p<0.05). Conclusions This study demonstrates that DTI provides sensitive detection and early diagnosis of WMI in brains of premature infants with HIE. PMID:27338673

  4. Comparison of bone scan and radiograph sensitivity in the detection of steroid-induced ischemic necrosis of bone

    SciTech Connect

    Conklin, J.J.; Alderson, P.O.; Zizic, T.M.; Hungerford, D.S.; Densereaux, J.Y.; Gober, A.; Wagner, H.N.

    1983-04-01

    A prospective study of bone scanning for detection of ischemic necrosis of bone (INB) was performed in 36 patients (97% female, age range 16-36 yrs.) with systemic lupus erythematosis (SLE). Since the hips, knees, and shoulders are usually affected by INB in patients with SLE, 300 K converging collimator images of these joints were obtained on film and in digital format 2 to 3 hours after the injection of 20 mCi (740 MBq) of Tc-99m methylene diphosphonate. All patients underwent radiography of the joints, and 10 had intraosseous pressure determinations in the marrow space of affected joints (n . 31) for independent assessment of INB. Scans showed abnormally increased joint activity in 28 of the 36 patients. A total of 97 joints showed abnormalities, 19% in the hips, 34% in the knees, and 47% in the shoulders. Twenty-four of 27 joints with elevated bone marrow pressure (BMP) had abnormal scans (sensitivity . 89%), and scans were abnormal in 2 of 4 joints with normal pressures (specificity . 50%). The positive predictive value of the scans compared with BMP measurements was 92% (24/26). Eleven of 27 joints with abnormal BMP had abnormal radiographs, a sensitivity of 41%.

  5. Comparison of bone scan and radiograph sensitivity in the detection of steroid-induced ischemic necrosis of bone

    SciTech Connect

    Conklin, J.J.; Alderson, P.O.; Zizic, T.M.; Hungerford, D.S.; Densereaux, J.Y.; Gober, A.; Wagner, H.N.

    1983-04-01

    A prospective study of bone scanning for detection of ischemic necrosis of bone (INB) was performed in 36 patients (97% female, age range 16-36 yrs.) with systemic lupus erythematosis (SLE). Since the hips, knees, and shoulders are usually affected by INB in patients with SLE, 300 K converging collimator images of these joints were obtained on film and in digital format 2 to 3 hours after the injection of 20 mCi (740 MBq) of Tc-99m methylene diphosphonate. All patients underwent radiography of the joints, and 10 had intraosseous pressure determinations in the marrow space of affected joints (n=31) for independent assessment of INB. Scans showed abnormally increased joint activity in 28 of the 36 patients. A total of 97 joints showed abnormalities, 19% in the hips, 34% in the knees, and 47% in the shoulders. Twenty-four of 27 joints with elevated bone marrow pressure (BMP) had abnormal scans (sensitivity = 89%), and scans were abnormal in 2 of 4 joints with normal pressures (specificity = 50%). The positive predicitive value of the scans compared with BMP measurements was 92% (24/26). Eleven of 27 joints with abnormal BMP had abnormal radiographs, a sensitivity of 41%.

  6. Reversible transition from a hypertrophic to a dilated cardiomyopathy

    PubMed Central

    Spillmann, Frank; Kühl, Uwe; Van Linthout, Sophie; Dominguez, Fernando; Escher, Felicitas; Schultheiss, Heinz‐Peter; Pieske, Burkert

    2015-01-01

    Abstract We report the case of a 17‐year‐old female patient with known hypertrophic cardiomyopathy and a Wolff‐Parkinson‐White syndrome. She came to our department for further evaluation of a new diagnosed dilated cardiomyopathy characterized by an enlargement of the left ventricle and a fall in ejection fraction. Clinically, she complained about atypical chest pain, arrhythmic episodes with presyncopal events, and dyspnea (NYHA III) during the last 6 months. Non‐invasive and invasive examinations including magnetic resonance imaging, electrophysiological examinations, and angiography did not lead to a conclusive diagnosis. Therefore, endomyocardial biopsies (EMBs) were taken to investigate whether a specific myocardial disease caused the impairment of the left ventricular function. EMB analysis resulted in the diagnosis of a virus‐negative, active myocarditis. Based on this diagnosis, an immunosuppressive treatment with prednisolone and azathioprine was started, which led to an improvement of cardiac function and symptoms within 3 months after initiating therapy. In conclusion, we show that external stress triggered by myocarditis can induce a reversible transition from a hypertrophic cardiomyopathy to a dilated cardiomyopathy phenotype. This case strongly underlines the need for a thorough and invasive examination of heart failure of unknown causes, including EMB investigations as recommend by the actual ESC position statement.

  7. Myocardial ischemic protection in natural mammalian hibernation.

    PubMed

    Yan, Lin; Kudej, Raymond K; Vatner, Dorothy E; Vatner, Stephen F

    2015-03-01

    Hibernating myocardium is an important clinical syndrome protecting the heart with chronic myocardial ischemia, named for its assumed resemblance to hibernating mammals in winter. However, the effects of myocardial ischemic protection have never been studied in true mammalian hibernation, which is a unique strategy for surviving extreme winter environmental stress. The goal of this investigation was to test the hypothesis that ischemic stress may also be protected in woodchucks as they hibernate in winter. Myocardial infarction was induced by coronary occlusion followed by reperfusion in naturally hibernating woodchucks in winter with and without hibernation and in summer, when not hibernating. The ischemic area at risk was similar among groups. Myocardial infarction was significantly less in woodchucks in winter, whether hibernating or not, compared with summer, and was similar to that resulting after ischemic preconditioning. Whereas several genes were up or downregulated in both hibernating woodchuck and with ischemic preconditioning, one mechanism was unique to hibernation, i.e., activation of cAMP-response element binding protein (CREB). When CREB was upregulated in summer, it induced protection similar to that observed in the woodchuck heart in winter. The cardioprotection in hibernation was also mediated by endothelial nitric oxide synthase, rather than inducible nitric oxide synthase. Thus, the hibernating woodchuck heart is a novel model to study cardioprotection for two major reasons: (1) powerful cardioprotection occurs naturally in winter months in the absence of any preconditioning stimuli, and (2) it resembles ischemic preconditioning, but with novel mechanisms, making this model potentially useful for clinical translation.

  8. Myocardial ischemic protection in natural mammalian hibernation.

    PubMed

    Yan, Lin; Kudej, Raymond K; Vatner, Dorothy E; Vatner, Stephen F

    2015-03-01

    Hibernating myocardium is an important clinical syndrome protecting the heart with chronic myocardial ischemia, named for its assumed resemblance to hibernating mammals in winter. However, the effects of myocardial ischemic protection have never been studied in true mammalian hibernation, which is a unique strategy for surviving extreme winter environmental stress. The goal of this investigation was to test the hypothesis that ischemic stress may also be protected in woodchucks as they hibernate in winter. Myocardial infarction was induced by coronary occlusion followed by reperfusion in naturally hibernating woodchucks in winter with and without hibernation and in summer, when not hibernating. The ischemic area at risk was similar among groups. Myocardial infarction was significantly less in woodchucks in winter, whether hibernating or not, compared with summer, and was similar to that resulting after ischemic preconditioning. Whereas several genes were up or downregulated in both hibernating woodchuck and with ischemic preconditioning, one mechanism was unique to hibernation, i.e., activation of cAMP-response element binding protein (CREB). When CREB was upregulated in summer, it induced protection similar to that observed in the woodchuck heart in winter. The cardioprotection in hibernation was also mediated by endothelial nitric oxide synthase, rather than inducible nitric oxide synthase. Thus, the hibernating woodchuck heart is a novel model to study cardioprotection for two major reasons: (1) powerful cardioprotection occurs naturally in winter months in the absence of any preconditioning stimuli, and (2) it resembles ischemic preconditioning, but with novel mechanisms, making this model potentially useful for clinical translation. PMID:25613166

  9. The genetics of dilated cardiomyopathy

    PubMed Central

    Dellefave, Lisa; McNally, Elizabeth M.

    2010-01-01

    Purpose of review More than forty different individual genes have been implicated in the inheritance of dilated cardiomyopathy. For a subset of these genes, mutations can lead to a spectrum of cardiomyopathy that extends to hypertrophic cardiomyopathy and left ventricular noncompaction. In nearly all cases, there is an increased risk of arrhythmias. With some genetic mutations, extracardiac manifestations are likely to be present. The precise genetic etiology can usually not be discerned from the cardiac and/or extracardiac manifestations and requires molecular genetic diagnosis for prognostic determination and cardiac care. Recent findings Newer technologies are influencing genetic testing, especially cardiomyopathy genetic testing, where an increased number of genes are now routinely being tested simultaneously. While this approach to testing multiple genes is increasing the diagnostic yield, the analysis of multiple genes in one test is also resulting in a large amount of genetic information of unclear significance. Summary Genetic testing is highly useful in the care of patients and families, since it guides diagnosis, influences care and aids in prognosis. However, the large amount of benign human genetic variation may complicate genetic results, and often requires a skilled team to accurately interpret the findings. PMID:20186049

  10. Thromboxane A2 receptor antagonist SQ29548 reduces ischemic stroke-induced microglia/macrophages activation and enrichment, and ameliorates brain injury

    PubMed Central

    Yan, Aijuan; Zhang, Tingting; Yang, Xiao; Shao, Jiaxiang; Fu, Ningzhen; Shen, Fanxia; Fu, Yi; Xia, Weiliang

    2016-01-01

    Thromboxane A2 receptor (TXA2R) activation is thought to be involved in thrombosis/hemostasis and inflammation responses. We have previously shown that TXA2R antagonist SQ29548 attenuates BV2 microglia activation by suppression of ERK pathway, but its effect is not tested in vivo. The present study aims to explore the role of TXA2R on microglia/macrophages activation after ischemia/reperfusion brain injury in mice. Adult male ICR mice underwent 90-min transient middle cerebral artery occlusion (tMCAO). Immediately and 24 h after reperfusion, SQ29548 was administered twice to the ipsilateral ventricle (10 μl, 2.6 μmol/ml, per dose). Cerebral infarction volume, inflammatory cytokines release and microglia/macrophages activation were measured using the cresyl violet method, quantitative polymerase chain reaction (qPCR), and immunofluorescence double staining, respectively. Expression of TXA2R was significantly increased in the ipsilateral brain tissue after ischemia/reperfusion, which was also found to co-localize with activated microglia/macrophages in the infarct area. Administration of SQ29548 inhibited microglia/macrophages activation and enrichment, including both M1 and M2 phenotypes, and attenuated ischemia-induced IL-1ß, IL-6, and TNF-α up-regulation and iNOS release. TXA2R antagonist SQ29548 inhibited ischemia-induced inflammatory response and furthermore reduced microglia/macrophages activation and ischemic/reperfusion brain injury. PMID:27775054

  11. Genetics Home Reference: dilated cardiomyopathy with ataxia syndrome

    MedlinePlus

    ... dilated cardiomyopathy with ataxia syndrome dilated cardiomyopathy with ataxia syndrome Enable Javascript to view the expand/collapse ... Open All Close All Description Dilated cardiomyopathy with ataxia (DCMA) syndrome is an inherited condition characterized by ...

  12. Serum from Patients Undergoing Remote Ischemic Preconditioning Protects Cultured Human Intestinal Cells from Hypoxia-Induced Damage: Involvement of Matrixmetalloproteinase-2 and -9

    PubMed Central

    Zitta, Karina; Meybohm, Patrick; Bein, Berthold; Heinrich, Christin; Renner, Jochen; Cremer, Jochen; Steinfath, Markus; Scholz, Jens; Albrecht, Martin

    2012-01-01

    Remote ischemic preconditioning (RIPC) can be induced by transient occlusion of blood flow to a limb with a blood pressure cuff and exerts multiorgan protection from ischemia/reperfusion injury. Ischemia/reperfusion injury in the intestinal tract leads to intestinal barrier dysfunction and can result in multiple organ failure. Here we used an intestinal cell line (CaCo-2) to evaluate the effects of RIPC-conditioned patient sera on hypoxia-induced cell damage in vitro and to identify serum factors that mediate RIPC effects. Patient sera (n = 10) derived before RIPC (T0), directly after RIPC (T1) and 1 h after RIPC (T2) were added to the culture medium at the onset of hypoxia until 48 h after hypoxia. Reverse transcription–polymerase chain reaction, lactate dehydrogenase (LDH) assays, caspase-3/7 assays, silver staining, gelatin zymography and Western blotting were performed. Hypoxia led to morphological signs of cell damage and increased the release of LDH in cultures containing sera T0 (P < 0.01) and T1 (P < 0.05), but not sera T2, which reduced the hypoxia-mediated LDH release compared with sera T0 (P < 0.05). Gelatin zymography revealed a significant reduction of activities of the matrixmetalloproteinase (MMP)-2 and MMP-9 in the protective sera T2 compared with the nonprotective sera T0 (MMP-2: P < 0.01; MMP-9: P < 0.05). Addition of human recombinant MMP-2 and MMP-9 to MMP-deficient culture media increased the sensitivity of CaCo-2 cells to hypoxia-induced cell damage (P < 0.05), but did not result in a reduced phosphorylation of prosurvival kinases p42/44 and protein kinase B (Akt) or increased activity of caspase-3/7. Our results suggest MMP-2 and MMP-9 as currently unknown humoral factors that may be involved in RIPC-mediated cytoprotection in the intestine. PMID:22009279

  13. Ischemic optic neuropathy.

    PubMed

    Athappilly, Geetha; Pelak, Victoria S; Mandava, Naresh; Bennett, Jeffrey L

    2008-10-01

    Ischemic optic neuropathy is the most frequent cause of vision loss in middle age. Clinical and laboratory research studies have begun to clarify the natural history, clinical presentation, diagnostic criteria and pathogenesis of various ischemic nerve injuries. As a result, physicians are acquiring new tools to aid in the diagnosis and potential treatment of ischemic nerve injury. The aim of this review is to examine recent data on anterior and posterior ischemic optic neuropathy and to provide a framework for physicians to manage and counsel affected individuals. PMID:18826805

  14. Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury.

    PubMed Central

    Marber, M S; Mestril, R; Chi, S H; Sayen, M R; Yellon, D M; Dillmann, W H

    1995-01-01

    Myocardial protection and changes in gene expression follow whole body heat stress. Circumstantial evidence suggests that an inducible 70-kD heat shock protein (hsp70i), increased markedly by whole body heat stress, contributes to the protection. Transgenic mouse lines were constructed with a cytomegalovirus enhancer and beta-actin promoter driving rat hsp70i expression in heterozygote animals. Unstressed, transgene positive mice expressed higher levels of myocardial hsp70i than transgene negative mice after whole body heat stress. This high level of expression occurred without apparent detrimental effect. The hearts harvested from transgene positive mice and transgene negative littermates were Langendorff perfused and subjected to 20 min of warm (37 degrees C) zero-flow ischemia and up to 120 min of reflow while contractile recovery and creatine kinase efflux were measured. Myocardial infarction was demarcated by triphenyltetrazolium. In transgene positive compared with transgene negative hearts, the zone of infarction was reduced by 40%, contractile function at 30 min of reflow was doubled, and efflux of creatine kinase was reduced by approximately 50%. Our findings suggest for the first time that increased myocardial hsp70i expression results in protection of the heart against ischemic injury and that the antiischemic properties of hsp70i have possible therapeutic relevance. Images PMID:7706448

  15. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats.

    PubMed

    Zhang, Bei; He, Qiang; Li, Ying-Ying; Li, Ce; Bai, Yu-Long; Hu, Yong-Shan; Zhang, Feng

    2015-12-01

    Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT) involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of 'learned non-use' and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model) group, a CIMT + model (CIMT) group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi.

  16. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats.

    PubMed

    Zhang, Bei; He, Qiang; Li, Ying-Ying; Li, Ce; Bai, Yu-Long; Hu, Yong-Shan; Zhang, Feng

    2015-12-01

    Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT) involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of 'learned non-use' and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model) group, a CIMT + model (CIMT) group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi. PMID:26889190

  17. Constraint-induced movement therapy promotes motor function recovery and downregulates phosphorylated extracellular regulated protein kinase expression in ischemic brain tissue of rats

    PubMed Central

    Zhang, Bei; He, Qiang; Li, Ying-ying; Li, Ce; Bai, Yu-long; Hu, Yong-shan; Zhang, Feng

    2015-01-01

    Motor function impairment is a common outcome of stroke. Constraint-induced movement therapy (CIMT) involving intensive use of the impaired limb while restraining the unaffected limb is widely used to overcome the effects of ‘learned non-use’ and improve limb function after stroke. However, the underlying mechanism of CIMT remains unclear. In the present study, rats were randomly divided into a middle cerebral artery occlusion (model) group, a CIMT + model (CIMT) group, or a sham group. Restriction of the affected limb by plaster cast was performed in the CIMT and sham groups. Compared with the model group, CIMT significantly improved the forelimb functional performance in rats. By western blot assay, the expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi of cerebral ischemic rats in the CIMT group was significantly lower than that in the model group, and was similar to sham group levels. These data suggest that functional recovery after CIMT may be related to decreased expression of phosphorylated extracellular regulated protein kinase in the bilateral cortex and hippocampi. PMID:26889190

  18. Daphnetin, a natural coumarin derivative, provides the neuroprotection against glutamate-induced toxicity in HT22 cells and ischemic brain injury.

