Science.gov

Sample records for islet gip receptor

  1. Reversal of islet GIP receptor down-regulation and resistance to GIP by reducing hyperglycemia in the Zucker rat

    SciTech Connect

    Piteau, Shalea; Olver, Amy; Kim, Su-Jin; Winter, Kyle; Pospisilik, John Andrew; Lynn, Francis; Manhart, Susanne; Demuth, Hans-Ulrich; Speck, Madeleine; Pederson, Raymond A.; McIntosh, Christopher H.S.

    2007-11-03

    In type 2 diabetes (T2DM) {beta}-cell responsiveness to glucose-dependent insulinotropic polypeptide (GIP) is reduced. In a model of T2DM, the VDF Zucker rat, GIP receptor mRNA and protein levels were shown to be down-regulated. Possible restoration of responsiveness to GIP in Zucker rats by reducing hyperglycemia has been examined. ZDF rats with extreme hyperglycemia demonstrated greater islet GIP receptor mRNA down-regulation (94.3 {+-} 3.8%) than ZF rats (48.8 {+-} 22.8%). GIP receptor mRNA levels in ZDF rats returned to 83.0 {+-} 17.9% of lean following normalization of hyperglycemia by phlorizin treatment and pancreas perfusions demonstrated markedly improved GIP responsiveness. Treatment of VDF rats with a DP IV inhibitor (P32/98) resulted in improved glucose tolerance and restored sensitivity to GIP in isolated pancreata. These findings support the proposal that GIP receptor down-regulation in rodent T2DM is secondary to chronic hyperglycemia and that normalization of glycemia can restore GIP sensitivity.

  2. Transient Suppression of TGFβ Receptor Signaling Facilitates Human Islet Transplantation.

    PubMed

    Xiao, Xiangwei; Fischbach, Shane; Song, Zewen; Gaffar, Iljana; Zimmerman, Ray; Wiersch, John; Prasadan, Krishna; Shiota, Chiyo; Guo, Ping; Ramachandran, Sabarinathan; Witkowski, Piotr; Gittes, George K

    2016-04-01

    Although islet transplantation is an effective treatment for severe diabetes, its broad application is greatly limited due to a shortage of donor islets. Suppression of TGFβ receptor signaling in β-cells has been shown to increase β-cell proliferation in mice, but has not been rigorously examined in humans. Here, treatment of human islets with a TGFβ receptor I inhibitor, SB-431542 (SB), significantly improved C-peptide secretion by β-cells, and significantly increased β-cell number by increasing β-cell proliferation. In addition, SB increased cell-cycle activators and decreased cell-cycle suppressors in human β-cells. Transplantation of SB-treated human islets into diabetic immune-deficient mice resulted in significant improvement in blood glucose control, significantly higher serum and graft insulin content, and significantly greater increases in β-cell proliferation in the graft, compared with controls. Thus, our data suggest that transient suppression of TGFβ receptor signaling may improve the outcome of human islet transplantation, seemingly through increasing β-cell number and function. PMID:26872091

  3. Human Endothelial Protein C Receptor Overexpression Protects Intraportal Islet Grafts in Mice.

    PubMed

    Gock, H; Lee, K F E; Murray-Segal, L; Mysore, T B; d'Apice, A J F; Salvaris, E J; Cowan, P J

    2016-01-01

    Islet transplantation can potentially cure type 1 diabetes mellitus, but it is limited by a shortage of human donors as well as by islet graft destruction by inflammatory and thrombotic mechanisms. A possible solution to these problems is to use genetically modified pig islets. Endothelial protein C receptor (EPCR) enhances protein C activation and regulates coagulation, inflammation, and apoptosis. We hypothesized that human EPCR (hEPCR) expression on donor islets would improve graft survival and function. Islets from an hEPCR transgenic mouse line strongly expressed the transgene, and hEPCR expression was maintained after islet isolation. Islets were transplanted from hEPCR mice and wild-type (WT) littermates into diabetic mice in a marginal-dose syngeneic intraportal islet transplantation model. The blood glucose level normalized within 5 days in 5 of 7 recipients of hEPCR islets, compared with only 2 of 7 recipients of WT islets (P < .05). Transplanted hEPCR islets had better preserved morphology and more intense insulin staining than WT grafts, and they retained transgene expression. The improved engraftment compared with WT islets suggests that inflammation and coagulation associated with the transplant process can be reduced by hEPCR expression on donor tissue. PMID:27569971

  4. Free fatty acid receptor GPR120 is highly expressed in enteroendocrine K cells of the upper small intestine and has a critical role in GIP secretion after fat ingestion.

    PubMed

    Iwasaki, Kanako; Harada, Norio; Sasaki, Kazuki; Yamane, Shunsuke; Iida, Keiko; Suzuki, Kazuyo; Hamasaki, Akihiro; Nasteska, Daniela; Shibue, Kimitaka; Joo, Erina; Harada, Takanari; Hashimoto, Toshihiro; Asakawa, Yoshinori; Hirasawa, Akira; Inagaki, Nobuya

    2015-03-01

    Gastric inhibitory polypeptide (GIP) is an incretin secreted from enteroendocrine K cells in response to meal ingestion. Recently free fatty acid receptor G protein-coupled receptor (GPR) 120 was identified as a lipid sensor involved in glucagon-like peptide-1 secretion. However, Gpr 120 gene expression and its role in K cells remain unclear, partly due to difficulties in separation of K cells from other intestinal epithelial cells. In this study, we purified K cells using GIP-green fluorescent protein (GFP) knock-in mice, in which K cells can be visualized by GFP fluorescence. GFP-positive cells (K cells) were observed in the small intestine but not in the stomach and colon. K cell number and GIP content in K cells were significantly higher in the upper small intestine than those in the lower small intestine. We also examined the expression levels of several free fatty acid receptors in K cells. Among free fatty acid receptors, GPR120 was highly expressed in the K cells of the upper small intestine compared with the lower small intestine. To clarify the role of GPR120 on K cells in vivo, we used GPR120-deficient mice (GPR120(-/-)). GPR120(-/-) exhibited significantly lower GIP secretion (75% reduction, P < .01) after lard oil ingestion compared with that in wild-type mice. Consistently, pharmacological inhibition of GPR120 with grifolic acid methyl ether in wild-type mice significantly attenuated lard oil-induced GIP secretion. In conclusion, GPR120 is expressed abundantly in K cells of the upper small intestine and plays a critical role in lipid-induced GIP secretion.

  5. Niacin-induced hyperglycemia is partially mediated via niacin receptor GPR109a in pancreatic islets.

    PubMed

    Chen, Lihua; So, Wing Yan; Li, Stephen Y T; Cheng, Qianni; Boucher, Barbara J; Leung, Po Sing

    2015-03-15

    The widely used lipid-lowering drug niacin is reported to induce hyperglycemia during chronic and high-dose treatments, but the mechanism is poorly understood. Recently, the niacin receptor [G-protein-coupled receptor, (GPR) 109a], has been localized to islet cells while its potential role therein remains unclear. We, therefore, aimed at investigating how GPR109a regulates islet beta-cell function and its downstream signaling using high-fat diet-induced obese mice and INS-1E beta cells. Eight-week niacin treatment elevated blood glucose concentration in obese mice with increased areas under the curve at oral glucose and intraperitoneal insulin tolerance tests. Additionally, niacin treatment significantly decreased glucose-stimulated insulin secretion (GSIS) but induced peroxisome proliferator-activated receptor gamma (Pparg) and GPR109a expression in isolated pancreatic islets; concomitantly, reactive oxygen species (ROS) were transiently increased, with decreases in GSIS, intracellular cyclic adenosine monophosphate (cAMP) accumulation and mitochondrial membrane potential (ΔΨm), but with increased expression of uncoupling protein 2 (Ucp2), Pparg and Gpr109a in INS-1E cells. Corroborating these findings, the decreases in GSIS, ΔΨm and cAMP production and increases in ROS, Pparg and GPR109a expression were abolished in INS-1E cells by GPR109a knockdown. Our data indicate that niacin-induced pancreatic islet dysfunction is probably modulated through activation of the islet beta-cell GPR109a-induced ROS-PPARγ-UCP2 pathways.

  6. Function and expression of sulfonylurea, adrenergic, and glucagon-like peptide 1 receptors in isolated porcine islets.

    PubMed

    Kelly, Amy C; Steyn, Leah V; Kitzmann, Jenna P; Anderson, Miranda J; Mueller, Kate R; Hart, Nathaniel J; Lynch, Ronald M; Papas, Klearchos K; Limesand, Sean W

    2014-01-01

    The scarcity of human cadaveric pancreata limits large-scale application of islet transplantation for patients with diabetes. Islets isolated from pathogen-free pigs provide an economical and abundant alternative source assuming immunologic barriers are appropriate. Membrane receptors involved in insulin secretion that also have potential as imaging targets were investigated in isolated porcine islets. Quantitative (q)PCR revealed that porcine islets express mRNA transcripts for sulfonylurea receptor 1 (Sur1), inward rectifying potassium channel (Kir6.2, associated with Sur1), glucagon-like peptide 1 receptor (GLP1R), and adrenergic receptor alpha 2A (ADRα2A). Receptor function was assessed in static incubations with stimulatory glucose concentrations, and in the presence of receptor agonists. Glibenclamide, an anti-diabetic sulfonylurea, and exendin-4, a GLP-1 mimetic, potentiated glucose-stimulated insulin secretion >2-fold. Conversely, epinephrine maximally reduced insulin secretion 72 ± 9% (P < 0.05) and had a half maximal inhibitory concentration of 60 nm in porcine islets (95% confidence interval of 45-830 nm). The epinephrine action was inhibited by the ADRα2A antagonist yohimbine. Our findings demonstrate that porcine islets express and are responsive to both stimulatory and inhibitory membrane localized receptors, which can be used as imaging targets after transplantation or to modify insulin secretion.

  7. Gastric inhibitory polypeptide (GIP) release by actively transported, structurally similar carbohydrates.

    PubMed

    Sirinek, K R; Levine, B A; O'Dorisio, T M; Cataland, S

    1983-07-01

    Six awake adult dogs prepared with a duodenocutaneous fistula were infused intraduodenally with one of the following solutions: 3% saline, 10% glucose, 20% glucose, 20% galactose, 20% fructose, 20% mannose, 20% sorbitol, 20% maltose, 20% lactose, or 20% sucrose. Both 10 and 20% glucose stimulated GIP release, and the response appeared to be dose related. Actively transported galactose (C-4 epimer) stimulated GIP release, but less than glucose. Fructose (C-2 keto sugar) which is absorbed by facilitated transport did not stimulate GIP release. Mannose (C-2 epimer) which is passively absorbed by diffusion did not release GIP. Sorbitol (reduced alcohol of glucose) which is not absorbed did not release GIP. Of the disaccharides tested, only maltose stimulated the release of GIP. The results suggest that structural integrity of the glucose molecule from the C-1 to C-4 carbon atoms, a free aldehyde group on the C-1 carbon atom, and a cyclic structure are all necessary for both the active transport of glucose and the release of endogenous GIP. It would appear that structurally similar receptors exist for both the active transport of glucose and for the release of GIP. PMID:6867011

  8. Increased GIP signaling induces adipose inflammation via a HIF-1α-dependent pathway and impairs insulin sensitivity in mice.

    PubMed

    Chen, Shu; Okahara, Fumiaki; Osaki, Noriko; Shimotoyodome, Akira

    2015-03-01

    Glucose-dependent insulinotropic polypeptide (GIP) is a gut hormone secreted in response to dietary fat and glucose. The blood GIP level is elevated in obesity and diabetes. GIP stimulates proinflammatory gene expression and impairs insulin sensitivity in cultured adipocytes. In obesity, hypoxia within adipose tissue can induce inflammation. The aims of this study were 1) to examine the proinflammatory effect of increased GIP signaling in adipose tissues in vivo and 2) to clarify the association between GIP and hypoxic signaling in adipose tissue inflammation. We administered GIP intraperitoneally to misty (lean) and db/db (obese) mice and examined adipose tissue inflammation and insulin sensitivity. We also examined the effects of GIP and hypoxia on expression of the GIP receptor (GIPR) gene and proinflammatory genes in 3T3-L1 adipocytes. GIP administration increased monocyte chemoattractant protein-1 (MCP-1) expression and macrophage infiltration into adipose tissue and increased blood glucose in db/db mice. GIPR and hypoxia-inducible factor-1α (HIF-1α) expressions were positively correlated in the adipose tissue in mice. GIPR expression increased dramatically in differentiated adipocytes. GIP treatment of adipocytes increased MCP-1 and interleukin-6 (IL-6) production. Adipocytes cultured either with RAW 264 macrophages or under hypoxia expressed more GIPR and HIF-1α, and GIP treatment increased gene expression of plasminogen activator inhibitor 1 and IL-6. HIF-1α gene silencing diminished both macrophage- and hypoxia-induced GIPR expression and GIP-induced IL-6 expression in adipocytes. Thus, increased GIP signaling plays a significant role in adipose tissue inflammation and thereby insulin resistance in obese mice, and HIF-1α may contribute to this process. PMID:25537494

  9. Common variants of GIP are associated with visceral fat accumulation in Japanese adults.

    PubMed

    Nakayama, Kazuhiro; Watanabe, Kazuhisa; Boonvisut, Supichaya; Makishima, Saho; Miyashita, Hiroshi; Iwamoto, Sadahiko

    2014-12-01

    Animal studies have demonstrated that glucose-dependent insulinotropic polypeptide (GIP) and GIP receptor (GIPR) contribute to the etiology of obesity. In humans, genomewide association studies have identified single nucleotide polymorphisms (SNPs) in the GIPR gene that are strongly associated with body mass index (BMI); however, it is not clear whether genetic variations in the GIP gene are involved in the development of obesity. In the current study, we assessed the impact of GIP SNPs on obesity-related traits in Japanese adults. Six tag SNPs were tested for associations with obesity-related traits in 3,013 individuals. Multiple linear regression analyses showed that rs9904288, located at the 3'-end of GIP, was significantly associated with visceral fat area (VFA). Moreover, rs1390154 and rs4794008 showed significant associations with plasma triglyceride levels and hemoglobin A1c levels, respectively. Among the significant SNPs, rs9904288 and rs1390154 were independently linked with SNPs in active enhancers of the duodenum mucosa, the main GIP-secreting tissue. The haplotypes of these two SNPs exhibited stronger associations with VFA. Numbers of VFA-increasing alleles of rs9904288 and BMI-increasing alleles of previously identified GIPR SNPs showed a strong additive effect on VFA, waist circumference, and BMI in the subject population. These novel results support the notion that the GIP-GIPR axis plays a role in the etiology of central obesity in humans, which is characterized by the accumulation of visceral fat.

  10. Detection of somatostatin receptors in surgical and percutaneous needle biopsy samples of carcinoids and islet cell carcinomas.

    PubMed

    Reubi, J C; Kvols, L K; Waser, B; Nagorney, D M; Heitz, P U; Charboneau, J W; Reading, C C; Moertel, C

    1990-09-15

    Somatostatin (SS) receptor status was investigated in the tumor tissues from 62 patients with carcinoid tumors and 15 patients with islet cell carcinomas using receptor autoradiography techniques with two different iodinated somatostatin analogues as radioligands, a [Leu8, DTrp22, Tyr25]somatostatin-28 and a somatostatin octapeptide, Tyr3-octreotide. The carcinoid tumors were either primaries (n = 32) or metastases (n = 43), sampled as surgical specimens or as small needle liver biopsies. Fifty-four of 62 carcinoid patients had SS receptor-positive tumors (87%). All 15 islet cell carcinoma patients had positive tumors (4 primaries, 11 metastases), i.e., 3 vipomas, 3 insulinomas, 2 glucagonomas, 1 gastrinoma, 2 polyfunctional tumors, and 4 nonfunctioning tumors. Saturation and competition experiments on tissue sections revealed saturable, high affinity binding sites pharmacologically specific for bioactive SS analogues. In a majority of the tumors, the receptors were densely distributed and were always homogeneously found in the whole tumor. All except two tumors were labeled with both radioligands. Multiple liver metastases (n = 16) from three different patients were all shown to contain a comparable amount of receptors. SS receptors could be demonstrated even in very small tissue samples of liver metastases obtained by percutaneous liver biopsies (mean weight, 6.8 mg). The majority of the eight SS receptor-negative carcinoids were mainly bronchial carcinoids (n = 5), usually poorly differentiated. On the contrary, SS receptor-positive cases were never found to be anaplastic. All tumors except one from patients pretreated with octreotide (3 days to 3.8 years) were SS receptor positive. In the majority of carcinoids or islet cell carcinomas, the SS receptor status correlated with the in vivo biochemical response (hormone inhibition) to octreotide. These data demonstrate (a) the high prevalence of SS receptors in the primary tumors of both carcinoids and islet cell

  11. KATP channel as well as SGLT1 participates in GIP secretion in the diabetic state.

    PubMed

    Ogata, Hidetada; Seino, Yusuke; Harada, Norio; Iida, Atsushi; Suzuki, Kazuyo; Izumoto, Takako; Ishikawa, Kota; Uenishi, Eita; Ozaki, Nobuaki; Hayashi, Yoshitaka; Miki, Takashi; Inagaki, Nobuya; Tsunekawa, Shin; Hamada, Yoji; Seino, Susumu; Oiso, Yutaka

    2014-08-01

    Glucose-dependent insulinotropic polypeptide (GIP), a gut hormone secreted from intestinal K-cells, potentiates insulin secretion. Both K-cells and pancreatic β-cells are glucose-responsive and equipped with a similar glucose-sensing apparatus that includes glucokinase and an ATP-sensitive K(+) (KATP) channel comprising KIR6.2 and sulfonylurea receptor 1. In absorptive epithelial cells and enteroendocrine cells, sodium glucose co-transporter 1 (SGLT1) is also known to play an important role in glucose absorption and glucose-induced incretin secretion. However, the glucose-sensing mechanism in K-cells is not fully understood. In this study, we examined the involvement of SGLT1 (SLC5A1) and the KATP channels in glucose sensing in GIP secretion in both normal and streptozotocin-induced diabetic mice. Glimepiride, a sulfonylurea, did not induce GIP secretion and pretreatment with diazoxide, a KATP channel activator, did not affect glucose-induced GIP secretion in the normal state. In mice lacking KATP channels (Kir6.2(-/-) mice), glucose-induced GIP secretion was enhanced compared with control (Kir6.2(+) (/) (+)) mice, but was completely blocked by the SGLT1 inhibitor phlorizin. In Kir6.2(-/-) mice, intestinal glucose absorption through SGLT1 was enhanced compared with that in Kir6.2(+) (/) (+) mice. On the other hand, glucose-induced GIP secretion was enhanced in the diabetic state in Kir6.2(+) (/) (+) mice. This GIP secretion was partially blocked by phlorizin, but was completely blocked by pretreatment with diazoxide in addition to phlorizin administration. These results demonstrate that glucose-induced GIP secretion depends primarily on SGLT1 in the normal state, whereas the KATP channel as well as SGLT1 is involved in GIP secretion in the diabetic state in vivo.

  12. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic {beta}-cell mass

    SciTech Connect

    Cline, Gary W.; Zhao, Xiaojian; Jakowski, Amy B.; Soeller, Walter C.; Treadway, Judith L.

    2011-09-02

    Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution

  13. Novel Small Molecule Glucagon-Like Peptide-1 Receptor Agonist Stimulates Insulin Secretion in Rodents and From Human Islets

    PubMed Central

    Sloop, Kyle W.; Willard, Francis S.; Brenner, Martin B.; Ficorilli, James; Valasek, Kathleen; Showalter, Aaron D.; Farb, Thomas B.; Cao, Julia X.C.; Cox, Amy L.; Michael, M. Dodson; Gutierrez Sanfeliciano, Sonia Maria; Tebbe, Mark J.; Coghlan, Michael J.

    2010-01-01

    OBJECTIVE The clinical effectiveness of parenterally-administered glucagon-like peptide-1 (GLP-1) mimetics to improve glucose control in patients suffering from type 2 diabetes strongly supports discovery pursuits aimed at identifying and developing orally active, small molecule GLP-1 receptor agonists. The purpose of these studies was to identify and characterize novel nonpeptide agonists of the GLP-1 receptor. RESEARCH DESIGN AND METHODS Screening using cells expressing the GLP-1 receptor and insulin secretion assays with rodent and human islets were used to identify novel molecules. The intravenous glucose tolerance test (IVGTT) and hyperglycemic clamp characterized the insulinotropic effects of compounds in vivo. RESULTS Novel low molecular weight pyrimidine-based compounds that activate the GLP-1 receptor and stimulate glucose-dependent insulin secretion are described. These molecules induce GLP-1 receptor-mediated cAMP signaling in HEK293 cells expressing the GLP-1 receptor and increase insulin secretion from rodent islets in a dose-dependent manner. The compounds activate GLP-1 receptor signaling, both alone or in an additive fashion when combined with the endogenous GLP-1 peptide; however, these agonists do not compete with radiolabeled GLP-1 in receptor-binding assays. In vivo studies using the IVGTT and the hyperglycemic clamp in Sprague Dawley rats demonstrate increased insulin secretion in compound-treated animals. Further, perifusion assays with human islets isolated from a donor with type 2 diabetes show near-normalization of insulin secretion upon compound treatment. CONCLUSIONS These studies characterize the insulinotropic effects of an early-stage, small molecule GLP-1 receptor agonist and provide compelling evidence to support pharmaceutical optimization. PMID:20823098

  14. Vitamin D receptor activation induces peptide YY transcription in pancreatic islets.

    PubMed

    Choi, Mihwa; Ozeki, Jun; Hashizume, Masami; Kato, Shigeaki; Ishihara, Hisamitsu; Makishima, Makoto

    2012-11-01

    Peptide YY (PYY) is a peptide hormone secreted from L cells in the intestine after food intake and regulates appetite and intestinal function. PYY is also expressed in the pancreas, but the mechanisms of regulation of pancreatic PYY expression have not been elucidated. The vitamin D receptor (VDR) is a nuclear receptor for the active form of vitamin D(3) and regulates numerous physiological processes. Because VDR is expressed in the pancreas, we investigated the role of pancreatic VDR activation and found that Pyy is a VDR target gene in the mouse pancreas. Treatment of mice with 1α-hydroxyvitamin D(3) increased plasma PYY levels. VDR activation increased mRNA and protein expression of PYY in the pancreatic islets of mice and pancreatic endocrine cell lines but did not change intestinal PYY expression. 1α-Hydroxyvitamin D(3)-dependent induction of pancreatic and plasma PYY was abolished in VDR-null mice. We identified a functional vitamin D-responsive element in the mouse Pyy promoter using chromatin immunoprecipitation assay, EMSA, and luciferase promoter assay. Thus, Pyy is a tissue-specific VDR target gene. The pancreatic VDR-PYY pathway may mediate a regulatory function of vitamin D in the neuroendocrine system.

  15. Interleukin-21 receptor-mediated signals control autoreactive T cell infiltration in pancreatic islets.

    PubMed

    Van Belle, Tom L; Nierkens, Stefan; Arens, Ramon; von Herrath, Matthias G

    2012-06-29

    It remains unclear how interleukin-21 receptor (IL-21R) contributes to type 1 diabetes. Here we have shown that dendritic cells (DCs) in the pancreas required IL-21R not for antigen uptake, but to acquire the chemokine receptor CCR7 and migrate into the draining lymph node. Consequently, less antigen, major histocompatibility complex (MHC) class II, and CD86 was provided to autoreactive effector cells in Il21r(-/-) mice, impairing CD4(+) T cell activation, CD40:CD40L interactions, and pancreatic infiltration by autoreactive T cells. CD40 crosslinking restored defective CD4(+) cell expansion and CD4 independently expanded autoreactive CD8(+) cells, but CD8(+) cells still required CD4(+) cells to reach the pancreas and induce diabetes. Diabetes induction by transferred T cells required IL-21R-sufficient host antigen-presenting cells. Transferring IL-21R-sufficient DCs broke diabetes resistance in Il21r(-/-) mice. We conclude that IL-21R controls both antigen transport by DCs and the crucial beacon function of CD4(+) cells for autoreactive CD8(+) cells to reach the islets.

  16. Incretin and islet hormonal responses to fat and protein ingestion in healthy men.

    PubMed

    Carr, Richard D; Larsen, Marianne O; Winzell, Maria Sörhede; Jelic, Katarina; Lindgren, Ola; Deacon, Carolyn F; Ahrén, Bo

    2008-10-01

    Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate islet function after carbohydrate ingestion. Whether incretin hormones are of importance for islet function after ingestion of noncarbohydrate macronutrients is not known. This study therefore examined integrated incretin and islet hormone responses to ingestion of pure fat (oleic acid; 0.88 g/kg) or protein (milk and egg protein; 2 g/kg) over 5 h in healthy men, aged 20-25 yr (n=12); plain water ingestion served as control. Both intact (active) and total GLP-1 and GIP levels were determined as was plasma activity of dipeptidyl peptidase-4 (DPP-4). Following water ingestion, glucose, insulin, glucagon, GLP-1, and GIP levels and DPP-4 activity were stable during the 5-h study period. Both fat and protein ingestion increased insulin, glucagon, GIP, and GLP-1 levels without affecting glucose levels or DPP-4 activity. The GLP-1 responses were similar after protein and fat, whereas the early (30 min) GIP response was higher after protein than after fat ingestion (P<0.001). This was associated with sevenfold higher insulin and glucagon responses compared with fat ingestion (both P<0.001). After protein, the early GIP, but not GLP-1, responses correlated to insulin (r(2)=0.86; P=0.0001) but not glucagon responses. In contrast, after fat ingestion, GLP-1 and GIP did not correlate to islet hormones. We conclude that, whereas protein and fat release both incretin and islet hormones, the early GIP secretion after protein ingestion may be of primary importance to islet hormone secretion.

  17. Heterotrimeric G-protein shuttling via Gip1 extends the dynamic range of eukaryotic chemotaxis

    PubMed Central

    Kamimura, Yoichiro; Miyanaga, Yukihiro; Ueda, Masahiro

    2016-01-01

    Chemotactic eukaryote cells can sense chemical gradients over a wide range of concentrations via heterotrimeric G-protein signaling; however, the underlying wide-range sensing mechanisms are only partially understood. Here we report that a novel regulator of G proteins, G protein-interacting protein 1 (Gip1), is essential for extending the chemotactic range of Dictyostelium cells. Genetic disruption of Gip1 caused severe defects in gradient sensing and directed cell migration at high but not low concentrations of chemoattractant. Also, Gip1 was found to bind and sequester G proteins in cytosolic pools. Receptor activation induced G-protein translocation to the plasma membrane from the cytosol in a Gip1-dependent manner, causing a biased redistribution of G protein on the membrane along a chemoattractant gradient. These findings suggest that Gip1 regulates G-protein shuttling between the cytosol and the membrane to ensure the availability and biased redistribution of G protein on the membrane for receptor-mediated chemotactic signaling. This mechanism offers an explanation for the wide-range sensing seen in eukaryotic chemotaxis. PMID:27044073

  18. Heterotrimeric G-protein shuttling via Gip1 extends the dynamic range of eukaryotic chemotaxis.

    PubMed

    Kamimura, Yoichiro; Miyanaga, Yukihiro; Ueda, Masahiro

    2016-04-19

    Chemotactic eukaryote cells can sense chemical gradients over a wide range of concentrations via heterotrimeric G-protein signaling; however, the underlying wide-range sensing mechanisms are only partially understood. Here we report that a novel regulator of G proteins, G protein-interacting protein 1 (Gip1), is essential for extending the chemotactic range ofDictyosteliumcells. Genetic disruption of Gip1 caused severe defects in gradient sensing and directed cell migration at high but not low concentrations of chemoattractant. Also, Gip1 was found to bind and sequester G proteins in cytosolic pools. Receptor activation induced G-protein translocation to the plasma membrane from the cytosol in a Gip1-dependent manner, causing a biased redistribution of G protein on the membrane along a chemoattractant gradient. These findings suggest that Gip1 regulates G-protein shuttling between the cytosol and the membrane to ensure the availability and biased redistribution of G protein on the membrane for receptor-mediated chemotactic signaling. This mechanism offers an explanation for the wide-range sensing seen in eukaryotic chemotaxis.

