Science.gov

Sample records for isco water sample

  1. Ground Water Sampling at ISCO Sites - Residual Oxidant Impact on Sample Quality and Sample Preservation Guideline

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the delivery of a chemical oxidant into the subsurface where oxidative reactions transform ground water contaminants into less toxic or harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste si...

  2. Ground Water Sampling at ISCO Sites - Residual Oxidant Impact on Sample Quality and Sample Preservation Guideline

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the delivery of a chemical oxidant into the subsurface where oxidative reactions transform ground water contaminants into less toxic or harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste si...

  3. Impact of Oxidant Residuals on Ground Water Samples at ISCO Sites: Recommended Guidelines for Sample Preservation

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground water contaminants into less toxic or harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste si...

  4. Impact of Oxidant Residuals on Ground Water Samples at ISCO Sites: Recommended Guidelines for Sample Preservation

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground water contaminants into less toxic or harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste si...

  5. EPA GROUND WATER ISSUE: Ground Water Sample Preservation at ISCO Sites – Recommended Guidelines

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground water contaminants into harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contai...

  6. EPA GROUND WATER ISSUE: Ground Water Sample Preservation at ISCO Sites – Recommended Guidelines

    EPA Science Inventory

    In-situ chemical oxidation (ISCO) involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground water contaminants into harmless byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contai...

  7. Asotin Creek ISCO Water Sample Data Summary: Water Year 2002, Annual Report 2001-2002.

    SciTech Connect

    Peterson, Stacia

    2003-08-01

    The Pomeroy Ranger District operates 3 automated water samplers (ISCOs) in the Asotin Creek drainage in cooperation with the Asotin Model Watershed. The samplers are located on Asotin Creek: Asotin Creek at the mouth, Asotin Creek at Koch site, and South Fork Asotin Creek above the forks. At the end of Water Year (WY) 2001 we decided to sample from Oct. 1 through June 30 of each water year. This decision was based on the difficulty of obtaining good low flow samples, since the shallow depth of water often meant that instrument intakes were on the bed of the river and samples were contaminated with bed sediments. The greatest portion of suspended sediment is transported during the higher flows of fall and especially during the spring snow runoff period, and sampling the shorter season should allow characterization of the sediment load of the river. The ISCO water samplers collected a daily composite sample of 4 samples per day into one bottle at 6-hour intervals until late March when they were reprogrammed to collect 3 samples per day at 8-hour intervals. This was done to reduce battery use since battery failure had become an ongoing problem. The water is picked up on 24-day cycles and brought to the Forest Service Water Lab in Pendleton, OR. The samples are analyzed for total suspended solids (TSS), conductivity, and turbidity. A total dissolved solids value is estimated based on conductivity. The USGS gage, Asotin Creek at the mouth, No.13335050 has been discontinued and there are no discharge records available for this period.

  8. Groundwater Sampling at ISCO Sites: Binary Mixtures of Volatile Organic Compounds and Persulfate

    EPA Science Inventory

    In-situ chemical oxidation involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground-water contaminants into less harmful byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contain o...

  9. Groundwater Sampling at ISCO Sites: Binary Mixtures of Volatile Organic Compounds and Persulfate

    EPA Science Inventory

    In-situ chemical oxidation involves the introduction of a chemical oxidant into the subsurface for the purpose of transforming ground-water contaminants into less harmful byproducts. Due to oxidant persistence, ground water samples collected at hazardous waste sites may contain o...

  10. ISCO Demonstration Project at Tucson International Authority Superfund Site

    NASA Astrophysics Data System (ADS)

    Marble, J. C.; Fuhrig, L.; Brusseau, M. L.; Plaschke, M.; Brinker, F.

    2005-12-01

    In-situ chemical oxidation (ISCO) has gained support as a remediation technique for immiscible-liquid contaminated source zones. 1,1-dichloroethene (DCE) is present at the Samsonite Building Area, which is part of the Tucson International Airport Authority Superfund Site. Based on prior site characterization, DCE is thought to be located in a lower permeability zone adjacent to the water table of a local groundwater zone. A pilot-scale ISCO demonstration project using potassium permanganate (KMnO4) was conducted at the site. Bench-scale studies using core samples were used to determine natural oxidant demand and establish optimal KMnO4 injection concentration. Single, sequential, low-pressure injections were implemented for a 9-well network encompassing the primary source zone. Groundwater monitoring was performed before, during, and after injection.

  11. Fundamentals of ISCO Using Ozone

    EPA Science Inventory

    In situ chemical oxidation (ISCO) using ozone involves the introduction of ozone gas (O3) into the subsurface to degrade organic contaminants of concern. Ozone is tri-molecular oxygen (O2) that is a gas under atmospheric conditions and is a strong oxidant. Ozone may react with ...

  12. Fundamentals of ISCO Using Ozone

    EPA Science Inventory

    In situ chemical oxidation (ISCO) using ozone involves the introduction of ozone gas (O3) into the subsurface to degrade organic contaminants of concern. Ozone is tri-molecular oxygen (O2) that is a gas under atmospheric conditions and is a strong oxidant. Ozone may react with ...

  13. Fundamentals of ISCO Using Hydrogen Peroxide

    EPA Science Inventory

    Hydrogen peroxide is a common oxidant that has been applied extensively with in situ chemical oxidation (ISCO). Because of its widespread use in this and other fields, it has been extensively researched. This research has revealed that hydrogen peroxide has very complex chemistry...

  14. Fundamentals of ISCO Using Hydrogen Peroxide

    EPA Science Inventory

    Hydrogen peroxide is a common oxidant that has been applied extensively with in situ chemical oxidation (ISCO). Because of its widespread use in this and other fields, it has been extensively researched. This research has revealed that hydrogen peroxide has very complex chemistry...

  15. Implementation of Electrokinetic-ISCO Remediation

    NASA Astrophysics Data System (ADS)

    Wu, M. Z.; Reynolds, D.; Fourie, A.; Prommer, H.; Thomas, D.

    2011-12-01

    Significant challenges remain in the remediation of low-permeability porous media (e.g. clays, silts) contaminated with dissolved and sorbed organic contaminants. Current remediation technologies, such as in-situ chemical oxidation (ISCO), are often ineffective and the treatment region is limited by very slow rates of groundwater flow (advection) or molecular diffusion. At the laboratory-scale several studies (e.g. Reynolds et al. 2008) have highlighted the potential for utilising electrokinetic transport, as induced by the application of an electric field, to deliver a remediation compound (e.g. permanganate, persulfate) within heterogeneous and low-permeability sediments for ISCO (termed EK-ISCO) or other treatments. Process-based numerical modelling of the coupled flow, transport and reaction processes can provide important insights into the prevailing controls and feedback mechanisms and therefore guide the optimisation of EK-ISCO remediation efficacy. In this study, a numerical model was developed that simulates groundwater flow and multi-species reactive transport under both hydraulic and electric gradients (Wu et al. 2010). Coupled into the existing, previously verified reactive transport model PHT3D (Prommer et al. 2003), the model was verified against analytical solutions and data from experimental studies. Using the newly developed model, the sensitivity of electrokinetic, hydraulic and engineering parameters as well as alternative configurations of the EK-ISCO treatment process were investigated. The duration and energy required for remediation was most dependent upon the applied voltage gradient and the natural oxidant demand and all investigated parameters affected the remediation process to some extent. Investigated variants of treatment configurations included several alternative locations for oxidant injection and a series of one-dimensional and two-dimensional electrode configurations.

  16. The effect of storage time on Vibrio spp. and fecal indicator bacteria in an Isco autosampler.

    PubMed

    Ghazaleh, Maite N; Froelich, Brett A; Noble, Rachel T

    2014-09-01

    Monitoring concentrations of bacterial pathogens and indicators of fecal contamination in coastal and estuarine ecosystems is critical to reduce adverse effects to public health. During storm events, particularly hurricanes, floods, Nor'easters, and tropical cyclones, sampling of coastal and estuarine waters is not generally possible due to safety concerns. It is particularly important to monitor waters during these periods as it is at precisely these times that pathogenic bacteria such as Vibrio spp. and fecal indicator bacteria concentrations fluctuate, potentially posing significant risks to public health. Automated samplers, such as the Isco sampler, are commonly used to conduct remote sample collection. Remote sampling is employed during severe storm periods, thereby reducing risk to researchers. Water samples are then stored until conditions are safe enough to retrieve them, typically in less than 21h, to collect the samples. Concerns exist regarding potential "bottle effects", whereby containment of sample might result in altered results. While these effects are well documented in samples being held for 24h or more, there is little data on bottle effects occurring during the first 24h of containment, and less still on the specific effects related to this type of sampling regime. Estuarine water samples were collected in the fall of 2013, placed into an Isco autosampler and subsampled over time to determine the effects of storage within this type of autosampling device. Vibrio spp. and fecal indicator bacteria were quantified using replicated culture-based methods, including Enterolert™ and membrane filtration. The experiments demonstrated no significant impact of storage time when comparing concentrations of total Vibrio spp., Vibrio vulnificus, Vibrio parahaemolyticus, or Enterococcus spp. after storage compared to original concentrations. However, the findings also suggested that increased variability and growth can occur during the middle of the day

  17. www.elearnSCI.org: a global educational initiative of ISCoS.

    PubMed

    Chhabra, H S; Harvey, L A; Muldoon, S; Chaudhary, S; Arora, M; Brown, D J; Biering-Sorensen, F; Wyndaele, J J; Charlifue, S; Horsewell, J; Ducharme, S; Green, D; Simpson, D; Glinsky, J; Weerts, E; Upadhyay, N; Aito, S; Wing, P; Katoh, S; Kovindha, A; Krassioukov, A; Weeks, C; Srikumar, V; Reeves, R; Siriwardane, C; Hasnan, N; Kalke, Y B; Lanig, I

    2013-03-01

    To develop a web-based educational resource for health professionals responsible for the management of spinal cord injury (SCI). The resource:www.elearnSCI.org is comprised of seven learning modules, each subdivided into various submodules. Six of the seven modules address the educational needs of all disciplines involved in comprehensive SCI management. The seventh module addresses prevention of SCI. Each submodule includes an overview, activities, self-assessment questions and references. Three hundred and thirty-two experts from The International Spinal Cord Society (ISCoS) and various affiliated societies from 36 countries were involved in developing the resource through 28 subcommittees. The content of each submodule was reviewed and approved by the Education and Scientific Committees of ISCoS and finally by an Editorial Committee of 23 experts. The content of the learning modules is relevant to students and to new as well as experienced SCI healthcare professionals. The content is applicable globally, has received consumer input and is available at no cost. The material is presented on a website underpinned by a sophisticated content-management system, which allows easy maintenance and ready update of all the content. The resource conforms to key principles of e-learning, including appropriateness of curriculum, engagement of learners, innovative approaches, effective learning, ease of use, inclusion, assessment, coherence, consistency, transparency, cost effectiveness and feedback. www.elearnSCI.org provides a cost effective way of training healthcare professionals that goes beyond the textbook and traditional face-to-face teaching.

  18. GROUND WATER SAMPLING ISSUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and
    remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  19. GROUND WATER SAMPLING ISSUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and
    remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  20. Developing Water Sampling Standards

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1974

    1974-01-01

    Participants in the D-19 symposium on aquatic sampling and measurement for water pollution assessment were informed that determining the extent of waste water stream pollution is not a cut and dry procedure. Topics discussed include field sampling, representative sampling from storm sewers, suggested sampler features and application of improved…

  1. Developing Water Sampling Standards

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1974

    1974-01-01

    Participants in the D-19 symposium on aquatic sampling and measurement for water pollution assessment were informed that determining the extent of waste water stream pollution is not a cut and dry procedure. Topics discussed include field sampling, representative sampling from storm sewers, suggested sampler features and application of improved…

  2. Developing the ISCO Technology Practices Manual: The SERDP/ESTCP ISCO Initiative

    DTIC Science & Technology

    2010-12-01

    1 1 2 Karst 1 2 3 2 2 3 1 2 3 High Contaminant Concentration/Mass Type of ISCO Treatment Goal: Concentration Reduction Mass Reduction Mass Flux...media (fractured) Sedimentary 1 2 3 1 2 3 1 1 2 Igneous/metamorphic 2 2 3 2 3 3 1 2 3 Karst 2 3 3 3 3 3 2 3 3 6 Basic Screening High Contaminant...Heterogeneous low permeability 1 2 2 1 1 2 1 1 2 Consolidated media (fractured) Sedimentary 1 2 2 1 1 2 1 1 2 Igneous/metamorphic 1 2 3 1 2 3 1 1 2 Karst 1 2 3 2

  3. Water Sample Concentrator

    ScienceCinema

    Idaho National Laboratory

    2016-07-12

    Automated portable device that concentrates and packages a sample of suspected contaminated water for safe, efficient transport to a qualified analytical laboratory. This technology will help safeguard against pathogen contamination or chemical and biolog

  4. Water Sample Concentrator

    SciTech Connect

    Idaho National Laboratory

    2009-07-21

    Automated portable device that concentrates and packages a sample of suspected contaminated water for safe, efficient transport to a qualified analytical laboratory. This technology will help safeguard against pathogen contamination or chemical and biolog

  5. Binary Mixtures of Permanganate and Chlorinated Volatile Organic Compounds in Groundwater Samples: Sample Preservation and Analysis

    EPA Science Inventory

    Ground water samples collected at sites where in-situ chemical oxidation (ISCO) has been deployed may contain binary mixtures of ground water contaminants and permanganate (MnO4-), an oxidant injected into the subsurface to destroy the contaminant. Commingling of the oxidant and ...

  6. Binary Mixtures of Permanganate and Chlorinated Volatile Organic Compounds in Groundwater Samples: Sample Preservation and Analysis

    EPA Science Inventory

    Ground water samples collected at sites where in-situ chemical oxidation (ISCO) has been deployed may contain binary mixtures of ground water contaminants and permanganate (MnO4-), an oxidant injected into the subsurface to destroy the contaminant. Commingling of the oxidant and ...

  7. Water sample filtration unit

    USGS Publications Warehouse

    Skougstad, M.W.; Scarbro, G.F.

    1968-01-01

    A readily portable, all plastic, pressure filtration unit is described which greatly facilitates rapid micropore membrane field filtration of up to several liters of water with a minimum risk of inorganic chemical alteration or contamination of the sample. The unit accommodates standard 10.2-cm. (4-inch) diameter filters. The storage and carrying case serves as a convenient filter stand for both field and laboratory use.

  8. Bioremediation/Natural Attenuation Continues after ISCO Treatment

    EPA Science Inventory

    Permanganate has been successfully used in in-situ chemical oxidation (ISCO) to transform a wide range of organic contaminants under diverse geologic and geochemical conditions. Here, a critical analysis is presented of several technical issues commonly raised during in-situ che...

  9. Bioremediation/Natural Attenuation Continues after ISCO Treatment

    EPA Science Inventory

    Permanganate has been successfully used in in-situ chemical oxidation (ISCO) to transform a wide range of organic contaminants under diverse geologic and geochemical conditions. Here, a critical analysis is presented of several technical issues commonly raised during in-situ che...

  10. Considerations in sampling of water.

    PubMed

    Ramsey, Charles A

    2015-01-01

    Sampling water is no different than sampling any other media. It starts with the development of Sample Quality Criteria, understanding of material properties, then application of the Theory of Sampling. The main difference with sampling water as opposed to solids is the material properties. This paper addresses some of the material properties and consequences of those properties for the development of the sampling protocols. Two properties that must be addressed for water are the temporal nature and the inclusion of suspended solids. Examples are provided for three specific water sampling scenarios which may have application to other water sampling scenarios.

  11. GROUND WATER SAMPLING FOR VOCS

    EPA Science Inventory

    Sampling protocol should be dictated by the sampling objective(s). It is important to obtain representative ground water samples, regardless of the sampling objective(s). Low-flow (minimum draw-down) purging and sampling techniques are best in most instances, particularly for VOC...

  12. In situ oxidation of petroleum-hydrocarbon contaminated groundwater using passive ISCO system.

    PubMed

    Liang, S H; Kao, C M; Kuo, Y C; Chen, K F; Yang, B M

    2011-04-01

    Groundwater contamination by gasoline spill is a worldwide environmental problem. Gasoline contains methyl tertiary-butyl ether (MTBE) (a fuel oxygenates) and benzene, which are the chemicals of concerns among the gasoline components. In this study, an in situ chemical oxidation (ISCO) barrier system was developed to evaluate the feasibility of applying this passive system on the control of MTBE and benzene plume in aquifer. The developed ISCO barrier contained oxidant-releasing materials, which could release oxidants (e.g., persulfate) when contact with water for the contaminants' oxidation in groundwater. In this study, laboratory-scale fill-and-draw experiments were conducted to determine the component ratios of the oxidant-releasing materials and evaluate the persulfate release rates. Results indicate that the average persulfate-releasing rate of 7.26 mg S(2)O(8)(2-)/d/g was obtained when the mass ratio of sodium persulfate/cement/sand/water was 1/1.4/0.24/0.7. The column study was conducted to evaluate the efficiency of in situ application of the developed ISCO barrier system on MTBE and benzene oxidation. Results from the column study indicate that approximately 86-92% of MTBE and 95-99% of benzene could be removed during the early persulfate-releasing stage (before 48 pore volumes of groundwater pumping). The removal efficiencies for MTBE and benzene dropped to approximately 40-56% and 85-93%, respectively, during the latter part of the releasing period due to the decreased persulfate-releasing rate. Results reveal that acetone, byproduct of MTBE, was observed and then further oxidized completely. Results suggest that the addition of ferrous ion would activate the persulfate oxidation. However, excess ferrous ion would compete with organic contaminants for persulfate, and thus, cause the decrease in contaminant oxidation rates. The proposed treatment scheme would be expected to provide a more cost-effective alternative to remediate MTBE, benzene, and other

  13. Kuipers performs Water Sample Analysis

    NASA Image and Video Library

    2012-05-15

    ISS031-E-084619 (15 May 2012) --- After collecting samples from the Water Recovery System (WRS), European Space Agency astronaut Andre Kuipers, Expedition 31 flight engineer, processes the samples for chemical and microbial analysis in the Unity node of the International Space Station.

  14. Field demonstration of polymer-amended in situ chemical oxidation (PA-ISCO)

    NASA Astrophysics Data System (ADS)

    Silva, Jeff A. K.; Crimi, Michelle; Palaia, Thomas; Ko, Saebom; Davenport, Sean

    2017-04-01

    The methods and results of the first field-scale demonstration of polymer-amended in situ chemical oxidation (PA-ISCO) are presented. The demonstration took place at MCB CAMLEJ (Marine Corps Base, Camp Lejeune) Operable Unit (OU) 15, Site 88, in Camp Lejeune, North Carolina between October and December 2010. PA-ISCO was developed as an alternative treatment approach that utilizes viscosity-modified fluids to improve the in situ delivery and distribution (i.e. sweep-efficiency) of chemical oxidants within texturally heterogeneous contaminated aquifers. The enhanced viscosity of the fluid mitigates the effects of preferential flows, improving sweep-efficiency and enhancing the subsurface contact between the injected oxidant and the target contamination within the treatment zone. The PA-ISCO fluid formulation used in this demonstration included sodium permanganate as oxidant, xanthan gum biopolymer as a shear-thinning viscosifier, and sodium hexametaphosphate (SHMP) as an anti-coagulant. It was the goal of this demonstration to validate the utility of PA-ISCO within a heterogeneous aquifer. An approximate 100% improvement in sweep-efficiency was achieved for the PA-ISCO fluid, as compared to a permanganate-only injection within an adjacent control plot.

  15. Field demonstration of polymer-amended in situ chemical oxidation (PA-ISCO).

    PubMed

    Silva, Jeff A K; Crimi, Michelle; Palaia, Thomas; Ko, Saebom; Davenport, Sean

    2017-04-01

    The methods and results of the first field-scale demonstration of polymer-amended in situ chemical oxidation (PA-ISCO) are presented. The demonstration took place at MCB CAMLEJ (Marine Corps Base, Camp Lejeune) Operable Unit (OU) 15, Site 88, in Camp Lejeune, North Carolina between October and December 2010. PA-ISCO was developed as an alternative treatment approach that utilizes viscosity-modified fluids to improve the in situ delivery and distribution (i.e. sweep-efficiency) of chemical oxidants within texturally heterogeneous contaminated aquifers. The enhanced viscosity of the fluid mitigates the effects of preferential flows, improving sweep-efficiency and enhancing the subsurface contact between the injected oxidant and the target contamination within the treatment zone. The PA-ISCO fluid formulation used in this demonstration included sodium permanganate as oxidant, xanthan gum biopolymer as a shear-thinning viscosifier, and sodium hexametaphosphate (SHMP) as an anti-coagulant. It was the goal of this demonstration to validate the utility of PA-ISCO within a heterogeneous aquifer. An approximate 100% improvement in sweep-efficiency was achieved for the PA-ISCO fluid, as compared to a permanganate-only injection within an adjacent control plot. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Recommendations for representative ballast water sampling

    NASA Astrophysics Data System (ADS)

    Gollasch, Stephan; David, Matej

    2017-05-01

    Until now, the purpose of ballast water sampling studies was predominantly limited to general scientific interest to determine the variety of species arriving in ballast water in a recipient port. Knowing the variety of species arriving in ballast water also contributes to the assessment of relative species introduction vector importance. Further, some sampling campaigns addressed awareness raising or the determination of organism numbers per water volume to evaluate the species introduction risk by analysing the propagule pressure of species. A new aspect of ballast water sampling, which this contribution addresses, is compliance monitoring and enforcement of ballast water management standards as set by, e.g., the IMO Ballast Water Management Convention. To achieve this, sampling methods which result in representative ballast water samples are essential. We recommend such methods based on practical tests conducted on two commercial vessels also considering results from our previous studies. The results show that different sampling approaches influence the results regarding viable organism concentrations in ballast water samples. It was observed that the sampling duration (i.e., length of the sampling process), timing (i.e., in which point in time of the discharge the sample is taken), the number of samples and the sampled water quantity are the main factors influencing the concentrations of viable organisms in a ballast water sample. Based on our findings we provide recommendations for representative ballast water sampling.

  17. Assessing the effects of sampling design on water quality status classification

    NASA Astrophysics Data System (ADS)

    Lloyd, Charlotte; Freer, Jim; Johnes, Penny; Collins, Adrian

    2013-04-01

    The Water Framework Directive (WFD) requires continued reporting of the water quality status of all European waterbodies, with this status partly determined by the time a waterbody exceeds different pollution concentration thresholds. Routine water quality monitoring most commonly takes place at weekly to monthly time steps meaning that potentially important pollution events can be missed. This has the potential to result in the misclassification of water quality status. Against this context, this paper investigates the implications of sampling design on a range of existing water quality status metrics routinely applied to WFD compliance assessments. Previous research has investigated the effect of sampling design on the calculation of annual nutrient and sediment loads using a variety of different interpolation and extrapolation models. This work builds on this foundation, extending the analysis to include the effects of sampling regime on flow- and concentration-duration curves as well as threshold-exceedance statistics, which form an essential part of WFD reporting. The effects of sampling regime on both the magnitude of the summary metrics and their corresponding uncertainties are investigated. This analysis is being undertaken on data collected as part of the Hampshire Avon Demonstration Test Catchment (DTC) project; a DEFRA funded initiative investigating cost-effective solutions for reducing diffuse pollution from agriculture. The DTC monitoring platform is collecting water quality data at a variety of temporal resolutions and using differing collection methods, including weekly grab samples, daily ISCO autosamples and high resolution samples (15-30 min time step) using analysers in situ on the river bank. Datasets collected during 2011-2013 were used to construct flow- and concentration-duration curves. A bootstrapping methodology was employed to resample randomly the individual datasets and produce distributions of the curves in order to quantify the

  18. ADVANCES IN GROUND WATER SAMPLING PROCEDURES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  19. ADVANCES IN GROUND WATER SAMPLING PROCEDURES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. Issues which must be considered prior to initiating a ground-water monitoring program include defining monitoring goals and objectives, sampling point...

  20. No ISCOs in Charged Myers Perry Spacetimes by Measuring Lyapunov Exponent

    NASA Astrophysics Data System (ADS)

    Pradhan, Parthapratim

    2015-01-01

    By computing coordinate time Lyapunov exponent, we prove that for more than four spacetime dimensions (N ≥ 3), there are no Innermost Stable Circular Orbit (ISCO) in charged Myers Perry blackhole spacetime.Using it, we show that the instability of equatorial circular geodesics, both massive and massless particles for such types of blackhole space-times.

  1. ISCO'S LONG-TERM IMPACT ON AQUIFER CONDITIONS AND MICROBIAL ACTIVITY (ABSTRACT)

    EPA Science Inventory

    Permanganate has been successfully used in in-situ chemical oxidation (ISCO) to transform a wide range of organic contaminants under diverse geologic and geochemical conditions. Here, a critical analysis is presented of several technical issues commonly raised during in-situ che...

  2. ISCO'S LONG-TERM IMPACT ON AQUIFER CONDITIONS AND MICROBIAL ACTIVITY

    EPA Science Inventory

    Permanganate has been successfully used in in-situ chemical oxidation (ISCO) to transform a wide range of organic contaminants under diverse geologic and geochemical conditions. Here, a critical analysis is presented of several technical issues commonly raised during in-situ che...

  3. ISCO'S LONG-TERM IMPACT ON AQUIFER CONDITIONS AND MICROBIAL ACTIVITY (ABSTRACT)

    EPA Science Inventory

    Permanganate has been successfully used in in-situ chemical oxidation (ISCO) to transform a wide range of organic contaminants under diverse geologic and geochemical conditions. Here, a critical analysis is presented of several technical issues commonly raised during in-situ che...

  4. ISCO'S LONG-TERM IMPACT ON AQUIFER CONDITIONS AND MICROBIAL ACTIVITY

    EPA Science Inventory

    Permanganate has been successfully used in in-situ chemical oxidation (ISCO) to transform a wide range of organic contaminants under diverse geologic and geochemical conditions. Here, a critical analysis is presented of several technical issues commonly raised during in-situ che...

  5. 75 FR 55615 - Isco Tubulars, Inc., Camanche, IA; Amended Certification Regarding Eligibility To Apply for...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-13

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF LABOR Employment and Training Administration Isco Tubulars, Inc., Camanche, IA; Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance In accordance with Section 223 of the Trade Act of...

  6. Ocean Surface Water Sampling Devices.

    DTIC Science & Technology

    1963-10-01

    also parachuted, captures a volume of the water surface by a cookie cutter action and drew it into a 1-liter Thermos bottle for protection from...effective in landing upright on the water. Faster Dewar samplers without the cookie cutter action but with the same intake method proved about 95

  7. Quality Assurance for Water Sampling.

    DTIC Science & Technology

    1986-02-01

    in meaningful (precise) data. SAMLE ACQUISITION Collection Groundwater samples can be contaminated by material and/or equipment used to install the...samples must be shipped according to Department of Transportation (DOT) standards. Groundwater and wastewater samples are not considered haz.1rdou:3...Extraction *40 Days After Extraction Radiological Tests Alpha, Beta and Radium P,G HN03 to pH ɚ 6 Months NOTES I. P = Polyethylene G = Glass G-(TLS

  8. Magnificent Ground Water Connection. [Sample Activities].

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    Water conservation and usage is an important concept in science. This document, geared specifically to New England, provides many activities for protecting and discussing ground water situations. Sample activities for grades K-6 include: (1) All the Water in the World; (2) The Case of the Disappearing Water; (3) Deep Subjects--Wells and Ground…

  9. Water sample-collection and distribution system

    NASA Technical Reports Server (NTRS)

    Brooks, R. R.

    1978-01-01

    Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.

  10. Kuipers performs Potable Water Sample Collection

    NASA Image and Video Library

    2012-05-15

    ISS031-E-157783 (15 May 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 31 flight engineer, collects a water sample from the Potable Water Dispenser (PWD) in the Destiny laboratory of the International Space Station.

  11. Chapter A5. Processing of Water Samples

    USGS Publications Warehouse

    Wilde, Franceska D.; Radtke, Dean B.; Gibs, Jacob; Iwatsubo, Rick T.

    1999-01-01

    The National Field Manual for the Collection of Water-Quality Data (National Field Manual) describes protocols and provides guidelines for U.S. Geological Survey (USGS) personnel who collect data used to assess the quality of the Nation's surface-water and ground-water resources. This chapter addresses methods to be used in processing water samples to be analyzed for inorganic and organic chemical substances, including the bottling of composite, pumped, and bailed samples and subsamples; sample filtration; solid-phase extraction for pesticide analyses; sample preservation; and sample handling and shipping. Each chapter of the National Field Manual is published separately and revised periodically. Newly published and revised chapters will be announced on the USGS Home Page on the World Wide Web under 'New Publications of the U.S. Geological Survey.' The URL for this page is http:/ /water.usgs.gov/lookup/get?newpubs.

  12. The Astrophysical Signatures of Black Holes: The Horizon, The ISCO, The Ergosphere and The Light Circle

    NASA Astrophysics Data System (ADS)

    Abramowicz, Marek A.

    Three advanced instruments planned for a near future ( LOFT, GRAVITY, THE EVENT HORIZON TELESCOPE) provide unprecedented angular and time resolutions, which allow to probe regions in the immediate vicinity of black holes. We may soon be able to search for the signatures of the super-strong gravity that is characteristic to black holes: the event horizon, the ergosphere, the innermost stable circular orbit (ISCO), and the photon circle. This review discusses a few fundamental problems concerning these theoretical concepts.

  13. Chapter A4. Collection of Water Samples

    USGS Publications Warehouse

    Wilde, Franceska D.

    1999-01-01

    The National Field Manual for the Collection of Water-Quality Data (National Field Manual) describes protocols and provides guidelines for U.S. Geological Survey (USGS) personnel who collect data that are used to assess the quality of the Nation's surface-water and ground-water resources. This chapter addresses preparations and appropriate methods for the collection of surface-water, groundwater, and associated quality-control samples. Among the topics covered are considerations and procedures to prevent sample contamination; establishing site files; instructions for collecting depth-integrated isokinetic and nonisokinetic samples at flowing- and still-water sites; and guidelines for collecting formation water from wells having various types of construction and hydraulic and aquifer characteristics.

  14. Automated storm water sampling on small watersheds

    USGS Publications Warehouse

    Harmel, R.D.; King, K.W.; Slade, R.M.

    2003-01-01

    Few guidelines are currently available to assist in designing appropriate automated storm water sampling strategies for small watersheds. Therefore, guidance is needed to develop strategies that achieve an appropriate balance between accurate characterization of storm water quality and loads and limitations of budget, equipment, and personnel. In this article, we explore the important sampling strategy components (minimum flow threshold, sampling interval, and discrete versus composite sampling) and project-specific considerations (sampling goal, sampling and analysis resources, and watershed characteristics) based on personal experiences and pertinent field and analytical studies. These components and considerations are important in achieving the balance between sampling goals and limitations because they determine how and when samples are taken and the potential sampling error. Several general recommendations are made, including: setting low minimum flow thresholds, using flow-interval or variable time-interval sampling, and using composite sampling to limit the number of samples collected. Guidelines are presented to aid in selection of an appropriate sampling strategy based on user's project-specific considerations. Our experiences suggest these recommendations should allow implementation of a successful sampling strategy for most small watershed sampling projects with common sampling goals.

  15. Kuipers performs Potable Water Sample Collection

    NASA Image and Video Library

    2012-05-15

    ISS031-E-079015 (15 May 2012) --- European Space Agency astronaut Andre Kuipers, Expedition 31 flight engineer, collects a sample from the Water Recovery System (WRS) in the Destiny laboratory of the International Space Station.

  16. Initial Results of ISCO for a Large TCE DNAPL Source Area

    SciTech Connect

    Thompson, S.L.; Cross, P.E.

    2008-07-01

    This paper will describe the results of an in situ chemical oxidation (ISCO) remedial action currently in progress to address subsurface contamination by trichloroethene (TCE) dense nonaqueous phase liquid (DNAPL). The U.S. Department of Energy is responsible for the cleanup of environmental media at the Portsmouth Gaseous Diffusion Plant (PORTS) in southern Ohio. The X-701B Solid Waste Management Unit is an unlined surface impoundment at PORTS which was operated from 1954 to 1988. A TCE plume in groundwater emanates from the unit and is approximately 2,200 feet in length. Metals, radioactive inorganics, and other organic chemicals are also present at lower concentrations in the groundwater. An ongoing 1.6-acre TCE DNAPL source area for the plume is believed to exist up-gradient in the vicinity of the X-701B pond. The extent of the source area is inferred from actual recovery of DNAPL in production wells and from detection of TCE concentrations between 100 and 1,000 mg/L in monitoring wells. Previous remedial activities at X-701B have included a Resource Conservation and Recovery Act (RCRA) closure and a technology demonstration that recirculated permanganate solutions between two horizontal wells. Results of sampling after these remedial activities showed that the permanganate effectively destroyed TCE in portions of the aquifer where adequate contact was achieved, but that uniform distribution by the recirculation system was problematic. As a result, the TCE concentration in the groundwater eventually rebounded after the treatment. To overcome distribution issues and to more aggressively remediate the source, a new remediation approach is being implemented for the unit. The new approach involves the injection of Modified Fenton's Reagent directly into the source area using temporary direct push injection points. This new approach provides the ability to overcome limitations imposed by heterogeneities in the subsurface by injecting relatively small quantities of

  17. SUPERFUND GROUND WATER ISSUE: GROUND WATER SAMPLING FOR METALS ANALYSES

    EPA Science Inventory

    Filtration of ground-water samples for metals analysis is an issue identified by the Forum as a concern of Superfund decision-makers. Inconsistency in EPA Syperfund cleanup pracices occurs where one EPA Region implements a remedial action based on unfiltered ground-water samples,...

  18. SUPERFUND GROUND WATER ISSUE: GROUND WATER SAMPLING FOR METALS ANALYSES

    EPA Science Inventory

    Filtration of ground-water samples for metals analysis is an issue identified by the Forum as a concern of Superfund decision-makers. Inconsistency in EPA Syperfund cleanup pracices occurs where one EPA Region implements a remedial action based on unfiltered ground-water samples,...

  19. Chapter A1. Preparations for Water Sampling

    USGS Publications Warehouse

    Wilde, Franceska D.; Radtke, Dean B.; Gibs, Jacob; Iwatsubo, Rick T.

    1998-01-01

    The National Field Manual for the Collection of Water-Quality Data (National Field Manual) provides guidelines and standard procedures for U.S. Geological Survey (USGS) personnel who collect data used to assess the quality of the Nation's surface-water and ground-water resources. This chapter addresses field-trip preparations, including selection of sample-collection sites for studies of surface-water quality, site reconnaissance and well selection for studies of groundwater quality, and the establishment of electronic files and field files and folders for a sampling site. Each chapter of the National Field Manual is published separately and revised periodically. Newly published and revised chapters are posted on the World Wide Web on the USGS page 'National Field Manual for the Collection of Water-Quality Data.' The URL for this page is http://pubs.water.usgs.gov/twri9A/ (accessed Jan. 31, 2005).

  20. SAMPLING DESIGN FOR ASSESSING RECREATIONAL WATER QUALITY

    EPA Science Inventory

    Current U.S. EPA guidelines for monitoring recreatoinal water quality refer to the geometric mean density of indicator organisms, enterococci and E. coli in marine and fresh water, respectively, from at least five samples collected over a four-week period. In order to expand thi...

  1. Approach for environmental baseline water sampling

    USGS Publications Warehouse

    Smith, K.S.

    2011-01-01

    Samples collected during the exploration phase of mining represent baseline conditions at the site. As such, they can be very important in forecasting potential environmental impacts should mining proceed, and can become measurements against which future changes are compared. Constituents in stream water draining mined and mineralized areas tend to be geochemically, spatially, and temporally variable, which presents challenges in collecting both exploration and baseline water-quality samples. Because short-term (daily) variations can complicate long-term trends, it is important to consider recent findings concerning geochemical variability of stream-water constituents at short-term timescales in designing sampling plans. Also, adequate water-quality information is key to forecasting potential ecological impacts from mining. Therefore, it is useful to collect baseline water samples adequate tor geochemical and toxicological modeling. This requires complete chemical analyses of dissolved constituents that include major and minor chemical elements as well as physicochemical properties (including pH, specific conductance, dissolved oxygen) and dissolved organic carbon. Applying chemical-equilibrium and appropriate toxicological models to water-quality information leads to an understanding of the speciation, transport, sequestration, bioavailability, and aquatic toxicity of potential contaminants. Insights gained from geochemical and toxicological modeling of water-quality data can be used to design appropriate mitigation and for economic planning for future mining activities.

  2. [Water and suspended matter sampling in fresh water networks].

    PubMed

    Galas, Chiara; Stellato, Luisa; Barbizzi, Sabrina; Belli, Maria; Sansone, Umberto

    2005-01-01

    Metals and radionuclides in water systems can be easily adsorbed on suspended matter and, finally, they could eventually accumulate in the aquatic environment. The assessment of the health of a water body needs also sampling of the suspended matter fraction. In this paper sampling systems to characterise contaminants associated with the suspended matter fraction are described, with a particular attention to the collection and preservation of samples. Sampling must be representative, to obtain reliable conclusions. In this context it is stressed the importance of the evaluation of the sampling uncertainty, which contributes to a large extent to the total uncertainty.

  3. CRUMP 2003 Selected Water Sample Results

    EPA Pesticide Factsheets

    Point locations and water sampling results performed in 2003 by the Church Rock Uranium Monitoring Project (CRUMP) a consortium of organizations (Navajo Nation Environmental Protection Agency, US Environmental Protection Agency, New Mexico Scientific Laboratory Division, Navajo Tribal Utility Authority and NM Water Quality Control Commission). Samples include general description of the wells sampled, general chemistry, heavy metals and aestheic parameters, and selected radionuclides. Here only six sampling results are presented in this point shapefile, including: Gross Alpha (U-Nat Ref.) (pCi/L), Gross Beta (Sr/Y-90 Ref.) (pCi/L), Radium-226 (pCi/L), Radium-228 (pCi/L), Total Uranium (pCi/L), and Uranium mass (ug/L). The CRUMP samples were collected in the area of Churchrock, NM in the Eastern AUM Region of the Navajo Nation.

  4. Ground Water Sampling for Metal Analyses

    EPA Pesticide Factsheets

    Filtration of ground-water samples for metals analysis is an issue identified by the Forum as a concern of Superfund decision-makers. Inconsistency in EPA Superfund cleanup ractices occurs where one EPA Region implements a remedial action based on...

  5. Reliability of chemical analyses of water samples

    SciTech Connect

    Beardon, R.

    1989-11-01

    Ground-water quality investigations require reliable chemical analyses of water samples. Unfortunately, laboratory analytical results are often unreliable. The Uranium Mill Tailings Remedial Action (UMTRA) Project`s solution to this problem was to establish a two phase quality assurance program for the analysis of water samples. In the first phase, eight laboratories analyzed three solutions of known composition. The analytical accuracy of each laboratory was ranked and three laboratories were awarded contracts. The second phase consists of on-going monitoring of the reliability of the selected laboratories. The following conclusions are based on two years experience with the UMTRA Project`s Quality Assurance Program. The reliability of laboratory analyses should not be taken for granted. Analytical reliability may be independent of the prices charged by laboratories. Quality assurance programs benefit both the customer and the laboratory.

  6. Computations of Photon Orbits Emitted by Flares at the ISCO of Accretion Disks Around Rotating Black Holes

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the ISCO of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. $a > 0.94 M$, following a flare at ISCO, a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of $\\Delta T \\simeq 14 M$. This constant time delay, then, leads to the presence of a QPO in the source power spectrum at a frequency $\

  7. Computations of Photon Orbits Emitted by Flares at the ISCO of Accretion Disks Around Rotating Black Holes

    NASA Technical Reports Server (NTRS)

    Kazanas, Demosthenes; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the ISCO of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. $a > 0.94 M$, following a flare at ISCO, a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of $\\Delta T \\simeq 14 M$. This constant time delay, then, leads to the presence of a QPO in the source power spectrum at a frequency $\

  8. Adaptive Water Sampling based on Unsupervised Clustering

    NASA Astrophysics Data System (ADS)

    Py, F.; Ryan, J.; Rajan, K.; Sherman, A.; Bird, L.; Fox, M.; Long, D.

    2007-12-01

    Autonomous Underwater Vehicles (AUVs) are widely used for oceanographic surveys, during which data is collected from a number of on-board sensors. Engineers and scientists at MBARI have extended this approach by developing a water sampler specialy for the AUV, which can sample a specific patch of water at a specific time. The sampler, named the Gulper, captures 2 liters of seawater in less than 2 seconds on a 21" MBARI Odyssey AUV. Each sample chamber of the Gulper is filled with seawater through a one-way valve, which protrudes through the fairing of the AUV. This new kind of device raises a new problem: when to trigger the gulper autonomously? For example, scientists interested in studying the mobilization and transport of shelf sediments would like to detect intermediate nepheloïd layers (INLs). To be able to detect this phenomenon we need to extract a model based on AUV sensors that can detect this feature in-situ. The formation of such a model is not obvious as identification of this feature is generally based on data from multiple sensors. We have developed an unsupervised data clustering technique to extract the different features which will then be used for on-board classification and triggering of the Gulper. We use a three phase approach: 1) use data from past missions to learn the different classes of data from sensor inputs. The clustering algorithm will then extract the set of features that can be distinguished within this large data set. 2) Scientists on shore then identify these features and point out which correspond to those of interest (e.g. nepheloïd layer, upwelling material etc) 3) Embed the corresponding classifier into the AUV control system to indicate the most probable feature of the water depending on sensory input. The triggering algorithm looks to this result and triggers the Gulper if the classifier indicates that we are within the feature of interest with a predetermined threshold of confidence. We have deployed this method of online

  9. Water evaporation: a transition path sampling study.

    PubMed

    Varilly, Patrick; Chandler, David

    2013-02-07

    We use transition path sampling to study evaporation in the SPC/E model of liquid water. On the basis of thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with predominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the liquid. To characterize the evaporation trajectories in their entirety, we find that it suffices to project them onto just two coordinates: the distance of the evaporating molecule to the instantaneous liquid-vapor interface and the velocity of the water along the average interface normal. In this projected space, we find that the TSE is well-captured by a simple model of ballistic escape from a deep potential well, with no additional barrier to evaporation beyond the cohesive strength of the liquid. Equivalently, they are consistent with a near-unity probability for a water molecule impinging upon a liquid droplet to condense. These results agree with previous simulations and with some, but not all, recent experiments.

  10. Continuous water sampling and water analysis in estuaries

    USGS Publications Warehouse

    Schemel, L.E.; Dedini, L.A.

    1982-01-01

    Salinity, temperature, light transmission, oxygen saturation, pH, pCO2, chlorophyll a fluorescence, and the concentrations of nitrate, nitrite, dissolved silica, orthophosphate, and ammonia are continuously measured with a system designed primarily for estuarine studies. Near-surface water (2-m depth) is sampled continuously while the vessel is underway; on station, water to depths of 100 m is sampled with a submersible pump. The system is comprised of commercially available instruments, equipment, and components, and of specialized items designed and fabricated by the authors. Data are read from digital displays, analog strip-chart recorders, and a teletype printout, and can be logged in disc storage for subsequent plotting. Data records made in San Francisco Bay illustrate physical, biological, and chemical estuarine processes, such as mixing and phytoplankton net production. The system resolves large- and small-scale events, which contributes to its reliability and usefulness.

  11. Determination of dissolved aluminum in water samples

    USGS Publications Warehouse

    Afifi, A.A.

    1983-01-01

    A technique has been modified for determination of a wide range of concentrations of dissolved aluminum (Al) in water and has been tested. In this technique, aluminum is complexed with 8-hydroxyquinoline at pH 8.3 to minimize interferences, then extracted with methyl isobutyl ketone (MIBK). The extract is analyzed colorimetrically at 395 nm. This technique is used to analyze two forms of monomeric Al, nonlabile (organic complexes) and labile (free, Al, Al sulfate, fluoride and hydroxide complexes). A detection limit 2 ug/L is possible with 25-ml samples and 10-ml extracts. The detection limit can be decreased by increasing the volume of the sample and (or) decreasing the volume of the methyl isobutyl ketone extract. The analytical uncertainty of this method is approximately + or - 5 percent. The standard addition technique provides a recovery test for this technique and ensures precision in samples of low Al concentrations. The average percentage recovery of the added Al plus the amount originally present was 99 percent. Data obtained from analyses of filtered standard solutions indicated that Al is adsorbed on various types of filters. However, the relationship between Al concentrations and adsorption remains linear. A test on standard solutions also indicated that Al is not adsorbed on nitric acid-washed polyethylene and polypropylene bottle wells. (USGS)

  12. Development and evaluation of a water level proportional water sampler

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Lange, A.; Doppler, T.

    2013-12-01

    We developed and adapted a new type of sampler for time-integrated, water level proportional water quality sampling (e.g. nutrients, contaminants and stable isotopes). Our samplers are designed for sampling small to mid-size streams based on the law of Hagen-Poiseuille, where a capillary (or a valve) limits the sampling aliquot by reducing the air flux out of a submersed plastic (HDPE) sampling container. They are good alternatives to battery-operated automated water samplers when working in remote areas, or at streams that are characterized by pronounced daily discharge variations such as glacier streams. We evaluated our samplers against standard automated water samplers (ISCO 2900 and ISCO 6712) during the snowmelt in the Black Forest and the Alps and tested them in remote glacial catchments in Iceland, Switzerland and Kyrgyzstan. The results clearly showed that our samplers are an adequate tool for time-integrated, water level proportional water sampling at remote test sites, as they do not need batteries, are relatively inexpensive, lightweight, and compact. They are well suited for headwater streams - especially when sampling for stable isotopes - as the sampled water is perfectly protected against evaporation. Moreover, our samplers have a reduced risk of icing in cold environments, as they are installed submersed in water, whereas automated samplers (typically installed outside the stream) may get clogged due to icing of hoses. Based on this study, we find these samplers to be an adequate replacement for automated samplers when time-integrated sampling or solute load estimates are the main monitoring tasks.

  13. Chapter 5: Surface water quality sampling in streams and canals

    USDA-ARS?s Scientific Manuscript database

    Surface water sampling and water quality assessments have greatly evolved in the United States since the 1970s establishment of the Clean Water Act. Traditionally, water quality referred to only the chemical characteristics of the water and its toxicological properties related to drinking water or ...

  14. Pilot-scale ISCO treatment of a MtBE contaminated site using a Fenton-like process.

    PubMed

    Innocenti, Ivan; Verginelli, Iason; Massetti, Felicia; Piscitelli, Daniela; Gavasci, Renato; Baciocchi, Renato

    2014-07-01

    This paper reports about a pilot-scale feasibility study of In-Situ Chemical Oxidation (ISCO) application based on the use of stabilized hydrogen peroxide catalyzed by naturally occurring iron minerals (Fenton-like process) to a site formerly used for fuel storage and contaminated by MtBE. The stratigraphy of the site consists of a 2-3 meter backfill layer followed by a 3-4 meter low permeability layer, that confines the main aquifer, affected by a widespread MtBE groundwater contamination with concentrations up to 4000 μg/L, also with the presence of petroleum hydrocarbons. The design of the pilot-scale treatment was based on the integration of the results obtained from experimental and numerical modeling accounting for the technological and regulatory constraints existing in the site to be remediated. In particular, lab-scale batch tests allowed the selection of the most suitable operating conditions. Then, this information was implemented in a numerical software that allowed to define the injection and monitoring layout and to predict the propagation of hydrogen peroxide in groundwater. The pilot-scale field results confirmed the effective propagation of hydrogen peroxide in nearly all the target area (around 75 m(2) using 3 injection wells). As far as the MtBE removal is concerned, the ISCO application allowed us to meet the clean-up goals in an area of 60 m(2). Besides, the concentration of TBA, i.e. a potential by-product of MtBE oxidation, was actually reduced after the ISCO treatment. The results of the pilot-scale test suggest that ISCO may be a suitable option for the remediation of the groundwater plume contaminated by MtBE, providing the background data for the design and cost-estimate of the full-scale treatment.

  15. UMTRA water sampling and analysis plan, Green River, Utah

    SciTech Connect

    Papusch, R.

    1993-12-01

    The purpose of this water sampling and analysis plan (WSAP) is to provide a basis for groundwater and surface water sampling at the Green River Uranium Mill Tailing Remedial Action (UMTRA) Project site. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring locations.

  16. GROUND WATER SAMPLING USING LOW-FLOW TECHNIQUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. The sampling device or method used to collect samples from monitoring or compliance well can significantly impact data quality and reliability. Low-flo...

  17. ACQUISITION OF REPRESENTATIVE GROUND WATER QUALITY SAMPLES FOR METALS

    EPA Science Inventory

    R.S. Kerr Environmental Research Laboratory (RSKERL) personnel have evaluated sampling procedures for the collection of representative, accurate, and reproducible ground water quality samples for metals for the past four years. Intensive sampling research at three different field...

  18. GROUND WATER SAMPLING USING LOW-FLOW TECHNIQUES

    EPA Science Inventory

    Obtaining representative ground water samples is important for site assessment and remedial performance monitoring objectives. The sampling device or method used to collect samples from monitoring or compliance well can significantly impact data quality and reliability. Low-flo...

  19. Methods for collection and analysis of water samples

    USGS Publications Warehouse

    Rainwater, Frank Hays; Thatcher, Leland Lincoln

    1960-01-01

    This manual contains methods used by the U.S. Geological Survey to collect, preserve, and analyze water samples. Throughout, the emphasis is on obtaining analytical results that accurately describe the chemical composition of the water in situ. Among the topics discussed are selection of sampling sites, frequency of sampling, field equipment, preservatives and fixatives, analytical techniques of water analysis, and instruments. Seventy-seven laboratory and field procedures are given for determining fifty-three water properties.

  20. LABORATORY ANALYSES: WATER AND ENVIRONMENTAL SAMPLES

    EPA Science Inventory

    To be presented at the Workshop for Improving the Recognition, Investigation, and Reporting of Waterborne Disease Outbreaks Associated with Drinking, Recreational and Other Waters in Nashville, TN, May 29 - June 1, 2007

  1. UMTRA project water sampling and analysis plan, Gunnison, Colorado

    SciTech Connect

    Not Available

    1994-06-01

    This water sampling and analysis plan summarizes the results of previous water sampling activities and the plan for water sampling activities for calendar year 1994. A buffer zone monitoring plan is included as an appendix. The buffer zone monitoring plan is designed to protect the public from residual contamination that entered the ground water as a result of former milling operations. Surface remedial action at the Gunnison Uranium Mill Tailings Remedial Action Project site began in 1992; completion is expected in 1995. Ground water and surface water will be sampled semiannually in 1994 at the Gunnison processing site (GUN-01) and disposal site (GUN-08). Results of previous water sampling at the Gunnison processing site indicate that ground water in the alluvium is contaminated by the former uranium processing activities. Background ground water conditions have been established in the uppermost aquifer (Tertiary gravels) at the Gunnison disposal site. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the vicinity of the sites. The list of analytes has been modified with time to reflect constituents that are related to uranium processing activities and the parameters needed for geochemical evaluation. Water sampling will be conducted at least semiannually during and one year following the period of construction activities, to comply with the ground water protection strategy discussed in the remedial action plan (DOE, 1992a).

  2. Par Pond refill water quality sampling

    SciTech Connect

    Koch, J.W. II; Martin, F.D.; Westbury, H.M.

    1996-08-01

    This study was designed to document anoxia and its cause in the event that the anoxia caused a fish kill. However, no fish kill was observed during this study, and dissolved oxygen and nutrient concentrations generally remained within the range expected for southeastern reservoirs. Par Pond water quality monitoring will continue during the second summer after refill as the aquatic macrophytes become reestablished and nutrients in the sediments are released to the water column.

  3. UMTRA project water sampling and analysis plan -- Shiprock, New Mexico

    SciTech Connect

    Not Available

    1994-02-01

    Water sampling and analysis plan (WSAP) is required for each U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site to provide a basis for ground water and surface water sampling at disposal and former processing sites. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring stations at the Navaho Reservation in Shiprock, New Mexico, UMTRA Project site. The purposes of the water sampling at Shiprock for fiscal year (FY) 1994 are to (1) collect water quality data at new monitoring locations in order to build a defensible statistical data base, (2) monitor plume movement on the terrace and floodplain, and (3) monitor the impact of alluvial ground water discharge into the San Juan River. The third activity is important because the community of Shiprock withdraws water from the San Juan River directly across from the contaminated alluvial floodplain below the abandoned uranium mill tailings processing site.

  4. The use of parental occupation in adolescent health surveys. An application of ISCO-based measures of occupational status.

    PubMed

    Pförtner, Timo-Kolja; Günther, Sebastian; Levin, Kate A; Torsheim, Torbjørn; Richter, Matthias

    2015-02-01

    Recent research has emphasised that the challenge in researching socioeconomic differences in adolescent health cross-nationally lies in providing valid and comparable measures of socioeconomic position (SEP) across regions. This study aims to examine measures of occupational status derived from the International Standard Classification of Occupations (ISCO), alongside commonly used affluence measures in association with adolescent self-rated health (SRH). Data were from the 2005/2006 'Health Behaviour in School-aged Children study' (HBSC); 27 649 individuals aged 11, 13 and 15 years from Germany, Macedonia, Norway, Turkey, Wales and Scotland. Three occupational scales were compared: the International Socioeconomic Index of Occupational Status (ISEI), the Standard International Occupational Prestige Scale (SIOPS) and the Erikson-Goldthorpe-Portocarero class categories (EGP). Correlation analyses compared these occupational scales with the family affluence scale (FAS) and a family well-off measure, while logistic regression assessed the association between occupational scales and poor SRH. Multiple imputation techniques investigated possible bias arising from parental occupation missingness. Moderate correlations existed between occupational scales and FAS and family well-off. Socioeconomic inequalities in poor SRH were found for ISEI, SIOPS and EGP in all regions, independent of FAS and family well-off. Models of imputed data sets did not alter the results. The relationship between SEP and SRH was therefore not biased by high levels of missing values for ISCO. ISCO-based indicators of occupational status in cross-national self-administered adolescent health surveys were found to be robust measures of SEP in adolescence. These measure different aspects of SEP independent of FAS and family well-off. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Evaluation of activated carbon fiber filter for sampling of organochlorine pesticides in environmental water samples.

    PubMed

    Murayama, Hitoshi; Moriyama, Noboru; Mitobe, Hideko; Mukai, Hiroyuki; Takase, Yuuya; Shimizu, Ken ichi; Kitayama, Yoshie

    2003-08-01

    A simple method for quantitative analyses of organic chlorine pesticides (OCPs) in environmental water samples such as rainwater, river water and seawater using activated carbon fiber filters (ACFF) is described. ACFF was used as adsorbent to collect the chemicals in water samples. The collection of OCPs was completed almost for one day by stirring the mixture of the sample and the ACFF chips at room temperature. The adsorbed OCPs on the ACFF could be extracted easily with toluene-ethanol (4:1) mixed solvent. The purified extract by a florisil column chromatograph was followed by the analysis using high-resolution gas chromatograph/high-resolution mass spectrometer. Recoveries of OCPs spiked to actual samples such as rainwater, river water and seawater samples were approximately more than 80%, and the coefficients of variations were within 10%. This method was applied to the actual samples and was confirmed to be applicable for monitoring sub-ng/l level OCPs in environmental water samples.

  6. PRESERVATION OF TRACE METALS IN WATER SAMPLES

    EPA Science Inventory

    Questions about trace metal preservation are resurfacing because the health effect risks associated with certain metals continue to drive the required reporting limits lower. Inductively coupled plasma-mass spectrometry was used in this study to analyze preservation of samples co...

  7. Analysis of uranium concentration in drinking water samples using ICPMS.

    PubMed

    Rani, Asha; Mehra, Rohit; Duggal, Vikas; Balaram, V

    2013-03-01

    Uranium concentration in drinking water samples collected from some areas of Northern Rajasthan has been measured using inductively coupled plasma mass spectrometry. The water samples were taken from hand pumps. The uranium concentration in water samples varies from 2.54-133.0 μg L with a mean value of 38.48 μg L. The uranium concentration in most of the drinking water samples exceeds the safe limit (30 μg L) recommended by the World Health Organization. The annual effective dose associated with drinking water due to uranium concentration is estimated from its annual intake using dosimetric information based on ICRP 72. The resulting value of the annual effective dose from drinking water sources is in the range of 2.11-110.45 μSv. The annual effective dose in one of the samples was found to be greater than WHO-recommended level of 100 μSv y.

  8. How ISCO Can Interfere in Soil Pore Distribution and Solute Transport

    NASA Astrophysics Data System (ADS)

    Favero, M.; Freitas, J. G.; Furquim, S. A. C.; Thomson, N. R.; Cooper, M.