    PubMed

    Du, Gang; Tu, Hui; Li, Xiaojing; Pei, Aijie; Chen, Jing; Miao, Zhigang; Li, Jizhen; Wang, Chen; Xie, Hong; Xu, Xingshun; Zhao, Heqing

    2014-02-01

    Daphnetin (DAP), a coumarin derivative, has been reported to have multiple pharmacological actions including analgesia, antimalarial, anti-arthritic, and anti-pyretic properties. It is unclear whether DAP has neuroprotective effects on ischemic brain injury. In this study, we found that DAP treatment (i.c.v.) reduced the infarct volume at 24 h after ischemia/reperfusion injury and improved neurological behaviors in a middle cerebral artery occlusion mouse model. Moreover, we provided evidences that DAP had protective effects on infarct volume in neonate rats even it was administrated at 4 h after cerebral hypoxia/ischemia injury. To explore its neuroprotective mechanisms of DAP, we examined the protection of DAP on glutamate toxicity-induced cell death in hippocampal HT-22 cells. Our results demonstrated that DAP protected against glutamate toxicity in HT-22 cells in a concentration-dependent manner. Further, we found that DAP maintained the cellular levels of glutathione and superoxide dismutase activity, suggesting the anti-oxidatant activity of DAP. Since DAP has been used for the treatment of coagulation disorder and rheumatoid arthritis for long time with a safety profile, DAP will be a promising agent for the treatment of stroke. PMID:24343531

  19. Peroxisomal Biogenesis in Ischemic Brain

    PubMed Central

    Young, Jennifer M.; Nelson, Jonathan W.; Cheng, Jian; Zhang, Wenri; Mader, Sarah; Davis, Catherine M.; Morrison, Richard S.

    2015-01-01

    Abstract Aims: Peroxisomes are highly adaptable and dynamic organelles, adjusting their size, number, and enzyme composition to changing environmental and metabolic demands. We determined whether peroxisomes respond to ischemia, and whether peroxisomal biogenesis is an adaptive response to cerebral ischemia. Results: Focal cerebral ischemia induced peroxisomal biogenesis in peri-infarct neurons, which was associated with a corresponding increase in peroxisomal antioxidant enzyme catalase. Peroxisomal biogenesis was also observed in primary cultured cortical neurons subjected to ischemic insult induced by oxygen-glucose deprivation (OGD). A catalase inhibitor increased OGD-induced neuronal death. Moreover, preventing peroxisomal proliferation by knocking down dynamin-related protein 1 (Drp1) exacerbated neuronal death induced by OGD, whereas enhancing peroxisomal biogenesis pharmacologically using a peroxisome proliferator-activated receptor-alpha agonist protected against neuronal death induced by OGD. Innovation: This is the first documentation of ischemia-induced peroxisomal biogenesis in mammalian brain using a combined in vivo and in vitro approach, electron microscopy, high-resolution laser-scanning confocal microscopy, and super-resolution structured illumination microscopy. Conclusion: Our findings suggest that neurons respond to ischemic injury by increasing peroxisome biogenesis, which serves a protective function, likely mediated by enhanced antioxidant capacity of neurons. Antioxid. Redox Signal. 22, 109–120. PMID:25226217

  20. Atomoxetine-related Takotsubo Cardiomyopathy.

    PubMed

    Naguy, Ahmed; Al-Mutairi, Haya; Al-Tajali, Ali

    2016-05-01

    Many psychotropic medications target norepinephrine receptors, which can have serious cardiovascular implications, especially in the context of overdoses, polypharmacy, and high-risk populations. This article presents the case of a patient with adult attention-deficit/hyperactivity disorder who developed takotsubo cardiomyopathy subsequent to pharmacokinetic and pharmacodynamic interactions between atomoxetine, a selective norepinephrine reuptake inhibitor, and fluoxetine. Clinicians should be mindful of the potential for cardiovascular adverse effects when prescribing agents that target noradrenergic receptors. PMID:27123802

  1. Skeletal muscle involvement in cardiomyopathies.

    PubMed

    Limongelli, Giuseppe; D'Alessandro, Raffaella; Maddaloni, Valeria; Rea, Alessandra; Sarkozy, Anna; McKenna, William J

    2013-12-01

    The link between heart and skeletal muscle disorders is based on similar molecular, anatomical and clinical features, which are shared by the 'primary' cardiomyopathies and 'primary' neuromuscular disorders. There are, however, some peculiarities that are typical of cardiac and skeletal muscle disorders. Skeletal muscle weakness presenting at any age may indicate a primary neuromuscular disorder (associated with creatine kinase elevation as in dystrophinopathies), a mitochondrial disease (particularly if encephalopathy, ocular myopathy, retinitis, neurosensorineural deafness, lactic acidosis are present), a storage disorder (progressive exercise intolerance, cognitive impairment and retinitis pigmentosa, as in Danon disease), or metabolic disorders (hypoglycaemia, metabolic acidosis, hyperammonaemia or other specific biochemical abnormalities). In such patients, skeletal muscle weakness usually precedes the cardiomyopathy and dominates the clinical picture. Nevertheless, skeletal involvement may be subtle, and the first clinical manifestation of a neuromuscular disorder may be the occurrence of heart failure, conduction disorders or ventricular arrhythmias due to cardiomyopathy. ECG and echocardiogram, and eventually, a more detailed cardiovascular evaluation may be required to identify early cardiac involvement. Paediatric and adult cardiologists should be proactive in screening for neuromuscular and related disorders to enable diagnosis in probands and evaluation of families with a focus on the identification of those at risk of cardiac arrhythmia and emboli who may require specific prophylactic treatments, for example, pacemaker, implantable cardioverter-defibrillator and anticoagulation. PMID:24149064

  2. Takotsubo cardiomyopathy a short review.

    PubMed

    Roshanzamir, Shahbaz; Showkathali, Refai

    2013-08-01

    Takotsubo cardiomyopathy (TCM), otherwise cardiomyopathy,apical ballooning syndrome or broken heart syndrome is a reversible cardiomyopathy, predominantly occurs in post-menopausal women and commonly due to emotional or physical stress. Typically, patients present with chest pain and ST elevation or T wave inversion on their electrocardiogram mimicking acute coronary syndrome, but with normal or non-flow limiting coronary artery disease. Acute dyspnoea, hypotension and even cardiogenic shock may be the presenting feature of this condition. The wall motion abnormalities typically involve akinesia of the apex of the left ventricle with hyperkinesia of the base of the heart. Atypical forms of TCM have also recently been described. An urgent left ventriculogram or echocardiogram is the key investigation to identify this syndrome. Characteristically, there is only a limited release of cardiac enzymes disproportionate to the extent of regional wall motion abnormality. Transient right ventricular dysfunction may occur and is associated with more complications, longer hospitalisation and worse left ventricular systolic dysfunction. Recently, cardiac MRI has been increasingly used to diagnose this condition and to differentiate from acute coronary syndrome in those who have abnormal coronary arteries. Treatment is often supportive, however beta-blocker and angiotensin-converting enzyme inhibitor or angiotensin II receptor blocking agent are being used in routine clinical practice. The syndrome is usually spontaneously reversible and cardiovascular function returns to normal after a few weeks. This review article will elaborate on the pathophysiology, clinical features including the variant forms, latest diagnostic tools, management and prognosis of this condition. PMID:23642025

  3. Troponins, intrinsic disorder, and cardiomyopathy.

    PubMed

    Na, Insung; Kong, Min J; Straight, Shelby; Pinto, Jose R; Uversky, Vladimir N

    2016-08-01

    Cardiac troponin is a dynamic complex of troponin C, troponin I, and troponin T (TnC, TnI, and TnT, respectively) found in the myocyte thin filament where it plays an essential role in cardiac muscle contraction. Mutations in troponin subunits are found in inherited cardiomyopathies, such as hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). The highly dynamic nature of human cardiac troponin and presence of numerous flexible linkers in its subunits suggest that understanding of structural and functional properties of this important complex can benefit from the consideration of the protein intrinsic disorder phenomenon. We show here that mutations causing decrease in the disorder score in TnI and TnT are significantly more abundant in HCM and DCM than mutations leading to the increase in the disorder score. Identification and annotation of intrinsically disordered regions in each of the troponin subunits conducted in this study can help in better understanding of the roles of intrinsic disorder in regulation of interactomes and posttranslational modifications of these proteins. These observations suggest that disease-causing mutations leading to a decrease in the local flexibility of troponins can trigger a whole plethora of functional changes in the heart. PMID:27074551

  4. Molecular Strategy to Reduce In Vivo Collagen Barrier Promotes Entry of NCX1 Positive Inducible Pluripotent Stem Cells (iPSCNCX1+) into Ischemic (or Injured) Myocardium

    PubMed Central

    Millard, Ronald W.; Yu, Xi-Yong; Luther, Kristin; Xu, Meifeng; Zhao, Ting C.; Yang, Huang-Tian; Qi, Zhihua; LaSance, Kathleen; Ashraf, Muhammad; Wang, Yigang

    2013-01-01

    Objective The purpose of this study was to assess the effect of collagen composition on engraftment of progenitor cells within infarcted myocardium. Background We previously reported that intramyocardial penetration of stem/progenitor cells in epicardial patches was enhanced when collagen was reduced in hearts overexpressing adenylyl cyclase-6 (AC6). In this study we hypothesized an alternative strategy wherein overexpression of microRNA-29b (miR-29b), inhibiting mRNAs that encode cardiac fibroblast proteins involved in fibrosis, would similarly facilitate progenitor cell migration into infarcted rat myocardium. Methods In vitro: A tri-cell patch (Tri-P) consisting of cardiac sodium-calcium exchanger-1 (NCX1) positive iPSC (iPSCNCX1+), endothelial cells (EC), and mouse embryonic fibroblasts (MEF) was created, co-cultured, and seeded on isolated peritoneum. The expression of fibrosis-related genes was analyzed in cardiac fibroblasts (CFb) by qPCR and Western blot. In vivo: Nude rat hearts were administered mimic miRNA-29b (miR-29b), miRNA-29b inhibitor (Anti-29b), or negative mimic (Ctrl) before creation of an ischemically induced regional myocardial infarction (MI). The Tri-P was placed over the infarcted region 7 days later. Angiomyogenesis was analyzed by micro-CT imaging and immunofluorescent staining. Echocardiography was performed weekly. Results The number of green fluorescent protein positive (GFP+) cells, capillary density, and heart function were significantly increased in hearts overexpressing miR-29b as compared with Ctrl and Anti-29b groups. Conversely, down-regulation of miR-29b with anti-29b in vitro and in vivo induced interstitial fibrosis and cardiac remodeling. Conclusion Overexpression of miR-29b significantly reduced scar formation after MI and facilitated iPSCNCX1+ penetration from the cell patch into the infarcted area, resulting in restoration of heart function after MI. PMID:23990893

  5. Transient Ischemic Attack

    MedlinePlus

    Transient Ischemic Attack TIA , or transient ischemic attack, is a "mini stroke" that occurs when a blood clot blocks an artery for a short time. The only ... TIA is that with TIA the blockage is transient (temporary). TIA symptoms occur rapidly and last a ...

  6. Neural Stem Cells and Ischemic Brain

    PubMed Central

    Zhang, Zhenggang; Chopp, Michael

    2016-01-01

    Stroke activates neural stem cells in the ventricular-subventricular zone (V/SVZ) of the lateral ventricle, which increases neuroblasts and oligodendrocyte progenitor cells (OPCs). Within the ischemic brain, neural stem cells, neuroblasts and OPCs appear to actively communicate with cerebral endothelial cells and other brain parenchymal cells to mediate ischemic brain repair; however, stroke-induced neurogenesis unlikely plays any significant roles in neuronal replacement. In this mini-review, we will discuss recent findings how intercellular communications between stroke-induced neurogenesis and oligodendrogenesis and brain parenchymal cells could potentially facilitate brain repair processes. PMID:27488979

  7. Non-Selective Cannabinoid Receptor Antagonists, Hinokiresinols Reduce Infiltration of Microglia/Macrophages into Ischemic Brain Lesions in Rat via Modulating 2-Arachidonolyglycerol-Induced Migration and Mitochondrial Activity

    PubMed Central

    Anthony Jalin, Angela M. A.; Rajasekaran, Maheswari; Prather, Paul L.; Kwon, Jin Sun; Gajulapati, Veeraswamy; Choi, Yongseok; Kim, Chunsook; Pahk, Kisoo; Ju, Chung; Kim, Won-Ki

    2015-01-01

    Growing evidence suggests that therapeutic strategies to modulate the post-ischemic inflammatory responses are promising approaches to improve stroke outcome. Although the endocannabinoid system has been emerged as an endogenous therapeutic target to regulate inflammation after stroke insult, the downstream mechanisms and their potentials for therapeutic intervention remain controversial. Here we identified trans- and cis-hinokiresinols as novel non-selective antagonists for two G-protein-coupled cannabinoid receptors, cannabinoid receptor type 1 and type 2. The Electric Cell-substrate Impedance Sensing and Boyden chamber migration assays using primary microglial cultures revealed that both hinokiresinols significantly inhibited an endocannabinoid, 2-arachidonoylglycerol-induced migration. Hinokiresinols modulated 2-arachidonoylglycerol-induced mitochondrial bioenergetics in microglia as evidenced by inhibition of ATP turnover and reduction in respiratory capacity, thereby resulting in impaired migration activity. In rats subjected to transient middle cerebral artery occlusion (1.5-h) followed by 24-h reperfusion, post-ischemic treatment with hinokiresinols (2 and 7-h after the onset of ischemia, 10 mg/kg) significantly reduced cerebral infarct and infiltration of ED1-positive microglial/macrophage cells into cerebral ischemic lesions in vivo. Co-administration of exogenous 2-AG (1 mg/kg, i.v., single dose at 2 h after starting MCAO) abolished the protective effect of trans-hinokiresionol. These results suggest that hinokiresinols may serve as stroke treatment by targeting the endocannabinoid system. Alteration of mitochondrial bioenergetics and consequent inhibition of inflammatory cells migration may be a novel mechanism underlying anti-ischemic effects conferred by cannabinoid receptor antagonists. PMID:26517721

  8. Transient stress cardiomyopathies in the elderly: Clinical & Pathophysiologic considerations

    PubMed Central

    Chen, Michael A

    2012-01-01

    Transient stress-induced cardiomyopathies have been increasingly recognized and while rare, they tend to affect elderly women more than other demographic groups. One type, often called tako-tsubo cardiomyopathy (TTC), is typically triggered by significant emotional or physical stress and is associated with chest pain, electrocardiogram (ECG) changes and abnormal cardiac enzymes. Significant left ventricular regional wall motion abnormalities usually include an akinetic “ballooning” apex with normal or hyperdynamic function of the base. A second type, often called neurogenic stunned myocardium, typically associated with subarachnoid hemorrhage, also usually presents with ECG changes and positive enzymes, but the typical wall motion abnormalities seen include normal basal and apical left ventricular contraction with akinesis of the mid-cavity in a circumferential fashion. The pathophysiology, clinical care and typical courses, are reviewed. PMID:22783322

  9. Ex vivo and in vivo neuroprotection induced by argon when given after an excitotoxic or ischemic insult.

    PubMed

    David, Hélène N; Haelewyn, Benoît; Degoulet, Mickael; Colomb, Denis G; Risso, Jean-Jacques; Abraini, Jacques H

    2012-01-01

    In vitro studies have well established the neuroprotective action of the noble gas argon. However, only limited data from in vivo models are available, and particularly whether postexcitotoxic or postischemic argon can provide neuroprotection in vivo still remains to be demonstrated. Here, we investigated the possible neuroprotective effect of postexcitotoxic-postischemic argon both ex vivo in acute brain slices subjected to ischemia in the form of oxygen and glucose deprivation (OGD), and in vivo in rats subjected to an intrastriatal injection of N-methyl-D-aspartate (NMDA) or to the occlusion of middle-cerebral artery (MCAO). We show that postexcitotoxic-postischemic argon reduces OGD-induced cell injury in brain slices, and further reduces NMDA-induced brain damage and MCAO-induced cortical brain damage in rats. Contrasting with its beneficial effect at the cortical level, we show that postischemic argon increases MCAO-induced subcortical brain damage and provides no improvement of neurologic outcome as compared to control animals. These results extend previous data on the neuroprotective action of argon. Particularly, taken together with previous in vivo data that have shown that intraischemic argon has neuroprotective action at both the cortical and subcortical level, our findings on postischemic argon suggest that this noble gas could be administered during but not after ischemia, i.e. before but not after reperfusion has occurred, in order to provide cortical neuroprotection and to avoid increasing subcortical brain damage. Also, the effects of argon are discussed as regards to the oxygen-like chemical, pharmacological, and physical properties of argon.