  19. Activation of Transmembrane Bile Acid Receptor TGR5 Modulates Pancreatic Islet α Cells to Promote Glucose Homeostasis.

    PubMed

    Kumar, Divya P; Asgharpour, Amon; Mirshahi, Faridoddin; Park, So Hyun; Liu, Sichen; Imai, Yumi; Nadler, Jerry L; Grider, John R; Murthy, Karnam S; Sanyal, Arun J

    2016-03-25

    The physiological role of the TGR5 receptor in the pancreas is not fully understood. We previously showed that activation of TGR5 in pancreatic β cells by bile acids induces insulin secretion. Glucagon released from pancreatic α cells and glucagon-like peptide 1 (GLP-1) released from intestinal L cells regulate insulin secretion. Both glucagon and GLP-1 are derived from alternate splicing of a common precursor, proglucagon by PC2 and PC1, respectively. We investigated whether TGR5 activation in pancreatic α cells enhances hyperglycemia-induced PC1 expression thereby releasing GLP-1, which in turn increases β cell mass and function in a paracrine manner. TGR5 activation augmented a hyperglycemia-induced switch from glucagon to GLP-1 synthesis in human and mouse islet α cells by GS/cAMP/PKA/cAMP-response element-binding protein-dependent activation of PC1. Furthermore, TGR5-induced GLP-1 release from α cells was via an Epac-mediated PKA-independent mechanism. Administration of the TGR5 agonist, INT-777, to db/db mice attenuated the increase in body weight and improved glucose tolerance and insulin sensitivity. INT-777 augmented PC1 expression in α cells and stimulated GLP-1 release from islets of db/db mice compared with control. INT-777 also increased pancreatic β cell proliferation and insulin synthesis. The effect of TGR5-mediated GLP-1 from α cells on insulin release from islets could be blocked by GLP-1 receptor antagonist. These results suggest that TGR5 activation mediates cross-talk between α and β cells by switching from glucagon to GLP-1 to restore β cell mass and function under hyperglycemic conditions. Thus, INT-777-mediated TGR5 activation could be leveraged as a novel way to treat type 2 diabetes mellitus. PMID:26757816

  20. Effect of CXCL10 receptor antagonist on islet cell apoptosis in a type I diabetes rat model.

    PubMed

    He, Jinshui; Lian, Chaowei; Fang, Yanling; Wu, Jinzhi; Weng, Jianning; Ye, Xiaoling; Zhou, Huowang

    2015-01-01

    In recent years, the incidence of type 1 diabetes mellitus (T1DM) has been increasing. The role of CXCL10 and its receptor, CXCR3, in the occurrence of T1DM has drawn lots of research interests, as the disease incidence was correlated with their expression levels. We thus used an antagonist of CXCR3, NBI-74330, to block the specific binding, for further observation of islet cell apoptosis in a T1MD rat model. A total of 80 SD rats were given STZ intraperitoneally for generating T1DM model. Different concentrations of NBI-74330 were then applied, followed by the collection of blood and pancreatic tissue samples. CXCL10 and CXCR3 levels were detected by enzyme linked immunosorbent assay (ELISA), followed by expressional assays in pancreatic tissues by real-time PCR, Western blotting and flow cytometry. Compared to control group, model rats had significantly elevated blood glucose level (>16.7 mmol/L), with depressed CXCL10 and CXCR3 levels compared to model group (P<0.05). After NBI-74330 treatment, mRNA and protein levels of CXCL10 and CXCR3 were significantly lowered, with significantly decreased apoptotic cell ratios compared to model group (P<0.05). CXCL10 receptor antagonist NBI-74330 can inhibit the apoptosis of pancreatic islet cells in T1DM rats.

  1. Chronic reduction of GIP secretion alleviates obesity and insulin resistance under high-fat diet conditions.

    PubMed

    Nasteska, Daniela; Harada, Norio; Suzuki, Kazuyo; Yamane, Shunsuke; Hamasaki, Akihiro; Joo, Erina; Iwasaki, Kanako; Shibue, Kimitaka; Harada, Takanari; Inagaki, Nobuya

    2014-07-01

    Gastric inhibitory polypeptide (GIP) exhibits potent insulinotropic effects on β-cells and anabolic effects on bone formation and fat accumulation. We explored the impact of reduced GIP levels in vivo on glucose homeostasis, bone formation, and fat accumulation in a novel GIP-GFP knock-in (KI) mouse. We generated GIP-GFP KI mice with a truncated prepro-GIP gene. The phenotype was assessed in heterozygous and homozygous states in mice on a control fat diet and a high-fat diet (HFD) in vivo and in vitro. Heterozygous GIP-GFP KI mice (GIP-reduced mice [GIP(gfp/+)]) exhibited reduced GIP secretion; in the homozygous state (GIP-lacking mice [GIP(gfp/gfp)]), GIP secretion was undetectable. When fed standard chow, GIP(gfp/+) and GIP(gfp/gfp) mice showed mild glucose intolerance with decreased insulin levels; bone volume was decreased in GIP(gfp/gfp) mice and preserved in GIP(gfp/+) mice. Under an HFD, glucose levels during an oral glucose tolerance test were similar in wild-type, GIP(gfp/+), and GIP(gfp/gfp) mice, while insulin secretion remained lower. GIP(gfp/+) and GIP(gfp/gfp) mice showed reduced obesity and reduced insulin resistance, accompanied by higher fat oxidation and energy expenditure. GIP-reduced mice demonstrate that partial reduction of GIP does not extensively alter glucose tolerance, but it alleviates obesity and lessens the degree of insulin resistance under HFD conditions, suggesting a potential therapeutic value.

  2. Acetylcholine and muscarinic receptor function in cerebral cortex of diabetic young and old male Wistar rats and the role of muscarinic receptors in calcium release from pancreatic islets.

    PubMed

    Savitha, Balakrishnan; Joseph, Binoy; Peeyush Kumar, T; Paulose, C S

    2010-04-01

    We investigated acetylcholine esterase (AChE) activity, acetylcholine and muscarinic M1, M3 receptors kinetics in the cerebral cortex of young and old streptozotocin induced and insulin treated diabetic rats. The role of muscarinic receptors in intracellular calcium release from pancreatic islets was studied in vitro. Wistar rats of 7 and 90-weeks old were used. All studies were done in cerebral cortex. AChE assay was done by spectrophotometric method. Radioreceptor binding assays were done for Acetylcholine, Muscarinic M1 and M3 receptors using specific ligands. Calcium imaging was done using fluo4-AM in pancreatic cells. Ninety-weeks old control rats showed significantly decreased Vmax and increased Km for AChE compared to 7-weeks old control rats. An increased Vmax observed in both 7 and 90-weeks old diabetic groups with significant decrease in Km. Scatchard analysis using specific agonists showed significant decrease in the B (max) and K (d) of acetylcholine and muscarinic M1 receptors in 90-weeks old control rats compared to 7-weeks old control. Binding studies for M3 receptors showed no significant change compared to 7-weeks old control. Acetylcholine, muscarinic M1 and M3 receptor number significantly increased in 90-weeks old diabetic rat groups compared to their respective controls. Insulin treatment significantly reversed the binding parameters to near control compared to diabetic group. In vitro studies showed that acetylcholine through muscarinic M1 and M3 receptors' stimulated calcium release from the pancreatic islets. Thus our studies suggest that Insulin signaling play an important part in differentially regulating pancreatic cholinergic activity, and the diabetes mediated cortical dysfunctions with age.

  3. Peroxisome proliferator-activated receptor-gamma agonist, rosiglitazone, protects against nephropathy and pancreatic islet abnormalities in Zucker fatty rats.

    PubMed

    Buckingham, R E; Al-Barazanji, K A; Toseland, C D; Slaughter, M; Connor, S C; West, A; Bond, B; Turner, N C; Clapham, J C

    1998-08-01

    Rosiglitazone (BRL 49653), a peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonist and potent insulin action-enhancing agent, was given in the diet (50 micromol/kg of diet) to male Zucker rats ages 6-7 weeks for 9 months (prevention group). In this treatment mode, rosiglitazone prolonged the time to onset of proteinuria from 3 to 6 months and markedly reduced the rate of its subsequent progression. Progression was also retarded when treatment was commenced (intervention group) after proteinuria had become established (4 months; ages 24-25 weeks). In either treatment mode, rosiglitazone normalized urinary N-acetyl-beta-D-glucosaminidase activity, a marker for renal proximal tubular damage, and ameliorated the rise in systolic blood pressure that occurred coincidentally with the development of proteinuria in Zucker fatty control rats. The renal protective action of rosiglitazone was verified morphologically. Thus in the prevention group there was an absence of the various indexes of chronic nephropathy that were prominent in the Zucker fatty control group, namely, glomerulosclerosis, dilated tubules containing proteinaceous casts, a loss of functional microvilli on the tubular epithelium, and varying degrees of chronic interstitial nephritis. An intermediate pathology was observed in the intervention group. Also, pancreatic islet hyperplasia, ultrastructural evidence of beta-cell work hypertrophy, and derangement of alpha-cell distribution within the islet were prominent features of Zucker fatty control rats, but these adaptive changes were ameliorated (intervention group) or prevented (prevention group) by rosiglitazone treatment. These data demonstrate that treatment of Zucker fatty rats with rosiglitazone produced substantial protection over a prolonged period against the development and progression of renal injury and the adaptive changes to pancreatic islet morphology caused by sustained hyperinsulinemia. PMID:9703335

  4. Glucose-Dependent Insulin Secretion in Pancreatic β-Cell Islets from Male Rats Requires Ca2+ Release via ROS-Stimulated Ryanodine Receptors

    PubMed Central

    Llanos, Paola; Contreras-Ferrat, Ariel; Barrientos, Genaro; Valencia, Marco; Mears, David; Hidalgo, Cecilia

    2015-01-01

    Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells requires an increase in intracellular free Ca2+ concentration ([Ca2+]). Glucose uptake into β-cells promotes Ca2+ influx and reactive oxygen species (ROS) generation. In other cell types, Ca2+ and ROS jointly induce Ca2+ release mediated by ryanodine receptor (RyR) channels. Therefore, we explored here if RyR-mediated Ca2+ release contributes to GSIS in β-cell islets isolated from male rats. Stimulatory glucose increased islet insulin secretion, and promoted ROS generation in islets and dissociated β-cells. Conventional PCR assays and immunostaining confirmed that β-cells express RyR2, the cardiac RyR isoform. Extended incubation of β-cell islets with inhibitory ryanodine suppressed GSIS; so did the antioxidant N-acetyl cysteine (NAC), which also decreased insulin secretion induced by glucose plus caffeine. Inhibitory ryanodine or NAC did not affect insulin secretion induced by glucose plus carbachol, which engages inositol 1,4,5-trisphosphate receptors. Incubation of islets with H2O2 in basal glucose increased insulin secretion 2-fold. Inhibitory ryanodine significantly decreased H2O2-stimulated insulin secretion and prevented the 4.5-fold increase of cytoplasmic [Ca2+] produced by incubation of dissociated β-cells with H2O2. Addition of stimulatory glucose or H2O2 (in basal glucose) to β-cells disaggregated from islets increased RyR2 S-glutathionylation to similar levels, measured by a proximity ligation assay; in contrast, NAC significantly reduced the RyR2 S-glutathionylation increase produced by stimulatory glucose. We propose that RyR2-mediated Ca2+ release, induced by the concomitant increases in [Ca2+] and ROS produced by stimulatory glucose, is an essential step in GSIS. PMID:26046640

  5. Fibroblast growth factor receptor-1 signaling in pancreatic islet beta-cells is modulated by the extracellular matrix.

    PubMed

    Kilkenny, Dawn M; Rocheleau, Jonathan V

    2008-01-01

    Maintenance of pancreatic beta-cell mass depends on extracellular stimuli that promote survival and proliferation. In the islet, these stimuli come from the beta-cell microenvironment and include extracellular matrix deposited by associated vascular endothelial cells. Fibroblast growth factor receptor-1 (FGFR1) has recently been implicated as a signaling pathway that is important for normal beta-cell function. We would like to understand how extracellular matrix and FGFR1 signaling interact to promote beta-cell survival and proliferation. To examine beta-cell-specific receptor responses, we created lentiviral vectors with rat insulin promoter-driven expression of Venus fluorescent protein-tagged full-length (R1betav) and kinase-deficient (KDR1betav) FGFR1. Significant FGF-1-dependent activation of ERK1/2 was observed in betaTC3 cells, dispersed beta-cells, and beta-cells in intact islets. This response was enhanced by R1betav expression and reduced by KDR1betav expression. Plating-dispersed beta-cells on collagen type IV resulted in enhanced expression of endogenous FGFR1 that was associated with sustained activation of ERK1/2. Conversely, plating cells on laminin reduced expression of FGFR1, and this reduction was associated with transient activation of ERK1/2. Addition of neutralizing antibodies to inhibit beta-cell attachment to laminin via alpha(6)-integrin increased high-affinity FGF-1-binding at the plasma membrane and resulted in sustained ERK1/2 activity similar to cells plated on collagen type IV. These data show that the FGF-stimulated beta-cell response is negatively affected by alpha(6)-integrin binding to laminin and suggest regulation associated with vascular endothelial cell remodeling. PMID:17916654

  6. Effects of endogenous GLP-1 and GIP on glucose tolerance after Roux-en-Y gastric bypass surgery.

    PubMed

    Svane, Maria S; Bojsen-Møller, Kirstine N; Nielsen, Signe; Jørgensen, Nils B; Dirksen, Carsten; Bendtsen, Flemming; Kristiansen, Viggo B; Hartmann, Bolette; Holst, Jens J; Madsbad, Sten

    2016-04-01

    Exaggerated secretion of glucagon-like peptide 1 (GLP-1) is important for postprandial glucose tolerance after Roux-en-Y gastric bypass (RYGB), whereas the role of glucose-dependent insulinotropic polypeptide (GIP) remains to be resolved. We aimed to explore the relative importance of endogenously secreted GLP-1 and GIP on glucose tolerance and β-cell function after RYGB. We used DPP-4 inhibition to enhance concentrations of intact GIP and GLP-1 and the GLP-1 receptor antagonist exendin-(9-39) (Ex-9) for specific blockage of GLP-1 actions. Twelve glucose-tolerant patients were studied after RYGB in a randomized, placebo-controlled, 4-day crossover study with standard mixed-meal tests and concurrent administration of placebo, oral sitagliptin, Ex-9 infusion, or combined Ex-9-sitagliptin. GLP-1 receptor antagonism increased glucose excursions, clearly attenuated β-cell function, and aggravated postprandial hyperglucagonemia compared with placebo, whereas sitagliptin had no effect despite two- to threefold increased concentrations of intact GLP-1 and GIP. Similarly, sitagliptin did not affect glucose tolerance or β-cell function during GLP-1R blockage. This study confirms the importance of GLP-1 for glucose tolerance after RYGB via increased insulin and attenuated glucagon secretion in the postprandial state, whereas amplification of the GIP signal (or other DPP-4-sensitive glucose-lowering mechanisms) did not appear to contribute to the improved glucose tolerance seen after RYGB. PMID:26786780

  7. The effect of the putative endogenous imidazoline receptor ligand, clonidine-displacing substance, on insulin secretion from rat and human islets of Langerhans

    PubMed Central

    Chan, Susan L F; Atlas, Daphne; James, Roger F L; Morgan, Noel G

    1997-01-01

    The effects of a rat brain extract containing clonidine-displacing substance (CDS), a putative endogenous imidazoline receptor ligand, on insulin release from rat and human isolated islets of Langerhans were investigated.CDS was able to potentiate the insulin secretory response of rat islets incubated at 6 mM glucose, in a dose-dependent manner. The magnitude of this effect was similar to that in response to the well-characterized imidazoline secretagogue, efaroxan.CDS, like other imidazoline secretagogues, was also able to reverse the inhibitory action of diazoxide on glucose-induced insulin release, in both rat and human islets.These effects of CDS on secretion were reversed by the imidazoline secretagogue antagonists, RX801080 and the newly defined KU14R, providing the first evidence that imidazoline-mediated actions of CDS can be blocked by specific imidazoline antagonists.The effects of CDS on insulin secretion were unaffected when the method of preparation involved centri-filtration through a 3,000 Da cut-off membrane or when the extract was treated with protease. These results confirm that the active principle is of low molecular weight and is not a peptide.Overall, the data suggest that CDS behaves as a potent endogenous insulin secretagogue acting at the islet imidazoline receptor. PMID:9138700

  8. In vivo imaging of transplanted islets with 64Cu-DO3A-VS-Cys40-Exendin-4 by targeting GLP-1 receptor.

    PubMed

    Wu, Zhanhong; Todorov, Ivan; Li, Lin; Bading, James R; Li, Zibo; Nair, Indu; Ishiyama, Kohei; Colcher, David; Conti, Peter E; Fraser, Scott E; Shively, John E; Kandeel, Fouad

    2011-08-17

    Glucagon-like peptide 1 receptor (GLP-1R) is highly expressed in pancreatic islets, especially on β-cells. Therefore, a properly labeled ligand that binds to GLP-1R could be used for in vivo pancreatic islet imaging. Because native GLP-1 is degraded rapidly by dipeptidyl peptidase-IV (DPP-IV), a more stable agonist of GLP-1 such as Exendin-4 is a preferred imaging agent. In this study, DO3A-VS-Cys(40)-Exendin-4 was prepared through the conjugation of DO3A-VS with Cys(40)-Exendin-4. The in vitro binding affinity of DO3A-VS-Cys(40)-Exendin-4 was evaluated in INS-1 cells, which overexpress GLP-1R. After (64)Cu labeling, biodistribution studies and microPET imaging of (64)Cu-DO3A-VS-Cys(40)-Exendin-4 were performed on both subcutaneous INS-1 tumors and islet transplantation models. The subcutaneous INS-1 tumor was clearly visualized with microPET imaging after the injection of (64)Cu-DO3A-VS-Cys(40)-Exendin-4. GLP-1R positive organs, such as pancreas and lung, showed high uptake. Tumor uptake was saturable, reduced dramatically by a 20-fold excess of unlabeled Exendin-4. In the intraportal islet transplantation models, (64)Cu-DO3A-VS-Cys(40)-Exendin-4 demonstrated almost two times higher uptake compared with normal mice. (64)Cu-DO3A-VS-Cys(40)-Exendin-4 demonstrated persistent and specific uptake in the mouse pancreas, the subcutaneous insulinoma mouse model, and the intraportal human islet transplantation mouse model. This novel PET probe may be suitable for in vivo pancreatic islets imaging in the human.

  9. Regulation of the pro-inflammatory cytokine osteopontin by GIP in adipocytes - A role for the transcription factor NFAT and phosphodiesterase 3B

    SciTech Connect

    Omar, Bilal; Banke, Elin; Guirguis, Emilia; Aakesson, Lina; Manganiello, Vincent; Lyssenko, Valeriya; Groop, Leif; Gomez, Maria F.; Degerman, Eva

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. Black-Right-Pointing-Pointer GIP-induced osteopontin expression is NFAT-dependent. Black-Right-Pointing-Pointer Osteopontin expression is PDE3-dependent. Black-Right-Pointing-Pointer Osteopontin expression is increased in PDE3B KO mice. -- Abstract: The incretin - glucose-dependent insulinotropic polypeptide (GIP) - and the pro-inflammatory cytokine osteopontin are known to have important roles in the regulation of adipose tissue functions. In this work we show that GIP stimulates lipogenesis and osteopontin expression in primary adipocytes. The GIP-induced increase in osteopontin expression was inhibited by the NFAT (the transcription factor nuclear factor of activated T-cells) inhibitor A-285222. Also, the NFAT kinase glycogen synthase kinase (GSK) 3 was upregulated by GIP. To test whether cAMP might be involved in GIP-mediated effects on osteopontin a number of strategies were used. Thus, the {beta}3-adrenergic receptor agonist CL316,243 stimulated osteopontin expression, an effects which was mimicked by OPC3911, a specific inhibitor of phosphodiesterase 3. Furthermore, treatment of phosphodiesterase 3B knock-out mice with CL316,243 resulted in a dramatic upregulation of osteopontin in adipose tissue which was not the case in wild-type mice. In summary, we delineate mechanisms by which GIP stimulates osteopontin in adipocytes. Given the established link between osteopontin and insulin resistance, our data suggest that GIP by stimulating osteopontin expression, also could promote insulin resistance in adipocytes.

  10. Pancreatic islet hormone response to oral glucose in morbidly obese patients.

    PubMed Central

    Sirinek, K R; O'Dorisio, T M; Howe, B; McFee, A S

    1985-01-01

    Pancreatic islet peptides, as well as other gastrointestinal hormones, have been implicated in both the pathogenesis of obesity and the etiology of associated metabolic derangements. This study evaluated the pancreatic islet and gastrointestinal (GI) hormone response to oral glucose in 20 morbidly obese (151% above ideal body weight) patients. Glucose intolerance, hyperinsulinism, and exaggerated gastric inhibitory polypeptide (GIP) release occurred following glucose ingestion. Significant release of PP occurred in 14 patients, while only six patients had release of somatostatin. No significant changes in plasma concentrations of glucagon occurred. Since GIP is insulinotropic in the presence of hyperglycemia, the hyperinsulinism of morbid obesity may be secondary to the abnormally high glucose-stimulated GIP levels in these patients. Failure of glucagon suppression in response to oral glucose many contribute to the hyperglycemia noted. Somatostatin and pancreatic polypeptide may be responsible for some of the metabolic derangements of morbid obesity. PMID:2860876

  11. Expression of Receptors for Tetanus Toxin and Monoclonal Antibody A2B5 by Pancreatic Islet Cells

    NASA Astrophysics Data System (ADS)

    Eisenbarth, G. S.; Shimizu, K.; Bowring, M. A.; Wells, S.

    1982-08-01

    Studies of the reaction of antibody A2B5 and tetanus toxin with pancreatic islet cells, islet cell tumors, and other human amine precursor uptake and decarboxylation (APUD) tumors are described. By indirect immunofluorescence, antibody A2B5 and tetanus toxin were shown to specifically bind to the plasma membrane of human, rat, chicken, and mouse islet cells. The binding of antibody A2B5 to the cell surface of living islet cells has allowed isolation of these cells from a suspension of pancreatic cells by using a fluorescence-activated cell sorter. In studies designed to determine whether tetanus toxin and antibody A2B5 bound to the same surface antigen, A2B5 and tetanus toxin did not compete for binding to normal islet cells, a human islet cell tumor, or a rat islet cell tumor. In addition to binding to islet cell tumors, antibody A2B5 reacts with frozen sections, isolated cells, and cell lines of neural, neural crest, and APUD origin.

  12. Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets.

    PubMed

    Sordi, Valeria; Malosio, Maria Luisa; Marchesi, Federica; Mercalli, Alessia; Melzi, Raffaella; Giordano, Tiziana; Belmonte, Nathalie; Ferrari, Giuliana; Leone, Biagio Eugenio; Bertuzzi, Federico; Zerbini, Gianpaolo; Allavena, Paola; Bonifacio, Ezio; Piemonti, Lorenzo

    2005-07-15

    Bone marrow-derived mesenchymal stem cells (BM-MSCs) are stromal cells with the ability to proliferate and differentiate into many tissues. Although they represent powerful tools for several therapeutic settings, mechanisms regulating their migration to peripheral tissues are still unknown. Here, we report chemokine receptor expression on human BM-MSCs and their role in mediating migration to tissues. A minority of BM-MSCs (2% to 25%) expressed a restricted set of chemokine receptors (CXC receptor 4 [CXCR4], CX3C receptor 1 [CX3CR1], CXCR6, CC chemokine receptor 1 [CCR1], CCR7) and, accordingly, showed appreciable chemotactic migration in response to the chemokines CXC ligand 12 (CXCL12), CX3CL1, CXCL16, CC chemokine ligand 3 (CCL3), and CCL19. Using human pancreatic islets as an in vitro model of peripheral tissue, we showed that islet supernatants released factors able to attract BM-MSCs in vitro, and this attraction was principally mediated by CX3CL1 and CXCL12. Moreover, cells with features of BM-MSCs were detected within the pancreatic islets of mice injected with green fluorescent protein (GFP)-positive BM. A population of bona fide MSCs that also expressed CXCR4, CXCR6, CCR1, and CCR7 could be isolated from normal adult human pancreas. This study defines the chemokine receptor repertoire of human BM-MSCs that determines their migratory activity. Modulation of homing capacity may be instrumental for harnessing the therapeutic potential of BM-MSCs. PMID:15784733

  13. Circadian rhythm of gastric inhibitory polypeptide (GIP) in man.

    PubMed

    Salera, M; Giacomoni, P; Pironi, L; Ustra, C; Capelli, M; Giorgi, A; Miglioli, M; Barbara, L

    1983-01-01

    The diurnal variations of serum gastric inhibitory polypeptide (GIP), serum insulin, plasma glucagon, plasma glucose and serum triglycerides were studied for 24 hr in 6 healthy young men, consuming three meals and performing their usual physical activities. Serum GIP levels peaked after each meal and stayed significantly elevated from the peak after lunch till late night. Glucose and insulin showed early and short-lasting postprandial peaks, declining thereafter to basal values within a short time. Plasma glucagon was inhibited by the meal ingestion and fluctuated around the basal levels in the interdigestive periods. On the other hand, serum triglycerides tended to parallel GIP changes for most of the day, being significantly elevated starting from lunch consumption to late night. The present results suggest that GIP may have effects other than the insulinogenic one, being probably involved in the control of lipid metabolism.