    2016-12-01

    Recently in situ chemical oxidation (ISCO) has been a remedy of choice for sites contaminated with organic compounds. However, the impact of the chemical oxidant on soil properties and, therefore, on solute transport and remediation efficiency still lacks understanding. This research effort sought to evaluate the changes in soil physical properties and solute transport behavior in a typical tropical soil (Oxisol) resulting from exposure to persulfate. The Oxisol used had a microaggregate structure, resulting in a relatively high hydraulic conductivity despite the high clay content (67%). One-dimensional laboratory experiments were performed using a saturated undisturbed column. The injection of an ideal tracer (bromide), a reactive tracer (phenol) and persulfate (12 ± 1 gL-1 for 30 d) were performed consecutively. The tracer tests were repeated following persulfate injection. Transport parameters (longitudinal dispersivity: αL and retardation factor: R) and the effective porosity (ne) were obtained by fitting the breakthrough curves with an analytical solution for one-dimensional transport. Micromorphological analyses of porosity were conducted on impregnated soil blocks from control and oxidized systems. The bromide and phenol tracer test data yielded αL of 2.431 ± 0.002 cm, ne of 41.99 ± 1.52 %, R of 1.10, and a first-order decay rate coefficient of 6.5x10-5 min-1 prior to persulfate exposure. The effluent persulfate concentration stabilized at C/Co of 0.8 after 4 d of injection and the breakthrough was delayed relative to bromide. Concurrent with the breakthrough of persulfate, the pH decreased and a progressive release of Al (III) over the first 4 d with subsequent stabilization were observed. Following persulfate exposures the hydraulic conductivity increased about one-order of magnitude. Micromorphological analysis showed that persulfate produced alterations in poroids types, with an increase of complex packing voids. It was verified that persulfate

  9. Sampling procedure for lake or stream surface water chemistry

    Treesearch

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  10. UMTRA project water sampling and analysis plan, Grand Junction, Colorado

    SciTech Connect

    Not Available

    1994-07-01

    Surface remedial action will be completed at the Grand Junction processing site during the summer of 1994. Results of 1993 water sampling indicate that ground water flow conditions and ground water quality at the processing site have remained relatively constant with time. Uranium concentrations in ground water continue to exceed the maximum concentration limits, providing the best indication of the extent of contaminated ground water. Evaluation of surface water quality of the Colorado River indicate no impact from uranium processing activities. No compliance monitoring at the Cheney disposal site has been proposed because ground water in the Dakota Sandstone (uppermost aquifer) is classified as limited-use (Class 111) and because the disposal cell is hydrogeologically isolated from the uppermost aquifer. The following water sampling and water level monitoring activities are planned for calendar year 1994: (i) Semiannual (early summer and late fall) sampling of six existing monitor wells at the former Grand Junction processing site. Analytical results from this sampling will be used to continue characterizing hydrogeochemical trends in background ground water quality and in the contaminated ground water area resulting from source term (tailings) removal. (ii) Water level monitoring of approximately three proposed monitor wells projected to be installed in the alluvium at the processing site in September 1994. Data loggers will be installed in these wells, and water levels will be electronically monitored six times a day. These long-term, continuous ground water level data will be collected to better understand the relationship between surface and ground water at the site. Water level and water quality data eventually will be used in future ground water modeling to establish boundary conditions in the vicinity of the Grand Junction processing site. Modeling results will be used to help demonstrate and document the potential remedial alternative of natural flushing.

  11. A Comparison of Soil-Water Sampling Techniques

    NASA Astrophysics Data System (ADS)

    Tindall, J. A.; Figueroa-Johnson, M.; Friedel, M. J.

    2007-12-01

    The representativeness of soil pore water extracted by suction lysimeters in ground-water monitoring studies is a problem that often confounds interpretation of measured data. Current soil water sampling techniques cannot identify the soil volume from which a pore water sample is extracted, neither macroscopic, microscopic, or preferential flowpath. This research was undertaken to compare values of extracted suction lysimeters samples from intact soil cores with samples obtained by the direct extraction methods to determine what portion of soil pore water is sampled by each method. Intact soil cores (30 centimeter (cm) diameter by 40 cm height) were extracted from two different sites - a sandy soil near Altamonte Springs, Florida and a clayey soil near Centralia in Boone County, Missouri. Isotopically labeled water (O18? - analyzed by mass spectrometry) and bromide concentrations (KBr- - measured using ion chromatography) from water samples taken by suction lysimeters was compared with samples obtained by direct extraction methods of centrifugation and azeotropic distillation. Water samples collected by direct extraction were about 0.25 ? more negative (depleted) than that collected by suction lysimeter values from a sandy soil and about 2-7 ? more negative from a well structured clayey soil. Results indicate that the majority of soil water in well-structured soil is strongly bound to soil grain surfaces and is not easily sampled by suction lysimeters. In cases where a sufficient volume of water has passed through the soil profile and displaced previous pore water, suction lysimeters will collect a representative sample of soil pore water from the sampled depth interval. It is suggested that for stable isotope studies monitoring precipitation and soil water, suction lysimeter should be installed at shallow depths (10 cm). Samples should also be coordinated with precipitation events. The data also indicate that each extraction method be use to sample a different

  12. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities

    SciTech Connect

    Berry, C.J.; Fliermans, C.B.; Santo Domingo, J.

    1997-10-30

    In order to assess the microbial condition of foreign nuclear fuel storage facilities, fourteen different water samples were received from facilities outside the United States that have sent spent nuclear fuel to SRS for wet storage. Each water sample was analyzed for microbial content and activity as determined by total bacteria, viable aerobic bacteria, viable anaerobic bacteria, viable sulfate- reducing bacteria, viable acid-producing bacteria and enzyme diversity. The results for each water sample were then compared to other foreign samples and to data from the receiving basin for off- site fuel (RBOF) at SRS.

  13. A low cost multi-level sampling device for synchronous aseptic collection of environmental water samples.

    PubMed

    McCormick, Michael L; Banishki, Nikola; Powell, Sarah; Rumack, Amy; Garrett, Jinnie M

    2014-10-01

    We describe a simple device for the aseptic collection of environmental water samples at high spatial resolution to depths of 50m. To demonstrate the utility of this technique we present geochemical and archaeal community data from samples collected throughout the water column of a stratified lake.

  14. UMTRA water sampling and analysis plan, Tuba City, Arizona. Draft

    SciTech Connect

    Not Available

    1993-09-01

    The purpose of this document is to provide background, guidance, and justification for fiscal year (FY) 1994 water sampling activities for the uranium mil tailings site at Tuba City, Arizona. This sampling and analysis plan will form the basis for groundwater sampling and analysis work orders to be implemented in FY94.

  15. UMTRA project water sampling and analysis plan, Tuba City, Arizona

    SciTech Connect

    1996-02-01

    Planned, routine ground water sampling activities at the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Tuba City, Arizona, are described in the following sections of this water sampling and analysis plan (WSAP). This plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the stations routinely monitored at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the U.S. Environmental Protection Agency (EPA) regulations in 40 CFR Part 192 (1994) and the final EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), and the most effective technical approach for the site.

  16. Sampling colloids and colloid-associated contaminants in ground water

    USGS Publications Warehouse

    Backhus, Debera A.; Ryan, Joseph N.; Groher, Daniel M.; MacFarlane, John K.; Gschwend, Philip M.

    1993-01-01

    It has recently been recognized that mobile colloids may affect the transport of contaminants in ground water. To determine the significance of this process, knowledge of both the total mobile load (dissolved + colloid-associated) and the dissolved concentration of a ground-water contaminant must be obtained. Additional information regarding mobile colloid characteristics and concentrations are required to predict accurately the fate and effects of contaminants at sites where significant quantities of colloids are found. To obtain this information, a sampling scheme has been designed and refined to collect mobile colloids while avoiding the inclusion of normally immobile subsurface and well-derived solids. The effectiveness of this sampling protocol was evaluated at a number of contaminated and pristine sites.The sampling results indicated that slow, prolonged pumping of ground water is much more effective at obtaining ground-water samples that represent in situ colloid populations than bailing. Bailed samples from a coal tar-contaminated site contained 10–100 times greater colloid concentrations and up to 750 times greater polycyclic aromatic hydrocarbon concentrations as were detected in slowly pumped samples. The sampling results also indicated that ground-water colloid concentrations should be monitored in the field to determine the adequacy of purging if colloid and colloid-associated contaminants are of interest. To avoid changes in the natural ground-water colloid population through precipitation or coagulation, in situ ground-water chemistry conditions must be preserved during sampling and storage. Samples collected for determination of the total mobile load of colloids and low-solubility contaminants must not be filtered because some mobile colloids are removed by this process. Finally, suggestions that mobile colloids are present in ground water at any particular site should be corroborated with auxiliary data, such as colloid levels in

  17. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    SciTech Connect

    Not Available

    1994-04-01

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters.

  18. UMTRA water sampling and analysis plan, Lakeview, Oregon

    SciTech Connect

    Not Available

    1993-09-29

    The purpose of this document is to provide background, guidance, and justification for water sampling activities for the Lakeview, Oregon, Uranium Mill Tailings Remedial Action (UMTRA) processing and disposal sites. This water sampling and analysis plan will form the basis for groundwater sampling and analysis work orders (WSAWO) to be implemented during 1993. Monitoring at the former Lakeview processing site is for characterization purposes and in preparation for the risk assessment, scheduled for the fall of 1993. Compliance monitoring was conducted at the disposal site. Details of the sampling plan are discussed in Section 5.0.

  19. 10. VIEW TO SOUTHEAST, SAMPLING BUILDING, FOUNDATION, WATER TOWER, AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. VIEW TO SOUTHEAST, SAMPLING BUILDING, FOUNDATION, WATER TOWER, AND SKINNER SALT ROASTERS. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  20. 4. VIEW TO NORTHEAST, SKINNER SALT ROASTERS, SAMPLING BUILDING, WATER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. VIEW TO NORTHEAST, SKINNER SALT ROASTERS, SAMPLING BUILDING, WATER TOWER, AND OFFICE BUILDING. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  1. 5. VIEW TO SOUTH, SAMPLING BUILDING AND WATER TOWER. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    5. VIEW TO SOUTH, SAMPLING BUILDING AND WATER TOWER. - Vanadium Corporation of America (VCA) Naturita Mill, 3 miles Northwest of Naturita, between Highway 141 & San Miguel River, Naturita, Montrose County, CO

  2. De Winne collects water samples in Service Module

    NASA Image and Video Library

    2009-07-07

    ISS020-E-018096 (7 July 2009) --- European Space Agency astronaut Frank De Winne, Expedition 20 flight engineer, collects water samples at the galley in the Zvezda Service Module of the International Space Station for in-flight analysis.

  3. Preparation of water samples for carbon-14 dating

    USGS Publications Warehouse

    Feltz, H.R.; Hanshaw, Bruce B.

    1963-01-01

    For most natural water, a large sample is required to provide the 3 grams of carbon needed for a carbon-14 determination. A field procedure for isolating total dissolved-carbonate species is described. Carbon dioxide gas is evolved by adding sulfuric acid to the water sample; the gas is then collected in a sodium hydroxide trap by recycling in a closed system. The trap is then transported to the dating laboratory where the carbon-14 is counted.

  4. ISS Potable Water Sampling and Chemical Analysis Results for 2016

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Wallace William T.; Alverson, James T.; Benoit, Mickie J.; Gillispie, Robert L.; Hunter, David; Kuo, Mike; Rutz, Jeffrey A.; Hudson, Edgar K.; hide

    2017-01-01

    This paper continues the annual tradition of summarizing at this conference the results of chemical analyses performed on archival potable water samples returned from the International Space Station (ISS). 2016 represented a banner year for life on board the ISS, including the successful conclusion for two crew members of a record one-year mission. Water reclaimed from urine and/or humidity condensate remained the primary source of potable water for the crew members of ISS Expeditions 46-50. The year 2016 was also marked by the end of a long-standing tradition of U.S. sampling and monitoring of Russian Segment potable water sources. Two water samples taken during Expedition 46 in February 2016 and returned on Soyuz 44, represented the final Russian Segment samples to be collected and analyzed by the U.S. side. Although anticipated for 2016, a rise in the total organic carbon (TOC) concentration of the product water from the U.S. water processor assembly due to breakthrough of organic contaminants from the system did not materialize, as evidenced by the onboard TOC analyzer and archive sample results.

  5. ISS Potable Water Sampling and Chemical Analysis Results for 2016

    NASA Technical Reports Server (NTRS)

    Straub, John E., II; Plumlee, Debrah K.; Wallace, William T.; Alverson, James T.; Benoit, Mickie J.; Gillispie, Robert L.; Hunter, David; Kuo, Mike; Rutz, Jeffrey A.; Hudson, Edgar K.; hide

    2017-01-01

    This paper continues the annual tradition, at this conference, of summarizing the results of chemical analyses performed on archival potable water samples returned from the International Space Station (ISS). 2016 represented a banner year for life aboard the ISS, including the successful conclusion for 2 crewmembers of a record 1-year mission. Water reclaimed from urine and/or humidity condensate remained the primary source of potable water for the crewmembers of ISS Expeditions 46-50. The year was also marked by the end of a long-standing tradition of U.S. sampling and monitoring of Russian Segment potable water sources. Two water samples, taken during Expedition 46 and returned on Soyuz 44 in March 2016, represented the final Russian Segment samples to be collected and analyzed by the U.S. side. Although anticipated for 2016, a rise in the total organic carbon (TOC) concentration of the product water from the U.S. water processor assembly due to breakthrough of organic contaminants from the system did not materialize, as evidenced by the onboard TOC analyzer and archival sample results.

  6. Demonstration of the Gore Module for Passive Ground Water Sampling

    DTIC Science & Technology

    2014-06-01

    maximum contaminant level (MCL) for drinking water (USEPA, 2011). However, the detection capability of the low-flow method was one twentieth of that for...tenth of the USEPA’s MCLs for drinking water . This demonstrates the improved sensitivity of the analyses of the Modules because of the work conducted... Drinking Water Standards and Health Advisories, January 2011. USEPA Region I, 1996. Low Stress (low flow) Purging and Sampling Procedure for the

  7. Reduction of hexavalent chromium in water samples acidified for preservation

    USGS Publications Warehouse

    Stollenwerk, K.G.; Grove, D.B.

    1985-01-01

    Reduction of hexavalent chromium, Cr(VI), in water samples, preserved by standard techniques, was investigated. The standard preservation technique for water samples that are to be analyzed for Cr(VI) consists of filtration through a 0.45-??m membrane, acidification to a pH < 2, and storage in plastic bottles. Batch experiments were conducted to evaluate the effect of H+ concentration, NO2, temperature, and dissolved organic carbon (DOC) on the reduction of Cr(VI) to Cr(III). The rate of reduction of Cr(VI) to Cr(III) increased with increasing NO2, DOC, H+, and temperature. Reduction of Cr(VI) by organic matter occurred in some samples even though the samples were unacidified. Reduction of Cr(VI) is inhibited to an extent by storing the sample at 4??C. Stability of Cr(VI) in water is variable and depends on the other constituents present in the sample. Water samples collected for the determination of Cr(VI) should be filtered (0.45-??m membrane), refrigerated, and analyzed as quickly as possible. Water samples should not be acidified. Measurement of total Cr in addition to Cr(VI) can serve as a check for Cr(VI) reduction. If total Cr is greater than Cr(VI), the possibility that Cr(VI) reduction has occurred needs to be considered.The rate of reduction of Cr(VI) to Cr(III) increased with increasing NO//2, DOC, H** plus , and temperature. Reduction of Cr(VI) by organic matter occurred in some samples even though the samples were unacidified. Reduction of Cr(VI) is inhibited to an extent by storing the sample at 4 degree C. Stability of Cr(VI) in water is variable and depends on the other constituents present in the sample. Water samples collected for the determination of Cr(VI) should be filtered (0. 45- mu m membrane), refrigerated, and analyzed as quickly as possible. Water samples should not be acidified. Measurement of total Cr in addition to Cr(VI) can serve as a check for Cr(VI) reduction. If total Cr is greater than Cr(VI), the possibility that Cr

  8. RAPID DETERMINATION OF {sup 210} PO IN WATER SAMPLES

    SciTech Connect

    Maxwell, S.

    2013-05-22

    A new rapid method for the determination of {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that can be used for emergency response or routine water analyses. If a radiological dispersive device (RDD) event or a radiological attack associated with drinking water supplies occurs, there will be an urgent need for rapid analyses of water samples, including drinking water, ground water and other water effluents. Current analytical methods for the assay of {sup 210}Po in water samples have typically involved spontaneous auto-deposition of {sup 210}Po onto silver or other metal disks followed by counting by alpha spectrometry. The auto-deposition times range from 90 minutes to 24 hours or more, at times with yields that may be less than desirable. If sample interferences are present, decreased yields and degraded alpha spectrums can occur due to unpredictable thickening in the deposited layer. Separation methods have focused on the use of Sr Resin, often in combination with 210Pb analysis. A new rapid method for {sup 210}Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that utilizes a rapid calcium phosphate co-precipitation method, separation using DGA Resin (N,N,N,N-tetraoctyldiglycolamide extractant-coated resin, Eichrom Technologies or Triskem-International), followed by rapid microprecipitation of {sup 210}Po using bismuth phosphate for counting by alpha spectrometry. This new method can be performed quickly with excellent removal of interferences, high chemical yields and very good alpha peak resolution, eliminating any potential problems with the alpha source preparation for emergency or routine samples. A rapid sequential separation method to separate {sup 210} Po and actinide isotopes was also developed. This new approach, rapid separation with DGA Resin plus microprecipitation for alpha source preparation, is a significant advance in radiochemistry for the rapid

  9. Oxygen Isotopic Analyses of Water Extracted from Lunar Samples

    NASA Astrophysics Data System (ADS)

    Nunn Martinez, M.; Thiemens, M. H.

    2014-12-01

    Oxygen exists in lunar materials in distinct phases having unique sources and equilibration histories. The oxygen isotopic composition (δ17O, δ18O) of various components of lunar materials has been studied extensively, but analyses of water in these samples are relatively sparse [1-3]. Samples collected on the lunar surface reflect not only the composition of their source reservoirs but also contributions from asteroidal and cometary impacts, interactions with solar wind and cosmic radiation, among other surface processes. Isotopic characterization of oxygen in lunar water could help resolve the major source of water in the Earth-Moon system by revealing if lunar water is primordial, asteroidal, or cometary in origin [1]. Methods: A lunar rock/soil sample is pumped to high vacuum to remove physisorbed water before heating step-wise to 50, 150, and 1000°C to extract extraterrestrial water without terrestrial contamination. The temperature at which water is evolved is proportional to the strength with which the water is bound in the sample and the relative difficulty of exchanging oxygen atoms in that water. This allows for the isolated extraction of water bound in different phases, which could have different source reservoirs and/or histories, as evidenced by the mass (in)dependence of oxygen compositions. A low blank procedure was developed to accommodate the low water content of lunar material [4]. Results: Oxygen isotopic analyses of lunar water extracted by stepwise heating lunar basalts and breccias with a range of compositions, petrologic types, and surface exposure ages will be presented. The cosmic ray exposure age of these samples varies by two orders of magnitude, and we will consider this in discussing the effects of solar wind and cosmic radiation on the oxygen isotopic composition (Δ17O). I will examine the implications of our water analyses for the composition of the oxygen-bearing reservoir from which that water formed, the effects of surface

  10. GROUND WATER PURGING AND SAMPLING METHODS: HISTORY VS. HYSTERIA

    EPA Science Inventory

    It has been over 10 years since the low-flow ground water purging and sampling method was initially reported in the literature. The method grew from the recognition that well purging was necessary to collect representative samples, bailers could not achieve well purging, and high...

  11. ENHANCED DAPI STAINING FOR CRYPTOSPORIDIUM IN WATER SAMPLES

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Method 1623 is used to detect and quantify the presence of {ital Cryptosporidium} spp. oocysts in water. The protocol consists of concentrating a sample, staining this concentrate with a fluorescent antibody, and examining the sample mi...

  12. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  13. Superoxygenated Water as an Experimental Sample for NMR Relaxometry

    ERIC Educational Resources Information Center

    Nestle, Nikolaus; Dakkouri, Marwan; Rauscher, Hubert

    2004-01-01

    The increase in NMR relaxation rates as a result of dissolved paramagnetic species on the sample of superoxygenated drinking water is demonstrated. It is concluded that oxygen content in NMR samples is an important issue and can give rise to various problems in the interpretation of both spectroscopic and NMR imaging or relaxation experiments.

  14. ENHANCED DAPI STAINING FOR CRYPTOSPORIDIUM IN WATER SAMPLES

    EPA Science Inventory

    The U.S. Environmental Protection Agency's Method 1623 is used to detect and quantify the presence of {ital Cryptosporidium} spp. oocysts in water. The protocol consists of concentrating a sample, staining this concentrate with a fluorescent antibody, and examining the sample mi...

  15. UMTRA project water sampling and analysis plan, Mexican Hat, Utah

    SciTech Connect

    Not Available

    1994-04-01

    The Mexican Hat, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site is a former uranium mill that is undergoing surface remediation in the form of on-site tailings stabilization. Contaminated surface materials from the Monument Valley, Arizona, UMTRA Project site have been transported to the Mexican Hat site and are being consolidated with the Mexican Hat tailings. The scheduled completion of the tailings disposal cell is August 1995. Water is found in two geologic units at the site: the Halgaito Shale Formation and the Honaker Trail Formation. The tailings rest on the Halgaito Shale, and water contained in that unit is a result of milling activities and, to a lesser extent, water released from the tailings from compaction during remedial action construction of the disposal cell. Water in the Halgaito Shale flows through fractures and discharges at seeps along nearby arroyos. Flow from the seeps will diminish as water drains from the unit. Ground water in the lower unit, the Honaker Trail Formation, is protected from contamination by an upward hydraulic gradient. There are no nearby water supply wells because of widespread poor background ground water quality and quantity, and the San Juan River shows no impacts from the site. This water sampling and analysis plan (WSAP) recommends sampling six seeps and one upgradient monitor well compared in the Honaker Trail Formation. Samples will be taken in April 1994 (representative of high group water levels) and September 1994 (representative of low ground water levels). Analyses will be performed on filtered samples for plume indicator parameters.

  16. Chapter A3. Cleaning of Equipment for Water Sampling

    USGS Publications Warehouse

    Wilde, Franceska D.; Radtke, Dean B.; Gibs, Jacob; Iwatsubo, Rick T.

    1998-01-01

    The National Field Manual for the Collection of Water-Quality Data (National Field Manual) describes protocols and provides guidelines for U.S. Geological Survey (USGS) personnel who collect data used to assess the quality of the Nation's surface-water and ground-water resources. Chapter A3 describes procedures for cleaning the equipment used to collect and process samples of surface water and ground water and procedures for assessing the efficacy of the equipment-cleaning process. This chapter is designed for use with the other chapters of this field manual. Each chapter of the National Field Manual is published separately and revised periodically. Newly published and revised chapters will be posted on the USGS page 'National Field Manual for the Collection of Water-Quality Data.' The URL for this page is http://pubs.water.usgs.gov/twri9A/ (accessed September 20, 2004).

  17. Construction Site Storm Water Sampling California's New Construction Sampling and Analysis Requirements

    SciTech Connect

    Forrest, C.L.; Mathews, S.

    2002-04-02

    The California State Water Resources Control Board (State Board) originally issued a National Pollutant Discharge System (NPDES) permit for storm water discharges associated with construction activities in 1992. This NPDES permit was issued as a general permit, applicable throughout the state (with certain exceptions). The general construction permit was made site-specific by a discharger-developed Storm Water Pollution Prevention Plan (SWPPP). As with most NPDES construction storm water permits, monitoring requirements were limited to inspections. Sampling and analysis of discharges was not specifically required, but a Regional Water Quality Control Board (Regional Board) could require additional monitoring. In 1999, the State -Board revised and reissued its construction general permit. While the 1999 permit significantly enhanced the erosion and sediment control descriptions and requirements, and expanded the inspection program, sampling and analysis was still not required. Environmental advocacy groups took exception to the absence of sampling requirements and sought relief in court to add sampling and analysis. In 2001, the State Board in response to the court order adopted a resolution requiring sampling and analysis of construction site runoff under two conditions. Turbidity and/or sediment sampling is required when construction site runoff enters water bodies determined to impaired for sediment or turbidity. Sampling for non-visible pollutants is required when construction operations expose materials to storm water. Sampling construction site runoff is relatively new concept for NPDES permits. Only a few permits throughout the country require sampling and analysis for sediment-related pollutants, and California is one of the only permitting entities to require sampling for non-visible pollutants in construction site runoff. The added complexity of sampling runoff requires construction operators and erosion and sediment control professionals to expand their

  18. Analytical techniques for steroid estrogens in water samples - A review.

    PubMed

    Fang, Ting Yien; Praveena, Sarva Mangala; deBurbure, Claire; Aris, Ahmad Zaharin; Ismail, Sharifah Norkhadijah Syed; Rasdi, Irniza

    2016-12-01

    In recent years, environmental concerns over ultra-trace levels of steroid estrogens concentrations in water samples have increased because of their adverse effects on human and animal life. Special attention to the analytical techniques used to quantify steroid estrogens in water samples is therefore increasingly important. The objective of this review was to present an overview of both instrumental and non-instrumental analytical techniques available for the determination of steroid estrogens in water samples, evidencing their respective potential advantages and limitations using the Need, Approach, Benefit, and Competition (NABC) approach. The analytical techniques highlighted in this review were instrumental and non-instrumental analytical techniques namely gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), enzyme-linked immuno sorbent assay (ELISA), radio immuno assay (RIA), yeast estrogen screen (YES) assay, and human breast cancer cell line proliferation (E-screen) assay. The complexity of water samples and their low estrogenic concentrations necessitates the use of highly sensitive instrumental analytical techniques (GC-MS and LC-MS) and non-instrumental analytical techniques (ELISA, RIA, YES assay and E-screen assay) to quantify steroid estrogens. Both instrumental and non-instrumental analytical techniques have their own advantages and limitations. However, the non-instrumental ELISA analytical techniques, thanks to its lower detection limit and simplicity, its rapidity and cost-effectiveness, currently appears to be the most reliable for determining steroid estrogens in water samples. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Chapter A2. Selection of Equipment for Water Sampling

    USGS Publications Warehouse

    Wilde, Franceska D.; Radtke, Dean B.; Gibs, Jacob; Iwatsubo, Rick T.

    1998-01-01

    The National Field Manual for the Collection of Water-Quality Data (National Field Manual) describes protocols and provides guidelines for U.S. Geological Survey (USGS) personnel who collect data used to assess the quality of the Nation's surface-water and ground-water resources. This chapter of the manual addresses the selection of equipment commonly used by USGS personnel to collect and process water-quality samples. Each chapter of the National Field Manual is published separately and revised periodically. Newly published and revised chapters will be posted on the World Wide Web on the USGS page 'National Field Manual for the Collection of Water-Quality Data.' The URL for this page is http://pubs.water.usgs.gov/twri9A/ (accessed March 20, 2003).

  20. Sample port design for ballast water sampling: Refinement of guidance regarding the isokinetic diameter.

    PubMed

    Wier, Timothy P; Moser, Cameron S; Grant, Jonathan F; First, Matthew R; Riley, Scott C; Robbins-Wamsley, Stephanie H; Drake, Lisa A

    2015-09-15

    By using an appropriate in-line sampling system, it is possible to obtain representative samples of ballast water from the main ballast line. An important parameter of the sampling port is its "isokinetic diameter" (DISO), which is the diameter calculated to determine the velocity of water in the sample port relative to the velocity of the water in the main ballast line. The guidance in the U.S. Environmental Technology Verification (ETV) program protocol suggests increasing the diameter from 1.0× DISO (in which velocity in the sample port is equivalent to velocity in the main line) to 1.5-2.0× DISO. In this manner, flow velocity is slowed-and mortality of organisms is theoretically minimized-as water enters the sample port. This report describes field and laboratory trials, as well as computational fluid dynamics modeling, to refine this guidance. From this work, a DISO of 1.0-2.0× (smaller diameter sample ports) is recommended. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Adsorption of Water on JSC-1A Lunar Simulant Samples

    NASA Technical Reports Server (NTRS)

    Goering, John; Sah, Shweta; Burghaus, Uwe; Street, Kenneth W.

    2008-01-01

    Remote sensing probes sent to the moon in the 1990s indicated that water may exist in areas such as the bottoms of deep, permanently shadowed craters at the lunar poles, buried under regolith. Water is of paramount importance for any lunar exploration and colonization project which would require self-sustainable systems. Therefore, investigating the interaction of water with lunar regolith is pertinent to future exploration. The lunar environment can be approximated in ultra-high vacuum systems such as those used in thermal desorption spectroscopy (TDS). Questions about water dissociation, surface wetting, degree of crystallization, details of water-ice transitions, and cluster formation kinetics can be addressed by TDS. Lunar regolith specimens collected during the Apollo missions are still available though precious, so testing with simulant is required before applying to use lunar regolith samples. Hence, we used for these studies JSC-1a, mostly an aluminosilicate glass and basaltic material containing substantial amounts of plagioclase, some olivine and traces of other minerals. Objectives of this project include: 1) Manufacturing samples using as little raw material as possible, allowing the use of surface chemistry and kinetics tools to determine the feasibility of parallel studies on regolith, and 2) Characterizing the adsorption kinetics of water on the regolith simulant. This has implications for the probability of finding water on the moon and, if present, for recovery techniques. For condensed water films, complex TDS data were obtained containing multiple features, which are related to subtle rearrangements of the water adlayer. Results from JSC-1a TDS studies indicate: 1) Water dissociation on JSC-1a at low exposures, with features detected at temperatures as high as 450 K and 2) The formation of 3D water clusters and a rather porous condensed water film. It appears plausible that the sub- m sized particles act as nucleation centers.

  2. Mutagenicity of water samples from five cities in Korea.

    PubMed

    Park, J H; Kang, K S; Lee, Y S

    2001-07-01

    Four doses (equivalent to 4, 2, 1, and 0.5 liter water) of organic extracts from raw, treated and drinking waters sampled from seven different treatment plants in five cities in Korea were challenged to the Ames test using S. typhimurium strains TA98 and TA100 in the presence/absence of S9 mix. The mutagenicity was usually observed from chlorine-treated (28.6%) and drinking (42.9%) waters rather than raw (3.4%) waters. The strain TA98 (33.3%) was more sensitive to detect the mutagenicity of water samples than the strain TA100 (16.7%). However, the absence of S9 mix showed higher mutagenic activity of waters compared to the presence of S9 mix, corresponding to the detection of 42.9% and 7.1%, respectively. These results indicate that the bacterial mutagenicity of treated and drinking waters may be derived from chlorination in water treatment plants but that the mutagenicity in humans may be limited due to enzymatic metabolism.

  3. RAPID ANALYSIS OF EMERGENCY URINE AND WATER SAMPLES

    SciTech Connect

    Maxwell, S

    2007-02-26

    There is a need for fast, reliable methods for the determination of actinides and Sr-89/90 analysis on environmental and bioassay samples in response to an emergency radiological incident. The SRS (Savannah River Site) Environmental Bioassay Laboratory participated in the National Institute of Standards and Technology Radiochemistry Intercomparison Program (NRIP-06) and analyzed water and urine samples within 8 hours of receipt. The SRS Environmental Laboratory was the only lab that participated in the program that analyzed these samples for both actinides and Sr-89/90 within the requested 8 hour turnaround time. A new, rapid actinide and strontium 89/90 separation method was used for both urine and water samples. This method uses stacked TEVA Resin{reg_sign}, TRU Resin{reg_sign} and Sr-Resin{reg_sign} cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), neptunium (Np), uranium (U), and americium (Am), curium (Cm) and thorium (Th) using a single multi-stage column combined with alpha spectrometry. By using vacuum box cartridge technology and stacked cartridges with rapid flow rates, sample preparation time was minimized. This paper discusses the technology and conditions employed for both water and urine samples and presents the SRS performance data on the NRIP-06 samples.

  4. Chemical composition analysis of rose water samples from Iran.

    PubMed

    Moein, Mahmoodreza; Zarshenas, Mohammad M; Delnavaz, Shiva

    2014-10-01

    Rosa damascena Mill. (Rosaceae) is an important ornamental and medicinal plant and a source of fragrance. Its hydrosol is known in Iran as golab (rose water) and has applications in religious ceremonies, food, and pharmaceuticals. Hydrosol is traditionally and industrially produced by distillation. The increase in market demand has led to production of inferior products for hydrosol that contain synthetic essences or essential oils of other plants, or that have been diluted with water. Inferior product often may be distinguished via its color changes and weak odor. However, details need to be determined by chemical analysis. The current study evaluated the composition and quality of 10 rose water samples purchased from local markets in Shiraz, capital of Fars province in Iran. The essential oils of the samples were extracted and analyzed using gas chromatography-mass spectrometry. RESULTS revealed that phenethyl alcohol, geraniol, and β-citronellol were the main constituents of most samples. In total, 22 constituents were detected and identified in the samples. Identification was determined for 60.97-96.07% of the essential oil components. It was concluded that Pelargonium and Dianthus essential oils and synthetic essences had been added to some samples. Dibutyl phthalate was also detected in most samples. This substance, which commonly exists as polyethylene terephthalate, may have been released into the samples from their containers.

  5. Holding effects on coliform enumeration in drinking water samples.

    PubMed

    McDaniels, A E; Bordner, R H; Gartside, P S; Haines, J R; Brenner, K P; Rankin, C C

    1985-10-01

    Standard procedures for analyzing drinking water stress the need to adhere to the time and temperature conditions recommended for holding samples collected for microbiological testing. The National Drinking Water Laboratory Certification Program requires compliance with these holding limits, but some investigators have reported difficulties in meeting them. Research was conducted by standard analytical methods to determine if changes occurred when samples were held at 5 and 22 degrees C and analyzed at 0, 24, 30, and 48 h. Samples were analyzed for coliforms by the membrane filter and fermentation-tube procedures and for heterotrophs by the pour plate method. A total of 17 treated water samples were collected from a large municipal distribution system from August to December 1981, and 12 samples were collected from January to May 1983. The samples were dosed with coliforms previously isolated from the water system, Enterobacter cloacae in 1981 and Citrobacter freundii in 1983. The coliform counts declined linearly over time, and the rates of decline were significant at both 5 and 22 degrees C. Within 24 h at 22 degrees C, levels of E. cloacae and C. freundii decreased by 47 and 26%, respectively, and at 5 degrees C, E. cloacae numbers declined by 23%. Results from these representative laboratory-grown coliforms reinforced those previously obtained with naturally occurring coliforms under the same experimental conditions. Significantly, some samples with initially unacceptable counts (greater than 4/100 ml) met the safe drinking water limits after storage at 24 h at 5 and 22 degrees C and would have been classified as satisfactory.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Sampling and quantifying invertebrates from drinking water distribution mains.

    PubMed

    van Lieverloo, J Hein M; Bosboom, Dick W; Bakker, Geo L; Brouwer, Anke J; Voogt, Remko; De Roos, Josje E M

    2004-03-01

    Water utilities in the Netherlands aim at controlling the multiplication of (micro-) organisms by distributing biologically stable water through biologically stable materials. Disinfectant residuals are absent or very low. To be able to assess invertebrate abundance, methods for sampling and quantifying these animals from distribution mains were optimised and evaluated. The presented method for collecting invertebrates consists of unidirectionally flushing a mains section with a flow rate of 1 ms(-1) and filtering the flushed water in two separate flows with 500 microm and 100 microm mesh plankton gauze filters. Removal efficiency from mains was evaluated in nine experiments by collecting the invertebrates removed from the mains section by intensive cleaning immediately subsequent to sampling. Of 12 taxa distinguished, all except case-building Chironomidae larvae (2%) and Oligochaeta (30%) were removed well (51-75%). Retention of invertebrates in 100 microm filters was evaluated by filtering 39 filtrates using 30 microm filters. Except for flexible and small invertebrates such as Turbellaria (13%), Nematoda (11%) and Copepoda larvae (24%), most taxa were well retained in the 100 microm filters (53-100%). During sample processing, the method for taking sub-samples with a 10 ml pipette from the suspension of samples with high sediment concentrations was found to perform well in 75% of the samples. During a 2-year national survey in the Netherlands and consecutive investigations, the method appeared to be very suitable to assess the abundance of most invertebrate taxa in drinking water distribution systems and to be practicable for relatively inexperienced sampling and lab technicians. Although the numbers of small, less abundant or sessile taxa were not accurately assessed using the method, these taxa probably should not be the primary focus of monitoring by water utilities, as consumer complaints are not likely to be caused by these invertebrates. The accuracy of

  7. Gas-driven pump for ground-water samples

    USGS Publications Warehouse

    Signor, Donald C.

    1978-01-01

    Observation wells installed for artificial-recharge research and other wells used in different ground-water programs are frequently cased with small-diameter steel pipe. To obtain samples from these small-diameter wells in order to monitor water quality, and to calibrate solute-transport models, a small-diameter pump with unique operating characteristics is required that causes a minimum alternation of samples during field sampling. A small-diameter gas-driven pump was designed and built to obtain water samples from wells of two-inch diameter or larger. The pump is a double-piston type with the following characteristics: (1) The water sample is isolated from the operating gas, (2) no source of electricity is ncessary, (3) operation is continuous, (4) use of compressed gas is efficient, and (5) operation is reliable over extended periods of time. Principles of operation, actual operation techniques, gas-use analyses and operating experience are described. Complete working drawings and a component list are included. Recent modifications and pump construction for high-pressure applications also are described. (Woodard-USGS)

  8. Profile sampling to characterize particulate lead risks in potable water.

    PubMed

    Clark, Brandi; Masters, Sheldon; Edwards, Marc

    2014-06-17

    Traditional lead (Pb) profiling, or collecting sequential liters of water that flow from a consumer tap after a stagnation event, has recently received widespread use in understanding sources of Pb in drinking water and risks to consumer health, but has limitations in quantifying particulate Pb risks. A new profiling protocol was developed in which a series of traditional profiles are collected from the same tap at escalating flow rates. The results revealed marked differences in risks of Pb exposure from one consumer home to another as a function of flow rate, with homes grouped into four risk categories with differing flushing requirements and public education to protect consumers. On average, Pb concentrations detected in water at high flow without stagnation were at least three to four times higher than in first draw samples collected at low flow with stagnation, demonstrating a new "worst case" lead release scenario, contrary to the original regulatory assumption that stagnant, first draw samples contain the highest lead concentrations. Testing also revealed that in some cases water samples with visible particulates had much higher Pb than samples without visible particulates, and tests of different sample handling protocols confirmed that some EPA-allowed methods would not quantify as much as 99.9% of the Pb actually present (avg. 27% of Pb not quantified).

  9. Isotope evidence of hexavalent chromium stability in ground water samples.

    PubMed

    Čadková, Eva; Chrastný, Vladislav

    2015-11-01

    Chromium stable isotopes are of interest in many geochemical studies as a tool to identify Cr(VI) reduction and/or dilution in groundwater aquifers. For such studies the short term stability of Cr(VI) in water samples is required before the laboratory analyses can be carried out. Here the short term stability of Cr(VI) in groundwater samples was studied using an isotope approach. Based on commonly available methods for Cr(VI) stabilization, water samples were filtered and the pH value was adjusted to be equal to or greater than 8 before Cr isotope analysis. Based on our Cr isotope data (expressed as δ(53)CrNIST979), Cr(VI) was found to be unstable over short time periods in anthropogenically contaminated groundwater samples regardless of water treatment (e.g., pH adjustment, different storage temperatures). Based on our laboratory experiments, δ(53)CrNIST979 of the Cr(VI) pool was found to be unstable in the presence of dissolved Fe(II), Mn(IV) and/or SO2. Threshold concentrations of Fe(II) causing Cr(VI) reduction range between 10 mg L(-1) and 100 mg L(-1)and less than 1 mg L(-1) for Mn. Hence our isotope data show that water samples containing Cr(VI) should be processed on-site through anion column chemistry to avoid any isotope shifts.

  10. UMTRA project water sampling and analysis plan, Durango, Colorado

    SciTech Connect

    Not Available

    1994-01-01

    Surface remedial action has been completed at the Uranium Mill Tailings Remedial Action Project in Durango, Colorado. Contaminated soil and debris have been removed from the former processing site and placed in the Bodo Canyon disposal cell. Ground water at the former uranium mill/tailings site and raffinate pond area has been contaminated by the former milling operations. The ground water at the disposal site was not impacted by the former milling operations at the time of the cell`s construction. Activities for fiscal 1994 involve ground water sampling and site characterization of the disposal site.

  11. Water erosion tests on a tantalum sample: A short communication

    NASA Astrophysics Data System (ADS)

    Caretta, O.; Davenne, T.; Densham, C. J.

    2017-08-01

    This paper reports results from an experiment exposing the hot isostatic pressed tantalum cladding of a tungsten spallation target sample to a 34 m/s water jet. The unpolished tantalum surface was placed under the jet for 4.5 months with a view to quantifying pitting and erosion. Micrographs and laser profilometry records of the sample surface taken before and after the experiment are reported here.

  12. A simple supported liquid hollow fiber membrane microextraction for sample preparation of trihalomethanes in water samples.

    PubMed

    Vora-adisak, Narongchai; Varanusupakul, Pakorn

    2006-07-21

    A simple and efficient liquid-phase microextraction (LPME) technique using a supported liquid hollow fiber membrane, in conjunction with gas chromatography-electron capture detector has been developed for extraction and determination of trihalomethanes (THMs) in water samples. THMs were extracted from water samples through an organic extracting solvent impregnated in the pores and filled inside the porous hollow fiber membrane. Our simple conditions were conducted at 35 degrees C with no stirring and no salt addition in order to minimize sample preparation steps. Parameters such as types of hollow fiber membranes, extracting solvents and extraction time were studied and optimized. The method exhibited enrichment factors ranged from 28- to 62-fold within 30 min extraction time. The linearity of the method ranged from 0.2 to 100 microg l(-1). The limits of detection were in the low microg l(-1) level, ranging between 0.01 and 0.2 microg l(-1). The recoveries of spiked THMs at 5 microg l(-1) in water were between 98 and 105% with relative standard deviations (RSDs) less than 4%. Furthermore, the method was applied for determination of THMs in drinking water and tap water samples was reported.

  13. Stability of low levels of perchlorate in drinking water and natural water samples

    USGS Publications Warehouse

    Stetson, S.J.; Wanty, R.B.; Helsel, D.R.; Kalkhoff, S.J.; Macalady, D.L.

    2006-01-01

    Perchlorate ion (ClO4-) is an environmental contaminant of growing concern due to its potential human health effects, impact on aquatic and land animals, and widespread occurrence throughout the United States. The determination of perchlorate cannot normally be carried out in the field. As such, water samples for perchlorate analysis are often shipped to a central laboratory, where they may be stored for a significant period before analysis. The stability of perchlorate ion in various types of commonly encountered water samples has not been generally examined-the effect of such storage is thus not known. In the present study, the long-term stability of perchlorate ion in deionized water, tap water, ground water, and surface water was examined. Sample sets containing approximately 1000, 100, 1.0, and 0.5 ??g l-1 perchlorate ion in deionized water and also in local tap water were formulated. These samples were analyzed by ion chromatography for perchlorate ion concentration against freshly prepared standards every 24 h for the first 7 days, biweekly for the next 4 weeks, and periodically after that for a total of 400 or 610 days for the two lowest concentrations and a total of 428 or 638 days for the high concentrations. Ground and surface water samples containing perchlorate were collected, held and analyzed for perchlorate concentration periodically over at least 360 days. All samples except for the surface water samples were found to be stable for the duration of the study, allowing for holding times of at least 300 days for ground water samples and at least 90 days for surface water samples. ?? 2006 Elsevier B.V. All rights reserved.

  14. An evaluation of drinking water samples treated with alternative disinfectants

    SciTech Connect

    Patterson, K.S.; Lykins, B.W. Jr.; Garner, L.M.

    1995-10-01

    Due to concern over potential human health risks associated with the use of chlorine (Cl{sub 2}) for disinfection of drinking water, many utilities are considering alternative disinfectants. An evaluation is thus needed of the potential risks associated with the use of alternative disinfectants relative to those posed by Cl{sub 2}. At a pilot-scale drinking water plant in Jefferson Parish, LA., two studies were conducted in which clarified and sand filtered Mississippi River water was treated with either ozone (O{sub 3}), monochloramine (NH{sub 2}Cl), Cl{sub 2} or was not disinfected. Ozonated water was also post-disinfected with either NH{sub 2}Cl or Cl{sub 2}, to provide a disinfectant residual. For each treatment stream total organic carbon (TOC), total organic halide (TOX) and microbiological contaminants were determined. XAD resin concentrates were also prepared for mutagenicity testing in the Ames Salmonella assay. Water samples disinfected with O{sub 3} alone had low levels of mutagenic activity, the same as the non-disinfected water. The level of mutagenicity observed following chlorination was approximately twice that observed following treatment with NH{sub 2}Cl. Disinfection with O{sub 3} prior to treatment with either Cl{sub 2} or NH{sub 2}Cl resulted in a significantly lower level of mutagenicity than when either disinfectant was used alone. The concentrations of TOX present in the water samples showed a pattern similar to that of the mutagenicity data. The levels of TOC, by contrast, were similar for all the treatment streams. No significant baterial contamination was observed in water samples treated with either Cl{sub 2} or NH{sub 2}Cl alone or in combination with O{sub 3}, as determined by heterotrophic plate counts. However, O{sub 3} alone did not insure an acceptable level of disinfection at the end of the treatment stream.

  15. Guidelines and techniques for obtaining water samples that accurately represent the water chemistry of an aquifer

    USGS Publications Warehouse

    Claassen, Hans C.

    1982-01-01

    Obtaining ground-water samples that accurately represent the water chemistry of an aquifer is a complex task. Before a ground-water sampling program can be started, an understanding of the kind of chemical data needed and the potential changes in water chemistry resulting from various drilling, well-completion, and sampling techniques is needed. This report provides a basis for such an evaluation and permits a choice of techniques that will result in obtaining the best possible data for the time and money allocated.

  16. Analysis of water in Autonomous Biological Systems (ABS) samples.

    PubMed

    Ishikawa, Y; Kobayashi, K; Seki, K; Mizutani, H; Kawasaki, Y; Koike, J; Ijiri, K; Yamashita, M; Sugiura, K; Poynter, J; MacCallum, T; Anderson, G

    1998-12-01

    Several soluble components, peptidase and amino acids, and carbon isotopic ratio in the water retrieved from flight experiments of Autonomous Biological Systems (ABS) as well as ground control samples are analyzed to interpret the condition, dynamics, material balance of the ABS ecosystems. Organic carbons in flight samples were found to be more abundant compared with the control ones, which suggested the uniform ecosystems in low gravity might easily dissolve more soluble components. The Mir-1997 flight sample showed higher C/N ratio probably because of the dissolution of carbon-rich plant materials.

  17. Determination of estrogenic potential in waste water without sample extraction.

    PubMed

    Avberšek, Miha; Žegura, Bojana; Filipič, Metka; Uranjek-Ževart, Nataša; Heath, Ester

    2013-09-15

    This study describes the modification of the ER-Calux assay for testing water samples without sample extraction (NE-(ER-Calux) assay). The results are compared to those obtained with ER-Calux assay and a theoretical estrogenic potential obtained by GC-MSD. For spiked tap and waste water samples there was no statistical difference between estrogenic potentials obtained by the three methods. Application of NE-(ER-Calux) to "real" influent and effluents from municipal waste water treatment plants and receiving surface waters found that the NE-(ER-Calux) assay gave higher values compared to ER-Calux assay and GC-MSD. This is explained by the presence of water soluble endocrine agonists that are usually removed during extraction. Intraday dynamics of the estrogenic potential of a WWTP influent and effluent revealed an increase in the estrogenic potential of the influent from 12.9 ng(EEQ)/L in the morning to a peak value of 40.0 ng(EEQ)/L in the afternoon. The estrogenic potential of the effluent was

  18. Total Water Content Measurements with an Isokinetic Sampling Probe

    NASA Technical Reports Server (NTRS)

    Reehorst, Andrew L.; Miller, Dean R.; Bidwell, Colin S.

    2010-01-01

    The NASA Glenn Research Center has developed a Total Water Content (TWC) Isokinetic Sampling Probe. Since it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument is comprised of the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Analysis and testing have been conducted on the subsystems to ensure their proper function and accuracy. End-to-end bench testing has also been conducted to ensure the reliability of the entire instrument system. A Stokes Number based collection efficiency correction was developed to correct for probe thickness effects. The authors further discuss the need to ensure that no condensation occurs within the instrument plumbing. Instrument measurements compared to facility calibrations from testing in the NASA Glenn Icing Research Tunnel are presented and discussed. There appears to be liquid water content and droplet size effects in the differences between the two measurement techniques.

  19. Downhole pumps for water sampling in small diameter wells

    USGS Publications Warehouse

    Koopman, F. C.

    1979-01-01

    The relatively high cost and difficulty in locating a source of pumps for use in obtaining ground-water samples from small-diameter wells has demonstrated a need for this report. Criteria for selection of a pump and pumping equipment to meet specific requirements has been tabulated to assist field personnel in making a selection from commercial sources. (Kosco-USGS)

  20. Filtration recovery of extracellular DNA from environmental water samples

    EPA Science Inventory

    qPCR methods are able to analyze DNA from microbes within hours of collecting water samples, providing the promptest notification and public awareness possible when unsafe pathogenic levels are reached. Health risk, however, may be overestimated by the presence of extracellular ...

  1. THE EMPACT BEACHES: A CASE STUDY IN RECREATIONAL WATER SAMPLING

    EPA Science Inventory

    Various chapters describe sample and experimental design, use of a geometric mean or an arithmetic mean, modeling and forecasting, and risk assessment in relation to monitoring recreational waters for fecal indicators. All of these aspects of monitoring are dependent on the spat...

  2. Filtration recovery of extracellular DNA from environmental water samples

    EPA Science Inventory

    qPCR methods are able to analyze DNA from microbes within hours of collecting water samples, providing the promptest notification and public awareness possible when unsafe pathogenic levels are reached. Health risk, however, may be overestimated by the presence of extracellular ...

  3. THE EMPACT BEACHES: A CASE STUDY IN RECREATIONAL WATER SAMPLING

    EPA Science Inventory

    Various chapters describe sample and experimental design, use of a geometric mean or an arithmetic mean, modeling and forecasting, and risk assessment in relation to monitoring recreational waters for fecal indicators. All of these aspects of monitoring are dependent on the spat...

  4. Standard reference water samples for rare earth element determinations

    USGS Publications Warehouse

    Verplanck, P.L.; Antweiler, R.C.; Nordstrom, D.K.; Taylor, H.E.

    2001-01-01

    Standard reference water samples (SRWS) were collected from two mine sites, one near Ophir, CO, USA and the other near Redding, CA, USA. The samples were filtered, preserved, and analyzed for rare earth element (REE) concentrations (La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu) by inductively coupled plasma-mass spectrometry (ICP-MS). These two samples were acid mine waters with elevated concentrations of REEs (0.45-161 ??g/1). Seventeen international laboratories participated in a 'round-robin' chemical analysis program, which made it possible to evaluate the data by robust statistical procedures that are insensitive to outliers. The resulting most probable values are reported. Ten to 15 of the participants also reported values for Ba, Y, and Sc. Field parameters, major ion, and other trace element concentrations, not subject to statistical evaluation, are provided.

  5. Spectral analysis of water samples using modulated resonance features for monitoring of public water resources

    NASA Astrophysics Data System (ADS)

    Lambrakos, S. G.; Yapijakis, C.; Aiken, D.; Shabaev, A.; Ramsey, S.; Peak, J.

    2015-05-01

    Hyperspectral analysis of water samples taken from public water resources in the New York City metro area has demonstrated the potential application of this type of analysis for water monitoring, treatment and evaluation prior to filtration. Hyperspectral monitoring of contaminants with respect to types and relative concentrations requires tracking statistical profiles of water contaminants in terms of spatial-temporal distributions of electromagnetic absorption spectra ranging from the ultraviolet to infrared, which are associated with specific water resources. To achieve this, it is necessary to establish correlation between hyperspectral signatures and types of contaminants to be found within specific water resources. Correlation between absorption spectra and changes in chemical and physical characteristics of contaminants requires sufficient sensitivity. The present study examines the sensitivity of modulated resonance features with respect to characteristics of water contaminants for hyperspectral analysis of water samples.

  6. Investigations of Sample Stability in Water Chemistry Samples: Implications for the National Aquatic Resource Surveys

    EPA Science Inventory

    Water samples collected for the EPA's National Aquatic Resource Surveys (NARS) typically arrive at an analytical laboratory 2 or 3 days after collection (longer if collected from a remote location), at which point they are stabilized (filtration and/or acid preservation) until an...

  7. Investigations of Sample Stability in Water Chemistry Samples: Implications for the National Aquatic Resource Surveys

    EPA Science Inventory

    Water samples collected for the EPA's National Aquatic Resource Surveys (NARS) typically arrive at an analytical laboratory 2 or 3 days after collection (longer if collected from a remote location), at which point they are stabilized (filtration and/or acid preservation) until an...

  8. A Small Diameter Rosette for Sampling Ice Covered Waters

    NASA Astrophysics Data System (ADS)

    Chayes, D. N.; Smethie, W. M.; Perry, R. S.; Schlosser, P.; Friedrich, R.

    2011-12-01

    A gas tight, small diameter, lightweight rosette, supporting equipment and an effective operational protocol has been developed for aircraft supported sampling of sea water across the Lincoln Sea. The system incorporates a commercial off the shelf CTD electronics (SBE19+ sensor package and SBE33 deck unit) to provide real-time measurement data at the surface. We designed and developed modular water sample units and custom electronics to decode the bottle firing commands and close the sample bottles. For a typical station, we land a ski-equipped deHaviland Twin Otter (DHC-6) aircraft on a suitable piece of sea-ice, drill a 12" diameter hole through the ice next to the cargo door and set up a tent to provide a reasonable working environment over the hole. A small winch with 0.1" diameter single conductor cable is mounted in the aircraft by the cargo door and a tripod supports a sheave above the hole. The CTD module is connected to the end of the wire and the water sampling modules are stacked on top as the system is lowered. For most stations, three sample modules are used to provide 12 four (4) liter sample bottles. Data collected during the down-cast is used to formulate the sampling plan which is executed on the up-cast. The system is powered by a 3,700 Watt, 120VAC gasoline generator. After collection, the sample modules are stored in passively temperature stabilized ice chests during the flight back to the logistics facility at Alert where a broad range of samples are drawn and stored for future analysis. The transport mechanism has a good track record of maintaining water samples within about two degrees of the original collection temperature which minimizes out-gassing. The system has been successfully deployed during a field program each spring starting in 2004 along a transect between the north end of Ellesmere Island (Alert, Nunavut) and the North Pole. During the eight field programs we have taken 48 stations with twelve bottles at most stations (eight at

  9. A new method of snowmelt sampling for water stable isotopes

    USGS Publications Warehouse

    Penna, D.; Ahmad, M.; Birks, S. J.; Bouchaou, L.; Brencic, M.; Butt, S.; Holko, L.; Jeelani, G.; Martinez, D. E.; Melikadze, G.; Shanley, J.B.; Sokratov, S. A.; Stadnyk, T.; Sugimoto, A.; Vreca, P.

    2014-01-01

    We modified a passive capillary sampler (PCS) to collect snowmelt water for isotopic analysis. Past applications of PCSs have been to sample soil water, but the novel aspect of this study was the placement of the PCSs at the ground-snowpack interface to collect snowmelt. We deployed arrays of PCSs at 11 sites in ten partner countries on five continents representing a range of climate and snow cover worldwide. The PCS reliably collected snowmelt at all sites and caused negligible evaporative fractionation effects in the samples. PCS is low-cost, easy to install, and collects a representative integrated snowmelt sample throughout the melt season or at the melt event scale. Unlike snow cores, the PCS collects the water that would actually infiltrate the soil; thus, its isotopic composition is appropriate to use for tracing snowmelt water through the hydrologic cycle. The purpose of this Briefing is to show the potential advantages of PCSs and recommend guidelines for constructing and installing them based on our preliminary results from two snowmelt seasons.

  10. Interstitial water studies on small core samples, Leg 9

    USGS Publications Warehouse

    Sayles, F.L.; Waterman, L.S.; Manheim, F. T.

    1972-01-01

    The chemistry of the pore fluids obtained on Leg 9 is remarkable primarily in its constancy. Excepting silicon and strontium, only at one site do the concentrations of the major and minor constituents deviate notably from sea water concentrations (see Tables 1 and 2). The trends, or lack of them, seen in these samples have been discussed previously and only references will be given here. The constancy of composition and similarity to sea water is particularly noteworthy, as the sediments at all of the 9 sites are thought to be intruded by the basal basalt. The pore fluid chemistry exhibits no evidence of intrusion except possibly at Site 84.

  11. Interstitial water studies on small core samples, Leg 9

    USGS Publications Warehouse

    Sayles, F.L.; Waterman, L.S.; Manheim, F. T.

    1972-01-01

    The chemistry of the pore fluids obtained on Leg 9 is remarkable primarily in its constancy. Excepting silicon and strontium, only at one site do the concentrations of the major and minor constituents deviate notably from sea water concentrations (see Tables 1 and 2). The trends, or lack of them, seen in these samples have been discussed previously and only references will be given here. The constancy of composition and similarity to sea water is particularly noteworthy, as the sediments at all of the 9 sites are thought to be intruded by the basal basalt. The pore fluid chemistry exhibits no evidence of intrusion except possibly at Site 84.

  12. Siting analyses for water quality sampling in a catchment.

    PubMed

    Kao, Jehng-Jung; Li, Pei-Hao; Lin, Chin-Lien; Hu, Wen-Hsin

    2008-04-01

    Pollution loads discharged from upstream development or human activities significantly degrade the water quality of a reservoir. The design of an appropriate water quality sampling network is therefore important for detecting potential pollution events and monitoring pollution trends. However, under a limited budgetary constraint, how to site an appropriate number of sampling stations is a challenging task. A previous study proposed a method applying the simulated annealing algorithm to design the sampling network based on three cost factors including the number of reaches, bank length, and subcatchment area. However, these factors are not directly related to the distribution of possible pollution. Thus, this study modified the method by considering three additional factors, i.e. total phosphorus, nitrogen, and sediment loads. The larger the possible load, the higher the probability of a pollution event may occur. The study area was the Derchi reservoir catchment in Taiwan. Pollution loads were derived from the AGNPS model with rainfall intensity estimated using the Thiessen method. Analyses for a network with various numbers of sampling sites were implemented. The results obtained based on varied cost factors were compared and discussed. With the three additional factors, the chosen sampling network is expected to properly detect pollution events and monitor pollution distribution and temporal trends.

  13. Silicone rubber selection for passive sampling of pesticides in water.

    PubMed

    Martin, A; Margoum, C; Randon, J; Coquery, M

    2016-11-01

    Silicone rubber can extract organic compounds with a broad range of polarities (logKow>2-3) from aqueous samples. Such compounds include substances of major concern in the protection of aquatic ecosystems and human health, e.g. pesticides. Silicone rubbers (SRs) with various characteristics have been successfully used in sorptive methods for water sample extraction in the laboratory (SPME, SBSE), and for passive sampling in aquatic environments. However, only few studies have evaluated variability in organic compound sorption due to the origin of SRs, particularly for pesticides. The aim of this study was to select an SR for the extraction of pesticides from water samples by passive sampling. To this end we measured the impact of seven SR formulations on sorption capacity, defined by the partition coefficient (Ksw). Kinetic experiments and sorption isotherms were performed to determine extraction recovery as a selection criterion for SRs, and pesticide partition coefficients. Very large differences in affinity for pesticides were found between two kinds of SRs: "Polymerized SR kits" and "Manufactured SRs". One SR was chosen among the "Manufactured SRs", and the Ksw values of 21 pesticides were determined, filling a gap in the literature (1.50

  14. Water vapor measurement system in global atmospheric sampling program, appendix

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Dudzinski, T. J.