  10. Tat-PRAS40 prevent hippocampal HT-22 cell death and oxidative stress induced animal brain ischemic insults.

    PubMed

    Shin, Min Jea; Kim, Dae Won; Jo, Hyo Sang; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Yeo, Eun Ji; Choi, Yeon Joo; Kim, Ji An; Hwang, Jung Soon; Sohn, Eun Jeong; Jeong, Ji-Heon; Kim, Duk-Soo; Kwon, Hyeok Yil; Cho, Yong-Jun; Lee, Keunwook; Han, Kyu Hyung; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2016-08-01

    Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and is known to play an important role against reactive oxygen species-induced cell death. However, the precise function of PRAS40 in ischemia remains unclear. Thus, we investigated whether Tat-PRAS40, a cell-permeable fusion protein, has a protective function against oxidative stress-induced hippocampal neuronal (HT-22) cell death in an animal model of ischemia. We showed that Tat-PRAS40 transduced into HT-22 cells, and significantly protected against cell death by reducing the levels of H2O2 and derived reactive species, and DNA fragmentation as well as via the regulation of Bcl-2, Bax, and caspase 3 expression levels in H2O2 treated cells. Also, we showed that transduced Tat-PARS40 protein markedly increased phosphorylated RRAS40 expression levels and 14-3-3σ complex via the Akt signaling pathway. In an animal ischemia model, Tat-PRAS40 effectively transduced into the hippocampus in animal brain and significantly protected against neuronal cell death in the CA1 region. We showed that Tat-PRAS40 protein effectively transduced into hippocampal neuronal cells and markedly protected against neuronal cell damage. Therefore, we suggest that Tat-PRAS40 protein may be used as a therapeutic protein for ischemia and oxidative stress-induced brain disorders.

  11. Neuroprotective effect of endogenous cannabinoids on ischemic brain injury induced by the excess microglia-mediated inflammation

    PubMed Central

    Guo, Shuyun; Liu, Yanwu; Ma, Rui; Li, Jun; Su, Binxiao

    2016-01-01

    Increasing evidence has demonstrated the role of endogenous cannabinoids system (ECS) on protecting brain injury caused by ischemia (IMI). Papers reported that microglia-mediated inflammation has become one of the most pivotal mechanisms for IMI. This study was aimed to investigate the potential roles of ECS on neuron protection under microglia-mediated inflammation. Inflammatory cytokines level both in vitro (BV-2 cells) and in vivo (brain tissue from constructed IMI model and brain-isolated microglia) was detected. ECS levels were detected, and its effects on inflammations was also analyzed. Influence of microglia-mediated inflammation on neuron injury was analyzed. Moreover, the effects of ECS on protecting neuron injury were also analyzed. Our results showed that the levels of inflammatory cytokines including TNFα and IL-1β were higher while IKBα was lower in IMI model brain tissue, brain-isolated microglia and BV-2 cells compared to the control. Inflammation was activated in microglia, as well as the activation of ECS characterized by the increasing level of AEA and 2-AG. Furthermore, the activated microglia-mediated self-inflammation performed harmful influence on neurons via suppressing cell viability and inducing apoptosis. Moreover, ECS functioned as a protector on neuron injury though promoting cell proliferation and suppressing cell apoptosis which were caused by the activated BV-2 cells (LPS induced for 3 h). Our data suggested that ECS may play certain neuroprotective effects on microglia-mediated inflammations-induced IMI through anti-inflammatory function. PMID:27398146

  12. Cardiomyopathy and Cerebrovascular Accident Associated With Anabolic-Androgenic Steroid Use.

    PubMed

    Mochizuki, R M; Richter, K J

    1988-11-01

    In brief: This case report describes a 32-year-old bodybuilder who sustained an ischemic cerebrovascular accident and showed signs of cardiomyopathy. No cause was found for either condition, but he had been using steroids for 16 years. Questions remain about the association between the two conditions and steroid use, and the full effects of long-term, high-dose steroid use have yet to be elucidated. As steroid use becomes more popular among athletes, the medical community must be alert to the possible adverse effects of these substances.

  13. Cardiomyopathy in becker muscular dystrophy: Overview

    PubMed Central

    Ho, Rady; Nguyen, My-Le; Mather, Paul

    2016-01-01

    Becker muscular dystrophy (BMD) is an X-linked recessive disorder involving mutations of the dystrophin gene. Cardiac involvement in BMD has been described and cardiomyopathy represents the number one cause of death in these patients. In this paper, the pathophysiology, clinical evaluations and management of cardiomyopathy in patients with BMD will be discussed. PMID:27354892

  14. Arrhythmogenic right ventricular cardiomyopathy in a weimaraner

    PubMed Central

    Eason, Bryan D.; Leach, Stacey B.; Kuroki, Keiichi

    2015-01-01

    Arrhythmogenic right ventricular cardiomyopathy (ARVC) was diagnosed postmortem in a weimaraner dog. Syncope, ventricular arrhythmias, and sudden death in this patient combined with the histopathological fatty tissue infiltration affecting the right ventricular myocardium are consistent with previous reports of ARVC in non-boxer dogs. Arrhythmogenic right ventricular cardiomyopathy has not been previously reported in weimaraners. PMID:26483577

  15. Nemaline myopathy with dilated cardiomyopathy in childhood.

    PubMed

    Gatayama, Ryohei; Ueno, Kentaro; Nakamura, Hideaki; Yanagi, Sadamitsu; Ueda, Hideaki; Yamagishi, Hiroyuki; Yasui, Seiyo

    2013-06-01

    We present a case of a 9-year-old boy with nemaline myopathy and dilated cardiomyopathy. The combination of nemaline myopathy and cardiomyopathy is rare, and this is the first reported case of dilated cardiomyopathy associated with childhood-onset nemaline myopathy. A novel mutation, p.W358C, in ACTA1 was detected in this patient. An unusual feature of this case was that the patient's cardiac failure developed during early childhood with no delay of gross motor milestones. The use of a β-blocker did not improve his clinical course, and the patient died 6 months after diagnosis of dilated cardiomyopathy. Congenital nonprogressive nemaline myopathy is not necessarily a benign disorder: deterioration can occur early in the course of dilated cardiomyopathy with neuromuscular disease, and careful clinical evaluation is therefore necessary. PMID:23650303

  16. Takotsubo Cardiomyopathy Associated with Severe Hypothyroidism in an Elderly Female.

    PubMed

    Brenes-Salazar, Jorge A

    2016-01-01

    Takotsubo cardiomyopathy, also known as stress cardiomyopathy, is a syndrome that affects predominantly postmenopausal women. Despite multiple described mechanisms, intense, neuroadrenergic myocardial stimulation appears to be the main trigger. Hyperthyroidism, but rarely hypothyroidism, has been described in association with Takotsubo cardiomyopathy. Herein, we present a case of stress cardiomyopathy in the setting of symptomatic hypothyroidism. PMID:27512537

  17. Clusterin: a protective mediator for ischemic cardiomyocytes?

    PubMed

    Krijnen, P A J; Cillessen, S A G M; Manoe, R; Muller, A; Visser, C A; Meijer, C J L M; Musters, R J P; Hack, C E; Aarden, L A; Niessen, H W M

    2005-11-01

    We examined the relationship between clusterin and activated complement in human heart infarction and evaluated the effect of this protein on ischemic rat neonatal cardiomyoblasts (H9c2) and isolated adult ventricular rat cardiomyocytes as in vitro models of acute myocardial infarction. Clusterin protects cells by inhibiting complement and colocalizes with complement on jeopardized human cardiomyocytes after infarction. The distribution of clusterin and complement factor C3d was evaluated in the infarcted human heart. We also analyzed the protein expression of clusterin in ischemic H9c2 cells. The binding of endogenous and purified human clusterin on H9c2 cells was analyzed by flow cytometry. Furthermore, the effect of clusterin on the viability of ischemically challenged H9c2 cells and isolated adult ventricular rat cardiomyocytes was analyzed. In human myocardial infarcts, clusterin was found on scattered, morphologically viable cardiomyocytes within the infarcted area that were negative for complement. In H9c2 cells, clusterin was rapidly expressed after ischemia. Its expression was reduced after reperfusion. Clusterin bound to single annexin V-positive or annexin V and propidium iodide-positive H9c2 cells. Clusterin inhibited ischemia-induced death in H9c2 cells as well as in isolated adult ventricular rat cardiomyocytes in the absence of complement. We conclude that ischemia induces the upregulation of clusterin in ischemically challenged, but viable, cardiomyocytes. Our data suggest that clusterin protects cardiomyocytes against ischemic cell death via a complement-independent pathway.

  18. Hybrid approach of ventricular assist device and autologous bone marrow stem cells implantation in end-stage ischemic heart failure enhances myocardial reperfusion

    PubMed Central

    2011-01-01

    We challenge the hypothesis of enhanced myocardial reperfusion after implanting a left ventricular assist device together with bone marrow mononuclear stem cells in patients with end-stage ischemic cardiomyopathy. Irreversible myocardial loss observed in ischemic cardiomyopathy leads to progressive cardiac remodelling and dysfunction through a complex neurohormonal cascade. New generation assist devices promote myocardial recovery only in patients with dilated or peripartum cardiomyopathy. In the setting of diffuse myocardial ischemia not amenable to revascularization, native myocardial recovery has not been observed after implantation of an assist device as destination therapy. The hybrid approach of implanting autologous bone marrow stem cells during assist device implantation may eventually improve native cardiac function, which may be associated with a better prognosis eventually ameliorating the need for subsequent heart transplantation. The aforementioned hypothesis has to be tested with well-designed prospective multicentre studies. PMID:21247486

  19. Near-drowning syndrome: a possible trigger of tako-tsubo cardiomyopathy.

    PubMed

    Citro, Rudolfo; Patella, Marco Mariano; Bossone, Eduardo; Maione, AntonGiulio; Provenza, Gennaro; Gregorio, Giovanni

    2008-05-01

    We report a case of transient tako-tsubo cardiomyopathy characterized by an unusual trigger in a woman victim of near-drowning syndrome. After 24 h, electrocardiogram changes and a typical echocardiographic pattern of apical ballooning with a mild increase of serum troponin level induced the suspicion of tako-tsubo cardiomyopathy despite the absence of chest pain. Left ventriculography confirmed the apical ballooning, and coronary angiography revealed normal coronary arteries. Electrocardiogram changes and apical contraction abnormalities were reversed within 1 month. In conclusion, we hypothesize that hypoxemia related to near-drowning syndrome could have induced transient myocardial dysfunction mediated by a sympathetic nerve activation.

  20. Attenuation of Na/K-ATPase Mediated Oxidant Amplification with pNaKtide Ameliorates Experimental Uremic Cardiomyopathy

    PubMed Central

    Liu, Jiang; Tian, Jiang; Chaudhry, Muhammad; Maxwell, Kyle; Yan, Yanling; Wang, Xiaoliang; Shah, Preeya T.; Khawaja, Asad A.; Martin, Rebecca; Robinette, Tylor J.; El-Hamdani, Adee; Dodrill, Michael W.; Sodhi, Komal; Drummond, Christopher A.; Haller, Steven T.; Kennedy, David J.; Abraham, Nader G.; Xie, Zijian; Shapiro, Joseph I.

    2016-01-01

    We have previously reported that the sodium potassium adenosine triphosphatase (Na/K-ATPase) can effect the amplification of reactive oxygen species. In this study, we examined whether attenuation of oxidant stress by antagonism of Na/K-ATPase oxidant amplification might ameliorate experimental uremic cardiomyopathy induced by partial nephrectomy (PNx). PNx induced the development of cardiac morphological and biochemical changes consistent with human uremic cardiomyopathy. Both inhibition of Na/K-ATPase oxidant amplification with pNaKtide and induction of heme oxygenase-1 (HO-1) with cobalt protoporphyrin (CoPP) markedly attenuated the development of phenotypical features of uremic cardiomyopathy. In a reversal study, administration of pNaKtide after the induction of uremic cardiomyopathy reversed many of the phenotypical features. Attenuation of Na/K-ATPase oxidant amplification may be a potential strategy for clinical therapy of this disorder. PMID:27698370

  1. Modeling Dilated Cardiomyopathies in Drosophila

    PubMed Central

    Wolf, Matthew J.

    2013-01-01

    Over the past hundred years, the fruit fly, Drosophila melanogaster, has provided tremendous insights into genetics and human biology. Drosophila-based research utilizes powerful, genetically-tractable approaches to identify new genes and pathways that potentially contribute to human diseases. New resources available in the fly research community have advanced the ability to examine genome-wide effects on cardiac function and facilitate the identification of structural, contractile, and signaling molecules that contribute to cardiomyopathies. This powerful model system continues to provide discoveries of novel genes and signaling pathways that are conserved among species and translatable to human pathophysiology. PMID:22863366

  2. Adrenergic Inhibition with Dexmedetomidine to Treat Stress Cardiomyopathy during Alcohol Withdrawal: A Case Report and Literature Review

    PubMed Central

    Harris, Zachary M.; Alonso, Alvaro; Kennedy, Thomas P.

    2016-01-01

    Stress (Takotsubo) cardiomyopathy is a form of reversible left ventricular dysfunction with a heightened risk of ventricular arrhythmia thought to be caused by high circulating catecholamines. We report a case of stress cardiomyopathy that developed during severe alcohol withdrawal successfully treated with dexmedetomidine. The case involves a 53-year-old man with a significant history of alcohol abuse who presented to a teaching hospital with new-onset seizures. His symptoms of acute alcohol withdrawal were initially treated with benzodiazepines, but the patient later developed hypotension, and stress cardiomyopathy was suspected based on ECG and echocardiographic findings. Adjunctive treatment with the alpha-2-adrenergic agonist, dexmedetomidine, was initiated to curtail excessive sympathetic outflow of the withdrawal syndrome, thereby targeting the presumed pathophysiology of the cardiomyopathy. Significant clinical improvement was observed within one day of initiation of dexmedetomidine. These findings are consistent with other reports suggesting that sympathetic dysregulation during alcohol withdrawal produces ideal pathobiology for stress cardiomyopathy and leads to ventricular arrhythmogenicity. Stress cardiomyopathy should be recognized as a complication of alcohol withdrawal that significantly increases cardiac-related mortality. By helping to correct autonomic dysregulation of the withdrawal syndrome, dexmedetomidine may be useful in the treatment of stress-induced cardiomyopathy. PMID:27006838

  3. Isolated and combined effects of electroacupuncture and meditation in reducing experimentally induced ischemic pain: a pilot study.

    PubMed

    Choi, Kyung-Eun; Musial, Frauke; Amthor, Nadine; Rampp, Thomas; Saha, Felix J; Michalsen, Andreas; Dobos, Gustav J

    2011-01-01

    Acupuncture and meditation are promising treatment options for clinical pain. However, studies investigating the effects of these methods on experimental pain conditions are equivocal. Here, the effects of electroacupuncture (EA) and meditation on the submaximum effort tourniquet technique (SETT), a well-established, opiate-sensitive pain paradigm in experimental placebo research were studied. Ten experienced meditators (6 male subjects) and 13 nonmeditators (6 male subjects) were subjected to SETT (250 mmHG) on one baseline (SETT only) and two treatment days (additional EA contralaterally to the SETT, either at the leg on ST36 and LV3 or at the arm on LI4 and LI10 in randomized order). Numeric Rating Scale (NRS) ratings (scale 0-10) were recorded every 3 min. During baseline, meditation induced significantly greater pain tolerance in meditators when compared with the control group. Both the EA conditions significantly increased pain tolerance and reduced pain ratings in controls. Furthermore, EA diminished the group difference in pain sensitivity, indicating that meditators had no additional benefit from acupuncture. The data suggest that EA as a presumable bottom-up process may be as effective as meditation in controlling experimental SETT pain. However, no combined effect of both the techniques could be observed.