  14. GIP-dependent adrenal Cushing's syndrome with incomplete suppression of ACTH.

    PubMed

    Croughs, R J; Zelissen, P M; van Vroonhoven, T J; Hofland, L J; N'Diaye, N; Lacroix, A; de Herder, W W

    2000-02-01

    ACTH-independent Cushing's syndrome may be due to the development of ectopic hormone receptors in adrenal tissue. Thus, in food-dependent Cushing's syndrome the adrenals aberrantly express receptors for gastric inhibitory polypeptide (GIP). We present the case of a 60-year-old woman with food-dependent Cushing's syndrome whose cortisol levels increased after stimulation with CRH. In this patient with Cushing's syndrome the finding of low basal plasma cortisol levels in the late night and early morning as well as a paradoxical rise of plasma cortisol during a 7-h infusion with dexamethasone (carried out without any restriction in food intake), suggested that cortisol production was stimulated at times of food intake. Hourly measurements of plasma cortisol for 48 h revealed prominent meal-related peaks. A plasma cortisol response, elicited by oral glucose administration, could be prevented by octreotide. Plasma ACTH was low or undetectable. CRH administration was followed by a ACTH response from 3 to 16 ng/l and a plasma cortisol response from 230 to 680 nmol/l. Octreotide treatment for nearly five months induced a partial clinical and biochemical remission. Total bilateral adrenalectomy was performed. The left adrenal was grossly enlarged (7 x 5.5 x 4 cm) and the right adrenal was slightly enlarged (6 x 4 x 1.8 cm). Microscopy revealed bilateral nodular hyperplasia. Cell suspensions of adrenal tissue from the patient did respond in a dose-dependent fashion to stimulation with GIP and were very sensitive to stimulation with synthetic ACTH1-24. However, CRH had no significant effect on cortisol production in vitro. Using RT-PCR amplification and cDNA hybridization, GIP receptor was found to be overexpressed in the left and right adrenal tissues from this patient as compared to adrenal tissues from a normal individual or from non GIP-dependent adrenal Cushing's syndrome. There was no evidence of presence of adrenal CRH receptors. Thus, in this patient with food

  15. Redox Signal-mediated Enhancement of the Temperature Sensitivity of Transient Receptor Potential Melastatin 2 (TRPM2) Elevates Glucose-induced Insulin Secretion from Pancreatic Islets.

    PubMed

    Kashio, Makiko; Tominaga, Makoto

    2015-05-01

    Transient receptor potential melastatin 2 (TRPM2) is a thermosensitive Ca(2+)-permeable cation channel expressed by pancreatic β cells where channel function is constantly affected by body temperature. We focused on the physiological functions of redox signal-mediated TRPM2 activity at body temperature. H2O2, an important molecule in redox signaling, reduced the temperature threshold for TRPM2 activation in pancreatic β cells of WT mice but not in TRPM2KO cells. TRPM2-mediated [Ca(2+)]i increases were likely caused by Ca(2+) influx through the plasma membrane because the responses were abolished in the absence of extracellular Ca(2+). In addition, TRPM2 activation downstream from the redox signal plus glucose stimulation enhanced glucose-induced insulin secretion. H2O2 application at 37 °C induced [Ca(2+)]i increases not only in WT but also in TRPM2KO β cells. This was likely due to the effect of H2O2 on KATP channel activity. However, the N-acetylcysteine-sensitive fraction of insulin secretion by WT islets was increased by temperature elevation, and this temperature-dependent enhancement was diminished significantly in TRPM2KO islets. These data suggest that endogenous redox signals in pancreatic β cells elevate insulin secretion via TRPM2 sensitization and activity at body temperature. The results in this study could provide new therapeutic approaches for the regulation of diabetic conditions by focusing on the physiological function of TRPM2 and redox signals.

  16. Nkx6.1 regulates islet β-cell proliferation via Nr4a1 and Nr4a3 nuclear receptors.

    PubMed

    Tessem, Jeffery S; Moss, Larry G; Chao, Lily C; Arlotto, Michelle; Lu, Danhong; Jensen, Mette V; Stephens, Samuel B; Tontonoz, Peter; Hohmeier, Hans E; Newgard, Christopher B

    2014-04-01

    Loss of functional β-cell mass is a hallmark of type 1 and type 2 diabetes, and methods for restoring these cells are needed. We have previously reported that overexpression of the homeodomain transcription factor NK6 homeobox 1 (Nkx6.1) in rat pancreatic islets induces β-cell proliferation and enhances glucose-stimulated insulin secretion, but the pathway by which Nkx6.1 activates β-cell expansion has not been defined. Here, we demonstrate that Nkx6.1 induces expression of the nuclear receptor subfamily 4, group A, members 1 and 3 (Nr4a1 and Nr4a3) orphan nuclear receptors, and that these factors are both necessary and sufficient for Nkx6.1-mediated β-cell proliferation. Consistent with this finding, global knockout of Nr4a1 results in a decrease in β-cell area in neonatal and young mice. Overexpression of Nkx6.1 and the Nr4a receptors results in increased expression of key cell cycle inducers E2F transcription factor 1 and cyclin E1. Furthermore, Nkx6.1 and Nr4a receptors induce components of the anaphase-promoting complex, including ubiquitin-conjugating enzyme E2C, resulting in degradation of the cell cycle inhibitor p21. These studies identify a unique bipartite pathway for activation of β-cell proliferation, suggesting several unique targets for expansion of functional β-cell mass.

  17. A new stable GIP-Oxyntomodulin hybrid peptide improved bone strength both at the organ and tissue levels in genetically-inherited type 2 diabetes mellitus.

    PubMed

    Mansur, Sity Aishah; Mieczkowska, Aleksandra; Flatt, Peter R; Bouvard, Beatrice; Chappard, Daniel; Irwin, Nigel; Mabilleau, Guillaume

    2016-06-01

    Obesity and type 2 diabetes mellitus (T2DM) progress worldwide with detrimental effects on several physiological systems including bone tissue mainly by affecting bone quality. Several gut hormones analogues have been proven potent in ameliorating bone quality. In the present study, we used the leptin receptor-deficient db/db mice as a model of obesity and severe T2DM to assess the extent of bone quality alterations at the organ and tissue levels. We also examined the beneficial effects of gut hormone therapy in this model by using a new triple agonist ([d-Ala(2)]GIP-Oxm) active at the GIP, GLP-1 and glucagon receptors. As expected, db/db mice presented with dramatic alterations of bone strength at the organ level associated with deterioration of trabecular and cortical microarchitectures and an augmentation in osteoclast numbers. At the tissue level, these animals presented also with alterations of bone strength (reduced hardness, indentation modulus and dissipated energy) with modifications of tissue mineral distribution, collagen glycation and collagen maturity. The use of [d-Ala(2)]GIP-Oxm considerably improved bone strength at the organ level with modest effects on trabecular microarchitecture. At the tissue level, [d-Ala(2)]GIP-Oxm ameliorated bone strength reductions with positive effects on collagen glycation and collagen maturity. This study provides support for including gut hormone analogues as possible new therapeutic strategies for improving bone quality in bone complications associated to T2DM. PMID:27062994

  18. High-Fat Diet During Mouse Pregnancy and Lactation Targets GIP-Regulated Metabolic Pathways in Adult Male Offspring.

    PubMed

    Kruse, Michael; Keyhani-Nejad, Farnaz; Isken, Frank; Nitz, Barbara; Kretschmer, Anja; Reischl, Eva; de las Heras Gala, Tonia; Osterhoff, Martin A; Grallert, Harald; Pfeiffer, Andreas F H

    2016-03-01

    Maternal obesity is a worldwide problem associated with increased risk of metabolic diseases in the offspring. Genetic deletion of the gastric inhibitory polypeptide (GIP) receptor (GIPR) prevents high-fat diet (HFD)-induced obesity in mice due to specific changes in energy and fat cell metabolism. We investigated whether GIP-associated pathways may be targeted by fetal programming and mimicked the situation by exposing pregnant mice to control or HFD during pregnancy (intrauterine [IU]) and lactation (L). Male wild-type (WT) and Gipr(-/-) offspring received control chow until 25 weeks of age followed by 20 weeks of HFD. Gipr(-/-) offspring of mice exposed to HFD during IU/L became insulin resistant and obese and exhibited increased adipose tissue inflammation and decreased peripheral tissue substrate utilization after being reintroduced to HFD, similar to WT mice on regular chow during IU/L. They showed decreased hypothalamic insulin sensitivity compared with Gipr(-/-) mice on control diet during IU/L. DNA methylation analysis revealed increased methylation of CpG dinucleotides and differential transcription factor binding of promoter regions of genes involved in lipid oxidation in the muscle of Gipr(-/-) offspring on HFD during IU/L, which were inversely correlated with gene expression levels. Our data identify GIP-regulated metabolic pathways that are targeted by fetal programming.

  19. Islet Culture/Preservation Before Islet Transplantation.

    PubMed

    Noguchi, Hirofumi; Miyagi-Shiohira, Chika; Kurima, Kiyoto; Kobayashi, Naoya; Saitoh, Issei; Watanabe, Masami; Noguchi, Yasufumi; Matsushita, Masayuki

    2015-12-17

    Although islet culture prior to transplantation provides flexibility for the evaluation of isolated islets and the pretreatment of patients, it is well known that isolated islets deteriorate rapidly in culture. Human serum albumin (HSA) is used for medium supplementation instead of fetal bovine serum (FBS), which is typically used for islet culture research, to avoid the introduction of xenogeneic materials. However, FBS contains several factors that are beneficial to islet viability and which also neutralize the endogenous pancreatic enzymes or exogenous enzymes left over from the isolation process. Several groups have reported the comparison of cultures at 22°C and 37°C. Recent studies have demonstrated the superiority of 4°C preservation to 22°C and 37°C cultures. We herein review the current research on islet culture/preservation for clinical islet transplantation. PMID:26858905

  20. Glucose-dependent insulinotropic polypeptide (GIP) dose-dependently reduces osteoclast differentiation and resorption.

    PubMed

    Mabilleau, Guillaume; Perrot, Rodolphe; Mieczkowska, Aleksandra; Boni, Sébastien; Flatt, Peter R; Irwin, Nigel; Chappard, Daniel

    2016-10-01

    A role for glucose-dependent insulinotropic polypeptide (GIP) in controlling bone resorption has been suspected. However uncertainty remains to identify whether GIP act directly on osteoclasts. The aim of the present study were (i) to identify in different osteoclast differentiation models (human peripheral blood mononuclear cells-PBMC, murine bone marrow macrophage-BMM and murine Raw 264.7 cells) whether GIP was capable of reducing osteoclast formation and resorption; (ii) ascertain whether the highly potent GIP analogue N-AcGIP was capable of inducing a response at lower concentrations and (iii) to decipher the molecular mechanisms responsible for such effects. [d-Ala(2)]-GIP dose-dependently reduced osteoclast formation at concentration as low as 1nM in human PBMC and 10nM in murine BMM cultures. Furthermore, [d-Ala(2)]-GIP also reduced the extent of osteoclast resorption at concentration as low as 1nM in human PBMC and murine BMM cultures. The mechanism of action of [d-Ala(2)]-GIP appeared to be mediated by reduction in intracellular calcium concentration and oscillation that subsequently inhibited calcineurin activity and NFATc1 nuclear translocation. The potency of the highly potent N-AcGIP was determined and highlighted an effect on osteoclast formation and resorption at concentration ten times lower than observed with [d-Ala(2)]-GIP in vitro. Furthermore, N-AcGIP was also capable of reducing the number of osteoclast in ovariectomized mice as well as the circulating level of type I collagen C-telopeptide. Pharmacological concentrations required for reducing osteoclast formation and resorption provide the impetus to design and exploit enzymatically stable GIP analogues for the treatment of bone resorption disorders in humans. PMID:27451082

  1. The Langerhans islet cells of female rabbits are differentially affected by hypothyroidism depending on the islet size.

    PubMed

    Rodríguez-Castelán, J; Nicolás, L; Morimoto, S; Cuevas, E

    2015-04-01

    Effects of hypothyroidism on the glucose and insulin levels are controversial, and its impact on the Langerhans islet morphology of adult subjects has been poorly addressed. In spite of hypothyroidism and diabetes mellitus are more frequent in females than in males, most studies using animal models have been done in males. The effect of hypothyroidism on the immunolabeling of thyroid hormone receptors (TRs) and thyrotropin receptor (TSHR) of islet cells is unknown. The aim of this study was to determine the effect of hypothyroidism on the glucose and insulin concentrations, morphometry of islets, and immunostaining of TRs α1-2 and β1 and TSHR of islet cells in female rabbits. Control and hypothyroid (0.02% of methimazole for 30 days) animals were used to quantify blood levels of glucose and insulin, density of islets, cross-sectional area (CSA) of islets, number of cells per islet, cell proliferation, and the immunolabeling of TRs α1-2, TRβ1, and TSHR. Student's t or Mann-Whitney-U tests, two-way ANOVAs, and Fischer's tests were applied. Concentrations of glucose and insulin, as well as the insulin resistance were similar between groups. Hypothyroidism did not affect the density or the CSA of islets. The analysis of islets by size showed that hypothyroidism reduced the cell number in large and medium islets, but not in small ones. In small islets, cell proliferation was increased. The immunoreactivity of TRα1-2, TRβ1, and TSHR was increased by hypothyroidism in all islet sizes. Our results show that hypothyroidism affects differentially the islet cells depending on the size of islets.

  2. Localization of glucose-dependent insulinotropic polypeptide (GIP) to a gene cluster on chromosome 17q

    SciTech Connect

    Lewis, T.B.; Saenz, M.; O'Connell, P.; Leach, R.J. )

    1994-02-01

    Glucose-dependent insulinotropic polypeptide (GIP) has been regionally localized to a gene cluster on human chromosome 17q. Genetic mapping through CEPH reference families demonstrated that GIP was tightly linked to NME1 and PPY and fully linked to HOXB6 and NGFR. High-resolution radiation hybrid mapping resolved the gene order as cen-PPY-HOXB6-NGFR-GIP-NME1-tel. GIP maps distal to NGFR with an estimated distance of 250 kb. 12 refs., 1 fig., 1 fig.

  3. Dual elimination of the glucagon and GLP-1 receptors in mice reveals plasticity in the incretin axis.

    PubMed

    Ali, Safina; Lamont, Benjamin J; Charron, Maureen J; Drucker, Daniel J

    2011-05-01

    Disordered glucagon secretion contributes to the symptoms of diabetes, and reduced glucagon action is known to improve glucose homeostasis. In mice, genetic deletion of the glucagon receptor (Gcgr) results in increased levels of the insulinotropic hormone glucagon-like peptide 1 (GLP-1), which may contribute to the alterations in glucose homeostasis observed in Gcgr-/- mice. Here, we assessed the contribution of GLP-1 receptor (GLP-1R) signaling to the phenotype of Gcgr-/- mice by generating Gcgr-/-Glp1r-/- mice. Although insulin sensitivity was similar in all genotypes, fasting glucose was increased in Gcgr-/-Glp1r-/- mice. Elimination of the Glp1r normalized gastric emptying and impaired intraperitoneal glucose tolerance in Gcgr-/- mice. Unexpectedly, deletion of Glp1r in Gcgr-/- mice did not alter the improved oral glucose tolerance and increased insulin secretion characteristic of that genotype. Although Gcgr-/-Glp1r-/- islets exhibited increased sensitivity to the incretin glucose-dependent insulinotropic polypeptide (GIP), mice lacking both Glp1r and the GIP receptor (Gipr) maintained preservation of the enteroinsular axis following reduction of Gcgr signaling. Moreover, Gcgr-/-Glp1r-/- islets expressed increased levels of the cholecystokinin A receptor (Cckar) and G protein-coupled receptor 119 (Gpr119) mRNA transcripts, and Gcgr-/-Glp1r-/- mice exhibited increased sensitivity to exogenous CCK and the GPR119 agonist AR231453. Our data reveal extensive functional plasticity in the enteroinsular axis via induction of compensatory mechanisms that control nutrient-dependent regulation of insulin secretion. PMID:21540554

  4. Islet Cell Transplantation

    MedlinePlus

    ... the body use glucose for energy. Islet cell transplantation transfers cells from an organ donor into the ... to make and release insulin. Researchers hope islet transplantation will help people with type 1 diabetes live ...

  5. Clinical Islet Isolation.

    PubMed

    Hawthorne, Wayne J; Williams, Lindy; Chew, Yi Vee

    2016-01-01

    The overarching success of islet transplantation relies on the success in the laboratory to isolate the islets. This chapter focuses on the processes of human islet cell isolation and the ways to optimally provide islet cells for transplantation. The major improvements in regards to the choice of enzyme type, way the digested pancreas tissue is handled to best separate islets from the acinar and surrounding tissues, the various methods of purification of the islets, their subsequent culture and quality assurance to improve outcomes to culminate in safe and effective islet transplantation will be discussed. After decades of improvements, islet cell isolation and transplantation now clearly offer a safe, effective and feasible therapeutic treatment option for an increasing number of patients suffering from type 1 diabetes specifically for those with severe hypoglycaemic unawareness. PMID:27586424

  6. Pancreatic Islet Transplantation

    MedlinePlus

    ... allo-transplantation?" For each pancreatic islet allo-transplant infusion, researchers use specialized enzymes to remove islets from ... in a lab. Transplant patients typically receive two infusions with an average of 400,000 to 500, ...

  7. Carbonyl stress-induced 5-hydroxytriptamine secretion from RIN-14B, rat pancreatic islet tumor cells, via the activation of transient receptor potential ankyrin 1.

    PubMed

    Suzawa, Sayaka; Takahashi, Kenji; Shimada, Takahisa; Ohta, Toshio

    2016-07-01

    Methylglyoxal (MG), a highly reactive dicarbonyl substance, is known as an endogenous carbonyl stress-inducing substance related to various disease states. Irritable bowel syndrome (IBS) is one of the most frequently encountered gastrointestinal disorders and MG is considered to be its causal substance. An increased serum 5-hydroxytryptamine (5-HT) level is related to IBS symptoms and the majority of 5-HT originates from enterochromaffin (EC) cells in the intestine. Here we examine the mechanisms of MG-induced 5-HT secretion using RIN-14B cells derived from a rat pancreatic islet tumor since these cells are used as a model for EC cells. MG increased the intracellular Ca(2+) concentration ([Ca(2+)]i) and 5-HT secretion, both of which were inhibited by the removal of extracellular Ca(2+) and specific transient receptor potential ankyrin 1 (TRPA1) antagonists. MG elicited an inward current under voltage-clamped conditions. Prior application of MG evoked reciprocal suppression of subsequent [Ca(2+)]i responses to allylisothiocyanate, a TRPA1 agonist, and vice versa. Glyoxal, an analog of MG, also evoked [Ca(2+)]i and secretory responses but its potency was much lower than that of MG. The present results suggest that MG promotes 5-HT secretion through the activation of TRPA1 in RIN-14B cells. These results may indicate that TRPA1 is a promising target for the treatment of IBS and that the RIN-14B cell line is a useful model for investigation of IBS. PMID:27423812

  8. GIP2, a Putative Transcription Factor That Regulates the Aurofusarin Biosynthetic Gene Cluster in Gibberella zeae

    PubMed Central

    Kim, Jung-Eun; Jin, Jianming; Kim, Hun; Kim, Jin-Cheol; Yun, Sung-Hwan; Lee, Yin-Won

    2006-01-01

    Gibberella zeae (anamorph: Fusarium graminearum) is an important pathogen of maize, wheat, and rice. Colonies of G. zeae produce yellow-to-tan mycelia with the white-to-carmine red margins. In this study, we focused on nine putative open reading frames (ORFs) closely linked to PKS12 and GIP1, which are required for aurofusarin biosynthesis in G. zeae. Among them is an ORF designated GIP2 (for Gibberella zeae pigment gene 2), which encodes a putative protein of 398 amino acids that carries a Zn(II)2Cys6 binuclear cluster DNA-binding domain commonly found in transcription factors of yeasts and filamentous fungi. Targeted gene deletion and complementation analyses confirmed that GIP2 is required for aurofusarin biosynthesis. Expression of GIP2 in carrot medium correlated with aurofusarin production by G. zeae and was restricted to vegetative mycelia. Inactivation of the 10 contiguous genes in the ΔGIP2 strain delineates an aurofusarin biosynthetic gene cluster. Overexpression of GIP2 in both the ΔGIP2 and the wild-type strains increases aurofusarin production and reduces mycelial growth. Thus, GIP2 is a putative positive regulator of the aurofusarin biosynthetic gene cluster, and aurofusarin production is negatively correlated with vegetative growth by G. zeae. PMID:16461721

  9. Pdx-1 activates islet α- and β-cell proliferation via a mechanism regulated by transient receptor potential cation channels 3 and 6 and extracellular signal-regulated kinases 1 and 2.

    PubMed

    Hayes, Heather L; Moss, Larry G; Schisler, Jonathan C; Haldeman, Jonathan M; Zhang, Zhushan; Rosenberg, Paul B; Newgard, Christopher B; Hohmeier, Hans E

    2013-10-01

    The homeodomain transcription factor Pdx-1 has important roles in pancreatic development and β-cell function and survival. In the present study, we demonstrate that adenovirus-mediated overexpression of Pdx-1 in rat or human islets also stimulates cell replication. Moreover, cooverexpression of Pdx-1 with another homeodomain transcription factor, Nkx6.1, has an additive effect on proliferation compared to either factor alone, implying discrete activating mechanisms. Consistent with this, Nkx6.1 stimulates mainly β-cell proliferation, whereas Pdx-1 stimulates both α- and β-cell proliferation. Furthermore, cyclins D1/D2 are upregulated by Pdx-1 but not by Nkx6.1, and inhibition of cdk4 blocks Pdx-1-stimulated but not Nkx6.1-stimulated islet cell proliferation. Genes regulated by Pdx-1 but not Nkx6.1 were identified by microarray analysis. Two members of the transient receptor potential cation (TRPC) channel family, TRPC3 and TRPC6, are upregulated by Pdx-1 overexpression, and small interfering RNA (siRNA)-mediated knockdown of TRPC3/6 or TRPC6 alone inhibits Pdx-1-induced but not Nkx6.1-induced islet cell proliferation. Pdx-1 also stimulates extracellular signal-regulated kinase 1 and 2 (ERK1/2) phosphorylation, an effect partially blocked by knockdown of TRPC3/6, and blockade of ERK1/2 activation with a MEK1/2 inhibitor partially impairs Pdx-1-stimulated proliferation. These studies define a pathway by which overexpression of Pdx-1 activates islet cell proliferation that is distinct from and additive to a pathway activated by Nkx6.1.

  10. Transcriptional Regulation of the Pancreatic Islet: Implications for Islet Function

    PubMed Central

    Stitzel, Michael L.; Kycia, Ina; Kursawe, Romy; Ucar, Duygu

    2015-01-01

    Islets of Langerhans contain multiple hormone-producing endocrine cells controlling glucose homeostasis. Transcription establishes and maintains islet cellular fates and identities. Genetic and environmental disruption of islet transcription triggers cellular dysfunction and disease. Early transcriptional regulation studies of specific islet genes, including insulin (INS) and the transcription factor PDX1, identified the first cis-regulatory DNA sequences and trans-acting factors governing islet function. Here, we review how human islet “omics” studies are reshaping our understanding of transcriptional regulation in islet (dys)function and diabetes. First, we highlight the expansion of islet transcript number, form, and function and of DNA transcriptional regulatory elements controlling their production. Next, we cover islet transcriptional effects of genetic and environmental perturbation. Finally, we discuss how these studies’ emerging insights should empower our diabetes research community to build mechanistic understanding of diabetes pathophysiology and to equip clinicians with tailored, precision medicine options to prevent and treat islet dysfunction and diabetes. PMID:26272056

  11. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology

    PubMed Central

    Akter, Rehana; Cao, Ping; Noor, Harris; Ridgway, Zachary; Tu, Ling-Hsien; Wang, Hui; Wong, Amy G.; Zhang, Xiaoxue; Abedini, Andisheh; Schmidt, Ann Marie; Raleigh, Daniel P.

    2016-01-01

    The hormone islet amyloid polypeptide (IAPP, or amylin) plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy. PMID:26649319

  12. Islet cell transplantation.

    PubMed

    Srinivasan, P; Huang, G C; Amiel, S A; Heaton, N D

    2007-04-01

    People with type 1 diabetes have normal exocrine pancreatic function, making islet cell rather than whole organ transplantation an attractive option. Achieving insulin independence in type 1 diabetes was the perceived goal of islet cell transplantation. The success of the Edmonton group in achieving this in a selected group of type 1 patients has led to renewed optimism that this treatment could eventually replace whole organ pancreas transplantation. However the long-term results of this treatment indicate that insulin independence is lost with time in a significant proportion of patients, although they may retain glycaemic stability. In this context, the indications for islet cell transplantation, which have evolved over the last 5 years, indicate that the patients who benefit most are those who experience severe hypoglycaemic reactions despite optimal insulin therapy. This review will summarise the history of islet cell transplantation, islet isolation techniques, the transplant procedure, immunosuppressive therapy, indications for islet cell transplantation, current clinical trials, the early UK islet cell transplant experience using the Edmonton protocol, and some of the challenges that lie ahead. PMID:17403947

  13. Anti-apoptotic Effects of Bone Marrow on Human Islets: A Preliminary Report

    PubMed Central

    Luo, Lu-Guang; Luo, John ZQ

    2015-01-01

    Apoptosis is one of the major factors contributing to the failure of human islet transplantation. Contributors to islet apoptosis exist in both the pre-transplantation and post transplantation stages. Factors include the islet isolation process, deterioration in vitro prior to transplantation, and immune rejection post transplantation. Previous studies have demonstrated that co-cultured bone marrow cells with human islets not only significantly enhanced the longevity of human islets but also maintained function. We hypothesized that the protective effects of bone marrow cells on human islets are through mechanisms related to preventing apoptosis. This study observed the levels of inflammatory factors such as interleukin-1β (IL-1β), the release of extracellular ATP in vitro, and expression levels of P2X7 ATP receptor (P2X7R), all of which lead to the occurrence of apoptosis in human islets. When human islets were co-cultured with human bone marrow, there was a reduction in the rate of apoptosis correlated with the reduction in inflammatory factors, extra cellular ATP accumulation, and ATP receptor P2X7R expression versus human islets cultured alone. These results suggest that co-culturing bone marrow cells with human islets inhibits inflammation and reduces apoptosis, thus protecting islets from self-deterioration. PMID:26229735

  14. The GIP gamma-tubulin complex-associated proteins are involved in nuclear architecture in Arabidopsis thaliana

    PubMed Central

    Batzenschlager, Morgane; Masoud, Kinda; Janski, Natacha; Houlné, Guy; Herzog, Etienne; Evrard, Jean-Luc; Baumberger, Nicolas; Erhardt, Mathieu; Nominé, Yves; Kieffer, Bruno; Schmit, Anne-Catherine; Chabouté, Marie-Edith

    2013-01-01

    During interphase, the microtubular cytoskeleton of cycling plant cells is organized in both cortical and perinuclear arrays. Perinuclear microtubules (MTs) are nucleated from γ-Tubulin Complexes (γ-TuCs) located at the surface of the nucleus. The molecular mechanisms of γ-TuC association to the nuclear envelope (NE) are currently unknown. The γ-TuC Protein 3 (GCP3)-Interacting Protein 1 (GIP1) is the smallest γ-TuC component identified so far. AtGIP1 and its homologous protein AtGIP2 participate in the localization of active γ-TuCs at interphasic and mitotic MT nucleation sites. Arabidopsis gip1gip2 mutants are impaired in establishing a fully functional mitotic spindle and exhibit severe developmental defects. In this study, gip1gip2 knock down mutants were further characterized at the cellular level. In addition to defects in both the localization of γ-TuC core proteins and MT fiber robustness, gip1gip2 mutants exhibited a severe alteration of the nuclear shape associated with an abnormal distribution of the nuclear pore complexes. Simultaneously, they showed a misorganization of the inner nuclear membrane protein AtSUN1. Furthermore, AtGIP1 was identified as an interacting partner of AtTSA1 which was detected, like the AtGIP proteins, at the NE. These results provide the first evidence for the involvement of a γ-TuC component in both nuclear shaping and NE organization. Functional hypotheses are discussed in order to propose a model for a GIP-dependent nucleo-cytoplasmic continuum. PMID:24348487

  15. Interleukin-1 signaling contributes to acute islet compensation

    PubMed Central

    Hajmrle, Catherine; Smith, Nancy; Spigelman, Aliya F.; Dai, Xiaoqing; Senior, Laura; Bautista, Austin; MacDonald, Patrick E.