    1982-01-01

    The water vapor measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available dew/frostpoint hygrometer with a thermoelectrically cooled mirror sensor. The modifications extended the range of the hygrometer to enable air sample measurements with frostpoint temperatures down to -80 C at altitudes of 6 to 13 km. Other modifications were made to permit automatic, unattended operation in an aircraft environment. This report described the hygrometer, its integration with the GASP system, its calibration, and operational aspects including measurement errors. The estimated uncertainty of the dew/frostpoint measurements was + or - 1.7 Celsius.

  15. Spectrophotometric determination of trace copper in water samples with thiomichlersketone

    NASA Astrophysics Data System (ADS)

    Fu, Dayou; Yuan, Dong

    2007-02-01

    A simple and sensitive spectrophotometric method for determination of trace copper in water samples is proposed. In the presence of pH 4.6 HAc-NaAc buffer solution and surfactant polyethylene octyl phenyl ether (OP) medium, copper reacts with thiomichlersketone (TMK) to form a stable 1:4 complex. The complex Cu(II)-TMK-OP shows maximum absorbance at 500 nm with a molar absorptivity value of 5.7 × 10 4 l mol -1 cm -1. Beer's law is obeyed for copper concentrations in the range of 0-15 μg/25 ml. The average recovery of copper is between 95.8 and 106%. The method has been applied for determination of trace copper in different water samples with satisfactory results.

  16. Preservation of commonly applied fluorescent tracers in complex water samples

    NASA Astrophysics Data System (ADS)

    Cao, Viet; Schaffer, Mario; Jin, Yulan; Licha, Tobias

    2017-06-01

    Water sample preservation and pre-treatment are important steps for achieving accurate and reproductive results from tracer tests. However, this is particularly challenging for complex water mixtures prior to fluorescence analysis. In this study, the interference of iron and calcium precipitation with nine commonly applied conservative tracers, uranine, eosin, 1-naphthalene sulfonate, 1,5-naphthalene disulfonate, 2,6-naphthalene disulfonate, 4-amino-1-naphthalene sulfonate, 6-hydroxy-2-naphthalene sulfonate, 1,3,6-naphthalene trisulfonate, and 1,3,6,8-pyrene tetrasulfonate, was investigated in batch experiments. In general, the observed results are influenced by precipitates. A technique consisting of pH adjustment and centrifugation is described for preserving samples and avoiding the impact of these precipitates on the tracer test results.

  17. Water Sampling Data for BP Spill/Deepwater Horizon

    EPA Pesticide Factsheets

    The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.

  18. Surface Water Sampling Data for BP Spill/Deepwater Horizon

    EPA Pesticide Factsheets

    The Deepwater Horizon oil spill (also referred to as the BP oil spill) began on 20 April 2010 in the Gulf of Mexico on the BP-operated Macondo Prospect. Following the explosion and sinking of the Deepwater Horizon oil rig, a sea-floor oil gusher flowed for 87 days, until it was capped on 15 July 2010.In response to the BP oil spill, EPA sampled air, water, sediment, and waste generated by the cleanup operations.

  19. An opacity-sampled treatment of water vapor

    NASA Technical Reports Server (NTRS)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  20. An opacity-sampled treatment of water vapor

    NASA Technical Reports Server (NTRS)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  1. RAPID SEPARATION METHOD FOR EMERGENCY WATER AND URINE SAMPLES

    SciTech Connect

    Maxwell, S.; Culligan, B.

    2008-08-27

    The Savannah River Site Environmental Bioassay Lab participated in the 2008 NRIP Emergency Response program administered by the National Institute for Standards and Technology (NIST) in May, 2008. A new rapid column separation method was used for analysis of actinides and {sup 90}Sr the NRIP 2008 emergency water and urine samples. Significant method improvements were applied to reduce analytical times. As a result, much faster analysis times were achieved, less than 3 hours for determination of {sup 90}Sr and 3-4 hours for actinides. This represents a 25%-33% improvement in analysis times from NRIP 2007 and a {approx}100% improvement compared to NRIP 2006 report times. Column flow rates were increased by a factor of two, with no significant adverse impact on the method performance. Larger sample aliquots, shorter count times, faster cerium fluoride microprecipitation and streamlined calcium phosphate precipitation were also employed. Based on initial feedback from NIST, the SRS Environmental Bioassay Lab had the most rapid analysis times for actinides and {sup 90}Sr analyses for NRIP 2008 emergency urine samples. High levels of potential matrix interferences may be present in emergency samples and rugged methods are essential. Extremely high levels of {sup 210}Po were found to have an adverse effect on the uranium results for the NRIP-08 urine samples, while uranium results for NRIP-08 water samples were not affected. This problem, which was not observed for NRIP-06 or NRIP-07 urine samples, was resolved by using an enhanced {sup 210}Po removal step, which will be described.

  2. Study of Cloud Water Samples Collected over Northern Poland.

    PubMed

    Polkowska, Ż; Błaś, M; Lech, D; Namieśnik, J

    2014-01-01

    The paper gives the results of the first studies on the chemistry of cloud water collected during 3 mo (Aug.-Oct. 2010) in the free atmosphere over the area to the south of the Tri-City (Gdansk-Sopot-Gdynia) conurbation on the Gulf of Gdansk, Poland. Taken from cumulus, stratus, and stratocumulus clouds by means of an aircraft-mounted collector, the water samples were analyzed for the following contaminants: anions (chlorides, fluorides, nitrates, sulfates, and phosphates), cations (lithium, sodium, potassium, ammonium, calcium, and magnesium), and trace metals. In addition, pH values were measured, and the type and composition of suspended particulate matter was determined. We discuss the relationship between the concentration of inorganic ions and the type of cloud from which water was sampled. The chemistry is also likely related to the circulation pattern and inflow of clean air masses from the Baltic Sea. Moreover, a relationship was found between the composition of the samples examined and the location of pollutant emission sources.

  3. GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT

    EPA Science Inventory

    Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...

  4. GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT

    EPA Science Inventory

    Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...

  5. Optimal approaches for inline sampling of organisms in ballast water: L-shaped vs. Straight sample probes

    NASA Astrophysics Data System (ADS)

    Wier, Timothy P.; Moser, Cameron S.; Grant, Jonathan F.; Riley, Scott C.; Robbins-Wamsley, Stephanie H.; First, Matthew R.; Drake, Lisa A.

    2017-10-01

    Both L-shaped (;L;) and straight (;Straight;) sample probes have been used to collect water samples from a main ballast line in land-based or shipboard verification testing of ballast water management systems (BWMS). A series of experiments was conducted to quantify and compare the sampling efficiencies of L and Straight sample probes. The findings from this research-that both L and Straight probes sample organisms with similar efficiencies-permit increased flexibility for positioning sample probes aboard ships.

  6. Water-vapor detection using asynchronous THz sampling.

    PubMed

    Brown, Michael S; Fiechtner, Gregory J; Rudd, J V; Zimdars, David A; Warmuth, Matthew; Gord, James R

    2006-03-01

    The use of a fiber-coupled terahertz (THz) transmitter/receiver pair for spectroscopic detection of water vapor is investigated. Transmission signals of an alumina cylinder demonstrate that the measurement approach can be applied in a windowless ceramic combustor. First, a conventional commercial transmitter/receiver pair is used to make measurements for frequencies to 1.25 THz. Water-vapor absorption is clearly evident within the alumina transparency window and is readily modeled using existing databases. A variety of data-acquisition schemes is possible using THz instrumentation. To assess signal-collection techniques, a prototype THz transmitter/receiver pair is then used with the asynchronous optical-sampling (ASOPS) technique to obtain asynchronous THz-sampling signals to 1 THz without the need for an optomechanical delay line. Two mode-locked Ti:sapphire lasers operating at slightly different repetition rates are used for pumping the transmitter and receiver independently to permit a complete time-domain THz signal to be recorded. The resulting repetitive phase walkout is demonstrated by collecting power spectra of room air that exhibit water-vapor absorption.

  7. Visualizing Water Quality Sampling-Events in Florida

    NASA Astrophysics Data System (ADS)

    Bolt, M. D.

    2015-07-01

    Water quality sampling in Florida is acknowledged to be spatially and temporally variable. The rotational monitoring program that was created to capture data within the state's thousands of miles of coastline and streams, and millions of acres of lakes, reservoirs, and ponds may be partly responsible for inducing the variability as an artifact. Florida's new dissolved-oxygen-standard methodology will require more data to calculate a percent saturation. This additional data requirement's impact can be seen when the new methodology is applied retrospectively to the historical collection. To understand how, where, and when the methodological change could alter the environmental quality narrative of state waters requires addressing induced bias from prior sampling events and behaviors. Here stream and coastal water quality data is explored through several modalities to maximize understanding and communication of the spatiotemporal relationships. Previous methodology and expected-retrospective calculations outside the regulatory framework are found to be significantly different, but dependent on the spatiotemporal perspective. Data visualization is leveraged to demonstrate these differences, their potential impacts on environmental narratives, and to direct further review and analysis.

  8. Micellar electrokinetic chromatographic determination of triazine herbicides in water samples.

    PubMed

    Li, Zhi; Zhang, Shuaihua; Yin, Xiaofang; Wang, Chun; Wang, Zhi

    2014-09-01

    Dispersive liquid-liquid microextraction combined with online sweeping preconcentration in micellar electrokinetic chromatography was developed for the simultaneous determination of five triazine herbicides (atrazine, simazine, propazine, prometon and simetryn) in water samples. Several experimental parameters affecting the extraction efficiencies such as the type and volume of both the extraction and dispersive solvents, the addition of salt to sample solution, the extraction time and the pH of the sample solution were investigated. Under optimum conditions, the linearity of the method was good in the range from 0.33 to 20 ng mL(-1) for simazine, propazine, atrazine and simetryn, and from 0.17 to 20 ng mL(-1) for prometon, respectively. The sensitivity enrichment factors were in the range from 1750 to 2100, depending on the compound. The limit of detection (S/N = 3) ranged from 0.05 to 0.10 ng mL(-1). The developed method was successfully applied to the analysis of the five triazines in river, ground and well waters.

  9. Adsorption of Water on Simulated Moon Dust Samples

    NASA Technical Reports Server (NTRS)

    Goering, John P.; Sah, Shweta; Burghaus, Uwe; Street, Kenneth W., Jr.

    2008-01-01

    A lunar regolith simulant dust sample (JSC-1a) supported on a silica wafer (SiO2/Si(111)) has been characterized by scanning electron microscopy (SEM), energy dispersive x-ray spectroscopy (EDX), and Auger electron spectroscopy (AES). The adsorption kinetics of water has been studied primarily by thermal desorption spectroscopy (TDS) and also by collecting isothermal adsorption transients. The support has been characterized by water TDS. JSC-1a consists mostly of aluminosilicate glass and other minerals containing Fe, Na, Ca, and Mg. The particle sizes span the range from a few microns up to 100 microns. At small exposures, H2O TDS is characterized by broad (100 to 450 K) structures; at large exposures distinct TDS peaks emerge that are assigned to amorphous solid water (145 K) and crystalline ice (165 K). Water dissociates on JSC-1a at small exposures but not on the bare silica support. It appears that rather porous condensed ice layers form at large exposures. At thermal impact energies, the initial adsorption probability amounts to 0.92+/-0.05.

  10. UMTRA Project water sampling and analysis plan, Salt Lake City, Utah. Revision 1

    SciTech Connect

    1995-06-01

    This water sampling and analysis plan describes planned, routine ground water sampling activities at the US Department of Energy Uranium Mill Tailings Remedial Action Project site in Salt Lake City, Utah. This plan identifies and justifies sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring of ground water, sediments, and surface waters at monitoring stations on the site.

  11. Water isotopic ratios from a continuously melted ice core sample

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Kettner, E.; Johnsen, S. J.

    2011-11-01

    A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW-SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present

  12. Electrochemical determination of pharmaceuticals in spiked water samples.

    PubMed

    Ambrosi, Adriano; Antiochia, Riccarda; Campanella, Luigi; Dragone, Roberto; Lavagnini, Irma

    2005-07-15

    The electrochemical behaviour of acidic and neutral pharmaceutical active compounds (PhACs) was studied by cyclic voltammetry and pulse voltammetric techniques on mercury, carbon nanotube paste, carbon paste and gold electrodes. The best results, in terms of sensitivity, linearity range and detection limits, were obtained by differential pulse voltammetry (DPV) for ofloxacin (LOD 5.2 microM), differential pulse polarography (DPP) for clofibric acid (LOD 4.7 microM) and normal pulse voltammetry (NPV) for diclofenac (LOD 0.8 microM) and propranolol (LOD 0.5 microM). An enrichment step of approximately two orders of magnitude was performed by a solid-phase extraction procedure (SPE) in order to concentrate the samples. The developed method was optimized and tested on spiked river water samples.

  13. Measuring NAPL-Water Interfacial Areas to Evaluate the Effectiveness of In-Situ Chemical Oxidation for DNAPL-Contaminated Source Zones: A Two-Dimensional Flow Cell Study

    NASA Astrophysics Data System (ADS)

    Li, M.; Brusseau, M. L. L.; Yan, N.; Wan, L.

    2015-12-01

    In-situ chemical oxidation (ISCO) using persulfate was employed to remediate a flow cell contaminated with a model dense nonaqueous-phase liquid (DNAPL), trichloroethene (TCE). The flow cell was packed homogeneously with 359 μm diameter natural sand. Dyed TCE DNAPL was naturally distributed in the flow cell. Fe2+-activated persulfate (5 mM) was used for ISCO. Interfacial partitioning tracer tests (IPTT) were conducted before and after ISCO to measure NAPL-water interfacial area, using sodium dodecyl benzenesulfonate (SDBS, 35mg/L) as the tracer. The change in interfacial area was examined as influenced by ISCO remediation. The interfacial areas measured for this two-dimensional system are compared to previously reported values obtained from one-dimensional column experiments.

  14. An experiment in representative ground-water sampling for water- quality analysis

    USGS Publications Warehouse

    Huntzinger, T.L.; Stullken, L.E.

    1988-01-01

    Obtaining a sample of groundwater that accurately represents the concentration of a chemical constituent in an aquifer is an important aspect of groundwater-quality studies. Varying aquifer and constituent properties may cause chemical constituents to move within selectively separate parts of the aquifer. An experiment was conducted in an agricultural region in south-central Kansas to address questions related to representative sample collection. Concentrations of selected constituents in samples taken from observation wells completed in the upper part of the aquifer were compared to concentrations in samples taken from irrigation wells to determine if there was a significant difference. Water in all wells sampled was a calcium bicarbonate type with more than 200 mg/L hardness and about 200 mg/L alkalinity. Sodium concentrations were also quite large (about 40 mg/L). There was a significant difference in the nitrite-plus-nitrate concentrations between samples from observation and irrigation wells. The median concentration of nitrite plus nitrate in water from observation wells was 5.7 mg/L compared to 3.4 mg/L in water from irrigation wells. The differences in concentrations of calcium, magnesium, and sodium (larger in water from irrigation wells) were significant at the 78% confidence level but not at the 97% confidence level. Concentrations of the herbicide, atrazine, were less than the detection limit of 0.1 micrograms/L in all but one well. (USGS)

  15. UMTRA project water sampling and analysis plan, Riverton, Wyoming

    SciTech Connect

    Not Available

    1994-03-01

    Surface remediation was completed at the former uranium mill site in Riverton, Wyoming, in 1990. Residual radioactive materials (contaminated soil and debris) were removed and disposed of at Union Carbide Corporation`s (Umetco) nearby Gas Hills Title 2 facility. Ground water in the surficial and semiconfined aquifers (known collectively as the `uppermost aquifer`) below the former mill and tailings site has been contaminated. No contamination has been detected in the deeper, confined sandstone aquifer. The contaminant plume extends off site to the south and east. The plume is constrained by surface wetlands and small streams to the east and west of the site and by the Little Wind River to the south. Fifteen monitor wells installed in 1993 were sampled to better define the contaminant plume and to provide additional water quality data for the baseline risk assessment. Samples also were collected from domestic wells in response to a request by the Wyoming Department of Environmental Quality in January 1994. No contamination attributable to the former uranium milling operations have ever been detected in any of the domestic wells used for potable supplies.

  16. Water isotopic ratios from a continuously melted ice core sample

    NASA Astrophysics Data System (ADS)

    Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Johnsen, S. J.

    2011-06-01

    A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We build an interface between an Infra Red Cavity Ring Down Spectrometer (IR-CRDS) and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100 % efficiency in a home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on humidity levels. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1 ‰ and 0.5 ‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present data acquired in the framework of the NEEM deep ice core drilling project in

  17. Decontaminating materials used in ground water sampling devices: Organic contaminants

    SciTech Connect

    Parker, L.V.; Ranney, T.A.

    2000-12-31

    In these studies, the efficiency of various decontamination protocols was tested on small pieces of materials commonly used in ground water sampling devices. Three materials, which ranged in ability to sorb organic solutes, were tested: stainless steel (SS), rigid polyvinyl chloride (PVC), and polytetrafluoroethylene (PTFE). The test pieces were exposed to two aqueous test solutions: One contained three volatile organic compounds (VOCs) and one nitroaromatic compound, and the other contained four pesticides. Also, three types of polymetic tubing were exposed to pesticide solutions. Generally, the contact times were 10 minutes and 24 hours for sorption and desorption. The contaminants were removed from the nonpermeable SS and the less-sorptive rigid PVC test pieces simply by washing with a hot detergent solution and rinsing with hot water. Additional treatment was required for the PTFE test pieces exposed to the VOCs and for the low-density polyethylene (LDPE) tubing exposed to the pesticide test solution. Solvent rinsing did not improve removal of the three VOCs form the PTFE and only marginally improved removal of the residual pesticides from the LDPE. However, a hot water and detergent wash and rinse followed by oven drying at approximately 105 C was effective for removing the VOCs from the PTFE and substantially reduced pesticide contamination from the LDPE.

  18. Ice Electric: Electron Irradiation Experiments with Porous Water Ice Samples

    NASA Astrophysics Data System (ADS)

    Galli, A.; Vorburger, A.; Wurz, P.; Pommerol, A.; Poch, O.; Jost, B.; Brouet, Y.

    2016-12-01

    The importance of energetic ions impacting the surface of the icy moons of Jupiter for surface weathering and for atmospheric release processes has been studied to some extent in models and in laboratory experiments. The tenuous oxygen atmosphere at Europa, e.g., is believed to be the result of O+ and S+ magnetosphericions sputtering water ice. By comparison, the role of magnetospheric electrons irradiating icy surfaces has attracted little attention. To better understand the effects of the plasma environment on icy surfaces in the outer solar system, we prepared centimeter-sized samples of porous water ice and irradiated them with fast electrons (1-10 keV energy) at pressures and temperatures relevant for the large icy moons of Jupiter. One of the known effects is that electron irradiation triggers chemical reactions in the ice (so-called radiolysis), leading to the formation of H2, O2, and other products. We present new results on the release efficiencies of such radiolysis products from a porous ice layer. We also estimate the sputtering yields for electrons ejecting electrons or molecules and we study the thermal and electric effects of weak and strong electron beams on ice samples. Finally, we examine the relevance of these experimental results for surface processes on the icy moons of Jupiter, considering the few observational constraints on the plasma environment and surface properties. Figure: Ice sample at the end of an experiment. The more energetic electron beams heated up the ice to temperatures where sublimation sets in and forms troughs.

  19. Towards improved water quality assessment: comparision of surface water sampling strategies

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Hetzenauer, H.; Doppler, T.

    2012-04-01

    In research and governmental water quality monitoring studies, clear guidelines for experimental design of monitoring campaigns are often unavailable, leading to flawed or ambiguous data sets. Not only are the data difficult to interpret, but incorrect conclusions and resulting policy recommendations can have far-reaching implications. Inadequate sampling devices or strategies are often responsible for sampling artifacts. These artifacts can obscure real variations in the environment. This is especially critical when considering nutrients, pollutants or environmental tracers, which are highly dependent on flow dynamics, and vary with discharge fluctuations. In this presentation we give an overview of sampling strategies, methods, and new devices using case studies from research catchments in Switzerland and Germany and an international watershed (Lake Constance). We compared various 'active' samplers (event-triggered sampling, time-proportional composite sampling, volume-proportional composite sampling) with two different types of passive samplers for several events in different catchments. Passive samplers have particular strength in remote catchments (especially for isotope sampling in higher altitudes), while their results are limited when applied in larger peri-alpine streams. We summarize our main findings and recommend a sampling guideline for surface water bodies concerning sampling device, method and strategy.

  20. Monitoring of fluoride in water samples using a smartphone.

    PubMed

    Levin, Saurabh; Krishnan, Sunderrajan; Rajkumar, Samuel; Halery, Nischal; Balkunde, Pradeep

    2016-05-01

    In several parts of India, groundwater is the only reliable, year round source for drinking water. Prevention of fluorosis, a chronic disease resulting from excess intake of fluoride, requires the screening of all groundwater sources for fluoride in endemic areas. In this paper, the authors present a field deployable colorimetric analyzer based on an inexpensive smartphone embedded with digital camera for taking photograph of the colored solution as well as an easy-fit, and compact sample chamber (Akvo Caddisfly). Phones marketed by different smartphone makers were used. Commercially available zirconium xylenol orange reagent was used for determining fluoride concentration. A software program was developed to use with the phone for recording and analyzing the RGB color of the picture. Linear range for fluoride estimation was 0-2mgl(-1). Around 200 samples, which consisted of laboratory prepared as well as field samples collected from different locations in Karnataka, India, were tested with Akvo Caddisfly. The results showed a significant positive correlation between Ion Selective Electrode (ISE) method and Akvo Caddisfly (Phones A, B and C), with correlation coefficient ranging between 0.9952 and 1.000. In addition, there was no significant difference in the mean fluoride content values between ISE and Phone B and C except for Phone A. Thus the smartphone method is economical and suited for groundwater fluoride analysis in the field. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Rapid detection of Naegleria fowleri in water distribution pipeline biofilms and drinking water samples.

    PubMed

    Puzon, Geoffrey J; Lancaster, James A; Wylie, Jason T; Plumb, Iason J

    2009-09-01

    Rapid detection of pathogenic Naegleria fowler in water distribution networks is critical for water utilities. Current detection methods rely on sampling drinking water followed by culturing and molecular identification of purified strains. This culture-based method takes an extended amount of time (days), detects both nonpathogenic and pathogenic species, and does not account for N. fowleri cells associated with pipe wall biofilms. In this study, a total DNA extraction technique coupled with a real-time PCR method using primers specific for N. fowleri was developed and validated. The method readily detected N. fowleri without preculturing with the lowest detection limit for N. fowleri cells spiked in biofilm being one cell (66% detection rate) and five cells (100% detection rate). For drinking water, the detection limit was five cells (66% detection rate) and 10 cells (100% detection rate). By comparison, culture-based methods were less sensitive for detection of cells spiked into both biofilm (66% detection for <10 cells) and drinking water (0% detection for <10 cells). In mixed cultures of N. fowleri and nonpathogenic Naegleria, the method identified N. fowleri in 100% of all replicates, whereastests with the current consensus primers detected N. fowleri in only 5% of all replicates. Application of the new method to drinking water and pipe wall biofilm samples obtained from a distribution network enabled the detection of N. fowleri in under 6 h, versus 3+ daysforthe culture based method. Further, comparison of the real-time PCR data from the field samples and the standard curves enabled an approximation of N. fowleri cells in the biofilm and drinking water. The use of such a method will further aid water utilities in detecting and managing the persistence of N. fowleri in water distribution networks.

  2. Issues concerning spectral analysis of water samples for monitoring and treatment of public water resources.

    PubMed

    Lee, M; Lambrakos, S G; Yapijakis, C; Huang, L; Ramsey, S; Shabaev, A; Massa, L; Peak, J

    2014-01-01

    Experimental measurements conducted in the laboratory, involving hyperspectral analysis of water samples taken from public water resources, have motivated a re-evaluation of issues concerning the potential application of this type of analysis for water monitoring, treatment and evaluation prior to filtration. One issue concerns hyperspectral monitoring of contaminants with respect to types and relative concentrations. This implies a need to better understand the statistical profiles of water contaminants in terms of spatial-temporal distributions of electromagnetic absorption spectra ranging from the ultraviolet to infrared, which are associated with specific water resources. This issue also implies the need to establish correlations between hyperspectral signatures and types of contaminants to be found within specific water resources. Another issue concerns the use of absorption spectra to determine changes in chemical and physical characteristics of contaminants after application of water treatments, in order to determine levels of toxicity with respect to the environment. This paper presents a prototype spectral analysis showing various aspects relevant to water monitoring and discusses the use of basic theory for the interpretation of spectral features associated with water contaminants, as well as discussing inverse analysis of hyperspectral measurements.

  3. Liquid Water from First Principles: Validation of Different Sampling Approaches

    SciTech Connect

    Mundy, C J; Kuo, W; Siepmann, J; McGrath, M J; Vondevondele, J; Sprik, M; Hutter, J; Parrinello, M; Mohamed, F; Krack, M; Chen, B; Klein, M

    2004-05-20

    A series of first principles molecular dynamics and Monte Carlo simulations were carried out for liquid water to assess the validity and reproducibility of different sampling approaches. These simulations include Car-Parrinello molecular dynamics simulations using the program CPMD with different values of the fictitious electron mass in the microcanonical and canonical ensembles, Born-Oppenheimer molecular dynamics using the programs CPMD and CP2K in the microcanonical ensemble, and Metropolis Monte Carlo using CP2K in the canonical ensemble. With the exception of one simulation for 128 water molecules, all other simulations were carried out for systems consisting of 64 molecules. It is found that the structural and thermodynamic properties of these simulations are in excellent agreement with each other as long as adiabatic sampling is maintained in the Car-Parrinello molecular dynamics simulations either by choosing a sufficiently small fictitious mass in the microcanonical ensemble or by Nos{acute e}-Hoover thermostats in the canonical ensemble. Using the Becke-Lee-Yang-Parr exchange and correlation energy functionals and norm-conserving Troullier-Martins or Goedecker-Teter-Hutter pseudopotentials, simulations at a fixed density of 1.0 g/cm{sup 3} and a temperature close to 315 K yield a height of the first peak in the oxygen-oxygen radial distribution function of about 3.0, a classical constant-volume heat capacity of about 70 J K{sup -1} mol{sup -1}, and a self-diffusion constant of about 0.1 Angstroms{sup 2}/ps.

  4. Voltammetric Determination of Ni and Co in Water Samples

    NASA Astrophysics Data System (ADS)

    Herrera-Melian, Jose Alberto; Dona-Rodriguez, Jose Miguel; Hernandez-Brito, Joaquin; Perez Pena, Jesus

    1997-12-01

    Stripping voltammetry has attracted considerable attention for the determination of trace and ultratrace metals. This is mainly due to its high sensitivity and low cost of instrumentation. In adsorptive stripping voltammetry an organometallic complex is formed by the addition of a suitable ligand to the sample. The complex is adsorbed onto the Hg-drop by the application of the proper adsorption potential (more positive than E1/2) and solution stirring. After an adsorption period a cathodic (negative going) potential scan is applied and the metal concentration is calculated by the standard addition method. Nickel is found in natural waters at nM levels and is closely related with phosphates and silicates. Cobalt is a component of vitamin B12 and occurs in natural waters at concentration about 0.1 nM. We propose the voltammetric analysis of these elements by adsorptive stripping voltammetry as an introductory laboratory experiment for advanced chemistry or for chemical or environmental engineering students. The experiment has been proven to be very suitable for the laboratory part of the instrumental analysis course at the University of Las Palmas de Gran Canaria (Spain). In general, about 70% of the students have obtained good agreement (less than 10% of difference) between their results and the expected ones. Two hours is enough for the overall instrumental performance and the preparation of Ni and Co standards.

  5. Biocatalytic spectrophotometric method to detect paracetamol in water samples.

    PubMed

    Méndez-Albores, Alia; Tarín, Cristina; Rebollar-Pérez, Georgette; Dominguez-Ramirez, Lenin; Torres, Eduardo

    2015-01-01

    A biocatalytic methodology based on the quantification of the laccase inhibition during the oxidation of a standard substrate ABTS (2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) for the indirect determination of paracetamol in drinking water has been developed. The method displayed a fast response time (20 s), and high selectivity to paracetamol in presence of interfering substances such as naproxen, estradiol, ketoprofen, sulfamethoxazole, and diclofenac. The limit of detection (LOD) and limit of quantification (LOQ) were noticed to be 0.55 µM and 8.3 µM, respectively. By comparing the catalytic constants value KM and kcat for ABTS oxidation in the absence and presence of various concentrations of paracetamol, a competitive-type inhibition was disclosed. On the other hand, the close value between Ki and KM indicates similar binding affinity of the enzyme to ABTS and paracetamol corroborated by docking studies. The methodology was successfully applied to real water samples, presenting an interesting potential for further development of a biosensor to paracetamol detection.

  6. Evaluation of selected information on splitting devices for water samples

    USGS Publications Warehouse

    Capel, P.D.; Larson, S.J.

    1996-01-01

    Four devices for splitting water samples into representative aliquots are used by the U.S. Geological Survey's Water Resources Division. A thorough evaluation of these devices (14-liter churn, 8-liter churn, plastic cone, and Teflon cone) encompasses a wide variety of concerns, based on both chemical and physical considerations. This report surveys the existing data (as of April 1994) on cleaning efficiency and splitting capability of these devices and presents the data in a systematic framework for evaluation. From the existing data, some of these concerns are adequately or partially addressed, but the majority of concerns could not be addressed because of the lack of data. In general, the existing cleaning and transport protocols are adequate at the milligram per liter level, but the adequacy is largely unknown for trace elements and organic chemicals at lower concen- trations. The existing data indicate that better results are obtained when the splitters are cleaned in the laboratory rather than in the field. Two conclusions that can be reached on the splitting capability of solids are that more work must be done with all four devices to characterize and quantify their limitations and range of usefulness, and that the 14-liter churn (and by association, the 8-liter churn) is not useful in obtaining representative splits of sand-sized particles.

  7. Sampling and analysis for radon-222 dissolved in ground water and surface water

    USGS Publications Warehouse

    DeWayne, Cecil L.; Gesell, T.F.

    1992-01-01

    Radon-222 is a naturally occurring radioactive gas in the uranium-238 decay series that has traditionally been called, simply, radon. The lung cancer risks associated with the inhalation of radon decay products have been well documented by epidemiological studies on populations of uranium miners. The realization that radon is a public health hazard has raised the need for sampling and analytical guidelines for field personnel. Several sampling and analytical methods are being used to document radon concentrations in ground water and surface water worldwide but no convenient, single set of guidelines is available. Three different sampling and analytical methods - bubbler, liquid scintillation, and field screening - are discussed in this paper. The bubbler and liquid scintillation methods have high accuracy and precision, and small analytical method detection limits of 0.2 and 10 pCi/l (picocuries per liter), respectively. The field screening method generally is used as a qualitative reconnaissance tool.

  8. Sampling trace organic compounds in water: a comparison of a continuous active sampler to continuous passive and discrete sampling methods.

    PubMed

    Coes, Alissa L; Paretti, Nicholas V; Foreman, William T; Iverson, Jana L; Alvarez, David A

    2014-03-01

    A continuous active sampling method was compared to continuous passive and discrete sampling methods for the sampling of trace organic compounds (TOCs) in water. Results from each method are compared and contrasted in order to provide information for future investigators to use while selecting appropriate sampling methods for their research. The continuous low-level aquatic monitoring (CLAM) sampler (C.I.Agent® Storm-Water Solutions) is a submersible, low flow-rate sampler, that continuously draws water through solid-phase extraction media. CLAM samplers were deployed at two wastewater-dominated stream field sites in conjunction with the deployment of polar organic chemical integrative samplers (POCIS) and the collection of discrete (grab) water samples. All samples were analyzed for a suite of 69 TOCs. The CLAM and POCIS samples represent time-integrated samples that accumulate the TOCs present in the water over the deployment period (19-23 h for CLAM and 29 days for POCIS); the discrete samples represent only the TOCs present in the water at the time and place of sampling. Non-metric multi-dimensional scaling and cluster analysis were used to examine patterns in both TOC detections and relative concentrations between the three sampling methods. A greater number of TOCs were detected in the CLAM samples than in corresponding discrete and POCIS samples, but TOC concentrations in the CLAM samples were significantly lower than in the discrete and (or) POCIS samples. Thirteen TOCs of varying polarity were detected by all of the three methods. TOC detections and concentrations obtained by the three sampling methods, however, are dependent on multiple factors. This study found that stream discharge, constituent loading, and compound type all affected TOC concentrations detected by each method. In addition, TOC detections and concentrations were affected by the reporting limits, bias, recovery, and performance of each method. Published by Elsevier B.V.

  9. Sampling trace organic compounds in water: a comparison of a continuous active sampler to continuous passive and discrete sampling methods

    USGS Publications Warehouse

    Coes, Alissa L.; Paretti, Nicholas V.; Foreman, William T.; Iverson, Jana L.; Alvarez, David A.

    2014-01-01

    A continuous active sampling method was compared to continuous passive and discrete sampling methods for the sampling of trace organic compounds (TOCs) in water. Results from each method are compared and contrasted in order to provide information for future investigators to use while selecting appropriate sampling methods for their research. The continuous low-level aquatic monitoring (CLAM) sampler (C.I.Agent® Storm-Water Solutions) is a submersible, low flow-rate sampler, that continuously draws water through solid-phase extraction media. CLAM samplers were deployed at two wastewater-dominated stream field sites in conjunction with the deployment of polar organic chemical integrative samplers (POCIS) and the collection of discrete (grab) water samples. All samples were analyzed for a suite of 69 TOCs. The CLAM and POCIS samples represent time-integrated samples that accumulate the TOCs present in the water over the deployment period (19–23 h for CLAM and 29 days for POCIS); the discrete samples represent only the TOCs present in the water at the time and place of sampling. Non-metric multi-dimensional scaling and cluster analysis were used to examine patterns in both TOC detections and relative concentrations between the three sampling methods. A greater number of TOCs were detected in the CLAM samples than in corresponding discrete and POCIS samples, but TOC concentrations in the CLAM samples were significantly lower than in the discrete and (or) POCIS samples. Thirteen TOCs of varying polarity were detected by all of the three methods. TOC detections and concentrations obtained by the three sampling methods, however, are dependent on multiple factors. This study found that stream discharge, constituent loading, and compound type all affected TOC concentrations detected by each method. In addition, TOC detections and concentrations were affected by the reporting limits, bias, recovery, and performance of each method.

  10. Laser based water equilibration method for d18O determination of water samples

    NASA Astrophysics Data System (ADS)

    Mandic, Magda; Smajgl, Danijela; Stoebener, Nils

    2017-04-01

    Determination of d18O with water equilibration method using mass spectrometers equipped with equilibration unit or Gas Bench is known already for many years. Now, with development of laser spectrometers this extends methods and possibilities to apply different technologies in laboratory but also in the field. The Thermo Scientific™ Delta Ray™ Isotope Ratio Infrared Spectrometer (IRIS) analyzer with the Universal Reference Interface (URI) Connect and Teledyne Cetac ASX-7100 offers high precision and throughput of samples. It employs optical spectroscopy for continuous measurement of isotope ratio values and concentration of carbon dioxide in ambient air, and also for analysis of discrete samples from vials, syringes, bags, or other user-provided sample containers. Test measurements and conformation of precision and accuracy of method determination d18O in water samples were done in Thermo Fisher application laboratory with three lab standards, namely ANST, Ocean II and HBW. All laboratory standards were previously calibrated with international reference material VSMOW2 and SLAP2 to assure accuracy of the isotopic values of the water. With method that we present in this work achieved repeatability and accuracy are 0.16‰ and 0.71‰, respectively, which fulfill requirements of regulatory method for wine and must after equilibration with CO2.

  11. Iron analysis in atmospheric water samples by atomic absorption spectroscopy (AAS) in water-methanol.

    PubMed

    Sofikitis, A M; Colin, J L; Desboeufs, K V; Losno, R

    2004-01-01

    To distinguish between Fe(II) and Fe(III) species in atmospheric water samples, we have adapted an analytical procedure based on the formation of a specific complex between Fe(II) and ferrozine (FZ) on a chromatographic column. After elution of Fe(III), the Fe(II) complex is recovered with water-methanol (4:1). The possibility of trace iron measurements in this complex medium by graphite-furnace atomic-absorption spectrometry has been investigated. A simplex optimization routine was required to complete the development of the analytical method.

  12. Electromembrane extraction for the determination of parabens in water samples.

    PubMed

    Villar-Navarro, Mercedes; Moreno-Carballo, María Del Carmen; Fernández-Torres, Rut; Callejón-Mochón, Manuel; Bello-López, Miguel Ángel

    2016-02-01

    To our knowledge, for the first time an electromembrane extraction combined with a high-performance liquid chromatography procedure using diode-array detection has been developed for the determination of five of the most widely used parabens: ethyl 4-hydroxybenzoate, propyl 4-hydroxybenzoate, butyl 4-hydroxybenzoate, isobutyl 4-hydroxybenzoate, and benzyl 4-hydroxybenzoate. Parabens were extracted from pH 4 aqueous sample solutions with use of an Accurel® S6/2 polypropylene hollow fiber that supports a liquid membrane of 1-octanol to a pH 12 aqueous acceptor solution placed inside the lumen of the hollow fiber. An electric current of 30 V was applied over the supported liquid membrane by means of platinum wires placed in the donor and acceptor phases. Parabens were extracted in 40 min with enrichment factors in the 30-49 range. The procedure has detection limits between 0.98 and 1.43 μg L(-1). The method was applied to the determination of parabens in surface environmental waters with excellent results.

  13. Methods to maximise recovery of environmental DNA from water samples

    PubMed Central

    Gleeson, Dianne; Lintermans, Mark

    2017-01-01

    The environmental DNA (eDNA) method is a detection technique that is rapidly gaining credibility as a sensitive tool useful in the surveillance and monitoring of invasive and threatened species. Because eDNA analysis often deals with small quantities of short and degraded DNA fragments, methods that maximize eDNA recovery are required to increase detectability. In this study, we performed experiments at different stages of the eDNA analysis to show which combinations of methods give the best recovery rate for eDNA. Using Oriental weatherloach (Misgurnus anguillicaudatus) as a study species, we show that various combinations of DNA capture, preservation and extraction methods can significantly affect DNA yield. Filtration using cellulose nitrate filter paper preserved in ethanol or stored in a -20°C freezer and extracted with the Qiagen DNeasy kit outperformed other combinations in terms of cost and efficiency of DNA recovery. Our results support the recommendation to filter water samples within 24hours but if this is not possible, our results suggest that refrigeration may be a better option than freezing for short-term storage (i.e., 3–5 days). This information is useful in designing eDNA detection of low-density invasive or threatened species, where small variations in DNA recovery can signify the difference between detection success or failure. PMID:28604830

  14. GROUND WATER SAMPLING FOR VERTICAL PROFILING OF CONTAMINANTS

    EPA Science Inventory

    Accurate delineation of plume boundaries and vertical contaminant distribution are necessary in order to adequately characterize waste sites and determine remedial strategies to be employed. However, it is important to consider the sampling objectives, sampling methods, and sampl...

  15. GROUND WATER SAMPLING FOR VERTICAL PROFILING OF CONTAMINANTS

    EPA Science Inventory

    Accurate delineation of plume boundaries and vertical contaminant distribution are necessary in order to adequately characterize waste sites and determine remedial strategies to be employed. However, it is important to consider the sampling objectives, sampling methods, and sampl...

  16. 40 CFR 258.53 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water sampling and analysis... WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Ground-Water Monitoring and Corrective Action § 258.53 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program...

  17. 40 CFR 257.23 - Ground-water sampling and analysis requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Ground-water sampling and analysis...-Hazardous Waste Disposal Units Ground-Water Monitoring and Corrective Action § 257.23 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program must include consistent...

  18. Sampling and Analysis for Lead in Water and Soil Samples on a University Campus: A Student Research Project.

    ERIC Educational Resources Information Center

    Butala, Steven J.; Zarrabi, Kaveh

    1995-01-01

    Describes a student research project that determined concentrations of lead in water drawn from selected drinking fountains and in selected soil samples on the campus of the University of Nevada, Las Vegas. (18 references) (DDR)

  19. Escherichia coli in marine water: Comparison of methods for the assessment of recreational bathing water samples.

    PubMed

    Lušić, Darija Vukić; Jozić, Slaven; Cenov, Arijana; Glad, Marin; Bulić, Marko; Lušić, Dražen

    2016-12-15

    Bathing Water Directive (2006/7/EC) specifies two reference methods for Escherichia coli detection: ISO 9308-1 and 9308-3. The revised ISO 9308-1 is recommended only for waters with a low bacterial background flora. Considering the extended time needed for analysis and, generally, the lack of experience in using ISO 9308-3 in the Mediterranean, the suitability of ISO 9308-1 for the examination of E. coli in bathing water was evaluated. The present study was aimed at a comparison of data obtained by the reference method in seawater samples (110 beaches, N=477) with data received from six alternative methods. Results show that recently used TSA/TBA method may overestimate E. coli numbers in marine waters. The temperature modified ISO 9308-1 (44°C) did not significantly alter the results, but outperformed the antibiotic supplemented agar at reducing non-E. coli bacteria on the plates, allowing the use of the respective method for monitoring coastal water.

  20. Evaluation of storage and filtration protocols for alpine/subalpine lake water quality samples

    Treesearch

    John L. Korfmacher; Robert C. Musselman

    2007-01-01

    Many government agencies and other organizations sample natural alpine and subalpine surface waters using varying protocols for sample storage and filtration. Simplification of protocols would be beneficial if it could be shown that sample quality is unaffected. In this study, samples collected from low ionic strength waters in alpine and subalpine lake inlets...

  1. Representation of solid and nutrient concentrations in irrigation water from tailwater recovery systems by surface water grab samples

    USDA-ARS?s Scientific Manuscript database

    Tailwater recovery (TWR) systems are being implemented on agricultural landscapes to create an additional source of irrigation water. Existing studies have sampled TWR systems using grab samples; however, the applicability of solids and nutrient concentrations in these samples to water being irrigat...

  2. Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling and Analysis Results for 2011

    SciTech Connect

    2011-09-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted natural gas sampling for the Gasbuggy, New Mexico, site on June 7 and 8, 2011. Natural gas sampling consists of collecting both gas samples and samples of produced water from gas production wells. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  3. Preparation and assessment of a candidate reference sample of Lake Baikal deep water

    NASA Astrophysics Data System (ADS)

    Suturin, A. N.; Paradina, L. F.; Epov, V. N.; Semenov, A. R.; Lozhkin, V. I.; Petrov, L. L.

    2003-02-01

    The possibility of the creation of a multi-element reference sample of Lake Baikal deep-water composition is justified. This is a new type of reference sample composed of natural water with a wide range of macro- and microelements. This candidate reference sample has a matrix composition consisting of hydrocarbonate and calcium water, a composition that is typical of many rivers and lakes of the world, as well as rain water. The creation of a candidate reference sample of Lake Baikal water is possible due to the stable water composition at a depth of 500 m, and to the use of water sampling technology which results in the preservation of the initial composition of water and its absolute sterility. Trial batches of Baikal water collected annually and stored in special polyethylenetereftalate bottles for a period of 9 years remained stable and homogenous for most elements. Preliminary data for a range of elements and compounds are presented.

  4. Measurement of Mercury Methylation in Lake Water and Sediment Samples

    PubMed Central

    Furutani, Akira; Rudd, John W. M.

    1980-01-01

    Biological mercury methylation was assayed by a new radiochemical technique in the water column and sediments of a mercury-contaminated lake. In 24 weeks during 1979, there were three episodes of methylating activity in surface floc and in water, each lasting 3 to 5 weeks. Periods of methylation in the water column coincided with surface sediment methylation and appeared to be related to overall microbial activity. Mercury was actively methylated in the presence of bound sulfide. PMID:16345649

  5. Ballast water sampling as a critical component of biological invasions risk management.

    PubMed

    David, Matej; Perkovic, Marko

    2004-08-01

    The human mediated transfer of harmful organisms via shipping, specifically via ballast water transport, leading to the loss of biodiversity, alteration of ecosystems, negative impacts on human health and in some regions economic loss, has raised considerable attention especially in the last decade. Ballast water sampling is very important for biological invasions risk management. The complexity of ballast water sampling is a result of both the variety of organism diversity and behaviour, as well as ship design including availability of ballast water sampling points. Furthermore, ballast water sampling methodology is influenced by the objectives of the sampling study. In the course of research conducted in Slovenia, new sampling equipment for ships' ballast water was developed and tested. In this paper new ballast water sampling methods and equipment together with practical shipboard testing results are presented.

  6. The effect of sampling strategies on assessment of water quality criteria attainment.

    PubMed

    Wang, Yuxin; Wilson, Jessica M; VanBriesen, Jeanne M

    2015-05-01

    Sample locations for large river studies affect the representativeness of data, and thus can alter decisions made regarding river conditions and the need for interventions to improve water quality. The present study evaluated three water-quality sampling programs for Total Dissolved Solid (TDS) assessment in the Monongahela River from 2008 to 2012. The sampling plans cover the same 145 km of river but differ in frequency, sample location and type (e.g., river water sample vs drinking water plant intake sample). Differences resulting from temporal and spatial variability in sampling lead to different conclusions regarding water quality in the river (including regulatory listing decisions), especially when low flow leads to concentrations at or near the water quality criteria (500mg/L TDS). Drinking water samples exceeded the criteria 82 out of 650 samples (12.6%), while river water samples exceeded the criteria 47 out of 464 samples (10.1%). Different water sample types could provide different pictures of water quality in the river and lead to different regulatory listing decisions.

  7. Primate immune responses to HIV-1 Env formulated in the saponin-based adjuvant AbISCO-100 in the presence or absence of TLR9 co-stimulation

    PubMed Central

    Martinez, Paola; Sundling, Christopher; O'Dell, Sijy; Mascola, John R.; Wyatt, Richard T.; Karlsson Hedestam, Gunilla B.

    2015-01-01

    Protein-based vaccines require adjuvants to achieve optimal responses. Toll-like receptor (TLR) 9 agonists were previously shown to improve responses to protein-based vaccines, such as the Hepatitis B virus vaccine formulated in alum. Here, we used CpG-C together with the clinically relevant saponin-based adjuvant AbISCO-100/Matrix-M (AbISCO), to assess if TLR9 co-stimulation would quantitatively or qualitatively modulate HIV-1 envelope glycoprotein (Env)-specific B and T cell responses in rhesus macaques. The macaques were inoculated with soluble Env trimers in AbISCO, with or without the addition of CpG-C, using an interval similar to the Hepatitis B virus vaccine. Following a comprehensive evaluation of antigen-specific responses in multiple immune compartments, we show that the Env-specific circulating IgG, memory B cells and plasma cells displayed similar kinetics and magnitude in the presence or absence of CpG-C and that there was no apparent difference between the two groups in the elicited HIV-1 neutralizing antibody titers or antigen-specific CD4+ T cell responses. Importantly, the control of SHIV viremia was significantly improved in animals from both Env-immunized groups relative to adjuvant alone controls, demonstrating the potential of AbISCO to act as a stand-alone adjuvant for Env-based vaccines. PMID:25762407

  8. LABORATORY ANALYSIS FOR ARSENIC IN DRINKING WATER SAMPLES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) has established maximum contaminant levels ( MCLs ), for many inorganic contaminants found in drinking water, to protect the health of consumers. Some of these chemicals occur naturally in source waters while some are the result o...

  9. LABORATORY ANALYSIS FOR ARSENIC IN DRINKING WATER SAMPLES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (USEPA) has established maximum contaminant levels ( MCLs ), for many inorganic contaminants found in drinking water, to protect the health of consumers. Some of these chemicals occur naturally in source waters while some are the result o...

  10. Precision of a splitting device for water samples

    USGS Publications Warehouse

    Capel, Paul D.; Nacionales, Fernando C.; Larson, Steven J.

    1995-01-01

    Two identical cone splitters, devices designed to split water and its suspended solids into equal aliquots for semi-volatile organic chemical and trace element analyses, were evaluated for their precision. The water-splitting evaluations consisted of experiments to test the effect of water volume, the effect of combining outlet ports, and the effect of different techniques of water introduction. The solids-splitting evaluations consisted of experi- ments to test the effect of particle size (nine different particle diameters ranging from very coarse sand to clay) and suspended-solids concentration. In general, water was equally split with a precision of less than 5 percent relative standard deviation. The accuracy of splitting the solids was a function of particle size. Clay, silt, and fine and medium sand were split with a precision relative standard deviation of less than 7 percent, and coarse sand was split with a relative standard deviation between 12 and 45 percent.

  11. Trace level determination of u, zn, cd, pb and cu in drinking water samples.

    PubMed

    Kumar, Mukesh; Singh, Surinder; Mahajan, Rakesh Kumar

    2006-01-01

    The concentration of uranium has been assessed in drinking water samples collected from different locations in Bathinda district, Punjab, India. The water samples are taken from hand pumps and tube wells. Uranium is determined using fission track technique. Uranium concentration in the water samples varies from 2.23+/- 0.05 to 87.05+/- 0.29 microg/L. These values are compared with safe limit values recommended for drinking water. The uranium concentration in almost all drinking water samples is found to be more than the safe limit. Analysis of some heavy metals viz. Zn, Cd, Pb and Cu in water is made. The concentration of sodium, potassium, calcium, magnesium, chlorine and total hardness along with the pH value and conductivity of the water samples are measured. Some of the samples show stunningly high values of these parameters.

  12. Produced water chemistry data for samples from four petroleum wells, Southern San Joaquin Valley, California, 2014

    USGS Publications Warehouse

    Davis, Tracy A.; Kulongoski, Justin; McMahon, Peter B.

    2016-01-01

    The U.S. Geological Survey (USGS) in cooperation with the California State Water Resources Control Board collected produced water samples from four petroleum wells in the southern San Joaquin Valley on November 5, 2014. This digital dataset contains the site information, analyzing laboratories and methods, and water chemistry and quality control results for these samples. Water chemistry results include concentrations of dissolved hydrocarbon gases and their isotopic composition; concentrations of inorganic constituents including salinity, major ions, and nutrients; dissolved organic carbon; and stable isotopes of water and strontium dissolved in water. Samples were analyzed by 5 laboratories operated or contracted by the USGS.

  13. Phosphate in Interstitial Waters of Anoxic Sediments: Oxidation Effects during Sampling Procedure.

    PubMed

    Bray, J T; Bricker, O P; Troup, B N

    1973-06-29

    Oxidation during sampling procedures significantly decreases the inorganic phosphate concentrations of interstitial water rich in iron (II). All sampling and analytical procedures must be carried out in an inert atmosphere. Orthophosphate in the interstitial water of Cheaspeake Bay sediments, in equilibrium with vivianite, is a potential nutrient source for the overlying water.

  14. FE-4 Thirsk analyzes Water Samples in the US Lab

    NASA Image and Video Library

    2009-10-20

    ISS021-E-010315 (20 Oct. 2009) --- Canadian Space Agency astronaut Robert Thirsk, Expedition 21 flight engineer, performs a Potable Water Dispenser (PWD) analysis in the Destiny laboratory of the International Space Station.

  15. Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River (Wuhan section) and correlations with water quality parameters

    PubMed Central

    Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei

    2015-01-01

    A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water. PMID:25825837

  16. Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River (Wuhan section) and correlations with water quality parameters.

    PubMed

    Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei

    2015-03-31

    A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water.

  17. UMTRA project water sampling and analysis plan, Spook, Wyoming

    SciTech Connect

    Not Available

    1994-03-01

    Surface remedial action is complete at the Spook Uranium Mill Tailings Remedial Action Project site in Wyoming. Based on an evaluation of site characterization data, the US Nuclear Regulatory Commission, US Department of Energy, and state of Wyoming have concurred in the determination that a program to monitor ground water is not required because ground water in the uppermost aquifer is Class 3 (limited use) (40 CFR 192.21(g)(1993)).

  18. Numerical simulation of in-situ chemical oxidation (ISCO) and biodegradation of petroleum hydrocarbons using a coupled model for bio-geochemical reactive transport

    NASA Astrophysics Data System (ADS)

    Marin, I. S.; Molson, J. W.

    2013-05-01

    Petroleum hydrocarbons (PHCs) are a major source of groundwater contamination, being a worldwide and well-known problem. Formed by a complex mixture of hundreds of organic compounds (including BTEX - benzene, toluene, ethylbenzene and xylenes), many of which are toxic and persistent in the subsurface and are capable of creating a serious risk to human health. Several remediation technologies can be used to clean-up PHC contamination. In-situ chemical oxidation (ISCO) and intrinsic bioremediation (IBR) are two promising techniques that can be applied in this case. However, the interaction of these processes with the background aquifer geochemistry and the design of an efficient treatment presents a challenge. Here we show the development and application of BIONAPL/Phreeqc, a modeling tool capable of simulating groundwater flow, contaminant transport with coupled biological and geochemical processes in porous or fractured porous media. BIONAPL/Phreeqc is based on the well-tested BIONAPL/3D model, using a powerful finite element simulation engine, capable of simulating non-aqueous phase liquid (NAPL) dissolution, density-dependent advective-dispersive transport, and solving the geochemical and kinetic processes with the library Phreeqc. To validate the model, we compared BIONAPL/Phreeqc with results from the literature for different biodegradation processes and different geometries, with good agreement. We then used the model to simulate the behavior of sodium persulfate (NaS2O8) as an oxidant for BTEX degradation, coupled with sequential biodegradation in a 2D case and to evaluate the effect of inorganic geochemistry reactions. The results show the advantages of a treatment train remediation scheme based on ISCO and IBR. The numerical performance and stability of the integrated BIONAPL/Phreeqc model was also verified.

  19. Gasbuggy, New Mexico, Natural Gas and Produced Water Sampling Results for 2012

    SciTech Connect

    None, None

    2012-12-01

    The U.S. Department of Energy (DOE) Office of Legacy Management conducted annual natural gas sampling for the Gasbuggy, New Mexico, Site on June 20 and 21, 2012. This long-term monitoring of natural gas includes samples of produced water from gas production wells that are located near the site. Water samples from gas production wells were analyzed for gamma-emitting radionuclides, gross alpha, gross beta, and tritium. Natural gas samples were analyzed for tritium and carbon-14. ALS Laboratory Group in Fort Collins, Colorado, analyzed water samples. Isotech Laboratories in Champaign, Illinois, analyzed natural gas samples.

  20. Development of Sampling and Preservation Techniques to Retard Chemical and Biological Changes in Water Samples

    DTIC Science & Technology

    1983-06-24

    antibacterial agent) and their effect on munition stability. The bulk of the experiments were carried out on the set of eight munitions. The results... soap solution. - Rinse with tap water followed by deionized water. - Soak for 1 hr in 0.1 N HCl. - Air dry using precautions to prevent contamination...Also, the need for the addition of acetonitrile as an antibacterial agent was not demonstrated. However, its efficacy in this capacity has been proven in

  1. Mass spectrometer sampling of supercritical water-oxidation reactions

    SciTech Connect

    Miller, D.R.; Maharrey, S.

    1995-03-01

    Supercritical water is a useful medium for oxidation of toxic hydrocarbons because under such conditions hydrocarbons and oxidizers are dissolved into a single phase, diffusivities are high, the combustion is complete, and it occurs at relatively low temperatures. There is a large literature on the thermodynamics, kinetics, and applications of supercritical water oxidation. Supercritical fluids have also been used as solvent carriers in chromatography and the interface of the column output to mass spectrometers has been investigated by many researchers. In the present investigation the authors seek to operate a micro-reactor in which supercritical water oxidation kinetics can be examined and for which the output flow can be injected directly into a mass spectrometer system. The motivation for this approach was the microjet burner utilized by Groeger and Fenn for combustion studies. Water is one of the more difficult supercritical solvents to interface with the mass spectrometer, compared with CO{sub 2} for example, because the pressures and temperatures are of order 30MPa and 500{degrees}C, and because the large water throughput must be removed by the vacuum pumps. They have fabricated supercritical nozzles from both stainless steel and from quartz capillary tubing. Despite the fact that supercritical water can dissolve quartz in the ppm range they have been able to operate quartz capillary reactors and nozzles in excess of 20hrs without any measurable degradation in performance. Because these nozzles are much easier to fabricate, especially to diameters below 0.004cm, they have been recently using them exclusively. This variable nozzle diameter is important because it permits us to vary the range of residence times in the reactor. The converging nozzle length is less than two capillary diameters, so the flow time through the nozzle is very short compared with the residence time in the reactor.

  2. METALS IN GROUND WATER: SAMPLING ARTIFACTS AND REPRODUCIBILITY

    EPA Science Inventory

    Field studies evaluated sampling procedures for determination of aqueous inorganic geochemistry and assessment of contaminant transport by colloidal mobility. esearch at three different metal-contaminated sites has shown that 0.45 tm filtration has not removed potentially mobile ...

  3. METALS IN GROUND WATER: SAMPLING ARTIFACTS AND REPRODUCIBILITY

    EPA Science Inventory

    Field studies evaluated sampling procedures for determination of aqueous inorganic geochemistry and assessment of contaminant transport by colloidal mobility. esearch at three different metal-contaminated sites has shown that 0.45 tm filtration has not removed potentially mobile ...

  4. EVALUATION OF FISH SAMPLING DESIGNS FOR COASTAL WATERS

    EPA Science Inventory

    Because no objective assessment of fish sampling methodologies has been completed for Great Lakes coastal wetlands we evaluated catches from several techniques and studies to determine the most effective combinations for these habitats. Data from six underdeveloped sites in Green...

  5. EVALUATION OF FISH SAMPLING DESIGNS FOR COASTAL WATERS

    EPA Science Inventory

    Because no objective assessment of fish sampling methodologies has been completed for Great Lakes coastal wetlands we evaluated catches from several techniques and studies to determine the most effective combinations for these habitats. Data from six underdeveloped sites in Green...