  4. The Impact of Remote Ischemic Pre-Conditioning on Contrast-Induced Nephropathy in Patients Undergoing Coronary Angiography and Angioplasty: A Double-Blind Randomized Clinical Trial

    PubMed Central

    Gholoobi, Arash; Sajjadi, Seyyed Masoud; Shabestari, Mahmoud Mohammadzadeh; Eshraghi, Ali; Shamloo, Alireza Sepehri

    2015-01-01

    Background and objective Contrast-induced nephropathy (CIN) is an acute major complication following intravascular administration of iodinated contrast agents; however, the best approach for preventing CIN is not clear. Remote ischemic pre-conditioning (RIPC) is a new, non-pharmacological method that has been considered for the prevention of CIN following coronary angiography. This study assessed the effects of RIPC with four brief episodes of upper limb ischemia and reperfusion in the prevention of contrast-induced nephropathy (CIN) after coronary angiography and/or angioplasty. Methods In this double-blind randomized clinical trial, we enrolled 51 patients with chronic stable angina and non-ST elevation acute coronary syndrome (NSTE.ACS), and they underwent coronary angiography and/or angioplasty. Standard fluid therapy with normal saline was prescribed for all patients before and after the procedure. The patients were divided into two groups, i.e., a study group of patients who had undergone RIPC intervention and a control group of patients who had not undergone RIPC. One hour before the procedure, a sphygmomanometer cuff was placed around one arm and inflated up to 50 mmHg above the systolic pressure for five minutes; then, the cuff was deflated for another five minutes, and this cycle was repeated four times. The patients’ serum creatinine levels were measured at baseline and 48 hours after the procedure, and the incidence of CIN was calculated. Results Twenty-one males and 30 females were studied in two groups, i.e., an RIPC intervention group (n = 25) and a control group (n = 26) that were homogenous considering baseline characteristics. No significant difference was observed in the mean level of serum creatinine between the two groups at a post-intervention time of 48 hours (RICP: 1.74 ± 0.70 mg/dL vs. Control: 1.75 ± 0.87 mg/dL; P = 0.64). However, a lower incidence rate of CIN was observed 48 hours after the administration of the contrast medium in

  5. Trypanosoma cruzi P21: a potential novel target for chagasic cardiomyopathy therapy.

    PubMed

    Teixeira, Thaise Lara; Machado, Fabrício Castro; Alves da Silva, Aline; Teixeira, Samuel Cota; Borges, Bruna Cristina; Dos Santos, Marlus Alves; Martins, Flávia Alves; Brígido, Paula Cristina; Rodrigues, Adele Aud; Notário, Ana Flávia Oliveira; Ferreira, Bruno Antônio; Servato, João Paulo Silva; Deconte, Simone Ramos; Lopes, Daiana Silva; Ávila, Veridiana Melo Rodrigues; Araújo, Fernanda de Assis; Tomiosso, Tatiana Carla; Silva, Marcelo José Barbosa; da Silva, Claudio Vieira

    2015-11-17

    Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of cardiomyopathy in Latin America. It is estimated that 10%-30% of all infected individuals will acquire chronic chagasic cardiomyopathy (CCC). The etiology of CCC is multifactorial and involves parasite genotype, host genetic polymorphisms, immune response, signaling pathways and autoimmune progression. Herein we verified the impact of the recombinant form of P21 (rP21), a secreted T. cruzi protein involved in host cell invasion, on progression of inflammatory process in a polyester sponge-induced inflammation model. Results indicated that rP21 can recruit immune cells induce myeloperoxidase and IL-4 production and decrease blood vessels formation compared to controls in vitro and in vivo. In conclusion, T. cruzi P21 may be a potential target for the development of P21 antagonist compounds to treat chagasic cardiomyopathy.

  6. Trypanosoma cruzi P21: a potential novel target for chagasic cardiomyopathy therapy

    PubMed Central

    Teixeira, Thaise Lara; Machado, Fabrício Castro; Alves da Silva, Aline; Teixeira, Samuel Cota; Borges, Bruna Cristina; dos Santos, Marlus Alves; Martins, Flávia Alves; Brígido, Paula Cristina; Rodrigues, Adele Aud; Notário, Ana Flávia Oliveira; Ferreira, Bruno Antônio; Servato, João Paulo Silva; Deconte, Simone Ramos; Lopes, Daiana Silva; Ávila, Veridiana Melo Rodrigues; Araújo, Fernanda de Assis; Tomiosso, Tatiana Carla; Silva, Marcelo José Barbosa; da Silva, Claudio Vieira

    2015-01-01

    Chagas disease, which is caused by the parasite Trypanosoma cruzi, is an important cause of cardiomyopathy in Latin America. It is estimated that 10%–30% of all infected individuals will acquire chronic chagasic cardiomyopathy (CCC). The etiology of CCC is multifactorial and involves parasite genotype, host genetic polymorphisms, immune response, signaling pathways and autoimmune progression. Herein we verified the impact of the recombinant form of P21 (rP21), a secreted T. cruzi protein involved in host cell invasion, on progression of inflammatory process in a polyester sponge-induced inflammation model. Results indicated that rP21 can recruit immune cells induce myeloperoxidase and IL-4 production and decrease blood vessels formation compared to controls in vitro and in vivo. In conclusion, T. cruzi P21 may be a potential target for the development of P21 antagonist compounds to treat chagasic cardiomyopathy. PMID:26574156

  7. Bone Marrow-Derived Progenitor Cells Are Functionally Impaired in Ischemic Heart Disease.

    PubMed

    Nollet, Evelien; Hoymans, Vicky Y; Rodrigus, Inez R; De Bock, Dina; Dom, Marc; Vanassche, Bruno; Van Hoof, Viviane O M; Cools, Nathalie; Van Ackeren, Katrijn; Wouters, Kristien; Vermeulen, Katrien; Vrints, Christiaan J; Van Craenenbroeck, Emeline M

    2016-08-01

    To determine whether the presence of ischemic heart disease (IHD) per se, or rather the co-presence of heart failure (HF), is the primum movens for less effective stem cell products in autologous stem cell therapy, we assessed numbers and function of bone marrow (BM)-derived progenitor cells in patients with coronary artery disease (n = 17), HF due to ischemic cardiomyopathy (n = 8), non-ischemic HF (n = 7), and control subjects (n = 11). Myeloid and erythroid differentiation capacity of BM-derived mononuclear cells was impaired in patients with underlying IHD but not with non-ischemic HF. Migration capacity decreased with increasing IHD severity. Hence, IHD, with or without associated cardiomyopathy, is an important determinant of progenitor cell function. No depletion of hematopoietic and endothelial progenitor cells (EPC) within the BM was observed, while circulating EPC numbers were increased in the presence of IHD, suggesting active recruitment. The observed myelosuppression was not driven by inflammation and thus other mechanisms are at play. PMID:27456951

  8. Diabetic Cardiomyopathy: Mechanisms and Therapeutic Targets

    PubMed Central

    Battiprolu, Pavan K.; Gillette, Thomas G.; Wang, Zhao V.; Lavandero, Sergio; Hill, Joseph A.

    2010-01-01

    The incidence and prevalence of diabetes mellitus are each increasing rapidly in our society. The majority of patients with diabetes succumb ultimately to heart disease, much of which stems from atherosclerotic disease and hypertension. However, cardiomyopathy can develop independent of elevated blood pressure or coronary artery disease, a process termed diabetic cardiomyopathy. This disorder is a complex diabetes-associated process characterized by significant changes in the physiology, structure, and mechanical function of the heart. Here, we review recently derived insights into mechanisms and molecular events involved in the pathogenesis of diabetic cardiomyopathy. PMID:21274425

  9. [Experimental model of ocular ischemic diseases].

    PubMed

    Kiseleva, T N; Chudin, A V

    2014-01-01

    The review presents the most common methods of modeling of retinal ischemia in vitro (chemical ischemia with iodoacetic acid, incubation of the retinal pigment epithelium cells with oligomycin, deprivation of oxygen and glucose) and in vivo (a model with increased intraocular pressure, cerebral artery occlusion, chronic ligation of the carotid arteries, photocoagulation of the retinal vessels, occlusion of the central retinal artery, endothelin-1 administration). Modeling ischemic injury in rats is the most frequently used method in studies, because the blood supply of their eyes is similar to blood flow in the human eyes. Each method has its own advantages and disadvantages. Application of methods depends on the purpose of the experimental study. Currently model of ocular ischemic disease can be obtained easily by injecting vasoconstrictive drug endothelin-1. It is the most widely used method of high intraocular pressure induced ocular ischemic damage similar to glaucoma, occlusion of central retinal artery or ophthalmic artery in human. The development of experimental models of ocular ischemic diseases and detailed investigation of mechanisms of impairment of microcirculation are useful for improve the efficiency of diagnostic and treatment of ischemic diseases of retina and optic nerve. PMID:25971134

  10. Evolving Approaches to Genetic Evaluation of Specific Cardiomyopathies.

    PubMed

    Teo, Loon Yee Louis; Moran, Rocio T; Tang, W H Wilson

    2015-12-01

    The understanding of the genetic basis of cardiomyopathy has expanded significantly over the past 2 decades. The increasing availability, shortening diagnostic time, and lowering costs of genetic testing have provided researchers and physicians with the opportunity to identify the underlying genetic determinants for thousands of genetic disorders, including inherited cardiomyopathies, in effort to improve patient morbidities and mortality. As such, genetic testing has advanced from basic scientific research to clinical application and has been incorporated as part of patient evaluations for suspected inherited cardiomyopathies. Genetic evaluation framework of inherited cardiomyopathies typically encompasses careful evaluation of family history, genetic counseling, clinical screening of family members, and if appropriate, molecular genetic testing. This review summarizes the genetics, current guideline recommendations, and evidence supporting the genetic evaluation framework of five hereditary forms of cardiomyopathy: dilated cardiomyopathy (DCM), hypertrophic cardiomyopathy (HCM), arrhythmogenic right ventricular cardiomyopathy (ARVC), restrictive cardiomyopathy (RCM), and left ventricular noncompaction (LVNC). PMID:26472190

  11. Genetics Home Reference: familial hypertrophic cardiomyopathy

    MedlinePlus

    ... cardiomyopathy is a heart condition characterized by thickening (hypertrophy) of the heart (cardiac) muscle . Thickening usually occurs ... also lead to symptoms of the condition. Cardiac hypertrophy often begins in adolescence or young adulthood, although ...

  12. Left Ventricular Noncompaction: A Distinct Genetic Cardiomyopathy?

    PubMed

    Arbustini, Eloisa; Favalli, Valentina; Narula, Nupoor; Serio, Alessandra; Grasso, Maurizia

    2016-08-30

    Left ventricular noncompaction (LVNC) describes a ventricular wall anatomy characterized by prominent left ventricular (LV) trabeculae, a thin compacted layer, and deep intertrabecular recesses. Individual variability is extreme, and trabeculae represent a sort of individual "cardioprinting." By itself, the diagnosis of LVNC does not coincide with that of a "cardiomyopathy" because it can be observed in healthy subjects with normal LV size and function, and it can be acquired and is reversible. Rarely, LVNC is intrinsically part of a cardiomyopathy; the paradigmatic examples are infantile tafazzinopathies. When associated with LV dilation and dysfunction, hypertrophy, or congenital heart disease, the genetic cause may overlap. The prevalence of LVNC in healthy athletes, its possible reversibility, and increasing diagnosis in healthy subjects suggests cautious use of the term LVNC cardiomyopathy, which describes the morphology but not the functional profile of the cardiomyopathy. PMID:27561770

  13. Recurrent Takotsubo Cardiomyopathy Related to Recurrent Thyrotoxicosis

    PubMed Central

    Patel, Keval; Griffing, George T.; Hauptman, Paul J.

    2016-01-01

    Takotsubo cardiomyopathy, or transient left ventricular apical ballooning syndrome, is characterized by acute left ventricular dysfunction caused by transient wall-motion abnormalities of the left ventricular apex and mid ventricle in the absence of obstructive coronary artery disease. Recurrent episodes are rare but have been reported, and several cases of takotsubo cardiomyopathy have been described in the presence of hyperthyroidism. We report the case of a 55-year-old woman who had recurrent takotsubo cardiomyopathy, documented by repeat coronary angiography and evaluations of left ventricular function, in the presence of recurrent hyperthyroidism related to Graves disease. After both episodes, the patient's left ventricular function returned to normal when her thyroid function normalized. These findings suggest a possible role of thyroid-hormone excess in the pathophysiology of some patients who have takotsubo cardiomyopathy. PMID:27127432

  14. Recurrent Takotsubo Cardiomyopathy Related to Recurrent Thyrotoxicosis.

    PubMed

    Patel, Keval; Griffing, George T; Hauptman, Paul J; Stolker, Joshua M

    2016-04-01

    Takotsubo cardiomyopathy, or transient left ventricular apical ballooning syndrome, is characterized by acute left ventricular dysfunction caused by transient wall-motion abnormalities of the left ventricular apex and mid ventricle in the absence of obstructive coronary artery disease. Recurrent episodes are rare but have been reported, and several cases of takotsubo cardiomyopathy have been described in the presence of hyperthyroidism. We report the case of a 55-year-old woman who had recurrent takotsubo cardiomyopathy, documented by repeat coronary angiography and evaluations of left ventricular function, in the presence of recurrent hyperthyroidism related to Graves disease. After both episodes, the patient's left ventricular function returned to normal when her thyroid function normalized. These findings suggest a possible role of thyroid-hormone excess in the pathophysiology of some patients who have takotsubo cardiomyopathy. PMID:27127432

  15. Peripartum Cardiomyopathy Treatment with Dopamine Agonist and Subsequent Pregnancy with a Satisfactory Outcome.

    PubMed

    Melo, Maria Adélia Medeiros E; Carvalho, Jordão Sousa; Feitosa, Francisco Edson de Lucena; Araujo Júnior, Edward; Peixoto, Alberto Borges; Costa Carvalho, Francisco Herlânio; Carvalho, Regina Coeli Marques

    2016-06-01

    Pathophysiological mechanisms of peripartum cardiomyopathy are not yet completely defined, although there is a strong association with various factors that are already known, including pre-eclampsia. Peripartum cardiomyopathy treatment follows the same recommendations as heart failure with systolic dysfunction. Clinical and experimental studies suggest that products of prolactin degradation can induce this cardiomyopathy. The pharmacological suppression of prolactin production by D2 dopamine receptor agonists bromocriptine and cabergoline has demonstrated satisfactory results in the therapeutic response to the treatment. Here we present a case of an adolescent patient in her first gestation with peripartum cardiomyopathy that evolved to the normalized left ventricular function after cabergoline administration, which was used as an adjuvant in cardiac dysfunction treatment. Subsequently, despite a short interval between pregnancies, the patient exhibited satisfactory progress throughout the entire gestation or puerperium in a new pregnancy without any cardiac alterations. Dopamine agonists that are orally used and are affordable in most tertiary centers, particularly in developing countries, should be considered when treating peripartum cardiomyopathy cases. PMID:27399926

  16. Modelling sarcomeric cardiomyopathies in the dish: from human heart samples to iPSC cardiomyocytes

    PubMed Central

    Eschenhagen, Thomas; Mummery, Christine; Knollmann, Bjorn C.

    2015-01-01

    One of the obstacles to a better understanding of the pathogenesis of human cardiomyopathies has been poor availability of heart-tissue samples at early stages of disease development. This has possibly changed by the advent of patient-derived induced pluripotent stem cell (hiPSC) from which cardiomyocytes can be derived in vitro. The main promise of hiPSC technology is that by capturing the effects of thousands of individual gene variants, the phenotype of differentiated derivatives of these cells will provide more information on a particular disease than simple genotyping. This article summarizes what is known about the ‘human cardiomyopathy or heart failure phenotype in vitro’, which constitutes the reference for modelling sarcomeric cardiomyopathies in hiPSC-derived cardiomyocytes. The current techniques for hiPSC generation and cardiac myocyte differentiation are briefly reviewed and the few published reports of hiPSC models of sarcomeric cardiomyopathies described. A discussion of promises and challenges of hiPSC-modelling of sarcomeric cardiomyopathies and individualized approaches is followed by a number of questions that, in the view of the authors, need to be answered before the true potential of this technology can be evaluated. PMID:25618410

  17. Mechanical aberrations in hypetrophic cardiomyopathy: emerging concepts

    PubMed Central

    Ntelios, Dimitrios; Tzimagiorgis, Georgios; Efthimiadis, Georgios K.; Karvounis, Haralambos

    2015-01-01

    Hypertrophic cardiomyopathy is the most common monogenic disorder in cardiology. Despite important advances in understanding disease pathogenesis, it is not clear how flaws in individual sarcomere components are responsible for the observed phenotype. The aim of this article is to provide a brief interpretative analysis of some currently proposed pathophysiological mechanisms of hypertrophic cardiomyopathy, with a special emphasis on alterations in the cardiac mechanical properties. PMID:26347658

  18. Dilated cardiomyopathy due to a phospholamban duplication.

    PubMed

    Lee, Teresa M; Addonizio, Linda J; Chung, Wendy K

    2014-10-01

    Dilated cardiomyopathy is characterised by dilation and impaired systolic function. We present the case of a child with dilated cardiomyopathy caused by a 624 kb duplication of 6q22.31, which includes the phospholamban gene. The patient also has failure to thrive and developmental delay due to complex cytogenetic abnormalities including a 5p15 deletion associated with Cri du Chat and an 11p15 duplication associated with Russell-Silver syndrome. PMID:24451198

  19. Stimulant-related Takotsubo cardiomyopathy.

    PubMed

    Butterfield, Mike; Riguzzi, Christine; Frenkel, Oron; Nagdev, Arun

    2015-03-01

    Takotsubo cardiomyopathy (TC) is a rare but increasingly recognized mimic of acute coronary syndrome. Patients present with angina,ST-segment changes on electrocardiogram (both elevations and depressions),and rapid rises in cardiac biomarkers. Many kinds of stressful events have been associated with TC, but only a handful of drug-related cases have previously been reported. We describe the case of a 58-year-old woman who developed TC 2 days after crack cocaine use, a diagnosis first suggested as bedside echocardiography in the emergency department.Recognition of the classic echocardiographic appearance of TC—apical hypokinesis causing “ballooning” of the left ventricle during systole—may greatly assist providers in the early identification of this condition.