    2016-01-01

    IL-1β is a well-established inducer of both insulin resistance and impaired pancreatic islet function. Despite this, findings examining IL-1 receptor deficiency or antagonism in in vivo animal models, as well as in clinical studies of type 2 diabetic (T2D) patients, have led to conflicting results, suggesting that the actions of IL-1β on glycemic control may be pleiotropic in nature. In the present work, we find that the ability of IL-1β to amplify glucose-stimulated insulin secretion from human islets correlates with donor BMI. Islets from obese donors are sensitized to the insulinotropic effects of this cytokine, whereas the stimulatory effects of IL-1β are lost in islets from obese T2D patients, suggesting a role for IL-1 signaling in islet compensation. Indeed, mice deficient in IL-1 receptor type I become glucose intolerant more rapidly than their WT littermates and have impaired secretory responses during the acute stages of inflammatory and metabolic stress induced by LPS and high-fat diet, respectively. IL-1β directly enhances β cell insulin secretion by increasing granule docking and soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) complex formation at the plasma membrane. Together, our study highlights the importance of IL-1β signaling in islet compensation to metabolic and inflammatory stress.

  16. Interleukin-1 signaling contributes to acute islet compensation

    PubMed Central

    Hajmrle, Catherine; Smith, Nancy; Spigelman, Aliya F.; Dai, Xiaoqing; Senior, Laura; Bautista, Austin; MacDonald, Patrick E.

    2016-01-01

    IL-1β is a well-established inducer of both insulin resistance and impaired pancreatic islet function. Despite this, findings examining IL-1 receptor deficiency or antagonism in in vivo animal models, as well as in clinical studies of type 2 diabetic (T2D) patients, have led to conflicting results, suggesting that the actions of IL-1β on glycemic control may be pleiotropic in nature. In the present work, we find that the ability of IL-1β to amplify glucose-stimulated insulin secretion from human islets correlates with donor BMI. Islets from obese donors are sensitized to the insulinotropic effects of this cytokine, whereas the stimulatory effects of IL-1β are lost in islets from obese T2D patients, suggesting a role for IL-1 signaling in islet compensation. Indeed, mice deficient in IL-1 receptor type I become glucose intolerant more rapidly than their WT littermates and have impaired secretory responses during the acute stages of inflammatory and metabolic stress induced by LPS and high-fat diet, respectively. IL-1β directly enhances β cell insulin secretion by increasing granule docking and soluble N-ethylmaleimide-sensitive factor attachment receptor (SNARE) complex formation at the plasma membrane. Together, our study highlights the importance of IL-1β signaling in islet compensation to metabolic and inflammatory stress. PMID:27699257

  17. Remodelling sympathetic innervation in rat pancreatic islets ontogeny

    PubMed Central

    Cabrera-Vásquez, Siraam; Navarro-Tableros, Víctor; Sánchez-Soto, Carmen; Gutiérrez-Ospina, Gabriel; Hiriart, Marcia

    2009-01-01

    Background Pancreatic islets are not fully developed at birth and it is not clear how they are vascularised and innervated. Nerve Growth Factor (NGF) is required to guide sympathetic neurons that innervate peripheral organs and also in cardiovascular system and ovary angiogenesis. Pancreatic beta cells of a transgenic mouse that over-expressed NGF in attracts sympathetic hyper-innervation towards them. Moreover, we have previously demonstrated that adult beta cells synthesize and secrete NGF; however, we do not know how is NGF secreted during development, nor if it might be trophic for sympathetic innervation and survival in the pancreas. We analyzed sympathetic innervation and vasculature development in rat pancreatic islets at different developmental stages; foetal (F19), early postnatal (P1), weaning period (P20) and adults. We temporarily correlated these events to NGF secretion by islet cells. Results Sympathetic fibres reached pancreatic islets in the early postnatal period, apparently following blood vessels. The maximal number of sympathetic fibres (TH immunopositive) in the periphery of the islets was observed at P20, and then fibres entered the islets and reached the core where beta cells are mainly located. The number of fibres decreased from that stage to adulthood. At all stages studied, islet cells secreted NGF and also expressed the high affinity receptor TrkA. Foetal and neonatal isolated islet cells secreted more NGF than adults. TrkA receptors were expressed at all stages in pancreatic sympathetic fibres and blood vessels. These last structures were NGF–immunoreactive only at early stages (foetal and P0). Conclusion The results suggest that NGF signalling play an important role in the guidance of blood vessels and sympathetic fibres toward the islets during foetal and neonatal stages and could also preserve innervation at later stages of life. PMID:19534767

  18. Automated separation of merged Langerhans islets

    NASA Astrophysics Data System (ADS)

    Švihlík, Jan; Kybic, Jan; Habart, David

    2016-03-01

    This paper deals with separation of merged Langerhans islets in segmentations in order to evaluate correct histogram of islet diameters. A distribution of islet diameters is useful for determining the feasibility of islet transplantation in diabetes. First, the merged islets at training segmentations are manually separated by medical experts. Based on the single islets, the merged islets are identified and the SVM classifier is trained on both classes (merged/single islets). The testing segmentations were over-segmented using watershed transform and the most probable back merging of islets were found using trained SVM classifier. Finally, the optimized segmentation is compared with ground truth segmentation (correctly separated islets).

  19. Fatty acid-binding protein 5 regulates diet-induced obesity via GIP secretion from enteroendocrine K cells in response to fat ingestion.

    PubMed

    Shibue, Kimitaka; Yamane, Shunsuke; Harada, Norio; Hamasaki, Akihiro; Suzuki, Kazuyo; Joo, Erina; Iwasaki, Kanako; Nasteska, Daniela; Harada, Takanari; Hayashi, Yoshitaka; Adachi, Yasuhiro; Owada, Yuji; Takayanagi, Ryoichi; Inagaki, Nobuya

    2015-04-01

    Gastric inhibitory polypeptide (GIP) is an incretin released from enteroendocrine K cells in response to nutrient intake, especially fat. GIP is one of the contributing factors inducing fat accumulation that results in obesity. A recent study shows that fatty acid-binding protein 5 (FABP5) is expressed in murine K cells and is involved in fat-induced GIP secretion. We investigated the mechanism of fat-induced GIP secretion and the impact of FABP5-related GIP response on diet-induced obesity (DIO). Single oral administration of glucose and fat resulted in a 40% reduction of GIP response to fat but not to glucose in whole body FABP5-knockout (FABP5(-/-)) mice, with no change in K cell count or GIP content in K cells. In an ex vivo experiment using isolated upper small intestine, oleic acid induced only a slight increase in GIP release, which was markedly enhanced by coadministration of bile and oleic acid together with attenuated GIP response in the FABP5(-/-) sample. FABP5(-/-) mice exhibited a 24% reduction in body weight gain and body fat mass under a high-fat diet compared with wild-type (FABP5(+/+)) mice; the difference was not observed between GIP-GFP homozygous knock-in (GIP(gfp/gfp))-FABP5(+/+) mice and GIP(gfp/gfp)-FABP5(-/-) mice, in which GIP is genetically deleted. These results demonstrate that bile efficiently amplifies fat-induced GIP secretion and that FABP5 contributes to the development of DIO in a GIP-dependent manner.

  20. Pancreatic islet plasticity: Interspecies comparison of islet architecture and composition

    PubMed Central

    Steiner, Donald J.; Kim, Abraham; Miller, Kevin; Hara, Manami

    2010-01-01

    The pancreatic islet displays diverse patterns of endocrine cell arrangement. The prototypic islet, with insulin-secreting β-cells forming the core surrounded by other endocrine cells in the periphery, is largely based on studies of normal rodent islets. Recent reports on large animals, including humans, show a difference in islet architecture, in which the endocrine cells are randomly distributed throughout the islet. This particular species difference has raised concerns regarding the interpretation of data based on rodent studies to humans. On the other hand, further variations have been reported in marsupials and some nonhuman primates, which possess an inverted ratio of β-cells to other endocrine cells. This review discusses the striking plasticity of islet architecture and cellular composition among various species including changes in response to metabolic states within a single species. We propose that this plasticity reflects evolutionary acquired adaptation induced by altered physiological conditions, rather than inherent disparities between species. PMID:20657742

  1. Mechanisms of Islet Amyloidosis Toxicity in Type 2 Diabetes

    PubMed Central

    Abedini, Andisheh; Schmidt, Ann Marie

    2014-01-01

    Amyloid formation by the neuropancreatic hormone, islet amyloid polypeptide (IAPP or amylin), one of the most amyloidogenic sequences known, leads to islet amyloidosis in type 2 diabetes and to islet transplant failure. Under normal conditions, IAPP plays a role in the maintenance of energy homeostasis by regulating several metabolic parameters, such as satiety, blood glucose levels, adiposity and body weight. The mechanisms of IAPP amyloid formation, the nature of IAPP toxic species and the cellular pathways that lead to pancreatic β-cell toxicity are not well characterized. Several mechanisms of toxicity, including receptor and non-receptor-mediated events, have been proposed. Analogs of IAPP have been approved for the treatment of diabetes and are under investigation for the treatment of obesity. PMID:23337872

  2. Fetal endocannabinoids orchestrate the organization of pancreatic islet microarchitecture

    PubMed Central

    Malenczyk, Katarzyna; Keimpema, Erik; Piscitelli, Fabiana; Calvigioni, Daniela; Björklund, Peyman; Mackie, Kenneth; Di Marzo, Vincenzo; Hökfelt, Tomas G. M.; Dobrzyn, Agnieszka; Harkany, Tibor

    2015-01-01

    Endocannabinoids are implicated in the control of glucose utilization and energy homeostasis by orchestrating pancreatic hormone release. Moreover, in some cell niches, endocannabinoids regulate cell proliferation, fate determination, and migration. Nevertheless, endocannabinoid contributions to the development of the endocrine pancreas remain unknown. Here, we show that α cells produce the endocannabinoid 2-arachidonoylglycerol (2-AG) in mouse fetuses and human pancreatic islets, which primes the recruitment of β cells by CB1 cannabinoid receptor (CB1R) engagement. Using subtractive pharmacology, we extend these findings to anandamide, a promiscuous endocannabinoid/endovanilloid ligand, which impacts both the determination of islet size by cell proliferation and α/β cell sorting by differential activation of transient receptor potential cation channel subfamily V member 1 (TRPV1) and CB1Rs. Accordingly, genetic disruption of TRPV1 channels increases islet size whereas CB1R knockout augments cellular heterogeneity and favors insulin over glucagon release. Dietary enrichment in ω-3 fatty acids during pregnancy and lactation in mice, which permanently reduces endocannabinoid levels in the offspring, phenocopies CB1R−/− islet microstructure and improves coordinated hormone secretion. Overall, our data mechanistically link endocannabinoids to cell proliferation and sorting during pancreatic islet formation, as well as to life-long programming of hormonal determinants of glucose homeostasis. PMID:26494286

  3. Early sympathetic islet neuropathy in autoimmune diabetes: lessons learned and opportunities for investigation.

    PubMed

    Mundinger, Thomas O; Taborsky, Gerald J

    2016-10-01

    This review outlines the current state of knowledge regarding a unique neural defect of the pancreatic islet in autoimmune diabetes, one that we have termed early sympathetic islet neuropathy (eSIN). We begin with the findings that a majority of islet sympathetic nerves are lost near the onset of type 1, but not type 2, diabetes and that this nerve loss is restricted to the islet. We discuss later work demonstrating that while the loss of islet sympathetic nerves and the loss of islet beta cells in type 1 diabetes both require infiltration of the islet by lymphocytes, their respective mechanisms of tissue destruction differ. Uniquely, eSIN requires the activation of a specific neurotrophin receptor and we propose two possible pathways for activation of this receptor during the immune attack on the islet. We also outline what is known about the functional consequences of eSIN, focusing on impairment of sympathetically mediated glucagon secretion and its application to the clinical problem of insulin-induced hypoglycaemia. Finally, we offer our view on the important remaining questions regarding this unique neural defect.

  4. The CB1 antagonist rimonabant decreases insulin hypersecretion in rat pancreatic islets.

    PubMed

    Getty-Kaushik, Lisa; Richard, Ann-Marie T; Deeney, Jude T; Krawczyk, Sarah; Shirihai, Orian; Corkey, Barbara E

    2009-10-01

    Type 2 diabetes and obesity are characterized by elevated nocturnal circulating free fatty acids, elevated basal insulin secretion, and blunted glucose-stimulated insulin secretion (GSIS). The CB1 receptor antagonist, Rimonabant, has been shown to improve glucose tolerance and insulin sensitivity in vivo but its direct effect on islets has been unclear. Islets from lean littermates and obese Zucker (ZF) and Zucker Diabetic Fatty (ZDF) rats were incubated for 24 h in vitro and exposed to 11 mmol/l glucose and 0.3 mmol/l palmitate (GL) with or without Rimonabant. Insulin secretion was determined at basal (3 mmol/l) or stimulatory (15 mmol/l) glucose concentrations. As expected, basal secretion was significantly elevated in islets from obese or GL-treated lean rats whereas the fold increase in GSIS was diminished. Rimonabant decreased basal hypersecretion in islets from obese rats and GL-treated lean rats without decreasing the fold increase in GSIS. However, it decreased GSIS in islets from lean rats without affecting basal secretion. These findings indicate that Rimonabant has direct effects on islets to reduce insulin secretion when secretion is elevated above normal levels by diet or in obesity. In contrast, it appears to decrease stimulated secretion in islets from lean animals but not in obese or GL-exposed islets. PMID:19644453

  5. Parathyroid hormone-related protein and its receptors: nuclear functions and roles in the renal and cardiovascular systems, the placental trophoblasts and the pancreatic islets

    PubMed Central

    Clemens, Thomas L; Cormier, Sarah; Eichinger, Anne; Endlich, Karlhans; Fiaschi-Taesch, Nathalie; Fischer, Evelyne; Friedman, Peter A; Karaplis, Andrew C; Massfelder, Thierry; Rossert, Jérôme; Schlüter, Klaus-Dieter; Silve, Caroline; Stewart, Andrew F; Takane, Karen; Helwig, Jean-Jacques

    2001-01-01

    The cloning of the so-called ‘parathyroid hormone-related protein' (PTHrP) in 1987 was the result of a long quest for the factor which, by mimicking the actions of PTH in bone and kidney, is responsible for the hypercalcemic paraneoplastic syndrome, humoral calcemia of malignancy. PTHrP is distinct from PTH in a number of ways. First, PTHrP is the product of a separate gene. Second, with the exception of a short N-terminal region, the structure of PTHrP is not closely related to that of PTH. Third, in contrast to PTH, PTHrP is a paracrine factor expressed throughout the body. Finally, most of the functions of PTHrP have nothing in common with those of PTH. PTHrP is a poly-hormone which comprises a family of distinct peptide hormones arising from post-translational endoproteolytic cleavage of the initial PTHrP translation products. Mature N-terminal, mid-region and C-terminal secretory forms of PTHrP are thus generated, each of them having their own physiologic functions and probably their own receptors. The type 1 PTHrP receptor, binding both PTH(1-34) and PTHrP(1-36), is the only cloned receptor so far. PTHrP is a PTH-like calciotropic hormone, a myorelaxant, a growth factor and a developmental regulatory molecule. The present review reports recent aspects of PTHrP pharmacology and physiology, including: (a) the identification of new peptides and receptors of the PTH/PTHrP system; (b) the recently discovered nuclear functions of PTHrP and the role of PTHrP as an intracrine regulator of cell growth and cell death; (c) the physiological and developmental actions of PTHrP in the cardiovascular and the renal glomerulo-vascular systems; (d) the role of PTHrP as a regulator of pancreatic beta cell growth and functions, and, (e) the interactions of PTHrP and calcium-sensing receptors for the control of the growth of placental trophoblasts. These new advances have contributed to a better understanding of the pathophysiological role of PTHrP, and will help to identify

  6. Angiopoetin-2 Signals Do Not Mediate the Hypervascularization of Islets in Type 2 Diabetes

    PubMed Central

    Shah, Payal; Lueschen, Navina; Ardestani, Amin; Oberholzer, Jose; Olerud, Johan; Carlsson, Per-Ola; Maedler, Kathrin

    2016-01-01

    Aims Changes in the islet vasculature have been implicated in the regulation of β-cell survival and function during the progression to type 2 diabetes (T2D). Failure of the β-cell to compensate for the increased insulin demand in obesity eventually leads to diabetes; as a result of the complex interplay of genetic and environmental factors (e.g. ongoing inflammation within the islets) and impaired vascular function. The Angiopoietin/Tie (Ang/Tie) angiogenic system maintains vasculature and is closely related to organ inflammation and angiogenesis. In this study we aimed to identify whether the vessel area within the islets changes in diabetes and whether such changes would be triggered by the Tie-antagonist Ang-2. Methods Immunohistochemical and qPCR analyses to follow islet vascularization and Ang/Tie levels were performed in human pancreatic autopsies and isolated human and mouse islets. The effect of Ang-2 was assessed in β-cell-specific Ang-2 overexpressing mice during high fat diet (HFD) feeding. Results Islet vessel area was increased in autopsy pancreases from patients with T2D. The vessel markers Tie-1, Tie-2 and CD31 were upregulated in mouse islets upon HFD feeding from 8 to 24 weeks. Ang-2 was transiently upregulated in mouse islets at 8 weeks of HFD and under glucolipotoxic conditions (22.2 mM glucose/ 0.5 mM palmitate) in vitro in human and mouse islets, in contrast to its downregulation by cytokines (IL-1β, IFN-ɣ and TNF-α). Ang-1 on the other hand was oppositely regulated, with a significant loss under glucolipotoxic condition, a trend to reduce in islets from patients with T2D and an upregulation by cytokines. Modulation of such changes in Ang-2 by its overexpression or the inhibition of its receptor Tie-2 impaired β-cell function at basal conditions but protected islets from cytokine induced apoptosis. In vivo, β-cell-specific Ang-2 overexpression in mice induced hypervascularization under normal diet but contrastingly led to

  7. Pancreatic islet blood flow and its measurement

    PubMed Central

    Jansson, Leif; Barbu, Andreea; Bodin, Birgitta; Drott, Carl Johan; Espes, Daniel; Gao, Xiang; Grapensparr, Liza; Källskog, Örjan; Lau, Joey; Liljebäck, Hanna; Palm, Fredrik; Quach, My; Sandberg, Monica; Strömberg, Victoria; Ullsten, Sara; Carlsson, Per-Ola

    2016-01-01

    Pancreatic islets are richly vascularized, and islet blood vessels are uniquely adapted to maintain and support the internal milieu of the islets favoring normal endocrine function. Islet blood flow is normally very high compared with that to the exocrine pancreas and is autonomously regulated through complex interactions between the nervous system, metabolites from insulin secreting β-cells, endothelium-derived mediators, and hormones. The islet blood flow is normally coupled to the needs for insulin release and is usually disturbed during glucose intolerance and overt diabetes. The present review provides a brief background on islet vascular function and especially focuses on available techniques to measure islet blood perfusion. The gold standard for islet blood flow measurements in experimental animals is the microsphere technique, and its advantages and disadvantages will be discussed. In humans there are still no methods to measure islet blood flow selectively, but new developments in radiological techniques hold great hopes for the future. PMID:27124642

  8. Small human islets comprised of more β-cells with higher insulin content than large islets

    PubMed Central

    Farhat, Bilal; Almelkar, Akshay; Ramachandran, Karthik; Williams, S. Janette; Huang, Han-Hung; Zamierowksi, David; Novikova, Lesya; Stehno-Bittel, Lisa

    2013-01-01

    For the past 30 y, data have suggested that unique islet populations exist, based on morphology and glucose sensitivity. Yet little has been done to determine the mechanism of these functional differences. The purpose of this study was to determine whether human islets were comprised functionally unique populations, and to elucidate a possible mechanism. Islets or pancreatic sections from 29 human donors were analyzed. Islets were isolated and measured for insulin secretion, cell composition and organization, insulin and glucagon granule density and insulin content. Insulin secretion was significantly greater in small compared with large islets. In sectioned human pancreata, β-cells comprised a higher proportion of the total endocrine cells in small islets (63%) than large islets (39%). A higher percentage of β-cells in small islets contacted blood vessels (44%) compared with large islets (31%). Total insulin content of isolated human islets was significantly greater in the small (1323 ± 512 μIU/IE) compared with large islets (126 ± 48 μIU/IE). There was less immunostaining for insulin in the large islets from human pancreatic sections, especially in the core of the islet, compared with small islets. The results suggest that differences in insulin secretion between large and small islets may be due to a higher percentage of β-cells in small islets with more β-cells in contact with blood vessels and a higher concentration of insulin/β-cell in small islets. PMID:23648896

  9. Unraveling pancreatic islet biology by quantitative proteomics

    SciTech Connect

    Zhou, Jianying; Dann, Geoffrey P.; Liew, Chong W.; Smith, Richard D.; Kulkarni, Rohit N.; Qian, Weijun

    2011-08-01

    The pancreatic islets of Langerhans play a critical role in maintaining blood glucose homeostasis by secreting insulin and several other important peptide hormones. Impaired insulin secretion due to islet dysfunction is linked to the pathogenesis underlying both Type 1 and Type 2 diabetes. Over the past 5 years, emerging proteomic technologies have been applied to dissect the signaling pathways that regulate islet functions and gain an understanding of the mechanisms of islet dysfunction relevant to diabetes. Herein, we briefly review some of the recent quantitative proteomic studies involving pancreatic islets geared towards gaining a better understanding of islet biology relevant to metabolic diseases.

  10. The use of biomaterials in islet transplantation.

    PubMed

    Borg, Danielle J; Bonifacio, Ezio

    2011-10-01

    Pancreatic islet transplantation is a therapeutic option to replace destroyed β cells in autoimmune diabetes. Islets are transplanted into the liver via the portal vein; however, inflammation, the required immunosuppression, and lack of vasculature decrease early islet viability and function. Therefore, the use of accessory therapy and biomaterials to protect islets and improve islet function has definite therapeutic potential. Here we review the application of niche accessory cells and factors, as well as the use of biomaterials as carriers or capsules, for pancreatic islet transplantation. PMID:21748257

  11. Plasma and intestinal concentrations of GIP and GLP-1 (7-36) amide during suckling and after weaning in pigs.

    PubMed

    Knapper, J M; Morgan, L M; Fletcher, J M; Marks, V

    1995-11-01

    Plasma concentrations of glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1(7-36)amide (GLP-1[7-36]amide) were measured after milk ingestion in 15-18 day old piglets and after weaning diet ingestion in 33 day old piglets weaned at 21 days. Intestinal concentrations of these two hormones were also measured in unsuckled piglets of less than 24 h of age, and piglets whose ages corresponded with those used for plasma measurements. Suckling piglets showed a moderate glycaemic and insulinaemic response to milk ingestion. Plasma GIP and GLP-1(7-36)amide levels were significantly elevated at 1 and 3-h post-prandially. Weaned piglets showed a much more marked glucose and insulin response to meal ingestion. Plasma GIP and GLP-1(7-36)amide levels were again significantly elevated at 1 and 3 h in these animals. The mean plasma GIP response was greater in the weaned animals compared with the suckling animals at the time points investigated. The plasma GLP-1(7-36)amide response in contrast was significantly greater at 1 h in the suckling animals. In comparison, GIP concentrations in acid ethanol extracts of the small intestine were significantly higher during suckling and GLP-1(7-36)amide concentrations significantly higher after weaning. The circulating levels of both hormones seen during suckling and after weaning were far higher than those previously reported in humans. We conclude that both milk ingestion and the weaning diet are capable of stimulating GIP and GLP-1(7-36)amide in piglets and suggest that the levels of both hormones seen in this study may be important in adipose tissue metabolism at this time.

  12. Targeting pancreatic islets with phage display assisted by laser pressure catapult microdissection.

    PubMed

    Yao, Virginia J; Ozawa, Michael G; Trepel, Martin; Arap, Wadih; McDonald, Donald M; Pasqualini, Renata

    2005-02-01

    Heterogeneity of the microvasculature in different organs has been well documented by multiple methods including in vivo phage display. However, less is known about the diversity of blood vessels within functionally distinct regions of organs. Here, we combined in vivo phage display with laser pressure catapult microdissection to identify peptide ligands for vascular receptors in the islets of Langerhans in the murine pancreas. Protein database analyses of the peptides, CVSNPRWKC and CHVLWSTRC, showed sequence identity to two ephrin A-type ligand homologues, A2 and A4. Confocal microscopy confirmed that most immunoreactivity of CVSNPRWKC and CHVLWSTRC phage was associated with blood vessels in pancreatic islets. Antibodies recognizing EphA4, a receptor for ephrin-A ligands, were similarly associated with islet blood vessels. Importantly, binding of both islet-homing phage and anti-EphA4 antibody was strikingly increased in blood vessels of pancreatic islet tumors in RIP-Tag2 transgenic mice. These results indicate that endothelial cells of blood vessels in pancreatic islets preferentially express EphA4 receptors, and this expression is increased in tumors. Our findings show in vivo phage display and laser pressure catapult microdissection can be combined to reveal endothelial cell specialization within focal regions of the microvasculature.

  13. Imaging of the islet neural network.

    PubMed

    Tang, S-C; Peng, S-J; Chien, H-J

    2014-09-01

    The islets of Langerhans receive signals from the circulation and nerves to modulate hormone secretion in response to physiological cues. Although the rich islet innervation has been documented in the literature dating as far back as Paul Langerhans' discovery of islets in the pancreas, it remains a challenging task for researchers to acquire detailed islet innervation patterns in health and disease due to the dispersed nature of the islet neurovascular network. In this article, we discuss the recent development of 3-dimensional (3D) islet neurohistology, in which transparent pancreatic specimens were prepared by optical clearing to visualize the islet microstructure, vasculature and innervation with deep-tissue microscopy. Mouse islets were used as an example to illustrate how to apply this 3D imaging approach to characterize (i) the islet parasympathetic innervation, (ii) the islet sympathetic innervation and its reinnervation after transplantation under the kidney capsule and (iii) the reactive cellular response of the Schwann cell network in islet injury. While presenting and characterizing the innervation patterns, we also discuss how to apply the signals derived from transmitted light microscopy, vessel painting and immunostaining of neural markers to verify the location and source of tissue information. In summary, the systematic development of tissue labelling, clearing and imaging methods to reveal the islet neuroanatomy offers insights to help study the neural-islet regulatory mechanisms and the role of neural tissue remodelling in the development of diabetes.