  6. Sample Return from Water Worlds: Requirements, Risks, and Enabling Technologies

    NASA Astrophysics Data System (ADS)

    Venkatapathy, E.; Gage, P.; Munk, M.; Ellerby, D.; Stackpoole, M.

    2017-02-01

    Planetary protection requirements make sample return missions from Mars, Enceladus, Titan, and Europa a grand challenge for entry, descent, and landing. Ways to address the challenges are explored with emerging new technologies.

  7. Reconnaissance water sampling for radium-226 in central and northern Florida, December 1974-March 1976

    USGS Publications Warehouse

    Irwin, G.A.; Hutchinson, C.B.

    1976-01-01

    Analyses of 115 water samples collected from December 1974 through March 1976 in eight Florida Counties indicated that 22 samples (19 percent) had radium-226 activities equal to or in excess of 3 piC/liter (picocuries per liter), the concentration limit recommended for drinking water by the U.S. Public Health Service. The maximum radium-226 activity was 90 piC/liter in water from a shallow well in Polk County. The sampling reconnaissance was generally limited to areas of active phosphate mining and areas of undisturbed phosphate deposits. Most of the sampling was from water wells. Thirteen surface-water samples were collected in the Peace River drainage basin. The maximum radium-226 detected in surface-water samples was 3.6 piC/liter in Little Charlie Creek at State Road 664A in Hardee County. (Woodard-USGS)

  8. PORTABLE ULTRAFILTRATION DEVICE FOR CONCENTRATION PATHOGENS FROM LARGE VOUME SAMPLES OF DRINKING WATER

    EPA Science Inventory

    Symposium Paper in proceedings of Water Security Congress, Washington, D.C., 12 Sep 2006 - Development and testing of several potential protocols utilizing ultrafiltration to collect and concentrate microorganisms from large volume water samples.

  9. MICROBIOLOGICAL FIELD SAMPLING AND INSTRUMENTATION IN THE ASSESSMENT OF SOIL AND GROUND-WATER POLLUTION

    EPA Science Inventory

    This chapter emphasizes the importance of microbiological sampling of soil and ground water with respect to human heath risks, laws and regulations dealing with safe drinking water, and more prevalent subsurface monitoring activities associated with chlorinated organic compounds,...

  10. EPA Technology Available for Licensing: Portable Device to Concentrate Water Samples for Microorganism Analysis

    EPA Pesticide Factsheets

    Using a computer controlled system, this ultrafiltration device automates the process of concentrating a water sample and can be operated in the field. The system was also designed to reduce human exposure to potentially contaminated water.

  11. PORTABLE ULTRAFILTRATION DEVICE FOR CONCENTRATION PATHOGENS FROM LARGE VOUME SAMPLES OF DRINKING WATER

    EPA Science Inventory

    Symposium Paper in proceedings of Water Security Congress, Washington, D.C., 12 Sep 2006 - Development and testing of several potential protocols utilizing ultrafiltration to collect and concentrate microorganisms from large volume water samples.

  12. MICROBIOLOGICAL FIELD SAMPLING AND INSTRUMENTATION IN THE ASSESSMENT OF SOIL AND GROUND-WATER POLLUTION

    EPA Science Inventory

    This chapter emphasizes the importance of microbiological sampling of soil and ground water with respect to human heath risks, laws and regulations dealing with safe drinking water, and more prevalent subsurface monitoring activities associated with chlorinated organic compounds,...

  13. High-frequency isotopic analysis of liquid water samples in the field - initial results from continuous water sampling and cavity ring-down spectroscopy

    NASA Astrophysics Data System (ADS)

    von Freyberg, Jana; Studer, Bjørn; Kirchner, James

    2016-04-01

    Studying rapidly changing hydrochemical signals in catchments can help to improve our mechanistic understanding of their water flow pathways and travel times. For these purposes, stable water isotopes (18O and 2H) are commonly used as natural tracers. However, high-frequency isotopic analyses of liquid water samples are challenging. One must capture highly dynamic behavior with high precision and accuracy, but the lab workload (and sample storage artifacts) involved in collecting and analyzing thousands of bottled samples should also be avoided. Therefore, we have tested Picarro, Inc.'s newly developed Continuous Water Sampler Module (CoWS), which is coupled to their L2130-i Cavity Ring-Down Spectrometer to enable real-time on-line measurements of 18O and 2H in liquid water samples. We coupled this isotope analysis system to a dual-channel ion chomatograph (Metrohm AG, Herisau, Switzerland) for analysis of major cations and anions, as well as a UV-Vis spectroscopy system (s::can Messtechnik GmbH, Vienna, Austria) and electrochemical probes for characterization of basic water quality parameters. The system was run unattended for up to a week at a time in the laboratory and at a small catchment. At the field site, stream-water and precipitation samples were analyzed, alternating at sub-hourly intervals. We observed that measured isotope ratios were highly sensitive to the liquid water flow rate in the CoWS, and thus to the hydraulic head difference between the CoWS and the samples from which water was drawn. We used a programmable high-precision dosing pump to control the injection flow rate and eliminate this flow-rate artifact. Our experiments showed that the precision of the CoWS-L2130-i-system for 2-minute average values was typically better than 0.06‰ for δ18O and 0.16‰ for δ2H. Carryover effects were 1% or less between isotopically contrasting water samples for 30-minute sampling intervals. Instrument drift could be minimized through periodic analysis of

  14. Occurrence of Cryptosporidium sp. oocysts in fecal and water samples in Austria.

    PubMed

    Hassl, A; Benyr, G; Sommer, R

    2001-10-22

    Oocysts of Cryptosporidium spp. were detected and differentiated by a modular arranged gene amplification procedure in various samples, mostly human stool, feces of herpetotaxa, and water, in different locations of South and Eastern Austria. Cryptosporidium parvum was found in stool samples of immunocompromised persons, in reptile feces, and in water samples. The presence of Cryptosporidium in an area is probably associated with high human population densities since water from protected sources in sparsely inhabited areas is rarely contaminated.

  15. UMTRA Project water sampling and analysis plan, Grand Junction, Colorado. Revision 1, Version 6

    SciTech Connect

    1995-09-01

    This water sampling and analysis plan describes the planned, routine ground water sampling activities at the Grand Junction US DOE Uranium Mill Tailings Remedial Action (UMTRA) Project site (GRJ-01) in Grand Junction, Colorado, and at the Cheney Disposal Site (GRJ-03) near Grand Junction. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequencies for the routine monitoring stations at the sites. Regulatory basis is in the US EPA regulations in 40 CFR Part 192 (1994) and EPA ground water quality standards of 1995 (60 FR 2854). This plan summarizes results of past water sampling activities, details water sampling activities planned for the next 2 years, and projects sampling activities for the next 5 years.

  16. June 2011 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    SciTech Connect

    2011-10-01

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis were conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analyses. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. A duplicate produced water sample was collected from well 30-039-21743. Produced water samples were not collected at locations 30-039-30161 and 30-039-21744 because of the lack of water. Samples were not collected from location 30-039-29988 because the well was shut-in.

  17. COMPOSITE SAMPLING FOR DETECTION OF COLIFORM BACTERIA IN WATER SUPPLY

    EPA Science Inventory

    Low densities of coliform bacteria introduced into distribution systems may survive in protected habitats. These organisms may interfere with and cause confusion in the use of the coliforms as indicators of sewage contamination of drinking water. Methods of increasing the probabi...

  18. UMTRA Project water sampling and analysis plan, Gunnison, Colorado: Revision 1

    SciTech Connect

    Not Available

    1994-11-01

    This water sampling and analysis plan summarizes the results of previous water sampling activities and the plan for future water sampling activities, in accordance with the Guidance Document for Preparing Sampling and Analysis Plans for UMTRA Sites. A buffer zone monitoring plan for the Dos Rios Subdivision is included as an appendix. The buffer zone monitoring plan was developed to ensure continued protection to the public from residual contamination. The buffer zone is beyond the area depicted as contaminated ground water due to former milling operations. Surface remedial action at the Gunnison Uranium Mill Tailings Remedial Action Project site began in 1992; completion is expected in 1995. Ground water and surface water will be sampled semiannually at the Gunnison processing site and disposal site. Results of previous water sampling at the Gunnison processing site indicate that ground water in the alluvium is contaminated by the former uranium processing activities. Background ground water conditions have been established in the uppermost aquifer at the Gunnison disposal site. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the vicinity of the sites. The list of analytes has been modified with time to reflect constituents that are related to uranium processing activities and the parameters needed for geochemical evaluation.

  19. The representativeness of pore water samples collected from the unsaturated zone using pressure-vacuum lysimeters

    USGS Publications Warehouse

    Peters, C.A.; Healy, R.W.

    1988-01-01

    Studies have indicated that the chemistry of water samples may be altered by the collection technique, creating concern about the representativeness of the pore water samples obtained. A study using soil water pressure-vacuum lysimeters in outwash sand and glacial till deposits demonstrates that for non-dilute-solution samples the effect of pH of sampling with lysimeters is minimal, and that measured major cation and anion concentrations are representative of the natural pore water; trace-metal concentrations can be significantly altered by collection procedures at low concentrations. -from Authors

  20. Factors controlling elevated lead concentrations in water samples from aquifer systems in Florida

    SciTech Connect

    Katz, B.G.; Berndt, M.P.; Bullen, T.D.; Hansard, P.

    1999-07-01

    This report presents results of detailed statistical analyses of total and dissolved Pb concentrations in water samples collected from the major aquifer systems in Florida for the FGWQMN [Florida Ground Water Quality Monitoring Network] to determine the influence of anthropogenic factors on elevated Pb concentrations. In addition, Pb isotopic data are presented for water samples collected from a subset of 13 wells in the monitoring network, samples of aquifer material, rainfall, and Pb counterweights. The Pb-isotope data provide a better understanding of the relative contributions of anthropogenic and natural sources of Pb in ground water samples from Florida`s major aquifer systems.

  1. Presence of enteric viruses in water samples for consumption in Colombia: Challenges for supply systems.

    PubMed

    Peláez, Dioselina; Guzmán, Blanca Lisseth; Rodríguez, Johanna; Acero, Felipe; Nava, Gerardo

    2016-04-15

    Since drinking water can be a vehicle for the transmission of pathogens, the detection of enteric viruses in these water samples is essential to establish the appropriate measures to control and prevent associated diseases.  To analyze the results obtained for enteric viruses in water samples for human consumption received at the Colombian Instituto Nacional de Salud and establish their association with the data on water quality in Colombian municipalities.  We conducted a descriptive-retrospective analysis of the results obtained in the detection of rotavirus, enterovirus, hepatitis A virus and adenovirus in water samples received for complementary studies of enteric hepatitis, acute diarrheal disease and foodborne diseases. Data were correlated with the results of water quality surveillance determined by the national human consumption water quality index (IRCA).  Of the 288 samples processed from 102 Colombian municipalities, 50.7% were positive for viruses: 26.73% for hepatitis A virus, 20.48% for enterovirus and rotavirus and 18.05% for adenovirus. Viruses were detected in 48.26% of non-treated water samples and in 45.83% of treated water samples. The IRCA index showed no correlation with the presence of viruses.  The presence of viruses in water represents a public health risk and, therefore, the prevention of virus transmission through water requires appropriate policies to reinforce water supply systems and improve epidemiological surveillance.

  2. Chloride in ground water and surface water in the vicinity of selected surface-water sampling sites of the beneficial use monitoring program of Oklahoma, 2003

    USGS Publications Warehouse

    Mashburn, Shana L.; Sughru, Michael P.

    2004-01-01

    The Oklahoma Water Resources Board Beneficial Use Monitoring Program reported exceedances of beneficial-use standards for chloride at 11 surface-water sampling sites from January to October 2002. The U.S. Geological Survey, in cooperation with the Oklahoma Department of Environmental Quality, conducted a study to determine the chloride concentrations in ground water in the vicinity of Beneficial Use Monitoring Program surface-water sampling sites not meeting beneficial use standards for chloride and compare chloride concentrations in ground water and surface water. The chloride-impaired Beneficial Use Monitoring Program surface-water sampling sites are located in the western and southern regions of Oklahoma. The ground-water sampling sites were placed in proximity to the 11 surface-water sampling sites designated impaired by chloride by the Oklahoma Water Resources Board. Two surface-water sampling sites were located on the Beaver River (headwaters of the North Canadian River), three sites on the Cimarron River, one site on Sandy Creek, one site on North Fork Red River, and four sites on the Red River. Six ground-water samples were collected, when possible, from two test holes located upstream from each of the 11 Beneficial Use Monitoring Program surface-water sampling sites. One test hole was placed on the left bank and right bank, when possible, of each Beneficial Use Monitoring Program surfacewater sampling site. All test holes were located on alluvial deposits adjacent to the Beneficial Use Monitoring Program surface-water sampling sites within 0.5 mile of the stream. Top, middle, and bottom ground-water samples were collected from the alluvium at each test hole, when possible. Water properties of specific conductance, pH, water temperature, and dissolved oxygen were recorded in the field before sampling for chloride. The ground-water median chloride concentrations at 8 of the 11 Beneficial Use Monitoring Program sites were less than the surface-water median

  3. Occurrence of Leptospira DNA in water and soil samples collected in eastern Poland.

    PubMed

    Wójcik-Fatla, Angelina; Zając, Violetta; Wasiński, Bernard; Sroka, Jacek; Cisak, Ewa; Sawczyn, Anna; Dutkiewicz, Jacek

    2014-01-01

    Leptospira is an important re-emerging zoonotic human pathogen, disseminated by sick and carrier animals, water and soil. Weather calamities, such as flooding or cyclones favour the spreading of these bacteria. To check a potential role of natural water and soil in the persistence and spread of Leptospira on the territory of eastern Poland, 40 samples of natural water and 40 samples of soil were collected from areas exposed to flooding, and 64 samples of natural water and 68 samples of soil were collected from areas not exposed to flooding. Samples of water were taken from various reservoirs (rivers, natural lakes, artificial lakes, canals, ponds, farm wells) and samples of soils were taken at the distance of 1-3 meters from the edge of the reservoirs. The samples were examined for the presence of Leptospira DNA by nested-PCR. Two out of 40 samples of water (5.0%) collected from the area exposed to flooding showed the presence of Leptospira DNA, while all 40 samples of soil from this area were negative. All samples of water and soil (64 and 68, respectively) collected from the areas not exposed to flooding were negative. No significant difference were found between the results obtained in the areas exposed and not exposed to flooding. In conclusion, these results suggest that water and soil have only limited significance in the persistence and dissemination of Leptospira in eastern Poland.

  4. IMPROVED METHOD FOR THE STORAGE OF GROUND WATER SAMPLES CONTAINING VOLATILE ORGANIC ANALYTES

    EPA Science Inventory

    The sorption of volatile organic analytes from water samples by the Teflon septum surface used with standard glass 40-ml sample collection vials was investigated. Analytes tested included alkanes, isoalkanes, olefins, cycloalkanes, a cycloalkene, monoaromatics, a polynuclear arom...

  5. IMPROVED METHOD FOR THE STORAGE OF GROUND WATER SAMPLES CONTAINING VOLATILE ORGANIC ANALYTES

    EPA Science Inventory

    The sorption of volatile organic analytes from water samples by the Teflon septum surface used with standard glass 40-ml sample collection vials was investigated. Analytes tested included alkanes, isoalkanes, olefins, cycloalkanes, a cycloalkene, monoaromatics, a polynuclear arom...

  6. The stability of chlorofluorocarbons (CFCs) in ground-water samples archived in borosilicate ampoules

    USGS Publications Warehouse

    Shapiro, Stephanie Dunkle; Busenberg, Eurybiades; Plummer, L. Niel

    2005-01-01

    The U.S. Geological Survey (USGS) Chlorofluorocarbon (CFC) Laboratory in Reston, Va., has been measuring concentrations of CFCs in ground-water samples since 1989 to estimate the year that a water sample was recharged to a ground-water flow system. The water samples have been collected in flame-sealed borosilicate ampoules. Typically for each site, three samples were analyzed within days to a few months after collection, and additional samples were archived for extended periods of time (up to four years). The stability of CFC concentrations in the archived water samples from the USGS CFC Laboratory was investigated by analyzing the CFC concentrations in archived water samples and comparing them with the CFC concentrations that were obtained soon after the samples were collected. The archived samples selected for analysis were chosen from sites with a wide variety of hydrogeologic and geochemical conditions. For CFC-11 and CFC-12 concentrations, approximately 14% and 10.5%, respectively, of the archived samples were statistically different (both higher and lower) from the concentrations obtained from analyses conducted soon after the sample collection. Most of the extraneous values were attributed to natural variability of CFC concentrations originally in the water discharged from wells, rather than to microbial degradation within the ampoule on storage.

  7. [Water matrices samples: pre-concentration problems and methodologies for ecotoxicological assessment of fresh waters].

    PubMed

    Galassi, Silvana

    2005-01-01

    Biological monitoring and ecotoxicological investigation are research methods for water quality assessment included in the Italian regulation in force (DL.vo 152/99). Biological monitoring must be applied in every case while ecotoxicological investigation is not mandatory. While extended biotic index application methodologies are standardized, pre-concentration sample procedures applied for ecotoxicological investigation are not, because they are applied as research only. Pre-concentration for organic micro-pollutants can be carried out both by means of organic solvents and through SPE (solid phase extraction), being the latter more advantageous than the former. In any case, an intercalibration exercise should be undertaken to assess the applicability of the proposed procedure to all the national territory.

  8. The Influence of Pumping on Observed Bacterial Counts in Groundwater Samples: Implications for Sampling Protocol and Water Quality Interpretation

    NASA Astrophysics Data System (ADS)

    Kozuskanich, J.; Novakowski, K.; Anderson, B.

    2008-12-01

    Drinking water quality has become an important issue in Ontario following the events in Walkerton in 2000. Many rural communities are reliant on private groundwater wells for drinking water, and it is the responsibility of the owner to have the water tested to make sure it is safe for human consumption. Homeowners can usually take a sample to the local health unit for total coliform and E. Coli analysis at no charge to determine if the water supply is being tainted by surface water or fecal matter, both of which could indicate the potential for negative impacts on human health. However, is the sample coming out of the tap representative of what is going on the aquifer? The goal of this study is to observe how bacterial counts may vary during the course of well pumping, and how those changing results influence the assessment of water quality. Multiple tests were conducted in bedrock monitoring wells to examine the influence of pumping rate and pumped volume on observed counts of total coliform, E. Coli, fecal streptococcus, fecal coliform and heterotrophic plate count. Bacterial samples were collected frequently during the course of continuous purging events lasting up to 8 hours. Typical field parameters (temperature, salinity, pH, dissolved oxygen and ORP) were also continuously monitored during the course of each test. Common practice in groundwater studies is to wait until these parameters have stabilized or three well volumes have been removed prior to sampling, to ensure the sample is taken from new water entering the well from the aquifer, rather than the original water stored in the borehole prior to the test. In general, most bacterial counts were low, but did go above the drinking water standard of 0 counts/100mL (total coliform and E. Coli) at times during the tests. Results show the greatest variability in the observed bacterial counts at the onset of pumping prior to the removal of three well volumes. Samples taken after the removal of three well

  9. 400 area secondary cooling water sampling and analysis plan

    SciTech Connect

    Penn, L.L.

    1996-10-29

    This is a total rewrite of the Sampling and Analysis Plan in response to, and to ensure compliance with, the State Waste Discharge Permit ST 4501 issued on July 31, 1996. This revision describes changes in facility status and implements requirements of the permit.

  10. Lake and river bottom sampling. (Latest citations from the Selected Water Resources Abstracts database). Published Search

    SciTech Connect

    Not Available

    1993-12-01

    The bibliography contains citations concerning techniques and results related to the collection of samples from the bottom of ponds, lakes, and rivers. Techniques include sampling devices, platforms for mounting or operating the sampling devices, and analytical techniques for the collected samples. Results include analysis of organic, chemical, and metallic components for bottom sediments. Statements on resulting water quality or environmental aspects are often included. Citations include investigations covering porosity of bottom soils, and ground water beneath the lake or river studied. Many of the samples include benthic fauna to assess the condition of the water. (Contains a minimum of 214 citations and includes a subject term index and title list.)

  11. UMTRA Project water sampling and analysis plan, Belfield and Bowman, North Dakota

    SciTech Connect

    Not Available

    1994-08-01

    Surface remedial action is scheduled to begin at the Belfield and Bowman Uranium Mill Tailings Remedial Action (UMTRA) Project sites in the spring of 1996. Water sampling was conducted in 1993 at both the Belfield processing site and the Bowman processing/disposal site. Results of the sampling at both sites indicate that ground water conditions have remained relatively stable over time. Water sampling activities are not scheduled for 1994 because ground water conditions at the two sites are relatively stable, the 1993 sampling was comprehensive, and surface remediation activities are not scheduled to start until 1996. The next water sampling event is scheduled before the start of remedial activities and will include sampling selected monitor wells at both sites and several domestic wells in the vicinity.

  12. July 2010 Natural Gas and Produced Water Sampling at the Gasbuggy, New Mexico, Site

    SciTech Connect

    2011-01-01

    Annual natural gas and produced water monitoring was conducted for gas wells adjacent to Section 36, where the Gasbuggy test was conducted, in accordance with the draft Long-Term Surveillance and Maintenance Plan for the Gasbuggy Site, Rio Arriba County, New Mexico. Sampling and analysis was conducted as specified in the Sampling and Analysis Plan for U.S. Department of Energy Office of Legacy Management Sites. (LMS/PLN/S04351, continually updated). Natural gas samples were collected for tritium and carbon-14 analysis. Produced water samples were collected and analyzed for tritium, gamma-emitting radionuclides (by high-resolution gamma spectrometry), gross alpha, and gross beta. An additional water sample was collected from well 29-6 Water Hole for analysis of tritium and gamma-emitting radionuclides. A duplicate produced water sample was collected from well 30-039-21743.

  13. Sample volume optimization for radon-in-water detection by liquid scintillation counting.

    PubMed

    Schubert, Michael; Kopitz, Juergen; Chałupnik, Stanisław

    2014-08-01

    Radon is used as environmental tracer in a wide range of applications particularly in aquatic environments. If liquid scintillation counting (LSC) is used as detection method the radon has to be transferred from the water sample into a scintillation cocktail. Whereas the volume of the cocktail is generally given by the size of standard LSC vials (20 ml) the water sample volume is not specified. Aim of the study was an optimization of the water sample volume, i.e. its minimization without risking a significant decrease in LSC count-rate and hence in counting statistics. An equation is introduced, which allows calculating the ²²²Rn concentration that was initially present in a water sample as function of the volumes of water sample, sample flask headspace and scintillation cocktail, the applicable radon partition coefficient, and the detected count-rate value. It was shown that water sample volumes exceeding about 900 ml do not result in a significant increase in count-rate and hence counting statistics. On the other hand, sample volumes that are considerably smaller than about 500 ml lead to noticeably lower count-rates (and poorer counting statistics). Thus water sample volumes of about 500-900 ml should be chosen for LSC radon-in-water detection, if 20 ml vials are applied.

  14. Presence of Cryptosporidium parvum and Giardia lamblia in water samples from Southeast Asia: towards an integrated water detection system.

    PubMed

    Kumar, Thulasi; Abd Majid, Mohamad Azlan; Onichandran, Subashini; Jaturas, Narong; Andiappan, Hemah; Salibay, Cristina C; Tabo, Hazel A L; Tabo, Norbel; Dungca, Julieta Z; Tangpong, Jitbanjong; Phiriyasamith, Sucheep; Yuttayong, Boonyaorn; Polseela, Raxsina; Do, Binh Nhu; Sawangjaroen, Nongyao; Tan, Tian-Chye; Lim, Yvonne A L; Nissapatorn, Veeranoot

    2016-01-13

    Access to clean and safe drinking water that is free from pathogenic protozoan parasites, especially Cryptosporidium parvum and Giardia lamblia that cause gastrointestinal illness in humans, is still an issue in Southeast Asia (SEA). This study is the first attempt to detect the aforementioned protozoan parasites in water samples from countries in SEA, using real-time polymerase chain reaction (qPCR) assays. A total of 221 water samples of 10 l each were collected between April and October 2013 from Malaysia (53), Thailand (120), the Philippines (33), and Vietnam (15). A physicochemical analysis was conducted. The water samples were processed in accordance with the US Environmental Protection Agency's methods 1622/1623.1, microscopically observed and subsequently screened using qPCR assays. Cryptosporidium oocysts were detected in treated water samples from the Philippines (1/10), with a concentration of 0.06 ± 0.19 oocyst/L, and untreated water samples from Thailand (25/93), Malaysia (17/44), and the Philippines (11/23), with concentrations ranging from 0.13 ± 0.18 to 0.57 ± 1.41 oocyst/L. Giardia cysts were found in treated water samples from the Philippines (1/10), with a concentration of 0.02 ± 0.06 cyst/L, and in untreated water samples from Thailand (20/93), Vietnam (5/10), Malaysia (22/44), and the Philippines (16/23), with concentrations ranging from 0.12 ± 0.3 to 8.90 ± 19.65 cyst/L. The pathogens C. parvum and G. lamblia were detected using using qPCR assays by targeting the 138-bp fragment and the small subunit gene, respectively. C. parvum was detected in untreated water samples from the Philippines (1/23) and Malaysia (2/44), whilst, G. lamblia detected was detected in treated water samples from the Philippines (1/10) and in untreated water samples from Thailand (21/93), Malaysia (12/44), and the Philippines (17/23). Nitrate concentration was found to have a high positive correlation with (oo)cyst (0.993). The presence of

  15. Total and inorganic arsenic in fish samples from Norwegian waters.

    PubMed

    Julshamn, Kaare; Nilsen, Bente M; Frantzen, Sylvia; Valdersnes, Stig; Maage, Amund; Nedreaas, Kjell; Sloth, Jens J

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Artic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast of Norway, from 40 positions. The determination of total arsenic was carried out by inductively coupled plasma mass spectrometry following microwave-assisted wet digestion. The determination of inorganic arsenic was carried out by high-performance liquid chromatography-ICP-MS following microwave-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg(-1) wet weight. For inorganic arsenic, the concentrations found were very low (<0.006 mg kg(-1)) in all cases. The obtained results question the assumptions made by the European Food Safety Authority (EFSA) on the inorganic arsenic level in fish used in the recent EFSA opinion on arsenic in food.

  16. Assessing impacts of DNA extraction methods on next generation sequencing of water and wastewater samples.

    PubMed

    Walden, Connie; Carbonero, Franck; Zhang, Wen

    2017-10-01

    Next Generation Sequencing (NGS) is increasingly affordable and easier to perform. However, standard protocols prior to the sequencing step are only available for few selected sample types. Here we investigated the impact of DNA extraction methods on the consistency of NGS results. Four commercial DNA extraction kits (QIAamp DNA Mini Kit, QIAamp DNA Stool Mini Kit, MO BIO Power Water Kit, and MO BIO Power Soil DNA Isolation Kit) were used on sample sources including lake water and wastewater, and sample types including planktonic and biofilm bacteria communities. Sampling locations included a lake water reservoir, a trickling filter, and a moving bed biofilm reactor (MBBR). Unique genera such as Gemmatimonadetes, Elusimicrobia, and Latescibacteria were found in multiple samples. The Stool Mini Kit was least efficient in terms of diversity in sampling results with freshwater lake samples, and surprisingly the Power Water Kit was the least efficient across all sample types examined. Detailed NGS beta diversity comparisons indicated that the Mini Kit and PowerSoil Kit are best suited for studies that extract DNA from a variety of water and wastewater samples. We ultimately recommend application of Mini Kit or PowerSoil Kit as an improvement to NGS protocols for these sampling environments. These results are a step toward achieving accurate comparability of complex samples from water and wastewater environments by applying a single DNA extraction method, further streamlining future investigations. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. [Detection of Cryptospordium spp. in environmental water samples by FTA-PCR].

    PubMed

    Zhang, Xiao-Ping; Zhu, Qian; He, Yan-Yan; Jiang, Li; Jiang, Shou-Fu

    2011-02-01

    To establish a FTA-polymeras chain reaction (FTA-PCR) method in detection of Cryptospordium spp. in different sources of water. The semi automated immunomagnetic separation (IMS) of Cryptospordium oocysts in environmental water samples was performed firstly, and then genomic DNA of Cryptospordium oocysts was extracted by FTA filters disk. Oligonucleotide primers were designed based on the DNA fragment of the 18 S rRNA gene from C. parvum. Plate DNA was amplified with primers in PCR. The control DNA samples from Toxoplasma gondii,Sarcocystis suihominis, Echinococcus granulosus, and Clonorchis sinensis were amplified simultaneously. All PCR products were detected by agar electrophoresis dyed with ethidium bromide. The 446 bp fragment of DNA was detected in all samples of C. parvum, C. andersoni, and C. baileyi, while it was not detected in control groups in laboratory. No positive samples were found from 10 samples collected from tape water in 5 districts of Shanghai City by FTA-PCR. Nine positive samples were detected totally from 70 different environmental water samples, there were 0 out of 15 samples from the source of tape water, 2 out of 25 from the Huangpu River, 5 out of 15 from rivers around the animal farmers, 1 out of 9 from output water of contaminating water treatment factory, 1 out of 6 from the out gate of living contaminating water. The 446 bp fragment was detected from all the amplified positive water samples. FTA-PCR is an efficient method for gene detection of Cryptospordium oocysts, which could be used in detection of environmental water samples. The contamination degree of Cryptospordium oocysts in the river water around animal farms is high.

  18. Estimation of uranium and radon concentration in some drinking water samples of Upper Siwaliks, India.

    PubMed

    Singh, Joga; Singh, Harmanjit; Singh, Surinder; Bajwa, B S

    2009-07-01

    Uranium and radon concentration was assessed in water samples taken from hand pumps, natural sources and wells collected from some areas of Upper Siwaliks, Northern India. Fission track registration technique was used to estimate the uranium content of water samples. The uranium concentration in water samples was found to vary from 1.08 +/- 0.03 to 19.68 +/- 0.12 microg l(-1). These values were compared with safe limit values recommended for drinking water. Most of the water samples were found to have uranium concentration below the safe limit of 15 microg l(-1) (WHO, World Health Organization, Guidelines for drinking-water quality (3rd ed.). Geneva, Switzerland: WHO, 2004). The radon estimation in these water samples was made using alpha-scintillometry to study its correlation with uranium. The radon concentration in these samples was found to vary from 0.87 +/- 0.29 to 32.10 +/- 1.79 Bq l(-1). The recorded values of radon concentration were within the recommended safe limit of 4 to 40 Bq l(-1) (UNSCEAR, United Nations Scientific Committee on the Effects of Atomic Radiations, Sources and effects of ionizing radiation. New York: United Nations, 1993). No direct correlation was found between uranium concentration and radon concentration in water samples belonging to Upper Siwaliks. The values of uranium and radon concentration in water were compared with that from the adjoining areas of Punjab state, India.

  19. UMTRA Project water sampling and analysis plan, Gunnison, Colorado. Revision 2

    SciTech Connect

    1995-09-01

    Surface remedial action at the Gunnison Uranium Mill Tailings Remedial Action Project site began in 1992; completion is expected in 1995. Ground water and surface water will be sampled semiannually at the Gunnison processing site (GUN-01) and disposal site (GUN-08). Results of previous water sampling at the Gunnison processing site indicate that ground water in the alluvium is contaminated by the former uranium processing activities. Background ground water conditions have been established in the uppermost aquifer (Tertiary gravels) at the Gunnison disposal site. Semiannual water sampling is scheduled for the spring and fall. Water quality sampling is conducted at the processing site (1) to ensure protection of human health and the environment, (2) for ground water compliance monitoring during remedial action construction, and (3) to define the extent of contamination. At the processing site, the frequency and duration of sampling will be dependent upon the nature and extent of residual contamination and the compliance strategy chosen. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the vicinity of the sites. The list of analytes has been modified with time to reflect constituents that are related to uranium processing activities and the parameters needed for geochemical evaluation.

  20. Water Sample Analysis With the Integrated Virus Detection System

    DTIC Science & Technology

    2010-06-01

    ultrafiltered to reduce and concentrate the volume from 1 L to 1.2 mL. This ultrafiltration (UF) was accomplished in -60 min. The remaining volume was...collected and analyzed with the IVDS. In general, the samples were concentrated with the tangential flow ( ultrafiltration ) filter system before IVDS...Biological Center: Aberdeen Proving Ground, MD, 1999; UNCLASSIFIED Report (AD-A368 535). 2. Wick, C.H.; McCubbin, P.E. Removing Complex Growth Media from MS2

  1. Sampling and Chemical Analysis of Potable Water for ISS Expeditions 12 and 13

    NASA Technical Reports Server (NTRS)

    Straub, John E. II; Plumlee, Deborah K.; Schultz, John R.

    2007-01-01

    The crews of Expeditions 12 and 13 aboard the International Space Station (ISS) continued to rely on potable water from two different sources, regenerated humidity condensate and Russian ground-supplied water. The Space Shuttle launched twice during the 12- months spanning both expeditions and docked with the ISS for delivery of hardware and supplies. However, no Shuttle potable water was transferred to the station during either of these missions. The chemical quality of the ISS onboard potable water supplies was verified by performing ground analyses of archival water samples at the Johnson Space Center (JSC) Water and Food Analytical Laboratory (WAFAL). Since no Shuttle flights launched during Expedition 12 and there was restricted return volume on the Russian Soyuz vehicle, only one chemical archive potable water sample was collected with U.S. hardware and returned during Expedition 12. This sample was collected in March 2006 and returned on Soyuz 11. The number and sensitivity of the chemical analyses performed on this sample were limited due to low sample volume. Shuttle flights STS-121 (ULF1.1) and STS-115 (12A) docked with the ISS in July and September of 2006, respectively. These flights returned to Earth with eight chemical archive potable water samples that were collected with U.S. hardware during Expedition 13. The average collected volume increased for these samples, allowing full chemical characterization to be performed. This paper presents a discussion of the results from chemical analyses performed on Expeditions 12 and 13 archive potable water samples. In addition to the results from the U.S. samples analyzed, results from pre-flight samples of Russian potable water delivered to the ISS on Progress vehicles and in-flight samples collected with Russian hardware during Expeditions 12 and 13 and analyzed at JSC are also discussed.

  2. Development of a benthic-flux chamber for measurement of ground-water seepage and water sampling for mercury analysis at the sediment-water interface

    USGS Publications Warehouse

    Menheer, M.A.

    2004-01-01

    A benthic-flux chamber was constructed to collect data to determine the relation between ground- and surface-water interaction and mercury concentrations in water at the sediment- water interface. The benthic-flux chamber was successfully used to measure the rate of ground water seeping to surface water or surface water seeping to ground water, and to collect water samples for mercury analysis from the sedimentwater interface in a lake setting. The benthic-flux chamber was designed to be deployed in relatively calm fresh water lakes, in areas of water less than 2 meters deep. The groundwater seepage rate data were comparable to data from an in-line flow meter in a calibration tank and with data from two 55-gallon drum seepage meters concurrently deployed in two different lakes. The benthic-flux chamber was used to collect possible water samples for analysis of total mercury and methylmercury concentrations.

  3. Automated syringe sampler. [remote sampling of air and water

    NASA Technical Reports Server (NTRS)

    Purgold, G. C. (Inventor)

    1981-01-01

    A number of sampling services are disposed in a rack which slides into a housing. In response to a signal from an antenna, the circutry elements are activated which provide power individually, collectively, or selectively to a servomechanism thereby moving an actuator arm and the attached jawed bracket supporting an evaculated tube towards a stationary needle. One open end of the needle extends through the side wall of a conduit to the interior and the other open end is maintained within the protective sleeve, supported by a bifurcated bracket. A septum in punctured by the end of the needle within the sleeve and a sample of the fluid medium in the conduit flows through the needle and is transferred to a tube. The signal to the servo is then reversed and the actuator arm moves the tube back to its original position permitting the septum to expand and seal the hole made by the needle. The jawed bracket is attached by pivot to the actuator to facilitate tube replacement.

  4. USE OF NATURAL WATERS AS U. S. GEOLOGICAL SURVEY REFERENCE SAMPLES.

    USGS Publications Warehouse

    Janzer, Victor J.

    1985-01-01

    The U. S. Geological Survey conducts research and collects hydrologic data relating to the Nation's water resources. Seven types of natural matrix reference water samples are prepared for use in the Survey's quality assurance program. These include samples containing major constituents, trace metals, nutrients, herbicides, insecticides, trace metals in a water and suspended-sediment mixture, and precipitation (snowmelt). To prepare these reference samples, natural water is collected in plastic drums and the sediment is allowed to settle. The water is then filtered, selected constituents are added, and if necessary the water is acidified and sterilized by ultraviolet irradiation before bottling in plastic or glass. These reference samples are distributed twice yearly to more than 100 laboratories for chemical analysis. The most probable values for each constituent are determined by evaluating the data submitted by the laboratories using statistical techniques recommended by ASTM.

  5. Considerations for sampling inorganic constituents in ground water using diffusion samplers

    USGS Publications Warehouse

    Vroblesky, D.A.; Petkewich, M.D.; Campbell, T.R.; ,

    2002-01-01

    Data indicate that nylon-screen and dialysis diffusion samplers are capable of obtaining concentrations of inorganic solutes in ground water from wells that closely correspond to concentrations obtained by low-flow sampling. Conservative solutes, such as chloride, can be sampled by filling the diffusion samplers with oxygenated water. The samplers should be filled with anaerobic water for sampling redoxsensitive solutes. Oxidation of iron within the samplers, either by using aerobic fill water or by in-well oxygenation events, can lead to erroneous iron concentrations. Lithologic and chemical heterogeneity and sampler placement depth can lead to differences between concentrations from diffusion samples and low-flow samples because of mixing during pumping. A disadvantage of regenerated cellulose dialysis samplers is that they can begin to biodegrade within the two weeks of deployment. Nylon-screen samplers buried beneath streambed sediment along the unnamed tributary in a discharge zone of arseniccontaminated ground water were useful in locating the specific discharge zone.

  6. UMTRA Project water sampling and analysis plan, Durango, Colorado. Revision 1

    SciTech Connect

    1995-09-01

    Planned, routine ground water sampling activities at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Durango, Colorado, are described in this water sampling and analysis plan. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the routine monitoring stations at the site. The ground water data are used to characterize the site ground water compliance strategies and to monitor contaminants of potential concern identified in the baseline risk assessment (DOE, 1995a). Regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US EPA regulations in 40 CFR Part 192 (1994) and EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site.

  7. Chemical analyses of water samples from the Picher mining area, northeast Oklahoma and southeast Kansas

    USGS Publications Warehouse

    Parkhurst, David L.

    1987-01-01

    Chemical analyses are presented for 169 water samples from Tar Creek drainage and the Picher lead-zinc mining area of northeast Oklahoma and southeast Kansas. Water samples were taken from November 1983 through February 1986 from the abandoned mines, from points of mine-water discharge, and from surface-water locations upstream and downstream from mine discharge area. The pH, temperature, alkalinity, dissolved oxygen, and specific conductance were measured in the field. Laboratory analyses routinely included the major ions plus aluminum, cadmium, copper, iron, lead, manganese, nickel, and zinc. Non-routine analyses of dissolved gases and tritium are presented. Stable carbon-isotope ratios for 11 mine-water samples and three carbonate-rock samples are reported. Miscellaneous stream-discharge measurements made at the time of sampling or taken from gaging-station records are included in the report.

  8. USDA Forest Service national protocols for sampling air pollution-sensitive waters

    Treesearch

    T. J. Sullivan

    2012-01-01

    The first step in designing a surface water sampling program is identifying one or more problems or questions that require information on water quality. Common water quality problems include nutrient enrichment (from a variety of causes), effects of atmospheric deposition (acidification, eutrophication, toxicity), and effects of major disturbances such as fire or pest...

  9. Filtration of water-sediment samples for the determination of organic compounds

    USGS Publications Warehouse

    Sandstrom, Mark W.

    1995-01-01

    This report describes the equipment and procedures used for on-site filtration of surface-water and ground-water samples for determination of organic compounds. Glass-fiber filters and a positive displacement pumping system are suitable for processing most samples for organic analyses. An optional system that uses disposable in-line membrane filters is suitable for a specific gas chromatography/mass spectrometry, selected-ion monitoring analytical method for determination of organonitrogen herbicides. General procedures to minimize contamination of the samples include preparing a clean workspace at the site, selecting appropriate sample-collection materials, and cleaning of the equipment with detergent, tap water, and methanol.

  10. An instrument for collecting discrete large-volume water samples suitable for ecological studies of microorganisms

    NASA Astrophysics Data System (ADS)

    Wommack, K. Eric; Williamson, Shannon J.; Sundbergh, Arthur; Helton, Rebekah R.; Glazer, Brian T.; Portune, Kevin; Craig Cary, S.

    2004-11-01

    Microbiological investigations utilizing molecular genetic approaches to characterize microbial communities can require large volume water samples, tens to hundreds of liters. The requirement for large volume samples can be especially challenging in deep-sea hydrothermal vent environments of the oceanic ridge system. By and large studies of these environments rely on deep submergence vehicles. However collection of large volume (>100 L) water samples adjacent to the benthos is not feasible due to weight considerations. To address the technical difficulty of collecting large volume water samples from hydrothermal diffuse flow environments, a semi-autonomous large-volume water sampler (LVWS) was designed. The LVWS is capable of reliably collecting and bringing to the surface 120 L water samples from diffuse flow environments. Microscopy, molecular genetic and chemical analyses of water samples taken from 9°N East Pacific Rise are shown to demonstrate the utility of the LVWS for studies of near-benthos environments. To our knowledge this is the first report of virioplankton abundance within diffuse-flow waters of a deep-sea hydrothermal vent environment. Because of its simple design and relatively low cost, the LVWS should be applicable to a variety of studies which require large-volume water samples collected immediately adjacent to the benthos.

  11. Pesticide content in drinking water samples collected from orchard areas in central Poland.

    PubMed

    Badach, Hanna; Nazimek, Teresa; Kamińska, Iwona A

    2007-01-01

    Samples of drinking water collected in Warka-Grójec region of central Poland were tested for the presence of pesticides. Data obtained from analysis of water samples will be used for future epidemiological and environmental studies in the region. Samples were collected during spring and autumn of 2002-2003 from dug wells, deep wells and water mains in 81 randomly-selected rural households scattered throughout this region of extensive agriculture. The concentration of pesticides from four main chemical groups was determined by gas chromatography: organochlorines (lindane, DDT, methoxychlor), triazines (atrazine, simazine), organophosphates (acephate, diazinon, fenitrothion) and pyrethroids (alpha-cypermethrin, deltamethrin). Two-year monitoring of drinking water samples indicated the presence of DDT and methoxychlor contamination. Pyrethroids were generally not detected, with the exception of alpha-cypermethrin found in only a few samples. Triazines were also found in water samples collected in the course of the study with higher incidence during spring period. Organophosphates were by far the most common contaminants of drinking water in this region. Almost all samples were contaminated by significant amounts of fenitrothion. The present study reveals an urgent need for systematic monitoring of drinking water quality in regions of intensive agriculture, since they are highly vulnerable to pesticide contamination. Consumption of pesticide-contaminated water may have a negative impact on the population living in this area, which also requires scientific assessment.

  12. Procedures for Handling and Chemical Analysis of Sediment and Water Samples,

    DTIC Science & Technology

    1981-05-01

    8217 poe oh wou(.,ldy Arobably n d equlirte anr mixingr ,! I t- 10Percent of the total samUple load. It is a ,ii- robin -sample alyistudies. Add itioa...established to prevent undue sample contamination as a consequence of the previous sampling effort. Surface water samples should receive the highest priority ...anhydrous sodium sulfate column containing 20 g of the desiccant. Collect the sample in a round -bottomed flask. Rinse the column with 25 ml methylene

  13. Detection and genetic characterization of norovirus in environmental water samples in Thailand.

    PubMed

    Kittigul, Leera; Panjangampatthana, Apinya; Pombubpa, Kannika; Taweekate, Yuthana; Pungchitton, Supornwit; Diraphat, Pornphan; Siripanichgon, Kanokrat

    2012-03-01

    The aim of this study was to detect and characterize noroviruses (NoVs) in environmental water samples. One hundred and fourteen water samples were collected from a river and irrigation canals in central Thailand during 2006-2007. NoVs were detected by RT-nested PCR in 13% of the samples. The river samples (22%) contained NoVs at a higher frequency than the irrigation canal samples (4%). Among the 15 NoV-positive samples, 9 harbored genogroup (G) I, 2 samples with GII, and 4 samples with mixed GI and GII. DNA sequencing of PCR amplicons and phylogenetic analysis of partial capsid gene revealed that 5 samples were of genotype GI-2, 1 sample was GI-6, and 1 sample was a mix of GI-2 and GII-unclassified genotypes. NoVs in water samples quantified using quantitative RT-PCR were in the range of 4.91 x 10(2) -1.26 x 10(3) copies/ml for NoV GI and 3.51 x 10(3) copies/ml for NoV GII. This is the first study demonstrating the presence of NoV variants in water samples collected from a river and the adjacent canals of Thailand.

  14. Levels of perfluorochemicals in water samples from Catalonia, Spain: is drinking water a significant contribution to human exposure?

    PubMed

    Ericson, Ingrid; Nadal, Martí; van Bavel, Bert; Lindström, Gunilla; Domingo, José L

    2008-10-01

    In recent years, due to a high persistence, biomagnification in food webs, presence in remote regions, and potential toxicity, perfluorochemicals (PFCs) have generated a considerable interest. The present study was aimed to determine the levels of perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA), and other PFCs in drinking water (tap and bottled) and river water samples from Tarragona Province (Catalonia, Spain). Municipal drinking (tap) water samples were collected from the four most populated towns in the Tarragona Province, whereas samples of bottled waters were purchased from supermarkets. River water samples were collected from the Ebro (two samples), Cortiella, and Francolí Rivers. After pretreatment, PFC analyses were performed by HPLC-MS. Quantification was done using the internal standard method, with recoveries between 68% and 118%. In tap water, PFOS and PFOA levels ranged between 0.39 and 0.87 ng/L (0.78 and 1.74 pmol/L) and between 0.32 and 6.28 ng/L (0.77 and 15.2 pmol/L), respectively. PFHpA, PFHxS, and PFNA were also other detected PFCs. PFC levels were notably lower in bottled water, where PFOS could not be detected in any sample. Moreover, PFHpA, PFHxS, PFOA, PFNA, PFOS, PFOSA, and PFDA could be detected in the river water samples. PFOS and PFOA concentrations were between <0.24 and 5.88 ng/L (<0.48 and 11.8 pmol/L) and between <0.22 and 24.9 ng/L (<0.53 and 60.1 pmol/L), respectively. Assuming a human water consumption of 2 L per day, the daily intake of PFOS and PFOA by the population of the area under evaluation was calculated (0.78-1.74 and 12.6 ng, respectively). It was found that drinking water might be a source of exposure to PFCs as important as the dietary intake of these pollutants. The contribution of drinking water (tap and bottled) to the human daily intake of various PFCs has been compared for the first time with data from dietary intake of these PFCs. It was noted that in certain cases, drinking water can be a source

  15. Determination of rare earth elements in natural water samples - A review of sample separation, preconcentration and direct methodologies.

    PubMed

    Fisher, Andrew; Kara, Derya

    2016-09-07

    This review discusses and compares the methods given for the determination of rare earth elements (REE) in natural water samples, including sea, river, lake, tap, ground and waste waters as well as Antarctic ice. Since REE are at very low concentrations in natural waters, numerous different preconcentration methods have been proposed to enable their measurement. These include liquid liquid extraction, dispersive liquid-liquid micro-extraction and solidified floating drop micro-extraction. In addition to liquid-liquid extraction methods, solid phase extraction using commercial resins, resins made in-house, silica-based exchange materials and other solid media is also discussed. These and other techniques such as precipitation/co-precipitation and flotation are compared in terms of speed, preconcentration factors achieved, precision, accuracy and limits of detection (LOD). Some papers have discussed the direct determination of REE in these sample types. Some have used specialised sample introduction systems such as ultrasonic nebulization whereas others have used a standard sample introduction system coupled with inductively coupled plasma mass spectrometry (ICP-MS) detection. These direct methods have also been discussed and compared. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Comparison of the mutagenic activity of XAD4 and blue rayon extracts of surface water and related drinking water samples.

    PubMed

    Kummrow, Fábio; Rech, Celia M; Coimbrão, Carlos A; Roubicek, Deborah A; Umbuzeiro, Gisela de A

    2003-11-10

    The combination of mutagenicity tests and selective extraction methodologies can be useful to indicate the possible classes of genotoxic organic contaminants in water samples. Treated and source water samples from two sites were analyzed: a river under the influence of an azo dye-processing plant discharge and a reservoir not directly impacted with industrial discharges, but contaminated with untreated domestic sewage. Organic extraction was performed in columns packed with XAD4 resin, that adsorbs a broad class of mutagenic compounds like polycyclic aromatic hydrocarbons (PAHs), arylamines, nitrocompounds, quinolines, antraquinones, etc., including the halogenated disinfection by-products; and with blue rayon that selectively adsorbs polycyclic planar structures. The organic extracts were tested for mutagenicity with the Salmonella assay using TA98 and TA100 strains and the potencies were compared. A protocol for cleaning the blue rayon fibers was developed and the efficiency of the reused fibers was analyzed with spiked samples. For the river water samples under the influence of the azo-type dye-processing plant, the mutagenicity was much higher for both blue rayon and XAD4 extracts when compared to the water from the reservoir not directly impacted with industrial discharges. For the drinking water samples, although both sites showed mutagenic responses with XAD4, only samples from the site under the influence of the industrial discharge showed mutagenic activity with the blue rayon extraction, suggesting the presence of polycyclic compounds in those samples. As expected, negative results were found with the blue rayon extracts of the drinking water collected from the reservoir not contaminated with industrial discharges. In this case, it appears that using the blue rayon to extract drinking water samples and comparing the results with the XAD resin extracts we were able to distinguish the mutagenicity caused by industrial contaminants from the halogenated

  17. Interstitial water studies on small core samples, Leg 15

    USGS Publications Warehouse

    Sayles, Fred L.; Manheim, Frank T.; Waterman, Lee S.

    1973-01-01

    Analyses of pore fluids from reducing environments demonstrate that reduction of SO4 is accompanied by large increases in alkalinity and strong depletion of Ca and Mg. The data are compatible with a model of replacement of Fe3+ in clay lattices by Mg from the interstitial solutions and the precipitation of pyrite. Depletions of Na in the interstitial solutions are related to Mg losses by a ratio of approximately 1:3. Pore fluids from oxidizing pelagic sediments exhibit little SO4 depletion. Losses of Mg are accompanied by the addition of Ca to the pore solutions on a nearly 1:1 basis. Strong Sr enrichment is also found in these solutions. The magnitude of the Sr increase suggests that considerable carbonate recrystallization has occurred. As part of an extensive interlaboratory and analytical calibration, the effect of squeezing sediment at different temperatures has been studied in depth. Samples of a variety of lithologies have been included. Enrichment of K by as much as 24 percent and depletion of Mg and Ca by up to 7 percent occurs during warming. However, no significant effect upon Cl and SO4 could be detected. The strongest effects are seen in the minor constituents studied. On warming, Sr, Si, and B are enriched as much as 19, 40, and 60 percent, respectively. The size of the observed concentration changes varies with the mineralogy of the sediment, but is significant in all types studied, particularly with regards to Mg and K.

  18. Lead (Pb) quantification in potable water samples: implications for regulatory compliance and assessment of human exposure.

    PubMed

    Triantafyllidou, Simoni; Nguyen, Caroline K; Zhang, Yan; Edwards, Marc A

    2013-02-01

    Assessing the health risk from lead (Pb) in potable water requires accurate quantification of the Pb concentration. Under worst-case scenarios of highly contaminated water samples, representative of public health concerns, up to 71-98 % of the total Pb was not quantified if water samples were not mixed thoroughly after standard preservation (i.e., addition of 0.15 % (v/v) HNO(3)). Thorough mixing after standard preservation improved recovery in all samples, but 35-81 % of the total Pb was still un-quantified in some samples. Transfer of samples from one bottle to another also created high errors (40-100 % of the total Pb was un-quantified in transferred samples). Although the United States Environmental Protection Agency's standard protocol avoids most of these errors, certain methods considered EPA-equivalent allow these errors for regulatory compliance sampling. Moreover, routine monitoring for assessment of human Pb exposure in the USA has no standardized protocols for water sample handling and pre-treatment. Overall, while there is no reason to believe that sample handling and pre-treatment dramatically skew regulatory compliance with the US Pb action level, slight variations from one approved protocol to another may cause Pb-in-water health risks to be significantly underestimated, especially for unusual situations of "worst case" individual exposure to highly contaminated water.

  19. Change Of Electrical Resistivity Depending On Water Saturation Of The Concrete Samples

    NASA Astrophysics Data System (ADS)

    Sabbaǧ, Nevbahar; Uyanık, Osman

    2016-04-01

    In this study, the changes of electrical apparent resistivity values depending on the water saturation of cubic concrete samples which designed according to different strength were investigated. For this purpose, 3 different concrete design as poor, middle and good strength 150x150x150mm dimensions 9 for each design cubic samples were prepared. After measuring the weight of the prepared samples, in oven were dried at 105 ° C for 24 hours and then the dry weights were measured. Then the samples were placed into the curing pool and saturated weight of the samples were measured in specific time periods during the 90 day take out from the curing pool and the water content were calculated at each stage of these processes. The water content of the samples were obtained during 90 days specific points in time and as well as electrical apparent resistivity method of the different surfaces of the samples the potential difference measurements made by electrical resistivity method and electrical apparent resistivity values of the samples were calculated. Depending on time obtained from this study with respect to time curves of the water content and the apparent resistivity values were constructed. Results showed that the electrical apparent resistivity values increased depends on the water content. This study was supported with OYP05277-DR-14 Project No. by SDU and State Hydraulic Works 13th Regional/2012-01 Project No. Keywords: Concrete, cubic sample, Resistivity, water content, time

  20. Physico-chemical characteristics of water samples of Bantwal Taluk, south-western Karnataka, India.

    PubMed

    Smitha, P G; Byrappa, K; Ramaswamy, S N

    2007-07-01

    Quality of water is an important criterion for evaluating the suitability of water for irrigation and drinking. In the present study the analysis of water samples from different sources like open wells, bore wells, farm ponds and streams/rivers of twenty villages of Bantwal taluk of Dakshina Kannada district, South-western Kamataka has been carried out. The physico-chemical characteristics of this water showed that it is suitable for irrigation and agricultural purposes.

  1. Screening of ground water samples for volatile organic compounds using a portable gas chromatograph

    USGS Publications Warehouse

    Buchmiller, R.C.

    1989-01-01

    A portable gas chromatograph was used to screen 32 ground water samples for volatile organic compounds. Seven screened samples were positive; four of the seven samples had volatile organic substances identified by second-column confirmation. Four of the seven positive, screened samples also tested positive in laboratory analyses of duplicate samples. No volatile organic compounds were detected in laboratory analyses of samples that headspace screening indicated to be negative. Samples that contained volatile organic compounds, as identified by laboratory analysis, and that contained a volatile organic compound present in a standard of selected compounds were correctly identified by using the portable gas chromatography. Comparisons of screened-sample data with laboratory data indicate the ability to detect selected volatile organic compounds at concentrations of about 1 microgram per liter in the headspace of water samples by use of a portable gas chromatography. -Author

  2. A study on the prevalence of Aeromonas spp. and its enterotoxin genes in samples of well water, tap water, and bottled water

    PubMed Central

    Didugu, Hareesh; Thirtham, Madhavarao; Nelapati, Krishnaiah; Reddy, K Kondal; Kumbhar, Baba Saheb; Poluru, Anusha; Pothanaboyina, Guruvishnu

    2015-01-01

    Aim: The aim of this work was to study the prevalence of Aeromonas spp. and its enterotoxin genes in various water sources. Materials and Methods: 125 samples (50 from well water, 50 from tap water, and 25 from bottled water) were collected from various sources in and around Greater Hyderabad Municipal Corporation and examined for the presence of aeromonads by both cultural and polymerase chain reaction (PCR) assay. Alkaline peptone water with ampicillin was used as enrichment. Aeromonas isolation medium and ampicillin dextrin agar were used as selective media. The boiling and snap chilling method was used for DNA extraction. Primers targeted against 16S rRNA, aer, and ast were used to identify aeromonads and its enterotoxins. Results: 48%, 18%, and 12% of well water, tap water, and bottled water samples were found positive by cultural assay with an overall prevalence of 28.8%. Aeromonads were detected in 32 % (52% in well water, 20% in tap water, and 16% in bottled water) of samples by PCR assay. Aerolysin (aer) gene was noticed in 34.6%, 20%, and 0% of well water, tap water, and bottled water samples, respectively, with an overall prevalence of 27.5%. Thermostable cytotonic enterotoxin (ast) was observed in 37.5% (42.3% in well water, 30% in tap water, and 25% in bottled mineral water) of samples. Conclusions: Presence of aeromonads and its toxin genes in various sources of water is of public health concern and emphasizes the need for necessary preventive measures to tackle the problem. PMID:27047024

  3. A new collector for in situ pore water sampling in wetland sediment.

    PubMed

    Gao, Feng; Deng, Jiancai; Li, Qinqin; Hu, Liuming; Zhu, Jinge; Hang, Hongjuan; Hu, Weiping

    2012-01-01

    Currently available pore water samplers generally do not allow continuous monitoring of temporal variations in pore water composition. Therefore, a new type of pore water collector was designed and constructed. These collectors were constructed of polyvinyl chloride (PVC) materials, including PVC tubing with one end sealed and another end topped with a removable PVC screw-cap. A row of holes was drilled 10 cm from the sealed end of each collector. These new collectors were deployed in different layers of the sediment in a constructed wetland in Lake Taihu, China, to reveal variations in the nutrient composition of pore water with high spatial and temporal resolution. Specifically, the collectors were driven into the sediment, and the pore water flowed into the tubing via gravity. The pore water was then sampled from the PVC tubing using a portable vacuum pump, and then was taken to the lab within 20 min for analysis of the dissolved oxygen (DO) and nutrient concentration. The DO concentration of the pore water was below the detection limit for all samples, indicating that the pore water was probably not influenced by the air and that the water in the collector tube was representative of the pore water. These findings suggest that the collector is capable of measuring the temporal and spatial variations in the nutrient concentrations in pore water. Furthermore, the inexpensive material, ease of construction, minimal disturbance to the sediment and applicability for wetland sediments are advantages of the collector presented here compared with traditional pore water sampling techniques.