  20. Molecular Pathology of Dilated Cardiomyopathies.

    PubMed

    Pathak, S K; Kukreja, R C; Hess, M

    1996-02-01

    The term idiopathic, defined as being of unknown etiology or mechanism, is no longer applicable to the dilated cardiomyopathies. The tools of molecular biology and clinical investigation have made significant progress, and it is now to the rare and exceptional case that one is forced to apply the term idiopathic. Further, having arrived at more precise cause, direct therapeutic intervention will become possible. The concept of gene insertion and "genetic therapy" is under active investigation. Unfortunately, the significant advances in the cause and disease mechanisms of DCM have not been matched in therapeutics. With few exceptions, we indirectly treat the DCMs by managing the CHF syndrome. However, several important points have emerged. The concept of LV afterload reduction is valid and efficacious. The use of vasodilator therapy has significantly reduced both mortality and morbidity and, in certain forms of cardiomyopathy (e.g., hypertensive, alcoholic, and doxorubicin-related), have significantly altered hemodynamics and permitted the injured heart to heal and return to a near normal functional state. However, as much as we want to congratulate ourselves on the progress bought with the use of vasodilators and ACE inhibitors, one must keep in mind that under the best of circumstances, the DCMs still carry an unacceptably high morbidity and mortality. A 40% to 50% 4- to 5-year mortality rate is depressing. Herein lies the challenge. With the significant progress in pathogenesis and etiology, we now stand at the threshold of new, innovative advances in therapeutics. These new concepts in both therapeutics and prevention will require courage, dedication, and hard work. But bit by bit, these seemingly insolvable problems will yield to the discipline and imagination of the investigator. The DCMs will continue to be a challenging problem for future investigators. Progress has been dramatic, and it should continue even at an accelerated pace as we approach the twenty

  1. A Case of Takotsubo Cardiomyopathy Precipitated by Thyroid Storm and Diabetic Ketoacidosis with Poor Prognosis

    PubMed Central

    Wu, Wei-Tsung; Hsu, Po-Chao; Huang, Hung-Ling; Chen, Ying-Chih; Chien, Shun-Ching

    2014-01-01

    Takotsubo cardiomyopathy (TCMP) is known as stress cardiomyopathy, and long-term prognosis is generally excellent if recovering from an acute stage. Both thyroid storm and diabetic ketoacidosis (DKA) are reported to be rare causes of TCMP. However, there are no studies discussing TCMP as induced by a combination of thyroid storm and DKA, and the prognosis is unknown. Herein we report an 81-year-old female with type-2 diabetes mellitus initially presenting with palpitation, chest tightness, and gastrointestinal symptoms. She was further diagnosed as TCMP after echocardiogram and coronary angiography, and DKA was confirmed later. However, the patient’s general condition didn’t improve under proper treatment. Thereafter, thyroid storm was discovered fortuitously. Despite appropriate treatment, the patient finally expired due to acute respiratory distress syndrome progression. This rare case reminds us that despite TCMP being a transient cardiomyopathy with good prognosis, physicians should survey the possible underlying disease cautiously to avoid catastrophic clinical outcome. PMID:27122837

  2. Tachycardiomyopathy with familial predisposition masquerading as peripartum cardiomyopathy

    PubMed Central

    Alings, M.; Thornton, A.; Scholten, M.; Jordaens, L.

    2006-01-01

    A 28-year-old pregnant lady presented with cardiomyopathy and atrial tachycardia. The patient had severe heart failure and syncope. Her past medical history was uneventful. Her mother, however, had received an implantable cardioverter defibrillator (ICD) after an out-of-hospital cardiac arrest due to idiopathic ventricular fibrillation. The patient was scheduled for programmed stimulation, during which a monomorphic ventricular tachycardia was induced. An ICD was then implanted. Following radiofrequency ablation of the atrial tachycardia, left ventricular function recovered completely. Given the family history, a genetic predisposition to both arrhythmias and tachycardiomyopathy needs to be considered. ImagesFigure 2 PMID:25696647

  3. Sorbitol accumulation in heart: Implication for diabetic cardiomyopathy

    SciTech Connect

    Nakada, Tustomu; Kwee, I.L. )

    1989-01-01

    Sorbitol levels in heart were determined in streptozotocin-induced diabetic rats. Significantly higher levels were found in hearts of diabetic rats compared to normal rats. The findings are compatible with either significantly higher de novo synthesis of sorbitol in heart than is generally believed or uptake of circulating sorbitol by heart as previously indicated by nuclear magnetic resonance (NMR) in vivo metabolic imaging. Sorbitol accumulation in heart tissue may play a role in the pathogenesis of diabetic cardiomyopathy as has been implicated in cataract formation.

  4. Torn apart: membrane rupture in muscular dystrophies and associated cardiomyopathies

    PubMed Central

    Lammerding, Jan; Lee, Richard T.

    2007-01-01

    Muscular dystrophies are often caused by mutations in cytoskeletal proteins that render cells more susceptible to strain-induced injury in mechanically active tissues such as skeletal or cardiac muscle. In this issue of the JCI, Han et al. report that dysferlin participates in membrane resealing in cardiomyocytes and that exercise results in increased membrane damage and disturbed cardiac function in dysferlin-deficient mice (see the related article beginning on page 1805). Thus, in addition to repetitive membrane damage, inadequate membrane repair may participate in the pathogenesis of muscular dystrophies and cardiomyopathies. PMID:17607350

  5. Cardiomyopathy

    MedlinePlus

    ... Textbook of Cardiovascular Medicine . 10th ed. Philadelphia, PA: Elsevier Saunders; 2015:chap 65. McKenna WJ, Elliott P. ... eds. Goldman's Cecil Medicine . 25th ed. Philadelphia, PA: Elsevier Saunders; 2016:chap 60. McMurray JJV, Pfeffer MA. ...

  6. Endonuclease VIII-like 1 (NEIL1) promotes short-term spatial memory retention and protects from ischemic stroke-induced brain dysfunction and death in mice.

    PubMed

    Canugovi, Chandrika; Yoon, Jeong Seon; Feldman, Neil H; Croteau, Deborah L; Mattson, Mark P; Bohr, Vilhelm A

    2012-09-11

    Recent findings suggest that neurons can efficiently repair oxidatively damaged DNA, and that both DNA damage and repair are enhanced by activation of excitatory glutamate receptors. However, in pathological conditions such as ischemic stroke, excessive DNA damage can trigger the death of neurons. Oxidative DNA damage is mainly repaired by base excision repair (BER), a process initiated by DNA glycosylases that recognize and remove damaged DNA bases. Endonuclease VIII-like 1 (NEIL1) is a DNA glycosylase that recognizes a broad range of oxidative lesions. Here, we show that mice lacking NEIL1 exhibit impaired memory retention in a water maze test, but no abnormalities in tests of motor performance, anxiety, or fear conditioning. NEIL1 deficiency results in increased brain damage and a defective functional outcome in a focal ischemia/reperfusion model of stroke. The incision capacity on a 5-hydroxyuracil-containing bubble substrate was lower in the ipsilateral side of ischemic brains and in the mitochondrial lysates of unstressed old NEIL1-deficient mice. These results indicate that NEIL1 plays an important role in learning and memory and in protection of neurons against ischemic injury.

  7. Cardiac Magnetic Resonance Imaging in Ischemic Heart Disease

    PubMed Central

    Florian, A.; Jurcut, R.; Ginghina, C.; Bogaert, J.

    2011-01-01

    Cardiac magnetic resonance imaging (MRI) has emerged as a prime player in the clinical and preclinical detection of ischemic heart disease (IHD) as well in the prognosis assessment by offering a comprehensive approach for all spectrums of coronary artery disease (CAD) patients. The aim of this review is to provide the reader a state–of–the art on how the newest cardiac MRI techniques can be used to study IHD patients. In patients with suspected/stable CAD, functional and perfusion imaging both at rest and during vasodilatatory stress (adenosine, dypiridamole)/dobutamine stress can accurately depict ischemic myocardium secondary to significant coronary artery stenosis. In patients with acute MI, MRI is a robust tool for differentiating and sizing the jeopardized and the infarcted myocardium by using a combination of functional, edema, perfusion and Gd contrast imaging. Moreover, important prognostic factors like myocardial salvage, the presence of microvascular obstruction (MVO), post reperfusion myocardial hemorrhage, RV involvement and infarct related complications can be assessed in the same examination. In patients with chronic ischemic cardiomyopathy, the role of the MRI extends from diagnosis by means of Gadolinium contrast scar imaging to therapy and prognosis by functional assessment and viability testing with rest and dobutamine stress imaging. In all the circumstances mentioned, MRI derived information has been proven valuable in every day clinical decision making and prognosis assessment. Thus, MRI is becoming more and more an accepted alternative to other imaging modalities both in the acute and chronic setting. PMID:22514564

  8. [Alcohol consumption in women and the elderly : When does it induce heart failure?].

    PubMed

    Pankuweit, S

    2016-09-01

    The association between alcohol consumption and the etiology and prognosis of cardiovascular diseases has been the focus of attention and also the subject of controversial discussions for many years. This is particularly true for heart failure, which can be induced by coronary artery disease (CAD), arterial hypertension, atrial and ventricular arrhythmias and cardiomyopathies. Acute effects of high doses of alcohol can lead to impairment of the cardiac contraction strength with rhythm disturbances (holiday heart syndrome), transient ischemic attacks and in rare cases to sudden cardiac death. The chronic effects of high alcohol consumption include in particular, ventricular dysfunction, chronic rhythm disturbances, alcoholic cardiomyopathy and CAD. In contrast, light to moderate consumption of alcohol is associated with a reduced risk of CAD and ischemic stroke; however, even moderate alcohol drinking is associated with a greater risk for atrial fibrillation. The unfavorable effects of alcohol occur at much lower levels of acute or chronic consumption in women than in men. In the elderly just as in young people, a moderate alcohol consumption is associated with a lower risk of heart failure. PMID:27491766

  9. Ischemic preconditioning and clinical scenarios

    PubMed Central

    Narayanan, Srinivasan V.; Dave, Kunjan R.; Perez-Pinzon, Miguel A.

    2013-01-01

    Purpose of review Ischemic preconditioning (IPC) is gaining attention as a novel neuroprotective therapy and could provide an improved mechanistic understanding of tolerance to cerebral ischemia. The purpose of this article is to review the recent work in the field of IPC and its applications to clinical scenarios. Recent findings The cellular signaling pathways that are activated following IPC are now better understood and have enabled investigators to identify several IPC mimetics. Most of these studies were performed in rodents, and efficacy of these mimetics remains to be evaluated in human patients. Additionally, remote ischemic preconditioning (RIPC) may have higher translational value than IPC. Repeated cycles of temporary ischemia in a remote organ can activate protective pathways in the target organ, including the heart and brain. Clinical trials are underway to test the efficacy of RIPC in protecting brain against subarachnoid hemorrhage. Summary IPC, RIPC, and IPC mimetics have the potential to be therapeutic in various clinical scenarios. Further understanding of IPC-induced neuroprotection pathways and utilization of clinically relevant animal models are necessary to increase the translational potential of IPC in the near future. PMID:23197083

  10. The use of radiofrequency catheter ablation to cure dilated cardiomyopathy.

    PubMed

    Schmidt, S B; Lobban, J H; Reddy, S; Hoelper, M; Palmer, D L

    1997-01-01

    Incessant supraventricular tachycardia can cause a dilated cardiomyopathy. This article discusses the case of a 55-year-old woman whose cardiomyopathy was reversed when she underwent successful radiofrequency catheter ablation of a unifocal atrial tachycardia. PMID:9197188

  11. Contemporary Outcome in Patients With Idiopathic Dilated Cardiomyopathy.

    PubMed

    Broch, Kaspar; Murbræch, Klaus; Andreassen, Arne Kristian; Hopp, Einar; Aakhus, Svend; Gullestad, Lars

    2015-09-15

    Outcome is better in patients with idiopathic dilated cardiomyopathy (IDC) than in ischemic heart failure (HF), but morbidity and mortality are nevertheless presumed to be substantial. Most data on the prognosis in IDC stem from research performed before the widespread use of current evidence-based treatment, including implantable devices. We report outcome data from a cohort of patients with IDC treated according to current HF guidelines and compare our results with previous figures: 102 consecutive patients referred to our tertiary care hospital with idiopathic IDC and a left ventricular ejection fraction <40% were included in a prospective cohort study. After extensive baseline work-up, follow-up was performed after 6 and 13 months. Vital status and heart transplantation were recorded. Over the first year of follow-up, the patients were on optimal pharmacological treatment, and 24 patients received implantable devices. Left ventricular ejection fraction increased from 26 ± 10% to 41 ± 11%, peak oxygen consumption increased from 19.5 ± 7.1 to 23.4 ± 7.8 ml/kg/min, and functional class improved substantially (all p values <0.001). After a median follow-up of 3.6 years, 4 patients were dead, and heart transplantation had been performed in 9 patients. According to our literature search, survival in patients with IDC has improved substantially over the last decades. In conclusion, patients with IDC have a better outcome than previously reported when treated according to current guidelines.

  12. Ischemic Nerve Block.

    ERIC Educational Resources Information Center

    Williams, Ian D.

    This experiment investigated the capability for movement and muscle spindle function at successive stages during the development of ischemic nerve block (INB) by pressure cuff. Two male subjects were observed under six randomly ordered conditions. The duration of index finger oscillation to exhaustion, paced at 1.2Hz., was observed on separate…

  13. Remote ischemic preconditioning improves post resuscitation cerebral function via overexpressing neuroglobin after cardiac arrest in rats.

    PubMed

    Fan, Ran; Yu, Tao; Lin, Jia-Li; Ren, Guang-Dong; Li, Yi; Liao, Xiao-Xing; Huang, Zi-Tong; Jiang, Chong-Hui

    2016-10-01

    In this study, we investigated the effects of remote ischemic preconditioning on post resuscitation cerebral function in a rat model of cardiac arrest and resuscitation. The animals were randomized into six groups: 1) sham operation, 2) lateral ventricle injection and sham operation, 3) cardiac arrest induced by ventricular fibrillation, 4) lateral ventricle injection and cardiac arrest, 5) remote ischemic preconditioning initiated 90min before induction of ventricular fibrillation, and 6) lateral ventricle injection and remote ischemic preconditioning before cardiac arrest. Reagent of Lateral ventricle injection is neuroglobin antisense oligodeoxynucleotides which initiated 24h before sham operation, cardiac arrest or remote ischemic preconditioning. Remote ischemic preconditioning was induced by four cycles of 5min of limb ischemia, followed by 5min of reperfusion. Ventricular fibrillation was induced by current and lasted for 6min. Defibrillation was attempted after 6min of cardiopulmonary resuscitation. The animals were then monitored for 2h and observed for an additionally maximum 70h. Post resuscitation cerebral function was evaluated by neurologic deficit score at 72h after return of spontaneous circulation. Results showed that remote ischemic preconditioning increased neurologic deficit scores. To investigate the neuroprotective effects of remote ischemic preconditioning, we observed neuronal injury at 48 and 72h after return of spontaneous circulation and found that remote ischemic preconditioning significantly decreased the occurrence of neuronal apoptosis and necrosis. To further comprehend mechanism of neuroprotection induced by remote ischemic preconditioning, we found expression of neuroglobin at 24h after return of spontaneous circulation was enhanced. Furthermore, administration of neuroglobin antisense oligodeoxynucleotides before induction of remote ischemic preconditioning showed that the level of neuroglobin was decreased then partly abrogated

  14. High Frequency QRS ECG Accurately Detects Cardiomyopathy

    NASA Technical Reports Server (NTRS)

    Schlegel, Todd T.; Arenare, Brian; Poulin, Gregory; Moser, Daniel R.; Delgado, Reynolds

    2005-01-01

    High frequency (HF, 150-250 Hz) analysis over the entire QRS interval of the ECG is more sensitive than conventional ECG for detecting myocardial ischemia. However, the accuracy of HF QRS ECG for detecting cardiomyopathy is unknown. We obtained simultaneous resting conventional and HF QRS 12-lead ECGs in 66 patients with cardiomyopathy (EF = 23.2 plus or minus 6.l%, mean plus or minus SD) and in 66 age- and gender-matched healthy controls using PC-based ECG software recently developed at NASA. The single most accurate ECG parameter for detecting cardiomyopathy was an HF QRS morphological score that takes into consideration the total number and severity of reduced amplitude zones (RAZs) present plus the clustering of RAZs together in contiguous leads. This RAZ score had an area under the receiver operator curve (ROC) of 0.91, and was 88% sensitive, 82% specific and 85% accurate for identifying cardiomyopathy at optimum score cut-off of 140 points. Although conventional ECG parameters such as the QRS and QTc intervals were also significantly longer in patients than controls (P less than 0.001, BBBs excluded), these conventional parameters were less accurate (area under the ROC = 0.77 and 0.77, respectively) than HF QRS morphological parameters for identifying underlying cardiomyopathy. The total amplitude of the HF QRS complexes, as measured by summed root mean square voltages (RMSVs), also differed between patients and controls (33.8 plus or minus 11.5 vs. 41.5 plus or minus 13.6 mV, respectively, P less than 0.003), but this parameter was even less accurate in distinguishing the two groups (area under ROC = 0.67) than the HF QRS morphologic and conventional ECG parameters. Diagnostic accuracy was optimal (86%) when the RAZ score from the HF QRS ECG and the QTc interval from the conventional ECG were used simultaneously with cut-offs of greater than or equal to 40 points and greater than or equal to 445 ms, respectively. In conclusion 12-lead HF QRS ECG employing

  15. Stress cardiomyopathy: Is it limited to Takotsubo syndrome? Problems of definition.

    PubMed

    Sarapultsev, Petr A; Sarapultsev, Alexey P

    2016-10-15

    In 2006, Takotsubo syndrome (TTC) was described as a distinct type of stress-induced cardiomyopathy (stress cardiomyopathy). However, when thinking about Takotsubo cardiomyopathy from the viewpoints of the AHA and ESC classifications, 2 possible problems may arise. The first potential problem is that a forecast of disease outcome is lacking in the ESC classification, whereas the AHA only states that 'outcome is favorable with appropriate medical therapy'. However, based on the literature data, one can make a general conclusion that occurrence of myocardial lesions in TTC (i.e., myocardial fibrosis and contraction-band necrosis) causes the same effects as in other diseases with similar levels of myocardial damage and should not be considered to have a lesser impact on mortality. To summarise, TTC can cause not only severe complications such as pulmonary oedema, cardiogenic shock, and dangerous ventricular arrhythmias, but also damage to the myocardium, which can result in the development of potentially fatal conditions even after the disappearance of LV apical ballooning. The second potential problem arises from the definition of TTC as a stress cardiomyopathy in the AHA classification. In fact, the main factors leading to TTC are stress and microvascular anginas, since, as has been already discussed, coronary spasm can cause myocardium stunning, resulting in persistent apical ballooning. Thus, based on this review, 3 distinct types of stress cardiomyopathies exist (variant angina, microvascular angina, and TTC), with poor prognosis. Adding these diseases to the classification of cardiomyopathies will facilitate diagnosis and preventive prolonged treatment, which should include intensive anti-stress therapy.