  14. Pancreatic islet transplantation for treating diabetes.

    PubMed

    Matsumoto, Shinichi; Noguchi, Hirofumi; Yonekawa, Yukihide; Okitsu, Teru; Iwanaga, Yasuhiro; Liu, Xiaoling; Nagata, Hideo; Kobayashi, Naoya; Ricordi, Camillo

    2006-01-01

    Pancreatic islet transplantation is one of the options for treating diabetes and has been shown to improve the quality of life of severe diabetic patients. Since the Edmonton protocol was announced, islet transplantation have advanced considerably, including islet after kidney transplantation, utilisation of non-heart-beating donors, single-donor islet transplantation and living-donor islet transplantation. These advances were based on revised immunosuppression protocols, improved pancreas procurement and islet isolation methods, and enhanced islet engraftment. Further improvements are necessary to make islet transplantation a routine clinical treatment. To synergise efforts towards a cure for type 1 diabetes, a Diabetes Research Institute (DRI) Federation is currently being established to include leading diabetes research centres worldwide, including DRIs in Miami, Edmonton and Kyoto among others.

  15. The Different Faces of the Pancreatic Islet.

    PubMed

    Abdulreda, Midhat H; Rodriguez-Diaz, Rayner; Cabrera, Over; Caicedo, Alejandro; Berggren, Per-Olof

    2016-01-01

    Type 1 diabetes (T1D) patients who receive pancreatic islet transplant experience significant improvement in their quality-of-life. This comes primarily through improved control of blood sugar levels, restored awareness of hypoglycemia, and prevention of serious and potentially life-threatening diabetes-associated complications, such as kidney failure, heart and vascular disease, stroke, nerve damage, and blindness. Therefore, beta cell replacement through transplantation of isolated islets is an important option in the treatment of T1D. However, lasting success of this promising therapy depends on durable survival and efficacy of the transplanted islets, which are directly influenced by the islet isolation procedures. Thus, isolating pancreatic islets with consistent and reliable quality is critical in the clinical application of islet transplantation.Quality of isolated islets is important in pre-clinical studies as well, as efforts to advance and improve clinical outcomes of islet transplant therapy have relied heavily on animal models ranging from rodents, to pigs, to nonhuman primates. As a result, pancreatic islets have been isolated from these and other species and used in a variety of in vitro or in vivo applications for this and other research purposes. Protocols for islet isolation have been somewhat similar across species, especially, in mammals. However, given the increasing evidence about the distinct structural and functional features of human and mouse islets, using similar methods of islet isolation may contribute to inconsistencies in the islet quality, immunogenicity, and experimental outcomes. This may also contribute to the discrepancies commonly observed between pre-clinical findings and clinical outcomes. Therefore, it is prudent to consider the particular features of pancreatic islets from different species when optimizing islet isolation protocols.In this chapter, we explore the structural and functional features of pancreatic islets from

  16. Expression and function of monoacylglycerol lipase in mouse β-cells and human islets of Langerhans.

    PubMed

    Li, Chen; Vilches-Flores, Alonso; Zhao, Min; Amiel, Stephanie A; Jones, Peter M; Persaud, Shanta J

    2012-01-01

    Elements of the endocannabinoid system (ECS) are expressed by islet endocrine cells and activation of CB1 and CB2 cannabinoid receptors regulates insulin secretion from mouse and human β-cells. The current study aimed to investigate the expression and function, in mouse and human β-cells, of monoacylglycerol lipase (MGL), an enzyme that facilitates degradation of the endocannabinoid 2-arachidonoylglycerol (2-AG). We found that MGL mRNA is expressed by MIN6 β-cells, mouse islets, human islets and enriched human islet β-cells, and immunohistochemistry indicated that MGL localisation in human islets is consistent with its expression by some β- and -α-cells. Blockade of MGL activity with the pharmacological inhibitor URB602 led to increased [Ca(2+)](i )and enhanced insulin secretion from MIN6 β-cells, and MGL inhibition also elevated insulin and glucagon secretion from isolated human islets in vitro. These data imply a stimulatory role for endogenous 2-AG in islets that is amplified when its degradation is blocked. PMID:22739267

  17. RNA-sequencing of WFS1-deficient pancreatic islets.

    PubMed

    Ivask, Marilin; Hugill, Alison; Kõks, Sulev

    2016-04-01

    Wolfram syndrome, an autosomal recessive disorder characterized by juvenile-onset diabetes mellitus and optic atrophy, is caused by mutations in theWFS1gene.WFS1encodes an endoplasmic reticulum resident transmembrane protein. TheWfs1-null mice exhibit progressive insulin deficiency and diabetes. The aim of this study was to describe the insulin secretion and transcriptome of pancreatic islets inWFS1-deficient mice.WFS1-deficient (Wfs1KO) mice had considerably less pancreatic islets than heterozygous (Wfs1HZ) or wild-type (WT) mice. Wfs1KOpancreatic islets secreted less insulin after incubation in 2 and 10 mmol/L glucose and with tolbutamide solution compared toWTand Wfs1HZislets, but not after stimulation with 20 mmol/L glucose. Differences in proinsulin amount were not statistically significant although there was a trend that Wfs1KOhad an increased level of proinsulin. After incubation in 2 mmol/L glucose solution the proinsulin/insulin ratio in Wfs1KOwas significantly higher than that ofWTand Wfs1HZRNA-seq from pancreatic islets found melastatin-related transient receptor potential subfamily member 5 protein gene (Trpm5) to be downregulated inWFS1-deficient mice. Functional annotation ofRNAsequencing results showed thatWFS1 deficiency influenced significantly the pathways related to tissue morphology, endocrine system development and function, molecular transport network. PMID:27053292

  18. Pancreas donation for islet transplantation.

    PubMed

    Frutos, M A; Ruiz, P; Mansilla, J J

    2005-04-01

    Islet transplantation, though still in the experimental phase, is a therapeutic option that has opened new expectations for the control of diabetes mellitus. Initial results are encouraging for the significant advantages compared with whole pancreas transplantation for selected patients with type 1 diabetes mellitus, with or without kidney failure. However, the success of transplantation, both at centers with more experience and others with less, is limited by the difficulty in obtaining a suitable number of donors and by laboratory isolation techniques. Significant advances require changes in donor selection, perfusion, oxygenation, and transfer of the pancreas, and in the process of isolation, purification, and culture in the laboratory. Of the 32 pancreases sent to the islet isolation laboratory from different hospitals in Andalusia, a viable percentage of islets was finally available in 19. However, in only 4 (18%) procedures were the preparations considered optimal for implantation in 2 recipients. PMID:15866673

  19. Anx7 is required for nutritional control of gene expression in mouse pancreatic islets of Langerhans.

    PubMed Central

    Srivastava, Meera; Eidelman, Ofer; Leighton, Ximena; Glasman, Mirta; Goping, Gertrude; Pollard, Harvey B.

    2002-01-01

    BACKGROUND: Gene expression in islets of Langerhans is profoundly sensitive to glucose and other nutrients. Islets of Langerhans in the Anx7(+/-) knockout mouse exhibit a profound reduction in ITPR3 protein expression, defective intracellular calcium signaling, and defective insulin secretion. Additional data presented here also show that mRNA for ITPR3 is virtually undetectable in isolated Anx7(+/-) islets. IP3Receptor type 3 (ITPR3) expression in islets of Langerhans is closely regulated by secretory stimuli, and it has been suggested that the level of the ITPR3 expression controls the ability of the islets to respond to nutritional signals. We report that although control islets respond to glucose in vitro by a transient increment in ITPR3 mRNA, the islets from the Anx7(+/-) mouse remain low. We therefore hypothesized that the Anx7/IP3 Receptor(3)/Ca(2+) signaling pathway plays a role in beta cell responses to glucose, and that in the absence of the Anx7/ITPR3 signaling system, the islets would be unable to discriminate between fed or fasted states in vivo. MATERIALS AND METHODS: To test this hypothesis, we subjected Anx7(+/-) and control mice to either food and water ad libidum or to an overnight fast with access to water only. We then isolated the respective islets and compared nutrient-dependent changes in global gene expression under the four conditions using genome-based microarray technology. RESULTS: Anx7 protein expression in these islets is only about 50% of control levels in normal littermate controls, and IPTR3 message and protein are virtually zero. cDNA microarray analyses show that in control animals gene expression is significantly affected by the fasting state. Many of the affected genes have historical relevance to development and differentiation of islets. These include preproglucagon, APOJ, cadherin2, phosphoglucoisomerase, oncostatin M, PAX6, HGF, and cytokeratin 18. However, there are also many other nutritionally sensitive genes in control

  20. Young capillary vessels rejuvenate aged pancreatic islets.

    PubMed

    Almaça, Joana; Molina, Judith; Arrojo E Drigo, Rafael; Abdulreda, Midhat H; Jeon, Won Bae; Berggren, Per-Olof; Caicedo, Alejandro; Nam, Hong Gil

    2014-12-01

    Pancreatic islets secrete hormones that play a key role in regulating blood glucose levels (glycemia). Age-dependent impairment of islet function and concomitant dysregulation of glycemia are major health threats in aged populations. However, the major causes of the age-dependent decline of islet function are still disputed. Here we demonstrate that aging of pancreatic islets in mice and humans is notably associated with inflammation and fibrosis of islet blood vessels but does not affect glucose sensing and the insulin secretory capacity of islet beta cells. Accordingly, when transplanted into the anterior chamber of the eye of young mice with diabetes, islets from old mice are revascularized with healthy blood vessels, show strong islet cell proliferation, and fully restore control of glycemia. Our results indicate that beta cell function does not decline with age and suggest that islet function is threatened by an age-dependent impairment of islet vascular function. Strategies to mitigate age-dependent dysregulation in glycemia should therefore target systemic and/or local inflammation and fibrosis of the aged islet vasculature. PMID:25404292

  1. Classification of microscopy images of Langerhans islets

    NASA Astrophysics Data System (ADS)

    Å vihlík, Jan; Kybic, Jan; Habart, David; Berková, Zuzana; Girman, Peter; Kříž, Jan; Zacharovová, Klára

    2014-03-01

    Evaluation of images of Langerhans islets is a crucial procedure for planning an islet transplantation, which is a promising diabetes treatment. This paper deals with segmentation of microscopy images of Langerhans islets and evaluation of islet parameters such as area, diameter, or volume (IE). For all the available images, the ground truth and the islet parameters were independently evaluated by four medical experts. We use a pixelwise linear classifier (perceptron algorithm) and SVM (support vector machine) for image segmentation. The volume is estimated based on circle or ellipse fitting to individual islets. The segmentations were compared with the corresponding ground truth. Quantitative islet parameters were also evaluated and compared with parameters given by medical experts. We can conclude that accuracy of the presented fully automatic algorithm is fully comparable with medical experts.

  2. Isolation of Mouse Pancreatic Islets of Langerhans.

    PubMed

    Ramírez-Domínguez, Miriam

    2016-01-01

    The aim of any pancreatic islet isolation is obtaining pure, viable and functional pancreatic islets, either for in vitro or in vivo purposes. The islets of Langerhans are complex microorgans with the important role of regulating glucose homeostasis. Imbalances in glucose homeostasis lead to diabetes, which is defined by the American Diabetes Association as a "group of metabolic diseases characterized by hyperglycemia resulting from defects in insulin secretion, insulin action or both" (American Diabetes Association 2011). Currently, the rising demand of human islets is provoking a shortage of this tissue, limiting research and clinical practice on this field. In this scenario, it is essential to investigate and improve islet isolation procedures in animal models, while keeping in mind the anatomical and functional differences between species. This chapter discusses the main aspects of mouse islet isolation research, highlighting the critical factors and shortcomings to take into account for the selection and/or optimization of a mouse islet isolation protocol. PMID:27586420

  3. Expression of receptors for luteinizing hormone, gastric-inhibitory polypeptide, and vasopressin in normal adrenal glands and cortisol-secreting adrenocortical tumors in dogs.

    PubMed

    Galac, S; Kars, V J; Klarenbeek, S; Teerds, K J; Mol, J A; Kooistra, H S

    2010-07-01

    Hypercortisolism caused by an adrenocortical tumor (AT) results from adrenocorticotropic hormone (ACTH)-independent hypersecretion of glucocorticoids. Studies in humans demonstrate that steroidogenesis in ATs may be stimulated by ectopic or overexpressed eutopic G protein-coupled receptors. We report on a screening of 23 surgically removed, cortisol-secreting ATs for the expression of receptors for luteinizing hormone (LH), gastric-inhibitory polypeptide (GIP), and vasopressin (V(1a), V(1b), and V(2)). Normal adrenal glands served as control tissues. Abundance of mRNA for these receptors was quantified using quantitative polymerase chain reaction (QPCR), and the presence and localization of these receptors were determined by immunohistochemistry. In both normal adrenal glands and ATs, mRNA encoding for all receptors was present, although the expression abundance of the V(1b) receptor was very low. The mRNA expression abundance for GIP and V(2) receptors in ATs were significantly lower (0.03 and 0.01, respectively) than in normal adrenal glands. The zona fasciculata of normal adrenal glands stained immunonegative for the GIP receptor. In contrast, islands of GIP receptor-immunopositive cells were detected in about half of the ATs. The zona fasciculata of both normal adrenal glands and AT tissue were immunopositive for LH receptor; in ATs in a homogenous or heterogenous pattern. In normal adrenal glands, no immunolabeling for V(1b)R and V(2) receptor was present, but in ATs, V(2) receptor-immunopositive cells were detected. In conclusion, QPCR analysis did not reveal overexpression of LH, GIP, V(1a), V(1b), or V(2) receptors in the ATs. However, the ectopic expression of GIP and V(2) receptor proteins in tumorous zona fasciculata tissue may play a role in the pathogenesis of canine cortisol-secreting ATs.

  4. Melatonin and Pancreatic Islets: Interrelationships between Melatonin, Insulin and Glucagon

    PubMed Central

    Peschke, Elmar; Bähr, Ina; Mühlbauer, Eckhard

    2013-01-01

    The pineal hormone melatonin exerts its influence in the periphery through activation of two specific trans-membrane receptors: MT1 and MT2. Both isoforms are expressed in the islet of Langerhans and are involved in the modulation of insulin secretion from β-cells and in glucagon secretion from α-cells. De-synchrony of receptor signaling may lead to the development of type 2 diabetes. This notion has recently been supported by genome-wide association studies identifying particularly the MT2 as a risk factor for this rapidly spreading metabolic disturbance. Since melatonin is secreted in a clearly diurnal fashion, it is safe to assume that it also has a diurnal impact on the blood-glucose-regulating function of the islet. This factor has hitherto been underestimated; the disruption of diurnal signaling within the islet may be one of the most important mechanisms leading to metabolic disturbances. The study of melatonin–insulin interactions in diabetic rat models has revealed an inverse relationship: an increase in melatonin levels leads to a down-regulation of insulin secretion and vice versa. Elucidation of the possible inverse interrelationship in man may open new avenues in the therapy of diabetes. PMID:23535335

  5. Feasibility of islet magnetic resonance imaging using ferumoxytol in intraportal islet transplantation.

    PubMed

    Jin, Sang-Man; Oh, Seung-Hoon; Oh, Bae Jun; Shim, Wooyoung; Choi, Jin Myung; Yoo, Dongkyeom; Hwang, Yong Hwa; Lee, Jung Hee; Lee, Dong Yun; Kim, Jae Hyeon

    2015-06-01

    There is a clinical need for an alternative labeling agent for magnetic resonance imaging (MRI) in islet transplantation. We aimed to evaluate the feasibility of islet MRI using ferumoxytol, which is the only clinically-available ultrasmall superparamagnetic iron oxide. We compared islet function and viability of control islets and islets labeled with ferumoxytol and/or a heparin-protamine complex (HPF). Efficacy of ferumoxytol labeling was assessed in both ex vivo and in vivo models. Labeling for 48 h with HPF, but not up to 800 μg/mL ferumoxytol, deranged ex vivo islet viability and function. The T2∗ relaxation time was optimal when islets were labeled with 800 μg/mL of ferumoxytol for 48 h. Prussian blue stain, iron content assay, transmission electron microscopy (TEM) supported internalization of ferumoxytol particles. However, the labeling intensity in the ex vivo MRI of islets labeled with ferumoxytol was much weaker than that of islets labeled with ferucarbotran. In syngeneic intraportal islet transplantation, there was a correlation between the total area of visualized islets and the transplanted islet mass. In conclusion, islet MRI using ferumoxytol was feasible in terms of in vitro and in vivo efficacy and safety. However, the weak labeling efficacy is still a hurdle for the clinical application.

  6. Taurine supplementation modulates glucose homeostasis and islet function.

    PubMed

    Carneiro, Everardo M; Latorraca, Marcia Q; Araujo, Eliana; Beltrá, Marta; Oliveras, Maria J; Navarro, Mónica; Berná, Genoveva; Bedoya, Francisco J; Velloso, Licio A; Soria, Bernat; Martín, Franz

    2009-07-01

    Taurine is a conditionally essential amino acid for human that is involved in the control of glucose homeostasis; however, the mechanisms by which the amino acid affects blood glucose levels are unknown. Using an animal model, we have studied these mechanisms. Mice were supplemented with taurine for 30 d. Blood glucose homeostasis was assessed by intraperitoneal glucose tolerance tests (IPGTT). Islet cell function was determined by insulin secretion, cytosolic Ca2+ measurements and glucose metabolism from isolated islets. Islet cell gene expression and translocation was examined via immunohistochemistry and quantitative real-time polymerase chain reaction. Insulin signaling was studied by Western blot. Islets from taurine-supplemented mice had: (i) significantly higher insulin content, (ii) increased insulin secretion at stimulatory glucose concentrations, (iii) significantly displaced the dose-response curve for glucose-induced insulin release to the left, (iv) increased glucose metabolism at 5.6 and 11.1-mmol/L concentrations; (v) slowed cytosolic Ca2+ concentration ([Ca2+]i) oscillations in response to stimulatory glucose concentrations; (vi) increased insulin, sulfonylurea receptor-1, glucokinase, Glut-2, proconvertase and pancreas duodenum homeobox-1 (PDX-1) gene expression and (vii) increased PDX-1 expression in the nucleus. Moreover, taurine supplementation significantly increased both basal and insulin stimulated tyrosine phosphorylation of the insulin receptor in skeletal muscle and liver tissues. Finally, taurine supplemented mice showed an improved IPGTT. These results indicate that taurine controls glucose homeostasis by regulating the expression of genes required for glucose-stimulated insulin secretion. In addition, taurine enhances peripheral insulin sensitivity. PMID:18708284

  7. The role of endothelial cells on islet function and revascularization after islet transplantation

    PubMed Central

    Del Toro-Arreola, Alicia; Robles-Murillo, Ana Karina; Daneri-Navarro, Adrian; Rivas-Carrillo, Jorge David

    2016-01-01

    ABSTRACT Islet transplantation has become a widely accepted therapeutic option for selected patients with type 1 diabetes mellitus. However, in order to achieve insulin independence a great number of islets are often pooled from 2 to 4 pancreata donors. Mostly, it is due to the massive loss of islets immediately after transplant. The endothelium plays a key role in the function of native islets and during the revascularization process after islet transplantation. However, if a delayed revascularization occurs, even the remaining islets will also undergo to cell death and late graft dysfunction. Therefore, it is essential to understand how the signals are released from endothelial cells, which might regulate both differentiation of pancreatic progenitors and thereby maintenance of the graft function. New strategies to facilitate islet engraftment and a prompt revascularization could be designed to intervene and might lead to improve future results of islet transplantation. PMID:27002241

  8. Isolation of Pancreatic Islets from Nonhuman Primates.

    PubMed

    Berman, Dora M

    2016-01-01

    Nonhuman primates (NHP) constitute a highly relevant pre-clinical animal model to develop strategies for beta cell replacement. The close phylogenetic and immunologic relationship between NHP and humans results in cross-reactivity of various biological agents with NHP cells, as well as a very similar cytoarchitecture between islets from human and NHP that is strikingly different from that observed in rodent islets. The composition and location of endocrine cells in human or NHP islets, randomly distributed and associated with blood vessels, have functional consequences and a predisposition for paracrine interactions. Furthermore, translation of approaches that proved successful in rodent models to the clinic has been limited. Consequently, data collected from NHP studies can form the basis for an IND submission to the FDA. This chapter describes in detail the key aspects for isolation of islets from NHP, from organ procurement up to assessment of islet function, comparing and emphasizing the similarities between isolation procedures for human and NHP islets. PMID:27586422

  9. Quantification of β-Cell Mass in Intramuscular Islet Grafts Using Radiolabeled Exendin-4

    PubMed Central

    Espes, Daniel; Selvaraju, Ramkumar; Velikyan, Irina; Krajcovic, Martin; Carlsson, Per-Ola; Eriksson, Olof

    2016-01-01

    Background There is an increasing interest in alternative implantation sites to the liver for islet transplantation. Intramuscular implantation has even been tested clinically. Possibilities to monitor β-cell mass would be of huge importance not only for the understanding of islet engraftment but also for the decision of changing the immunosuppressive regime. We have therefore evaluated the feasibility of quantifying intramuscular β-cell mass using the radiolabeled glucagon like peptide-1 receptor agonist DO3A-VS-Cys40-Exendin-4. Methods One hundred to 400 islets were transplanted to the abdominal muscle of nondiabetic mice. After 3 to 4 weeks, 0.2 to 0.5 MBq [177Lu]DO3A-VS-Cys40-Exendin-4 was administered intravenously. Sixty minutes postinjection abdominal organs and graft bearing muscle were retrieved, and the radioactive uptake measured in a well counter within 10 minutes. The specific uptake in native and transplanted islets was assessed by autoradiography. The total insulin-positive area of the islet grafts was determined by immunohistochemistry. Results Intramuscular islet grafts could easily be visualized by this tracer, and the background uptake was very low. There was a linear correlation between the radioactivity uptake and the number of transplanted islets, both for standardized uptake values and the total radiotracer uptake in each graft (percentage of injected dose). The quantified total insulin area of surviving β cells showed an even stronger correlation to both standardized uptake values (R = 0.96, P = 0.0002) and percentage of injected dose (R = 0.88, P = 0.0095). There was no correlation to estimated α cell mass. Conclusions [177Lu]DO3A-VS-Cys40-Exendin-4 could be used to quantify β-cell mass after experimental intramuscular islet transplantation. This technique may well be transferred to the clinical setting by exchanging Lutetium-177 radionuclide to a positron emitting Gallium-68.

  10. Pancreas preservation for pancreas and islet transplantation

    PubMed Central

    Iwanaga, Yasuhiro; Sutherland, David E.R.; Harmon, James V.; Papas, Klearchos K.

    2010-01-01

    Purpose of review To summarize advances and limitations in pancreas procurement and preservation for pancreas and islet transplantation, and review advances in islet protection and preservation. Recent findings Pancreases procured after cardiac death, with in-situ regional organ cooling, have been successfully used for islet transplantation. Colloid-free Celsior and histidine-tryptophan-ketoglutarate preservation solutions are comparable to University of Wisconsin solution when used for cold storage before pancreas transplantation. Colloid-free preservation solutions are inferior to University of Wisconsin solution for pancreas preservation prior to islet isolation and transplantation. Clinical reports on pancreas and islet transplants suggest that the two-layer method may not offer significant benefits over cold storage with the University of Wisconsin solution: improved oxygenation may depend on the graft size; benefits in experimental models may not translate to human organs. Improvements in islet yield and quality occurred from pancreases treated with inhibitors of stress-induced apoptosis during procurement, storage, isolation or culture. Pancreas perfusion may be desirable before islet isolation and transplantation and may improve islet yields and quality. Methods for real-time, noninvasive assessment of pancreas quality during preservation have been implemented and objective islet potency assays have been developed and validated. These innovations should contribute to objective evaluation and establishment of improved pancreas preservation and islet isolation strategies. Summary Cold storage may be adequate for preservation before pancreas transplants, but insufficient when pancreases are processed for islets or when expanded donors are used. Supplementation of cold storage solutions with cytoprotective agents and perfusion may improve pancreas and islet transplant outcomes. PMID:18685343

  11. Circadian variation of the pancreatic islet transcriptome.

    PubMed

    Rakshit, Kuntol; Qian, Jingyi; Ernst, Jason; Matveyenko, Aleksey V

    2016-09-01

    Pancreatic islet failure is a characteristic feature of impaired glucose control in diabetes mellitus. Circadian control of islet function is essential for maintaining proper glucose homeostasis. Circadian variations in transcriptional pathways have been described in diverse cell types and shown to be critical for optimization of cellular function in vivo. In the current study, we utilized Short Time Series Expression Miner (STEM) analysis to identify diurnally expressed transcripts and biological pathways from mouse islets isolated at 4 h intervals throughout the 24 h light-dark cycle. STEM analysis identified 19 distinct chronological model profiles, and genes belonging to each profile were subsequently annotated to significantly enriched Kyoto Encyclopedia of Genes and Genomes biological pathways. Several transcriptional pathways essential for proper islet function (e.g., insulin secretion, oxidative phosphorylation), cell survival (e.g., insulin signaling, apoptosis) and cell proliferation (DNA replication, homologous recombination) demonstrated significant time-dependent variations. Notably, KEGG pathway analysis revealed "protein processing in endoplasmic reticulum - mmu04141" as one of the most enriched time-dependent pathways in islets. This study provides unique data set on time-dependent diurnal profiles of islet gene expression and biological pathways, and suggests that diurnal variation of the islet transcriptome is an important feature of islet homeostasis, which should be taken into consideration for optimal experimental design and interpretation of future islet studies. PMID:27495157

  12. Metabolomics applied to the pancreatic islet

    PubMed Central

    Gooding, Jessica R.; Jensen, Mette V.; Newgard, Christopher B.

    2016-01-01

    Metabolomics, the characterization of the set of small molecules in a biological system, is advancing research in multiple areas of islet biology. Measuring a breadth of metabolites simultaneously provides a broad perspective on metabolic changes as the islets respond dynamically to metabolic fuels, hormones, or environmental stressors. As a result, metabolomics has the potential to provide new mechanistic insights into islet physiology and pathophysiology. Here we summarize advances in our understanding of islet physiology and the etiologies of type-1 and type-2 diabetes gained from metabolomics studies. PMID:26116790

  13. Human Pancreatic Islets and Diabetes Research

    PubMed Central

    Kaddis, John S.; Olack, Barbara J.; Sowinski, Janice; Cravens, James; Contreras, Juan L.; Niland, Joyce C.