  4. Water and stream-sediment sampling techniques for use in uranium exploration

    USGS Publications Warehouse

    Wenrich-Verbeek, Karen J.

    1976-01-01

    Methods of sampling water and stream sediments for uranium were established in this study. Water samples should be taken using a US DH-48 water sampler across the stream channel and should be filtered and acidified in situ. Stream sediments should be taken as a composite sample up and across the axis of the channel. Only sediment fractions less than 90 ?m (170 mesh) should be analyzed for uranium. The elements As, Ca, Al, B, Mg, K, and Na exhibit a positive correlation with uranium in surface waters, while a much larger suite of elements exhibit a positive correlation with uranium in stream sediments: K, Mn, Mg, Ti, Ca, Al, Fe, Pb, Cr, Y, Zr, Li, Zn, Th, and As. Analyses have revealed that anomalies detected in either the dissolved or suspended fractions of water, or the stream sediments, are frequently not reflected in the other two; hence, all three should be sampled and analyzed.

  5. Measurement of radon concentration in some water samples belonging to some adjoining areas of Pathankot, Punjab

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Sharma, Sumit

    2015-08-01

    The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEAR [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].

  6. Measurement of radon concentration in some water samples belonging to some adjoining areas of Pathankot, Punjab

    SciTech Connect

    Kumar, Ajay Sharma, Sumit

    2015-08-28

    The study of radon concentration was measured in some areas of Pathankot district, Punjab, India, from the health hazard point of view due to radon. The exposure to radon through drinking water is largely by inhalation and ingestion. RAD 7, an electronic solid state silicon detector (Durridgeco., USA) was used to measure the radon concentration in drinking water samples of the study area. The recorded values of radon concentration in these water samples are below the recommended limit by UNSCEAR and European commission. The recommended limit of radon concentration in water samples is 4 to 40 Bq/l given by UNSCEAR [1] and European commission has recommended the safe limit for radon concentration in water sample is 100 Bq/l [2].

  7. Using orthogonal array sampling to cope with uncertainty in ground water problems.

    PubMed

    Baalousha, Husam

    2009-01-01

    Uncertainty in ground water hydrology originates from different sources. Neglecting uncertainty in ground water problems can lead to incorrect results and misleading output. Several approaches have been developed to cope with uncertainty in ground water problems. The most widely used methods in uncertainty analysis are Monte Carlo simulation (MCS) and Latin hypercube sampling (LHS), developed from MCS. Despite the simplicity of MCS, many runs are required to achieve a reliable result. This paper presents orthogonal array (OA) sampling as a means to cope with uncertainty in ground water problems. The method was applied to an analytical stream depletion problem. To examine the convergence rate of the OA sampling, the results were compared to MCS and LHS. This study shows that OA can be applied to ground water problems. Results reveal that the convergence rate of the OA sampling is faster than MCS and LHS, with a smaller error of estimate when applied to a stream depletion problem.

  8. Analysis of uranium in drinking water samples using laser induced fluorimetry.

    PubMed

    Rani, Asha; Singh, Surinder

    2006-08-01

    Uranium concentration in drinking water samples collected from some areas of Punjab and Himachal Pradesh has been measured using a laser induced fluorimetry technique. The sources of water comprise hand pumps and tube wells. Uranium concentration in the water samples from Punjab varies from 1.39 +/- 0.16 to 98.25 +/- 2.06 ppb with a mean value of 19.84 +/- 0.87 ppb. The uranium concentration in most of the drinking water samples from Punjab exceeds the safe limit recommended by the World Health Organization. However, the uranium concentration in water samples from Himachal Pradesh is well within the recommended levels. The annual effective dose equivalent associated with drinking water due to uranium concentration is estimated from its annual intake using dosimetric information based on ICRP Report 72. The resulting value of the annual effective dose from drinking water sources is in the range of 0.13 to 81.59 muSv. The annual effective dose received by the population due to the consumption of drinking water from these areas is well within the recommended limit. In order to check the accuracy of the technique a few water samples were also analyzed using a fission track registration technique. A good agreement has been observed between the uranium values determined by these techniques.

  9. Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration

    PubMed Central

    Mull, Bonnie; Hill, Vincent R.

    2015-01-01

    Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recoveringMS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity. PMID:23064261

  10. Discrepancies in bacterial recovery from dental unit water samples on R2A medium and a commercial sampling device.

    PubMed

    Smith, Richard S; Pineiro, Silvia A; Singh, Ruby; Romberg, Elaine; Labib, Mohamed E; Williams, Henry N

    2004-04-01

    Monitoring the number of bacterial colony-forming units is an important step in assuring compliance with the recommendation that water from dental units contain <200 CFU mL(-1). Media that have been used for this purpose include R2A, a standard plate counting medium for water samples, and the Millipore HPC Sampler device, designed to facilitate sampling in dental offices. Discrepancies between the two media have been observed. This study tested the hypothesis that differences in counts on the two media were due to the failure of some bacteria to grow on the HPC sampler or to grow at less efficiency than on R2A. Of four different bacterial colony phenotypes tested in three independent experimental trials, one phenotype did not grow on the HPC device, and another grew inconsistently and at lower efficiency. These results confirmed the hypothesis. From these findings, users of the HPC sampler should be aware that microbial undercounts may occur.

  11. Laboratory Investigation into the Contribution of Contaminants to Ground Water from Equipment Materials Used in Sampling

    SciTech Connect

    Gilmore, Tyler J.; Mitroshkov, Alexandre V.; Dresel, P Evan; Sklarew, Debbie S.

    2004-08-30

    Benzene contamination was detected in well water samples from the Ogallala Aquifer beneath and adjacent to the Department of Energy's Pantex Plant near Amarillo, Texas. This study assessed whether or not the materials used in multilevel sampling equipment at this site could have contributed to the contaminants found in well water samples. As part of this investigation, laboratory testing of the sample equipment material was conducted. Results from the laboratory test indicated three different materials from two types of multilevel samplers did, in fact, contribute volatile and semivolatile organic compounds to the ground water samples from static leach tests that were conducted during an eight week period. The nylon-11 tubing contributed trace concentrations of benzene (1.37 ?g/L) and relatively high concentrations of the plasticizer N-butylbenzenesulfonamide (NBSA) (764 mg/L) to the water; a urethane-coated nylon well liner contributed relatively high concentrations of toluene (278 ?g/L) and trace amounts of NBSA; and a sampling port spacer material made of nylon/polypropylene/polyester-composite contributed trace amounts of toluene and NBSA. While the concentrations of benzene and toluene measured in the laboratory tests were below the concentrations measured in actual ground water samples, the concentrations of organics from these equipment materials were sufficient to render the results reported for the ground water samples suspect.

  12. Solventless and solvent-minimized sample preparation techniques for determining currently used pesticides in water samples: a review.

    PubMed

    Tankiewicz, Maciej; Fenik, Jolanta; Biziuk, Marek

    2011-10-30

    The intensification of agriculture means that increasing amounts of toxic organic and inorganic compounds are entering the environment. The pesticides generally applied nowadays are regarded as some of the most dangerous contaminants of the environment. Their presence in the environment, especially in water, is hazardous because they cause human beings to become more susceptible to disease. For these reasons, it is essential to monitor pesticide residues in the environment with the aid of all accessible analytical methods. The analysis of samples for the presence of pesticides is problematic, because of the laborious and time-consuming operations involved in preparing samples for analysis, which themselves may be a source of additional contaminations and errors. To date, it has been standard practice to use large quantities of organic solvents in the sample preparation process; but as these solvents are themselves hazardous, solventless and solvent-minimized techniques are coming into use. This paper discusses the most commonly used over the last 15 years sample preparation techniques for monitoring organophosphorus and organonitrogen pesticides residue in water samples. Furthermore, a significant trend in sample preparation, in accordance with the principles of 'Green Chemistry' is the simplification, miniaturization and automation of analytical techniques. In view of this aspect, several novel techniques are being developed in order to reduce the analysis step, increase the sample throughput and to improve the quality and the sensitivity of analytical methods. The paper describes extraction techniques requiring the use of solvents - liquid-liquid extraction (LLE) and its modifications, membrane extraction techniques, hollow fibre-protected two-phase solvent microextraction, liquid phase microextraction based on the solidification of a floating organic drop (LPME-SFO), solid-phase extraction (SPE) and single-drop microextraction (SDME) - as well as solvent

  13. STANDARD-REFERENCE WATER-SUSPENDED SEDIMENT SAMPLE FOR TOTAL RECOVERABLE METALS.

    USGS Publications Warehouse

    Fishman, Marvin J.; Malo, Bernard A.; Boyle, Delora K.

    1984-01-01

    The U. S. Geological Survey has been preparing and maintaining a library of standard-reference water samples for dissolved inorganic constituents for 19 years. Recently, the reference-sample program was expanded to include a water-suspended sediment mixture for the determination of total recoverable metals. An interlaboratory round-robin study was conducted. Digestion procedures used by the U. S. Geological Survey and the U. S. Environmental Protection Agency were used to solubilize the metals before their measurement. The data indicate that both digestion procedures for total recoverable metals are essentially equivalent. Precision data are comparable to those data obtained in standard-reference water samples for dissolved metals.

  14. Multiport well design for sampling of ground water at closely spaced vertical intervals

    USGS Publications Warehouse

    Delin, G.N.; Landon, M.K.

    1996-01-01

    Detailed vertical sampling is useful in aquifers where vertical mixing is limited and steep vertical gradients in chemical concentrations are expected. Samples can be collected at closely spaced vertical intervals from nested wells with short screened intervals. However, this approach may not be appropriate in all situations. An easy-to-construct and easy-to-install multiport sampling well to collect ground-water samples from closely spaced vertical intervals was developed and tested. The multiport sampling well was designed to sample ground water from surficial sand-and-gravel aquifers. The device consists of multiple stainless-steel tubes within a polyvinyl chloride (PVC) protective casing. The tubes protrude through the wall of the PVC casing at the desired sampling depths. A peristaltic pump is used to collect ground-water samples from the sampling ports. The difference in hydraulic head between any two sampling ports can be measured with a vacuum pump and a modified manometer. The usefulness and versatility of this multiport well design was demonstrated at an agricultural research site near Princeton, Minnesota where sampling ports were installed to a maximum depth of about 12 m below land surface. Tracer experiments were conducted using potassium bromide to document the degree to which short-circuiting occurred between sampling ports. Samples were successfully collected for analysis of major cations and anions, nutrients, selected herbicides, isotopes, dissolved gases, and chlorofluorcarbon concentrations.

  15. Multiport well design for sampling of ground water at closely spaced vertical intervals

    SciTech Connect

    Delin, G.N.; Landon, M.K.

    1996-11-01

    Detailed vertical sampling is useful in aquifers where vertical mixing is limited and steep vertical gradients in chemical concentrations are expected. Samples can be collected at closely spaced vertical intervals from nested wells with short screened intervals. However, this approach may not be appropriate in all situations. An easy-to-construct and easy-to-install multiport sampling well to collect ground-water samples from closely spaced vertical intervals was developed and tested. The multiport sampling well was designed to sample ground water from surficial sand-and-gravel aquifers. The device consists of multiple stainless-steel tubes within a polyvinyl chloride (PVC) protective casing. The tubes protrude through the wall of the PVC casing at the desired sampling depths. A peristaltic pump is used to collect ground-water samples form the sampling ports. The difference in hydraulic head between any two sampling ports can be measured with a vacuum pump and a modified manometer. The usefulness and versatility of this multiport well design was demonstrated at an agricultural research site near Princeton, Minnesota where sampling ports were installed to a maximum depth of about 12 m below land surface. Trace experiments were conducted using potassium bromide to document the degree to which short-circuiting occurred between sampling ports. Samples were successfully collected for analysis of major cations and anions, nutrients, selected herbicides, isotopes, dissolved gases, and chlorofluorocarbon concentrations.

  16. EHEC, EPEC, and ETEC strains and their antibiotic resistance in drinking and tap water samples.

    PubMed

    Gümüş, Defne; Küçüker, Mine Anğ

    2015-01-01

    Investigating of the presence of Enterohemorrhagic E. coli (EHEC), Enterotoxigenic E. coli (ETEC), Enteropathogenic E. coli (EPEC) strains and their antibiotic resistance in natural spring waters and tap waters from two university hospitals, in Istanbul. E. coli strains isolated from water samples were identified by polymerase chain reaction (PCR) method using stx-1, stx-2, eaeA genes specific for EHEC; eaeA, bfp genes specific for EPEC and lt, st genes specific for ETEC. Antibiotic susceptibility tests were done according to the Kirby-Bauer method using The Clinical and Laboratory Standards Institute (CLSI) criteria. E. coli strains were isolated from only five (2.7%) out of 184 water samples. Only one of the 36 E. coli strains isolated from these five water samples was found to be extended spectrum beta lactamase (ESBL) positive. According to PCR, ten E. coli strains isolated from one drinking water were identified as ETEC. Other than E. coli strains, coliforms and non-fermentative Gram negative bacteria were also isolated from waters. It was shown that 60 (81.1%) of these 74 strains isolated, other than E. coli, were found to be multiple resistant. Contrary to our expectations, it has been shown that natural spring waters (drinking waters) can be much more contaminated with fecal bacteria when compared with tap waters. The presence of pathogenic E. coli strains and antibiotic resistant Gram negative bacteria especially in drinking waters emphasize the importance of these types of studies.

  17. Monitoring the aftermath of Flint drinking water contamination crisis: Another case of sampling bias?

    PubMed

    Goovaerts, Pierre

    2017-07-15

    The delay in reporting high levels of lead in Flint drinking water, following the city's switch to the Flint River as its water supply, was partially caused by the biased selection of sampling sites away from the lead pipe network. Since Flint returned to its pre-crisis source of drinking water, the State has been monitoring water lead levels (WLL) at selected "sentinel" sites. In a first phase that lasted two months, 739 residences were sampled, most of them bi-weekly, to determine the general health of the distribution system and to track temporal changes in lead levels. During the same period, water samples were also collected through a voluntary program whereby concerned citizens received free testing kits and conducted sampling on their own. State officials relied on the former data to demonstrate the steady improvement in water quality. A recent analysis of data collected by voluntary sampling revealed, however, an opposite trend with lead levels increasing over time. This paper looks at potential sampling bias to explain such differences. Although houses with higher WLL were more likely to be sampled repeatedly, voluntary sampling turned out to reproduce fairly well the main characteristics (i.e. presence of lead service lines (LSL), construction year) of Flint housing stock. State-controlled sampling was less representative; e.g., sentinel sites with LSL were mostly built between 1935 and 1950 in lower poverty areas, which might hamper our ability to disentangle the effects of LSL and premise plumbing (lead fixtures and pipes present within old houses) on WLL. Also, there was no sentinel site with LSL in two of the most impoverished wards, including where the percentage of children with elevated blood lead levels tripled following the switch in water supply. Correcting for sampling bias narrowed the gap between sampling programs, yet overall temporal trends are still opposite.

  18. Effects of water sample preservation and storage conditions on nitrate concentrations

    SciTech Connect

    Li, Y.C.; Alva, A.K.; Calvert, D.V.; Zhang, M. |

    1995-12-31

    USEPA method 300 requires water samples should be stored at 4 C immediately after collection and NO{sub 3}-N concentration analyzed within 48 hr of sample collection. Many research and commercial laboratories find it is difficult to meet this holding time. Water samples are often stored for several days at 4 C or {minus}20 C until analysis. The objective of this study was to evaluate effects of groundwater sample pretreatment, storage temperatures, and holding times on concentrations of NO{sub 3}-N. The storage of samples at 25 C decreased concentrations of NO{sub 3}-N by 1.7% and 12.5% for 48 hr and 50 days, respectively. No significant changes were observed during the 50 days storage at 4 C or {minus}20 C. Acidification of water samples at 4 C had no significant effect on NO{sub 3}-N concentration up to 50-day holding time.

  19. Well installation and documentation, and ground-water sampling protocols for the pilot National Water-Quality Assessment Program

    USGS Publications Warehouse

    Hardy, M.A.; Leahy, P.P.; Alley, W.M.

    1989-01-01

    Several pilot projects are being conducted as part of the National Water Quality Assessment (NAWQA) Program. The purpose of the pilot program is to test and refine concepts for a proposed full-scale program. Three of the pilot projects are specifically designed to assess groundwater. The purpose of this report is to describe the criteria that are being used in the NAWQA pilot projects for selecting and documenting wells, installing new wells, and sampling wells for different water quality constituents. Guidelines are presented for the selection of wells for sampling. Information needed to accurately document each well includes site characteristics related to the location of the well, land use near the well, and important well construction features. These guidelines ensure the consistency of the information collected and will provide comparable data for interpretive purposes. Guidelines for the installation of wells are presented and include procedures that need to be followed for preparations prior to drilling, the selection of the drilling technique and casing type, the grouting procedure, and the well-development technique. A major component of the protocols is related to water quality sampling. Tasks are identified that need to be completed prior to visiting the site for sampling. Guidelines are presented for purging the well prior t sampling, both in terms of the volume of water pumped and the chemical stability of field parameters. Guidelines are presented concerning sampler selection as related to both inorganic and organic constituents. Documentation needed to describe the measurements and observations related to sampling each well and treating and preserving the samples are also presented. Procedures are presented for the storage and shipping of water samples, equipment cleaning, and quality assurance. Quality assurance guidelines include the description of the general distribution of the various quality assurance samples (blanks, spikes, duplicates, and

  20. Understanding the origin and evolution of water in the Moon through lunar sample studies

    PubMed Central

    Anand, Mahesh; Tartèse, Romain; Barnes, Jessica J.

    2014-01-01

    A paradigm shift has recently occurred in our knowledge and understanding of water in the lunar interior. This has transpired principally through continued analysis of returned lunar samples using modern analytical instrumentation. While these recent studies have undoubtedly measured indigenous water in lunar samples they have also highlighted our current limitations and some future challenges that need to be overcome in order to fully understand the origin, distribution and evolution of water in the lunar interior. Another exciting recent development in the field of lunar science has been the unambiguous detection of water or water ice on the surface of the Moon through instruments flown on a number of orbiting spacecraft missions. Considered together, sample-based studies and those from orbit strongly suggest that the Moon is not an anhydrous planetary body, as previously believed. New observations and measurements support the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. Furthermore, an approach combining measurements of water abundance in lunar samples and its hydrogen isotopic composition has proved to be of vital importance to fingerprint and elucidate processes and source(s) involved in giving rise to the lunar water inventory. A number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar wind hydrogen with the lunar soil. Perhaps two of the most striking findings from these recent studies are the revelation that at least some portions of the lunar interior are as water-rich as some Mid-Ocean Ridge Basalt source regions on Earth and that the water in the Earth and the Moon probably share a common origin. PMID:25114308

  1. Understanding the origin and evolution of water in the Moon through lunar sample studies.

    PubMed

    Anand, Mahesh; Tartèse, Romain; Barnes, Jessica J

    2014-09-13

    A paradigm shift has recently occurred in our knowledge and understanding of water in the lunar interior. This has transpired principally through continued analysis of returned lunar samples using modern analytical instrumentation. While these recent studies have undoubtedly measured indigenous water in lunar samples they have also highlighted our current limitations and some future challenges that need to be overcome in order to fully understand the origin, distribution and evolution of water in the lunar interior. Another exciting recent development in the field of lunar science has been the unambiguous detection of water or water ice on the surface of the Moon through instruments flown on a number of orbiting spacecraft missions. Considered together, sample-based studies and those from orbit strongly suggest that the Moon is not an anhydrous planetary body, as previously believed. New observations and measurements support the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. Furthermore, an approach combining measurements of water abundance in lunar samples and its hydrogen isotopic composition has proved to be of vital importance to fingerprint and elucidate processes and source(s) involved in giving rise to the lunar water inventory. A number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar wind hydrogen with the lunar soil. Perhaps two of the most striking findings from these recent studies are the revelation that at least some portions of the lunar interior are as water-rich as some Mid-Ocean Ridge Basalt source regions on Earth and that the water in the Earth and the Moon probably share a common origin.

  2. Ground-Water Data-Collection Protocols and Procedures for the National Water-Quality Assessment Program: Collection and Documentation of Water-Quality Samples and Related Data

    USGS Publications Warehouse

    Koterba, Michael T.; Wilde, Franceska D.; Lapham, Wayne W.

    1995-01-01

    Protocols for ground-water sampling are described in a report written in 1989 as part of the pilot program for the National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS). These protocols have been reviewed and revised to address the needs of the full-scale implementation of the NAWQA Program that began in 1991. This report, which is a collaborative effort between the NAWQA Program and the USGS Office of Water Quality, is the result of that review and revision. This report describes protocols and recommended procedures for the collection of water-quality samples and related data from wells for the NAWQA Program. Protocols and recommended procedures discussed include (1) equipment setup and other preparations for data collection; (2) well purging and field measurements; (3) collecting and processing ground-water-quality samples; (4) equipment decontamination; (5) quality-control sampling; and (6) sample handling and shipping.

  3. Idaho's surface-water-quality monitoring program: results from five sites sampled during water years 1990-93

    USGS Publications Warehouse

    ,

    1994-01-01

    In 1990, the U.S. Geological Survey (USGS), in cooperation with the Idaho Department of Health and Welfare, Division of Environmental Quality, implemented a statewide water-quality monitoring program in response to Idaho's antidegradation policy as required by the Clean Water Act. The program objective is to provide water-quality managers with a coordinated statewide network to detect trends in surface-water quality. The monitoring program includes the collection and analysis of samples from 56 sites on the Bear, Clearwater, Kootenai, Pend Oreille, Salmon, Snake, and Spokane Rivers and their tributaries (fig. 1). Samples are collected every year at 5 sites (annual sites) in drainage basins where long-term water-quality management is practiced, every other year at 19 sites (biennial sites) in basins where land and water uses change slowly, and every third year at 32 sites (triennial sites) where future development may affect water quality. Each year, 25 of the 56 sites are sampled. This report discusses results of sampling at five annual sites. During water years 1990-93 (October 1, 1989, through September 30, 1993), samples were collected six times per year at the five annual sites (fig. 1). Onsite analyses were made for discharge, specific conductance, pH, temperature, dissolved oxygen, bacteria (fecal coliform and fecal streptococci), and alkalinity. Laboratory analyses were made for major ions, nutrients, trace elements, and suspended sediment. Suspended sediment, nitrate, fecal coliform, trace elements, and specific conductance were used to characterize surface-water quality. Because concentrations of all trace elements except zinc were near detection limits, only zinc is discussed.

  4. Concentrations of some heavy metals in underground water samples from a Nigerian crude oil producing community.

    PubMed

    Ejike, Chukwunonso E C C; Eferibe, Chinedu O; Okonkwo, Francis O

    2017-03-01

    Pollution due to oil exploration activities in the Niger Delta region of Nigeria and government under-investments in potable water infrastructure has led to the dependence of the population on personal boreholes. Yet, there are little quality or surveillance reports on such waters. The concentrations of heavy metals in underground water samples from an oil producing area, Umuebulu, in the Niger Delta were therefore investigated. Water samples were collected from three test points, each approximately 300 m from (1) wellhead area (WHA), (2) flare area (FA) and (3) effluent discharge area (EDA), and one control point located 10 km away from any oil-related activity. The concentrations of lead, arsenic and cadmium were determined in the samples using atomic absorption spectrophotometry. All three heavy metals were present in the test, and control water samples at concentrations significantly (P < 0.05) exceeding the maximum contaminant levels recommended by the World Health Organization. The total hazard index of the water samples showed that their consumption constituted significant health risks in the order EDA > FA > WHA > Control. Appropriate water treatment and surveillance is warranted and therefore recommended for underground water resources of the studied community.

  5. Identification and quantification of pesticide residues in water samples of Dhamrai Upazila, Bangladesh

    NASA Astrophysics Data System (ADS)

    Hasanuzzaman, M.; Rahman, M. A.; Salam, M. A.

    2016-10-01

    Being agricultural country, different types of pesticides are widely used in Bangladesh to prevent the crop losses due to pest attack which are ultimately drain to the water bodies. The present study was conducted to identify and quantify the organochlorine (DDT, DDE and DDD), organophosphorus (malathion, diazinon and chloropyrifos) and carbamate (carbaryl) residues in water samples of different sources from Dhamrai upazila of Bangladesh using high performance liquid chromatography (HPLC) equipped with ultra violate (UV) detector. Thirty water samples from fish pond, cultivated land and tube-well were collected in winter season to analyze the pesticide residues. Among the organophosphorus pesticides, malathion was present in seven water samples ranging from 42.58 to 922.8 μg/L, whereas diazinon was detected in water sample-8 (WS-8) and the concentration was 31.5 μg/L. None of the tested water samples was found to be contaminated with chlorpyrifos, carbaryl or DDT and its metabolites (DDE and DDD). Except for a tube-well water sample, concentrations of the detected residues are above the acceptable limit for human body as assigned by different organizations. To avoid the possible health hazards, the indiscriminate application of pesticides should be restricted and various substitute products like bio-pesticide should be introduced in a broad scale as soon as possible.

  6. Detection of Acanthamoeba and Toxoplasma in River Water Samples by Molecular Methods in Iran

    PubMed Central

    MAHMOUDI, Mohammad Reza; KAZEMI, Bahram; HAGHIGHI, Ali; KARANIS, Panagiotis

    2015-01-01

    Background: Free-living amoebae such as Acanthamoeba species may act as carriers of Cryptosporidium and Toxoplasma oocysts, thus, may play an important role in the water-borne transmission of these parasites. In the present study, a loop mediated isothermal amplification (LAMP) method for detection of Toxoplasma and a PCR assay were developed for investigation of Acanthamoeba in environmental water samples. Methods: A total of 34 samples were collected from the surface water in Guilan Province. Water samples were filtrated with membrane filters and followed by DNA extraction. PCR and LAMP methods used for detection of the protozoan parasites Acanthamoeba and Toxoplasma respectively. Results: Totally 30 and 2 of 34 samples were positive for Acanthamoeba and Toxoplasma oocysts respectively. Two samples were positive for both investigated parasites. Conclusion: The investigated water supplies, are contaminated by Toxoplasma and Acanthamoeba (oo)cystes. Acanthamoeba may play an important role in water-borne transmission of Toxoplasma in the study area. For the first time in Iran, protocol of LAMP method was used effectively for the detection of Toxoplasma in surface water samples in Iran. PMID:26246823

  7. Arsenic-related water quality with depth and water quality of well-head samples from production wells, Oklahoma, 2008

    USGS Publications Warehouse

    Becker, Carol J.; Smith, S. Jerrod; Greer, James R.; Smith, Kevin A.

    2010-01-01

    The U.S. Geological Survey well profiler was used to describe arsenic-related water quality with well depth and identify zones yielding water with high arsenic concentrations in two production wells in central and western Oklahoma that yield water from the Permian-aged Garber-Wellington and Rush Springs aquifers, respectively. In addition, well-head samples were collected from 12 production wells yielding water with historically large concentrations of arsenic (greater than 10 micrograms per liter) from the Garber-Wellington aquifer, Rush Springs aquifer, and two minor aquifers: the Arbuckle-Timbered Hills aquifer in southern Oklahoma and a Permian-aged undefined aquifer in north-central Oklahoma. Three depth-dependent samples from a production well in the Rush Springs aquifer had similar water-quality characteristics to the well-head sample and did not show any substantial changes with depth. However, slightly larger arsenic concentrations in the two deepest depth-dependent samples indicate the zones yielding noncompliant arsenic concentrations are below the shallowest sampled depth. Five depth-dependent samples from a production well in the Garber-Wellington aquifer showed increases in arsenic concentrations with depth. Well-bore travel-time information and water-quality data from depth-dependent and well-head samples showed that most arsenic contaminated water (about 63 percent) was entering the borehole from perforations adjacent to or below the shroud that overlaid the pump. Arsenic concentrations ranged from 10.4 to 124 micrograms per liter in 11 of the 12 production wells sampled at the well head, exceeding the maximum contaminant level of 10 micrograms per liter for drinking water. pH values of the 12 well-head samples ranged from 6.9 to 9. Seven production wells in the Garber-Wellington aquifer had the largest arsenic concentrations ranging from 18.5 to 124 micrograms per liter. Large arsenic concentrations (10.4-18.5) and near neutral to slightly alkaline

  8. “Nanofiltration” Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples

    NASA Astrophysics Data System (ADS)

    Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R.

    2016-02-01

    Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation.

  9. "Nanofiltration" Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples.

    PubMed

    Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R

    2016-02-15

    Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation.

  10. “Nanofiltration” Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples

    PubMed Central

    Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R.

    2016-01-01

    Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation. PMID:26876979

  11. Sampling vadose-zone water for a volatile organic compound at Picatinny Arsenal, New Jersey

    USGS Publications Warehouse

    Smith, James A.; Cho, H. Jean; Jaffe, Peter R.; MacLeod, Cecilia L.; Koehnlein, Susan A.

    1992-01-01

    A new method of collecting samples of unsaturated-zone water for quantitative analysis for a volatile organic compound, trichloroethene (TCE), was compared to three other, previously described sampling methodologies in the laboratory and in the field. In the laboratory, prepared water samples containing TCE in a known concentration (20 µg/L) were sampled repeatedly by using each of the four methods to quantify method precision and accuracy. To compare the four methods in the field, unsaturated-zone water above a TCE-contaminated water-table aquifer was transferred from a depth of 2 m to land surface with 0.15-m-long suction lysimeters attached to 1.85-m lengths of stainless-steel tubing. Statistical analyses of the laboratory and field data indicate that the new method, which involves collecting the water samples in gas-tight glass syringes, is superior to the other three methods for the quantitative sampling and analysis of TCE on the basis of its high precision and accuracy and ease of use. This method was used to collect additional samples from the field site to quantify the spatial variability of TCE concentrations in the unsaturated-zone water. Results of analysis of variance of the data indicate that the spatial concentration variability is important, and that differences in TCE concentration are statistically significant for horizontal distances less than 3.6 m.

  12. Methods for collecting algal samples as part of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Porter, Stephen D.; Cuffney, Thomas F.; Gurtz, Martin E.; Meador, Michael R.

    1993-01-01

    Benthic algae (periphyton) and phytoplankton communities are characterized in the U.S. Geological Survey's National Water-Quality Assessment Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. This multidisciplinary approach provides multiple lines of evidence for evaluating water-quality status and trends, and for refining an understanding of the factors that affect water-quality conditions locally, regionally, and nationally. Water quality can be characterized by evaluating the results of qualitative and quantitative measurements of the algal community. Qualitative periphyton samples are collected to develop of list of taxa present in the sampling reach. Quantitative periphyton samples are collected to measure algal community structure within selected habitats. These samples of benthic algal communities are collected from natural substrates, using the sampling methods that are most appropriate for the habitat conditions. Phytoplankton samples may be collected in large nonwadeable streams and rivers to meet specific program objectives. Estimates of algal biomass (chlorophyll content and ash-free dry mass) also are optional measures that may be useful for interpreting water-quality conditions. A nationally consistent approach provides guidance on site, reach, and habitat selection, as well as information on methods and equipment for qualitative and quantitative sampling. Appropriate quality-assurance and quality-control guidelines are used to maximize the ability to analyze data locally, regionally, and nationally.

  13. Genotypic Characterization of Cryptosporidium hominis from Water Samples in São Paulo, Brazil

    PubMed Central

    Araújo, Ronalda S.; Dropa, Milena; Fernandes, Licia N.; Carvalho, Terezinha T.; Sato, Maria Inês Z.; Soares, Rodrigo M.; Matté, Glavur R.; Matté, Maria Helena

    2011-01-01

    The protozoan parasite Cryptosporidium has emerged as one of the most important water contaminants, causing waterborne outbreaks of diarrheal diseases worldwide. The small size of oocysts under the microscope and the possibility of changes in characteristics of oocysts, mainly in environmental samples, make the taxonomy of the genus difficult if morphologic characteristics are considered. This limitation encouraged the application of molecular methods to identify this microorganism. The aim of this study was to detect and identify by nested-polymerase chain reaction oocysts of Cryptosporidium present in water samples in the state of São Paulo, Brazil. Water samples were concentrated through a membrane filter, DNA was extracted by using a standard technique, and both amplification reactions used forward and reverse oligonucleotides that were complementary to Cryptosporidium 18S ribosomal RNA gene sequences. Thirty water samples from different sites of collection in the state of São Paulo were evaluated. Cryptosporidium oocysts were detected in 30% of the samples. By genoptyping, C. hominis and Cryptosporidium sp. were identified in recreational water and C. meleagridis was identified in surface water samples. This is the first report of C. hominis in environmental samples in Brazil. Although identification of Cryptosporidium is still a difficult task, molecular methods are essential for specific identification and are a helpful tool to aid to understand the epidemiology of this parasite in Brazil. PMID:22049036

  14. Determination of natural radioactivity by gross alpha and beta measurements in ground water samples.

    PubMed

    Turhan, S; Ozçitak, E; Taşkin, H; Varinlioğlu, A

    2013-06-01

    In this study, the activity concentrations of the gross α and β in ground water samples collected from the different drilled wells in Nevşehir province were measured to assess annual effective dose due to the ingestion of the water samples. Nevşehir province is one of the major cities of Cappadocia Region which is a popular tourist destination as it has many areas with unique geological, historic, and cultural features. Sampling and measurements were carried out in the autumn of 2011 and the spring of 2012. The values of the activity concentrations of the gross α and β measured in the water samples ranged from 80 to 380 mBq L(-1) with a mean of 192 mBq L(-1) and 120-3470 mBq L(-1) with a mean of 579 mBq L(-1) respectively. All values of the gross α were lower than the limit value of 500 mBq L(-1) while two ground water samples were found to have gross β activity concentrations of greater than 1000 mBq L(-1). Therefore two water samples were the subject of further radioisotope-specific analysis. The obtained result indicated that the elevated activity concentrations of the gross β in these water samples are dominated by (40)K activity. Annual effective doses ranged from 0.04 to 0.20 mSv y(-1).

  15. Assessment of elemental contaminants in water and fish samples from Aba river.

    PubMed

    Alinnor, I J

    2005-03-01

    The elemental contaminants in water and fish samples from Aba river were studied. The elements studied were Zn, Ni, As, Hg, Co and Mn. Three water samples and three samples of different fish species were collected from different locations in the river. The water and fish samples were analysed for elemental contaminants using Atomic Absorption Spectrophotometer (AAS). The elemental toxicants Zn and Mn were identified in appreciable amounts in fresh fish species namely, Lates niloticus and Oriochronis niloticus, of mean values 8.012 ppm and 0.861 ppm, respectively. The analysis also shows arsenic concentration of mean value 0.01 ppm in Lates niloticus. The analysis of frozen fish samples purchased from the Waterside market located near the river shows Ni and Hg levels of mean values 0.83 ppm and 0.02 ppm, respectively. The levels of elemental contaminants As, Zn, Hg and Mn from the water samples have mean values 0.082 ppm, 11.284 ppm, 0.201 ppm and 1.024 ppm, respectively. There are five industries that discharge waste products into Aba river. In view of this, there is a need to determine the level of pollution of the river, since the inhabitants depend on the river for their drinking water, fishing and other domestic uses. This study is aimed at determining the level of heavy metal toxicants in fish and water samples from the river. The effect of these elemental contaminants and the associated health hazards were examined.

  16. A new experimental design for laser-driven shocks on precompressed and preheated water samples

    SciTech Connect

    Sollier, A.; Auroux, E.; Vauthier, J.-S.; Desbiens, N.; Bourasseau, E.; Maillet, J.-B.; Boustie, M.; He, H.; Resseguier, T. de; Berterretche, P.

    2007-12-12

    Laser driven shock measurements have been performed on precompressed and preheated water samples in order to reach states lying above the standard water Hugoniot in the pressure versus temperature diagram, which are representative of the thermodynamic parameters of water in the detonation products of high condensed explosives. In this experimental system, water is used as both target sample and window medium for VISAR diagnosis. We report the first experiments performed with the LCD's laser system at low shock pressure, on water samples preheated up to 300 deg. C and precompressed up to 300 bar. The results are used to check the predictions of the CARTE thermochemical code, and compared with the Sesame equation of state and with molecular Monte Carlo calculations.

  17. Use of an Electronic Tongue System and Fuzzy Logic to Analyze Water Samples

    NASA Astrophysics Data System (ADS)

    Braga, Guilherme S.; Paterno, Leonardo G.; Fonseca, Fernando J.

    2009-05-01

    An electronic tongue (ET) system incorporating 8 chemical sensors was used in combination with two pattern recognition tools, namely principal component analysis (PCA) and Fuzzy logic for discriminating/classification of water samples from different sources (tap, distilled and three brands of mineral water). The Fuzzy program exhibited a higher accuracy than the PCA and allowed the ET to classify correctly 4 in 5 types of water. Exception was made for one brand of mineral water which was sometimes misclassified as tap water. On the other hand, the PCA grouped water samples in three clusters, one with the distilled water; a second with tap water and one brand of mineral water, and the third with the other two other brands of mineral water. Samples in the second and third clusters could not be distinguished. Nevertheless, close grouping between repeated tests indicated that the ET system response is reproducible. The potential use of the Fuzzy logic as the data processing tool in combination with an electronic tongue system is discussed.

  18. Alteration of an annealed and irradiated lunar fines sample by adsorbed water

    NASA Technical Reports Server (NTRS)

    Holmes, H. F.; Agron, P. A.; Eichler, E.; Fuller, E. L., Jr.; Okelley, G. D.; Gammage, R. B.

    1975-01-01

    Apollo 12 lunar fines sample 12070,403 was annealed at 1000 C and subsequently irradiated with a beam of 130 MeV Fe(9+) ions. Adsorptions of nitrogen and water were measured before and after the irradiation. Prior to the irradiation, the fines were nonporous and water had no effect on the physical characteristics of the lunar fines. In contrast, after the irradiation, the interaction with water caused an increase in the specific surface area and created a pore system. These results are definitive evidence that the interaction of water with damage tracks is the prime factor involved in the alteration of lunar fines by adsorbed water.

  19. Vacuum hand pump apparatus for collecting water samples from a horizontal intragravel pipe

    USGS Publications Warehouse

    Saiki, Michael K.; Martin, Barbara A.

    1996-01-01

    We describe a lightweight, portable vacuum hand pump apparatus for use in collecting water samples from horizontal intragravel pipe samplers buried in the stream bottom. The apparatus is easily fabricated from relatively inexpensive materials available at many laboratory supply houses.

  20. Instrumental neutron activation analysis data for cloud-water particulate samples, Mount Bamboo, Taiwan

    USGS Publications Warehouse

    Lin, Neng-Huei; Sheu, Guey-Rong; Wetherbee, Gregory A.; Debey, Timothy M.

    2013-01-01

    Cloud water was sampled on Mount Bamboo in northern Taiwan during March 22-24, 2002. Cloud-water samples were filtered using 0.45-micron filters to remove particulate material from the water samples. Filtered particulates were analyzed by instrumental neutron activation analysis (INAA) at the U.S. Geological Survey National Reactor Facility in Denver, Colorado, in February 2012. INAA elemental composition data for the particulate materials are presented. These data complement analyses of the aqueous portion of the cloud-water samples, which were performed earlier by the Department of Atmospheric Sciences, National Central University, Taiwan. The data are intended for evaluation of atmospheric transport processes and air-pollution sources in Southeast Asia.

  1. GROUND WATER ISSUE: LOW-FLOW (MINIMAL DRAWDOWN) GROUND-WATER SAMPLING PROCEDURES

    EPA Science Inventory

    This paper is intended to provide background information on the development of low-flow sampling procedures and its application under a variety of hydrogeologic settings. The sampling methodology described in this paper assumes that the monitoring goal is to sample monitoring wel...

  2. GROUND WATER ISSUE: LOW-FLOW (MINIMAL DRAWDOWN) GROUND-WATER SAMPLING PROCEDURES

    EPA Science Inventory

    This paper is intended to provide background information on the development of low-flow sampling procedures and its application under a variety of hydrogeologic settings. The sampling methodology described in this paper assumes that the monitoring goal is to sample monitoring wel...

  3. Exploring the Legionella pneumophila positivity rate in hotel water samples from Antalya, Turkey.

    PubMed

    Sepin Özen, Nevgün; Tuğlu Ataman, Şenay; Emek, Mestan

    2017-05-01

    The genus Legionella is a fastidious Gram-negative bacteria widely distributed in natural waters and man made water supply systems. Legionella pneumophila is the aetiological agent of approximately 90% of reported Legionellosis cases, and serogroup 1 is the most frequent cause of infections. Legionnaires' disease is often associated with travel and continues to be a public health concern at present. The correct water management quality practices and rapid methods for analyzing Legionella species in environmental water is a key point for the prevention of Legionnaires' disease outbreaks. This study aimed to evaluate the positivity rates and serotyping of Legionella species from water samples in the region of Antalya, Turkey, which is an important tourism center. During January-December 2010, a total of 1403 samples of water that were collected from various hotels (n = 56) located in Antalya were investigated for Legionella pneumophila. All samples were screened for L. pneumophila by culture method according to "ISO 11731-2" criteria. The culture positive Legionella strains were serologically identified by latex agglutination test. A total of 142 Legionella pneumophila isolates were recovered from 21 (37.5%) of 56 hotels. The total frequency of L. pneumophila isolation from water samples was found as 10.1%. Serological typing of 142 Legionella isolates by latex agglutination test revealed that strains belonging to L. pneumophila serogroups 2-14 predominated in the examined samples (85%), while strains of L. pneumophila serogroup 1 were less numerous (15%). According to our knowledge, our study with the greatest number of water samples from Turkey demonstrates that L. pneumophila serogroups 2-14 is the most common isolate. Rapid isolation of L. pneumophila from environmental water samples is essential for the investigation of travel related outbreaks and the possible resources. Further studies are needed to have epidemiological data and to determine the types of L

  4. Atrazine, triketone herbicides, and their degradation products in sediment, soil and surface water samples in Poland.

    PubMed

    Barchanska, Hanna; Sajdak, Marcin; Szczypka, Kornelia; Swientek, Angelika; Tworek, Martyna; Kurek, Magdalena

    2017-01-01

    The aim of this study was to monitor the sediment, soil and surface water contamination with selected popular triketone herbicides (mesotrione (MES) and sulcotrione(SUL)), atrazine (ATR) classified as a possible carcinogen and endocrine disrupting chemical, as well as their degradation products, in Silesia (Poland). Seventeen sediment samples, 24 soil samples, and 64 surface water samples collected in 2014 were studied. After solid-liquid extraction (SLE) and solid phase extraction (SPE), analytes were determined by high-performance liquid chromatography (HPLC) with diode array detection (DAD). Ten years after the withdrawal from the use, ATR was not detected in any of the collected samples; however, its degradation products are still present in 41 % of sediment, 71 % of soil, and 8 % of surface water samples. SUL was determined in 85 % of soil samples; its degradation product (2-chloro-4-(methylosulfonyl) benzoic acid (CMBA)) was present in 43 % of soil samples. In 17 % of sediment samples, CMBA was detected. Triketones were detected occasionally in surface water samples. The chemometric analysis (clustering analysis (CA), single-factor analysis of variance (ANOVA), N-Way ANOVA) was applied to find relations between selected soil and sediment parameters and herbicides concentration. In neither of the studied cases a statistically significant relationship between the concentrations of examined herbicides, their degradation products and soil parameters (organic carbon (OC), pH) was observed.

  5. An immunomagnetic separation-real-time PCR method for quantification of Cryptosporidium parvum in water samples.

    PubMed

    Fontaine, Melanie; Guillot, Emmanuelle

    2003-07-01

    The protozoan parasite Cryptosporidium parvum is known to occur widely in both raw and drinking water and is the cause of waterborne outbreaks of gastroenteritis throughout the world. The routinely used method for the detection of Cryptosporidium oocysts in water is based on an immunofluorescence assay (IFA). It is both time-consuming and nonspecific for the human pathogenic species C. parvum. We have developed a TaqMan polymerase chain reaction (PCR) test that accurately quantifies C. parvum oocysts in treated and untreated water samples. The protocol consisted of the following successive steps: Envirochek capsule filtration, immunomagnetic separation (IMS), thermal lysis followed by DNA purification using Nanosep centrifugal devices and, finally, real-time PCR using fluorescent TaqMan technology. Quantification was accomplished by comparing the fluorescence signals obtained from test samples with those from standard dilutions of C. parvum oocysts. This IMS-real-time PCR assay permits rapid and reliable quantification over six orders of magnitude, with a detection limit of five oocysts for purified oocyst solutions and eight oocysts for spiked water samples. Replicate samples of spiked tap water and Seine River water samples (with approximately 78 and 775 oocysts) were tested. C. parvum oocyst recoveries, which ranged from 47.4% to 99% and from 39.1% to 68.3%, respectively, were significantly higher and less variable than those reported using the traditional US Environmental Protection Agency (USEPA) method 1622. This new molecular method offers a rapid, sensitive and specific alternative for C. parvum oocyst quantification in water.

  6. Rapid and automated detection of fluorescent total bacteria in water samples.

    PubMed

    Lepeuple, A-S; Gilouppe, S; Pierlot, E; De Roubin, M-R

    2004-05-01

    Traditional methods for the detection and enumeration of bacteria in water samples are growth-based and require several days to obtain the result. New techniques which reduce the time of analysis have been developed. The objective of this work was to test a rapid method for the detection and enumeration of total viable bacteria using direct fluorescent labelling and detection by laser scanning. This method (referred to as TVC for Total Viable Count) was compared to the R2A culture method and the cyano-ditolyl-tetrazolium chloride (CTC) staining method for the analysis of samples before the final chlorination (after GAC filtration) and drinking water samples. For the comparison of TVC and CTC, the outcome depends on the water type: for samples after GAC filtration, TVC counts were significantly lower than CTC counts by up to 2 log10 orders of magnitude. For chlorinated water samples, TVC counts were not significantly different from CTC counts. The comparison of TVC and R2A showed that TVC counts could be lower than R2A counts or equivalent depending on the type of water. For drinking water, the TVC method proved to yield results equivalent to those of the R2A method. The TVC method requires much shorter time frame than others. It is also simple to use and allows the analysis of large volumes (100 ml) of drinking water.

  7. UMTRA project water sampling and analysis plan, Naturita, Colorado. Revision 1

    SciTech Connect

    1995-09-01

    Planned, routine ground water sampling activities for calendar year 1995 to 1997 at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site near Naturita, Colorado, are described in this water sampling and analysis plan. The following plan identifies and justifies the sampling locations, analytical parameters, detection limits, sampling frequency, and specific rationale for each routine monitoring station at the site. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US Environmental Protection Agency (EPA) regulations in 40 CFR Part 192. Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site.

  8. Hepatitis A virus in environmental water samples from the Amazon Basin.

    PubMed

    De Paula, V S; Diniz-Mendes, L; Villar, L M; Luz, S L B; Silva, L A; Jesus, M S; da Silva, N M V S; Gaspar, A M C

    2007-03-01

    Hepatitis A virus (HAV) is a significant waterborne human pathogen. Of the global supply of potable water, Brazil retains 13%, of which 75% resides in the Amazon Basin. Although hepatitis A morbidity has declined progressively in Brazil as a whole, it remains high in the Amazon region. We used nested and real-time reverse-transcription polymerase chain reaction (RT-PCR) to detect and quantify the viral load in water samples from the Amazon Basin. Most samples tested positive (92%), with viral loads varying from 60 to 5500 copies /L, depending on sanitary conditions and the degree of flooding. Nested RT-PCR of the VP1-2A region detected HAV RNA in 23% of the samples. In low viral load samples, HAV was detected only with real-time RT-PCR, suggesting that this technique is useful for monitoring HAV contamination. The presence of HAV in water samples constitutes a serious public health problem.

  9. Rapid screening of 90Sr activity in water and milk samples using Cherenkov radiation.

    PubMed

    Stamoulis, K C; Ioannides, K G; Karamanis, D T; Patiris, D C

    2007-01-01

    A method for screening 90Sr in milk samples is proposed. This method is based on a liquid scintillation technique taking advantage of Cherenkov radiation, which is produced in a liquid medium and then detected by the photomultipliers of a Liquid Scintillation Counter (LSC). Twenty millilitres of water and milk samples spiked with various concentrations of 90Sr/90Y in equilibrium were added in plastic vials and then were measured with an LSC (TriCarb 3170 TR/SL). The derived efficiencies were 49% for water samples and 14% for milk samples. The detection limit was 470 mBq L(-1)(90)Sr for water, without any pretreatment. Milk contains potassium, which also produces Cherenkov radiation due to the presence of 40K. For this reason, the interference of 40K in the measurements of 90Sr in milk samples was also investigated. The detection limit for milk was 1.7 Bq L(-1)90Sr.

  10. Water quality in dental chair units. A random sample in the canton of St. Gallen.

    PubMed

    Barben, Jürg; Kuehni, Claudia E; Schmid, Jürg

    2009-01-01

    This study aimed to identify the microbial contamination of water from dental chair units (DCUs) using the prevalence of Pseudomonas aeruginosa, Legionella species and heterotrophic bacteria as a marker of pollution in water in the area of St. Gallen, Switzerland. Water (250 ml) from 76 DCUs was collected twice (early on a morning before using all the instruments and after using the DCUs for at least two hours) either from the high-speed handpiece tube, the 3 in 1 syringe or the micromotor for water quality testing. An increased bacterial count (>300 CFU/ml) was found in 46 (61%) samples taken before use of the DCU, but only in 29 (38%) samples taken two hours after use. Pseudomonas aeruginosa was found in both water samples in 6/76 (8%) of the DCUs. Legionella were found in both samples in 15 (20%) of the DCUs tested. Legionella anisa was identified in seven samples and Legionella pneumophila was found in eight. DCUs which were less than five years old were contaminated less often than older units (25% und 77%, p<0.001). This difference remained significant (0=0.0004) when adjusted for manufacturer and sampling location in a multivariable logistic regression. A large proportion of the DCUs tested did not comply with the Swiss drinking water standards nor with the recommendations of the American Centers for Disease Control and Prevention (CDC).

  11. Natural radioactivity in various water samples and radiation dose estimations in Bolu province, Turkey.

    PubMed

    Gorur, F Korkmaz; Camgoz, H

    2014-10-01

    The level of natural radioactivity for Bolu province of north-western Turkey was assessed in this study. There is no information about radioactivity measurement reported in water samples in the Bolu province so far. For this reason, gross α and β activities of 55 different water samples collected from tap, spring, mineral, river and lake waters in Bolu were determined. The mean activity concentrations were 68.11 mBq L(-1), 169.44 mBq L(-1) for gross α and β in tap water. For all samples the gross β activity is always higher than the gross α activity. All value of the gross α were lower than the limit value of 500 mBq L(-1) while two spring and one mineral water samples were found to have gross β activity concentrations of greater than 1000 mBq L(-1). The associated age-dependent dose from all water ingestion in Bolu was estimated. The total dose for adults had an average value exceeds the WHO recommended limit value. The risk levels from the direct ingestion of the natural radionuclides in tap and mineral water in Bolu were determinated. The mean (210)Po and (228)Ra risk the value of tap and mineral waters slightly exceeds what some consider on acceptable risk of 10(-4) or less.

  12. Soil and Water – What is Detectable through Microbiological Sample Preparation Techniques

    EPA Science Inventory

    The concerns of a potential terrorist’s use of biological agents in soil and ground water are articulated by comparisons to major illnesses in this Country involving contaminated drinking water sources. Objectives are focused on the importance of sample preparation in the rapid, ...

  13. Ground-water quality in east-central New Jersey and a plan for sampling networks

    SciTech Connect

    Harriman, D.A.; Sargent, B.P.

    1985-01-01

    Groundwater quality was evaluated in seven confined aquifers and the water table aquifer in east-central New Jersey based on 237 analyses of samples collected in 1981-82, and 225 older analyses. Investigation of the effect of land use on water quality and several sampling network proposals for the region are reported. Iron (Fe) and manganese (Mn) concentrations exceed US EPA drinking water standards in some wells screened in the Potomac-Raritan-Magothy aquifer system. Sodium (Na) concentrations in samples from three wells more than 800 ft deep in the Englishtown aquifer exceed the standard. Iron and Mn concentrations in this aquifer may also exceed the standards. Iron concentrations in the Wenonah-Mount Laurel aquifer exceed the standard. Based on 15 analyses of water from the Vincetown aquifer, Mn is the only constituent that exceeds the drinking water standard. In the Manasquan aquifer, 4 of the 16 Na determinations exceed the standard, and 8 of 16 Fe determinations exceed the standard. Water quality in the Atlantic City 800-ft sand is generally satisfactory. However, 12 Fe and 1 of 12 Mn determinations exceed the standards. For the Rio Grande water-bearing zone, 1 of 3 Fe determinations exceed the standard. The Kirkwood-Cohansey aquifer system was the most thoroughly sampled (249 chemical analyses from 209 wells). Dissolved solids, chloride, Fe, nitrate, and Mn concentrations exceed drinking water standards in some areas. 76 refs., 36 figs., 12 tabs.

  14. Soil and Water – What is Detectable through Microbiological Sample Preparation Techniques

    EPA Science Inventory

    The concerns of a potential terrorist’s use of biological agents in soil and ground water are articulated by comparisons to major illnesses in this Country involving contaminated drinking water sources. Objectives are focused on the importance of sample preparation in the rapid, ...

  15. Water intoxication presenting as a suspected contaminated urine sample for drug testing.

    PubMed

    Finkel, Kevin W

    2004-06-01

    A patient was evaluated medically after submitting a urine sample for drug screening that was considered inappropriately dilute. Although it was thought that the dilute urine was the result of purposely adding water, the medical evaluation revealed that the patient had chronic water intoxication from a very strict weight loss regimen. The effect of dietary solute intake on water metabolism by the kidneys and the development of hyponatremia are discussed.

  16. Classification and authentication of unknown water samples using machine learning algorithms.

    PubMed

    Kundu, Palash K; Panchariya, P C; Kundu, Madhusree

    2011-07-01

    This paper proposes the development of water sample classification and authentication, in real life which is based on machine learning algorithms. The proposed techniques used experimental measurements from a pulse voltametry method which is based on an electronic tongue (E-tongue) instrumentation system with silver and platinum electrodes. E-tongue include arrays of solid state ion sensors, transducers even of different types, data collectors and data analysis tools, all oriented to the classification of liquid samples and authentication of unknown liquid samples. The time series signal and the corresponding raw data represent the measurement from a multi-sensor system. The E-tongue system, implemented in a laboratory environment for 6 numbers of different ISI (Bureau of Indian standard) certified water samples (Aquafina, Bisleri, Kingfisher, Oasis, Dolphin, and McDowell) was the data source for developing two types of machine learning algorithms like classification and regression. A water data set consisting of 6 numbers of sample classes containing 4402 numbers of features were considered. A PCA (principal component analysis) based classification and authentication tool was developed in this study as the machine learning component of the E-tongue system. A proposed partial least squares (PLS) based classifier, which was dedicated as well; to authenticate a specific category of water sample evolved out as an integral part of the E-tongue instrumentation system. The developed PCA and PLS based E-tongue system emancipated an overall encouraging authentication percentage accuracy with their excellent performances for the aforesaid categories of water samples.

  17. Comparison of water-quality samples collected by siphon samplers and automatic samplers in Wisconsin

    USGS Publications Warehouse

    Graczyk, David J.; Robertson, Dale M.; Rose, William J.; Steur, Jeffrey J.

    2000-01-01

    In small streams, flow and water-quality concentrations often change quickly in response to meteorological events. Hydrologists, field technicians, or locally hired stream ob- servers involved in water-data collection are often unable to reach streams quickly enough to observe or measure these rapid changes. Therefore, in hydrologic studies designed to describe changes in water quality, a combination of manual and automated sampling methods have commonly been used manual methods when flow is relatively stable and automated methods when flow is rapidly changing. Auto- mated sampling, which makes use of equipment programmed to collect samples in response to changes in stage and flow of a stream, has been shown to be an effective method of sampling to describe the rapid changes in water quality (Graczyk and others, 1993). Because of the high cost of automated sampling, however, especially for studies examining a large number of sites, alternative methods have been considered for collecting samples during rapidly changing stream conditions. One such method employs the siphon sampler (fig. 1). also referred to as the "single-stage sampler." Siphon samplers are inexpensive to build (about $25- $50 per sampler), operate, and maintain, so they are cost effective to use at a large number of sites. Their ability to collect samples representing the average quality of water passing though the entire cross section of a stream, however, has not been fully demonstrated for many types of stream sites.

  18. Qualilty, isotopes, and radiochemistry of water sampled from the Upper Moenkopi Village water-supply wells, Coconino County, Arizona

    USGS Publications Warehouse

    Carruth, Rob; Beisner, Kimberly; Smith, Greg

    2013-01-01

    The Hopi Tribe Water Resources Program has granted contracts for studies to evaluate water supply conditions for the Moenkopi villages in Coconino County, Arizona. The Moenkopi villages include Upper Moenkopi Village and the village of Lower Moencopi, both on the Hopi Indian Reservation south of the Navajo community of Tuba City. These investigations have determined that water supplies are limited and vulnerable to several potential sources of contamination, including the Tuba City Landfill and a former uranium processing facility known as the Rare Metals Mill. Studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are greater than regional groundwater concentrations. The source of water supply for the Upper Moenkopi Village is three public-supply wells. The wells are referred to as MSW-1, MSW-2, and MSW-3 and all three wells obtain water from the regionally extensive N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and consists of thick beds of sandstone between less permeable layers of siltstone and mudstone. The relatively fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells. In recent years, water levels have declined in the three public-supply wells, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. Analyses of major ions, nutrients, selected trace metals, stable and radioactive isotopes, and radiochemistry were performed on the groundwater samples from the three public-supply wells to describe general water-quality conditions and groundwater ages in and immediately surrounding the Upper Moenkopi Village area. None of the water samples collected from the public-supply wells exceeded the U.S. Environmental Protection Agency primary drinking water standards. The ratios of the major dissolved ions from the samples collected from MSW-1 and MSW-2 indicate

  19. Classification of Water Masses and Targeted Sampling of Ocean Plankton Populations by an Autonomous Underwater Vehicle

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Ryan, J. P.; Bellingham, J. G.; Harvey, J.; McEwen, R.; Chavez, F.; Scholin, C.