  16. Stress cardiomyopathy: Is it limited to Takotsubo syndrome? Problems of definition.

    PubMed

    Sarapultsev, Petr A; Sarapultsev, Alexey P

    2016-10-15

    In 2006, Takotsubo syndrome (TTC) was described as a distinct type of stress-induced cardiomyopathy (stress cardiomyopathy). However, when thinking about Takotsubo cardiomyopathy from the viewpoints of the AHA and ESC classifications, 2 possible problems may arise. The first potential problem is that a forecast of disease outcome is lacking in the ESC classification, whereas the AHA only states that 'outcome is favorable with appropriate medical therapy'. However, based on the literature data, one can make a general conclusion that occurrence of myocardial lesions in TTC (i.e., myocardial fibrosis and contraction-band necrosis) causes the same effects as in other diseases with similar levels of myocardial damage and should not be considered to have a lesser impact on mortality. To summarise, TTC can cause not only severe complications such as pulmonary oedema, cardiogenic shock, and dangerous ventricular arrhythmias, but also damage to the myocardium, which can result in the development of potentially fatal conditions even after the disappearance of LV apical ballooning. The second potential problem arises from the definition of TTC as a stress cardiomyopathy in the AHA classification. In fact, the main factors leading to TTC are stress and microvascular anginas, since, as has been already discussed, coronary spasm can cause myocardium stunning, resulting in persistent apical ballooning. Thus, based on this review, 3 distinct types of stress cardiomyopathies exist (variant angina, microvascular angina, and TTC), with poor prognosis. Adding these diseases to the classification of cardiomyopathies will facilitate diagnosis and preventive prolonged treatment, which should include intensive anti-stress therapy. PMID:27424315

  17. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy

    PubMed Central

    Jia, Guanghong; DeMarco, Vincent G.; Sowers, James R.

    2016-01-01

    Insulin resistance, type 2 diabetes mellitus and associated hyperinsulinaemia can promote the development of a specific form of cardiomyopathy that is independent of coronary artery disease and hypertension. Termed diabetic cardiomyopathy, this form of cardiomyopathy is a major cause of morbidity and mortality in developed nations, and the prevalence of this condition is rising in parallel with increases in the incidence of obesity and type 2 diabetes mellitus. Of note, female patients seem to be particularly susceptible to the development of this complication of metabolic disease. The diabetic cardiomyopathy observed in insulin-resistant or hyperinsulinaemic states is characterized by impaired myocardial insulin signalling, mitochondrial dysfunction, endoplasmic reticulum stress, impaired calcium homeostasis, abnormal coronary microcirculation, activation of the sympathetic nervous system, activation of the renin–angiotensin–aldosterone system and maladaptive immune responses. These pathophysiological changes result in oxidative stress, fibrosis, hypertrophy, cardiac diastolic dysfunction and eventually systolic heart failure. This Review highlights a surge in diabetic cardiomyopathy research, summarizes current understanding of the molecular mechanisms underpinning this condition and explores potential preventive and therapeutic strategies. PMID:26678809

  18. Diabetic Cardiomyopathy; Summary of 41 Years

    PubMed Central

    Canpolat, Ugur; Aydogdu, Sinan; Abboud, Hanna Emily

    2015-01-01

    Patients with diabetes have an increased risk for development of cardiomyopathy, even in the absence of well known risk factors like coronary artery disease and hypertension. Diabetic cardiomyopathy was first recognized approximately four decades ago. To date, several pathophysiological mechanisms thought to be responsible for this new entity have also been recognized. In the presence of hyperglycemia, non-enzymatic glycosylation of several proteins, reactive oxygen species formation, and fibrosis lead to impairment of cardiac contractile functions. Impaired calcium handling, increased fatty acid oxidation, and increased neurohormonal activation also contribute to this process. Demonstration of left ventricular hypertrophy, early diastolic and late systolic dysfunction by sensitive techniques, help us to diagnose diabetic cardiomyopathy. Traditional treatment of heart failure is beneficial in diabetic cardiomyopathy, but specific strategies for prevention or treatment of cardiac dysfunction in diabetic patients has not been clarified yet. In this review we will discuss clinical and experimental studies focused on pathophysiology of diabetic cardiomyopathy, and summarize diagnostic and therapeutic approaches developed towards this entity. PMID:26240579

  19. Histochemical and enzymehistochemical alterations during experimental cardiomyopathy.

    PubMed

    Kirvalidze, I; Khetsuriani, R; Jorbenadze, T; Shukakidze, A; Kipiani, T

    2006-05-01

    Investigation of ethiology, pathogenesis, morphogenesis, pathokinesis, treatment and prevention of cardiomyopathy is one of the most important problems of cardiology. Last years many scientific forums have been devoted to cardiomyopathy problems and still many issues remain disputable and needs further investigation and definition. In particular, investigation of metabolic processes in cardiac muscle seems of great importance. Obtained data will promote elaboration of adequate means toward the correction of cardiac decompensation during cardiomyopathy. The main goal of present study was the investigation of oxidation-reduction and electron transport associated protein activity in myocardium during experimental cardiomyopathy. Experiments were carried out on 30 male rats (180 - 200 g weight). Based on histological, histochemical, enzymehistological investigations conclusion has been made that during experimental autoimmune cardiomyopathy activity of oxidation-reduction and electron transport enzymes is sharply decreased along with the decrease of ascorbic acid and tiny granule glycogen amount (with altered topographic distribution) determining energy deficiency and weakening of cardiac muscle contractile function. It is possible to consider that the present study will open the way for future research and prompt us to select optimal therapeutic agents. PMID:16783088

  20. Functional Contrast-Enhanced CT For Evaluation of Acute Ischemic Stroke Does Not Increase the Risk of Contrast-Induced Nephropathy

    PubMed Central

    Lima, F.O.; Lev, M.H.; Levy, R.A.; Silva, G.S.; Ebril, M.; de Camargo, É.C.; Pomerantz, S.; Singhal, A.B.; Greer, D.M.; Ay, H.; González, R. Gilberto; Koroshetz, W.J.; Smith, W.S.; Furie, K.L.

    2010-01-01

    BACKGROUND AND PURPOSE Concerns have recently grown regarding the safety of iodinated contrast agents used for CTA and CTP imaging. We tested whether the incidence of AN, defined by a ≥25% increase in the post–contrast scan creatinine level, was higher among patients with ischemic stroke who underwent a functional contrast-enhanced CT protocol compared with those who had no iodinated contrast administration. MATERIALS AND METHODS The contrast-exposed group consisted of 575 patients with acute ischemic stroke who underwent CTA (n = 313), CTA/CTP (n = 224), or CTA/CTP followed by conventional angiography (n = 38) within 24 hours of stroke onset and were consecutively enrolled in a prospective cohort study. The nonexposed group consisted of 343 patients with ischemic stroke, consecutively admitted to the same institution, who did not receive iodinated contrast material. Patients were stratified by baseline eGFR. In the primary analysis, the Fisher exact test was used to compare the incidence of AN between the contrast-exposed and the nonexposed patients at 24, 48, and 72 hours and on a cumulative basis. A secondary analysis compared the incidence of AN in patients who underwent conventional angiography following CTA/CTP versus patients who underwent CTA/CTP only. RESULTS The incidence of AN was 5% in the exposed and 10% in the nonexposed group (P = .003). Patients who underwent conventional angiography after contrast CT were at no greater risk of AN than patients who underwent CTA/CTP alone (26 patients, 5%; and 2 patients, 5%, respectively; P = .7). CONCLUSIONS Administration of a contrast-enhanced CT protocol involving CTA/CTP and conventional angiography in selected patients does not appear to increase the incidence of CIN. PMID:20044502

  1. Role of thioredoxin-1 in ischemic preconditioning, postconditioning and aged ischemic hearts.

    PubMed

    D'Annunzio, Veronica; Perez, Virginia; Boveris, Alberto; Gelpi, Ricardo J; Poderoso, Juan J

    2016-07-01

    Thioredoxin is one of the most important cellular antioxidant systems known to date, and is responsible of maintaining the reduced state of the intracellular space. Trx-1 is a small cytosolic protein whose transcription is induced by stress. Therefore it is possible that this antioxidant plays a protective role against the oxidative stress caused by an increase of reactive oxygen species concentration, as occurs during the reperfusion after an ischemic episode. However, in addition to its antioxidant properties, it is able to activate other cytoplasmic and nuclear mediators that confer cardioprotection. It is remarkable that Trx-1 also participates in myocardial protection mechanisms such as ischemic preconditioning and postconditioning, activating proteins related to cellular survival. In this sense, it has been shown that Trx-1 inhibition abolished the preconditioning cardioprotective effect, evidenced through apoptosis and infarct size. Furthermore, ischemic postconditioning preserves Trx-1 content at reperfusion, after ischemia. However, comorbidities such as aging can modify this powerful cellular defense leading to decrease cardioprotection. Even ischemic preconditioning and postconditioning protocols performed in aged animal models failed to decrease infarct size. Therefore, the lack of success of antioxidants therapies to treat ischemic heart disease could be solved, at least in part, avoiding the damage of Trx system. PMID:26987940

  2. Gene Therapy For Ischemic Heart Disease

    PubMed Central

    Lavu, Madhav; Gundewar, Susheel; Lefer, David J.

    2010-01-01

    Current pharmacologic therapy for ischemic heart disease suffers multiple limitations such as compliance issues and side effects of medications. Revascularization procedures often end with need for repeat procedures. Patients remain symptomatic despite maximal medical therapy. Gene therapy offers an attractive alternative to current pharmacologic therapies and may be beneficial in refractory disease. Gene therapy with isoforms of growth factors such as VEGF, FGF and HGF induces angiogenesis, decreases apoptosis and leads to protection in the ischemic heart. Stem cell therapy augmented with gene therapy used for myogenesis has proven to be beneficial in numerous animal models of myocardial ischemia. Gene therapy coding for antioxidants, eNOS, HSP, mitogen-activated protein kinase and numerous other anti apoptotic proteins have demonstrated significant cardioprotection in animal models. Clinical trials have demonstrated safety in humans apart from symptomatic and objective improvements in cardiac function. Current research efforts are aimed at refining various gene transfection techniques and regulation of gene expression in vivo in the heart and circulation to improve clinical outcomes in patients that suffer from ischemic heart disease. In this review article we will attempt to summarize the current state of both preclinical and clinical studies of gene therapy to combat myocardial ischemic disease. PMID:20600100

  3. Peripartum cardiomyopathy – case series

    PubMed Central

    Prasad, Gowri Sayi; Bhupali, Ashok; Prasad, Sayi; Patil, Ajit N.; Deka, Yashodhan

    2014-01-01

    Objectives To study the pattern of presentation, course of disease and outcome of pregnancy in Peripartum Cardiomyopathy. Methods A prospective study of sixteen cases of PPCM was conducted at Apple Saraswati Multispecialty Hospital and Dr. D.Y. Patil Medical College and Hospital, Kolhapur, Maharashtra, India from January 2006 to December 2012. Data included age distribution, parity, gestational age, symptoms and risk factors. Medical management and pregnancy outcome were documented. Serial echocardiography data was compiled for a period of one year. Results In our study 9/16 (56%) were primigravidae, 4/16 (25%) had pre-eclamsia and 6/16 (35%) had co-existing hypertension. The difference in Echocardiography parameters observed between recovered and non-recovered patients was significant: Left Ventricular End diastolic dimension (5.6 cm vs 6.06 cm), Left Ventricular Ejection Fraction (28.7% vs 22.4%) and Left Ventricular fractional shortening (17.5% vs 13.4%). Thirteen out of sixteen patients were followed up for a period of one year out of which 61% (8/13) patients recovered completely. There was one mortality. Conclusion PPCM is a diagnosis of exclusion. Majority were young primigravidae presenting postnatally. Pre-eclampsia and hypertension were risk factors. ECHO parameters were reliable predictors of recovery. Future pregnancies are better avoided. PMID:24814122

  4. Electrocardiographic predictors of peripartum cardiomyopathy

    PubMed Central

    Karaye, Kamilu M; Karaye, Kamilu M; Lindmark, Krister; Henein, Michael Y; Lindmark, Krister; Henein, Michael Y

    2016-01-01

    Summary Objective To identify potential electrocardiographic predictors of peripartum cardiomyopathy (PPCM). Methods: This was a case–control study carried out in three hospitals in Kano, Nigeria. Logistic regression models and a risk score were developed to determine electrocardiographic predictors of PPCM. Results: A total of 54 PPCM and 77 controls were consecutively recruited after satisfying the inclusion criteria. After controlling for confounding variables, a rise in heart rate of one beat/minute increased the risk of PPCM by 6.4% (p = 0.001), while the presence of ST–T-wave changes increased the odds of PPCM 12.06-fold (p < 0.001). In the patients, QRS duration modestly correlated (r = 0.4; p < 0.003) with left ventricular dimensions and end-systolic volume index, and was responsible for 19.9% of the variability of the latter (R2 = 0.199; p = 0.003). A risk score of ≥ 2, developed by scoring 1 for each of the three ECG disturbances (tachycardia, ST–T-wave abnormalities and QRS duration), had a sensitivity of 85.2%, specificity of 64.9%, negative predictive value of 86.2% and area under the curve of 83.8% (p < 0.0001) for potentially predicting PPCM. Conclusion In postpartum women, using the risk score could help to streamline the diagnosis of PPCM with significant accuracy, prior to confirmatory investigations PMID:27213852

  5. Exercise training-induced adaptations in mediators of sustained endothelium-dependent coronary artery relaxation in a porcine model of ischemic heart disease

    PubMed Central

    Heaps, Cristine L.; Robles, Juan Carlos; Sarin, Vandana; Mattox, Mildred L.; Parker, Janet L.

    2014-01-01

    Objective Test the hypothesis that exercise training enhances sustained relaxation to persistent endothelium-dependent vasodilator exposure via increased nitric oxide contribution in small coronary arteries of control and ischemic hearts. Methods Yucatan swine were designated to a control group or a group in which an ameroid constrictor was placed around the proximal LCX. Subsequently, pigs from both groups were assigned to exercise (5 days/week; 16 weeks) or sedentary regimens. Coronary arteries (~100–350 μm) were isolated from control pigs and from both nonoccluded and collateral-dependent regions of chronically-occluded hearts. Results In arteries from control pigs, training significantly enhanced relaxation responses to increasing concentrations of bradykinin (10−10 to 10−7 M) and sustained relaxation to a single bradykinin concentration (30 nM), which were abolished by NOS inhibition. Training also significantly prolonged bradykinin-mediated relaxation in collateral-dependent arteries of occluded pigs, which was associated with more persistent increases in endothelial cellular Ca2+ levels, and reversed with NOS inhibition. Protein levels for eNOS and p-eNOS-(Ser1179), but not caveolin-1, Hsp90, or Akt, were significantly increased with occlusion, independent of training state. Conclusions Exercise training enhances sustained relaxation to endothelium-dependent agonist stimulation in small arteries of control and ischemic hearts by enhanced nitric oxide contribution and endothelial Ca2+ responses. PMID:24447072

  6. X-linked cardiomyopathy is heterogeneous

    SciTech Connect

    Wilson, M.J.; Sillence, D.O.; Mulley, J.C.

