Science.gov

Sample records for ischemic renal injury

  1. Diannexin protects against renal ischemia reperfusion injury and targets phosphatidylserines in ischemic tissue.

    PubMed

    Wever, Kimberley E; Wagener, Frank A D T G; Frielink, Cathelijne; Boerman, Otto C; Scheffer, Gert J; Allison, Anthony; Masereeuw, Rosalinde; Rongen, Gerard A

    2011-01-01

    Renal ischemia/reperfusion injury (IRI) frequently complicates shock, renal transplantation and cardiac and aortic surgery, and has prognostic significance. The translocation of phosphatidylserines to cell surfaces is an important pro-inflammatory signal for cell-stress after IRI. We hypothesized that shielding of exposed phosphatidylserines by the annexin A5 (ANXA5) homodimer Diannexin protects against renal IRI. Protective effects of Diannexin on the kidney were studied in a mouse model of mild renal IRI. Diannexin treatment before renal IRI decreased proximal tubule damage and leukocyte influx, decreased transcription and expression of renal injury markers Neutrophil Gelatinase Associated Lipocalin and Kidney Injury Molecule-1 and improved renal function. A mouse model of ischemic hind limb exercise was used to assess Diannexin biodistribution and targeting. When comparing its biodistribution and elimination to ANXA5, Diannexin was found to have a distinct distribution pattern and longer blood half-life. Diannexin targeted specifically to the ischemic muscle and its affinity exceeded that of ANXA5. Targeting of both proteins was inhibited by pre-treatment with unlabeled ANXA5, suggesting that Diannexin targets specifically to ischemic tissues via phosphatidylserine-binding. This study emphasizes the importance of phosphatidylserine translocation in the pathophysiology of IRI. We show for the first time that Diannexin protects against renal IRI, making it a promising therapeutic tool to prevent IRI in a clinical setting. Our results indicate that Diannexin is a potential new imaging agent for the study of phosphatidylserine-exposing organs in vivo.

  2. Ameliorative Effect of Recombinant Human Erythropoietin and Ischemic Preconditioning on Renal Ischemia Reperfusion Injury in Rats

    PubMed Central

    Elshiekh, Mohammed; Kadkhodaee, Mehri; Seifi, Behjat; Ranjbaran, Mina; Ahghari, Parisa

    2015-01-01

    Background: Ischemia-reperfusion (IR) injury is one of the most common causes of renal dysfunction. There is increasing evidence about the role of the reactive oxygen species (ROS) in these injuries and endogenous antioxidants seem to have an important role in decreasing the renal tissue injury. Objectives: The aim of this study was to compare the effect of recombinant human erythropoietin (EPO) and ischemic preconditioning (IPC) on renal IR injury. Materials and Methods: Twenty four male Wistar rats were allocated into four experimental groups: sham-operated, IR, EPO + IR, and IPC + IR. Rats were underwent 50 minutes bilateral ischemia followed by 24 hours reperfusion. Erythropoietin (5000 IU/kg, i.p) was administered 30 minutes before onset of ischemia. Ischemic preconditioning was performed by three cycles of 3 minutes ischemia followed by 3 minutes reperfusion. Plasma concentrations of urea and creatinine were measured. Kidney samples were taken for reactive oxidative species (ROS) measurement including superoxide dismutase (SOD) activity, glutathione (GSH) contents, and malondialdehyde (MDA) levels. Results: Compared to the sham group, IR led to renal dysfunction as evidenced by significantly higher plasma urea and creatinine. Treatment with EPO or IPC decreased urea, creatinine, and renal MDA levels and increased SOD activity and GSH contents in the kidney. Conclusions: Pretreatment with EPO and application of IPC significantly ameliorated the renal injury induced by bilateral renal IR. However, both treatments attenuated renal dysfunction and oxidative stress in kidney tissues. There were no significant differences between pretreatment with EPO or application of IPC. PMID:26866008

  3. Renal Ischemia/Reperfusion Injury in Diabetic Rats: The Role of Local Ischemic Preconditioning

    PubMed Central

    Ozbilgin, Sule; Ozkardesler, Sevda; Akan, Mert; Boztas, Nilay; Ozbilgin, Mucahit; Ergur, Bekir Ugur; Derici, Serhan; Guneli, Mehmet Ensari; Meseri, Reci

    2016-01-01

    Background. The aim of this study was to evaluate the effects of local ischemic preconditioning using biochemical markers and histopathologically in the diabetic rat renal IR injury model. Methods. DM was induced using streptozotocin. Rats were divided into four groups: Group I, nondiabetic sham group (n = 7), Group II, diabetic sham group (n = 6), Group III, diabetic IR group (diabetic IR group, n = 6), and Group IV, diabetic IR + local ischemic preconditioning group (diabetic IR + LIPC group, n = 6). Ischemic renal injury was induced by clamping the bilateral renal artery for 45 min. 4 h following ischemia, clearance protocols were applied to assess biochemical markers and histopathologically in rat kidneys. Results. The histomorphologic total cell injury scores of the nondiabetic sham group were significantly lower than diabetic sham, diabetic IR, and diabetic IR + LIPC groups. Diabetic IR group scores were not significantly different than the diabetic sham group. But diabetic IR + LIPC group scores were significantly higher than the diabetic sham and diabetic IR groups. Conclusion. Local ischemic preconditioning does not reduce the risk of renal injury induced by ischemia/reperfusion in diabetic rat model. PMID:26925416

  4. Endoplasmic reticulum stress and its effects on renal tubular cells apoptosis in ischemic acute kidney injury.

    PubMed

    Xu, Yan; Guo, Min; Jiang, Wei; Dong, Hui; Han, Yafei; An, Xiao-Fei; Zhang, Jisheng

    2016-06-01

    Ischemia is the most frequent cause of acute kidney injury (AKI), which is characterized by apoptosis of renal tubular cell. A common result of ischemia in AKI is dysfunction of endoplasmic reticulum (ER), which causes the protein-folding capacity to lag behind the protein-folding load. The abundance of misfolded proteins stressed the ER and results in induction of the unfolded protein response (UPR). While the UPR is an adaptive response, over time it can result in apoptosis when cells are unable to recover quickly. Recent research suggests that ER stress is a major factor in renal tubular cell apoptosis resulting from ischemic AKI. Thus, ER stress may be an important new progression factor in the pathology of ischemic AKI. In this article, we review UPR signaling, describe pathology and pathophysiology mechanisms of ischemic AKI, and highlight the dual function of ER stress on renal tubular cell apoptosis.

  5. NQDI 1, an inhibitor of ASK1 attenuates acute ischemic renal injury by modulating oxidative stress and cell death.

    PubMed

    El Eter, Eman

    2013-09-01

    Apoptosis signal-regulating kinase 1 (ASK1) is among the signaling events that lead to postischemic cell death. Inhibition of ASK1 pathway protected hearts from ischemic damage. The present study evaluated the renal protective effects of NQDI 1, an inhibitor of ASK1, in an animal model of acute ischemic renal failure. Male Wistar rats were subjected to right nephrectomy and clamping of left renal pedicle for 45 min, or sham operation. The administration of NQDI 1 attenuated renal dysfunction and histological changes characteristic for renal ischemia/reperfusion injury (IRI). Apoptosis of renal tissues, as detected by TUNEL staining, was also reduced together with p53 protein expression, and renal levels of MDA and SOD with NQDI 1 administration and BCL2 was up regulated. In conclusion, inhibition of ASK1 is of therapeutic potential against acute ischemic renal injury. Its protective effects are mediated via inhibition of apoptosis and oxidative stress.

  6. Acute hepatic ischemic-reperfusion injury induces a renal cortical "stress response," renal "cytoresistance," and an endotoxin hyperresponsive state.

    PubMed

    Zager, Richard A; Johnson, Ali C M; Frostad, Kirsten B

    2014-10-01

    Hepatic ischemic-reperfusion injury (HIRI) is considered a risk factor for clinical acute kidney injury (AKI). However, HIRI's impact on renal tubular cell homeostasis and subsequent injury responses remain ill-defined. To explore this issue, 30-45 min of partial HIRI was induced in CD-1 mice. Sham-operated or normal mice served as controls. Renal changes and superimposed injury responses (glycerol-induced AKI; endotoxemia) were assessed 2-18 h later. HIRI induced mild azotemia (blood urea nitrogen ∼45 mg/dl) in the absence of renal histologic injury or proteinuria, implying a "prerenal" state. However, marked renal cortical, and isolated proximal tubule, cytoprotective "stress protein" gene induction (neutrophil gelatinase-associated lipocalin, heme oxygenase-1, hemopexin, hepcidin), and increased Toll-like receptor 4 (TLR4) expression resulted (protein/mRNA levels). Ischemia caused release of hepatic heme-based proteins (e.g., cytochrome c) into the circulation. This corresponded with renal cortical oxidant stress (malondialdehyde increases). That hepatic derived factors can evoke redox-sensitive "stress protein" induction was implied by the following: peritoneal dialysate from HIRI mice, soluble hepatic extract, or exogenous cytochrome c each induced the above stress protein(s) either in vivo or in cultured tubule cells. Functional significance of HIRI-induced renal "preconditioning" was indicated by the following: 1) HIRI conferred virtually complete morphologic protection against glycerol-induced AKI (in the absence of hyperbilirubinemia) and 2) HIRI-induced TLR4 upregulation led to a renal endotoxin hyperresponsive state (excess TNF-α/MCP-1 gene induction). In conclusion, HIRI can evoke "renal preconditioning," likely due, in part, to hepatic release of pro-oxidant factors (e.g., cytochrome c) into the systemic circulation. The resulting renal changes can impact subsequent AKI susceptibility and TLR4 pathway-mediated stress.

  7. Delayed administration of darbepoetin or erythropoietin protects against ischemic acute renal injury and failure.

    PubMed

    Johnson, D W; Pat, B; Vesey, D A; Guan, Z; Endre, Z; Gobe, G C

    2006-05-01

    Administration of human recombinant erythropoietin (EPO) at time of acute ischemic renal injury (IRI) inhibits apoptosis, enhances tubular epithelial regeneration, and promotes renal functional recovery. The present study aimed to determine whether darbepoetin-alfa (DPO) exhibits comparable renoprotection to that afforded by EPO, whether pro or antiapoptotic Bcl-2 proteins are involved, and whether delayed administration of EPO or DPO 6 h following IRI ameliorates renal dysfunction. The model of IRI involved bilateral renal artery occlusion for 45 min in rats (N = 4 per group), followed by reperfusion for 1-7 days. Controls were sham-operated. Rats were treated at time of ischemia or sham operation (T0), or post-treated (6 h after the onset of reperfusion, T6) with EPO (5000 IU/kg), DPO (25 mug/kg), or appropriate vehicle by intraperitoneal injection. Renal function, structure, and immunohistochemistry for Bcl-2, Bcl-XL, and Bax were analyzed. DPO or EPO at T0 significantly abrogated renal dysfunction in IRI animals (serum creatinine for IRI 0.17 +/- 0.05 mmol/l vs DPO-IRI 0.08 +/- 0.03 mmol/l vs EPO-IRI 0.04 +/- 0.01 mmol/l, P = 0.01). Delayed administration of DPO or EPO (T6) also significantly abrogated subsequent renal dysfunction (serum creatinine for IRI 0.17 +/- 0.05 mmol/l vs DPO-IRI 0.06 +/- 0.01 mmol/l vs EPO-IRI 0.03 +/- 0.03 mmol/l, P = 0.01). There was also significantly decreased tissue injury (apoptosis, P < 0.05), decreased proapoptotic Bax, and increased regenerative capacity, especially in the outer stripe of the outer medulla, with DPO or EPO at T0 or T6. These results reaffirm the potential clinical application of DPO and EPO as novel renoprotective agents for patients at risk of ischemic acute renal failure or after having sustained an ischemic renal insult.

  8. Ischemic postconditioning prevents renal ischemia reperfusion injury through the induction of heat shock proteins in rats.

    PubMed

    Guo, Qiongmei; Du, Xuefang; Zhao, Yanli; Zhang, Dong; Yue, Lihui; Wang, Zhenxian

    2014-12-01

    Ischemic postconditioning (IPo) attenuates ischemia‑reperfusion injuries (IRI) in various organs, of both animals and humans. This study tested the hypothesis that IPo attenuates renal IRI through the upregulation of heat shock protein (HSP)70, HSP27 and heme oxygenase‑1 (HO‑1, also known as HSP 32) expression. Adult Sprague Dawley rats were subjected to bilateral renal ischemia for 45 min followed by reperfusion for up to 48 h. One group of rats received IPo prior to restoring full perfusion. Another group was administered 100 mg/kg HSP inhibitor quercetin, injected intraperitoneally 1 h prior to ischemia. Control rats received sham operations. Renal IR resulted in severe morphological and pathological changes, with increased serum creatinine and blood urea nitrogen concentrations. IR resulted in increased inflammation by inducing plasma tumor necrosis factor‑α and renal nuclear factor kappa‑light‑chain‑enhancer of activated B cells expression. IR also increased lipid peroxidation, as indicated by elevated malondialdehyde content, reduced superoxide dismutase activity and increased renal apoptosis. Renal HSP70, HSP27 and HO‑1 mRNA and protein levels were increased by IR and further elevated by IPo. IPo attenuated these changes observed in pathology, lipid peroxidation, apoptosis and inflammation. Quercetin treatment abolished all the protective effects of IPo. In conclusion, this study showed that IPo can attenuate lipid peroxidation, apoptosis and inflammation as well as renal IRI by upregulating the expression of HSP70, HSP27 and HO‑1.

  9. The ischemic/nephrotoxic acute kidney injury and the use of renal biomarkers in clinical practice.

    PubMed

    Andreucci, Michele; Faga, Teresa; Pisani, Antonio; Perticone, Maria; Michael, Ashour

    2017-04-01

    The term Acute Renal Failure (ARF) has been replaced by the term Acute Kidney Injury (AKI). AKI indicates an abrupt (within 24-48h) decrease in Glomerular Filtraton Rate, due to renal damage, that causes fluid and metabolic waste retention and alteration of electrolyte and acid-base balance. The renal biomarkers of AKI are substances or processes that are indicators of normal or impaired function of the kidney. The most used renal biomarker is still serum creatinine that is inadequate for several reasons, one of which is its inability to differentiate between hemodynamic changes of renal function ("prerenal azotemia") from intrinsic renal failure or obstructive nephropathy. Cystatin C is no better in this respect. After the description of the pathophysiology of "prerenal azotemia" and of Acute Kidney Injury (AKI) due to ischemia or nephrotoxicity, the renal biomarkers are listed and described: urinary NAG, urinary and serum KIM-1, serum and urinary NGAL, urinary IL-18, urinary L-FABP, serum Midkine, urinary IGFBP7 and TIMP2, urinary α-GST and π-GST, urinary ɣGT and AP, urinary β2M, urinary RBP, serum and urinary miRNA. All have been shown to appear much earlier than the rise of serum Creatinine. Some of them have been demonstrated to predict the clinical outcomes of AKI, such as the need for initiation of dialysis and mortality.

  10. Transglutaminase 2 gene ablation protects against renal ischemic injury by blocking constant NF-{kappa}B activation

    SciTech Connect

    Kim, Dae-Seok; Kim, Bora; Tahk, Hongmin; Kim, Dong-Hyun; Ahn, Eu-Ree; Choi, Changsun; Jeon, Yoon; Park, Seo Young; Lee, Ho; Oh, Seung Hyun; Kim, Soo-Youl

    2010-12-17

    Research highlights: {yields} No acute renal tubular necrotic lesions were found in TGase2{sup -/-} mice with ischemic kidney injury. {yields} NF-{kappa}B activation is reduced in TGase2{sup -/-} mice with ischemic kidney injury. {yields} Hypoxic stress did not increase NF-{kappa}B activity in MEFs from TGase2{sup -/-} mice. {yields} COX-2 induction is suppressed in TGase2{sup -/-} mice with ischemic kidney injury. -- Abstract: Transglutaminase 2 knockout (TGase2{sup -/-}) mice show significantly reduced inflammation with decreased myofibroblasts in a unilateral ureteral obstruction (UUO) model, but the mechanism remains to be clarified. Nuclear factor-{kappa}B (NF-{kappa}B) activation plays a major role in the progression of inflammation in an obstructive nephropathy model. However, the key factors extending the duration of NF-{kappa}B activation in UUO are not known. In several inflammatory diseases, we and others recently found that TGase 2 plays a key role in extending NF-{kappa}B activation, which contributes to the pathogenesis of disease. In the current study, we found that NF-{kappa}B activity in mouse embryogenic fibroblasts (MEFs) from TGase2{sup -/-} mice remained at the control level while the NF-{kappa}B activity of wild-type (WT) MEFs was highly increased under hypoxic stress. Using the obstructive nephropathy model, we found that NF-{kappa}B activity remained at the control level in TGase2{sup -/-} mouse kidney tissues, as measured by COX-2 expression, but was highly increased in WT tissues. We conclude that TGase 2 gene ablation reduces the duration of NF-{kappa}B activation in ischemic injury.

  11. Inhibition of poly(ADP-ribose) polymerase attenuates ischemic renal injury in rats.

    PubMed

    Martin, D R; Lewington, A J; Hammerman, M R; Padanilam, B J

    2000-11-01

    The enzyme, poly(ADP-ribose) polymerase (PARP), effects repair of DNA after ischemia-reperfusion (I/R) injury to cells in nerve and muscle tissue. However, its activation in severely damaged cells can lead to ATP depletion and death. We show that PARP expression is enhanced in damaged renal proximal tubules beginning at 6-12 h after I/R injury. Intraperitoneal administration of PARP inhibitors, benzamide or 3-amino benzamide, after I/R injury accelerates the recovery of normal renal function, as assessed by monitoring the levels of plasma creatinine and blood urea nitrogen during 6 days postischemia. PARP inhibition leads to increased cell proliferation at 1 day postinjury as assessed by proliferating cell nuclear antigen and improves the histopathological appearance of kidneys examined at 7 days postinjury. Furthermore, inhibition of PARP increases levels of ATP measured at 24 h postischemia compared with those in vehicle-treated animals. Our data indicate that PARP activation is a part of the cascade of molecular events that occurs after I/R injury in the kidney. Although caution is advised, transient inhibition of PARP postischemia may constitute a novel therapy for acute renal failure.

  12. Role of Cystathionine Gamma-Lyase in Immediate Renal Impairment and Inflammatory Response in Acute Ischemic Kidney Injury

    PubMed Central

    Markó, Lajos; Szijártó, István A.; Filipovic, Milos R.; Kaßmann, Mario; Balogh, András; Park, Joon-Keun; Przybyl, Lukasz; N’diaye, Gabriele; Krämer, Stephanie; Anders, Juliane; Ishii, Isao; Müller, Dominik N.; Gollasch, Maik

    2016-01-01

    Hydrogen sulfide (H2S) is known to act protectively during renal ischemia/reperfusion injury (IRI). However, the role of the endogenous H2S in acute kidney injury (AKI) is largely unclear. Here, we analyzed the role of cystathionine gamma-lyase (CTH) in acute renal IRI using CTH-deficient (Cth−/−) mice whose renal H2S levels were approximately 50% of control (wild-type) mice. Although levels of serum creatinine and renal expression of AKI marker proteins were equivalent between Cth−/− and control mice, histological analysis revealed that IRI caused less renal tubular damage in Cth−/− mice. Flow cytometric analysis revealed that renal population of infiltrated granulocytes/macrophages was equivalent in these mice. However, renal expression levels of certain inflammatory cytokines/adhesion molecules believed to play a role in IRI were found to be lower after IRI only in Cth−/− mice. Our results indicate that the systemic CTH loss does not deteriorate but rather ameliorates the immediate AKI outcome probably due to reduced inflammatory responses in the kidney. The renal expression of CTH and other H2S-producing enzymes was markedly suppressed after IRI, which could be an integrated adaptive response for renal cell protection. PMID:27273292

  13. Silencing of hypoxia-inducible factor-1α gene attenuates chronic ischemic renal injury in two-kidney, one-clip rats.

    PubMed

    Wang, Zhengchao; Zhu, Qing; Li, Pin-Lan; Dhaduk, Romesh; Zhang, Fan; Gehr, Todd W; Li, Ningjun

    2014-05-15

    Overactivation of hypoxia-inducible factor (HIF)-1α is implicated as a pathogenic factor in chronic kidney diseases (CKD). However, controversy exists regarding the roles of HIF-1α in CKD. Additionally, although hypoxia and HIF-1α activation are observed in various CKD and HIF-1α has been shown to stimulate fibrogenic factors, there is no direct evidence whether HIF-1α is an injurious or protective factor in chronic renal hypoxic injury. The present study determined whether knocking down the HIF-1α gene can attenuate or exaggerate kidney damage using a chronic renal ischemic model. Chronic renal ischemia was induced by unilaterally clamping the left renal artery for 3 wk in Sprague-Dawley rats. HIF-1α short hairpin (sh) RNA or control vectors were transfected into the left kidneys. Experimental groups were sham+control vector, clip+control vector, and clip+HIF-1α shRNA. Enalapril was used to normalize blood pressure 1 wk after clamping the renal artery. HIF-1α protein levels were remarkably increased in clipped kidneys, and this increase was blocked by shRNA. Morphological examination showed that HIF-1α shRNA significantly attenuated injury in clipped kidneys: glomerular injury indices were 0.71 ± 0.04, 2.50 ± 0.12, and 1.34 ± 0.11, and the percentage of globally damaged glomeruli was 0.02, 34.3 ± 5.0, and 6.3 ± 1.6 in sham, clip, and clip+shRNA groups, respectively. The protein levels of collagen and α-smooth muscle actin also dramatically increased in clipped kidneys, but this effect was blocked by HIF-1α shRNA. In conclusion, long-term overactivation of HIF-1α is a pathogenic factor in chronic renal injury associated with ischemia/hypoxia.

  14. Meclofenamate elicits a nephropreventing effect in a rat model of ischemic acute kidney injury by suppressing indoxyl sulfate production and restoring renal organic anion transporters

    PubMed Central

    Saigo, Chika; Nomura, Yui; Yamamoto, Yuko; Sagata, Masataka; Matsunaga, Rika; Jono, Hirofumi; Nishi, Kazuhiko; Saito, Hideyuki

    2014-01-01

    Indoxyl sulfate (IS), a putative low-molecular weight uremic toxin, is excreted in the urine under normal kidney function, but is retained in the circulation and tissues during renal dysfunction in acute kidney injury and chronic kidney disease. IS, which is one of the most potent inducers of oxidative stress in the kidney and cardiovascular system, is enzymatically produced in the liver from indole by cytochrome P450-mediated hydroxylation to indoxyl, followed by sulfotransferase-mediated sulfate conjugation. We used rat liver S9 fraction to identify inhibitors of IS production. After testing several compounds, including phytochemical polyphenols, we identified meclofenamate as a potent inhibitor of IS production with an apparent IC50 value of 1.34 μM. Ischemia/reperfusion (I/R) of rat kidney caused a marked elevation in the serum IS concentration 48 hours after surgery. However, intravenous administration of meclofenamate (10 mg/kg) significantly suppressed this increase in the serum level of IS. Moreover, IS concentrations in both kidney and liver were dramatically elevated by renal I/R treatment, but this increase was blocked by meclofenamate. Serum creatinine and blood urea nitrogen were markedly elevated in rats after renal I/R treatment, but these increases were significantly restored by administration of meclofenamate. Renal expression of both basolateral membrane-localized organic anion transporters rOAT1 and rOAT3 was downregulated by I/R treatment. However, expression of rOAT1 and rOAT3 recovered after administration of meclofenamate, which is associated with the inhibition of I/R-evoked elevation of prostaglandin E2. Our results suggest that meclofenamate inhibits hepatic sulfotransferase-mediated production of IS, thereby suppressing serum and renal accumulation of IS. Meclofenamate also prevents the prostaglandin E2-dependent downregulation of rOAT1 and rOAT3 expression. In conclusion, meclofenamate was found to elicit a nephropreventive effect in

  15. Renal Hypoxia and Dysoxia After Reperfusion of the Ischemic Kidney

    PubMed Central

    Legrand, Matthieu; Mik, Egbert G; Johannes, Tanja; Payen, Didier; Ince, Can

    2008-01-01

    Ischemia is the most common cause of acute renal failure. Ischemic-induced renal tissue hypoxia is thought to be a major component in the development of acute renal failure in promoting the initial tubular damage. Renal oxygenation originates from a balance between oxygen supply and consumption. Recent investigations have provided new insights into alterations in oxygenation pathways in the ischemic kidney. These findings have identified a central role of microvascular dysfunction related to an imbalance between vasoconstrictors and vasodilators, endothelial damage and endothelium–leukocyte interactions, leading to decreased renal oxygen supply. Reduced microcirculatory oxygen supply may be associated with altered cellular oxygen consumption (dysoxia), because of mitochondrial dysfunction and activity of alternative oxygen-consuming pathways. Alterations in oxygen utilization and/or supply might therefore contribute to the occurrence of organ dysfunction. This view places oxygen pathways’ alterations as a potential central player in the pathogenesis of acute kidney injury. Both in regulation of oxygen supply and consumption, nitric oxide seems to play a pivotal role. Furthermore, recent studies suggest that, following acute ischemic renal injury, persistent tissue hypoxia contributes to the development of chronic renal dysfunction. Adaptative mechanisms to renal hypoxia may be ineffective in more severe cases and lead to the development of chronic renal failure following ischemia-reperfusion. This paper is aimed at reviewing the current insights into oxygen transport pathways, from oxygen supply to oxygen consumption in the kidney and from the adaptation mechanisms to renal hypoxia. Their role in the development of ischemia-induced renal damage and ischemic acute renal failure are discussed. PMID:18488066

  16. Preventive mechanisms of agmatine against ischemic acute kidney injury in rats.

    PubMed

    Sugiura, Takahiro; Kobuchi, Shuhei; Tsutsui, Hidenobu; Takaoka, Masanori; Fujii, Toshihide; Hayashi, Kentaro; Matsumura, Yasuo

    2009-01-28

    The excitation of renal sympathetic nervous system plays an important role in the development of ischemic acute kidney injury in rats. Recently, we found that agmatine, an adrenaline alpha(2)/imidazoline I(1)-receptor agonist, has preventive effects on ischemic acute kidney injury by suppressing the enhanced renal sympathetic nerve activity during renal ischemia and by decreasing the renal venous norepinephrine overflow after reperfusion. In the present study, we investigated preventive mechanisms of agmatine against ischemic acute kidney injury in rats. Ischemic acute kidney injury was induced by clamping the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after the contralateral nephrectomy. Pretreatment with efaroxan (30 mumol/kg, i.v.), an alpha(2)/I(1)-receptor antagonist, abolished the suppressive effects of agmatine on the enhanced renal sympathetic nerve activity during renal ischemia and on the elevated norepinephrine overflow after reperfusion, and eliminated the preventing effects of agmatine on the ischemia/reperfusion-induced renal dysfunction and histological damage. On the other hand, pretreatment with yohimbine (6 mumol/kg, i.v.), an alpha(2)-receptor antagonist, eliminated the preventing effects of agmatine on the ischemia/reperfusion-induced renal injury and norepinephrine overflow, without affecting the lowering effect of agmatine on renal sympathetic nerve activity. These results indicate that agmatine prevents the ischemic renal injury by sympathoinhibitory effect probably via I(1) receptors in central nervous system and by suppressing the norepinephrine overflow through alpha(2) or I(1) receptors on sympathetic nerve endings.

  17. Vitamin D deficiency aggravates ischemic acute kidney injury in rats

    PubMed Central

    de Bragança, Ana Carolina; Volpini, Rildo A; Canale, Daniele; Gonçalves, Janaína G; Shimizu, Maria Heloisa M; Sanches, Talita R; Seguro, Antonio C; Andrade, Lúcia

    2015-01-01

    Vitamin D deficiency (VDD) increases the risk of death in hospitalized patients. Renal ischemia/reperfusion injury (IRI) induces acute kidney injury (AKI), which activates cell cycle inhibitors, including p21, a cyclin-dependent kinase inhibitor and genomic target of 25-hydroxyvitamin D, which is in turn a potent immunomodulator with antiproliferative effects. In this study, we assess the impact of VDD in renal IRI. Wistar rats were divided into groups, each evaluated for 30 days: control (receiving a standard diet); VDD (receiving a vitamin D-free diet); IRI (receiving a standard diet and subjected to 45-min bilateral renal ischemia on day 28); and VDD + IRI (receiving a vitamin D-free diet and subjected to 45-min bilateral renal ischemia on day 28). At 48 h after IRI, animals were euthanized; blood, urine, and kidney tissue samples were collected. Compared with IRI rats, VDD + IRI rats showed a more severe decrease in glomerular filtration rate, greater urinary protein excretion, a higher kidney/body weight ratio and lower renal aquaporin 2 expression, as well as greater morphological damage, characterized by increased interstitial area and tubular necrosis. Our results suggest that the severity of tubular damage in IRI may be associated with downregulation of vitamin D receptors and p21. VDD increases renal inflammation, cell proliferation and cell injury in ischemic AKI. PMID:25780095

  18. Ischemic brain injury in cerebral amyloid angiopathy

    PubMed Central

    van Veluw, Susanne J; Greenberg, Steven M

    2016-01-01

    Cerebral amyloid angiopathy (CAA) is a common form of cerebral small vessel disease and an important risk factor for intracerebral hemorrhage and cognitive impairment. While the majority of research has focused on the hemorrhagic manifestation of CAA, its ischemic manifestations appear to have substantial clinical relevance as well. Findings from imaging and pathologic studies indicate that ischemic lesions are common in CAA, including white-matter hyperintensities, microinfarcts, and microstructural tissue abnormalities as detected with diffusion tensor imaging. Furthermore, imaging markers of ischemic disease show a robust association with cognition, independent of age, hemorrhagic lesions, and traditional vascular risk factors. Widespread ischemic tissue injury may affect cognition by disrupting white-matter connectivity, thereby hampering communication between brain regions. Challenges are to identify imaging markers that are able to capture widespread microvascular lesion burden in vivo and to further unravel the etiology of ischemic tissue injury by linking structural magnetic resonance imaging (MRI) abnormalities to their underlying pathophysiology and histopathology. A better understanding of the underlying mechanisms of ischemic brain injury in CAA will be a key step toward new interventions to improve long-term cognitive outcomes for patients with CAA. PMID:25944592

  19. Spectroscopic monitoring of kidney tissue ischemic injury

    NASA Astrophysics Data System (ADS)

    Fitzgerald, Jason T.; Michalopoulou, Andromachi P.; Troppmann, Christoph; Demos, Stavros G.

    2004-07-01

    Noninvasive evaluation of tissue viability of donor kidneys used for transplantation is an issue that current technology is not able to address. In this work, we explore optical spectroscopy for its potential to assess the degree of ischemic damage in kidney tissue. We hypothesized that ischemic damage to kidney tissue will give rise to changes in its optical properties which in turn may be used to asses the degree of tissue injury. The experimental results demonstrate that the autofluorescence intensity of the injured kidney is decreasing as a function of time exposed to ischemic injury. Changes were also observed in the NIR light scattering intensities most probably arising from changes due to injury and death of the tissue.

  20. Spectroscopic Monitoring of Kidney Tissue Ischemic Injury

    SciTech Connect

    Demos, S G; Fitzgerald, J T; Michalopoulou, A P; Troppmann, C

    2004-03-11

    Noninvasive evaluation of tissue viability of donor kidneys used for transplantation is an issue that current technology is not able to address. In this work, we explore optical spectroscopy for its potential to assess the degree of ischemic damage in kidney tissue. We hypothesized that ischemic damage to kidney tissue will give rise to changes in its optical properties which in turn may be used to asses the degree of tissue injury. The experimental results demonstrate that the autofluorescence intensity of the injured kidney is decreasing as a function of time exposed to ischemic injury. Changes were also observed in the NIR light scattering intensities most probably arising from changes due to injury and death of the tissue.

  1. White matter injury in ischemic stroke.

    PubMed

    Wang, Yuan; Liu, Gang; Hong, Dandan; Chen, Fenghua; Ji, Xunming; Cao, Guodong

    2016-06-01

    Stroke is one of the major causes of disability and mortality worldwide. It is well known that ischemic stroke can cause gray matter injury. However, stroke also elicits profound white matter injury, a risk factor for higher stroke incidence and poor neurological outcomes. The majority of damage caused by stroke is located in subcortical regions and, remarkably, white matter occupies nearly half of the average infarct volume. Indeed, white matter is exquisitely vulnerable to ischemia and is often injured more severely than gray matter. Clinical symptoms related to white matter injury include cognitive dysfunction, emotional disorders, sensorimotor impairments, as well as urinary incontinence and pain, all of which are closely associated with destruction and remodeling of white matter connectivity. White matter injury can be noninvasively detected by MRI, which provides a three-dimensional assessment of its morphology, metabolism, and function. There is an urgent need for novel white matter therapies, as currently available strategies are limited to preclinical animal studies. Optimal protection against ischemic stroke will need to encompass the fortification of both gray and white matter. In this review, we discuss white matter injury after ischemic stroke, focusing on clinical features and tools, such as imaging, manifestation, and potential treatments. We also briefly discuss the pathophysiology of WMI and future research directions.

  2. B Cell Subsets Contribute to Both Renal Injury and Renal Protection after Ischemia/Reperfusion

    PubMed Central

    Renner, Brandon; Strassheim, Derek; Amura, Claudia R.; Kulik, Liudmila; Ljubanovic, Danica; Glogowska, Magdalena J.; Takahashi, Kazue; Carroll, Michael C.; Holers, V. Michael; Thurman, Joshua M.

    2011-01-01

    Ischemia/reperfusion (I/R) triggers a robust inflammatory response within the kidney. Numerous components of the immune system contribute to the resultant renal injury including the complement system. We sought to identify whether natural antibodies bind to the post-ischemic kidney and contribute to complement activation after I/R. We depleted peritoneal B cells in mice by hypotonic shock. Depletion of the peritoneal B cells prevented the deposition of IgM within the glomeruli after renal I/R, and attenuated renal injury after I/R. We found that glomerular IgM activates the classical pathway of complement but does not cause substantial deposition of C3 within the kidney. Furthermore, mice deficient in classical pathway proteins were not protected from injury, indicating that glomerular IgM does not cause injury through activation of the classical pathway. We also subjected mice deficient in all mature B cells (μMT mice) to renal I/R and found that they sustained worse renal injury than wild-type controls. Serum IL-10 levels were lower in the μMT mice. Regarded together, these results indicate that natural antibody produced by peritoneal B cells binds within the glomerulus after renal I/R and contributes to functional renal injury. However, non-peritoneal B cells attenuate renal injury after I/R, possibly through the production of IL-10. PMID:20810984

  3. DNA repair in ischemic acute kidney injury.

    PubMed

    Pressly, Jeffrey D; Park, Frank

    2017-04-01

    Ischemia-reperfusion injury (IRI) is a common cause of acute kidney injury leading to an induction of oxidative stress, cellular dysfunction, and loss of renal function. DNA damage, including oxidative base modifications and physical DNA strand breaks, is a consequence of renal IRI. Like many other organs in the body, a redundant and highly conserved set of endogenous repair pathways have evolved to selectively recognize the various types of cellular DNA damage and combat its negative effects on cell viability. Severe damage to the DNA, however, can trigger cell death and elimination of the injured tubular epithelial cells. In this minireview, we summarize the state of the current field of DNA damage and repair in the kidney and provide some expected and, in some cases, unexpected effects of IRI on DNA damage and repair in the kidney. These findings may be applicable to other forms of acute kidney injury and could provide new opportunities for renal research.

  4. The Study of Pentoxifylline Drug Effects on Renal Apoptosis and BCL-2 Gene Expression Changes Following Ischemic Reperfusion Injury in Rat

    PubMed Central

    Hashemi, Mehrdad

    2014-01-01

    Ischemia Reperfusion injury is the tissue damage caused when blood supply returns to the tissue after a period of ischemia or lack of oxygen. In this study, the effect of pentoxyfylline on BCL-2 gene expression changes and cell injury in kidney of rat following Ischemia Reperfusion were evaluated. In this experimental study, 20 male wistar rats with average weight of 250-300 g were selected and then were accidently divided them on two tenth group of control and treatment groups. In the control group, celiotomy was performed by ventral midline incision. The left kidney was isolated, and then both the renal artery and vein were obstructed. After 60 minutes of warm ischemia, vessel obstruction resolved and the right kidney was removed. 72 hours after reperfusion, tissue samples were taken from left kidney for Tunel assay. We used quantitative real time PCR for detection of BCL-2 gene expression in treated groups and then compared them to control samples. In the treatment group, the cell death changes, showed lower level than the control group. The results also showed the BCL-2 gene expression was declined in ischemia group as campared to PNT drug group. The pentoxyfylline might have a role in control of apoptosis result from Ischemia- reperfusion and quantitative real-time PCR can be used as a direct method for detection BCL-2 gene expression in tested samples and normal samples. PMID:24734070

  5. Effects of a stable prostacyclin analog on experimental ischemic acute renal failure.

    PubMed Central

    Tobimatsu, M; Ueda, Y; Saito, S; Tsumagari, T; Konomi, K

    1988-01-01

    The effect of OP-41483, a stable prostacyclin (PGI2) analog, on ischemic acute renal failure (ARF) was investigated in dogs. Administration of OP-41483 for three days after ischemia significantly increased renal cortical blood flow (RCBF) when compared with dogs treated with the saline vehicle. In the OP-41483-treated group, serum creatinine levels remained relatively low during postoperative days 1-3 and mean survival time was prolonged. Injection of a silicone rubber vascular casting compound (Microfil) revealed increased numbers of visible renal cortical glomeruli and microvessels compared to the saline vehicle group. Histologic sections showed only very limited tubular necrosis, whereas sections of kidneys treated with saline showed extensive tubular necrosis. In conclusion, this stable prostacyclin analog provided a significant degree of protection for the kidneys from ischemic injury and may be useful in a clinical setting. Images Figs. 3A-D. Figs. 4A-D. PMID:3291800

  6. Thrombolysis in Chinese Ischemic Stroke Patients with Renal Dysfunction

    PubMed Central

    Lo, Wai Ting; Cheung, Chi Yuen; Li, Chung Ki; Chau, Ka Foon; Fong, Wing Chi

    2015-01-01

    Background Current data concerning the relationship between renal function and clinical outcome among stroke patients treated with intravenous thrombolytic therapy are conflicting. Our aim is to analyze whether the clinical outcome of Chinese ischemic stroke patients treated with thrombolytic therapy is affected by the presence of renal dysfunction. Methods Chinese patients who received intravenous thrombolytic therapy for acute ischemic stroke were recruited. Renal dysfunction was defined as an estimated glomerular filtration rate (eGFR) <90 ml/min/1.73 m2. The primary outcome was independent function (modified Rankin Scale, mRS, 0-2) at 3 months, while secondary outcomes included early improvement of the National Institute of Health Stroke Scale (NIHSS) score of ≥4 points at 24 h, symptomatic intracerebral hemorrhage (ICH) within 36 h of treatment and 30-day mortality. Results A total of 199 patients were recruited, of whom 51.3% had renal dysfunction. There were no significant differences in functional independence at 3 months, NIHSS improvement at 24 h post-thrombolysis and 30-day mortality between patients with or without renal dysfunction. Multivariate analysis showed that eGFR as a continuous variable was not an independent risk factor for symptomatic ICH. Conclusion Chinese ischemic stroke patients with renal dysfunction who received thrombolytic therapy had clinical outcomes similar to those without renal dysfunction. PMID:26019713

  7. Metabolic Syndrome and Renal Injury

    PubMed Central

    Sheen, Yi-Jing; Sheu, Wayne Huey-Herng

    2011-01-01

    Both metabolic syndrome (MetS) and chronic kidney disease (CKD) are major global health issues. Current clinical markers used to reflect renal injury include albuminuria and estimated glomerular filtration rate (eGFR). Given the same eGFR level, urine albumin might be a better risk marker to predict progression of CKD and future development of cardiovascular diseases (CVDs). Serum Cystatin C is emerging as a new biomarker for early detection of renal injury associated with MetS and cardiovascular risk. In addition to each component, MetS per se influences the incidence and prognosis of renal injury and the odds ratios increased with the increase in the number of metabolic abnormalities. Hyperinsulinemia, activation of rennin-angiotensin-aldosterone system, increase of oxidative stress, and inflammatory cytokines are proposed to be the plausible biological link between MetS and CKD. Weight control, stick control of blood pressure, glucose, and lipids disorders may lead to lessening renal injury and even the subsequent CVD. PMID:21461396

  8. Fyn in Neurodevelopment and Ischemic Brain Injury

    PubMed Central

    Knox, Renatta; Jiang, Xiangning

    2016-01-01

    The Src Family kinases (SFKs) are nonreceptor protein tyrosine kinases that are implicated in many normal and pathological processes in the nervous system. The SFKs Fyn, Src, Yes, Lyn and Lck are expressed in the brain. This review will focus on Fyn, as Fyn mutant mice have striking phenotypes in the brain and Fyn has been shown to be involved in ischemic brain injury in adult rodents, and with our work, in neonatal animals. An understanding of Fyn’s role in neurodevelopment and disease will allow researchers to target pathological pathways while preserving protective ones. PMID:25720756

  9. DNA damage response in nephrotoxic and ischemic kidney injury.

    PubMed

    Yan, Mingjuan; Tang, Chengyuan; Ma, Zhengwei; Huang, Shuang; Dong, Zheng

    2016-10-27

    DNA damage activates specific cell signaling cascades for DNA repair, cell cycle arrest, senescence, and/or cell death. Recent studies have demonstrated DNA damage response (DDR) in experimental models of acute kidney injury (AKI). In cisplatin-induced AKI or nephrotoxicity, the DDR pathway of ATR/Chk2/p53 is activated and contributes to renal tubular cell apoptosis. In ischemic AKI, DDR seems more complex and involves at least the ataxia telangiectasia mutated (ATM), a member of the phosphatidylinositol 3-kinase-related kinase (PIKK) family, and p53; however, while ATM may promote DNA repair, p53 may trigger cell death. Targeting DDR for kidney protection in AKI therefore relies on a thorough elucidation of the DDR pathways in various forms of AKI.

  10. Influence of age and vitamin E on post-ischemic acute renal failure.

    PubMed

    Shimizu, Maria Heloisa Massola; Araujo, Magali; Borges, Sergio Murilo Mello; de Tolosa, Erasmo Magalhães C; Seguro, Antonio Carlos

    2004-05-01

    The aging process causes progressive deterioration in kidney structure and function. Aberrant generation of reactive oxygen species has been implicated in both age-related and ischemia-related tissue injury. Vitamin E (VE), one of the most powerful and effective exogenous antioxidants, prevents lipid peroxidation and protects against the effects of oxidative stress. The objective of this study was to determine the influence of age and VE on post-ischemic acute renal failure (ARF). Young adult, middle-aged and aged male Wistar rats were maintained on three different 30-day diets: Normal, VE absent and VE supplemented. On day 30, urinary protein and serum cholesterol and VE were measured. On day 31, rats were subjected to 60' clamping of the left renal artery plus right nephrectomy. Inulin clearance (InCl) was performed 48 h after renal ischemia. Malondialdehyde (MDA) was measured in the cortex of normal and 48-h post-ischemic kidneys. Urinary protein and serum cholesterol were higher in aged rats than in other rats. With aging, InCl decreased progressively. Vitamin E deficiency aggravated ARF. In middle-aged and aged rats, VE supplementation protected against ARF. In the absence of VE, MDA increased with age. In conclusion, our data suggest that ARF becomes more severe with age and that ischemia/reperfusion injury is exacerbated when antioxidant-scavenging ability of the kidney is impaired by VE deficiency. Supplementation with VE is essential for protecting aging kidneys against ischemic ARF.

  11. Unilateral Renal Ischemia as a Model of Acute Kidney Injury and Renal Fibrosis in Cats.

    PubMed

    Schmiedt, C W; Brainard, B M; Hinson, W; Brown, S A; Brown, C A

    2016-01-01

    The objectives of this study were to define the acute and chronic effects of 1-hour unilateral in vivo renal ischemia on renal function and histology in cats. Twenty-one adult purpose-bred research cats were anesthetized, and 1 kidney underwent renal artery and vein occlusion for 1 hour. Serum creatinine and urea concentrations, urine protein:creatinine ratio, urine-specific gravity, glomerular filtration rate, hematocrit, platelet concentration and function, and white blood cell count were measured at baseline and variable time points after ischemia. Renal histopathology was evaluated on days 3, 6, 12, 21, 42, and 70 postischemia; changes in smooth muscle actin and interstitial collagen were examined. Following ischemia, whole animal glomerular filtration rate was significantly reduced (57% of baseline on day 6; P < .05). At the early time points, the ischemic kidneys exhibited severe acute epithelial necrosis accompanied by evidence of regeneration of tubules predominantly within the corticomedullary junction. At later periods, postischemic kidneys had evidence of tubular atrophy and interstitial inflammation with significantly more smooth muscle actin and interstitial collagen staining and interstitial fibrosis when compared with the contralateral control kidneys. This study characterizes the course of ischemic acute kidney injury in cats and demonstrates that ischemic acute kidney injury triggers chronic fibrosis, interstitial inflammation, and tubular atrophy in feline kidneys. These late changes are typical of those observed in cats with naturally occurring chronic kidney disease.

  12. Ischemic Postconditioning and Subanesthetic S(+)-Ketamine Infusion: Effects on Renal Function and Histology in Rats

    PubMed Central

    de Resende, Marco A. C.; Pantoja, Alberto V.; Barcellos, Bruno M.; Reis, Eduardo P.; Consolo, Thays D.; Módolo, Renata P.; Domingues, Maria A. C.; Assad, Alexandra R.; Cavalcanti, Ismar L.; Castiglia, Yara M. M.; Módolo, Norma S. P.

    2015-01-01

    Background. Ischemic postconditioning (IP) in renal Ischemia reperfusion injury (IRI) models improves renal function after IRI. Ketamine affords significant benefits against IRI-induced acute kidney injury (AKI). The present study investigated the effects of IP and IP associated with subanesthetic S(+)-ketamine in ischemia-reperfusion-induced AKI. Methods. Forty-one Wistar rats were randomized into four groups: CG (10), control; KG (10), S(+)-ketamine infusion; IPG (10), IP; and KIPG (11), S(+)-ketamine infusion + IP. All rats underwent right nephrectomy. IRI and IP were induced only in IPG and KIPG by left kidney arterial occlusion for 30 min followed by reperfusion for 24 h. Complete reperfusion was preceded by three cycles of 2 min of reocclusion followed by 2 min of reperfusion. Renal function was assessed by measuring serum neutrophil gelatinase-associated lipocalin (NGAL), creatinine, and blood urea nitrogen (BUN). Tubular damage was evaluated by renal histology. Results. Creatinine and BUN were significantly increased. Severe tubular injury was only observed in the groups with IRI (IPG and KIPG), whereas no injury was observed in CG or KG. No significant differences were detected between IPG and KIPG. Conclusions. No synergic effect of the use of subanesthetic S(+)-ketamine and IP on AKI was observed in this rat model. PMID:26413552

  13. Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus.

    PubMed

    Lejay, Anne; Fang, Fei; John, Rohan; Van, Julie A D; Barr, Meredith; Thaveau, Fabien; Chakfe, Nabil; Geny, Bernard; Scholey, James W

    2016-02-01

    Ischemia/reperfusion, which is characterized by deficient oxygen supply and subsequent restoration of blood flow, can cause irreversible damages to tissue. Mechanisms contributing to the pathogenesis of ischemia reperfusion injury are complex, multifactorial and highly integrated. Extensive research has focused on increasing organ tolerance to ischemia reperfusion injury, especially through the use of ischemic conditioning strategies. Of morbidities that potentially compromise the protective mechanisms of the heart, diabetes mellitus appears primarily important to study. Diabetes mellitus increases myocardial susceptibility to ischemia reperfusion injury and also modifies myocardial responses to ischemic conditioning strategies by disruption of intracellular signaling responsible for enhancement of resistance to cell death. The purpose of this review is twofold: first, to summarize mechanisms underlying ischemia reperfusion injury and the signal transduction pathways underlying ischemic conditioning cardioprotection; and second, to focus on diabetes mellitus and mechanisms that may be responsible for the lack of effect of ischemic conditioning strategies in diabetes.

  14. Increased hematocrit mitigates ischemic renal damage in the splenectomized dog.

    PubMed

    Bell, R D; Mandal, A K

    1989-03-01

    Splenectomy (SPLX) prevents ischemic acute tubular necrosis (ATN) and peritubular capillary (PTC) congestion. This study attempts to reverse the protective effect of splenectomy in the ischemic model of ATN by increasing hematocrit before inducing ATN. Sham-SPLX, SPLX, and SPLX dogs given packed red cells to elevate hematocrit by 30% (SPLX-high hematocrit) received bilateral renal artery obstruction (RAO) for 120 minutes. Renal function was tested for 6 days post-RAO. Hematocrit in the SPLX-high hematocrit group was greater (p less than .05) than the SPLX-RAO group but did not differ from the non-SPLX group. All groups had different (p less than .05) serum creatinine levels for 48 hours post-RAO, and untreated animals differed from all the others at 144 hours. Serum creatinine was highest in untreated, lowest in SPLX-high hematocrit, and intermediate in noninfused SPLX animals. The same pattern was observed in blood urea nitrogen, creatinine clearance and renal histopathology. Fractional excretion of sodium in the SPLX groups was six times that in the intact animals (p less than .05), irrespective of hematocrit level. We conclude that increased hematocrit is protective in ischemic ATN, and does not promote PTC congestion or ATN in the SPLX animal. In addition, the protective effect of splenectomy may be mediated, in part, by mechanism(s) that alter sodium transport or osmolar excretion.

  15. Xanthine oxidase inhibition attenuates ischemic-reperfusion lung injury

    SciTech Connect

    Lynch, M.J.; Grum, C.M.; Gallagher, K.P.; Bolling, S.F.; Deeb, G.M.; Morganroth, M.L.

    1988-05-01

    Ischemic-reperfusion lung injury is a factor potentially limiting the usefulness of distant organ procurement for heart-lung transplantation. Toxic oxygen metabolites are considered a major etiologic factor in reperfusion injury. Although oxygen-free radicals may be generated by many mechanisms, we investigated the role of xanthine oxidase in this injury process by using lodoxamide, a xanthine oxidase inhibitor, to inhibit ischemic-reperfusion injury in an isolated rat lung model. Isolated rat lungs were perfused with physiologic salt solution (PSS) osmotically stabilized with Ficoll until circulating blood elements were nondetectable in the pulmonary venous effluent. Lungs were rendered ischemic by interrupting ventilation and perfusion for 2 hr at 37/sup 0/C. After the ischemic interval, the lungs were reperfused with whole blood and lung injury was determined by measuring the accumulation of /sup 125/I-bovine serum albumin in lung parenchyma and alveolar lavage fluid as well as by gravimetric measurements. Lung effluent was collected immediately pre- and postischemia for analysis of uric acid by high-pressure liquid chromatography. Lodoxamide (1 mM) caused significant attenuation of postischemic lung injury. Uric acid levels in the lung effluent confirmed inhibition of xanthine oxidase. Protection from injury was not complete, however, implying that additional mechanisms may contribute to ischemic-reperfusion injury in the lung.

  16. Poly-IC preconditioning protects against cerebral and renal ischemia-reperfusion injury.

    PubMed

    Packard, Amy E B; Hedges, Jason C; Bahjat, Frances R; Stevens, Susan L; Conlin, Michael J; Salazar, Andres M; Stenzel-Poore, Mary P

    2012-02-01

    Preconditioning induces ischemic tolerance, which confers robust protection against ischemic damage. We show marked protection with polyinosinic polycytidylic acid (poly-IC) preconditioning in three models of murine ischemia-reperfusion injury. Poly-IC preconditioning induced protection against ischemia modeled in vitro in brain cortical cells and in vivo in models of brain ischemia and renal ischemia. Further, unlike other Toll-like receptor (TLR) ligands, which generally induce significant inflammatory responses, poly-IC elicits only modest systemic inflammation. Results show that poly-IC is a new powerful prophylactic treatment that offers promise as a clinical therapeutic strategy to minimize damage in patient populations at risk of ischemic injury.

  17. Bone Fracture Exacerbates Murine Ischemic Cerebral Injury

    PubMed Central

    Degos, Vincent; Maze, Mervyn; Vacas, Susana; Hirsch, Jan; Guo, Yi; Shen, Fanxia; Jun, Kristine; van Rooijen, Nico; Gressens, Pierre; Young, William L.; Su, Hua

    2014-01-01

    Background Bone fracture increases alarmins and pro-inflammatory cytokines in the blood, and provokes macrophage infiltration and pro-inflammatory cytokine expression in the hippocampus. We recently reported that stroke is an independent risk factor after bone surgery for adverse outcome, the impact of bone fracture on stroke outcome is unknown. We tested the hypothesis that bone fracture, shortly after ischemic stroke, enhances stroke-related injuries by augmenting the neuroinflammatory response. Methods Tibia fracture (bone fracture) was induced in mice one day after permanent occlusion of the distal middle cerebral artery (stroke). High-mobility-group box chromosomal protein-1 (HMGB1) was tested to mimic the bone fracture effects. HMGB1 neutralizing antibody and clodrolip (macrophage depletion) were tested to attenuate the bone fracture effects. Neurobehavioral function (n=10), infarct volume, neuronal death, and macrophages/microglia-infiltration (n=6–7) were analyzed three days after. Results We found that mice with both stroke and bone fracture had larger infarct volumes (mean percentage of ipsilateral hemisphere±SD: 30±7% vs. 12±3%, n=6, P<0.001) more severe neurobehavioral dysfunction, and more macrophages/microglia in the peri-infarct region than mice with stroke only. Intraperitoneal injection of HMGB1 mimicked, whereas neutralizing HMGB1 attenuated, the bone fracture effects and the macrophage/microglia infiltration. Depleting macrophages with clodrolip also attenuated the aggravating effects of bone fracture on stroke lesion and behavioral dysfunction. Conclusions These novel findings suggest that bone fracture shortly after stroke enhances stroke injury via augmented inflammation through HMGB1 and macrophage/microglia infiltration. Interventions to modulate early macrophage/microglia activation could be therapeutic goals to limit the adverse consequences of bone fracture after stroke. PMID:23438676

  18. [Effects of mycophenolate mofetil in ischemic acute renal failure in rats].

    PubMed

    Chávez-Velásquez, M; Pons, H; Medina, M; Quiroz, Y; Parra, G; Herrera, J

    2007-01-01

    Mycophenolate mofetil (MMF) is a purine synthesis inhibitor commonly used as immunosupresive agent in transplantation. Kidney grafts undergo more or less prolonged cold ischemia after harvesting which results in variable degrees of ischemia reperfusion injury. To determine whether the inhibition of early events of cellular infiltration may influence the severity of damage induced by ischemic acute renal failure, 45 Sprague Dawley rats were given MMF at a dose of 20mg/kg/day (MMF-rats) by gavage 2 days before (pre-MMF group, n=15) or after (post-MMF group, n=15) clamping the left renal artery for 40 minutes followed by rigt-sided nephrectomy. (control group, n=15) received vehicle. Serum Creatinine (Screat) was measured daily in all groups. On the 2nd post-ischemic day Screat was significantly lower (p=0.001) in pre-MMF group compared with post-MMF group and control group (4 +/- 2mg/dl post-MMF group vs 1.7 +/- 1.2 mg/dl pre-MMF group, control group 5+/-2, p< 0.05). Kidney biopsies shown that the histologic damage was 54 +/- 28% in post-MMF group vs 34+/- 22% in pre-MMF group and 61 +/- 25% in control group (pre-MMF vs post-MMF, p NS). On the 5th day post-ischemic, MMF-rats showed more severe tubulointerstitial necrosis (pre-MMF group: 17 +/- 20 %, post-MMF group: 33 +/- 27%) than controls (4 +/- 5%). The severity of ATN was significantly higher in post-MMF group compared with controls (p=0.01). Tubulointersticial T-lymphocyte (T CD 5) and monocyte (ED 1) infiltration evaluated on the 2nd post-ischemic day was less intense in group I (T CD5: 3 +/- 3, ED 1: 10 +/- 9, cel/mm2) compared to post-MMF group (T CD 5: 10 +/- 4, ED 1: 55 +/- 40) and to control group (T CD 5: 10+/- 4, ED 1: 64 +/- 46). However, on the 5th post-ischemia day, ED 1 infiltration was significantly higher in post-MMF group (24 +/- 18%) compared to pre-MMF group (5 +/- 5, p NS) and also in pre-MMF group vs control group (31 +/- 33, p< 0.05). Our results suggest that MMF given before a renal ischemic

  19. Renal Cortical Lactate Dehydrogenase: A Useful, Accurate, Quantitative Marker of In Vivo Tubular Injury and Acute Renal Failure

    PubMed Central

    Zager, Richard A.; Johnson, Ali C. M.; Becker, Kirsten

    2013-01-01

    Studies of experimental acute kidney injury (AKI) are critically dependent on having precise methods for assessing the extent of tubular cell death. However, the most widely used techniques either provide indirect assessments (e.g., BUN, creatinine), suffer from the need for semi-quantitative grading (renal histology), or reflect the status of residual viable, not the number of lost, renal tubular cells (e.g., NGAL content). Lactate dehydrogenase (LDH) release is a highly reliable test for assessing degrees of in vitro cell death. However, its utility as an in vivo AKI marker has not been defined. Towards this end, CD-1 mice were subjected to graded renal ischemia (0, 15, 22, 30, 40, or 60 min) or to nephrotoxic (glycerol; maleate) AKI. Sham operated mice, or mice with AKI in the absence of acute tubular necrosis (ureteral obstruction; endotoxemia), served as negative controls. Renal cortical LDH or NGAL levels were assayed 2 or 24 hrs later. Ischemic, glycerol, and maleate-induced AKI were each associated with striking, steep, inverse correlations (r, −0.89) between renal injury severity and renal LDH content. With severe AKI, >65% LDH declines were observed. Corresponding prompt plasma and urinary LDH increases were observed. These observations, coupled with the maintenance of normal cortical LDH mRNA levels, indicated the renal LDH efflux, not decreased LDH synthesis, caused the falling cortical LDH levels. Renal LDH content was well maintained with sham surgery, ureteral obstruction or endotoxemic AKI. In contrast to LDH, renal cortical NGAL levels did not correlate with AKI severity. In sum, the above results indicate that renal cortical LDH assay is a highly accurate quantitative technique for gauging the extent of experimental acute ischemic and toxic renal injury. That it avoids the limitations of more traditional AKI markers implies great potential utility in experimental studies that require precise quantitation of tubule cell death. PMID:23825563

  20. The neuroprotective roles of BDNF in hypoxic ischemic brain injury

    PubMed Central

    CHEN, AI; XIONG, LI-JING; TONG, YU; MAO, MENG

    2013-01-01

    Hypoxia-ischemia (H/I) brain injury results in various degrees of damage to the body, and the immature brain is particularly fragile to oxygen deprivation. Hypothermia and erythropoietin (EPO) have long been known to be neuroprotective in ischemic brain injury. Brain-derived neurotrophic factor (BDNF) has recently been recognized as a potent modulator capable of regulating a wide repertoire of neuronal functions. This review was based on studies concerning the involvement of BDNF in the protection of H/I brain injury following a search in PubMed between 1995 and December, 2011. We initially examined the background of BDNF, and then focused on its neuroprotective mechanisms against ischemic brain injury, including its involvement in promoting neural regeneration/cognition/memory rehabilitation, angiogenesis within ischemic penumbra and the inhibition of the inflammatory process, neurotoxicity, epilepsy and apoptosis. We also provided a literature overview of experimental studies, discussing the safety and the potential clinical application of BDNF as a neuroprotective agent in the ischemic brain injury. PMID:24648914

  1. Suppression of Acid Sphingomyelinase Protects the Retina from Ischemic Injury

    PubMed Central

    Fan, Jie; Wu, Bill X.; Crosson, Craig E.

    2016-01-01

    Purpose Acid sphingomyelinase (ASMase) catalyzes the hydrolysis of sphingomyelin to ceramide and mediates multiple responses involved in inflammatory and apoptotic signaling. However, the role ASMase plays in ischemic retinal injury has not been investigated. The purpose of this study was to investigate how reduced ASMase expression impacts retinal ischemic injury. Methods Changes in ceramide levels and ASMase activity were determined by high performance liquid chromatography-tandem mass spectrometry analysis and ASMase activity. Retinal function and morphology were assessed by electroretinography (ERG) and morphometric analyses. Levels of TNF-α were determined by ELISA. Activation of p38 MAP kinase was assessed by Western blot analysis. Results In wild-type mice, ischemia produced a significant increase in retinal ASMase activity and ceramide levels. These increases were associated with functional deficits as measured by ERG analysis and significant structural degeneration in most retinal layers. In ASMase+/− mice, retinal ischemia did not significantly alter ASMase activity, and the rise in ceramide levels were significantly reduced compared to levels in retinas from wild-type mice. In ASMase+/− mice, functional and morphometric analyses of ischemic eyes revealed significantly less retinal degeneration than in injured retinas from wild-type mice. The ischemia-induced increase in retinal TNF-α levels was suppressed by the administration of the ASMase inhibitor desipramine, or by reducing ASMase expression. Conclusions Our results demonstrate that reducing ASMase expression provides partial protection from ischemic injury. Hence, the production of ceramide and subsequent mediators plays a role in the development of ischemic retinal injury. Modulating ASMase may present new opportunities for adjunctive therapies when treating retinal ischemic disorders. PMID:27571014

  2. Targeting MMP-2 to treat ischemic heart injury.

    PubMed

    Hughes, Bryan G; Schulz, Richard

    2014-07-01

    Matrix metalloproteinase (MMPs) are long understood to be involved in remodeling of the extracellular matrix. However, over the past decade, it has become clear that one of the most ubiquitous MMPs, MMP-2, has numerous intracellular targets in cardiac myocytes. Notably, MMP-2 proteolyzes components of the sarcomere, and its intracellular activity contributes to ischemia-reperfusion injury of the heart. Together with the well documented role played by MMPs in the myocardial remodeling that occurs following myocardial infarction, this has led to great interest in targeting MMPs to treat cardiac ischemic injury. In this review we will describe the expanding understanding of intracellular MMP-2 biology, and how this knowledge may lead to improved treatments for ischemic heart injury. We also critically review the numerous preclinical studies investigating the effects of MMP inhibition in animal models of myocardial infarction and ischemia-reperfusion injury, as well as the recent clinical trials that are part of the effort to translate these results into clinical practice. Acknowledging the disappointing results of past clinical trials of MMP inhibitors for other diseases, we discuss the need for carefully designed preclinical and clinical studies to avoid mistakes that have been previously made. We conclude that inhibition of MMPs, and in particular MMP-2, shows promise as a therapy to prevent the progression from ischemic injury to heart failure. However, it is critical that the full breadth of MMP-2 biology be taken into account as such therapies are developed.

  3. A Double Blind Randomized Clinical Trial of Remote Ischemic Conditioning in Live Donor Renal Transplantation.

    PubMed

    Nicholson, Michael L; Pattenden, Clare J; Barlow, Adam D; Hunter, James P; Lee, Gwyn; Hosgood, Sarah A

    2015-08-01

    Ischemic conditioning involves the delivery of short cycles of reversible ischemic injury in order to induce protection against subsequent more prolonged ischemia. This randomized controlled trial was designed to determine the safety and efficacy of remote ischemic conditioning (RC) in live donor kidney transplantation.This prospective randomized clinical trial, 80 patients undergoing live donor kidney transplantation were randomly assigned in a 1:1 ratio to either RC or to a control group. RC consisted of cycles of lower limb ischemia induced by an arterial tourniquet cuff placed around the patient's thigh. In the RC treatment group, the cuff was inflated to 200 mm Hg or systolic pressure +25 mm Hg for 4 cycles of 5 min ischemia followed by 5 min reperfusion. In the control group, the blood pressure cuff was inflated to 25 mm Hg. Patients and medical staff were blinded to treatment allocation. The primary end-point was renal function measured by estimated glomerular filtration rate (eGFR) at 1 and 3 months posttransplant.Donor and recipient demographics were similar in both groups (P < 0.05). There were no significant differences in eGFR at 1 month (control 52 ± 14 vs RC 54 ± 17 mL/min; P = 0.686) or 3 months (control 50 ± 14 vs RC 49 ± 18 mL/min; P = 0.678) between the control and RC treatment groups. The RC technique did not cause any serious adverse effects.RC, using the protocol described here, did not improve renal function after live donor kidney transplantation.

  4. Sex differences in ischemia/reperfusion-induced acute kidney injury are dependent on the renal sympathetic nervous system.

    PubMed

    Tanaka, Ryosuke; Tsutsui, Hidenobu; Ohkita, Mamoru; Takaoka, Masanori; Yukimura, Tokihito; Matsumura, Yasuo

    2013-08-15

    Resistance to ischemic acute kidney injury has been shown to be higher in female rats than in male rats. We found that renal venous norepinephrine overflow after reperfusion played important roles in the development of ischemic acute kidney injury. In the present study, we investigated whether sex differences in the pathogenesis of ischemic acute kidney injury were derived from the renal sympathetic nervous system using male and female Sprague-Dawley rats. Ischemia/reperfusion-induced acute kidney injury was achieved by clamping the left renal artery and vein for 45 min followed by reperfusion, 2 weeks after contralateral nephrectomy. Renal function was impaired after reperfusion in both male and female rats; however, renal dysfunction and histological damage were more severe in male rats than in female rats. Renal venous plasma norepinephrine levels after reperfusion were markedly elevated in male rats, but were not in female rats. These sex differences were eliminated by ovariectomy or treatment with tamoxifen, an estrogen receptor antagonist, in female rats. Furthermore, an intravenous injection of hexamethonium (25mg/kg), a ganglionic blocker, 5 min before ischemia suppressed the elevation in renal venous plasma norepinephrine levels after reperfusion, and attenuated renal dysfunction and histological damage in male rats, and ovariectomized and tamoxifen-treated female rats, but not in intact females. Thus, the present findings confirmed sex differences in the pathogenesis of ischemic acute kidney injury, and showed that the attenuation of ischemia/reperfusion-induced acute kidney injury observed in intact female rats may be dependent on depressing the renal sympathetic nervous system with endogenous estrogen.

  5. Protein methionine oxidation augments reperfusion injury in acute ischemic stroke

    PubMed Central

    Gu, Sean X.; Blokhin, Ilya O.; Wilson, Katina M.; Dhanesha, Nirav; Doddapattar, Prakash; Grumbach, Isabella M.; Chauhan, Anil K.; Lentz, Steven R.

    2016-01-01

    Reperfusion injury can exacerbate tissue damage in ischemic stroke, but little is known about the mechanisms linking ROS to stroke severity. Here, we tested the hypothesis that protein methionine oxidation potentiates NF-κB activation and contributes to cerebral ischemia/reperfusion injury. We found that overexpression of methionine sulfoxide reductase A (MsrA), an antioxidant enzyme that reverses protein methionine oxidation, attenuated ROS-augmented NF-κB activation in endothelial cells, in part, by protecting against the oxidation of methionine residues in the regulatory domain of calcium/calmodulin-dependent protein kinase II (CaMKII). In a murine model, MsrA deficiency resulted in increased NF-κB activation and neutrophil infiltration, larger infarct volumes, and more severe neurological impairment after transient cerebral ischemia/reperfusion injury. This phenotype was prevented by inhibition of NF-κB or CaMKII. MsrA-deficient mice also exhibited enhanced leukocyte rolling and upregulation of E-selectin, an endothelial NF-κB–dependent adhesion molecule known to contribute to neurovascular inflammation in ischemic stroke. Finally, bone marrow transplantation experiments demonstrated that the neuroprotective effect was mediated by MsrA expressed in nonhematopoietic cells. These findings suggest that protein methionine oxidation in nonmyeloid cells is a key mechanism of postischemic oxidative injury mediated by NF-κB activation, leading to neutrophil recruitment and neurovascular inflammation in acute ischemic stroke. PMID:27294204

  6. Nitrite-mediated renal vasodilatation is increased during ischemic conditions via cGMP-independent signaling.

    PubMed

    Liu, Ming; Zollbrecht, Christa; Peleli, Maria; Lundberg, Jon O; Weitzberg, Eddie; Carlström, Mattias

    2015-07-01

    The kidney is vulnerable to hypoxia, and substantial efforts have been made to ameliorate renal ischemic injury secondary to pathological conditions. Stimulation of the nitrate-nitrite-nitric oxide pathway is associated with renal and cardiovascular protection in disease models, but less is known about the vascular effects during renal ischemia. This study was aimed at investigating the vascular effects of nitrite in the kidney during normoxic and ischemic conditions. Using a multiwire myograph system, we assessed nitrite-mediated relaxation (10(-9)-10(-4)mol/L) in isolated and preconstricted renal interlobar arteries from C57BL/6 mice under normal conditions (pO2 13kPa; pH 7.4) and with low oxygen tension and low pH to mimic ischemia (pO2 3kPa; pH 6.6). Xanthine oxidoreductase expression was analyzed by quantitative PCR, and production of reactive nitrogen species was measured by DAF-FM DA fluorescence. During normoxia significant vasodilatation (15±3%) was observed only at the highest concentration of nitrite, which was dependent on NO-sGC-cGMP signaling. The vasodilatory responses to nitrite were greatly sensitized and enhanced during hypoxia with low pH, demonstrating significant dilatation (11±1%) already in the physiological range (10(-8)mol/L), with a maximum response of 27±2% at 10(-4) mol/L. In contrast to normoxia, and to that observed with a classical NO donor (DEA NONOate), this sensitization was independent of sGC-cGMP signaling. Moreover, inhibition of various enzymatic systems reported to reduce nitrite in other vascular beds, i.e., aldehyde oxidase (raloxifene), aldehyde dehydrogenase (cyanamide), and NO synthase (L-NAME), had no effect on the nitrite response. However, inhibition of xanthine oxidoreductase (XOR; febuxostat or allopurinol) abolished the sensitized response to nitrite during hypoxia and acidosis. In conclusion, in contrast to normoxia, nitrite exerted potent vasorelaxation during ischemic conditions already at physiological

  7. Respiratory Syncytial Virus Aggravates Renal Injury through Cytokines and Direct Renal Injury

    PubMed Central

    Zhai, Songhui; Hu, Lijuan; Zhong, Lin; Guo, Yannan; Dong, Liqun; Jia, Ruizhen; Wang, Zheng

    2016-01-01

    The purpose of this study was to investigate the relationship between renal injury and reinfection that is caused by respiratory syncytial virus (RSV) and to analyze the mechanism of renal injury. Rats were repeatedly infected with RSV on days 4, 8, 14, and 28, then sacrificed and examined on day 56 after the primary infection. Renal injury was examined by transmission electron microscopy and histopathology. The F protein of RSV was detected in the renal tissue by indirect immunofluorescence. Proteinuria and urinary glycosaminoglycans (GAGs), serum levels of albumin, urea nitrogen, and creatinine, secretion of cytokines, T lymphocyte population and subsets, and dendritic cell (DC) activation state were examined. The results showed that renal injury was more serious in the reinfection group than in the primary infection group. At a higher infection dose, 6 × 106 PFU, the renal injury was more severe, accompanied by higher levels of proteinuria and urinary GAGs excretion, and lower levels of serum albumin. Podocyte foot effacement was more extensive, and hyperplasia of mesangial cells and proliferation of mesangial matrix were observed. The maturation state of DCs was specific, compared with the primary infection. There was also a decrease in the ratio of CD4+ to CD8+ T lymphocytes, due to an increase in the percentage of CD8+ T lymphocytes and a decrease in the percentage of CD4+ T lymphocytes, and a dramatic increase in the levels of IL-6 and IL-17. In terms of the different reinfection times, the day 14 reinfection group yielded the most serious renal injury and the most significant change in immune function. RSV F protein was still expressed in the glomeruli 56 days after RSV infection. Altogether, these results reveal that RSV infection could aggravate renal injury, which might be due to direct renal injury caused by RSV and the inflammatory lesions caused by the anti-virus response induced by RSV. PMID:27747195

  8. Kidney Injury Molecule-1 Protects against Gα12 Activation and Tissue Damage in Renal Ischemia-Reperfusion Injury

    PubMed Central

    Ismail, Ola Z.; Zhang, Xizhong; Wei, Junjun; Haig, Aaron; Denker, Bradley M.; Suri, Rita S.; Sener, Alp; Gunaratnam, Lakshman

    2016-01-01

    Ischemic acute kidney injury is a serious untreatable condition. Activation of the G protein α12 (Gα12) subunit by reactive oxygen species is a major cause of tissue damage during renal ischemia-reperfusion injury. Kidney injury molecule-1 (KIM-1) is a transmembrane glycoprotein that is highly up-regulated during acute kidney injury, but the physiologic significance of this up-regulation is unclear. Here, we report for the first time that Kim-1 inhibits Gα12 activation and protects mice against renal ischemia-reperfusion injury. We reveal that Kim-1 physically interacts with and inhibits cellular Gα12 activation after inflammatory stimuli, including reactive oxygen species, by blocking GTP binding to Gα12. Compared with Kim-1+/+ mice, Kim-1−/− mice exhibited greater Gα12 and downstream Src activation both in primary tubular epithelial cells after in vitro stimulation with H2O2 and in whole kidneys after unilateral renal artery clamping. Finally, we show that Kim-1–deficient mice had more severe kidney dysfunction and tissue damage after bilateral renal artery clamping, compared with wild-type mice. Our results suggest that KIM-1 is an endogenous protective mechanism against renal ischemia-reperfusion injury through inhibition of Gα12. PMID:25759266

  9. Mechanisms of gender-linked ischemic brain injury

    PubMed Central

    Liu, Mingyue; Dziennis, Suzan; Hurn, Patricia D.; Alkayed, Nabil J.

    2010-01-01

    Biological sex is an important determinant of stroke risk and outcome. Women are protected from cerebrovascular disease relative to men, an observation commonly attributed to the protective effect of female sex hormones, estrogen and progesterone. However, sex differences in brain injury persist well beyond the menopause and can be found in the pediatric population, suggesting that the effects of reproductive steroids may not completely explain sexual dimorphism in stroke. We review recent advances in our understanding of sex steroids (estradiol, progesterone and testosterone) in the context of ischemic cell death and neuroprotection. Understanding the molecular and cell-based mechanisms underlying sex differences in ischemic brain injury will lead to a better understanding of basic mechanisms of brain cell death and is an important step toward designing more effective therapeutic interventions in stroke. PMID:19531872

  10. Ischemic postconditioning protects against ischemic brain injury by up-regulation of acid-sensing ion channel 2a

    PubMed Central

    Duanmu, Wang-sheng; Cao, Liu; Chen, Jing-yu; Ge, Hong-fei; Hu, Rong; Feng, Hua

    2016-01-01

    Ischemic postconditioning renders brain tissue tolerant to brain ischemia, thereby alleviating ischemic brain injury. However, the exact mechanism of action is still unclear. In this study, a rat model of global brain ischemia was subjected to ischemic postconditioning treatment using the vessel occlusion method. After 2 hours of ischemia, the bilateral common carotid arteries were blocked immediately for 10 seconds and then perfused for 10 seconds. This procedure was repeated six times. Ischemic postconditioning was found to mitigate hippocampal CA1 neuronal damage in rats with brain ischemia, and up-regulate acid-sensing ion channel 2a expression at the mRNA and protein level. These findings suggest that ischemic postconditioning up-regulates acid-sensing ion channel 2a expression in the rat hippocampus after global brain ischemia, which promotes neuronal tolerance to ischemic brain injury. PMID:27212927

  11. Renal Vein Injury During Percutaneous Nephrolithotomy Procedure

    PubMed Central

    Toffeq, Hewa Mahmood

    2016-01-01

    Abstract Background: Percutaneous nephrostolithotomy is an important approach for removing kidney stones. Puncturing and dilatation are two mandatory steps in percutaneous nephrolithotomy (PCNL). Uncommonly, during dilatation, the dilators can cause direct injury to the main renal vein or to their tributaries. Case Presentation: A 75-year-old female underwent PCNL for partial staghorn stone in the left kidney. During puncturing and dilatation, renal vein tributary was injured, and the nephroscope entered the renal vein and inferior vena cava, which was clearly recognized. Injection of contrast material through the nephroscope confirms the false pathway to the great veins (renal vein and inferior vena cava). Bleeding was controlled intraoperatively by applying Amplatz sheath over the abnormal tract, the procedure was continued and stones were removed. At the end of the procedure, a Foley catheter was used as a nephrostomy tube and its balloon was inflated inside the renal pelvis and pulled back with light pressure to the lower calix, which was the site of injury to the renal vein tributaries, then the nephrostomy tube was closed; by this we effectively controlled the bleeding. The patient remained hemodynamically stable; antegrade pyelography was done on the second postoperative day, there was distally patent ureter with no extravasation, neither contrast leak to renal vein, and was discharged home at third postoperative day. After 2 weeks, the nephrostomy tube was gradually removed in the operative room, without bleeding, on the next day, Double-J stent was removed. Conclusion: Direct injury and false tract to the renal vein tributaries during PCNL can result in massive hemorrhage, and can be treated conservatively in hemodynamically stable patients, using a nephrostomy catheter as a tamponade. PMID:27704054

  12. Loss of matrix metalloproteinase-8 is associated with worsened recovery after ischemic kidney injury.

    PubMed

    Basu, Rajit K; Donaworth, Emily; Siroky, Brian; Devarajan, Prasad; Wong, Hector R

    2015-04-01

    Acute kidney injury (AKI) leads to chronic kidney disease. The mechanisms involved with recovery from AKI are poorly understood and molecular mediators responsible for healing and restoration of kidney function are understudied. We previously discovered differential expression of matrix metalloproteinase-8 (MMP-8) mRNA and protein in patients with severe sepsis associated AKI versus sepsis without AKI. Here, we demonstrate the involvement of MMP-8 in purely ischemic AKI. Mice subjected to 30 min of bilateral renal ischemia developed increased plasma creatinine and MMP-8 expression within 24 h versus sham controls. After an initial surge and subsequent return toward baseline, both kidney MMP-8 expression and activity exhibited a late increase (Days 5-7 post-ischemia reperfusion) in mice subjected to AKI. Neutrophil infiltration of the kidney was significantly higher after AKI in wild-type mice than in MMP-8 null mice, starting at 4 days. Additionally, MMP-8 null mice subjected to AKI demonstrated a persistent histopathologic and functional injury and worsened health (greater overall weight loss) versus wild-type cohorts after seven days. Taken together, our findings suggest that MMP-8 is involved with restoration of baseline kidney health after ischemic kidney injury and that a potential mechanism involves the interaction of MMP-8 and neutrophil recruitment to the site of injury.

  13. Renal oxygenation in acute renal ischemia-reperfusion injury.

    PubMed

    Abdelkader, Amany; Ho, Julie; Ow, Connie P C; Eppel, Gabriela A; Rajapakse, Niwanthi W; Schlaich, Markus P; Evans, Roger G

    2014-05-01

    Tissue hypoxia has been demonstrated, in both the renal cortex and medulla, during the acute phase of reperfusion after ischemia induced by occlusion of the aorta upstream from the kidney. However, there are also recent clinical observations indicating relatively well preserved oxygenation in the nonfunctional transplanted kidney. To test whether severe acute kidney injury can occur in the absence of widespread renal tissue hypoxia, we measured cortical and inner medullary tissue Po2 as well as total renal O2 delivery (Do2) and O2 consumption (Vo2) during the first 2 h of reperfusion after 60 min of occlusion of the renal artery in anesthetized rats. To perform this experiment, we used a new method for measuring kidney Do2 and Vo2 that relies on implantation of fluorescence optodes in the femoral artery and renal vein. We were unable to detect reductions in renal cortical or inner medullary tissue Po2 during reperfusion after ischemia localized to the kidney. This is likely explained by the observation that Vo2 (-57%) was reduced by at least as much as Do2 (-45%), due to a large reduction in glomerular filtration (-94%). However, localized tissue hypoxia, as evidence by pimonidazole adduct immunohistochemistry, was detected in kidneys subjected to ischemia and reperfusion, particularly in, but not exclusive to, the outer medulla. Thus, cellular hypoxia, particularly in the outer medulla, may still be present during reperfusion even when reductions in tissue Po2 are not detected in the cortex or inner medulla.

  14. Optical spectroscopy for the detection of ischemic tissue injury

    DOEpatents

    Demos, Stavros; Fitzgerald, Jason; Troppmann, Christoph; Michalopoulou, Andromachi

    2009-09-08

    An optical method and apparatus is utilized to quantify ischemic tissue and/or organ injury. Such a method and apparatus is non-invasive, non-traumatic, portable, and can make measurements in a matter of seconds. Moreover, such a method and apparatus can be realized through optical fiber probes, making it possible to take measurements of target organs deep within a patient's body. Such a technology provides a means of detecting and quantifying tissue injury in its early stages, before it is clinically apparent and before irreversible damage has occurred.

  15. ISCHEMIC MODEL OF OPTIC NERVE INJURY

    PubMed Central

    Cioffi, George A

    2005-01-01

    Purpose It is proposed that the anterior optic nerve is specifically susceptible to microcirculatory compromise contributing to the development of glaucomatous optic neuropathy. Methods Ischemic optic neuropathy was induced by delivering endothelin-1 (ET-1) to the retrobulbar space in one eye of 12 primates for 6 to 12 months. Regional ganglion cell axonal sizes and densities were compared with the normal, contralateral eyes. Results Without changes of intraocular pressure, mean axonal density was significantly decreased in ET-1 eyes compared to controls (P = .03, paired t test). Two-way matched-pair analysis of variance showed a significant effect of ET-1 on overall axonal density (P < .0001). Among the animals with significant axonal loss, the mean axonal loss was 11.6%, and loss varied from 4% to 21%. Axonal loss was commonly localized within specific quadrants. Five animals were examined for preferential axonal size loss. As a group, there appears to be a tendency toward preferential large axonal loss, but the mean axonal loss of large and small axons did not meet significant differences (P = .1) However, examination of individual animals with significant loss shows significantly greater loss of large axons as compared to the small axons in three of the animals. Conclusions Chronic optic nerve ischemia causes demonstrable and localized damage of the optic nerve, without intraocular pressure elevation. There is preferential loss of large retinal ganglion cell axons in animals with significant axonal loss. Ischemia-induced focal axonal loss is similar to human glaucoma and may represent a differential regional vulnerability. PMID:17057819

  16. Oxidant Mechanisms in Renal Injury and Disease

    PubMed Central

    Ratliff, Brian B.; Abdulmahdi, Wasan; Pawar, Rahul

    2016-01-01

    Abstract Significance: A common link between all forms of acute and chronic kidney injuries, regardless of species, is enhanced generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) during injury/disease progression. While low levels of ROS and RNS are required for prosurvival signaling, cell proliferation and growth, and vasoreactivity regulation, an imbalance of ROS and RNS generation and elimination leads to inflammation, cell death, tissue damage, and disease/injury progression. Recent Advances: Many aspects of renal oxidative stress still require investigation, including clarification of the mechanisms which prompt ROS/RNS generation and subsequent renal damage. However, we currently have a basic understanding of the major features of oxidative stress pathology and its link to kidney injury/disease, which this review summarizes. Critical Issues: The review summarizes the critical sources of oxidative stress in the kidney during injury/disease, including generation of ROS and RNS from mitochondria, NADPH oxidase, and inducible nitric oxide synthase. The review next summarizes the renal antioxidant systems that protect against oxidative stress, including superoxide dismutase and catalase, the glutathione and thioredoxin systems, and others. Next, we describe how oxidative stress affects kidney function and promotes damage in every nephron segment, including the renal vessels, glomeruli, and tubules. Future Directions: Despite the limited success associated with the application of antioxidants for treatment of kidney injury/disease thus far, preventing the generation and accumulation of ROS and RNS provides an ideal target for potential therapeutic treatments. The review discusses the shortcomings of antioxidant treatments previously used and the potential promise of new ones. Antioxid. Redox Signal. 25, 119–146. PMID:26906267

  17. Nicotinamide restores the reduction of parvalbumin in cerebral ischemic injury.

    PubMed

    Koh, Phil-Ok

    2013-02-01

    The aim of this study investigated whether nicotinamide affects parvalbumin expression in focal cerebral ischemic injury. Rats were treated with vehicle or nicotinamide (500 mg/kg) 2 hr after middle cerebral artery occlusion (MCAO), and cerebral cortex tissues were collected 24 hr after MCAO. Nicotinamide significantly decreases the volume of infarct areas in the cerebral cortex. A proteomic approach revealed that MCAO induces decreases of parvalbumin levels, while nicotinamide treatment prevents injury-induced decreases in parvalbumin. RT-PCR and Western blot analyses demonstrated that nicotinamide restores injury-induced decreases in parvalbumin. Moreover, immunohistochemical staining confirmed that the numbers of parvalbumin-positive cells were decreased in vehicle-treated animals with MCAO, and that nicotinamide averted this decrease. In cultured hippocampal cells, nicotinamide treatment prevents the glutamate exposure-induced increase in intracellular Ca(2+) concentration and decrease in parvalbumin expression. These results suggest the fact that the maintenance of parvalbumin expression is mediated to the neuroprotective function of nicotinamide against ischemic brain injury.