    2011-12-01

    Autonomous underwater vehicles (AUVs) are playing an increasingly active role in oceanographic surveys due to their mobility, efficiency, and growing intelligence. The Dorado AUV is equipped with a comprehensive suite of in situ sensors and ten 1.8-liter water samplers (called "gulpers"). During an October 2010 experiment in Monterey Bay, the AUV ran our autonomous peak-capture algorithm to acquire chlorophyll/backscatter peak samples from a phytoplankton bloom, allowing biologists to successfully monitor fluctuations in harmful microalgae (Psuedo-nitzschia spp.), the toxin they produce (domoic acid), and co-occurring zooplankton (invertebrate larvae and copepods) over space and time. For further investigations of the complex marine ecosystem in northern Monterey Bay, we set a more challenging goal: when the AUV flies from an upwelling shadow region (stratified water column) through an upwelling front into newly upwelled water, can it autonomously distinguish among water columns with different vertical structures and accordingly sample plankton populations on either side of, as well as within, the upwelling front? To achieve this goal, we have developed two new algorithms, one for distinguishing upwelling water columns from stratified water columns based on the vertical homogeneity of temperature, and the other for detecting an upwelling front based on the horizontal gradient of temperature. For acquiring targeted water samples, the 10 gulpers are appropriately allocated to the two distinct water columns and the front. Lockout time intervals between triggerings are set to prevent "dense triggerings". During our June 2011 experiment, the Dorado AUV flew westward from an upwelling shadow region (stratified water column) through an upwelling front, and into an upwelling water column. Three gulpers were allocated to the stratified water column, four to the front, and the remaining three to the upwelling water column. The AUV successfully detected and acquired targeted

  20. Assessment of water quality index of bore well water samples from some selected locations of South Gujarat, India.

    PubMed

    Tripathi, S; Patel, H M; Srivastava, P K; Bafna, A M

    2013-10-01

    The present study calculates the water quality index (WQI) of some selected sites from South Gujarat (India) and assesses the impact of industries, agriculture and human activities. Chemical parameters were monitored for the calculation of WQI of some selected bore well samples. The results revealed that the WQI of the some bore well samples exceeded acceptable levels due to the dumping of wastes from municipal, industrial and domestic sources and agricultural runoff as well. Inverse Distance Weighting (IDW) was implemented for interpolation of each water quality parameter (pH, EC, alkalinity, total hardness, chloride, nitrate and sulphate) for the entire sampled area. The bore water is unsuitable for drinking and if the present state of affairs continues for long, it may soon become an ecologically dead bore.

  1. An Optimized Method for Quantification of Pathogenic Leptospira in Environmental Water Samples

    PubMed Central

    Riediger, Irina N.; Hoffmaster, Alex R.; Biondo, Alexander W.; Ko, Albert I.; Stoddard, Robyn A.

    2016-01-01

    Leptospirosis is a zoonotic disease usually acquired by contact with water contaminated with urine of infected animals. However, few molecular methods have been used to monitor or quantify pathogenic Leptospira in environmental water samples. Here we optimized a DNA extraction method for the quantification of leptospires using a previously described Taqman-based qPCR method targeting lipL32, a gene unique to and highly conserved in pathogenic Leptospira. QIAamp DNA mini, MO BIO PowerWater DNA and PowerSoil DNA Isolation kits were evaluated to extract DNA from sewage, pond, river and ultrapure water samples spiked with leptospires. Performance of each kit varied with sample type. Sample processing methods were further evaluated and optimized using the PowerSoil DNA kit due to its performance on turbid water samples and reproducibility. Centrifugation speeds, water volumes and use of Escherichia coli as a carrier were compared to improve DNA recovery. All matrices showed a strong linearity in a range of concentrations from 106 to 10° leptospires/mL and lower limits of detection ranging from <1 cell /ml for river water to 36 cells/mL for ultrapure water with E. coli as a carrier. In conclusion, we optimized a method to quantify pathogenic Leptospira in environmental waters (river, pond and sewage) which consists of the concentration of 40 mL samples by centrifugation at 15,000×g for 20 minutes at 4°C, followed by DNA extraction with the PowerSoil DNA Isolation kit. Although the method described herein needs to be validated in environmental studies, it potentially provides the opportunity for effective, timely and sensitive assessment of environmental leptospiral burden. PMID:27487084

  2. Evaluation of the Validity of Groundwater Samples Obtained Using the Purge Water Management System at SRS

    SciTech Connect

    Beardsley, C.C.

    1999-04-27

    As part of the demonstration testing of the Purge Water Management System (PWMS) technology at the Savannah River Site (SRS), four wells were equipped with PWMS units in 1997 and a series of sampling events were conducted at each during 1997-1998. Three of the wells were located in A/M Area while the fourth was located at the Old Radioactive Waste Burial Ground in the General Separations Area.The PWMS is a ''closed-loop'', non-contact, system used to collect and return purge water to the originating aquifer after a sampling event without having significantly altered the water quality. One of the primary concerns as to its applicability at SRS, and elsewhere, is whether the PWMS might resample groundwater that is returned to the aquifer during the previous sampling event. The purpose of the present investigation was to compare groundwater chemical analysis data collected at the four test wells using the PWMS vs. historical data collected using the standard monitoring program methodology to determine if the PWMS provides representative monitoring samples.The analysis of the groundwater chemical concentrations indicates that the PWMS sampling methodology acquired representative groundwater samples at monitoring wells ABP-1A, ABP-4, ARP-3 and BGO-33C. Representative groundwater samples are achieved if the PWMS does not resample groundwater that has been purged and returned during a previous sampling event. Initial screening calculations, conducted prior to the selection of these four wells, indicated that groundwater velocities were high enough under the ambient hydraulic gradients to preclude resampling from occurring at the time intervals that were used at each well. Corroborating evidence included a tracer test that was conducted at BGO-33C, the high degree of similarity between analyte concentrations derived from the PWMS samples and those obtained from historical protocol sampling, as well as the fact that PWMS data extend all previously existing concentration

  3. Heterotrophic plate counts of surface water samples by using impedance methods.

    PubMed Central

    Noble, P A; Ashton, E; Davidson, C A; Albritton, W L

    1991-01-01

    Membrane filtration, spread plating, and pour plating are conventional methods used to determine the heterotrophic plate counts of water samples. Impedance methods were investigated as an alternative to conventional methods, since sample dilution is not required and the bacterial count can be estimated within 24 h. Comparisons of impedance signals obtained with different water samples revealed that capacitance produced faster detection times than conductance. Moreover, the correlation between heterotrophic plate count and detection time was highest (r = 0.966) when capacitance was used. Linear and quadratic regressions of heterotrophic plate count and impedance detection time were affected by incubation temperatures. Regressions between heterotrophic plate counts based on conventional methods and detection times of water samples incubated at less than or equal to 25 degrees C had R2 values of 0.878 to 0.933. However, regressions using detection times of water samples incubated at greater than or equal to 30 degrees C had lower R2 values, even though water samples produced faster detection times. Comparisons between broth-based versions of R2A medium and plate count agar revealed that the latter correlated highly with heterotrophic plate count, provided that water samples were incubated at 25 degrees C and impedance measurements were conducted with the capacitance signal (r = 0.966). When the linear regression of this relationship was tested with 100 water samples, the correlation between predicted and actual log10 CFU milliliter-1 was 0.869. These results indicate that impedance methods provide a suitable alternative to conventional methods. PMID:1781686

  4. GROUND WATER MONITORING AND SAMPLING: MULTI-LEVEL VERSUS TRADITIONAL METHODS WHATS WHAT?

    EPA Science Inventory

    After years of research and many publications, the question still remains: What is the best method to collect representative ground water samples from monitoring wells? Numerous systems and devices are currently available for obtaining both multi-level samples as well as traditi...

  5. HYDROLYSIS OF MTBE IN GROUND WATER SAMPLES PRESERVED WITIH HYDROCHLORIC ACID

    EPA Science Inventory

    Conventional sampling and analytical protocols have poor sensitivity for fuel oxygenates that are alcohols, such as TBA. Because alcohols tend to stay with the water samples, they are not efficiently transferred to the gas chromatograph for separation and analysis. A common tec...

  6. Semi-micro determination of water content for the bulk samples of Oxytetracycline, Tetracycline and Chlortetracycline.

    PubMed

    Khan, N H; Roets, E; Hoogmartens, J

    1990-07-01

    The semi-micro analysis of the bulk commercial samples of Oxytetracycline, Tetracycline and Chlortetracycline for their water content using Karl Fischer reagent is described. All the samples analysed comply with the limits laid down in European Pharmacopoeia or United States Pharmacopoeia.

  7. GROUND WATER MONITORING AND SAMPLING: MULTI-LEVEL VERSUS TRADITIONAL METHODS WHATS WHAT?

    EPA Science Inventory

    After years of research and many publications, the question still remains: What is the best method to collect representative ground water samples from monitoring wells? Numerous systems and devices are currently available for obtaining both multi-level samples as well as traditi...

  8. HYDROLYSIS OF MTBE IN GROUND WATER SAMPLES PRESERVED WITIH HYDROCHLORIC ACID

    EPA Science Inventory

    Conventional sampling and analytical protocols have poor sensitivity for fuel oxygenates that are alcohols, such as TBA. Because alcohols tend to stay with the water samples, they are not efficiently transferred to the gas chromatograph for separation and analysis. A common tec...

  9. Helicobacter sp. recovered from drinking water biofilm sampled from a water distribution system.

    PubMed

    Park, S R; Mackay, W G; Reid, D C

    2001-04-01

    Workers examining the transmission route(s) and reservoir(s) of infection for Helicobacter pylori have postulated several environmental reservoirs for the organism, including water. Such work has, to date, concentrated on the bulk liquid in drinking water systems rather than on biofilms. Previous investigations by the authors have suggested biofilms in water distribution systems are a possible reservoir of infection. This current study comprised of an analysis of a section of cast iron mains distribution pipe removed from an urban environment in the north-east of Scotland during routine maintenance work. Immediately upon removal of the pipe section, the interior lumen was swabbed to remove the biofilm layer. Subsequent analysis for the presence of Helicobacter DNA using a nested PCR approach produced a positive result. This data provides the first evidence for the existence of Helicobacter in biofilms found in water distribution systems anywhere in the world.

  10. Salinity of ground water at sampling wells located in southeastern Nassau County, Long Island, New York

    USGS Publications Warehouse

    Lusczynski, Norbert J.

    1950-01-01

    In 1939, a special program for the systematic collection of chloride data in southeastern Nassau County was inaugurated in which three agencies participated. The Nassau County Department of Public Works constructed the sampling wells, the Ground Water Branch of the U.S. Geological Survey began to collect at period intervals water samples which were analysed at the Mount Prospect Laboratory of the New York Department of Water Supply, Gas and Electricity, The Nassau County Department of Public Works and the U.S. Geological Survey have continued financial cooperation for the maintenance of this program up to the present time.

  11. Evaluation of water samples collected during LANDSAT-1 overpasses of the lower Chesapeake Bay area

    NASA Technical Reports Server (NTRS)

    Bowker, D. E.; Witte, W. G.

    1976-01-01

    Water samples were collected on 18 days when the LANDSAT-1 satellite was passing over the lower Chesapeake Bay area. A correlation between the various water parameters has been performed for the more than 300 surface samples. Six days were sufficiently cloudless that MSS digital tapes were useful for analysis. Correlation of radiance values with the water parameters revealed a low correlation for chlorophyll and good correlations with particles and sediment. The relation of total particles to sediment was linear, but varied from day to day.

  12. Proton transfer pathways in an aspartate-water cluster sampled by a network of discrete states

    NASA Astrophysics Data System (ADS)

    Reidelbach, Marco; Betz, Fridtjof; Mäusle, Raquel Maya; Imhof, Petra

    2016-08-01

    Proton transfer reactions are complex transitions due to the size and flexibility of the hydrogen-bonded networks along which the protons may ;hop;. The combination of molecular dynamics based sampling of water positions and orientations with direct sampling of proton positions is an efficient way to capture the interplay of these degrees of freedom in a transition network. The energetically most favourable pathway in the proton transfer network computed for an aspartate-water cluster shows the pre-orientation of water molecules and aspartate side chains to be a pre-requisite for the subsequent concerted proton transfer to the product state.

  13. Concentration of ions in selected bottled water samples sold in Malaysia

    NASA Astrophysics Data System (ADS)

    Aris, Ahmad Zaharin; Kam, Ryan Chuan Yang; Lim, Ai Phing; Praveena, Sarva Mangala

    2013-03-01

    Many consumers around the world, including Malaysians, have turned to bottled water as their main source of drinking water. The aim of this study is to determine the physical and chemical properties of bottled water samples sold in Selangor, Malaysia. A total of 20 bottled water brands consisting of `natural mineral (NM)' and `packaged drinking (PD)' types were randomly collected and analyzed for their physical-chemical characteristics: hydrogen ion concentration (pH), electrical conductivity (EC) and total dissolved solids (TDS), selected major ions: calcium (Ca), potassium (K), magnesium (Mg) and sodium (Na), and minor trace constituents: copper (Cu) and zinc (Zn) to ascertain their suitability for human consumption. The results obtained were compared with guideline values recommended by World Health Organization (WHO) and Malaysian Ministry of Health (MMOH), respectively. It was found that all bottled water samples were in accordance with the guidelines set by WHO and MMOH except for one sample (D3) which was below the pH limit of 6.5. Both NM and PD bottled water were dominated by Na + K > Ca > Mg. Low values for EC and TDS in the bottled water samples showed that water was deficient in essential elements, likely an indication that these were removed by water treatment. Minerals like major ions were present in very low concentrations which could pose a risk to individuals who consume this water on a regular basis. Generally, the overall quality of the supplied bottled water was in accordance to standards and guidelines set by WHO and MMOH and safe for consumption.

  14. Ground-water quality in east-central New Jersey, and a plan for sampling networks

    USGS Publications Warehouse

    Harriman, D.A.; Sargent, B.P.

    1985-01-01

    Groundwater quality was evaluated in seven confined aquifers and the water table aquifer in east-central New Jersey based on 237 analyses of samples collected in 1981-82, and 225 older analyses. Investigation of the effect of land use on water quality and several sampling network proposals for the region are reported. Generally, water in the confined aquifers is of satisfactory quality for human consumption and most other uses. Iron (Fe) and manganese (Mn) concentrations exceed U.S. EPA drinking water standards in some wells screened in the Potomac-Raritan-Magothy aquifer system. Sodium (Na) concentrations in samples from three wells more than 800 ft deep in the Englishtown aquifer exceed the standard. Iron and Mn concentrations in this aquifer may also exceed the standards. Iron concentrations in the Wenonah-Mount Laurel aquifer exceed the standard. Based on 15 analyses of water from the Vincetown aquifer, Mn is the only constituent that exceeds the drinking water standard. In the Manasquan aquifer, 4 of the 16 Na determinations exceed the standard, and 8 of 16 Fe determinations exceed the standard. Water quality in the Atlantic City 800-ft sand is generally satisfactory. However, 12 Fe and 1 of 12 Mn determinations exceed the standards. For the Rio Grande water-bearing zone, 1 of 3 Fe determinations exceed the standard. The Kirkwood-Cohansey aquifer system (the water table aquifer) was the most thoroughly sampled (249 chemical analyses from 209 wells). Dissolved solids, chloride, Fe, nitrate, and Mn concentrations exceed drinking water standards in some areas. The results of chi-square tests of constituent distributions based on analyses from 158 wells in the water table aquifer indicate that calcium is higher in industrial and commercial areas; and Mg, chloride, and nitrate-plus-nitrite is higher in residential areas. (Author 's abstract)

  15. Comparison of sampling strategies for monitoring water quality in mesoscale Canadian Prairie watersheds.

    PubMed

    Ross, Cody; Petzold, Halya; Penner, Amber; Ali, Genevieve

    2015-07-01

    The Canadian Prairies are subject to cold winter dynamics, spring snowmelt runoff, and summer storms; a process variability that makes it difficult to identify an adequate sampling strategy for capturing representative water quality data. Hence, our research objective was to compare multiple water quality sampling strategies for Prairie watersheds and rank them based on operational and statistical criteria. The focus was on the Catfish Creek Watershed (Manitoba, Canada), which drains into the hypereutrophic Lake Winnipeg. Water samples were collected every 7 h during the 2013 open-water season and notably analyzed for nitrate and orthophosphate. The original high-frequency dataset (7 h) was then deconstructed into lower-frequency datasets to mimic strategies involving sample collection on a daily, weekly, bi-weekly, monthly, and seasonal basis. A comparison and decision matrix was also built to assess the ability of the lower-frequency datasets to retain the statistical properties of the original (7 h) dataset. Results indicate that nutrient concentrations vary significantly over short timescales and are affected by both sampling time (day versus night) and water level fluctuations. The decision matrix revealed that seasonal sampling is sufficient when the goal is only to capture mean water quality conditions; however, sub-daily to daily sampling is required for accurate process signal representation. While we acknowledge that sampling programs designed by researchers and public agencies are often driven by different goals, we found daily sampling to be the most parsimonious strategy for the study watershed and suggest that it would help to better quantify nutrient loads to Lake Winnipeg.

  16. May 2011 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2011-12-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 16-17, 2011, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and for tritium using the conventional method. Tritium was not measured using the enrichment method because the EPA laboratory no longer offers that service. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the boundaries have not been affected by project-related contaminants.

  17. Nontuberculous mycobacteria in aerosol droplets and bulk water samples from therapy pools and hot tubs.

    PubMed

    Glazer, Craig S; Martyny, John W; Lee, Ben; Sanchez, Tracy L; Sells, Tricia M; Newman, Lee S; Murphy, James; Heifets, Leonid; Rose, Cecile S

    2007-11-01

    Hot tub exposure has been causally associated with a steroid-responsive, granulomatous lung disease featuring nontuberculous mycobacterial (NTM) growth in both clinical and environmental samples. Little is known regarding prevalence of and risk factors for NTM-contamination and associated illness in these settings. In this study, the frequency of NTM growth and aerosolization in 18 public hot tubs and warm water therapy pools and the factors associated with mycobacterial growth were analyzed. Each site was characterized by water chemistry analysis; a questionnaire on maintenance, disinfection, and water quality; and air and water sampling for quantitative NTM culture. NTM were detected in air or water from 13/18 (72%) sites; a strong correlation was found between the maximum air and water NTM concentrations (rho 0.49, p = 0.04). Use of halogen (chlorine or bromine) disinfection was associated with significantly lower air and water concentrations of NTM compared with disinfection using ultraviolet light and hydrogen peroxide (p = 0.01-0.04). Higher water turnover rates were also associated with lower air and water NTM concentrations (p = 0.02-0.03). These findings suggest that NTM are frequently detectable in the air and water of spas and therapy pools and that particular maintenance and disinfection approaches affect NTM bioaerosol concentrations in these settings.

  18. Determination of UV filters and antimicrobial agents in environmental water samples.

    PubMed

    Cuderman, Petra; Heath, Ester

    2007-02-01

    Although there is increasing concern about residues from personal care products entering the aquatic environment and their potential to accumulate to levels that pose a health threat to humans and wildlife, we still know little about the extent and magnitude of their presence in the aquatic environment. In this study we describe a procedure for isolation, and subsequent determination, of compounds commonly added to personal care products. The compounds of interest include UV filters with the commercial name Eusolex (homosalate, 4-methylbenzylidenecamphor, benzophenone-3, octocrylene, butylmethoxydibenzoylmethane, ethylhexyl methoxycinnamate) and two common anti-microbial agents, clorophene and triclosan. Water samples were filtered, acidified, and extracted by use of solid-phase extraction. Extracted compounds were then derivatised before analysis by gas chromatography-mass spectroscopy. By use of our method we obtained limits of detection of 13-266 ng L(-1) for UV filters, and 10-186 ng L(-1) for triclosan and clorophene. Recoveries were 82-98% for deionised water and 50-98% for natural water (seawater, pool water, lake water, and river water). Samples collected in Slovenia included seventeen recreational waters (seawater, pool water, lake water, and river water; August 2004) and four wastewaters (January 2005). The most abundant UV filter was benzophenone-3 (11-400 ng L(-1)). Of the two anti-microbial agents studied, trace amounts, only, of triclosan were present in the river Kolpa (68 ng L(-1)) and in an hospital effluent (122 ng L(-1)).

  19. Identification of Phyllosilicates in Mudstone Samples Using Water Releases Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars

    NASA Technical Reports Server (NTRS)

    Hogancamp, J. V. (Clark); Ming, D. W.; McAdam, A. C.; Archer, P. D.; Morris, R. V.; Bristow, T. F.; Rampe, E. B.; Mahaffy, P. R.; Gellert, R.

    2017-01-01

    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected high temperature water releases from mud-stones in the areas of Yellowknife Bay, Pahrump Hills, Naukluft Plateau, and Murray Buttes in Gale crater. Dehydroxylation of phyllosilicates may have caused the high temperature water releases observed in these samples. Because each type of phyllosilicate undergoes dehydroxylation at distinct temperatures, these water releases can be used to help constrain the type of phyllosilicate present in each sample.

  20. May 2013 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2013-10-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 14-16, 2013, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location CER #1 Black Sulphur. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods.

  1. White HDPE bottles as source of serious contamination of water samples with Ba and Zn.

    PubMed

    Reimann, Clemens; Grimstvedt, Andreas; Frengstad, Bjørn; Finne, Tor Erik

    2007-03-15

    During a recent study of surface water quality factory new white high-density polyethylene (HDPE) bottles were used for collecting the water samples. According to the established field protocol of the Geological Survey of Norway the bottles were twice carefully rinsed with water in the field prior to sampling. Several blank samples using milli-Q (ELGA) water (>18.2 MOmega) were also prepared. On checking the analytical results the blanks returned values of Ag, Ba, Sr, V, Zn and Zr. For Ba and Zn the values (c. 300 microg/l and 95 microg/l) were about 10 times above the concentrations that can be expected in natural waters. A laboratory test of the bottles demonstrated that the bottles contaminate the samples with significant amounts of Ba and Zn and some Sr. Simple acid washing of the bottles prior to use did not solve the contamination problem for Ba and Zn. The results suggest that there may exist "clean" and "dirty" HDPE bottles depending on manufacturer/production process. When collecting water samples it is mandatory to check bottles regularly as a possible source of contamination.

  2. Occurrence of Aeromonas spp. in a random sample of drinking water distribution systems in the USA.

    PubMed

    Egorov, Andrey I; Best, Jennifer M Birkenhauer; Frebis, Christopher P; Karapondo, Michella S

    2011-12-01

    Aeromonads are aquatic bacteria found in drinking water supplies worldwide. Some species, such as Aeromonas hydrophila, can cause disease in humans. For this survey, 293 United States public water systems were selected using random sampling, stratified by water source and system type. Water samples were collected during one year from three sites (six samples per site) in each system. Temperature, pH, turbidity, total and free chlorine were measured using standard methods. Aeromonads were detected in 130 of 5,042 valid samples (2.6%) from 42 (14.3%) systems using the ampicillin-dextrin agar with vancomycin culture method with oxidase, trehalose and indole confirmation tests. Concentrations of aeromonads in positive samples were 0.2 to 880 (median 1.6) colony-forming units (CFU) per 100 mL. Adjusted odds ratios of Aeromonas detection were 1.6 (95% confidence limits 1.0, 2.5) during the summer season, 3.3 (1.8, 6.2) for turbidity above 0.5 nephelometric units and 9.1 (3.5, 24) at 0 mg/L compared with 0.25 mg/L total chlorine. Geographic region, system size and type of water source were not significant predictors of Aeromonas detection in multivariate regression analysis. The results of this survey demonstrate the importance of maintaining adequate residual chlorine and low turbidity for preventing drinking water contamination with aeromonads.

  3. [Detecting Thallium in Water Samples using Dispersive Liquid Phase Microextraction-Graphite Furnace Atomic Absorption Spectroscopy].

    PubMed

    Zhu, Jing; Li, Yan; Zheng, Bo; Tang, Wei; Chen, Xiao; Zou, Xiao-li

    2015-11-01

    To develope a method of solvent demulsification dispersive liquid phase microextraction (SD-DLPME) based on ion association reaction coupled with graphite furnace atomic absorption spectroscopy (GFAAS) for detecting thallium in water samples. Methods Thallium ion in water samples was oxidized to Tl(III) with bromine water, which reacted with Cl- to form TlCl4-. The ionic associated compound with trioctylamine was obtained and extracted. DLPME was completed with ethanol as dispersive solvent. The separation of aqueous and organic phase was achieved by injecting into demulsification solvent without centrifugation. The extractant was collected and injected into GFAAS for analysis. With palladium colloid as matrix modifier, a two step drying and ashing temperature programming process was applied for high precision and sensitivity. The linear range was 0.05-2.0 microg/L, with a detection limit of 0.011 microg/L. The relative standard derivation (RSD) for detecting Tl in spiked water sample was 9.9%. The spiked recoveries of water samples ranged from 94.0% to 103.0%. The method is simple, sensitive and suitable for batch analysis of Tl in water samples.

  4. Set up of an automatic water quality sampling system in irrigation agriculture.

    PubMed

    Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz

    2013-12-23

    We have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer (ProPS) for monitoring nitrate content and various water level sensors for hydrometric information. The automatic sampling system consists of different sampling stations equipped with pumps, a switch cabinet for valve and pump control and a computer operating the system. The complete system is operated via internet-based control software, allowing supervision from nearly anywhere. The system is currently set up at the International Rice Research Institute (Los Baños, The Philippines) in a diversified rice growing system to continuously monitor water and nutrient fluxes. Here we present the system's technical set-up and provide initial proof-of-concept with results for the isotopic composition of different water sources and nitrate values from the 2012 dry season.

  5. Effects of sterilization treatments on the analysis of TOC in water samples.

    PubMed

    Shi, Yiming; Xu, Lingfeng; Gong, Dongqin; Lu, Jun

    2010-01-01

    Decomposition experiments conducted with and without microbial processes are commonly used to study the effects of environmental microorganisms on the degradation of organic pollutants. However, the effects of biological pretreatment (sterilization) on organic matter often have a negative impact on such experiments. Based on the principle of water total organic carbon (TOC) analysis, the effects of physical sterilization treatments on determination of TOC and other water quality parameters were investigated. The results revealed that two conventional physical sterilization treatments, autoclaving and 60Co gamma-radiation sterilization, led to the direct decomposition of some organic pollutants, resulting in remarkable errors in the analysis of TOC in water samples. Furthermore, the extent of the errors varied with the intensity and the duration of sterilization treatments. Accordingly, a novel sterilization method for water samples, 0.45 microm micro-filtration coupled with ultraviolet radiation (MCUR), was developed in the present study. The results indicated that the MCUR method was capable of exerting a high bactericidal effect on the water sample while significantly decreasing the negative impact on the analysis of TOC and other water quality parameters. Before and after sterilization treatments, the relative errors of TOC determination could be controlled to lower than 3% for water samples with different categories and concentrations of organic pollutants by using MCUR.

  6. Analysis of bromate in drinking water using liquid chromatography-tandem mass spectrometry without sample pretreatment.

    PubMed

    Kosaka, Koji; Asami, Mari; Takei, Kanako; Akiba, Michihiro

    2011-01-01

    An analytical method for determining bromate in drinking water was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The (18)O-enriched bromate was used as an internal standard. The limit of quantification (LOQ) of bromate was 0.2 µg/L. The peak of bromate was separated from those of coexisting ions (i.e., chloride, nitrate and sulfate). The relative and absolute recoveries of bromate in two drinking water samples and in a synthesized ion solution (100 mg/L chloride, 10 mg N/L nitrate, and 100 mg/L sulfate) were 99-105 and 94-105%, respectively. Bromate concentrations in 11 drinking water samples determined by LC-MS/MS were <0.2-2.3 µg/L. The results of the present study indicated that the proposed method was suitable for determining bromate concentrations in drinking water without sample pretreatment.

  7. Regression modeling of particle size distributions in urban storm water: advancements through improved sample collection methods

    USGS Publications Warehouse

    Fienen, Michael N.; Selbig, William R.

    2012-01-01

    A new sample collection system was developed to improve the representation of sediment entrained in urban storm water by integrating water quality samples from the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of suspended-sediment concentration and particle size distribution at three independent study locations. Use of the DISA decreased variability, which improved statistical regression to predict particle size distribution using surrogate environmental parameters, such as precipitation depth and intensity. The performance of this statistical modeling technique was compared to results using traditional fixed-point sampling methods and was found to perform better. When environmental parameters can be used to predict particle size distributions, environmental managers have more options when characterizing concentrations, loads, and particle size distributions in urban runoff.

  8. Water-quality assessment of south-central Texas : comparison of water quality in surface-water samples collected manually and by automated samplers

    USGS Publications Warehouse

    Ging, Patricia B.

    1999-01-01

    Surface-water sampling protocols of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program specify samples for most properties and constituents to be collected manually in equal-width increments across a stream channel and composited for analysis. Single-point sampling with an automated sampler (autosampler) during storms was proposed in the upper part of the South-Central Texas NAWQA study unit, raising the question of whether property and constituent concentrations from automatically collected samples differ significantly from those in samples collected manually. Statistical (Wilcoxon signed-rank test) analyses of 3 to 16 paired concentrations for each of 26 properties and constituents from water samples collected using both methods at eight sites in the upper part of the study unit indicated that there were no significant differences in concentrations for dissolved constituents, other than calcium and organic carbon.

  9. Backflushing Filters for Field Processing of Water Samples Prior to Trace-Element Analyses

    USGS Publications Warehouse

    Kennedy, V.C.; Jenne, E.A.; Burchard, J.M.

    1976-01-01

    A portable unit is described for filtering water samples at field sites in such a manner that the filtrate is suitable for analysis not only of major constituents but also of trace elments at the mocrogram-per-liter level. A battery-operated peristaltic pump forces the water sample through medical-grade silicone tubing into and through an all-plastic in-line filter which can be backflushed when sediment clogs the filter membrane. Initial filtration rate exceeds 500 milliliter/minute and, because of the backflushing feature, a total time for filtering high-sediment-bearing waster samples is greatly reduced. (Woodard-USGS)

  10. Backflushing Filters for Field Processing of Water Samples Prior to Trace-Element Analyses

    USGS Publications Warehouse

    Kennedy, V.C.; Jenne, E.A.; Burchard, J.M.

    1976-01-01

    A portable unit is described for filtering water samples at field sites in such a manner that the filtrate is suitable for analysis not only of major constituents but also of trace elments at the mocrogram-per-liter level. A battery-operated peristaltic pump forces the water sample through medical-grade silicone tubing into and through an all-plastic in-line filter which can be backflushed when sediment clogs the filter membrane. Initial filtration rate exceeds 500 milliliter/minute and, because of the backflushing feature, a total time for filtering high-sediment-bearing waster samples is greatly reduced. (Woodard-USGS)

  11. Water Sampling While Under Way , Proceedings of a Symposium and Workshops, February 11-12, 1980.

    DTIC Science & Technology

    1980-01-01

    Academies and the Institute of Medicine . The National Academy of Engineering and the Institute of Medicine were established in 1964 and 1970, respectively... constituents of seawater while in transit. The samples collected may, of course, be analyzed further on shore. The purposes of underway water sampling...Ocean If knowledge of the continuous distribution of these constituents in the ocean is to be increased, a pumping system or continuous sampling system

  12. Analysis of core soil and water samples from the Cactus Crater Disposal Site at Enewetak atoll

    SciTech Connect

    Robison, W.L.; Noshkin, V.E.

    1981-02-18

    Core soil samples and water samples were collected from the Cactus Crater Disposal Site at Enewetak for analysis of /sup 137/Cs, /sup 90/Sr, /sup 239 +240/Pu and /sup 241/Am by both gamma spectroscopy and, through a contractor laboratory, by wet chemistry procedures. The samples processing methods, the analytical methods and the analytical quality control are all procedures developed for the continuing Marshall Island radioecology and dose assessment work.

  13. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling

    SciTech Connect

    Boone, Eric J.; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B.; Stirm, Brian H.; Pratt, Kerri A.

    2015-07-21

    Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.

  14. Organic Substances Interfere with Reverse Transcription-Quantitative PCR-Based Virus Detection in Water Samples

    PubMed Central

    Katayama, Hiroyuki; Furumai, Hiroaki

    2014-01-01

    Reverse transcription (RT)-PCR-based virus detection from water samples is occasionally hampered by organic substances that are coconcentrated during virus concentration procedures. To characterize these organic substances, samples containing commercially available humic acid, which is known to inhibit RT-PCR, and river water samples were subjected to adsorption-elution-based virus concentration using an electronegative membrane. In this study, the samples before, during, and after the concentration were analyzed in terms of organic properties and virus detection efficiencies. Two out of the three humic acid solutions resulted in RT-quantitative PCR (qPCR) inhibition that caused >3-log10-unit underestimation of spiked poliovirus. Over 60% of the organics contained in the two solutions were recovered in the concentrate, while over 60% of the organics in the uninhibited solution were lost during the concentration process. River water concentrates also caused inhibition of RT-qPCR. Organic concentrations in the river water samples increased by 2.3 to 3.9 times after the virus concentration procedure. The inhibitory samples contained organic fractions in the 10- to 100-kDa size range, which are suspected to be RT-PCR inhibitors. According to excitation-emission matrices, humic acid-like and protein-like fractions were also recovered from river water concentrates, but these fractions did not seem to affect virus detection. Our findings reveal that detailed organic analyses are effective in characterizing inhibitory substances. PMID:25527552

  15. Calculating of river water quality sampling frequency by the analytic hierarchy process (AHP).

    PubMed

    Do, Huu Tuan; Lo, Shang-Lien; Phan Thi, Lan Anh

    2013-01-01

    River water quality sampling frequency is an important aspect of the river water quality monitoring network. A suitable sampling frequency for each station as well as for the whole network will provide a measure of the real water quality status for the water quality managers as well as the decision makers. The analytic hierarchy process (AHP) is an effective method for decision analysis and calculation of weighting factors based on multiple criteria to solve complicated problems. This study introduces a new procedure to design river water quality sampling frequency by applying the AHP. We introduce and combine weighting factors of variables with the relative weights of stations to select the sampling frequency for each station, monthly and yearly. The new procedure was applied for Jingmei and Xindian rivers, Taipei, Taiwan. The results showed that sampling frequency should be increased at high weighted stations while decreased at low weighted stations. In addition, a detailed monitoring plan for each station and each month could be scheduled from the output results. Finally, the study showed that the AHP is a suitable method to design a system for sampling frequency as it could combine multiple weights and multiple levels for stations and variables to calculate a final weight for stations, variables, and months.

  16. Continuous sample drop flow-based microextraction method as a microextraction technique for determination of organic compounds in water sample.

    PubMed

    Moinfar, Soleyman; Khayatian, Gholamreza; Milani-Hosseini, Mohammad-Reza

    2014-11-01

    Continuous sample drop flow-based microextraction (CSDF-ME) is an improved version of continuous-flow microextraction (CFME) and a novel technique developed for extraction and preconcentration of benzene, toluene, ethyl benzene, m-xylene and o-xylene (BTEXs) from aqueous samples prior to gas chromatography-flame ionization detection (GC-FID). In this technique, a small amount (a few microliters) of organic solvent is transferred to the bottom of a conical bottom test tube and a few mL of aqueous solution is moved through the organic solvent at relatively slow flow rate. The aqueous solution transforms into fine droplets while passing through the organic solvent. After extraction, the enriched analyte in the extraction solvent is determined by GC-FID. The type of extraction solvent, its volume, needle diameter, and aqueous sample flow rate were investigated. The enrichment factor was 221-269 under optimum conditions and the recovery was 89-102%. The linear ranges and limits of detection for BTEXs were 2-500 and 1.4-3.1 µg L(-1), respectively. The relative standard deviations for 10 µg L(-1) of BTEXs in water were 1.8-6.2% (n=5). The advantages of CSDF-ME are its low cost, relatively short sample preparation time, low solvent consumption, high recovery, and high enrichment factor. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. The Salmonella mutagenicity of industrial, surface and ground water samples of Aligarh region of India.

    PubMed

    Siddiqui, Athar Habib; Ahmad, Masood

    2003-11-10

    The genotoxicity of three water bodies, viz. industrial waste water of Aligarh city, ground water pumped out from the industrial area of Aligarh, and river water of Yamuna, downstream of Agra, was carried out by means of Ames plate incorporation test and the Ames fluctuation test. All the test samples were significantly mutagenic in both the testing systems. The ground water and river water samples were subjected to XAD concentration prior to the mutagenicity/genotoxicity testing, while the industrial waste water was used directly. Whereas TA98, TA102 and TA104 strains have been found to be maximally sensitive in the Ames plate incorporation assay conducted for various water samples, TA98 and TA100 strains were the most responsive strains in the Ames fluctuation test. The apparent disparity in the sensitivity patterns of various Ames strains by plate incorporation and fluctuation assays could be attributed to a large extent to the different conventional ways of interpretation of the data in these systems.

  18. Influence of water content on Raman spectroscopy characterization of skin sample

    PubMed Central

    Kim, Soogeun; Byun, Kyung Min; Lee, Soo Yeol

    2017-01-01

    We report that the Raman spectrum obtained from porcine skin varies significantly with the change of skin water content. At different water contents from 40 to 55 wt.%, the Raman spectra results using confocal Raman spectroscopy show that the spectral variation of porcine skin is highly affected by skin water content. Experimental data are consistent with the Monte Carlo calculation and it is proved that the intensity of the Raman spectrum depends on the angle distribution and collection efficiency of backscattered light from the sample surface for a varied water content. It is suggested that water content for a given skin sample should be controlled carefully to minimize errors and deviations in the Raman peak analyses. PMID:28271008

  19. Influence of water content on Raman spectroscopy characterization of skin sample.

    PubMed

    Kim, Soogeun; Byun, Kyung Min; Lee, Soo Yeol

    2017-02-01

    We report that the Raman spectrum obtained from porcine skin varies significantly with the change of skin water content. At different water contents from 40 to 55 wt.%, the Raman spectra results using confocal Raman spectroscopy show that the spectral variation of porcine skin is highly affected by skin water content. Experimental data are consistent with the Monte Carlo calculation and it is proved that the intensity of the Raman spectrum depends on the angle distribution and collection efficiency of backscattered light from the sample surface for a varied water content. It is suggested that water content for a given skin sample should be controlled carefully to minimize errors and deviations in the Raman peak analyses.

  20. Detection of protozoa in water samples by formalin/ether concentration method.

    PubMed

    Lora-Suarez, Fabiana; Rivera, Raul; Triviño-Valencia, Jessica; Gomez-Marin, Jorge E

    2016-09-01

    Methods to detect protozoa in water samples are expensive and laborious. We evaluated the formalin/ether concentration method to detect Giardia sp., Cryptosporidium sp. and Toxoplasma in water. In order to test the properties of the method, we spiked water samples with different amounts of each protozoa (0, 10 and 50 cysts or oocysts) in a volume of 10 L of water. Immunofluorescence assay was used for detection of Giardia and Cryptosporidium. Toxoplasma oocysts were identified by morphology. The mean percent of recovery in 10 repetitions of the entire method, in 10 samples spiked with ten parasites and read by three different observers, were for Cryptosporidium 71.3 ± 12, for Giardia 63 ± 10 and for Toxoplasma 91.6 ± 9 and the relative standard deviation of the method was of 17.5, 17.2 and 9.8, respectively. Intraobserver variation as measured by intraclass correlation coefficient, was fair for Toxoplasma, moderate for Cryptosporidium and almost perfect for Giardia. The method was then applied in 77 samples of raw and drinkable water in three different plant of water treatment. Cryptosporidium was found in 28 of 77 samples (36%) and Giardia in 31 of 77 samples (40%). Theses results identified significant differences in treatment process to reduce the presence of Giardia and Cryptosporidium. In conclusion, the formalin ether method to concentrate protozoa in water is a new alternative for low resources countries, where is urgently need to monitor and follow the presence of theses protozoa in drinkable water. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Interim results of quality-control sampling of surface water for the Upper Colorado River National Water-Quality Assessment Study Unit, water years 1995-96

    USGS Publications Warehouse

    Spahr, N.E.; Boulger, R.W.

    1997-01-01

    Quality-control samples provide part of the information needed to estimate the bias and variability that result from sample collection, processing, and analysis. Quality-control samples of surface water collected for the Upper Colorado River National Water-Quality Assessment study unit for water years 1995?96 are presented and analyzed in this report. The types of quality-control samples collected include pre-processing split replicates, concurrent replicates, sequential replicates, post-processing split replicates, and field blanks. Analysis of the pre-processing split replicates, concurrent replicates, sequential replicates, and post-processing split replicates is based on differences between analytical results of the environmental samples and analytical results of the quality-control samples. Results of these comparisons indicate that variability introduced by sample collection, processing, and handling is low and will not affect interpretation of the environmental data. The differences for most water-quality constituents is on the order of plus or minus 1 or 2 lowest rounding units. A lowest rounding unit is equivalent to the magnitude of the least significant figure reported for analytical results. The use of lowest rounding units avoids some of the difficulty in comparing differences between pairs of samples when concentrations span orders of magnitude and provides a measure of the practical significance of the effect of variability. Analysis of field-blank quality-control samples indicates that with the exception of chloride and silica, no systematic contamination of samples is apparent. Chloride contamination probably was the result of incomplete rinsing of the dilute cleaning solution from the outlet ports of the decaport sample splitter. Silica contamination seems to have been introduced by the blank water. Sampling and processing procedures for water year 1997 have been modified as a result of these analyses.

  2. Detection of Legionella pneumophila in environmental water samples using a fluorescein conjugated monoclonal antibody.

    PubMed Central

    Makin, T.; Hart, C. A.

    1989-01-01

    Sixty-three environmental water samples from various sources were examined for the presence of Legionella pneumophila with a commercially available direct fluorescent monoclonal antibody (GS), an indirect fluorescent antibody test (IFAT) and culture. GS detected L. pneumophila in 94% and 100% of environmental water samples which were culture and IFAT positive for L. pneumophila, respectively. IFAT detected 69% of L. pneumophila culture positive samples. Cultures of L. pneumophila serogroups 1 to 12, 14 and non-L. pneumophila bacteria which may be found in water, and bacteria containing non-specific binding proteins, were stained by GS and IFAT. GS identified all serogroups of L. pneumophila and did not cross react with any non-L. pneumophila bacteria. L. pneumophila in environmental samples was easy to detect against a clear dark background when stained with GS. Images Fig. 1 PMID:2673821

  3. Effects of soil water saturation on sampling equilibrium and kinetics of selected polycyclic aromatic hydrocarbons.

    PubMed

    Kim, Pil-Gon; Roh, Ji-Yeon; Hong, Yongseok; Kwon, Jung-Hwan

    2017-10-01

    Passive sampling can be applied for measuring the freely dissolved concentration of hydrophobic organic chemicals (HOCs) in soil pore water. When using passive samplers under field conditions, however, there are factors that might affect passive sampling equilibrium and kinetics, such as soil water saturation. To determine the effects of soil water saturation on passive sampling, the equilibrium and kinetics of passive sampling were evaluated by observing changes in the distribution coefficient between sampler and soil (Ksampler/soil) and the uptake rate constant (ku) at various soil water saturations. Polydimethylsiloxane (PDMS) passive samplers were deployed into artificial soils spiked with seven selected polycyclic aromatic hydrocarbons (PAHs). In dry soil (0% water saturation), both Ksampler/soil and ku values were much lower than those in wet soils likely due to the contribution of adsorption of PAHs onto soil mineral surfaces and the conformational changes in soil organic matter. For high molecular weight PAHs (chrysene, benzo[a]pyrene, and dibenzo[a,h]anthracene), both Ksampler/soil and ku values increased with increasing soil water saturation, whereas they decreased with increasing soil water saturation for low molecular weight PAHs (phenanthrene, anthracene, fluoranthene, and pyrene). Changes in the sorption capacity of soil organic matter with soil water content would be the main cause of the changes in passive sampling equilibrium. Henry's law constant could explain the different behaviors in uptake kinetics of the selected PAHs. The results of this study would be helpful when passive samplers are deployed under various soil water saturations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Effects of physical and chemical heterogeneity on water-quality samples obtained from wells

    USGS Publications Warehouse

    Reilly, Thomas E.; Gibs, Jacob

    1993-01-01

    Factors that affect the mass of chemical constituents entering a well include the distributions of flow rate and chemical concentrations along and near the screened or open section of the well. Assuming a layered porous medium (with each layer being characterized by a uniform hydraulic conductivity and chemical concentration), a knowledge of the flow from each layer along the screened zone and of the chemical concentrations in each layer enables the total mass entering the well to be determined. Analyses of hypothetical systems and a site at Galloway, NJ, provide insight into the temporal variation of water-quality data observed when withdrawing water from screened wells in heterogeneous ground-water systems.The analyses of hypothetical systems quantitatively indicate the cause-and-effect relations that cause temporal variability in water samples obtained from wells. Chemical constituents that have relatively uniform concentrations with depth may not show variations in concentrations in the water discharged from a well after the well is purged (evacuation of standing water in the well casing). However, chemical constituents that do not have uniform concentrations near the screened interval of the well may show variations in concentrations in the well discharge water after purging because of the physics of ground-water flow in the vicinity of the screen.Water-quality samples were obtained through time over a 30 minute period from a site at Galloway, NJ. The water samples were analyzed for aromatic hydrocarbons, and the data for benzene, toluene, and meta+para xylene were evaluated for temporal variations. Samples were taken from seven discrete zones, and the flow-weighted concentrations of benzene, toluene, and meta+para xylene all indicate an increase in concentration over time during pumping. These observed trends in time were reproduced numerically based on the estimated concentration distribution in the aquifer and the flow rates from each zone.The results of

  5. Identification and Genotyping of Mycobacterium tuberculosis Isolated From Water and Soil Samples of a Metropolitan City

    PubMed Central

    Velayati, Ali Akbar; Farnia, Parissa; Mozafari, Mohadese; Malekshahian, Donya; Farahbod, Amir Masoud; Seif, Shima; Rahideh, Snaz

    2015-01-01

    BACKGROUND: The potential role of environmental Mycobacterium tuberculosis in the epidemiology of TB remains unknown. We investigated the transmission of M tuberculosis from humans to the environment and the possible transmission of M tuberculosis from the environment to humans. METHODS: A total of 1,500 samples were collected from three counties of the Tehran, Iran metropolitan area from February 2012 to January 2014. A total of 700 water samples (47%) and 800 soil samples (53%) were collected. Spoligotyping and the mycobacterial interspersed repetitive units-variable number of tandem repeats typing method were performed on DNA extracted from single colonies. Genotypes of M tuberculosis strains isolated from the environment were compared with the genotypes obtained from 55 patients with confirmed pulmonary TB diagnosed during the study period in the same three counties. RESULTS: M tuberculosis was isolated from 11 of 800 soil samples (1%) and 71 of 700 water samples (10%). T family (56 of 82, 68%) followed by Delhi/CAS (11 of 82, 13.4%) were the most frequent M tuberculosis superfamilies in both water and soil samples. Overall, 27.7% of isolates in clusters were related. No related typing patterns were detected between soil, water, and clinical isolates. The most frequent superfamily of M tuberculosis in clinical isolates was Delhi/CAS (142, 30.3%) followed by NEW-1 (127, 27%). The bacilli in contaminated soil (36%) and damp water (8.4%) remained reculturable in some samples up to 9 months. CONCLUSIONS: Although the dominant M tuberculosis superfamilies in soil and water did not correspond to the dominant M tuberculosis family in patients, the presence of circulating genotypes of M tuberculosis in soil and water highlight the risk of transmission. PMID:25340935

  6. Evaluation of storage and filtration protocols for alpine/subalpine lake water quality samples.

    PubMed

    Korfmacher, John L; Musselman, Robert C

    2007-08-01

    Many government agencies and other organizations sample natural alpine and subalpine surface waters using varying protocols for sample storage and filtration. Simplification of protocols would be beneficial if it could be shown that sample quality is unaffected. In this study, samples collected from low ionic strength waters in alpine and subalpine lake inlets and outlets in the western United States were used to evaluate (1) effects of refrigerated storage time on the chemistry of unfiltered samples, and (2) differences in sample filtration protocols. No analytes exhibited significant changes when stored less than 48 h. Six analytes (pH, sodium, ammonium, potassium, chloride, sulfate) exhibited statistically significant (but small) changes when storage time exceeded 48 h. Two analytes (calcium, nitrate) were significantly higher when samples were field filtered than when filtered in the laboratory, but the differences were also small. For waters similar to those in this test, unfiltered refrigerated samples may be stored up to 48 h without compromising sample quality. The small differences between field and lab filtration do not justify the expense, training, and contamination risk of field filtration.

  7. Spatio-temporal representativeness of euphotic depth in situ sampling in transitional coastal waters

    NASA Astrophysics Data System (ADS)

    Luhtala, Hanna; Tolvanen, Harri

    2016-06-01

    In dynamic coastal waters, the representativeness of spot sampling is limited to the measurement time and place due to local heterogeneity and irregular water property fluctuations. We assessed the representativeness of in situ sampling by analysing spot-sampled depth profiles of photosynthetically active radiation (PAR) in dynamic coastal archipelago waters in the south-western Finnish coast of the Baltic Sea. First, we assessed the role of spatio-temporality within the underwater light dynamics. As a part of this approach, an anomaly detection procedure was tested on a dataset including a large archipelago area and extensive temporal coverage throughout the ice-free season. The results suggest that euphotic depth variability should be treated as a spatio-temporal process rather than considering spatial and temporal dimensions separately. Second, we assessed the representativeness of spot sampling through statistical analysis of comparative data from spatially denser sampling on three test sites on two optically different occasions. The datasets revealed variability in different dimensions and scales. The suitability of a dataset to reveal wanted phenomena can usually be improved by careful planning and by clearly defining the data sampling objectives beforehand. Nonetheless, conducting a sufficient in situ sampling in dynamic coastal area is still challenging: detecting the general patterns at all the relevant dimensions is complicated by the randomness effect, which reduces the reliability of spot samples on a more detailed scale. Our results indicate that good representativeness of a euphotic depth sampling location is not a stable feature in a highly dynamic environment.

  8. A survey sampling approach for pesticide monitoring of community water systems using groundwater as a drinking water source.

    PubMed

    Whitmore, Roy W; Chen, Wenlin

    2013-12-04

    The ability to infer human exposure to substances from drinking water using monitoring data helps determine and/or refine potential risks associated with drinking water consumption. We describe a survey sampling approach and its application to an atrazine groundwater monitoring study to adequately characterize upper exposure centiles and associated confidence intervals with predetermined precision. Study design and data analysis included sampling frame definition, sample stratification, sample size determination, allocation to strata, analysis weights, and weighted population estimates. Sampling frame encompassed 15 840 groundwater community water systems (CWS) in 21 states throughout the U. S. Median, and 95th percentile atrazine concentrations were 0.0022 and 0.024 ppb, respectively, for all CWS. Statistical estimates agreed with historical monitoring results, suggesting that the study design was adequate and robust. This methodology makes no assumptions regarding the occurrence distribution (e.g., lognormality); thus analyses based on the design-induced distribution provide the most robust basis for making inferences from the sample to target population.

  9. Preserving ground water samples with hydrochloric acid does not result in the formation of chloroform

    USGS Publications Warehouse

    Squillace, Paul J.; Pankow, James F.; Barbash, Jack E.; Price, Curtis V.; Zogorski, John S.

    1999-01-01

    Water samples collected for the determination of volatile organic compounds (VOCs) are often preserved with hydrochloric acid (HCl) to inhibit the biotransformation of the analytes of interest until the chemical analyses can he performed. However, it is theoretically possible that residual free chlorine in the HCl can react with dissolved organic carbon (DOC) to form chloroform via the haloform reaction. Analyses of 1501 ground water samples preserved with HCl from the U.S. Geological Survey's National Water-Quality Assessment Program indicate that chloroform was the most commonly detected VOC among 60 VOCs monitored. The DOC concentrations were not significantly larger in samples with detectable chloroform than in those with no delectable chloroform, nor was there any correlation between the concentrations of chloroform and DOC. Furthermore, chloroform was detected more frequently in shallow ground water in urban areas (28.5% of the wells sampled) than in agricultural areas (1.6% of the wells sampled), which indicates that its detection was more related to urban land-use activities than to sample acidification. These data provide strong evidence that acidification with HCl does not lead to the production of significant amounts of chloroform in ground water samples. To verify these results, an acidification study was designed to measure the concentrations of all trihalomethanes (THMs) that can form as a result of HCl preservation in ground water samples and to determine if ascorbic acid (C6H8O6) could inhibit this reaction if it did occur. This study showed that no THMs were formed as a result of HCl acidification, and that ascorbic acid had no discernible effect on the concentrations of THMs measured.

  10. A vastly improved method for in situ stable isotope analysis of very small water samples.

    NASA Astrophysics Data System (ADS)

    Coleman, M. L.; Christensen, L. E.; Kriesel, J.; Kelly, J.; Moran, J.; Vance, S.

    2016-12-01

    The stable isotope compositions of hydrogen and oxygen in water, ice and hydrated minerals are key characteristics to determine the origin and history of the material. Originally, analyses were performed by separating hydrogen and preparing CO2 from the oxygen in water for stable isotope ratio mass spectrometry. Subsequently, infrared absorption spectrometry in either a Herriot cell or by cavity ring down allowed direct analysis of water vapor. We are developing an instrument, intended for spaceflight and in situ deployment, which will exploit Capillary Absorption Spectrometry (CAS) for the H and O isotope analysis and a laser to sample planetary ices and hydrated minerals. The Tunable Laser Spectrometer (TLS) instrument (part of SAM on the MSL rover Curiosity) works by infrared absorption and we use its performance as a benchmark for comparison. TLS has a relatively large sample chamber to contain mirrors which give a long absorption pathlength. CAS works on the same principle but utilizes a hollow optic fiber, greatly reducing the sample volume. The fiber is a waveguide, enhancing the laser - water-vapor interaction and giving more than four orders of magnitude increase in sensitivity, despite a shorter optical path length. We have calculated that a fiber only 2 m long will be able to analyze 5 nanomoles of water with a precision of less than 1 per mil for D?H. The fiber is coiled to minimize instrument volume. Our instrument will couple this analytical capability with laser sampling to free water from hydrated minerals and ice and ideally we would use the same laser via a beam-splitter both for sampling and analysis. The ability to analyze very small samples is of benefit in two ways. In this concept it will allow much faster analysis of small sub-samples, while the high spatial sampling resolution offered by the laser will allow analysis of the heterogeneity of isotopic composition within grains or crystals, revealing the history of their growth.

  11. Hydrogen isotopes from source water to leaf lipid in a continental-scale sample network

    NASA Astrophysics Data System (ADS)

    Nelson, Daniel; Kahmen, Ansgar

    2015-04-01

    Sedimentary plant waxes are useful paleoclimate proxies because they are preserved in depositional settings on geologic timescales and the isotopic composition of the hydrogen in these molecules reflects that of the source water available during biosynthesis. This application is based largely on empirical calibrations that have demonstrated continental-scale correlations between source water and lipid hydrogen isotope values. However, the importance of variable net isotopic fractionation between source water and lipid for different species and environmental conditions is increasingly recognized. Isotopic enrichment of leaf water during transpiration is key among these secondary factors, and is itself sensitive to changes in hydroclimate. Leaf water enrichment also occurs prior to photosynthetic water uptake, and is therefore independent from cellular-level biomarker synthesis. Mechanistic models can predict the mean leaf water hydrogen isotope composition from readily available meteorological variables. This permits global-scale isoscape maps of leaf water isotopic composition and enrichment above source water to be generated, but these models have not been widely validated at continental spatial scales. We have established a network of twenty-one sites across Europe where we are sampling for leaf-, xylem-, and soil-water isotopes (H and O) at approximately 5-week intervals over the summer growing season. We augment the sample set with weekly to monthly precipitation samples and early- and late-season plant wax lipid samples. Collaborators at each site are conducting the sampling, and most sites are members of the FLUXNET tower network that also record high-resolution meteorological data. We present information on the implementation of the network and preliminary results from the 2014 summer season. The complete dataset will be used to track the evolution of water isotopes from source to leaf water and from leaf water to lipid hydrogen across diverse environments

  12. Characterizing Hydrological Processes in Vadose Zone by Direct Infiltration Water Sampling.

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Higashi, N.; Somura, H.; Takeda, I.; Inoue, M.

    2007-12-01

    These days, planted forest mountainside was roughly maintained due to the population descent and small birth rate. Because thinning operation would delayed, forest was always dark and floor weed was rare. Management induced non point source pollution like surface soil erosion was suspected, however, we could not approach to the source with the stream water analysis. Therefore, direct soil water sampling device using glass fiber capillary force was developed to examine hydrological processes in watershed. In our design, water was collected just by the capillary force and let the excess water down through so that infiltration water was truly sampled and solute concentration kept the same quality as in soil water. The experiment was conducted at two neighboring Japanese cedar planted forest under different management, i.e., south slope was roughly maintained and west slope was well maintained by thinning operation. Load discharges were higher in south slope and lower in west slope. Infiltration water analysis revealed that ion concentration was gradually decreased at west slope, however in south slope, it dropped to lower level in soil water and increased again in stream water. The trend showed that soil buffering function was poor in south slope. Actually, disk permeameter survey revealed that hydraulic conductivity was small in south slope; TOC and biological activity were lower. This entire soil environment explained the water environmental differences in stream water. Because changes in soil environment affects water environment in the future, monitoring or examination of soil environment was considered as preventive measure for environmentally sound water and solute circulation in watershed.

  13. Solid-phase microextraction for the analysis of short-chain chlorinated paraffins in water samples.

    PubMed

    Castells, P; Santos, F J; Galceran, M T

    2003-01-10

    A novel solid-phase microextraction (SPME) method coupled to gas chromatography with electron capture detection (GC-ECD) was developed as an alternative to liquid-liquid and solid-phase extraction for the analysis of short-chain chlorinated paraffins (SCCPs) in water samples. The extraction efficiency of five different commercially available fibres was evaluated and the 100-microm polydimethylsiloxane coating was the most suitable for the absorption of the SCCPs. Optimisation of several SPME parameters, such as extraction time and temperature, ionic strength and desorption time, was performed. Quality parameters were established using Milli-Q, tap water and river water. Linearity ranged between 0.06 and 6 microg l(-1) for spiked Milli-Q water and between 0.6 and 6 microg l(-1) for natural waters. The precision of the SPME-GC-ECD method for the three aqueous matrices was similar and gave relative standard deviations (RSD) between 12 and 14%. The limit of detection (LOD) was 0.02 microg l(-1) for Milli-Q water and 0.3 microg l(-1) for both tap water and river water. The optimised SPME-GC-ECD method was successfully applied to the determination of SCCPs in river water samples.