    1994-09-01

    Two major loci of X-linked cardiomyopathy have been mapped by linkage analysis. The gene for X-linked dilated cardiomyopathy (XLCM) is mapped to the dystrophin locus at Xp21, while Barth syndrome has been localised to distal Xq28. XLCM usually presents in juvenile males with no skeletal disease but decreased dystrophin in cardiac muscle. Barth syndrome most often presents in infants and is characterized by skeletal myopathy, short stature and neutropenia in association with cardiomyopathy of variable severity. Prior to carrier or prenatal diagnosis in a family, delineation of the cardiomyopathy locus involved is essential. We report the linkage mapping of a large kindred in which several male infants have died with hypertrophic cardiomyopathy. There is a family history of unexplained death of infant males less than 6 months old over 4 generations. Features of Barth syndrome such as short stature, skeletal myopathy and neutropenia have not been observed. Genotyping at 10 marker loci in Xq28 has revealed significant pairwise lod scores with the cardiomyopathy phenotype at DXS52 (Z=2.21 at {theta}=0.0), at markers p26 and p39 near DXS15 (Z=2.30 at {theta}=0.0) and at F8C (Z=2.24 at {theta}=0.0). A recombinant detected with DXS296 defines the proximal limit to the localization. No recombinants were detected at any of the loci distal to DXS296. The most distal marker in Xq28, DXS1108, is within 500 kb of the telomere. As the gene in this family is localized to Xq28, it is possible that this disorder is an allelic variant at the Barth syndrome locus.

  7. Evidence of apoptosis in alcoholic cardiomyopathy.

    PubMed

    Fernández-Solà, Joaquim; Fatjó, Francesc; Sacanella, Emilio; Estruch, Ramón; Bosch, Xavier; Urbano-Márquez, Alvaro; Nicolás, José-María

    2006-08-01

    Apoptosis is a mechanism of cell death implicated in the pathogenesis of alcohol-induced organ damage. Experimental studies have suggested alcohol-mediated apoptosis in the cardiac muscle, and there is evidence of skeletal muscle apoptosis in long-term high-dose alcohol consumers. The relation between skeletal and cardiac muscle damage in alcoholism led us to consider the pathogenic role of apoptosis in alcoholic dilated cardiomyopathy. We evaluated apoptosis in the hearts of individuals with long-term alcoholism (n = 19), of those with long-standing hypertension (n = 20), and of those with no known disease as control subjects (n = 7). Alcohol consumption measurement, heart function evaluation, and myocardial immunohistochemical and morphometric analysis were performed. Apoptosis was evaluated with deoxyribonucleotidyl transferase-mediated dUTP-biotin nick end-labeling assay, and BAX and BCL-2 expressions were used to detect induction of and protection from proapoptotic mechanisms, respectively. Hearts from patients with a history of alcoholism showed apoptotic indexes similar to those of organs from hypertensive donors. Subjects with structural heart damage of alcoholic or hypertensive origin showed higher apoptotic indexes in deoxyribonucleotidyl transferase-mediated dUTP-biotin nick end-labeling, BAX, and BCL-2 assays as compared with control subjects (P < .001 for all). Moreover, New York Heart Association class I alcoholic patients displayed higher BAX and BCL-2 expressions as compared with control subjects. We conclude that apoptosis is present to a similar degree in the heart muscle of high-dose alcohol consumers and long-standing hypertensive subjects and is related to structural damage. Proapoptotic mechanisms are activated in alcoholic patients without heart damage.

  8. Primary cardiac lymphoma mimicking infiltrative cardiomyopathy.

    PubMed

    Lee, Ga Yeon; Kim, Won Seog; Ko, Young-Hyeh; Choi, Jin-Oh; Jeon, Eun-Seok

    2013-05-01

    Primary cardiac lymphoma is a rare malignancy which has been described as thickened myocardium due to the infiltration of atypical lymphocytes and accompanying intracardiac masses. Here, we report a case of a primary cardiac lymphoma without demonstrable intracardiac masses, mimicking infiltrative cardiomyopathy. A 40-year-old male presented with exertional dyspnoea and was diagnosed as having restrictive cardiomyopathy with severely decreased LV systolic function. Endomyocardial biopsy was performed and the diagnosis of primary cardiac lymphoma was confirmed. After appropriate chemotherapy, he recovered his systolic function fully. PMID:23248217

  9. Takotsubo cardiomyopathy: can hearts really break?

    PubMed

    Farris, Cindy; McEnroe-Petitte, Denise; Kanayama, Tiffanie

    2014-01-01

    Takotsubo cardiomyopathy (TCM), or broken-heart syndrome, is a form of cardiomyopathy (CM) that is significantly different from other common types. This form of CM occurs spontaneously and can be easily reversed. TCM is seen primarily in postmenopausal women with a recent stressful event. Patients with TCM often present with symptoms suggestive of a myocardial infarction. Home health-care and hospice clinicians interact frequently with caregivers and other family members who are living under stressful circumstances. It is important that home care clinicians be familiar with TCM and understand the relationship that may exist between stress, stressful events, triggers, and TCM. PMID:24978575

  10. Hypertrophic cardiomyopathy in a college athlete.

    PubMed

    Simons, S M; Moriarity, J

    1992-12-01

    The greatest catastrophy in sports is an athlete's unexpected sudden death. Identifying those athletes at risk remains a great challenge to physicians performing preseason examinations. Hypertrophic cardiomyopathy is the most common cause of nontraumatic sudden death in athletes. Most cases of this diseased heart are diagnosed easily by echocardiography. The case presented exemplifies the attention to detail required to differentiate the borderline diseased heart from the conditioned athletic heart. Once a diagnosis of hypertrophic cardiomyopathy is made, further participation in intense physical exercise is discouraged. This recommendation is necessary despite the unknown relative sudden death risk for the minimal criteria cases.

  11. Cerebrospinal fluid may mediate CNS ischemic injury

    PubMed Central

    Wang, Yanming F; Gwathmey, Judith K; Zhang, Guorong; Soriano, Sulpicio G; He, Shunli; Wang, Yanguang

    2005-01-01

    Background The central nervous system (CNS) is extremely vulnerable to ischemic injury. The details underlying this susceptibility are not completely understood. Since the CNS is surrounded by cerebrospinal fluid (CSF) that contains a low concentration of plasma protein, we examined the effect of changing the CSF in the evolution of CNS injury during ischemic insult. Methods Lumbar spinal cord ischemia was induced in rabbits by cross-clamping the descending abdominal aorta for 1 h, 2 h or 3 h followed by 7 d of reperfusion. Prior to ischemia, rabbits were subjected to the following procedures; 1) CSF depletion, 2) CSF replenishment at 0 mmHg intracranial pressure (ICP), and 3) replacement of CSF with 8% albumin- or 1% gelatin-modified artificial CSF, respectively. Motor function of the hind limbs and histopathological changes of the spinal cord were scored. Post-ischemic microcirculation of the spinal cord was visualized by fluorescein isothiocyanate (FITC) albumin. Results The severity of histopathological damage paralleled the neurological deficit scores. Paraplegia and associated histopathological changes were accompanied by a clear post-ischemic deficit in blood perfusion. Spinal cord ischemia for 1 h resulted in permanent paraplegia in the control group. Depletion of the CSF significantly prevented paraplegia. CSF replenishment with the ICP reduced to 0 mmHg, did not prevent paraplegia. Replacement of CSF with albumin- or gelatin-modified artificial CSF prevented paraplegia in rabbits even when the ICP was maintained at 10–15 mmHg. Conclusion We conclude that the presence of normal CSF may contribute to the vulnerability of the spinal cord to ischemic injury. Depletion of the CSF or replacement of the CSF with an albumin- or gelatin-modified artificial CSF can be neuroprotective. PMID:16174300

  12. The Migraine-Ischemic Stroke Relation in Young Adults

    PubMed Central

    Pezzini, Alessandro; Del Zotto, Elisabetta; Giossi, Alessia; Volonghi, Irene; Costa, Paolo; Dalla Volta, Giorgio; Padovani, Alessandro

    2011-01-01

    In spite of the strong epidemiologic evidence linking migraine and ischemic stroke in young adults, the mechanisms explaining this association remain poorly understood. The observation that stroke occurs more frequently during the interictal phase of migraine prompts to speculation that an indirect relation between the two diseases might exist. In this regard, four major issues might be considered which may be summarized as follows: (1) the migraine-ischemic stroke relation is influenced by specific risk factors such as patent foramen ovale or endothelial dysfunction and more frequent in particular conditions like spontaneous cervical artery dissection; (2) migraine is associated with an increased prevalence of cardiovascular risk factors; (3) the link is caused by migraine-specific drugs; (4) migraine and ischemic vascular events are linked via a genetic component. In the present paper, we will review epidemiological studies, discuss potential mechanisms of migraine-induced stroke and comorbid ischemic stroke, and pose new research questions. PMID:21197470

  13. Percutaneous implantation of a parachute device for treatment of ischemic heart failure.

    PubMed

    Cilingiroglu, Mehmet; Rollefson, William A; Mego, David

    2013-01-01

    Congestive heart failure (CHF) secondary to ischemic cardiomyopathy is associated with significant morbidity and mortality despite currently available medical therapy. The Parachute(TM) device is a novel left ventricular partitioning device that is delivered percutaneously in the left ventricle (LV) in patients with anteroapical regional wall motion abnormalities, dilated LV and systolic dysfunction after anterior myocardial infarction with favorable clinical and LV hemodynamic improvements post-implantation. Here, we do review the current literature and present a case of the Parachute device implantation.

  14. Deficiency of Soluble α-Klotho as an Independent Cause of Uremic Cardiomyopathy.

    PubMed

    Xie, J; Wu, Y-L; Huang, C-L

    2016-01-01

    Cardiovascular disease (CVD) is the major cause of mortality for patients with chronic kidney disease (CKD). Cardiac hypertrophy, occurring in up to 95% patients with CKD (also known as uremic cardiomyopathy), increases their risk for cardiovascular death. Many CKD-specific risk factors of uremic cardiomyopathy have been recognized, such as secondary hyperparathyroidism, indoxyl sulfate (IS)/p-cresyl, and vitamin D deficiency. However, several randomized controlled trials have recently shown that these risk factors have little impact on the mortality of CVD. Klotho is a type 1 membrane protein predominantly produced in the kidney, and CKD is known to be a Klotho-deficient state. Because of its important role in FGF23 and phosphate metabolism, Klotho is believed to affect cardiac growth and function indirectly through FGF23 and phosphate. Recent studies showed that soluble Klotho protects the heart against stress-induced cardiac hypertrophy by inhibiting TRPC6 channel-mediated abnormal Ca(2+) signaling in the heart, and the decreased level of circulating soluble Klotho in CKD is an important cause of uremic cardiomyopathy independent of FGF23 and phosphate. These new evidence suggested that Klotho is an independent contributing factor for uremic cardiomyopathy and a possible new target for treatment of this disease. PMID:27125747

  15. An Emotional Stress as a Trigger for Reverse Takotsubo Cardiomyopathy: A Case Report and Literature Review

    PubMed Central

    Barbaryan, Aram; Bailuc, Stefania L.; Patel, Krishan; Raqeem, Muhammad Wajih; Thakur, Atul; Mirrakhimov, Aibek E.

    2016-01-01

    Patient: Female, 61 Final Diagnosis: Reverse Takotsubo Symptoms: Dyspnea • chest pain Medication: Lisinopril • Metoprolol • Aspirin • Atorvastatin • Ticagrelor Clinical Procedure: Cardiac catheterization Specialty: Cardiology Objective: Rare disease Background: Reverse Takotsubo cardiomyopathy is one of the rarest types of stress-induced cardiomyopathy, which despite sharing similar pathogenic mechanisms with its more common counterpart, has different clinical manifestations, demographics, and laboratory values. Case Report: We present the case of a 61-year-old woman who came to the hospital with a chief complaint of chest pain and dyspnea. She was found to have elevated troponin and severely depressed left ventricular function. Echocardiography showed normal contracting apex, with the rest of the left ventricle being hypokinetic. Cardiac catheterization revealed mild coronary artery disease and confirmed echocardiographic findings showing hyperkinetic apex and dilated base. She was discharged home on ACE inhibitor and B-blocker. A repeat echocardiogram 2 weeks after the initial presentation showed complete resolution of cardiac dysfunction. Conclusions: Reverse Takotsubo cardiomyopathy is a rare disease mimicking acute coronary syndrome. It is essential to rule out organic coronary disease prior to attributing the presentation to Takotsubo cardiomyopathy. With supportive care, the long-term prognosis is good in the vast majority of patients. PMID:26946334

  16. Contractile Dysfunction in Sarcomeric Hypertrophic Cardiomyopathy.

    PubMed

    MacIver, David H; Clark, Andrew L

    2016-09-01

    The pathophysiological mechanisms underlying the clinical phenotype of sarcomeric hypertrophic cardiomyopathy are controversial. The development of cardiac hypertrophy in hypertension and aortic stenosis is usually described as a compensatory mechanism that normalizes wall stress. We suggest that an important abnormality in hypertrophic cardiomyopathy is reduced contractile stress (the force per unit area) generated by myocardial tissue secondary to abnormalities such as cardiomyocyte disarray. In turn, a progressive deterioration in contractile stress provokes worsening hypertrophy and disarray. A maintained or even exaggerated ejection fraction is explained by the increased end-diastolic wall thickness producing augmented thickening. We propose that the nature of the hemodynamic load in an individual with hypertrophic cardiomyopathy could determine its phenotype. Hypertensive patients with hypertrophic cardiomyopathy are more likely to develop exaggerated concentric hypertrophy; athletic individuals an asymmetric pattern; and inactive individuals a more apical hypertrophy. The development of a left ventricular outflow tract gradient and mitral regurgitation may be explained by differential regional strain resulting in mitral annular rotation.

  17. Secondary coronary artery vasospasm promotes cardiomyopathy progression.

    PubMed

    Wheeler, Matthew T; Korcarz, Claudia E; Collins, Keith A; Lapidos, Karen A; Hack, Andrew A; Lyons, Matthew R; Zarnegar, Sara; Earley, Judy U; Lang, Roberto M; McNally, Elizabeth M

    2004-03-01

    Genetic defects in the plasma membrane-associated sarcoglycan complex produce cardiomyopathy characterized by focal degeneration. The infarct-like pattern of cardiac degeneration has led to the hypothesis that coronary artery vasospasm underlies cardiomyopathy in this disorder. We evaluated the coronary vasculature of gamma-sarcoglycan mutant mice and found microvascular filling defects consistent with arterial vasospasm. However, the vascular smooth muscle sarcoglycan complex was intact in the coronary arteries of gamma-sarcoglycan hearts with perturbation of the sarcoglycan complex only within the adjacent myocytes. Thus, in this model, coronary artery vasospasm derives from a vascular smooth muscle-cell extrinsic process. To reduce this secondary vasospasm, we treated gamma-sarcoglycan-deficient mice with the calcium channel antagonist verapamil. Verapamil treatment eliminated evidence of vasospasm and ameliorated histological and functional evidence of cardiomyopathic progression. Echocardiography of verapamil-treated, gamma-sarcoglycan-null mice showed an improvement in left ventricular fractional shortening (44.3 +/- 13.3% treated versus 37.4 +/- 15.3% untreated), maximal velocity at the aortic outflow tract (114.9 +/- 27.9 cm/second versus 92.8 +/- 22.7 cm/second), and cardiac index (1.06 +/- 0.30 ml/minute/g versus 0.67 +/- 0.16 ml/minute/g, P < 0.05). These data indicate that secondary vasospasm contributes to the development of cardiomyopathy and is an important therapeutic target to limit cardiomyopathy progression.

  18. Biventricular Takotsubo Cardiomyopathy Associated with Epilepsy

    PubMed Central

    Koo, Namho; Yoon, Byung Woo; Song, Yonggeon; Lee, Chang Kyun; Lee, Tae Yeon

    2015-01-01

    We describe a case of Takotsubo cardiomyopathy in an elderly woman after status epilepticus. In an emergency echocardiography, not only left ventricular apical ballooning but also right ventricular apical hypokinesia was observed. After a medical management, the patient's condition was improved and a follow-up echocardiography showed substantial recovery of left and right ventricular apical ballooning. PMID:26755936

  19. Hypertrophic Cardiomyopathy in Athletes: Catching a Killer.

    ERIC Educational Resources Information Center

    Maron, Barry J.