  18. NLRP3 inflammasome knockout mice are protected against ischemic but not cisplatin-induced acute kidney injury.

    PubMed

    Kim, Hyun-Jung; Lee, Dong Won; Ravichandran, Kameswaran; O Keys, Daniel; Akcay, Ali; Nguyen, Quocan; He, Zhibin; Jani, Alkesh; Ljubanovic, Danica; Edelstein, Charles L

    2013-09-01

    We have demonstrated that caspase-1 is a mediator of both cisplatin-induced acute kidney injury (AKI) and ischemic AKI. As caspase-1 is activated in the inflammasome, we investigated the inflammasome in cisplatin-induced and ischemic AKI. Mice were injected with cisplatin or subjected to bilateral renal pedicle clamping. Immunoblot analysis of whole kidney after cisplatin-induced AKI revealed: 1) an increase in apoptosis-associated Speck-like protein containing a caspase recruitment domain (ASC), the major protein that complexes with nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain containing proteins (NLRP) 1 or 3 to form the inflammasome; 2) an increase in caspase-1 activity, caspase-5, and NLRP1, components of the NLRP1 inflammasome; and 3) a trend toward increased NLRP3. To determine whether the NLRP3 inflammasome plays an injurious role in cisplatin-induced AKI, we studied NLRP knockout (NLRP3(-/-)) mice. In cisplatin-induced AKI, the blood urea nitrogen, serum creatinine, acute tubular necrosis score, and tubular apoptosis score were not significantly decreased in NALP3(-/-) mice compared with wild-type mice. We have previously demonstrated the injurious role of caspase-1 in ischemic AKI. NLRP3, but not ASC or NLRP1, is increased in ischemic AKI. NLRP3(-/-) mice with ischemic AKI had significantly lower blood urea nitrogen, serum creatinine, and acute tubular necrosis and apoptosis scores than the wild-type controls. The difference in protection against cisplatin-induced AKI compared with ischemic AKI in NLRP3(-/-) mice was not explained by the differences in proinflammatory cytokines interleukin (IL)-1β, IL-6, chemokine (C-X-C motif) ligand 1, or tumor necrosis factor α. NLRP3 inflammasome is a mediator of ischemic AKI but not cisplatin-induced AKI, and further investigation of the NLRP1 inflammasome in cisplatin-induced AKI should prove interesting.

  19. Remote ischemic preconditioning as treatment for non-ischemic gastrointestinal disorders: Beyond ischemia-reperfusion injury

    PubMed Central

    Camara-Lemarroy, Carlos Rodrigo

    2014-01-01

    Common gastrointestinal diseases such as radiation enteritis (RE), acute pancreatitis, inflammatory bowel diseases (IBD) and drug-induced hepatotoxicity share pathophysiological mechanisms at the molecular level, mostly involving the activation of many pathways of the immune response, ultimately leading to tissue injury. Increased oxidative stress, inflammatory cytokine release, inflammatory cell infiltration and activation and the up-regulation of inflammatory transcription factors participate in the pathophysiology of these complex entities. Treatment varies in each specific disease, but at least in the cases of RE and IBD immunosuppressors are effective. However, full therapeutic responses are not always achieved. The pathophysiology of ischemia-reperfusion (IR) injury shares many of these mechanisms. Brief and repetitive periods of ischemia in an organ or limb have been shown to protect against subsequent major IR injury in distant organs, a phenomenon called remote ischemic preconditioning (RIP). This procedure has been shown to protect the gut, pancreas and liver by modulating many of the same inflammatory mechanisms. Since RIP is safe and tolerable, and has shown to be effective in some recent clinical trials, I suggest that RIP could be used as a physiologically relevant adjunct treatment for non-ischemic gastrointestinal inflammatory conditions. PMID:24707140

  20. Heat shock proteins and protection against ischemic injury.

    PubMed Central

    Dillmann, W H

    1999-01-01

    Heat shock proteins present a complex family of proteins exerting chaperone-like activities that are classified according to their molecular weight. We especially explored protective functions of inducible heat shock protein 70, the mitochondrial heat shock protein 60 and 10, and the small heat shock proteins HSP27 and alphaB-crystallin against ischemic, reoxygenation-mediated injury using transgenic animals and hearts under in vivo conditions and in isolated cardiac myocyte-derived cells using adenoviral vectors. We noted with great interest that differential protective effects are exerted by specific hsps. For example, alpha-B-crystallin and constitutive hsp70 markedly protect microtubular structure in cardiac myocytes from ischemia-induced injury. Inducible hsp70, hsp60 and hsp10 when coexpressed, and hsp27 and alphaB-crystallin have an overall protective effect against ischemic injury as determined by the release of enzymes like creatine kinase and LDH. We did not note inflammatory or immune responses elicited by the expression of hsps in transgenic animals and cardiac myocytes. The specific cell types in which hsps are expressed may contribute to the protective effect of hsps versus their inflammatory and immunogenic effects when expressed in other cell types. PMID:10231010

  1. Stem Cells for Ischemic Brain Injury: A Critical Review

    PubMed Central

    Burns, Terry C.; Verfaillie, Catherine M.; Low, Walter C.

    2014-01-01

    No effective therapy is currently available to promote recovery following ischemic stroke. Stem cells have been proposed as a potential source of new cells to replace those lost due to central nervous system injury, as well as a source of trophic molecules to minimize damage and promote recovery. We undertook a detailed review of data from recent basic science and preclinical studies to investigate the potential application of endogenous and exogenous stem cell therapies for treatment of cerebral ischemia. To date, spontaneous endogenous neurogenesis has been observed in response to ischemic injury, and can be enhanced via infusion of appropriate cytokines. Exogenous stem cells from multiple sources can generate neural cells that survive and form synaptic connections after transplantation in the stroke-injured brain. Stem cells from multiple sources cells also exhibit neuroprotective properties that may ameliorate stroke deficits. In many cases, functional benefits observed are likely independent of neural differentiation, though exact mechanisms remain poorly understood. Future studies of neuroregeneration will require the demonstration of function in endogenously born neurons following focal ischemia. Further, methods are currently lacking to definitively demonstrate the therapeutic effect of newly introduced neural cells. Increased plasticity following stroke may facilitate the functional integration of new neurons, but the loss of appropriate guidance cues and supporting architecture in the infarct cavity will likely impede the restoration of lost circuitry. As such careful investigation of the mechanisms underlying trophic benefits will be essential. Evidence to date suggest that continued development of stem cell therapies may ultimately lead to viable treatment options for ischemic brain injury. PMID:19399885

  2. Computational Biology: Modeling Chronic Renal Allograft Injury

    PubMed Central

    Stegall, Mark D.; Borrows, Richard

    2015-01-01

    New approaches are needed to develop more effective interventions to prevent long-term rejection of organ allografts. Computational biology provides a powerful tool to assess the large amount of complex data that is generated in longitudinal studies in this area. This manuscript outlines how our two groups are using mathematical modeling to analyze predictors of graft loss using both clinical and experimental data and how we plan to expand this approach to investigate specific mechanisms of chronic renal allograft injury. PMID:26284070

  3. The Role of Ghrelin in Neuroprotection after Ischemic Brain Injury

    PubMed Central

    Spencer, Sarah J.; Miller, Alyson A.; Andrews, Zane B.

    2013-01-01

    Ghrelin, a gastrointestinal peptide with a major role in regulating feeding and metabolism, has recently been investigated for its neuroprotective effects. In this review we discuss pre-clinical evidence suggesting ghrelin may be a useful therapeutic in protecting the brain against injury after ischemic stroke. Specifically, we will discuss evidence showing ghrelin administration can improve neuronal cell survival in animal models of focal cerebral ischemia, as well as rescue memory deficits. We will also discuss its proposed mechanisms of action, including anti-apoptotic and anti-inflammatory effects, and suggest ghrelin treatment may be a useful intervention after stroke in the clinic. PMID:24961317

  4. Myricetin and quercetin attenuate ischemic injury in glial cultures by different mechanisms

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have demonstrated that polyphenols from cinnamon and green tea reduce cell swelling and mitochondrial dysfunction in C6 glial cultures following ischemic injury. We tested the protective effects of the flavonoid polyphenols, myricetin and quercetin, on key features of ischemic injury. C6 cultures...

  5. Autophagy activation attenuates renal ischemia-reperfusion injury in rats

    PubMed Central

    Zhang, Ya-Li; Cui, Li-Yan; Yang, Shuo

    2015-01-01

    Ischemia-reperfusion (I/R) injury is a leading cause of acute kidney injury (AKI), which is a common clinical complication but lacks effective therapies. This study investigated the role of autophagy in renal I/R injury and explored potential mechanisms in an established rat renal I/R injury model. Forty male Wistar rats were randomly divided into four groups: Sham, I/R, I/R pretreated with 3-methyladenine (3-MA, autophagy inhibitor), or I/R pretreated with rapamycin (autophagy activator). All rats were subjected to clamping of the left renal pedicle for 45 min after right nephrectomy, followed by 24 h of reperfusion. The Sham group underwent the surgical procedure without ischemia. 3-MA and rapamycin were injected 15 min before ischemia. Renal function was indicated by blood urea nitrogen and serum creatinine. Tissue samples from the kidneys were scored histopathologically. Autophagy was indicated by light chain 3 (LC3), Beclin-1, and p62 levels and the number of autophagic vacuoles. Apoptosis was evaluated by the terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) method and expression of caspase-3. Autophagy was activated after renal I/R injury. Inhibition of autophagy by 3-MA before I/R aggravated renal injury, with worsened renal function, higher renal tissue injury scores, and more tubular apoptosis. In contrast, rapamycin pretreatment ameliorated renal injury, with improved renal function, lower renal tissue injury scores, and inhibited apoptosis based on fewer TUNEL-positive cells and lower caspase-3 expression. Our results demonstrate that autophagy could be activated during I/R injury and play a protective role in renal I/R injury. The mechanisms were involved in the regulation of several autophagy and apoptosis-related genes. Furthermore, autophagy activator may be a promising therapy for I/R injury and AKI in the future. PMID:25898836

  6. Cerebral Vascular Disease and Neurovascular Injury in Ischemic Stroke.

    PubMed

    Hu, Xiaoming; De Silva, T Michael; Chen, Jun; Faraci, Frank M

    2017-02-03

    The consequences of cerebrovascular disease are among the leading health issues worldwide. Large and small cerebral vessel disease can trigger stroke and contribute to the vascular component of other forms of neurological dysfunction and degeneration. Both forms of vascular disease are driven by diverse risk factors, with hypertension as the leading contributor. Despite the importance of neurovascular disease and subsequent injury after ischemic events, fundamental knowledge in these areas lag behind our current understanding of neuroprotection and vascular biology in general. The goal of this review is to address select key structural and functional changes in the vasculature that promote hypoperfusion and ischemia, while also affecting the extent of injury and effectiveness of therapy. In addition, as damage to the blood-brain barrier is one of the major consequences of ischemia, we discuss cellular and molecular mechanisms underlying ischemia-induced changes in blood-brain barrier integrity and function, including alterations in endothelial cells and the contribution of pericytes, immune cells, and matrix metalloproteinases. Identification of cell types, pathways, and molecules that control vascular changes before and after ischemia may result in novel approaches to slow the progression of cerebrovascular disease and lessen both the frequency and impact of ischemic events.

  7. A practical approach to remote ischemic preconditioning and ischemic preconditioning against myocardial ischemia/reperfusion injury

    PubMed Central

    Totzeck, Matthias; Hendgen-Cotta, Ulrike B.; French, Brent A.; Rassaf, Tienush

    2016-01-01

    Although urgently needed in clinical practice, a cardioprotective therapeutic approach against myocardial ischemia/ reperfusion injury remains to be established. Remote ischemic preconditioning (rIPC) and ischemic preconditioning (IPC) represent promising tools comprising three entities: the generation of a protective signal, the transfer of the signal to the target organ, and the response to the transferred signal resulting in cardioprotection. However, in light of recent scientific advances, many controversies arise regarding the efficacy of the underlying signaling. We here show methods for the generation of the signaling cascade by rIPC as well as IPC in a mouse model for in vivo myocardial ischemia/ reperfusion injury using highly reproducible approaches. This is accomplished by taking advantage of easily applicable preconditioning strategies compatible with the clinical setting. We describe methods for using laser Doppler perfusion imaging to monitor the cessation and recovery of perfusion in real time. The effects of preconditioning on cardiac function can also be assessed using ultrasound or magnetic resonance imaging approaches. On a cellular level, we confirm how tissue injury can be monitored using histological assessment of infarct size in conjunction with immunohistochemistry to assess both aspects in a single specimen. Finally, we outline, how the rIPC-associated signaling can be transferred to the target cell via conservation of the signal in the humoral (blood) compartment. This compilation of experimental protocols including a conditioning regimen comparable to the clinical setting should proof useful to both beginners and experts in the field of myocardial infarction, supplying information for the detailed procedures as well as troubleshooting guides. PMID:28066791

  8. Nitroxyl exacerbates ischemic cerebral injury and oxidative neurotoxicity.

    PubMed

    Choe, Chi-un; Lewerenz, Jan; Fischer, Gerry; Uliasz, Tracy F; Espey, Michael Graham; Hummel, Friedhelm C; King, Stephen Bruce; Schwedhelm, Edzard; Böger, Rainer H; Gerloff, Christian; Hewett, Sandra J; Magnus, Tim; Donzelli, Sonia

    2009-09-01

    Nitroxyl (HNO) donor compounds function as potent vasorelaxants, improve myocardial contractility and reduce ischemia-reperfusion injury in the cardiovascular system. With respect to the nervous system, HNO donors have been shown to attenuate NMDA receptor activity and neuronal injury, suggesting that its production may be protective against cerebral ischemic damage. Hence, we studied the effect of the classical HNO-donor, Angeli's salt (AS), on a cerebral ischemia/reperfusion injury in a mouse model of experimental stroke and on related in vitro paradigms of neurotoxicity. I.p. injection of AS (40 mumol/kg) in mice prior to middle cerebral artery occlusion exacerbated cortical infarct size and worsened the persistent neurological deficit. AS not only decreased systolic blood pressure, but also induced systemic oxidative stress in vivo indicated by increased isoprostane levels in urine and serum. In vitro, neuronal damage induced by oxygen-glucose-deprivation of mature neuronal cultures was exacerbated by AS, although there was no direct effect on glutamate excitotoxicity. Finally, AS exacerbated oxidative glutamate toxicity - that is, cell death propagated via oxidative stress in immature neurons devoid of ionotropic glutamate receptors. Taken together, our data indicate that HNO might worsen cerebral ischemia-reperfusion injury by increasing oxidative stress and decreasing brain perfusion at concentrations shown to be cardioprotective in vivo.

  9. Trans-system mechanisms against ischemic myocardial injury.

    PubMed

    Liu, Shu Q; Ma, Xin-Liang; Qin, Gangjian; Liu, Qingping; Li, Yan-Chun; Wu, Yu H

    2015-01-01

    A mammalian organism possesses a hierarchy of naturally evolved protective mechanisms against ischemic myocardial injury at the molecular, cellular, and organ levels. These mechanisms comprise regional protective processes, including upregulation and secretion of paracrine cell-survival factors, inflammation, angiogenesis, fibrosis, and resident stem cell-based cardiomyocyte regeneration. There are also interactive protective processes between the injured heart, circulation, and selected remote organs, defined as trans-system protective mechanisms, including upregulation and secretion of endocrine cell-survival factors from the liver and adipose tissue as well as mobilization of bone marrow, splenic, and hepatic cells to the injury site to mediate myocardial protection and repair. The injured heart and activated remote organs exploit molecular and cellular processes, including signal transduction, gene expression, cell proliferation, differentiation, migration, mobilization, and/or extracellular matrix production, to establish protective mechanisms. Both regional and trans-system cardioprotective mechanisms are mediated by paracrine and endocrine messengers and act in coordination and synergy to maximize the protective effect, minimize myocardial infarction, and improve myocardial function, ensuring the survival and timely repair of the injured heart. The concept of the trans-system protective mechanisms may be generalized to other organ systems-injury in one organ may initiate regional as well as trans-system protective responses, thereby minimizing injury and ensuring the survival of the entire organism. Selected trans-system processes may serve as core protective mechanisms that can be exploited by selected organs in injury. These naturally evolved protective mechanisms are the foundation for developing protective strategies for myocardial infarction and injury-induced disorders in other organ systems.

  10. RGS4 inhibits angiotensin II signaling and macrophage localization during renal reperfusion injury independent of vasospasm

    PubMed Central

    Pang, Paul; Jin, Xiaohua; Proctor, Brandon M.; Farley, Michelle; Roy, Nilay; Chin, Matthew S.; von Andrian, Ulrich H.; Vollmann, Elisabeth; Perro, Mario; Hoffman, Ryan J.; Chung, Joseph; Chauhan, Nikita; Mistri, Murti; Muslin, Anthony J.; Bonventre, Joseph V.; Siedlecki, Andrew M.

    2014-01-01

    Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 minute injury, although post-ischemic renal arteriolar diameter was equal to the wild type early after injury. A 10 minute unilateral injury was performed to study reperfusion without vasospasm. Eighteen hours after injury blood flow was decreased in the inner cortex of wild type mice with preservation of tubular architecture. Angiotensin II levels in the kidneys of wild type and transgenic mice were elevated in a sub-vasoconstrictive range 12 and 18 hours after injury. Angiotensin II stimulated pre-glomerular vascular smooth muscle cells (VSMC) to secrete the macrophage chemoattractant, RANTES; a process decreased by angiotensin II R2 (AT2) inhibition. However, RANTES increased when RGS4 expression was suppressed implicating Gα protein activation in an AT2-RGS4-dependent pathway. RGS4 function, specific to VSMC, was tested in a conditional VSMC-specific RGS4 knockout showing high macrophage density by T2 MRI compared to transgenic and non-transgenic mice after the 10 minute injury. Arteriolar diameter of this knockout was unchanged at successive time points after injury. Thus, RGS4 expression, specific to renal VSMC, inhibits angiotensin II-mediated cytokine signaling and macrophage recruitment during reperfusion, distinct from vasomotor regulation. PMID:25469849

  11. Rosiglitazone attenuates renal injury caused by hyperlipidemic pancreatitis

    PubMed Central

    Wang, Rui; Yan, Zhaopeng; Wu, Xingmao; Ji, Kaiqiang; Wang, Haiyuan; Zang, Bin

    2015-01-01

    Hyperlipidemic pancreatitis (HP) is a serious inflammatory disease with very high mortality and multiple organ injuries including renal injury. Rosiglitazone (Ros), an agonist of peroxisome proliferator activated receptor-γ (PPAR-γ), was reported to show a protective role against pancreatitis. However, whether Ros has an effect on renal injury caused by HP is not yet clear. In the present study, the function of Ros was explored using ELISA, RT-PCR, western blot, PAS staining and immunohistochemistry. Results of this study showed that Ros could inhibit the activation of NF-κB and MAPK P38 signaling pathways, relieve inflammatory response and inhibit cell apoptosis, thus attenuating renal injury caused by HP. This study suggested that Ros might be a promising drug for the treatment of renal injury caused by HP and also laid theoretical foundation for the development of renal injury treatment. PMID:26191125

  12. Elevated Plasma Homocysteine Level Increased the Risk of Early Renal Impairment in Acute Ischemic Stroke Patients.

    PubMed

    Chen, Jingjuan; Li, Guode; Xu, Zuohang; Zhang, Chengguo; Wang, Yukai; Xie, Haiqun; Shao, Yan; Peng, Lingmei; Lu, Jiancong; Yuan, Dahua

    2017-03-08

    Renal insufficiency is associated with the prognosis of acute ischemic stroke (AIS) and homocysteine (Hcy) levels. This study investigated the association between plasma Hcy levels and renal insufficiency in patients with AIS. A total of 987 patients with AIS who had been treated at the First People's Hospital of Foshan between 2011 and 2014 were retrospectively studied. Based on their cystatin C (Cys C) levels, the patients were divided into the normal renal function group (Cys C ≤ 1.25 mg/L) or the renal impairment group (Cys C > 1.25 mg/L). Multivariate regression analysis was applied to reveal the association between hyperhomocysteinemia (HHcy) and renal impairment. The renal impairment group showed more advanced age of onset, higher percentage of prior stroke and hypertension, higher baseline National Institute of Health Stroke Scale score, lower high-density lipoprotein cholesterol levels, and higher Hcy levels compared with the normal renal function group. A multivariate analysis revealed a relationship between early renal impairment and Hcy levels: an increase of Hcy by 1 μmol/L was associated with an increase of 12-18% of the risk of renal impairment among patients with AIS and HHcy. Patients with AIS and HHcy had a 2.42-3.51 fold increase of the risk of renal impairment compared with patients with normal Hcy level (P < 0.001). In conclusion, patients with stroke and HHcy could be more prone to renal impairment.

  13. Forebrain neurogenesis after focal Ischemic and traumatic brain injury.

    PubMed

    Kernie, Steven G; Parent, Jack M

    2010-02-01

    Neural stem cells persist in the adult mammalian forebrain and are a potential source of neurons for repair after brain injury. The two main areas of persistent neurogenesis, the subventricular zone (SVZ)-olfactory bulb pathway and hippocampal dentate gyrus, are stimulated by brain insults such as stroke or trauma. Here we focus on the effects of focal cerebral ischemia on SVZ neural progenitor cells in experimental stroke, and the influence of mechanical injury on adult hippocampal neurogenesis in models of traumatic brain injury (TBI). Stroke potently stimulates forebrain SVZ cell proliferation and neurogenesis. SVZ neuroblasts are induced to migrate to the injured striatum, and to a lesser extent to the peri-infarct cortex. Controversy exists as to the types of neurons that are generated in the injured striatum, and whether adult-born neurons contribute to functional restoration remains uncertain. Advances in understanding the regulation of SVZ neurogenesis in general, and stroke-induced neurogenesis in particular, may lead to improved integration and survival of adult-born neurons at sites of injury. Dentate gyrus cell proliferation and neurogenesis similarly increase after experimental TBI. However, pre-existing neuroblasts in the dentate gyrus are vulnerable to traumatic insults, which appear to stimulate neural stem cells in the SGZ to proliferate and replace them, leading to increased numbers of new granule cells. Interventions that stimulate hippocampal neurogenesis appear to improve cognitive recovery after experimental TBI. Transgenic methods to conditionally label or ablate neural stem cells are beginning to further address critical questions regarding underlying mechanisms and functional significance of neurogenesis after stroke or TBI. Future therapies should be aimed at directing appropriate neuronal replacement after ischemic or traumatic injury while suppressing aberrant integration that may contribute to co-morbidities such as epilepsy or

  14. Ouabain Contributes to Kidney Damage in a Rat Model of Renal Ischemia-Reperfusion Injury

    PubMed Central

    Villa, Luca; Buono, Roberta; Ferrandi, Mara; Molinari, Isabella; Benigni, Fabio; Bettiga, Arianna; Colciago, Giorgia; Ikehata, Masami; Messaggio, Elisabetta; Rastaldi, Maria Pia; Montorsi, Francesco; Salonia, Andrea; Manunta, Paolo

    2016-01-01

    Warm renal ischemia performed during partial nephrectomy has been found to be associated with kidney disease. Since endogenous ouabain (EO) is a neuro-endocrine hormone involved in renal damage, we evaluated the role of EO in renal ischemia-reperfusion injury (IRI). We measured plasma and renal EO variations and markers of glomerular and tubular damage (nephrin, KIM-1, Kidney-Injury-Molecule-1, α1 Na-K ATPase) and the protective effect of the ouabain inhibitor, rostafuroxin. We studied five groups of rats: (1) normal; (2) infused for eight weeks with ouabain (30 µg/kg/day, OHR) or (3) saline; (4) ouabain; or (5) saline-infused rats orally treated with 100 µg/kg/day rostafuroxin for four weeks. In group 1, 2–3 h after IRI, EO increased in ischemic kidneys while decreased in plasma. Nephrin progressively decreased and KIM-1 mRNA increased starting from 24 h. Ouabain infusion (group 2) increased blood pressure (from 111.7 to 153.4 mmHg) and ouabain levels in plasma and kidneys. In OHR ischemic kidneys at 120 h from IRI, nephrin, and KIM-1 changes were greater than those detected in the controls infused with saline (group 3). All these changes were blunted by rostafuroxin treatment (groups 4 and 5). These findings support the role of EO in IRI and suggest that rostafuroxin pre-treatment of patients before partial nephrectomy with warm ischemia may reduce IRI, particularly in those with high EO. PMID:27754425

  15. Ouabain Contributes to Kidney Damage in a Rat Model of Renal Ischemia-Reperfusion Injury.

    PubMed

    Villa, Luca; Buono, Roberta; Ferrandi, Mara; Molinari, Isabella; Benigni, Fabio; Bettiga, Arianna; Colciago, Giorgia; Ikehata, Masami; Messaggio, Elisabetta; Rastaldi, Maria Pia; Montorsi, Francesco; Salonia, Andrea; Manunta, Paolo

    2016-10-14

    Warm renal ischemia performed during partial nephrectomy has been found to be associated with kidney disease. Since endogenous ouabain (EO) is a neuro-endocrine hormone involved in renal damage, we evaluated the role of EO in renal ischemia-reperfusion injury (IRI). We measured plasma and renal EO variations and markers of glomerular and tubular damage (nephrin, KIM-1, Kidney-Injury-Molecule-1, α1 Na-K ATPase) and the protective effect of the ouabain inhibitor, rostafuroxin. We studied five groups of rats: (1) normal; (2) infused for eight weeks with ouabain (30 µg/kg/day, OHR) or (3) saline; (4) ouabain; or (5) saline-infused rats orally treated with 100 µg/kg/day rostafuroxin for four weeks. In group 1, 2-3 h after IRI, EO increased in ischemic kidneys while decreased in plasma. Nephrin progressively decreased and KIM-1 mRNA increased starting from 24 h. Ouabain infusion (group 2) increased blood pressure (from 111.7 to 153.4 mmHg) and ouabain levels in plasma and kidneys. In OHR ischemic kidneys at 120 h from IRI, nephrin, and KIM-1 changes were greater than those detected in the controls infused with saline (group 3). All these changes were blunted by rostafuroxin treatment (groups 4 and 5). These findings support the role of EO in IRI and suggest that rostafuroxin pre-treatment of patients before partial nephrectomy with warm ischemia may reduce IRI, particularly in those with high EO.

  16. Management of renal arterial injuries secondary to penetrating abdominal trauma.

    PubMed

    Dart, C H; Braitman, H E; Larlarb, S

    1979-07-01

    Renal vascular injuries are found relatively frequently after non-penetrating abdominal trauma. Penetrating renal arterial lesions occur much less frequently, involving less than 5 per cent of all penetrating arterial injuries. The association of bowel and other organ injuries makes diagnosis and treatment somewhat complex. Four cases of penetrating renal arterial injuries were seen from January 1972 to June 1976. All patients had multiple bowel lacerations. All arrived in the emergency room in hypovolemic shock. Two patients were resuscitated and successfully treated. Three patients had complete transections and 1 had major branch transection. Two patients had an associated parenchymal lesion. One patient had a through-and-through ureteropelvic injury. Preoperative arteriography was not done because of vascular instability. Renal arterial injuries were suspected by loss of psoas shadow on abdominal x-rays and by retroperitoneal hematomas. Retroperitoneal hematomas were explored to eliminate the possibility of renal injury. Both of the patients operated upon attained good renal function after surgical repairs. Postoperative renal scans and arteriograms showed initially decreased function, which returned toward normal. Repair of renal arterial lesions is possible with good functional result. Preoperative arteriography, renographic scan or excretory urography is not justified routinely because of the seriousness of commonly associated injuries.

  17. Ischemic Stroke Injury Is Mediated by Aberrant Cdk5

    PubMed Central

    Meyer, Douglas A.; Torres-Altoro, Melissa I.; Tan, Zhenjun; Tozzi, Alessandro; Di Filippo, Massimiliano; DiNapoli, Vincent; Plattner, Florian; Kansy, Janice W.; Benkovic, Stanley A.; Huber, Jason D.; Miller, Diane B.; Greengard, Paul; Calabresi, Paolo; Rosen, Charles L.

    2014-01-01

    Ischemic stroke is one of the leading causes of morbidity and mortality. Treatment options are limited and only a minority of patients receive acute interventions. Understanding the mechanisms that mediate neuronal injury and death may identify targets for neuroprotective treatments. Here we show that the aberrant activity of the protein kinase Cdk5 is a principal cause of neuronal death in rodents during stroke. Ischemia induced either by embolic middle cerebral artery occlusion (MCAO) in vivo or by oxygen and glucose deprivation in brain slices caused calpain-dependent conversion of the Cdk5-activating cofactor p35 to p25. Inhibition of aberrant Cdk5 during ischemia protected dopamine neurotransmission, maintained field potentials, and blocked excitotoxicity. Furthermore, pharmacological inhibition or conditional knock-out (CKO) of Cdk5 prevented neuronal death in response to ischemia. Moreover, Cdk5 CKO dramatically reduced infarctions following MCAO. Thus, targeting aberrant Cdk5 activity may serve as an effective treatment for stroke. PMID:24920629

  18. [Heavy metal poisoning and renal injury in children].

    PubMed

    Rong, Li-Ping; Xu, Yuan-Yuan; Jiang, Xiao-Yun

    2014-04-01

    Along with global environmental pollution resulting from economic development, heavy metal poisoning in children has become an increasingly serious health problem in the world. It can lead to renal injury, which tends to be misdiagnosed due to the lack of obvious or specific early clinical manifestations in children. Early prevention, diagnosis and intervention are valuable for the recovery of renal function and children's good health and growth. This paper reviews the mechanism of renal injury caused by heavy metal poisoning in children, as well as the clinical manifestations, diagnosis, and prevention and treatment of renal injury caused by lead, mercury, cadmium, and chromium.

  19. Importance of adenosine triphosphate in phospholipase A2-induced rabbit renal proximal tubule cell injury.

    PubMed Central

    Nguyen, V D; Cieslinski, D A; Humes, H D

    1988-01-01

    The pathogenesis of ischemic renal tubular cell injury involves a complex interaction of different processes, including membrane phospholipid alterations and depletion of high-energy phosphate stores. To assess the role of membrane phospholipid changes due to activation of phospholipases in renal tubule cell injury, suspensions enriched in rabbit renal proximal tubule segments were incubated with exogenous phospholipase A2 (PLA2). Exogenous PLA2 did not produce any significant change in various metabolic parameters reflective of cell injury in control nonhypoxic preparations despite a significant decrease in phosphatidylethanolamine (PE) and moderate increases in lysophosphatidylcholine (LPC) and lysophosphatidylethanolamine (LPE). In contrast, exogenous PLA2 treatment of hypoxic tubules resulted in a severe degree of cell injury, as demonstrated by marked declines in tubule K+ and ATP contents and significant decreases in tubule uncoupled respiratory rates, and was associated with significant phospholipid alterations, including marked declines in phosphatidylcholine (PC) and PE and significant rises in LPC, LPE, and free fatty acids (FFA). The injurious metabolic effects of exogenous PLA2 on hypoxic tubules were reversed by addition of ATP-MgCl2 to the tubules. The protective effect of ATP-MgCl2 was associated with increases in tubule PC and PE contents and declines in LPC, LPE, and FFA contents. These experiments thus indicate that an increase in exogenous PLA2 activity produces renal proximal tubule cell injury when cell ATP levels decline, at which point phospholipid resynthesis cannot keep pace with phospholipid degradation with resulting depletion of phospholipids and accumulation of lipid by-products. High-energy phosphate store depletion appears to be an important condition for exogenous PLA2 activity to induce renal tubule cell injury. PMID:3417866

  20. Fructokinase activity mediates dehydration-induced renal injury.

    PubMed

    Roncal Jimenez, Carlos A; Ishimoto, Takuji; Lanaspa, Miguel A; Rivard, Christopher J; Nakagawa, Takahiko; Ejaz, A Ahsan; Cicerchi, Christina; Inaba, Shinichiro; Le, MyPhuong; Miyazaki, Makoto; Glaser, Jason; Correa-Rotter, Ricardo; González, Marvin A; Aragón, Aurora; Wesseling, Catharina; Sánchez-Lozada, Laura G; Johnson, Richard J

    2014-08-01

    The epidemic of chronic kidney disease in Nicaragua (Mesoamerican nephropathy) has been linked with recurrent dehydration. Here we tested whether recurrent dehydration may cause renal injury by activation of the polyol pathway, resulting in the generation of endogenous fructose in the kidney that might subsequently induce renal injury via metabolism by fructokinase. Wild-type and fructokinase-deficient mice were subjected to recurrent heat-induced dehydration. One group of each genotype was provided water throughout the day and the other group was hydrated at night, after the dehydration. Both groups received the same total hydration in 24 h. Wild-type mice that received delayed hydration developed renal injury, with elevated serum creatinine, increased urinary NGAL, proximal tubular injury, and renal inflammation and fibrosis. This was associated with activation of the polyol pathway, with increased renal cortical sorbitol and fructose levels. Fructokinase-knockout mice with delayed hydration were protected from renal injury. Thus, recurrent dehydration can induce renal injury via a fructokinase-dependent mechanism, likely from the generation of endogenous fructose via the polyol pathway. Access to sufficient water during the dehydration period can protect mice from developing renal injury. These studies provide a potential mechanism for Mesoamerican nephropathy.

  1. Renal Dysfunction and Thrombolytic Therapy in Patients With Acute Ischemic Stroke

    PubMed Central

    Hao, Zilong; Yang, Chunsong; Liu, Ming; Wu, Bo

    2014-01-01

    Abstract Renal dysfunction is a prevalent comorbidity in acute ischemic stroke patients requiring thrombolytic therapy. However, the effect of renal dysfunction on the clinical outcome of this population remains controversial. This study aimed to evaluate the safety and effectiveness of thrombolytic therapy in acute stroke patients with renal dysfunction using a meta-analysis. We systematically searched PubMed and EMBASE for studies that evaluated the relationship between renal dysfunction and intravenous tissue plasminogen activator (tPA) in patients with acute ischemic stroke. Poor outcome (modified Rankin Scale ≥2), mortality, and symptomatic intracranial hemorrhage (ICH) and any ICH were analyzed. Fourteen studies were included (N = 53,553 patients). The mean age ranged from 66 to 75 years. The proportion of male participants was 49% to 74%. The proportion of renal dysfunction varied from 21.9% to 83% according to different definitions. Based on 9 studies with a total of 7796 patients, the meta-analysis did not identify a significant difference in the odds of poor outcome (odds ratio [OR] = 1.06; 95% confidence interval [CI]: 0.96–1.16; I2 = 44.5) between patients with renal dysfunction and those without renal dysfunction. Patients with renal dysfunction were more likely to die after intravenous thrombolysis (OR = 1.13; 95% CI: 1.05–1.21; I2 = 70.3). No association was observed between symptomatic ICH (OR = 1.02; 95% CI: 0.94–1.10; I2 = 0) and any ICH (OR = 1.07; 95% CI: 0.96–1.18; I2 = 25.8). Renal dysfunction does not increase the risk of poor outcome and ICH after stroke thrombolysis. Renal dysfunction should not be a contraindication for administration of intravenous thrombolysis to eligible patients. PMID:25526464

  2. Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat.

    PubMed

    Feng, Yangzheng; Paul, Ian A; LeBlanc, Michael H

    2006-03-31

    Nicotinamide reduces ischemic brain injury in adult rats. Can similar brain protection be seen in newborn animals? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of 8% oxygen. Nicotinamide 250 or 500 mg/kg was administered i.p. 5 min after reoxygenation, with a second dose given at 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere at 22 days following hypoxia. Nicotinamide 500 mg/kg reduced brain weight loss from 24.6 +/- 3.6% in vehicle pups (n = 28) to 11.9 +/- 2.6% in the treated pups (n = 29, P < 0.01), but treatment with 250 mg/kg did not affect brain weight. Nicotinamide 500 mg/kg also improved behavior in rotarod performance. Levels of 8-isoprostaglandin F2alpha measured in the cortex by enzyme immune assay 16 h after reoxygenation was 115 +/- 7 pg/g in the shams (n = 6), 175 +/- 17 pg/g in the 500 mg/kg nicotinamide treated (n = 7), and 320 +/- 79 pg/g in the vehicle treated pups (n = 7, P < 0.05 versus sham, P < 0.05 versus nicotinamide). Nicotinamide reduced the increase in caspase-3 activity caused by hypoxic ischemia (P < 0.01). Nicotinamide reduces brain injury in the neonatal rat, possibly by reducing oxidative stress and caspase-3 activity.

  3. Impedance spectroscopy for monitoring ischemic injury in the intestinal mucosa.

    PubMed

    González, César A; Villanueva, Cleva; Othman, Salah; Narváez, Raúl; Sacristán, Emilio

    2003-05-01

    This work evaluates the feasibility of monitoring ischemic injury in the gastrointestinal mucosa by impedance spectroscopy, using a minimally invasive intestinal catheter. The disruption of the intestinal mucosa plays a key role in the evolution of shock and is the 'motor of multiple organ failure'. Different technologies have been developed to monitor mucosal perfusion, oxygenation and/or ischemia, but no practical method exists to assess tissue damage, which may be crucial for preventing multiple organ failure. The experimental protocol of this study relied on an isobaric model of hypovolemic shock in 16 anaesthetized rabbits assigned to three groups: sham (n = 6), ischemia (n = 5) and ischemia + reperfusion (n = 5). Complex impedance spectra were recorded in the range of 0.05 to 300 kHz, with simultaneous measurements of tonometric pHi in the ileum every 30 min for 4 h. Impedance spectra were reproducible, and those of tissue under prolonged ischemia were clearly differentiable from those of normally perfused tissue. The dynamic changes in impedance did not correlate directly with either tissue perfusion or pHi, but instead correlated well with the duration of ischemia. It is concluded that impedance spectroscopy does indeed measure changes in tissue injury, and could be a very useful tool to guide therapy of patients in shock.

  4. Nicotinamide reduces hypoxic ischemic brain injury in the newborn rat

    PubMed Central

    Feng, Yangzheng; Paul, Ian A.; LeBlanc, Michael H.

    2011-01-01

    Nicotinamide reduces ischemic brain injury in adult rats. Can similar brain protection be seen in newborn animals? Seven-day-old rat pups had the right carotid artery permanently ligated followed by 2.5 h of 8% oxygen. Nicotinamide 250 or 500 mg/kg was administered i.p. 5 min after reoxygenation, with a second dose given at 6 h after the first. Brain damage was evaluated by weight deficit of the right hemisphere at 22 days following hypoxia. Nicotinamide 500 mg/kg reduced brain weight loss from 24.6 ± 3.6% in vehicle pups (n = 28) to 11.9 ± 2.6% in the treated pups (n = 29, P < 0.01), but treatment with 250 mg/kg did not affect brain weight. Nicotinamide 500 mg/kg also improved behavior in rotarod performance. Levels of 8-isoprostaglandin F2α measured in the cortex by enzyme immune assay 16 h after reoxygenation was 115 ± 7 pg/g in the shams (n = 6), 175 ± 17 pg/g in the 500 mg/kg nicotinamide treated (n = 7), and 320 ± 79 pg/g in the vehicle treated pups (n = 7, P < 0.05 versus sham, P < 0.05 versus nicotinamide). Nicotinamide reduced the increase in caspase-3 activity caused by hypoxic ischemia (P < 0.01). Nicotinamide reduces brain injury in the neonatal rat, possibly by reducing oxidative stress and caspase-3 activity. PMID:16533659

  5. Effect of melatonin on kidney cold ischemic preservation injury

    PubMed Central

    Aslaner, Arif; Gunal, Omer; Turgut, Hamdi Taner; Celik, Erdal; Yildirim, Umran; Demirci, Rojbin Karakoyun; Gunduz, Umut Riza; Calis, Hasan; Dogan, Sami

    2013-01-01

    Melatonin is a potent free radical scavenger of reactive oxygen species, nitric oxide synthase inhibitor and a well-known antioxidant secreted from pineal gland. This hormone has been reported to protect tissue from oxidative damage. In this study, we aim to investigate the effect of melatonin on kidney cold ischemia time when added to preservation solution. Thirty male Wistar albino rats were divided equally into three groups; Ringer Lactate (RL) solution, University of Wisconsin (UW) solution with and without melatonin. The serum Lactate Dehydrogenase (LDH) activities of the preservation solutions at 2nd, 24th, 36th, and 48th hours were determined. Tissue malondialdehyde (MDA) levels were also measured and a histological examination was performed at 48th hour. Melatonin that added to preservation solution prevented enzyme elevation and decreased lipid peroxidation in preservation solution when compared to the control group (p<0.05). The histological examination revealed that UW solution containing melatonin significantly prevented the kidney from pathological injury (p<0.05). Melatonin added to preservation solutions such as UW solution seemed to protect the tissue preserved effectively from cold ischemic injury for up to 48 hour. PMID:24179573

  6. Proteome analysis of acute kidney injury - Discovery of new predominantly renal candidates for biomarker of kidney disease.

    PubMed

    Malagrino, Pamella Araujo; Venturini, Gabriela; Yogi, Patrícia Schneider; Dariolli, Rafael; Padilha, Kallyandra; Kiers, Bianca; Gois, Tamiris Carneiro; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Salgueiro, Jéssica Silva; Girardi, Adriana Castello Costa; Titan, Silvia Maria de Oliveira; Krieger, José Eduardo; Pereira, Alexandre Costa

    2017-01-16

    The main bottleneck in studies aiming to identify novel biomarkers in acute kidney injury (AKI) has been the identification of markers that are organ and process specific. Here, we have used different tissues from a controlled porcine renal ischemia/reperfusion (I/R) model to identify new, predominantly renal biomarker candidates for kidney disease. Urine and serum samples were analyzed in pre-ischemia, ischemia (60min) and 4, 11 and 16h post-reperfusion, and renal cortex samples after 24h of reperfusion. Peptides were analyzed on the Q-Exactive™. In renal cortex proteome, we observed an increase in the synthesis of proteins in the ischemic kidney compared to the contralateral, highlighted by transcription factors and epithelial adherens junction proteins. Intersecting the set of proteins up- or down-regulated in the ischemic tissue with both serum and urine proteomes, we identified 6 proteins in the serum that may provide a set of targets for kidney injury. Additionally, we identified 49, being 4 predominantly renal, proteins in urine. As prove of concept, we validated one of the identified biomarkers, dipeptidyl peptidase IV, in a set of patients with diabetic nephropathy. In conclusion, we identified 55 systemic proteins, some of them predominantly renal, candidates for biomarkers of renal disease.

  7. The multifaceted role of the renal microvasculature during acute kidney injury

    PubMed Central

    Maringer, Katherine

    2016-01-01

    Pediatric acute kidney injury (AKI) represents a complex disease process for clinicians as it is multifactorial in cause and only limited treatment or preventatives are available. The renal microvasculature has recently been implicated in AKI as a strong therapeutic candidate involved in both injury and recovery. Significant progress has been made in the ability to study the renal microvasculature following ischemic AKI and its role in repair. Advances have also been made in elucidating cell–cell interactions and the molecular mechanisms involved in these interactions. The ability of the kidney to repair post AKI is closely linked to alterations in hypoxia, and these studies are elucidated in this review. Injury to the microvasculature following AKI plays an integral role in mediating the inflammatory response, thereby complicating potential therapeutics. However, recent work with experimental animal models suggests that the endothelium and its cellular and molecular interactions are attractive targets to prevent injury or hasten repair following AKI. Here, we review the cellular and molecular mechanisms of the renal endothelium in AKI, as well as repair and recovery, and potential therapeutics to prevent or ameliorate injury and hasten repair. PMID:26493067

  8. Rapid renal alpha-1 antitrypsin gene induction in experimental and clinical acute kidney injury.

    PubMed

    Zager, Richard A; Johnson, Ali C M; Frostad, Kirsten B

    2014-01-01

    Alpha-1-antitrypsin (AAT) is a hepatic stress protein with protease inhibitor activity. Recent evidence indicates that ischemic or toxic injury can evoke selective changes within kidney that resemble a hepatic phenotype. Hence, we tested the following: i) Does acute kidney injury (AKI) up-regulate the normally renal silent AAT gene? ii) Does rapid urinary AAT excretion result? And iii) Can AAT's anti-protease/anti-neutrophil elastase (NE) activity protect injured proximal tubule cells? CD-1 mice were subjected to ischemic or nephrotoxic (glycerol, maleate, cisplatin) AKI. Renal functional and biochemical assessments were made 4-72 hrs later. Rapidly following injury, 5-10 fold renal cortical and isolated proximal tubule AAT mRNA and protein increases occurred. These were paralleled by rapid (>100 fold) increases in urinary AAT excretion. AKI also induced marked increases in renal cortical/isolated proximal tubule NE mRNA. However, sharp NE protein levels declines resulted, which strikingly correlated (r, -0.94) with rising AAT protein levels (reflecting NE complexing by AAT/destruction). NE addition to HK-2 cells evoked ∼95% cell death. AAT completely blocked this NE toxicity, as well as Fe induced oxidant HK-2 cell attack. Translational relevance of experimental AAT gene induction was indicated by ∼100-1000 fold urinary AAT increases in 22 AKI patients (matching urine NGAL increases). We conclude: i) AKI rapidly up-regulates the renal cortical/proximal tubule AAT gene; ii) NE gene induction also results; iii) AAT can confer cytoprotection, potentially by blocking/reducing cytotoxic NE accumulation; and iv) marked increases in urinary AAT excretion in AKI patients implies clinical relevance of the AKI- AAT induction pathway.

  9. NADPH oxidase 4 deficiency increases tubular cell death during acute ischemic reperfusion injury

    PubMed Central

    Nlandu-Khodo, Stellor; Dissard, Romain; Hasler, Udo; Schäfer, Matthias; Pircher, Haymo; Jansen-Durr, Pidder; Krause, Karl Heinz; Martin, Pierre-Yves; de Seigneux, Sophie

    2016-01-01

    NADPH oxidase 4 (NOX4) is highly expressed in kidney proximal tubular cells. NOX4 constitutively produces hydrogen peroxide, which may regulate important pro-survival pathways. Renal ischemia reperfusion injury (IRI) is a classical model mimicking human ischemic acute tubular necrosis. We hypothesized that NOX4 plays a protective role in kidney IRI. In wild type (WT) animals subjected to IRI, NOX4 protein expression increased after 24 hours. NOX4 KO (knock-out) and WT littermates mice were subjected to IRI. NOX4 KO mice displayed decreased renal function and more severe tubular apoptosis, decreased Bcl-2 expression and higher histologic damage scores compared to WT. Activation of NRF2 was decreased in NOX4 KO mice in response to IRI. This was related to decreased KEAP1 oxidation leading to decreased NRF2 stabilization. This resulted in decreased glutathione levels. In vitro silencing of NOX4 in cells showed an enhanced propensity to apoptosis, with reduced expression of NRF2, glutathione content and Bcl-2 expression, similar to cells derived from NOX4 KO mice. Overexpression of a constitutively active form of NRF2 (caNRF2) in NOX4 depleted cells rescued most of this phenotype in cultured cells, implying that NRF2 regulation by ROS issued from NOX4 may play an important role in its anti-apoptotic property. PMID:27924932

  10. Heat shock (stress response) proteins and renal ischemia/reperfusion injury.

    PubMed

    Kelly, Katherine J

    2005-01-01

    Acute renal failure occurs frequently, may be increasing, carries an unacceptably high mortality, yet there is no specific treatment. The induction of stress response (heat shock) proteins (HSPs) is a highly conserved response that protects many cell types from diverse physiological and environmental stressors. HSP families of different sizes function as molecular chaperones that facilitate the folding of enzymes and other proteins into functional conformations. After injury, HSPs are believed to facilitate the restoration of normal function by assisting in the refolding of denatured proteins and degradation of irreparably damaged proteins and toxic metabolites, limitation of aggregation of damaged peptides and aiding appropriate folding of newly synthesized essential polypeptides. HSPs may also regulate apoptosis and immune functions. We have demonstrated protection from the functional deficits and histological evidence of experimental ischemic renal injury with heat stress 6 but not 48 h prior to ischemia. Limitation of the induction of HSPs (either with a short period of hyperthermia or pharmacologically) attenuated the protection observed. Other investigators have demonstrated a correlation between the levels of HSP25 and renal ischemic preconditioning in the mouse. Several pharmacological agents have been shown to increase HSP expression. Enhancement of these endogenous protective mechanisms has potential benefit in human disease.

  11. Contribution of apoptotic cell death to renal injury.

    PubMed

    Ortiz, A; Lorz, C; Justo, P; Catalán, M P; Egido, J

    2001-01-01

    Cell number abnormalities are frequent in renal diseases, and range from the hypercellularity of postinfectious glomerulonephritis to the cell depletion of chronic renal atrophy. Recent research has shown that apoptosis and its regulatory mechanisms contribute to cell number regulation in the kidney. The role of apoptosis ranges from induction to repair and progression of renal injury. Death ligands and receptors, such as TNF and FasL, proapoptotic and antiapoptotic Bcl-2 family members and caspases have all been shown to participate in apoptosis regulation in the course of renal injury. These proteins represent potential therapeutic targets, which should be further explored.

  12. Early peritoneal dialysis reduces lung inflammation in mice with ischemic acute kidney injury.

    PubMed

    Altmann, Chris; Ahuja, Nilesh; Kiekhaefer, Carol M; Andres Hernando, Ana; Okamura, Kayo; Bhargava, Rhea; Duplantis, Jane; Kirkbride-Romeo, Lara A; Huckles, Jill; Fox, Benjamin M; Kahn, Kashfi; Soranno, Danielle; Gil, Hyo-Wook; Teitelbaum, Isaac; Faubel, Sarah

    2017-03-16

    Although dialysis has been used in the care of patients with acute kidney injury (AKI) for over 50 years, very little is known about the potential benefits of uremic control on systemic complications of AKI. Since the mortality of AKI requiring renal replacement therapy (RRT) is greater than half in the intensive care unit, a better understanding of the potential of RRT to improve outcomes is urgently needed. Therefore, we sought to develop a technically feasible and reproducible model of RRT in a mouse model of AKI. Models of low- and high-dose peritoneal dialysis (PD) were developed and their effect on AKI, systemic inflammation, and lung injury after ischemic AKI was examined. High-dose PD had no effect on AKI, but effectively cleared serum IL-6, and dramatically reduced lung inflammation, while low-dose PD had no effect on any of these three outcomes. Both models of RRT using PD in AKI in mice reliably lowered urea in a dose-dependent fashion. Thus, use of these models of PD in mice with AKI has great potential to unravel the mechanisms by which RRT may improve the systemic complications that have led to increased mortality in AKI. In light of recent data demonstrating reduced serum IL-6 and improved outcomes with prophylactic PD in children, we believe that our results are highly clinically relevant.

  13. PROGRESSIVE RENAL VASCULAR PROLIFERATION AND INJURY IN OBESE ZUCKER RATS

    PubMed Central

    Iliescu, Radu; Chade, Alejandro R.

    2010-01-01

    Objective Obesity, an independent risk factor for chronic kidney disease, may induce renal injury by promoting inflammation. Inflammatory cytokines can induce neovascularization in different organs, including the kidneys. However, whether obesity triggers renal neovascularization and, if so, its effect on renal function has never been investigated. Methods Blood pressure, proteinuria and glomerular-filtration-rate (GFR) were measured in-vivo. Renal microvascular (MV) architecture was studied by 3D micro-CT in lean and obese Zucker rats (LZR and OZR, n=7/group) at 12, 22, and 32 weeks of age. Renal inflammation was assessed by quantifying interleukin (IL)-6, tumor-necrosis-factor (TNF)-alpha, and ED-1 expression, as renal fibrosis in trichrome-stained cross-sections. Results Mild inflammation and lower GFR was only observed in younger OZR, without renal fibrosis or changes in MV density. Interestingly, renal MV density increased in OZR at 32 weeks of age, accompanied by pronounced increase in renal IL-6 and TNF-alpha, ED-1+ cells, proteinuria, decreased GFR, and fibrosis. Conclusion This study shows increased renal cortical vascularization in experimental obesity, suggesting neovascularization as an evolving process as obesity progresses. Increased renal vascularization, possibly triggered by inflammation, may reflect an initially compensatory mechanism in obesity. However, increased inflammation and inflammatory-induced neovascularization may further promote renal injury as obesity advances. PMID:20536738

  14. Coenzyme Q10 ameliorates oxidative stress and prevents mitochondrial alteration in ischemic retinal injury.

    PubMed

    Lee, Dongwook; Kim, Keun-Young; Shim, Myoung Sup; Kim, Sang Yeop; Ellisman, Mark H; Weinreb, Robert N; Ju, Won-Kyu

    2014-04-01

    Coenzyme Q10 (CoQ10) acts by scavenging reactive oxygen species for protecting neuronal cells against oxidative stress in neurodegenerative diseases. We tested whether a diet supplemented with CoQ10 ameliorates oxidative stress and mitochondrial alteration, as well as promotes retinal ganglion cell (RGC) survival in ischemic retina induced by intraocular pressure elevation. A CoQ10 significantly promoted RGC survival at 2 weeks after ischemia. Superoxide dismutase 2 (SOD2) and heme oxygenase-1 (HO-1) expression were significantly increased at 12 h after ischemic injury. In contrast, the CoQ10 significantly prevented the upregulation of SOD2 and HO-1 protein expression in ischemic retina. In addition, the CoQ10 significantly blocked activation of astroglial and microglial cells in ischemic retina. Interestingly, the CoQ10 blocked apoptosis by decreasing caspase-3 protein expression in ischemic retina. Bax and phosphorylated Bad (pBad) protein expression were significantly increased in ischemic retina at 12 h. Interestingly, while CoQ10 significantly decreased Bax protein expression in ischemic retina, CoQ10 showed greater increase of pBad protein expression. Of interest, ischemic injury significantly increased mitochondrial transcription factor A (Tfam) protein expression in the retina at 12 h, however, CoQ10 significantly preserved Tfam protein expression in ischemic retina. Interestingly, there were no differences in mitochondrial DNA content among control- or CoQ10-treated groups. Our findings demonstrate that CoQ10 protects RGCs against oxidative stress by modulating the Bax/Bad-mediated mitochondrial apoptotic pathway as well as prevents mitochondrial alteration by preserving Tfam protein expression in ischemic retina. Our results suggest that CoQ10 may provide neuroprotection against oxidative stress-mediated mitochondrial alterations in ischemic retinal injury.

  15. Cardioprotective effects of grape seed proanthocyanidin against ischemic reperfusion injury.

    PubMed

    Sato, M; Maulik, G; Ray, P S; Bagchi, D; Das, D K

    1999-06-01

    There is increasing evidence to indicate cardioprotective effects of red wine consumption. Such cardioprotective properties of wine have been attributed to certain polyphenolic constituents of grapes. The purpose of this investigation was to examine whether proanthocyanidins derived from grape seeds possess cardioprotective properties. Rats were randomly divided into two groups: grape-seed proanthocyanidin was administered orally to one group of rats (100 mg/kg/day) for 3 weeks while the other group served as control. After 3 weeks, rats were killed, hearts excised, mounted on the perfusion apparatus and perfused with Krebs-Henseleit bicarbonate (KHB) buffer. After stabilization hearts were perfused in the working mode for baseline measurements of contractile functions. Hearts were then subjected to 30 min of global ischemia followed by 2 h of reperfusion. Coronary perfusates were collected to monitor malonaldehyde formation, a presumptive marker for oxidative stress development. At the end of each experiment, the heart was processed for infarct size determination. Peroxyl radical scavenging activity of proanthocyanidin was determined by examining its ability to remove peroxyl radical generated by 2,2'-azobis (2-amidinopropane) dihydrochloride while hydroxyl radical scavenging activity was tested with its ability to reduce 7-OH.-coumarin-3-carboxylic acid. The results of our study demonstrated that proanthocyanidin-fed animals were resistant to myocardial ischemia reperfusion injury as evidenced by improved recovery of post-ischemic contractile functions. The proanthocyanidin-fed group revealed reduced extent of myocardial infarction compared to the control group. Fluorimetric study demonstrated the antioxidant property of proanthocyanidin as judged by its ability to directly scavenge peroxyl radicals. Taken together, the results of this study showed that grape seed-proanthocyanidins possess a cardioprotective effect against ischemia reperfusion injury. Such

  16. Vitamin D ameliorates hepatic ischemic/reperfusion injury in rats.

    PubMed

    Seif, Ansam Aly; Abdelwahed, Doaa Mohamed

    2014-09-01

    Vitamin D, most commonly associated with the growth and remodeling of bone, has been shown to ameliorate ischemia/reperfusion injury (IRI) in some tissues, yet its underlying mechanism remains elusive. This study was designed to examine the protective effect of vitamin D, if any, against hepatic IRI in rats and the underlying mechanism involved. Adult female Wistar rats were randomly divided into control, sham-operated (sham), ischemia/reperfusion (I/R), and ischemic-reperfused vitamin D-treated (vit D) groups. Rats in the I/R and vit D groups were subjected to partial (70%) hepatic ischemia for 45 min, followed by 1 h of reperfusion. Vitamin D was given to rats orally in a dose of 500 IU/kg daily for 2 weeks before being subjected to I/R. Markers of liver damage, oxidative stress, inflammation and apoptosis were evaluated. Hepatic morphology was also examined. Vit D-treated rats had significantly lower serum levels of alanine aminotransferase, aspartate aminotransferase, and γ glutamyl transferase compared to rats in the I/R group. Also, vit D-treated rats showed a significant decrease in malondialdehyde, interleukin-1 beta, interleukin-6, tumor necrosis factor-α, nuclear factor κB, B cell leukemia/lymphoma 2-associated X protein, cytochrome c, and caspase-3 levels, with higher levels of glutathione peroxidase and B cell lymphoma 2 protein levels in liver tissues compared to I/R rats. Histological examination showed less damaged liver tissues with amelioration of apoptotic signs in the vit D group compared to the I/R group. In conclusion, vitamin D supplementation ameliorates hepatic IRI mostly by alleviating the inflammatory-apoptotic response mediated by the oxidative reperfusion injury insult.

  17. Role of Mitochondria in Neonatal Hypoxic-Ischemic Brain Injury

    PubMed Central

    Lu, Yujiao; Tucker, Donovan; Dong, Yan; Zhao, Ningjun; Zhuo, Xiaoying; Zhang, Quanguang

    2016-01-01

    Hypoxic-ischemia (HI) causes severe brain injury in neonates. It’s one of the leading causes to neonatal death and pediatric disability, resulting in devastating consequences, emotionally and economically, to their families. A series of events happens in this process, e.g. excitatory transmitter release, extracelluar Ca2+ influxing, mitochondrial dysfunction, energy failure, and neuron death. There are two forms of neuron death after HI insult: necrosis and apoptosis, apoptosis being the more prevalent form. Mitochondria handle a series of oxidative reactions, and yield energy for various cellular activities including the maintainance of membrane potential and preservation of intracellular ionic homeostasis. Therefore mitochondria play a critical role in neonatal neurodegeneration following HI, and mitochondrial dysfunction is the key point in neurodegenerative evolution. Because of this, exploring effective mitochondria-based clinical strategies is crucial. Today the only efficacious clinic treatment is hypothermia. However, due to its complex management, clinical complication and autoimmune decrease, its clinical application is limited. So far, many mitochondria-based strategies have been reported neuroprotective in animal models, which offers promise on neonatal therapy. However, since their clinical effectiveness are still unclear, plenty of studies need to be continued in the future. According to recent reports, two novel strategies have been proposed: methylene blue (MB) and melatonin. Although they are still in primary stage, the underlying mechanisms indicate promising clinical applications. Every neurological therapeutic strategy has its intrinsic deficit and limited efficacy, therefore in the long run, the perfect clinical therapy for hypoxic-ischemic neonatal brain injury will be based on the combination of multiple strategies. PMID:27441209

  18. Atherosclerotic ischemic renal disease. Diagnosis and prevalence in an hypertensive and/or uremic elderly population

    PubMed Central

    Coen, Giorgio; Calabria, Santo; Lai, Silvia; Moscaritolo, Eleonora; Nofroni, Italo; Ronga, Giuseppe; Rossi, Michele; Ventroni, Guido; Sardella, Daniela; Ferrannini, Michele; Zaccaria, Alvaro; Cianci, Rosario

    2003-01-01

    Background Atherosclerotic ischemic renal disease is a frequent cause of end-stage renal failure leading to dialysis among the elderly; Its prevalence is inferred from autopsy or retrospective arteriographic studies. This study has been conducted on 269 subjects over 50 with hypertension and/or CRF, unrelated to other known causes of renal disease. Methods All 269 patients were studied either by color-flow duplex sonography (n = 238) or by renal scintigraphy (n = 224), and 199 of the 269 patients were evaluated using both of these techniques. 40 patients, found to have renal artery stenosis (RAS), were subjected to 3D-contrast enhancement Magnetic Resonance Angiography (MRA) and/or Selective Angiography (SA). An additional 23 cases, negative both to scintigraphy and to ultrasound study, underwent renal angiography (MRA and/or SA). Results Color-duplex sonography, carried out in 238 patients, revealed 49 cases of RAS. MR or SA was carried out in 35 of these 49 patients, and confirmed the diagnosis in 33. Color-duplex sonography showed a PPV value of 94.3% and NPV of 87.0% while renal scintigraphy, carried out in 224 patients, had a PPV of 72.2% and a NPV of 29.4%. Patients with RAS showed a higher degree of renal insufficiency compared to non stenotic patients while there were no differences in proteinuria. RAS, based on color-duplex sonography studies, was present in 11% of patients in the age group 50–59, 18% in the 60–69 and 23% at age 70 and above. Conclusions A relatively large percentage of the elderly population with renal insufficiency and/or hypertension is affected by RAS and is at risk of developing end-stage renal failure. Color-duplex ultrasonography is a valid routine method of investigation of population at risk for renal artery stenosis. PMID:12622875

  19. Marine Compound Xyloketal B Reduces Neonatal Hypoxic-Ischemic Brain Injury

    PubMed Central

    Xiao, Ai-Jiao; Chen, Wenliang; Xu, Baofeng; Liu, Rui; Turlova, Ekaterina; Barszczyk, Andrew; Sun, Christopher Lf; Liu, Ling; Deurloo, Marielle; Wang, Guan-Lei; Feng, Zhong-Ping; Sun, Hong-Shuo

    2014-01-01

    Neonatal hypoxic-ischemic encephalopathy causes neurodegeneration and brain injury, leading to sensorimotor dysfunction. Xyloketal B is a novel marine compound isolated from a mangrove fungus Xylaria species (no. 2508) with unique antioxidant effects. In this study, we investigated the effects and mechanism of xyloketal B on oxygen-glucose deprivation-induced neuronal cell death in mouse primary cortical culture and on hypoxic-ischemic brain injury in neonatal mice in vivo. We found that xyloketal B reduced anoxia-induced neuronal cell death in vitro, as well as infarct volume in neonatal hypoxic-ischemic brain injury model in vivo. Furthermore, xyloketal B improved functional behavioral recovery of the animals following hypoxic-ischemic insult. In addition, xyloketal B significantly decreased calcium entry, reduced the number of TUNEL-positive cells, reduced the levels of cleaved caspase-3 and Bax proteins, and increased the level of Bcl-2 protein after the hypoxic-ischemic injury. Our findings indicate that xyloketal B is effective in models of hypoxia-ischemia and thus has potential as a treatment for hypoxic-ischemic brain injury. PMID:25546517

  20. DNA damage response in renal ischemia-reperfusion and ATP-depletion injury of renal tubular cells.

    PubMed

    Ma, Zhengwei; Wei, Qingqing; Dong, Guie; Huo, Yuqing; Dong, Zheng

    2014-07-01

    Renal ischemia-reperfusion leads to acute kidney injury (AKI) that is characterized pathologically by tubular damage and cell death, followed by tubular repair, atrophy and interstitial fibrosis. Recent work suggested the possible presence of DNA damage response (DDR) in AKI. However, the evidence is sketchy and the role and regulation of DDR in ischemic AKI remain elusive. In this study, we demonstrated the induction of phosphorylation of ATM, H2AX, Chk2 and p53 during renal ischemia-reperfusion in mice, suggesting DDR in kidney tissues. DDR was also induced in vitro during the recovery or "reperfusion" of renal proximal tubular cells (RPTCs) after ATP depletion. DDR in RPTCs was abrogated by supplying glucose to maintain ATP via glycolysis, indicating that the DDR depends on ATP depletion. The DDR was also suppressed by the general caspase inhibitor z-VAD and the overexpression of Bcl-2, supporting a role of apoptosis-associated DNA damage in the DDR. N-acetylcysteine (NAC), an antioxidant, suppressed the phosphorylation of ATM and p53 and, to a less extent, Chk2, but NAC increased the phosphorylation and nuclear foci formation of H2AX. Interestingly, NAC increased apoptosis, which may account for the observed H2AX activation. Ku55933, an ATM inhibitor, blocked ATM phosphorylation and ameliorated the phosphorylation of Chk2 and p53, but it increased H2AX phosphorylation and nuclear foci formation. Ku55933 also increased apoptosis in RPTCs following ATP depletion. The results suggest that DDR occurs during renal ischemia-reperfusion in vivo and ATP-depletion injury in vitro. The DDR is partially induced by apoptosis and oxidative stress-related DNA damage. ATM, as a sensor in the DDR, may play a cytoprotective role against tubular cell injury and death.

  1. Ischemia-Reperfusion Injury and Ischemic-Type Biliary Lesions following Liver Transplantation

    PubMed Central

    Cursio, Raffaele; Gugenheim, Jean

    2012-01-01

    Ischemia-reperfusion (I-R) injury after liver transplantation (LT) induces intra- and/or extrahepatic nonanastomotic ischemic-type biliary lesions (ITBLs). Subsequent bile duct stricture is a significant cause of morbidity and even mortality in patients who underwent LT. Although the pathogenesis of ITBLs is multifactorial, there are three main interconnected mechanisms responsible for their formation: cold and warm I-R injury, injury induced by cytotoxic bile salts, and immunological-mediated injury. Cold and warm ischemic insult can induce direct injury to the cholangiocytes and/or damage to the arterioles of the peribiliary vascular plexus, which in turn leads to apoptosis and necrosis of the cholangiocytes. Liver grafts from suboptimal or extended-criteria donors are more susceptible to cold and warm I-R injury and develop more easily ITBLs than normal livers. This paper, focusing on liver I-R injury, reviews the risk factors and mechanisms leading to ITBLs following LT. PMID:22530107

  2. A novel rodent model of severe renal ischemia reperfusion injury.

    PubMed

    Whalen, Henry; Shiels, Paul; Littlejohn, Marc; Clancy, Marc

    2016-11-01

    Renal ischemia reperfusion injury (IRI) is a major problem, currently without treatments in clinical use. This reflects the failure of animal models to mimic the severity of IRI observed in clinical practice. Most described models lack both the ability to inflict a permanent reduction in renal function and the sensitivity to demonstrate the protective efficacy of different therapies in vivo. To test novel cell-based therapies, we have developed a model of renal IRI in Fisher 344 rats. Animals were subjected to 120 min of unilateral warm ischemia, during which they underwent an intra-renal artery infusion of therapeutic agents or vehicle. At either 2 or 6 weeks post-surgery, animals underwent terminal glomerular filtration rate (GFR) studies by inulin clearance to most accurately quantify renal function. Harvested kidneys underwent histological analysis. Compared to sham operations, saline treated animals suffered a long-term reduction in GFR of ≈50%. Histology revealed short- and long-term disruption of renal architecture. Despite the injury severity, post-operative animal losses are <5%. This model produces a severe, consistent renal injury that closely replicates the pathological processes encountered in clinical medicine. Renal artery infusion mimics the route likely employed in clinical transplantation, where the renal artery is accessible. Inulin clearance characterizes GFR, allowing full assessment of therapeutic intervention. This model is useful for screening therapeutic agents prior to testing in a transplant model. This reduces animal numbers needed to test drugs for clinical transplantation and allows for refinement of dosing schedules.

  3. Vascular endothelial growth factor: an attractive target in the treatment of hypoxic/ischemic brain injury

    PubMed Central

    Guo, Hui; Zhou, Hui; Lu, Jie; Qu, Yi; Yu, Dan; Tong, Yu

    2016-01-01

    Cerebral hypoxia or ischemia results in cell death and cerebral edema, as well as other cellular reactions such as angiogenesis and the reestablishment of functional microvasculature to promote recovery from brain injury. Vascular endothelial growth factor is expressed in the central nervous system after hypoxic/ischemic brain injury, and is involved in the process of brain repair via the regulation of angiogenesis, neurogenesis, neurite outgrowth, and cerebral edema, which all require vascular endothelial growth factor signaling. In this review, we focus on the role of the vascular endothelial growth factor signaling pathway in the response to hypoxic/ischemic brain injury, and discuss potential therapeutic interventions. PMID:26981109

  4. Changing picture of renal cortical necrosis in acute kidney injury in developing country

    PubMed Central

    Prakash, Jai; Singh, Vijay Pratap

    2015-01-01

    Renal cortical necrosis (RCN) is characterized by patchy or diffuse ischemic destruction of all the elements of renal cortex resulting from significantly diminished renal arterial perfusion due to vascular spasm and microvascular injury. In addition, direct endothelial injury particularly in setting of sepsis, eclampsia, haemolytic uremic syndrome (HUS) and snake bite may lead to endovascular thrombosis with subsequent renal ischemia. Progression to end stage renal disease is a rule in diffuse cortical necrosis. It is a rare cause of acute kidney injury (AKI) in developed countries with frequency of 1.9%-2% of all patients with AKI. In contrast, RCN incidence is higher in developing countries ranging between 6%-7% of all causes of AKI. Obstetric complications (septic abortion, puerperal sepsis, abruptio placentae, postpartum haemorrhage and eclampsia) are the main (60%-70%) causes of RCN in developing countries. The remaining 30%-40% cases of RCN are caused by non-obstetrical causes, mostly due to sepsis and HUS. The incidence of RCN ranges from 10% to 30% of all cases of obstetric AKI compared with only 5% in non-gravid patients. In the developed countries, RCN accounts for 2% of all cases of AKI in adults and more than 20% of AKI during the third trimester of pregnancy. The reported incidence of RCN in obstetrical AKI varies between 18%-42.8% in different Indian studies. However, the overall incidence of RCN in pregnancy related AKI has decreased from 20%-30% to 5% in the past two decades in India. Currently RCN accounts for 3% of all causes of AKI. The incidence of RCN in obstetrical AKI was 1.44% in our recent study. HUS is most common cause of RCN in non-obstetrical group, while puerperal sepsis is leading cause of RCN in obstetric group. Because of the catastrophic sequelae of RCN, its prevention and aggressive management should always be important for the better renal outcome and prognosis of the patients. PMID:26558184

  5. Changing picture of renal cortical necrosis in acute kidney injury in developing country.

    PubMed

    Prakash, Jai; Singh, Vijay Pratap

    2015-11-06

    Renal cortical necrosis (RCN) is characterized by patchy or diffuse ischemic destruction of all the elements of renal cortex resulting from significantly diminished renal arterial perfusion due to vascular spasm and microvascular injury. In addition, direct endothelial injury particularly in setting of sepsis, eclampsia, haemolytic uremic syndrome (HUS) and snake bite may lead to endovascular thrombosis with subsequent renal ischemia. Progression to end stage renal disease is a rule in diffuse cortical necrosis. It is a rare cause of acute kidney injury (AKI) in developed countries with frequency of 1.9%-2% of all patients with AKI. In contrast, RCN incidence is higher in developing countries ranging between 6%-7% of all causes of AKI. Obstetric complications (septic abortion, puerperal sepsis, abruptio placentae, postpartum haemorrhage and eclampsia) are the main (60%-70%) causes of RCN in developing countries. The remaining 30%-40% cases of RCN are caused by non-obstetrical causes, mostly due to sepsis and HUS. The incidence of RCN ranges from 10% to 30% of all cases of obstetric AKI compared with only 5% in non-gravid patients. In the developed countries, RCN accounts for 2% of all cases of AKI in adults and more than 20% of AKI during the third trimester of pregnancy. The reported incidence of RCN in obstetrical AKI varies between 18%-42.8% in different Indian studies. However, the overall incidence of RCN in pregnancy related AKI has decreased from 20%-30% to 5% in the past two decades in India. Currently RCN accounts for 3% of all causes of AKI. The incidence of RCN in obstetrical AKI was 1.44% in our recent study. HUS is most common cause of RCN in non-obstetrical group, while puerperal sepsis is leading cause of RCN in obstetric group. Because of the catastrophic sequelae of RCN, its prevention and aggressive management should always be important for the better renal outcome and prognosis of the patients.

  6. Acute renal injury after partial hepatectomy

    PubMed Central

    Peres, Luis Alberto Batista; Bredt, Luis Cesar; Cipriani, Raphael Flavio Fachini

    2016-01-01

    Currently, partial hepatectomy is the treatment of choice for a wide variety of liver and biliary conditions. Among the possible complications of partial hepatectomy, acute kidney injury (AKI) should be considered as an important cause of increased morbidity and postoperative mortality. Difficulties in the data analysis related to postoperative AKI after liver resections are mainly due to the multiplicity of factors to be considered in the surgical patients, moreover, there is no consensus of the exact definition of AKI after liver resection in the literature, which hampers comparison and analysis of the scarce data published on the subject. Despite this multiplicity of risk factors for postoperative AKI after partial hepatectomy, there are main factors that clearly contribute to its occurrence. First factor relates to large blood losses with renal hypoperfusion during the operation, second factor relates to the occurrence of post-hepatectomy liver failure with consequent distributive circulatory changes and hepatorenal syndrome. Eventually, patients can have more than one factor contributing to post-operative AKI, and frequently these combinations of acute insults can be aggravated by sepsis or exposure to nephrotoxic drugs. PMID:27478539

  7. RGS4 inhibits angiotensin II signaling and macrophage localization during renal reperfusion injury independent of vasospasm.

    PubMed

    Pang, Paul; Jin, Xiaohua; Proctor, Brandon M; Farley, Michelle; Roy, Nilay; Chin, Matthew S; von Andrian, Ulrich H; Vollmann, Elisabeth; Perro, Mario; Hoffman, Ryan J; Chung, Joseph; Chauhan, Nikita; Mistri, Murti; Muslin, Anthony J; Bonventre, Joseph V; Siedlecki, Andrew M

    2015-04-01

    Vascular inflammation is a major contributor to the severity of acute kidney injury. In the context of vasospasm-independent reperfusion injury we studied the potential anti-inflammatory role of the Gα-related RGS protein, RGS4. Transgenic RGS4 mice were resistant to 25 min injury, although post-ischemic renal arteriolar diameter was equal to the wild type early after injury. A 10 min unilateral injury was performed to study reperfusion without vasospasm. Eighteen hours after injury, blood flow was decreased in the inner cortex of wild-type mice with preservation of tubular architecture. Angiotensin II levels in the kidneys of wild-type and transgenic mice were elevated in a sub-vasoconstrictive range 12 and 18 h after injury. Angiotensin II stimulated pre-glomerular vascular smooth muscle cells (VSMCs) to secrete the macrophage chemoattractant RANTES, a process decreased by angiotensin II R2 (AT2) inhibition. However, RANTES increased when RGS4 expression was suppressed implicating Gα protein activation in an AT2-RGS4-dependent pathway. RGS4 function, specific to VSMC, was tested in a conditional VSMC-specific RGS4 knockout showing high macrophage density by T2 MRI compared with transgenic and non-transgenic mice after the 10 min injury. Arteriolar diameter of this knockout was unchanged at successive time points after injury. Thus, RGS4 expression, specific to renal VSMC, inhibits angiotensin II-mediated cytokine signaling and macrophage recruitment during reperfusion, distinct from vasomotor regulation.

  8. CXCL16 regulates renal injury and fibrosis in experimental renal artery stenosis.

    PubMed

    Ma, Zhiheng; Jin, Xiaogao; He, Liqun; Wang, Yanlin

    2016-09-01

    Recent studies have shown that inflammation plays a critical role in the initiation and progression of hypertensive kidney disease, including renal artery stenosis. However, the signaling mechanisms underlying the induction of inflammation are poorly understood. We found that CXCL16 was induced in the kidney in a murine model of renal artery stenosis. To determine whether CXCL16 is involved in renal injury and fibrosis, wild-type and CXCL16 knockout mice were subjected to renal artery stenosis induced by placing a cuff on the left renal artery. Wild-type and CXCL16 knockout mice had comparable blood pressure at baseline. Renal artery stenosis caused an increase in blood pressure that was similar between wild-type and CXCL16 knockout mice. CXCL16 knockout mice were protected from RAS-induced renal injury and fibrosis. CXCL16 deficiency suppressed bone marrow-derived fibroblast accumulation and myofibroblast formation in the stenotic kidneys, which was associated with less expression of extracellular matrix proteins. Furthermore, CXCL16 deficiency inhibited infiltration of F4/80(+) macrophages and CD3(+) T cells in the stenotic kidneys compared with those of wild-type mice. Taken together, our results indicate that CXCL16 plays a pivotal role in the pathogenesis of renal artery stenosis-induced renal injury and fibrosis through regulation of bone marrow-derived fibroblast accumulation and macrophage and T-cell infiltration.

  9. Dephosphorylation of Ezrin as an Early Event in Renal Microvillar Breakdown and Anoxic Injury

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Cohn, Jonathan A.; Mandel, Lazaro J.

    1995-08-01

    Disruption of the renal proximal tubule (PT) brush border is a prominent early event during ischemic injury to the kidney. The molecular basis for this event is unknown. Within the brush border, ezrin may normally link the cytoskeleton to the cell plasma membrane. Anoxia causes ezrin to dissociate from the cytoskeleton and also causes many cell proteins to become dephosphorylated in renal PTs. This study examines the hypothesis that ezrin dephosphorylation accompanies and may mediate the anoxic disruption of the rabbit renal PT. During normoxia, 73 ±. 3% of the cytoskeleton-associated (Triton-insoluble) ezrin was phosphorylated, but 88 ± 6% of dissociated (Triton-soluble) ezrin was dephosphorylated. Phosphorylation was on serine/threonine residues, since ezrin was not detectable by an antibody against phosphotyrosine. After 60 min of anoxia, phosphorylation of total intracellular ezrin significantly decreased from 72 ± 2% to 21 ± 9%, and ezrin association with the cytoskeleton decreased from 91 ± 2% to 58 ± 2%. Calyculin A (1 μM), the serine/threonine phosphatase inhibitor, inhibited the dephosphorylation of ezrin during anoxia by 57% and also blocked the dissociation of ezrin from the cytoskeleton by 53%. Our results demonstrate that (i) the association of ezrin with the renal microvillar cytoskeleton is correlated with phosphorylation of ezrin serine/threonine residues and (ii) anoxia may cause disruption of the renal brush border by dephosphorylating ezrin and thereby dissociating the brush border membrane from the cytoskeleton.

  10. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents

    PubMed Central

    Eisenmann, Eric D.; Rorabaugh, Boyd R.; Zoladz, Phillip R.

    2016-01-01

    Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia–reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions. PMID:27199778

  11. Successful Nonoperative Management of High-Grade Blunt Renal Injuries

    PubMed Central

    Darwish, Oussama; Dang, Brian; Monda, John J.; Adsul, Prajakta; Syed, Johar; Siddiqui, Sameer A.

    2016-01-01

    Current management of high-grade blunt renal trauma favors a nonoperative approach when possible. We performed a retrospective study of high grade blunt renal injuries at our level I trauma center to determine the indications and success of nonoperative management (NOM). 47 patients with blunt grade IV or V injuries were identified between October 2004 and December 2013. Immediate operative patients (IO) were compared to nonoperatively managed (NOM). Of the 47 patients, 3 (6.4%) were IO and 44 (95.6%) NOM. IO patients had a higher heart rate on admission, 133 versus 100 in NOM (P = 0.01). IO patients had a higher rate of injury to the renal vein or artery (100%) compared to NOM group (18%) (P = 0.01). NOM failed in 3 of 44 patients (6.8%). Two required nonemergent nephrectomy and one required emergent exploration resulting in nephrectomy. Six NOM patients had kidney-related complications (13.6%). The renal salvage rate for the entire cohort was 87.2% and 93.2% for NOM. Nonoperative management for hemodynamically stable patients with high-grade blunt renal trauma is safe with a low risk of complications. Management decisions should consider hemodynamic status and visualization of active renal bleeding as well as injury grade in determining operative management. PMID:28018427

  12. Non-Coding RNAs as Potential Neuroprotectants against Ischemic Brain Injury.

    PubMed

    Kaur, Prameet; Liu, Fujia; Tan, Jun Rong; Lim, Kai Ying; Sepramaniam, Sugunavathi; Karolina, Dwi Setyowati; Armugam, Arunmozhiarasi; Jeyaseelan, Kandiah

    2013-03-20

    Over the past decade, scientific discoveries have highlighted new roles for a unique class of non-coding RNAs. Transcribed from the genome, these non-coding RNAs have been implicated in determining the biological complexity seen in mammals by acting as transcriptional and translational regulators. Non-coding RNAs, which can be sub-classified into long non-coding RNAs, microRNAs, PIWI-interacting RNAs and several others, are widely expressed in the nervous system with roles in neurogenesis, development and maintenance of the neuronal phenotype. Perturbations of these non-coding transcripts have been observed in ischemic preconditioning as well as ischemic brain injury with characterization of the mechanisms by which they confer toxicity. Their dysregulation may also confer pathogenic conditions in neurovascular diseases. A better understanding of their expression patterns and functions has uncovered the potential use of these riboregulators as neuroprotectants to antagonize the detrimental molecular events taking place upon ischemic-reperfusion injury. In this review, we discuss the various roles of non-coding RNAs in brain development and their mechanisms of gene regulation in relation to ischemic brain injury. We will also address the future directions and open questions for identifying promising non-coding RNAs that could eventually serve as potential neuroprotectants against ischemic brain injury.