  14. Hydrogeologic framework and sampling design for an assessment of agricultural pesticides in ground water in Pennsylvania

    USGS Publications Warehouse

    Lindsey, Bruce D.; Bickford, Tammy M.

    1999-01-01

    State agencies responsible for regulating pesticides are required by the U.S. Environmental Protection Agency to develop state management plans for specific pesticides. A key part of these management plans includes assessing the potential for contamination of ground water by pesticides throughout the state. As an example of how a statewide assessment could be implemented, a plan is presented for the Commonwealth of Pennsylvania to illustrate how a hydrogeologic framework can be used as a basis for sampling areas within a state with the highest likelihood of having elevated pesticide concentrations in ground water. The framework was created by subdividing the state into 20 areas on the basis of physiography and aquifer type. Each of these 20 hydrogeologic settings is relatively homogeneous with respect to aquifer susceptibility and pesticide use?factors that would be likely to affect pesticide concentrations in ground water. Existing data on atrazine occurrence in ground water was analyzed to determine (1) which areas of the state already have suffi- cient samples collected to make statistical comparisons among hydrogeologic settings, and (2) the effect of factors such as land use and aquifer characteristics on pesticide occurrence. The theoretical vulnerability and the results of the data analysis were used to rank each of the 20 hydrogeologic settings on the basis of vulnerability of ground water to contamination by pesticides. Example sampling plans are presented for nine of the hydrogeologic settings that lack sufficient data to assess vulnerability to contamination. Of the highest priority areas of the state, two out of four have been adequately sampled, one of the three areas of moderate to high priority has been adequately sampled, four of the nine areas of moderate to low priority have been adequately sampled, and none of the three low priority areas have been sampled. Sampling to date has shown that, even in the most vulnerable hydrogeologic settings

  15. Factors controlling elevated lead concentrations in water samples from aquifer systems in Florida

    USGS Publications Warehouse

    Katz, B.G.; Bullen, M.P.; Bullen, T.D.; Hansard, Paul

    1999-01-01

    Concentrations of total lead (Pb) and dissolved Pb exceeded the U.S. Environmental Protection Agency action level of 15 micrograms per liter (mg/L) in approximately 19 percent and 1.3 percent, respectively, of ground-water samples collected during 1991-96 from a statewide network of monitoring wells designed to delineate background water quality of Florida's major aquifer systems. Differences in total Pb concentrations among aquifer systems reflect the combined influence of anthropogenic sources and chemical conditions in each system. A highly significant (p<0.001) difference in median total Pb concentrations was found for water samples from wells with water-level recording devices that contain Pb-counterweights (14 mg/L) compared to non-recorder wells (2 mg/L). Differences between total Pb concentrations for recorder and non-recorder wells are even more pronounced when compared for each aquifer system. The largest differences for recorder status are found for the surficial aquifer system, where median total Pb concentrations are 44 and 2.4 mg/L for recorder wells and non-recorder wells, respectively. Leaching of Pb from metal casing materials is another potential source of Pb in ground water samples. Median total Pb concentrations in water samples from the surficial, intermediate, and Floridan aquifer systems are higher from recorder wells cased with black iron than for recorder wells with steel and PVC casing material. Stable isotopes of Pb were used in this study to distinguish between anthropogenic and natural sources of Pb in ground water, as Pb retains the isotopic signature of the source from which it is derived. Based on similarities between slopes and intercepts of trend lines for various sample types (plots of 206Pb/204Pb versus 208Pb/204Pb and 207Pb/204Pb versus 208Pb/204Pb) the predominant source of total Pb in water samples from the surficial aquifer system is corrosion of Pb counterweights. It is likely that only ground-water samples, not the aquifer

  16. Monitoring water quality in Toronto's urban stormwater ponds: Assessing participation rates and data quality of water sampling by citizen scientists in the FreshWater Watch.

    PubMed

    Scott, Andrew B; Frost, Paul C

    2017-08-15

    From 2013 to 2015, citizen scientist volunteers in Toronto, Canada were trained to collect and analyze water quality in urban stormwater ponds. This volunteer sampling was part of the research program, FreshWater Watch (FWW), which aimed to standardize urban water sampling efforts from around the globe. We held training sessions for new volunteers twice yearly and trained a total of 111 volunteers. Over the course of project, ~30% of volunteers participated by collecting water quality data after the training session with 124 individual sampling events at 29 unique locations in Toronto, Canada. A few highly engaged volunteers were most active, with 50% of the samples collected by 5% of trainees. Stormwater ponds generally have poor water quality demonstrated by elevated phosphate concentrations (~30μg/L), nitrate (~427μg/L), and turbidity relative to Canadian water quality standards. Compared to other urban waterbodies in the global program, nutrient concentrations in Toronto's urban stormwater ponds were lower, while turbidity was not markedly different. Toronto FWW (FWW-TO) data was comparable to that measured by standard lab analyses and matched results from previous studies of stormwater ponds in Toronto. Combining observational and chemical data acquired by citizen scientists, macrophyte dominated ponds had lower phosphate concentrations while phytoplankton dominated ponds had lower nitrate concentrations, which indicates a potentially important and unstudied role of internal biogeochemical processes on pond nutrient dynamics. This experience in the FWW demonstrates the capabilities and constraints of citizen science when applied to water quality sampling. While analytical limits on in-field analyses produce higher uncertainty in water quality measurements of individual sites, rapid data collection is possible but depends on the motivation and engagement of the group of volunteers. Ongoing efforts in citizen science will thus need to address sampling effort

  17. Locations of Sampling Stations for Water Quality Monitoring in Water Distribution Networks.

    PubMed

    Rathi, Shweta; Gupta, Rajesh

    2014-04-01

    Water quality is required to be monitored in the water distribution networks (WDNs) at salient locations to assure the safe quality of water supplied to the consumers. Such monitoring stations (MSs) provide warning against any accidental contaminations. Various objectives like demand coverage, time for detection, volume of water contaminated before detection, extent of contamination, expected population affected prior to detection, detection likelihood and others, have been independently or jointly considered in determining optimal number and location of MSs in WDNs. "Demand coverage" defined as the percentage of network demand monitored by a particular monitoring station is a simple measure to locate MSs. Several methods based on formulation of coverage matrix using pre-specified coverage criteria and optimization have been suggested. Coverage criteria is defined as some minimum percentage of total flow received at the monitoring stations that passed through any upstream node included then as covered node of the monitoring station. Number of monitoring stations increases with the increase in the value of coverage criteria. Thus, the design of monitoring station becomes subjective. A simple methodology is proposed herein which priority wise iteratively selects MSs to achieve targeted demand coverage. The proposed methodology provided the same number and location of MSs for illustrative network as an optimization method did. Further, the proposed method is simple and avoids subjectivity that could arise from the consideration of coverage criteria. The application of methodology is also shown on a WDN of Dharampeth zone (Nagpur city WDN in Maharashtra, India) having 285 nodes and 367 pipes.

  18. Time-weighted average water sampling with a solid-phase microextraction device.

    PubMed

    Ouyang, Gangfeng; Chen, Yong; Pawliszyn, Janusz

    2005-11-15

    A fiber-in-needle SPME device was developed and investigated for time-weighted average water sampling. The device was designed so that the overall mass-transfer resistance is contained within the static water inside the needle, which ensures that mass uptake could be predicted with Fick's first law of diffusion and the sampling rate is less affected by water turbulence. The device possesses all of the advantages of commercialized devices, in addition to needle filling and replacement ease. Laboratory calibration with deployment of the device to a flow-through system demonstrated that there was a linear mass uptake for up to 12 days, and the linear range could be longer. PDMS coating is assumed to be a perfect zero sink for most polycyclic aromatic hydrocarbons, except naphthalene. The effect of water temperature was also investigated. Under normal field conditions, the change of mass uptake rate with temperature was negligible. To facilitate the convenience for long-term water sampling, a new standard aqueous generator was introduced. This study extended the application of SPME technology for long-term water sampling.

  19. Isolation and identification of Arcobacter species from environmental and drinking water samples.

    PubMed

    Talay, Funda; Molva, Celenk; Atabay, Halil Ibrahim

    2016-11-01

    Water plays an important role in the transmission of Arcobacter spp. to animals and humans. The aim of this study was to isolate and characterize Arcobacter spp. from 115 different water samples (66 sewage, 25 rivers, 16 spring water, and 8 drinking water) in Izmir, Turkey. In total, 41 samples (35.7 %) were found positive for Arcobacter spp. by the genus-specific PCR. Arcobacter butzleri was detected in 39 out of 115 samples (33.9 %) including 24 sewage, 13 rivers, and 2 spring water. The remaining Arcobacter spp. (n = 2) isolates could not be identified by m-PCR and 16S rRNA gene sequencing. Based on the phenotypic characterization, most of the Arcobacter species (87.8 %) indicated weak catalase activity. In addition, there were differences in phenotypic patterns among isolated species during growth at 37 °C under microaerobic and aerobic conditions, in the presence of 2 % (39/41) and 3.5 % (32/41) NaCl and 0.04 % TTC (39/41) and on MacConkey agar (38/41). The results of this study indicated that environmental water samples are common sources for Arcobacter spp. Therefore, effective control measures should be taken to protect human health.

  20. May 2012 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    SciTech Connect

    2012-12-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 9-10, 2012, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the site boundaries have not been affected by project-related contaminants.

  1. Formation of an artifact of diclofenac during acidic extraction of environmental water samples.

    PubMed

    Reddersen, K; Heberer, Th

    2003-09-05

    Solid-phase extraction at an acidic pH is used as a common sample preparation method for analyzing residues of the analgesic drug diclofenac (2-[(2,6-dichlorophenyl)amino] benzeneacetic acid) in environmental water samples. This paper describes the matrix-dependent formation of an artifact of diclofenac during sample preparation resulting in an up to 40% underestimation of diclofenac concentrations especially in matrix-prone samples such as sewage effluents or surface water. The artifact most likely being formed during acidification of the sample was unequivocally identified as 1-(2,6-dichlorophenyl)indolin-2-one by capillary gas chromatography-mass spectrometry. To avoid an underestimation of the analytical results quantification of both diclofenac and its artifact is recommended.

  2. Determination of (210)Po in drinking water and urine samples using copper sulfide microprecipitation.

    PubMed

    Guérin, Nicolas; Dai, Xiongxin

    2014-06-17

    Polonium-210 ((210)Po) can be rapidly determined in drinking water and urine samples by alpha spectrometry using copper sulfide (CuS) microprecipitation. For drinking water, Po in 10 mL samples was directly coprecipitated onto the filter for alpha counting without any purification. For urine, 10 mL of sample was heated, oxidized with KBrO3 for a short time (∼5 min), and subsequently centrifuged to remove the suspended organic matter. The CuS microprecipitation was then applied to the supernatant. Large batches of samples can be prepared using this technique with high recoveries (∼85%). The figures of merit of the methods were determined, and the developed methods fulfill the requirements for emergency and routine radioassays. The efficiency and reliability of the procedures were confirmed using spiked samples.

  3. Microbial profiling of South African acid mine water samples using next generation sequencing platform.

    PubMed

    Kamika, I; Azizi, S; Tekere, M

    2016-07-01

    This study monitored changes in bacterial and fungal structure in a mine water in a monthly basis over 4 months. Over the 4-month study period, mine water samples contained more bacteria (91.06 %) compared to fungi (8.94 %). For bacteria, mine water samples were dominated by Proteobacteria (39.14 to 65.06 %) followed by Firmicutes (26.34 to 28.9 %) in summer, and Cyanobacteria (27.05 %) in winter. In the collected samples, 18 % of bacteria could not be assigned to a phylum and remained unclassified suggesting hitherto vast untapped microbial diversity especially during winter. The fungal domain was the sole eukaryotic microorganism found in the mine water samples with unclassified fungi (68.2 to 91 %) as the predominant group, followed by Basidiomycota (6.9 to 27.8 %). The time of collection, which was linked to the weather, had higher impact on bacterial community than fungal community. The bacterial operational taxonomic units (OTUs) ranged from 865 to 4052 over the 4-month sampling period, while fungal OTUs varied from 73 to 249. The diversity indices suggested that the bacterial community inhabiting the mine water samples were more diverse than the fungal community. The canonical correspondence analysis (CCA) results highlighted that the bacterial community variance had the strongest relationship with water temperature, conductivity, pH, and dissolved oxygen (DO) content, as compared to fungi and water characteristics, had the greatest contribution to both bacterial and fungal community variance. The results provided the relationships between microbial community and environmental variables in the studied mining sites.

  4. Electrothermal Vaporization Sample Introduction for Spaceflight Water Quality Monitoring via Gas Chromatography-Differential Mobility Spectrometry.

    PubMed

    Wallace, William T; Gazda, Daniel B; Limero, Thomas F; Minton, John M; Macatangay, Ariel V; Dwivedi, Prabha; Fernández, Facundo M

    2015-06-16

    In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. However, with the construction of the International Space Station (ISS) and the subsequent extension in mission duration up to one year, an enhanced, real-time method for environmental monitoring is necessary. The station air is currently monitored for trace volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (GC-DMS) via the Air Quality Monitor (AQM), while water is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. As mission scenarios extend beyond low Earth orbit, a convergence in analytical instrumentation to analyze both air and water samples is highly desirable. Since the AQM currently provides quantitative, compound-specific information for air samples and many of the targets in air are also common to water, this platform is a logical starting point for developing a multimatrix monitor. Here, we report on the interfacing of an electrothermal vaporization (ETV) sample introduction unit with a ground-based AQM for monitoring target analytes in water. The results show that each of the compounds tested from water have similar GC-DMS parameters as the compounds tested in air. Moreover, the ETV enabled AQM detection of dimethlsilanediol (DMSD), a compound whose analysis had proven challenging using other sample introduction methods. Analysis of authentic ISS water samples using the ETV-AQM showed that DMSD could be successfully quantified, while the concentrations obtained for the other compounds also agreed well with laboratory results.

  5. Using Absolute Humidity and Radiochemical Analyses of Water Vapor Samples to Correct Underestimated Atmospheric Tritium Concentrations

    SciTech Connect

    Eberhart, C.F.

    1999-06-01

    Los Alamos National Laboratory (LANL) emits a wide variety of radioactive air contaminants. An extensive ambient air monitoring network, known as AIRNET, is operated on-site and in surrounding communities to estimate radioactive doses to the public. As part of this monitoring network, water vapor is sampled continuously at more than 50 sites. These water vapor samples are collected every two weeks by absorbing the water vapor in the sampled air with silica gel and then radiochemically analyzing the water for tritium. The data have consistently indicated that LANL emissions cause a small, but measurable impact on local concentrations of tritium. In early 1998, while trying to independently verify the presumed 100% water vapor collection efficiency, the author found that this efficiency was normally lower and reached a minimum of 10 to 20% in the middle of summer. This inefficient collection was discovered by comparing absolute humidity (g/m{sup 3}) calculated from relative humidity and temperature to the amount of water vapor collected by the silica gel per cubic meter of air sampled. Subsequent experiments confirmed that the elevated temperature inside the louvered housing was high enough to reduce the capacity of the silica gel by more than half. In addition, their experiments also demonstrated that, even under optimal conditions, there is not enough silica gel present in the sampling canister to absorb all of the moisture during the higher humidity periods. However, there is a solution to this problem. Ambient tritium concentrations have been recalculated by using the absolute humidity values and the tritium analyses. These recalculated tritium concentrations were two to three times higher than previously reported. Future tritium concentrations will also be determined in the same manner. Finally, the water vapor collection process will be changed by relocating the sampling canister outside the housing to increase collection efficiency and, therefore

  6. Geophysical methods to support correct water sampling locations for salt dilution gauging

    NASA Astrophysics Data System (ADS)

    Comina, C.; Lasagna, M.; De Luca, D. A.; Sambuelli, L.

    2014-08-01

    To improve water management design, particularly in irrigation areas, it is important to evaluate the baseline state of the water resources, including canal discharge. Salt dilution gauging is a traditional and well-documented technique in this respect. The complete mixing of salt used for dilution gauging is required; this condition is difficult to test or verify and, if not fulfilled, is the largest source of uncertainty in the discharge calculation. In this paper, a geophysical technique (FERT, fast electrical resistivity tomography) is proposed for imaging the distribution of the salt plume used for dilution gauging at every point along a sampling cross section. With this imaging, complete mixing can be verified. If the mixing is not complete, the image created by FERT can also provide a possible guidance for selecting water-sampling locations in the sampling cross section. A water multi-sampling system prototype aimed to potentially take into account concentration variability is also proposed and tested. The results reported in the paper show that FERT provides a three-dimensional image of the dissolved salt plume and that this can potentially help in the selection of water sampling points.

  7. Determination of boron contents in water samples collected from the Neelum valley, Azad Kashmir, Pakistan.

    PubMed

    Akram, Muhammad; Matiullah; Iqbal, Arshid; Husaini, S N; Malik, Fariha

    2011-03-01

    Intake of boron from food and drinking water may pose a risk to the public health above a certain concentration level. Therefore, knowledge of boron concentration in drinking water and food items is essential. In this context, samples of drinking water were collected from natural springs of the Neelum valley, Azad Kashmir, hit by devastating earthquake in 2005. In these samples, boron concentration was determined using neutron-induced radiography technique. To do so, unknown water samples, along with standard of known boron dried on CR-39 detectors, were irradiated with thermal neutrons. After exposure, CR-39 detectors were etched in 6 M NaOH at 70°C. The tracks produced due to the alpha particles and (7)Li ions as a result of (10)B(n,α)(7)Li reaction were counted under an optical microscope. The tracks produced in theses samples were then related to the boron contents. The measured boron concentration in water samples was found to vary from 0.105 ± 0.005 to 0.247 ± 0.013 mg/l with an average value of 0.17 ± 0.04 mg/l, which are within the acceptable limits.

  8. Laboratory investigation into the contribution of contaminants to ground water from equipment materials used in sampling

    SciTech Connect

    Gilmore, Tyler J.; Mitroshkov, Alexandre V.; Dresel, P. Evan; Sklarew, Deborah S.

    2004-07-31

    Benzene contamination was detected in water samples from the Ogallala aquifer beneath and adjacent to the Department of Energy's (DOE) Pantex Plant near Amarillo, Texas. DOE assembled a Technical Assistance Team to evaluate the source of benzene. One of the team's recommendations was to assess whether the sampling equipment material could be a source of benzene and other volatile organic compounds. As part of this investigation, laboratory testing of the sample equipment material was conducted. Results from the laboratory tests indicated that the equipment material did, in fact, contribute volatile and semi-volatile organic compounds to the groundwater samples. Specifically, three materials were identified as contributing contaminants to water samples. The nylon-11 tubing used contributed benzene and the plasticizer N-butylbenzenesulfonamide (NBSA), the urethane-coated nylon well liner contributed toluene and trace amounts of NBSA, while the sampling port "spacer" material made of nylon/polypropylene/polyester-composite contributed trace amounts of toluene and NBSA. While the concentrations of benzene and toluene measured in the laboratory tests are below the concentrations measured in actual groundwater samples, the equipment material was found to contribute organics to the test water rendering the results reported for the groundwater samples highly suspect.

  9. Field guidelines for collection, treatment, and analysis of water samples, Montana district

    USGS Publications Warehouse

    Knapton, J.R.

    1985-01-01

    This manual provides a set of standardized guidelines and quality-control procedures for the collection and preservation of water samples and defines procedures for field analyses of unstable constituents or properties. Seldom is the water being samples of such uniformity that a single grab sample is representative of the whole. For this reason a variety of sampler types and sampling methods have been devised. Descriptions and procedures for field use are given for a number of sampler types. Several methods of sampling are described for which these samplers can be used. Sample-processing devices such as sample splitters and filtration apparatus are discussed along with methods of cleaning. Depending on the type of analysis to be performed in the laboratory, samples may need to be preserved shortly after collection. Various types of preservation are described in detail. Analyses for unstable constituents or properties are of necessity accomplished in the field. This manual addresses analytical techniques and quality assurance for: (1) Water temperature, (2) specific conductance, (3) pH, (4) alkalinity, (5) dissolved oxygen, and (6) bacteria. Examples of field report forms are given as attachments. Information pertinent to certain field calculations is also presented. (USGS)

  10. Relationship of land use to water quality in the Chesapeake Bay region. [water sampling and photomapping river basins

    NASA Technical Reports Server (NTRS)

    Correll, D. L.

    1978-01-01

    Both the proportions of the various land use categories present on each watershed and the specific management practices in use in each category affect the quality of runoff waters, and the water quality of the Bay. Several permanent and portable stations on various Maryland Rivers collect volume-integrated water samples. All samples are analyzed for a series of nutrient, particulate, bacterial, herbicide, and heavy metal parameters. Each basin is mapped with respect to land use by the analysis of low-elevation aerial photos. Analyses are verified and adjusted by ground truth surveys. Data are processed and stored in the Smithsonian Institution data bank. Land use categories being investigated include forests/old fields, pastureland, row crops, residential areas, upland swamps, and tidal marshes.

  11. Relationship of land use to water quality in the Chesapeake Bay region. [water sampling and photomapping river basins

    NASA Technical Reports Server (NTRS)

    Correll, D. L.

    1978-01-01

    Both the proportions of the various land use categories present on each watershed and the specific management practices in use in each category affect the quality of runoff waters, and the water quality of the Bay. Several permanent and portable stations on various Maryland Rivers collect volume-integrated water samples. All samples are analyzed for a series of nutrient, particulate, bacterial, herbicide, and heavy metal parameters. Each basin is mapped with respect to land use by the analysis of low-elevation aerial photos. Analyses are verified and adjusted by ground truth surveys. Data are processed and stored in the Smithsonian Institution data bank. Land use categories being investigated include forests/old fields, pastureland, row crops, residential areas, upland swamps, and tidal marshes.

  12. Cyto- and genotoxic potential of water samples from polluted areas in Kosovo.

    PubMed

    Alija, Avdulla J; Bajraktari, Ismet D; Bresgen, Nikolaus; Bojaxhi, Ekramije; Krenn, Margit; Asllani, Fisnik; Eckl, Peter M

    2016-09-01

    Reports on the state of the environment in Kosovo have emphasized that river and ground water quality is affected by pollution from untreated urban water as well as the waste water from the industry. One of the main contributors to this pollution is located in Obiliq (coal power plants). Prishtina-the capital city of Kosovo-is heavily influenced too. Furthermore, the pollutants combined together with those from heavy traffic are dissolved in Prishtina runoff water, which is discharged into the creek entering the river Sitnica together with urban waste water. The available data show the complex pollution with excessive quantities of nitrites, suspended materials, organic compounds, detergents, heavy metals, polychlorinated biphenyls, etc. In this study, the cytotoxic and genotoxic potential of water samples taken at these sites was tested in primary rat hepatocytes. The results obtained indicate that water samples collected in Prishtina and Obiliq had a significant cytotoxic potential in primary rat hepatocyte cultures even when diluted to 1 %. The increased cytotoxicity, however, was not accompanied by an increased genotoxicity as measured by the percentage of micronucleated cells. Further investigations addressing the chemical composition of the samples and the identification of the toxicants responsible for the cytotoxic effects found will be carried out in a next step.

  13. Effects of holding time and measurement error on culturing Legionella in environmental water samples.

    PubMed

    Flanders, W Dana; Kirkland, Kimberly H; Shelton, Brian G

    2014-10-01

    Outbreaks of Legionnaires' disease require environmental testing of water samples from potentially implicated building water systems to identify the source of exposure. A previous study reports a large impact on Legionella sample results due to shipping and delays in sample processing. Specifically, this same study, without accounting for measurement error, reports more than half of shipped samples tested had Legionella levels that arbitrarily changed up or down by one or more logs, and the authors attribute this result to shipping time. Accordingly, we conducted a study to determine the effects of sample holding/shipping time on Legionella sample results while taking into account measurement error, which has previously not been addressed. We analyzed 159 samples, each split into 16 aliquots, of which one-half (8) were processed promptly after collection. The remaining half (8) were processed the following day to assess impact of holding/shipping time. A total of 2544 samples were analyzed including replicates. After accounting for inherent measurement error, we found that the effect of holding time on observed Legionella counts was small and should have no practical impact on interpretation of results. Holding samples increased the root mean squared error by only about 3-8%. Notably, for only one of 159 samples, did the average of the 8 replicate counts change by 1 log. Thus, our findings do not support the hypothesis of frequent, significant (≥= 1 log10 unit) Legionella colony count changes due to holding.

  14. Towards a robust water content determination of freeze-dried samples by near-infrared spectroscopy.

    PubMed

    Grohganz, Holger; Gildemyn, Delphine; Skibsted, Erik; Flink, James M; Rantanen, Jukka

    2010-08-31

    The possibility for determination of the water content in pharmaceutical samples by near-infrared (NIR) spectroscopy has been more widely investigated in the past few years. However, many studies claim that changes in sample composition will require the establishment of a new method. The aim of this study was several fold: firstly to investigate validation aspects of water content determination in samples with varying composition and furthermore to see if a model based solely on freeze-dried mannitol-sucrose mixtures can be established that will be able to predict water contents for samples containing proteins, excipients or having a lower density of freeze-dried solids. Samples were measured by NIR, standard normal variate (SNV) corrected and the obtained spectra were compared with the results from a conventional Karl-Fischer titration by means of multivariate analysis, namely principal component analysis (PCA) and partial least square regression (PLS). For the overall sample set, a highly linear correlation between the NIR and the Karl-Fischer method with a slope of 1.00, an R(2) value of 0.98 and a root mean square error of cross-validation (RMSECV) of 0.15% were found. In a second step samples solely consisting of mannitol and sucrose mixtures were used to build a calibration set, which resulted in a RMSECV of 0.16%. The prediction of the remaining samples, which included protein or excipient containing samples, as well as lower density samples, resulted in a root mean square error of prediction (RMSEP) of 0.19%. Thus the present study demonstrated, that a general model for the determination of the water content by NIR could be established, within the limits investigated.

  15. Sensor-based actuation of water samplers in wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Schneider, P.; Burgener, D.; Beutel, J.; Wombacher, A.; Seibert, J.

    2012-12-01

    Wireless sensor networks (WSN) have started to change environmental monitoring, and as such, real-time sensor data are available in high temporal and spatial resolution. However, sampling of water bodies and the analysis of these samples in the lab will continue to be an essential part of environmental monitoring, as many parameters can only be analyzed with accurate precision in the lab. In a joint project of computer sciences, network engineering and environmental research we integrated an automated water sampler (ISCO 6712) as an actuator into a WSN. Based on the online interpretation of sensor data an actuation schedule for the sampling of water is generated. This actuation schedule is transferred to the water sampling unit for remote execution. Electric conductivity (EC) was chosen as a proxy parameter for water origin (e.g. groundwater or river water in alluvial systems) and thus for changes in stable isotopes and water quality. The onset of river water infiltrating the observed section of the aquifer is detected by EC sampled at several locations and high temporal resolution (2min) using a stream based filtering technique rather than a simple signal threshold. The EC signal is continuously analyzed by the streaming filter defining a sampling event when the EC signal clearly leaves the boundaries of daily oscillation over given a time window. To cope with noise in the EC data, we implemented and evaluated different outlier detection algorithms and plausibility checks to actuate the automated water sampler at the onset of an event and then applying a static sampling scheme. As a next step, we are working on dynamic sampling schemes, which are based on stream processing algorithms predicting the peak and duration of EC events based on deconvolution and geostatistics (Cirpka 2007).

  16. Acute effects of a single warm-water bath on serum adiponectin and leptin levels in healthy men: A pilot study

    NASA Astrophysics Data System (ADS)

    Shimodozono, Megumi; Matsumoto, Shuji; Ninomiya, Koji; Miyata, Ryuji; Ogata, Atsuko; Etoh, Seiji; Watanabe, Satoshi; Kawahira, Kazumi

    2012-09-01

    To preliminarily assess the acute effects of a single warm -water bath (WWB) on serum adipokine activity, we measured serum adiponectin, leptin and other metabolic profiles before, immediately after and 30 minutes after WWB in seven healthy male volunteers (mean age, 39.7 ± 6.0 years; mean body mass index, 21.6 ± 1.8 kg/m2). The subjects were immersed in tap water at 41°C for 10 minutes. Two weeks later, the same subjects underwent a single WWB with a bath additive that included inorganic salts and carbon dioxide (WWB with ISCO2) by the same protocol as for the first WWB. Leptin levels significantly increased immediately after WWB with tap water and ISCO2 (both P < 0.05), and remained significantly higher than those at baseline even 30 minutes after WWB with tap water ( P < 0.05). Adiponectin levels showed a slight, but not significant, increase both immediately after and 30 minutes after WWB with tap water or ISCO2. Some parameters, such as serum total cholesterol, red blood cell count, hemoglobin and hematocrit significantly increased immediately after WWB with tap water or ISCO2 (all P < 0.05), but they all returned to the baseline levels 30 minutes after bathing under both conditions. The sublingual temperature rose significantly after 10 minutes of WWB with tap water (0.96 ± 0.16°C relative to baseline, P < 0.01) and after the same duration of WWB with ISCO2 (1.24 ± 0.34°C relative to baseline, P < 0.01). These findings suggest that a single WWB at 41°C for 10 minutes may modulate leptin and adiponectin profiles in healthy men.

  17. Linking Near Real-Time Water Quality Measurements to Fecal Coliforms and Trace Organic Pollutants in Urban Streams

    NASA Astrophysics Data System (ADS)

    Henjum, M.; Wennen, C.; Hondzo, M.; Hozalski, R. M.; Novak, P. J.; Arnold, W. A.

    2009-05-01

    Anthropogenic pollutants, including pesticides, herbicides, pharmaceuticals, and estrogens are detected in urban water bodies. Effective examination of dilute organic and microbial pollutant loading rates within surface waters is currently prohibitively expensive and labor intensive. Effort is being placed on the development of improved monitoring methodologies to more accurately assess surface water quality and evaluate the effectiveness of water quality management practices. Throughout the summer and fall of 2008 a "real-time" wireless network equipped with high frequency fundamental water quality parameter sensors measured turbidity, conductivity, pH, depth, temperature, dissolved oxygen and nitrate above and below stormwater inputs at two urban stream locations. At each location one liter grab samples were concurrently collected by ISCO automatic samplers at two hour intervals for 24 hour durations during three dry periods and five rain events. Grab samples were analyzed for fecal coliforms, atrazine (agricultural herbicide), prometon (residential herbicide) and caffeine (wastewater indicator). Surrogate relationships between easy-to-measure water quality parameters and difficult-to-measure pollutants were developed, subsequently facilitating monitoring of these pollutants without the development of new, and likely costly, technologies. Additionally, comparisons were made between traditional grab sampling techniques and the "real-time" monitoring to assess the accuracy of Total Maximum Daily Load (TMDL) calculations.

  18. Active Sampling Device for Determining Pollutants in Surface and Pore Water – the In Situ Sampler for Biphasic Water Monitoring

    PubMed Central

    Supowit, Samuel D.; Roll, Isaac B.; Dang, Viet D.; Kroll, Kevin J.; Denslow, Nancy D.; Halden, Rolf U.

    2016-01-01

    We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040–0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction. PMID:26905924

  19. Active Sampling Device for Determining Pollutants in Surface and Pore Water - the In Situ Sampler for Biphasic Water Monitoring

    NASA Astrophysics Data System (ADS)

    Supowit, Samuel D.; Roll, Isaac B.; Dang, Viet D.; Kroll, Kevin J.; Denslow, Nancy D.; Halden, Rolf U.

    2016-02-01

    We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040-0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction.

  20. Concentration and Detection of Caliciviruses in Water Samples by Reverse Transcription-PCR

    PubMed Central

    Huang, P. W.; Laborde, D.; Land, V. R.; Matson, D. O.; Smith, A. W.; Jiang, X.

    2000-01-01

    Human caliciviruses (HuCVs) cause waterborne outbreaks of gastroenteritis. Standard indicators of a safe water supply do not adequately predict contamination of water by viruses, including HuCVs. We developed a method to concentrate and detect HuCVs in water samples by using a cultivable primate calicivirus (Pan-1) as a model. Viable Pan-1 was seeded in different types of water and then filtered with a 1MDS filter, eluted with beef extract (BE), and reconcentrated by polyethylene glycol (PEG) precipitation. The viruses in the final samples were tested by plaque assay or by reverse transcription (RT)-PCR following extraction of the RNA with Trizol. Pan-1 was more sensitive to high-pH treatment than poliovirus was; a pH 9.0 BE solution was found to recover 35% more viable Pan-1 than a pH 9.5 BE solution recovered. Pan-1 was recovered from small volumes of deionized, finished, ground, and surface waters at efficiencies of 94, 73, 67, and 64%, respectively, when samples were assayed after elution without further concentration. When larger volumes of water (up to 40 liters) were tested after elution and concentration with PEG, 38, 19, and 14% of the seeded Pan-1 were recovered from finished, ground, and surface waters, respectively. The limit of detection of Pan-1 by RT-PCR was estimated to be 0.75 to 1.5 PFU in 40 liters of finished water. This method may be adapted for monitoring HuCVs in drinking water and other types of water for public health safety. PMID:11010887

  1. Pilot study for U.S. Geological Survey Standard Reference Water Samples for pesticides

    USGS Publications Warehouse

    Friedman, L.C.; Fishman, M. J.; Boyle, D.K.

    1984-01-01

    The U. S. Geological Survey has been preparing and maintaining a library of standard reference water samples for inorganic constituents for 19 years. Recently, a pilot study was conducted to see if the reference-sample program could be expanded to include pesticides and other organic materials. Two samples containing organochlorine and organophosphorus insecticides, and chlorophenoxy acid herbicides were distributed to a number of laboratories in the United States. One of the samples also contained polychlorinated biphenyls. Interlaboratory data obtained from these round robin studies are presented with intralaboratory information on long-term stability.

  2. Efficacy of the detection of Legionella in hot and cold water samples by culture and PCR. II. Examination of native samples from various sources.

    PubMed

    Stojek, Nimfa Maria; Wójcik-Fatla, Angelina; Dutkiewicz, Jacek

    2012-01-01

    A total of 123 water samples were examined in parallel by culture and semi-nested PCR for the presence of Legionella. They comprised: 35 samples of hot water distributed by the urban municipal water supply system (MWSS) taken in institutions, 45 samples of hot water distributed by urban MWSS taken in dwellings, 27 samples of cold water distributed by rural MWSS taken in dwellings, and 16 samples of cold well water taken in rural areas. The greatest frequency of the isolation of Legionella by culture (88.6%) was recorded in the samples of hot water from the urban institutions, having been greater compared to all other sources (p<0.001). The frequency of Legionella isolation from hot water in urban dwellings (28.9%) was significantly greater compared to the combined value (2.3%) for cold water from rural MWSS and wells (p<0.001). Strains belonging to Legionella pneumophila serogroups 2-14 predominated in the examined samples, while strains of L. pneumophila serogroup 1 and strains of Legionella spp. (other than L. pneumophila) were 3-fold less numerous. The rates of positive findings in the semi-nested PCR (stage 2) were greater than culture isolations in all kinds of samples, except for urban institutions. The correlation between the culture and PCR results was positive for samples of hot water from urban MWSS (p<0.01), but not for samples of cold water from rural MWSS and wells (p>0.5). A significant correlation was found between rates of PCR-positive results and numbers of Legionella pneumophila serogroups 2-14 strains, but not for other Legionella serogroups or species. In conclusion, our results support the opinion that though PCR cannot be a substitute for the isolation of Legionella by culture, it could be regarded as an useful complementary method.

  3. Field guide for collecting and processing stream-water samples for the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Shelton, Larry R.

    1994-01-01

    The U.S. Geological Survey's National Water-Quality Assessment program includes extensive data- collection efforts to assess the quality of the Nations's streams. These studies require analyses of stream samples for major ions, nutrients, sediments, and organic contaminants. For the information to be comparable among studies in different parts of the Nation, consistent procedures specifically designed to produce uncontaminated samples for trace analysis in the laboratory are critical. This field guide describes the standard procedures for collecting and processing samples for major ions, nutrients, organic contaminants, sediment, and field analyses of conductivity, pH, alkalinity, and dissolved oxygen. Samples are collected and processed using modified and newly designed equipment made of Teflon to avoid contamination, including nonmetallic samplers (D-77 and DH-81) and a Teflon sample splitter. Field solid-phase extraction procedures developed to process samples for organic constituent analyses produce an extracted sample with stabilized compounds for more accurate results. Improvements to standard operational procedures include the use of processing chambers and capsule filtering systems. A modified collecting and processing procedure for organic carbon is designed to avoid contamination from equipment cleaned with methanol. Quality assurance is maintained by strict collecting and processing procedures, replicate sampling, equipment blank samples, and a rigid cleaning procedure using detergent, hydrochloric acid, and methanol.

  4. Using SPMDs for monitoring hydrophobic organic compounds in urban river water in Korea compared with using conventional water grab samples

    USGS Publications Warehouse

    Kim, Un-Jung; Kim, Hee Young; Alvarez, David A.; Lee, In-Seok; Oh, Jeong-Eun

    2014-01-01

    We aimed to verify the effectiveness of semi-permeablemembrane devices (SPMDs) formonitoring hydrophobic organic compounds, such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs), that are not easy to detect using conventional grab samples (because of their low concentrations), in water.We used SPMDs and grab samples to monitor PCBs and PBDEs upstream and downstream of a sewage treatment plant (STP) in the Suyeong River in Busan, Korea. Concentrations in three different phases (freely dissolved, apparently dissolved, and particulate) were measured, to investigate the aquatic fate of PCBs and PBDEs. The freely dissolved (SPMD) concentrations were 2–3 times higher than the apparently dissolved and particulate phase (grab sample) concentrations. No meaningful relationships were found between the total PCB and PBDE concentrations of the grab sample and SPMD sample because of the different partitioning behaviors and detection frequencies of the individual chemicals. However, the summed concentrations of specific PCB and PBDE congeners (that were abundant in all samples) in the grab and SPMD samples correlated well (r2 = 0.7451 for PCBs 28 + 52 + 153, r2 = 0.9987 for PBDEs 28 + 47 + 99). The PBDE concentrations measured using SPMDs decreased with increasing distance from the STP, but no apparent dilution effect was found in the grab samples. Our results show that SPMDs could be used to support grab sampling for specific chemicals, or to trace chemical sources (such as STPs) to the aquatic environment.

  5. QUANTITATIVE VS. CONVENTIONAL PCR FOR DETECTION OF HUMAN ADENOVIRUSES IN WATER AND SEDIMENT SAMPLES

    PubMed Central

    STAGGEMEIER, Rodrigo; BORTOLUZZI, Marina; HECK, Tatiana Moraes da Silva; SPILKI, Fernando Rosado; ALMEIDA, Sabrina Esteves de Matos

    2015-01-01

    SUMMARY Human Adenoviruses (HAdV) are notably resistant in the environment. These agents may serve as effective indicators of fecal contamination, and may act as causative agents of a number of different diseases in human beings. Conventional polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) are widely used for detection of viral agents in environmental matrices. In the present study PCR and SYBR(r)Green qPCR assays were compared for detection of HAdV in water (55) and sediments (20) samples of spring and artesian wells, ponds and streams, collected from dairy farms. By the quantitative methodology HAdV were detected in 87.3% of the water samples and 80% of the sediments, while by the conventional PCR 47.3% and 35% were detected in water samples and sediments, respectively. PMID:26422153

  6. QUANTITATIVE VS. CONVENTIONAL PCR FOR DETECTION OF HUMAN ADENOVIRUSES IN WATER AND SEDIMENT SAMPLES.

    PubMed

    Staggemeier, Rodrigo; Bortoluzzi, Marina; Heck, Tatiana Moraes da Silva; Spilki, Fernando Rosado; Almeida, Sabrina Esteves de Matos

    2015-01-01

    Human Adenoviruses (HAdV) are notably resistant in the environment. These agents may serve as effective indicators of fecal contamination, and may act as causative agents of a number of different diseases in human beings. Conventional polymerase chain reaction (PCR) and, more recently, quantitative PCR (qPCR) are widely used for detection of viral agents in environmental matrices. In the present study PCR and SYBR(r)Green qPCR assays were compared for detection of HAdV in water (55) and sediments (20) samples of spring and artesian wells, ponds and streams, collected from dairy farms. By the quantitative methodology HAdV were detected in 87.3% of the water samples and 80% of the sediments, while by the conventional PCR 47.3% and 35% were detected in water samples and sediments, respectively.

  7. A continuous water sampling and multi-parameter measurement system for estuaries

    USGS Publications Warehouse

    Schemel, Laurence E.; Dedini, Lee A.

    1979-01-01

    Salinity, temperature, light transmissivity, oxygen saturation, turbidity, pH, pCO2, and chlorophyll a fluorescence of a pumped water sample are continuously measured with a system designed primarily for estuarine studies. Near-surface water from a depth of 2 m is sampled continuously while the vessel is underway or water at depths to 100 m can be collected with an in situ pump, in which case the sampling depth and temperature are measured by an in situ probe. The system is comprised of commercially available instruments, equipment, and components, and of specialized items designed and fabricated by the authors. Data can be read from digital displays and analog strip-chart recorders. Tables and figures describing specialized items are included.

  8. Evaluation of water sampling methodologies for amplicon-based characterization of bacterial community structure.

    PubMed

    Staley, Christopher; Gould, Trevor J; Wang, Ping; Phillips, Jane; Cotner, James B; Sadowsky, Michael J

    2015-07-01

    Reduction in costs of next-generation sequencing technologies has allowed unprecedented characterization of bacterial communities from environmental samples including aquatic ecosystems. However, the extent to which extrinsic factors including sampling volume, sample replication, DNA extraction kits, and sequencing target affect the community structure inferred are poorly explored. Here, triplicate 1, 2, and 6L volume water samples from the Upper Mississippi River were processed to determine variation among replicates and sample volumes. Replicate variability significantly influenced differences in the community α-diversity (P=0.046), while volume significantly changed β-diversity (P=0.037). Differences in phylogenetic and taxonomic community structure differed both among triplicate samples and among the volumes filtered. Communities from 2L and 6L water samples showed similar clustering via discriminant analysis. To assess variation due to DNA extraction method, DNA was extracted from triplicate cell pellets from four sites along the Upper Mississippi River using the Epicentre Metagenomic DNA Isolation Kit for Water and MoBio PowerSoil kit. Operational taxonomic units representing ≤14% of sequence reads differed significantly among all sites and extraction kits used, although differences in diversity and community coverage were not significant (P≥0.057). Samples characterized using only the V6 region had significantly higher coverage and lower richness and α-diversity than those characterized using V4-V6 regions (P<0.001). Triplicate sampling of at least 2L of water provides robust representation of community variability, and these results indicate that DNA extraction kit and sequencing target displayed taxonomic biases that did not affect the overall biological conclusions drawn. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Lead Concentration Levels in Water Samples Collected in Alameda County, CA

    NASA Astrophysics Data System (ADS)

    Sethy, D.; Hoang, R.; Yu, I.; Hernandez, N.; Fang, K.; Zhang, W.; Li, J.; Munui, K. N.; Sot, R.; Luong, K.; Bonzo, R.; Sankar, R.; Chiu, D.; Rodriguez, V. A.

    2016-12-01

    The recent health crisis in Flint, Michigan has attracted an amount of interest in other public utilities' water supplies and infrastructure with regards to concerns over the presence of lead. In an effort to begin assessing the potential for a health crisis similar to that experienced in Flynt, during 2016 our team measured lead concentration levels in water samples by collected in Alameda County. More than 12 sites were selected from which samples were collected. These sites included parks, schools, and private residences. At each site 500mL samples were collected and prepared for later analysis. Samples were subjected to an analytical chemistry technique designed to isolate and concentrate lead to detectable levels of 1 part per billion (ppb). All 8 samples yielded detectable levels of lead; all samples were also well below the EPA regulatory 15 ppb. Two samples collected in West Oakland parks were found to have the highest and lowest levels: DeFremery (4 ppb) and Raimondi (1ppb), respectively. Though preliminary in nature, results from this study suggest that further investigations should be undertaken to assess possible lead contamination associated with drinking water sources in Alameda County.

  10. Water column and bed-sediment core samples collected from Brownlee Reservoir near Oxbow, Oregon, 2012

    USGS Publications Warehouse

    Fosness, Ryan L.; Naymik, Jesse; Hopkins, Candice B.; DeWild, John F.

    2013-01-01

    The U.S. Geological Survey, in cooperation with Idaho Power Company, collected water-column and bed-sediment core samples from eight sites in Brownlee Reservoir near Oxbow, Oregon, during May 5–7, 2012. Water-column and bed-sediment core samples were collected at each of the eight sites and analyzed for total mercury and methylmercury. Additional bed-sediment core samples, collected from three of the eight sites, were analyzed for pesticides and other organic compounds, trace metals, and physical characteristics, such as particle size. Total mercury and methylmercury were detected in each of the water column and bed-sediment core samples. Only 17 of the 417 unique pesticide and organic compounds were detected in bed-sediment core samples. Concentrations of most organic wastewater compounds detected in bed sediment were less than the reporting level. Trace metals detected were greater than the reporting level in all the bed-sediment core samples submitted for analysis. The particle size distribution of bed-sediment core samples was predominantly clay mixed with silt.

  11. Guidance document for preparing water sampling and analysis plans for UMTRA sites. Final [report

    SciTech Connect

    Not Available

    1993-09-01

    A water sampling and analysis plan (WSAP) is required for each Uranium Mill Tailings Remedial Action (UMTRA) site to provide rationale for groundwater and surface water sampling at disposal sites and former processing sites. The WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequencies for the groundwater and surface water monitoring stations at each site. Section 2.0 of this WSAP Guidance Document describes the WSAP format. Sections 3.0 and 4.0 provide guidance for selecting sampling frequencies and sampling locations, respectively. Section 5.0 contains criteria for selecting analytical parameters. Section 6.0 provides guidance for the contents of each site`s WSAP file. Finally, Section 7.0 presents the references used to prepare this document. The purpose of this guidance document is to provide a consistent technical approach for sampling and monitoring activities performed under WSAPs and a consistent format for WSAP documents. This document is designed for use by the Technical Assistance Contractor (TAC) to prepare WSAPs and by the US Department of Energy (DOE), Nuclear Regulatory Commission, state and tribal agencies, regulatory agencies, and the public to evaluate the contents of the WSAPS. This guidance document may be updated periodically based on new or changing regulations.

  12. The correlation of arsenic levels in drinking water with the biological samples of skin disorders.

    PubMed

    Kazi, Tasneem Gul; Arain, Muhammad Balal; Baig, Jameel Ahmed; Jamali, Muhammad Khan; Afridi, Hassan Imran; Jalbani, Nusrat; Sarfraz, Raja Adil; Shah, Abdul Qadir; Niaz, Abdul

    2009-01-15

    Arsenic (As) poisoning has become a worldwide public health concern. The skin is quite sensitive to As and skin lesions are the most common and earliest nonmalignant effects associated to chronic As exposure. In 2005-2007, a survey was carried out on surface and groundwater arsenic contamination and relationships between As exposure via the drinking water and related adverse health effects (melanosis and keratosis) on villagers resides on the banks of Manchar lake, southern part of Sindh, Pakistan. We screened the population from arsenic-affected villages, 61 to 73% population were identified patients suffering from chronic arsenic toxicity. The effects of As toxicity via drinking water were estimated by biological samples (scalp hair and blood) of adults (males and females), have or have not skin problem (n=187). The referent samples of both genders were also collected from the areas having low level of As (<10 microg/L) in drinking water (n=121). Arsenic concentration in drinking water and biological samples were analyzed using electrothermal atomic absorption spectrometry. The range of arsenic concentrations in lake surface water was 35.2-158 microg/L, which is 3-15 folds higher than World Health Organization [WHO, 2004. Guidelines for drinking-water quality third ed., WHO Geneva Switzerland.]. It was observed that As concentration in the scalp hair and blood samples were above the range of permissible values 0.034-0.319 microg As/g for hair and <0.5-4.2 microg/L for blood. The linear regressions showed good correlations between arsenic concentrations in water versus hair and blood samples of exposed skin diseased subjects (R2=0.852 and 0.718) as compared to non-diseased subjects (R2=0.573 and 0.351), respectively.

  13. Detection by PCR of pathogenic protozoa in raw and drinkable water samples in Colombia.

    PubMed

    Triviño-Valencia, Jessica; Lora, Fabiana; Zuluaga, Juan David; Gomez-Marin, Jorge E

    2016-05-01

    We evaluated the presence of DNA of Giardia, Toxoplasma, and Cryptosporidium by PCR, and of Giardia and Cryptosporidium genera by immunofluorescence antibody test (IFAT), in water samples, before, during, and after plant treatment for drinkable water. We applied this method in 38 samples of 10 l of water taken from each of the water treatment steps and in 8 samples taken at home (only for Toxoplasma PCR) in Quindio region in Colombia. There were 8 positive samples for Cryptosporidium parvum (21 %), 4 for Cryptosporidium hominis (10.5 %), 27 for Toxoplasma gondii (58.6 %), 2 for Giardia duodenalis assemblage A (5.2 %), and 5 for G. duodenalis assemblage B (13.1 %). By IFAT, 23 % were positive for Giardia and 21 % for Cryptosporidium. An almost perfect agreement was found between IFAT and combined results of PCR, by Kappa composite proportion analysis. PCR positive samples were significantly more frequent in untreated raw water for C. parvum (p = 0.02). High mean of fecal coliforms, high pH values, and low mean of chlorine residuals were strongly correlated with PCR positivity for G. duodenalis assemblage B. High pH value was correlated with PCR positivity for C. parvum. Phylogenetic analysis of DNA sequences was possible, showing water and human clinical sequences for Toxoplasma within the same phylogenetic group for B1 repeated sequence. PCR assay is complementary to IFAT assay for monitoring of protozoa in raw and drinkable water, enabling species identification and to look for phylogenetic analysis in protozoa from human and environmental sources.

  14. Field portable mobile phone based fluorescence microscopy for detection of Giardia lamblia cysts in water samples

    NASA Astrophysics Data System (ADS)

    Ceylan Koydemir, Hatice; Gorocs, Zoltan; McLeod, Euan; Tseng, Derek; Ozcan, Aydogan

    2015-03-01

    Giardia lamblia is a waterborne parasite that causes an intestinal infection, known as giardiasis, and it is found not only in countries with inadequate sanitation and unsafe water but also streams and lakes of developed countries. Simple, sensitive, and rapid detection of this pathogen is important for monitoring of drinking water. Here we present a cost-effective and field portable mobile-phone based fluorescence microscopy platform designed for automated detection of Giardia lamblia cysts in large volume water samples (i.e., 10 ml) to be used in low-resource field settings. This fluorescence microscope is integrated with a disposable water-sampling cassette, which is based on a flow-through porous polycarbonate membrane and provides a wide surface area for fluorescence imaging and enumeration of the captured Giardia cysts on the membrane. Water sample of interest, containing fluorescently labeled Giardia cysts, is introduced into the absorbent pads that are in contact with the membrane in the cassette by capillary action, which eliminates the need for electrically driven flow for sample processing. Our fluorescence microscope weighs ~170 grams in total and has all the components of a regular microscope, capable of detecting individual fluorescently labeled cysts under light-emitting-diode (LED) based excitation. Including all the sample preparation, labeling and imaging steps, the entire measurement takes less than one hour for a sample volume of 10 ml. This mobile phone based compact and cost-effective fluorescent imaging platform together with its machine learning based cyst counting interface is easy to use and can even work in resource limited and field settings for spatio-temporal monitoring of water quality.

  15. Quantitative Detection of Trace Malachite Green in Aquiculture Water Samples by Extractive Electrospray Ionization Mass Spectrometry

    PubMed Central

    Fang, Xiaowei; Yang, Shuiping; Chingin, Konstantin; Zhu, Liang; Zhang, Xinglei; Zhou, Zhiquan; Zhao, Zhanfeng

    2016-01-01

    Exposure to malachite green (MG) may pose great health risks to humans; thus, it is of prime importance to develop fast and robust methods to quantitatively screen the presence of malachite green in water. Herein the application of extractive electrospray ionization mass spectrometry (EESI-MS) has been extended to the trace detection of MG within lake water and aquiculture water, due to the intensive use of MG as a biocide in fisheries. This method has the advantage of obviating offline liquid-liquid extraction or tedious matrix separation prior to the measurement of malachite green in native aqueous medium. The experimental results indicate that the extrapolated detection limit for MG was ~3.8 μg·L−1 (S/N = 3) in lake water samples and ~0.5 μg·L−1 in ultrapure water under optimized experimental conditions. The signal intensity of MG showed good linearity over the concentration range of 10–1000 μg·L−1. Measurement of practical water samples fortified with MG at 0.01, 0.1 and 1.0 mg·L−1 gave a good validation of the established calibration curve. The average recoveries and relative standard deviation (RSD) of malachite green in lake water and Carassius carassius fish farm effluent water were 115% (6.64% RSD), 85.4% (9.17% RSD) and 96.0% (7.44% RSD), respectively. Overall, the established EESI-MS/MS method has been demonstrated suitable for sensitive and rapid (<2 min per sample) quantitative detection of malachite green in various aqueous media, indicating its potential for online real-time monitoring of real life samples. PMID:27529262

  16. Evaluation of the Snap Sampler for Sampling Ground Water Monitoring Wells for Inorganic Analytes

    DTIC Science & Technology

    2008-12-01

    within the well. The slits in the two discs were misaligned to limit water exchange. The discs are attached to the Snap Sampler trigger line with...ER D C/ CR R EL T R -0 8 -2 5 Evaluation of the Snap Sampler for Sampling Ground Water Monitoring Wells for Inorganic Analytes...Louise V. Parker, Nathan D. Mulherin, and Gordon E. Gooch December 2008 Well Screen Baffle Snap Sampler Trigger Line Pump Tubing Top Snap Sampler RGC

  17. Quantitative Detection of Trace Malachite Green in Aquiculture Water Samples by Extractive Electrospray Ionization Mass Spectrometry.

    PubMed

    Fang, Xiaowei; Yang, Shuiping; Chingin, Konstantin; Zhu, Liang; Zhang, Xinglei; Zhou, Zhiquan; Zhao, Zhanfeng

    2016-08-11

    Exposure to malachite green (MG) may pose great health risks to humans; thus, it is of prime importance to develop fast and robust methods to quantitatively screen the presence of malachite green in water. Herein the application of extractive electrospray ionization mass spectrometry (EESI-MS) has been extended to the trace detection of MG within lake water and aquiculture water, due to the intensive use of MG as a biocide in fisheries. This method has the advantage of obviating offline liquid-liquid extraction or tedious matrix separation prior to the measurement of malachite green in native aqueous medium. The experimental results indicate that the extrapolated detection limit for MG was ~3.8 μg·L(-1) (S/N = 3) in lake water samples and ~0.5 μg·L(-1) in ultrapure water under optimized experimental conditions. The signal intensity of MG showed good linearity over the concentration range of 10-1000 μg·L(-1). Measurement of practical water samples fortified with MG at 0.01, 0.1 and 1.0 mg·L(-1) gave a good validation of the established calibration curve. The average recoveries and relative standard deviation (RSD) of malachite green in lake water and Carassius carassius fish farm effluent water were 115% (6.64% RSD), 85.4% (9.17% RSD) and 96.0% (7.44% RSD), respectively. Overall, the established EESI-MS/MS method has been demonstrated suitable for sensitive and rapid (<2 min per sample) quantitative detection of malachite green in various aqueous media, indicating its potential for online real-time monitoring of real life samples.

  18. Exploring water cycle dynamics by sampling multiple stable water isotope pools in a developed landscape in Germany

    NASA Astrophysics Data System (ADS)

    Orlowski, Natalie; Kraft, Philipp; Pferdmenges, Jakob; Breuer, Lutz

    2016-09-01

    A dual stable water isotope (δ2H and δ18O) study was conducted in the developed (managed) landscape of the Schwingbach catchment (Germany). The 2-year weekly to biweekly measurements of precipitation, stream, and groundwater isotopes revealed that surface and groundwater are isotopically disconnected from the annual precipitation cycle but showed bidirectional interactions between each other. Apparently, snowmelt played a fundamental role for groundwater recharge explaining the observed differences to precipitation δ values. A spatially distributed snapshot sampling of soil water isotopes at two soil depths at 52 sampling points across different land uses (arable land, forest, and grassland) revealed that topsoil isotopic signatures were similar to the precipitation input signal. Preferential water flow paths occurred under forested soils, explaining the isotopic similarities between top- and subsoil isotopic signatures. Due to human-impacted agricultural land use (tilling and compression) of arable and grassland soils, water delivery to the deeper soil layers was reduced, resulting in significant different isotopic signatures. However, the land use influence became less pronounced with depth and soil water approached groundwater δ values. Seasonally tracing stable water isotopes through soil profiles showed that the influence of new percolating soil water decreased with depth as no remarkable seasonality in soil isotopic signatures was obvious at depths > 0.9 m and constant values were observed through space and time. Since classic isotope evaluation methods such as transfer-function-based mean transit time calculations did not provide a good fit between the observed and calculated data, we established a hydrological model to estimate spatially distributed groundwater ages and flow directions within the Vollnkirchener Bach subcatchment. Our model revealed that complex age dynamics exist within the subcatchment and that much of the runoff must has been stored

  19. Hydrochemical reactions and origin of offshore relatively fresh pore water from core samples in Hong Kong

    NASA Astrophysics Data System (ADS)

    Kwong, Hiu Tung; Jiao, Jiu Jimmy

    2016-06-01

    The existence of relatively fresh pore water offshore has been well recognised over the globe but studies on the chemistry of the pore water from offshore geological formations are extremely limited. This study aims to characterize the hydrochemistry of the submarine groundwater body in Hong Kong. It looks into the major ion concentrations and the stable isotopic compositions of pore water extracted from core samples from an offshore 42.30-m vibrocore in the southwestern Hong Kong waters. A minimum Cl- level of about one-third of that in typical seawater was noted in the terrestrial sediments, suggesting the presence of offshore relatively fresh water. Unexpectedly high NH4+ levels are attributed to organic matter decomposition in the terrestrial sediments. The leaching of shells due to exposure of marine sediments at sea-level low stands raises the Mg2+ and Ca2+ concentrations. Base Exchange Indices show weak cation exchange reactions in which Na+ and K+ are released while Mg2+ and Ca2+ are adsorbed. Isotopic compositions of pore water reveal that the low-salinity water is probably the relic water sequestered in fluvial systems during relative sea-level low stands. Cores properly stored in a freezer for a long time has been used to study the pore water chemistry. For the first time, this study introduces an approach to correct the measured data by considering the possible evaporation effect during the transportation and storage of the samples. Corrections for evaporation were applied to the major ion concentrations and the stable isotopic compositions of pore water measured. It is found that the corrections determined by the Cl- mass balance approach are more reliable. The corrected measurements give more reasonable observations and hence allow sensible conclusions on the hydrochemical reactions and the origin of pore water.