    2013-01-01

    Human islet research is crucial to understanding the cellular biology of the pancreas in developing therapeutic options for diabetes patients and in attempting to prevent the development of this disease. The national Islet Cell Resource Center Consortium provides human pancreatic islets for diabetes research while simultaneously addressing the need to improve islet isolation and transplantation technologies. Since its inception in 2001, the consortium has supplied 297.6 million islet equivalents to 151 national and international scientists for use in clinical and laboratory projects. Data on the volume, quality, and frequency of shipments substantiate the importance of human islets for diabetes research, as do the number of funded grants for beta-cell projects and publications produced as a direct result of islets supplied by this resource. Limitations in using human islets are discussed, along with the future of islet distribution centers. The information presented here is instructive to clinicians, basic science investigators, and policy makers who determine the availability of funding for such work. Organ procurement coordinators also may find the information useful in explaining to donor families why research consent is so valuable. PMID:19366778

  14. Vascular endothelial growth factor coordinates islet innervation via vascular scaffolding

    PubMed Central

    Reinert, Rachel B.; Cai, Qing; Hong, Ji-Young; Plank, Jennifer L.; Aamodt, Kristie; Prasad, Nripesh; Aramandla, Radhika; Dai, Chunhua; Levy, Shawn E.; Pozzi, Ambra; Labosky, Patricia A.; Wright, Christopher V. E.; Brissova, Marcela; Powers, Alvin C.

    2014-01-01

    Neurovascular alignment is a common anatomical feature of organs, but the mechanisms leading to this arrangement are incompletely understood. Here, we show that vascular endothelial growth factor (VEGF) signaling profoundly affects both vascularization and innervation of the pancreatic islet. In mature islets, nerves are closely associated with capillaries, but the islet vascularization process during embryonic organogenesis significantly precedes islet innervation. Although a simple neuronal meshwork interconnects the developing islet clusters as they begin to form at E14.5, the substantial ingrowth of nerve fibers into islets occurs postnatally, when islet vascularization is already complete. Using genetic mouse models, we demonstrate that VEGF regulates islet innervation indirectly through its effects on intra-islet endothelial cells. Our data indicate that formation of a VEGF-directed, intra-islet vascular plexus is required for development of islet innervation, and that VEGF-induced islet hypervascularization leads to increased nerve fiber ingrowth. Transcriptome analysis of hypervascularized islets revealed an increased expression of extracellular matrix components and axon guidance molecules, with these transcripts being enriched in the islet-derived endothelial cell population. We propose a mechanism for coordinated neurovascular development within pancreatic islets, in which endocrine cell-derived VEGF directs the patterning of intra-islet capillaries during embryogenesis, forming a scaffold for the postnatal ingrowth of essential autonomic nerve fibers. PMID:24574008

  15. In Vivo Islet Protection by a Nuclear Import Inhibitor in a Mouse Model of Type 1 Diabetes

    PubMed Central

    Moore, Daniel J.; Zienkiewicz, Jozef; Kendall, Peggy L.; Liu, Danya; Liu, Xueyan; Veach, Ruth Ann; Collins, Robert D.; Hawiger, Jacek

    2010-01-01

    Background Insulin-dependent Type 1 diabetes (T1D) is a devastating autoimmune disease that destroys beta cells within the pancreatic islets and afflicts over 10 million people worldwide. These patients face life-long risks for blindness, cardiovascular and renal diseases, and complications of insulin treatment. New therapies that protect islets from autoimmune destruction and allow continuing insulin production are needed. Increasing evidence regarding the pathomechanism of T1D indicates that islets are destroyed by the relentless attack by autoreactive immune cells evolving from an aberrant action of the innate, in addition to adaptive, immune system that produces islet-toxic cytokines, chemokines, and other effectors of islet inflammation. We tested the hypothesis that targeting nuclear import of stress-responsive transcription factors evoked by agonist-stimulated innate and adaptive immunity receptors would protect islets from autoimmune destruction. Principal Findings Here we show that a first-in-class inhibitor of nuclear import, cSN50 peptide, affords in vivo islet protection following a 2-day course of intense treatment in NOD mice, which resulted in a diabetes-free state for one year without apparent toxicity. This nuclear import inhibitor precipitously reduces the accumulation of islet-destructive autoreactive lymphocytes while enhancing activation-induced cell death of T and B lymphocytes derived from autoimmune diabetes-prone, non-obese diabetic (NOD) mice that develop T1D. Moreover, in this widely used model of human T1D we noted attenuation of pro-inflammatory cytokine and chemokine production in immune cells. Conclusions These results indicate that a novel form of immunotherapy that targets nuclear import can arrest inflammation-driven destruction of insulin-producing beta cells at the site of autoimmune attack within pancreatic islets during the progression of T1D. PMID:20949090

  16. Total Pancreatectomy With Islet Autotransplantation

    PubMed Central

    Bellin, Melena D.; Gelrud, Andres; Arreaza-Rubin, Guillermo; Dunn, Ty B.; Humar, Abhinav; Morgan, Katherine A.; Naziruddin, Bashoo; Rastellini, Cristiana; Rickels, Michael R.; Schwarzenberg, Sarah J.; Andersen, Dana K.

    2015-01-01

    A workshop sponsored by the National Institute of Diabetes and Digestive and Kidney Diseases focused on research gaps and opportunities in total pancreatectomy with islet autotransplantation (TPIAT) for the management of chronic pancreatitis. The session was held on July 23, 2014 and structured into 5 sessions: (1) patient selection, indications, and timing; (2) technical aspects of TPIAT; (3) improving success of islet autotransplantation; (4) improving outcomes after total pancreatectomy; and (5) registry considerations for TPIAT. The current state of knowledge was reviewed; knowledge gaps and research needs were specifically highlighted. Common themes included the need to identify which patients best benefit from and when to intervene with TPIAT, current limitations of the surgical procedure, diabetes remission and the potential for improvement, opportunities to better address pain remission, GI complications in this population, and unique features of children with chronic pancreatitis considered for TPIAT. The need for a multicenter patient registry that specifically addresses the complexities of chronic pancreatitis and total pancreatectomy outcomes and postsurgical diabetes outcomes was repeatedly emphasized. PMID:25599324

  17. Autoantibodies to duodenal gastric-inhibitory-peptide (GIP) cells and to secretin (S) cells in patients with coeliac disease, tropical sprue and maturity-onset diabetes.

    PubMed Central

    Mirakian, R; Bottazzo, G F; Doniach, D

    1980-01-01

    The presence of autoantibodies detected by immunofluorescence to single endocrine cells, of human duodenum is described in three groups of patients and two control groups. Of 173 coeliac cases, four had GIP cell antibodies, one had secretin cell antibodies and twenty-one reacted with both cell types. Of twelve tropical sprue sera, four reacted with the same two cells. Among fifty elderly diabetics treated with hypoglycaemic drugs, seven sera gave a positive cytoplasmic IFL on duodenal substrate. Four were identified as GIP cells by use of the appropriate hormone antiserum and three reactions were against cells distinct from those stained by anti-GIP, -secretin, -somatostatin, -glucagon and -gastrin. Additional gut hormone antisera will have to be tested to identify these APUD cells. Thirty blood donors and seventy-three sera from autoimmune endocrine patients gave entirely negative results on unfixed cryostat sections of duodenal mucosa. Although impaired GIP and secretin responses have been reported in coeliac disease, and abnormal GIP values were found in Type II diabetes, there is as yet no data to correlate these metabolic dificiencies with the presence of endocrine cell antibodies in the serum. These studies are in progress. Images p39-a p39-b p39-c PMID:7002390

  18. Differential responses of the incretin hormones GIP and GLP-1 to increasing doses of dietary carbohydrate but not dietary protein in lean rats.

    PubMed

    Yoder, Stephanie M; Yang, Qing; Kindel, Tammy L; Tso, Patrick

    2010-08-01

    Previous studies have shown that oral ingestion of nutrients stimulates secretion of the incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1); however, it is unclear whether there is a dose-dependent response between the amount of nutrient ingested and the secretion of the hormones in vivo. Using our lymph fistula rat model, we previously demonstrated that both GIP and GLP-1 responded dose dependently to increasing amounts of infused dietary lipid and that the GLP-1-secreting cells were more sensitive to changes in intestinal lipid content. In the present study, we investigated the dose-dependent relationships between incretin secretion and the two remaining macronutrients, carbohydrate and protein. To accomplish this objective, the major mesenteric lymphatic duct of male Sprague-Dawley rats was cannulated. Each animal received a single bolus (3 ml) of saline, dextrin, whey protein, or casein hydrolysate (0.275, 0.55, 1.1, 2.2, 4.4 kcal) via a surgically inserted duodenal or ileal feeding tube. Lymph was continuously collected for 3 h and analyzed for GIP and GLP-1 content. Both GIP and GLP-1 outputs responded dose dependently to increasing amounts of dietary carbohydrate but not protein. Additionally, we found that the GIP-secreting cells were more sensitive than the GLP-1-secreting cells to changes in intestinal carbohydrate content.

  19. Microfluidics-generated pancreatic islet microfibers for enhanced immunoprotection.

    PubMed

    Jun, Yesl; Kim, Min Jun; Hwang, Yong Hwa; Jeon, Eun Ae; Kang, Ah Ran; Lee, Sang-Hoon; Lee, Dong Yun

    2013-11-01

    Pancreatic islet transplantation is a promising method for treatment of type 1 diabetes mellitus. However, transplanted islets can be destroyed due to host immune reactions. To immunologically protect transplanted islets, here an immunoprotective microfiber including islets by using a polydimethylsiloxane (PDMS)-based microfluidic device is newly designed. A cylindrical-flow channel in the microfluidic platform is used for producing collagen-alginate composite (CAC) fibers. This enables mass production and uniform diameter distribution (<250 μm) without protruding islets. Collagen, which is the main extracellular matrix component, is added to alginate to mimic the native islet microenvironment. Compared to free islets (control) and alginate-fiber-encapsulated islets, CAC-fiber-encapsulated islets show higher viability and normal insulin secretion. When CAC-fiber-encapsulated islets (1200 islet equivalent) are implanted into the intraperitoneal cavity of streptozotocin-induced diabetic BALB/C mice, the blood glucose levels of all mice return to normoglycemia. Moreover, intraperitoneal glucose tolerance tests demonstrate that islets in the CAC-fiber have similar glucose responsiveness to those of non-diabetic normal mice. These results are attributed to the immunoprotection of the transplanted islets from host immune reactions. On the other hand, all free islets are completely rejected within a week due to severe immune responses. Collectively, fabrication of CAC fibers using microfluidic devices can be used for successful islet transplantation. PMID:23927952

  20. [GIP CeNGEPS, an agreement of clinical research operators to reinforce clinical trials' organisation in France].

    PubMed

    Diebolt, Vincent; Jaillon, Patrice

    2007-01-01

    The "GIP CeNGEPS" (national center of industrial clinical trials' management), a new corporate body, relates the major French actors in clinical trials activity, belonging to public service or commercial sector. CeNGEPS is devoted to improving the French organisation of clinical trials with four headings: Economic with a strong common will of shaking up the organisation of clinical trials in France; Political with a decision taken to the highest level; Juridical with the choice of an unusual legal form to act; Methodological with the efforts to associate the most numerous operators (investigators; local managers...). PMID:17582314

  1. GIP Contributions to the Regulation of Centromere at the Interface Between the Nuclear Envelope and the Nucleoplasm.

    PubMed

    Chabouté, Marie-Edith; Berr, Alexandre

    2016-01-01

    Centromeres are known as specific chromatin domains without which eukaryotic cells cannot divide properly during mitosis. Despite the considerable efforts to understand the centromere/kinetochore assembly during mitosis, until recently, comparatively few studies have dealt with the regulation of centromere during interphase. Here, we briefly review and discuss past and recent advances about the architecture of centromeres and their regulation during the cell cycle. Furthermore, we highlight and discuss new findings and hypotheses regarding the specific regulation of centromeres in both plant and animal nuclei, especially with GIP proteins at the interface between the nuclear envelope and the nucleoplasm. PMID:26904080

  2. GIP Contributions to the Regulation of Centromere at the Interface Between the Nuclear Envelope and the Nucleoplasm

    PubMed Central

    Chabouté, Marie-Edith; Berr, Alexandre

    2016-01-01

    Centromeres are known as specific chromatin domains without which eukaryotic cells cannot divide properly during mitosis. Despite the considerable efforts to understand the centromere/kinetochore assembly during mitosis, until recently, comparatively few studies have dealt with the regulation of centromere during interphase. Here, we briefly review and discuss past and recent advances about the architecture of centromeres and their regulation during the cell cycle. Furthermore, we highlight and discuss new findings and hypotheses regarding the specific regulation of centromeres in both plant and animal nuclei, especially with GIP proteins at the interface between the nuclear envelope and the nucleoplasm. PMID:26904080

  3. Islet Insulin Secretion Measurements in the Mouse.

    PubMed

    Hugill, Alison; Shimomura, Kenju; Cox, Roger D

    2016-01-01

    This article describes detailed protocols for in vitro measurements of insulin function and secretion in isolated mouse islets for the analysis of glucose homeostasis. We specify a method of enzyme digestion and hand picking to isolate and release the greatest number of high quality islets from the pancreas of the mouse. We describe an effective method for generating dynamic measurements of insulin secretion using a perifusion assay including a detailed protocol for constructing a peristaltic pump and tubing assembly. In addition we describe an alternative and simple technique for measuring insulin secretion using static incubation of isolated islets. © 2016 by John Wiley & Sons, Inc. PMID:27584553

  4. Temporal and Regional Expression of Glucose-Dependent Insulinotropic Peptide and Its Receptor in Spinal Cord Injured Rats.

    PubMed

    Marcos, Ana Beatriz W; Forner, Stefania; Martini, Alessandra C; Patrício, Eliziane S; Clarke, Julia R; Costa, Robson; Felix-Alves, João; Vieira, Vilberto José; de Andrade, Edinéia Lemos; Mazzuco, Tânia Longo; Calixto, João Batista; Figueiredo, Claudia Pinto

    2016-02-01

    Spinal cord injury (SCI) results in loss of movement, sensibility, and autonomic control at the level of the lesion and at lower parts of the body. Several experimental strategies have been used in attempts to increase endogenous mechanisms of neuroprotection, neuroplasticity, and repair, but with limited success. It is known that glucose-dependent insulinotropic peptide (GIP) and its receptor (GIPR) can enhance synaptic plasticity, neurogenesis, and axonal outgrowth. However, their role in the injury has never been studied. The aim of this study was to evaluate the changes in expression levels of both GIP and GIPR in acute and chronic phases of SCI in rats. Following SCI (2 to 24 h after damage), the rat spinal cord showed a lesion in which the epicenter had a cavity with hemorrhage and necrosis. Furthermore, the lesion cavity also showed ballooned cells 14 and 28 days after injury. We found that SCI induced increases in GIPR expression in areas neighboring the site of injury at 6 h and 28 days after the injury. Moreover, higher GIP expression was observed in these regions on day 28. Neuronal projections from the injury epicenter showed an increase in GIP immunoreactivity 24 h and 14 and 28 days after SCI. Interestingly, GIP was also found in progenitor cells at the spinal cord canal 24 h after injury, whereas both GIP and GIPR were present in progenitor cells at the injury epicenter 14 days after in SCI animals. These results suggest that GIP and its receptor might be implicated with neurogenesis and the repair process after SCI. PMID:26421658

  5. Xenin-25 Potentiates Glucose-dependent Insulinotropic Polypeptide Action via a Novel Cholinergic Relay Mechanism*

    PubMed Central

    Wice, Burton M.; Wang, Songyan; Crimmins, Dan L.; Diggs-Andrews, Kelly A.; Althage, Matthew C.; Ford, Eric L.; Tran, Hung; Ohlendorf, Matthew; Griest, Terry A.; Wang, Qiuling; Fisher, Simon J.; Ladenson, Jack H.; Polonsky, Kenneth S.

    2010-01-01

    The intestinal peptides GLP-1 and GIP potentiate glucose-mediated insulin release. Agents that increase GLP-1 action are effective therapies in type 2 diabetes mellitus (T2DM). However, GIP action is blunted in T2DM, and GIP-based therapies have not been developed. Thus, it is important to increase our understanding of the mechanisms of GIP action. We developed mice lacking GIP-producing K cells. Like humans with T2DM, “GIP/DT” animals exhibited a normal insulin secretory response to exogenous GLP-1 but a blunted response to GIP. Pharmacologic doses of xenin-25, another peptide produced by K cells, restored the GIP-mediated insulin secretory response and reduced hyperglycemia in GIP/DT mice. Xenin-25 alone had no effect. Studies with islets, insulin-producing cell lines, and perfused pancreata indicated xenin-25 does not enhance GIP-mediated insulin release by acting directly on the β-cell. The in vivo effects of xenin-25 to potentiate insulin release were inhibited by atropine sulfate and atropine methyl bromide but not by hexamethonium. Consistent with this, carbachol potentiated GIP-mediated insulin release from in situ perfused pancreata of GIP/DT mice. In vivo, xenin-25 did not activate c-fos expression in the hind brain or paraventricular nucleus of the hypothalamus indicating that central nervous system activation is not required. These data suggest that xenin-25 potentiates GIP-mediated insulin release by activating non-ganglionic cholinergic neurons that innervate the islets, presumably part of an enteric-neuronal-pancreatic pathway. Xenin-25, or molecules that increase acetylcholine receptor signaling in β-cells, may represent a novel approach to overcome GIP resistance and therefore treat humans with T2DM. PMID:20421298

  6. Xenin-25 potentiates glucose-dependent insulinotropic polypeptide action via a novel cholinergic relay mechanism.

    PubMed

    Wice, Burton M; Wang, Songyan; Crimmins, Dan L; Diggs-Andrews, Kelly A; Althage, Matthew C; Ford, Eric L; Tran, Hung; Ohlendorf, Matthew; Griest, Terry A; Wang, Qiuling; Fisher, Simon J; Ladenson, Jack H; Polonsky, Kenneth S

    2010-06-25

    The intestinal peptides GLP-1 and GIP potentiate glucose-mediated insulin release. Agents that increase GLP-1 action are effective therapies in type 2 diabetes mellitus (T2DM). However, GIP action is blunted in T2DM, and GIP-based therapies have not been developed. Thus, it is important to increase our understanding of the mechanisms of GIP action. We developed mice lacking GIP-producing K cells. Like humans with T2DM, "GIP/DT" animals exhibited a normal insulin secretory response to exogenous GLP-1 but a blunted response to GIP. Pharmacologic doses of xenin-25, another peptide produced by K cells, restored the GIP-mediated insulin secretory response and reduced hyperglycemia in GIP/DT mice. Xenin-25 alone had no effect. Studies with islets, insulin-producing cell lines, and perfused pancreata indicated xenin-25 does not enhance GIP-mediated insulin release by acting directly on the beta-cell. The in vivo effects of xenin-25 to potentiate insulin release were inhibited by atropine sulfate and atropine methyl bromide but not by hexamethonium. Consistent with this, carbachol potentiated GIP-mediated insulin release from in situ perfused pancreata of GIP/DT mice. In vivo, xenin-25 did not activate c-fos expression in the hind brain or paraventricular nucleus of the hypothalamus indicating that central nervous system activation is not required. These data suggest that xenin-25 potentiates GIP-mediated insulin release by activating non-ganglionic cholinergic neurons that innervate the islets, presumably part of an enteric-neuronal-pancreatic pathway. Xenin-25, or molecules that increase acetylcholine receptor signaling in beta-cells, may represent a novel approach to overcome GIP resistance and therefore treat humans with T2DM. PMID:20421298

  7. The heterogeneity of islet autoantibodies and the progression of islet failure in type 1 diabetic patients.

    PubMed

    Liu, Jin; Bian, Lingling; Ji, Li; Chen, Yang; Chen, Heng; Gu, Yong; Ma, Bingqin; Gu, Wei; Xu, Xinyu; Shi, Yun; Wang, Jian; Zhu, Dalong; Sun, Zilin; Ma, Jianhua; Jin, Hui; Shi, Xing; Miao, Heng; Xin, Bing; Zhu, Yan; Zhang, Zhenwen; Bu, Ruifang; Xu, Lan; Shi, Guangde; Tang, Wei; Li, Wei; Zhou, Dongmei; Liang, Jun; Cheng, Xingbo; Shi, Bimin; Dong, Jixiang; Hu, Ji; Fang, Chen; Zhong, Shao; Yu, Weinan; Lu, Weiping; Wu, Chenguang; Qian, Li; Yu, Jiancheng; Gao, Jialin; Fei, Xiaoqiang; Zhang, Qingqing; Wang, Xueqin; Cui, Shiwei; Cheng, Jinluo; Xu, Ning; Wang, Guofeng; Han, Guoqing; Xu, Chunrong; Xie, Yun; An, Minmin; Zhang, Wei; Wang, Zhixiao; Cai, Yun; Fu, Qi; Fu, Yu; Zheng, Shuai; Yang, Fan; Hu, Qingfang; Dai, Hao; Jin, Yu; Zhang, Zheng; Xu, Kuanfeng; Li, Yifan; Shen, Jie; Zhou, Hongwen; He, Wei; Zheng, Xuqin; Han, Xiao; Yu, Liping; She, Jinxiong; Zhang, Mei; Yang, Tao

    2016-09-01

    Type 1 diabetes mellitus is heterogeneous in many facets. The patients suffered from type 1 diabetes present several levels of islet function as well as variable number and type of islet-specific autoantibodies. This study was to investigate prevalence and heterogeneity of the islet autoantibodies and clinical phenotypes of type 1 diabetes mellitus; and also discussed the process of islet failure and its risk factors in Chinese type 1 diabetic patients. A total of 1,291 type 1 diabetic patients were enrolled in this study. Demographic information was collected. Laboratory tests including mixed-meal tolerance test, human leukocyte antigen alleles, hemoglobinA1c, lipids, thyroid function and islet autoantibodies were conducted. The frequency of islet-specific autoantibody in newly diagnosed T1DM patients (duration shorter than half year) was 73% in East China. According to binary logistic regressions, autoantibody positivity, longer duration and lower Body Mass Index were the risk factors of islet failure. As the disease developed, autoantibodies against glutamic acid decarboxylase declined as well as the other two autoantibodies against zinc transporter 8 and islet antigen 2. The decrease of autoantibodies was positively correlated with aggressive beta cell destruction. Autoantibodies can facilitate the identification of classic T1DM from other subtypes and predict the progression of islet failure. As there were obvious heterogeneity in autoantibodies and clinical manifestation in different phenotypes of the disease, we should take more factors into consideration when identifying type 1 diabetes mellitus. PMID:27225179

  8. Trimeprazine increases IRS2 in human islets and promotes pancreatic β cell growth and function in mice

    PubMed Central

    Kuznetsova, Alexandra; Yu, Yue; Hollister-Lock, Jennifer; Opare-Addo, Lynn; Rozzo, Aldo; Sadagurski, Marianna; Norquay, Lisa; Reed, Jessica E.; El Khattabi, Ilham; Bonner-Weir, Susan; Weir, Gordon C.; Sharma, Arun

    2016-01-01

    The capacity of pancreatic β cells to maintain glucose homeostasis during chronic physiologic and immunologic stress is important for cellular and metabolic homeostasis. Insulin receptor substrate 2 (IRS2) is a regulated adapter protein that links the insulin and IGF1 receptors to downstream signaling cascades. Since strategies to maintain or increase IRS2 expression can promote β cell growth, function, and survival, we conducted a screen to find small molecules that can increase IRS2 mRNA in isolated human pancreatic islets. We identified 77 compounds, including 15 that contained a tricyclic core. To establish the efficacy of our approach, one of the tricyclic compounds, trimeprazine tartrate, was investigated in isolated human islets and in mouse models. Trimeprazine is a first-generation antihistamine that acts as a partial agonist against the histamine H1 receptor (H1R) and other GPCRs, some of which are expressed on human islets. Trimeprazine promoted CREB phosphorylation and increased the concentration of IRS2 in islets. IRS2 was required for trimeprazine to increase nuclear Pdx1, islet mass, β cell replication and function, and glucose tolerance in mice. Moreover, trimeprazine synergized with anti-CD3 Abs to reduce the progression of diabetes in NOD mice. Finally, it increased the function of human islet transplants in streptozotocin-induced (STZ-induced) diabetic mice. Thus, trimeprazine, its analogs, or possibly other compounds that increase IRS2 in islets and β cells without adverse systemic effects might provide mechanism-based strategies to prevent the progression of diabetes. PMID:27152363

  9. Noninvasive imaging of islet grafts using positron-emission tomography

    NASA Astrophysics Data System (ADS)

    Lu, Yuxin; Dang, Hoa; Middleton, Blake; Zhang, Zesong; Washburn, Lorraine; Stout, David B.; Campbell-Thompson, Martha; Atkinson, Mark A.; Phelps, Michael; Gambhir, Sanjiv Sam; Tian, Jide; Kaufman, Daniel L.

    2006-07-01

    Islet transplantation offers a potential therapy to restore glucose homeostasis in type 1 diabetes patients. However, islet transplantation is not routinely successful because most islet recipients gradually lose graft function. Furthermore, serological markers of islet function are insensitive to islet loss until the latter stages of islet graft rejection. A noninvasive method of monitoring islet grafts would aid in the assessment of islet graft survival and the evaluation of interventions designed to prolong graft survival. Here, we show that recombinant adenovirus can engineer isolated islets to express a positron-emission tomography (PET) reporter gene and that these islets can be repeatedly imaged by using microPET after transplantation into mice. The magnitude of signal from engineered islets implanted into the axillary cavity was directly related to the implanted islet mass. PET signals attenuated over the following weeks because of the transient nature of adenovirus-mediated gene expression. Because the liver is the preferred site for islet implantation in humans, we also tested whether islets could be imaged after transfusion into the mouse liver. Control studies revealed that both intrahepatic islet transplantation and hyperglycemia altered the biodistribution kinetics of the PET probe systemically. Although transplanted islets were dispersed throughout the liver, clear signals from the liver region of mice receiving PET reporter-expressing islets were detectable for several weeks. Viral transduction, PET reporter expression, and repeated microPET imaging had no apparent deleterious effects on islet function after implantation. These studies lay a foundation for noninvasive quantitative assessments of islet graft survival using PET. diabetes | transplantation

  10. Deficiency in type I interferon signaling prevents the early interferon-induced gene signature in pancreatic islets but not type 1 diabetes in NOD mice.