  13. Dapagliflozin, SGLT2 Inhibitor, Attenuates Renal Ischemia-Reperfusion Injury

    PubMed Central

    Chang, Yoon-Kyung; Choi, Hyunsu; Jeong, Jin Young; Na, Ki-Ryang; Lee, Kang Wook

    2016-01-01

    Dapagliflozin, a new type of drug used to treat diabetes mellitus (DM), is a sodium/glucose cotransporter 2 (SGLT2) inhibitor. Although some studies showed that SGLT2 inhibition attenuated reactive oxygen generation in diabetic kidney the role of SGLT2 inhibition is unknown. We evaluated whether SLT2 inhibition has renoprotective effects in ischemia-reperfusion (IR) models. We evaluated whether dapagliflozin reduces renal damage in IR mice model. In addition, hypoxic HK2 cells were treated with or without SGLT2 inhibitor to investigate cell survival, the apoptosis signal pathway, and the induction of hypoxia-inducible factor 1 (HIF1) and associated proteins. Dapagliflozin improved renal function. Dapagliflozin reduced renal expression of Bax, renal tubule injury and TUNEL-positive cells and increased renal expression of HIF1 in IR-injured mice. HIF1 inhibition by albendazole negated the renoprotective effects of dapagliflozin treatment in IR-injured mice. In vitro, dapagliflozin increased the expression of HIF1, AMP-activated protein kinase (AMPK), and ERK and increased cell survival of hypoxic HK2 cells in a dose-dependent manner. In conclusion, dapagliflozin attenuates renal IR injury. HIF1 induction by dapagliflozin may play a role in renoprotection against renal IR injury. PMID:27391020

  14. Dapagliflozin, SGLT2 Inhibitor, Attenuates Renal Ischemia-Reperfusion Injury.

    PubMed

    Chang, Yoon-Kyung; Choi, Hyunsu; Jeong, Jin Young; Na, Ki-Ryang; Lee, Kang Wook; Lim, Beom Jin; Choi, Dae Eun

    2016-01-01

    Dapagliflozin, a new type of drug used to treat diabetes mellitus (DM), is a sodium/glucose cotransporter 2 (SGLT2) inhibitor. Although some studies showed that SGLT2 inhibition attenuated reactive oxygen generation in diabetic kidney the role of SGLT2 inhibition is unknown. We evaluated whether SLT2 inhibition has renoprotective effects in ischemia-reperfusion (IR) models. We evaluated whether dapagliflozin reduces renal damage in IR mice model. In addition, hypoxic HK2 cells were treated with or without SGLT2 inhibitor to investigate cell survival, the apoptosis signal pathway, and the induction of hypoxia-inducible factor 1 (HIF1) and associated proteins. Dapagliflozin improved renal function. Dapagliflozin reduced renal expression of Bax, renal tubule injury and TUNEL-positive cells and increased renal expression of HIF1 in IR-injured mice. HIF1 inhibition by albendazole negated the renoprotective effects of dapagliflozin treatment in IR-injured mice. In vitro, dapagliflozin increased the expression of HIF1, AMP-activated protein kinase (AMPK), and ERK and increased cell survival of hypoxic HK2 cells in a dose-dependent manner. In conclusion, dapagliflozin attenuates renal IR injury. HIF1 induction by dapagliflozin may play a role in renoprotection against renal IR injury.

  15. Sulodexide pretreatment attenuates renal ischemia-reperfusion injury in rats.

    PubMed

    Yin, Jianyong; Chen, Weibin; Ma, Fenfen; Lu, Zeyuan; Wu, Rui; Zhang, Guangyuan; Wang, Niansong; Wang, Feng

    2017-02-07

    Sulodexide is a potent antithrombin agent, however, whether it has beneficial effects on renal ischemia-reperfusion injury (IRI) remains unknown. In the present study, we assessed the therapeutic effects of sulodexide in renal IRI and tried to investigate the potential mechanism. One dose of sulodexide was injected intravenously in Sprague-Dawley rats 30 min before bilateral kidney ischemia for 45 min. The animals were sacrificed at 3h and 24h respectively. Our results showed that sulodexide pretreatment improved renal dysfunction and alleviated tubular pathological injury at 24h after reperfusion, which was accompanied with inhibition of oxidative stress, inflammation and cell apoptosis. Moreover, we noticed that antithrombin III (ATIII) was activated at 3h after reperfusion, which preceded the alleviation of renal injury. For in vitro study, hypoxia/reoxygenation (H/R) injury model for HK2 cells was carried out and apoptosis and reactive oxygen species (ROS) levels were evaluated after sulodexide pretreatment. Consistently, sulodexide pretreatment could reduce apoptosis and ROS level in HK2 cells under H/R injury. Taken together, sulodexide pretreatment might attenuate renal IRI through inhibition of inflammation, oxidative stress and apoptosis, and activation of ATIII.

  16. Galacto‐oligosaccharides attenuate renal injury with microbiota modification

    PubMed Central

    Furuse, Satoshi U.; Ohse, Takamoto; Jo‐Watanabe, Airi; Shigehisa, Akira; Kawakami, Koji; Matsuki, Takahiro; Chonan, Osamu; Nangaku, Masaomi

    2014-01-01

    Abstracts Tubulointerstitial injury is central to the progression of end‐stage renal disease. Recent studies have revealed that one of the most investigated uremic toxins, indoxyl sulfate (IS), caused tubulointerstitial injury through oxidative stress and endoplasmic reticulum (ER) stress. Because indole, the precursor of IS, is synthesized from dietary tryptophan by the gut microbiota, we hypothesized that the intervention targeting the gut microbiota in kidney disease with galacto‐oligosaccharides (GOS) would attenuate renal injury. After 2 weeks of GOS administration for 5/6 nephrectomized (Nx) or sham‐operated (Sham) rats, cecal indole and serum IS were measured, renal injury was evaluated, and the effects of GOS on the gut microbiota were examined using pyrosequencing methods. Cecal indole and serum IS were significantly decreased and renal injury was improved with decreased infiltrating macrophages in GOS‐treated Nx rats. The expression levels of ER stress markers and apoptosis were significantly increased in the Nx rats and decreased with GOS. The microbiota analysis indicated that GOS significantly increased three bacterial families and decreased five families in the Nx rats. In addition, the analysis also revealed that the bacterial family Clostridiaceae was significantly increased in the Nx rats compared with the Sham rats and decreased with GOS. Taken altogether, our data show that GOS decreased cecal indole and serum IS, attenuated renal injury, and modified the gut microbiota in the Nx rats, and that the gut microbiota were altered in kidney disease. GOS could be a novel therapeutic agent to protect against renal injury. PMID:24994892

  17. Renal injury, nephrolithiasis and Nigella sativa: A mini review

    PubMed Central

    Hayatdavoudi, Parichehr; Khajavi Rad, Abolfazl; Rajaei, Ziba; Hadjzadeh, Mousa AL-Reza

    2016-01-01

    Objective: The incidence and prevalence of kidney stone is increasing worldwide. After the first recurrence the risk of subsequent relapses is higher and the time period between relapses is shortened. Urinary stones can be severely painful and make a huge economic burden. The stone disease may increase the vulnerability of patients to other diseases such as renal failure. Medicinal herbs are rich sources of antioxidants which are increasingly consumed globally for their safety, efficacy and low price. Nigella sativa is a spice plant that is widely used for prevention and treatment of many ailments in Muslim countries and worldwide. This review aims at investigation of the effects of Nigella sativa on renal injury and stone formation. Materials and Methods: The scientific resources including PubMed, Scopus, and Google scholar were searched using key words such as: nephrolithiasis, urolithiasis, kidney/renal stone, renal injury, renal failure, urinary retention and black seed, black cumin, Nigella sativa and thymoquinone. Results: N. sativa and its main component, thymoquinone showed positive effects in prevention or curing kidney stones and renal failure through various mechanism such as antioxidative, anti-inflammatory, anti-eicosanoid and immunomodulatory effects. The putative candidate in many cases has been claimed to be thymoquinone but it seems that at least in part, particularly in kidney stones, the herbal melanin plays a role which requires further investigation to prove. Conclusion: N. sativa and its components are beneficial in prevention and curing of renal diseases including nephrolithiasis and renal damages. PMID:27247917

  18. Growth and development alter susceptibility to acute renal injury.

    PubMed

    Zager, Richard A; Johnson, Ali C M; Naito, Masayo; Lund, Steve R; Kim, Nayeon; Bomsztyk, Karol

    2008-09-01

    Many of the studies of acute renal injury have been conducted in young mice usually during their rapid growth phase; yet, the impact of age or growth stage on the degree of injury is unknown. To address this issue, we studied three forms of injury (endotoxemic-, glycerol-, and maleate-induced) in mice ranging in age from adolescence (3 weeks) to maturity (16 weeks). The severity of injury within each model significantly correlated with weight and age. We also noticed a progressive age-dependent reduction in renal cholesterol content, a potential injury modifier. As the animals grew and aged they also exhibited stepwise decrements in the mRNAs of HMG CoA reductase and the low density lipoprotein receptor, two key cholesterol homeostatic genes. This was paralleled by decreased amounts of RNA polymerase II and the transcription factor SREBP1/2 at the reductase and lipoprotein receptor gene loci as measured by chromatin immunoprecipitation. Our study shows that the early phase of mouse growth can profoundly alter renal susceptibility to diverse forms of experimental acute renal injury.

  19. Multiple carcinomas in the hemodialysis access induced ischemic hand of a renal transplant patient.

    PubMed

    Van Hoek, Frank; Van Tits, Herm W; Van Lijnschoten, Ineke; De Haas, Boudewijn D; Scheltinga, Marc R

    2010-01-01

    Long term immunosuppression following organ transplantation promotes the onset of skin cancers. A renal transplant patient developed multiple hyperkeratotic nodi in the left hand and digital pain following prolonged immunosuppression. Several skin abnormalities were observed in an ischemic and atrophic left hand in the presence of a patent Cimino-Brescia arteriovenous fistula previously used for hemodialysis. Severe hand ischemia was confirmed by digital plethysmography. Pathological examination of all 7 excised skin lesions indicated manifestations of well differentiated squamous cell carcinomas (SCC). Severe loco-regional ischemia due to an intact hemodialysis access may enhance the toxic effects of chronic immunosuppressive medication. Oxidative stress may act as a co-carcinogenic factor for the development of SCC in renal transplant patients receiving immunosuppressive agents.

  20. Carnosine protects the brain of rats and Mongolian gerbils against ischemic injury: after-stroke-effect.

    PubMed

    Dobrota, Dusan; Fedorova, Tatiana; Stvolinsky, Sergey; Babusikova, Eva; Likavcanova, Katarina; Drgova, Anna; Strapkova, Adriana; Boldyrev, Alexander

    2005-10-01

    Carnosine, a specific constituent of excitable tissues of vertebrates, exhibits a significant antioxidant protecting effect on the brain damaged by ischemic-reperfusion injury when it was administered to the animals before ischemic episode. In this study, the therapeutic effect of carnosine was estimated on animals when this drug was administered intraperitoneally (100 mg/kg body weight) after ischemic episode induced by experimental global brain ischemia. Treatment of the animals with carnosine after ischemic episode under long-term (7-14 days) reperfusion demonstrated its pronounced protective effect on neurological symptoms and animal mortality. Carnosine also prevented higher lipid peroxidation of brain membrane structures and increased a resistance of neuronal membranes to the in vitro induced oxidation. Measurements of malonyl dialdehyde (MDA) in brain homogenates showed its increase in the after brain stroke animals and decreased MDA level in the after brain stroke animals treated with carnosine. We concluded that carnosine compensates deficit in antioxidant defense system of brain damaged by ischemic injury. The data presented demonstrate that carnosine is effective in protecting the brain in the post-ischemic period.

  1. Delayed treatment with ADAMTS13 ameliorates cerebral ischemic injury without hemorrhagic complication.

    PubMed

    Nakano, Takafumi; Irie, Keiichi; Hayakawa, Kazuhide; Sano, Kazunori; Nakamura, Yoshihiko; Tanaka, Masayoshi; Yamashita, Yuta; Satho, Tomomitsu; Fujioka, Masayuki; Muroi, Carl; Matsuo, Koichi; Ishikura, Hiroyasu; Futagami, Kojiro; Mishima, Kenichi

    2015-10-22

    Tissue plasminogen activator (tPA) is the only approved therapy for acute ischemic stroke. However, delayed tPA treatment increases the risk of cerebral hemorrhage and can result in exacerbation of nerve injury. ADAMTS13, a von Willebrand factor (VWF) cleaving protease, has a protective effect against ischemic brain injury and may reduce bleeding risk by cleaving VWF. We examined whether ADAMTS13 has a longer therapeutic time window in ischemic stroke than tPA in mice subjected to middle cerebral artery occlusion (MCAO). ADAMTS13 (0.1mg/kg) or tPA (10mg/kg) was administered i.v., immediately after reperfusion of after 2-h or 4-h MCAO for comparison of the therapeutic time windows in ischemic stroke. Infarct volume, hemorrhagic volume, plasma high-mobility group box1 (HMGB1) levels and cerebral blood flow were measured 24h after MCAO. Both ADAMTS13 and tPA improved the infarct volume without hemorrhagic complications in 2-h MCAO mice. On the other hand, ADAMTS13 reduced the infarct volume and plasma HMGB1 levels, and improved cerebral blood flow without hemorrhagic complications in 4-h MCAO mice, but tPA was not effective and these animals showed massive intracerebral hemorrhage. These results indicated that ADAMTS13 has a longer therapeutic time window in ischemic stroke than tPA, and ADAMTS13 may be useful as a new therapeutic agent for ischemic stroke.

  2. Severe rhabdomyolysis without renal injury associated with lightning strike.

    PubMed

    Navarrete, Norberto; Aldana, Norberto Navarrete

    2013-01-01

    Lightning strikes cause injuries in multiple systems and organs. Early recognition of lightning injury syndromes and anticipation of harmful complications can improve outcomes for these patients. The author has presented a case report of a patient who was struck by lightning and exhibited extensive soft tissue injury with myoglobinuria. He was treated with delayed fasciotomy and had evidence of severe muscle injury with markedly elevated creatine kinase levels that gradually improved with aggressive fluid infusion. The patient did not require alkalinization of urine, mannitol, or dialysis, and his renal function remained normal.

  3. Intravenous renal cell transplantation with SAA1-positive cells prevents the progression of chronic renal failure in rats with ischemic-diabetic nephropathy.

    PubMed

    Kelly, Katherine J; Zhang, Jizhong; Han, Ling; Wang, Mingsheng; Zhang, Shaobo; Dominguez, Jesus H

    2013-12-15

    Diabetic nephropathy, the most common cause of progressive chronic renal failure and end-stage renal disease, has now reached global proportions. The only means to rescue diabetic patients on dialysis is renal transplantation, a very effective therapy but severely limited by the availability of donor kidneys. Hence, we tested the role of intravenous renal cell transplantation (IRCT) on obese/diabetic Zucker/SHHF F1 hybrid (ZS) female rats with severe ischemic and diabetic nephropathy. Renal ischemia was produced by bilateral renal clamping of the renal arteries at 10 wk of age, and IRCT with genetically modified normal ZS male tubular cells was given intravenously at 15 and 20 wk of age. Rats were euthanized at 34 wk of age. IRCT with cells expressing serum amyloid A had strong and long-lasting beneficial effects on renal function and structure, including tubules and glomeruli. However, donor cells were found engrafted only in renal tubules 14 wk after the second infusion. The results indicate that IRCT with serum amyloid A-positive cells is effective in preventing the progression of chronic kidney disease in rats with diabetic and ischemic nephropathy.

  4. Renal functional reserve and renal recovery after acute kidney injury.

    PubMed

    Sharma, Aashish; Mucino, Marìa Jimena; Ronco, Claudio

    2014-01-01

    Renal functional reserve (RFR) represents the capacity of the kidney to increase glomerular filtration rate (GFR) in response to certain physiological or pathological stimuli or conditions. Once baseline GFR is determined, RFR can be assessed clinically after an oral protein load or intravenous amino acid infusion. In clinical practice, baseline GFR displays variable levels due to diet or other factors. RFR is the difference between peak 'stress' GFR induced by the test (p.o. or i.v.) and the baseline GFR. In clinical scenarios where hyperfiltration is present (high baseline GFR due to pregnancy, hypertension or diabetic nephropathy, in solitary kidney or kidney donors), RFR may be fully or partially used to achieve normal or supranormal renal function. Since commonly used renal function markers, such as GFR, may remain within normal ranges until 50% of nephrons are lost or in patients with a single remnant kidney, the RFR test may represent a sensitive and early way to assess the functional decline in the kidney. RFR assessment may become an important tool to evaluate the ability of the kidney to recover completely or partially after a kidney attack. In case of healing with a defect and progressive fibrosis, recovery may appear complete clinically, but a reduced RFR may be a sign of a maladaptive repair or subclinical loss of renal mass. Thus, a reduction in RFR may represent the equivalent of renal frailty or susceptibility to insults. The main aim of this article is to review the concept of RFR, its utility in different clinical scenarios, and future perspective for its use.

  5. A3 adenosine receptor agonist reduces brain ischemic injury and inhibits inflammatory cell migration in rats.

    PubMed

    Choi, In-Young; Lee, Jae-Chul; Ju, Chung; Hwang, Sunyoung; Cho, Geum-Sil; Lee, Hyuk Woo; Choi, Won Jun; Jeong, Lak Shin; Kim, Won-Ki

    2011-10-01

    A3 adenosine receptor (A3AR) is recognized as a novel therapeutic target for ischemic injury; however, the mechanism underlying anti-ischemic protection by the A3AR agonist remains unclear. Here, we report that 2-chloro-N(6)-(3-iodobenzyl)-5'-N-methylcarbamoyl-4'-thioadenosine (LJ529), a selective A3AR agonist, reduces inflammatory responses that may contribute to ischemic cerebral injury. Postischemic treatment with LJ529 markedly reduced cerebral ischemic injury caused by 1.5-hour middle cerebral artery occlusion, followed by 24-hour reperfusion in rats. This effect was abolished by the simultaneous administration of the A3AR antagonist MRS1523, but not the A2AAR antagonist SCH58261. LJ529 prevented the infiltration/migration of microglia and monocytes occurring after middle cerebral artery occlusion and reperfusion, and also after injection of lipopolysaccharides into the corpus callosum. The reduced migration of microglia by LJ529 could be related with direct inhibition of chemotaxis and down-regulation of spatiotemporal expression of Rho GTPases (including Rac, Cdc42, and Rho), rather than by biologically relevant inhibition of inflammatory cytokine/chemokine release (eg, IL-1β, TNF-α, and MCP-1) or by direct inhibition of excitotoxicity/oxidative stress (not affected by LJ529). The present findings indicate that postischemic activation of A3AR and the resultant reduction of inflammatory response should provide a promising therapeutic strategy for the treatment of ischemic stroke.

  6. Acute renal injury induced by valacyclovir hydrochloride: A case report

    PubMed Central

    Zhang, Yanning; Cong, Yuxi; Teng, Yan

    2016-01-01

    Acyclovir has been a frequently used antiviral agent in the clinical treatment of leukemia, acute encephalitis, malignant tumor and herpes simplex. The adverse effects of this drug have been widely described in clinical practice. In the present study, a case of a 35-year-old female patient diagnosed with herpes simplex, who developed acute renal injury following treatment with valacyclovir hydrochloride, is described. Kidney biopsy, light microscopy and laboratory examination were performed, and all findings revealed the signs of evident vacuolar degeneration of capillary endothelial and renal tubular epithelial cells, erythrocyte aggregation in partial renal tubule and microvilli exfoliation from epithelial cells. Renal interstitial edema was clearly identified. The clinical evidence observed from this female patient indicated that renal functions should be closely monitored during valacyclovir hydrochloride administration. A variety of effective measures, such as hydration, alkalizing urine, promoting the discharge of medication and the use of antagonists are recommended following the administration of antiviral agents. PMID:28101180

  7. Erythropoietin-enhanced endothelial progenitor cell recruitment in peripheral blood and renal vessels during experimental acute kidney injury in rats.

    PubMed

    Cakiroglu, Figen; Enders-Comberg, Sora Maria; Pagel, Horst; Rohwedel, Jürgen; Lehnert, Hendrik; Kramer, Jan

    2016-03-01

    Beneficial effects of erythropoietin (EPO) have been reported in acute kidney injury (AKI) when administered prior to induction of AKI. We studied the effects of EPO administration on renal function shortly after ischemic AKI. For this purpose, rats were subjected to renal ischemia for 30 min and EPO was administered at a concentration of 500 U/kg either i.v. as a single shot directly after ischemia or with an additional i.p. dose until 3 days after surgery. The results were compared with AKI rats without EPO application and a sham-operated group. Renal function was assessed by measurement of serum biochemical markers, histological grading, and using an isolated perfused kidney (IPK) model. Furthermore, we performed flow cytometry to analyze the concentration of endothelial progenitor cells (EPCs) in the peripheral blood and renal vessels. Following EPO application, there was only a statistically non-significant tendency of serum creatinine and urea to improve, particularly after daily EPO application. Renal vascular resistance and the renal perfusion rate were not significantly altered. In the histological analysis, acute tubular necrosis was only marginally ameliorated following EPO administration. In summary, we could not demonstrate a significant improvement in renal function when EPO was applied after AKI. Interestingly, however, EPO treatment resulted in a highly significant increase in CD133- and CD34-positive EPC both in the peripheral blood and renal vessels.

  8. Sensitivity to acute cerebral ischemic injury in migraineurs

    PubMed Central

    Mawet, Jerome; Eikermann-Haerter, Katharina; Park, Kwang-Yeol; Helenius, Johanna; Daneshmand, Ali; Pearlman, Lea; Avery, Ross; Negro, Andrea; Velioglu, Murat; Arsava, Ethem Murat

    2015-01-01

    Objective: Migraine, particularly with aura, is a risk factor for ischemic stroke. Recent data in migraine mutant mice suggest that cerebral hyperexcitability associated with migraine accelerates recruitment of ischemic penumbra into the core, resulting in faster infarct growth compared with wild type. We hypothesized that individuals with a history of migraine are more likely to exhibit increased recruitment of ischemic tissue into the infarct in acute stroke. Methods: In this retrospective case-control study, we identified participants with reliably documented migraine history, measured lesion volumes on diffusion-weighted and perfusion-weighted MRI obtained within 72 hours of symptom onset, calculated the proportion of ischemic tissue on perfusion-weighted imaging (PWI) hyperintense on diffusion-weighted imaging (DWI), and compared the proportion of patients with no-mismatch pattern defined as DWI lesion >83% of PWI lesion. Results: Migraineurs (n = 45) were younger, more often female, less likely to have vascular risk factors, and more often had cervical artery dissection, but otherwise did not differ from controls (n = 27). A significantly larger proportion of migraineurs had no-mismatch pattern, indicating that the entire perfusion defect was recruited into the infarct by the time of MRI (22% vs 4% of migraineurs and controls, respectively; p = 0.044). The difference was even more prominent in migraineurs with aura (36% vs 4%, p = 0.019). The association between migraine and no-mismatch pattern persisted after adjustment for time to MRI (p = 0.041). Conclusions: This case-control study supports the hypothesis that a history of migraine, particularly with aura, is associated with a no-mismatch pattern during acute ischemic stroke, consistent with data obtained in migraine mutant mice. PMID:26537055

  9. Radiofrequency Renal Denervation Protects the Ischemic Heart via Inhibition of GRK2 and Increased Nitric Oxide Signaling

    PubMed Central

    Polhemus, David J.; Gao, Juan; Scarborough, Amy L.; Trivedi, Rishi; McDonough, Kathleen H.; Goodchild, Traci T.; Smart, Frank

    2016-01-01

    Rationale: Catheter-based renal denervation (RDN) is currently under development for the treatment of resistant hypertension and is thought to reduce blood pressure via interruption of sympathetic pathways that modulate cardiovascular function. The sympathetic nervous system also plays a critical role in the pathogenesis of acute myocardial infarction and heart failure. Objective: We examined whether treatment with radiofrequency (RF)-RDN would protect the heart against subsequent myocardial ischemia/reperfusion injury via direct effects on the myocardium. Methods and Results: Spontaneously hypertensive rats received either bilateral RF-RDN or sham-RDN. At 4 weeks after RF-RDN (n=14) or sham-RDN (n=14) treatment, spontaneously hypertensive rats were subjected to 30 minutes of transient coronary artery occlusion and 24 hours –7 days reperfusion. Four weeks after RF-RDN, myocardial oxidative stress was markedly attenuated, and transcription and translation of antioxidants, superoxide dismutase 1 and glutathione peroxidase-1, were significantly upregulated compared with sham-RDN spontaneously hypertensive rats. RF-RDN also inhibited myocardial G protein–coupled receptor kinase 2 pathological signaling and enhanced myocardial endothelial nitric oxide synthase function and nitric oxide signaling. RF-RDN therapy resulted in a significant reduction in myocardial infarct size per area at risk compared with sham-RDN (26.8 versus 43.9%; P<0.01) at 24 hours postreperfusion and significantly improved left ventricular function at 7 days after myocardial ischemia/reperfusion. Conclusions: RF-RDN reduced oxidative stress, inhibited G protein–coupled receptor kinase 2 signaling, increased nitric oxide bioavailability, and ameliorated myocardial reperfusion injury in the setting of severe hypertension. These findings provide new insights into the remote cardioprotective effects of RF-RDN acting directly on cardiac myocytes to attenuate cell death and protect against ischemic

  10. The Synthetic Tie2 Agonist Peptide Vasculotide Protects Renal Vascular Barrier Function In Experimental Acute Kidney Injury

    PubMed Central

    Rübig, Eva; Stypmann, Jörg; Van Slyke, Paul; Dumont, Daniel J; Spieker, Tilmann; Buscher, Konrad; Reuter, Stefan; Goerge, Tobias; Pavenstädt, Hermann; Kümpers, Philipp

    2016-01-01

    Microvascular barrier dysfunction plays a major role in the pathophysiology of acute kidney injury (AKI). Angiopoietin-1, the natural agonist ligand for the endothelial-specific Tie2 receptor, is a non-redundant endothelial survival and vascular stabilization factor. Here we evaluate the efficacy of a polyethylene glycol-clustered Tie2 agonist peptide, vasculotide (VT), to protect against endothelial-cell activation with subsequent microvascular dysfunction in a murine model of ischemic AKI. Renal ischemia reperfusion injury (IRI) was induced by clamping of the renal arteries for 35 minutes. Mice were treated with VT or PEGylated cysteine before IRI. Sham-operated animals served as time-matched controls. Treatment with VT significantly reduced transcapillary albumin flux and renal tissue edema after IRI. The protective effects of VT were associated with activation of Tie2 and stabilization of its downstream effector, VE-cadherin in renal vasculature. VT abolished the decline in renal tissue blood flow, attenuated the increase of serum creatinine and blood urea nitrogen after IRI, improved recovery of renal function and markedly reduced mortality compared to PEG [HR 0.14 (95% CI 0.05–0.78) P < 0.05]. VT is inexpensive to produce, chemically stable and unrelated to any Tie2 ligands. Thus, VT may represent a novel therapy to prevent AKI in patients. PMID:26911791

  11. Peripheral administration of fetuin-A attenuates early cerebral ischemic injury in rats

    PubMed Central

    Wang, Haichao; Li, Wei; Zhu, Shu; Li, Jianhua; D'Amore, Jason; Ward, Mary F; Yang, Huan; Wu, Rongqian; Jahnen-Dechent, Willi; Tracey, Kevin J; Wang, Ping; Sama, Andrew E

    2010-01-01

    Cerebral ischemia-elicited inflammatory responses are driven by inflammatory mediators produced both by central (e.g., neurons and microglia) and infiltrating peripheral immune cells (e.g., macrophage/monocyte), and contribute to the evolution of tissue injury. A ubiquitous molecule, spermine, is released from injured cells, and counter-regulates release of various proinflammatory cytokines. However, the spermine-mediated anti-inflammatory activities are dependent on the availability of fetuin-A, a liver-derived negative acute-phase protein. Using an animal model of focal cerebral ischemia (i.e., permanent middle cerebral artery occlusion, MCAo), we found that levels of fetuin-A in the ischemic brain tissue were elevated in a time-dependent manner, starting between 2 and 6 h, peaking around 24 to 48 h, and returning to baseline 72 h after MCAo. When administered peripherally, exogenous fetuin-A gained entry across the BBB into the ischemic brain tissue, and dose dependently reduced brain infarct volume at 24 h after MCAo. Meanwhile, fetuin-A effectively attenuated (i) ischemia-induced HMGB1 depletion from the ischemic core; (ii) activation of centrally (e.g., microglia) and peripherally derived immune cells (e.g., macrophage/monocytes); and (iii) TNF production in ischemic brain tissue. Taken together, these experimental data suggest that fetuin-A protects against early cerebral ischemic injury partly by attenuating the brain inflammatory response. PMID:19953099

  12. Ischemic Bowel Syndrome in Patients with Spinal Cord Injury: A Nationwide Study

    PubMed Central

    Tseng, Chih-Wei; Lin, Cheng-Li; Chen, Yu-Tso; Jeng, Long-Bin

    2017-01-01

    Purpose The aim of this study was to determine whether spinal cord injuries (SCI) is associated with increased risk of ischemic bowel syndrome (IBS) in an Asian population by analyzing data from the National Health Insurance Research Database (NHIRD) in Taiwan. Methods Patients aged ≥20 years in the inpatient database with newly identified SCI from 2000 to 2011 were selected as the SCI cohort. For the non-SCI cohort, patients were selected based on a 1:4 risk-set sampling. Hospitalization with a new diagnosis of IBS during the follow-up was the main outcome measure. We used the standard univariable and multivariable Cox proportional hazard regression models to determine adjusted subhazard ratios (SHR) and 95% confidence interval (CI) in the SCI and non-SCI cohorts. Results Patients with SCI were at significant risk for IBS, with an adjusted SHR (aSHR) of 1.25, 95% CI = 1.04–1.51. Multivariable analysis showed individuals with SCI were associated with a greater risk of IBS than individuals without SCI among males (aSHR = 1.47, 95% CI = 1.16–1.86), all age groups (≤49 y: aSHR = 2.15, 95% CI = 1.24–3.74; 50–65 y: aSHR = 1.82, 95% CI = 1.15–2.88; >65 y: aSHR = 1.39, 95% CI = 1.11–1.74) and those without comorbidities (aSHR = 1.41, 95% CI = 1.04–1.93). Comorbidities including diabetes, hypertension, heart failure, coronary artery disease (CAD), Stroke, and end stage renal disease (ESRD) significantly increased the risk of IBS. Conclusion Patients hospitalized for SCI have increased risks of developing IBS. Though the mechanism that predisposes SCI patients to IBS is unclear, we suggest that physicians promptly identify and treat correctable risk factors. PMID:28056095

  13. Glomerular haematuria, renal interstitial haemorrhage and acute kidney injury.

    PubMed

    Martín Cleary, Catalina; Moreno, Juan Antonio; Fernández, Beatriz; Ortiz, Alberto; Parra, Emilio G; Gracia, Carolina; Blanco-Colio, Luis M; Barat, Antonio; Egido, Jesús

    2010-12-01

    Macroscopic haematuria of glomerular origin has been associated with acute kidney injury. We report a patient with IgA nephropathy, macroscopic haematuria and acute kidney injury. Systemic anticoagulation may have aggravated haematuria. There was extensive interstitial and intratubular red blood cell extravasation, and interstitial haemosiderin deposits. The abundant presence of macrophages expressing the haemoglobin scavenger receptor CD163 and of cells stained for oxidative stress markers (NADPH-p22 phox and heme-oxigenase-1) in areas of interstitial haemorrhage and red blood cell cast-containing tubules provided evidence for a role for free haemoglobin in tubulointerstitial renal injury in human glomerular disease.

  14. Unilateral Renal Ischemia-Reperfusion as a Robust Model for Acute to Chronic Kidney Injury in Mice.

    PubMed

    Le Clef, Nathalie; Verhulst, Anja; D'Haese, Patrick C; Vervaet, Benjamin A

    2016-01-01

    Acute kidney injury (AKI) is an underestimated, yet important risk factor for development of chronic kidney disease (CKD). Even after initial total recovery of renal function, some patients develop progressive and persistent deterioration of renal function and these patients are more likely to progress to end-stage renal disease (ESRD). Animal models are indispensable for unravelling the mechanisms underlying this progression towards CKD and ESRD and for the development of new therapeutic strategies in its prevention or treatment. Ischemia (i.e. hypoperfusion after surgery, bleeding, dehydration, shock, or sepsis) is a major aetiology in human AKI, yet unilateral ischemia-reperfusion is a rarely used animal model for research on CKD and fibrosis. Here, we demonstrate in C57Bl/6J mice, by both histology and gene expression, that unilateral ischemia-reperfusion without contralateral nephrectomy is a very robust model to study the progression from acute renal injury to long-term tubulo-interstitial fibrosis, i.e. the histopathological hallmark of CKD. Furthermore, we report that the extent of renal fibrosis, in terms of Col I, TGFβ, CCN2 and CCN3 expression and collagen I immunostaining, increases with increasing body temperature during ischemia and ischemia-time. Thus, varying these two main determinants of ischemic injury allows tuning the extent of the long-term fibrotic outcome in this model. Finally, in order to cover the whole practical finesse of ischemia-reperfusion and allow model and data transfer, we provide a referenced overview on crucial technical issues (incl. anaesthesia, analgesia, and pre- and post-operative care) with the specific aim of putting starters in the right direction of implementing ischemia in their research and stimulate them, as well as the community, to have a critical view on ischemic literature data.

  15. Neuroinflammation and Neuroimmune Dysregulation after Acute Hypoxic-Ischemic Injury of Developing Brain

    PubMed Central

    Bhalala, Utpal S.; Koehler, Raymond C.; Kannan, Sujatha

    2015-01-01

    Hypoxic-ischemic (HI) injury to developing brain results from birth asphyxia in neonates and from cardiac arrest in infants and children. It is associated with varying degrees of neurologic sequelae, depending upon the severity and length of HI. Global HI triggers a series of cellular and biochemical pathways that lead to neuronal injury. One of the key cellular pathways of neuronal injury is inflammation. The inflammatory cascade comprises activation and migration of microglia – the so-called “brain macrophages,” infiltration of peripheral macrophages into the brain, and release of cytotoxic and proinflammatory cytokines. In this article, we review the inflammatory and immune mechanisms of secondary neuronal injury after global HI injury to developing brain. Specifically, we highlight the current literature on microglial activation in relation to neuronal injury, proinflammatory and anti-inflammatory/restorative pathways, the role of peripheral immune cells, and the potential use of immunomodulators as neuroprotective compounds. PMID:25642419

  16. The effect of thymoquinone on the renal functions following ischemia-reperfusion injury in the rat

    PubMed Central

    Hammad, Fayez T; Lubbad, Loay

    2016-01-01

    Introduction: The aim of this study was to investigate the effect of thymoquinone, an antioxidant phytochemical compound found in the plant Nigella sativa, on the alterations in renal functional parameters following warm renal ischemia-reperfusion injury (IRI) in the rat. Methods: Wistar rats underwent left renal ischemia for 35 minutes. Group-TQ (n=15) received thymoquinone 10 mg/kg/day (dissolved in a vehicle (corn oil) orally by gavage starting 4 days prior to IRI and continued 6 days thereafter when the hemodynamic and tubular renal functions of the right and left kidneys were measured using clearance techniques. Group-Vx (n=15) underwent similar protocol but received only the vehicle. Results: IRI affected all hemodynamic and tubular parameters in the affected kidney. Thymoquinone attenuated the IRI-related alteration in renal functions so when the left ischemic kidney in Group-TQ and Group-Vx were compared, the left RBF and GFR were significantly higher in Group-TQ (2.02±0.39 vs. 1.27±0.21, P=0.04 and 0.33±0.08 vs. 0.18±0.03, P=0.03, respectively). Thymoquinone also improved left renal FENa (1.59±0.28 vs. 2.40±0.35, P=0.04). In addition, it decreased the gene expressions of KIM-1, NGAL, TNF-α, TGF-β1 and PAI-1 (143±20 vs. 358±49, 16±3 vs. 34±6, (1.1±0.2 vs. 2.8±0.4, 1.6±0.1 vs. 2.8±0.1, and 2.4±0.3 vs. 5.8±1.0, P<0.05 for all). Conclusion: Thymoquinone ameliorated the IRI effect on the hemodynamic and tubular renal functional parameters as well as the expression of some kidney injury markers and pro-inflammatory and pro-fibrotic cytokines indicating a renoprotective effect of this agent on the IRI-induced renal dysfunction with potential clinical implications. PMID:28078054

  17. Effects of Renal Ischemic Postconditioning on Myocardial Ultrastructural Organization and Myocardial Expression of Bcl-2/Bax in Rabbits

    PubMed Central

    Zhang, Wen-zhong; Li, Rong; Liu, Song; Ning, Xian-feng; Cai, Shang-lang

    2016-01-01

    We investigated the cardioprotective effect of renal ischemic postconditioning (RI-PostC) and its mechanisms in a rabbit model. Rabbits underwent 60 min of left anterior descending coronary artery occlusion (LADO) and 6 h of reperfusion. The ischemia-reperfusion (IR) group underwent LADO and reperfusion only. In the RI-PostC group, the left renal artery underwent 3 cycles of occlusion for 30 seconds and release for 30 seconds, before the coronary artery was reperfused. In the RI-PostC + GF109203X group, the rabbits received 0.05 mg/kg GF109203X (protein kinase C inhibitor) intravenously for 10 min followed by RI-PostC. Light microscopy and electron microscopy demonstrated that the RI-PostC group showed less pronounced changes, a smaller infarct region, and less apoptosis than the other two groups. Bcl-2 and Bax protein expression did not differ between the IR and RI-PostC + GF109203X groups. However, in the RI-PostC group, Bcl-2 protein expression was significantly higher and Bax protein expression was significantly lower than in the other two groups (P < 0.05). Changes in heart rate and mean arterial pressure were also smaller in the RI-PostC group than in the other two groups. These results indicate that RI-PostC can ameliorate myocardial ischemia-reperfusion injury and increase the Bcl-2/Bax ratio through a mechanism involving protein kinase C. PMID:28097153

  18. SUR1-Associated Mechanisms Are Not Involved in Ischemic Optic Neuropathy 1 Day Post-Injury

    PubMed Central

    Nicholson, James D.; Guo, Yan; Bernstein, Steven L.

    2016-01-01

    Ischemia-reperfusion injury after central nervous system (CNS) injury presents a major health care challenge with few promising treatments. Recently, it has become possible to reduce edema after CNS injury by antagonizing a sulfonylurea receptor 1 (SUR1) regulated ion channel expressed after injury. SUR1 upregulation after injury is a necessary precondition for the formation of this channel, and has been implicated in white matter injury after clinical spinal cord trauma. Glibenclamide, an SUR1 antagonist, appears to have neuroprotective effect against cerebral stroke in an open-label small clinical trial and great effectiveness in reducing damage after varied experimental CNS injury models. Despite its importance in CNS injuries, SUR1 upregulation appears to play no part in rodent anterior ischemic optic neuropathy (rAION) injury as tested by real-time PCR and immunohistochemical staining of rAION-injured rat optic nerve (ON). Furthermore, the SUR1 antagonist glibenclamide administered immediately after rAION injury provided no protection to proximal ON microvasculature 1 day post-injury but may reduce optic nerve head edema in a manner unrelated to ON SUR1 expression. Our results suggest that there may be fundamental differences between rAION optic nerve ischemia and other CNS white matter injuries where SUR1 appears to play a role. PMID:27560494

  19. MicroRNA-378 Alleviates Cerebral Ischemic Injury by Negatively Regulating Apoptosis Executioner Caspase-3

    PubMed Central

    Zhang, Nan; Zhong, Jie; Han, Song; Li, Yun; Yin, Yanling; Li, Junfa

    2016-01-01

    miRNAs have been linked to many human diseases, including ischemic stroke, and are being pursued as clinical diagnostics and therapeutic targets. Among the aberrantly expressed miRNAs in our previous report using large-scale microarray screening, the downregulation of miR-378 in the peri-infarct region of middle cerebral artery occluded (MCAO) mice can be reversed by hypoxic preconditioning (HPC). In this study, the role of miR-378 in the ischemic injury was further explored. We found that miR-378 levels significantly decreased in N2A cells following oxygen-glucose deprivation (OGD) treatment. Overexpression of miR-378 significantly enhanced cell viability, decreased TUNEL-positive cells and the immunoreactivity of cleaved-caspase-3. Conversely, downregulation of miR-378 aggravated OGD-induced apoptosis and ischemic injury. By using bioinformatic algorithms, we discovered that miR-378 may directly bind to the predicted 3′-untranslated region (UTR) of Caspase-3 gene. The protein level of caspase-3 increased significantly upon OGD treatment, and can be downregulated by pri-miR-378 transfection. The luciferase reporter assay confirmed the binding of miR-378 to the 3′-UTR of Caspase-3 mRNA and repressed its translation. In addition, miR-378 agomir decreased cleaved-caspase-3 ratio, reduced infarct volume and neural cell death induced by MCAO. Furthermore, caspase-3 knockdown could reverse anti-miR-378 mediated neuronal injury. Taken together, our data demonstrated that miR-378 attenuated ischemic injury by negatively regulating the apoptosis executioner, caspase-3, providing a potential therapeutic target for ischemic stroke. PMID:27598143

  20. Cortical neurogenesis in adult rats after ischemic brain injury: most new neurons fail to mature.

    PubMed

    Li, Qing-Quan; Qiao, Guan-Qun; Ma, Jun; Fan, Hong-Wei; Li, Ying-Bin

    2015-02-01

    The present study examines the hypothesis that endogenous neural progenitor cells isolated from the neocortex of ischemic brain can differentiate into neurons or glial cells and contribute to neural regeneration. We performed middle cerebral artery occlusion to establish a model of cerebral ischemia/reperfusion injury in adult rats. Immunohistochemical staining of the cortex 1, 3, 7, 14 or 28 days after injury revealed that neural progenitor cells double-positive for nestin and sox-2 appeared in the injured cortex 1 and 3 days post-injury, and were also positive for glial fibrillary acidic protein. New neurons were labeled using bromodeoxyuridine and different stages of maturity were identified using doublecortin, microtubule-associated protein 2 and neuronal nuclei antigen immunohistochemistry. Immature new neurons coexpressing doublecortin and bromodeoxyuridine were observed in the cortex at 3 and 7 days post-injury, and semi-mature and mature new neurons double-positive for microtubule-associated protein 2 and bromodeoxyuridine were found at 14 days post-injury. A few mature new neurons coexpressing neuronal nuclei antigen and bromodeoxyuridine were observed in the injured cortex 28 days post-injury. Glial fibrillary acidic protein/bromodeoxyuridine double-positive astrocytes were also found in the injured cortex. Our findings suggest that neural progenitor cells are present in the damaged cortex of adult rats with cerebral ischemic brain injury, and that they differentiate into astrocytes and immature neurons, but most neurons fail to reach the mature stage.

  1. SALT SENSITIVITY IN RESPONSE TO RENAL INJURY REQUIRES RENAL ANGIOTENSIN-CONVERTING ENZYME

    PubMed Central

    Giani, Jorge F.; Bernstein, Kenneth E.; Janjulia, Tea; Han, Jiyang; Toblli, Jorge E.; Shen, Xiao Z.; Rodriguez-Iturbe, Bernardo; McDonough, Alicia A.; Gonzalez-Villalobos, Romer A.

    2015-01-01

    Recent evidence indicates that salt-sensitive hypertension can result from a subclinical injury that impairs the kidneys’ capacity to properly respond to a high salt diet. However, how this occurs is not well understood. Here, we showed that while previously salt resistant wild-type mice became salt-sensitive after the induction of renal injury with the nitric oxide synthase inhibitor Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME); mice lacking renal angiotensin-converting enzyme, exposed to the same insult, did not become hypertensive when faced with a sodium load. This is because the activity of renal angiotensin-converting enzyme plays a critical role in: 1) augmenting the local pool of angiotensin II and, 2) the establishment of the anti-natriuretic state via modulation of glomerular filtration rate and sodium tubular transport. Thus, this study demonstrates that the presence of renal angiotensin-converting enzyme plays a pivotal role in the development of salt sensitivity in response to renal injury. PMID:26150439

  2. Early prediction of renal parenchymal injury with serum procalcitonin

    PubMed Central

    Barati, Leila; Safaeian, Baranak; Mehrjerdian, Mahshid; Vakili, Mohammad-Ali

    2016-01-01

    Introduction: Urinary tract infection (UTI) is one of the most common bacterial infections in children that can be associated with renal parenchymal injuries and late scars. Dimercaptosuccinic acid (DMSA) renal scan is known as golden standard for detecting acute pyelonephritis (APN) that has a lot of difficulties and limitations. Objectives: we designed this study the accuracy of one inflammatory marker, serum procalcitonin (PCT) to identify as an early predictor of renal injuries. Patients and Methods: A prospective study was carried out in 95 patients who admitted in the hospital with the first febrile UTI. Serum PCT of all patients was measured; sensitivity, specificity, positive and negative predictive value (PPV and NPV) of this marker was analyzed compared to DMSA scan. P value <0.05 was taken as significant. Results: In total, 79 females and 16 males were investigated. There are 42 cases in group 1 with normal DMSA scan and 53 patients in group two with renal parenchymal injuries in their scans. Mann-Whitney test showed a meaningful relation between the two groups regarding PCT level (P<0.0001). Sensitivity, specificity, PPV and NPV of PCT reported in optimum cut off were 70%, 88.1%, 88.1% and 70%, respectively. The positive likelihood ratio (PLR) of PCT test was 5.8. Conclusion: In the current survey, PCT was the eligible inflammatory marker to predict renal parenchymal injuries in children with proper sensitivity, specificity, PPV and NPV that play also a pivotal role in the children aged less than 24 months, although, more studies should be undertaken to confirm. PMID:27689104

  3. GSK-3β inhibitors suppressed neuroinflammation in rat cortex by activating autophagy in ischemic brain injury.

    PubMed

    Zhou, Xiaogang; Zhou, Jian; Li, Xilei; Guo, Chang'an; Fang, Taolin; Chen, Zhengrong

    2011-07-29

    Previous studies have shown that GSK-3β inhibitor could reduce infarct volume after ischemia brain injury. However, the underlying mechanisms of GSK-3β inhibitor involving neuroprotection remain poorly understood. In the present study, we demonstrated that GSK-3β inhibitor suppressed insult-induced neuroinflammation in rat cortex by increasing autophagy activation in ischemic injury. Male rats were subjected to pMCAO (permanent middle cerebral artery occlusion) followed by treating with SB216763, a GSK-3β inhibitor. We found that insult-induced inflammatory response was significantly decreased by intraperitoneal infusion of SB216763 in rat cortex. A higher level of autophagy was also detected after SB216763 treatment. In the cultured primary microglia, SB216763 activated autophagy and suppressed inflammatory response. Importantly, inhibition of autophagy by Beclin1-siRNA increased inflammatory response in the SB216763-treated microglia. These data suggest that GSK-3β inhibitor suppressed neuroinflammation by activating autophagy after ischemic brain injury, thus offering a new target for prevention of ischemic brain injury.

  4. Amelioration of myocardial ischemic reperfusion injury with Calendula officinalis.

    PubMed

    Ray, Diptarka; Mukherjee, Subhendu; Falchi, Mario; Bertelli, Aldo; Das, Dipak K

    2010-12-01

    Calendula officinalis of family Asteraceae, also known as marigold, has been widely used from time immemorial in Indian and Arabic cultures as an anti-inflammatory agent to treat minor skin wound and infections, burns, bee stings, sunburn and cancer. At a relatively high dose, calendula can lower blood pressure and cholesterol. Since inflammatory responses are behind many cardiac diseases, we sought to evaluate if calendula could be cardioprotective against ischemic heart disease Two groups of hearts were used: the treated rat hearts were perfused with calendula solution at 50 mM in KHB buffer (in mM: sodium chloride 118, potassium chloride 4.7, calcium chloride 1.7, sodium bicarbonate 25, potassium biphosphate 0.36, magnesium sulfate 1.2, and glucose 10) for 15 min prior to subjecting the heart to ischemia, while the control group was perfused with the buffer only. Calendula achieved cardioprotection by stimulating left ventricular developed pressure and aortic flow as well as by reducing myocardial infarct size and cardiomyocyte apoptosis. Cardioprotection appears to be achieved by changing ischemia reperfusion-mediated death signal into a survival signal by modulating antioxidant and anti-inflammatory pathways as evidenced by the activation of Akt and Bcl2 and depression of TNFα. The results further strengthen the concept of using natural products in degeneration diseases like ischemic heart disease.

  5. Diallyl disulfide attenuates acetaminophen-induced renal injury in rats

    PubMed Central

    Shin, Jin-Young; Han, Ji-Hee; Ko, Je-Won; Park, Sung-Hyeuk; Shin, Na-Rae; Jung, Tae-Yang; Kim, Hyun-A; Kim, Sung-Hwan; Shin, In-Sik

    2016-01-01

    This study investigated the protective effects of diallyl disulfide (DADS) against acetaminophen (AAP)-induced acute renal injury in male rats. We also investigated the effects of DADS on kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), which are novel biomarkers of nephrotoxicity in renal tissues, in response to AAP treatment. The following four experimental groups were evaluated: (1) vehicle control, (2) AAP (1,000 mg/kg), (3) AAP&DADS, and (4) DADS (50 mg/kg/day). AAP treatment caused acute kidney injury evidenced by increased serum blood urea nitrogen (BUN) levels and histopathological alterations. Additionally, Western blot and immunohistochemistry analysis showed increased expression of KIM-1 and NGAL proteins in renal tissues of AAP-treated rats. In contrast, DADS pretreatment significantly attenuated the AAP-induced nephrotoxic effects, including serum BUN level and expression of KIM-1 and NGAL proteins. Histopathological studies confirmed the renoprotective effect of DADS. The results suggest that DADS prevents AAP-induced acute nephrotoxicity, and that KIM-1 and NGAL may be useful biomarkers for the detection and monitoring of acute kidney injury associated with AAP exposure. PMID:28053613

  6. Diallyl disulfide attenuates acetaminophen-induced renal injury in rats.

    PubMed

    Shin, Jin-Young; Han, Ji-Hee; Ko, Je-Won; Park, Sung-Hyeuk; Shin, Na-Rae; Jung, Tae-Yang; Kim, Hyun-A; Kim, Sung-Hwan; Shin, In-Sik; Kim, Jong-Choon

    2016-12-01

    This study investigated the protective effects of diallyl disulfide (DADS) against acetaminophen (AAP)-induced acute renal injury in male rats. We also investigated the effects of DADS on kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL), which are novel biomarkers of nephrotoxicity in renal tissues, in response to AAP treatment. The following four experimental groups were evaluated: (1) vehicle control, (2) AAP (1,000 mg/kg), (3) AAP&DADS, and (4) DADS (50 mg/kg/day). AAP treatment caused acute kidney injury evidenced by increased serum blood urea nitrogen (BUN) levels and histopathological alterations. Additionally, Western blot and immunohistochemistry analysis showed increased expression of KIM-1 and NGAL proteins in renal tissues of AAP-treated rats. In contrast, DADS pretreatment significantly attenuated the AAP-induced nephrotoxic effects, including serum BUN level and expression of KIM-1 and NGAL proteins. Histopathological studies confirmed the renoprotective effect of DADS. The results suggest that DADS prevents AAP-induced acute nephrotoxicity, and that KIM-1 and NGAL may be useful biomarkers for the detection and monitoring of acute kidney injury associated with AAP exposure.

  7. Renalase protects against ischemic AKI.

    PubMed

    Lee, H Thomas; Kim, Joo Yun; Kim, Mihwa; Wang, Peili; Tang, Lieqi; Baroni, Sara; D'Agati, Vivette D; Desir, Gary V

    2013-02-01

    Elevated levels of plasma catecholamines accompany ischemic AKI, possibly contributing the inflammatory response. Renalase, an amine oxidase secreted by the proximal tubule, degrades circulating catecholamines and reduces myocardial necrosis, suggesting that it may protect against renal ischemia reperfusion injury. Here, mice subjected to renal ischemia reperfusion injury had significantly lower levels of renalase in the plasma and kidney compared with sham-operated mice. Consistent with this, plasma NE levels increased significantly after renal ischemia reperfusion injury. Furthermore, renal tubular inflammation, necrosis, and apoptosis were more severe and plasma catecholamine levels were higher in renalase-deficient mice subjected to renal ischemia reperfusion compared with wild-type mice. Administration of recombinant human renalase reduced plasma catecholamine levels and ameliorated ischemic AKI in wild-type mice. Taken together, these data suggest that renalase protects against ischemic AKI by reducing renal tubular necrosis, apoptosis, and inflammation, and that plasma renalase might be a biomarker for AKI. Recombinant renalase therapy may have potential for the prevention and treatment of AKI.

  8. Activation of cannabinoid CB2 receptor-mediated AMPK/CREB pathway reduces cerebral ischemic injury.

    PubMed

    Choi, In-Young; Ju, Chung; Anthony Jalin, Angela M A; Lee, Da In; Prather, Paul L; Kim, Won-Ki

    2013-03-01

    The type 2 cannabinoid receptor (CB2R) was recently shown to mediate neuroprotection in ischemic injury. However, the role of CB2Rs in the central nervous system, especially neuronal and glial CB2Rs in the cortex, remains unclear. We, therefore, investigated anti-ischemic mechanisms of cortical CB2R activation in various ischemic models. In rat cortical neurons/glia mixed cultures, a CB2R agonist, trans-caryophyllene (TC), decreased neuronal injury and mitochondrial depolarization caused by oxygen-glucose deprivation/re-oxygenation (OGD/R); these effects were reversed by the selective CB2R antagonist, AM630, but not by a type 1 cannabinoid receptor antagonist, AM251. Although it lacked free radical scavenging and antioxidant enzyme induction activities, TC reduced OGD/R-evoked mitochondrial dysfunction and intracellular oxidative stress. Western blot analysis demonstrated that TC enhanced phosphorylation of AMP-activated protein kinase (AMPK) and cAMP responsive element-binding protein (CREB), and increased expression of the CREB target gene product, brain-derived neurotrophic factor. However, TC failed to alter the activity of either Akt or extracellular signal-regulated kinase, two major CB2R signaling pathways. Selective AMPK and CREB inhibitors abolished the neuroprotective effects of TC. In rats, post-ischemic treatment with TC decreased cerebral infarct size and edema, and increased phosphorylated CREB and brain-derived neurotrophic factor expression in neurons. All protective effects of TC were reversed by co-administration with AM630. Collectively, these data demonstrate that cortical CB2R activation by TC ameliorates ischemic injury, potentially through modulation of AMPK/CREB signaling, and suggest that cortical CB2Rs might serve as a putative therapeutic target for cerebral ischemia.

  9. Sex-dependent effects of sleep deprivation on myocardial sensitivity to ischemic injury.

    PubMed

    Zoladz, Phillip R; Krivenko, Anna; Eisenmann, Eric D; Bui, Albert D; Seeley, Sarah L; Fry, Megan E; Johnson, Brandon L; Rorabaugh, Boyd R

    2016-01-01

    Sleep deprivation is associated with increased risk of myocardial infarction. However, it is unknown whether the effects of sleep deprivation are limited to increasing the likelihood of experiencing a myocardial infarction or if sleep deprivation also increases the extent of myocardial injury. In this study, rats were deprived of paradoxical sleep for 96 h using the platform-over-water method. Control rats were subjected to the same condition except the control platform was large enough for the rats to sleep. Hearts from sleep deprived and control rats were subjected to 20 min ischemia on a Langendorff isolated heart system. Infarct size and post ischemic recovery of contractile function were unaffected by sleep deprivation in male hearts. In contrast, hearts from sleep-deprived females exhibited significantly larger infarcts than hearts from control females. Post ischemic recovery of rate pressure product and + dP/dT were significantly attenuated by sleep deprivation in female hearts, and post ischemic recovery of end diastolic pressure was significantly elevated in hearts from sleep deprived females compared to control females, indicating that post ischemic recovery of both systolic and diastolic function were worsened by sleep deprivation. These data provide evidence that sleep deprivation increases the extent of ischemia-induced injury in a sex-dependent manner.

  10. Treatment with Isorhamnetin Protects the Brain Against Ischemic Injury in Mice.

    PubMed

    Zhao, Jin-Jing; Song, Jin-Qing; Pan, Shu-Yi; Wang, Kai

    2016-08-01

    Ischemic stroke is a major cause of morbidity and mortality, yet lacks effective neuroprotective treatments. The aim of this work was to investigate whether treatment with isorhamnetin protected the brain against ischemic injury in mice. Experimental stroke mice underwent the filament model of middle cerebral artery occlusion with reperfusion. Treatment with isorhamnetin or vehicle was initiated immediately at the onset of reperfusion. It was found that treatment of experimental stroke mice with isorhamnetin reduced infarct volume and caspase-3 activity (a biomarker of apoptosis), and improved neurological function recovery. Treatment of experimental stroke mice with isorhamnetin attenuated cerebral edema, improved blood-brain barrier function, and upregulated gene expression of tight junction proteins including occludin, ZO-1, and claudin-5. Treatment of experimental stroke mice with isorhamnetin activated Nrf2/HO-1, suppressed iNOS/NO, and led to reduced formation of MDA and 3-NT in ipsilateral cortex. In addition, treatment of experimental stroke mice with isorhamnetin suppressed activity of MPO (a biomarker of neutrophil infiltration) and reduced protein levels of IL-1β, IL-6, and TNF-α in ipsilateral cortex. Furthermore, it was found that treatment of experimental stroke mice with isorhamnetin reduced mRNA and protein expression of NMDA receptor subunit NR1 in ipsilateral cortex. In conclusion, treatment with isorhamnetin protected the brain against ischemic injury in mice. Isorhamnetin could thus be envisaged as a countermeasure for ischemic stroke but remains to be tested in humans.

  11. Protective Effects of Hydrocortisone, Vitamin C and E Alone or in Combination against Renal Ischemia-Reperfusion Injury in Rat

    PubMed Central

    Azari, Omid; Kheirandish, Reza; Azizi, Shahrzad; Farajli Abbasi, Mohammad; Ghahramani Gareh Chaman, Shahin; Bidi, Masoud

    2015-01-01

    Background: Renal ischemia reperfusion injury may occur in a variety of clinical situations, following a transient drop in total or regional blood flow to the kidney. This study was performed to investigate the protective effects of different antioxidants such as vitamin C, vitamin E, hydrocortisone and combination of these agents against experimental renal ischemia-reperfusion injury. Method: Thirty male rats were divided into six groups. Group Sham, Group I/R: (45 min of ischemia followed by 1h of reperfusion), Group I/R+Vit C: (50 mg/kg Vit C, IV, immediately after reperfusion), Group I/R+Vit E: (20 mg/kg Vit E, IM, 15 min before reperfusion), Group I/R+Hydrocortisone: (50 mg/kg, IV, immediately after reperfusion), and Group Combination: Ischemia-reperfusion plus combination of Vit C, E and hydrocortisone. After the experiments, the left kidney was removed and the tissues were processed for histopathological examination. Result: Severe injuries such as necrosis of tubules, atrophy of glomerulus, and hemorrhage were observed in group I/R. Histological scores indicating tissue injury significantly decreased in all treatment groups compared to the group I/R. The renal tissue in group treatment was preserved in comparison with the group I/R. Comparison between the treatment groups showed that group combination was more effective and group vit E was less effective in protecting of renal tissue against I/R injuries. Conclusion: The results demonstrated simultaneous administration of combination of Vit C, E and hydrocortisone before reperfusion of blood flow to the ischemic tissue could show a synergy against deleterious effects of I/R injuries in kidney. PMID:26351497

  12. Endogenous level of TIGAR in brain is associated with vulnerability of neurons to ischemic injury.

    PubMed

    Cao, Lijuan; Chen, Jieyu; Li, Mei; Qin, Yuan-Yuan; Sun, Meiling; Sheng, Rui; Han, Feng; Wang, Guanghui; Qin, Zheng-Hong

    2015-10-01

    In previous studies, we showed that TP53-induced glycolysis and apoptosis regulator (TIGAR) protects neurons against ischemic brain injury. In the present study, we investigated the developmental changes of TIGAR level in mouse brain and the correlation of TIGAR expression with the vulnerability of neurons to ischemic injury. We found that the TIGAR level was high in the embryonic stage, dropped at birth, partially recovered in the early postnatal period, and then continued to decline to a lower level in early adult and aged mice. The TIGAR expression was higher after ischemia/reperfusion in mouse brain 8 and 12 weeks after birth. Four-week-old mice had smaller infarct volumes, lower neurological scores, and lower mortality rates after ischemia than 8- and 12-week-old mice. TIGAR expression also increased in response to oxygen glucose deprivation (OGD)/reoxygenation insult or H2O2 treatment in cultured primary neurons from different embryonic stages (E16 and E20). The neurons cultured from the early embryonic period had a greater resistance to OGD and oxidative insult. Higher TIGAR levels correlated with higher pentose phosphate pathway activity and less oxidative stress. Older mice and more mature neurons had more severe DNA and mitochondrial damage than younger mice and less mature neurons in response to ischemia/reperfusion or OGD/reoxygenation insult. Supplementation of cultured neurons with nicotinamide adenine dinuclectide phosphate (NADPH) significantly reduced ischemic injury. These results suggest that TIGAR expression changes during development and its expression level may be correlated with the vulnerability of neurons to ischemic injury.

  13. Efficacy of Ficus spp. on renal injury induced by hypercholesterolaemia.

    PubMed

    Awad, Nagwa E; Hamed, Manal A; Seida, Ahmed A; Elbatanony, Marwa M

    2012-01-01

    The ethanol and hexane extracts of Ficus microcarpa, Ficus religiosa and Ficus mysorensis leaves were evaluated against renal injury induced by hypercholesterolaemia. Phytochemical screening of the investigated plants was undertaken. For the in vivo study, all rats were orally given cholesterol (30 mg kg⁻¹ body weight, BW) and leaves extract (500 mg kg⁻¹ BW) five times per week for 9 weeks. Hypercholesterolaemic rats showed significant increases in urea nitrogen and creatinine while serum protein and albumin levels, nitric oxide (NO), Na⁺-K⁺-ATPase and phospholipids in kidney tissue were all decreased. Treatment with leaves extract improved kidney function indices (urea nitrogen, creatinine, serum protein and albumin), kidney disorder biochemical parameters (NO, Na⁺-K⁺-ATPase and phospholipids), haematological profile (haemoglobin, RBCs and WBCs) and kidney histopathology. In conclusion, Ficus spp. succeeded in improving renal injury induced by hypercholesterolaemia, with the most potent effects seen while using Ficus microcarpa hexane extract.

  14. Salt restriction inhibits renal growth and stabilizes injury in rats with established renal disease.

    PubMed

    Dworkin, L D; Benstein, J A; Tolbert, E; Feiner, H D

    1996-03-01

    Salt restriction inhibits renal growth and stabilizes injury in rats with established renal disease. Male Munich-Wistar rats that underwent right nephrectomy and segmental infarction of two thirds of the left kidney were fed standard chow for 4 wk and then randomly assigned to ingest standard or low-salt chow for an additional 4 wk. Four wk after ablation, rats had systemic hypertension, proteinuria, and glomerular sclerosis. The prevalence of sclerosis, protein excretion rate, and glomerular volume increased between the fourth and eighth week in rats that were fed standard chow, however, in rats that were fed low-salt chow, the increase in glomerular volume and development of further glomerular sclerosis was prevented whereas the protein excretion rate actually declined. Micropuncture studies performed 8 wk after ablation revealed that the glomerular hydraulic pressure was elevated in remnant kidneys and was not affected by salt restriction. This study demonstrates that dietary salt restriction can prevent further glomerular injury and reduce proteinuria even when instituted in rats with established renal disease. These findings are also consistent with the hypothesis that glomerular hypertrophy promotes injury in this model of hypertension and progressive renal disease.

  15. Enriched Endogenous Omega-3 Polyunsaturated Fatty Acids Protect Cortical Neurons from Experimental Ischemic Injury.

    PubMed

    Shi, Zhe; Ren, Huixia; Luo, Chuanming; Yao, Xiaoli; Li, Peng; He, Chengwei; Kang, Jing-X; Wan, Jian-Bo; Yuan, Ti-Fei; Su, Huanxing

    2016-11-01

    Omega-3 polyunsaturated fatty acids (n-3 PUFAs) exert therapeutic potential in a variety of neurological disorders, including ischemic stroke. However, the underlying mechanisms still lack investigation. Here, we report that cultured cortical neurons isolated from fat-1 mice with high endogenous n-3 PUFAs were tolerant to oxygen-glucose deprivation/reperfusion (OGD/R) injury. Fat-1 neurons exhibited significantly attenuated reactive oxygen species (ROS) activation induced by OGD/R injury, upregulated antiapoptotic proteins Bcl-2 and Bcl-xL, and reduced cleaved caspase-3. Exogenous administration of docosahexaenoic acid (DHA), a major component of the n-3 PUFA family, resulted in similar protective effects on cultured cortex neurons. We further verified the protective effects of n-3 PUFAs in vivo, using a mini ischemic model with a reproducible cortical infarct and manifest function deficits by occlusion of the distal branch of the middle cerebral artery with focused femtosecond laser pulses. The Fat-1 animals showed decreased ROS expression and higher level of glutathione in the injured brain, associated with improved functional recovery. We therefore provide evidence that n-3 PUFAs exert their protective effects against ischemic injury both in vitro and in vivo, partly through inhibiting ROS activation.

  16. Prenatal methamphetamine differentially alters myocardial sensitivity to ischemic injury in male and female adult hearts.

    PubMed

    Rorabaugh, Boyd R; Seeley, Sarah L; Bui, Albert D; Sprague, Lisanne; D'Souza, Manoranjan S

    2016-02-15

    Methamphetamine is one of the most common illicit drugs abused during pregnancy. The neurological effects of prenatal methamphetamine are well known. However, few studies have investigated the potential effects of prenatal methamphetamine on adult cardiovascular function. Previous work demonstrated that prenatal cocaine exposure increases sensitivity of the adult heart to ischemic injury. Methamphetamine and cocaine have different mechanisms of action, but both drugs exert their effects by increasing dopaminergic and adrenergic receptor stimulation. Thus the goal of this study was to determine whether prenatal methamphetamine also worsens ischemic injury in the adult heart. Pregnant rats were injected with methamphetamine (5 mg·kg(-1)·day(-1)) or saline throughout pregnancy. When pups reached 8 wk of age, their hearts were subjected to ischemia and reperfusion by means of a Langendorff isolated heart system. Prenatal methamphetamine had no significant effect on infarct size, preischemic contractile function, or postischemic recovery of contractile function in male hearts. However, methamphetamine-treated female hearts exhibited significantly larger infarcts and significantly elevated end-diastolic pressure during recovery from ischemia. Methamphetamine significantly reduced protein kinase Cε expression and Akt phosphorylation in female hearts but had no effect on these cardioprotective proteins in male hearts. These data indicate that prenatal methamphetamine differentially affects male and female sensitivity to myocardial ischemic injury and alters cardioprotective signaling proteins in the adult heart.

  17. Regulation of PINK1 by NR2B-containing NMDA receptors in ischemic neuronal injury.

    PubMed

    Shan, Yuexin; Liu, Baosong; Li, Lijun; Chang, Ning; Li, Lei; Wang, Hanbin; Wang, Dianshi; Feng, Hua; Cheung, Carol; Liao, Mingxia; Cui, Tianyuan; Sugita, Shuzo; Wan, Qi

    2009-12-01

    Dysfunction of PTEN-induced kinase-1 (PINK1) is implicated in neurodegeneration. We report here that oxygen-glucose deprivation (OGD), an in vitro insult mimicking ischemic neuron injury, resulted in a significant reduction of PINK1 protein expression in cultured cortical neurons. The decrease of PINK1 expression was blocked by the antagonists of NMDA receptors. We revealed that the overactivation of NR2B-containing NMDA receptors (NR2BRs) was responsible for the OGD-induced PINK1 reduction. The overactivated NR2BRs also inhibited the phosphorylation, but not the protein expression, of the cell survival-promoting kinase Akt after OGD insult, indicating that OGD-induced reduction of PINK1 protein is specific in the injury paradigm. We further showed that enhancing the protein expression of PINK1 antagonized OGD-induced reduction of Akt phosphorylation, suggesting that Akt may be a downstream target of PINK1 in ischemic neuron injury. Importantly, we provided evidence that both NR2BR antagonist and PINK1 over-expression protected against OGD-induced neuronal death. These results suggest that the overactivation of NR2BRs may contribute to ischemic neuron death through suppressing PINK1-dependent survival signaling. Thus, selectively antagonizing NR2BR signal pathway-induced neurotoxicity may be a potential neuroprotection strategy.

  18. Ameliorative effects of Gualou Guizhi decoction on inflammation in focal cerebral ischemic-reperfusion injury

    PubMed Central

    ZHANG, YUQIN; ZHANG, SHENGNAN; LI, HUANG; HUANG, MEI; XU, WEI; CHU, KEDAN; CHEN, LIDIAN; CHEN, XIANWEN

    2015-01-01

    Gualou Guizhi decoction (GLGZD) is a well-established Traditional Chinese Medicinal formulation which has long been used to treat stroke in a clinical setting in China. The present study investigated the ameliorative effects of GLGZD on inflammation in focal cerebral ischemic-reperfusion injury. A rat model of middle cerebral artery occlusion (MCAO) was employed. Rats were administrated GLGZD (7.2 and 14.4 g/kg per day) or saline as control 2 h after reperfusion and daily over the following seven days. Neurological deficit score and screen test were evaluated at 1, 3, 5 and 7 days after MCAO. Brain infarct size and brain histological changes were observed via 2,3,5-triphenyltetrazolium chloride staining and regular hematoxylin & eosin staining. Furthermore, inflammation mediators and nuclear factor-κB (NF-κB) were investigated using ELISA and immunohistochemistry. GLGZD treatment significantly improved neurological function, ameliorated histological changes to the brain and decreased infarct size in focal cerebral ischemic-reperfusion injury. GLGZD was found to significantly reduce interleukin (IL)-1, tumor necrosis factor-α and NF-κB levels, while increasing levels of IL-10. In conclusion, the present study suggested that GLGZD has a neuroprotective effect on focal cerebral ischemic-reperfusion injury and this effect is likely to be associated with the anti-inflammatory function of GLGZD. PMID:25815894

  19. Downregulation of miRNA-134 protects neural cells against ischemic injury in N2A cells and mouse brain with ischemic stroke by targeting HSPA12B.

    PubMed

    Chi, W; Meng, F; Li, Y; Wang, Q; Wang, G; Han, S; Wang, P; Li, J

    2014-09-26

    MicroRNAs (miRNAs) have emerged as a major regulator in neurological diseases, and understanding their molecular mechanism in modulating cerebral ischemic injury may provide potential therapeutic targets for ischemic stroke. However, as one of 19 differentially expressed miRNAs in mouse brain with middle cerebral artery occlusion (MCAO), the role of miR-134 in ischemic injury is not well understood. In this study, the miR-134 expression level was manipulated both in oxygen-glucose deprivation (OGD)-treated N2A neuroblastoma cells in vitro and mouse brain with MCAO-induced ischemic stroke in vivo, and its possible targets of heat shock protein A5 (HSPA5) and HSPA12B were determined by bioinformatics analysis and dual luciferase assay. The results showed that overexpression of miR-134 exacerbated cell death and apoptosis both in vitro and in vivo. Conversely, downregulating miR-134 levels reduced cell death and apoptosis. Furthermore, non-expression of miR-134 enhanced HSPA12B protein levels in OGD-treated N2A cells as well as in the ischemic region. It could attenuate brain infarction size and neural cell damage, and improve neurological outcomes in mice with ischemic stroke, whereas upregulation of miR-134 had the opposite effect. In addition, HSPA12B was validated to be a target of miR-134 and its short interfering RNAs (siRNAs) could block miR-134 inhibitor-induced neuroprotection in OGD-treated N2A cells. In conclusion, downregulation of miR-134 could induce neuroprotection against ischemic injury in vitro and in vivo by negatively upregulating HSPA12B protein expression.

  20. Vitamin D deficiency contributes to vascular damage in sustained ischemic acute kidney injury.

    PubMed

    de Bragança, Ana C; Volpini, Rildo A; Mehrotra, Purvi; Andrade, Lúcia; Basile, David P

    2016-07-01

    Reductions in renal microvasculature density and increased lymphocyte activity may play critical roles in the progression of chronic kidney disease (CKD) following acute kidney injury (AKI) induced by ischemia/reperfusion injury (IRI). Vitamin D deficiency is associated with tubulointerstitial damage and fibrosis progression following IRI-AKI We evaluated the effect of vitamin D deficiency in sustained IRI-AKI, hypothesizing that such deficiency contributes to the early reduction in renal capillary density or alters the lymphocyte response to IRI Wistar rats were fed vitamin D-free or standard diets for 35 days. On day 28, rats were randomized into four groups: control, vitamin D deficient (VDD), bilateral IRI, and VDD+IRI Indices of renal injury and recovery were evaluated for up to 7 days following the surgical procedures. VDD rats showed reduced capillary density (by cablin staining), even in the absence of renal I/R. In comparison with VDD and IRI rats, VDD+IRI rats manifested a significant exacerbation of capillary rarefaction as well as higher urinary volume, kidney weight/body weight ratio, tissue injury scores, fibroblast-specific protein-1, and alpha-smooth muscle actin. VDD+IRI rats also had higher numbers of infiltrating activated CD4(+) and CD8(+) cells staining for interferon gamma and interleukin-17, with a significant elevation in the Th17/T-regulatory cell ratio. These data suggest that vitamin D deficiency impairs renal repair responses to I/R injury, exacerbates changes in renal capillary density, as well as promoting fibrosis and inflammation, which may contribute to the transition from AKI to CKD.

  1. P2X7 receptor inhibition protects against ischemic acute kidney injury in mice.

    PubMed

    Yan, Yanli; Bai, Jianwen; Zhou, Xiaoxu; Tang, Jinhua; Jiang, Chunming; Tolbert, Evelyn; Bayliss, George; Gong, Rujun; Zhao, Ting C; Zhuang, Shougang

    2015-03-15

    Activation of the purinergic P2X7 receptor (P2X7R) has been associated with the development of experimental nephritis and diabetic and hypertensive nephropathy. However, its role in acute kidney injury (AKI) remains unknown. In this study, we examined the effects of P2X7R inhibition in a murine model of ischemia-reperfusion (I/R)-induced AKI using A438079, a selective inhibitor of P2X7R. At 24 h after I/R, mice developed renal dysfunction and renal tubular damage, which was accompanied by elevated expression of P2X7R. Early administration of A438079 immediately or 6 h after the onset of reperfusion protected against renal dysfunction and attenuated kidney damage whereas delayed administration of A438079 at 24 h after restoration of perfusion had no protective effects. The protective actions of A438079 were associated with inhibition of renal tubule injury and cell death and suppression of renal expression of monocyte chemotactic protein-1 and regulated upon expression normal T cell expressed and secreted (RANTES). Moreover, I/R injury led to an increase in phosphorylation (activation) of extracellular signal-regulated kinases 1/2 in the kidney; treatment with A438079 diminished this response. Collectively, these results indicate that early P2X7R inhibition is effective against renal tubule injury and proinflammatory response after I/R injury and suggest that targeting P2X7R may be a promising therapeutic strategy for treatment of AKI.

  2. Association of systemic hypertension with renal injury in dogs with induced renal failure.

    PubMed

    Finco, Delmar R

    2004-01-01

    Systemic hypertension is hypothesized to cause renal injury to dogs. This study was performed on dogs with surgically induced renal failure to determine whether hypertension was associated with altered renal function or morphology. Mean arterial pressure (MAP), heart rate (HR), systolic arterial pressure (SAP), and diastolic arterial pressure (DAP) were measured before and after surgery. Glomerular filtration rate (GFR) and urine protein:creatinine ratios (UPC) were measured at 1, 12, 24, 36, and 56-69 weeks after surgery, and renal histology was evaluated terminally. The mean of weekly MAP, SAP, and DAP measurements for each dog over the 1st 26 weeks was used to rank dogs on the basis of MAP, SAP, or DAP values. A statistically significant association was found between systemic arterial pressure ranking and ranked measures of adverse renal responses. When dogs were divided into higher pressure and lower pressure groups on the basis of SAP, group 1 (higher pressure, n = 9) compared with group 2 (lower pressure, n = 10) had significantly lower GFR values at 36 and 56-69 weeks; higher UPC values at 12 and 56-69 weeks; and higher kidney lesion scores for mesangial matrix, tubule damage, and fibrosis. When dogs were divided on MAP and DAP values, group 1 compared with group 2 had significantly lower GFR values at 12, 24, 36, and 56-69 weeks; higher UPC values at 12 and 56-69 weeks; and higher kidney lesion scores for mesangial matrix, tubule damage, fibrosis, and cell infiltrate. These results demonstrate an association between increased systemic arterial pressure and renal injury. Results from this study might apply to dogs with some types of naturally occurring renal failure.

  3. PHLPP1 gene deletion protects the brain from ischemic injury

    PubMed Central

    Chen, Bo; Van Winkle, Jessica A; Lyden, Patrick D; Brown, Joan H; Purcell, Nicole H

    2013-01-01

    A recently discovered protein phosphatase PHLPP (PH domain Leucine-rich repeat Protein Phosphatase) has been shown to dephosphorylate Akt on its hydrophobic motif (Ser473) thereby decreasing Akt kinase activity. We generated PHLPP1 knockout (KO) mice and used them to explore the ability of enhanced in vivo Akt signaling to protect the brain against ischemic insult. Brains from KO mice subjected to middle cerebral artery occlusion (MCAO) for 2 hours showed significantly greater increases in Akt activity and less neurovascular damage after reperfusion than wild-type (WT) mice. Remarkably, infarct volume in the PHLPP1 KO was significantly reduced compared with WT (12.7±2.7% versus 22.9±3.1%) and this was prevented by Akt inhibition. Astrocytes from KO mice and neurons in which PHLPP1 was downregulated showed enhanced Akt activation and diminished cell death in response to oxygen-glucose deprivation. Thus, deletion of PHLPP1 can enhance Akt activation in neurons and astrocytes, and can significantly increase cell survival and diminish infarct size after MCAO. Inhibition of PHLPP could be a therapeutic approach to minimize damage after focal ischemia. PMID:23072745

  4. Five-Year Retrospective Review of Blunt Renal Injuries at a Level I Trauma Center.

    PubMed

    Burns, Jessica; Brown, Megan; Assi, Zakaria I; Ferguson, Eric J

    2017-02-01

    We report the experience of a Level I trauma center in the management of blunt renal injury during a 5-year period, with special attention to those treated using angiography with embolization. The institutional trauma registry was queried for all patients with blunt renal injury between September 1, 2009 and August 30, 2014. Each injury was graded using the American Association for the Surgery of Trauma guidelines. Patients that underwent angiography with embolization were reviewed for case-specific information including imaging findings, treatment, materials used, clinical course, and mortality. The registry identified 48 blunt renal injury patients. Median Injury Severity Score was higher and hospital length of stay was significantly longer in those with blunt renal injury when compared with those without blunt renal injury (P < 0.001). The majority of patients with blunt renal injury were managed nonoperatively. Mortality was three out of 48 patients (5%). Nine patients underwent exploratory laparotomy. These operations were always performed for reasons other than the renal trauma (e.g., splenic injury, free fluid, free air). No patient underwent invasive renal operation. Six patients were treated using angiography with embolization. Of the six, one patient died of pulmonary septic complications. We conclude that selective nonoperative management is the mainstay of treatment for blunt renal injury. Angiography with embolization is a useful modality for cases of ongoing bleeding, and is typically preferable to nephrectomy in our experience.

  5. Clinical pathophysiology of hypoxic ischemic brain injury after cardiac arrest: a "two-hit" model.

    PubMed

    Sekhon, Mypinder S; Ainslie, Philip N; Griesdale, Donald E

    2017-04-13

    Hypoxic ischemic brain injury (HIBI) after cardiac arrest (CA) is a leading cause of mortality and long-term neurologic disability in survivors. The pathophysiology of HIBI encompasses a heterogeneous cascade that culminates in secondary brain injury and neuronal cell death. This begins with primary injury to the brain caused by the immediate cessation of cerebral blood flow following CA. Thereafter, the secondary injury of HIBI takes place in the hours and days following the initial CA and reperfusion. Among factors that may be implicated in this secondary injury include reperfusion injury, microcirculatory dysfunction, impaired cerebral autoregulation, hypoxemia, hyperoxia, hyperthermia, fluctuations in arterial carbon dioxide, and concomitant anemia.Clarifying the underlying pathophysiology of HIBI is imperative and has been the focus of considerable research to identify therapeutic targets. Most notably, targeted temperature management has been studied rigorously in preventing secondary injury after HIBI and is associated with improved outcome compared with hyperthermia. Recent advances point to important roles of anemia, carbon dioxide perturbations, hypoxemia, hyperoxia, and cerebral edema as contributing to secondary injury after HIBI and adverse outcomes. Furthermore, breakthroughs in the individualization of perfusion targets for patients with HIBI using cerebral autoregulation monitoring represent an attractive area of future work with therapeutic implications.We provide an in-depth review of the pathophysiology of HIBI to critically evaluate current approaches for the early treatment of HIBI secondary to CA. Potential therapeutic targets and future research directions are summarized.

  6. Differential renal function in unilateral renal injury: possible effects of radiopharmaceutical choice. [Rats

    SciTech Connect

    Taylor, A. Jr.; Lallone, R.

    1985-01-01

    An abnormal filtration fraction or a significant divergence between a kidney's ability to extract Tc-99m dimercaptosuccinic acid (DMSA) and other function parameters, such as the glomerular filtration rate (GFR) or the effective renal plasma flow (ERPF, could lead to different estimates of relative or absolute renal function, depending on the radiopharmaceutical administered. To evaluate this possible divergence, the authors measured the relative GFR (I-125 iothalamate), ERPF (I-131 hippurate), and Tc-99m DMSA accumulation in adult male Sprague-Dawley rats with unilateral ureteral obstruction or unilateral ischemia at various times after renal injury. The relative ERPF of the obstructed kidney was significantly greater than the relative GFR at all time periods studied; significant but less dramatic differences were noted comparing DMSA with GFR in obstruction and DMSA and ERPF with GRF in ischemia.

  7. Treatment with Evasin-3 reduces atherosclerotic vulnerability for ischemic stroke, but not brain injury in mice

    PubMed Central

    Copin, Jean-Christophe; da Silva, Rafaela F; Fraga-Silva, Rodrigo A; Capettini, Luciano; Quintao, Silvia; Lenglet, Sébastien; Pelli, Graziano; Galan, Katia; Burger, Fabienne; Braunersreuther, Vincent; Schaller, Karl; Deruaz, Maud; Proudfoot, Amanda E; Dallegri, Franco; Stergiopulos, Nikolaos; Santos, Robson A S; Gasche, Yvan; Mach, François; Montecucco, Fabrizio

    2013-01-01

    Neutrophilic inflammation might have a pathophysiological role in both carotid plaque rupture and ischemic stroke injury. Here, we investigated the potential benefits of the CXC chemokine-binding protein Evasin-3, which potently inhibits chemokine bioactivity and related neutrophilic inflammation in two mouse models of carotid atherosclerosis and ischemic stroke, respectively. In the first model, the chronic treatment with Evasin-3 as compared with Vehicle (phosphate-buffered saline (PBS)) was investigated in apolipoprotein E-deficient mice implanted of a ‘cast' carotid device. In the second model, acute Evasin-3 treatment (5 minutes after cerebral ischemia onset) was assessed in mice subjected to transient left middle cerebral artery occlusion. Although CXCL1 and CXCL2 were upregulated in both atherosclerotic plaques and infarcted brain, only CXCL1 was detectable in serum. In carotid atherosclerosis, treatment with Evasin-3 was associated with reduction in intraplaque neutrophil and matrix metalloproteinase-9 content and weak increase in collagen as compared with Vehicle. In ischemic stroke, treatment with Evasin-3 was associated with reduction in ischemic brain neutrophil infiltration and protective oxidants. No other effects in clinical and histological outcomes were observed. We concluded that Evasin-3 treatment was associated with reduction in neutrophilic inflammation in both mouse models. However, Evasin-3 administration after cerebral ischemia onset failed to improve poststroke outcomes. PMID:23250107

  8. Ischemic postconditioning provides protection against ischemia-reperfusion injury in intestines of rats.

    PubMed

    Chu, Weiwei; Li, Sheng; Wang, Shanwei; Yan, Aili; Nie, Lei

    2015-01-01

    In the present study, we investigated the protective role of ischemic postconditioning (IPOST) against intestine ischemia-reperfusion (I/R) injury in rats. Male Sprague-Dawley rats were divided into sham-operation group (S), I/R group (I/R), ischemic preconditioning group (IPC), ischemic postconditioning group (IPOST). After reperfusion, small intestines were resected for histopathologic evaluations. To evaluate DNA fragmentation, resolving agarose gel electrophoresis was performed. To measure cellular apoptotic rates in intestine tissues, we performed TUNEL staining. To examine lipid peroxidation, production of superoxide radicals and tissue neutrophil infiltration, we tested the content of malondialdehyde and activities of superoxidase dismutase and myeloperoxidase in intestine tissues, respectively. Under light microscope, intestinal mucosal impairment in IPOST and IPC groups was found milder than that in I/R group (P < 0.05). The number of apoptosis cells in I/R group was significantly higher than that in IPOST and IPC groups (P < 0.05). The content of malondialdehyde and activity of myeloperoxidase were significantly reduced in IPOST group and IPC group compared with I/R group, but the activity of superoxidase dismutase in IPOST group and IPC group was enhanced compared with I/R group (P < 0.05). These results suggest that IPOST results in protection against intestine I/R injury, which may be related to reduced production of reactive oxygen species, enhanced activities of antioxidant systems and inhibited apoptosis of intestinal mucosal cells.