  20. Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture

    NASA Astrophysics Data System (ADS)

    Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz

    2014-05-01

    Climate change has already a large impact on the availability of water resources. Many regions in South-East Asia are assumed to receive less water in the future, dramatically impacting the production of the most important staple food: rice (Oryza sativa L.). Rice is the primary food source for nearly half of the World's population, and is the only cereal that can grow under wetland conditions. Especially anaerobic (flooded) rice fields require high amounts of water but also have higher yields than aerobic produced rice. In the past different methods were developed to reduce the water use in rice paddies, like alternative wetting and drying or the use of mixed cropping systems with aerobic (non-flooded) rice and alternative crops such as maize. A more detailed understanding of water and nutrient cycling in rice-based cropping systems is needed to reduce water use, and requires the investigation of hydrological and biochemical processes as well as transport dynamics at the field scale. New developments in analytical devices permit monitoring parameters at high temporal resolutions and at acceptable costs without much necessary maintenance or analysis over longer periods. Here we present a new type of automatic sampling set-up that facilitates in situ analysis of hydrometric information, stable water isotopes and nitrate concentrations in spatially differentiated agricultural fields. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer for monitoring nitrate content and various water level sensors for hydrometric information. The whole system is maintained with special developed software for remote control of the system via internet. We

  1. Radon levels in drinking water and soil samples of Jodhpur and Nagaur districts of Rajasthan, India.

    PubMed

    Mittal, Sudhir; Rani, Asha; Mehra, Rohit

    2016-07-01

    Radon causes lung cancer when it is trapped inside the lungs. Therefore it is very important to analyze the radon concentration in water and soil samples. In the present investigation, water and soil samples collected from 20 different locations of Jodhpur and Nagaur districts of Northern Rajasthan, India have been studied by using RAD7. The measured radon concentration in water samples varies from 0.5 to 15Bql(-1). The observed values lie within the safe limit as set by UNSCEAR, 2008. The total annual effective dose due to radon in water corresponding to all studied locations has been found to be well within the safe limit of 0.1mSvy(-1) as recommended by World Health Organization (WHO, 2004) and European Council (EU, 1998). The measurements carried out on radon concentration in soil samples reveal a variation from 1750 to 9850Bqm(-3). These results explore that the water of Jodhpur and Nagaur districts is suitable for drinking purpose without posing any health hazard but soil hazards depend upon its permeability and radon concentration.

  2. Environmental radioactivity of water samples collected in Higashi-Hiroshima campus, Hiroshima University, Japan.

    PubMed

    Nakashima, S; Sasai, A; Koga, K; Yasuhara, H; Matsushima, A; Inada, K

    2015-11-01

    The relation between concentration of elements and microbial activity in the water samples of Higashi-Hiroshima Campus, Hiroshima University was investigated. Energy dispersive X-ray spectroscopy revealed that microbial mat contains iron, aluminium, silicon and phosphorus. Model experiment revealed that the potassium was adsorbed by living microorganism in the microbial mats, while it was not adsorbed by dead microbial mat. Iron was adsorbed by both living and dead microbial mats. The present results explain the increase in the total β-radioactivity of water sample in summer and the decrease in winter.

  3. Glufosinate ammonium clean-up procedure from water samples using SPE

    NASA Astrophysics Data System (ADS)

    Tayeb M., A.; Ismail B., S.; Mardiana-Jansar, K.; Ta, Goh Choo; Agustar, Hani Kartini

    2015-09-01

    For the determination of glufosinate ammonium residue in soil and water samples, different solid phase extraction (SPE) sorbent efficiency was studied. Four different SPE sorbents i.e.: CROMABOND PS-H+, CROMABOND PS-OH-, ISOLUTE ENV+, Water Sep-Pak and OASIS HLB were used. Sample clean-up performance was evaluated using high performance liquid chromatography (Agilent 1220 infinity LC) with fluorescence detector. Detection of FMO-derivatives was done at λ ex = 260 nm and λ em= 310 nm. OASIS HLB column was the most suitable for the clean-up in view of the overall feasibility of the analysis.

  4. Development of an electrolysis system for tritium enrichment in superficial water samples.

    PubMed

    Garbarino, G; Magnoni, M; Bertino, S; Losana, M C

    2009-12-01

    Tritium present in the environment gradually decreased in the last decades and nowadays it has reached extremely low activity concentrations. The purpose of the present work is the implementation of a tritium enrichment system in water samples using electrolytic techniques and pure nickel and iron electrodes. In the present work a mean tritium enrichment factor of 13.0 +/- 3.2 was obtained. This result should allow to reach a minimum detectable activity of tritium in water samples of about 1 tritium unit (TU) or less. The present enrichment system necessitates further adjustments and improvements, such as a cooling system in order to reduce the tritium losses due to evaporation.

  5. [Drinking water analysis for Legionella. Suggestions for sampling, laboratory analysis and assessment].

    PubMed

    Schaefer, B

    2007-03-01

    Drinking water analysis for Legionella from building installations is done quite frequently. Some questions arise from experience with this analysis. They will be discussed to allow uniform and comparable execution. Application of DIN EN ISO 19458 will lead to changes in the sampling procedure. This may make changes necessary even in current sampling and assessment programs. Concerning laboratory investigation, quality control of membrane filters and media turned out to be crucial. The assessment of quantitative results requires knowledge of the drinking water distribution system and of other facts that may be relevant for hygiene. Therefore, the assessment ought to be conducted by somebody with the respective knowledge.

  6. Quantifying water and air redistribution in heterogeneous sand sample by neutron imaging

    NASA Astrophysics Data System (ADS)

    Šácha, Jan; Sobotková, Martina; Jelínková, Vladimíra; Sněhota, Michal; Vontobel, Peter; Hovind, Jan

    2014-05-01

    Significant temporal variation of quasi saturated hydraulic conductivity (Kqs) has been observed to date in number of infiltration experiments conducted mainly on heterogeneous soil of Cambisol. The change of quasi-saturated hydraulic conductivity cannot be precisely described by existing models. The Kqs variations has been recently attributed to a changing distribution of the entrapped air and water within the sample. It is expected that air is moved to the preferential pathway and acts as a barrier there. To support this assumption a ponded infiltration experiment was conducted on a soil sample packed into the quartz glass column of inner diameter of 34 mm. The sample composition represents simplified heterogeneity of the natural soil but also allow the easy quantitative water content determination in individual subdomains of the sample. The matrix formed by a fine sand was surrounded with regions of coarse sand representing preferential flow pathways. The Kqs was determined from the known hydraulic gradient and measured volume flux. The experiment was monitored by neutron radiography. Volume of water in the sample calculated from neutron projections matched very well with actually infiltrated volume in the sample during first 40 second after beginning of infiltration. From the acquired radiographic images the 3D tomography images were reconstructed to obtain the spatial distribution of the water content within the sample. Difference between water volume calculated from radiography and tomography images was no more than 5%. While the total amount of water determined by NR within the sample during the quasi steady state flow remains practically constant (27.9 cm3 at the beginning and 28.6 cm3 on the end of infiltration) the water content in the coarse fraction decreases (from 0.333 to 0.324) and the water content in the fine fraction increases (from 0.414 to 0.436) in 5 hours. Similarly to previous experiments performed on natural Cambisols, the results support

  7. Gold nanoparticles for mercury determination in environmental water and vegetable samples

    NASA Astrophysics Data System (ADS)

    Kiran, K.

    2015-03-01

    Gold nanoparticles (AuNPs) capped with 2-mercapto succinic acid (MSA) were successfully applied for the determination of mercury in various water samples up to nanolevels without any interference. Alumina-coated MSA-capped AuNPs easily remove mercury species present in various samples. The absorbance spectrum was obtained at 547 nm. Other parameters like effect of pH, reagent concentration, interferences were studied. This method is simple, sensitive and successfully applied for the determination of mercury species in various water, soil and plant residues collected from different industrial areas.

  8. Automated measurement and quantification of heterotrophic bacteria in water samples based on the MPN method.

    PubMed

    Fuchsluger, C; Preims, M; Fritz, I

    2011-01-01

    Quantification of heterotrophic bacteria is a widely used measure for water analysis. Especially in terms of drinking water analysis, testing for microorganisms is strictly regulated by the European Drinking Water Directive, including quality criteria and detection limits. The quantification procedure presented in this study is based on the most probable number (MPN) method, which was adapted to comply with the need for a quick and easy screening tool for different kinds of water samples as well as varying microbial loads. Replacing tubes with 24-well titer plates for cultivation of bacteria drastically reduces the amount of culture media and also simplifies incubation. Automated photometric measurement of turbidity instead of visual evaluation of bacterial growth avoids misinterpretation by operators. Definition of a threshold ensures definite and user-independent determination of microbial growth. Calculation of the MPN itself is done using a program provided by the US Food and Drug Administration (FDA). For evaluation of the method, real water samples of different origins as well as pure cultures of bacteria were analyzed in parallel with the conventional plating methods. Thus, the procedure described requires less preparation time, reduces costs and ensures both stable and reliable results for water samples.

  9. Determination of halonitromethanes and haloacetamides: an evaluation of sample preservation and analyte stability in drinking water.

    PubMed

    Liew, Deborah; Linge, Kathryn L; Joll, Cynthia A; Heitz, Anna; Charrois, Jeffrey W A

    2012-06-08

    Simultaneous quantitation of 6 halonitromethanes (HNMs) and 5 haloacetamides (HAAms) was achieved with a simplified liquid-liquid extraction (LLE) method, followed by gas chromatography-mass spectrometry. Stability tests showed that brominated tri-HNMs immediately degraded in the presence of ascorbic acid, sodium sulphite and sodium borohydride, and also reduced in samples treated with ammonium chloride, or with no preservation. Both ammonium chloride and ascorbic acid were suitable for the preservation of HAAms. Ammonium chloride was most suitable for preserving both HNMs and HAAms, although it is recommended that samples be analysed as soon as possible after collection. While groundwater samples exhibited a greater analytical bias compared to other waters, the good recoveries (>90%) of most analytes in tap water suggest that the method is very appropriate for determining these analytes in treated drinking waters. Application of the method to water from three drinking water treatment plants in Western Australia indicating N-DBP formation did occur, with increased detections after chlorination. The method is recommended for low-cost, rapid screening of both HNMs and HAAms in drinking water. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Cryptosporidium spp. in drinking water. Samples from rural sites in Switzerland.

    PubMed

    Füchslin, Hans Peter; Kötzsch, Stefan; Egli, Thomas

    2012-10-04

    In most rural areas and small communities in Switzerland the drinking water is supplied to the consumers after a minimum or even no treatment at all. However, it is just in these areas where drinking water from sources of agricultural activities can be contaminated by liquid manure and faeces of pasturing animals. The Swiss drinking water regulations are limited to the monitoring of E. coli, Enterococcus spp. and total plate counts only. Hence, resistant pathogens, as for example Cryptosporidium spp., remain unnoticed. During a drinking water survey, which lasted from June 2003 to December 2004, water samples were collected from 3 selected rural sites in Switzerland. The drinking water was investigated for Cryptosporidium spp., E. coli, Enterococcus spp., Clostridium perfringens and other parameters. In all samples oocysts of Cryptosporidium spp. were detected at elevated concentrations of up to 0.18 oocysts/l. Between 28% and 75% of the oocysts were found to be vital by the excystation method. Sampled oocysts collected from the three sites were subjected to genotyping and in one case the isolate was found to belong to the genotype of C. parvum. No evidence for increased incidents of diarrhoea in the past years was noted by local authorities.

  11. Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples.

    PubMed

    Zhang, Luqing; Li, Jingyi; Yang, Kun; Liu, Jingfu; Lin, Daohui

    2016-04-01

    Most studies on the behavior and toxicity of engineered nanoparticles (NPs) have been conducted in artificial water with well-controlled conditions, which are dramatically different from natural waters with complex compositions. To better understand the fate and toxicity of NPs in the natural water environment, physicochemical transformations of four NPs (TiO2, ZnO, Ag, and carbon nanotubes (CNTs)) and their toxicities towards a unicellular green alga (Chlorella pyrenoidosa) in four fresh water and one seawater sample were investigated. Results indicated that water chemistry had profound effects on aggregation, dissolution, and algal toxicity of the NPs. The strongest homoaggregation of the NPs was associated with the highest ionic strength, but no obvious correlation was observed between the homoaggregation of NPs and pH or dissolved organic matter content of the water samples. The greatest dissolution of ZnO NPs also occurred in seawater with the highest ionic strength, while the dissolution of Ag NPs varied differently from ZnO NPs. The released Zn(2+) and especially Ag(+) mainly accounted for the algal toxicity of ZnO and Ag NPs, respectively. The NP-cell heteroagglomeration occurred generally for CNTs and Ag NPs, which contributed to the observed nanotoxicity. However, there was no significant correlation between the observed nanotoxicity and the type of NP or the water chemistry. It was thus concluded that the physicochemical transformations and algal toxicities of NPs in the natural water samples were caused by the combined effects of complex water quality parameters rather than any single influencing factor alone. These results will increase our knowledge on the fate and effects of NPs in the aquatic environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Gross-beta activity in ground water: natural sources and artifacts of sampling and laboratory analysis

    USGS Publications Warehouse

    Welch, Alan H.

    1995-01-01

    Gross-beta activity has been used as an indicator of beta-emitting isotopes in water since at least the early 1950s. Originally designed for detection of radioactive releases from nuclear facilities and weapons tests, analysis of gross-beta activity is widely used in studies of naturally occurring radioactivity in ground water. Analyses of about 800 samples from 5 ground-water regions of the United States provide a basis for evaluating the utility of this measurement. The data suggest that measured gross-beta activities are due to (1) long-lived radionuclides in ground water, and (2) ingrowth of beta-emitting radionuclides during holding times between collection of samples and laboratory measurements.Although40K and228Ra appear to be the primary sources of beta activity in ground water, the sum of40K plus228Ra appears to be less than the measured gross-beta activity in most ground-water samples. The difference between the contribution from these radionuclides and gross-beta activity is most pronounced in ground water with gross-beta activities > 10 pCi/L, where these 2 radionuclides account for less than one-half the measured ross-beta activity. One exception is groundwater from the Coastal Plain of New Jersey, where40K plus228Ra generally contribute most of the gross-beta activity. In contrast,40K and228Ra generally contribute most of beta activity in ground water with gross-beta activities < 1 pCi/L.The gross-beta technique does not measure all beta activity in ground water. Although3H contributes beta activity to some ground water, it is driven from the sample before counting and therefore is not detected by gross-beta measurements. Beta-emitting radionuclides with half-lives shorter than a few days can decay to low values between sampling and counting. Although little is known about concentrations of most short-lived beta-emitting radionuclides in environmental ground water (water unaffected by direct releases from nuclear facilities and weapons tests), their

  13. Sample survey of traditional water wheels and small water turbines in nepal: a preliminary report

    SciTech Connect

    Joshi, C.B.

    1981-01-01

    The main purposes of this survey were to study the technical, economical, and social aspects of water wheels and turbines; to assess the possibility of developing these modern and traditional technologies together or improving them separately; to assess the awareness of the local people of the need for improvement on their existing technologies; and to find out the possible role of RECAST for mutual cooperation. This survey is intended to provide planners financiers, researchers, and manufacturers with further information regarding better use of small hydro resources and locally available skills for development.

  14. Analyses of native water, bottom material, and elutriate samples of southern Louisiana waterways, 1977-78

    USGS Publications Warehouse

    Dupuy, Alton J.; Couvillion, Nolan P.

    1979-01-01

    From March 1977 to July 1978 the U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers conducted a series of elutriate studies to determine water quality in selected reaches of major navigable waterways of southern Louisiana. Sample were collected from the Mississippi River-Gulf Outlet areas; Mississippi River, South Pass; Baptiste Collette Bayou; Tiger Pass area; Baou Long; Bayou Barataria and Barataria Bay Waterway area (gulf section); Bayou Segnette Waterway, Lake Pontchartrain near Tangipahoa River mouth; Bayou Grand Caillou; Bayou la Carpe at Homa; Houma Navigation Canal and Terrebonne Bay; Bayou Boeuf, Bayou Chene, and Baou Black, Atchafalaya River Channel, Atchafalaya Bay; Old River Lock tailbay; Red River below mouth of Black River; Freshwaer Canal; Mermentau River and Lake Arthur Mermentau River outlet; and Calcasieu Ship Channel. The studies were initiated at the request of the U.S. Army Corps of Engineers to evaluate possible environmental effects of proposed dredging activities in those waterways. The U.S. Army Corps of Engineers and U.S. Geological Survey collected 189 samples of native water and 172 samples of bottom (bed) material from 163 different sites. A total of 117 elutriates (Mixtures of native water and bottom material) were prepared. The native water and elutriate samples were analyzed for selected metals, pesticides, nutrients organics, and pysical constituents. Particle-size determinations were made on bottom-material samples. (Kosco-USGS)

  15. Collecting a better water-quality sample: Reducing vertical stratification bias in open and closed channels

    USGS Publications Warehouse

    Selbig, William R.

    2017-01-01

    Collection of water-quality samples that accurately characterize average particle concentrations and distributions in channels can be complicated by large sources of variability. The U.S. Geological Survey (USGS) developed a fully automated Depth-Integrated Sample Arm (DISA) as a way to reduce bias and improve accuracy in water-quality concentration data. The DISA was designed to integrate with existing autosampler configurations commonly used for the collection of water-quality samples in vertical profile thereby providing a better representation of average suspended sediment and sediment-associated pollutant concentrations and distributions than traditional fixed-point samplers. In controlled laboratory experiments, known concentrations of suspended sediment ranging from 596 to 1,189 mg/L were injected into a 3 foot diameter closed channel (circular pipe) with regulated flows ranging from 1.4 to 27.8 ft3 /s. Median suspended sediment concentrations in water-quality samples collected using the DISA were within 7 percent of the known, injected value compared to 96 percent for traditional fixed-point samplers. Field evaluation of this technology in open channel fluvial systems showed median differences between paired DISA and fixed-point samples to be within 3 percent. The range of particle size measured in the open channel was generally that of clay and silt. Differences between the concentration and distribution measured between the two sampler configurations could potentially be much larger in open channels that transport larger particles, such as sand.

  16. UMTRA project water sampling and analysis plan, Falls City, Texas. Revision 1

    SciTech Connect

    1995-09-01

    Planned, routine ground water sampling activities at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site near Falls City, Texas, are described in this water sampling and analysis plan (WSAP). The following plan identifies and justifies the sampling locations, analytical parameters, and sampling frequency for the routine monitoring stations at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US Environmental Protection Agency (EPA) regulations in 40 CFR Part 192. Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site. The Falls City site is in Karnes County, Texas, approximately 8 miles [13 kilometers southwest of the town of Falls City and 46 mi (74 km) southeast of San Antonio, Texas. Before surface remedial action, the tailings site consisted of two parcels. Parcel A consisted of the mill site, one mill building, five tailings piles, and one tailings pond south of Farm-to-Market (FM) Road 1344 and west of FM 791. A sixth tailings pile designated Parcel B was north of FM 791 and east of FM 1344.

  17. (90)Sr determination in water samples using Čerenkov radiation.

    PubMed

    Todorović, Nataša; Stojković, Ivana; Nikolov, Jovana; Tenjović, Branislava

    2017-04-01

    A procedure for the determination of (90)Sr in environmental water samples using Čerenkov radiation and low-level liquid scintillation counter Quantulus 1220 was applied and optimized. Low diffusion polyethylene vials, high performance glass counting vials and low potassium borosilicate glass vilas of 20 ml volume (all from PerkinElmer) were used in order to examine their potential effect on counting process. The derived efficiencies were 45.86(9)%, and a minimum detectable activity of 0.32 Bq l(-1) in a 20 ml polyethylene vial (20 ml water sample) has been achieved during 300 min of measurement. Environmental water samples might be colored and this will lead to color quenching, which one of the most important problems that affect Čerenkov is counting (Mosqueda et al., 2005). The sample channel ratio (SCR) method has been applied to correct this effect. The analytical procedures and measurement techniques were tested by participating in the IAEA-TEL-2015-03 world-wide proficiency test on determination of (90)Sr in water sample.

  18. A chemodynamic approach for estimating losses of target organic chemicals from water during sample holding time

    USGS Publications Warehouse

    Capel, P.D.; Larson, S.J.

    1995-01-01

    Minimizing the loss of target organic chemicals from environmental water samples between the time of sample collection and isolation is important to the integrity of an investigation. During this sample holding time, there is a potential for analyte loss through volatilization from the water to the headspace, sorption to the walls and cap of the sample bottle; and transformation through biotic and/or abiotic reactions. This paper presents a chemodynamic-based, generalized approach to estimate the most probable loss processes for individual target organic chemicals. The basic premise is that the investigator must know which loss process(es) are important for a particular analyte, based on its chemodynamic properties, when choosing the appropriate method(s) to prevent loss.

  19. Sensitive detection of metals in water using laser-induced breakdown spectroscopy on wood sample substrates

    SciTech Connect

    Chen Zhijiang; Godwal, Yogesh; Tsui, Ying Yin; Fedosejevs, Robert

    2010-05-01

    Water contaminated with toxic heavy metals can be a great risk to humans. Laser-induced breakdown spectroscopy (LIBS) is a promising candidate to monitor heavy metals in aqueous solutions on site, but the sensitivity is still a major problem. To perform sensitive analysis of analyte metals in aqueous solutions with LIBS, a thin wood sample substrate was used as a liquid absorber to transform the liquid sample analysis to a solid sample analysis. We focus on investigating the performance of this technique using different laser wavelengths (266, 532, and 1064 nm) with a low pulse energy (<5 mJ) and a different number of shots (from 10 to 1000). We demonstrate that a limit of detection of 30 ppb can be achieved using low energy pulses with a 1000 shot accumulation. This technique provides a potentially simple approach for a portable micro LIBS system to monitor water samples.

  20. Umbrella sampling of proton transfer in a creatine-water system

    NASA Astrophysics Data System (ADS)

    Ivchenko, Olga; Bachert, Peter; Imhof, Petra

    2014-04-01

    Proton transfer reactions are among the most common processes in chemistry and biology. Proton transfer between creatine and surrounding solvent water is underlying the chemical exchange saturation transfer used as a contrast in magnetic resonance imaging. The free energy barrier, determined by first-principles umbrella sampling simulations (EaDFT 3 kcal/mol) is in the same order of magnitude as the experimentally obtained activation energy. The underlying mechanism is a first proton transfer from the guanidinium group to the water pool, followed by a second transition where a proton is "transferred back" from the nearest water molecule to the deprotonated nitrogen atom of creatine.

  1. Water-quality sampling by the U.S. Geological Survey-Standard protocols and procedures

    USGS Publications Warehouse

    Wilde, Franceska D.

    2010-01-01

    Thumbnail of and link to report PDF (1.0 MB) The U.S. Geological Survey (USGS) develops the sampling procedures and collects the data necessary for the accurate assessment and wise management of our Nation's surface-water and groundwater resources. Federal and State agencies, water-resource regulators and managers, and many organizations and interested parties in the public and private sectors depend on the reliability, timeliness, and integrity of the data we collect and the scientific soundness and impartiality of our data assessments and analysis. The standard data-collection methods uniformly used by USGS water-quality personnel are peer reviewed, kept up-to-date, and published in the National Field Manual for the Collection of Water-Quality Data (http://pubs.water.usgs.gov/twri9A/).

  2. [CCA of water beetles' distribution and environmental factors in lentic samples of north Changbai Mountain].

    PubMed

    We, Yulian; Ji, Lanzhu; Wang, Miao; Zhao, Min

    2002-01-01

    The relationship between 28 species water beetles in 12 lentic samples and environmental factors of North Chang-bai Mountain was studied by Cononical Correspondence Analysis (CCA). The results showed that degree of underwater humus and altitude are the major factors correlated with beetles distribution, and the correlation coefficients of environmental factors and axes of CCA were 0.8371 and 0.7206 respectively, while water temperature and plant density also had certain effects. Under the influence of environmental factors, the water beetles' populations were different in different habitat. Coelambus impressopunctatus, Colymbetes magnus, Helophorus browni, Haliplus spp. distributed in deep water pool. Water temperature was not important for those beetles. Ilybius sp. and Limnebius glabriventris correlated with altitude and humus.

  3. Quantifying indicatively living phytoplankton cells in ballast water samples--recommendations for Port State Control.

    PubMed

    Gollasch, Stephan; David, Matej; Francé, Janja; Mozetič, Patricija

    2015-12-30

    Different phytoplankton analysis methods (pulse-amplitude modulated fluorometry (PAM) and microscopy) were compared in preparation for compliance monitoring and enforcement with ballast water discharge standards. The key objective was to practically evaluate the performance of different new methods and tools to identify indicatively living phytoplankton cells of the size <50 μm in minimum dimension and ≥ 10 μm in minimum dimension as addressed by the Ballast Water Performance Standard (Regulation D-2, International Convention for the Control and Management of Ships' Ballast Water and Sediments, 2004). Four different PAM instruments were selected for the tests based upon knowledge and experience gained in different ballast water sample processing studies. The measurements of the PAM instruments were compared with epifluorescence microscope algae cell counts using fluorescein diacetate as viability stain. It was concluded that PAM fluorometry is a suitable method for indicative phytoplankton analysis of ballast water and the most accurate PAM instruments were identified.

  4. Distribution of Cryptosporidium Genotypes in Storm Event Water Samples from Three Watersheds in New York

    PubMed Central

    Jiang, Jianlin; Alderisio, Kerri A.; Xiao, Lihua

    2005-01-01

    To assess the source and public health significance of Cryptosporidium oocyst contamination in storm runoff, a PCR-restriction fragment length polymorphism technique based on the small-subunit rRNA gene was used in the analysis of 94 storm water samples collected from the Malcolm Brook and N5 stream basins in New York over a 3-year period. The distribution of Cryptosporidium in this study was compared with the data obtained from 27 storm water samples from the Ashokan Brook in a previous study. These three watersheds represented different levels of human activity. Among the total of 121 samples analyzed from the three watersheds, 107 were PCR positive, 101 of which (94.4%) were linked to animal sources. In addition, C. hominis (W14) was detected in six samples collected from the Malcolm Brook over a 2-week period. Altogether, 22 Cryptosporidium species or genotypes were found in storm water samples from these three watersheds, only 11 of which could be attributed to known species/groups of animals. Several Cryptosporidium spp. were commonly found in these three watersheds, including the W1 genotype from an unknown animal source, the W4 genotype from deer, and the W7 genotype from muskrats. Some genotypes were found only in a particular watershed. Aliquots of 113 samples were also analyzed by the Environmental Protection Agency (EPA) Method 1623; 63 samples (55.7%) were positive for Cryptosporidium by microscopy, and 39 (78%) of the 50 microscopy-negative samples were positive by PCR. Results of this study demonstrate that molecular techniques can complement traditional detection methods by providing information on the source of contamination and the human-infective potential of Cryptosporidium oocysts found in water. PMID:16085835

  5. Fermentation tube test statistics for direct water sampling and comments on the Thomas formula.

    PubMed

    Nawalany, M; Loga, M

    2010-09-01

    This article describes a new interpretation of the Fermentation Tube Test (FTT) performed on water samples drawn from natural waters polluted by faecal bacteria. A novel general procedure to calculate the Most Probable Number of bacteria (MPN) in natural waters has been derived for the FTT for both direct and independent repetitive multiple water sampling. The generalization based on solving the newly proposed equation allows consideration of any a priori frequency distribution g(n) of bacterial concentration in analysed water as opposed to the unbounded uniform a priori distribution g(n) assumed in the standard procedures of the Standard Methods of Examining Water and Wastewater and ISO 8199:1988. Also a statistical analysis of the Thomas formula is presented. It is demonstrated that the Thomas formula is highly inaccurate. The authors propose, therefore, to remove the Thomas formula from the Standard Methods of Examining Water and Wastewater and ISO 8199:1988 altogether and replace it with a solution of the proposed generalized equation.

  6. The impact of sampling regime on the accuracy of water quality status classifications under the Water Framework Directive

    NASA Astrophysics Data System (ADS)

    Halliday, Sarah; Wade, Andrew; Skeffington, Richard; Bowes, Mike; Gozzard, Emma; Palmer-Felgate, Elizabeth; Newman, Johnathan; Jarvie, Helen; Loewenthal, Matt

    2014-05-01

    By 2015, EU regulatory agencies have a statutory obligation to meet the EU Water Framework Directive (WFD) target of "good ecological status" in all relevant inland and coastal waters. A significant amount of work is being undertaken to refine and improve the UK WFD water quality targets so that they better relate to the ecological status of a system. In 2013 new phosphorus (P) targets have been set, stipulating required lower mean annual "reactive" P concentrations, and recommendations published for more stringent pH, dissolved oxygen and ammonia targets. Despite this work, there are no guidelines on the sampling regime which should be employed to ensure compliance as part of the WFD classification system. Without guidance on how WFD water quality assessments should be done, regulatory agencies are at risk of misclassifying a system and of failing to identify systems which are ecologically at risk. Water quality is normally evaluated using routine monitoring programmes which use water samples collected, typically, at monthly intervals. However, new technologies are now allowing the collection of high-frequency (sub-daily) measurements of a range of water quality parameters which are revolutionising our understanding of freshwater nutrient cycling dynamics and the processes which control them. High-frequency and weekly water quality datasets for two lowland UK catchments, the River Enborne and The Cut, have been analysed to assess the impact of sampling frequency on the accuracy of WFD status classification. The Enborne is a rural catchment, impacted by agricultural runoff and sewage treatment works (STWs) discharges, and The Cut is a highly urbanised system significantly affected by STW discharges. On the Enborne, total reactive P (TRP) was measured hourly and soluble reactive P (SRP) measured weekly. Under the new WFD targets, although the mean annual P concentrations were similar, 0.173 and 0.136 mg/l-P for TRP and SRP respectively, the two "reactive" P

  7. Influence of various water quality sampling strategies on load estimates for small streams

    USGS Publications Warehouse

    Robertson, D.M.; Roerish, E.D.

    1999-01-01

    Extensive streamflow and water quality data from eight small streams were systematically subsampled to represent various water-quality sampling strategies. The subsampled data were then used to determine the accuracy and precision of annual load estimates generated by means of a regression approach (typically used for big rivers) and to determine the most effective sampling strategy for small streams. Estimation of annual loads by regression was imprecise regardless of the sampling strategy used; for the most effective strategy, median absolute errors were ~30% based on the load estimated with an integration method and all available data, if a regression approach is used with daily average streamflow. The most effective sampling strategy depends on the length of the study. For 1-year studies, fixed-period monthly sampling supplemented by storm chasing was the most effective strategy. For studies of 2 or more years, fixed-period semimonthly sampling resulted in not only the least biased but also the most precise loads. Additional high-flow samples, typically collected to help define the relation between high streamflow and high loads, result in imprecise, overestimated annual loads if these samples are consistently collected early in high-flow events.

  8. Physiological response of wild dugongs (Dugong dugon) to out-of-water sampling for health assessment

    USGS Publications Warehouse

    Lanyon, Janet M.; Sneath, Helen L.; Long, Trevor; Bonde, Robert K.

    2010-01-01

    The dugong (Dugong dugon) is a vulnerable marine mammal with large populations living in urban Queensland waters. A mark-recapture program for wild dugongs has been ongoing in southern Queensland since 2001. This program has involved capture and in-water sampling of more than 700 dugongs where animals have been held at the water surface for 5 min to be gene-tagged, measured, and biopsied. In 2008, this program expanded to examine more comprehensively body condition, reproductive status, and the health of wild dugongs in Moreton Bay. Using Sea World's research vessel, captured dugongs were lifted onto a boat and sampled out-of-water to obtain accurate body weights and morphometrics, collect blood and urine samples for baseline health parameters and hormone profiles, and ultrasound females for pregnancy status. In all, 30 dugongs, including two pregnant females, were sampled over 10 d and restrained on deck for up to 55 min each while biological data were collected. Each of the dugongs had their basic temperature-heart rate-respiration (THR) monitored throughout their period of handling, following protocols developed for the West Indian manatee (Trichechus manatus). This paper reports on the physiological response of captured dugongs during this out-of-water operation as indicated by their vital signs and the suitability of the manatee monitoring protocols to this related sirenian species. A recommendation is made that the range of vital signs of these wild dugongs be used as benchmark criteria of normal parameters for other studies that intend to sample dugongs out-of-water.

  9. Storage of natural water samples and preservation techniques for pharmaceutical quantification.

    PubMed

    Mompelat, S; Jaffrezic, A; Jardé, E; Le Bot, B

    2013-05-15

    In order to perform a human and ecological risk assessment of pharmaceutical products (PPs) in natural waters, it is necessary to accurately quantify a broad variety of PPs at low concentrations. Although numerous currently implemented analytical methodologies, less is known about the preservation of PPs in natural water samples within the period before analysis (holding time, storage conditions). This paper is the first literature review about the stability of PPs in natural waters (surface and groundwaters) during sample storage. The current work focuses on a comparison of the performances of the available preservation techniques (filtration, container materials, storage temperature, preservative agents, etc.) for PPs in samples. All 58 reviewed PPs may be successfully stabilized during 7 days in surface waters by at least one appropriate methodology regarding temperature, acidic and non-acidic preservatives. When temperature is not a sufficient preservation parameter for some PPs (hormones and fluoxetine) its combination with the addition of chemical agents into the samples may prolong the integrity of the PPs during storage in surface water. There is a strong need to use standard protocols to assess and compare the stability of PPs in environmental water matrices during storage as well as during analytical preparation or analysis (European criteria 2002/657/EC). Since the stability of PPs during sample storage is a critical parameter that could call into question the quality of the data provided for the concentrations, the design of stability studies should rigorously take into account all critical parameters that could impact the concentrations of the PPs with time. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Tracer sampling frequency influences estimates of young water fraction and streamwater transit time distribution

    NASA Astrophysics Data System (ADS)

    Stockinger, Michael P.; Bogena, Heye R.; Lücke, Andreas; Diekkrüger, Bernd; Cornelissen, Thomas; Vereecken, Harry

    2016-10-01

    The streamwater transit time distribution (TTD) of a catchment is used to derive insights into the movement of precipitation water via various flow paths to the catchment's stream. Typically, TTDs are estimated by using the convolution integral to model a weekly tracer signal measured in streamflow. Another approach for evaluating the transit time of water to the catchment stream is the fraction of young water (Fyw) in streamflow that is younger than a certain threshold age, which also relies on tracer data. However, few studies used tracer data with a higher sampling frequency than weekly. To investigate the influence of the sampling frequency of tracer data on estimates of TTD and Fyw, we estimated both indicators for a humid, mesoscale catchment in Germany using tracer data of weekly and higher sampling frequency. We made use of a 1.5 year long time series of daily to sub-daily precipitation and streamwater isotope measurements, which were aggregated to create the weekly resolution data set. We found that a higher sampling frequency improved the stream isotope simulation compared to a weekly one (0.35 vs. 0.24 Nash-Sutcliffe Efficiency) and showed more pronounced short-term dynamics in the simulation result. The TTD based on the high temporal resolution data was considerably different from the weekly one with a shift towards faster transit times, while its corresponding mean transit time of water particles was approximately reduced by half (from 9.5 to 5 years). Similar to this, Fyw almost doubled when applying high resolution data compared to weekly one. Thus, the different approaches yield similar results and strongly support each other. This indicates that weekly isotope tracer data lack information about faster water transport mechanisms in the catchment. Thus, we conclude that a higher than weekly sampling frequency should be preferred when investigating a catchment's water transport characteristics. When comparing TTDs or Fyw of different catchments, the

  11. Robowell: An automated process for monitoring ground water quality using established sampling protocols

    USGS Publications Warehouse

    Granato, G.E.; Smith, K.P.

    1999-01-01

    Robowell is an automated process for monitoring selected ground water quality properties and constituents by pumping a well or multilevel sampler. Robowell was developed and tested to provide a cost-effective monitoring system that meets protocols expected for manual sampling. The process uses commercially available electronics, instrumentation, and hardware, so it can be configured to monitor ground water quality using the equipment, purge protocol, and monitoring well design most appropriate for the monitoring site and the contaminants of interest. A Robowell prototype was installed on a sewage treatment plant infiltration bed that overlies a well-studied unconfined sand and gravel aquifer at the Massachusetts Military Reservation, Cape Cod, Massachusetts, during a time when two distinct plumes of constituents were released. The prototype was operated from May 10 to November 13, 1996, and quality-assurance/quality-control measurements demonstrated that the data obtained by the automated method was equivalent to data obtained by manual sampling methods using the same sampling protocols. Water level, specific conductance, pH, water temperature, dissolved oxygen, and dissolved ammonium were monitored by the prototype as the wells were purged according to U.S Geological Survey (USGS) ground water sampling protocols. Remote access to the data record, via phone modem communications, indicated the arrival of each plume over a few days and the subsequent geochemical reactions over the following weeks. Real-time availability of the monitoring record provided the information needed to initiate manual sampling efforts in response to changes in measured ground water quality, which proved the method and characterized the screened portion of the plume in detail through time. The methods and the case study described are presented to document the process for future use.

  12. Solvent-assisted dispersive solid-phase extraction: A sample preparation method for trace detection of diazinon in urine and environmental water samples.

    PubMed

    Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad

    2016-09-02

    In this research, a sample preparation method termed solvent-assisted dispersive solid-phase extraction (SA-DSPE) was applied. The used sample preparation method was based on the dispersion of the sorbent into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was received by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the diazinon, the cloudy solution was centrifuged and diazinon in the sediment phase dissolved in ethanol and determined by gas chromatography-flame ionization detector. Under the optimized conditions (pH of solution=7.0, Sorbent: benzophenone, 2%, Disperser solvent: ethanol, 500μL, Centrifuge: centrifuged at 4000rpm for 3min), the method detection limit for diazinon was 0.2, 0.3, 0.3 and 0.3μgL(-1) for distilled water, lake water, waste water and urine sample, respectively. Furthermore, the pre-concentration factor was 363.8, 356.1, 360.7 and 353.38 in distilled water, waste water, lake water and urine sample, respectively. SA-DSPE was successfully used for trace monitoring of diazinon in urine, lake and waste water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Catchment-wide impacts on water quality: the use of 'snapshot' sampling during stable flow

    NASA Astrophysics Data System (ADS)

    Grayson, R. B.; Gippel, C. J.; Finlayson, B. L.; Hart, B. T.

    1997-12-01

    Water quality is usually monitored on a regular basis at only a small number of locations in a catchment, generally focused at the catchment outlet. This integrates the effect of all the point and non-point source processes occurring throughout the catchment. However, effective catchment management requires data which identify major sources and processes. As part of a wider study aimed at providing technical information for the development of integrated catchment management plans for a 5000 km 2 catchment in south eastern Australia, a 'snapshot' of water quality was undertaken during stable summer flow conditions. These low flow conditions exist for long periods so water quality at these flow levels is an important constraint on the health of in-stream biological communities. Over a 4 day period, a study of the low flow water quality characteristics throughout the Latrobe River catchment was undertaken. Sixty-four sites were chosen to enable a longitudinal profile of water quality to be established. All tributary junctions and sites along major tributaries, as well as all major industrial inputs were included. Samples were analysed for a range of parameters including total suspended solids concentration, pH, dissolved oxygen, electrical conductivity, turbidity, flow rate and water temperature. Filtered and unfiltered samples were taken from 27 sites along the main stream and tributary confluences for analysis of total N, NH 4, oxidised N, total P and dissolved reactive P concentrations. The data are used to illustrate the utility of this sampling methodology for establishing specific sources and estimating non-point source loads of phosphorous, total suspended solids and total dissolved solids. The methodology enabled several new insights into system behaviour including quantification of unknown point discharges, identification of key in-stream sources of suspended material and the extent to which biological activity (phytoplankton growth) affects water quality

  14. Performance of a novel high throughput method for the determination of VX in drinking water samples.

    PubMed

    Knaack, Jennifer S; Zhou, Yingtao; Magnuson, Matthew; Silvestri, Erin; Johnson, Rudolph C

    2013-03-05

    VX (O-ethyl-S-(2-diisopropylaminoethyl) methylphosphonothioate) is a highly toxic organophosphorus nerve agent, and even low levels of contamination in water can be harmful. Measurement of low concentrations of VX in aqueous matrixes is possible using an immunomagnetic scavenging technique and detection using liquid chromatography/tandem-mass spectrometry. Performance of the method was characterized in high-performance liquid chromatography (HPLC)-grade water preserved with sodium omadine, an antimicrobial agent, and sodium thiosulfate, a dechlorinating agent, over eight analytical batches with quality control samples analyzed over 10 days. The minimum reportable level was 25 ng/L with a linear dynamic range up to 4.0 μg/L. The mean accuracies for two quality control samples containing VX at concentrations of 0.250 and 2.00 μg/L were 102 ± 3% and 103 ± 6%, respectively. The stability of VX was determined in five tap water samples representing a range of water quality parameters and disinfection practices over a 91 day period. In preserved tap water samples, VX recovery was between 81 and 92% of the fortified amount, 2.0 μg/L, when analyzed immediately after preparation. Recovery of VX decreased to between 31 and 45% of the fortified amount after 91 days, indicating hydrolysis of VX. However, the preservatives minimized the hydrolysis rate to close to the theoretical limit. The ability to detect low concentrations of VX in preserved tap water 91 days after spiking suggests applicability of this method for determining water contamination with VX and utility during environmental remediation.

  15. Water Quality Sampling Locations Along the Shoreline of the Columbia River, Hanford Site, Washington

    SciTech Connect

    Peterson, Robert E.; Patton, Gregory W.

    2009-12-14

    As environmental monitoring evolved on the Hanford Site, several different conventions were used to name or describe location information for various sampling sites along the Hanford Reach of the Columbia River. These methods range from handwritten descriptions in field notebooks to the use of modern electronic surveying equipment, such as Global Positioning System receivers. These diverse methods resulted in inconsistent archiving of analytical results in various electronic databases and published reports because of multiple names being used for the same site and inaccurate position data. This document provides listings of sampling sites that are associated with groundwater and river water sampling. The report identifies names and locations for sites associated with sampling: (a) near-river groundwater using aquifer sampling tubes; (b) riverbank springs and springs areas; (c) pore water collected from riverbed sediment; and (d) Columbia River water. Included in the listings are historical names used for a particular site and the best available geographic coordinates for the site, as of 2009. In an effort to create more consistency in the descriptive names used for water quality sampling sites, a naming convention is proposed in this document. The convention assumes that a unique identifier is assigned to each site that is monitored and that this identifier serves electronic database management requirements. The descriptive name is assigned for the convenience of the subsequent data user. As the historical database is used more intensively, this document may be revised as a consequence of discovering potential errors and also because of a need to gain consensus on the proposed naming convention for some water quality monitoring sites.

  16. Measured phenol concentrations in air and rain water samples collected near a wood preserving facility

    SciTech Connect

    Allen, S.K.; Allen, C.W.

    1995-12-31

    Phenol concentrations were determined in air and rain water samples collected downwind from a coal tar creosote wood preserving facility in Terre Haute, IN. Coal tar creosote is known to contain a large number of constituents and is composed chiefly of polycyclic aromatic hydrocarbons (PAH), phenols, and N-, S-, and O-heterocycles. Phenol was chosen as a marker compound for coal tar creosote emissions because it is present at a large mole fraction in coal tar creosote. Phenol was determined by HPLC with UV-Visible detection. Phenol in collected rain water samples was determined directly by HPLC after acidification and filtration. Phenol concentrations in collected air samples ranged from 4.1 to 15.7 {micro}g/m3 while rain water concentrations ranged from 7.9 to 28.2 {micro}g/L. Using a value for the thermodynamic Henry`s law constant of K{sub H} = 4.5 {times} 10{sup {minus}4} L atm/mole at 20 C for phenol and measured gas-phase phenol concentrations, even higher rain water concentrations would be expected if equilibrium was established. This indicates that the amount of phenol present in the air parcels sampled exceeded the amount that could be scavenged by rain drops under the conditions prevailing at the time of sampling. The values for phenol concentrations reported here are roughly two orders of magnitude higher than results from previous studies where phenol concentrations in air and rain water samples collected in urban areas were reported. It is likely that other more toxic constituents of coal tar creosote are also present at high concentrations in air parcels that receive emissions from wood treatment facilities.

  17. Sampling Impacts on the NVAP-M Global Water Vapor Climate Data Record

    NASA Astrophysics Data System (ADS)

    Vonder Haar, T. H.; Forsythe, J. M.; Cronk, H. Q.

    2015-12-01

    Atmospheric water vapor is a fundamental ingredient both for regulating climate as a greenhouse gas and as a necessary precursor for high impact weather events such as heavy precipitation. Water vapor concentration varies geographically because of its close linkage with surface temperature and as a component of synoptic and mesoscale weather systems. Satellite observations provide the only means to quantify the global occurrence and variability of water vapor. In common with other long-term climate data records such as clouds and precipitation, intercalibrating and blending diverse measurements of water vapor to create a consistent record through time is a challenge. The NASA Making Earth Science Data Records for Research Environments (MEaSUREs) program supported the development of the NASA Water Vapor Project (NVAP-M) dataset. The dataset was released to the science community in 2013 via the NASA Langley Atmospheric Science Data Center. The dataset is a global (land and ocean) water vapor dataset created by merging multiple satellite infrared and microwave sources of atmospheric water vapor along with surface data to form global gridded fields of total and layered precipitable water vapor. NVAP-M spans 22 years (1988-2009) of data. The challenges in creating this multisensor, multidecadal satellite-driven climate data record are illustrative of challenges for all satellite climate data records. While advances in sensor intercalibration and retrieval algorithms have improved the quality of the global water vapor climate data record, uncertainties arise due to sampling biases of the input sensors. These biases are particularly evident on a regional scale, in cloudy regions or over desert surfaces. The changing mixture of sensors with varying sensitivity to clear/cloudy, land/ocean and even day/night conditions can lead to different results on trends and variability of water vapor. We explore this variability via the NVAP-M data set. Connections and collaborations

  18. Determination of radon and radium concentrations in drinking water samples around the city of Kutahya.

    PubMed

    Sahin, Latife; Cetinkaya, Hakan; Murat Saç, Müslim; Içhedef, Mutlu

    2013-08-01

    The concentration of radium and radon has been determined in drinking water samples collected from various locations of Kutahya city, Turkey. The water samples are taken from public water sources and tap water, with the collector chamber method used to measure the radon and radium concentration. The radon concentration ranges between 0.1 and 48.6±1.7 Bq l(-1), while the radium concentration varies from a minimum detectable activity of <0.02-0.7±0.2 Bq l(-1) in Kutahya city. In addition to the radon and radium levels, parameters such as pH, conductivity and temperature of the water, humidity, pressure, elevation and the coordinates of the sampling points have also been measured and recorded. The annual effective dose from radon and radium due to typical water usage has been calculated. The resulting contribution to the annual effective dose due to radon ingestion varies between 0.3 and 124.2 μSv y(-1); the contribution to the annual effective dose due to radium ingestion varies between 0 and 143.3 μSv y(-1); the dose contribution to the stomach due to radon ingestion varies between 0.03 and 14.9 μSv y(-1). The dose contribution due to radon inhalation ranges between 0.3 and 122.5 μSv y(-1), assuming a typical transfer of radon in water to the air. For the overwhelming majority of the Kutahya population, it is determined that the average radiation exposure from drinking water is less than 73.6 µSv y(-1).

  19. Report on water quality, sediment and water chemistry data for water and sediment samples collected from source areas to Melton Hill and Watts Bar reservoirs

    SciTech Connect

    Tomaszewski, T.M.; Bruggink, D.J.; Nunn, D.L.

    1995-08-18

    Contamination of surface water and sediments in the Clinch River and Watts Bar Reservoir (CR/WBR) system as a result of past and present activities by the US Department of Energy (DOE) on the Oak Ridge Reservation (ORR) and also activities by non-ORR facilities are being studied by the Clinch River Environmental Restoration Program (CR-ERP). Previous studies have documented the presence of heavy metals, organics, and radionuclides in the sediments of reservoirs in the vicinity. In support of the CR-ERP, during the summer of 1991, TVA collected and evaluated water and sediment samples from swimming areas and municipal water intakes on Watts Bar Reservoir, Melton Hill Reservoir and Norris Reservoir, which was considered a source of less-contaminated reference or background data. Despite the numerous studies, until the current work documented by this report, relatively few sediment or water samples had been collected by the CR-ERP in the immediate vicinity of contaminant point sources. This work focused on water and sediment samples taken from points immediately downstream from suspected effluent point sources both on and off the ORR. In August and September, 1994, TVA sampled surface water and sediment at twelve locations in melton Hill and Watts Bar Reservoirs.

  20. Characterization and source identification of hydrocarbons in water samples using multiple analytical techniques.

    PubMed

    Wang, Zhendi; Li, K; Fingas, M; Sigouin, L; Ménard, L

    2002-09-20

    This paper describes a case study in which multiple analytical techniques were used to identify and characterize trace petroleum-related hydrocarbons and other volatile organic compounds in groundwater samples collected in a bedrock aquifer exploited for drinking water purposes. The objective of the study was to confirm the presence of gasoline and other petroleum products or other volatile organic pollutants in those samples in order to assess the respective implication of each of the potentially responsible parties to the contamination of the aquifer. In addition, the degree of contamination at different depths in the aquifer was also of interest. The analytical techniques used for analyses of water samples included gas chromatography-mass spectrometry (GC-MS) and capillary GC with flame-ionization detection, solid-phase microextraction and headspace GC-MS techniques. Chemical characterization results revealed the following: (1) The hydrocarbons in sample A (near-surface groundwater, 0-5 m) were clearly of two types, one being gasoline and the other a heavy petroleum product. The significant distribution of five target petroleum-characteristic alkylkated polycyclic aromatic hydrocarbon homologues and biomarkers confirmed the presence of another heavy petroleum product. The concentrations of the TPHs (total petroleum hydrocarbons) and BTEX (collective name of benzene, toluene, ethylbenzene, and p-, m-, and o-xylenes) were determined to be 1070 and 155 microg/kg of water for sample A, respectively. (2) The deepest groundwater (sample B, collected at a depth ranging between 15 and 60 m) was also contaminated, but to a much lesser degree. The concentrations of the TPH and BTEX were determined to be only 130 and 2.6 microg/kg of water for sample B, respectively. (3) The presence of a variety of volatile chlorinated compounds to the groundwater was also clearly identified.

  1. Measuring pesticides in surface waters - continuous versus event-based sampling design

    NASA Astrophysics Data System (ADS)

    Eyring, J.; Bach, M.; Frede, H.-G.

    2009-04-01

    Monitoring pesticides in surface waters is still a work- and cost-intensive procedure. Therefore, studies are normally carried out with a low monitoring frequency or with only a small selection of substances to be analyzed. In this case, it is not possible to picture the high temporal variability of pesticide concentrations, depending on application dates, weather conditions, cropping seasons and other factors. In 2007 the Institute of Landscape Ecology and Resource Management at Giessen University implemented a monitoring program during two pesticide application periods aiming to produce a detailed dataset of pesticide concentration for a wide range of substances, and which would also be suitable for the evaluation of catchment-scale pesticide exposure models. The Weida catchment in Thuringia (Eastern Germany) was selected as study area due to the availability of detailed pesticide application data for this region. The samples were taken from the river Weida at the gauge Zeulenroda, where it flows into a drinking water reservoir. The catchment area is 102 km². 67% of the area are in agricultural use, the main crops being winter wheat, maize, winter barley and winter rape. Dominant soil texture classes are loamy sand and loamy silt. About one third of the agricultural area is drained. The sampling was carried out in cooperation with the water supply agency of Thuringia (Fernwasserversorgung Thueringen). The sample analysis was done by the Institute of Environmental Research at Dortmund University. Two sampling schemes were carried out using two automatic samplers: continuous sampling with composite samples bottled two times per week and event-based sampling triggered by a discharge threshold. 53 samples from continuous sampling were collected. 19 discharge events were sampled with 45 individual samples (one to six per event). 34 pesticides and two metabolites were analyzed. 21 compounds were detected, nine of which having concentrations above the drinking water

  2. Using SPE-LC-ESI-MS/MS Analysis to Assess Disperse Dyes in Environmental Water Samples.

    PubMed

    Zocolo, Guilherme Julião; Pilon dos Santos, Glauco; Vendemiatti, Josiane; Vacchi, Francine Inforçato; Umbuzeiro, Gisela de Aragão; Zanoni, Maria Valnice Boldrin

    2015-09-01

    We have optimized an SPE-LC-ESI-MS/MS method and used it to monitor disperse azo dyes in environmental aquatic samples. Calibration curves constructed for nine disperse dyes-Red 1, Violet 93, Blue 373, Orange 1, Orange 3, Orange 25, Yellow 3, Yellow 7 and Red 13-in aqueous solution presented good linearity between 2.0 and 100.0 ng mL(-1). The method provided limits of detection and quantification around 2.0 and 8.0 ng L(-1), respectively. For dyes at concentrations of 25.0 ng mL(-1), the intra- and interday analyses afforded relative standard deviation lower than 6 and 13%, respectively. The recovery values obtained for each target analyte in Milli-Q water, receiving waters and treated water samples spiked with the nine studied dyes at concentrations of 8.0, 25.0 and 50.0 ng L(-1) (n = 3) gave average recoveries greater than 70%, with RSD <20%. Statistical evaluation aided method validation. The validated method proved to be useful for analysis of organic extracts from effluents and receiving water samples after an SPE extraction step. More specifically, the method enabled detection of the dyes Disperse Red 1, Disperse Blue 373 and Disperse Violet 93 at concentrations ranging from 84 to 3452 ng L(-1) in the treated effluent (TE), affluent and points collected upstream and downstream of the drinking water treatment plant of a textile dye industry in Brazil.

  3. Extraction of pesticides in water samples using vortex-assisted liquid-liquid microextraction.

    PubMed

    Jia, Chunhong; Zhu, Xiaodan; Wang, Jihua; Zhao, Ercheng; He, Min; Chen, Li; Yu, Pingzhong

    2010-09-10

    A simple solvent microextraction method termed vortex-assisted liquid-liquid microextraction (VALLME) coupled with gas chromatography micro electron-capture detector (GC-microECD) has been developed and used for the pesticide residue analysis in water samples. In the VALLME method, aliquots of 30 microL toluene used as extraction solvent were directly injected into a 25 mL volumetric flask containing the water sample. The extraction solvent was dispersed into the water phase under vigorously shaking with the vortex. The parameters affecting the extraction efficiency of the proposed VALLME such as extraction solvent, vortex time, volumes of extraction solvent and salt addition were investigated. Under the optimum condition, enrichment factors (EFs) in a range of 835-1115 and limits of detection below 0.010 microg L(-1) were obtained for the determination of target pesticides in water. The calculated calibration curves provide high levels of linearity yielding correlation coefficients (r(2)) greater than 0.9958 with the concentration level ranged from 0.05 to 2.5 microg L(-1). Finally, the proposed method has been successfully applied to the determination of pesticides from real water samples and acceptable recoveries over the range of 72-106.3% were obtained.

  4. Identification of microcystins contamination in surface water samples from the Three Gorges Reservoir, China.

    PubMed

    Xu, Chuan; Chen, Ji-An; Huang, Yu-Jing; Qiu, Zhi-Qun; Luo, Jiao-Hua; Zeng, Hui; Zhao, Qing; Cao, Jia; Shu, Wei-Qun

    2011-09-01

    Physicochemical and biological parameters related to water quality and microcystins (MCs) contamination in aquatic environment of the Three Gorges Reservoir were investigated in August 2004 and January 2005. A solid-phase extraction method and an HPLC equipped with photodiode array were used for MC-LR detection. A quantitative analysis showed the total MC-LR concentrations of water samples ranged from non-detectable to 0.57 μg L⁻¹ among the seven sampling sites. The highest MC-LR concentration was found at sampling site G (Wushan), which was followed by F (Kaixian), E (Wanzhou), D (Fuling), C (Cuntan), and A (Daxigou). The correlation analysis showed the MC-LR concentration was positively correlated with chlorophyll-a concentration. This result suggests that MC concentration in water can be indirectly estimated by analyzing the chlorophyll-a concentration. Overall, the results of this study suggest that more importance should be placed on monitoring of MC contamination and water quality in the Three Gorges Reservoir to ensure drinking water safety and reduce the potential exposure of people to these health hazards.

  5. TECHNICAL FACT SHEET: A Systematic Evaluation of Dissolved Metals Loss during Water Sample Filtration

    EPA Science Inventory

    This research study examined how water quality collection and filtration approaches, including commonly used capsule and disc syringe filters, may cause losses in the amounts of soluble lead and copper found in a sample. A variety of commercially available filter materials with a...

  6. SMALL VOLUME SAMPLING & GC/MS ANALYSIS FOR PAH CONCENTRATIONS IN WATER ABOVE CONTAMINATED SEDIMENTS

    EPA Science Inventory

    A procedure for measuring very low concentrations of potentially toxic petroleum residues in small water samples has been developed by EPA's Office of Research and Development. Many of these compounds, called Polycyclic Aromatic Hydrocarbons or PAHs, are included in EPA's list o...

  7. Collecting Stream Samples for Water Quality. Module 16. Vocational Education Training in Environmental Health Sciences.

    ERIC Educational Resources Information Center

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on collecting stream samples for water quality. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) using a job aid to…