    PubMed

    Quah, Hong Sheng; Miranda-Hernandez, Socorro; Khoo, Aimee; Harding, Ashley; Fynch, Stacey; Elkerbout, Lorraine; Brodnicki, Thomas C; Baxter, Alan G; Kay, Thomas W H; Thomas, Helen E; Graham, Kate L

    2014-03-01

    Type I interferons (IFNs) have been implicated in the initiation of islet autoimmunity and development of type 1 diabetes. To directly test their involvement, we generated NOD mice deficient in type I IFN receptors (NOD.IFNAR1(-/-)). Expression of the type I IFN-induced genes Mx1, Isg15, Ifit1, Oas1a, and Cxcr4 was detectable in NOD islets as early as 1 week of age. Of these five genes, expression of Isg15, Ifit1, Oas1a, and Mx1 peaked at 3-4 weeks of age, corresponding with an increase in Ifnα mRNA, declined at 5-6 weeks of age, and increased again at 10-14 weeks of age. Increased IFN-induced gene expression was ablated in NOD.IFNAR1(-/-) islets. Loss of Toll-like receptor 2 (TLR2) resulted in reduced islet expression of Mx1 at 2 weeks of age, but TLR2 or TLR9 deficiency did not change the expression of other IFN-induced genes in islets compared with wild-type NOD islets. We observed increased β-cell major histocompatibility complex class I expression with age in NOD and NOD.IFNAR1(-/-) mice. NOD.IFNAR1(-/-) mice developed insulitis and diabetes at a similar rate to NOD controls. These results indicate type I IFN is produced within islets in young mice but is not essential for the initiation and progression of diabetes in NOD mice.

  11. In vivo imaging of pancreatic endocrine islets

    NASA Astrophysics Data System (ADS)

    Villiger, Martin; Goulley, Joan; Pache, Christophe; Friedrich, Michael; Grapin-Botton, Anne; Meda, Paolo; Leitgeb, Rainer; Lasser, Theo

    2009-07-01

    Extended focus optical coherence microscope (xfOCM) circumvents the compromise between lateral resolution and depth of field by us of a Bessel-like illumination beam. The high sensitivity and parallel depth profiling of Fourier domain optical coherence tomography are preserved, and combined with high isotropic resolution of 1.5 - 2 μm. To comply with the requirements for in vivo measurements, beam scanning had to be implemented. We then performed measurements, first of excised pancreas, validated by standard immunohistochemistry, to investigate the structures that can be observed. For a quantitative analysis, a semi-automatic islet detection algorithm evaluated the islet size, position, contrast and homogeneity. The influence of streptozotocin on the signature of the islets was investigated in a next step. Finally, xfOCM was applied to make measurements of the murine pancreas in situ and in vivo, visualizing pancreatic lobules, ducts, blood vessels and individual islets of Langerhans.

  12. The pancreatic islet as a signaling hub.

    PubMed

    Barker, Christopher J; Leibiger, Ingo B; Berggren, Per-Olof

    2013-01-01

    Over the last two decades we have focused on beta cell signal transduction, bringing many new insights, especially in the context of insulin signal transduction, the role of inositol polyphosphates and the regulation of cytoplasmic free Ca(2+) concentration. However, there has been a growing awareness that the beta cell, which is mandatory for insulin secretion, has a unique context within the micro-organ of the pancreatic Islet of Langerhans. In this environment the beta cell both mediates and receives paracrine regulation, critical for the control of blood glucose homeostasis. Failure of an appropriate beta cell function leads to the development of diabetes mellitus. In our quest to understand the molecular events maintaining beta cell function we have faced two key challenges. Firstly, whilst there are many similarities between signal transduction in pancreatic islets between the much used rodent models and humans there are some notable differences. Critical distinctions between rodent and primate can be made in the structure of the islet, including the arrangement of the islet cells, the innervation pattern and the microcirculation. This means that important signaling interactions between islets cells, mediated through for example insulin, glucagon, GABA, glutamate and ATP, will have a unique human framework. The second challenge was to be able to take the discoveries we have made using in vitro systems and examine them in an in vivo context. Advances in in vivo imaging achieved by utilizing the anterior chamber of the eye as a transplantation site for pancreatic islets make it possible for non-invasive, longitudinal studies at single cell resolution in real time of islet cell physiology and pathology. Thus it is becoming possible to study the insulin secreting pancreatic beta cell within the framework of the unique micro-organ, the Islet of Langerhans, for the first time in a physiological context, i.e. when being innervated and connected to the blood supply.

  13. Spontaneous pancreatic islet amyloidosis in 40 baboons.

    PubMed

    Hubbard, G B; Steele, K E; Davis, K J; Leland, M M

    2002-04-01

    Spontaneous amyloidosis occurs in many nonhuman primate species but remains difficult to diagnose and treat. Nonhuman primates continue to offer promise as animal models in which to study amyloidosis in humans. Amyloidosis was not diagnosed clinically but was found histologically in four male and 36 female baboons. The baboons averaged 18 years of age at death (range, 7-28 years). Clinical signs, if present, were hyperglycemia and cachexia. Blood glucose values were elevated in 12 of 30 baboons with available clinical pathology data. Four baboons had been clinically diagnosed as diabetic and three were treated with insulin. Amyloid was found in the islets of Langerhans of the pancreas in 40 baboons; 35 baboons had amyloid only in the islets of Langerhans. Amyloid was found in nonislet tissue of baboons as follows: five, nonislet pancreas; four, intestine and adrenal; three, kidney; two, prostate and spleen; and one each, lymph node, liver, gall bladder, stomach, tongue, urinary bladder, and salivary gland. Sections of paraffin-embedded tissues were evaluated for amyloid with hematoxylin and eosin (HE) and congo red (CR) staining, and using immunohistochemistry for human islet amyloid polypeptide (IAPP), calcitonin gene-related peptide (CGRP), glucagon, pancreatic polypeptide (PP), somatostatin (SS), and porcine insulin. Islet amyloid was positive with HE in 40 baboons, with CR in 39 baboons, and with IAPP and CGRP in 35 baboons. IAPP and CGRP only stained islet amyloid. PP, SS, glucagon, and porcine insulin did not stain amyloid. Islet amyloidosis in the baboon appears to be difficult to diagnose clinically, age-related, and similar to islet amyloidosis in other species. The baboon may be a good model for the study of islet amyloidosis in humans.

  14. HLA Class I Sensitization in Islet Transplant Recipients – Report from the Collaborative Islet Transplant Registry

    PubMed Central

    Naziruddin, Bashoo; Wease, Steve; Stablein, Donald; Barton, Franca B.; Berney, Thierry; Rickels, Michael R.; Alejandro, Rodolfo

    2015-01-01

    Pancreatic islet transplantation is a promising treatment option for patients severely affected with type 1 diabetes. This report from CITR presents pre- and post-transplant human leukocyte antigen (HLA) class I sensitization rates in islet alone transplantation. Data came from 303 recipients transplanted with islet alone between January 1999 and December 2008. HLA class I sensitization was determined by the presence of anti-HLA class I antibodies. Panel-reactive antibodies (PRA) from prior to islet infusion and at 6 months, and yearly post-transplant was correlated to measures of islet graft failure. The cumulative number of mismatched HLA alleles increased with each additional islet infusion from a median of 3 for one infusion to 9 for three infusions. Pre-transplant PRA was not predictive of islet graft failure. However, development of PRA ≥20% post-transplant was associated with 3.6 fold (p=.001) increased hazard ratio for graft failure. Patients with complete graft loss who had discontinued immunosuppression had significantly higher rate of PRA ≥ 20% compared to those with functioning grafts who remained on immunosuppression. Exposure to repeat HLA class I mismatch at second or third islet infusions resulted in less frequent development of de novo HLA class I antibodies when compared to increased class I mismatch. The development of HLA class I antibodies while on immunosuppression is associated with subsequent islet graft failure. The risk of sensitization may be reduced by minimizing the number of islet donors used per recipient, and in the absence of donor-specific anti-HLA antibodies, repeating HLA class I mismatches with subsequent islet infusions. PMID:22080832

  15. Sitagliptin decreases ventricular arrhythmias by attenuated glucose-dependent insulinotropic polypeptide (GIP)-dependent resistin signalling in infarcted rats

    PubMed Central

    Lee, Tsung-Ming; Chen, Wei-Ting; Chang, Nen-Chung

    2016-01-01

    Myocardial infarction (MI) was associated with insulin resistance, in which resistin acts as a critical mediator. We aimed to determine whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, can attenuate arrhythmias by regulating resistin-dependent nerve growth factor (NGF) expression in postinfarcted rats. Normoglycaemic male Wistar rats after ligating coronary artery were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after operation. Post-infarction was associated with increased myocardial noradrenaline [norepinephrine (NE)] levels and sympathetic hyperinnervation. Compared with vehicle, sympathetic innervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis of tyrosine hydroxylase, growth-associated factor 43 and neurofilament and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Furthermore, sitagliptin was associated with reduced resistin expression and increased Akt activity. Ex vivo studies showed that glucose-dependent insulinotropic polypeptide (GIP) infusion, but not glucagon-like peptide-1 (GLP-1), produced similar reduction in resistin levels to sitagliptin in postinfarcted rats. Furthermore, the attenuated effects of sitagliptin on NGF levels can be reversed by wortmannin (a phosphatidylinositol 3-kinase antagonist) and exogenous resistin infusion. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation in the non-diabetic infarcted rats. Sitagliptin attenuated resistin expression via the GIP-dependent pathway, which inhibited sympathetic innervation through a signalling pathway involving phosphatidylinositol 3-kinase (PI3K) and Akt protein. PMID:26811539

  16. Sitagliptin decreases ventricular arrhythmias by attenuated glucose-dependent insulinotropic polypeptide (GIP)-dependent resistin signalling in infarcted rats.

    PubMed

    Lee, Tsung-Ming; Chen, Wei-Ting; Chang, Nen-Chung

    2016-01-01

    Myocardial infarction (MI) was associated with insulin resistance, in which resistin acts as a critical mediator. We aimed to determine whether sitagliptin, a dipeptidyl peptidase-4 (DPP-4) inhibitor, can attenuate arrhythmias by regulating resistin-dependent nerve growth factor (NGF) expression in postinfarcted rats. Normoglycaemic male Wistar rats after ligating coronary artery were randomized to either vehicle or sitagliptin for 4 weeks starting 24 h after operation. Post-infarction was associated with increased myocardial noradrenaline [norepinephrine (NE)] levels and sympathetic hyperinnervation. Compared with vehicle, sympathetic innervation was blunted after administering sitagliptin, as assessed by immunofluorescent analysis of tyrosine hydroxylase, growth-associated factor 43 and neurofilament and western blotting and real-time quantitative RT-PCR of NGF. Arrhythmic scores in the sitagliptin-treated infarcted rats were significantly lower than those in vehicle. Furthermore, sitagliptin was associated with reduced resistin expression and increased Akt activity. Ex vivo studies showed that glucose-dependent insulinotropic polypeptide (GIP) infusion, but not glucagon-like peptide-1 (GLP-1), produced similar reduction in resistin levels to sitagliptin in postinfarcted rats. Furthermore, the attenuated effects of sitagliptin on NGF levels can be reversed by wortmannin (a phosphatidylinositol 3-kinase antagonist) and exogenous resistin infusion. Sitagliptin protects ventricular arrhythmias by attenuating sympathetic innervation in the non-diabetic infarcted rats. Sitagliptin attenuated resistin expression via the GIP-dependent pathway, which inhibited sympathetic innervation through a signalling pathway involving phosphatidylinositol 3-kinase (PI3K) and Akt protein. PMID:26811539

  17. Pancreatic Islet Cell Development and Regeneration

    PubMed Central

    Romer, Anthony I.; Sussel, Lori

    2015-01-01

    Purpose This review will discuss recent advances in understanding mouse and human pancreatic islet cell development, novel concepts related to β cell dysfunction and improved approaches for replenishing β cells to treat diabetes. Recent Findings Considerable knowledge about pancreatic islet development and function has been gained using model systems with subsequent validation in human tissues. Recently, several rodent studies have revealed that differentiated adult islet cells retain remarkable plasticity and can be converted to other islet cell types by perturbing their transcription factor profiles. Furthermore, significant advances have been made in the generation of β-like cells from stem cell populations. Therefore, the generation of functionally mature β cells by the in situ conversion of non-β cell populations or by the directed differentiation of human pluripotent stem cells could represent novel mechanisms for replenishing β cells in diabetic patients. Summary The overall conservation between mouse and human pancreatic development, islet physiology and etiology of diabetes encourages the translation of novel β cell replacement therapies to humans. Further deciphering the molecular mechanisms that direct islet cell regeneration, plasticity and function could improve and expand the β cell replacement strategies for treating diabetes. PMID:26087337

  18. Necessities for a Clinical Islet Program.

    PubMed

    Hawthorne, Wayne J

    2016-01-01

    For more than two decades we have been refining advances in islet cell transplantation as a clinical therapy for patients suffering from type 1 diabetes. A great deal of effort has gone to making this a viable therapy for a broader range of patients with type 1 diabetes. Clinical results have progressively improved, demonstrating clinical outcomes on par with other organ transplants, specifically in terms of insulin independence, graft and patient survival. We are now at the point where islet cell transplantation, in the form of allotransplantation, has become accepted as a clinical therapy in adult patients affected by type 1 diabetes, in particular those suffering from severe hypoglycaemic unawareness. This chapter provides an overview on how this has been undertaken over the years to provide outcomes on par with other organ transplantation results. In particular this chapter focuses on the processes and facilities that are required to establish a clinical islet isolation and transplantation program. It also outlines the very important underpinning processes of selection of the organ donor for islet isolation, the processes of organ donor operation and preservation of the pancreas by various means and the ideal ways to best improve outcomes for human islet cell isolation. Providing these more optimal conditions we can underpin the isolation processes to provide islets for transplantation and as such a safe, effective and feasible therapeutic option for an increasing number of patients suffering from type 1 diabetes with severe hypoglycaemic unawareness. PMID:27586423

  19. Justifying clinical trials for porcine islet xenotransplantation.

    PubMed

    Ellis, Cara E; Korbutt, Gregory S

    2015-01-01

    The development of the Edmonton Protocol encouraged a great deal of optimism that a cell-based cure for type I diabetes could be achieved. However, donor organ shortages prevent islet transplantation from being a widespread solution as the supply cannot possibly equal the demand. Porcine islet xenotransplantation has the potential to address these shortages, and recent preclinical and clinical trials show promising scientific support. Consequently, it is important to consider whether the current science meets the ethical requirements for moving toward clinical trials. Despite the potential risks and the scientific unknowns that remain to be investigated, there is optimism regarding the xenotransplantation of some types of tissue, and enough evidence has been gathered to ethically justify clinical trials for the most safe and advanced area of research, porcine islet transplantation. Researchers must make a concerted effort to maintain a positive image for xenotransplantation, as a few well-publicized failed trials could irrevocably damage public perception of xenotransplantation. Because all of society carries the burden of risk, it is important that the public be involved in the decision to proceed. As new information from preclinical and clinical trials develops, policy decisions should be frequently updated. If at any point evidence shows that islet xenotransplantation is unsafe, then clinical trials will no longer be justified and they should be halted. However, as of now, the expected benefit of an unlimited supply of islets, combined with adequate informed consent, justifies clinical trials for islet xenotransplantation.

  20. Is Dynamic Autocrine Insulin Signaling Possible? A Mathematical Model Predicts Picomolar Concentrations of Extracellular Monomeric Insulin within Human Pancreatic Islets

    PubMed Central

    Wang, Minghu; Li, Jiaxu; Lim, Gareth E.; Johnson, James D.

    2013-01-01

    Insulin signaling is essential for -cell survival and proliferation in vivo. Insulin also has potent mitogenic and anti-apoptotic actions on cultured -cells, with maximum effect in the high picomolar range and diminishing effect at high nanomolar doses. In order to understand whether these effects of insulin are constitutive or can be subjected to physiological modulation, it is essential to estimate the extracellular concentration of monomeric insulin within an intact islet. Unfortunately, the in vivo concentration of insulin monomers within the islet cannot be measured directly with current technology. Here, we present the first mathematical model designed to estimate the levels of monomeric insulin within the islet extracellular space. Insulin is released as insoluble crystals that exhibit a delayed dissociation into hexamers, dimers, and eventually monomers, which only then can act as signaling ligands. The rates at which different forms of insulin dissolve in vivo have been estimated from studies of peripheral insulin injection sites. We used this and other information to formulate a mathematical model to estimate the local insulin concentration within a single islet as a function of glucose. Model parameters were estimated from existing literature. Components of the model were validated using experimental data, if available. Model analysis predicted that the majority of monomeric insulin in the islet is that which has been returned from the periphery, and the concentration of intra-islet monomeric insulin varies from 50–300 pM when glucose is in the physiological range. Thus, our results suggest that the local concentration of monomeric insulin within the islet is in the picomolar ‘sweet spot’ range of insulin doses that activate the insulin receptor and have the most potent effects on -cells in vitro. Together with experimental data, these estimations support the concept that autocrine/paracrine insulin signalling within the islet is dynamic, rather

  1. Cathelicidin Antimicrobial Peptide: A Novel Regulator of Islet Function, Islet Regeneration, and Selected Gut Bacteria.

    PubMed

    Pound, Lynley D; Patrick, Christopher; Eberhard, Chandra E; Mottawea, Walid; Wang, Gen-Sheng; Abujamel, Turki; Vandenbeek, Roxanne; Stintzi, Alain; Scott, Fraser W

    2015-12-01

    Cathelicidin antimicrobial peptide (CAMP) is a naturally occurring secreted peptide that is expressed in several organs with pleiotropic roles in immunomodulation, wound healing, and cell growth. We previously demonstrated that gut Camp expression is upregulated when type 1 diabetes-prone rats are protected from diabetes development. Unexpectedly, we have also identified novel CAMP expression in the pancreatic β-cells of rats, mice, and humans. CAMP was present even in sterile rat embryo islets, germ-free adult rat islets, and neogenic tubular complexes. Camp gene expression was downregulated in young BBdp rat islets before the onset of insulitis compared with control BBc rats. CAMP treatment of dispersed islets resulted in a significant increase in intracellular calcium mobilization, an effect that was both delayed and blunted in the absence of extracellular calcium. Additionally, CAMP treatment promoted insulin and glucagon secretion from isolated rat islets. Thus, CAMP is a promoter of islet paracrine signaling that enhances islet function and glucoregulation. Finally, daily treatment with the CAMP/LL-37 peptide in vivo in BBdp rats resulted in enhanced β-cell neogenesis and upregulation of potentially beneficial gut microbes. In particular, CAMP/LL-37 treatment shifted the abundance of specific bacterial populations, mitigating the gut dysbiosis observed in the BBdp rat. Taken together, these findings indicate a novel functional role for CAMP/LL-37 in islet biology and modification of gut microbiota. PMID:26370175

  2. The role of islet neogenesis-associated protein (INGAP) in islet neogenesis.

    PubMed

    Lipsett, Mark; Hanley, Stephen; Castellarin, Mauro; Austin, Emily; Suarez-Pinzon, Wilma L; Rabinovitch, Alex; Rosenberg, Lawrence

    2007-01-01

    Islet Neogenesis-Associated Protein (INGAP) is a member of the Reg family of proteins implicated in various settings of endogenous pancreatic regeneration. The expression of INGAP and other RegIII proteins has also been linked temporally and spatially with the induction of islet neogenesis in animal models of disease and regeneration. Furthermore, administration of a peptide fragment of INGAP (INGAP peptide) has been demonstrated to reverse chemically induced diabetes as well as improve glycemic control and survival in an animal model of type 1 diabetes. Cultured human pancreatic tissue has also been shown to be responsive to INGAP peptide, producing islet-like structures with function, architecture and gene expression matching that of freshly isolated islets. Likewise, studies in normoglycemic animals show evidence of islet neogenesis. Finally, recent clinical studies suggest an effect of INGAP peptide to improve insulin production in type 1 diabetes and glycemic control in type 2 diabetes.

  3. Enumeration of islets by nuclei counting and light microscopic analysis.

    PubMed

    Pisania, Anna; Papas, Klearchos K; Powers, Daryl E; Rappel, Michael J; Omer, Abdulkadir; Bonner-Weir, Susan; Weir, Gordon C; Colton, Clark K

    2010-11-01

    Islet enumeration in impure preparations by conventional dithizone staining and visual counting is inaccurate and operator dependent. We examined nuclei counting for measuring the total number of cells in islet preparations, and we combined it with morphological analysis by light microscopy (LM) for estimating the volume fraction of islets in impure preparations. Cells and islets were disrupted with lysis solution and shear, and accuracy of counting successively diluted nuclei suspensions was verified with (1) visual counting in a hemocytometer after staining with crystal violet, and automatic counting by (2) aperture electrical resistance measurement and (3) flow cytometer measurement after staining with 7-aminoactinomycin-D. DNA content averaged 6.5 and 6.9 pg of DNA per cell for rat and human islets, respectively, in agreement with literature estimates. With pure rat islet preparations, precision improved with increasing counts, and samples with about ≥160 islets provided a coefficient of variation of about 6%. Aliquots of human islet preparations were processed for LM analysis by stereological point counting. Total nuclei counts and islet volume fraction from LM analysis were combined to obtain the number of islet equivalents (IEs). Total number of IE by the standard method of dithizone staining/manual counting was overestimated by about 90% compared with LM/nuclei counting for 12 freshly isolated human islet research preparations. Nuclei counting combined with islet volume fraction measurements from LM is a novel method for achieving accurate islet enumeration. PMID:20697375

  4. Seven consecutive successful clinical islet isolations with pancreatic ductal injection.

    PubMed

    Matsumoto, Shinichi; Noguichi, Hirofumi; Shimoda, Masayuki; Ikemoto, Tetsuya; Naziruddin, Bashoo; Jackson, Andrew; Tamura, Yoshiko; Olson, Greg; Fujita, Yasutaka; Chujo, Daisuke; Takita, Morihito; Kobayashi, Naoya; Onaca, Nicholas; Levy, Marlon

    2010-01-01

    Inconsistent islet isolation is one of the issues of clinical islet transplantation. In the current study, we applied ductal injection to improve the consistency of islet isolation. Seven islet isolations were performed with the ductal injection of ET-Kyoto solution (DI group) and eight islet isolations were performed without the ductal injection (standard group) using brain-dead donor pancreata. Isolated islets were evaluated based on the Edmonton protocol for transplantation. The DI group had significantly higher islet yields (588,566 +/- 64,319 vs. 354,836 +/- 89,649 IE, p < 0.01) and viability (97.3 +/- 1.2% vs. 92.6 +/- 1.2%, p < 0.02) compared with the standard group. All seven isolated islet preparations in the DI group (100%), versus only three out of eight isolated islet preparations (38%) in the standard group met transplantation criteria. The islets from the DI group were transplanted into three type 1 diabetic patients and all three patients became insulin independent. Ductal injection significantly improved quantity and quality of isolated islets and resulted in high success rate of clinical islet transplantation. This simple modification will reduce the risk of failure of clinical islet isolation.

  5. Islet Oxygen Consumption Rate (OCR) Dose Predicts Insulin Independence in Clinical Islet Autotransplantation

    PubMed Central

    Papas, Klearchos K.; Bellin, Melena D.; Sutherland, David E. R.; Suszynski, Thomas M.; Kitzmann, Jennifer P.; Avgoustiniatos, Efstathios S.; Gruessner, Angelika C.; Mueller, Kathryn R.; Beilman, Gregory J.; Balamurugan, Appakalai N.; Loganathan, Gopalakrishnan; Colton, Clark K.; Koulmanda, Maria; Weir, Gordon C.; Wilhelm, Josh J.; Qian, Dajun; Niland, Joyce C.; Hering, Bernhard J.

    2015-01-01

    Background Reliable in vitro islet quality assessment assays that can be performed routinely, prospectively, and are able to predict clinical transplant outcomes are needed. In this paper we present data on the utility of an assay based on cellular oxygen consumption rate (OCR) in predicting clinical islet autotransplant (IAT) insulin independence (II). IAT is an attractive model for evaluating characterization assays regarding their utility in predicting II due to an absence of confounding factors such as immune rejection and immunosuppressant toxicity. Methods Membrane integrity staining (FDA/PI), OCR normalized to DNA (OCR/DNA), islet equivalent (IE) and OCR (viable IE) normalized to recipient body weight (IE dose and OCR dose), and OCR/DNA normalized to islet size index (ISI) were used to characterize autoislet preparations (n = 35). Correlation between pre-IAT islet product characteristics and II was determined using receiver operating characteristic analysis. Results Preparations that resulted in II had significantly higher OCR dose and IE dose (p<0.001). These islet characterization methods were highly correlated with II at 6–12 months post-IAT (area-under-the-curve (AUC) = 0.94 for IE dose and 0.96 for OCR dose). FDA/PI (AUC = 0.49) and OCR/DNA (AUC = 0.58) did not correlate with II. OCR/DNA/ISI may have some utility in predicting outcome (AUC = 0.72). Conclusions Commonly used assays to determine whether a clinical islet preparation is of high quality prior to transplantation are greatly lacking in sensitivity and specificity. While IE dose is highly predictive, it does not take into account islet cell quality. OCR dose, which takes into consideration both islet cell quality and quantity, may enable a more accurate and prospective evaluation of clinical islet preparations. PMID:26258815

  6. General Information about Pancreatic Neuroendocrine Tumors (Islet Cell Tumors)

    MedlinePlus

    ... Islet Cell Tumors) Treatment (PDQ®)–Patient Version General Information About Pancreatic Neuroendocrine Tumors (Islet Cell Tumors) Go ... the PDQ Adult Treatment Editorial Board . Clinical Trial Information A clinical trial is a study to answer ...

  7. Protein phosphatases in pancreatic islets

    PubMed Central

    Ortsäter, Henrik; Grankvist, Nina; Honkanen, Richard E.; Sjöholm1, Åke

    2014-01-01

    The prevalence of diabetes is increasing rapidly world-wide. A cardinal feature of most forms of diabetes is the lack of insulin-producing capability, due to the loss of insulin-producing β-cells, impaired glucose-sensitive insulin secretion from the β-cell, or a combination thereof, the reasons for which largely remain elusive. Reversible phosphorylation is an important and versatile mechanism for regulating the biological activity of many intracellular proteins, which, in turn, controls a variety of cellular functions. For instance, significant changes in protein kinase activities and in protein phosphorylation patterns occur subsequent to stimulation of insulin release by glucose. Therefore, the molecular mechanisms regulating phosphorylation of proteins involved in the insulin secretory process by the β-cell have been extensively investigated. However, far less is known about the role and regulation of protein dephosphorylation by various protein phosphatases. Herein we review extant data implicating serine/threonine and tyrosine phosphatases in various aspects of healthy and diabetic islet biology, ranging from control of hormonal stimulus-secretion coupling to mitogenesis and apoptosis. PMID:24681827

  8. Historical Background of Pancreatic Islet Isolation.

    PubMed

    Ramírez-Domínguez, Miriam

    2016-01-01

    Until the discovery of insulin in the twentieth century, diabetes mellitus was a mortal disease with an unclear origin and physiology. Despite the appearance of the concept in an Egyptian papyrus dated c.1550 BC, and the documentation of its study by ancient Chinese, the term "diabetes" was only coined by the Greek Aretaeus in the second century AD. In Europe, the study of diabetes was largely ignored until the seventeenth century, when the characteristic sweet flavor of diabetic urine was first described. However, the link between diabetes and the pancreas was not discovered until 1889 by Minkowski and von Mering, long after the first description of the pancreatic islets by Paul Langerhans in 1869. One of the most significant milestones in the field was the discovery of insulin by Banting and collaborators in 1922, which led to the therapeutic development of insulin administration as a life-saving intervention for type 1 diabetic patients. On the other hand, the isolation of islets was first reported by Bensley in 1911, a critical technical achievement that paved the way for clinical islet transplantation. Here we discuss the history of islet isolation, since the firsts studies of diabetes by ancient civilizations to the birth and parallel evolution of islet isolation and transplantation. PMID:27586418

  9. Islet distribution of Peptide YY and its regulatory role in primary mouse islets and immortalised rodent and human beta-cell function and survival.