  9. Astrocyte-derived interleukin-15 exacerbates ischemic brain injury via propagation of cellular immunity

    PubMed Central

    Li, Minshu; Li, Zhiguo; Yao, Yang; Jin, Wei-Na; Wood, Kristofer; Liu, Qiang; Shi, Fu-Dong; Hao, Junwei

    2017-01-01

    Astrocytes are believed to bridge interactions between infiltrating lymphocytes and neurons during brain ischemia, but the mechanisms for this action are poorly understood. Here we found that interleukin-15 (IL-15) is dramatically up-regulated in astrocytes of postmortem brain tissues from patients with ischemic stroke and in a mouse model of transient focal brain ischemia. We generated a glial fibrillary acidic protein (GFAP) promoter-controlled IL-15–expressing transgenic mouse (GFAP–IL-15tg) line and found enlarged brain infarcts, exacerbated neurodeficits after the induction of brain ischemia. In addition, knockdown of IL-15 in astrocytes attenuated ischemic brain injury. Interestingly, the accumulation of CD8+ T and natural killer (NK) cells was augmented in these GFAP–IL-15tg mice after brain ischemia. Of note, depletion of CD8+ T or NK cells attenuated ischemic brain injury in GFAP–IL-15tg mice. Furthermore, knockdown of the IL-15 receptor α or blockade of cell-to-cell contact diminished the activation and effector function of CD8+ T and NK cells in GFAP–IL-15tg mice, suggesting that astrocytic IL-15 is delivered in trans to target cells. Collectively, these findings indicate that astrocytic IL-15 could aggravate postischemic brain damage via propagation of CD8+ T and NK cell-mediated immunity. PMID:27994144

  10. Ischemic postconditioning as a novel avenue to protect against brain injury after stroke

    PubMed Central

    Zhao, Heng

    2009-01-01

    Ischemic postconditioning initially referred to a stuttering reperfusion performed immediately after reperfusion, for preventing ischemia/reperfusion injury in both myocardial and cerebral infarction. It has evolved into a concept that can be induced by a broad range of stimuli or triggers, and may even be performed as late as 6 h after focal ischemia and 2 days after transient global ischemia. The concept is thought to be derived from ischemic preconditioning or partial/gradual reperfusion, but in fact the first experiment for postconditioning was carried out much earlier than that of preconditioning or partial/gradual reperfusion, in the research on myocardial ischemia. This review first examines the protective effects and parameters of postconditioning in various cerebral ischemic models. Thereafter, it provides insights into the protective mechanisms of postconditioning associated with reperfusion injury and the Akt, mitogen-activated protein kinase (MAPK), protein kinase C (PKC), and ATP-sensitive K+ (KATP) channel cell signaling pathways. Finally, some open issues and future challenges regarding clinical translation of postconditioning are discussed. PMID:19240739

  11. Anti-inflammation effects of picroside 2 in cerebral ischemic injury rats

    PubMed Central

    2010-01-01

    Background Excitatory amino acid toxicity, oxidative stress, intracellular calcium overload, as well as inflammation and apoptosis are involved in the pathological process after cerebral ischemic reperfusion injury. Picrodide 2 could inhibit neuronal apoptosis and play anti-oxidant and anti-inflammation role in cerebral ischemia/reperfusion injuries, but the exact mechanism is not very clear. This study aims to explore the anti-inflammation mechanism of picroside 2 in cerebral ischemic reperfusion injury in rats. Methods The middle cerebral artery occlusion reperfusion models were established with intraluminal thread methods in 90 adult healthy female Wistar rats. Picroside 2 and salvianic acid A sodium were respectively injected from tail vein at the dosage of 10 mg/kg for treatment. The neurobehavioral function was evaluated with Bederson's test and the cerebral infarction volume was observed with tetrazolium chloride (TTC) staining. The apoptotic cells were counted by in situ terminal deoxynucleotidyl transferase-mediated biotinylated deoxyuridine triphosphate nick end labeling (TUNEL) assay. The immunohistochemistry stain was used to determine the expressions of toll-like receptor 4 (TLR4), nuclear transcription factor κB (NFκB) and tumor necrosis factor α (TNFα). The concentrations of TLR4, NFκB and TNFα in brain tissue were determined by enzyme linked immunosorbent assay (ELISA). Results After cerebral ischemic reperfusion, the rats showed neurobehavioral function deficit and cerebral infarction in the ischemic hemisphere. The number of apoptotic cells, the expressions and the concentrations in brain tissue of TLR4, NFκB and TNFα in ischemia control group increased significantly than those in the sham operative group (P < 0.01). Compared with the ischemia control group, the neurobehavioral scores, the infarction volumes, the apoptotic cells, the expressions and concentrations in brain tissue of TLR4, NFκB and TNFα were obviously decreased both in

  12. Ascorbic acid against reperfusion injury in human renal transplantation.

    PubMed

    Norio, Karri; Wikström, Mårten; Salmela, Kaija; Kyllönen, Lauri; Lindgren, Leena

    2003-08-01

    The cadaveric renal graft is exposed to ischaemic injury during preservation and to oxidative damage during reperfusion. Both these mechanisms are known to cause cell damage, which may impair graft function. Reperfusion injury (RPI) is mediated by reactive oxygen species (ROS). Ascorbic acid (AA) is a potent physiological extracellular scavenger of ROS. We perfused 31 renal grafts immediately before implantation with a solution of Euro-Collins containing 0.5 mg/ml of AA to diminish RPI. From every donor, the contralateral kidney served as a control. The control grafts were perfused with the same perfusion as those of the AA group, only without the AA substitution. We assessed the effect of AA by recording serum creatinine, creatinine clearance, initial graft function and early rejections. The incidence of delayed graft function (DGF) was 32% in the AA group, and 29% in the control group. Other parameters were also similar in both groups, except for the length of DGF, which showed a trend towards a shorter duration in the AA group. The pre-operative systemic AA concentration was significantly ( P=0.01) lower in the haemodialysis patients than in those on peritoneal dialysis. In conclusion, this clinical study could not demonstrate significant benefits of AA in renal transplantation.

  13. Detection of renal ischemic lesions using Gd-DTPA enhanced turbo FLASH MRI: Experimental and clinical results

    SciTech Connect

    Vosshenrich, R.; Fischer, U.; Funke, M.; Kopka, L.; Grabbe, E.

    1996-03-01

    Our goal was to investigate the role of Gd-DTPA-enhanced dynamic MRI in the evaluation of renal ischemic lesions. With a turbo FLASH sequence before and after injection of Gd-DTPA, nine foxhound dogs after 60-120 min of renal ischemia underwent MR examination. In addition, five patients with a tumor in a solitary kidney were examined before and after nephron-sparing renal surgery to evaluate renal perfusion and function. The experimental and clinical findings were correlated with conventional measurements of kidney function and with histological findings. Complete renal ischemia leads to a poor corticomedullary differentiation in Gd-DTPA-enhanced turbo FLASH MRI. The signal-intensity-versus-time plots of kidneys with significant postischemic changes show a less steep increase of signal intensity in the cortex and a steeper increase of signal intensity in the medulla than those of normal kidneys. Dynamic MRI demonstrate renal morphology and reflect the functional status of the renal vasculature. 21 refs., 8 figs., 1 tab.

  14. Remote Limb Ischemic Postconditioning Protects Against Neonatal Hypoxic–Ischemic Brain Injury in Rat Pups by the Opioid Receptor/Akt Pathway

    PubMed Central

    Zhou, Yilin; Fathali, Nancy; Lekic, Tim; Ostrowski, Robert P.; Chen, Chunhua; Martin, Robert D.; Tang, Jiping; Zhang, John H.

    2013-01-01

    Background and Purpose Remote ischemic postconditoning, a phenomenon in which brief ischemic stimuli of 1 organ protect another organ against an ischemic insult, has been demonstrated to protect the myocardium and adult brain in animal models. However, mediators of the protection and underlying mechanisms remain to be elucidated. In the present study, we tested the hypothesis that remote limb ischemic postconditioning applied immediately after hypoxia provides neuroprotection in a rat model of neonatal hypoxia–ischemia (HI) by mechanisms involving activation of the opioid receptor/phosphatidylinositol-3-kinase/Akt signaling pathway. Methods HI was induced in postnatal Day 10 rat pups by unilateral carotid ligation and 2 hours of hypoxia. Limb ischemic postconditioning was induced by 4 conditioning cycles of 10 minutes of ischemia and reperfusion on both hind limbs immediately after HI. The opioid antagonist naloxone, phosphatidylinositol-3-kinase inhibitor wortmannin, or opioid agonist morphine was administered to determine underlying mechanisms. Infarct volume, brain atrophy, and neurological outcomes after HI were evaluated. Expression of phosphorylated Akt, Bax, and phosphorylated ERK1/2 was determined by Western blotting. Results Limb ischemic postconditioning significantly reduced infarct volume at 48 hours and improved functional outcomes at 4 weeks after HI. Naloxone and wortmannin abrogated the postconditioning-mediated infarct-limiting effect. Morphine given immediately after hypoxia also decreased infarct volume. Furthermore, limb ischemic postconditioning recovered Akt activity and decreased Bax expression, whereas no differences in phosphorylated ERK1/2expression were observed. Conclusions Limb ischemic postconditioning protects against neonatal HI brain injury in rats by activating the opioid receptor/phosphatidylinositol-3-kinase/Akt signaling pathway. PMID:21183744

  15. [Preservation of kidneys with ischemic injury using hypothermic storage and mechanical prolonged perfusion].

    PubMed

    Wienand, P; Grundmann, R; Bischoff, A; Pichlmaier, H

    1978-01-01

    Dog kidneys were flushed and stored in Collins (n = 30) and Sacks (n = 32) solution under hypothermia. These results were compared with those gained by mechanical perfusion (n = 21). Before preservation, the kidneys were subjected to 15 - 60 min of warm ischemia then stored for 12 - 24 h. It was concluded that 12-h preservation time after 15-min ischemic injury was the limit of hypothermic storage preservation. Sacks' solution gave better results than Collins' solution as regards the immediate function after transplantation. In contrast, mechanical perfusion was well tolerated for 24-h preservation time after a warm ischemia of 30 min. In case of warm ischemic damage, mechanical perfusion should be preferred to hypothermic storage.

  16. Protective role of cisplatin in ischemic liver injury through induction of autophagy.

    PubMed

    Cardinal, Jon; Pan, Pinhua; Tsung, Allan

    2009-11-01

    High mobility group box 1 (HMGB1) is a nuclear protein released from stressed or damaged cells that activates inflammatory cascades involved in the pathogenesis of liver ischemia reperfusion (I/R) injury. In efforts to develop strategies aimed at preventing its release from ischemic cells following I/R, we studied the use of cisplatin, a member of the platinating chemotherapeutic agents capable of inducing DNA lesions that have high binding affinities for high mobility group proteins inside the nucleus of cells. In addition to demonstrating that cisplatin prevents liver damage associated with liver I/R by sequestering HMGB1 inside the nucleus of ischemic cells, cisplatin also alters cell survival signaling through autophagy. Our results provide a potential approach involving the use of platinating agents and their effects on autophagy in mitigating the deleterious effects of ischemia reperfusion-mediated disease processes.

  17. Renal Artery Injury Secondary to Blunt Abdominal Trauma – Two Case Reports

    PubMed Central

    Ahmed, Zahoor; Nabir, Syed; Ahmed, Mohamed Nadeem; Al Hilli, Shatha; Ravikumar, Vajjala; Momin, Umais Zaid

    2016-01-01

    Summary Background Blunt abdominal trauma is routinely encountered in the Emergency Department. It is one of the main causes of morbidity and mortality amongst the population below the age of 35 years worldwide. Renal artery injury secondary to blunt abdominal trauma however, is a rare occurrence. Here, we present two such cases, encountered in the emergency department sustaining polytrauma following motor vehicle accidents. Case Report We hereby report two interesting cases of renal artery injury sustained in polytrauma patients. In these two cases we revealed almost the entire spectrum of findings that one would expect in renal arterial injuries. Conclusions Traumatic renal artery occlusion is a rare occurrence with devastating consequences if missed on imaging. Emergency radiologists need to be aware of the CT findings so as to accurately identify renal artery injury. This case report stresses the need for immediate CT assessment of polytrauma patients with suspected renal injury, leading to timely diagnosis and urgent surgical or endovascular intervention. PMID:28058071

  18. Transforming growth factor-β1 promotes homing of bone marrow mesenchymal stem cells in renal ischemia-reperfusion injury

    PubMed Central

    Si, Xiaoyun; Liu, Ximing; Li, Jingjing; Wu, Xiaoyan

    2015-01-01

    Backgrounds: Acute ischemia reperfusion-induced kidney injury is a common cause of acute renal failure, and it is also an important cause of delayed recovery of transplanted kidney functions and even loss of function. However, there is no effective treatment method in clinical applications presently. Objective: The objective was to investigate effects of transforming growth factor-β1 on homing of bone marrow mesenchymal stem cells in renal ischemia-reperfusion injury. Methods: Effects of TGF-β1 over-expression in MSCs on expression of CXCR4 and chemotactic effect to SDF-1 were investigated by in vitro transmembrane chemotaxis. Anti-TGF-β1 antibody was incubated with ischemia reperfusion injury renal tissue homogenate and effects of anti-TGF-β1 antibody were observed. In addition, effects of TGF-β1 gene transfection and anti-CXCR4 antibody treatment in MSCs on expression of SDF-1/CXCR4 axis of renal tissues and damage repair were further explored. Results: Expression of TGF-β1 mRNA in the IRI group increased significantly, and MSCs transplantation could enhance expression of CXCR4 mRNA in rats of the IRI group, the expression of CXCR4 can be decreased by the anti-TGF-β1 antibody and the anti-CXCR4 antibody. TGF-β1 induced homing of MSCs in repair of renal ischemic reperfusion injury by regulating expression of CXCR4 on cell membranes. Blue fluorescence of DAPI-positive MSCs cells of renal parenchyma in the IRI+MSC group was enhanced significantly, which was significantly inhibited by anti-TGF-β1 and anti-CXCR4 antibody, and the inhibitory effect of anti-CXCR4 antibody was more obvious than that of anti-TGF-β1 antibody. Conclusion: Transforming growth factor-β1 promotes homing of bone marrow mesenchymal stem cells in renal ischemia-reperfusion injury, which will provide useful data on role of TGF-β1 in regulating SDF-1/CXCR4 axis-induced MSCs homing. PMID:26722423

  19. Evidence of Uncoupling between Renal Dysfunction and Injury in Cardiorenal Syndrome: Insights from the BIONICS Study

    PubMed Central

    Legrand, Matthieu; De Berardinis, Benedetta; Gaggin, Hanna K.; Magrini, Laura; Belcher, Arianna; Zancla, Benedetta; Femia, Alexandra; Simon, Mandy; Motiwala, Shweta; Sambhare, Rasika; Di Somma, Salvatore; Mebazaa, Alexandre; Vaidya, Vishal S.; Januzzi, James L.; (GREAT), from the Global Research on Acute Conditions Team

    2014-01-01

    Objective The objective of the study was to assess urinary biomarkers of renal injury for their individual or collective ability to predict Worsening renal function (WRF) in patients with acutely decompensated heart failure (ADHF). Methods In a prospective, blinded international study, 87 emergency department (ED) patients with ADHF were evaluated with biomarkers of cardiac stretch (B type natriuretic peptide [BNP] and its amino terminal equivalent [NT-proBNP], ST2), biomarkers of renal function (creatinine, estimated glomerular filtration rate [eGFR]) and biomarkers of renal injury (plasma neutrophil gelatinase associated lipocalin [pNGAL], urine kidney injury molecule-1 [KIM-1], urine N-acetyl-beta-D-glucosaminidase [NAG], urine Cystatin C, urine fibrinogen). The primary endpoint was WRF. Results 26% developed WRF; baseline characteristics of subjects who developed WRF were generally comparable to those who did not. Biomarkers of renal function and urine biomarkers of renal injury were not correlated, while urine biomarkers of renal injury correlated between each other. Biomarker concentrations were similar between patients with and without WRF except for baseline BNP. Although plasma NGAL was associated with the combined endpoint, none of the biomarker showed predictive accuracy for WRF. Conclusions In ED patients with ADHF, urine biomarkers of renal injury did not predict WRF. Our data suggest that a weak association exists between renal dysfunction and renal injury in this setting (Clinicaltrials.gov NCT#0150153). PMID:25386851

  20. Calcium Oxalate Induces Renal Injury through Calcium-Sensing Receptor

    PubMed Central

    Li, Xiaoran; Ma, Junhai; Shi, Wei; Su, Yu; Fu, Xu; Yang, Yanlin; Lu, Jianzhong

    2016-01-01

    Objective. To investigate whether calcium-sensing receptor (CaSR) plays a role in calcium-oxalate-induced renal injury. Materials and Methods. HK-2 cells and rats were treated with calcium oxalate (CaOx) crystals with or without pretreatment with the CaSR-specific agonist gadolinium chloride (GdCl3) or the CaSR-specific antagonist NPS2390. Changes in oxidative stress (OS) in HK-2 cells and rat kidneys were assessed. In addition, CaSR, extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal protein kinase (JNK), and p38 expression was determined. Further, crystal adhesion assay was performed in vitro, and the serum urea and creatinine levels and crystal deposition in the kidneys were also examined. Results. CaOx increased CaSR, ERK, JNK, and p38 protein expression and OS in vitro and in vivo. These deleterious changes were further enhanced upon pretreatment with the CaSR agonist GdCl3 but were attenuated by the specific CaSR inhibitor NPS2390 compared with CaOx treatment alone. Pretreatment with GdCl3 further increased in vitro and in vivo crystal adhesion and renal hypofunction. In contrast, pretreatment with NPS2390 decreased in vitro and in vivo crystal adhesion and renal hypofunction. Conclusions. CaOx-induced renal injury is related to CaSR-mediated OS and increased mitogen-activated protein kinase (MAPK) signaling, which subsequently leads to CaOx crystal adhesion. PMID:27965733

  1. ST2/IL-33-Dependent Microglial Response Limits Acute Ischemic Brain Injury.

    PubMed

    Yang, Yuanyuan; Liu, Huan; Zhang, Haiyue; Ye, Qing; Wang, Jianyi; Yang, Boyu; Mao, Leilei; Zhu, Wen; Leak, Rehana K; Xiao, Bo; Lu, Binfeng; Chen, Jun; Hu, Xiaoming

    2017-04-07

    ST2, a member of the interleukin 1 receptor family, and its ligand interleukin 33 (IL-33) play critical roles in immune regulation and inflammatory responses. This study explores the roles of endogenous IL-33/ST2 signaling in ischemic brain injury and elucidates the underlying mechanisms of action. The expression of IL-33 rapidly increased in oligodendrocytes and astrocytes after 60 min transient middle cerebral artery occlusion (tMCAO). ST2 receptor deficiency exacerbated brain infarction 3d after tMCAO as well as distal permanent MCAO. ST2 deficiency also aggravated neurological deficits up to 7d after tMCAO. Conversely, intracerebroventricular infusions of IL-33 after tMCAO attenuated brain infarction. Flow cytometry analyses demonstrated high levels of ST2 expression on microglia, and this expression was dramatically enhanced after tMCAO. The absence of ST2 enhanced the expression of M1 polarization markers on microglia/macrophages, and impaired the expression of M2 polarization markers after tMCAO. In vitro studies on various types of cultures and co-culture systems confirmed that IL-33/ST2 signaling potentiated expression of IL-10 and other M2 genes in primary microglia. The activation of ST2 on microglia led to a protective phenotype that enhanced neuronal survival against oxygen glucose deprivation (OGD). Further in vitro studies revealed that IL-33-activated microglia released IL-10, and that this was critical for their neuroprotective effects. Similarly, intracerebroventricular infusions of IL-33 into IL-10 knockout mice failed to provide neuroprotection against tMCAO in vivo These results shed new light on the IL-33/ST2 axis as an immune regulatory mechanism that serves as a natural brake on the progression of ischemic brain injury.Significance:This is the first study to identify the function of IL-33/ST2 signaling in post-stroke microglial responses and neuroprotection against ischemia. Using two models of ischemic stroke, we demonstrate here that ST2

  2. Ambient Melamine Exposure and Urinary Biomarkers of Early Renal Injury

    PubMed Central

    Wu, Chia-Fang; Peng, Chiung-Yu; Liu, Chia-Chu; Lin, Wen-Yi; Pan, Chih-Hong; Cheng, Ching-Mei; Hsieh, Hui-Min; Hsieh, Tusty-Jiuan; Chen, Bai-Hsiun

    2015-01-01

    Information about environmental exposure to melamine and renal injury in adults is lacking. We investigated this relationship in 44 workers at two melamine tableware manufacturing factories in Taiwan (16 manufacturers, eight grinders, ten packers, and ten administrators) and 105 nonexposed workers (controls) at one shipbuilding company who were enrolled in August–December of 2012. For melamine workers, personal and area air samples were obtained at the worksite over 1 workweek (Monday–Friday). In the same week, pre- and post-shift one-spot urine samples were collected each workday and one first-spot urine sample was collected on each weekend morning and the following Monday morning. For each control, a one-spot urine sample was collected on Friday morning. A blood sample was also obtained from each participant at this time. Melamine levels were measured in air, urine, and serum, and early renal injury biomarkers were measured in urine. Urinary melamine concentrations in manufacturers increased sharply between pre- and post-shift measurements on Monday, remained significantly elevated throughout the workweek, and decreased over the weekend; changes in urinary melamine concentrations were substantially lower for other melamine workers. Manufacturers were exposed to the highest concentrations of ambient melamine and had significantly higher urinary and serum melamine concentrations than did the controls (P<0.001). Urinary melamine levels were positively associated with urinary N-acetyl β-d-glucosaminidase (NAG) levels but not microalbumin levels, and the detectable β2-microglobulin rate increased in the manufacturers group. In conclusion, ambient melamine exposure may increase the levels of urinary biomarkers of renal tubular injury in this occupational setting. PMID:26045090

  3. HIF-1α inhibition ameliorates neonatal brain injury in a rat pup hypoxic-ischemic model

    PubMed Central

    Chen, Wanqiu; Jadhav, Vikram; Tang, Jiping; Zhang, John H.

    2008-01-01

    Hypoxia-inducible factor-1alpha (HIF-1α) has been considered as a regulator of both prosurvival and prodeath pathways in the nervous system. The present study was designed to elucidate the role of HIF-1α in neonatal hypoxic-ischemic (HI) brain injury. Rice-Vannucci model of neonatal hypoxic-ischemic brain injury was used in seven-day-old rats, by subjecting unilateral carotid artery ligation followed by 2h of hypoxia (8% O2 at 37°C). HIF-1α activity was inhibited by 2-methoxyestradiol (2ME2) and enhanced by dimethyloxalylglycine (DMOG). Results showed that 2ME2 exhibited dose-dependent neuroprotection by decreasing infarct volume and reducing brain edema at 48 h post HI. The neuroprotection was lost when 2ME2 was administered 3 h post HI. HIF-1α upregulation by DMOG increased the permeability of the BBB and brain edema compared with HI group. 2ME2 attenuated the increase in HIF-1α and VEGF 24 h after HI. 2ME2 also had a long-term effect of protecting against the loss of brain tissue. The study showed that the early inhibition of HIF-1α acutely after injury provided neuroprotection after neonatal hypoxia-ischemia which was associated with preservation of BBB integrity, attenuation of brain edema, and neuronal death. PMID:18602008

  4. A new idea about reducing reperfusion injury in ischemic stroke: Gradual reperfusion.

    PubMed

    Shi, Jingfei; Liu, Yi; Duan, Yunxia; Sun, Zhishan; Wang, Bincheng; Meng, Ran; Ji, Xunming

    2013-02-01

    Around the world, stroke is the second most common cause of death and a major cause of disability. The main direct cause of stroke is the occlusion of intracranial artery, which leads to cell death in the core suffered region, or cell functional impairment surrounding the dead core (termed ischemic penumbra). Opening the occluded artery to save the ischemic penumbra is the aim of thrombolysis therapy. But the reperfusion induced injury counteracts the potential profit by thrombolysis. Herein, we assume that gradual reperfusion can reduce the reperfusion injury by reducing the production of free radicals during reperfusion. The reason is: free radicals are critical in the reperfusion injury; free radicals come from the penumbra during reperfusion; the respiratory chain is the main source of free radical; the enzyme activity of the respiratory chain is upgraded during ischemia; once reperfused, the activity upgraded enzymes in the respiratory chain meet normal amount of oxygen and glucose, which produces exceeding intermediates (free radicals); while gradual reperfusion reduces the production of free radicals, because it can confine the amount of oxygen and glucose.

  5. Galectin-1-secreting neural stem cells elicit long-term neuroprotection against ischemic brain injury

    PubMed Central

    Wang, Jiayin; Xia, Jinchao; Zhang, Feng; Shi, Yejie; Wu, Yun; Pu, Hongjian; Liou, Anthony K. F.; Leak, Rehana K.; Yu, Xinguang; Chen, Ling; Chen, Jun

    2015-01-01

    Galectin-1 (gal-1), a special lectin with high affinity to β-galactosides, is implicated in protection against ischemic brain injury. The present study investigated transplantation of gal-1-secreting neural stem cell (s-NSC) into ischemic brains and identified the mechanisms underlying protection. To accomplish this goal, secretory gal-1 was stably overexpressed in NE-4C neural stem cells. Transient cerebral ischemia was induced in mice by middle cerebral artery occlusion for 60 minutes and s-NSCs were injected into the striatum and cortex within 2 hours post-ischemia. Brain infarct volume and neurological performance were assessed up to 28 days post-ischemia. s-NSC transplantation reduced infarct volume, improved sensorimotor and cognitive functions, and provided more robust neuroprotection than non-engineered NSCs or gal-1-overexpressing (but non-secreting) NSCs. White matter injury was also ameliorated in s-NSC-treated stroke mice. Gal-1 modulated microglial function in vitro, by attenuating secretion of pro-inflammatory cytokines (TNF-α and nitric oxide) in response to LPS stimulation and enhancing production of anti-inflammatory cytokines (IL-10 and TGF-β). Gal-1 also shifted microglia/macrophage polarization toward the beneficial M2 phenotype in vivo by reducing CD16 expression and increasing CD206 expression. In sum, s-NSC transplantation confers robust neuroprotection against cerebral ischemia, probably by alleviating white matter injury and modulating microglial/macrophage function. PMID:25858671

  6. Eriodictyol-7-O-glucoside activates Nrf2 and protects against cerebral ischemic injury

    SciTech Connect

    Jing, Xu; Ren, Dongmei; Wei, Xinbing; Shi, Huanying; Zhang, Xiumei; Perez, Ruth G.; Lou, Haiyan; Lou, Hongxiang

    2013-12-15

    Stroke is a complex disease that may involve oxidative stress-related pathways in its pathogenesis. The nuclear factor erythroid-2-related factor 2/antioxidant response element (Nrf2/ARE) pathway plays an important role in inducing phase II detoxifying enzymes and antioxidant proteins and thus has been considered a potential target for neuroprotection in stroke. The aim of the present study was to determine whether eriodictyol-7-O-glucoside (E7G), a novel Nrf2 activator, can protect against cerebral ischemic injury and to understand the role of the Nrf2/ARE pathway in neuroprotection. In primary cultured astrocytes, E7G increased the nuclear localization of Nrf2 and induced the expression of the Nrf2/ARE-dependent genes. Exposure of astrocytes to E7G provided protection against oxygen and glucose deprivation (OGD)-induced oxidative insult. The protective effect of E7G was abolished by RNA interference-mediated knockdown of Nrf2 expression. In vivo administration of E7G in a rat model of focal cerebral ischemia significantly reduced the amount of brain damage and ameliorated neurological deficits. These data demonstrate that activation of Nrf2/ARE signaling by E7G is directly associated with its neuroprotection against oxidative stress-induced ischemic injury and suggest that targeting the Nrf2/ARE pathway may be a promising approach for therapeutic intervention in stroke. - Highlights: • E7G activates Nrf2 in astrocytes. • E7G stimulates expression of Nrf2-mediated cytoprotective proteins in astrocytes. • E7G protects astrocytes against OGD-induced cell death and apoptosis. • The neuroprotective effect of E7G involves the Nrf2/ARE pathway. • E7G protects rats against cerebral ischemic injury.

  7. Melatonin treatment against remote organ injury induced by renal ischemia reperfusion injury in diabetes mellitus.

    PubMed

    Fadillioglu, Ersin; Kurcer, Zehra; Parlakpinar, Hakan; Iraz, Mustafa; Gursul, Cebrail

    2008-06-01

    Oxidative stress may have a role in liver damage after acute renal injury due to various reasons such as ischemia reperfusion (IR). Diabetes mellitus (DM) is an important disease for kidneys and may cause nephropathy as a long term complication. The aim of this study was to investigate protective effect of melatonin, a potent antioxidant, against distant organ injury on liver induced by renal IR in rats with or without DM. The rats were divided into six groups: control (n=7), DM (n=5), IR (n=7), DM+IR (n=7), melatonin+IR (Mel+IR) (melatonin, 4 mg/ kg during 15 days) (n=7), and Mel+DM+IR groups (n=7). Diabetes developed 3 days after single i.p. dose of 45 mg/kg streptozotocin. After 15 day, the left renal artery was occluded for 30 min followed 24 h of reperfusion in IR performed groups. DM did not alter oxidative parameters alone in liver tissue. The levels of malondialdehyde, protein carbonyl and nitric oxide with activities of xanthine oxidase and myeloperoxidase were increased in liver tissues of diabetic and non-diabetic IR groups. Nitric oxide level in DM was higher than control. The activities of catalase and superoxide dismutase were increased in IR groups in comparison with control and DM. ALT and AST levels were higher in IR and DM+IR groups than control and DM. Melatonin treatment reversed all these oxidant and antioxidant parameters to control values as well as serum liver enzymes. We concluded that renal IR may affect distant organs such as liver and oxidative stress may play role on this injury, but DM has not an effect on kidney induced distant organ injury via oxidant stress. Also, it was concluded that melatonin treatment may prevent liver oxidant stress induced by distant injury of kidney IR.

  8. Obstructive renal injury: from fluid mechanics to molecular cell biology.

    PubMed

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-04-22

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making.

  9. Obstructive renal injury: from fluid mechanics to molecular cell biology

    PubMed Central

    Ucero, Alvaro C; Gonçalves, Sara; Benito-Martin, Alberto; Santamaría, Beatriz; Ramos, Adrian M; Berzal, Sergio; Ruiz-Ortega, Marta; Egido, Jesus; Ortiz, Alberto

    2010-01-01

    Urinary tract obstruction is a frequent cause of renal impairment. The physiopathology of obstructive nephropathy has long been viewed as a mere mechanical problem. However, recent advances in cell and systems biology have disclosed a complex physiopathology involving a high number of molecular mediators of injury that lead to cellular processes of apoptotic cell death, cell injury leading to inflammation and resultant fibrosis. Functional studies in animal models of ureteral obstruction using a variety of techniques that include genetically modified animals have disclosed an important role for the renin-angiotensin system, transforming growth factor-β1 (TGF-β1) and other mediators of inflammation in this process. In addition, high throughput techniques such as proteomics and transcriptomics have identified potential biomarkers that may guide clinical decision-making. PMID:24198613

  10. Treatment with polyamine oxidase inhibitor reduces microglial activation and limits vascular injury in ischemic retinopathy

    PubMed Central

    Patel, C.; Xu, Z.; Shosha, E.; Xing, J.; Lucas, R.; Caldwell, R.W.; Caldwell, R.B.; Narayanan, S.P.

    2016-01-01

    Retinal vascular injury is a major cause of vision impairment in ischemic retinopathies. Insults such as hyperoxia, oxidative stress and inflammation contribute to this pathology. Previously, we showed that hyperoxia-induced retinal neurodegeneration is associated with increased polyamine oxidation. Here, we are studying the involvement of polyamine oxidases in hyperoxia-induced injury and death of retinal vascular endothelial cells. Newborn C57BL6/J mice were exposed to hyperoxia (70% O2) from postnatal day (P) 7 to 12 and were treated with the polyamine oxidase inhibitor MDL 72527 or vehicle starting at P6. Mice were sacrificed after different durations of hyperoxia and their retinas were analyzed to determine the effects on vascular injury, microglial cell activation, and inflammatory cytokine profiling. The results of this analysis showed that MDL 72527 treatment significantly reduced hyperoxia-induced retinal vascular injury and enhanced vascular sprouting as compared with the vehicle controls. These protective effects were correlated with significant decreases in microglial activation as well as levels of inflammatory cytokines and chemokines. In order to model the effects of polyamine oxidation in causing microglial activation in vitro, studies were performed using rat brain microvascular endothelial cells treated with conditioned-medium from rat retinal microglia stimulated with hydrogen peroxide. Conditioned-medium from activated microglial cultures induced cell stress signals and cell death in microvascular endothelial cells. These studies demonstrate the involvement of polyamine oxidases in hyperoxia-induced retinal vascular injury and retinal inflammation in ischemic retinopathy, through mechanisms involving cross-talk between endothelial cells and resident retinal microglia. PMID:27239699

  11. Burn-induced subepicardial injury in frog heart: a simple model mimicking ST segment changes in ischemic heart disease.

    PubMed

    Kazama, Itsuro

    2016-02-01

    To mimic ischemic heart disease in humans, several animal models have been created, mainly in rodents by surgically ligating their coronary arteries. In the present study, by simply inducing burn injuries on the bullfrog heart, we reproduced abnormal ST segment changes in the electrocardiogram (ECG), mimicking those observed in ischemic heart disease, such as acute myocardial infarction and angina pectoris. The "currents of injury" created by a voltage gradient between the intact and damaged areas of the myocardium, negatively deflected the ECG vector during the diastolic phase, making the ST segment appear elevated during the systolic phase. This frog model of heart injury would be suitable to explain the mechanisms of ST segment changes observed in ischemic heart disease.

  12. Mining the human urine proteome for monitoring renal transplant injury

    SciTech Connect

    Sigdel, Tara K.; Gao, Yuqian; He, Jintang; Wang, Anyou; Nicora, Carrie D.; Fillmore, Thomas L.; Shi, Tujin; Webb-Robertson, Bobbie-Jo; Smith, Richard D.; Qian, Wei-Jun; Salvatierra, Oscar; Camp, David G.; Sarwal, Minnie M.

    2016-06-01

    The human urinary proteome reflects systemic and inherent renal injury perturbations and can be analyzed to harness specific biomarkers for different kidney transplant injury states. 396 unique urine samples were collected contemporaneously with an allograft biopsy from 396 unique kidney transplant recipients. Centralized, blinded histology on the graft was used to classify matched urine samples into categories of acute rejection (AR), chronic allograft nephropathy (CAN), BK virus nephritis (BKVN), and stable graft (STA). Liquid chromatography–mass spectrometry (LC-MS) based proteomics using iTRAQ based discovery (n=108) and global label-free LC-MS analyses of individual samples (n=137) for quantitative proteome assessment were used in the discovery step. Selected reaction monitoring (SRM) was applied to identify and validate minimal urine protein/peptide biomarkers to accurately segregate organ injury causation and pathology on unique urine samples (n=151). A total of 958 proteins were initially quantified by iTRAQ, 87% of which were also identified among 1574 urine proteins detected in LC-MS validation. 103 urine proteins were significantly (p<0.05) perturbed in injury and enriched for humoral immunity, complement activation, and lymphocyte trafficking. A set of 131 peptides corresponding to 78 proteins were assessed by SRM for their significance in an independent sample cohort. A minimal set of 35 peptides mapping to 33 proteins, were modeled to segregate different injury groups (AUC =93% for AR, 99% for CAN, 83% for BKVN). Urinary proteome discovery and targeted validation identified urine protein fingerprints for non-invasive differentiation of kidney transplant injuries, thus opening the door for personalized immune risk assessment and therapy.

  13. Periostin Promotes Neural Stem Cell Proliferation and Differentiation following Hypoxic-Ischemic Injury.

    PubMed

    Ma, Si-Min; Chen, Long-Xia; Lin, Yi-Feng; Yan, Hu; Lv, Jing-Wen; Xiong, Man; Li, Jin; Cheng, Guo-Qiang; Yang, Yi; Qiu, Zi-Long; Zhou, Wen-Hao

    2015-01-01

    Neural stem cell (NSC) proliferation and differentiation are required to replace neurons damaged or lost after hypoxic-ischemic events and recover brain function. Periostin (POSTN), a novel matricellular protein, plays pivotal roles in the survival, migration, and regeneration of various cell types, but its function in NSCs of neonatal rodent brain is still unknown. The purpose of this study was to investigate the role of POSTN in NSCs following hypoxia-ischemia (HI). We found that POSTN mRNA levels significantly increased in differentiating NSCs. The proliferation and differentiation of NSCs in the hippocampus is compromised in POSTN knockout mice. Moreover, NSC proliferation and differentiation into neurons and astrocytes significantly increased in cultured NSCs treated with recombinant POSTN. Consistently, injection of POSTN into neonatal hypoxic-ischemic rat brains stimulated NSC proliferation and differentiation in the subventricular and subgranular zones after 7 and 14 days of brain injury. Lastly, POSTN treatment significantly improved the spatial learning deficits of rats subjected to HI. These results suggest that POSTN significantly enhances NSC proliferation and differentiation after HI, and provides new insights into therapeutic strategies for the treatment of hypoxic-ischemic encephalopathy.

  14. GSPE Inhibits HMGB1 Release, Attenuating Renal IR-Induced Acute Renal Injury and Chronic Renal Fibrosis

    PubMed Central

    Zhan, Juan; Wang, Kun; Zhang, Conghui; Zhang, Chunxiu; Li, Yueqiang; Zhang, Ying; Chang, Xiaoyan; Zhou, Qiaodan; Yao, Ying; Liu, Yanyan; Xu, Gang

    2016-01-01

    Grape seed proanthocyanindin extract (GSPE) is a polyphenolic bioflavonoid derived from grape seeds and has been widely studied for its potent antioxidant, anti-inflammatory and antitumor activities. HMGB1 is a newly discovered danger-associated molecular pattern (DAMP) that has potent proinflammatory effects once released by necrotic cells. However, the effect of GSPE on the HMGB1, and the relationship of those two with acute kidney injury and chronic kidney fibrosis are unknown. This study aimed to investigate the impact of GSPE on acute kidney injury and chronic fibrosis. C57bl/6 mice were subjected to bilateral ischemia/reperfusion (I/R) and unilateral I/R with or without GSPE administration. After bilateral I/R, mice administered GSPE had a marked improvement in renal function (BUN and Cr), decreased pathological damage and reduced inflammation. In unilateral I/R, mice subjected GSPE showed reduced tubulointerstitial fibrosis and decreased inflammatory reaction. The renoprotection of GSPE on both models was associated with the inhibition of HMGB1 nucleocytoplasmic shuttling and release, which can amplify the inflammation through binding to its downstream receptor TLR4 and facilitated P65 transcription. Thus, we have reason to believe that GSPE could be a good alternative therapy for the prevention and treatment of IR-induced renal injury and fibrosis in clinical practice. PMID:27690015

  15. Electrophysiological studies of upregulated P2X7 receptors in rat superior cervical ganglia after myocardial ischemic injury.

    PubMed

    Kong, Fanjun; Liu, Shuangmei; Xu, Changshui; Liu, Jun; Li, Guodong; Li, Guilin; Gao, Yun; Lin, Hong; Tu, Guihua; Peng, Haiying; Qiu, Shuyi; Fan, Bo; Zhu, Qicheng; Yu, Shicheng; Zheng, Chaoran; Liang, Shangdong

    2013-09-01

    Myocardial ischemic injury activates cardiac sympathetic afferent fibers and elicits a sympathoexcitatory reflex by exciting sympathetic efferent action, with resultant augmentation of myocardial oxygen consumption, leading to a vicious cycle of exaggerating myocardial ischemia. P2X7 receptor participates in the neuronal functions and the neurological disorders. This study examined the role of P2X7 receptor of superior cervical ganglia (SCG) in sympathoexcitatory reflex. Our results showed that the expression of P2X7 receptor at both mRNA and protein in SCG was increased after myocardial ischemic injury. P2X7 receptor agonists at the same concentration activated much larger amplitudes of the currents in the SCG neurons of myocardial ischemic rats than those in control rats. P2X7 receptor antagonist (brilliant blue G, BBG) significantly inhibited P2X7 receptor agonist-activated currents in the SCG neurons. Excessive phosphorylation of MAPK ERK1/2 upon the activation of P2X7 receptor might be a mechanism mediating the signal transduction after myocardial ischemic injury. Therefore, the sensitized P2X7 receptor in SCG was involved in the nociceptive transmission of sympathoexcitatory reflex induced by myocardial ischemic injury.

  16. Acute kidney injury: Renal disease in the ICU.

    PubMed

    Seller-Pérez, G; Más-Font, S; Pérez-Calvo, C; Villa-Díaz, P; Celaya-López, M; Herrera-Gutiérrez, M E

    2016-01-01

    Acute kidney injury (AKI) in the ICU frequently requires costly supportive therapies, has high morbidity, and its long-term prognosis is not as good as it has been presumed so far. Consequently, AKI generates a significant burden for the healthcare system. The problem is that AKI lacks an effective treatment and the best approach relies on early secondary prevention. Therefore, to facilitate early diagnosis, a broader definition of AKI should be established, and a marker with more sensitivity and early-detection capacity than serum creatinine - the most common marker of AKI - should be identified. Fortunately, new classification systems (RIFLE, AKIN or KDIGO) have been developed to solve these problems, and the discovery of new biomarkers for kidney injury will hopefully change the way we approach renal patients. As a first step, the concept of renal failure has changed from being a "static" disease to being a "dynamic process" that requires continuous evaluation of kidney function adapted to the reality of the ICU patient.

  17. A procyanidin type A trimer from cinnamon extract attenuates glial cell swelling and the reduction in glutamate uptake following ischemic injury in vitro

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dietary polyphenols exert neuroprotective effects in ischemic injury. The protective effects of a procyanidin type A trimer (trimer 1) isolated from a water soluble cinnamon extract (CE) were investigated on key features of ischemic injury including cell swelling, increased free radical production, ...

  18. Nicotinamide attenuates the decrease of astrocytic phosphoprotein PEA-15 in focal cerebral ischemic injury.

    PubMed

    Koh, Phil-Ok

    2012-03-01

    Nicotinamide exerts neuroprotective effects against focal cerebral ischemic injury. Phosphoprotein enriched in astrocytes 15 (PEA-15) is prominently expressed in astrocytes that exert broad anti-apoptotic functions. This study investigated whether nicotinamide modulates PEA-15 and levels of two phosphorylated PEA-15 (Serine 104 and 116) in an animal model of middle cerebral artery occlusion (MCAO)-induced injury. Adult male rats were treated with vehicle or nicotinamide (500 mg/kg) 2 hr after the onset of MCAO and cerebral cortices were collected at 24 hr after MCAO. In a proteomic approach, MCAO induced decreases of PEA-15 levels, while nicotinamide treatment attenuated the injury-induced decrease in PEA-15. The results of Western blot analysis suggest that nicotinamide prevented injury-induced reduction in phospho-PEA-15 (Serine 104) and phospho-PEA-15 (Serine 116) levels. The phosphorylation of PEA-15 exerts anti-apoptotic functions, and reduction of PEA-15 phosphorylation leads to apoptotic cell death. These results suggest that nicotinamide exerts a neuroprotective effect by attenuating the injury-induced decreases of PEA-15 and phospho-PEA-15 (Ser 104 and Ser 116) proteins.

  19. Intravenous Renal Cell Transplantation for Polycystic Kidney Disease

    DTIC Science & Technology

    2014-06-01

    improves renal function and structure in other models of renal failure: CKD due to cisplatin-mediated injury (4), diabetic nephropathy (Am J Physiol...cells prevents progression of chronic renal failure in rats with ischemic- diabetic nephropathy . Am J Physiol. Renal. 305:F1804- F1812 6. Mason SB...successful long-term kidney cell engraftment and renal regeneration in diabetic nephropathy and also cell auto-transplants (9). We used adult

  20. Acute ischemia/reperfusion injury after isogeneic kidney transplantation is mitigated in a rat model of chronic renal failure.

    PubMed

    Vercauteren, Sven R; Ysebaert, Dirk K; Van Rompay, An R; De Greef, Kathleen E; De Broe, Marc E

    2003-05-01

    The influence of chronic renal failure on renal susceptibility to an acute ischemic insult was evaluated. Recipient Lewis rats were randomly assigned to undergo 5/6 nephrectomy (chronic renal failure, CRF) or sham operation (normal renal function, NRF). After 11 weeks, normal kidneys of Lewis donor rats were transplanted in the recipients. The outcome of the isografts was assessed. Filtration capacity of the isografts in the CRF rats was preserved to approximately one-quarter of its normal capacity on the 1st day post-transplantation, whereas it fell to 0 in the NRF rats. This was reflected by a significantly higher increase in serum creatinine in the latter group. The isografts in the CRF rats had a significantly lower degree of acute tubular necrosis and no increase in the number of macrophages and T lymphocytes in the first 24 h in contrast to the NRF rats. Epithelial regeneration and repair started earlier in the CRF group. In conclusion, the present study indicated that CRF blunted ischemia/reperfusion injury of a transplanted kidney, and that its regeneration capacity was certainly not hampered by the presence of chronic uremia. These results will be the basis for studies on modulation of early leukocyte-endothelial interactions resulting from immunological disturbances inherent to the uremic environment.

  1. Foxp3-transduced polyclonal regulatory T cells protect against chronic renal injury from adriamycin.

    PubMed

    Wang, Yuan Min; Zhang, Geoff Yu; Wang, Yiping; Hu, Min; Wu, Huiling; Watson, Debbie; Hori, Shohei; Alexander, Ian E; Harris, David C H; Alexander, Stephen I

    2006-03-01

    Chronic proteinuric renal injury is a major cause of ESRD. Adriamycin nephropathy is a murine model of chronic proteinuric renal disease whereby chemical injury is followed by immune and structural changes that mimic human disease. Foxp3 is a gene that induces a regulatory T cell (Treg) phenotype. It was hypothesized that Foxp3-transduced Treg could protect against renal injury in Adriamycin nephropathy. CD4+ T cells were transduced with either a Foxp3-containing retrovirus or a control retrovirus. Foxp3-transduced T cells had a regulatory phenotype by functional and phenotypic assays. Adoptive transfer of Foxp3-transduced T cells protected against renal injury. Urinary protein excretion and serum creatinine were reduced (P<0.05), and there was significantly less glomerulosclerosis, tubular damage, and interstitial infiltrates (P<0.01). It is concluded that Foxp3-transduced Treg cells may have a therapeutic role in protecting against immune injury and disease progression in chronic proteinuric renal disease.

  2. High-grade renal injuries are often isolated in sports-related trauma

    PubMed Central

    Patel, Darshan P.; Redshaw, Jeffrey D.; Breyer, Benjamin N.; Smith, Thomas G.; Erickson, Bradley A.; Majercik, Sarah D.; Gaither, Thomas W.; Craig, James R.; Gardner, Scott; Presson, Angela P.; Zhang, Chong; Hotaling, James M.; Brant, William O.; Myers, Jeremy B.

    2016-01-01

    Introduction Most high-grade renal injuries (American Association for Surgery of Trauma (AAST) grades III–V) result from motor vehicle collisions associated with numerous concomitant injuries. Sports-related blunt renal injury tends to have a different mechanism, a solitary blow to the flank. We hypothesized that high-grade renal injury is often isolated in sports-related renal trauma. Material and methods We identified patients with AAST grades III–V blunt renal injuries from four level 1 trauma centres across the United States between 1/2005 and 1/2014. Patients were divided into “Sport” or “Non-sport” related groups. Outcomes included rates of hypotension (systolic blood pressure <90 mm Hg), tachycardia (>110 bpm), concomitant abdominal injury, and procedural/surgical intervention between sports and non-sports related injury. Results 320 patients met study criteria. 18% (59) were sports-related injuries with the most common mechanisms being skiing, snowboarding and contact sports (25%, 25%, and 24%, respectively). Median age was 24 years for sports and 30 years for non-sports related renal injuries (p = 0.049). Males were more commonly involved in sports related injuries (85% vs. 72%, p = 0.011). Median injury severity score was lower for sports related injuries (10 vs. 27, p < 0.001). There was no difference in renal abbreviated injury scale scores. Sports related trauma was more likely to be isolated without other significant injury (69% vs. 39% (p < 0.001)). Haemodynamic instability was present in 40% and 51% of sports and non-sports renal injuries (p = 0.30). Sports injuries had lower transfusion (7% vs. 47%, p < 0.001) and lower mortality rates (0% vs. 6%, p = 0.004). There was no difference in renal-specific procedural interventions between the two groups (17% sports vs. 18% non-sports, p = 0.95). Conclusions High-grade sports-related blunt renal trauma is more likely to occur in isolation without other abdominal or thoracic injuries and

  3. Growth factors for the treatment of ischemic brain injury (growth factor treatment).

    PubMed

    Larpthaveesarp, Amara; Ferriero, Donna M; Gonzalez, Fernando F

    2015-04-30

    In recent years, growth factor therapy has emerged as a potential treatment for ischemic brain injury. The efficacy of therapies that either directly introduce or stimulate local production of growth factors and their receptors in damaged brain tissue has been tested in a multitude of models for different Central Nervous System (CNS) diseases. These growth factors include erythropoietin (EPO), vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor (IGF-1), among others. Despite the promise shown in animal models, the particular growth factors that should be used to maximize both brain protection and repair, and the therapeutic critical period, are not well defined. We will review current pre-clinical and clinical evidence for growth factor therapies in treating different causes of brain injury, as well as issues to be addressed prior to application in humans.

  4. Multiphoton imaging for assessing renal disposition in acute kidney injury

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Liang, Xiaowen; Wang, Haolu; Roberts, Darren M.; Roberts, Michael S.

    2016-11-01

    Estimation of renal function and drug renal disposition in acute kidney injury (AKI), is important for appropriate dosing of drugs and adjustment of therapeutic strategies, but is challenging due to fluctuations in kidney function. Multiphoton microscopy has been shown to be a useful tool in studying drug disposition in liver and can reflect dynamic changes of liver function. We extend this imaging technique to investigate glomerular filtration rate (GFR) and tubular transporter functional change in various animal models of AKI, which mimic a broad range of causes of AKI such as hypoxia (renal ischemia- reperfusion), therapeutic drugs (e.g. cisplatin), rhabdomyolysis (e.g. glycerol-induced) and sepsis (e.g. LPSinduced). The MPM images revealed acute injury of tubular cells as indicated by reduced autofluorescence and cellular vacuolation in AKI groups compared to control group. In control animal, systemically injected FITC-labelled inulin was rapidly cleared from glomerulus, while the clearance of FITC-inulin was significantly delayed in most of animals in AKI group, which may reflect the reduced GFR in AKI. Following intravenous injection, rhodamine 123, a fluorescent substrate of p-glycoprotein (one of tubular transporter), was excreted into urine in proximal tubule via p-glycoprotein; in response to AKI, rhodamine 123 was retained in tubular cells as revealed by slower decay of fluorescence intensity, indicating P-gp transporter dysfunction in AKI. Thus, real-time changes in GFR and transporter function can be imaged in rodent kidney with AKI using multiphoton excitation of exogenously injected fluorescent markers.

  5. The effect of Euryale ferox (Makhana), an herb of aquatic origin, on myocardial ischemic reperfusion injury.

    PubMed

    Das, Samarjit; Der, Peter; Raychaudhuri, Utpal; Maulik, Nilanjana; Das, Dipak K

    2006-09-01

    Fox nut or gorgon nut (Euryale ferox--Family Nymphaeaceae), popularly known as Makhana, has been widely used in traditional oriental medicine to cure a variety of diseases including kidney problems, chronic diarrhea, excessive leucorrhea and hypofunction of the spleen. Based on the recent studies revealing antioxidant activities of Euryale ferox and its glucosides composition, we sought to determine if Euryale ferox seeds (Makhana) could reduce myocardial ischemic reperfusion injury. Two different models were used: acute model, where isolated rat hearts were preperfused for 15 min with Krebs Henseleit bicarbonate (KHB) buffer containing three different doses of makhana (25, 125 or 250 microg/ml) followed by 30 min of ischemia and 2 h of reperfusion; and chronic model, where rats were given two different doses of makhana (250 and 500 mg/kg/day) for 21 days, after which isolated hearts were subjected to 30 min of ischemia followed by 2 h of reperfusion. In both cases, the hearts of the Makhana treated rats were resistant to ischemic reperfusion injury as evidenced by their improved post-ischemic ventricular function and reduced myocardial infarct size. Antibody array technique was used to identify the cardioprotective proteins. The Makhana-treated hearts had increased amounts of thioredoxin-1 (Trx-1) and thioredoxin-related protein-32 (TRP32) compared to the control hearts. Western blot analysis confirmed increased expression of TRP32 and thioredoxin proteins. In vitro studies revealed that Makhana extracts had potent reactive oxygen species scavenging activities. Taken together, the results of this study demonstrate cardioprotective properties of Makhana and suggest that such cardioprotective properties may be linked with the ability of makhana to induce TRP32 and Trx-1 proteins and to scavenge ROS.

  6. Sex-dependent effects of chronic psychosocial stress on myocardial sensitivity to ischemic injury.

    PubMed

    Rorabaugh, Boyd R; Krivenko, Anna; Eisenmann, Eric D; Bui, Albert D; Seeley, Sarah; Fry, Megan E; Lawson, Joseph D; Stoner, Lauren E; Johnson, Brandon L; Zoladz, Phillip R

    2015-01-01

    Individuals with post-traumatic stress disorder (PTSD) experience many debilitating symptoms, including intrusive memories, persistent anxiety and avoidance of trauma-related cues. PTSD also results in numerous physiological complications, including increased risk for cardiovascular disease (CVD). However, characterization of PTSD-induced cardiovascular alterations is lacking, especially in preclinical models of the disorder. Thus, we examined the impact of a psychosocial predator-based animal model of PTSD on myocardial sensitivity to ischemic injury. Male and female Sprague-Dawley rats were exposed to psychosocial stress or control conditions for 31 days. Stressed rats were given two cat exposures, separated by a period of 10 days, and were subjected to daily social instability throughout the paradigm. Control rats were handled daily for the duration of the experiment. Rats were tested on the elevated plus maze (EPM) on day 32, and hearts were isolated on day 33 and subjected to 20 min ischemia and 2 h reperfusion on a Langendorff isolated heart system. Stressed male and female rats gained less body weight relative to controls, but only stressed males exhibited increased anxiety on the EPM. Male, but not female, rats exposed to psychosocial stress exhibited significantly larger infarcts and attenuated post-ischemic recovery of contractile function compared to controls. Our data demonstrate that predator stress combined with daily social instability sex-dependently increases myocardial sensitivity to ischemic injury. Thus, this manipulation may be useful for studying potential mechanisms underlying cardiovascular alterations in PTSD, as well as sex differences in the cardiovascular stress response.

  7. Ischemic preconditioning protects the brain against injury via inhibiting CaMKII-nNOS signaling pathway.

    PubMed

    Wang, Mei; Qi, Da-Shi; Zhou, Cui; Han, Dong; Li, Pei-Pei; Zhang, Fang; Zhou, Xiao-Yan; Han, Meng; Di, Jie-Hui; Ye, Jun-Song; Yu, Hong-Min; Song, Yuan-Jian; Zhang, Guang-Yi

    2016-03-01

    Although studies have shown that cerebral ischemic preconditioning (IPC) can ameliorate ischemia/reperfusion (I/R) induced brain damage, but its precise mechanisms remain unknown. Therefore, the aim of this study was to investigate the neuroprotective mechanisms of IPC against ischemic brain damage induced by cerebral I/R and to explore whether the Calcium/calmodulin-dependent protein kinase II (CaMKII)-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway contributed to the protection provided by IPC. Transient global brain ischemia was induced by 4-vessel occlusion in adult male Sprague-Dawley rats. The rats were pretreated with 3 min of IPC alone or KN62 (selective antagonist of CaMKII) treatment before IPC, after reperfusion for 3 days, 6 min ischemia was induced. Cresyl violet staining was used to examine the survival of hippocampal CA1 pyramidal neurons. Immunoblotting was performed to measure the phosphorylation of CaMKII, nNOS, c-Jun and the expression of FasL. Immunoprecipitation was used to examine the binding between PSD95 and nNOS. The results showed that IPC could significantly protect neurons against cerebral I/R injury, furthermore, the combination of PSD95 and nNOS was increased, coinstantaneously the phosphorylation of CaMKII and nNOS (ser847) were up-regulated, however the activation of c-Jun and FasL were reduced. Conversely, KN62 treatment before IPC reversed all these effects of IPC. Taken together, the results suggest that IPC could diminish ischemic brain injury through CaMKII-mediated up-regulation of nNOS ser847-phosphorylation signaling pathway.

  8. Ischemic post-conditioning to counteract intestinal ischemia/reperfusion injury

    PubMed Central

    Guan, Yan-Fang; Pritts, Timothy A; Montrose, Marshall H

    2010-01-01

    Intestinal ischemia is a severe disorder with a variety of causes. Reperfusion is a common occurrence during treatment of acute intestinal ischemia but the injury resulting from ischemia/reperfusion (IR) may lead to even more serious complications from intestinal atrophy to multiple organ failure and death. The susceptibility of the intestine to IR-induced injury (IRI) appears from various experimental studies and clinical settings such as cardiac and major vascular surgery and organ transplantation. Whereas oxygen free radicals, activation of leukocytes, failure of microvascular perfusion, cellular acidosis and disturbance of intracellular homeostasis have been implicated as important factors in the pathogenesis of intestinal IRI, the mechanisms underlying this disorder are not well known. To date, increasing attention is being paid in animal studies to potential pre- and post-ischemia treatments that protect against intestinal IRI such as drug interference with IR-induced apoptosis and inflammation processes and ischemic pre-conditioning. However, better insight is needed into the molecular and cellular events associated with reperfusion-induced damage to develop effective clinical protection protocols to combat this disorder. In this respect, the use of ischemic post-conditioning in combination with experimentally prolonged acidosis blocking deleterious reperfusion actions may turn out to have particular clinical relevance. PMID:21607154

  9. Glycyrrhizin attenuates rat ischemic spinal cord injury by suppressing inflammatory cytokines and HMGB1

    PubMed Central

    Gong, Gu; Yuan, Li-bang; Hu, Ling; Wu, Wei; Yin, Liang; Hou, Jing-li; Liu, Ying-hai; Zhou, Le-shun

    2012-01-01

    Aim: To investigate the neuroprotective effect of glycyrrhizin (Gly) against the ischemic injury of rat spinal cord and the possible role of the nuclear protein high-mobility group box 1 (HMGB1) in the process. Methods: Male Sprague-Dawley rats were subjected to 45 min aortic occlusion to induce transient lumbar spinal cord ischemia. The motor functions of the animals were assessed according to the modified Tarlov scale. The animals were sacrificed 72 h after reperfusion and the lumbar spinal cord segment (L2–L4) was taken out for histopathological examination and Western blotting analysis. Serum inflammatory cytokine and HMGB1 levels were analyzed using ELISA. Results: Gly (6 mg/kg) administered intravenously 30 min before inducing the transient lumbar spinal cord ischemia significantly improved the hind-limb motor function scores, and reduced the number of apoptotic neurons, which was accompanied by reduced levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6) in the plasma and injured spinal cord. Moreover, the serum HMGB1 level correlated well with the serum TNF-α, IL-1β and IL-6 levels during the time period of reperfusion. Conclusion: The results suggest that Gly can attenuate the transient spinal cord ischemic injury in rats via reducing inflammatory cytokines and inhibiting the release of HMGB1. PMID:22158106

  10. Proton-sensitive cation channels and ion exchangers in ischemic brain injury: new therapeutic targets for stroke?

    PubMed Central

    Leng, Tiandong; Shi, Yejie; Xiong, Zhi-Gang; Sun, Dandan

    2014-01-01

    Ischemic brain injury results from complicated cellular mechanisms. The present therapy for acute ischemic stroke is limited to thrombolysis with the recombinant tissue plasminogen activator (rtPA) and mechanical recanalization. Therefore, a better understanding of ischemic brain injury is needed for the development of more effective therapies. Disruption of ionic homeostasis plays an important role in cell death following cerebral ischemia. Glutamate receptor-mediated ionic imbalance and neurotoxicity have been well established in cerebral ischemia after stroke. However, non-NMDA receptor-dependent mechanisms, involving acid-sensing ion channel 1a (ASIC1a), transient receptor potential melastatin 7 (TRPM7), and Na+/H+ exchanger isoform 1 (NHE1), have recently emerged as important players in the dysregulation of ionic homeostasis in the CNS under ischemic conditions. These H+-sensitive channels and/or exchangers are expressed in the majority of cell types of the neurovascular unit. Sustained activation of these proteins causes excessive influx of cations, such as Ca2+, Na+, and Zn2+, and leads to ischemic reperfusion brain injury. In this review, we summarize recent pre-clinical experimental research findings on how these channels/exchangers are regulated in both in vitro and in vivo models of cerebral ischemia. The blockade or transgenic knockdown of these proteins was shown to be neuroprotective in these ischemia models. Taken together, these non-NMDA receptor-dependent mechanisms may serve as novel therapeutic targets for stroke intervention. PMID:24467911

  11. Rat umbilical cord blood cells attenuate hypoxic–ischemic brain injury in neonatal rats

    PubMed Central

    Nakanishi, Keiko; Sato, Yoshiaki; Mizutani, Yuka; Ito, Miharu; Hirakawa, Akihiro; Higashi, Yujiro

    2017-01-01

    Increasing evidence has suggested that human umbilical cord blood cells (hUCBC) have a favorable effect on hypoxic–ischemic (HI) brain injury. However, the efficacy of using hUCBCs to treat this injury has been variable and the underlying mechanism remains elusive. Here, we investigated its effectiveness using stereological analysis in an allogeneic system to examine whether intraperitoneal injection of cells derived from UCBCs of green fluorescent protein (GFP)-transgenic rats could ameliorate brain injury in neonatal rats. Three weeks after the HI event, the estimated residual brain volume was larger and motor function improved more in the cell-injected rats than in the control (PBS-treated) rats. The GFP-positive cells were hardly detectable in the brain (0.0057% of injected cells) 9 days after injection. Although 60% of GFP-positive cells in the brain were Iba1-positive, none of these were positive for NeuroD or DCX. While the number of proliferating cells increased in the hippocampus, that of activated microglia/macrophages decreased and a proportion of M2 microglia/macrophages increased in the ipsilateral hemisphere of cell-injected rats. These results suggest that intraperitoneal injection of cells derived from UCBCs could ameliorate HI injury, possibly through an endogenous response and not by supplying differentiated neurons derived from the injected stem cells. PMID:28281676

  12. Electroacupuncture preconditioning attenuates ischemic brain injury by activation of the adenosine monophosphate-activated protein kinase signaling pathway

    PubMed Central

    Ran, Qiang-qiang; Chen, Huai-long; Liu, Yan-li; Yu, Hai-xia; Shi, Fei; Wang, Ming-shan

    2015-01-01

    Electroacupuncture has therapeutic effects on ischemic brain injury, but its mechanism is still poorly understood. In this study, mice were stimulated by electroacupuncture at the Baihui (GV20) acupoint for 30 minutes at 1 mA and 2/15 Hz for 5 consecutive days. A cerebral ischemia model was established by ligating the bilateral common carotid artery for 15 minutes. At 72 hours after injury, neuronal injury in the mouse hippocampus had lessened, and the number of terminal deoxynucleotide transferase-mediated dUTP nick-end labeling-positive cells reduced after electroacupuncture treatment. Moreover, expression of adenosine monophosphate-activated protein kinase α (AMPKα) and phosphorylated AMPKα was up-regulated. Intraperitoneal injection of the AMPK antagonist, compound C, suppressed this phenomenon. Our findings suggest that electroacupuncture preconditioning alleviates ischemic brain injury via AMPK activation. PMID:26330828

  13. Focal Brain Injury Associated with a Model of Severe Hypoxic-Ischemic Encephalopathy in Nonhuman Primates.

    PubMed

    McAdams, Ryan M; McPherson, Ronald J; Kapur, Raj P; Juul, Sandra E

    2017-03-25

    Worldwide, hypoxic-ischemic encephalopathy (HIE) is a major cause of neonatal mortality and morbidity. To better understand the mechanisms contributing to brain injury and improve outcomes in neonates with HIE, better preclinical animal models that mimic the clinical situation following birth asphyxia in term newborns are needed. In an effort to achieve this goal, we modified our nonhuman primate model of HIE induced by in utero umbilical cord occlusion (UCO) to include postnatal hypoxic episodes, in order to simulate apneic events in human neonates with HIE. We describe a cohort of 4 near-term fetal Macaca nemestrina that underwent 18 min of in utero UCO, followed by cesarean section delivery, resuscitation, and subsequent postnatal mechanical ventilation, with exposure to intermittent daily hypoxia (3 min, 8% O2 3-8 times daily for 3 days). After delivery, all animals demonstrated severe metabolic acidosis (pH 7 ± 0.12; mean ± SD) and low APGAR scores (<5 at 10 min of age). Three of 4 animals had both electrographic and clinical seizures. Serial blood samples were collected and plasma metabolites were determined by 2-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC × GC-TOFMS). The 4 UCO animals and a single nonasphyxiated animal (delivered by cesarean section but without exposure to UCO or prolonged sedation) underwent brain magnetic resonance imaging (MRI) on day 8 of life. Thalamic injury was present on MRI in 3 UCO animals, but not in the control animal. Following necropsy on day 8, brain histopathology revealed neuronal injury/loss and gliosis in portions of the ventrolateral thalamus in all 4 UCO, with 2 animals also demonstrating putamen/globus pallidus involvement. In addition, all 4 UCO animals demonstrated brain stem gliosis, with neuronal loss present in the midbrain, pons, and lateral medulla in 3 of 4 animals. Transmission electron microscopy imaging of the brain tissues was performed, which demonstrated

  14. Pathophysiology and Treatments of Oxidative Injury in Ischemic Stroke: Focus on the Phagocytic NADPH Oxidase 2

    PubMed Central

    Carbone, Federico; Teixeira, Priscila Camillo; Braunersreuther, Vincent; Mach, François; Vuilleumier, Nicolas

    2015-01-01

    Abstract Significance: Phagocytes play a key role in promoting the oxidative stress after ischemic stroke occurrence. The phagocytic NADPH oxidase (NOX) 2 is a membrane-bound enzyme complex involved in the antimicrobial respiratory burst and free radical production in these cells. Recent Advances: Different oxidants have been shown to induce opposite effects on neuronal homeostasis after a stroke. However, several experimental models support the detrimental effects of NOX activity (especially the phagocytic isoform) on brain recovery after stroke. Therapeutic strategies selectively targeting the neurotoxic ROS and increasing neuroprotective oxidants have recently produced promising results. Critical Issues: NOX2 might promote carotid plaque rupture and stroke occurrence. In addition, NOX2-derived reactive oxygen species (ROS) released by resident and recruited phagocytes enhance cerebral ischemic injury, activating the inflammatory apoptotic pathways. The aim of this review is to update evidence on phagocyte-related oxidative stress, focusing on the role of NOX2 as a potential therapeutic target to reduce ROS-related cerebral injury after stroke. Future Directions: Radical scavenger compounds (such as Ebselen and Edaravone) are under clinical investigation as a therapeutic approach against stroke. On the other hand, NOX inhibition might represent a promising strategy to prevent the stroke-related injury. Although selective NOX inhibitors are not yet available, nonselective compounds (such as apocynin and fasudil) provided encouraging results in preclinical studies. Whereas additional studies are needed to better evaluate this therapeutic potential in human beings, the development of specific NOX inhibitors (such as monoclonal antibodies, small-molecule inhibitors, or aptamers) might further improve brain recovery after stroke. Antioxid. Redox Signal. 23, 460–489. PMID:24635113

  15. Effect of combined therapy with ephedrine and hyperbaric oxygen on neonatal hypoxic-ischemic brain injury.

    PubMed

    Chen, Siyuan; Xiao, Nong; Zhang, Xiaoping

    2009-11-13

    Perinatal hypoxic-ischemic (HI) is a major cause of brain injury in the newborn, and there is a lack of effective therapies to reduce injury-related disorders. The aim of the present study was to evaluate the effect of a combination of ephedrine and hyperbaric oxygen (HBO) on neonatal hypoxic-ischemic brain injury. 7-day-old Sprague-Dawley rat pups were randomly divided into sham operation, HI, ephedrine, HBO, and combined group. The ephedrine group was intraperitoneally injected with ephedrine, HBO group was treated for 2h at 2.5 absolute atmosphere (ATA) per day, the combined group received both ephedrine and HBO treatments, the sham operation and HI groups were intraperitoneally injected with normal saline. Rat brains at 7 days after HI, were collected to determine histopathological damage and the expression levels of Caspase-3 and Nogo-A. Four weeks after insult, animals were challenged with Morris water maze test. The expressions of Caspase-3 and Nogo-A were reduced in treating groups compared to those in HI group (P<0.01). Compared with the single treatment groups, the expression levels of Caspase-3 and Nogo-A were significantly reduced in the combined group (P<0.01). Compared with the single treatment groups, the average time of escape latency was significantly shorter (P<0.01) and the number of platform location crossing was more (P<0.05) in combined group. These findings indicate that the combination of ephedrine and HBO can enhance the neuroprotective effect in the neonatal rat HI model partially mediated by inhibiting Caspase-3 and Nogo-A pathways.

  16. Ischemic postconditioning may not influence early brain injury induced by focal cerebral ischemia/reperfusion in rats

    PubMed Central

    Kim, Yoo Kyung; Shin, Jin Woo; Joung, Kyoung Woon

    2010-01-01

    Background Experimental studies have shown that ischemic postconditioning can reduce neuronal injury in the setting of cerebral ischemia, but the mechanisms are not yet clearly elucidated. This study was conducted to determine whether ischemic postconditioning can alter expression of heat shock protein 70 and reduce acute phase neuronal injury in rats subjected to transient focal cerebral ischemia/reperfusion. Methods Focal cerebral ischemia was induced by intraluminal middle cerebral artery occlusion for 60 min in twenty male Sprague-Dawley rats (250-300 g). Rats were randomized into control group and an ischemic postconditioning group (10 rats per group). The animals of control group had no intervention either before or after MCA occlusion. Ischemic postconditioning was elicited by 3 cycles of 30 s reperfusion interspersed by 10 s ischemia immediately after onset of reperfusion. The infarct ratios, brain edema ratios and motor behavior deficits were analyzed 24 hrs after ischemic insult. Caspase-3 reactive cells and cells showing heat shock protein 70 activity were counted in the caudoputamen and frontoparietal cortex. Results Ischemic postconditiong did not reduce infarct size and brain edema ratios compared to control group. Neurologic scores were not significantly different between groups. The number of caspase-3 reactive cells in the ischemic postconditioning group was not significantly different than the value of the control group in the caudoputamen and frontoparietal cortex. The number of cells showing heat shock protein 70 activity was not significantly different than the control group, as well. Conclusions These results suggest that ischemic postconditioning may not influence the early brain damage induced by focal cerebral ischemia in rats. PMID:20498797

  17. Nature of the renal injury following total renal ischemia in man.

    PubMed Central

    Myers, B D; Miller, D C; Mehigan, J T; Olcott, C O; Golbetz, H; Robertson, C R; Derby, G; Spencer, R; Friedman, S

    1984-01-01

    The effects of total renal ischemia (TRI) of 15-87 min duration due to suprarenal clamping of the aorta were studied in 15 mannitol-treated patients undergoing abdominal aortic surgery. 15 patients undergoing similar surgery but requiring only infrarenal clamping served as controls. 1-2 h following TRI, GFR was reduced to only 39% of that in controls, 23 +/- 5 vs. 59 +/- 7 ml/min (P less than 0.001). This could not be ascribed to impaired renal plasma flow (RPF), which was mildly reduced to 331 +/- 71 and was not different from the value in controls, 407 +/- 66 ml/min. However, impaired PAH extraction (43 +/- 7%) and isosthenuria, not present in controls, suggest a primary role for tubular injury in lowering GFR at this time. 24 h following TRI, the GFR remained depressed below controls, 45 +/- 8 vs. 84 +/- 8 ml/min (P less than 0.005), while the transglomerular sieving of neutral dextrans was significantly enhanced (radius interval, 24-40 A). A theoretical analysis of transcapillary solute exchange revealed that these findings could be largely explained by a selective reduction of either RPF (-61%) or of transmembrane hydraulic pressure difference (-18%) below control values. Alternately, a combination of these two factors with changes of smaller magnitude could explain the findings. In contrast, a selective increase in oncotic pressure or decrease of the glomerular ultrafiltration coefficient could be excluded as a cause of hypofiltration 24 h after TRI. These observations lead us to suggest that the transient azotemia observed following TRI is due to a self-limited injury to the nephron that is identical to that seen in overt and sustained forms of acute renal failure. PMID:6421876

  18. Spectroscopic imaging for detection of ischemic injury in rat kidneys by use of changes in intrinsic optical properties

    NASA Astrophysics Data System (ADS)

    Michalopoulou, Andromachi P.; Fitzgerald, Jason T.; Troppmann, Christoph; Demos, Stavros G.

    2005-04-01

    It is currently impossible to consistently predict kidney graft viability and function before and after transplantation. We explored optical spectroscopy to assess the degree of ischemic damage in kidney tissue. Tunable UV laser excitation was used to record autofluorescence images, at different spectral ranges, of injured and contralateral control rat kidneys to reveal the excitation conditions that offered optimal contrast. Autofluorescence and near-infrared cross-polarized light-scattering imaging were both used to monitor changes in intensity and spectral characteristics, as a function of exposure time to ischemic injury. These two modalities provided different temporal behaviors, arguably arising from two different mechanisms providing direct correlation of intrinsic optical signatures to ischemic injury time.

  19. Mixed Organic Solvents Induce Renal Injury in Rats

    PubMed Central

    Qin, Weisong; Xu, Zhongxiu; Lu, Yizhou; Zeng, Caihong; Zheng, Chunxia; Wang, Shengyu; Liu, Zhihong

    2012-01-01

    To investigate the injury effects of organic solvents on kidney, an animal model of Sprague-Dawley (SD) rats treated with mixed organic solvents via inhalation was generated and characterized. The mixed organic solvents consisted of gasoline, dimethylbenzene and formaldehyde (GDF) in the ratio of 2∶2:1, and were used at 12,000 PPM to treat the rats twice a day, each for 3 hours. Proteinuria appeared in the rats after exposure for 5–6 weeks. The incidences of proteinuria in male and female rats after exposure for 12 weeks were 43.8% (7/16) and 25% (4/16), respectively. Urinary N-Acetyl-β-(D)-Glucosaminidase (NAG) activity was increased significantly after exposure for 4 weeks. Histological examination revealed remarkable injuries in the proximal renal tubules, including tubular epithelial cell detachment, cloud swelling and vacuole formation in the proximal tubular cells, as well as proliferation of parietal epithelium and tubular reflux in glomeruli. Ultrastructural examination found that brush border and cytoplasm of tubular epithelial cell were dropped, that tubular epithelial cells were partially disintegrated, and that the mitochondria of tubular epithelial cells were degenerated and lost. In addition to tubular lesions, glomerular damages were also observed, including segmental foot process fusion and loss of foot process covering on glomerular basement membrane (GBM). Immunofluorescence staining indicated that the expression of nephrin and podocin were both decreased after exposure of GDF. In contrast, increased expression of desmin, a marker of podocyte injury, was found in some areas of a glomerulus. TUNEL staining showed that GDF induced apoptosis in tubular cells and glomerular cells. These studies demonstrate that GDF can induce both severe proximal tubular damage and podocyte injury in rats, and the tubular lesions appear earlier than that of glomeruli. PMID:23029287

  20. Mesenchymal stem cells protect neurons against hypoxic-ischemic injury via inhibiting parthanatos, necroptosis, and apoptosis, but not autophagy.

    PubMed

    Kong, Deyan; Zhu, Juehua; Liu, Qian; Jiang, Yongjun; Xu, Lily; Luo, Ning; Zhao, Zhenqiang; Zhai, Qijin; Zhang, Hao; Zhu, Mingyue; Liu, Xinfeng

    2017-03-01

    Cellular therapy with mesenchymal stem cells (MSCs) protects cortical neurons against hypoxic-ischemic injury of stroke. Although sorts of efforts have been made to confirm the neuroprotective effect of MSCs on neurons against hypoxic-ischemic injury, the mechanism is until now far away from clear. Here in this study, oxygen-glucose deprivation (OGD)-injured neuron model was applied to mimic the neuronal hypoxic-ischemic injury in vitro. Co-culturing with MSCs in a transwell co-culture system, the OGD injured neurons were rescued by 75.0 %. Further data demonstrated that co-culturing with MSCs protected the cortical neurons from the OGD-induced parthanatos by alleviating apoptosis-inducing factor (AIF) nuclear translocation; attenuated the neuronal necroptosis by down-regulating the expression of the two essential kinases in necroptosis, receptor interacting protein kinase1 (RIP1) and 3 (RIP3); rescued the neurons from apoptosis by deactivating caspase-3; whilst performed no significant influence on OGD-induced neuronal autophagy, according to its failed regulation on Beclin1. In conclusion, MSCs potentially protect the cortical neurons from OGD-injury in vitro, through rescuing neurons from the cell death of parthanatos, necroptosis, and apoptosis, but not autophagy, which could provide some evidence to the mechanism explanation on stem cell treatment for ischemic stroke.

  1. Rap1 Ameliorates Renal Tubular Injury in Diabetic Nephropathy

    PubMed Central

    Xiao, Li; Zhu, Xuejing; Yang, Shikun; Liu, Fuyou; Zhou, Zhiguang; Zhan, Ming; Xie, Ping; Zhang, Dongshan; Li, Jun; Song, Panai; Kanwar, Yashpal S.; Sun, Lin

    2014-01-01

    Rap1b ameliorates high glucose (HG)-induced mitochondrial dysfunction in tubular cells. However, its role and precise mechanism in diabetic nephropathy (DN) in vivo remain unclear. We hypothesize that Rap1 plays a protective role in tubular damage of DN by modulating primarily the mitochondria-derived oxidative stress. The role and precise mechanisms of Rap1b on mitochondrial dysfunction and of tubular cells in DN were examined in rats with streptozotocin (STZ)-induced diabetes that have Rap1b gene transfer using an ultrasound microbubble-mediated technique as well as in renal proximal epithelial tubular cell line (HK-2) exposed to HG ambiance. The results showed that Rap1b expression decreased significantly in tubules of renal biopsies from patients with DN. Overexpression of a constitutively active Rap1b G12V notably ameliorated renal tubular mitochondrial dysfunction, oxidative stress, and apoptosis in the kidneys of STZ-induced rats, which was accompanied with increased expression of transcription factor C/EBP-β and PGC-1α. Furthermore, Rap1b G12V also decreased phosphorylation of Drp-1, a key mitochondrial fission protein, while boosting the expression of genes related to mitochondrial biogenesis and antioxidants in HK-2 cells induced by HG. These effects were imitated by transfection with C/EBP-β or PGC-1α short interfering RNA. In addition, Rap1b could modulate C/EBP-β binding to the endogenous PGC-1α promoter and the interaction between PGC-1α and catalase or mitochondrial superoxide dismutase, indicating that Rap1b ameliorates tubular injury and slows the progression of DN by modulation of mitochondrial dysfunction via C/EBP-β–PGC-1α signaling. PMID:24353183

  2. Astragaloside IV ameliorates renal injury in db/db mice

    PubMed Central

    Sun, Huili; Wang, Wenjing; Han, Pengxun; Shao, Mumin; Song, Gaofeng; Du, Heng; Yi, Tiegang; Li, Shunmin

    2016-01-01

    Diabetic nephropathy is a lethal complication of diabetes mellitus and a major type of chronic kidney disease. Dysregulation of the Akt pathway and its downstream cascades, including mTOR, NFκB, and Erk1/2, play a critical role in the development of diabetic nephropathy. Astragaloside IV is a major component of Huangqi and exerts renal protection in a mouse model of type 1 diabetes. The current study was undertaken to investigate the protective effects of diet supplementation of AS-IV on renal injury in db/db mice, a type 2 diabetic mouse model. Results showed that administration of AS-IV reduced albuminuria, ameliorated changes in the glomerular and tubular pathology, and decreased urinary NAG, NGAL, and TGF-β1 in db/db mice. AS-IV also attenuated the diabetes-related activation of Akt/mTOR, NFκB, and Erk1/2 signaling pathways without causing any detectable hepatotoxicity. Collectively, these findings showed AS-IV to be beneficial to type 2 diabetic nephropathy, which might be associated with the inhibition of Akt/mTOR, NFκB and Erk1/2 signaling pathways. PMID:27585918

  3. Neuroprotective role of Z-ligustilide against forebrain ischemic injury in ICR mice.

    PubMed

    Kuang, X; Yao, Y; Du, J R; Liu, Y X; Wang, C Y; Qian, Z M

    2006-08-02

    Radix Angelica sinensis, known as Danggui in Chinese, has been used to treat cardiovascular and cerebrovascular diseases in Traditional Chinese Medicine for a long time. Modern phytochemical studies showed that Z-ligustilide (LIG) is the main lipophilic component of Danggui. In this study, we examined whether LIG could protect ischemia/reperfusion-induced brain injury by minimizing oxidative stress and anti-apoptosis. Transient forebrain cerebral ischemia (FCI) was induced by the bilateral common carotid arteries occlusion for 30 min. LIG was intraperitoneally injected to ICR mice at the beginning of reperfusion. As determined via 2,3,5-triphenyl tetrazolium chloride (TTC) staining at 24 h following ischemia, the infarction volume in the FCI mice treated without LIG (22.1 +/- 2.6%) was significantly higher than that in the FCI mice treated with 5 mg/kg (11.8 +/- 5.2%) and 20 mg/kg (2.60 +/- 1.5%) LIG (P < 0.05 or P < 0.01). LIG treatment significantly decreased the level of malondialdehyde (MDA) and increased the activities of the antioxidant enzyme glutathione peroxidase (GSH-PX) and superoxide dismutase (SOD) in the ischemic brain tissues (P < 0.05 or P < 0.01 vs. FCI group). In addition, LIG provided a great increase in Bcl-2 expression as well as a significant decrease in Bax and caspase-3 immunoreactivities in the ischemic cortex. The findings demonstrated that LIG could significantly protect the brain from damage induced by transient forebrain cerebral ischemia. The antioxidant and anti-apoptotic properties of LIG may contribute to the neuroprotective potential of LIG in cerebral ischemic damage.