    1993-01-01

    A leading cause of sudden death among young athletes, hypertrophic cardiomyopathy (HCM) does not always present cardiac signs and symptoms. Echocardiography offers the most effective means for diagnosis. Some patients require pharmaceutical or surgical intervention. Patients with HCM should not engage in organized competitive sports or…

  20. Infective endocarditis in hypertrophic cardiomyopathy

    PubMed Central

    Dominguez, Fernando; Ramos, Antonio; Bouza, Emilio; Muñoz, Patricia; Valerio, Maricela C.; Fariñas, M. Carmen; de Berrazueta, José Ramón; Zarauza, Jesús; Pericás Pulido, Juan Manuel; Paré, Juan Carlos; de Alarcón, Arístides; Sousa, Dolores; Rodriguez Bailón, Isabel; Montejo-Baranda, Miguel; Noureddine, Mariam; García Vázquez, Elisa; Garcia-Pavia, Pablo

    2016-01-01

    Abstract Infective endocarditis (IE) complicating hypertrophic cardiomyopathy (HCM) is a poorly known entity. Although current guidelines do not recommend IE antibiotic prophylaxis (IEAP) in HCM, controversy remains. This study sought to describe the clinical course of a large series of IE HCM and to compare IE in HCM patients with IE patients with and without an indication for IEAP. Data from the GAMES IE registry involving 27 Spanish hospitals were analyzed. From January 2008 to December 2013, 2000 consecutive IE patients were prospectively included in the registry. Eleven IE HCM additional cases from before 2008 were also studied. Clinical, microbiological, and echocardiographic characteristics were analyzed in IE HCM patients (n = 34) and in IE HCM reported in literature (n = 84). Patients with nondevice IE (n = 1807) were classified into 3 groups: group 1, HCM with native-valve IE (n = 26); group 2, patients with IEAP indication (n = 696); group 3, patients with no IEAP indication (n = 1085). IE episode and 1-year follow-up data were gathered. One-year mortality in IE HCM was 42% in our study and 22% in the literature. IE was more frequent, although not exclusive, in obstructive HCM (59% and 74%, respectively). Group 1 exhibited more IE predisposing factors than groups 2 and 3 (62% vs 40% vs 50%, P < 0.01), and more previous dental procedures (23% vs 6% vs 8%, P < 0.01). Furthermore, Group 1 experienced a higher incidence of Streptococcus infections than Group 2 (39% vs 22%, P < 0.01) and similar to Group 3 (39% vs 30%, P = 0.34). Overall mortality was similar among groups (42% vs 36% vs 35%, P = 0.64). IE occurs in HCM patients with and without obstruction. Mortality of IE HCM is high but similar to patients with and without IEAP indication. Predisposing factors, previous dental procedures, and streptococcal infection are higher in IE HCM, suggesting that HCM patients could benefit from IEAP. PMID:27368014

  1. Aortic biomechanics in hypertrophic cardiomyopathy

    PubMed Central

    Badran, Hala Mahfouz; Soltan, Ghada; Faheem, Nagla; Elnoamany, Mohamed Fahmy; Tawfik, Mohamed; Yacoub, Magdi

    2015-01-01

    Background: Ventricular-vascular coupling is an important phenomenon in many cardiovascular diseases. The association between aortic mechanical dysfunction and left ventricular (LV) dysfunction is well characterized in many disease entities, but no data are available on how these changes are related in hypertrophic cardiomyopathy (HCM). Aim of the work: This study examined whether HCM alone is associated with an impaired aortic mechanical function in patients without cardiovascular risk factors and the relation of these changes, if any, to LV deformation and cardiac phenotype. Methods: 141 patients with HCM were recruited and compared to 66 age- and sex-matched healthy subjects as control group. Pulse pressure, aortic strain, stiffness and distensibility were calculated from the aortic diameters measured by M-mode echocardiography and blood pressure obtained by sphygmomanometer. Aortic wall systolic and diastolic velocities were measured using pulsed wave Doppler tissue imaging (DTI). Cardiac assessment included geometric parameters and myocardial deformation (strain and strain rate) and mechanical dyssynchrony. Results: The pulsatile change in the aortic diameter, distensibility and aortic wall systolic velocity (AWS') were significantly decreased and aortic stiffness index was increased in HCM compared to control (P < .001) In HCM AWS' was inversely correlated to age(r = − .32, P < .0001), MWT (r = − .22, P < .008), LVMI (r = − .20, P < .02), E/Ea (r = − .16, P < .03) LVOT gradient (r = − 19, P < .02) and severity of mitral regurg (r = − .18, P < .03) but not to the concealed LV deformation abnormalities or mechanical dyssynchrony. On multivariate analysis, the key determinant of aortic stiffness was LV mass index and LVOT obstruction while the role LV dysfunction in aortic stiffness is not evident in this population. Conclusion: HCM is associated with abnormal aortic mechanical properties. The severity of cardiac

  2. Emergency management of decompensated peripartum cardiomyopathy.

    PubMed

    Lata, Indu; Gupta, Renu; Sahu, Sandeep; Singh, Harpreet

    2009-05-01

    Peripartum cardiomyopathy (PPCM) is a rare life-threatening cardiomyopathy of unknown cause that occurs in the peripartum period in previously healthy women.[1] the symptomatic patients should receive standard therapy for heart failure, managed by a multidisciplinary team. The diagnosis of PPCM rests on the echocardiographic identification of new left ventricular systolic dysfunction during a limited period surrounding parturition. Diagnostic criteria include an ejection fraction of less than 45%, fractional shortening of less than 30%, or both, and end-diastolic dimension of greater than 2.7 cm/m(2) body surface-area. This entity presents a diagnostic challenge because many women in the last month of a normal pregnancy experience dyspnea, fatigue, and pedal edema, symptoms identical to early congestive heart failure. There are no specific criteria for differentiating subtle symptoms of heart failure from normal late pregnancy. Therefore, it is important that a high index of suspicion be maintained to identify the rare case of PPCM as general examination showing symptoms of heart failure with pulmonary edema. PPCM remains a diagnosis of exclusion. No additional specific criteria have been identified to allow distinction between a peripartum patient with new onset heart failure and left ventricular systolic dysfunction as PPCM and another form of dilated cardiomyopathy. Therefore, all other causes of dilated cardiomyopathy with heart failure must be systematically excluded before accepting the designation of PPCM. Recent observations from Haiti[2] suggest that a latent form of PPCM without clinical symptoms might exist. The investigators identified four clinically normal postpartum women with asymptomatic systolic dysfunction on echocardiography, who subsequently either developed clinically detectable dilated cardiomyopathy or improved and completely recovered heart function. PMID:19561973

  3. Psoriasis and dilated cardiomyopathy: coincidence or associated diseases?

    PubMed

    Eliakim-Raz, Noa; Shuvy, Mony; Lotan, Chaim; Planer, David

    2008-01-01

    Psoriasis is a common immune-mediated disease which affects 1-3% of the population. The etiology of psoriasis is unknown. Idiopathic dilated cardiomyopathy is probably the end result of a variety of toxic, metabolic or infectious agents. During a computerized search for cardiomyopathy among all patients hospitalized with psoriasis in the Hadassah University Hospital since 1980 we found an increased prevalence of cardiomyopathy, and specifically dilated cardiomyopathy. We present 4 patients who suffer from both conditions. In accordance with previous data, an association between preexisting psoriasis and dilated cardiomyopathy is suggested. We suggest that the genetic risk factors of dilated cardiomyopathy are shared by psoriasis, and more specifically psoriatic arthritis. Alternatively, the immune reaction that is triggered in dilated cardiomyopathy leading to the progression of the disease might be enhanced in patients with psoriasis or psoriatic arthritis. Chronic inflammation and persistent secretion of proinflammatory cytokines may be considered a potential pathway, triggering the initiation and progression of dilated cardiomyopathy in psoriatic patients. Further investigation of the genetic and immune risk factors involved in dilated cardiomyopathy and in psoriasis may lead to a better understanding of the pathogenesis and treatment of dilated cardiomyopathy.

  4. The potential for remote ischemic conditioning to improve outcomes in heart failure.

    PubMed

    Bøtker, Hans Erik; Schmidt, Michael Rahbek

    2015-11-01

    Heart failure is the end-stage of a variety of underlying cardiovascular diseases and carries a poor prognosis. The condition is caused by a complex interaction between many pathophysiological processes including ischemia, fibrosis, ventricular remodeling, abnormal neurohumoral balance and inflammation. While traditional pharmacological treatment of heart failure often targets only one pathophysiological mechanism, remote ischemic conditioning induces a multitude of cardioprotective effects. In particular, the anti-ischemic, anti-remodeling and anti-inflammatory properties of remote ischemic conditioning may be of relevance. We propose that remote ischemic conditioning may offer a novel strategy to improve outcomes in heart failure.

  5. An unusual ST-segment elevation: apical hypertrophic cardiomyopathy shows the ace up its sleeve.

    PubMed

    de Santis, Francesco; Pergolini, Amedeo; Zampi, Giordano; Pero, Gaetano; Pino, Paolo Giuseppe; Minardi, Giovanni

    2013-01-01

    Apical hypertrophic cardiomyopathy is part of the broad clinical and morphologic spectrum of hypertrophic cardiomyopathy. We report a patient with electrocardiographic abnormalities in whom acute coronary syndrome was excluded and apical hypertrophic cardiomyopathy was demonstrated by careful differential diagnosis.

  6. Atrophic nerve fibers in regions of reduced MIBG uptake in doxorubicin cardiomyopathy

    SciTech Connect

    Takano, Hajime; Ozawa Hideyuki; Kobayashi, Isao

    1995-11-01

    A myocardial MIBG-SPECT examination was conducted 2 wk after doxorubicin chemotherapy on a 52-yr-old woman without cardiac symptoms. Despite normal {sup 201}Tl scintigraphy, reduced MIBG uptake was detected in the apical anterior, inferior and lateral segments of the left ventricle. The patient died of congestive heart failure due to doxorubicin-induced cardiomyopathy 10 mo later. At necropsy, the left ventricle was markedly dilated and the apical anterior, inferior and lateral walls were thin, stiff and whitish. Nerve fibers in the apical inferior wall were atrophic and markedly fibrotic where MIBG uptake was most reduced. Nerve fibers in the septum were normal where MIBG uptake had remained normal. The histologic findings correspond with the findings on the MIBG image. MIBG imaging may detect cardiac sympathetic denervation in doxorubicin-induced cardiomyopathy before cardiac symptoms are manifest and cardiac function deteriorates. 5 refs., 2 figs.

  7. Systemic chemokine levels, coronary heart disease, and ischemic stroke events

    PubMed Central

    Canouï-Poitrine, F.; Luc, G.; Mallat, Z.; Machez, E.; Bingham, A.; Ferrieres, J.; Ruidavets, J.-B.; Montaye, M.; Yarnell, J.; Haas, B.; Arveiler, D.; Morange, P.; Kee, F.; Evans, A.; Amouyel, P.; Ducimetiere, P.

    2011-01-01

    Objectives: To quantify the association between systemic levels of the chemokine regulated on activation normal T-cell expressed and secreted (RANTES/CCL5), interferon-γ-inducible protein-10 (IP-10/CXCL10), monocyte chemoattractant protein-1 (MCP-1/CCL2), and eotaxin-1 (CCL11) with future coronary heart disease (CHD) and ischemic stroke events and to assess their usefulness for CHD and ischemic stroke risk prediction in the PRIME Study. Methods: After 10 years of follow-up of 9,771 men, 2 nested case-control studies were built including 621 first CHD events and 1,242 matched controls and 95 first ischemic stroke events and 190 matched controls. Standardized hazard ratios (HRs) for each log-transformed chemokine were estimated by conditional logistic regression. Results: None of the 4 chemokines were independent predictors of CHD, either with respect to stable angina or to acute coronary syndrome. Conversely, RANTES (HR = 1.70; 95% confidence interval [CI] 1.05–2.74), IP-10 (HR = 1.53; 95% CI 1.06–2.20), and eotaxin-1 (HR = 1.59; 95% CI 1.02–2.46), but not MCP-1 (HR = 0.99; 95% CI 0.68–1.46), were associated with ischemic stroke independently of traditional cardiovascular risk factors, hs-CRP, and fibrinogen. When the first 3 chemokines were included in the same multivariate model, RANTES and IP-10 remained predictive of ischemic stroke. Their addition to a traditional risk factor model predicting ischemic stroke substantially improved the C-statistic from 0.6756 to 0.7425 (p = 0.004). Conclusions: In asymptomatic men, higher systemic levels of RANTES and IP-10 are independent predictors of ischemic stroke but not of CHD events. RANTES and IP-10 may improve the accuracy of ischemic stroke risk prediction over traditional risk factors. PMID:21849651

  8. Myocardial regeneration in adriamycin cardiomyopathy by nuclear expression of GLP1 using ultrasound targeted microbubble destruction

    SciTech Connect

    Chen, Shuyuan; Chen, Jiaxi; Huang, Pintong; Meng, Xing-Li; Clayton, Sandra; Shen, Jin-Song; Grayburn, Paul A.

    2015-03-20

    Recently GLP-1 was found to have cardioprotective effects independent of those attributable to tight glycemic control. Methods and results: We employed ultrasound targeted microbubble destruction (UTMD) to deliver piggybac transposon plasmids encoding the GLP-1 gene with a nuclear localizing signal to rat hearts with adriamycin cardiomyopathy. After a single UTMD treatment, overexpression of transgenic GLP-1 was found in nuclei of rat heart cells with evidence that transfected cardiac cells had undergone proliferation. UTMD-GLP-1 gene therapy restored LV mass, fractional shortening index, and LV posterior wall diameter to nearly normal. Nuclear overexpression of GLP-1 by inducing phosphorylation of FoxO1-S256 and translocation of FoxO1 from the nucleus to the cytoplasm significantly inactivated FoxO1 and activated the expression of cyclin D1 in nuclei of cardiac muscle cells. Reversal of adriamycin cardiomyopathy appeared to be mediated by dedifferentiation and proliferation of nuclear FoxO1-positive cardiac muscle cells with evidence of embryonic stem cell markers (OCT4, Nanog, SOX2 and c-kit), cardiac early differentiation markers (NKX2.5 and ISL-1) and cellular proliferation markers (BrdU and PHH3) after UTMD with GLP-1 gene therapy. Conclusions: Intranuclear myocardial delivery of the GLP-1gene can reverse established adriamycin cardiomyopathy by stimulating myocardial regeneration. - Highlights: • The activation of nuclear FoxO1 in cardiac muscle cells associated with adriamycin cardiomyopathy. • Myocardial nuclear GLP-1 stimulates myocardial regeneration and reverses adriamycin cardiomyopathy. • The process of myocardial regeneration associated with dedifferentiation and proliferation.

  9. [Mitochondrial cardiomyopathy in an adult: a case history].

    PubMed

    Tafanelli, L; Avierinos, J-F; Thuny, F; Pelissier, J-F; Jacquier, A; Renard, S; Amabile, N; Gaubert, J-Y; Habib, G

    2007-12-01

    We report an original case of mitochondrial cardiomyopathy discovered in a young woman during an episode of cardiac decompensation. The diagnosis was suspected from the echocardiographic appearances of granite-like heterogeneous hypertrophic cardiomyopathy. It was confirmed by endomyocardial biopsies. The clinical evolution was favourable with classical treatment. Mitochondrial cardiomyopathy is a rare cause of cardiomyopathy, generally observed in children, with multisystemic localisation. The pathophysiology and genetics are complex. Cardiac involvement is observed in 25% of cases, with the principal manifestation being hypertrophic cardiomyopathy. In the absence of any specific clinical or paraclinical signs, echocardiography and MRI are the techniques of choice for morphological evaluation. Diagnosis relies upon myocardial biopsy, which should be readily advocated in every unexplained case of cardiomyopathy in a young subject. The prognosis is poor and no specific treatment is available.

  10. Enzymic analysis of endomyocardial biopsy specimens from patients with cardiomyopathies.

    PubMed Central

    Peters, T J; Wells, G; Oakley, C M; Brooksby, I A; Jenkins, B S; Webb-Peploe, M M; Coltart, D J

    1977-01-01

    Myocardial biopsies have been obtained from patients with hypertrophic or congestive cardiomyopathies. Marker enzymes for the principal subcellular organelles of the myocardium were estimated using highly sensitive assay procedures. The results were compared with those obtained in tissue from patients with valvular heart disease with good or poor left ventricular function. Left ventricular myocardial tissue from patients with hypertrophic cardiomyopathy showed essentially normal levels of enzymic activities. In congestive cardiomyopathy, right ventricular tissue showed reduced levels of mitochondrial enzymes with increased levels of lactate dehydrogenase. Left ventricular tissue from patients with congestive cardiomyopathy showed reduced levels of mitochondrial and myofibril enzymes but high levels of lactate dehydrogenase. The reduced levels of myofibril Ca++-activated ATP in congestive cardiomyopathy is similar to that found in patients with impaired left ventricular function secondary to valvular disease. It is suggested that defective mitochondrial function is a characteristic feature of congestive cardiomyopathy and that the increased levels of lactate dehydrogenase reflect a compensatory response. PMID:564201

  11. Imaging acute ischemic stroke.

    PubMed

    González, R Gilberto; Schwamm, Lee H

    2016-01-01

    Acute ischemic stroke is common and often treatable, but treatment requires reliable information on the state of the brain that may be provided by modern neuroimaging. Critical information includes: the presence of hemorrhage; the site of arterial occlusion; the size of the early infarct "core"; and the size of underperfused, potentially threatened brain parenchyma, commonly referred to as the "penumbra." In this chapter we review the major determinants of outcomes in ischemic stroke patients, and the clinical value of various advanced computed tomography and magnetic resonance imaging methods that may provide key physiologic information in these patients. The focus is on major strokes due to occlusions of large arteries of the anterior circulation, the mo