  4. A pathophysiological role of TRPV1 in ischemic injury after transient focal cerebral ischemia in mice.

    PubMed

    Miyanohara, Jun; Shirakawa, Hisashi; Sanpei, Kazuaki; Nakagawa, Takayuki; Kaneko, Shuji

    2015-11-20

    Transient receptor potential vanilloid 1 (TRPV1) is a non-selective cation channel with high Ca(2+) permeability, which functions as a polymodal nociceptor activated by heat, protons and several vanilloids, including capsaicin and anandamide. Although TRPV1 channels are widely distributed in the mammalian brain, their pathophysiological roles in the brain remain to be elucidated. In this study, we investigated whether TRPV1 is involved in cerebral ischemic injury using a middle cerebral artery (MCA) occlusion model in wild-type (WT) and TRPV1-knockout (KO) mice. For transient ischemia, the left MCA of C57BL/6 mice was occluded for 60 min and reperfused at 1 and 2 days after ischemia. We found that neurological and motor deficits, and infarct volumes in TRPV1-KO mice were lower than those of WT mice. Consistent with these results, intracerebroventricular injection of a TRPV1 antagonist, capsazepine (20 nmol), 30 min before the onset of ischemia attenuated neurological and motor deficits and improved infarct size without influencing cerebral blood flow in the occluded MCA territory. The protective effect of capsazepine on ischemic brain damage was not observed in TRPV1-KO mice. WT and TRPV1-KO mice did not show any differences with respect to the increased number of Iba1-positive microglia/macrophages, GFAP-positive astrocytes, and Gr1-positive neutrophils at 1 and 2 days after cerebral ischemia. Taken together, we conclude that brain TRPV1 channels are activated by ischemic stroke and cause neurological and motor deficits and infarction after brain ischemia.

  5. A Mouse Model for Fetal Maternal Stem Cell Transfer During Ischemic Cardiac Injury

    PubMed Central

    Kara, Rina J.; Bolli, Paola; Matsunaga, Iwao; Tanweer, Omar; Altman, Perry; Chaudhry, Hina W.

    2012-01-01

    Fetal cells enter the maternal circulation during pregnancies and can persist in blood and tissues for decades, creating a state of physiologic microchimerism. Microchimerism refers to acquisition of cells from another individual and can be due to bi-directional cell traffic between mother and fetus during pregnancy. Peripartum cardiomyopathy, a rare cardiac disorder associated with high mortality rates has the highest recovery rate amongst all etiologies of heart failure although the reason is unknown. Collectively, these observations led us to hypothesize that fetal cells enter the maternal circulation and may be recruited to the sites of myocardial disease or injury. The ability to genetically modify mice makes them an ideal system for studying the phenomenon of microchimerism in cardiac disease. Described here is a mouse model for ischemic cardiac injury during pregnancy designed to study microchimerism. Wild-type virgin female mice mated with eGFP male mice underwent ligation of the left anterior descending artery to induce a myocardial infarction at gestation day 12. We demonstrate the selective homing of eGFP cells to the site of cardiac injury without such homing to nonfinjured tissues suggesting the presence of precise signals sensed by fetal cells enabling them to target diseased myocardium specifically. PMID:22883609

  6. Combined Preconditioning and Postconditioning Provides Synergistic Protection against Liver Ischemic Reperfusion Injury

    PubMed Central

    Song, Xiaoyu; Zhang, Ning; XU, Hongde; Cao, Liu; Zhang, Haipeng

    2012-01-01

    Hepatic Ischemia and Reperfusion Injury (IRI) is a major cause of liver damage during liver surgery and transplantation. Ischemic preconditioning and postconditioning are strategies that can reduce IRI. In this study, different combined types of pre- and postconditioning procedures were tested in a murine warm hepatic IRI model to evaluate their protective effects. Proanthocyanidins derived from grape seed was used before ischemia process as pharmacological preconditioning to combine with technical preconditioning and postconditioning. Three pathways related to IRI, including reactive oxygen species (ROS) generation, pro-inflammatory cytokines release and hypoxia responses were examined in hepatic IRI model. Individual and combined pre- and postconditioning protocols significantly reduce liver injury by decreasing the liver ROS and cytokine levels, as well as enhancing the hypoxia tolerance response. Our data also suggested that in addition to individual preconditioning or postconditioning, the combination of these two treatments could reduce liver ischemia/reperfusion injury more effectively by increasing the activity of ROS scavengers and antioxidants. The utilization of grape seed proanthocyanidins (GSP) could improve the oxidation resistance in combined pre- and postconditioning groups. The combined protocol also further increased the liver HIF-1 alpha protein level, but had no effect on pro-inflammatory cytokines release compared to solo treatment. PMID:22701341

  7. Cystathionine β-Synthase Inhibition Is a Potential Therapeutic Approach to Treatment of Ischemic Injury

    PubMed Central

    Chan, Su Jing; Chai, Chou; Lim, Tze Wei; Yamamoto, Mie; Lo, Eng H; Lai, Mitchell Kim Peng

    2015-01-01

    Hydrogen sulfide (H2S) has been reported to exacerbate stroke outcome in experimental models. Cystathionine β-synthase (CBS) has been implicated as the predominant H2S-producing enzyme in central nervous system. When SH-SY5Y cells were transfected to overexpress CBS, these cells were able to synthesize H2S when exposed to high levels of enzyme substrates but not substrate concentrations that may reflect normal physiological conditions. At the same time, these cells demonstrated exacerbated cell death when subjected to oxygen and glucose deprivation (OGD) together with high substrate concentrations, indicating that H2S production has a detrimental effect on cell survival. This effect could be abolished by CBS inhibition. The same effect was observed with primary astrocytes exposed to OGD and high substrates or sodium hydrosulfide. In addition, CBS was upregulated and activated by truncation in primary astrocytes subjected to OGD. When rats were subjected to permanent middle cerebral artery occlusion, CBS activation was also observed. These results imply that in acute ischemic conditions, CBS is upregulated and activated by truncation causing an increased production of H2S, which exacerbate the ischemic injuries. Therefore, CBS inhibition may be a viable approach to stroke treatment. PMID:25873304

  8. Stachys sieboldii (Labiatae, Chorogi) Protects against Learning and Memory Dysfunction Associated with Ischemic Brain Injury.

    PubMed

    Harada, Shinichi; Tsujita, Tsukasa; Ono, Akiko; Miyagi, Kei; Mori, Takaharu; Tokuyama, Shogo

    2015-01-01

    Stachys sieboldii (Labiatae; Chinese artichoke, a tuber), "chorogi" in Japanese, has been extensively used in folk medicine, and has a number of pharmacological properties, including antioxidative activity. However, few studies have examined the neuroprotective effects of S. sieboldii tuber extract (chorogi extract), and it remains unknown whether the extract can alleviate learning and memory dysfunction associated with vascular dementia or Alzheimer's disease. Therefore, in this study, we investigated the neuroprotective effects of chorogi extract, and examined its protection against learning and memory dysfunction using Ginkgo biloba leaf extract (ginkgo extract) as a positive control. Mice were subjected to bilateral carotid artery occlusion (BCAO) for 30 min. Oral administration of chorogi extract or ginkgo extract significantly reduced post-ischemic glucose intolerance on day 1 and neuronal damage including memory impairment on day 3 after BCAO, compared with the vehicle-treated group. Neither herbal medicine affected locomotor activity. Furthermore, neither significantly alleviated scopolamine-induced learning and memory impairment. In primary neurons, neuronal survival rate was significantly reduced by hydrogen peroxide treatment. This hydrogen peroxide-induced neurotoxicity was significantly suppressed by chorogi extract and ginkgo extract. Taken together, our findings suggest that chorogi extract as well as ginkgo extract can protect against learning and memory dysfunction associated with ischemic brain injury through an antioxidative mechanism.

  9. Liver free fatty acid (FFA) accumulation as an indicator of ischemic injury during cold preservation

    SciTech Connect

    Nemoto, E.M.; Kang, Y.; DeWolf, A.M.; Lin, M.R.; Bleyaert, A.L.; Winter, P.M.

    1987-05-01

    Reliable assessment of hepatic viability prior to harvest and transplant could improve graft success and aid in evaluating the efficacy of liver preservation techniques. Hepatic tissue metabolites, protein (Pr) synthesis, and ATP have been studied, but none reliably correlate with hepatic viability. Therefore, they studied changes in liver FFA relative to changes in ATP and Pr synthesis during cold ischemic preservation. Rats mechanically ventilated on 0.5% isoflurane/70% N/sub 2/O/30% O/sub 2/ were heparinized and their livers perfused with air-equilibrated Euro-Collins solution (ECS) at 0-4/sup 0/C and kept on ice. A piece of the liver was removed after 0, 2, 6, 8, 12, 24, 36 and 48 h of preservation for ATP and FFA analysis. A portion of the liver was sliced (250 ..mu..m thick) and incubated in vitro for /sup 14/C-lysine incorporation in albumin. ATP, FFA and Pr synthesis were unchanged in the first 8 h, but markedly decreased between 8 and 12 h with little change thereafter. In contrast, between 8 and 48 h, arachidonic and stearic acids increased by 5 and 2-fold, respectively. Changes in ATP and Pr synthesis correlate with the empirically derived clinical maximum of 8 to 12 h preservation. FFA accumulation appears to reflect hepatic ischemic injury and may be a means of evaluating the quality of a donor liver.

  10. Changes in Cerebral Oxidative Metabolism during Neonatal Seizures Following Hypoxic–Ischemic Brain Injury

    PubMed Central

    Mitra, Subhabrata; Bale, Gemma; Mathieson, Sean; Uria-Avellanal, Cristina; Meek, Judith; Tachtsidis, Ilias; Robertson, Nicola J.

    2016-01-01

    Seizures are common following hypoxic–ischemic brain injury in newborn infants. Prolonged or recurrent seizures have been shown to exacerbate neuronal damage in the developing brain; however, the precise mechanism is not fully understood. Cytochrome-c-oxidase is responsible for more than 90% of ATP production inside mitochondria. Using a novel broadband near-infrared spectroscopy system, we measured the concentration changes in the oxidation state of cerebral cytochrome-c-oxidase (Δ[oxCCO]) and hemodynamics during recurrent neonatal seizures following hypoxic–ischemic encephalopathy in a newborn infant. A rapid increase in Δ[oxCCO] was noted at the onset of seizures along with a rise in the baseline of amplitude-integrated electroencephalogram. Cerebral oxygenation and cerebral blood volume fell just prior to the seizure onset but recovered rapidly during seizures. Δ[oxCCO] during seizures correlated with changes in mean electroencephalogram voltage indicating an increase in neuronal activation and energy demand. The progressive decline in the Δ[oxCCO] baseline during seizures suggests a progressive decrease of mitochondrial oxidative metabolism. PMID:27559538

  11. Greatly improved neuroprotective efficiency of citicoline by stereotactic delivery in treatment of ischemic injury.

    PubMed

    Xu, Fangjingwei; Hongbin Han; Yan, Junhao; Chen, He; He, Qingyuan; Xu, Weiguo; Zhu, Ning; Zhang, Hong; Zhou, Fugen; Lee, Kejia

    2011-01-01

    Limited penetration of neuroprotective drug citicoline into the central nervous system (CNS) by systemic administration led to poor efficiency. A novel method of stereotactic drug delivery was explored to make citicoline bypass the blood brain barrier (BBB) and take effect by direct contact with ischemic neurons. A permanent middle cerebral artery occlusion (pMCAO) model of rats was prepared. To get the optimal conditions for citicoline administration by the novel stereotactic delivery pathway, magnetic resonance imaging (MRI) tracer method was used, and a dose-dependent effect was given. Examinations of MRI, behavior evaluation, infarct volume assessment and histological staining were performed to evaluate the outcome. This MRI-guided stereotactic delivery of citicoline resulted in a notable reduction (>80%) in infarct size and a delayed ischemic injury in cortex 12 hours after onset of acute ischemia when compared with the systematic delivery. The improved neuroprotective efficiency was realized by a full distribution of citicoline in most of middle cerebral artery (MCA) territory and an adequate drug reaction in the involved areas of the brain. Brain lesions of treated rats by stereotactic delivery of citicoline were well predicted in the lateral ventricle and thalamus due to a limited drug deposition by MRI tracer method. Our study realized an improved neuroprotective efficiency of citicoline by stereotactic delivery, and an optimal therapeutic effect of this administration pathway can be achieved under MRI guidance.

  12. Role of Antioxidants in Neonatal Hypoxic-Ischemic Brain Injury: New Therapeutic Approaches.

    PubMed

    Arteaga, Olatz; Álvarez, Antonia; Revuelta, Miren; Santaolalla, Francisco; Urtasun, Andoni; Hilario, Enrique

    2017-01-28

    Hypoxic-ischemic brain damage is an alarming health and economic problem in spite of the advances in neonatal care. It can cause mortality or detrimental neurological disorders such as cerebral palsy, motor impairment and cognitive deficits in neonates. When hypoxia-ischemia occurs, a multi-faceted cascade of events starts out, which can eventually cause cell death. Lower levels of oxygen due to reduced blood supply increase the production of reactive oxygen species, which leads to oxidative stress, a higher concentration of free cytosolic calcium and impaired mitochondrial function, triggering the activation of apoptotic pathways, DNA fragmentation and cell death. The high incidence of this type of lesion in newborns can be partly attributed to the fact that the developing brain is particularly vulnerable to oxidative stress. Since antioxidants can safely interact with free radicals and terminate that chain reaction before vital molecules are damaged, exogenous antioxidant therapy may have the potential to diminish cellular damage caused by hypoxia-ischemia. In this review, we focus on the neuroprotective effects of antioxidant treatments against perinatal hypoxic-ischemic brain injury, in the light of the most recent advances.

  13. Inhibition of BDNF-AS Provides Neuroprotection for Retinal Ganglion Cells against Ischemic Injury

    PubMed Central

    Xu, Lifang; Zhang, Ziyin; Xie, Tianhua; Zhang, Xiaoyang; Dai, Tu

    2016-01-01

    Background: Brain-derived neurotrophic factor (BDNF) protects retinal ganglion cells against ischemia in ocular degenerative diseases. We aimed to determine the effect of BDNF-AS on the ischemic injury of retinal ganglion cells. Methods: The levels of BDNF and BDNF-AS were measured in retinal ganglion cells subjected to oxygen and glucose deprivation. The lentiviral vectors were constructed to either overexpress or knock out BDNF-AS. The luciferase reporter gene assay was used to determine whether BDNF-AS could target its seed sequence on BDNF mRNA. The methyl thiazolyl tetrazolium assay was used to determine cell viability, and TUNEL staining was used for cell apoptosis. Results: The levels of BDNF-AS were negatively correlated with BDNF in ischemic retinal ganglion cells. BDNF-AS directly targeted its complementary sequences on BDNF mRNA. BDNF-AS regulated the expression of BDNF and its related genes in retinal ganglion cells. Down-regulation of BDNF-AS increased cell viability and decreased the number of TUNEL-positive retinal ganglion cells under oxygen and glucose deprivation conditions. Conclusion: Inhibition of BDNF-AS protected retinal ganglion cells against ischemia by increasing the levels of BDNF. PMID:27935942

  14. Role of Antioxidants in Neonatal Hypoxic–Ischemic Brain Injury: New Therapeutic Approaches

    PubMed Central

    Arteaga, Olatz; Álvarez, Antonia; Revuelta, Miren; Santaolalla, Francisco; Urtasun, Andoni; Hilario, Enrique

    2017-01-01

    Hypoxic–ischemic brain damage is an alarming health and economic problem in spite of the advances in neonatal care. It can cause mortality or detrimental neurological disorders such as cerebral palsy, motor impairment and cognitive deficits in neonates. When hypoxia–ischemia occurs, a multi-faceted cascade of events starts out, which can eventually cause cell death. Lower levels of oxygen due to reduced blood supply increase the production of reactive oxygen species, which leads to oxidative stress, a higher concentration of free cytosolic calcium and impaired mitochondrial function, triggering the activation of apoptotic pathways, DNA fragmentation and cell death. The high incidence of this type of lesion in newborns can be partly attributed to the fact that the developing brain is particularly vulnerable to oxidative stress. Since antioxidants can safely interact with free radicals and terminate that chain reaction before vital molecules are damaged, exogenous antioxidant therapy may have the potential to diminish cellular damage caused by hypoxia–ischemia. In this review, we focus on the neuroprotective effects of antioxidant treatments against perinatal hypoxic–ischemic brain injury, in the light of the most recent advances. PMID:28134843

  15. Cell Adhesion Molecules in Chemically-Induced Renal Injury

    PubMed Central

    Prozialeck, Walter C.; Edwards, Joshua R.

    2007-01-01

    Cell adhesion molecules are integral cell-membrane proteins that maintain cell-cell and cell-substrate adhesion, and in some cases, act as regulators of intracellular signaling cascades. In the kidney, cell adhesion molecules such as the cadherins, the catenins, ZO-1, occludin and the claudins are essential for maintaining the epithelial polarity and barrier integrity that are necessary for the normal absorption/excretion of fluid and solutes. A growing volume of evidence indicates that these cell adhesion molecules are important early targets for a variety of nephrotoxic substances including metals, drugs, and venom components. In addition, it is now widely appreciated that molecules such as ICAM-1, the integrins and selectins play important roles in the recruitment of leukocytes and inflammatory responses that are associated with nephrotoxic injury. This review summarizes the results of recent in vitro and in vivo studies indicating that these cell adhesion molecules may be primary molecular targets in many types of chemically-induced renal injury. Some of the specific agents that are discussed include Cd, Hg, Bi, cisplatin, aminoglycoside antibiotics, S-(1,2-dichlorovinyl-L-cysteine) (DCVC) and various venom toxins. This review also includes a discussion of the various mechanisms by which these substances can affect cell adhesion molecules in the kidney. PMID:17316817

  16. Protective effect of Urtica dioica L. on renal ischemia/reperfusion injury in rat.

    PubMed

    Sayhan, Mustafa Burak; Kanter, Mehmet; Oguz, Serhat; Erboga, Mustafa

    2012-12-01

    Renal ischemia-reperfusion (I/R) injury may occur after renal transplantation, thoracoabdominal aortic surgery, and renal artery interventions. This study was designed to investigate the effect of Urtica dioica L. (UD), in I/R induced renal injury. A total of 32 male Sprague-Dawley rats were divided into four groups: control, UD alone, I/R and I/R + UD; each group contain 8 animals. A rat model of renal I/R injury was induced by 45-min occlusion of the bilateral renal pedicles and 24-h reperfusion. In the UD group, 3 days before I/R, UD (2 ml/kg/day intraperitoneal) was administered by gastric gavage. All animals were sacrificed at the end of reperfusion and kidney tissues samples were obtained for histopathological investigation in all groups. To date, no more histopathological changes on intestinal I/R injury in rats by UD treatment have been reported. Renal I/R caused severe histopathological injury including tubular damage, atrophy dilatation, loss of brush border and hydropic epithelial cell degenerations, renal corpuscle atrophy, glomerular shrinkage, markedly focal mononuclear cell infiltrations in the kidney. UD treatment significantly attenuated the severity of intestinal I/R injury and significantly lowered tubulointerstitial damage score than the I/R group. The number of PCNA and TUNEL positive cells in the control and UD alone groups was negligible. When kidney sections were PCNA and TUNEL stained, there was a clear increase in the number of positive cells in the I/R group rats in the renal cortical tissues. However, there is a significant reduction in the activity of PCNA and TUNEL in kidney tissue of renal injury induced by renal I/R with UD therapy. Our results suggest that administration of UD attenuates renal I/R injury. These results suggest that UD treatment has a protective effect against renal damage induced by renal I/R. This protective effect is possibly due to its ability to inhibit I/R induced renal damage, apoptosis and cell proliferation.

  17. Anti-Inflammatory Effects of Traditional Chinese Medicines against Ischemic Injury in In Vivo Models of Cerebral Ischemia

    PubMed Central

    2016-01-01

    Inflammation plays a crucial role in the pathophysiology of acute ischemic stroke. In the ischemic cascade, resident microglia are rapidly activated in the brain parenchyma and subsequently trigger inflammatory mediator release, which facilitates leukocyte-endothelial cell interactions in inflammation. Activated leukocytes invade the endothelial cell junctions and destroy the blood-brain barrier integrity, leading to brain edema. Toll-like receptors (TLRs) stimulation in microglia/macrophages through the activation of intercellular signaling pathways secretes various proinflammatory cytokines and enzymes and then aggravates cerebral ischemic injury. The secreted cytokines activate the proinflammatory transcription factors, which subsequently regulate cytokine expression, leading to the amplification of the inflammatory response and exacerbation of the secondary brain injury. Traditional Chinese medicines (TCMs), including TCM-derived active compounds, Chinese herbs, and TCM formulations, exert neuroprotective effects against inflammatory responses by downregulating the following: ischemia-induced microglial activation, microglia/macrophage-mediated cytokine production, proinflammatory enzyme production, intercellular adhesion molecule-1, matrix metalloproteinases, TLR expression, and deleterious transcription factor activation. TCMs also aid in upregulating anti-inflammatory cytokine expression and neuroprotective transcription factor activation in the ischemic lesion in the inflammatory cascade during the acute phase of cerebral ischemia. Thus, TCMs exert potent anti-inflammatory properties in ischemic stroke and warrant further investigation. PMID:27703487

  18. Regulatory T cells participate in CD39-mediated protection from renal injury.

    PubMed

    Wang, Yuan Min; McRae, Jennifer L; Robson, Simon C; Cowan, Peter J; Zhang, Geoff Yu; Hu, Min; Polhill, Tania; Wang, Yiping; Zheng, Guoping; Wang, Ya; Lee, Vincent W S; Unwin, Robert J; Harris, David C H; Dwyer, Karen M; Alexander, Stephen I

    2012-09-01

    CD39 is an ecto-enzyme that degrades extracellular nucleotides, such as ATP, and is highly expressed on by the vasculature and circulating cells including Foxp3+ regulatory T (Treg) cells. To study the role of purinergic regulation in renal disease, we used the adriamycin nephropathy (AN) mouse model of chronic renal injury, using human CD39-transgenic (hCD39Tg) and wild-type (WT) BALB/c mice. Effects of CD39 expression by Treg cells were assessed in AN by adoptive transfer of CD4(+) CD25(+) and CD4(+) CD25(-) T cells isolated from hCD39Tg and WT mice. hCD39Tg mice were protected from renal injury in AN with decreased urinary protein and serum creatinine, and significantly less renal injury compared with WT mice. While WT CD25(+) and hCD39Tg CD25(-) T cells conferred some protection against AN, hCD39Tg CD25(+) Treg cells offered greater protection. In vitro studies showed direct pro-apoptotic effects of ATP on renal tubular cells. In conclusion, hCD39 expressed by circulating leukocytes and intrinsic renal cells limits innate AN injury. Specifically, CD39 expression by Treg cells contributes to its protective role in renal injury. These findings suggest that extracellular nucleotides mediate AN kidney injury and that CD39, expressed by Treg cells and other cells, is protective in this model.

  19. Hepcidin Mitigates Renal Ischemia-Reperfusion Injury by Modulating Systemic Iron Homeostasis.

    PubMed

    Scindia, Yogesh; Dey, Paromita; Thirunagari, Abhinav; Liping, Huang; Rosin, Diane L; Floris, Matteo; Okusa, Mark D; Swaminathan, Sundararaman

    2015-11-01

    Iron-mediated oxidative stress is implicated in the pathogenesis of renal ischemia-reperfusion injury. Hepcidin is an endogenous acute phase hepatic hormone that prevents iron export from cells by inducing degradation of the only known iron export protein, ferroportin. In this study, we used a mouse model to investigate the effect of renal ischemia-reperfusion injury on systemic iron homeostasis and determine if dynamic modulation of iron homeostasis with hepcidin has therapeutic benefit in the treatment of AKI. Renal ischemia-reperfusion injury induced hepatosplenic iron export through increased ferroportin expression, which resulted in hepatosplenic iron depletion and an increase in serum and kidney nonheme iron levels. Exogenous hepcidin treatment prevented renal ischemia-reperfusion-induced changes in iron homeostasis. Hepcidin also decreased kidney ferroportin expression and increased the expression of cytoprotective H-ferritin. Hepcidin-induced restoration of iron homeostasis was accompanied by a significant reduction in ischemia-reperfusion-induced tubular injury, apoptosis, renal oxidative stress, and inflammatory cell infiltration. Hepcidin -: deficient mice demonstrated increased susceptibility to ischemia-reperfusion injury compared with wild-type mice. Reconstituting hepcidin-deficient mice with exogenous hepcidin induced hepatic iron sequestration, attenuated the reduction in renal H-ferritin and reduced renal oxidative stress, apoptosis, inflammation, and tubular injury. Hepcidin-mediated protection was associated with reduced serum IL-6 levels. In summary, renal ischemia-reperfusion injury results in profound alterations in systemic iron homeostasis. Hepcidin treatment restores iron homeostasis and reduces inflammation to mediate protection in renal ischemia-reperfusion injury, suggesting that hepcidin-ferroportin pathway holds promise as a novel therapeutic target in the treatment of AKI.

  20. Hepcidin Mitigates Renal Ischemia-Reperfusion Injury by Modulating Systemic Iron Homeostasis

    PubMed Central

    Scindia, Yogesh; Dey, Paromita; Thirunagari, Abhinav; Liping, Huang; Rosin, Diane L.; Floris, Matteo; Okusa, Mark D.

    2015-01-01

    Iron-mediated oxidative stress is implicated in the pathogenesis of renal ischemia–reperfusion injury. Hepcidin is an endogenous acute phase hepatic hormone that prevents iron export from cells by inducing degradation of the only known iron export protein, ferroportin. In this study, we used a mouse model to investigate the effect of renal ischemia–reperfusion injury on systemic iron homeostasis and determine if dynamic modulation of iron homeostasis with hepcidin has therapeutic benefit in the treatment of AKI. Renal ischemia–reperfusion injury induced hepatosplenic iron export through increased ferroportin expression, which resulted in hepatosplenic iron depletion and an increase in serum and kidney nonheme iron levels. Exogenous hepcidin treatment prevented renal ischemia-reperfusion–induced changes in iron homeostasis. Hepcidin also decreased kidney ferroportin expression and increased the expression of cytoprotective H-ferritin. Hepcidin-induced restoration of iron homeostasis was accompanied by a significant reduction in ischemia-reperfusion–induced tubular injury, apoptosis, renal oxidative stress, and inflammatory cell infiltration. Hepcidin–deficient mice demonstrated increased susceptibility to ischemia-reperfusion injury compared with wild-type mice. Reconstituting hepcidin-deficient mice with exogenous hepcidin induced hepatic iron sequestration, attenuated the reduction in renal H-ferritin and reduced renal oxidative stress, apoptosis, inflammation, and tubular injury. Hepcidin-mediated protection was associated with reduced serum IL-6 levels. In summary, renal ischemia–reperfusion injury results in profound alterations in systemic iron homeostasis. Hepcidin treatment restores iron homeostasis and reduces inflammation to mediate protection in renal ischemia–reperfusion injury, suggesting that hepcidin-ferroportin pathway holds promise as a novel therapeutic target in the treatment of AKI. PMID:25788528

  1. Guanosine protects against reperfusion injury in rat brains after ischemic stroke.

    PubMed

    Connell, Barry J; Di Iorio, Patrizia; Sayeed, Iqbal; Ballerini, Patrizia; Saleh, Monique C; Giuliani, Patricia; Saleh, Tarek M; Rathbone, Michel P; Su, Caixin; Jiang, Shucui

    2013-02-01

    After ischemic stroke, early thrombolytic therapy to reestablish tissue perfusion improves outcome but triggers a cascade of deleterious cellular and molecular events. Using a collaborative approach, our groups examined the effects of guanosine (Guo) in response to ischemic reperfusion injury in vitro and in vivo. In a transient middle cerebral artery occlusion (MCAO) in rats, Guo significantly reduced infarct volume in a dose-dependent manner when given systemically either immediately before or 30 min, but not 60 min, after the onset of the 5.5-hr reperfusion period. In a separate experiment, Guo significantly reduced infarct volume after 24 hr of reperfusion when administered 5 min before reperfusion. Western blot analysis did not reveal any significant changes either in endoplasmic reticulum (ER) stress proteins (GRP 78 and 94) or HSP 70 or in levels of m-calpain. In vitro oxygen and glucose deprivation (OGD) significantly increased production of both reactive oxygen species (ROS) and interleukin-8 (IL-8) in the primary astrocytes. Guo did not alter ROS or IL-8 production when given to the astrocytes before OGD. However, Guo when added to the cells prior to or 30 min after reperfusion significantly reduced IL-8 release but not ROS formation. Our study revealed a dose- and time-dependent protective effect of Guo on reperfusion injury in vitro and vivo. The mechanisms by which Guo exerts its effect are independent of unfolded proteins in ER or the level of intracellular calcium or ROS formation. However, the effect may be induced, at least partially, by inhibiting IL-8, a marker of reperfusion-triggered proinflammatory events.

  2. Low birth weight increases susceptibility to renal injury in a rat model of mild ischemia-reperfusion.

    PubMed

    Ojeda, Norma B

    2011-08-01

    Renal injury due to ischemia-reperfusion (I/R) is the major cause of acute kidney injury. Whether enhanced susceptibility to renal injury due to I/R can be programmed during fetal life is unknown. Epidemiological studies indicate that low birth weight (LBW) individuals are more susceptible to renal injury than normal birth weight (NBW) individuals. Thus, the aim of this study was to test the hypothesis that LBW is associated with an increased susceptibility to renal injury induced by mild renal I/R (15-min ischemia). Systemic and renal hemodynamic parameters were determined in NBW and LBW adult male rats after mild renal I/R; renal superoxide production and tubular injury were also assessed. A subgroup was pretreated with tempol, a superoxide dismutase mimetic, initiated 15 min before ischemia. Mild renal I/R did not alter renal hemodynamic parameters, induce tubular injury, or induce superoxide production in NBW rats. However, renal hemodynamic parameters declined, superoxide production increased, and histological indicators of tubular injury were present following mild renal I/R in LBW rats. Acute treatment with tempol prevented these alterations in LBW rats subjected to mild renal I/R. Thus, these findings suggest that adverse conditions during fetal life can compromise the renal response to subtle insults leading to an increased susceptibility to renal injury, suggesting that LBW individuals may be an "at risk" population for renal disease. Additionally, the outcome of tempol treatment proposes a possible mechanistic pathway involved in mediating enhanced susceptibility to renal injury programmed during fetal life.

  3. Renal infarction secondary to ketamine abuse.

    PubMed

    Chen, Chin-Li; Chen, Jin-Li; Cha, Tai-Lung; Wu, Sheng-Tang; Tang, Shou-Hung; Tsao, Chih-Wei; Meng, En

    2013-07-01

    Renal infarction is an uncommon condition that resulted from inadequate perfusion of the kidney and is easily missed diagnosed due to its nonspecific clinical presentations. Major risk factors for renal infarction are atrial fibrillation, previous embolism, and ischemic and valvular heart disease. Progressive decrease in renal function or even death can occur if renal infarction is not diagnosed accurately and promptly. Ketamine abuse may cause variable urinary tract injury. However, renal infarction caused by ketamine abuse has never been reported. To our knowledge, this is the first documented case of renal infarction following nasal insufflation of ketamine.

  4. Molecular mediators of hypoxic-ischemic injury and implications for epilepsy in the developing brain.

    PubMed

    Hossain, Mir Ahamed

    2005-09-01

    Perinatal hypoxia-ischemia (HI) is the most common cause of cerebral palsy, and an important consequence of perinatal HI is epilepsy. Epilepsy is a disorder in which the balance between cerebral excitability and inhibition is tipped toward uncontrolled excitability. Selected neuronal circuits as well as certain populations of glial cells die from the excitotoxicity triggered by HI. Excitotoxicity, a term referring to cell death caused by overstimulation of the excitatory glutamate neurotransmitter receptors, plays a critical role in brain injury caused by perinatal HI. Ample evidence suggests distinct differences between the immature and mature brain with respect to the pathology and consequences of hypoxic-ischemic brain injury. Thus, the intrinsic vulnerability of specific cell types and systems in the developing brain is particularly important in determining the final pattern of damage and functional disability caused by perinatal HI. These patterns of neuronal vulnerability are associated with clinical syndromes of neurologic disorders such as cerebral palsy, epilepsy, and seizures. Recent studies have uncovered important molecular and cellular aspects of hypoxic-ischemic brain injury. The cascade of biochemical and histopathological events initiated by HI can extend for days to weeks after the insult is triggered, which may provide a "therapeutic window" for intervening in the pathogenesis in the developing brain. Activation of apoptotic programs accounts for the majority of HI-induced pathophysiology in neonatal brain disorders. New experimental approaches to protecting brain tissue from the effects of neonatal HI include administration of neuronal growth factors and effective inhibition of the death effector pathways, such as caspase cascade, and their downstream targets, which execute apoptosis and/or induction of their regulatory cellular proteins. Our recent findings that a novel neuronal protein, neuronal pentraxin 1 (NP1), is induced following HI in

  5. Resveratrol Pretreatment Decreases Ischemic Injury and Improves Neurological Function Via Sonic Hedgehog Signaling After Stroke in Rats.

    PubMed

    Yu, Pingping; Wang, Li; Tang, Fanren; Zeng, Li; Zhou, Luling; Song, Xiaosong; Jia, Wei; Chen, Jixiang; Yang, Qin

    2017-01-01

    Resveratrol has neuroprotective effects for ischemic cerebral stroke. However, its neuroprotective mechanism for stroke is less well understood. Beneficial actions of the activated Sonic hedgehog (Shh) signaling pathway in stroke, such as improving neurological function, promoting neurogenesis, anti-oxidative, anti-apoptotic, and pro-angiogenic effects, have been noted, but relatively little is known about the role of Shh signaling in resveratrol-reduced cerebral ischemic injury after stroke. The present study tests whether the Shh pathway mediates resveratrol to decrease cerebral ischemic injury and improve neurological function after stroke. We observed that resveratrol pretreatment significantly improved neurological function, decreased infarct volume, enhanced vitality, and reduced apoptosis of neurons in vivo and vitro after stroke. Meanwhile, expression levels of Shh, Ptc-1, Smo, and Gli-1 mRNAs were significantly upregulated and Gli-1 was relocated to the nucleus. Intriguingly, in vivo and in vitro inhibition of the Shh signaling pathway with cyclopamine, a Smo inhibitor, completely reversed the above effects of resveratrol. These results suggest that decreased cerebral ischemic injury and improved neurological function by resveratrol may be mediated by the Shh signaling pathway.

  6. Continuous Renal Replacement Therapy for Acute Renal Failure in Patients with Traumatic Brain Injury

    PubMed Central

    Park, Chang-Yong; Choi, Hyun-Yong; You, Nam-Kyu; Roh, Tae Hoon; Seo, Sook Jin

    2016-01-01

    Objective The purpose of this study was to investigate the impact of continuous renal replacement therapy (CRRT) on survival and relevant factors in patients who underwent CRRT after traumatic brain injury (TBI). Methods We retrospectively reviewed the laboratory, clinical, and radiological data of 29 patients who underwent CRRT among 1,190 TBI patients treated at our institution between April 2011 and June 2015. There were 20 men and 9 women, and the mean age was 60.2 years. The mean initial Glasgow Coma Scale score was 9.2, and the mean injury severity score was 24. Kaplan-Meier method and Cox regression were used for analysis of survival and relevant factors. Results The actuarial median survival time of the 29 patients was 163 days (range, 3-317). Among the above 29 patients, 22 died with a median survival time of 8 days (range, 3-55). The causes of death were TBI-related in 8, sepsis due to pneumonia or acute respiratory distress syndrome (ARDS) in 4, and multi-organ failure in 10. Among the various factors, urine quantity of more than 500 mL for 24-hours before receiving CRRT was a significant and favorable factor for survival in the multivariate analysis (p=0.026). Conclusion According to our results, we suggest that early intervention with CRRT may be beneficial in the treatment of TBI patients with impending acute renal failure (ARF). To define the therapeutic advantages of early CRRT in the TBI patients with ARF, a well-designed and controlled study with more cases is required. PMID:27857914

  7. Deregulation of inflammatory response in the diabetic condition is associated with increased ischemic brain injury

    PubMed Central

    2014-01-01

    Background Although elicited inflammation contributes to tissue injury, a certain level of inflammation is necessary for subsequent tissue repair/remodeling. Diabetes, a chronic low-grade inflammatory state, is a predisposing risk factor for stroke. The condition is associated with delayed wound healing, presumably due to disrupted inflammatory responses. With inclusion of the diabetic condition in an experimental animal model of stroke, this study investigates whether the condition alters inflammatory response and influences stroke-induced brain injury. Methods C57BL/6 mice were fed a diabetic diet (DD) for 8 weeks to induce an experimental diabetic condition or a normal diet (ND) for the same duration. Gene expression of inflammatory factors including monocyte chemoattractant protein-1 (MCP-1), interleukin-6 (IL-6), CCR2, and CD36 was assessed in the peripheral immune cells and brains of normal and diabetic mice before and after focal cerebral ischemia. The expression of these factors was also determined in lipopolysaccharide (LPS)-treated cultured normal and diabetic macrophages. Ischemic outcome was assessed in these mice at 3 days post-ischemia. Results DD intervention in mice resulted in obesity and elevated insulin and glucose level in the blood. The peritoneal immune cells from the diabetic mice showed higher MCP-1 mRNA levels before and after stroke. Compared to normal mice, diabetic mice showed reduced MCP-1, IL-6, and CCR2 gene expression in the brain at 6 h post-ischemia. LPS-stimulated inflammatory responses were also reduced in the diabetic macrophages. The diabetic mice showed larger infarct size and percent swelling. Conclusions These results showed that diabetic conditions deregulate acute inflammatory response and that the condition is associated with increased stroke-induced injury. The study suggests that interventions aimed at restoring appropriate inflammatory response in peripheral immune cells/macrophages may be beneficial in reducing

  8. Human Kidney-Derived Cells Ameliorate Acute Kidney Injury Without Engrafting into Renal Tissue.

    PubMed

    Santeramo, Ilaria; Herrera Perez, Zeneida; Illera, Ana; Taylor, Arthur; Kenny, Simon; Murray, Patricia; Wilm, Bettina; Gretz, Norbert

    2017-04-04

    Previous studies have suggested that CD133(+) cells isolated from human kidney biopsies have the potential to ameliorate injury following intravenous (IV) administration in rodent models of kidney disease by integrating into damaged renal tissue and generating specialized renal cells. However, whether renal engraftment of CD133(+) cells is a prerequisite for ameliorating injury has not yet been unequivocally resolved. Here, we have established a cisplatin-induced nephropathy model in immunodeficient rats to assess the efficacy of CD133(+) human kidney cells in restoring renal health, and to determine the fate of these cells after systemic administration. Specifically, following IV administration, we evaluated the impact of the CD133(+) cells on renal function by undertaking longitudinal measurements of the glomerular filtration rate using a novel transcutaneous device. Using histological assays, we assessed whether the human kidney cells could promote renal regeneration, and if this was related to their ability to integrate into the damaged kidneys. Our results show that both CD133(+) and CD133(-) cells improve renal function and promote renal regeneration to a similar degree. However, this was not associated with engraftment of the cells into the kidneys. Instead, after IV administration, both cell types were exclusively located in the lungs, and had disappeared by 24 hours. Our data therefore indicate that renal repair is not mediated by CD133(+) cells homing to the kidneys and generating specialized renal cells. Instead, renal repair is likely to be mediated by paracrine or endocrine factors. © Stem Cells Translational Medicine 2017.

  9. Effect of TREM-1 blockade and single nucleotide variants in experimental renal injury and kidney transplantation

    PubMed Central

    Tammaro, A.; Kers, J.; Emal, D.; Stroo, I.; Teske, G. J. D.; Butter, L. M.; Claessen, N.; Damman, J.; Derive, M.; Navis, G.; Florquin, S.; Leemans, J. C.; Dessing, M. C.

    2016-01-01

    Renal ischemia reperfusion (IR)-injury induces activation of innate immune response which sustains renal injury and contributes to the development of delayed graft function (DGF). Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pro-inflammatory evolutionary conserved pattern recognition receptor expressed on a variety of innate immune cells. TREM-1 expression increases following acute and chronic renal injury. However, the function of TREM-1 in renal IR is still unclear. Here, we investigated expression and function of TREM-1 in a murine model of renal IR using different TREM-1 inhibitors: LP17, LR12 and TREM-1 fusion protein. In a human study, we analyzed the association of non-synonymous single nucleotide variants in the TREM1 gene in a cohort comprising 1263 matching donors and recipients with post-transplant outcomes, including DGF. Our findings demonstrated that, following murine IR, renal TREM-1 expression increased due to the influx of Trem1 mRNA expressing cells detected by in situ hybridization. However, TREM-1 interventions by means of LP17, LR12 and TREM-1 fusion protein did not ameliorate IR-induced injury. In the human renal transplant cohort, donor and recipient TREM1 gene variant p.Thr25Ser was not associated with DGF, nor with biopsy-proven rejection or death-censored graft failure. We conclude that TREM-1 does not play a major role during experimental renal IR and after kidney transplantation. PMID:27928159

  10. Intravenous Renal Cell Transplantation for Polycystic Kidney Disease

    DTIC Science & Technology

    2013-10-01

    failure: CKD due to cisplatin-mediated injury (4), diabetic nephropathy (Am J Physiol. Renal in press) and in PKD (figure 1). 6    Figure 3...with SAA1 positive cells prevents progression of chronic renal failure in rats with ischemic- diabetic nephropathy . Am J Physiol. Renal, in press 6...survival and kidney function in diverse models of renal 5    Figure 2. The power of cytotherapy: When compared to no cell (C) groups, treatment of

  11. Neuroprotective effects of oligodendrocyte progenitor cell transplantation in premature rat brain following hypoxic-ischemic injury.

    PubMed

    Chen, Long-Xia; Ma, Si-Min; Zhang, Peng; Fan, Zi-Chuan; Xiong, Man; Cheng, Guo-Qiang; Yang, Yi; Qiu, Zi-Long; Zhou, Wen-Hao; Li, Jin

    2015-01-01

    Periventricular leukomalacia (PVL) is a common ischemic brain injury in premature infants for which there is no effective treatment. The objective of this study was to determine whether transplanted mouse oligodendrocyte progenitor cells (OPCs) have neuroprotective effects in a rat model of PVL. Hypoxia-ischemia (HI) was induced in 3-day-old rat pups by left carotid artery ligation, followed by exposure to 6% oxygen for 2.5 h. Animals were assigned to OPC transplantation or sham control groups and injected with OPCs or PBS, respectively, and sacrificed up to 6 weeks later for immunohistochemical analysis to investigate the survival and differentiation of transplanted OPCs. Apoptosis was evaluated by double immunolabeling of brain sections for caspase-3 and neuronal nuclei (NeuN), while proliferation was assessed using a combination of anti-Nestin and -bromodeoxyuridine antibodies. The expression of brain-derived neurotrophic factor (BDNF) and Bcl-2 was examined 7 days after OPC transplantation. The Morris water maze was used to test spatial learning and memory. The results showed that transplanted OPCs survived and formed a myelin sheath, and stimulated BDNF and Bcl-2 expression and the proliferation of neural stem cells (NSC), while inhibiting HI-induced neuronal apoptosis relative to control animals. Moreover, deficits in spatial learning and memory resulting from HI were improved by OPC transplantation. These results demonstrate an important neuroprotective role for OPCs that can potentially be exploited in cell-based therapeutic approaches to minimize HI-induced brain injury.

  12. Estradiol alleviates the ischemic brain injury-induced decrease of neuronal calcium sensor protein hippocalcin.

    PubMed

    Koh, Phil-Ok

    2014-10-17

    Estradiol has protective and reparative effects in neurodegenerative diseases. Hippocalcin is a neuronal calcium-sensor protein that acts as a calcium buffer to regulate the intracellular concentration of Ca(2+). This study was investigated to elucidate whether estradiol regulates hippocalcin expression in a focal cerebral ischemia model and glutamate-treated neuronal cells. An ovariectomy was performed in adult female rats, and vehicle or estradiol was administered before middle cerebral artery occlusion (MCAO). Cerebral cortex tissues were collected at 24h after MCAO. A proteomic approach revealed that hippocalcin expression decreased in vehicle-treated animals with combined MCAO, while estradiol treatment attenuated this decrease. Reverse transcription-PCR and Western blot analyses also showed that estradiol administration prevented the MCAO injury-induced decrease in hippocalcin expression. In cultured hippocampal cells, glutamate exposure increased the intracellular Ca(2+) concentration, which was rescued by the presence of estradiol. Moreover, glutamate toxicity decreased hippocalcin expression, whereas estradiol attenuated this decrease. Together, these findings suggest that estradiol has a neuroprotective function by regulating hippocalcin expression and intracellular Ca(2+) levels in ischemic brain injury.

  13. The vestigial enzyme D-dopachrome tautomerase protects the heart against ischemic injury.

    PubMed

    Qi, Dake; Atsina, Kwame; Qu, Lintao; Hu, Xiaoyue; Wu, Xiaohong; Xu, Bin; Piecychna, Marta; Leng, Lin; Fingerle-Rowson, Günter; Zhang, Jiasheng; Bucala, Richard; Young, Lawrence H

    2014-08-01

    The cellular response to stress involves the recruitment and coordination of molecular signaling pathways that prevent cell death. D-dopachrome tautomerase (DDT) is an enzyme that lacks physiologic substrates in mammalian cells, but shares partial sequence and structural homology with macrophage migration inhibitory factor (MIF). Here, we observed that DDT is highly expressed in murine cardiomyocytes and secreted by the heart after ischemic stress. Antibody-dependent neutralization of secreted DDT exacerbated both ischemia-induced cardiac contractile dysfunction and necrosis. We generated cardiomyocyte-specific DDT knockout mice (Myh6-Cre Ddtfl/fl), which demonstrated normal baseline cardiac size and function, but had an impaired physiologic response to ischemia-reperfusion. Hearts from Myh6-Cre Ddtfl/fl mice exhibited more necrosis and LV contractile dysfunction than control hearts after coronary artery ligation and reperfusion. Furthermore, treatment with DDT protected isolated hearts against injury and contractile dysfunction after ischemia-reperfusion. The protective effect of DDT required activation of the metabolic stress enzyme AMP-activated protein kinase (AMPK), which was mediated by a CD74/CaMKK2-dependent mechanism. Together, our data indicate that cardiomyocyte secretion of DDT has important autocrine/paracrine effects during ischemia-reperfusion that protect the heart against injury.

  14. Optical spectroscopy approach for the predictive assessment of kidney functional recovery following ischemic injury

    NASA Astrophysics Data System (ADS)

    Raman, Rajesh N.; Pivetti, Christopher D.; Rubenchik, Alexander M.; Matthews, Dennis L.; Troppmann, Christoph; Demos, Stavros G.

    2010-02-01

    Tissue that has undergone significant yet unknown amount of ischemic injury is frequently encountered in organ transplantation and trauma clinics. With no reliable real-time method of assessing the degree of injury incurred in tissue, surgeons generally rely on visual observation which is subjective. In this work, we investigate the use of optical spectroscopy methods as a potentially more reliable approach. Previous work by various groups was strongly suggestive that tissue autofluorescence from NADH obtained under UV excitation is sensitive to metabolic response changes. To test and expand upon this concept, we monitored autofluorescence and light scattering intensities of injured vs. uninjured rat kidneys via multimodal imaging under 355 nm, 325 nm, and 266 nm excitation as well as scattering under 500 nm illumination. 355 nm excitation was used to probe mainly NADH, a metabolite, while 266 nm excitation was used to probe mainly tryptophan to correct for non-metabolic signal artifacts. The ratio of autofluorescence intensities derived under these two excitation wavelengths was calculated and its temporal profile was fit to a relaxation model. Time constants were extracted, and longer time constants were associated with kidney dysfunction. Analysis of both the autofluorescence and light scattering images suggests that changes in microstructure tissue morphology, blood absorption spectral characteristics, and pH contribute to the behavior of the observed signal which may be used to obtain tissue functional information and offer predictive capability.

  15. Optical Spectroscopy Approach for the Predictive Assessment of Kidney Functional Recovery Following Ischemic Injury

    SciTech Connect

    Raman, R N; Pivetti, C D; Rubenchik, A M; Matthews, D L; Troppmann, C; Demos, S G

    2010-02-11

    Tissue that has undergone significant yet unknown amount of ischemic injury is frequently encountered in organ transplantation and trauma clinics. With no reliable real-time method of assessing the degree of injury incurred in tissue, surgeons generally rely on visual observation which is subjective. In this work, we investigate the use of optical spectroscopy methods as a potentially more reliable approach. Previous work by various groups was strongly suggestive that tissue autofluorescence from NADH obtained under UV excitation is sensitive to metabolic response changes. To test and expand upon this concept, we monitored autofluorescence and light scattering intensities of injured vs. uninjured rat kidneys via multimodal imaging under 355 nm, 325 nm, and 266 nm excitation as well as scattering under 500 nm illumination. 355 nm excitation was used to probe mainly NADH, a metabolite, while 266 nm excitation was used to probe mainly tryptophan to correct for non-metabolic signal artifacts. The ratio of autofluorescence intensities derived under these two excitation wavelengths was calculated and its temporal profile was fit to a relaxation model. Time constants were extracted, and longer time constants were associated with kidney dysfunction. Analysis of both the autofluorescence and light scattering images suggests that changes in microstructure tissue morphology, blood absorption spectral characteristics, and pH contribute to the behavior of the observed signal which may be used to obtain tissue functional information and offer predictive capability.

  16. Multiparametric, Longitudinal Optical Coherence Tomography Imaging Reveals Acute Injury and Chronic Recovery in Experimental Ischemic Stroke

    PubMed Central

    Srinivasan, Vivek J.; Mandeville, Emiri T.; Can, Anil; Blasi, Francesco; Climov, Mihail; Daneshmand, Ali; Lee, Jeong Hyun; Yu, Esther; Radhakrishnan, Harsha; Lo, Eng H.; Sakadžić, Sava; Eikermann-Haerter, Katharina; Ayata, Cenk

    2013-01-01

    Progress in experimental stroke and translational medicine could be accelerated by high-resolution in vivo imaging of disease progression in the mouse cortex. Here, we introduce optical microscopic methods that monitor brain injury progression using intrinsic optical scattering properties of cortical tissue. A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described. In the acute stages, the spatiotemporal interplay between hemodynamics and cell viability, a key determinant of pathogenesis, was imaged. In acute stroke, microscopic biomarkers for eventual infarction, including capillary non-perfusion, cerebral blood flow deficiency, altered cellular scattering, and impaired autoregulation of cerebral blood flow, were quantified and correlated with histology. Additionally, longitudinal microscopy revealed remodeling and flow recovery after one week of chronic stroke. Intrinsic scattering properties serve as reporters of acute cellular and vascular injury and recovery in experimental stroke. Multi-parametric OCT represents a robust in vivo imaging platform to comprehensively investigate these properties. PMID:23940761

  17. Multiparametric, longitudinal optical coherence tomography imaging reveals acute injury and chronic recovery in experimental ischemic stroke.

    PubMed

    Srinivasan, Vivek J; Mandeville, Emiri T; Can, Anil; Blasi, Francesco; Climov, Mihail; Daneshmand, Ali; Lee, Jeong Hyun; Yu, Esther; Radhakrishnan, Harsha; Lo, Eng H; Sakadžić, Sava; Eikermann-Haerter, Katharina; Ayata, Cenk

    2013-01-01

    Progress in experimental stroke and translational medicine could be accelerated by high-resolution in vivo imaging of disease progression in the mouse cortex. Here, we introduce optical microscopic methods that monitor brain injury progression using intrinsic optical scattering properties of cortical tissue. A multi-parametric Optical Coherence Tomography (OCT) platform for longitudinal imaging of ischemic stroke in mice, through thinned-skull, reinforced cranial window surgical preparations, is described. In the acute stages, the spatiotemporal interplay between hemodynamics and cell viability, a key determinant of pathogenesis, was imaged. In acute stroke, microscopic biomarkers for eventual infarction, including capillary non-perfusion, cerebral blood flow deficiency, altered cellular scattering, and impaired autoregulation of cerebral blood flow, were quantified and correlated with histology. Additionally, longitudinal microscopy revealed remodeling and flow recovery after one week of chronic stroke. Intrinsic scattering properties serve as reporters of acute cellular and vascular injury and recovery in experimental stroke. Multi-parametric OCT represents a robust in vivo imaging platform to comprehensively investigate these properties.

  18. C60 Fullerene as Promising Therapeutic Agent for the Prevention and Correction of Skeletal Muscle Functioning at Ischemic Injury

    NASA Astrophysics Data System (ADS)

    Nozdrenko, D. M.; Zavodovskyi, D. O.; Matvienko, T. Yu.; Zay, S. Yu.; Bogutska, K. I.; Prylutskyy, Yu. I.; Ritter, U.; Scharff, P.

    2017-02-01

    The therapeutic effect of pristine C60 fullerene aqueous colloid solution (C60FAS) on the functioning of the rat soleus muscle at ischemic injury depending on the time of the general pathogenesis of muscular system and method of administration C60FAS in vivo was investigated. It was found that intravenous administration of C60FAS is the optimal for correction of speed macroparameters of contraction for ischemic muscle damage. At the same time, intramuscular administration of C60FAS shows pronounced protective effect in movements associated with the generation of maximum force responses or prolonged contractions, which increase the muscle fatigue level. Analysis of content concentration of creatine phosphokinase and lactate dehydrogenase enzymes in the blood of experimental animals indicates directly that C60FAS may be a promising therapeutic agent for the prevention and correction of ischemic-damaged skeletal muscle function.

  19. Tissue resident NK cells mediate ischemic kidney injury and are not depleted by anti-Asialo GM1 antibody

    PubMed Central

    Victorino, Francisco; Sojka, Dorothy K.; Brodsky, Kelley S.; McNamee, Eoin N.; Masterson, Joanne C.; Homann, Dirk; Yokoyama, Wayne M.; Eltzschig, Holger K.; Clambey, Eric T.

    2015-01-01

    NK cells are innate lymphoid cells important for immune surveillance, identifying and responding to stress, infection, and/or transformation. While conventional NK (cNK) cells circulate systemically, many NK cells reside in tissues where they appear to be poised to locally regulate tissue function. Here we tested the contribution of tissue-resident NK (trNK) cells to tissue homeostasis by studying ischemic injury in the mouse kidney. Parabiosis experiments demonstrate that the kidney contains a significant fraction of trNK cells under homeostatic conditions. Kidney trNK cells developed independent of NFIL3 and Tbet, and expressed a distinct cell surface phenotype as compared to cNK cells. Among these, trNK cells had reduced asialo-GM1 (AsGM1) expression relative to cNK cells, a phenotype observed in trNK cells across multiple organs and mouse strains. Strikingly, anti-AsGM1 antibody treatment, commonly used as NK cell-depleting regimen, resulted in a robust and selective depletion of cNKs, leaving trNKs largely intact. Using this differential depletion, we tested the relative contribution of cNK and trNK cells in ischemic kidney injury. Whereas anti-NK1.1 antibody effectively depleted both trNK and cNK cells and protected against ischemic-reperfusion injury, anti-AsGM1 antibody preferentially depleted cNK cells and failed to protect against injury. These data demonstrate unanticipated specificity of anti-AsGM1 antibody depletion on NK cell subsets and reveal a new approach to study the contributions of cNK and trNK cells in vivo. In total, these data demonstrate that trNK cells play a key role in modulating local responses to ischemic tissue injury in the kidney and potentially other organs. PMID:26453755

  20. Human Alpha-1-Antitrypsin (hAAT) therapy reduces renal dysfunction and acute tubular necrosis in a murine model of bilateral kidney ischemia-reperfusion injury

    PubMed Central

    Maicas, Nuria; van der Vlag, Johan; Bublitz, Janin; Florquin, Sandrine; Bakker-van Bebber, Marinka; Dinarello, Charles A.; Verweij, Vivienne; Masereeuw, Roos; Joosten, Leo A.

    2017-01-01

    Several lines of evidence have demonstrated the anti-inflammatory and cytoprotective effects of alpha-1-antitrypsin (AAT), the major serum serine protease inhibitor. The aim of the present study was to investigate the effects of human AAT (hAAT) monotherapy during the early and recovery phase of ischemia-induced acute kidney injury. Mild renal ischemia-reperfusion (I/R) injury was induced in male C57Bl/6 mice by bilateral clamping of the renal artery and vein for 20 min. hAAT (80 mg/kg, Prolastin®) was administered daily intraperitoneally (i.p.) from day -1 until day 7 after surgery. Control animals received the same amount of human serum albumin (hAlb). Plasma, urine and kidneys were collected at 2h, 1, 2, 3, 8 and 15 days after reperfusion for histological and biochemical analysis. hAAT partially preserved renal function and tubular integrity after induction of bilateral kidney I/R injury, which was accompanied with reduced renal influx of macrophages and a significant decrease of neutrophil gelatinase-associated lipocalin (NGAL) protein levels in urine and plasma. During the recovery phase, hAAT significantly decreased kidney injury molecule-1 (KIM-1) protein levels in urine but showed no significant effect on renal fibrosis. Although the observed effect size of hAAT administration was limited and therefore the clinical relevance of our findings should be evaluated carefully, these data support the potential of this natural protein to ameliorate ischemic and inflammatory conditions. PMID:28235038

  1. Prophylactic Edaravone Prevents Transient Hypoxic-Ischemic Brain Injury: Implications for Perioperative Neuroprotection

    PubMed Central

    Sun, Yu-Yo; Li, Yikun; Wali, Bushra; Li, Yuancheng; Lee, Jolly; Heinmiller, Andrew; Abe, Koji; Stein, Donald G.; Mao, Hui; Sayeed, Iqbal; Kuan, Chia-Yi

    2015-01-01

    Background and Purpose Hypoperfusion-induced thrombosis is an important mechanism for post-surgery stroke and cognitive decline, but there are no perioperative neuroprotectants to date. This study investigated whether prophylactic application of Edaravone, a free radical scavenger already used in treating ischemic stroke in Japan, can prevent infarct and cognitive deficits in a murine model of transient cerebral hypoxia-ischemia. Methods Adult male C57BL/6 mice were subjected to transient hypoxic-ischemic (tHI) insult that consists of 30-min occlusion of the unilateral common carotid artery and exposure to 7.5% oxygen. Edaravone or saline was prophylactically applied to compare their effects on cortical oxygen saturation, blood flow, coagulation, oxidative stress, metabolites, and learning-memory using methods that include photoacoustic imaging, laser speckle contrast imaging, solid state NMR and Morris water maze. The effects on infarct size by Edaravone application at different time-points after tHI were also compared. Results Prophylactic administration of Edaravone (4.5 mg/kg × 2, IP, 1 h before and 1 h after tHI) improved vascular reperfusion, oxygen saturation, and the maintenance of brain metabolites, while reducing oxidative stress, thrombosis, white-matter injury, and learning impairment after tHI insult. Delayed Edaravone treatment after 3 h post-tHI became unable to reduce infarct size. Conclusions Acute application of Edaravone may be a useful strategy to prevent post-surgery stroke and cognitive impairment, especially in patients with severe carotid stenosis. PMID:26060244

  2. The Neuroprotective Mechanism of Erythropoietin-TAT Fusion Protein Against Neurodegeneration from Ischemic Brain Injury.

    PubMed

    Liu, P; Liu, X; Akf Liou, Emptyyn Y; Xing, J; Jing, Z; Ji, X; Liu, X; Zhao, H; Yan, F; Chen, J; Cao, G; Luo, Y

    2013-08-27

    Aims: To compare the neuroprotection of erythropoietin (EPO) and EPO fusion protein containing transduction domain derived from HIV TAT (EPO-TAT) against ischemic brain injury, inclusive of the side effect, and explore the mechanism underlying the role of EPO-TAT in a transient focal cerebral ischemia model in rats. Methods: Transient focal ischemia was induced by middle cerebral artery occlusion (MCAO) in rats. Rats were treated, respectively, with following regimens: saline, 1000 U/kg EPO, 5000 U/kg EPO, 1000 U/kg EPO-TAT, 1000 U/kg EPO-TAT + 5 µl of 10 mM LY294002 (or/plus 5 µl of 5 mM PD98059). Neurological deficit scores, infarct volume, and hematologic side effect were assessed at 72 hours after MCAO. Apoptotic cells were determined with TUNEL staining. The expression and localization of phosphorylated AKT (pAKT) and phosphorylated ERK (pERK) were detected with Western blot, immunohistochemistry, and immunofluorescence, respectively. Results: 1000 U/kg EPO-TAT exhibited a comparable neuroprotection to 5000 U/kg EPO, as evidenced by a comparable attenuation in neurological deficit, infarct volume, and number of apoptotic cells in the rat ischemic cortex after MCAO. The pAKT and pERK levels were significantly elevated solely in neurons of rodents receiving EPO or EPO-TAT treatments, suggesting the concurrent activation of these two pathways. Specific inhibition of either AKT or ERK pathway partially abolished EPO-TAT protection, but exhibited no influence on the activation status of its counterpart, suggesting no cross-modulation between these two protective pathways. Conclusion: Our study indicates that EPO-TAT at 1000 U/kg displays neuroprotection with no detectable side effects. The mechanism for neuroprotection may be attributable to the simultaneous activation of the AKT and ERK pathways, which preserve neuronal cell viability and attenuate behavioral deficits.

  3. Improving Reconstituted HDL Composition for Efficient Post-Ischemic Reduction of Ischemia Reperfusion Injury

    PubMed Central

    Brulhart-Meynet, Marie-Claude; Braunersreuther, Vincent; Brinck, Jonas; Montecucco, Fabrizio; Prost, Jean-Christophe; Thomas, Aurelien; Galan, Katia; Pelli, Graziano; Pedretti, Sarah; Vuilleumier, Nicolas; Mach, François; Lecour, Sandrine; James, Richard W.; Frias, Miguel A.

    2015-01-01

    Background New evidence shows that high density lipoproteins (HDL) have protective effects beyond their role in reverse cholesterol transport. Reconstituted HDL (rHDL) offer an attractive means of clinically exploiting these novel effects including cardioprotection against ischemia reperfusion injury (IRI). However, basic rHDL composition is limited to apolipoprotein AI (apoAI) and phospholipids; addition of bioactive compound may enhance its beneficial effects. Objective The aim of this study was to investigate the role of rHDL in post-ischemic model, and to analyze the potential impact of sphingosine-1-phosphate (S1P) in rHDL formulations. Methods and Results The impact of HDL on IRI was investigated using complementary in vivo, ex vivo and in vitro IRI models. Acute post-ischemic treatment with native HDL significantly reduced infarct size and cell death in the ex vivo, isolated heart (Langendorff) model and the in vivo model (-48%, p<0.01). Treatment with rHDL of basic formulation (apoAI + phospholipids) had a non-significant impact on cell death in vitro and on the infarct size ex vivo and in vivo. In contrast, rHDL containing S1P had a highly significant, protective influence ex vivo, and in vivo (-50%, p<0.01). This impact was comparable with the effects observed with native HDL. Pro-survival signaling proteins, Akt, STAT3 and ERK1/2 were similarly activated by HDL and rHDL containing S1P both in vitro (isolated cardiomyocytes) and in vivo. Conclusion HDL afford protection against IRI in a clinically relevant model (post-ischemia). rHDL is significantly protective if supplemented with S1P. The protective impact of HDL appears to target directly the cardiomyocyte. PMID:25781943

  4. Insights into the role of iron in immature rat model of hypoxic-ischemic brain injury

    PubMed Central

    Wang, Zi-Wei; Yang, Li-Jun; Ding, Ying-Xue; Chang, Yan-Zhong; Cui, Hong

    2016-01-01

    This study aimed to investigate the role of iron in the occurrence and development of hypoxic-ischemic brain injury (HIBI) in immature rat models using 3-day-old Sprague Dawley rats. Normal control (NC), hypoxic-ischemic (HI), anemia, HI + ischemia, early iron treatment and late iron treatment groups were established. Rat brain tissue sections were stained with hematoxylin and eosin and pathologically evaluated. Iron content and mRNA expression levels of iron regulatory protein 2 (IRP2) and transferrin receptor in the brain tissues were measured. Ultrastructural changes in the actin, microtubules, myelin and mitochondria of oligodendrocytes and axons were examined by electron microscopy. Numbers of viable myelin sheaths and oligodendrocytes in the periventricular area were also observed. Pathological damage of brain tissue in the HI group was markedly increased compared with that in the NC group. Furthermore, there was a higher iron content and reduced number of viable oligodendrocytes in the periventricular area of the HI group compared with the NC group. No significant difference in iron content was observed between the HI + anemia and NC groups. The number of viable oligodendrocytes in the HI + anemia group was increased compared with that in the HI group, and the number in the HI + anemia group with late iron treatment was lower compared with that in the NC group and increased compared with that in the HI + anemia group. Electron microscopy revealed a significantly higher number of myelin sheaths in the HI + anemia group than in the HI group. IRP2 mRNA expression levels in the brain tissues were significantly decreased in the HI + anemia group compared with the HI group. The results suggest that anemia may reduce the rate of increase of iron content of the brain following HI. However, the early occurrence of anemia may protect against HIBI. PMID:27602087

  5. Stanniocalcin-1 attenuates ischemic cardiac injury and response of differentiating monocytes/macrophages to inflammatory stimuli.

    PubMed

    Mohammadipoor, Arezoo; Lee, Ryang Hwa; Prockop, Darwin J; Bartosh, Thomas J

    2016-11-01

    Stanniocalcin-1 (STC-1) is a multifunctional glycoprotein with antioxidant and anti-inflammatory properties. Ischemic myocardial necrosis generates "danger" signals that perpetuate detrimental inflammatory reactions often involving monocyte recruitment and their subsequent differentiation into proinflammatory macrophages. Therefore, we evaluated the effects of recombinant STC-1 (rSTC-1) on monocyte phenotype and in a mouse model of myocardial infarction. Using an established protocol to differentiate human monocytes into macrophages, we demonstrated that rSTC-1 did not alter morphology of the differentiated cells, toll-like receptor (TLR) 4 expression, or expression of the myeloid cell marker CD11b. However, rSTC-1 treatment before differentiation attenuated the rise in the expression of CD14, a TLR4 coreceptor and pathogen sensor that propagates innate immune responses, and suppressed levels of inflammatory cytokines produced by the differentiated cells in response to the CD14-TLR4 ligand lipopolysaccharide. Moreover, rSTC-1 treatment reduced CD14 expression in monocytes stimulated with endogenous danger signals. Interestingly, the effects of rSTC-1 on CD14 expression were not reproduced by a superoxide dismutase mimetic. In mice with induced myocardial infarcts, intravenous administration of rSTC-1 decreased CD14 expression in the heart as well as levels of tumor necrosis factor alpha, C-X-C motif ligand 2, interleukin 1 beta, and myeloperoxidase. It also suppressed the formation of scar tissue while enhancing cardiac function. The data suggests that one of the beneficial effects of STC-1 might be attributed to suppression of CD14 on recruited monocytes and macrophages that limits their inflammatory response. STC-1 may be a promising therapy to protect the heart and other tissues from ischemic injury.

  6. Antithrombin III/SerpinC1 insufficiency exacerbates renal ischemia/reperfusion injury

    PubMed Central

    Wang, Feng; Zhang, Guangyuan; Lu, Zeyuan; Geurts, Aron M; Usa, Kristie; Jacob, Howard J; Cowley, Allen W; Wang, Niansong; Liang, Mingyu

    2015-01-01

    Antithrombin III, encoded by SerpinC1, is a major anti-coagulation molecule in vivo and has anti-inflammatory effects. We found that patients with low antithrombin III activities presented a higher risk of developing acute kidney injury after cardiac surgery. To study this further, we generated SerpinC1 heterozygous knockout rats and followed the development of acute kidney injury in a model of modest renal ischemia/reperfusion injury. Renal injury, assessed by serum creatinine and renal tubular injury scores after 24 h of reperfusion, was significantly exacerbated in SerpinC1+/− rats compared to wild-type littermates. Concomitantly, renal oxidative stress, tubular apoptosis, and macrophage infiltration following this injury were significantly aggravated in SerpinC1+/− rats. However, significant thrombosis was not found in the kidneys of any group of rats. Antithrombin III is reported to stimulate the production of prostaglandin I2, a known regulator of renal cortical blood flow, in addition to having anti-inflammatory effects and to protect against renal failure. Prostaglandin F1α, an assayable metabolite of prostaglandin I2, was increased in the kidneys of the wild-type rats at 3 h after reperfusion. The increase of prostaglandin F1α was significantly blunted in SerpinC1+/− rats, which preceded increased tubular injury and oxidative stress. Thus, our study found a novel role of SerpinC1 insufficiency in increasing the severity of renal ischemia/reperfusion injury. PMID:26108065

  7. MicroRNA-214 protects the mouse heart from ischemic injury by controlling Ca2+ overload and cell death

    PubMed Central

    Aurora, Arin B.; Mahmoud, Ahmed I.; Luo, Xiang; Johnson, Brett A.; van Rooij, Eva; Matsuzaki, Satoshi; Humphries, Kenneth M.; Hill, Joseph A.; Bassel-Duby, Rhonda; Sadek, Hesham A.; Olson, Eric N.

    2012-01-01

    Early reperfusion of ischemic cardiac tissue remains the most effective intervention for improving clinical outcome following myocardial infarction. However, abnormal increases in intracellular Ca2+ during myocardial reperfusion can cause cardiomyocyte death and consequent loss of cardiac function, referred to as ischemia/reperfusion (IR) injury. Therapeutic modulation of Ca2+ handling provides some cardioprotection against the paradoxical effects of restoring blood flow to the heart, highlighting the significance of Ca2+ overload to IR injury. Cardiac IR is also accompanied by dynamic changes in the expression of microRNAs (miRNAs); for example, miR-214 is upregulated during ischemic injury and heart failure, but its potential role in these processes is unknown. Here, we show that genetic deletion of miR-214 in mice causes loss of cardiac contractility, increased apoptosis, and excessive fibrosis in response to IR injury. The cardioprotective roles of miR-214 during IR injury were attributed to repression of the mRNA encoding sodium/calcium exchanger 1 (Ncx1), a key regulator of Ca2+ influx; and to repression of several downstream effectors of Ca2+ signaling that mediate cell death. These findings reveal a pivotal role for miR-214 as a regulator of cardiomyocyte Ca2+ homeostasis and survival during cardiac injury. PMID:22426211

  8. Agmatine induces gastric protection against ischemic injury by reducing vascular permeability in rats

    PubMed Central

    Masri, Abeer A Al; Eter, Eman El

    2012-01-01

    AIM: To investigate the effect of administration of agmatine (AGM) on gastric protection against ischemia reperfusion (I/R) injury. METHODS: Three groups of rats (6/group); sham, gastric I/R injury, and gastric I/R + AGM (100 mg/kg, i.p. given 15 min prior to gastric ischemia) were recruited. Gastric injury was conducted by ligating celiac artery for 30 min and reperfusion for another 30 min. Gastric tissues were histologically studied and immunostained with angiopoietin 1 (Ang-1) and Ang-2. Vascular endothelial growth factor (VEGF) and monocyte chemoattractant protein-1 (MCP-1) were measured in gastric tissue homogenate. To assess whether AKt/phosphatidyl inositol-3-kinase (PI3K) mediated the effect of AGM, an additional group was pretreated with Wortmannin (WM) (inhibitor of Akt/PI3K, 15 μg/kg, i.p.), prior to ischemic injury and AGM treatment, and examined histologically and immunostained. Another set of experiments was run to study vascular permeability of the stomach using Evan’s blue dye. RESULTS: AGM markedly reduced Evan’s blue dye extravasation (3.58 ± 0.975 μg/stomach vs 1.175 ± 0.374 μg/stomach, P < 0.05), VEGF (36.87 ± 2.71 pg/100 mg protein vs 48.4 ± 6.53 pg/100 mg protein, P < 0.05) and MCP-1 tissue level (29.5 ± 7 pg/100 mg protein vs 41.17 ± 10.4 pg/100 mg protein, P < 0.01). It preserved gastric histology and reduced congestion. Ang-1 and Ang-2 immunostaining were reduced in stomach sections of AGM-treated animals. The administration of WM abolished the protective effects of AGM and extensive hemorrhage and ulcerations were seen. CONCLUSION: AGM protects the stomach against I/R injury by reducing vascular permeability and inflammation. This protection is possibly mediated by Akt/PI3K. PMID:22611311

  9. Endoplasmic Reticulum Chaperon Tauroursodeoxycholic Acid Attenuates Aldosterone-Infused Renal Injury

    PubMed Central

    Guo, Honglei; Li, Hongmei; Ling, Lilu

    2016-01-01

    Aldosterone (Aldo) is critically involved in the development of renal injury via the production of reactive oxygen species and inflammation. Endoplasmic reticulum (ER) stress is also evoked in Aldo-induced renal injury. In the present study, we investigated the role of ER stress in inflammation-mediated renal injury in Aldo-infused mice. C57BL/6J mice were randomized to receive treatment for 4 weeks as follows: vehicle infusion, Aldo infusion, vehicle infusion plus tauroursodeoxycholic acid (TUDCA), and Aldo infusion plus TUDCA. The effect of TUDCA on the Aldo-infused inflammatory response and renal injury was investigated using periodic acid-Schiff staining, real-time PCR, Western blot, and ELISA. We demonstrate that Aldo leads to impaired renal function and inhibition of ER stress via TUDCA attenuates renal fibrosis. This was indicated by decreased collagen I, collagen IV, fibronectin, and TGF-β expression, as well as the downregulation of the expression of Nlrp3 inflammasome markers, Nlrp3, ASC, IL-1β, and IL-18. This paper presents an important role for ER stress on the renal inflammatory response to Aldo. Additionally, the inhibition of ER stress by TUDCA negatively regulates the levels of these inflammatory molecules in the context of Aldo. PMID:27721575

  10. Accelerated recovery of renal mitochondrial and tubule homeostasis with SIRT1/PGC-1α activation following ischemia–reperfusion injury

    SciTech Connect

    Funk, Jason A.; Schnellmann, Rick G.

    2013-12-01

    Kidney ischemia–reperfusion (I/R) injury elicits cellular injury in the proximal tubule, and mitochondrial dysfunction is a pathological consequence of I/R. Promoting mitochondrial biogenesis (MB) as a repair mechanism after injury may offer a unique strategy to restore both mitochondrial and organ function. Rats subjected to bilateral renal pedicle ligation for 22 min were treated once daily with the SIRT1 activator SRT1720 (5 mg/kg) starting 24 h after reperfusion until 72 h–144 h. SIRT1 expression was elevated in the renal cortex of rats after I/R + vehicle treatment (IRV), but was associated with less nuclear localization. SIRT1 expression was even further augmented and nuclear localization was restored in the kidneys of rats after I/R + SRT1720 treatment (IRS). PGC-1α was elevated at 72 h–144 h in IRV and IRS kidneys; however, SRT1720 treatment induced deacetylation of PGC-1α, a marker of activation. Mitochondrial proteins ATP synthase β, COX I, and NDUFB8, as well as mitochondrial respiration, were diminished 24 h–144 h in IRV rats, but were partially or fully restored in IRS rats. Urinary kidney injury molecule-1 (KIM-1) was persistently elevated in both IRV and IRS rats; however, KIM-1 tissue expression was attenuated in IRS rats. Additionally, sustained loss of Na{sup +},K{sup +}–ATPase expression and basolateral localization and elevated vimentin in IRV rats was normalized in IRS rats, suggesting restoration of a differentiated, polarized tubule epithelium. The results suggest that SRT1720 treatment expedited recovery of mitochondrial protein expression and function by enhancing MB, which was associated with faster proximal tubule repair. Targeting MB may offer unique therapeutic strategy following ischemic injury. - Highlights: • We examined recovery of mitochondrial and renal function after ischemia–reperfusion. • SRT1720 treatment after I/R induced mitochondrial biogenesis via SIRT1/PGC-1α. • Recovery of mitochondrial function was

  11. Hydrogen peroxide-induced renal injury. A protective role for pyruvate in vitro and in vivo.

    PubMed Central

    Salahudeen, A K; Clark, E C; Nath, K A

    1991-01-01

    Hydrogen peroxide (H2O2) contributes to renal cellular injury. alpha-Keto acids nonenzymatically reduce H2O2 to water while undergoing decarboxylation at the 1-carbon (1-C) position. We examined, in vitro and in vivo, the protective role of sodium pyruvate in H2O2-induced renal injury. Pyruvate effectively scavenged H2O2 in vitro, and suppressed H2O2-induced renal lipid peroxidation. Injury to LLC-PK1 cells induced by hydrogen peroxide was attenuated by pyruvate to an extent comparable to that seen with catalase. Studies utilizing [1-14C]pyruvate further demonstrated 1-C decarboxylation concurrent with cytoprotection by pyruvate from H2O2-induced injury. Pyruvate was also protective in vivo. Infusion of pyruvate before and during the intrarenal infusion of H2O2 attenuated H2O2-induced proteinuria. Systemic administration of pyruvate was also protective in the glycerol model of acute renal failure, a model also characterized by increased generation of H2O2. These findings indicate that pyruvate, a ubiquitous alpha-keto acid, scavenges H2O2 and protects renal tissue in vitro and in vivo from H2O2-mediated injury. These data suggest a potential therapeutic role for pyruvate in diseases in which increased generation of H2O2 is incriminated in renal damage. Images PMID:1752950

  12. Eupafolin nanoparticle improves acute renal injury induced by LPS through inhibiting ROS and inflammation.

    PubMed

    Zhang, Hao; Chen, Ming-Kun; Li, Ke; Hu, Cheng; Lu, Min-Hua; Situ, Jie

    2017-01-01

    Acute renal injury is a common severe clinical syndrome, occurring in many clinical situations. It is necessary to explore effective drugs to treat it. Eupafolin is a flavonoid compound, derived from Phyla nodiflora, which has been previously reported to possess a variety of pharmacological activities, including anti-inflammatory and antioxidant effects. However, it is known little about how it works in acute renal injury. Also, eupafolin is characterized by skin penetration and poor water solubility, limiting its clinical applications. Thus, we synthesized an eupafolin nanoparticle delivery system. We found that eupafolin nanoparticle could address the physicochemical defects of raw eupafolin and increase water solubility without any toxicity to normal renal cells via reducing particle size. Eupafolin nanoparticle attenuated LPS-induced acute renal injury in mice through inhibiting oxidative stress and inflammation accompanied with up-regulated SOD activity and down-regulated pro-inflammatory cytokines. Additionally, inactivation of NF-κB and MAPKs of p38, ERK1/2 and JNK signaling pathways was a main molecular mechanism by which eupafolin nanoparticle improved renal injury. Together, eupafolin nanoparticle exhibits effective anti-oxidant and anti-inflammatory activities, which could be used as a potential drug to ameliorate acute renal injury clinically.

  13. DA-1229, a dipeptidyl peptidase IV inhibitor, protects against renal injury by preventing podocyte damage in an animal model of progressive renal injury.

    PubMed

    Eun Lee, Jee; Kim, Jung Eun; Lee, Mi Hwa; Song, Hye Kyoung; Ghee, Jung Yeon; Kang, Young Sun; Min, Hye Sook; Kim, Hyun Wook; Cha, Jin Joo; Han, Jee Young; Han, Sang Youb; Cha, Dae Ryong

    2016-05-01

    Although dipeptidyl peptidase IV (DPPIV) inhibitors are known to have renoprotective effects, the mechanism underlying these effects has remained elusive. Here we investigated the effects of DA-1229, a novel DPPIV inhibitor, in two animal models of renal injury including db/db mice and the adriamycin nephropathy rodent model of chronic renal disease characterized by podocyte injury. For both models, DA-1229 was administered at 300 mg/kg/day. DPPIV activity in the kidney was significantly higher in diabetic mice compared with their nondiabetic controls. Although DA-1229 did not affect glycemic control or insulin resistance, DA-1229 did improve lipid profiles, albuminuria and renal fibrosis. Moreover, DA-1229 treatment resulted in decreased urinary excretion of nephrin, decreased circulating and kidney DPPIV activity, and decreased macrophage infiltration in the kidney. In adriamycin-treated mice, DPPIV activity in the kidney and urinary nephrin loss were both increased, whereas glucagon-like peptide-1 concentrations were unchanged. Moreover, DA-1229 treatment significantly improved proteinuria, renal fibrosis and inflammation associated with decreased urinary nephrin loss, and kidney DPP4 activity. In cultured podocytes, DA-1229 restored the high glucose/angiotensin II-induced increase of DPPIV activity and preserved the nephrin levels in podocytes. These findings suggest that activation of DPPIV in the kidney has a role in the progression of renal disease, and that DA-1229 may exert its renoprotective effects by preventing podocyte injury.

  14. Molecular mechanisms of ischemic preconditioning in the kidney

    PubMed Central

    Haase, Volker H.

    2015-01-01

    More effective therapeutic strategies for the prevention and treatment of acute kidney injury (AKI) are needed to improve the high morbidity and mortality associated with this frequently encountered clinical condition. Ischemic and/or hypoxic preconditioning attenuates susceptibility to ischemic injury, which results from both oxygen and nutrient deprivation and accounts for most cases of AKI. While multiple signaling pathways have been implicated in renoprotection, this review will focus on oxygen-regulated cellular and molecular responses that enhance the kidney's tolerance to ischemia and promote renal repair. Central mediators of cellular adaptation to hypoxia are hypoxia-inducible factors (HIFs). HIFs play a crucial role in ischemic/hypoxic preconditioning through the reprogramming of cellular energy metabolism, and by coordinating adenosine and nitric oxide signaling with antiapoptotic, oxidative stress, and immune responses. The therapeutic potential of HIF activation for the treatment and prevention of ischemic injuries will be critically examined in this review. PMID:26311114

  15. Comparison of the Protective Effects of Erythropoietin and Melatonin on Renal Ischemia-Reperfusion Injury

    PubMed Central

    Banaei, Shokofeh; Ahmadiasl, Nasser; Alihemmati, Alireza

    2016-01-01

    Background Renal ischemia-reperfusion (IR) contributes to the development of acute renal failure (ARF). Oxygen free radicals are considered to be the principal components involved in the pathophysiological tissue alterations observed during renal IR. Objectives In this study, we compared the effects of melatonin (MEL) and erythropoietin (EPO), both known antioxidant and anti-inflammatory agents, on IR-induced renal injury in rats. Materials and Methods Wistar albino rats were unilaterally nephrectomized and then subjected to 45 minutes of renal pedicle occlusion followed by 24 hours of reperfusion. MEL (10 mg/kg, i.p) and EPO (5000 U/kg, i.p) were administered prior to the onset of ischemia. After 24 hours of reperfusion and following decapitation, blood samples were collected for the determination of the hemoglobin (Hb) and hematocrit (Hct) levels. Additionally, renal samples were taken for histological evaluation. Results Ischemia-reperfusion significantly decreased the observed Hb and Hct values. The histopathological findings in the IR group confirmed that there was an increase in the hyaline cast and thickening of the Bowman capsule basement membrane. Treatment with EPO or MEL significantly increased the Hb and Hct values. In the MEL + IR group, the histopathological changes were lower than those found in the EPO + IR group. Conclusions Treatment with EPO and MEL had a beneficial effect on renal IR injury. The results may also indicate that MEL protects against morphological damage better than EPO in renal IR injury. PMID:27921018

  16. Comprehensive renal scintillation procedures in spinal cord injury: comparison with excretory urography

    SciTech Connect

    Lloyd, L.K.; Dubovsky, E.V.; Bueschen, A.J.; Witten, D.M.; Scott, J.W.; Kuhlemeier, K.; Stover, S.L.

    1981-07-01

    A /sup 131/iodine orthoiodohippurate comprehensive renal scintillation procedure was performed and compared to results of excretory urography in 200 spinal cord injury patients. No severe urographic abnormalities were undetected by the comprehensive renal scintillation procedure. Only 1.4 per cent of renal units had greater than minimal pyelocaliectasis or ureterectasis in the presence of a normal radionuclide examination. A relatively large number of abnormalities were detected on the renal scintillation procedure when the excretory urogram was normal. Serial followup will be required to determine the significance of these findings but present data suggest that a comprehensive renal scintillation procedure and a plain film of the kidneys, ureters and bladder may be used for screening upper urinary tract abnormalities in lieu of an excretory urogram. This is particularly advantageous for the spinal cord injury population, since there have been no toxic or allergic reactions reported, no bowel preparation or dehydration is required and there is relatively low radiation exposure.

  17. Inhibition of COX 1 and 2 prior to Renal Ischemia/Reperfusion Injury Decreases the Development of Fibrosis

    PubMed Central

    Feitoza, Carla Q; Gonçalves, Giselle M; Semedo, Patrícia; Cenedeze, Marcos A; Pinheiro, Hélady S; Beraldo, Felipe Caetano; dos Santos, Oscar Fernando Pavão; de Paula A Teixeira, Vicente; dos Reis, Marlene A; Mazzali, Marilda; Pacheco-Silva, Alvaro; Câmara, Niels O S

    2008-01-01

    Ischemia and reperfusion injury (IRI) contributes to the development of chronic interstitial fibrosis/tubular atrophy in renal allograft patients. Cyclooxygenase (COX) 1 and 2 actively participate in acute ischemic injury by activating endothelial cells and inducing oxidative stress. Furthermore, blockade of COX 1 and 2 has been associated with organ improvement after ischemic damage. The aim of this study was to evaluate the role of COX 1 and 2 in the development of fibrosis by performing a COX 1 and 2 blockade immediately before IRI. We subjected C57Bl/6 male mice to 60 min of unilateral renal pedicle occlusion. Prior to surgery mice were either treated with indomethacin (IMT) at days –1 and 0 or were untreated. Blood and kidney samples were collected 6 wks after IRI. Kidney samples were analyzed by real-time reverse transcription–polymerase chain reaction for expression of transforming growth factor β (TGF-β), monocyte chemoattractant protein 1 (MCP-1), osteopontin (OPN), tumor necrosis factor α (TNF-α), interleukin (IL)-1β, IL-10, heme oxygenase 1 (HO-1), vimentin, connective-tissue growth factor (CTGF), collagen I, and bone morphogenic protein 7 (BMP-7). To assess tissue fibrosis we performed morphometric analyses and Sirius red staining. We also performed immunohistochemical analysis of anti-actin smooth muscle. Renal function did not significantly differ between groups. Animals pretreated with IMT showed significantly less interstitial fibrosis than nontreated animals. Gene transcript analyses showed decreased expression of TGF-β, MCP-1, TNF-α, IL-1-β, vimentin, collagen I, CTGF, and IL-10 mRNA (all P < 0.05). Moreover, HO-1 mRNA was increased in animals pretreated with IMT (P < 0.05). Conversely, IMT treatment decreased osteopontin expression and enhanced BMP-7 expression, although these levels did not reach statistical significance when compared with control expression levels. The blockade of COX 1 and 2 resulted in less tissue fibrosis, which

  18. Differential expression of embryonic epicardial progenitor markers and localization of cardiac fibrosis in adult ischemic injury and hypertensive heart disease.

    PubMed

    Braitsch, Caitlin M; Kanisicak, Onur; van Berlo, Jop H; Molkentin, Jeffery D; Yutzey, Katherine E

    2013-12-01

    During embryonic heart development, the transcription factors Tcf21, Wt1, and Tbx18 regulate activation and differentiation of epicardium-derived cells, including fibroblast lineages. Expression of these epicardial progenitor factors and localization of cardiac fibrosis were examined in mouse models of cardiovascular disease and in human diseased hearts. Following ischemic injury in mice, epicardial fibrosis is apparent in the thickened layer of subepicardial cells that express Wt1, Tbx18, and Tcf21. Perivascular fibrosis with predominant expression of Tcf21, but not Wt1 or Tbx18, occurs in mouse models of pressure overload or hypertensive heart disease, but not following ischemic injury. Areas of interstitial fibrosis in ischemic and hypertensive hearts actively express Tcf21, Wt1, and Tbx18. In all areas of fibrosis, cells that express epicardial progenitor factors are distinct from CD45-positive immune cells. In human diseased hearts, differential expression of Tcf21, Wt1, and Tbx18 also is detected with epicardial, perivascular, and interstitial fibrosis, indicating conservation of reactivated developmental mechanisms in cardiac fibrosis in mice and humans. Together, these data provide evidence for distinct fibrogenic mechanisms that include Tcf21, separate from Wt1 and Tbx18, in different fibroblast populations in response to specific types of cardiac injury.

  19. Nephron Deficiency and Predisposition to Renal Injury in a Novel One-Kidney Genetic Model.

    PubMed

    Wang, Xuexiang; Johnson, Ashley C; Williams, Jan M; White, Tiffani; Chade, Alejandro R; Zhang, Jie; Liu, Ruisheng; Roman, Richard J; Lee, Jonathan W; Kyle, Patrick B; Solberg-Woods, Leah; Garrett, Michael R

    2015-07-01

    Some studies have reported up to 40% of patients born with a single kidney develop hypertension, proteinuria, and in some cases renal failure. The increased susceptibility to renal injury may be due, in part, to reduced nephron numbers. Notably, children who undergo nephrectomy or adults who serve as kidney donors exhibit little difference in renal function compared with persons who have two kidneys. However, the difference in risk between being born with a single kidney versus being born with two kidneys and then undergoing nephrectomy are unclear. Animal models used previously to investigate this question are not ideal because they require invasive methods to model congenital solitary kidney. In this study, we describe a new genetic animal model, the heterogeneous stock-derived model of unilateral renal agenesis (HSRA) rat, which demonstrates 50%-75% spontaneous incidence of a single kidney. The HSRA model is characterized by reduced nephron number (more than would be expected by loss of one kidney), early kidney/glomerular hypertrophy, and progressive renal injury, which culminates in reduced renal function. Long-term studies of temporal relationships among BP, renal hemodynamics, and renal function demonstrate that spontaneous single-kidney HSRA rats are more likely than uninephrectomized normal littermates to exhibit renal impairment because of the combination of reduced nephron numbers and prolonged exposure to renal compensatory mechanisms (i.e., hyperfiltration). Future studies with this novel animal model may provide additional insight into the genetic contributions to kidney development and agenesis and the factors influencing susceptibility to renal injury in individuals with congenital solitary kidney.

  20. Retina Is Protected by Neuroserpin from Ischemic/Reperfusion-Induced Injury Independent of Tissue-Type Plasminogen Activator

    PubMed Central

    Gu, R. P.; Fu, L. L.; Jiang, C. H.; Xu, Y. F.; Wang, X.; Yu, J.

    2015-01-01

    The purpose of the present study was to investigate the potential neuroprotective effect of neuroserpin (NSP) on acute retinal ischemic/reperfusion-induced (IR) injury. An IR injury model was established by elevating intraocular pressure (IOP) for 60 minutes in wild type and tPA-deficient (tPA-/-) mice. Prior to IR injury, 1 μL of 20 μmol/L NSP or an equal volume of bovine serum albumin (BSA) was intravitreally administered. Retinal function was evaluated by electroretinograph (ERG) and the number of apoptotic neurons was determined via TUNEL labeling. Caspase-3, -8, -9,poly (ADP-ribose) polymerase (PARP)and their cleaved forms were subsequently analyzed. It was found that IR injury significantly damaged retinal function, inducing apoptosis in the retina, while NSP attenuated the loss of retinal function and significantly reduced the number of apoptotic neurons in both wild type and tPA-/- mice. The levels of cleaved caspase-3, cleaved PARP (the substrate of caspase-3) and caspase-9 (the modulator of the caspase-3), which had increased following IR injury, were significantly inhibited by NSP in both wild type and tPA-/- mice. NSP increased ischemic tolerance in the retina at least partially by inhibiting the intrinsic cell death signaling pathway of caspase-3. It was therefore concluded that the protective effect of neuroserpin maybe independent from its canonical interaction with a tissue-type plasminogen activator. PMID:26176694

  1. Nicotinamide prevents the down-regulation of MEK/ERK/p90RSK signaling cascade in brain ischemic injury.

    PubMed

    Sung, Jin-Hee; Kim, Myeong-Ok; Koh, Phil-Ok

    2012-01-01

    Nicotinamide attenuates neuronal cell death related to focal cerebral ischemic injury. This study investigated whether nicotinamide exerts a neuroprotective effect through the activation of Raf- mitogen-activated protein kinase kinase (MEK)-ERK and its downstream targets, including p90 ribosomal S6 kinase (p90RSK) and Bad. Adult male Sprague-Dawley rats were treated with nicotinamide (500 mg/kg) or vehicle 2 hr after the onset of middle cerebral artery occlusion (MCAO). Brains were collected 24 hr after MCAO. In the present study, nicotinamide significantly reduces the volume of infarct regions and decreases the number of positive cells by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining in the cerebral cortex. Nicotinamide prevents injury-induced decrease in Raf-1, MEK1/2, and ERK1/2 phosphorylation. As part of the downstream cascade, nicotinamide inhibits the injury-induced decrease in p90RSK and Bad phosphorylation. Moreover, nicotinamide prevents the injury-induced increase in cleaved caspase-3 levels. These findings suggest that nicotinamide protects neuronal cells against cerebral ischemic injury and that MEK-ERK-p90RSK cascade activation by nicotinamide contributes to these neuroprotective effects.

  2. Critical role of neuronal pentraxin 1 in mitochondria-mediated hypoxic-ischemic neuronal injury.

    PubMed

    Al Rahim, Md; Thatipamula, Shabarish; Hossain, Mir Ahamed

    2013-02-01

    Developing brain is highly susceptible to hypoxic-ischemic (HI) injury leading to severe neurological disabilities in surviving infants and children. Previously, we have reported induction of neuronal pentraxin 1 (NP1), a novel neuronal protein of long-pentraxin family, following HI neuronal injury. Here, we investigated how this specific signal is propagated to cause the HI neuronal death. We used wild-type (WT) and NP1 knockout (NP1-KO) mouse hippocampal cultures, modeled in vitro following exposure to oxygen glucose deprivation (OGD), and in vivo neonatal (P9-10) mouse model of HI brain injury. Our results show induction of NP1 in primary hippocampal neurons following OGD exposure (4-8 h) and in the ipsilateral hippocampal CA1 and CA3 regions at 24-48 h post-HI compared to the contralateral side. We also found increased PTEN activity concurrent with OGD time-dependent (4-8 h) dephosphorylation of Akt (Ser473) and GSK-3β (Ser9). OGD also caused a time-dependent decrease in the phosphorylation of Bad (Ser136), and Bax protein levels. Immunofluorescence staining and subcellular fractionation analyses revealed increased mitochondrial translocation of Bad and Bax proteins from cytoplasm following OGD (4 h) and simultaneously increased release of Cyt C from mitochondria followed by activation of caspase-3. NP1 protein was immunoprecipitated with Bad and Bax proteins; OGD caused increased interactions of NP1 with Bad and Bax, thereby, facilitating their mitochondrial translocation and dissipation of mitochondrial membrane potential (ΔΨ(m)). This NP1 induction preceded the increased mitochondrial release of cytochrome C (Cyt C) into the cytosol, activation of caspase-3 and OGD time-dependent cell death in WT primary hippocampal neurons. In contrast, in NP1-KO neurons there was no translocation of Bad and Bax from cytosol to the mitochondria, and no evidence of ΔΨ(m) loss, increased Cyt C release and caspase-3 activation following OGD; which resulted in

  3. HMGB1-TLR4 signaling participates in renal ischemia reperfusion injury and could be attenuated by dexamethasone-mediated inhibition of the ERK/NF-κB pathway.

    PubMed

    Zhang, Jiong; Xia, Jumei; Zhang, Ying; Xiao, Fang; Wang, Jin; Gao, Hongyu; Liu, Yanyan; Rong, Song; Yao, Ying; Xu, Gang; Li, Junhua

    2016-01-01

    Studies have shown that the HMGB1-TLR4 (High-mobility group protein B1, toll-like receptor 4) pathway participates in renal ischemic reperfusion injury (IRI) and that dexamethasone (DEX) could protect the kidney against IRI. This study aims to examine the protective effects of DEX on renal IRI and further explore the possible mechanism of action. During mouse renal IRI, HMGB1-TLR4 signals changed markedly including HMGB1 translocation and TLR4 up-regulation, resulting in histological damage and an increase in MPO expression. Treatment with DEX markedly decreased the damage to renal function (serum Cr and BUN; kidney KIM-1 expression) and the histological pathology of the kidney after renal IRI. The activation of GR by DEX did not suppress p38 and JNK activity but inhibited ERK phosphorylation. Treatment with DEX also attenuated IκB-α phosphorylation and further reduced NF-κB expression in the nucleus by decreasing acetylation of the p65 subunit. Furthermore, the HMGB1-TLR4 inflammatory pathway was inhibited via the attenuated translocation of HMGB1 from the nucleus to the cytoplasm and the down-regulation of TLR4 expression through DEX treatment. The inhibition of HMGB1 translocation may interact with acetyltransferase and attenuate HMGB1 acetylation. As a result, the levels of cytokines (TNF-α, IL-6, and IL-1β) were down-regulated and inflammatory cell infiltration after renal IRI was attenuated by treatment with DEX. This study demonstrated that the HMGB1-TLR4 pathway may play a critical role in renal IRI. DEX may attenuate renal IRI by suppressing ERK and NF-κB activation, followed by attenuating the HMGB1-TLR4 pathway through inhibiting acetyltransferases.

  4. HMGB1-TLR4 signaling participates in renal ischemia reperfusion injury and could be attenuated by dexamethasone-mediated inhibition of the ERK/NF-κB pathway

    PubMed Central

    Zhang, Jiong; Xia, Jumei; Zhang, Ying; Xiao, Fang; Wang, Jin; Gao, Hongyu; Liu, Yanyan; Rong, Song; Yao, Ying; Xu, Gang; Li, Junhua

    2016-01-01

    Studies have shown that the HMGB1-TLR4 (High-mobility group protein B1, toll-like receptor 4) pathway participates in renal ischemic reperfusion injury (IRI) and that dexamethasone (DEX) could protect the kidney against IRI. This study aims to examine the protective effects of DEX on renal IRI and further explore the possible mechanism of action. During mouse renal IRI, HMGB1-TLR4 signals changed markedly including HMGB1 translocation and TLR4 up-regulation, resulting in histological damage and an increase in MPO expression. Treatment with DEX markedly decreased the damage to renal function (serum Cr and BUN; kidney KIM-1 expression) and the histological pathology of the kidney after renal IRI. The activation of GR by DEX did not suppress p38 and JNK activity but inhibited ERK phosphorylation. Treatment with DEX also attenuated IκB-α phosphorylation and further reduced NF-κB expression in the nucleus by decreasing acetylation of the p65 subunit. Furthermore, the HMGB1-TLR4 inflammatory pathway was inhibited via the attenuated translocation of HMGB1 from the nucleus to the cytoplasm and the down-regulation of TLR4 expression through DEX treatment. The inhibition of HMGB1 translocation may interact with acetyltransferase and attenuate HMGB1 acetylation. As a result, the levels of cytokines (TNF-α, IL-6, and IL-1β) were down-regulated and inflammatory cell infiltration after renal IRI was attenuated by treatment with DEX. This study demonstrated that the HMGB1-TLR4 pathway may play a critical role in renal IRI. DEX may attenuate renal IRI by suppressing ERK and NF-κB activation, followed by attenuating the HMGB1-TLR4 pathway through inhibiting acetyltransferases. PMID:27829992

  5. PTGER1 deletion attenuates renal injury in diabetic mouse models.

    PubMed

    Thibodeau, Jean-François; Nasrallah, Rania; Carter, Anthony; He, Ying; Touyz, Rhian; Hébert, Richard L; Kennedy, Christopher R J

    2013-12-01

    We hypothesized that the EP1 receptor promotes renal damage in diabetic nephropathy. We rendered EP1 (PTGER1, official symbol) knockout mice (EP1(-/-)) diabetic using the streptozotocin and OVE26 models. Albuminuria, mesangial matrix expansion, and glomerular hypertrophy were each blunted in EP1(-/-) streptozotocin and OVE26 cohorts compared with wild-type counterparts. Although diabetes-associated podocyte depletion was unaffected by EP1 deletion, EP1 antagonism with ONO-8711 in cultured podocytes decreased angiotensin II-mediated superoxide generation, suggesting that EP1-associated injury of remaining podocytes in vivo could contribute to filtration barrier dysfunction. Accordingly, EP1 deletion in OVE26 mice prevented nephrin mRNA expression down-regulation and ameliorated glomerular basement membrane thickening and foot process effacement. Moreover, EP1 deletion reduced diabetes-induced expression of fibrotic markers fibronectin and α-actin, whereas EP1 antagonism decreased fibronectin in cultured proximal tubule cells. Similarly, proximal tubule megalin expression was reduced by diabetes but was preserved in EP1(-/-) mice. Finally, the diabetes-associated increase in angiotensin II-mediated constriction of isolated mesenteric arteries was blunted in OVE26EP1(-/-) mice, demonstrating a role for EP1 receptors in the diabetic vasculature. These data suggest that EP1 activation contributes to diabetic nephropathy progression at several locations, including podocytes, proximal tubule, and the vasculature. The EP1 receptor facilitates the actions of angiotensin II, thereby suggesting that targeting of both the renin-angiotensin system and the EP1 receptor could be beneficial in diabetic nephropathy.

  6. Striatal astrocytes transdifferentiate into functional mature neurons following ischemic brain injury.

    PubMed

    Duan, Chun-Ling; Liu, Chong-Wei; Shen, Shu-Wen; Yu, Zhang; Mo, Jia-Lin; Chen, Xian-Hua; Sun, Feng-Yan

    2015-09-01

    To determine whether reactive astrocytes stimulated by brain injury can transdifferentiate into functional new neurons, we labeled these cells by injecting a glial fibrillary acidic protein (GFAP) targeted enhanced green fluorescence protein plasmid (pGfa2-eGFP plasmid) into the striatum of adult rats immediately following a transient middle cerebral artery occlusion (MCAO) and performed immunolabeling with specific neuronal markers to trace the neural fates of eGFP-expressing (GFP(+)) reactive astrocytes. The results showed that a portion of striatal GFP(+) astrocytes could transdifferentiate into immature neurons at 1 week after MCAO and mature neurons at 2 weeks as determined by double staining GFP-expressing cells with βIII-tubulin (GFP(+)-Tuj-1(+)) and microtubule associated protein-2 (GFP(+)-MAP-2(+)), respectively. GFP(+) neurons further expressed choline acetyltransferase, glutamic acid decarboxylase, dopamine receptor D2-like family proteins, and the N-methyl-D-aspartate receptor subunit R2, indicating that astrocyte-derived neurons could develop into cholinergic or GABAergic neurons and express dopamine and glutamate receptors on their membranes. Electron microscopy analysis indicated that GFP(+) neurons could form synapses with other neurons at 13 weeks after MCAO. Electrophysiological recordings revealed that action potentials and active postsynaptic currents could be recorded in the neuron-like GFP(+) cells but not in the astrocyte-like GFP(+) cells, demonstrating that new GFP(+) neurons possessed the capacity to fire action potentials and receive synaptic inputs. These results demonstrated that striatal astrocyte-derived new neurons participate in the rebuilding of functional neural networks, a fundamental basis for brain repair after injury. These results may lead to new therapeutic strategies for enhancing brain repair after ischemic stroke.

  7. Striatal astrocytes transdifferentiate into functional mature neurons following ischemic brain injury

    PubMed Central

    Duan, Chun‐Ling; Liu, Chong‐Wei; Shen, Shu‐Wen; Yu, Zhang; Mo, Jia‐Lin; Chen, Xian‐Hua

    2015-01-01

    To determine whether reactive astrocytes stimulated by brain injury can transdifferentiate into functional new neurons, we labeled these cells by injecting a glial fibrillary acidic protein (GFAP) targeted enhanced green fluorescence protein plasmid (pGfa2‐eGFP plasmid) into the striatum of adult rats immediately following a transient middle cerebral artery occlusion (MCAO) and performed immunolabeling with specific neuronal markers to trace the neural fates of eGFP‐expressing (GFP+) reactive astrocytes. The results showed that a portion of striatal GFP+ astrocytes could transdifferentiate into immature neurons at 1 week after MCAO and mature neurons at 2 weeks as determined by double staining GFP‐expressing cells with βIII‐tubulin (GFP+‐Tuj‐1+) and microtubule associated protein‐2 (GFP+‐MAP‐2+), respectively. GFP+ neurons further expressed choline acetyltransferase, glutamic acid decarboxylase, dopamine receptor D2‐like family proteins, and the N‐methyl‐d‐aspartate receptor subunit R2, indicating that astrocyte‐derived neurons could develop into cholinergic or GABAergic neurons and express dopamine and glutamate receptors on their membranes. Electron microscopy analysis indicated that GFP+ neurons could form synapses with other neurons at 13 weeks after MCAO. Electrophysiological recordings revealed that action potentials and active postsynaptic currents could be recorded in the neuron‐like GFP+ cells but not in the astrocyte‐like GFP+ cells, demonstrating that new GFP+ neurons possessed the capacity to fire action potentials and receive synaptic inputs. These results demonstrated that striatal astrocyte‐derived new neurons participate in the rebuilding of functional neural networks, a fundamental basis for brain repair after injury. These results may lead to new therapeutic strategies for enhancing brain repair after ischemic stroke. GLIA 2015;63:1660–1670 PMID:26031629

  8. Chronic exposure to zinc oxide nanoparticles increases ischemic-reperfusion injuries in isolated rat hearts

    NASA Astrophysics Data System (ADS)

    Milivojević, Tamara; Drobne, Damjana; Romih, Tea; Mali, Lilijana Bizjak; Marin, Irena; Lunder, Mojca; Drevenšek, Gorazd

    2016-10-01

    The use of zinc oxide nanoparticles (ZnO NPs) in numerous products is increasing, although possible negative implications of their long-term consumption are not known yet. Our aim was to evaluate the chronic, 6-week oral exposure to two different concentrations of ZnO NPs on isolated rat hearts exposed to ischemic-reperfusion injury and on small intestine morphology. Wistar rats of both sexes ( n = 18) were randomly divided into three groups: (1) 4 mg/kg ZnO NPs, (2) 40 mg/kg ZnO NPs, and (3) control. After 6 weeks of treatment, the hearts were isolated, the left ventricular pressure (LVP), the coronary flow (CF), the duration of arrhythmias and the lactate dehydrogenase release rate (LDH) were measured. A histological investigation of the small intestine was performed. Chronic exposure to ZnO NPs acted cardiotoxic dose-dependently. ZnO NPs in dosage 40 mg/kg maximally decreased LVP (3.3-fold) and CF (2.5-fold) and increased the duration of ventricular tachycardia (all P < 0.01) compared to control, whereas ZnO NPs in dosage 4 mg/kg acted less cardiotoxic. Goblet cells in the small intestine epithelium of rats, treated with 40 mg ZnO NPs/kg, were enlarged, swollen and numerous, the intestinal epithelium width was increased. Unexpectedly, ZnO NPs in both dosages significantly decreased LDH. A 6-week oral exposure to ZnO NPs dose-dependently increased heart injuries and caused irritation of the intestinal mucosa. A prolonged exposure to ZnO NPs might cause functional damage to the heart even with exposures to the recommended daily doses, which should be tested in future studies.

  9. Role of spleen-derived monocytes/macrophages in acute ischemic brain injury

    PubMed Central

    Kim, Eunhee; Yang, Jiwon; D Beltran, Cesar; Cho, Sunghee

    2014-01-01

    Monocytes/macrophages (MMs), mononuclear phagocytes, have been implicated in stroke-induced inflammation and injury. However, the presence of pro-inflammatory Ly-6Chigh and antiinflammatory Ly-6Clow monocyte subsets raises uncertainty regarding their role in stroke pathologic assessment. With recent identification of the spleen as an immediate reservoir of MMs, this current study addresses whether the spleen-derived MMs are required for stroke pathologic assessment. We observed that the spleen was contracted in poststroke animals and the contraction was accompanied by decreased number of Ly-6Chigh and Ly-6Clow subsets in the spleen. The deployment of these subsets from the spleen temporally coincided with respective increases in the ischemic brain. Compared to mice with the spleen, mice receiving a splenectomy just before the stroke displayed less accumulation of Ly-6Chigh and Ly-6Clow MMs in the brain. Despite the reduced accumulation of both subsets, infarct size and swelling were not reduced in the asplenic mice. The dissociative findings of infarct size and extent of MM infiltration in the postischemic brain indicate minimal involvement of spleen-derived total MMs in acute infarct development. Selective Ly-6Chigh or Ly-6Clow MM targeting is suggested to address the contribution of the individual subset to acute stroke pathologic assessment. PMID:24865998

  10. Pallidal neuronal apolipoprotein E in pantothenate kinase-associated neurodegeneration recapitulates ischemic injury to the globuspallidus

    PubMed Central

    Woltjer, Randall L.; Reese, Lindsay C.; Richardson, Brian E.; Tran, Huong; Green, Sarah; Pham, Thao; Chalupsky, Megan; Gabriel, Isabella; Light, Tyler; Sanford, Lynn; Jeong, Suh Y.; Hamada, Jeffrey; Schwanemann, Leila K.; Rogers, Caleb; Gregory, Allison; Hogarth, Penelope; Hayflick, Susan J.

    2015-01-01

    Pantothenate kinase-associated neurodegeneration (PKAN) is a progressive movement disorder that is due to mutations in PANK2. Pathologically, it is a member of a class of diseases known as neurodegeneration with brain iron accumulation (NBIA) and features increased tissue iron and ubiquitinated protein aceous aggregates in the globuspallidus. We have previously determined that these aggregates represent condensed residue derived from degenerated pallidal neurons. However, the protein content, other than ubiquitin, of these aggregates remains unknown. In the present study, we performed biochemical and immunohistochemical studies to characterize these aggregates and found them to be enriched in apolipoprotein E that is poorly soluble in detergent solutions. However, did not determine a significant association between APOE genotype and the clinical phenotype of disease in our database of 81 cases. Rather, we frequently identified similar ubiquitin- and apolipoprotein E-enriched lesions in these neurons in non-PKAN patients in the penumbrae of remote infarcts that involve the globuspallidus, and occasionally in other brain sites that contain large γ-aminobutyric acid (GABA)ergic neurons. Our findings, taken together, suggest that tissue or cellular hypoxic/ischemic injury within the globuspallidus may underlie the pathogenesis of PKAN. PMID:26547561

  11. Expression of the RNA-binding protein TIAR is increased in neurons after ischemic cerebral injury.

    PubMed

    Jin, K; Li, W; Nagayama, T; He, X; Sinor, A D; Chang, J; Mao, X; Graham, S H; Simon, R P; Greenberg, D A

    2000-03-15

    T-cell restricted intracellular antigen-related protein (TIAR) is an RNA recognition motif-type RNA-binding protein that has been implicated in the apoptotic death of T-lymphocytes and retinal pigment epithelial cells. Western blots prepared with a monoclonal antibody against TIAR showed expression in normal rat hippocampus, and induction by 15 min of global cerebral ischemia. This increased expression was evident at 8 hr after ischemia and maximal at 24 hr, whereas expression at 72 hr was reduced below basal levels. Expression of TIAR protein was also increased in parietal cortex 6 and 24 hr after 90 min of focal cerebral ischemia induced by middle cerebral artery (MCA) occlusion, as well as in cultured cortical neurons and astroglia after exposure to hypoxia in vitro. Immunocytochemistry showed that increased expression of TIAR occurred mainly in the CA1 sector of hippocampus 24 hr after global ischemia, and in cortical and striatal neurons 24 hr after 20 or 90 min of focal ischemia. Double-labeling studies showed that TIAR protein expression was co-localized with DNA damage in neuronal cells. The findings suggest that TIAR may be involved in neuronal cell death after cerebral ischemic injury.

  12. Neuroprotective properties of Melissa officinalis after hypoxic-ischemic injury both in vitro and in vivo

    PubMed Central

    2012-01-01

    Background Brain ischemia initiates several metabolic events leading to neuronal death. These events mediate large amount of damage that arises after some neurodegenerative disorders as well as transient brain ischemia. Melissa officinalis is considered as a helpful herbal plant in the prevention of various neurological diseases like Alzheimer that is related with oxidative stress. Methods We examined the effect of Melissa officinalis on hypoxia induced neuronal death in a cortical neuronal culture system as in vitro model and transient hippocampal ischemia as in vivo model. Transient hippocampal ischemia was induced in male rats by tow vessel-occlusion for 20 min. After reperfusion, the histopathological changes and the levels inflammation, oxidative stress status, and caspase-3 activity in hippocampus were measured. Results Cytotoxicity assays showed a significant protection of a 10 μg/ml dose of Melissa against hypoxia in cultured neurons which was confirmed by a conventional staining (P<0.05). Melissa treatment decrease caspase3 activity (P<0.05) and TUNEL-positive cells significantly (P<0.01). Melissa oil has also inhibited malon dialdehyde level and attenuated decrease of Antioxidant Capacity in the hippocampus. Pro-inflammatory cytokines TNF-α, IL-1β and HIF-1α mRNA levels were highly increased after ischemia and treatment with Melissa significantly suppressed HIF-1α gene expression (P<0.05). Discussion Results showed that Melissa officinalis could be considered as a protective agent in various neurological diseases associated with ischemic brain injury. PMID:23351182

  13. Therapeutic administration of plasminogen activator inhibitor-1 prevents hypoxic-ischemic brain injury in newborns.

    PubMed

    Yang, Dianer; Nemkul, Niza; Shereen, Ahmed; Jone, Alice; Dunn, R Scott; Lawrence, Daniel A; Lindquist, Diana; Kuan, Chia-Yi

    2009-07-08

    Disruption of the integrity of the blood-brain barrier (BBB) is an important mechanism of cerebrovascular diseases, including neonatal cerebral hypoxia-ischemia (HI). Although both tissue-type plasminogen activator (tPA) and matrix metalloproteinase-9 (MMP-9) can produce BBB damage, their relationship in neonatal cerebral HI is unclear. Here we use a rodent model to test whether the plasminogen activator (PA) system is critical for MMP-9 activation and HI-induced brain injury in newborns. To test this hypothesis, we examined the therapeutic effect of intracerebroventricular injection of plasminogen activator inhibitor-1 (PAI-1) in rat pups subjected to unilateral carotid artery occlusion and systemic hypoxia. We found that the injection of PAI-1 greatly reduced the activity of both tPA and urokinase-type plasminogen activator after HI. It also blocked HI-induced MMP-9 activation and BBB permeability at 24 h of recovery. Furthermore, magnetic resonance imaging and histological analysis showed the PAI-1 treatment reduced brain edema, axonal degeneration, and cortical cell death at 24-48 h of recovery. Finally, the PAI-1 therapy provided a dose-dependent decrease of brain tissue loss at 7 d of recovery, with the therapeutic window at 4 h after the HI insult. Together, these results suggest that the brain PA system plays a pivotal role in neonatal cerebral HI and may be a promising therapeutic target in infants suffering hypoxic-ischemic encephalopathy.

  14. Ischemic tissue injury and progenitor cell tropism: significant contributors to the pathogenesis of pterygium.

    PubMed

    Kim, Kyoung Woo; Ha, Hyo Shin; Kim, Jae Chan

    2015-03-01

    Pterygium is a common ocular surface disease characterized by triangular wing-like growth consisting of subconjunctival hypertrophic connective tissue. Pterygium is easily complicated by adhesion to the eyelid and diplopia related to motility restriction of the eyeball. Beyond the cosmetic problems, this condition has a catastrophic effect on quality of life. Post-surgical recurrence rates of pterygium excision have been reported to be very high. Therefore, identifying the distinct pathogenic pathways of the disease may lead to new therapeutic strategies with lower risk of treatment failure. Based on the relatively low vascularity and known-predominance of disease occurrence in the nasal conjunctiva of normal eyes, we proposed that hypoxic ischemic injury can elicit the development of pterygium. Here, we review hypoxia-inducible factor (HIF)-1alpha-induced activation of the stromal cell-derived factor-1 (SDF-1)/chemokine receptor type 4 (CXCR4) signaling pathway as a possible mechanism. Supporting this concept of pathogenic mechanism, we also highlight bone marrow-derived progenitor cell tropism as a main contributor to pterygium pathogenesis.

  15. Activation of SHH signaling pathway promotes vasculogenesis in post-myocardial ischemic-reperfusion injury

    PubMed Central

    Guo, Wei; Yi, Xin; Ren, Faxin; Liu, Liwen; Wu, Suning; Yang, Jun

    2015-01-01

    This study aimed to investigate the potential roles of sonic Hedgehog (SHH) expression in vasculogenesis in post-myocardial ischemic-reperfusion injury (MIRI) and its underlying mechanism. Cardiac microvascular endothelial cells (CMECs) isolated from the SD rat hearts tissues were used to construct the MIRI model. mRNA level of SHH in control cells and MIRI cells was detected using RT-PCR analysis. Furthermore, effects of SHH expression on CMECs viability and apoptosis were analyzed using MTT assay and Annexin-V-FITC kit respectively. Moreover, effects of SHH expression on the pathway signal proteins expression was analyzed using ELISA and western blotting. mRNA level of SHH was significantly decreased compared to the controls (P<0.05). Besides, CMECs viability was significantly increased while cell apoptosis was decreased by SHH application compared with the controls (P<0.05). Vasculogenesis-related factors including VEGF, FGF and Ang were significantly increased by SHH application, as well as the SHH signal proteins including Patch-1, Gli1, Gli2 and SMO (P<0.05). However, these effects of SHH application on biological factors levels were reversed by the SHH inhibitor application. This study suggested that SHH over expression may play a pivotal contribute role in vasculogenesis through activating the SHH signals in post-MIRI. PMID:26722433

  16. Novel Injury Site Targeted Fusion Protein Comprising Annexin V and Kunitz Inhibitor Domains Ameliorates Ischemia-Reperfusion Injury and Promotes Survival of Ischemic Rat Abdominal Skin Flaps.

    PubMed

    Shyu, Victor Bong-Hang; Hsu, Chung En; Wen, Chih-Jen; Wun, Tze-Chein; Tang, Rui; Achilefu, Samuel; Wei, Fu-Chan; Cheng, Hui-Yun

    2017-03-01

    Appropriate antithrombotic therapy is critical for successful outcomes in reconstructive microsurgical procedures involving free tissue transfer. The annexin V-6L15 (ANV-6L15) fusion protein was developed as a targeted antithrombotic reagent. Annexin V specifically binds to exposed phosphatidylserine on apoptotic or injured cells, and prevents coagulation and cell adhesion, whereas 6L15 inhibits tissue factor-VIIa pathway within the coagulation cascade. The treatment efficacy of ANV-6L15 on rat island muscle and pedicled abdominal fasciocutaneous flaps following ischemic injury and ischemia-reperfusion injury (IRI) was evaluated.

  17. Paeoniflorin ameliorates acute necrotizing pancreatitis and pancreatitis‑induced acute renal injury.

    PubMed

    Wang, Peng; Wang, Weixing; Shi, Qiao; Zhao, Liang; Mei, Fangchao; Li, Chen; Zuo, Teng; He, Xiaobo

    2016-08-01

    Acute renal injury caused by acute necrotizing pancreatitis (ANP) is a common complication that is associated with a high rate of mortality. Paeoniflorin is the active ingredient of paeonia radix and exhibits a number of pharmacological effects, such as anti‑inflammatory, anticancer, analgesic and immunomodulatory effects. The present study detected the potential treatment effects of paeoniflorin on acute renal injury induced by ANP in a rat model. The optimal dose of paeoniflorin for preventing acute renal injury induced by ANP was determined. Then, the possible protective mechanism of paeoniflorin was investigated. The serum levels of tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β and IL‑6 were measured with enzyme‑linked immunosorbent assay kits. Renal inflammation and apoptosis were measured by immunohistochemistry and terminal deoxynucleotidyl transferase‑mediated dUTP nick end labeling assay. The expression of nitric oxide in kidney tissues was also evaluated. The p38 mitogen‑activated protein kinases (MAPKs) were measured by western blotting. The results shown that paeoniflorin may ameliorate acute renal injury following ANP in rats by inhibiting inflammatory responses and renal cell apoptosis. These effects may be associated with the p38MAPK and nuclear factor‑κB signal pathway.

  18. Diabetes-Induced Reactive Oxygen Species: Mechanism of Their Generation and Role in Renal Injury

    PubMed Central

    Fakhruddin, Selim; Alanazi, Wael

    2017-01-01

    Diabetes induces the onset and progression of renal injury through causing hemodynamic dysregulation along with abnormal morphological and functional nephron changes. The most important event that precedes renal injury is an increase in permeability of plasma proteins such as albumin through a damaged glomerular filtration barrier resulting in excessive urinary albumin excretion (UAE). Moreover, once enhanced UAE begins, it may advance renal injury from progression of abnormal renal hemodynamics, increased glomerular basement membrane (GBM) thickness, mesangial expansion, extracellular matrix accumulation, and glomerulosclerosis to eventual end-stage renal damage. Interestingly, all these pathological changes are predominantly driven by diabetes-induced reactive oxygen species (ROS) and abnormal downstream signaling molecules. In diabetic kidney, NADPH oxidase (enzymatic) and mitochondrial electron transport chain (nonenzymatic) are the prominent sources of ROS, which are believed to cause the onset of albuminuria followed by progression to renal damage through podocyte depletion. Chronic hyperglycemia and consequent ROS production can trigger abnormal signaling pathways involving diverse signaling mediators such as transcription factors, inflammatory cytokines, chemokines, and vasoactive substances. Persistently, increased expression and activation of these signaling molecules contribute to the irreversible functional and structural changes in the kidney resulting in critically decreased glomerular filtration rate leading to eventual renal failure. PMID:28164134

  19. Formoterol restores mitochondrial and renal function after ischemia-reperfusion injury.

    PubMed

    Jesinkey, Sean R; Funk, Jason A; Stallons, L Jay; Wills, Lauren P; Megyesi, Judit K; Beeson, Craig C; Schnellmann, Rick G

    2014-06-01

    Mitochondrial biogenesis may be an adaptive response necessary for meeting the increased metabolic and energy demands during organ recovery after acute injury, and renal mitochondrial dysfunction has been implicated in the pathogenesis of AKI. We proposed that stimulation of mitochondrial biogenesis 24 hours after ischemia/reperfusion (I/R)-induced AKI, when renal dysfunction is maximal, would accelerate recovery of mitochondrial and renal function in mice. We recently showed that formoterol, a potent, highly specific, and long-acting β2-adrenergic agonist, induces renal mitochondrial biogenesis in naive mice. Animals were subjected to sham or I/R-induced AKI, followed by once-daily intraperitoneal injection with vehicle or formoterol beginning 24 hours after surgery and continuing through 144 hours after surgery. Treatment with formoterol restored renal function, rescued renal tubules from injury, and diminished necrosis after I/R-induced AKI. Concomitantly, formoterol stimulated mitochondrial biogenesis and restored the expression and function of mitochondrial proteins. Taken together, these results provide proof of principle that a novel drug therapy to treat AKI, and potentially other acute organ failures, works by restoring mitochondrial function and accelerating the recovery of renal function after injury has occurred.

  20. Characterization of the development of renal injury in Type-1 diabetic Dahl salt-sensitive rats

    PubMed Central

    Slaughter, Tiffani N.; Paige, Adrienne; Spires, Denisha; Kojima, Naoki; Kyle, Patrick B.; Garrett, Michael R.; Roman, Richard J.

    2013-01-01

    The present study compared the progression of renal injury in Sprague-Dawley (SD) and Dahl salt-sensitive (SS) treated with streptozotocin (STZ). The rats received an injection of STZ (50 mg/kg ip) and an insulin pellet (2 U/day sc) to maintain the blood glucose levels between 400 and 600 mg/dl. Twelve weeks later, arterial pressure (143 ± 6 vs. 107 ± 8 mmHg) and proteinuria (557 ± 85 vs. 81 ± 6 mg/day) were significantly elevated in STZ-SS rats compared with the values observed in STZ-SD rats, respectively. The kidneys from STZ-SS rats exhibited thickening of glomerular basement membrane, mesangial expansion, severe glomerulosclerosis, renal interstitial fibrosis, and occasional glomerular nodule formation. In additional studies, treatment with a therapeutic dose of insulin (4 U/day sc) attenuated the development of proteinuria (212 ± 32 mg/day) and renal injury independent of changes in arterial pressure in STZ-SS rats. Since STZ-SS rats developed severe renal injury, we characterized the time course of changes in renal hemodynamics during the progression of renal injury. Nine weeks after diabetes onset, there was a 42% increase in glomerular filtration rate in STZ-SS rats vs. time-control SS rats with reduced renal blood flow. These results indicate that SS rats treated with STZ develop hyperfiltration and progressive proteinuria and display renal histological lesions characteristic of those seen in patients with diabetic nephropathy. Overall, this model may be useful to study signaling pathways and mechanisms that play a role in the progression of diabetes-induced renal disease and the development of new therapies to slow the progression of diabetic nephropathy. PMID:23926133

  1. Ischemic preconditioning attenuates ischemia/reperfusion injury in rat steatotic liver: role of heme oxygenase-1-mediated autophagy

    PubMed Central

    Liu, Anding; Guo, Enshuang; Yang, Jiankun; Li, Renlong; Yang, Yan; Liu, Shenpei; Hu, Jifa; Jiang, Xiaojing; Dirsch, Olaf; Dahmen, Uta; Sun, Jian; Ouyang, Mingwen

    2016-01-01

    Steatotic livers are more susceptible to ischemia/reperfusion (I/R) injury, which is ameliorated by ischemic preconditioning (IPC). Autophagy possesses protective action on liver I/R injury and declines in steatotic livers. The aim of this study was to test the hypothesis that the increased susceptibility of steatotic livers to I/R injury was associated with defective hepatic autophagy, which could be restored by IPC via heme oxygenase-1 (HO-1) signaling. Obesity and hepatic steatosis was induced using a high fat diet. Obesity impaired hepatic autophagy activity and decreased hepatic HO-1 expression. Induction of HO-1 restored autophagy activity and inhibited calpain 2 activity. Additionally, suppression of calpain 2 activity also restored autophagy activity. Mitochondrial dysfunction and hepatocellular injury were significantly increased in steatotic livers compared to lean livers in response to I/R injury. This increase in sensitivity to I/R injury was associated with defective hepatic autophagy activity in steatotic livers. IPC increased autophagy and reduced mitochondrial dysfunction and hepatocellular damage in steatotic livers following I/R injury. Furthermore, IPC increased HO-1 expression. Inhibition of HO-1 decreased the IPC-induced autophagy, increased calpain 2 activity and diminished the protective effect of IPC against I/R injury. Inhibition of calpain 2 restored autophagic defect and attenuated mitochondrial dysfunction in steatotic livers after I/R. Collectively, IPC might ameliorate steatotic liver damage and restore mitochondrial function via HO-1-mediated autophagy. PMID:27852058

  2. Impact of perinatal systemic hypoxic-ischemic injury on the brain of male offspring rats: an improved model of neonatal hypoxic-ischemic encephalopathy in early preterm newborns.

    PubMed

    Huang, Yuejun; Lai, Huihong; Xu, Hongwu; Wu, Weizhao; Lai, Xiulan; Ho, Guyu; Chen, Yunbin; Ma, Lian

    2013-01-01

    In this study, we attempted to design a model using Sprague-Dawley rats to better reproduce perinatal systemic hypoxic-ischemic encephalopathy (HIE) in early preterm newborns. On day 21 of gestation, the uterus of pregnant rats were exposed and the blood supply to the fetuses of neonatal HIE groups were thoroughly abscised by hemostatic clamp for 5, 10 or 15 min. Thereafter, fetuses were moved from the uterus and manually stimulated to initiate breathing in an incubator at 37 °C for 1 hr in air. We showed that survival rates of offspring rats were decreased with longer hypoxic time. TUNEL staining showed that apoptotic cells were significant increased in the brains of offspring rats from the 10 min and 15 min HIE groups as compared to the offspring rats in the control group at postnatal day (PND) 1, but there was no statistical difference between the offspring rats in the 5 min HIE and control groups. The perinatal hypoxic treatment resulted in decreased neurons and increased cleaved caspase-3 protein levels in the offspring rats from all HIE groups at PND 1. Platform crossing times and the percentage of the time spent in the target quadrant of Morris Water Maze test were significantly reduced in the offspring rats of all HIE groups at PND 30, which were associated with decreased brain-derived neurotrophic factor levels and neuronal cells in the hippocampus of offspring rats at PND 35. These data demonstrated that perinatal ischemic injury led to the death of neuronal cells and long-lasting impairment of memory. This model reproduced hypoxic ischemic encephalopathy in early preterm newborns and may be appropriate for investigating therapeutic interventions.

  3. Specific expression of heme oxygenase-1 by myeloid cells modulates renal ischemia-reperfusion injury.

    PubMed

    Rossi, Maxime; Thierry, Antoine; Delbauve, Sandrine; Preyat, Nicolas; Soares, Miguel P; Roumeguère, Thierry; Leo, Oberdan; Flamand, Véronique; Le Moine, Alain; Hougardy, Jean-Michel

    2017-03-15

    Renal ischemia-reperfusion injury (IRI) is a major risk factor for delayed graft function in renal transplantation. Compelling evidence exists that the stress-responsive enzyme, heme oxygenase-1 (HO-1) mediates protection against IRI. However, the role of myeloid HO-1 during IRI remains poorly characterized. Mice with myeloid-restricted deletion of HO-1 (HO-1(M-KO)), littermate (LT), and wild-type (WT) mice were subjected to renal IRI or sham procedures and sacrificed after 24 hours or 7 days. In comparison to LT, HO-1(M-KO) exhibited significant renal histological damage, pro-inflammatory responses and oxidative stress 24 hours after reperfusion. HO-1(M-KO) mice also displayed impaired tubular repair and increased renal fibrosis 7 days after IRI. In WT mice, HO-1 induction with hemin specifically upregulated HO-1 within the CD11b(+) F4/80(lo) subset of the renal myeloid cells. Prior administration of hemin to renal IRI was associated with significant increase of the renal HO-1(+) CD11b(+) F4/80(lo) myeloid cells in comparison to control mice. In contrast, this hemin-mediated protection was abolished in HO-1(M-KO) mice. In conclusion, myeloid HO-1 appears as a critical protective pathway against renal IRI and could be an interesting therapeutic target in renal transplantation.

  4. Effects of alprostadil and iloprost on renal, lung, and skeletal muscle injury following hindlimb ischemia–reperfusion injury in rats

    PubMed Central

    Erer, Dilek; Özer, Abdullah; Demirtaş, Hüseyin; Gönül, İpek Işık; Kara, Halil; Arpacı, Hande; Çomu, Faruk Metin; Oktar, Gürsel Levent; Arslan, Mustafa; Küçük, Ayşegül

    2016-01-01

    Objectives To evaluate the effects of alprostadil (prostaglandin [PGE1] analog) and iloprost (prostacyclin [PGI2] analog) on renal, lung, and skeletal muscle tissues after ischemia reperfusion (I/R) injury in an experimental rat model. Materials and methods Wistar albino rats underwent 2 hours of ischemia via infrarenal aorta clamping with subsequent 2 hours of reperfusion. Alprostadil and iloprost were given starting simultaneously with the reperfusion period. Effects of agents on renal, lung, and skeletal muscle (gastrocnemius) tissue specimens were examined. Results Renal medullary congestion, cytoplasmic swelling, and mean tubular dilatation scores were significantly lower in the alprostadil-treated group than those found in the I/R-only group (P<0.0001, P=0.015, and P<0.01, respectively). Polymorphonuclear leukocyte infiltration, pulmonary partial destruction, consolidation, alveolar edema, and hemorrhage scores were significantly lower in alprostadil- and iloprost-treated groups (P=0.017 and P=0.001; P<0.01 and P<0.0001). Polymorphonuclear leukocyte infiltration scores in skeletal muscle tissue were significantly lower in the iloprost-treated group than the scores found in the nontreated I/R group (P<0.0001). Conclusion Alprostadil and iloprost significantly reduce lung tissue I/R injury. Alprostadil has more prominent protective effects against renal I/R injury, while iloprost is superior in terms of protecting the skeletal muscle tissue against I/R injury. PMID:27601882

  5. Protective Effects of Luteolin on Lipopolysaccharide-Induced Acute Renal Injury in Mice

    PubMed Central

    Xin, Shao-bin; Yan, Hao; Ma, Jing; Sun, Qiang; Shen, Li

    2016-01-01

    Background Sepsis can cause serious acute kidney injury in bacterium-infected patients, especially in intensive care patients. Luteolin, a bioactive flavonoid, has renal protection and anti-inflammatory effects. This study aimed to investigate the effect and underlying mechanism of luteolin in attenuating lipopolysaccharide (LPS)-induced renal injury. Material/Methods ICR mice were treated with LPS (25 mg/kg) with or without luteolin pre-treatment (40 mg/kg for three days). The renal function, histological changes, degree of oxidative stress, and tubular apoptosis in these mice were examined. The effects of luteolin on LPS-induced expression of renal tumor necrosis factor-α (TNF-α), NF-κB, MCP-1, ICAM-1, and cleaved caspase-3 were evaluated. Results LPS resulted in rapid renal damage of mice, increased level of blood urea nitrogen (BUN), and serum creatinine (Scr), tubular necrosis, and increased oxidative stress, whereas luteolin pre-treatment could attenuate this renal damage and improve the renal functions significantly. Treatment with LPS increased TNF-α, NF-κB, IL-1β, cleaved caspase-3, MCP-1, and ICAM-1 expression, while these disturbed expressions were reversed by luteolin pre-treatment. Conclusions These results indicate that luteolin ameliorates LPS-mediated nephrotoxicity via improving renal oxidant status, decreasing NF-κB activation and inflammatory and apoptosis factors, and then disturbing the expression of apoptosis-related proteins. PMID:28029146

  6. Renal replacement therapy for acute renal injury: we need better therapy.

    PubMed

    Demirjian, Savag G; Paganini, Emil P

    2011-01-01

    Dialytic support of patients with acute kidney injury (AKI) has taken on an important aspect of critical care medicine. Increased morbidity and mortality associated with the AKI syndrome and the lack of great improvement despite the addition of differing dialytic techniques (and intensity) speaks to the need for a re-evaluation of renal support. Continuous therapies have brought greater control of urea, volume, acid/base status and enhanced hemodynamic stability over the traditional intermittent approaches. However, the incremental efficiency achieved by intense dialysis has not improved outcome in patients with AKI. We need to move beyond urea-based decision-making and pursue clinically relevant goal-targeted therapies. The latter will invariably lead to re-evaluation of the timing, intensity and duration of therapy, which traditionally have been mainly solute driven. Whether this will be via specifically designed membrane extracorporeal support or focused drug or cell-based therapies is currently under consideration. Volume determination and variability remain another moving target for therapy. Machine-generated feedback mechanisms responding to specific endpoints or compartmental changes are also under development. Improved diagnostic criteria, especially in septic-induced renal dysfunction, may allow for specific adsorption techniques using a variety of membrane-imbedded substances from activated charcoal to polymyxin B to newer resins. Cascade apheretic techniques have been attempted in specific disease entities to capture a larger group of potential toxins, while nanoporous membranes have been developed to remove a specific sized entity. Bio-artificial systems utilizing functioning cells should help with the recovery of injured cell and cell protection in those yet viable. Simple maneuvers to reduce the cost of delivered therapy, and the development of a more robust severity scoring system to help address the futile use of technology would be of great help

  7. Ischemic colitis as a manifestation of thrombotic microangiopathy following bone marrow transplantation.

    PubMed

    Komeno, Yukiko; Ogawa, Seishi; Ishida, Tateru; Takeuchi, Kengo; Tsujino, Shiho; Kurokawa, Mineo; Aoki, Katsunori; Kanda, Yoshinobu; Chiba, Shigeru; Motokura, Toru; Fukayama, Masashi; Hirai, Hisamaru

    2003-12-01

    Thrombotic microangiopathy (TMA) is a microvascular disorder characterized by platelet aggregation and hemolytic anemia. In the setting of bone marrow transplantation (BMT), ischemic colitis due to TMA is difficult to differentiate from acute graft-versus-host disease. We report a 32-year-old man who presented ischemic colitis due to TMA after unrelated BMT for myelodysplastic syndrome. He suffered from treatment-resistant bloody diarrhea, and died of renal failure and Aspergillus pleuritis on day 253 post-BMT. Autopsy revealed endothelial injuries of arterioles and ischemic changes in the intestines and kidneys. Clinical and pathological characteristics of ischemic colitis due to BMT-associated TMA are described.

  8. Changes in free and esterified cholesterol: hallmarks of acute renal tubular injury and acquired cytoresistance.

    PubMed

    Zager, R A; Kalhorn, T F

    2000-09-01

    Acute tubular cell injury is accompanied by plasma membrane phospholipid breakdown. Although cholesterol is a dominant membrane lipid which interdigitates with, and impacts, phospholipid homeostasis, its fate during the induction and recovery phases of acute renal failure (ARF) has remained ill defined. The present study was performed to ascertain whether altered cholesterol expression is a hallmark of evolving tubular damage. Using gas chromatographic analysis, free cholesterol (FC) and esterified cholesterol (CE) were quantified in: 1) isolated mouse proximal tubule segments (PTS) after 30 minutes of hypoxic or oxidant (ferrous ammonium sulfate) injury; 2) cultured proximal tubule (HK-2) cells after 4 or 18 hours of either ATP depletion/Ca(2+) ionophore- or ferrous ammonium sulfate-mediated injury; and 3) in renal cortex 18 hours after induction of glycerol-induced myoglobinuric ARF, a time corresponding to the so-called "acquired cytoresistance" state (ie, resistance to further renal damage). Hypoxic and oxidant injury each induced approximately 33% decrements in CE (but not FC) levels in PTS, corresponding with lethal cell injury ( approximately 50 to 60% LDH release). When comparable CE declines were induced in normal PTS by exogenous cholesterol esterase treatment, proportionate lethal cell injury resulted. During models of slowly evolving HK-2 cell injury, progressive CE increments occurred: these were first noted at 4 hours, and reached approximately 600% by 18 hours. In vivo myoglobinuric ARF produced comparable renal cortical CE (and to a lesser extent FC) increments. Renal CE accumulation strikingly correlated with the severity of ARF (eg, blood urea nitrogen versus CE; r, 0.84). Mevastatin blocked cholesterol accumulation in injured HK-2 cells, indicating de novo synthesis was responsible. Acute tubule injury first lowers, then raises, tubule cholesterol content. Based on previous observations that cholesterol has cytoprotectant properties, the present

  9. Erdosteine in renal ischemia-reperfusion injury: an experimental study in pigs.

    PubMed

    Lee, Jae-Yeon; Kim, Hyun-Soo; Park, Chang-Sik; Kim, Myung-Cheol

    2010-01-01

    The aim of the present study was to investigate the effect of erdosteine on renal reperfusion injury. Twelve male Landrace and Yorkshire mixed pigs were randomly divided into two groups: untreated control group (I/R), erdosteine treated group (I/R + erdosteine). Each group is composed of six pigs, and the pigs were unilaterally nephrectomized and their contralateral kidneys were subjected to 30 min of renal pedicle occlusion. The elevations of creatinine and blood urea nitrogen levels were lower in the treated group compared with the control group. The catalase activity and the glutathione peroxidase activity were higher in the erdosteine group. As a result, this study suggests that the erdosteine treatment has a role of attenuation of renal I/R injury recovery of renal function in pig.

  10. Intravenous Administration of Cilostazol Nanoparticles Ameliorates Acute Ischemic Stroke in a Cerebral Ischemia/Reperfusion-Induced Injury Model

    PubMed Central

    Nagai, Noriaki; Yoshioka, Chiaki; Ito, Yoshimasa; Funakami, Yoshinori; Nishikawa, Hiroyuki; Kawabata, Atsufumi

    2015-01-01

    It was reported that cilostazol (CLZ) suppressed disruption of the microvasculature in ischemic areas. In this study, we have designed novel injection formulations containing CLZ nanoparticles using 0.5% methylcellulose, 0.2% docusate sodium salt, and mill methods (CLZnano dispersion; particle size 81 ± 59 nm, mean ± S.D.), and investigated their toxicity and usefulness in a cerebral ischemia/reperfusion-induced injury model (MCAO/reperfusion mice). The pharmacokinetics of injections of CLZnano dispersions is similar to that of CLZ solutions prepared with 2-hydroxypropyl-β-cyclodextrin, and no changes in the rate of hemolysis of rabbit red blood cells, a model of cell injury, were observed with CLZnano dispersions. In addition, the intravenous injection of 0.6 mg/kg CLZnano dispersions does not affect the blood pressure and blood flow, and the 0.6 mg/kg CLZnano dispersions ameliorate neurological deficits and ischemic stroke in MCAO/reperfusion mice. It is possible that the CLZnano dispersions will provide effective therapy for ischemic stroke patients, and that injection preparations of lipophilic drugs containing drug nanoparticles expand their therapeutic usage. PMID:26690139

  11. The effects of cilostazol on tissue oxygenation upon an ischemic-reperfusion injury in the mouse cerebrum.

    PubMed

    Morikawa, Takayuki; Hattori, Katsuji; Kajimura, Mayumi; Suematsu, Makoto

    2010-01-01

    Although cilostazol, an inhibitor of cyclic nucleotide phosphodiesterase 3 (PDE3), is known to exert a potent antiplatelet function by raising intracellular cAMP concentration, its effect on cerebral microcirculation upon an ischemic insult is not clearly understood. To examine effects of cilostazol on the global ischemic injury in the brain, we first measured the plasma leakage using modified Miles assay after mice had been subjected to 60 min of a bilateral common carotid artery (BCCA) occlusion followed by reperfusion for 4 h. Oral treatment with cilostazol (30 mg/kg) significantly increased plasma leakage. This result led us to examine if the treatment with cilostazol recruits more capillaries leading to an increase in surface area for exchange and oxygen transport to tissues. To do so, we simultaneously measured degrees of tissue hypoxia and vessel perfusion. Pimonidazol was injected intraperitoneally 1 h before sacrifice and capillary patency was assessed by fluorescein isothiocyanate-labeled Lycopersicon esculentum lectin bound to the endothelial surface. Treatment with cilostazol markedly increased the capillary patency which was accompanied by a reduction in the hypoxic area. Although the treatment with cilostazol caused an increase in the flux of plasma proteins across endothelial barrier that may imply an adverse role after a BCCA occlusion, this increase in protein leakage was attributable to the increased surface area for exchange which in turn brought about a reduction in tissue hypoxia. Taken together cilostazol appears to produce a protective effect against the ischemic-reperfusion injury.

  12. Sevoflurane pretreatment enhance HIF-2α expression in mice after renal ischemia/reperfusion injury

    PubMed Central

    Zheng, Beijie; Zhan, Qionghui; Chen, Jue; Xu, Huan; He, Zhenzhou

    2015-01-01

    Ischemia/reperfusion (I/R) injury often occurs, which is one of the major causes of acute kidney injury, thus increasing in-hospital mortality. HIF-2α has a protective role against ischemia of the kidney. Renal ischemia/reperfusion under sevoflurane anesthesia resulted in drastic improvements in renal function. We hypothesized that underlying mechanism responsible for renal protection from sevoflurane pretreatment involves the upregulation of HIF-2α. Sevoflurane pretreatment were performed on WT and HIF-2α knockout mice before renal ischemia/reperfusion. Levels of blood urea nitrogen (BUN) and serum creatinine (Cr) were determined with a standard clinical automatic analyzer. The left kidneys were taken for morphological examination. Expression of HIF-2α in kidney tissue was examined by western blotting. In WT mice, group I/R injury had significantly higher BUN and Cr levels than group control, whereas group I/R + Sev had significantly lower BUN and Cr levels than group I/R injury. Renal HIF-2α expression levels were significantly higher in WT mice of group I/R + Sev than group control and group I/R. In HIF-2α-/- mice, group I/R + Sev showed much higher BUN and Cr levels and severer histological damage than group I/R and group control. Renal HIF-2α expression levels were significantly higher in WT mice of group I/R + Sev than group control and group I/R. Our findings suggested that HIF-2α might contribute to the beneficial effect of sevoflurane in renal ischemia/reperfusion injury. PMID:26722509

  13. Vitamin D3 pretreatment alleviates renal oxidative stress in lipopolysaccharide-induced acute kidney injury.

    PubMed

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Xia, Mi-Zhen; Wang, Hua; Zhao, Hui; Xu, De-Xiang; Yu, De-Xin

    2015-08-01

    Increasing evidence demonstrates that reactive oxygen species plays important roles in sepsis-induced acute kidney injury. This study investigated the effects of VitD3 pretreatment on renal oxidative stress in sepsis-induced acute kidney injury. Mice were intraperitoneally injected with lipopolysaccharide (LPS, 2.0mg/kg) to establish an animal model of sepsis-induced acute kidney injury. In VitD3+LPS group, mice were orally pretreated with three doses of VitD3 (25 μg/kg) at 1, 24 and 48 h before LPS injection. As expected, oral pretreatment with three daily recommended doses of VitD3 markedly elevated serum 25(OH)D concentration and efficiently activated renal VDR signaling. Interestingly, LPS-induced renal GSH depletion and lipid peroxidation were markedly alleviated in VitD3-pretreated mice. LPS-induced serum and renal nitric oxide (NO) production was obviously suppressed by VitD3 pretreatment. In addition, LPS-induced renal protein nitration, as determined by 3-nitrotyrosine residue, was obviously attenuated by VitD3 pretreatment. Further analysis showed that LPS-induced up-regulation of renal inducible nitric oxide synthase (inos) was repressed in VitD3-pretreated mice. LPS-induced up-regulation of renal p47phox and gp91phox, two NADPH oxidase subunits, were normalized by VitD3 pretreatment. In addition, LPS-induced down-regulation of renal superoxide dismutase (sod) 1 and sod2, two antioxidant enzyme genes, was reversed in VitD3-pretreated mice. Finally, LPS-induced tubular epithelial cell apoptosis, as determined by TUNEL, was alleviated by VitD3 pretreatment. Taken together, these results suggest that VitD3 pretreatment alleviates LPS-induced renal oxidative stress through regulating oxidant and antioxidant enzyme genes.

  14. Macrophage-to-Myofibroblast Transition Contributes to Interstitial Fibrosis in Chronic Renal Allograft Injury.

    PubMed

    Wang, Ying-Ying; Jiang, Hong; Pan, Jun; Huang, Xiao-Ru; Wang, Yu-Cheng; Huang, Hong-Feng; To, Ka-Fai; Nikolic-Paterson, David J; Lan, Hui-Yao; Chen, Jiang-Hua

    2017-02-16

    Interstitial fibrosis is an important contributor to graft loss in chronic renal allograft injury. Inflammatory macrophages are associated with fibrosis in renal allografts, but how these cells contribute to this damaging response is not clearly understood. Here, we investigated the role of macrophage-to-myofibroblast transition in interstitial fibrosis in human and experimental chronic renal allograft injury. In biopsy specimens from patients with active chronic allograft rejection, we identified cells undergoing macrophage-to-myofibroblast transition by the coexpression of macrophage (CD68) and myofibroblast (α-smooth muscle actin [α-SMA]) markers. CD68(+)/α-SMA(+) cells accounted for approximately 50% of the myofibroblast population, and the number of these cells correlated with allograft function and the severity of interstitial fibrosis. Similarly, in C57BL/6J mice with a BALB/c renal allograft, cells coexpressing macrophage markers (CD68 or F4/80) and α-SMA composed a significant population in the interstitium of allografts undergoing chronic rejection. Fate-mapping in Lyz2-Cre/Rosa26-Tomato mice showed that approximately half of α-SMA(+) myofibroblasts in renal allografts originated from recipient bone marrow-derived macrophages. Knockout of Smad3 protected against interstitial fibrosis in renal allografts and substantially reduced the number of macrophage-to-myofibroblast transition cells. Furthermore, the majority of macrophage-to-myofibroblast transition cells in human and experimental renal allograft rejection coexpressed the M2-type macrophage marker CD206, and this expression was considerably reduced in Smad3-knockout recipients. In conclusion, our studies indicate that macrophage-to-myofibroblast transition contributes to interstitial fibrosis in chronic renal allograft injury. Moreover, the transition of bone marrow-derived M2-type macrophages to myofibroblasts in the renal allograft is regulated via a Smad3-dependent mechanism.

  15. Subdural hematoma decompression model: A model of traumatic brain injury with ischemic-reperfusional pathophysiology: A review of the literature.

    PubMed

    Yokobori, Shoji; Nakae, Ryuta; Yokota, Hiroyuki; Spurlock, Markus S; Mondello, Stefania; Gajavelli, Shyam; Bullock, Ross M

    2016-05-25

    The prognosis for patients with traumatic brain injury (TBI) with subdural hematoma (SDH) remains poor. In accordance with an increasing elderly population, the incidence of geriatric TBI with SDH is rising. An important contributor to the neurological injury associated with SDH is the ischemic damage which is caused by raised intracranial pressure (ICP) producing impaired cerebral perfusion. To control intracranial hypertension, the current management consists of hematoma evacuation with or without decompressive craniotomy. This removal of the SDH results in the immediate reversal of global ischemia accompanied by an abrupt reduction of mass lesion and an ensuing reperfusion injury. Experimental models can play a critical role in improving our understanding of the underlying pathophysiology and in exploring potential treatments for patients with SDH. In this review, we describe the epidemiology, pathophysiology and clinical background of SDH.

  16. σ1-Receptor Agonism Protects against Renal Ischemia-Reperfusion Injury.

    PubMed

    Hosszu, Adam; Antal, Zsuzsanna; Lenart, Lilla; Hodrea, Judit; Koszegi, Sandor; Balogh, Dora B; Banki, Nora F; Wagner, Laszlo; Denes, Adam; Hamar, Peter; Degrell, Peter; Vannay, Adam; Szabo, Attila J; Fekete, Andrea

    2017-01-01

    Mechanisms of renal ischemia-reperfusion injury remain unresolved, and effective therapies are lacking. We previously showed that dehydroepiandrosterone protects against renal ischemia-reperfusion injury in male rats. Here, we investigated the potential role of σ1-receptor activation in mediating this protection. In rats, pretreatment with either dehydroepiandrosterone or fluvoxamine, a high-affinity σ1-receptor agonist, improved survival, renal function and structure, and the inflammatory response after sublethal renal ischemia-reperfusion injury. In human proximal tubular epithelial cells, stimulation by fluvoxamine or oxidative stress caused the σ1-receptor to translocate from the endoplasmic reticulum to the cytosol and nucleus. Fluvoxamine stimulation in these cells also activated nitric oxide production that was blocked by σ1-receptor knockdown or Akt inhibition. Similarly, in the postischemic rat kidney, σ1-receptor activation by fluvoxamine triggered the Akt-nitric oxide synthase signaling pathway, resulting in time- and isoform-specific endothelial and neuronal nitric oxide synthase activation and nitric oxide production. Concurrently, intravital two-photon imaging revealed prompt peritubular vasodilation after fluvoxamine treatment, which was blocked by the σ1-receptor antagonist or various nitric oxide synthase blockers. In conclusion, in this rat model of ischemia-reperfusion injury, σ1-receptor agonists improved postischemic survival and renal function via activation of Akt-mediated nitric oxide signaling in the kidney. Thus, σ1-receptor activation might provide a therapeutic option for renoprotective therapy.

  17. Bone marrow and renal injury associated with haloalkene cysteine conjugates in calves.

    PubMed

    Lock, E A; Sani, Y; Moore, R B; Finkelstein, M B; Anders, M W; Seawright, A A

    1996-01-01

    Almost 40 years ago, it was reported that cattle-feed which had been extracted with hot trichloroethylene and then fed to calves produced renal injury and a fatal aplastic anaemia. The toxic factor was subsequently identified as S-(1,2-dichlorovinyl)-L-cysteine (DCVC). These original findings have been confirmed, a single intravenous dose of DCVC at 4 mg/kg, or 0.4 mg/kg intravenously per day administered for 10 days to calves produced aplastic anaemia, and renal injury after a single dose of 4 mg/kg. The toxicity to calves of a number of other haloalkene cysteine conjugates has been examined to ascertain whether, like DCVC, they produce bone marrow and renal injury. Intravenous administration of the N-acetyl cysteine conjugate of DCVC produced renal but not bone marrow injury at a molar equivalent dose to DCVC, indicating that the calf can deacetylate the mercapturic acid and further that sufficient chemical had reached the kidney to be a substrate for the enzyme cysteine conjugate beta-lyase. However, intravenous administration of the alpha-methyl analogue of DCVC, which cannot undergo metabolism via the enzyme cysteine conjugate beta-lyase, was without toxicity at doses about five-fold higher than DCVC. These latter findings provide strong evidence that metabolism of DCVC via the enzyme beta-lyase is necessary for bone marrow and renal injury to occur. The cysteine conjugates of perchloroethylene and hexachloro-1,3-butadiene(HCBD) when given intravenously to calves at molar equivalent doses to DCVC, or above, did not produce either bone marrow or renal injury. In contrast, intravenous administration of the cysteine conjugate of tetrafluoroethylene (TFEC) produced severe renal tubular injury in calves without affecting the bone marrow. In vitro studies with these haloalkene cysteine conjugates showed, like DCVC, that they were good substrates for calf renal cysteine conjugate beta-lyase and toxic to renal cells as judged by their ability to reduce organic anion

  18. Role of NADPH Oxidase in Metabolic Disease-Related Renal Injury: An Update

    PubMed Central

    Su, Hua

    2016-01-01

    Metabolic syndrome has been linked to an increased risk of chronic kidney disease. The underlying pathogenesis of metabolic disease-related renal injury remains obscure. Accumulating evidence has shown that NADPH oxidase is a major source of intrarenal oxidative stress and is upregulated by metabolic factors leading to overproduction of ROS in podocytes, endothelial cells, and mesangial cells in glomeruli, which is closely associated with the initiation and progression of glomerular diseases. This review focuses on the role of NADPH oxidase-induced oxidative stress in the pathogenesis of metabolic disease-related renal injury. Understanding of the mechanism may help find potential therapeutic strategies. PMID:27597884

  19. Is oxidative stress primarily involved in reperfusion injury of the ischemic heart

    SciTech Connect

    Nohl, H.; Stolze, K.; Napetschnig, S.; Ishikawa, T. )

    1991-01-01

    Reperfusion injury of ischemic organs is suggested to result from metabolic derangements initiating an imbalanced formation of free oxygen radicals. Most investigators in this field have used the spin-trap 5,5'-dimethyl-N-pyrroline-N-oxide (DMPO) to stabilize these short-lived radicals and make them visible by means of the electron spin resonance (ESR) technique. ESR signals obtained from intravascular DMPO were reported to indicate the formation of free OH. radicals and, in some cases, also carbon-centered radicals. We were unable to confirm these findings. Carbon-centered radicals were not obtained irrespectively of conditions studied, while oxygen-centered DMPO-adducts could only be detected in minor amounts. Instead, we observed an ascorbyl-related ESR signal. The addition of ethylenediaminetetraacetic acid (EDTA), which was used by many investigators in this field, was found to greatly influence ESR-spectra of the reperfusion fluid. The ascorbyl radical concentration was clearly reduced and the DMPO-OH. adduct became more prominent. The addition of iron further stimulated this change eliciting a Fenton-type reaction responsible for DMPO-OH.-related ESR spectra in the perfusate after ischemia. Accordingly, we observed the release of iron and ascorbic acid into the perfusate as a consequence of ischemia. We could demonstrate that iron in the presence of ascorbate and EDTA causes both types of radicals detected in the perfusate. DMPO-OH. generation in the presence of EDTA was found to result from free OH. radicals that were not generated in the absence of EDTA.

  20. Neural stem cells: properties and therapeutic potentials for hypoxic-ischemic brain injury in newborn infants.

    PubMed

    Lee, Il-Shin; Jung, Kwangsoo; Kim, Miri; Park, Kook In

    2010-12-01

    Neural stem cells (NSCs) are defined by their ability to self-renew, to differentiate into cells of all glial and neuronal lineages throughout the neuraxis, and to populate developing or degenerating central nervous system (CNS) regions. The recognition that NSCs propagated in culture could be reimplanted into the mammalian brain, where they might integrate appropriately throughout the mammalian CNS and stably express foreign genes, has unveiled a new role for neural transplantation and gene therapy and a possible strategy for addressing the CNS manifestations of diseases that hitherto had been refractory to intervention. An intriguing phenomenon with possible therapeutic potentials has begun to emerge from our observations of the behavior of NSCs in animal models of neonatal hypoxic-ischemic (HI) brain injury. During phases of active neurodegeneration, factors seem to be transiently elaborated to which NSCs may respond by migrating to degenerating regions and differentiating specifically towards replacement of dying neural cells. NSCs may attempt to repopulate and reconstitute ablated regions. These 'repair mechanisms' may actually reflect the reexpression of basic developmental principles that may be harnessed for therapeutic ends. In addition, NSCs may serve as vehicles for gene delivery and appear capable of simultaneous neural cell replacement and gene therapy (e.g. with factors that might enhance neuronal differentiation, neurites outgrowth, proper connectivity, and/or neuroprotection). When combined with certain synthetic biomaterials, NSCs may be even more effective in 'engineering' the damaged CNS towards reconstitution. We have also cultured human NSCs or progenitors as neurospheres which were derived from fetal cadavers at 13 weeks of gestation, and transplanted them into HI-injured immature brains to investigate their therapeutic potentials in this type of model.

  1. Spatiotemporal Characteristics of Freezing of Gait in Patients After Hypoxic-Ischemic Brain Injury

    PubMed Central

    Yoon, Seo Yeon; Lee, Sang Chul; Kim, Yong Wook

    2016-01-01

    Abstract The objective of this study was to investigate spatiotemporal characteristics with gait variability in patients with freezing of gait (FOG) after hypoxic-ischemic brain injury (HIBI). Eleven patients showing FOG after HIBI and 15 normal controls were consecutively enrolled. We performed gait analysis using a computerized gait system (VICON MX-T10 Motion Analysis System) and compared spatiotemporal characteristics and gait variability in both groups. Additionally, we performed correlation analysis to identify the gait parameters associated with severity of freezing, which we measured based on unified Parkinson disease Rating Scale subscore. Spatiotemporal characteristic of FOG patients showed increased stance time and double support phase and decreased swing time, single support phase, stride length, step length, and gait velocity compared with normal controls (P < 0.05). Besides baseline spatiotemporal characteristics, step time asymmetry and step length asymmetry were significantly increased in HIBI patients with FOG (P < 0.05). The coefficient of variation, which reflects the variability of each parameter, demonstrated increased cadence, stride time, swing time, single support phase, stride length, step length, and gait velocity variability in HIBI patients with FOG compared with normal controls (P < 0.05). Correlation analysis between FOG severity and spatiotemporal parameters revealed gait velocity, step length, and single support phase to be spatiotemporal parameters related to FOG severity (P < 0.05). Our findings suggest that bilateral gait coordination deterioration plays a considerable role for pathophysiology of FOG in HIBI patients. Additional studies with a larger number of subjects are needed to further investigate the neural mechanism of FOG after HIBI. PMID:27175696

  2. Myocardial ischemic-reperfusion injury in a rat model of metabolic syndrome.

    PubMed

    Mozaffari, Mahmood S; Schaffer, Stephen W

    2008-10-01

    Hearts of NaCl-induced hypertensive-glucose intolerant (HGI) rats develop reduced infarcts after ischemia-reperfusion injury (IRI) than their hypertensive (H) counterparts. Because high intake of saturated fat is a major risk factor for ischemic heart disease, we tested the hypothesis that chronic (18 weeks) consumption of a high saturated fat diet increases susceptibility to IRI, an effect more marked in the HGI rats than in the H rats. The fat-fed H (HFAT) rat displayed significantly higher body weight and plasma leptin content compared to the H, HGI, or fat-fed HGI (HGIFAT) rats which all showed similar values. In contrast, plasma triglyceride concentration was significantly higher in the HGIFAT rat than in the other three groups. Plasma insulin concentration was similar in the two H groups but higher than that of the two HGI groups. Compared to the H rat, the HGI rat was markedly glucose intolerant, with fat feeding causing comparable worsening of glucose intolerance in each group. The HGIFAT rats displayed a reduction in baseline myocardial contractility and relaxation and a higher end-diastolic pressure compared to the other three groups. Infarct size was significantly lower in the HGI rats than in the H rats. Although fat feeding did not affect infarct size of the H rat, it worsened that of the HGIFAT rat thereby abrogating the differential that existed between the H and HGI rats. In conclusion, excess fat feeding impairs myocardial function of HGI rats and increases their susceptibility to IRI. These findings are of relevance to the metabolic syndrome that manifests as a cluster of insulin resistance, dyslipidemia, and systemic hypertension.

  3. Spatiotemporal evidence of apoptosis-mediated ischemic injury in organotypic hippocampal slice cultures.

    PubMed

    Cho, Seongeun; Liu, Danni; Fairman, Denise; Li, Ping; Jenkins, Lorayne; McGonigle, Paul; Wood, Andrew

    2004-07-01

    Oxygen-glucose deprivation (OGD) induced neuron-specific cell death in organotypic hippocampal slice cultures. Neuronal death was first evident in the CA1 region 24 h after the injury as assessed by propidium iodide (PI) labeling, and continued to extend to the CA3/4 region up to 72 h. At 6 days post-OGD, PI labeling was weak and diffuse with no clear demarcation of pyknotic nuclei. To characterize biochemical changes produced by OGD, cellular efflux of three key amino acid neurotransmitters was evaluated. OGD elicited large increases in the release of GABA and aspartate (55- and 4.5-fold increase over basal, respectively), while there were no detectable changes in extracellular glutamate levels. In order to ascertain the existence of the synaptic pool of glutamate, sister cultures were treated with sodium azide. This evoked a strong increase in glutamate release, suggesting the intactness of the glutamate system. Further studies revealed a time-dependent activation of caspase 3 following OGD, shown by immunoblot analysis as well as by confocal laser scanning microscopy. While we did not observe the activation of caspases 1, 2, or 8 in our model, the activation of caspase 9 was evident, peaking at 12 h post-OGD. Despite no apparent increase in glutamate release by ischemic slices, treatment with a N-methyl-D-aspartate (NMDA) antagonist or an alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) antagonist significantly reduced neuronal death. Furthermore, a pan-caspase inhibitor (zVAD-fmk), but not the caspase 3 inhibitor (DEVD-fmk), provided partial neuroprotection. Inhibition of a Ca(2+)-dependent cysteine protease, calpain, by MDL28170 also elicited partial neuroprotective effects.

  4. Adenosine A1 receptors contribute to immune regulation after neonatal hypoxic ischemic brain injury.

    PubMed

    Winerdal, Max; Winerdal, Malin E; Wang, Ying-Qing; Fredholm, Bertil B; Winqvist, Ola; Ådén, Ulrika

    2016-03-01

    Neonatal brain hypoxic ischemia (HI) often results in long-term motor and cognitive impairments. Post-ischemic inflammation greatly effects outcome and adenosine receptor signaling modulates both HI and immune cell function. Here, we investigated the influence of adenosine A1 receptor deficiency (A1R(-/-)) on key immune cell populations in a neonatal brain HI model. Ten-day-old mice were subjected to HI. Functional outcome was assessed by open locomotion and beam walking test and infarction size evaluated. Flow cytometry was performed on brain-infiltrating cells, and semi-automated analysis of flow cytometric data was applied. A1R(-/-) mice displayed larger infarctions (+33%, p < 0.05) and performed worse in beam walking tests (44% more mistakes, p < 0.05) than wild-type (WT) mice. Myeloid cell activation after injury was enhanced in A1R(-/-) versus WT brains. Activated B lymphocytes expressing IL-10 infiltrated the brain after HI in WT, but were less activated and did not increase in relative frequency in A1R(-/-). Also, A1R(-/-) B lymphocytes expressed less IL-10 than their WT counterparts, the A1R antagonist DPCPX decreased IL-10 expression whereas the A1R agonist CPA increased it. CD4(+) T lymphocytes including FoxP3(+) T regulatory cells, were unaffected by genotype, whereas CD8(+) T lymphocyte responses were smaller in A1R(-/-) mice. Using PCA to characterize the immune profile, we could discriminate the A1R(-/-) and WT genotypes as well as sham operated from HI-subjected animals. We conclude that A1R signaling modulates IL-10 expression by immune cells, influences the activation of these cells in vivo, and affects outcome after HI.

  5. Matrine attenuates focal cerebral ischemic injury by improving antioxidant activity and inhibiting apoptosis in mice

    PubMed Central

    ZHAO, PENG; ZHOU, RU; ZHU, XIAO-YUN; HAO, YIN-JU; LI, NAN; WANG, JIE; NIU, YANG; SUN, TAO; LI, YU-XIANG; YU, JIAN-QIANG

    2015-01-01

    cerebral ischemic injury and that these effects are associated with its antioxidant and anti-apoptotic properties. PMID:26135032

  6. Protective effect of tea polyphenols on renal ischemia/reperfusion injury via suppressing the activation of TLR4/NF-κB p65 signal pathway.

    PubMed

    Li, Yan-Wei; Zhang, Yan; Zhang, Ling; Li, Xu; Yu, Jian-Bo; Zhang, Hong-Tao; Tan, Bin-Bin; Jiang, Lian-Hao; Wang, Ya-Xin; Liang, Yu; Zhang, Xiu-Shan; Wang, Wen-Sheng; Liu, Hai-Gen

    2014-05-25

    ischemic/reperfusion injury through the suppression extrinsic apoptotic signal pathway induced by TLR4/NF-κB p65 signal pathway. Moreover, supplement of AMAE can increased renal protection effect of TP.

  7. Protective effects of icariin on cisplatin-induced acute renal injury in mice

    PubMed Central

    Ma, Pei; Zhang, Sen; Su, Xinlin; Qiu, Guixing; Wu, Zhihong

    2015-01-01

    Cisplatin chemotherapy often causes acute kidney injury in cancer patients. Icariin is a bioactive flavonoid, which has renal protection and anti-inflammation effects. This study investigated the mechanism underlying the attenuation of cisplatin-induced renal injury by icariin. BALB/c mice were treated with cisplatin (15 mg/kg) with or without treatment with icariin (30 or 60 mg/kg for 5 days). Renal function, histological changes, degree of oxidative stress and tubular apoptosis were examined. The effects of icariin on cisplatin-induced expression of renal TNF-α, NF-κB, cleaved caspase-3 and Bcl-2 family proteins were evaluated. Treatment of mice with cisplatin resulted in renal damage, showing an increase in blood urea nitrogen and creatinine levels, tubular damage, oxidative stress and apoptosis. These renal changes could be significantly improved by icariin treatment, especially in high dose of icariin group. Examination of molecules involving inflammation and apoptosis of the kidney revealed that treatment of icariin reduced expression of TNF-α, NF-κB, cleaved caspase-3, and Bax, increased the expression of BCL-2. These results indicate that icariin ameliorates the cisplatin-mediated nephrotoxicity via improving renal oxidant status, consequent NF-κB activation and inflammation cascade and apoptosis, and the following disturbed expression of apoptosis related proteins. PMID:26692955

  8. Aging has small effects on initial ischemic acute kidney injury development despite changing intrarenal immunologic micromilieu in mice.

    PubMed

    Jang, Hye Ryoun; Park, Ji Hyeon; Kwon, Ghee Young; Park, Jae Berm; Lee, Jung Eun; Kim, Dae Joong; Kim, Yoon-Goo; Kim, Sung Joo; Oh, Ha Young; Huh, Wooseong

    2016-02-15

    Inflammatory process mediated by innate and adaptive immune systems is a major pathogenic mechanism of renal ischemia-reperfusion injury (IRI). There are concerns that organ recipients may be at increased risk of developing IRI after receiving kidneys from elder donors. To reveal the effects of aging on the development of renal IRI, we compared the immunologic micromilieu of normal and postischemic kidneys from mice of three different ages (9 wk, 6 mo, and 12 mo). There was a higher number of total T cells, especially effector memory CD4/CD8 T cells, and regulatory T cells in the normal kidneys of old mice. On day 2 after IRI, the proportion of necrotic tubules and renal functional changes were comparable between groups although old mice had a higher proportion of damaged tubule compared with young mice. More T cells, but less B cells, trafficked into the postischemic kidneys of old mice. The infiltration of NK T cells was similar across the groups. Macrophages and neutrophils were comparable between groups in both normal kidneys and postischemic kidneys. The intrarenal expressions of TNF-α and VEGF were decreased in normal and postischemic kidneys of aged mice. These mixed effects of aging on lymphocytes and cytokines/chemokines were not different between the two groups of old mice. Our study demonstrates that aging alters the intrarenal micromilieu but has small effects on the development of initial renal injury after IRI. Further study investigating aging-dependent differences in the repair process of renal IRI may be required.

  9. Vitamin D3 pretreatment regulates renal inflammatory responses during lipopolysaccharide-induced acute kidney injury.

    PubMed

    Xu, Shen; Chen, Yuan-Hua; Tan, Zhu-Xia; Xie, Dong-Dong; Zhang, Cheng; Zhang, Zhi-Hui; Wang, Hua; Zhao, Hui; Yu, De-Xin; Xu, De-Xiang

    2015-12-22

    Vitamin D receptor (VDR) is highly expressed in human and mouse kidneys. Nevertheless, its functions remain obscure. This study investigated the effects of vitamin D3 (VitD3) pretreatment on renal inflammation during lipopolysaccharide (LPS)-induced acute kidney injury. Mice were intraperitoneally injected with LPS. In VitD3 + LPS group, mice were pretreated with VitD3 (25 μg/kg) at 48, 24 and 1 h before LPS injection. As expected, an obvious reduction of renal function and pathological damage was observed in LPS-treated mice. VitD3 pretreatment significantly alleviated LPS-induced reduction of renal function and pathological damage. Moreover, VitD3 pretreatment attenuated LPS-induced renal inflammatory cytokines, chemokines and adhesion molecules. In addition, pretreatment with 1,25(OH)2D3, the active form of VitD3, alleviated LPS-induced up-regulation of inflammatory cytokines and chemokines in human HK-2 cells, a renal tubular epithelial cell line, in a VDR-dependent manner. Further analysis showed that VitD3, which activated renal VDR, specifically repressed LPS-induced nuclear translocation of nuclear factor kappa B (NF-κB) p65 subunit in the renal tubules. LPS, which activated renal NF-κB, reciprocally suppressed renal VDR and its target gene. Moreover, VitD3 reinforced the physical interaction between renal VDR and NF-κB p65 subunit. These results provide a mechanistic explanation for VitD3-mediated anti-inflammatory activity during LPS-induced acute kidney injury.

  10. Estradiol attenuates down-regulation of PEA-15 and its two phosphorylated forms in ischemic brain injury

    PubMed Central

    2015-01-01

    Estradiol exerts a neuroprotective effect against focal cerebral ischemic injury through the inhibition of apoptotic signals. Phosphoprotein enriched in astrocytes 15 (PEA-15) is mainly expressed in brain that perform anti-apoptotic functions. This study investigated whether estradiol modulates the expression of PEA-15 and two phosphorylated forms of PEA-15 (Ser 104 and Ser 116) in middle cerebral artery occlusion (MCAO)-induced injury and glutamate exposure-induced neuronal cell death. Adult female rats were ovariectomized to remove endogenous estradiol and treated with vehicle or estradiol prior to MCAO. Focal cerebral ischemia was induced by MCAO and cerebral cortices were collected 24 h after MCAO. Western blot analysis indicated that estradiol prevents the MCAO-induced decrease in PEA-15, phospho-PEA-15 (Ser 104), phospho-PEA-15 (Ser 116). Glutamate exposure induced a reduction in PEA-15, phospho-PEA-15 (Ser 104), phospho-PEA-15 (Ser 116) in cultured neurons, whereas estradiol treatment attenuated the glutamate toxicity-induced decrease in the expression of these proteins. It has been known that phosphorylation of PEA-15 is an important step in carrying out its anti-apoptotic function. Thus, these findings suggest that the regulation of PEA-15 phosphorylation by estradiol contributes to the neuroprotective function of estradiol in ischemic brain injury. PMID:25806082

  11. Molecular dialogs between the ischemic brain and the peripheral immune system: dualistic roles in injury and repair.

    PubMed

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A; Leak, Rehana K; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-04-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialog between the brain and peripheral immune system show promise as potential novel treatments for stroke.

  12. Molecular dialogues between the ischemic brain and the peripheral immune system: Dualistic roles in injury and repair

    PubMed Central

    An, Chengrui; Shi, Yejie; Li, Peiying; Hu, Xiaoming; Gan, Yu; Stetler, Ruth A.; Leak, Rehana K.; Gao, Yanqin; Sun, Bao-Liang; Zheng, Ping; Chen, Jun

    2014-01-01

    Immune and inflammatory responses actively modulate the pathophysiological processes of acute brain injuries such as stroke. Soon after the onset of stroke, signals such as brain-derived antigens, danger-associated molecular patterns (DAMPs), cytokines, and chemokines are released from the injured brain into the systemic circulation. The injured brain also communicates with peripheral organs through the parasympathetic and sympathetic branches of the autonomic nervous system. Many of these diverse signals not only activate resident immune cells in the brain, but also trigger robust immune responses in the periphery. Peripheral immune cells then migrate toward the site of injury and release additional cytokines, chemokines, and other molecules, causing further disruptive or protective effects in the ischemic brain. Bidirectional communication between the injured brain and the peripheral immune system is now known to regulate the progression of stroke pathology as well as tissue repair. In the end, this exquisitely coordinated crosstalk helps determine the fate of animals after stroke. This article reviews the literature on ischemic brain-derived signals through which peripheral immune responses are triggered, and the potential impact of these peripheral responses on brain injury and repair. Pharmacological strategies and cell-based therapies that target the dialogue between the brain and peripheral immune system show promise as potential novel treatments for stroke. PMID:24374228

  13. P53 inhibitor pifithrin-α prevents the renal tubular epithelial cells against injury

    PubMed Central

    Shen, Yun-Lin; Sun, Lei; Hu, Yu-Jie; Liu, Hua-Jie; Kuang, Xin-Yu; Niu, Xiao-Ling; Huang, Wen-Yan

    2016-01-01

    The injury and repair of renal tubular epithelial cells play an important role in the pathological process of acute kidney injury (AKI). This study aimed to clarify the role of cell cycle change in renal tubular epithelial cell injury and repair in vivo and in vitro. Sprague-Dawley rats received bilateral renal pedicle clamping for 45 min (ischemia) followed by reperfusion. Pifithrin-α, a p53 inhibitor, was administered at 24 h before renal ischemia and 3 and 14 days after reperfusion. Results showed the tubular epithelial cells in M phase increased significantly at 2 h to 72 h after ischemia/reperfusion (I/R), while pifithrin-α decreased them. Renal I/R caused renal tubular epithelial damage in rats, which was improved by pifithrin-α. The α-SMA mRNA expression was up-regulated significantly after I/R, while it was down-regulated by pifithrin-α.NRK-52E cells were cultured in vitro, cell damage was induced by addition of TNF-α, and then cells were treated with pifithrin-α. Cells treated with TNF-α alone in G2/M phase increased significantly, but they were reduced in the presence of pifithrin-α. In NRK-52E cells treated with pifithrin-α for 6 h, NGAL mRNA expression was significantly lower than in cells without pifithrin-α treatment. After NRK-52E cells were treated with pifithrin-α for 24 h, α-SMA and FN mRNA expression was significantly lower than in cells without the treatment. In summary, pifithrin-α can facilitate the progression of renal tubular epithelial cells through G2/M phase, protecting them against injury. PMID:27829991

  14. Physiological stress increases renal injury in eNOS-knockout mice

    PubMed Central

    Pointer, Mildred A.; Daumerie, Geraldine; Bridges, LaKessha; Yancey, Sadiqa; Howard, Kelly; Davis, Wendell; Huang, Paul; Loscalzo, Joseph

    2015-01-01

    African Americans have a fourfold greater likelihood of developing end-stage renal disease (ESRD) compared with Caucasians. It has been proposed that the increased prevalence may be explained by non-traditional factors such as environmental stress and psychosocial factors. In this study, we used infrequent running to exhaustion as a physiological stressor to mimic real life experiences, such walking up stairs when an elevator is malfunctioning or running to catch a bus, to study its effect on renal injury in a hypertensive mouse model (endothelial nitric oxide synthase-deficient mice; eNOS−/−). This model has previously been shown to have renal injury comparable to that observed in African Americans. The effect of physiological stress on renal injury was examined in the setting of low (0.12%), control (0.45%) and high (8%) dietary salt. Following bouts of physiological stress, eNOS−/− mice had significantly greater interstitial inflammation compared with unstressed eNOS−/− mice (two-way analysis of variance (2-ANOVA), Holm–Sidak; P<0.01). Interestingly, eNOS−/− mice on a high-salt diet had greater interstitial inflammation compared with similarly stressed eNOS−/− mice on a low- or control-salt diet (2-ANOVA, Holm–Sidak; P<0.03). These effects of stress were independent of systolic blood pressure (141 ± 7, 143 ± 4, and 158 ± 8 vs. 141 ± 4, 138 ± 5, 150 ± 4 mm Hg; end of study vs. baseline, respectively). There was no significant effect of stress or dietary salt on renal injury in control wild-type mice (eNOS+/+). These data demonstrate that physiological stress exacerbates the renal injury associated with hypertension and that high-salt compounds this effect of stress. These results provide support for the idea that psychosocial and environmental factors contribute to the increased prevalence of ESRD in hypertensive African Americans. PMID:22170389

  15. Palmitoylethanolamide reduces early renal dysfunction and injury caused by experimental ischemia and reperfusion in mice.

    PubMed

    Di Paola, Rosanna; Impellizzeri, Daniela; Mondello, Patrizia; Velardi, Enrico; Aloisi, Carmela; Cappellani, Alessandro; Esposito, Emanuela; Cuzzocrea, Salvatore

    2012-10-01

    This study was designed to assess a protective effect of palmitoylethanolamide (PEA) in the development of inflammation after ischemia-reperfusion injury of the kidney. Moreover, to suggest a possible mechanism, renal ischemia-reperfusion was performed in mice with targeted disruption of peroxisome proliferator-activated receptor α (PPAR-α) gene (PPAR-αKO) to explain whether the observed PEA effect was dependent on PPAR-α pathway. Peroxisome proliferator-activated receptor-αKO and littermate wild-type controls (PPAR-αWT) were subjected to bilateral renal artery occlusion (30 min) and reperfusion (6 h) and received PEA (10 mg/kg i.p.) 15 min before release of clamps. Serum and urinary indicators of renal dysfunction and tubular and reperfusion injury were measured, specifically serum urea, creatinine, aspartate aminotransferase and γ-glutamyl transferase, and creatinine clearance. In addition, renal sections were used for histological scoring of renal injury and for immunologic evidence of nitrotyrosine formation, poly[adenosine diphosphate-ribose] (PAR), and adhesion molecules expression. The oxidative stress-sensitive nuclear factor κB signaling pathway was also investigated by Western blot analysis. Kidney myeloperoxidase activity and malondialdehyde levels were measured for assessment of polymorphonuclear leukocyte cell infiltration and lipid peroxidation, respectively. Apoptotic mechanisms were also investigated. Moreover, the infiltration and activation of mast cells were explored. In vivo, PEA administration during ischemia significantly reduced the increase in (i) creatinine, γ-glutamyl transferase, aspartate aminotransferase; (ii) nuclear translocation of nuclear factor κB p65; (iii) kidney myeloperoxidase activity and malondialdehyde levels; (iv) nitrotyrosine, PAR, and adhesion molecules expression; (v) the infiltration and activation of mast cells; and (vi) apoptosis. Our results clearly demonstrate that PEA significantly attenuated the degree

  16. Captopril attenuates hypertension and renal injury induced by the vascular endothelial growth factor inhibitor sorafenib.

    PubMed

    Nagasawa, Tasuku; Hye Khan, Md Abdul; Imig, John D

    2012-05-01

    Vascular endothelial growth factor inhibitors (VEGFi) are known to cause hypertension and renal injury that severely limits their use as an anticancer therapy. We hypothesized that the angiotensin-converting enzyme inhibitor captopril not only prevents hypertension, but also decreases renal injury caused by the VEGFi sorafenib. Rats were administered sorafenib (20 mg/kg per day) alone or in combination with captopril (40 mg/kg per day) for 4 weeks. Sorafenib administration increased blood pressure, which plateaued by day 10. Concurrent treatment with captopril for 4 weeks resulted in a 30 mmHg decrease in blood pressure compared with sorafenib alone (155 ± 5 vs 182 ± 6 mmHg, respectively; P < 0.05). Furthermore, concurrent captopril treatment reduced albuminuria by 50% compared with sorafenib alone (20 ± 8 vs 42 ± 9 mg/day, respectively; P < 0.05) and reduced nephrinuria by eightfold (280 ± 96 vs 2305 ± 665 μg/day, respectively; P < 0.05). Glomerular injury, thrombotic microangiopathy and tubular cast formation were also decreased in captopril-treated rats administered sorafenib. Renal autoregulatory efficiency was determined by evaluating the afferent arteriolar constrictor response to ATP. Sorafenib administration attenuated the vasoconstriction to ATP, whereas concurrent captopril treatment improved ATP reactivity. In conclusion, captopril attenuated hypertension and renal injury and improved renal autoregulatory capacity in rats administered sorafenib. These findings indicate that captopril treatment, in addition to alleviating the detrimental side-effect of hypertension, decreases the renal injury associated with anticancer VEGFi therapies such as sorafenib.

  17. Renal Handling of Circulating and Renal-Synthesized Hepcidin and Its Protective Effects against Hemoglobin-Mediated Kidney Injury.

    PubMed

    van Swelm, Rachel P L; Wetzels, Jack F M; Verweij, Vivienne G M; Laarakkers, Coby M M; Pertijs, Jeanne C L M; van der Wijst, Jenny; Thévenod, Frank; Masereeuw, Rosalinde; Swinkels, Dorine W

    2016-09-01

    Urinary hepcidin may have protective effects against AKI. However, renal handling and the potential protective mechanisms of hepcidin are not fully understood. By measuring hepcidin levels in plasma and urine using mass spectrometry and the kidney using immunohistochemistry after intraperitoneal administration of human hepcidin-25 (hhep25) in C57Bl/6N mice, we showed that circulating hepcidin is filtered by the glomerulus and degraded to smaller isoforms detected in urine but not plasma. Moreover, hepcidin colocalized with the endocytic receptor megalin in proximal tubules, and compared with wild-type mice, megalin-deficient mice showed higher urinary excretion of injected hhep25 and no hepcidin staining in proximal tubules that lack megalin. This indicates that hepcidin is reaborbed in the proximal tubules by megalin dependent endocytosis. Administration of hhep25 concomitant with or 4 hours after a single intravenous dose of hemoglobin abolished hemoglobin-induced upregulation of urinary kidney injury markers (NGAL and KIM-1) and renal Interleukin-6 and Ngal mRNA observed 24 hours after administration but did not affect renal ferroportin expression at this point. Notably, coadministration of hhep25 and hemoglobin but not administration of either alone greatly increased renal mRNA expression of hepcidin-encoding Hamp1 and hepcidin staining in distal tubules. These findings suggest a role for locally synthesized hepcidin in renal protection. Our observations did not support a role for ferroportin in hhep25-mediated protection against hemoglobin-induced early injury, but other mechanisms of cellular iron handling may be involved. In conclusion, our data suggest that both systemically delivered and locally produced hepcidin protect against hemoglobin-induced AKI.

  18. Aging causes exacerbated ischemic brain injury and failure of sevoflurane post-conditioning: role of B-cell lymphoma-2.

    PubMed

    Dong, P; Zhao, J; Zhang, Y; Dong, J; Zhang, L; Li, D; Li, L; Zhang, X; Yang, B; Lei, W

    2014-09-05

    Aging is associated with exacerbated brain injury after ischemic stroke. Herein, we explored the possible mechanisms underlying the age-associated exacerbated brain injury after ischemic stroke and determined whether therapeutic intervention with anesthetic post-conditioning would provide neuroprotection in aged rats. Male Fisher 344 rats (young, 4 months; aged, 24 months) underwent 2h of middle cerebral artery occlusion (MCAO) followed by 24-h reperfusion, with or without sevoflurane post-conditioning for 15 min immediately at the onset of reperfusion. Compared with young rats, aged rats showed larger infarct size, worse neurological scores and more TUNEL-positive cells in the penumbral cerebral cortex at 24h after MCAO. However, edema formation and motor coordination were similar in both groups. Sevoflurane reduced the infarct size, edema formation, and TUNEL-positive cells, and improved the neurological outcome in young rats but not in aged rats. Molecular studies revealed that basal expression of the anti-apoptotic molecule B-cell lymphoma-2 (Bcl-2) in the brain was lower in aged rats compared with young rats before MCAO, while basal expression of the pro-apoptotic molecule Bcl-2-associated X protein (Bax) showed similar levels in both groups. MCAO reduced Bcl-2 expression and increased Bax expression in both groups; however, Bax increase was more pronounced in aged rats. In young rats, sevoflurane reversed the above MCAO-induced changes. In contrast, sevoflurane failed to enhance Bcl-2 expression but decreased Bax expression in aged rats. These findings suggest that aging-associated reduction in basal Bcl-2 expression in the brain contributes to increased neuronal injury by enhancing cell apoptosis after ischemic stroke. Sevoflurane post-conditioning failed to provide neuroprotection in aged rats, probably due to its inability to increase Bcl-2 levels and prevent apoptosis in the brain.

  19. Inhibition of miRNA-210 reverses nicotine-induced brain hypoxic-ischemic injury in neonatal rats

    PubMed Central

    Wang, Lei; Ke, Jun; Li, Yong; Ma, Qinyi; Dasgupta, Chiranjib; Huang, Xiaohui; Zhang, Lubo; Xiao, DaLiao

    2017-01-01

    Maternal tobacco use in pregnancy increases the risk of neurodevelopmental disorders and neurobehavioral deficits in postnatal life. The present study tested the hypothesis that perinatal nicotine exposure exacerbated brain vulnerability to hypoxic-ischemic (HI) injury in neonatal rats through up-regulation of miR-210 expression in the developing brain. Nicotine was administered to pregnant rats via subcutaneous osmotic minipumps. Experiments of HI brain injury were performed in 10-day-old pups. Perinatal nicotine treatment significantly decreased neonatal body and brain weights, but increased the brain to body weight ratio. Perinatal nicotine exposure caused a significant increase in HI brain infarct size in the neonates. In addition, nicotine enhanced miR-210 expression and significantly attenuated brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase isoform B (TrkB) protein abundance in the brain. Of importance, intracerebroventricular administration of a miR-210 inhibitor (miR-210-LNA) significantly decreased HI-induced brain infarct size and reversed the nicotine-increased vulnerability to brain HI injury in the neonate. Furthermore, miR-210-LNA treatment also reversed nicotine-mediated down-regulation of BDNF and TrkB protein expression in the neonatal brains. These findings provide novel evidence that the increased miR-210 plays a causal role in perinatal nicotine-induced developmental programming of ischemic sensitive phenotype in the brain. It represents a potential novel therapeutic approach for treatment of brain hypoxic-ischemic encephalopathy in the neonate-induced by fetal stress. PMID:28123348

  20. Limited Clinical Utility of Remote Ischemic Conditioning in Renal Transplantation: A Meta-Analysis of Randomized Controlled Trials

    PubMed Central

    Wu, Ran; Xin, Hui; Lu, Tian-Ze; Li, Ming-Hao; Song, Kai-Wei; Wang, Min; Zhu, Yun-Peng; Zhu, Meng; Geng, Li-Guo; Gao, Xiao-Fei; Zhou, Liu-Hua; Zhang, Sheng-Li; Zhu, Jia-Geng; Jia, Rui-Peng

    2017-01-01

    Objective We conducted this meta-analysis of randomized controlled trials (RCTs) to investigate whether remote ischemic conditioning (RIC) could improve graft functions in kidney transplantation. Methods PubMed, Web of Science, and Cochrane Library were comprehensively searched to identify all eligible studies by October 5, 2016. The treatment effects were examined with risk ratio (RR) and weighted mean difference with the corresponding 95% confidence intervals (CI). The statistical significance and heterogeneity were assessed with both Z-test and Q-test. Results A total of six RCTs including 651 recipients, were eventually identified. Compared to the controls, RIC could reduce the incidence of delayed graft function (DGF) after kidney transplantation (random-effects model: RR = 0.89; fixed-effect model: RR = 0.84). However, the decrease did not reveal statistical significance. The subgroup analysis by RIC type demonstrated no significant difference among the three interventions in protecting renal allografts against DGF. Furthermore, no significant difference could be observed in the incidence of acute rejection, graft loss, 50% fall in serum creatinine, as well as the estimated glomerular filtration rate and hospital stay between the RIC and Control groups. Conclusions This meta-analysis suggested that RIC might exert renoprotective functions in human kidney transplantation, and further well-designed RCTs with large sample size are warranted to assess its clinical efficacy. PMID:28129389

  1. Recovery of renal function after administration of adipose-tissue-derived stromal vascular fraction in rat model of acute kidney injury induced by ischemia/reperfusion injury.

    PubMed

    Lee, Chunwoo; Jang, Myoung Jin; Kim, Bo Hyun; Park, Jin Young; You, Dalsan; Jeong, In Gab; Hong, Jun Hyuk; Kim, Choung-Soo

    2017-03-10

    Acute kidney injury (AKI) induced by ischemia/reperfusion (I/R) injury is a major challenge in critical care medicine. The purpose of this study is to determine the therapeutic effects of the adipose-tissue-derived stromal vascular fraction (SVF) and the optimal route for SVF delivery in a rat model of AKI induced by I/R injury. Fifty male Sprague-Dawley rats were randomly divided into five groups (10 animals per group): sham, nephrectomy control, I/R injury control, renal arterial SVF infusion and subcapsular SVF injection. To induce AKI by I/R injury, the left renal artery was clamped with a nontraumatic vascular clamp for 40 min, and the right kidney was removed. Rats receiving renal arterial infusion of SVF had a significantly reduced increase in serum creatinine compared with the I/R injury control group at 4 days after I/R injury. The glomerular filtration rate of the renal arterial SVF infusion group was maintained at a level similar to that of the sham and nephrectomy control groups at 14 days after I/R injury. Masson's trichrome staining showed significantly less fibrosis in the renal arterial SVF infusion group compared with that in the I/R injury control group in the outer stripe (P < 0.001). TUNEL labeling showed significantly decreased apoptosis in both the renal arterial SVF infusion and subcapsular SVF injection groups compared with the I/R injury control group in the outer stripe (P < 0.001). Thus, renal function is effectively rescued from AKI induced by I/R injury through the renal arterial administration of SVF in a rat model.

  2. Dibucaine Mitigates Spreading Depolarization in Human Neocortical Slices and Prevents Acute Dendritic Injury in the Ischemic Rodent Neocortex

    PubMed Central

    Risher, W. Christopher; Lee, Mark R.; Fomitcheva, Ioulia V.; Hess, David C.; Kirov, Sergei A.

    2011-01-01

    Background Spreading depolarizations that occur in patients with malignant stroke, subarachnoid/intracranial hemorrhage, and traumatic brain injury are known to facilitate neuronal damage in metabolically compromised brain tissue. The dramatic failure of brain ion homeostasis caused by propagating spreading depolarizations results in neuronal and astroglial swelling. In essence, swelling is the initial response and a sign of the acute neuronal injury that follows if energy deprivation is maintained. Choosing spreading depolarizations as a target for therapeutic intervention, we have used human brain slices and in vivo real-time two-photon laser scanning microscopy in the mouse neocortex to study potentially useful therapeutics against spreading depolarization-induced injury. Methodology/Principal Findings We have shown that anoxic or terminal depolarization, a spreading depolarization wave ignited in the ischemic core where neurons cannot repolarize, can be evoked in human slices from pediatric brains during simulated ischemia induced by oxygen/glucose deprivation or by exposure to ouabain. Changes in light transmittance (LT) tracked terminal depolarization in time and space. Though spreading depolarizations are notoriously difficult to block, terminal depolarization onset was delayed by dibucaine, a local amide anesthetic and sodium channel blocker. Remarkably, the occurrence of ouabain-induced terminal depolarization was delayed at a concentration of 1 µM that preserves synaptic function. Moreover, in vivo two-photon imaging in the penumbra revealed that, though spreading depolarizations did still occur, spreading depolarization-induced dendritic injury was inhibited by dibucaine administered intravenously at 2.5 mg/kg in a mouse stroke model. Conclusions/Significance Dibucaine mitigated the effects of spreading depolarization at a concentration that could be well-tolerated therapeutically. Hence, dibucaine is a promising candidate to protect the brain from

  3. Baicalin attenuates focal cerebral ischemic reperfusion injury through inhibition of nuclear factor {kappa}B p65 activation

    SciTech Connect

    Xue, Xia; Qu, Xian-Jun; Yang, Ying; Sheng, Xie-Huang; Cheng, Fang; Jiang, E-Nang; Wang, Jian-hua; Bu, Wen; Liu, Zhao-Ping

    2010-12-17

    Research highlights: {yields} Permanent NF-{kappa}B p65 activation contributes to the infarction after ischemia-reperfusion injury in rats. {yields} Baicalin can markedly inhibit the nuclear NF-{kappa}B p65 expression and m RNA levels after ischemia-reperfusion injury in rats. {yields} Baicalin decreased the cerebral infarction area via inhibiting the activation of nuclear NF-{kappa}B p65. -- Abstract: Baicalin is a flavonoid compound purified from plant Scutellaria baicalensis Georgi. We aimed to evaluate the neuroprotective effects of baicalin against cerebral ischemic reperfusion injury. Male Wistar rats were subjected to middle cerebral artery occlusion (MCAO) for 2 h followed by reperfusion for 24 h. Baicalin at doses of 50, 100 and 200 mg/kg was intravenously injected after ischemia onset. Twenty-four hours after reperfusion, the neurological deficit was scored and infarct volume was measured. Hematoxylin and eosin (HE) staining was performed to analyze the histopathological changes of cortex and hippocampus neurons. We examined the levels of NF-{kappa}B p65 in ischemic cortexes by Western blot analysis and RT-PCR assay. The results showed that the neurological deficit scores were significantly decreased from 2.0 {+-} 0.7 to 1.2 {+-} 0.4 and the volume of infarction was reduced by 25% after baicalin injection. Histopathological examination showed that the increase of neurons with pycnotic shape and condensed nuclear in cortex and hippocampus were not observed in baicalin treated animals. Further examination showed that NF-{kappa}B p65 in cortex was increased after ischemia reperfusion injury, indicating the molecular mechanism of ischemia reperfusion injury. The level of NF-{kappa}B p65 was decreased by 73% after baicalin treatment. These results suggest that baicalin might be useful as a potential neuroprotective agent in stroke therapy. The neuroprotective effects of baicalin may relate to inhibition of NF-{kappa}B p65.

  4. Histological, molecular and biochemical detection of renal injury after Echis pyramidum snake envenomation in rats

    PubMed Central

    Al-Johany, Awadh M.; Al-Sadoon, Mohamed K.; Abdel Moneim, Ahmed E.; Bauomy, Amira A.; Diab, Marwa S.M.

    2014-01-01

    Nephrotoxicity is a common sign of snake envenomation. The present work aimed to clarify the effect of intraperitoneal injection of 1/8 LD50 and 1/4 LD50 doses of Echis pyramidum snake venom on the renal tissue of rats after 2, 4 and 6 h from envenomation. Histopathological examination showed intense dose and time dependent abnormalities, including swelling glomerulus and tubular necrosis and damage as well as signs of intertubular medullary hemorrhage at early stages of envenomation. However, at late stages of envenomation by any of the doses under investigation, no intact renal corpuscles were recorded and complete lysis in renal corpuscles with ruptured Bowman’s capsules was observed. Immunohistochemistry by immunohistochemical staining was used to test the protein expression of Bax in renal tissue of rats. The result showed that the expression of Bax in renal tissue sections of envenomated rats was increased according to dose and time-dependant manner. The isolation of DNA from the renal cells of envenomed rats pointed out to the occurrence of DNA fragmentation, which is another indicator for renal tissue injury especially after 6 h of 1/4 LD50 of E. pyramidum envenomation. Oxidative stress biomarkers malondialdehyde and nitrite/nitrate levels, antioxidant parameters; glutathione, total antioxidant capacity and catalase were assayed in renal tissue homogenates. The venom induced significant increase in the levels of malondialdehyde and nitrite/nitrate while the levels of glutathione, total antioxidant capacity and catalase were significantly decreased, especially after 6 h of envenomation. The results revealed that the E. pyramidum induced dose and time-dependant significant disturbances in the physiological parameters in the kidney. We conclude that the use of the immunohistochemical techniques, the detection of DNA integrity and oxidative stress marker estimations are more specific tools that can clarify cellular injury and could point out to the defense

  5. Betaine supplementation protects against high-fructose-induced renal injury in rats.

    PubMed

    Fan, Chen-Yu; Wang, Ming-Xing; Ge, Chen-Xu; Wang, Xing; Li, Jian-Mei; Kong, Ling-Dong

    2014-03-01

    High fructose intake causes metabolic syndrome, being an increased risk of chronic kidney disease development in humans and animals. In this study, we examined the influence of betaine on high-fructose-induced renal damage involving renal inflammation, insulin resistance and lipid accumulation in rats and explored its possible mechanisms. Betaine was found to improve high-fructose-induced metabolic syndrome including hyperuricemia, dyslipidemia and insulin resistance in rats with systemic inflammation. Betaine also showed a protection against renal dysfunction and tubular injury with its restoration of the increased glucose transporter 9 and renal-specific transporter in renal brush bolder membrane and the decreased organic anion transporter 1 and adenosine-triphosphate-binding cassette transporter 2 in the renal cortex in this model. These protective effects were relevant to the anti-inflammatory action by inhibiting the production of inflammatory cytokines including interleukin (IL)-1β, IL-18, IL-6 and tumor necrosis factor-α in renal tissue of high-fructose-fed rat, being more likely to suppress renal NOD-like receptor superfamily, pyrin domain containing 3 inflammasome activation than nuclear factor κB activation. Subsequently, betaine with anti-inflammation ameliorated insulin signaling impairment by reducing the up-regulation of suppressor of cytokine signaling 3 and lipid accumulation partly by regulating peroxisome proliferator-activated receptor α/palmityltransferase 1/carnitine/organic cation transporter 2 pathway in kidney of high-fructose-fed rats. These results indicate that the inflammatory inhibition plays a pivotal role in betaine's improvement of high-fructose-induced renal injury with insulin resistance and lipid accumulation in rats.

  6. Low molecular weight fucoidan protects renal tubular cells from injury induced by albumin overload

    PubMed Central

    Jia, Yingli; Sun, Yi; Weng, Lin; Li, Yingjie; Zhang, Quanbin; Zhou, Hong; Yang, Baoxue

    2016-01-01

    Albuminuria is a causative and aggravating factor for progressive renal damage in chronic kidney disease (CKD). The aim of this study was to determine if low molecular weight fucoidan (LMWF) could protect renal function and tubular cells from albumin overload caused injury. Treatment with 10 mg/g bovine serum albumin caused renal dysfunction, morphological changes, and overexpression of inflammation and fibrosis associated proteins in 129S2/Sv mice. LMWF (100 mg/kg) protected against kidney injury and renal dysfunction with decreased blood creatinine by 34% and urea nitrogen by 25%, increased creatinine clearance by 48%, and decreased significantly urinary albumin concentration. In vitro proximal tubule epithelial cell (NRK-52E) model showed that LMWF dose-dependently inhibited overexpression of proinflammatory and profibrotic factors, oxidative stress and apoptosis caused by albumin overload. These experimental results indicate that LMWF protects against albumin overload caused renal injury by inhibiting inflammation, fibrosis, oxidative stress and apoptosis, which suggests that LMWF could be a promising candidate drug for preventing CKD. PMID:27545472

  7. Thiazide-induced subtle renal injury not observed in states of equivalent hypokalemia.

    PubMed

    Reungjui, S; Hu, H; Mu, W; Roncal, C A; Croker, B P; Patel, J M; Nakagawa, T; Srinivas, T; Byer, K; Simoni, J; Wesson, D; Sitprija, V; Johnson, R J

    2007-12-01

    Hydrochlorothiazide (HCTZ) is used to manage hypertension and heart failure; however, its side effects include mild hypokalemia, metabolic abnormalities, and volume depletion, which might have deleterious effects on renal and endothelial function. We studied whether HCTZ cause renal injury and/or altered vasoreactivity and if these changes are hypokalemia-dependent. Rats were given a normal diet or a diet moderately low in potassium K+ with or without HCTZ. Animals fed either a low K+ diet alone or HCTZ developed mild hypokalemia. There was no significant difference in systolic blood pressure in the different treatment groups. All three groups with hypokalemia had mild proteinuria; low K(+)-HCTZ rats had reduced creatinine clearance. HCTZ-treated rats displayed hypomagnesemia, hypertriglyceridemia, hyperglycemia, insulin resistance, and hyperaldosteronism. No renal injury was observed in the groups without HCTZ; however, increased kidney weight, glomerular ischemia, medullary injury, and cortical oxidative stress were seen with HCTZ treatment. Endothelium-dependent vasorelaxation was reduced in all hypokalemic groups and correlated with reduced serum K+, serum, and urine nitric oxide. Our results show that HCTZ is associated with greater renal injury for the same degree of hypokalemia as the low K+ diet, suggesting that factors such as chronic ischemia and hyperaldosteronism due to volume depletion may be responsible agents. We also found impaired endothelium-dependent vasorelaxation was linked to mild hypokalemia.

  8. Urinary mitochondrial DNA is a biomarker of mitochondrial disruption and renal dysfunction in acute kidney injury

    PubMed Central

    Whitaker, Ryan M.; Stallons, L. Jay; Kneff, Joshua E.; Alge, Joseph L.; Harmon, Jennifer L.; Rahn, Jennifer J.; Arthur, John M.; Beeson, Craig C.; Chan, Sherine L.; Schnellmann, Rick G.

    2015-01-01

    Recent studies show the importance of mitochondrial dysfunction in the initiation and progression of acute kidney injury (AKI). However, no biomarkers exist linking renal injury to mitochondrial function and integrity. To this end, we evaluated urinary mitochondrial DNA (UmtDNA) as a biomarker of renal injury and function in humans with AKI following cardiac surgery. mtDNA was isolated from the urine of patients following cardiac surgery and quantified by qPCR. Patients were stratified into no AKI, stable AKI and progressive AKI groups based on Acute Kidney Injury Network (AKIN) staging. UmtDNA was elevated in progressive AKI patients, and was associated with progression of patients with AKI at collection to higher AKIN stages. To evaluate the relationship of UmtDNA to measures of renal mitochondrial integrity in AKI, mice were subjected to sham surgery or varying degrees of ischemia followed by 24 hours of reperfusion. UmtDNA increased in mice after 10-15 minutes of ischemia and positively correlated with ischemia time. Furthermore, UmtDNA was predictive of AKI in the mouse model. Finally, UmtDNA levels were negatively correlated with renal cortical mtDNA and mitochondrial gene expression. These translational studies demonstrate that UmtDNA is associated with recovery from AKI following cardiac surgery by serving as an indicator of mitochondrial integrity. Thus, UmtDNA may serve as valuable biomarker for the development of mitochondrial targeted therapies in AKI. PMID:26287315

  9. The protein kinase 2 inhibitor tetrabromobenzotriazole protects against renal ischemia reperfusion injury

    PubMed Central

    Ka, Sun-O; Hwang, Hong Pil; Jang, Jong-Hwa; Hyuk Bang, In; Bae, Ui-Jin; Yu, Hee Chul; Cho, Baik Hwan; Park, Byung-Hyun

    2015-01-01

    Protein kinase 2 (CK2) activation was reported to enhance reactive oxygen species production and activate the nuclear factor κB (NF-κB) pathway. Because oxidative stress and inflammation are critical events for tissue destruction during ischemia reperfusion (I/R), we sought to determine whether CK2 was important in the renal response to I/R. Mice underwent 25 min of renal ischemia and were then reperfused. We confirmed an increased expression of CK2α during the reperfusion period, while expression of CK2β remained consistent. We administered tetrabromobenzotriazole (TBBt), a selective CK2α inhibitor before inducing I/R injury. Mice subjected to I/R injury showed typical patterns of acute kidney injury; blood urea nitrogen and serum creatinine levels, tubular necrosis and apoptosis, inflammatory cell infiltration and proinflammatory cytokine production, and oxidative stress were markedly increased when compared to sham mice. However, pretreatment with TBBt abolished these changes and improved renal function and architecture. Similar renoprotective effects of CK2α inhibition were observed for emodin. Renoprotective effects of CK2α inhibition were associated with suppression of NF-κB and mitogen activated protein kinase (MAPK) pathways. Taken together, these results suggest that CK2α mediates proapoptotic and proinflammatory signaling, thus the CK2α inhibitor may be used to prevent renal I/R injuries observed in clinical settings. PMID:26423352

  10. Human CD133+ Renal Progenitor Cells Induce Erythropoietin Production and Limit Fibrosis After Acute Tubular Injury

    PubMed Central

    Aggarwal, Shikhar; Grange, Cristina; Iampietro, Corinne; Camussi, Giovanni; Bussolati, Benedetta

    2016-01-01

    Persistent alterations of the renal tissue due to maladaptive repair characterize the outcome of acute kidney injury (AKI), despite a clinical recovery. Acute damage may also limit the renal production of erythropoietin, with impairment of the hemopoietic response to ischemia and possible lack of its reno-protective action. We aimed to evaluate the effect of a cell therapy using human CD133+ renal progenitor cells on maladaptive repair and fibrosis following AKI in a model of glycerol-induced rhabdomyolysis. In parallel, we evaluated the effect of CD133+ cells on erythropoietin production. Administration of CD133+ cells promoted the restoration of the renal tissue, limiting the presence of markers of injury and pro-inflammatory molecules. In addition, it promoted angiogenesis and protected against fibrosis up to day 60. No effect of dermal fibroblasts was observed. Treatment with CD133+ cells, but not with PBS or fibroblasts, limited anemia and increased erythropoietin levels both in renal tissue and in circulation. Finally, CD133+ cells contributed to the local production of erythropoietin, as observed by detection of circulating human erythropoietin. CD133+ cells appear therefore an effective source for cell repair, able to restore renal functions, including erythropoietin release, and to limit long term maldifferentiation and fibrosis. PMID:27853265

  11. New Biomarkers of Acute Kidney Injury and the Cardio-renal Syndrome

    PubMed Central

    2011-01-01

    Changes in renal function are one of the most common manifestations of severe illness. There is a clinical need to intervene early with proven treatments in patients with potentially deleterious changes in renal function. Unfortunately progress has been hindered by poor definitions of renal dysfunction and a lack of early biomarkers of renal injury. In recent years, the definitional problem has been addressed with the establishment of a new well-defined diagnostic entity, acute kidney injury (AKI), which encompasses the wide spectrum of kidney dysfunction, together with clearer definition and sub-classification of the cardio-renal syndromes. From the laboratory have emerged new biomarkers which allow early detection of AKI, including neutrophil gelatinase-associated lipocalin (NGAL) and cystatin C. This review describes the new concepts of AKI and the cardio-renal syndromes as well as novel biomarkers which allow early detection of AKI. Panels of AKI biomarker tests are likely to revolutionise the diagnosis and management of critically ill patients in the coming years. Earlier diagnosis and intervention should significantly reduce the morbidity and mortality associated with acute kidney damage. PMID:21474979

  12. An Isolation Method for Assessment of Brain Mitochondria Function in Neonatal Mice with Hypoxic-Ischemic Brain Injury

    PubMed Central

    Caspersen, Casper S.; Sosunov, Alexander; Utkina-Sosunova, Irina; Ratner, Veniamin I.; Starkov, Anatoly A.; Ten, Vadim S.

    2010-01-01

    This work was undertaken to develop a method for the isolation of mitochondria from a single cerebral hemisphere in neonatal mice. Mitochondria from the normal mouse brain hemisphere isolated by the proposed method exhibited a good respiratory control ratio of 6.39 ± 0.53 during glutamate-malate-induced phosphorylating respiration. Electron microscopy showed intact mitochondria. The applicability of this method was tested on mitochondria isolated from naïve mice and their littermates subjected to hypoxic-ischemic insult. Hypoxic-ischemic insult prior to reperfusion resulted in a significant (p < 0.01) inhibition of phosphorylating respiration compared to naïve littermates. This was associated with a profound depletion of the ATP content in the ischemic hemisphere. The expression for Mn superoxide dismutase and cytochrome C (markers for the integrity of the mitochondrial matrix and outer membrane) was determined by Western blot to control for mitochondrial integrity and quantity in the compared samples. Thus, we have developed a method for the isolation of the cerebral mitochondria from a single hemisphere adapted to neonatal mice. This method may serve as a valuable tool to study mitochondrial function in a mouse model of immature brain injury. In addition, the suggested method enables us to examine the mitochondrial functional phenotype in immature mice with a targeted genetic alteration. PMID:18349523

  13. Octreotide Protects the Mouse Retina against Ischemic Reperfusion Injury through Regulation of Antioxidation and Activation of NF-κB

    PubMed Central

    Wang, Jun; Sun, Ziqiang; Shen, Junsheng; Wu, Dongdong; Liu, Fang; Yang, Ruisheng; Ji, Shaoping; Ji, Ailing; Li, Yanzhang

    2015-01-01

    Somatostatin (SST), an endogenous peptide, may exert anti-inflammatory and neuroprotective effects on retinal injury induced by ischemia. Retinal ischemic reperfusion (I/R) injury always produces many reactive oxygen species (ROS), which can aggravate the tissue damage. The effects of octreotide (OCT), a SST analogue, on retinal I/R injury and ROS formation, are not very clear. In this study, we observed the effects of OCT on morphological changes, oxidative stress, and cell death, induced by retinal I/R injury. The activation of nuclear factor κB (NF-κB) and intercellular adhesion molecule-1 (ICAM-1) were further evaluated in I/R retina treated with or without OCT. The retinal layer thickness was increased at 1 day after I/R and decreased at 7 days after I/R (P < 0.05). This effect was associated with increase in MDA and ROS levels (P < 0.05). The Tunel-positive cells increased and the number of ganglion cell layer (GCL) neurons decreased significantly after I/R injury. The expression of p-p65 and ICAM-1 increased significantly in I/R retinas (P < 0.05). Each effect was markedly attenuated by application of OCT. These data indicate that OCT protects the retina against retinal I/R damage, which could be through inhibition of oxidative stress and downregulation of NF-κB and ICAM-1 expression. PMID:26175842

  14. Complement Component C1q Mediates Mitochondria-Driven Oxidative Stress in Neonatal Hypoxic–Ischemic Brain Injury

    PubMed Central

    Ten, Vadim S.; Yao, Jun; Ratner, Veniamin; Sosunov, Sergey; Fraser, Deborah A.; Botto, Marina; Baalasubramanian, Sivasankar; Morgan, B. Paul; Silverstein, Samuel; Stark, Raymond; Polin, Richard; Vannucci, Susan J.; Pinsky, David; Starkov, Anatoly A.

    2010-01-01

    Hypoxic–ischemic (HI) brain injury in infants is a leading cause of lifelong disability. We report a novel pathway mediating oxidative brain injury after hypoxia–ischemia in which C1q plays a central role. Neonatal mice incapable of classical or terminal complement activation because of C1q or C6 deficiency or pharmacologically inhibited assembly of membrane attack complex were subjected to hypoxia–ischemia. Only C1q−/− mice exhibited neuroprotection coupled with attenuated oxidative brain injury. This was associated with reduced production of reactive oxygen species (ROS) in C1q−/− brain mitochondria and preserved activity of the respiratory chain. Compared with C1q+/+ neurons, cortical C1q−/− neurons exhibited resistance to oxygen– glucose deprivation. However, postischemic exposure to exogenous C1q increased both mitochondrial ROS production and mortality of C1q−/− neurons. This C1q toxicity was abolished by coexposure to antioxidant Trolox (6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid). Thus, the C1q component of complement, accelerating mitochondrial ROS emission, exacerbates oxidative injury in the developing HI brain. The terminal complement complex is activated in the HI neonatal brain but appeared to be nonpathogenic. These findings have important implications for design of the proper therapeutic interventions against HI neonatal brain injury by highlighting a pathogenic priority of C1q-mediated mitochondrial oxidative stress over the C1q deposition-triggered terminal complement activation. PMID:20147536

  15. Tangshen formula attenuates diabetic renal injuries by upregulating autophagy via inhibition of PLZF expression

    PubMed Central

    Zhao, Tingting; Zhang, Haojun; Yan, Meihua; Dong, Xi; Chen, Pengmin; Ma, Liang; Li, Ping

    2017-01-01

    The Chinese herbal granule Tangshen Formula (TSF) has been proven to decrease proteinuria and improve estimated glomerular filtration rate (eGFR) in diabetic kidney disease (DKD) patients. However, the underlying mechanism of TSF on treatment of diabetic nephropathy (DN) remains unclear. The present study aimed to identify the therapeutic target of TSF in diabetic renal injuries through microarray-based gene expression profiling and establish its underlying mechanism. TSF treatment significantly attenuated diabetic renal injuries by inhibiting urinary excretion of albumin and renal histological injuries in diabetic (db/db) mice. We found that PLZF might be the molecular target of TSF in DN. In vivo, the db/db mice showed a significant increase in renal protein expression of PLZF and collagen III, and decrease in renal autophagy levels (downregulated LC3 II and upregulated p62/SQSTM1) compared to db/m mice. The application of TSF resulted in the downregulation of PLZF and collagen III and upregulation of autophagy level in the kidneys of db/db mice. In vitro, TSF reduced high glucose (HG)-induced cell proliferation for NRK52E cells. Further studies indicated that the exposure of NRK52E cells to high levels of glucose resulted in the downregulation of cellular autophagy and upregulation of collagen III protein, which was reversed by TSF treatment by decreasing PLZF expression. In conclusion, TSF might have induced cellular autophagy by inhibiting PLZF expression, which in turn resulted in an increase in autophagic degradation of collagen III that attenuated diabetic renal injuries. PMID:28182710

  16. Comparison of intestinal warm ischemic injury in PACAP knockout and wild-type mice.

    PubMed

    Ferencz, Andrea; Kiss, Peter; Weber, Gyorgy; Helyes, Zsuzsanna; Shintani, Norihito; Baba, Akemichi; Reglodi, Dora

    2010-11-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is present in the gastrointestinal tract and plays a central role in the intestinal physiology, mainly in the secretion and motility. The aim of our study was to compare the ischemic injury in wild-type and PACAP-38 knockout mice following warm mesenteric small bowel ischemia. Warm ischemia groups were designed with occlusion of superior mesenteric artery for 1, 3, and 6 h in wild-type (n = 10 in each group) and PACAP-38 knockout (n = 10 in each group) mice. Small bowel biopsies were collected after laparotomy (control) and at the end of the ischemia periods. To determine oxidative stress parameters, malondialdehyde (MDA), reduced glutathione (GSH), and superoxide dismutase (SOD) were measured. Tissue damage was analyzed by qualitative and quantitative methods on hematoxylin/eosin-stained sections. In PACAP-38 knockout animals, tissue MDA increased significantly after 3 and 6 h ischemia (133.97 ± 6,2; 141.86 ± 5,8) compared to sham-operated (100.92 ± 3,6) and compared to wild-type results (112.8 ± 2,1; 118.4 ± 1.03 μmol/g, p < 0.05). Meanwhile, tissue concentration of GSH and activity of SOD decreased significantly in knockout mice compared to wild-type form (GSH, 795.97 ± 10.4; 665.1 ± 8,8 vs. 893.23 ± μmol/g; SOD, 94.4 ± 1.4; 81.2 ± 3.9 vs. 208.09 ± 3,7 IU/g). Qualitative and quantitative histological results showed destruction of the mucous, submucous layers, and crypts in knockout mice compared to wild-type tissues. These processes correlated with the warm ischemia periods. Our present results propose an important protective effect of endogenous PACAP-38 against intestinal warm ischemia, which provides basis for further investigation to elucidate the mechanism of this protective effect.

  17. Protective effects of salusin-α and salusin-β on renal ischemia/reperfusion damage and their levels in ischemic acute renal failure.

    PubMed

    Cakir, M; Duzova, H; Taslidere, A; Orhan, G; Ozyalin, F

    2017-01-01

    Salusin-α and salusin-β are expressed in many tissues including the central nervous system, vessels and kidneys; they have been shown to decrease endoplasmic reticulum stress during heart ischemia/reperfusion (I/R) and to decrease apoptosis. We investigated the relation of salusin-α and salusin-β levels to acute ischemic renal failure. We also investigated whether these peptides are protective against renal I/R damage. Fifty-three rats were divided into six groups: control, I/R, I/R + salusin-α1, I/R + salusin-α10, I/R + salusin-β1 and I/R + salusin-β10. After removing the right kidney, the left kidney was subjected to ischemia for 1 h and reperfusion for 23 h. The treatment groups were injected subcutaneously at the beginning of ischemia with 1 or 10 μg/kg salusin-α, and 1 or 10 μg/kg salusin-β. Histopathology was assessed at the end of the experiment. Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-PX) activity and malondialdehyde (MDA) levels were measured in the kidney tissue. Serum levels of blood urea nitrogen (BUN), creatinine (Cre), tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6) and interleukin-1 beta (IL-1β) also were measured. Levels of salusin-α and salusin-β were measured in the serum and kidney tissues of the control and I/R groups. SOD, CAT and GSH-PX activities were decreased and the levels of MDA, TNF-α, IL-6, IL-1β, BUN and Cre were increased in the I/R group compared to controls. Severe glomerular and tubular damage was apparent in the I/R group compared to controls. The level of salusin-β was decreased in the serum and kidney tissue of the I/R group compared to controls, whereas the level of salusin-α was decreased in the serum and increased in the kidney tissue. Salusin-α and salusin-β administration increased SOD and GSH-PX enzyme activation and decreased the levels of MDA, TNF-α, IL-6 and IL-1β compared to the I/R group. BUN and Cre levels were decreased in the I/R + salusin-α1 group

  18. Magnetic Resonance Imaging (MRI) Analysis of Ischemia/Reperfusion in Experimental Acute Renal Injury.

    PubMed

    Pohlmann, Andreas; Arakelyan, Karen; Seeliger, Erdmann; Niendorf, Thoralf

    2016-01-01

    Imbalance between renal oxygen delivery and demand in the first hours after reperfusion is suggested to be decisive in the pathophysiological chain of events leading to ischemia-induced acute kidney injury. Here we describe blood oxygenation level-dependent (BOLD) magnetic resonance imaging (MRI) for continuous monitoring of the deoxyhemoglobin-sensitive MR parameter T 2* in the renal cortex, outer medulla, and inner medulla of rats throughout renal ischemia/reperfusion (I/R). Changes during I/R are benchmarked against the effects of variations in the fraction of inspired oxygen (hypoxia, hyperoxia). This method may be useful for investigating renal blood oxygenation of rats in vivo under various experimental (patho)physiological conditions.

  19. Reduction of ischemic brain injury by administration of palmitoylethanolamide after transient middle cerebral artery occlusion in rats.

    PubMed

    Ahmad, Akbar; Genovese, Tiziana; Impellizzeri, Daniela; Crupi, Rosalia; Velardi, Enrico; Marino, Angela; Esposito, Emanuela; Cuzzocrea, Salvatore

    2012-10-05

    Stroke is the third leading cause of death and the leading cause of long-term disability in adults. Current therapeutic strategies for stroke, including thrombolytic drugs, such as tissue plasminogen activator offer great promise for the treatment, but complimentary neuroprotective treatments are likely to provide a better outcome. To counteract the ischemic brain injury in mice, a new therapeutic approach has been employed by using palmitoylethanolamide (PEA). PEA is one of the members of N-acyl-ethanolamine family maintain not only redox balance but also inhibit the mechanisms of secondary injury on ischemic brain injury. Treatment of the middle cerebral artery occlusion (MCAo)-induced animals with PEA reduced edema and brain infractions as evidenced by decreased 2,3,5-triphenyltetrazolium chloride (TTC) staining across brain sections. PEA-mediated improvements in tissues histology shown by reduction of lesion size and improvement in apoptosis level (assayed by Bax and Bcl-2) further support the efficacy of PEA therapy. We demonstrated that PEA treatment blocked infiltration of astrocytes and restored MCAo-mediated reduced expression of PAR, nitrotyrosine, iNOS, chymase, tryptase, growth factors (BDNF and GDNF) and GFAP. PEA also inhibited the MCAo-mediated increased expression of pJNK, NF-κB, and degradation of IκB-α. PEA-treated injured animals improved neurobehavioral functions as evaluated by motor deficits. Based on these findings we propose that PEA would be useful in lowering the risk of damage or improving function in ischemia-reperfusion brain injury-related disorders.

  20. Family-based association study of matrix metalloproteinase-3 and -9 haplotypes with susceptibility to ischemic white matter injury.

    PubMed

    Fornage, Myriam; Mosley, Thomas H; Jack, Clifford R; de Andrade, Mariza; Kardia, Sharon L R; Boerwinkle, Eric; Turner, Stephen T

    2007-01-01

    Susceptibility to ischemic damage to the subcortical white matter of the brain has a strong genetic basis. Dysregulation of matrix metalloproteinases (MMPs) contributes to loss of cerebrovascular integrity and white matter injury. We investigated whether sequence variation in the genes encoding MMP3 and MMP9 is associated with variation in leukoaraiosis volume, determined by magnetic resonance imaging, in non-Hispanic whites and African-Americans using family-based association tests. Seven hundred and fifty-six white and 671 African-American individuals from sibships ascertained through two or more siblings with hypertension were genotyped for 7 and 8 haplotype-tagging polymorphisms in the MMP3 and MMP9 genes, respectively. MMP3 sequence variation was significantly associated with variation in leukoaraiosis volume in Whites. Two common haplotypes with opposing relationships to leukoaraiosis volume were identified. MMP9 sequence variation was also significantly associated with variation in leukoaraiosis volume in both African-Americans and Whites. Different haplotypes contributed to these associations in the two racial groups. These findings add to the growing body of evidence from animal models and human clinical studies suggesting a role of MMPs in ischemic white matter injury. They provide the basis for further investigation of the role of these genes in susceptibility and/or progression to clinical disease.

  1. Neuroprotection by Methylene Blue in Cerebral Global Ischemic Injury Induced Blood-Brain Barrier Disruption and Brain Pathology: A Review.

    PubMed

    Wiklund, Lars; Sharma, Aruna; Sharma, Hari Shanker

    2016-01-01

    Transient global ischemic cerebral injury is a consequence of cardiac arrest and accounts for approximately 450,000 annual deaths with a mortality of approximately 90%. Serious morbidity follows for many of the survivors and up to 16% of patients achieving restoration of spontaneous circulation develop brain death. Other survivors are left with persistent cognitive impairment such as memory and sensimotor deficits, reducing quality of life and resulting in heavy costs on society. Many studies over the years have been devoted to improving outcome after cardiac arrest and have, to a certain degree succeeded, especially locally in areas where improvement of ambulance organizations have been effective. In spite of this serious problems remain and the chances of cerebral survival need to increase if over-all results, i.e. survival as well as cognitive function, are to improve. Methylene blue, a textile dye synthesized in the late 19th century has also been used in medicine for different purposes. One of its effects is to increase systemic blood pressure, but other effects have been documented, among which are its neuroprotective effects well-noted during the last few years. In this review we have appraised these findings in relation to global ischemic injury.

  2. Intranasal Delivery of Granulocyte Colony-Stimulating Factor Enhances Its Neuroprotective Effects Against Ischemic Brain Injury in Rats.

    PubMed

    Sun, Bao-liang; He, Mei-qing; Han, Xiang-yu; Sun, Jing-yi; Yang, Ming-feng; Yuan, Hui; Fan, Cun-dong; Zhang, Shuai; Mao, Lei-lei; Li, Da-wei; Zhang, Zong-yong; Zheng, Cheng-bi; Yang, Xiao-yi; Li, Yang V; Stetler, R Anne; Chen, Jun; Zhang, Feng

    2016-01-01

    Granulocyte colony-stimulating factor (G-CSF) is a hematopoietic growth factor with strong neuroprotective properties. However, it has limited capacity to cross the blood-brain barrier and thus potentially limiting its protective capacity. Recent studies demonstrated that intranasal drug administration is a promising way in delivering neuroprotective agents to the central nervous system. The current study therefore aimed at determining whether intranasal administration of G-CSF increases its delivery to the brain and its neuroprotective effect against ischemic brain injury. Transient focal cerebral ischemia in rat was induced with middle cerebral artery occlusion. Our resulted showed that intranasal administration is 8-12 times more effective than subcutaneous injection in delivering G-CSF to cerebrospinal fluid and brain parenchyma. Intranasal delivery enhanced the protective effects of G-CSF against ischemic injury in rats, indicated by decreased infarct volume and increased recovery of neurological function. The neuroprotective mechanisms of G-CSF involved enhanced upregulation of HO-1 and reduced calcium overload following ischemia. Intranasal G-CSF application also promoted angiogenesis and neurogenesis following brain ischemia. Taken together, G-CSF is a legitimate neuroprotective agent and intranasal administration of G-CSF is more effective in delivery and neuroprotection and could be a practical approach in clinic.

  3. Vulnerability of the developing brain to hypoxic-ischemic damage: contribution of the cerebral vasculature to injury and repair?

    PubMed Central

    Baburamani, Ana A.; Ek, C. Joakim; Walker, David W.; Castillo-Melendez, Margie

    2012-01-01

    As clinicians attempt to understand the underlying reasons for the vulnerability of different regions of the developing brain to injury, it is apparent that little is known as to how hypoxia-ischemia may affect the cerebrovasculature in the developing infant. Most of the research investigating the pathogenesis of perinatal brain injury following hypoxia-ischemia has focused on excitotoxicity, oxidative stress and an inflammatory response, with the response of the developing cerebrovasculature receiving less attention. This is surprising as the presentation of devastating and permanent injury such as germinal matrix-intraventricular haemorrhage (GM-IVH) and perinatal stroke are of vascular origin, and the origin of periventricular leukomalacia (PVL) may also arise from poor perfusion of the white matter. This highlights that cerebrovasculature injury following hypoxia could primarily be responsible for the injury seen in the brain of many infants diagnosed with hypoxic-ischemic encephalopathy (HIE). Interestingly the highly dynamic nature of the cerebral blood vessels in the fetus, and the fluctuations of cerebral blood flow and metabolic demand that occur following hypoxia suggest that the response of blood vessels could explain both regional protection and vulnerability in the developing brain. However, research into how blood vessels respond following hypoxia-ischemia have mostly been conducted in adult models of ischemia or stroke, further highlighting the need to investigate how the developing cerebrovasculature responds and the possible contribution to perinatal brain injury following hypoxia. This review discusses the current concepts on the pathogenesis of perinatal brain injury, the development of the fetal cerebrovasculature and the blood brain barrier (BBB), and key mediators involved with the response of cerebral blood vessels to hypoxia. PMID:23162470

  4. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury

    PubMed Central

    Farrar, Conrad A.; Tran, David; Li, Ke; Wu, Weiju; Peng, Qi; Schwaeble, Wilhelm; Zhou, Wuding

    2016-01-01

    Physiochemical stress induces tissue injury as a result of the detection of abnormal molecular patterns by sensory molecules of the innate immune system. Here, we have described how the recently discovered C-type lectin collectin-11 (CL-11, also known as CL-K1 and encoded by COLEC11) recognizes an abnormal pattern of L-fucose on postischemic renal tubule cells and activates a destructive inflammatory response. We found that intrarenal expression of CL-11 rapidly increases in the postischemic period and colocalizes with complement deposited along the basolateral surface of the proximal renal tubule in association with L-fucose, the potential binding ligand for CL-11. Mice with either generalized or kidney-specific deficiency of CL-11 were strongly protected against loss of renal function and tubule injury due to reduced complement deposition. Ex vivo renal tubule cells showed a marked capacity for CL-11 binding that was induced by cell stress under hypoxic or hypothermic conditions and prevented by specific removal of L-fucose. Further analysis revealed that cell-bound CL-11 required the lectin complement pathway–associated protease MASP-2 to trigger complement deposition. Given these results, we conclude that lectin complement pathway activation triggered by ligand–CL-11 interaction in postischemic tissue is a potent source of acute kidney injury and is amenable to sugar-specific blockade. PMID:27088797

  5. Multiple Mechanisms are Involved in Salt-Sensitive Hypertension-Induced Renal Injury and Interstitial Fibrosis

    PubMed Central

    Wei, Shi-Yao; Wang, Yu-Xiao; Zhang, Qing-Fang; Zhao, Shi-Lei; Diao, Tian-Tian; Li, Jian-Si; Qi, Wen-Rui; He, Yi-Xin; Guo, Xin-Yu; Zhang, Man-Zhu; Chen, Jian-Yu; Wang, Xiao-Ting; Wei, Qiu-Ju; Wang, Yu; Li, Bing

    2017-01-01

    Salt-sensitive hypertension (SSHT) leads to kidney interstitial fibrosis. However, the potential mechanisms leading to renal fibrosis have not been well investigated. In present study, Dahl salt-sensitive (DS) rats were divided into three groups: normal salt diet (DSN), high salt diet (DSH) and high salt diet treated with hydrochlorothiazide (HCTZ) (DSH + HCTZ). A significant increase in systolic blood pressure (SBP) was observed 3 weeks after initiating the high salt diet, and marked histological alterations were observed in DSH rats. DSH rats showed obvious podocyte injury, peritubular capillary (PTC) loss, macrophage infiltration, and changes in apoptosis and cell proliferation. Moreover, Wnt/β-catenin signaling was significantly activated in DSH rats. However, HCTZ administration attenuated these changes with decreased SBP. In addition, increased renal and urinary Wnt4 expression was detected with time in DSH rats and was closely correlated with histopathological alterations. Furthermore, these alterations were also confirmed by clinical study. In conclusion, the present study provides novel insight into the mechanisms related to PTC loss, macrophage infiltration and Wnt/β-catenin signaling in SSHT-induced renal injury and fibrosis. Therefore, multi-target therapeutic strategies may be the most effective in preventing these pathological processes. Moreover, urinary Wnt4 may be a noninvasive biomarker for monitoring renal injury after hypertension. PMID:28383024

  6. Xenon treatment attenuates early renal allograft injury associated with prolonged hypothermic storage in rats.

    PubMed

    Zhao, Hailin; Yoshida, Akira; Xiao, Wei; Ologunde, Rele; O'Dea, Kieran P; Takata, Masao; Tralau-Stewart, Catherine; George, Andrew J T; Ma, Daqing

    2013-10-01

    Prolonged hypothermic storage elicits severe ischemia-reperfusion injury (IRI) to renal grafts, contributing to delayed graft function (DGF) and episodes of acute immune rejection and shortened graft survival. Organoprotective strategies are therefore needed for improving long-term transplant outcome. The aim of this study is to investigate the renoprotective effect of xenon on early allograft injury associated with prolonged hypothermic storage. Xenon exposure enhanced the expression of heat-shock protein 70 (HSP-70) and heme oxygenase 1 (HO-1) and promoted cell survival after hypothermia-hypoxia insult in human proximal tubular (HK-2) cells, which was abolished by HSP-70 or HO-1 siRNA. In the brown Norway to Lewis rat renal transplantation, xenon administered to donor or recipient decreased the renal tubular cell death, inflammation, and MHC II expression, while delayed graft function (DGF) was therefore reduced. Pathological changes associated with acute rejection, including T-cell, macrophage, and fibroblast infiltration, were also decreased with xenon treatment. Donors or recipients treated with xenon in combination with cyclosporin A had prolonged renal allograft survival. Xenon protects allografts against delayed graft function, attenuates acute immune rejection, and enhances graft survival after prolonged hypothermic storage. Furthermore, xenon works additively with cyclosporin A to preserve post-transplant renal function.

  7. Effects of salt restriction on renal growth and glomerular injury in rats with remnant kidneys.

    PubMed

    Lax, D S; Benstein, J A; Tolbert, E; Dworkin, L D

    1992-06-01

    Male Munich-Wistar rats underwent right nephrectomy and infarction of two thirds of the left kidney. Rats were randomly assigned to ingest standard chow (REM) or a moderately salt restricted chow (LS). A third group of rats were fed the low salt diet and were injected with an androgen (LSA). Eight weeks after ablation, glomerular volume and glomerular capillary radius were markedly increased in REM. This increase was prevented by the low salt diet, however, the antihypertrophic effect of the diet was overcome by androgen. Values for glomerular volume and capillary radius were similar in LSA and REM. Morphologic studies revealed that approximately 25% of glomeruli were abnormal in REM. Much less injury was observed in salt restricted rats, however, the protective effect of the low salt diet was significantly abrogated when renal growth was stimulated in salt restricted rats by androgen. Micropuncture studies revealed that glomerular pressure was elevated in all three groups and not affected by diet or androgen. Serum cholesterol was also similar in the three groups. These findings indicate that renal and glomerular hypertrophy are correlated with the development of glomerular injury after reduction in renal mass and suggest that dietary salt restriction lessens renal damage, at least in part, by inhibiting compensatory renal growth.

  8. Autopsy Renal Pathology.

    PubMed

    Paueksakon, Paisit; Fogo, Agnes B

    2014-09-01

    We provide an overview of assessment of the kidneys at autopsy, with special considerations for pediatric versus adult kidneys. We describe the approach to gross examination, tissue allocation when needed for additional studies of potential medical renal disease, the spectrum of congenital abnormalities of the kidneys and urinary tract, and approach to cystic diseases of the kidney. We also discuss common lesions seen at autopsy, including acute tubular injury, ischemic versus toxic contributions to this injury, interstitial nephritis, and common vascular diseases. Infections commonly involve the kidney at autopsy, and the key features and differential diagnoses are also discussed.

  9. Pretreated quercetin protects gerbil hippocampal CA1 pyramidal neurons from transient cerebral ischemic injury by increasing the expression of antioxidant enzymes

    PubMed Central

    Chen, Bai Hui; Park, Joon Ha; Ahn, Ji Hyeon; Cho, Jeong Hwi; Kim, In Hye; Lee, Jae Chul; Won, Moo-Ho; Lee, Choong-Hyun; Hwang, In Koo; Kim, Jong-Dai; Kang, Il Jun; Cho, Jun Hwi; Shin, Bich Na; Kim, Yang Hee; Lee, Yun Lyul; Park, Seung Min

    2017-01-01

    Quercetin (QE; 3,5,7,3′,4′-pentahydroxyflavone), a well-known flavonoid, has been shown to prevent against neurodegenerative disorders and ischemic insults. However, few studies are reported regarding the neuroprotective mechanisms of QE after ischemic insults. Therefore, in this study, we investigated the effects of QE on ischemic injury and the expression of antioxidant enzymes in the hippocampal CA1 region of gerbils subjected to 5 minutes of transient cerebral ischemia. QE was pre-treated once daily for 15 days before ischemia. Pretreatment with QE protected hippocampal CA1 pyramidal neurons from ischemic injury, which was confirmed by neuronal nuclear antigen immunohistochemistry and Fluoro-Jade B histofluorescence staining. In addition, pretreatment with QE significantly increased the expression levels of endogenous antioxidant enzymes Cu/Zn superoxide dismutase, Mn superoxide dismutase, catalase and glutathione peroxidase in the hippocampal CA1 pyramidal neurons of animals with ischemic injury. These findings demonstrate that pretreated QE displayed strong neuroprotective effects against transient cerebral ischemia by increasing the expression of antioxidant enzymes.

  10. Hypoxemic reperfusion of ischemic states: an alternative approach for the attenuation of oxidative stress mediated reperfusion injury.

    PubMed

    Tasoulis, Marios-Konstantinos; Douzinas, Emmanuel E

    2016-01-19

    Ischemia and reperfusion (I/R) - induced injury has been described as one of the main factors that contribute to the observed morbidity and mortality in a variety of clinical entities, including myocardial infarction, ischemic stroke, cardiac arrest and trauma. An imbalance between oxygen demand and supply, within the organ beds during ischemia, results in profound tissue hypoxia. The subsequent abrupt oxygen re-entry upon reperfusion, may lead to a burst of oxidative aggression through production of reactive oxygen species by the primed cells. The predominant role of oxidative stress in the pathophysiology of I/R mediated injury, has been well established. A number of strategies that target the attenuation of the oxidative burst have been tested both in the experimental and the clinical setting. Despite these advances, I/R injury continues to be a major problem in everyday medical practice. The aim of this paper is to review the existing literature regarding an alternative approach, termed hypoxemic reperfusion, that has exhibited promising results in the attenuation of I/R injury, both in the experimental and the clinical setting. Further research to clarify its underlying mechanisms and to assess its efficacy in the clinical setting is warranted.

  11. Protective Effects of the Segmental Renal Artery Clamping Technique on Ischemia-Reperfusion Injury in db/db Diabetic Mice

    PubMed Central

    Liang, Chao; Zhu, Jundong; Miao, Chenkui; Wang, Shangqian; Zhang, Lei; Li, Pu

    2017-01-01

    Renal ischemia-reperfusion (I/R) injury is inevitable in partial nephrectomy and other kidney surgeries, with a higher incidence in patients with renal insufficiency. This study aimed to investigate the protective effects of precise segmental renal artery clamping (SRAC) against renal I/R injury in db/db diabetic mice, compared with conventional renal artery clamping (RAC). Grape seed extract, a powerful free radical scavenger, was administered to diabetic mice for 4 weeks before operation in subgroups (30 mg/kg/d). The unilateral renal pedicle was ligatured, and I/R injury to the contralateral kidney was induced (ischemia for 30 min followed by reperfusion for 24 h). Blood glucose value, creatinine, blood urea nitrogen, and urine microalbumin/urine creatinine ratio increased gradually and showed no preoperative statistical differences among six subgroups. These parameters were significantly lower in the SRAC than in the RAC group 24 h postoperatively. Moreover, the nonischemic area in the SRAC group expressed less KIM-1 and TNF-α mRNA and also revealed minor histopathological damage induced by I/R. These findings suggest that SRAC effectively reduces early renal injury induced by I/R and accelerates the recovery of renal function in diabetic mice. Thus, SRAC may be an ideal technique in partial nephrectomy, especially for patients with diabetic nephropathy and other renal insufficiencies. PMID:28299325

  12. By Homing to the Kidney, Activated Macrophages Potently Exacerbate Renal Injury

    PubMed Central

    Wang, Ying; Wang, Yiping; Cai, Qi; Zheng, Guoping; Lee, Vincent W.S.; Zheng, Dong; Li, Xiaomei; Kui Tan, Thian; Harris, David C.H.

    2008-01-01

    Macrophages are important mediators of injury in most types of human kidney diseases; however, the pathogenic importance of both macrophage number and activation status is unknown. To examine this question, severe-combined immunodeficient mice with adriamycin nephrosis, an experimental model of human focal segmental glomerulosclerosis, were treated intravenously with either resting (1 × 106 to 5 × 106) or activated (1 × 103 to 1 × 106) macrophages on day 6 postadriamycin administration, and the effects on kidney injury were examined. On day 28, renal injury was worse in the group that received activated macrophages at doses as low as 1 × 104 macrophages per mouse compared with control adriamycin nephrotic mice. However, treatment with resting macrophages at doses as high as 5 × 106 macrophages per mouse had no significant effect on either renal histology or function. The transferred activated macrophages homed to inflamed kidneys during the middle-to-late stages of the disease, but such homing was not observed for resting macrophages. This study of in vivo cell adoptive transfer supports the importance of macrophage activation status over macrophage number in causing renal injury. These data suggest that therapeutic strategies for treating progressive kidney diseases should target activated macrophages. PMID:18467704

  13. Immuno-modulator inter-alpha inhibitor proteins ameliorate complex auditory processing deficits in rats with neonatal hypoxic-ischemic brain injury.

    PubMed

    Threlkeld, Steven W; Lim, Yow-Pin; La Rue, Molly; Gaudet, Cynthia; Stonestreet, Barbara S

    2017-03-10

    Hypoxic-ischemic (HI) brain injury is recognized as a significant problem in the perinatal period, contributing to life-long language-learning and other cognitive impairments. Central auditory processing deficits are common in infants with hypoxic-ischemic encephalopathy and have been shown to predict language learning deficits in other at risk infant populations. Inter-alpha inhibitor proteins (IAIPs) are a family of structurally related plasma proteins that modulate the systemic inflammatory response to infection and have been shown to attenuate cell death and improve learning outcomes after neonatal brain injury in rats. Here, we show that systemic administration of IAIPs during the early HI injury cascade ameliorates complex auditory discrimination deficits as compared to untreated HI injured subjects, despite reductions in brain weight. These findings have significant clinical implications for improving central auditory processing deficits linked to language learning in neonates with HI related brain injury.

  14. Probucol inhibits LPS-induced microglia activation and ameliorates brain ischemic injury in normal and hyperlipidemic mice

    PubMed Central

    Jung, Yeon Suk; Park, Jung Hwa; Kim, Hyunha; Kim, So Young; Hwang, Ji Young; Hong, Ki Whan; Bae, Sun Sik; Choi, Byung Tae; Lee, Sae-Won; Shin, Hwa Kyoung

    2016-01-01

    Aim: Increasing evidence suggests that probucol, a lipid-lowering agent with anti-oxidant activities, may be useful for the treatment of ischemic stroke with hyperlipidemia via reduction in cholesterol and neuroinflammation. In this study we examined whether probucol could protect against brain ischemic injury via anti-neuroinflammatory action in normal and hyperlipidemic mice. Methods: Primary mouse microglia and murine BV2 microglia were exposed to lipopolysaccharide (LPS) for 3 h, and the release NO, PGE2, IL-1β and IL-6, as well as the changes in NF-κB, MAPK and AP-1 signaling pathways were assessed. ApoE KO mice were fed a high-fat diet containing 0.004%, 0.02%, 0.1% (wt/wt) probucol for 10 weeks, whereas normal C57BL/6J mice received probucol (3, 10, 30 mg·kg-1·d-1, po) for 4 d. Then all the mice were subjected to focal cerebral ischemia through middle cerebral artery occlusion (MCAO). The neurological deficits were scored 24 h after the surgery, and then brains were removed for measuring the cerebral infarct size and the production of pro-inflammatory mediators. Results: In LPS-treated BV2 cells and primary microglial cells, pretreatment with probucol (1, 5, 10 μmol/L) dose-dependently inhibited the release of NO, PGE2, IL-1β and IL-6, which occurred at the transcription levels. Furthermore, the inhibitory actions of probucol were associated with the downregulation of the NF-κB, MAPK and AP-1 signaling pathways. In the normal mice with MCAO, pre-administration of probucol dose-dependently decreased the infarct volume and improved neurological function. These effects were accompanied by the decreased production of pro-inflammatory mediators (iNOS, COX-2, IL-1, IL-6). In ApoE KO mice fed a high-fat diet, pre-administration of 0.1% probucol significantly reduced the infarct volume, improved the neurological deficits following MCAO, and decreased the total- and LDL-cholesterol levels. Conclusion: Probucol inhibits LPS-induced microglia activation and

  15. The impact of a single episode of remote ischemic preconditioning on myocardial injury after elective percutaneous coronary intervention

    PubMed Central

    Taylan, Gökay; Aktoz, Meryem; Gürlertop, Hanefi Y.; Aksoy, Yüksel; Özçelik, Fatih; Yalta, Kenan; Ekuklu, Galip

    2017-01-01

    Introduction Myocardial injury after percutaneous coronary intervention (PCI) occurs in approximately 30% of procedures, and is related to worse prognosis. Effects of remote ischemic preconditioning (RIPC) on reperfusion injury have been investigated before, yielding conflicting results. Aim To assess the impact of a single episode of RIPC on myocardial injury after elective PCI. Material and methods One hundred and four patients undergoing elective PCI, with normal baseline cardiac troponin-I (cTn-I) values, were randomized to two groups. Two patients were excluded due to data loss, and 102 patients were analyzed. Five minutes of ischemic preconditioning was delivered just before the intervention to the preconditioning group, by inflating the blood pressure cuff up to 200 mm Hg on the non-dominant arm. Postprocedural 16th hour cTn-I, ΔcTn-I (difference between the 16th h and baseline cTn-I values) and the prevalence of type 4a myocardial infarction were compared between the two groups. Results Median cTn-I values after the procedure were compared. 16th hour cTn-I was insignificantly lower in the preconditioning arm (0.026 μg/l vs. 0.045 μg/l, p = 0.186). The incidence of cTn-I elevation 5-fold above the upper reference limit (URL) (> 0.115 μg/l) was lower in the preconditioning group, but it was also not significant (21.6% vs. 11.8%, p = 0.184). Conclusions A single episode of RIPC before elective PCI demonstrated less troponin elevation but failed to show a significant effect. PMID:28344616

  16. Curcumin and dexmedetomidine prevents oxidative stress and renal injury in hind limb ischemia/reperfusion injury in a rat model.

    PubMed

    Karahan, M A; Yalcin, S; Aydogan, H; Büyükfirat, E; Kücük, A; Kocarslan, S; Yüce, H H; Taskın, A; Aksoy, N

    2016-06-01

    Curcumin and dexmedetomidine have been shown to have protective effects in ischemia-reperfusion injury on various organs. However, their protective effects on kidney tissue against ischemia-reperfusion injury remain unclear. We aimed to determine whether curcumin or dexmedetomidine prevents renal tissue from injury that was induced by hind limb ischemia-reperfusion in rats. Fifty rats were divided into five groups: sham, control, curcumin (CUR) group (200 mg/kg curcumin, n = 10), dexmedetomidine (DEX) group (25 μg/kg dexmedetomidine, n = 10), and curcumin-dexmedetomidine (CUR-DEX) group (200 mg/kg curcumin and 25 μg/kg dexmedetomidine). Curcumin and dexmedetomidine were administered intraperitoneally immediately after the end of 4 h ischemia, just 5 min before reperfusion. The extremity re-perfused for 2 h and then blood samples were taken and total antioxidant capacity (TAC), total oxidative status (TOS) levels, and oxidative stress index (OSI) were measured, and renal tissue samples were histopathologically examined. The TAC activity levels in blood samples were significantly lower in the control than the other groups (p < 0.01 for all comparisons). The TOS activity levels in blood samples were significantly higher in Control group and than the other groups (p <  0.01 for all comparison). The OSI were found to be significantly increased in the control group compared to others groups (p < 0.001 for all comparisons). Histopathological examination revealed less severe lesions in the sham, CUR, DEX, and CUR-DEX groups, compared with the control group (p < 0.01). Rat hind limb ischemia-reperfusion causes histopathological changes in the kidneys. Curcumin and dexmedetomidine administered intraperitoneally was effective in reducing oxidative stress and renal histopathologic injury in an acute hind limb I/R rat model.

  17. Cinnamon Polyphenols Attenuate Neuronal Death and Glial Swelling in Ischemic Injury

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brain edema is a major complication associated with ischemic stroke and is characterized by a volumetric enlargement of the brain. Astrocyte swelling is a major component of brain edema. We investigated the protective effects of polyphenols isolated from green tea and cinnamon in C6 glial cultures s...

  18. Proximal renal tubular injury in rats sub-chronically exposed to low fluoride concentrations

    SciTech Connect

    Cárdenas-González, Mariana C.; Del Razo, Luz M.; Barrera-Chimal, Jonatan; Jacobo-Estrada, Tania; López-Bayghen, Esther; and others

    2013-11-01

    Fluoride is usually found in groundwater at a very wide range of concentration between 0.5 and 25 ppm. At present, few studies have assessed the renal effects of fluoride at environmentally relevant concentrations. Furthermore, most of these studies have used insensitive and nonspecific biomarkers of kidney injury. The aim of this study was to use early and sensitive biomarkers to evaluate kidney injury after fluoride exposure to environmentally relevant concentrations. Recently weaned male Wistar rats were exposed to low (15 ppm) and high (50 ppm) fluoride concentrations in drinking water for a period of 40 days. At the end of the exposure period, kidney injury biomarkers were measured in urine and renal mRNA expression levels were assessed by real time RT-PCR. Our results showed that the urinary kidney injury molecule (Kim-1), clusterin (Clu), osteopontin (OPN) and heat shock protein 72 excretion rate significantly increased in the group exposed to the high fluoride concentration. Accordingly, fluoride exposure increased renal Kim-1, Clu and OPN mRNA expression levels. Moreover, there was a significant dose-dependent increase in urinary β-2-microglobulin and cystatin-C excretion rate. Additionally, a tendency towards a dose dependent increase of tubular damage in the histopathological light microscopy findings confirmed the preferential impact of fluoride on the tubular structure. All of these changes occurred at early stages in which, the renal function was not altered. In conclusion using early and sensitive biomarkers of kidney injury, we were able to found proximal tubular alterations in rats sub-chronically exposed to fluoride. - Highlights: • Exposure to low concentrations of fluoride induced proximal tubular injury • Increase in urinary Kim-1, Clu, OPN and Hsp72 in 50 ppm fluoride-exposed group • Increase in urinary B2M and CysC in 15 and 50 ppm fluoride-exposed groups • Fluoride exposure increased renal Kim, Clu and OPN mRNA expression levels.

  19. Quantified kidney echogenicity in mice with renal ischemia reperfusion injury: evaluation as a noninvasive biomarker of acute kidney injury.

    PubMed

    Murata, Shinya; Sugiyama, Noriyuki; Maemura, Kentaro; Otsuki, Yoshinori

    2017-04-05

    The purpose is to evaluate quantified kidney echogenicity as a biomarker for the early diagnosis of acute kidney injury (AKI) and predicting progression to chronic kidney disease (CKD) in a mouse model of ischemia-reperfusion injury (IRI). Two separate protocols of murine models of IRI were used: (1) 10, 30, and 40 min of bilateral ischemia duration and (2) 45 and 60 min of unilateral ischemia duration. Renal echogenicity was measured with ultrasound and compared with serum creatinine or urine neutrophil gelatinase-associated lipocalin (NGAL) at various timepoints after IRI. In mice subjected to 10, 30, and 40 min of bilateral ischemia, renal echogenicity increased about 2 h after IRI for all ischemia times, earlier than serum creatinine or urine NGAL. In those subjected to 45 and 60 min of unilateral ischemia, 60 min of unilateral ischemia, which represents atrophic changes 28 days after IRI, resulted in a sustained high level of echogenicity and was significantly different 24 h after IRI, while 45 min of unilateral ischemia resulted in trivial levels of histological damage 28 days after IRI. Renal echogenicity might have the potential to be a biomarker for the early diagnosis of AKI and the prognosis of CKD.

  20. Resveratrol ameliorates renal injury in spontaneously hypertensive rats by inhibiting renal micro-inflammation

    PubMed Central

    Xue, Hai-Yan; Yuan, Li; Cao, Ying-Jie; Fan, Ya-Ping; Chen, Xiao-Lan; Huang, Xin-Zhong

    2016-01-01

    Micro-inflammation plays an important role in the pathogenesis of spontaneously hypertensive rat (SHR). In the present study, we investigated the therapeutic potential of resveratrol (RSV), a polyphenol with anti-fibrosis activity in hypertensive renal damage model. In SHR renal damage model, RSV treatment blunted the increase in urine albumin excretion, urinary β2-microglobulin (β2-MG), attenuated the decrease in creatinine clearance rate (CCR). The glomerular sclerosis index (1.54±0.33 compared with 0.36±0.07) and tubulointerstitial fibrosis (1.57±0.31 compared with 0.19±0.04) were significantly higher in SHRs compared with Wistar Kyoto rats (WKYs), which were significantly lower by RSV treatment. The increases in mesangium accumulation and the expression of renal collagen type I (Col I), fibronectin (Fn), plasminogen activator inhibitor-1 (PAI-1) and transforming growth factor-β1 (TGF-β1) in SHR were also reduced by RSV treatment. Nuclear factor κB (NF-κB) expression was increased in the cytoplasm and nuclei of the SHR kidneys, which was significantly decreased by RSV treatment. Furthermore, the protein level of IκB-α significantly decreased in the kidneys of the SHR when compared with the WKYs. RSV treatment partially restored the decreased IκB-α level. In SHR kidney, increased expression of interleukin-6 (IL-6), intercellular adhesion molecule-1 (ICAM-1) and monocyte chemoattractant protein 1 (MCP-1) were observed. These changes were attenuated by RSV treatment. No changes in blood pressure were detected between SHR group and SHR + RSV group. Taken together, the present study demonstrated that RSV treatment may significantly attenuate renal damage in the SHR model of chronic kidney disease (CKD). The renal protective effect is associated with inhibition of IL-6, ICAM-1 and MCP-1 expression via the regulation of the nuclear translocation of NF-κB, which suggesting that micro-inflammation may be a potential therapeutic target of hypertensive

  1. Renal

    MedlinePlus

    ... term "renal" refers to the kidney. For example, renal failure means kidney failure. Related topics: Kidney disease Kidney disease - diet Kidney failure Kidney function tests Renal scan Kidney transplant

  2. Mice rescued from severe malaria are protected against renal injury during a second kidney insult.

    PubMed

    Abreu, Thiago P; Silva, Leandro S; Takiya, Christina M; Souza, Mariana C; Henriques, Maria G; Pinheiro, Ana Acacia S; Caruso-Neves, Celso

    2014-01-01

    Malaria is a worldwide disease that leads to 1 million deaths per year. Plasmodium falciparum is the species responsible for the most severe form of malaria leading to different complications. Beyond the development of cerebral malaria, impairment of renal function is a mortality indicator in infected patients. Treatment with antimalarial drugs can increase survival, however the long-term effects of malaria on renal disease, even after treatment with antimalarials, are unknown. The aim of this study was to evaluate the effect of antimalarial drug treatment on renal function in a murine model of severe malaria and then evaluate kidney susceptibility to a second renal insult. Initially, mice infected with Plasmodium berghei ANKA achieved 20% parasitemia on day 5 post infection, which was completely abolished after treatment with 25 mg/kg artesunate and 40 mg/kg mefloquine. The treatment also decreased plasma creatinine levels by 43% and partially reversed the reduction in the glomerular filtration rate induced by infection. The urinary protein/creatinine ratio, collagen deposition, and size of the interstitial space decreased by 75%, 40%, and 20%, respectively, with drugs compared with untreated infected animals. In infected-treated mice that underwent a second renal insult, the plasma creatinine level decreased by 60% and the glomerular filtration rate increased compared with infected animals treated only with antimalarials. The number of glomerular cells, collagen deposition and the size of the interstitial space decreased by 20%, 39.4%, and 41.3%, respectively, in the infected group that underwent a second renal insult compared with the infected-treated groups. These functional and structural data show that renal injury observed in a murine model of severe malaria is partially reversed after antimalarial drug treatment, making the kidney less susceptible to a second renal insult.

  3. Mice Rescued from Severe Malaria Are Protected against Renal Injury during a Second Kidney Insult

    PubMed Central

    Abreu, Thiago P.; Silva, Leandro S.; Takiya, Christina M.; Souza, Mariana C.; Henriques, Maria G.; Pinheiro, Ana Acacia S.; Caruso-Neves, Celso

    2014-01-01

    Malaria is a worldwide disease that leads to 1 million deaths per year. Plasmodium falciparum is the species responsible for the most severe form of malaria leading to different complications. Beyond the development of cerebral malaria, impairment of renal function is a mortality indicator in infected patients. Treatment with antimalarial drugs can increase survival, however the long-term effects of malaria on renal disease, even after treatment with antimalarials, are unknown. The aim of this study was to evaluate the effect of antimalarial drug treatment on renal function in a murine model of severe malaria and then evaluate kidney susceptibility to a second renal insult. Initially, mice infected with Plasmodium berghei ANKA achieved 20% parasitemia on day 5 post infection, which was completely abolished after treatment with 25 mg/kg artesunate and 40 mg/kg mefloquine. The treatment also decreased plasma creatinine levels by 43% and partially reversed the reduction in the glomerular filtration rate induced by infection. The urinary protein/creatinine ratio, collagen deposition, and size of the interstitial space decreased by 75%, 40%, and 20%, respectively, with drugs compared with untreated infected animals. In infected-treated mice that underwent a second renal insult, the plasma creatinine level decreased by 60% and the glomerular filtration rate increased compared with infected animals treated only with antimalarials. The number of glomerular cells, collagen deposition and the size of the interstitial space decreased by 20%, 39.4%, and 41.3%, respectively, in the infected group that underwent a second renal insult compared with the infected-treated groups. These functional and structural data show that renal injury observed in a murine model of severe malaria is partially reversed after antimalarial drug treatment, making the kidney less susceptible to a second renal insult. PMID:24736406

  4. Sulfasalazine-induced renal and hepatic injury in rats and the protective role of taurine

    PubMed Central

    Heidari, Reza; Rasti, Maryam; Shirazi Yeganeh, Babak; Niknahad, Hossein; Saeedi, Arastoo; Najibi, Asma

    2016-01-01

    Introduction: Sulfasalazine is a drug commonly administrated against inflammatory-based disorders. On the other hand, kidney and liver injury are serious adverse events accompanied by sulfasalazine administration. No specific therapeutic option is available against this complication. The current investigation was designed to evaluate the potential protective effects of taurine against sulfasalazine-induced kidney and liver injury in rats. Methods: Male Sprague-Dawley rats were administered with sulfasalazine (600 mg/kg, oral) for 14 consecutive days. Animals received different doses of taurine (250, 500 and 1000 mg/ kg, i.p.) every day. Markers of organ injury were evaluated on day 15th, 24 h after the last dose of sulfasalazine. Results: Sulfasalazine caused renal and hepatic injury as judged by an increase in serum level of creatinine (Cr), alanine aminotransferase (ALT), aspartate aminotransferase (AST), lactate dehydrogenase (LDH), and alkaline phosphatase (ALP). The levels of reactive oxygen species (ROS) and lipid peroxidation were raised in kidney and liver of sulfasalazine-treated animals. Moreover, tissue glutathione reservoirs were depleted after sulfasalazine administration. Histopathological changes of kidney and liver also endorsed organ injury. Taurine administration (250, 500 and 1000 mg/kg/day, i.p) alleviated sulfasalazine-induced renal and hepatic damage. Conclusion: Taurine administration could serve as a potential protective agent with therapeutic capabilities against sulfasalazine adverse effects. PMID:27340618

  5. Forced diuresis with the RenalGuard system: impact on contrast induced acute kidney injury.

    PubMed

    Solomon, Richard

    2014-01-01

    Kidney injury following the administration of iodinated contrast media occurs particularly in patients with reduced kidney and cardiac function and when large doses of contrast are used. There is little compelling evidence that vasodilators and anti-oxidants prevent this injury. Most prevention trials have employed intravenous volume loading as a central strategy. However, the success of this approach depends upon maintaining euvolemia while producing a vigorous diuresis. A novel strategy for maintaining euvolemia and inducing a vigorous diuresis has been developed using the RenalGuard system. In this review; the mechanism of protective action is reviewed. The trials of the RenalGuard device are reviewed and future uses of the device are discussed.

  6. The Effect of Autophagy on Inflammation Cytokines in Renal Ischemia/Reperfusion Injury.

    PubMed

    Ling, Haibin; Chen, Hongguang; Wei, Miao; Meng, Xiaoyin; Yu, Yonghao; Xie, Keliang

    2016-02-01

    Acute kidney injury (AKI) is characterized by a rapid loss of kidney function and an antigen-independent inflammatory process that causes tissue damage, which was one of the main manifestations of kidney ischemia/reperfusion (I/R). Recent studies have demonstrated autophagy participated in the pathological process of acute kidney injury. In this study, we discuss how autophagy regulated inflammation response in the kidney I/R. AKI was performed by renal I/R. Autophagy activator rapamycin (Rap) and inhibitor 3-methyladenine (MA) were used to investigate the role of autophagy on kidney function and inflammation response. After the experiment, kidney tissues were obtained for the detection of autophagy-related protein microtubule-associated protein light chain 3(LC3)II, Beclin1, and Rab7 and lysosome-associated membrane protein type (LAMP)2 protein by reverse transcription-polymerase chain reaction (PT-PCR) and Western blotting, and histopathology and tissue injury scores also. The blood was harvested to measure kidney function (creatinine (Cr) and blood urea nitrogen (BUN) levels) after I/R. Cytokines TNF-α, IL-6, HMGB1, and IL-10 were measured after I/R. I/R induced the expression of LC3II, Beclin1, LAMP2, and Rab7. The activation and inhibition of autophagy by rapamycin and 3-MA were promoted and attenuated histological and renal function in renal I/R rats, respectively. Cytokines TNF-α, IL-6, and HMGB1 were decreased, and IL-10 was further increased after activation of autophagy treated in I/R rats, while 3-MA exacerbated the pro-inflammatory cytokines TNF-α, IL-6, HMGB1, and anti-inflammatory cytokine IL-10 in renal I/R. I/R can activated the autophagy, and autophagy increase mitigated the renal injury by decreasing kidney injury score, levels of Cr and BUN after renal I/R, and inflammation response via regulating the balance of pro-inflammation and anti-inflammation cytokines.

  7. Embolization of Iatrogenic Vascular Injuries of Renal Transplants: Immediate and Follow-Up Results

    SciTech Connect

    Dorffner, Roland; Thurnher, Siegfried; Prokesch, Rupert; Bankier, Alexander; Turetschek, Karl; Schmidt, Alice; Lammer, Johannes

    1998-03-15

    Purpose: To evaluate the outcome in seven patients in whom iatrogenic vascular complications were treated with catheter embolization. Methods: Angiography showed an arteriovenous fistula in six of the seven patients, a pseudoaneurysm in three patients, and an arteriocaliceal fistula in three patients. Embolization was performed with GAW coils or microcoils in all cases. In three patients enbucrilate, polyvinyl alcohol, or absorbable gelatin powder was administered as an adjunct to the coils. Results: Angiographic success with total occlusion of the vascular injury was achieved in five of the seven patients and clinical success was achieved in four of seven cases. In two cases, nephrectomy after embolization was necessary because of renal artery occlusion or acute hemorrhage at the renal artery anastomosis, respectively. Infarction of 30%-50% of the renal parenchyma was seen in two cases. Conclusion: Angiographically successful embolization is not necessarily associated with clinical success. The complication rate is high.

  8. Nomenclature for renal replacement therapy in acute kidney injury: basic principles.

    PubMed

    Neri, Mauro; Villa, Gianluca; Garzotto, Francesco; Bagshaw, Sean; Bellomo, Rinaldo; Cerda, Jorge; Ferrari, Fiorenza; Guggia, Silvia; Joannidis, Michael; Kellum, John; Kim, Jeong Chul; Mehta, Ravindra L; Ricci, Zaccaria; Trevisani, Alberto; Marafon, Silvio; Clark, William R; Vincent, Jean-Louis; Ronco, Claudio

    2016-10-10

    This article reports the conclusions of a consensus expert conference on the basic principles and nomenclature of renal replacement therapy (RRT) currently utilized to manage acute kidney injury (AKI). This multidisciplinary consensus conference discusses common definitions, components, techniques, and operations of the machines and platforms used to deliver extracorporeal therapies, utilizing a "machine-centric" rather than a "patient-centric" approach. We provide a detailed description of the performance characteristics of membranes, filters, transmembrane transport of solutes and fluid, flows, and methods of measurement of delivered treatment, focusing on continuous renal replacement therapies (CRRT) which are utilized in the management of critically ill patients with AKI. This is a consensus report on nomenclature harmonization for principles of extracorporeal renal replacement therapies. Devices and operations are classified and defined in detail to serve as guidelines for future use of terminology in papers and research.

  9. Heart Rate Variability in Patients with Acute Ischemic Stroke at Different Stages of Renal Dysfunction: A Cross-sectional Observational Study

    PubMed Central

    Wei, Lin; Zhao, Wen-Bo; Ye, Huan-Wen; Chen, Yan-Hua; Zhang, Xiao-Pei; Huang, Yan; Cai, Ye-Feng; Chen, Quan-Fu; Pan, Su-Yue

    2017-01-01

    Background: Renal function is associated with mortality and functional disabilities in stroke patients, and impaired autonomic function is common in stroke, but little is known regarding its effects on stroke patients with renal dysfunction. This study sought to evaluate the association between autonomic function and stroke in patients with renal dysfunction. Methods: This study comprised 232 patients with acute ischemic stroke consecutively enrolled from February 2013 to November 2014 at Guangdong Provincial Hospital of Chinese Medicine in China. All patients recruited underwent laboratory evaluation and 24 h Holter electrocardiography (ECG). Autonomic function was measured based on the heart rate variability (HRV) using 24 h Holter ECG. Renal damage was assessed through the estimated glomerular filtration rate (eGFR), and stroke severity was rated according to the National Institutes of Health Stroke Scale (NIHSS). The Barthel index and modified Rankin score were also determined following admission. All the clinical covariates that could potentially affect autonomic outcome variables were adjusted with linear regression. Results: In the patients with a mild or moderate decreased eGFR, the values for the standard deviation of the averaged normal-to-normal RR interval (SDANN) index (P = 0.022), very low frequency (VLF) (P = 0.043), low frequency (LF) (P = 0.023), and ratio of low-to-high frequency power (LF/HF) (P = 0.001) were significantly lower than those in the patients with a normal eGFR. A multinomial linear regression indicated that eGFR (t = 2.47, P = 0.014), gender (t = −3.60, P < 0.001), and a history of hypertension (t = −2.65, P = 0.008) were the risk factors of LF/HF; the NIHSS score (SDANN index: t = −3.83, P < 0.001; VLF: t = −3.07, P = 0.002; LF: t = −2.79, P = 0.006) and a history of diabetes (SDANN index: t = −3.58, P < 0.001; VLF: t = −2.54, P = 0.012; LF: t = −2.87, P = 0.004) were independent factors for the SDANN index, VLF

  10. Sulfatide-Mediated Activation of Type II Natural Killer T Cells Prevents Hepatic Ischemic Reperfusion Injury In Mice

    PubMed Central

    Arrenberg, Philomena; Maricic, Igor; Kumar, Vipin

    2011-01-01

    Background & Aims Hepatic ischemic reperfusion injury (IRI) is a major complication of liver transplantation and resectional hepatic surgeries. Natural killer T (NKT) cells predominate in liver, where they recognize lipid antigens bound to CD1d molecules. Type I NKT cells utilize a semi-invariant T-cell receptor and react with α-galactosylceramide; type II NKT cells use diverse T-cell receptors. Some type II NKT cells recognize the self-glycolipid sulfatide. It is not clear whether or how these distinct NKT cell subsets mediate hepatocellular damage following IRI. Methods We examined the roles of type I and type II NKT cells in mice with partial hepatic, warm ischemia and reperfusion injury. Results Mice that lack type I NKT cells (Jα18−/−) were protected from hepatic IRI, indicated by reduced hepatocellular necrosis and serum levels of alanine aminotransferase. Sulfatide-mediated activation of type II NKT cells reduced IFN-γ secretion by type I NKT cells and prevented IRI. Protection from hepatic IRI by sulfatide-mediated inactivation of type I NKT cells was associated with significant reductions in hepatic recruitment of myeloid cell subsets, especially the CD11b+Gr-1int, Gr-1−, and NK cells. Conclusion In mice, subsets of NKT cells have opposing roles in hepatic IRI: type I NKT cells promote injury whereas sulfatide-reactive type II NKT cells protect against injury. CD1d activation of NKT cells is conserved from mice to humans, so strategies to modify these processes might be developed to treat patients with hepatic reperfusion injury. PMID:20950612

  11. Receptor for complement peptide C3a: a therapeutic target for neonatal hypoxic-ischemic brain injury.

    PubMed

    Järlestedt, Katarina; Rousset, Catherine I; Ståhlberg, Anders; Sourkova, Hana; Atkins, Alison L; Thornton, Claire; Barnum, Scott R; Wetsel, Rick A; Dragunow, Mike; Pekny, Milos; Mallard, Carina; Hagberg, Henrik; Pekna, Marcela

    2013-09-01

    Complement is an essential component of inflammation that plays a role in ischemic brain injury. Recent reports demonstrate novel functions of complement in normal and diseased CNS, such as regulation of neurogenesis and synapse elimination. Here, we examined the role of complement-derived peptide C3a in unilateral hypoxia-ischemia (HI), a model of neonatal HI encephalopathy. HI injury was induced at postnatal day 9 (P9), and loss of hippocampal tissue was determined on P31. We compared WT mice with transgenic mice expressing C3a under the control of glial fibrillary acidic protein promoter, which express biologically active C3a only in CNS and without the requirement of a priori complement activation. Further, we injected C3a peptide into the lateral cerebral ventricle of mice lacking the C3a receptor (C3aR) and WT mice and assessed HI-induced memory impairment 41 d later. We found that HI-induced tissue loss in C3a overexpressing mice was reduced by 50% compared with WT mice. C3a peptide injected 1 h after HI protected WT but not C3aR-deficient mice against HI-induced memory impairment. Thus, C3a acting through its canonical receptor ameliorates behavioral deficits after HI injury, and C3aR is a novel therapeutic target for the treatment of neonatal HI encephalopathy.

  12. Involvement of MEK/ERK pathway in cephaloridine-induced injury in rat renal cortical slices.

    PubMed

    Kohda, Yuka; Hiramatsu, Jun; Gemba, Munekazu

    2003-07-20

    We have previously reported that free radical-mediated injury induced by cephaloridine (CER) is enhanced by phorbol 12-myristate 13-acetate (PMA), a protein kinase C (PKC) activator, in rat renal cortical slices. We have also shown that PKC activation in mitochondria is involved in CER-induced nephrotoxicity in rats. We investigated the role of a downstream PKC pathway, a MEK/ERK pathway, in free radical-induced injury in rat renal cortical slices exposed to CER. Immediately after preparing slices from rat renal cortex, the slices were incubated in the medium containing MEK inhibitors. ERK1/2 activation was determined by Western blot analysis for phosphorylated ERK (pERK) 1/2 protein in nucleus fraction prepared from the slices exposed to CER. Prominently, CER caused not only increases in lipid peroxidation as an index of free radical generation and in LDH leakage as that of cell injury in the slices, but also marked activation of ERK1/2 in nucleus fraction. PD98059 and U0126, MEK1/2 inhibitors, significantly attenuated CER-induced increases in lipid peroxidation and LDH leakage in the slices. PD98059 also suppressed ERK1/2 activation in nucleus fraction prepared from the slices treated with CER. Inhibition of other MAP kinase pathways, p38 MAP kinase and c-Jun N-terminal kinase (JNK) had no effect on CER-induced increases in lipid peroxidation level and LDH leakage in the slices. The present results suggest that a MEK/ERK pathway down stream of a PKC pathway is probably involved in free radical-induced injury in rat renal cortical slices exposed to CER.

  13. Relationship between red cell distribution width and early renal injury in patients with gestational diabetes mellitus.

    PubMed

    Cheng, Dong; Zhao, Jiangtao; Jian, Liguo; Ding, Tongbin; Liu, Shichao

    2016-09-01

    Previous studies found that red cell distribution width was related to adverse cardiovascular events. However, few studies reported the relationship between red cell distribution width and early-stage renal injury in pregnant women with gestational diabetes mellitus. Using a cross-sectional design, 334 pregnant women with gestational diabetes mellitus were enrolled according to the criterion of inclusion and exclusion. Demographic and clinical examination data were collected. Depended on the urine albumin, study population were divided into case group (n = 118) and control group (n = 216). Compared with control group, the case group tend to be higher red cell distribution width level (13.6 ± 0.9 vs.12.5 ± 0.6, p < 0.001). The red cell distribution width was positively associated with albuminuria creatinine ratio (r = 0.567, p < 0.001). Multiple logistic regressions showed that red cell distribution width was still associated with early-stage renal injury after adjusting for many other potential cofounders. Compared with the first quartile, the risk ratio of the second, the third and the fourth quartile were 1.38 (95%CI: 1.06-1.80), 1.57 (95%CI: 1.21-2.97), 2.71 (95%CI: 2.08-3.54), respectively. Besides, systolic blood pressure, estimated glomerular filtration rate, uric acid and blood urea nitrogen were also significantly associated with renal injury in gestational diabetes mellitus patients. The elevated red cell distribution width level might be a predictor of early-stage renal injury in pregnant women with gestational diabetes mellitus. As an easy and routine examination index, red cell distribution width may provide better clinical guidance when combined with other important indices.

  14. Rational clinical trial design for antibody mediated renal allograft injury

    PubMed Central

    Sandal, Shaifali; Zand, Martin S.

    2015-01-01

    Antibody mediated renal allograft rejection is a significant cause of acute and chronic graft loss. Recent work has revealed that AMR is a complex processes, involving B and plasma cells, donor-specific antibodies, complement, vascular endothelial cells, NK cells, Fc receptors, cytokines and chemokines. These insights have led to the development of numerous new therapies, and adaptation of others originally developed for treatment of hemetologic malignancies, autoimmune and complement mediated conditions. Here we review emerging insights into the pathophysiology of AMR as well as current and emerging therapies for both acute and chronic AMR. Finally, we discuss rational clinical trial design in light of antibody and B cell immunobiology, as well as appropriate efficacy metrics to identify robust protocols and therapeutic agents. PMID:25553476

  15. Renal function and endocrine responses to arm exercise in euhydrated individuals with spinal cord injury.

    PubMed

    Kawasaki, Takashi; Nakamura, Takeshi; Sasaki, Yusuke; Sakamoto, Keiko; Ito, Tomoyuki; Goto, Masaki; Shimomatsu, Tomoya; Tajima, Fumihiro

    2012-04-01

    This study investigated the renal and endocrine responses to arm exercise in persons with spinal cord injury (SCI) under euhydration conditions (ad libitum drinking of water) and determined the physiological effects of exercise on renal function in these subjects. Eleven SCI (spinal lesions between T6 and L1, American Spinal Injury Association impairment scale A) and 14 able-bodied (AB) persons first rested for 1 h in a sitting position, before undergoing 2-h arm-crank ergometer exercise at 60% of maximum oxygen consumption followed by a 2-h recovery period. On another day, all subjects participated in a time control study (5 h of rest condition in sitting position). Urine and blood samples were collected hourly. There were no differences in mean blood pressure between the two groups. SCI patients showed attenuated increase in plasma adrenaline and increase in plasma aldosterone compared with AB controls, but similar changes in human atrial natriuretic polypeptide, plasma renin activity and plasma antidiuretic hormone following the exercise. Creatinine clearance, osmolal clearance, free water clearance and fractional excretion of Na(+) did not change during exercise in any of the subjects. These findings suggested that activated aldosterone and attenuated adrenaline responses during exercise in SCI could be due to adaptation to disordered sympathetic nervous system triggered to maintain renal function. The results showed no exercise-related adverse effects on renal function in hydrated subjects with SCI.

  16. Cinnabar-Induced Subchronic Renal Injury Is Associated with Increased Apoptosis in Rats

    PubMed Central

    Wang, Ying; Wang, Dapeng; Wu, Jie; Wang, Bohan; Gao, Xianhui; Wang, Liangjun; Ma, Honglin

    2015-01-01

    The aim of this study was to explore the role of apoptosis in cinnabar-induced renal injury in rats. To test this role, rats were dosed orally with cinnabar (1 g/kg/day) for 8 weeks or 12 weeks, and the control rats were treated with 5% carboxymethylcellulose solution. Levels of urinary mercury (UHg), renal mercury (RHg), serum creatinine (SCr), and urine kidney injury molecule 1 (KIM-1) were assessed, and renal pathology was analyzed. Apoptotic cells were identified and the apoptotic index was calculated. A rat antibody array was used to analyze expression of cytokines associated with apoptosis. Results from these analyses showed that UHg, RHg, and urine KIM-1, but not SCr, levels were significantly increased in cinnabar-treated rats. Renal pathological changes in cinnabar-treated rats included vacuolization of tubular cells, formation of protein casts, infiltration of inflammatory cells, and increase in the number of apoptotic tubular cells. In comparison to the control group, expression of FasL, Fas, TNF-α, TRAIL, activin A, and adiponectin was upregulated in the cinnabar-treated group. Collectively, our results suggest that prolonged use of cinnabar results in kidney damage due to accumulation of mercury and that the underlying mechanism involves apoptosis of tubular cells via a death receptor-mediated pathway. PMID:25629042

  17. Influence of colloid, preservation medium and trimetazidine on renal medulla injury.

    PubMed

    Doucet, Carole; Dutheil, Delphine; Petit, Isabelle; Zhang, Keqiang; Eugene, Michel; Touchard, Guy; Wahl, Anne; Seguin, Francois; Milinkevitch, Serge; Hauet, Thierry; Mauco, Gerard

    2004-08-04

    In organ transplantation, preservation injury is an important factor which could influence short-term and long-term graft outcome. The renal medulla is particularly sensitive to oxidant stress and ischemia-reperfusion injury (IRI). Using an autotransplant pig kidney model, we investigated renal function and medullary damage determined between day 1 and week 2 after 24- or 48-h cold storage in different preservation solutions: University of Wisconsin solution (UW), Hopital Edouard Herriot solution (a high Na+ version of UW), ECPEG (high Na+ preservation solution with PEG) and ICPEG (a high K+ version of ECPEG) with or without trimetazidine (TMZ). TMZ improved renal preservation and increased renal function when added in each preservation solution (particularly HEH and ECPEG). Medullary damage led to the early appearance of trimethylamine-N-oxide (TMAO) followed by 1H-NMR in urine and plasma. TMZ and ECPEG is the most efficient association to reduce medullary damage. This study clarifies the role of colloid and polarity solution and the role of mitochondrial protection by TMZ.

  18. Severe spinal cord ischemic injury secondary to device embolization after transcatheter closure of a patent arterial duct.

    PubMed

    Tang, Liang; Zhou, Shenghua; Shen, Xiangqian

    2014-02-01

    Percutaneous closure of patent arterial ducts with the Amplatzer Ductal Occluder has become an effective and widely accepted alternative to surgical management. Although rarely, the occluder can be dislodged after an initially successful deployment, and with catastrophic consequences. We describe such a case in a 12-month-old girl who underwent transcatheter closure of a patent arterial duct. After device deployment, the occluder embolized in the patient's descending thoracic aorta, and severe spinal cord ischemic injury resulted. To our knowledge, ours is the first report of this complication after the deployment of an Amplatzer Ductal Occluder. We discuss pathophysiologic mechanisms that could expose patients to the risk of device dislodgment, and we review the relevant medical literature.

  19. Neuregulin 1 protects against ischemic brain injury via ErbB4 receptors by increasing GABAergic transmission.

    PubMed

    Guan, Y-F; Wu, C-Y; Fang, Y-Y; Zeng, Y-N; Luo, Z-Y; Li, S-J; Li, X-W; Zhu, X-H; Mei, L; Gao, T-M

    2015-10-29

    Identifying novel neuroprotectants that can halt or even reverse the effects of stroke is of interest to both clinicians and scientists. Neuregulin 1 (NRG1) is an effective neuroprotectant, but its molecular mechanisms are largely unclear. In this study, NRG1 rescued cortical neurons from oxygen-glucose deprivation (OGD) model, but the effect was blocked by neutralizing NRG1 and ErbB4 inhibition. In addition, γ-Aminobutyric acid (GABA) receptor agonists had no synergistic effect with NRG1, and the neuroprotective effect of NRG1 against OGD was partly blocked by GABA receptor antagonists. Importantly, NRG1 neuroprotection against brain ischemia was abolished in the mice with specific deletion of ErbB4 in parvalbumin (PV)-positive interneurons. In summary, NRG1 protects against ischemic brain injury via ErbB4 receptors by enhancing GABAergic transmission.

  20. Responses of proximal tubular cells to injury in congenital renal disease: fight or flight.

    PubMed

    Chevalier, Robert L; Forbes, Michael S; Galarreta, Carolina I; Thornhill, Barbara A

    2014-04-01

    Most chronic kidney disease in children results from congenital or inherited disorders, which can be studied in mouse models. Following 2 weeks of unilateral ureteral obstruction (UUO) in the adult mouse, nephron loss is due to proximal tubular mitochondrial injury and cell death. In neonatal mice, proximal tubular cell death is delayed beyond 2 weeks of complete UUO, and release of partial UUO allows remodeling of remaining nephrons. Progressive cyst expansion develops in polycystic kidney disease (PKD), a common inherited renal disorder. The polycystic kidney and fibrosis (pcy)-mutant mouse (which develops late-onset PKD) develops thinning of the glomerulotubular junction in parallel with growth of cysts in adulthood. Renal insufficiency in nephropathic cystinosis, a rare inherited renal disorder, results from progressive tubular cystine accumulation. In the Ctns knockout mouse (a model of cystinosis), proximal tubular cells become flattened, with loss of mitochondria and thickening of tubular basement membrane. In each model, persistent obstructive or metabolic stress leads ultimately to the formation of atubular glomeruli. The initial "fight" response (proximal tubular survival) switches to a "flight" response (proximal tubular cell death) with ongoing oxidative injury and mitochondrial damage. Therapies should be directed at reducing proximal tubular mitochondrial oxidative injury to enhance repair and regeneration.

  1. Early Phase Mast Cell Activation Determines the Chronic Outcome of Renal Ischemia-Reperfusion Injury.

    PubMed

    Danelli, Luca; Madjene, Lydia Celia; Madera-Salcedo, Iris; Gautier, Gregory; Pacreau, Emeline; Ben Mkaddem, Sanae; Charles, Nicolas; Daugas, Eric; Launay, Pierre; Blank, Ulrich

    2017-03-15

    Ischemia-reperfusion injury (IRI) is an important cause of acute kidney injury that can lead to end-stage renal failure. Although the ensuing inflammatory response can restore homeostasis, a consecutive maladaptive repair and persistent inflammation represent important risk factors for postischemic chronic kidney disease development. In this study, we investigated the role of mast cells in both the early and late phases of the inflammatory response in experimental models of acute and chronic renal IRI using our recently developed mouse model that allows conditional ablation of mast cells. Depletion of mast cells prior to IRI resulted in improved renal function due to diminished local inflammatory cytokine/chemokine levels and neutrophil recruitment to the kidneys after the acute injury phase (48 h post-IRI). Furthermore, although not completely protected, mast cell-depleted mice displayed less organ atrophy and fibrosis than did wild-type mice during the chronic phases (2 and 6 wk post-IRI) of disease development. Conversely, mast cell ablation after the acute phase of IRI had no impact on organ atrophy, tubular necrosis, or fibrosis. Thus, our results suggest a deleterious role of mast cells during the acute inflammatory phase of IRI promoting subsequent fibrosis development, but not during the chronic phase of the disease.

  2. Histopathology and apoptosis in an animal model of reversible renal injury

    PubMed Central

    Shuvy, Mony; Nyska, Abraham; Beeri, Ronen; Abedat, Suzan; Gal-Moscovici, Anca; Rajamannan, Nalini M.; Lotan, Chaim

    2014-01-01

    High adenine phosphate (HAP) diet serves as an animal model of chronic renal failure (RF). Induction of RF and establishment of end organ damage require long exposure periods to this diet. Previously, we have shown that RF is reversible after diet cessation even after protracted administration. In this study, we explored the underlying renal changes and cellular pathways occurring during administration and after cessation of the diet. Kidneys were obtained from rats fed HAP diet for 7 weeks, and from rats fed HAP diet followed a 10 week recovery period on normal diet. The kidneys of HAP diet group were significantly enlarged due to tubular injury characterized by massive cystic dilatation and crystal deposition. Kidney injury was associated with markers of apoptosis as well as with activation of apoptosis related pathways. Diet cessation was associated with a significant reduction in kidney size, tubules diameter, and crystals deposition. The recovery from renal injury was coupled with regression of apoptotic features. This is the first study showing the potential reversibility of long standing RF model, allowing optimal evaluation of uremia-chronic effects. PMID:20181466

  3. Calcium antagonists and converting enzyme inhibitors reduce renal injury by different mechanisms.

    PubMed

    Dworkin, L D; Benstein, J A; Parker, M; Tolbert, E; Feiner, H D

    1993-04-01

    Both glomerular hypertension and hypertrophy have been associated with the development of glomerular injury in models of hypertension and reduced renal mass. The purpose of this study was to examine the effects of antihypertensive therapy on these parameters in the remnant kidney model of progressive glomerular sclerosis. Rats underwent 5/6 nephrectomy and were randomly assigned to receive either no therapy, the calcium entry blocker (CEB), nifedipine, or the angiotensin converting enzyme inhibitor (CEI), enalapril. Administration of either drug was associated with a reduction in systemic blood pressure and in the severity of glomerular injury assessed eight weeks after renal ablation. Micropuncture studies four weeks after ablation revealed that systemic and glomerular capillary pressure were high in untreated remnant kidney rats and reduced by enalapril. Administration of nifedipine was associated with a decline in systemic pressure, however, plasma renin levels increased, causing efferent arteriolar vasoconstriction and persistence of glomerular hypertension. Morphometric analysis showed that kidney weight, glomerular volume and glomerular capillary radius were lower in nifedipine treated rats than in the other two groups, indicating that the CEB, but not enalapril, inhibited the hypertrophic response to ablation of renal mass. Therefore, both CEIs and CEBs reduce glomerular injury in rats with remnant kidneys but they may act by different mechanisms. CEI reduce glomerular capillary pressure while CEBs inhibit compensatory kidney growth.

  4. Tauroursodeoxycholic Acid Attenuates Renal Tubular Injury in a Mouse Model of Type 2 Diabetes

    PubMed Central

    Zhang, Jing; Fan, Ying; Zeng, Chuchu; He, Li; Wang, Niansong

    2016-01-01

    Renal tubular injury is a critical factor in the pathogenesis of diabetic nephropathy (DN). Endoplasmic reticulum (ER) stress is involved in diabetic nephropathy. Tauroursodeoxycholic acid (TUDCA) is an effective inhibitor of ER stress. Here, we investigated the role of TUDCA in the progression of tubular injury in DN. For eight weeks, being treated with TUDCA at 250 mg/kg intraperitoneal injection (i.p.) twice a day, diabetic db/db mice had significantly reduced blood glucose, albuminuria and attenuated renal histopathology. These changes were associated with a significant decreased expression of ER stress markers. At the same time, diabetic db/db mice had more TUNEL-positive nuclei in the renal tubule, which were attenuated by TUDCA treatment, along with decreases in ER stress–associated apoptotic markers in the kidneys. In summary, the effect of TUDCA on tubular injury, in part, is associated with inhibition of ER stress in the kidneys of diabetic db/db mice. TUDCA shows potential as a therapeutic target for the prevention and treatment of DN. PMID:27669287

  5. Ischemic brain injury: New insights on the protective role of melatonin.

    PubMed

    Ramos, Eva; Patiño, Paloma; Reiter, Russel J; Gil-Martín, Emilio; Marco-Contelles, José; Parada, Esther; Los Rios, Cristobal de; Romero, Alejandro; Egea, Javier

    2017-03-01

    Stroke represents one of the most common causes of brain's vulnerability for many millions of people worldwide. The plethora of physiopathological events associated with brain ischemia are regulate through multiple signaling pathways leading to the activation of oxidative stress process, Ca(2+) dyshomeostasis, mitochondrial dysfunction, proinflammatory mediators, excitotoxicity and/or programmed neuronal cell death. Understanding this cascade of molecular events is mandatory in order to develop new therapeutic strategies for stroke. In this review article, we have highlighted the pleiotropic effects of melatonin to counteract the multiple processes of the ischemic cascade. Additionally, experimental evidence supports its actions to ameliorate ischemic long-term behavioural and neuronal deficits, preserving the functional integrity of the blood-brain barrier, inducing neurogenesis and cell proliferation through receptor-dependent mechanism, as well as improving synaptic transmission. Consequently, the synthesis of melatonin derivatives designed as new multitarget-directed products has focused a great interest in this area. This latter has been reinforced by the low cost of melatonin and its reduced toxicity. Furthermore, its spectrum of usages seems to be wide and with the potential for improving human health. Nevertheless, the molecular and cellular mechanisms underlying melatonin´s actions need to be further exploration and accordingly, new clinical studies should be conducted in human patients with ischemic brain pathologies.

  6. Protective Effect of Grape Seed Proanthocyanidins against Liver Ischemic Reperfusion Injury: Particularly in Diet-Induced Obese Mice

    PubMed Central

    Song, Xiaoyu; Xu, Hongde; Feng, Yanling; Li, Xiaoman; Lin, Meina; Cao, Liu

    2012-01-01

    Background: Hepatic ischemia and reperfusion injury (IRI) is a major complication in liver surgery, and hepatic steatosis is a primary factor aggravating cellular injury during IRI. Both pro-inflammatory cytokines and reactive oxygen species (ROS) are key mediators of hepatic IRI. Ischemic preconditioning (IpreC), remote ischemia preconditioning (RIPC) and ischemic postconditioning (IpostC) have offered protections on hepatic IRI, but all these methods have their own shortcomings. Grape seed proanthocyanidins (GSP) has a broad spectrum of pharmacological properties against oxidative stress. Thus, GSP has potential protective effects against hepatic IRI. Methods: C57BL/6 mice suffering 30mins hepatic ischemia process were sacrificed after 1h reperfusion to build murine warm hepatic IRI model. The mice were injected GSP intraperitoneally 10, 20, 40mg/kg/day for 3 weeks as pharmacological preconditioning. Obese mice fed with high-fat diet for 24 weeks before used. Three pathways related to IRI, including ROS elimination, pro-inflammatory cytokines release and hypoxia responses were examined. Results: Our data show that GSP could significantly reduce hepatic IRI by protecting hepatocyte function and increasing the activity of ROS scavengers, as well as decreasing cytokines levels. At the same time, GSP also enhance the hypoxia tolerance response. Combined GSP and postconditioning can provided synergistic protection. In the obese mice suffering hepatic IRI group, GSP was more effective than postconditioning on protecting liver against IRI, and the combined strategy was obviously superior to the solo treatment. Conclusion: GSP could protect liver against IRI: particularly in high-fat diet induced obese mice. GSP used as pharmacological preconditioning and combined with other protocols have huge potential to be used in clinical. PMID:23139633

  7. Isoflurane Preconditioning Induces Neuroprotection by Up-Regulation of TREK1 in a Rat Model of Spinal Cord Ischemic Injury

    PubMed Central

    Wang, Kun; Kong, Xiangang

    2016-01-01

    This study aimed to explore the neuroprotection and mechanism of isoflurane on rats with spinal cord ischemic injury. Total 40 adult male Sprague-Dawley rats were divided into the four groups (n=10). Group A was sham-operation group; group B was ischemia group; group C was isoflurane preconditioning group; group D was isoflurane preconditioning followed by ischemia treatment group. Then the expressions of TWIK-related K+ channel 1 (TREK1) in the four groups were detected by immunofluorescent assay, real time-polymerase chain reactions (RT-PCR) and western blot. The primary neurons of rats were isolated and cultured under normal and hypoxic conditions. Besides, the neurons under two conditions were transfected with green fluorescent protein (GFP)-TREK1 and lentivirual to overexpress and silence TREK1. Additionally, the neurons were treated with isoflurane or not. Then caspase-3 activity and cell cycle of neurons under normal and hypoxic conditions were detected. Furthermore, nicotinamide adenine dinucleotide hydrate (NADH) was detected using NAD+/NADH quantification colorimetric kit. Results showed that the mRNA and protein expressions of TREK1 increased significantly in group C and D. In neurons, when TREK1 silenced, isoflurane treatment improved the caspase-3 activity. In hypoxic condition, the caspase-3 activity and sub-G1 cell percentage significantly increased, however, when TREK1 overexpressed the caspase-3 activity and sub-G1 cell percentage decreased significantly. Furthermore, both isoflurane treatment and overexpression of TREK1 significantly decreased NADH. In conclusion, isoflurane-induced neuroprotection in spinal cord ischemic injury may be associated with the up-regulation of TREK1. PMID:27469140

  8. Complement-Mediated Dysfunction of Glomerular Filtration Barrier Accelerates Progressive Renal Injury

    PubMed Central

    Abbate, Mauro; Zoja, Carla; Corna, Daniela; Rottoli, Daniela; Zanchi, Cristina; Azzollini, Nadia; Tomasoni, Susanna; Berlingeri, Silvia; Noris, Marina; Morigi, Marina; Remuzzi, Giuseppe

    2008-01-01

    Intrarenal complement activation leads to chronic tubulointerstitial injury in animal models of proteinuric nephropathies, making this process a potential target for therapy. This study investigated whether a C3-mediated pathway promotes renal injury in the protein overload model and whether the abnormal exposure of proximal tubular cells to filtered complement could trigger the resulting inflammatory response. Mice with C3 deficiency were protected to a significant degree against the protein overload–induced interstitial inflammatory response and tissue damage, and they had less severe podocyte injury and less proteinuria. When the same injury was induced in wild-type (WT) mice, antiproteinuric treatment with the angiotensin-converting enzyme inhibitor lisinopril reduced the amount of plasma protein filtered, decreased the accumulation of C3 by proximal tubular cells, and protected against interstitial inflammation and damage. For determination of the injurious role of plasma-derived C3, as opposed to tubular cell–derived C3, C3-deficient kidneys were transplanted into WT mice. Protein overload led to the development of glomerular injury, accumulation of C3 in podocytes and proximal tubules, and tubulointerstitial changes. Conversely, when WT kidneys were transplanted into C3-deficient mice, protein overload led to a more mild disease and abnormal C3 deposition was not observed. These data suggest that the presence of C3 increases the glomerular filtration barrier's susceptibility to injury, ultrafiltered C3 contributes more to tubulointerstitial damage induced by protein overload than locally synthesized C3, and local C3 synthesis is irrelevant to the development of proteinuria. It is speculated that therapies targeting complement combined with interventions to minimize proteinuria would more effectively prevent the progression of renal disease. PMID:18354030

  9. Downregulation of miR-181b in mouse brain following ischemic stroke induces neuroprotection against ischemic injury through targeting heat shock protein A5 and ubiquitin carboxyl-terminal hydrolase isozyme L1.

    PubMed

    Peng, Zhifeng; Li, Jiefei; Li, Yun; Yang, Xuan; Feng, Sujuan; Han, Song; Li, Junfa

    2013-10-01

    Understanding the molecular mechanism of cerebral hypoxic preconditioning (HPC)-induced endogenous neuroprotection may provide potential therapeutic targets for ischemic stroke. By using bioinformatics analysis, we found that miR-181b, one of 19 differentially expressed miRNAs, may target aconitate hydratase (ACO2), heat shock protein A5 (HSPA5), and ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) among 26 changed protein kinase C isoform-specific interacting proteins in HPC mouse brain. In this study, the role of miR-181b in oxygen-glucose deprivation (OGD)-induced N2A cell ischemic injury in vitro and mouse middle cerebral artery occlusion (MCAO)-induced cerebral ischemic injury in vivo, and its regulation of ACO2, HSPA5, and UCHL1 were further determined. We found that miR-181b expression levels significantly decreased in mouse brain following MCAO and in OGD-treated N2A cells. Up- and downregulation of miR-181b by transfection of pre- or anti-miR-181b could negatively regulate HSPA5 and UCHL1 (but not ACO2) protein levels as well as N2A cell death and programmed cell death in OGD-treated N2A cells. By using a T7 promoter-driven control dual luciferase assay, we confirmed that miR-181b could bind to the 3'-untranslated rergions of HSPA5 and UCHL1 mRNAs and repress their translations. miR-181b antagomir reduced caspase-3 cleavage and neural cell loss in cerebral ischemic cortex and improved neurological deficit of mice after MCAO. In addition, HSPA5 and UCHL1 short interfering RNAs (siRNAs) blocked anti-miR-181b-mediated neuroprotection against OGD-induced N2A cell injury in vitro. These results suggest that the downregulated miR-181b induces neuroprotection against ischemic injury through negatively regulating HSPA5 and UCHL1 protein levels, providing a potential therapeutic target for ischemic stroke.

  10. Cell Therapy Using Human Induced Pluripotent Stem Cell-Derived Renal Progenitors Ameliorates Acute Kidney Injury in Mice

    PubMed Central

    Toyohara, Takafumi; Mae, Shin-Ichi; Sueta, Shin-Ichi; Inoue, Tatsuyuki; Yamagishi, Yukiko; Kawamoto, Tatsuya; Kasahara, Tomoko; Hoshina, Azusa; Toyoda, Taro; Tanaka, Hiromi; Araoka, Toshikazu; Sato-Otsubo, Aiko; Takahashi, Kazutoshi; Sato, Yasunori; Yamaji, Noboru; Ogawa, Seishi; Yamanaka, Shinya

    2015-01-01

    Acute kidney injury (AKI) is defined as a rapid loss of renal function resulting from various etiologies, with a mortality rate exceeding 60% among intensive care patients. Because conventional treatments have failed to alleviate this condition, the development of regenerative therapies using human induced pluripotent stem cells (hiPSCs) presents a promising new therapeutic option for AKI. We describe our methodology for generating renal progenitors from hiPSCs that show potential in ameliorating AKI. We established a multistep differentiation protocol for inducing hiPSCs into OSR1+SIX2+ renal progenitors capable of reconstituting three-dimensional proximal renal tubule-like structures in vitro and in vivo. Moreover, we found that renal subcapsular transplantation of hiPSC-derived renal progenitors ameliorated the AKI in mice induced by ischemia/reperfusion injury, significantly suppressing the elevation of blood urea nitrogen and serum creatinine levels and attenuating histopathological changes, such as tubular necrosis, tubule dilatation with casts, and interstitial fibrosis. To our knowledge, few reports demonstrating the therapeutic efficacy of cell therapy with renal lineage cells generated from hiPSCs have been published. Our results suggest that regenerative medicine strategies for kidney diseases could be developed using hiPSC-derived renal cells. Significance This report is the first to demonstrate that the transplantation of renal progenitor cells differentiated from human induced pluripotent stem (iPS) cells has therapeutic effectiveness in mouse models of acute kidney injury induced by ischemia/reperfusion injury. In addition, this report clearly demonstrates that the therapeutic benefits come from trophic effects by the renal progenitor cells, and it identifies the renoprotective factors secreted by the progenitors. The results of this study indicate the feasibility of developing regenerative medicine strategy using iPS cells against renal diseases

  11. Renoprotective effect of ramulus mori polysaccharides on renal injury in STZ-diabetic mice.

    PubMed

    Guo, Chao; Liang, Tao; He, Qiaoling; Wei, Pingyuan; Zheng, Ni; Xu, Lingyuan

    2013-11-01

    Recently, increasing evidences have suggested that inflammatory stress is markedly occurred in the impaired tissue. Thus, the streptozotocin (STZ)-induced diabetic mice were used to investigate the potential renoprotective effect of ramulus mori polysaccharides (RMP) and to discuss the underlying mechanism. The results from the present study showed that RMP significantly lowered the blood glucose and serum levels of glycosylated protein, cholesterol, urea nitrogen (Urea-N), creatinine (Cr) and 24-hour urine protein, while the albumin content was elevated. Meanwhile, the proinflammatory cytokines such as interleukin-6 (IL-6), interferon-gamma (IFN-γ) and tumor necrosis factor alpha (TNF-α) in renal tissue of STZ-lesioned mice were reduced by RMP treatment. Similarly, pathological examination indicated that STZ-induced renal injury was effectively mitigated. In addition, the protein levels of interleukin-1 (IL-1) and interleukin-1 receptor (IL-1R) in renal tissue were notably decreased. Moreover, the endogenous expressions of phosphorylated-IκB (p-IκB) and nuclear factor-kappa B (NF-κB) were down-regulated, respectively. Together, these findings revealed that RMP treatment effectively attenuated STZ-induced cytotoxicity in renal tissue, in which RMP-exerted renoprotection was associated with intrarenally debilitating inflammation reaction through blocking the IL-1/NF-κB pathway, thereby maintaining the renal homeostasis.

  12. Insulin and metformin may prevent renal injury in young type 2 diabetic Goto-Kakizaki rats.

    PubMed

    Louro, Teresa M; Matafome, Paulo N; Nunes, Elsa C; da Cunha, Fernanda Xavier; Seiça, Raquel M

    2011-02-25

    Type 2 diabetes is increasing at epidemic proportions throughout the world, and diabetic nephropathy is the principal cause of end stage renal failure. Approximately 40% of patients with type 2 diabetes may progress to nephropathy and a good metabolic control can prevent the development of diabetic renal injury. The aim of our study was to evaluate, in young type 2 diabetic Goto-Kakizaki (GK) rats fed with atherogenic diet, the effects of the anti-diabetic compounds insulin, metformin and gliclazide on renal damage. GK rats fed with atherogenic diet showed increased body weight and fasting blood glucose, total cholesterol, triglycerides, C-reactive protein and protein carbonyl levels and lower HDL-cholesterol concentration; renal markers of inflammation and fibrosis were also elevated. All the anti-diabetic agents ameliorated fasting glycaemia and insulin resistance but only insulin and metformin were able to improve glycoxidation, fibrosis and inflammation kidney parameters. Our data suggest that insulin and metformin treatments, improving glicoxidative, inflammatory and fibrotic renal damage markers, play a key role in the prevention of diabetic nephropathy.

  13. Combined MMF and insulin therapy prevents renal injury in experimental diabetic rats.

    PubMed

    Wu, Xiaoyan; Zha, Dongqing; Xiang, Guangsheng; Zhang, Bo; Xiao, Shu-Yuan; Jia, Ruhan

    2006-12-01

    Conventional therapies for diabetic mellitus are not effective in preventing the progression from early diabetic nephropathy (DN) to end-stage renal disease. The role of inflammation in the pathogenesis of DN has been implicated both clinically and experimentally, which provides an alternative therapeutic target for DN. Anti-inflammatory impact of mycophenolate mofetil (MMF) alone and in combination with insulin had been observed in a rat model of experimental DN. In this study, the diabetic rats were subjected to different treatments. Compared to control, the expression levels of CD68, NGF, and NF-kappaB p65, as determined immunohistochemically, were elevated in diabetic rats. Treatment with combined MMF/insulin is associated with a significant reduction in renal tissue of NGF and NF-kappaB p65 expression, macrophage infiltration. It also partially improved the renal function and attenuated renal hypertrophy at early stage of DN. CD68 was found to positively correlate with urinary albumin excretion and NGF. The combined use of MMF/insulin seemed to offer more protections in rats with experimental diabetic renal injury, and the protective effects of MMF might be due to its anti-inflammatory actions through inhibition of NF-kappaB activation and reduction of T cells and macrophage infiltration and/or other kidney chemokine productions.

  14. The innervation of the kidney in renal injury and inflammation: A cause and consequence of deranged cardiovascular control.

    PubMed

    Abdulla, Mohammed H; Johns, Edward J

    2017-02-09

    Extensive investigations have revealed that renal sympathetic nerves regulate renin secretion, tubular fluid reabsorption and renal haemodynamics which can impact on cardiovascular homoeostasis normally and in pathophysiological states. The significance of the renal afferent innervation and its role in determining the autonomic control of the cardiovascular system is uncertain. The transduction pathways at the renal afferent nerves have been shown to require pro-inflammatory mediators and TRPV1 channels. Reno-renal reflexes have been described, both inhibitory and excitatory, demonstrating that a neural link exists between kidneys and may determine the distribution of excretory and haemodynamic function between the two kidneys. The impact of renal afferent nerve activity on basal and reflex regulation of global sympathetic drive remains opaque. There is clinical and experimental evidence that in states of chronic kidney disease and renal injury there is infiltration of T-helper cells with a sympatho-excitation and blunting of the high and low pressure baroreceptor reflexes regulating renal sympathetic nerve activity. The baroreceptor deficits are renal nerve-dependent as the dysregulation can be relieved by renal denervation. There is also experimental evidence that in obese states there is a sympatho-excitation and disrupted baroreflex regulation of renal sympathetic nerve activity which is mediated by the renal innervation. This body of information provides an important basis for directing greater attention to the role of renal injury/inflammation causing an inappropriate activation of the renal afferent nerves as an important initiator of aberrant autonomic cardiovascular control. This article is protected by copyright. All rights reserved.

  15. Prognostic indicators of adverse renal outcome and death in acute kidney injury hospital survivors

    PubMed Central

    Hamzić-Mehmedbašić, Aida; Rašić, Senija; Balavac, Merima; Rebić, Damir; Delić-Šarac, Marina; Durak-Nalbantić, Azra

    2016-01-01

    Introduction: Data regarding prognostic factors of post-discharge mortality and adverse renal function outcome in acute kidney injury (AKI) hospital survivors are scarce and controversial. Objectives: We aimed to identify predictors of post-discharge mortality and adverse renal function outcome in AKI hospital survivors. Patients and Methods: The study group consisted of 84 AKI hospital survivors admitted to the tertiary medical center during 2-year period. Baseline clinical parameters, with renal outcome 3 months after discharge and 6-month mortality were evaluated. According survival and renal function outcome, patients were divided into two groups. Results: Patients who did not recover renal function were statistically significantly older (P < 0.007) with higher Charlson comorbidity index (CCI) score (P < 0.000) and more likely to have anuria and oliguria (P = 0.008) compared to those with recovery. Deceased AKI patients were statistically significantly older (P < 0.000), with higher CCI score (P < 0.000), greater prevalence of sepsis (P =0.004), higher levels of C-reactive protein (CRP) (P < 0.017) and ferritin (P < 0.051) and lower concentrations of albumin (P<0.01) compared to survivors. By multivariate analysis, independent predictors of adverse renal outcome were female gender (P =0.033), increasing CCI (P =0.000), presence of pre-existing chronic kidney disease (P =0.000) and diabetes mellitus (P =0.019) as well as acute decompensated heart failure (ADHF) (P =0.032), while protective factor for renal function outcome was higher urine output (P =0.009). Independent predictors of post-discharge mortality were female gender (P =0.04), higher CCI score (P =0.001) and sepsis (P =0.034). Conclusion: Female AKI hospital survivors with increasing burden of comorbidities, diagnosis of sepsis and ADHF seem to be at high-risk for poor post-discharge outcome. PMID:27471736

  16. Catalase Deficiency Accelerates Diabetic Renal Injury Through Peroxisomal Dysfunction

    PubMed Central

    Hwang, Inah; Lee, Jiyoun; Huh, Joo Young; Park, Jehyun; Lee, Hi Bahl; Ho, Ye-Shih; Ha, Hunjoo

    2012-01-01

    Mitochondrial reactive oxygen species (ROS) play an important role in diabetes complications, including diabetic nephropathy (DN). Plasma free fatty acids (FFAs) as well as glucose are increased in diabetes, and peroxisomes and mitochondria participate in FFA oxidation in an interconnected fashion. Therefore, we investigated whether deficiency of catalase, a major peroxisomal antioxidant, accelerates DN through peroxisomal dysfunction and abnormal renal FFA metabolism. Diabetes was induced by multiple injections of low-dose streptozotocin into catalase knock-out (CKO) and wild-type (WT) C57BL/6 mice. Murine mesangial cells (MMCs) transfected with catalase small interfering RNA followed by catalase overexpression were used to further elucidate the role of endogenous catalase. Despite equivalent hyperglycemia, parameters of DN, along with markers of oxidative stress, were more accelerated in diabetic CKO mice than in diabetic WT mice up to 10 weeks of diabetes. CKO mice and MMCs showed impaired peroxisomal/mitochondrial biogenesis and FFA oxidation. Catalase deficiency increased mitochondrial ROS and fibronectin expression in response to FFAs, which were effectively restored by catalase overexpression or N-acetylcysteine. These data provide unprecedented evidence that FFA-induced peroxisomal dysfunction exacerbates DN and that endogenous catalase plays an important role in protecting the kidney from diabetic stress through maintaining peroxisomal and mitochondrial fitness. PMID:22315314

  17. Multi-modal assessment of long-term erythropoietin treatment after neonatal hypoxic-ischemic injury in rat brain.

    PubMed

    van de Looij, Yohan; Chatagner, Alexandra; Quairiaux, Charles; Gruetter, Rolf; Hüppi, Petra S; Sizonenko, Stéphane V

    2014-01-01

    Erythropoietin (EPO) has been recognized as a neuroprotective agent. In animal models of neonatal brain injury, exogenous EPO has been shown to reduce lesion size, improve structure and function. Experimental studies have focused on short course treatment after injury. Timing, dose and length of treatment in preterm brain damage remain to be defined. We have evaluated the effects of high dose and long-term EPO treatment in hypoxic-ischemic (HI) injury in 3 days old (P3) rat pups using histopathology, magnetic resonance imaging (MRI) and spectroscopy (MRS) as well as functional assessment with somatosensory-evoked potentials (SEP). After HI, rat pups were assessed by MRI for initial damage and were randomized to receive EPO or vehicle. At the end of treatment period (P25) the size of resulting cortical damage and white matter (WM) microstructure integrity were assessed by MRI and cortical metabolism by MRS. Whisker elicited SEP were recorded to evaluate somatosensory function. Brains were collected for neuropathological assessment. The EPO treated animals did not show significant decrease of the HI induced cortical loss at P25. WM microstructure measured by diffusion tensor imaging was improved and SEP response in the injured cortex was recovered in the EPO treated animals compared to vehicle treated animals. In addition, the metabolic profile was less altered in the EPO group. Long-term treatment with high dose EPO after HI injury in the very immature rat brain induced recovery of WM microstructure and connectivity as well as somatosensory cortical function despite no effects on volume of cortical damage. This indicates that long-term high-dose EPO induces recovery of structural and functional connectivity despite persisting gross anatomical cortical alteration resulting from HI.

  18. Osteopontin Is a Blood Biomarker for Microglial Activation and Brain Injury in Experimental Hypoxic-Ischemic Encephalopathy

    PubMed Central

    Seyfried, Nicholas T.

    2017-01-01

    Abstract Clinical management of neonatal hypoxic-ischemic encephalopathy (HIE) suffers from the lack of reliable surrogate marker tests. Proteomic analysis may identify such biomarkers in blood, but there has been no proof-of-principle evidence to support this approach. Here we performed in-gel trypsin digestion of plasma proteins from four groups of 10-d-old mice [untouched and 24 h after low-dose lipopolysaccharide (LPS) exposure, hypoxia-ischemia (HI), or LPS/HI injury; n = 3 in each group) followed by liquid chromatography-tandem mass spectrometry and bioinformatics analysis to search for HI- and LPS/HI-associated brain injury biomarkers. This analysis suggested the induction of plasma osteopontin (OPN) by HI and LPS/HI, but not by sham and injury-free LPS exposure. Immunoblot confirmed post-HI induction of OPN protein in brain and blood, whereas Opn mRNA was induced in brain but not in blood. This disparity suggests brain-derived plasma OPN after HI injury. Similarly, immunostaining showed the expression of OPN by Iba1+ microglia/macrophages in HI-injured brains. Further, intracerebroventricular injection of LPS activated microglia and up-regulated plasma OPN protein. Importantly, the induction of plasma OPN after HI was greater than that of matrix metalloproteinase 9 or glial fibrillary acid protein. Plasma OPN levels at 48 h post-HI also parallel the severity of brain damage at 7-d recovery. Together, these results suggest that OPN may be a prognostic blood biomarker in HIE through monitoring brain microglial activation. PMID:28101531

  19. Multi-Modal Assessment of Long-Term Erythropoietin Treatment after Neonatal Hypoxic-Ischemic Injury in Rat Brain

    PubMed Central

    Quairiaux, Charles; Gruetter, Rolf; Hüppi, Petra S.; Sizonenko, Stéphane V.

    2014-01-01

    Erythropoietin (EPO) has been recognized as a neuroprotective agent. In animal models of neonatal brain injury, exogenous EPO has been shown to reduce lesion size, improve structure and function. Experimental studies have focused on short course treatment after injury. Timing, dose and length of treatment in preterm brain damage remain to be defined. We have evaluated the effects of high dose and long-term EPO treatment in hypoxic-ischemic (HI) injury in 3 days old (P3) rat pups using histopathology, magnetic resonance imaging (MRI) and spectroscopy (MRS) as well as functional assessment with somatosensory-evoked potentials (SEP). After HI, rat pups were assessed by MRI for initial damage and were randomized to receive EPO or vehicle. At the end of treatment period (P25) the size of resulting cortical damage and white matter (WM) microstructure integrity were assessed by MRI and cortical metabolism by MRS. Whisker elicited SEP were recorded to evaluate somatosensory function. Brains were collected for neuropathological assessment. The EPO treated animals did not show significant decrease of the HI induced cortical loss at P25. WM microstructure measured by diffusion tensor imaging was improved and SEP response in the injured cortex was recovered in the EPO treated animals compared to vehicle treated animals. In addition, the metabolic profile was less altered in the EPO group. Long-term treatment with high dose EPO after HI injury in the very immature rat brain induced recovery of WM microstructure and connectivity as well as somatosensory cortical function despite no effects on volume of cortical damage. This indicates that long-term high-dose EPO induces recovery of structural and functional connectivity despite persisting gross anatomical cortical alteration resulting from HI. PMID:24755676

  20. Antiangiogenic Treatment Diminishes Renal Injury and Dysfunction via Regulation of Local AKT in Early Experimental Diabetes

    PubMed Central

    Zhou, Zhanmei

    2014-01-01

    In view of increased vascular endothelial growth factor-A (VEGF-A) expression and renal dysfunction in early diabetes, we designed a study to test whether VEGF-A inhibition can prevent early renal injury and dysfunction. We investigated the relationship and mechanism between VEGF-A and AKT regulation. In vitro, VEGF-A small interfering RNA (siRNA) and AKT inhibitor MK-2206 were employed to podocytes and NRK-52 cells cultured in high glucose (30 mM). In vivo, the antiangiogenic drug endostatin was administered in 12 week-old streptozotocin-induced male Sprague Dawley rats. The levels of VEGF-A, AKT, phosphorylated Ser473-AKT, phosphorylated Thr308-AKT, nephrin, angiotensin II (Ang II), angiotensin type II receptor 1 (ATR1) were examined using quantitative real-time reverse transcription-polymerase chain reaction (RT-PCR), Western blot analysis and immunohistochemistry. Interactions between phosphorylated Thr308-AKT and either nephrin in podocytes or Ang II in renal tubules were studied, respectively, using confocal immunofluorescence microscopy and immunoprecipitation. Silencing VEGF-A in podocytes upregulated phosphorylated Thr308-AKT and nephrin. Silencing VEGF-A in NRK-52E cells upregulated phosphorylated Thr308-AKT while downregulated Ang II and ATR1. MK-2206 enhanced VEGF-A expression in both podocytes and NRK-52E cells by inhibiting AKT activities. In diabetic rat kidneys, VEGF-A was upregulated and phosphorylated Thr308-AKT colocalized with either nephrin in podocytes or Ang II in renal tubules. With the endostatin treatment, the level of VEGF-A decreased while phosphorylated Thr308-AKT increased in both glomeruli and renal tubules. Treatment with endostatin upregulated nephrin in podocytes while downregulated Ang II and AT1R in renal tubules. Glomerular mesangial expansion was attenuated by the endostatin treatment, however, differences did not reach statistical significance. Endostatin ameliorated the interstitial fibrosis, urine albumin excretion rate

  1. The Anti-Inflammatory Effect of Erythropoietin and Melatonin on Renal Ischemia Reperfusion Injury in Male Rats

    PubMed Central

    Ahmadiasl, Nasser; Banaei, Shokofeh; Alihemmati, Alireza; Baradaran, Behzad; Azimian, Ehsan

    2014-01-01

    Purpose: Renal ischemia reperfusion (IR) is an important cause of renal dysfunction. It contributes to the development of acute renal failure (ARF). The purpose of this study was to investigate the anti-inflammatory effect of erythropoietin (EPO) and melatonin (MEL), which are known anti-inflammatory and antioxidant agents, in IR-induced renal injury in rats. Methods: Male Wistar Albino rats were unilaterally nephrectomized and subjected to 45 min of renal pedicle occlusion followed by 24 h reperfusion. MEL (10mg/kg, i.p) and EPO (5000U/kg, i.p) were administered prior to ischemia. After 24 h reperfusion, blood samples were collected for the determination of total antioxidant capacity (TAC), malondialdehyde (MDA) and serum creatinine levels. Also, renal samples were taken for Immunohistochemical evaluation of Bcl2 and TNF-α (tumor necrosis factor-α) expression. Results: Ischemia reperfusion increased creatinine, TAC, MDA levels and TNF-α expression, also, IR decreased Bcl2 expression. Treatment with EPO or MEL decreased creatinine, MDA levels, and increased TAC level. Also, MEL up-regulated Bcl2 expression and down-regulated TNF-α expression compared with EPO. Conclusion: Treatment with EPO and MEL had a curative effect on renal IR injury. These results may indicate that MEL protects against inflammation and apoptosis better than EPO in renal IR injury. PMID:24409409

  2. Preventing autoimmunity protects against the development of hypertension and renal injury.

    PubMed

    Mathis, Keisa W; Wallace, Kedra; Flynn, Elizabeth R; Maric-Bilkan, Christine; LaMarca, Babbette; Ryan, Michael J

    2014-10-01

    Several studies suggest a link between autoimmunity and essential hypertension in humans. However, whether autoimmunity can drive the development of hypertension remains unclear. The autoimmune disease systemic lupus erythematosus is characterized by autoantibody production, and the prevalence of hypertension is increased markedly in this patient population compared with normal healthy women. We hypothesized that preventing the development of autoimmunity would prevent the development of hypertension in a mouse model of lupus. Female lupus (NZBWF1) and control mice (NZW) were treated weekly with anti-CD20 or immunoglobulin G antibodies (both 10 mg/kg, IV) starting at 20 weeks of age for 14 weeks. Anti-CD20 therapy markedly attenuated lupus disease progression as evidenced by reduced CD45R+ B cells and lower double-stranded DNA autoantibody activity. In addition, renal injury in the form of urinary albumin, glomerulosclerosis, and tubulointerstitial fibrosis, as well as tubular injury (indicated by renal cortical expression of neutrophil gelatinase-associated lipocalin) was prevented by anti-CD20 therapy in lupus mice. Finally, lupus mice treated with anti-CD20 antibody did not develop hypertension. The protection against the development of hypertension was associated with lower renal cortical tumor necrosis factor-α expression, a cytokine that has been previously reported by us to contribute to the hypertension in this model, as well as renal cortical monocyte chemoattractant protein-1 expression and circulating T cells. These data suggest that the development of autoimmunity and the resultant increase in renal inflammation are an important underlying factor in the prevalent hypertension that occurs during systemic lupus erythematosus.

  3. CCR5 deficiency increased susceptibility to lipopolysaccharide-induced acute renal injury.

    PubMed

    Lee, Dong Hun; Park, Mi Hee; Hwang, Chul Ju; Hwang, Jae Yeon; Yoon, Hae Suk; Yoon, Do Young; Hong, Jin Tae

    2016-05-01

    C-C chemokine receptor 5 (CCR5) regulates leukocyte chemotaxis and activation, and its deficiency exacerbates development of nephritis. Therefore, we investigated the role of CCR5 during lipopolysaccharide (LPS)-induced acute kidney injury. CCR5-deficient (CCR5-/-) and wild-type (CCR5+/+) mice, both aged about 10 months, had acute renal injury induced by intraperitoneal injection of LPS (10 mg/kg). Compared with CCR5+/+ mice, CCR5-/- mice showed increased mortality and renal injury, including elevated creatinine and blood urea nitrogen levels, following LPS challenge. Compared to CCR5+/+ mice, CCR5-/- mice also exhibited greater increases in the serum concentrations of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β following LPS challenge. Furthermore, infiltration of macrophages and neutrophils, expression of intracellular adhesion molecule (ICAM)-1, and the number of apoptotic cells were more greatly increased by LPS treatment in CCR5-/- mice than in CCR5+/+ mice. The concentrations of pro-inflammatory cytokines such as TNF-α, IL-6, and IL-1β were also significantly increased in the kidney of CCR5-/- mice after LPS challenge. Moreover, primary kidney cells from CCR5-/- mice showed greater increases in TNF-α production and p38 MAP kinase activation following treatment with LPS compared with that observed in the cells from CCR5+/+ mice. LPS-induced TNF-α production and apoptosis in the primary kidney cells from CCR5-/- mice were inhibited by treatment with p38 MAP kinase inhibitor. These results suggest that CCR5 deficiency increased the production of TNF-α following LPS treatment through increased activation of the p38 pathway in the kidney, resulting in renal apoptosis and leukocyte infiltration and led to exacerbation of LPS-induced acute kidney injury.

  4. Polyethylene glycol reduces early and long-term cold ischemia-reperfusion and renal medulla injury.

    PubMed

    Faure, Jean Pierre; Hauet, Thierry; Han, Zeqiu; Goujon, Jean Michel; Petit, Isabelle; Mauco, Gerard; Eugene, Michel; Carretier, Michel; Papadopoulos, Vassilios

    2002-09-01

    Ischemia-reperfusion injury (IRI) after transplantation is a major cause of delayed graft function, which has a negative impact on early and late graft function and improve acute rejection. We have previously shown that polyethylene glycol (PEG) and particularly PEG 20M has a protective effect against cold ischemia and reperfusion injury in an isolated perfused pig and rat kidney model. We extended those observations to investigate the role of PEG using different doses (30g or 50g/l) added (ICPEG30 or ICPEG50) or not (IC) to a simplified preservation solution to reduce IRI after prolonged cold storage (48-h) of pig kidneys when compared with Euro-Collins and University of Wisconsin solutions. The study of renal function and medulla injury was performed with biochemical methods and proton NMR spectroscopy. Histological and inflammatory cell studies were performed after reperfusion (30-40 min) and on days 7 and 14 and weeks 4, 8, and 12. Peripheral-type benzodiazepine receptor (PBR), a mitochondrial protein involved in cholesterol homeostasis, was also studied. The results demonstrated that ICPEG30 improved renal function and reduced medulla injury. ICPEG30 also improved tubular function and strongly protect mitochondrial integrity. Post-IRI inflammation was strongly reduced in this group, particularly lymphocytes TCD4(+), PBR expression was influenced by IRI in the early period and during the development of chronic dysfunction. This study clearly shows that PEG has a beneficial effect in renal preservation and suggests a role of PBR as a marker IRI and repair processes.

  5. Kidney injury molecule-1 is up-regulated in renal epithelial cells in response to oxalate in vitro and in renal tissues in response to hyperoxaluria in vivo.

    PubMed

    Khandrika, Lakshmipathi; Koul, Sweaty; Meacham, Randall B; Koul, Hari K

    2012-01-01

    Oxalate is a metabolic end product excreted by the kidney. Mild increases in urinary oxalate are most commonly associated with Nephrolithiasis. Chronically high levels of urinary oxalate, as seen in patients with primary hyperoxaluria, are driving factor for recurrent renal stones, and ultimately lead to renal failure, calcification of soft tissue and premature death. In previous studies others and we have demonstrated that high levels of oxalate promote injury of renal epithelial cells. However, methods to monitor oxalate induced renal injury are limited. In the present study we evaluated changes in expression of Kidney Injury Molecule-1 (KIM-1) in response to oxalate in human renal cells (HK2 cells) in culture and in renal tissue and urine samples in hyperoxaluric animals which mimic in vitro and in vivo models of hyper-oxaluria. Results presented, herein demonstrate that oxalate exposure resulted in increased expression of KIM-1 m RNA as well as protein in HK2 cells. These effects were rapid and concentration dependent. Using in vivo models of hyperoxaluria we observed elevated expression of KIM-1 in renal tissues of hyperoxaluric rats as compared to normal controls. The increase in KIM-1 was both at protein and mRNA level, suggesting transcriptional activation of KIM-1 in response to oxalate exposure. Interestingly, in addition to increased KIM-1 expression, we observed increased levels of the ectodomain of KIM-1 in urine collected from hyperoxaluric rats. To the best of our knowledge our studies are the first direct demonstration of regulation of KIM-1 in response to oxalate exposure in renal epithelial cells in vitro and in vivo. Our results suggest that detection of KIM-1 over-expression and measurement of the ectodomain of KIM-1 in urine may hold promise as a marker to monitor oxalate nephrotoxicity in hyperoxaluria.

  6. Reducing Caloric Intake Prevents Ischemic Injury and Myocardial Dysfunction and Affects Anesthetic Cardioprotection in Type 2 Diabetic Rats

    PubMed Central

    Boer, Christa; van den Akker, Rob F. P.; Loer, Stephan A.; Bouwman, R. Arthur

    2017-01-01

    Background. Type 2 diabetes mellitus (T2DM) increases the risk of myocardial ischemia, followed by increased perioperative risk of cardiovascular morbidity. We investigated whether reducing caloric intake reduces ischemic injury and myocardial dysfunction and affects the protective effects of the volatile anesthetic sevoflurane in diet-induced T2DM rats. Methods. Rats received a western (WD) or control diet (CD). Caloric intake was reduced by reversing WD-fed rats to CD. Myocardial function was determined with echocardiography. After 8 weeks of diet feeding, myocardial infarction was induced and the effect of sevoflurane was studied on myocardial function and ischemia/reperfusion injury. Results. WD-feeding resulted in a mild T2DM phenotype and myocardial dysfunction. Sevoflurane further impaired systolic function in WD-fed rats. Unexpectedly, WD-feeding reduced infarct size compared to CD-feeding. Sevoflurane reduced infarct size in CD-fed rats; however it enlarged infarct size in WD-fed rats. Caloric reduction restored myocardial dysfunction and the protective effect of sevoflurane against ischemia compared to WD-fed rats, whereas the protective effects of WD-feeding persisted. Conclusion. Caloric reduction restored the T2DM phenotype and myocardial function, while the cardioprotective properties of WD-feeding or sevoflurane persisted. Our data suggest that reducing caloric intake in T2DM might be a possible intervention to reduce perioperative risk of cardiovascular morbidity. PMID:28349068

  7. Remote Ischemic Preconditioning for the Prevention of Contrast-Induced Acute Kidney Injury in Diabetics Receiving Elective Percutaneous Coronary Intervention

    PubMed Central

    Balbir Singh, Gillian; Ann, Soe Hee; Park, Jongha; Chung, Hyun Chul; Lee, Jong Soo; Kim, Eun-Sook; Choi, Jung Il; Lee, Jiho; Kim, Shin-Jae; Shin, Eun-Seok

    2016-01-01

    Objective Remote ischemic preconditioning (RIPC) induces transient episodes of ischemia by the occlusion of blood flow in non-target tissue, before a subsequent ischemia-reperfusion injury. When RIPC is applied before percutaneous coronary intervention (PCI), the kidneys may be protected against ischemia-reperfusion injury and subsequently contrast-induced acute kidney injury (CI-AKI). The aim of this study was to evaluate the efficacy of RIPC for the prevention of CI-AKI in patients with diabetes with pre-existing chronic kidney disease (CKD) undergoing elective PCI. Methods This randomized, double-blind, sham-controlled study enrolled patients with diabetes scheduled for elective PCI with eGFR ≤60 ml/min/1.73 m2 or urinary albumin creatinine ratio of >300 mg/g to receive either RIPC or the sham ischemic preconditioning. Results One hundred and two patients (68.9 ± 8.2 years old, 47.1% men) were included. Baseline eGFR, creatinine and serum NGAL was similar between RIPC and control groups (48.5 ± 12 ml/min vs. 46.6 ± 10 ml/min, p = 0.391; 1.42 ± 0.58 mg/dl vs. 1.41 ± 0.34 mg/dl, p = 0.924; and 136.0 ± 45.0 ng/ml vs. 137.6 ± 43.3 ng/ml, p = 0.961, respectively). CI-AKI occurred in 13.7% (14/102) of the total subjects, with both RIPC and control groups having an equal incidence of 13.7% (7/51). No significant differences were seen in creatinine, NGAL, cardiac enzymes (troponin T, CKMB) and hs-CRP between the groups post-procedure. Conclusions In this study, RIPC applied prior to elective PCI was not effective in preventing CI-AKI in patients with diabetes with pre-existing CKD. Trial Registration ClinicalTrials.gov NCT02329444 PMID:27723839

  8. NAD⁺/NADH metabolism and NAD⁺-dependent enzymes in cell death and ischemic brain injury: current advances and therapeutic implications.

    PubMed

    Ma, Yingxin; Nie, Hui; Chen, Heyu; Li, Jiefu; Hong, Yunyi; Wang, Ban; Wang, Caixia; Zhang, Jie; Cao, Wei; Zhang, Mingchao; Xu, Yongning; Ding, Xianting; Yin, Shan Kai; Qu, Xinkai; Ying, Weihai

    2015-01-01

    NAD(+) and NADH play crucial roles in a variety of biological processes including energy metabolism, mitochondrial functions, and gene expression. Multiple studies have indicated that NAD(+) administration can profoundly decrease oxidative cell death as well as ischemic and traumatic brain injury, suggesting NAD(+) metabolism as a promising therapeutic target for cerebral ischemia and head injury. Cumulating evidence has suggested that NAD(+) can produce its protective effects by multiple mechanisms, including preventing mitochondrial alterations, enhancing energy metabolism, preventing virtually all forms of cell death including apoptosis, necrosis and autophagy, inhibiting inflammation, directly increasing antioxidation capacity of cells and tissues, and activating SIRT1. Increasing evidence has also suggested that NADH metabolism is a potential therapeutic target for treating several neurological disorders. A number of studies have further indicated that multiple NAD(+)-dependent enzymes such as sirtuins, polymerase(ADP-ribose) polymerases (PARPs) and CD38 mediate cell death and multiple biological processes. In this article, an overview of the recent findings regarding the roles of NAD(+)/NADH and NAD(+)-dependent enzymes in cell death and ischemic brain injury is provided. These findings have collectively indicated that NAD(+)/NADH and NAD(+)-dependent enzymes play fundamental roles in oxidative stress-induced cell death and ischemic brain injury, which may become promising therapeutic targets for brain ischemia and multiple other neurological disorders.

  9. [Fundus hypothermia at 29 degrees C prevents ischemic injury of the outer retina].

    PubMed

    Mori, K; Hayashi, N; Abe, T; Yoneya, S

    1995-09-01

    We evaluated quantitatively the protective effect of local fundus hypothermia under pressure-induced ischemia using morphometric analysis. Retinochoroidal ischemia was produced in albino rabbit eyes by increasing the intraocular pressure for 60 minutes. During the ischemic procedure, a copper plate was inserted behind the eyeball. The retinal temperature in the posterior pole was thus reduced to 29 degrees C by placing solid carbon dioxide, and to 32 degrees C by placing an ice cube at the anterior end of the plate. Histopathological changes in the group with ischemia alone were obvious in visual cells and retinal pigment epithelial cells (RPE), but the retina treated with additional hypothermia was well preserved. In the retina with hypothermia at 29 degrees C, there was no significant difference from the controls in the mean thickness of the photoreceptor layer (PRL) and the RPE, and the average count of nuclei in the outer nuclear layer (ONL). In the retina with hypothermia at 32 degrees C, there was also no significant difference from the controls in the thickness of the PRL and the RPE. Otherwise, the count of nuclei in the ONL decreased significantly when compared to that of controls (p < 0.001). These findings indicate that even mild hypothermia at 29 degrees C preserves the outer retina from ischemic damage and that the protective effect of hypothermia at 32 degrees C is insufficient.

  10. Diquat induces renal proximal tubule injury in glutathione reductase-deficient mice

    SciTech Connect

    Rogers, Lynette K. . E-mail: rogersl@ccri.net; Bates, Carlton M.; Welty, Stephen E.; Smith, Charles V.

    2006-12-15

    Reactive oxygen species (ROS) have been associated with many human diseases, and glutathione (GSH)-dependent processes are pivotal in limiting tissue damage. To test the hypothesis that Gr1{sup a1Neu} (Neu) mice, which do not express glutathione reductase (GR), would be more susceptible than are wild-type mice to ROS-mediated injury, we studied the effects of diquat, a redox cycling toxicant. Neu mice exhibited modest, dose- and time-dependent elevations in plasma alanine aminotransferase (ALT) activities, 126 {+-} 36 U/l at 2 h after 5 {mu}mol/kg of diquat, but no ALT elevations were observed in diquat-treated C3H/HeN mice for up to 6 h after 50 {mu}mol/kg of diquat. Histology indicated little or no hepatic necrosis in diquat-treated mice of either strain, but substantial renal injury was observed in diquat-treated Neu mice, characterized by brush border sloughing in the proximal tubules by 1 h and tubular necrosis by 2 h after doses of 7.5 {mu}mol/kg. Decreases in renal GSH levels were observed in the Neu mice by 2 h post dose (3.4 {+-} 0.4 vs 0.2 {+-} 0.0 {mu}mol/g tissue at 0 and 50 {mu}mol/kg, respectively), and increases in renal GSSG levels were observed in the Neu mice as early as 0.5 h after 7.5 {mu}mol/kg (105.5 {+-} 44.1 vs 27.9 {+-} 4.8 nmol/g tissue). Blood urea nitrogen levels were elevated by 2 h in Neu mice after doses of 7.5 {mu}mol/kg (Neu vs C3H, 32.8 {+-} 4.1 vs 17.9 {+-} 0.3 mg/dl). Diquat-induced renal injury in the GR-deficient Neu mice offers a useful model for studies of ROS-induced renal necrosis and of the contributions of GR in defense against oxidant-mediated injuries in vivo.

  11. Using verapamil as protective factor in renal ischemia reperfusion injury during anatrophic nephrolithotomy.

    PubMed

    Aganović, Damir; Kulovac, Benjamin; Prcić, Alden; Hadziosmanović, Osman

    2007-08-01

    Anatrophic nephrolithotomy (ANL) in the selected cases represents the method of choice in the treatment of staghorn calculi. We evaluated postoperative outcome of patients subjected to standard ANL that received 10 mg of Verapamil immediately before declamping renal artery, due to prevention of reperfusion injury. From 2002 to 2005, 18 nephrolithotomies were performed on 15 patients, in the Urology Clinic, University of Sarajevo Clinics Centre. Preoperative evaluation included intravenous urography and radionuclide renal scans which had been repeated 6 months after the operations. 10 males and 5 females were operated with mean age of 45 years. Urography and renal scans showed severe calyceal distortion and infundibular stenosis in 83% cases, complicated with ureteropelvic junction obstruction in 55% cases. Chronic kidney failure was present in 60% patients. Mean operative time was 150 minutes, with mean cold ischemia time of 61 minutes and mean blood loss of 300ml. There were five minor postoperative complications. Residual small calculi were found in 3 patients. Kidney function was stabilized in the patients suffering from chronic kidney failure, which was proved by radio nuclide imaging. ANL improved by using calcium channel blockers as a protective factor for reperfusion injury proved to be a good treatment choice with a low level of complications and noticeable stabilization and improvement of kidneys function.

  12. Baicalin Inhibits Renal Cell Apoptosis and Protects Against Acute Kidney Injury in Pediatric Sepsis

    PubMed Central

    Zhu, Yanping; Fu, Yanxia; Lin, Hairong

    2016-01-01

    Background Pediatric sepsis has high morbidity in children, may lead to acute kidney injury (AKI), and further aggravate the disease. Baicalin is a kind of flavonoid in Scutellaria baicalensis Georgi and has been reported to protect against several diseases, but its roles in septic AKI remain unclear. This study aimed to uncover the effects of baicalin in AKI during pediatric sepsis. Material/Methods Blood urea nitrogen (BUN) and serum creatinine (Cr) levels were detected in 50 pediatric patients, who underwent basic therapy with or without baicalin adjunctive therapy. Mouse sepsis models were constructed by cecal ligation and puncture (CLP) and treated with baicalin intragastrically, after which BUN and Cr examination, TUNEL apoptosis assay, and expression analyses of BAX and BCL2 were performed. Results Baicalin adjunctive therapy significantly decreased BUN and Cr levels in pediatric sepsis patients (P<0.05). CLP led to elevated BUN and Cr levels in the mouse model (P<0.01), indicating kidney injury accompanied by sepsis. Baicalin decreased BUN and Cr levels (P<0.05), and reduced the apoptotic cell percent in the renal tissue (P<0.05) of the CLP model. It inhibited BAX and promoted BCL2 in the renal tissue, which was consistent with cell apoptosis changes. Conclusions Baicalin is capable of suppressing renal cell apoptosis and protecting against AKI in pediatric sepsis. This study provides a potential adjunctive therapy for treating AKI in pediatric sepsis, and further research is necessary to reveal its deeper mechanisms. PMID:28013315

  13. Preoperative Fasting Protects against Renal Ischemia-Reperfusion Injury in Aged and Overweight Mice

    PubMed Central

    Jongbloed, Franny; de Bruin, Ron W. F.; Pennings, Jeroen L. A.; Payán-Gómez, César; van den Engel, Sandra; van Oostrom, Conny T.; de Bruin, Alain; Hoei