    PubMed

    Khan, Dawood; Vasu, Srividya; Moffett, R Charlotte; Irwin, Nigel; Flatt, Peter R

    2016-11-15

    Recent evidence suggests that the classic gut peptide, Peptide YY (PYY), could play a fundamental role in endocrine pancreatic function. In the present study expression of PYY and its NPY receptors on mouse islets and immortalised rodent and human beta-cells was examined together with the effects of both major circulating forms of PYY, namely PYY(1-36) and PYY(3-36), on beta-cell function, murine islet adaptions to insulin deficiency/resistance, as well as direct effects on cultured beta-cell proliferation and apoptosis. In vivo administration of PYY(3-36), but not PYY(1-36), markedly (p < 0.05) decreased food intake in overnight fasted mice. Neither form of PYY affected glucose disposal or insulin secretion following an i.p. glucose challenge. However, in vitro, PYY(1-36) and PYY(3-36) inhibited (p < 0.05 to p < 0.001) glucose, alanine and GLP-1 stimulated insulin secretion from immortalised rodent and human beta-cells, as well as isolated mouse islets, by impeding alterations in membrane potential, [Ca(2+)]i and elevations of cAMP. Mice treated with multiple low dose streptozotocin presented with severe (p < 0.01) loss of beta-cell mass accompanied by notable increases (p < 0.001) in alpha and PP cell numbers. In contrast, hydrocortisone-induced insulin resistance increased islet number (p < 0.01) and beta-cell mass (p < 0.001). PYY expression was consistently observed in alpha-, PP- and delta-, but not beta-cells. Streptozotocin decreased islet PYY co-localisation with PP (p < 0.05) and somatostatin (p < 0.001), whilst hydrocortisone increased PYY co-localisation with glucagon (p < 0.05) in mice. More detailed in vitro investigations revealed that both forms of PYY augmented (p < 0.05 to p < 0.01) immortalised human and rodent beta-cell proliferation and protected against streptozotocin-induced cytotoxicity, to a similar or superior extent as the well characterised beta-cell proliferative and anti-apoptotic agent GLP-1. Taken together

  10. Macroporous Three Dimensional PDMS Scaffolds for Extrahepatic Islet Transplantation

    PubMed Central

    Pedraza, Eileen; Brady, Ann-Christina; Fraker, Christopher A.; Molano, R. Damaris; Sukert, Steven; Berman, Dora M.; Kenyon, Norma S.; Pileggi, Antonello; Ricordi, Camillo; Stabler, Cherie L.

    2015-01-01

    Clinical islet transplantation has demonstrated success in treating type 1 diabetes. A current limitation is the intrahepatic portal vein transplant site, which is prone to mechanical stress and inflammation. Transplantation of pancreatic islets into alternative sites is preferable, but challenging, as it may require a three-dimensional vehicle to confer mechanical protection and to confine islets to a well-defined, retrievable space where islet neovascularization can occur. We have fabricated biostable, macroporous scaffolds from poly(dimethylsiloxane) (PDMS) and investigated islet retention and distribution, metabolic function, and glucose-dependent insulin secretion within these materials. Islets from multiple sources, including rodents, non-human primates, and humans, were tested in vitro. We observed high islet retention and distribution within PDMS scaffolds, with retention of small islets (< 100 µm) improved through the post-loading addition of fibrin gel. Islets loaded within PDMS scaffolds exhibited viability and function comparable to standard culture conditions when incubated under normal oxygen tensions, but displayed improved viability compared to standard two-dimensional culture controls under low oxygen tensions. In vivo efficacy of scaffolds to support islet grafts was evaluated after transplantation in the omental pouch of chemically-induced diabetic syngeneic rats, which promptly achieved normoglycemia. Collectively, these results are promising in that they indicate the potential for transplanting islets into a clinically relevant, extrahepatic site that provides spatial distribution of islets, as well as intra-device vascularization. PMID:23031502

  11. Glucose cycling in islets from healthy and diabetic rats

    SciTech Connect

    Khan, A.; Chandramouli, V.; Ostenson, C.G.; Loew, H.L.; Landau, B.R.; Efendic, S. )

    1990-04-01

    Pancreatic islets from healthy (control) and neonatally streptozocin-induced diabetic (STZ-D) rats, a model for non-insulin-dependent diabetes mellitus, were incubated with {sup 3}H{sub 2}O and 5.5 or 16.7 mM glucose. At 5.5 mM glucose, no detectable ({sup 3}H)glucose was formed. At 16.7 mM, 2.2 patom.islet-1.h-1 of {sup 3}H was incorporated into glucose by the control islets and 5.4 patom.islet-1.h-1 by STZ-D islets. About 75% of the {sup 3}H was bound to carbon-2 of the glucose. Glucose utilization was 35.3 pmol.islet-1.h-1 by the control and 19.0 pmol.islet-1.h-1 by the STZ-D islets. Therefore, 4.5% of the glucose-6-phosphate formed by the control islets and 15.7% by the STZ-D islets was dephosphorylated. This presumably occurred in the beta-cells of the islets catalyzed by glucose-6-phosphatase. An increased glucose cycling, i.e., glucose----glucose-6-phosphate----glucose, in islets of STZ-D rats may contribute to the decreased insulin secretion found in these animals.

  12. Determination of the specific interaction between sulfonylurea-incorporated polymer and rat islets.

    PubMed

    Park, Keun-Hong; Song, Soo Chang; Akaike, Toshihiro

    2002-03-01

    A SU derivative, mimicking glibenclamide in chemical structure, was synthesized to incorporate it into a water-soluble polymeric backbone as a biospecific and stimulating polymer for insulin secretion. The ability of insulin secretion was examined with different glucose concentrations (3.3 and 11.6 mM). Although the vinylated SU did not exhibit significant activity compared to the control, the SU-incorporated copolymer could enhance insulin secretion as much as or more than glibenclamide did. In this study, a polymer fluorescence-labeled with rodamine-B isothiocyanate was used to visualize the interactions and we found that the labeled polymer was strongly absorbed to rat islets, probably due to its specific interaction mediated by SU receptors on the cell membrane. To verify the specific interaction between the SU (K+ channel closer)-incorporated copolymer and rat islets, cells were pretreated with diazoxide, an agonist of ATP-sensitive K+ channels (K+ channel opener), before adding the incorporated polymer to the cell culture medium. This treatment suppressed the action of SUs on rat islets. A confocal laser microscopic study further confirmed this interaction. The results of this study provided evidence that the SU-incorporated copolymer stimulates insulin secretion through specific interactions of SU moieties in the polymer with rat islets.

  13. Plasma glucose kinetics and response of insulin and GIP following a cereal breakfast in female subjects: effect of starch digestibility

    PubMed Central

    Péronnet, F; Meynier, A; Sauvinet, V; Normand, S; Bourdon, E; Mignault, D; St-Pierre, D H; Laville, M; Rabasa-Lhoret, R; Vinoy, S

    2015-01-01

    Background/Objectives: Foods with high contents of slowly digestible starch (SDS) elicit lower glycemic responses than foods with low contents of SDS but there has been debate on the underlying changes in plasma glucose kinetics, that is, respective contributions of the increase in the rates of appearance and disappearance of plasma glucose (RaT and RdT), and of the increase in the rate of appearance of exogenous glucose (RaE) and decrease in endogenous glucose production (EGP). Subjects/Methods: Sixteen young healthy females ingested in random order four types of breakfasts: an extruded cereal (0.3% SDS: Lo-SDS breakfast) or one of three biscuits (39–45% SDS: Hi-SDS breakfasts). The flour in the cereal products was labeled with 13C, and plasma glucose kinetics were measured using [6,6-2H2]glucose infusion, along with the response of plasma glucose, insulin and glucose-dependent insulinotropic peptide (GIP) concentrations. Results: When compared with the Lo-SDS breakfast, after the three Hi-SDS breakfasts, excursions in plasma glucose, the response of RaE, RaT and RdT, and the reduction in EGP were significantly lower (P<0.05). The amount of exogenous glucose absorbed over the 4.5-h postprandial period was also significantly lower by ~31% (P<0.001). These differences were associated with lower responses of GIP and insulin concentrations. Conclusions: Substituting extruded cereals with biscuits slows down the availability of glucose from the breakfast and its appearance in peripheral circulation, blunts the changes in plasma glucose kinetics and homeostasis, reduces excursions in plasma glucose, and possibly distributes the glucose ingested over a longer period following the meal. PMID:25852025

  14. Cell permeable peptide of JNK inhibitor prevents islet apoptosis immediately after isolation and improves islet graft function.

    PubMed

    Noguchi, Hirofumi; Nakai, Yusuke; Matsumoto, Shinichi; Kawaguchi, Miho; Ueda, Michiko; Okitsu, Teru; Iwanaga, Yasuhiro; Yonekawa, Yukihide; Nagata, Hideo; Minami, Kohtaro; Masui, Yumi; Futaki, Shiroh; Tanaka, Koichi

    2005-08-01

    Although application of the Edmonton protocol has markedly improved outcomes for pancreatic islet transplantation, the insulin independence rate after islet transplantation from one donor pancreas has proven to remain low. During the isolation process and subsequent clinical transplantation, islets are subjected to severe adverse conditions that impair survival and ultimately contribute to graft failure. Pancreas preservation with the two-layer method (TLM) has proven to improve transplant results by protecting isolated islets against apoptosis through the mitochondrial pathway. However, pancreas storage with TLM cannot protect against activation of c-Jun NH2-terminal kinase (JNK) in isolated islets. This study investigated whether delivery of a JNK inhibitory peptide (JNKI) via the protein transduction system can prevent apoptosis of islet cells immediately after isolation. For efficient delivery of the (JNKI into isolated islets, we synthesized JNKI as a C-terminal fusion peptide with the 11-arginine protein transduction domain (11R-JNKI). 11R efficiently delivered the JNKI into isolated islets and 11R-JNKI prevented islet apoptosis immediately after isolation and improved islet graft function. These findings suggest that peptide drugs could be useful for the prevention of the impairment of islet cells and lead to improvement in the outcomes for pancreatic islet transplantation.

  15. Pancreatic Islets: Methods for Isolation and Purification of Juvenile and Adult Pig Islets.

    PubMed

    Brandhorst, Heide; Johnson, Paul R V; Brandhorst, Daniel

    2016-01-01

    The current situation of organ transplantation is mainly determined by the disbalance between the number of available organs and the number of patients on the waiting list. This obvious dilemma might be solved by the transplantation of porcine organs into human patients. The metabolic similarities which exist between both species made pancreatic islets of Langerhans to that donor tissue which will be most likely transplanted in human recipients. Nevertheless, the successful isolation of significant yields of viable porcine islets is extremely difficult and requires extensive experiences in the field. This review is focussing on the technical challenges, pitfalls and particularities that are associated with the isolation of islets from juvenile and adult pigs considering donor variables that can affect porcine islet isolation outcome.

  16. Pancreatic Islets: Methods for Isolation and Purification of Juvenile and Adult Pig Islets.

    PubMed

    Brandhorst, Heide; Johnson, Paul R V; Brandhorst, Daniel

    2016-01-01

    The current situation of organ transplantation is mainly determined by the disbalance between the number of available organs and the number of patients on the waiting list. This obvious dilemma might be solved by the transplantation of porcine organs into human patients. The metabolic similarities which exist between both species made pancreatic islets of Langerhans to that donor tissue which will be most likely transplanted in human recipients. Nevertheless, the successful isolation of significant yields of viable porcine islets is extremely difficult and requires extensive experiences in the field. This review is focussing on the technical challenges, pitfalls and particularities that are associated with the isolation of islets from juvenile and adult pigs considering donor variables that can affect porcine islet isolation outcome. PMID:27586421

  17. Microwell Scaffolds for the Extrahepatic Transplantation of Islets of Langerhans

    PubMed Central

    Buitinga, Mijke; Truckenmüller, Roman; Engelse, Marten A.; Moroni, Lorenzo; Ten Hoopen, Hetty W. M.; van Blitterswijk, Clemens A.; de Koning, Eelco JP.; van Apeldoorn, Aart A.; Karperien, Marcel

    2013-01-01

    Allogeneic islet transplantation into the liver has the potential to restore normoglycemia in patients with type 1 diabetes. However, the suboptimal microenvironment for islets in the liver is likely to be involved in the progressive islet dysfunction that is often observed post-transplantation. This study validates a novel microwell scaffold platform to be used for the extrahepatic transplantation of islet of Langerhans. Scaffolds were fabricated from either a thin polymer film or an electrospun mesh of poly(ethylene oxide terephthalate)-poly(butylene terephthalate) (PEOT/PBT) block copolymer (composition: 4000PEOT30PBT70) and were imprinted with microwells, ∼400 µm in diameter and ∼350 µm in depth. The water contact angle and water uptake were 39±2° and 52.1±4.0 wt%, respectively. The glucose flux through electrospun scaffolds was three times higher than for thin film scaffolds, indicating enhanced nutrient diffusion. Human islets cultured in microwell scaffolds for seven days showed insulin release and insulin content comparable to those of free-floating control islets. Islet morphology and insulin and glucagon expression were maintained during culture in the microwell scaffolds. Our results indicate that the microwell scaffold platform prevents islet aggregation by confinement of individual islets in separate microwells, preserves the islet’s native rounded morphology, and provides a protective environment without impairing islet functionality, making it a promising platform for use in extrahepatic islet transplantation. PMID:23737999

  18. Pancreatic islet cell therapy for type I diabetes: understanding the effects of glucose stimulation on islets in order to produce better islets for transplantation.

    PubMed

    Ren, Jiaqiang; Jin, Ping; Wang, Ena; Liu, Eric; Harlan, David M; Li, Xin; Stroncek, David F

    2007-01-01

    While insulin replacement remains the cornerstone treatment for type I diabetes mellitus (T1DM), the transplantation of pancreatic islets of Langerhans has the potential to become an important alternative. And yet, islet transplant therapy is limited by several factors, including far too few donor pancreases. Attempts to expand mature islets or to produce islets from stem cells are far from clinical application. The production and expansion of the insulin-producing cells within the islet (so called beta cells), or even creating cells that secrete insulin under appropriate physiological control, has proven difficult. The difficulty is explained, in part, because insulin synthesis and release is complex, unique, and not entirely characterized. Understanding beta-cell function at the molecular level will likely facilitate the development of techniques to manufacture beta-cells from stem cells. We will review islet transplantation, as well as the mechanisms underlying insulin transcription, translation and glucose stimulated insulin release. PMID:17201925

  19. The use of continuous density gradients for the assessment of islet and exocrine tissue densities and islet purification.

    PubMed

    Robertson, G S; Chadwick, D R; Contractor, H; James, R F; Bell, P R; London, N J

    1993-01-01

    The purification of large numbers of human pancreatic islets remains one of the limiting factors in islet transplantation. This paper describes and validates a method for accurately and reproducibly determining the density of islets and exocrine tissue in pancreatic digest on the basis of their isopycnic distribution on linear continuous density gradients. The use of this data to analyse and compare the purity of a standard 60% islet yield is described. The results obtained using such gradients will enable factors responsible for the variation in yield between pancreases to be determined and optimized, improving the results and reliability of islet purification. PMID:8111080

  20. Pancreatic Ductal Perfusion at Organ Procurement Enhances Islet Yield in Human Islet Isolation

    PubMed Central

    Shimoda, Masayuki; Kanak, Mazhar A.; Shahbazov, Rauf; Kunnathodi, Faisal; Lawrence, Michael C.; Naziruddin, Bashoo; Levy, Marlon F.

    2015-01-01

    Objective Pancreas preservation is a major factor influencing the results of islet cell transplantation. This study evaluated the effects of two different solutions for pancreatic ductal perfusion (PDP) at organ procurement. Methods Eighteen human pancreases were assigned to three groups: non-PDP (control), PDP with ET-Kyoto solution, and PDP with cold storage/purification stock solution. Pancreatic islets were isolated according to the modified Ricordi method. Results No significant differences in donor characteristics, including cold ischemia time, were observed between the three groups. All islet isolations in the PDP groups had >400,000 IEQ in total islet yield post-purification, a significant increase when compared with the control (P = 0.04 and <0.01). The islet quality assessments—including an in vivo diabetic nude mice assay and the response of high-mobility group box protein 1 to cytokine stimulation—also showed no significant differences. The proportion of TUNEL-positive cells showing apoptosis in islets in the PDP groups was significantly lower than in the control group (P < 0.05). Conclusion Both ET-Kyoto solution and cold storage/purification stock solution are suitable for PDP and consistently resulted in isolation success. Further studies with a larger number of pancreas donors should be done to compare the effects of the PDP solutions. PMID:25058879

  1. Immune tolerance in pancreatic islet xenotransplantation

    PubMed Central

    Tang, Tian-Hua; Li, Chun-Lin; Li, Xin; Jiang, Feng-Qin; Zhang, Yu-Kun; Ren, Hai-Quan; Su, Shan-Shan; Jiang, Guo-Sheng

    2004-01-01

    AIM: To observe the effect of tail vein injection with donor hepatocytes and/or splenocytes on the islet xenotransplantation rejection. METHODS: New-born male pigs and BALB/C mice were selected as donors and recipients respectively. Islet xenotransplantation was performed in recipients just after the third time of tail vein injection with donor hepatocytes and/or splenocytes. Macrophage phagocytosis, NK(natural killing cell) killing activity, T lymphocyte transforming function of spleen cells, antibody forming function of B lymphocytes, and T lymphocyte subsets were taken to monitor transplantation rejection. The effects of this kind of transplantation were indicated as variation of blood glucose and survival days of recipients. RESULTS: The results showed that streptozotocin (STZ) could induce diabetes mellitus models of mice. The pre-injection of donor hepatocytes, splenocytes or their mixture by tail vein injection was effective in preventing donor islet transplantation from rejection, which was demonstrated by the above-mentioned immunological marks. Each group of transplantation could decrease blood glucose in recipients and increase survival days. Pre-injection of mixture of donor hepatocytes and splenocytes was more effective in preventing rejection as compared with that of donor hepatocyte or splenocyte pre-injection respectively. CONCLUSION: Pre-injection of donor hepatocytes, splenocytes or their mixture before donor islet transplantation is a good way in preventing rejection. PMID:15133853

  2. Generation of new islets from stem cells.

    PubMed

    Roche, Enrique; Soria, Bernat

    2004-01-01

    Spain ranks number one in organ donors (35 per million per yr). Although the prevalence of diabetes is low (100,000 type 1 diabetic patients and 2 million type 2 diabetic patients), the expected number of patients receiving islet transplants should be estimated at 200 per year. Islet replacement represents a promising cure for diabetes and has been successfully applied in a limited number of type 1 diabetic patients, resulting in insulin independence for periods longer than 3 yr. However, it has been difficult to obtain sufficient numbers of islets from cadaveric donors. Interesting alternatives include acquiring renewable sources of cells using either embryonic or adult stem cells to overcome the islet scarcity problem. Stem cells are capable of extensive proliferation rates and are capable of differentiating into other cell types of the body. In particular, totipotent stem cells are capable of differentiating into all cell types in the body, whereas pluripotent stem cells are limited to the development of a certain number of differentiated cell types. Insulin-producing cells have been obtained from both embryonic and adult stem cells using several approaches. In animal models of diabetes, the therapeutic application of bioengineered insulin-secreting cells derived from stem cells has delivered promising results. This review will summarize the different approaches that have been used to obtain insulin-producing cells from embryonic and adult stem cells and highlights the key points that will allow in vitro differentiation and subsequent transplantation in the future. PMID:15289648

  3. Filtration is a time-efficient option to Histopaque, providing good-quality islets in mouse islet isolation.

    PubMed

    Ramírez-Domínguez, Miriam; Castaño, Luis

    2015-03-01

    Pancreatic islet transplantation is a promising therapy for Type I Diabetes. For many years the method used worldwide for islet purification in both rodent and human islet isolation has been Ficoll-based density gradients, such as Histopaque. However, it is difficult to purify islets in laboratories with staff limitations when large scale isolations are required. We hypothesized that filtration could be a more simple and fast alternative to obtain good quality islets. Four separate islet isolations were performed per method, comparing filtration and Histopaque purification with handpicking as the gold standard method for islet purity. Different parameters of quality were assessed: yield in number of islets per pancreas, purity by dithizone staining, viability by Fluorescein Diacetate/Propidium Iodide vital staining and in vitro functionality assessed by Glucose Stimulated Insulin Secretion. Time efficiency and cost were also analyzed. The overall quality of the islets obtained both by Histopaque and filtration was good. Filtration saved almost 90 % of the time consumed by Histopaque purification, and was also cheaper. However, one-third of the islets were lost. Since human and rodent islets share similar size but different density, filtration appears as a purification method with potential interest in translation to clinic. PMID:24443076

  4. Kyoto islet isolation method: the optimized one for non-heart-beating donors with highly efficient islet retrieval.

    PubMed

    Okitsu, T; Matsumoto, S; Iwanaga, Y; Noguchi, H; Nagata, H; Yonekawa, Y; Maekawa, T; Tanaka, K

    2005-10-01

    The availability of pancreata for clinical cadaveric islet transplantation is restricted to non-heart-beating donors (NHBDs) in Japan. This forced us to modify the current standard islet isolation protocol that was made up for brain-dead donors and make it suitable for NHBDs. The Kyoto islet isolation method is the one with induction of several steps based on the ideas both already reported literally and invented originally by ourselves. Using this islet isolation method, we isolated islets from 13 human pancreata of NHBDs and transplanted 11 preparations to six type-1 diabetic patients. The rate to meet release criteria of Edmonton protocol was 84.6%. Establishment of this method allowed us to begin a clinical islet transplantation program in Japan and to continue to perform the preparation of islets from NHBDs with high rate to meet the release criteria of the Edmonton protocol.

  5. Is there a role for locally produced interleukin-1 in the deleterious effects of high glucose or the type 2 diabetes milieu to human pancreatic islets?

    PubMed

    Welsh, Nils; Cnop, Miriam; Kharroubi, Ilham; Bugliani, Marco; Lupi, Roberto; Marchetti, Piero; Eizirik, Décio L

    2005-11-01

    Different degrees of beta-cell failure and apoptosis are present in type 1 and type 2 diabetes. It has been recently suggested that high glucose-induced beta-cell apoptosis in type 2 diabetes shares a final common pathway with type 1 diabetes, involving interleukin-1beta (IL-1beta) production by beta-cells, nuclear factor-kappaB (NF-kappaB) activation, and death via Fas-FasL. The aim of this study was to test whether human islet exposure to high glucose in vitro, or to the type 2 diabetes environment in vivo, induces IL-1beta expression and consequent activation of NF-kappaB-dependent genes. Human islets were isolated from five normoglycemic organ donors. The islets were cultured for 48 h to 7 days at 5.6, 11, or 28 mmol/l glucose. For comparative purposes, islets were also exposed to IL-1beta. Gene mRNA expression levels were assessed by real-time RT-PCR in a blinded fashion. Culture of the human islets at 11 and 28 mmol/l glucose induced a four- to fivefold increase in medium insulin as compared with 5.6 mmol/l glucose, but neither IL-1beta nor IL-1 receptor antagonist (IL-1ra) expression changed. IL-1beta and IL-1ra protein release to the medium was also unchanged. Stimulated human monocytes, studied in parallel, released >50-fold more IL-1beta than the islets. There was also no glucose-induced islet Fas expression. Expression of the NF-kappaB-dependent genes IkappaB-alpha and monocyte chemoattractant protein (MCP)-1 was induced in human islets by IL-1beta but not by high glucose. In a second set of experiments, human islets were isolated from seven type 2 diabetic patients and eight control subjects. The findings on mRNA levels were essentially the same as in the in vitro experiments, namely the in vivo diabetic state did not induce IL-1beta, Fas, or MCP-1 expression in human islets, and also did not modify IL-1ra expression. The present findings suggest that high glucose in vitro, or the diabetic milieu in vivo, does not induce IL-1beta production or NF

  6. Experimental studies on islets isolation, purification and function in rats.

    PubMed

    Pang, Xinlu; Xue, Wujun; Feng, Xinshun; Tian, Xiaohui; Teng, Yan; Ding, Xiaoming; Pan, Xiaoming; Guo, Qi; He, Xiaoli

    2015-01-01

    To develop a simple and effective method of islet isolation and purification in rats. Collagenase P was injected into pancreatic duct followed by incubation in water bath to digest the pancreas and isolate islet, then discontinuous gravity gradient purification was used to purify the islet. The purified islets were identified by dithizone staining. The viability of islets was assessed by fluorescence staining of acridine orange (AO) and propidium iodide (PI). The function of purified islets was determined by glucose-stimulated insulin release test and transplantation of rat with streptozocin-induced diabetes. 738±193 islets were recovered after purification. The average purity was 77±13%, the viability of islets was more than 95%. When inspected by glucose stimulation, the secreted insulin concentration was 24.31±5.47 mIU/L when stimulated by low concentration glucose and 37.62±4.29 mIU/L by high concentration glucose. There was significant difference between the two phases (P<0.05). The blood sugar concentration recovered to normal level after two days in the animals with islet transplantation. In conclusion, islets can be procured with good function and shape by using the method of injecting collagenase into pancreatic duct followed by incubation in water bath and purification using discontinuous gravity gradient. PMID:26885021

  7. Microfluidic platform for assessing pancreatic islet functionality through dielectric spectroscopy

    PubMed Central

    Heileman, K.; Daoud, J.; Hasilo, C.; Gasparrini, M.; Paraskevas, S.; Tabrizian, M.

    2015-01-01

    Human pancreatic islets are seldom assessed for dynamic responses to external stimuli. Thus, the elucidation of human islet functionality would provide insights into the progression of diabetes mellitus, evaluation of preparations for clinical transplantation, as well as for the development of novel therapeutics. The objective of this study was to develop a microfluidic platform for in vitro islet culture, allowing the multi-parametric investigation of islet response to chemical and biochemical stimuli. This was accomplished through the fabrication and implementation of a microfluidic platform that allowed the perifusion of islet culture while integrating real-time monitoring using impedance spectroscopy, through microfabricated, interdigitated electrodes located along the microchamber arrays. Real-time impedance measurements provide important dielectric parameters, such as cell membrane capacitance and cytoplasmic conductivity, representing proliferation, differentiation, viability, and functionality. The perifusion of varying glucose concentrations and monitoring of the resulting impedance of pancreatic islets were performed as proof-of-concept validation of the lab-on-chip platform. This novel technique to elucidate the underlying mechanisms that dictate islet functionality is presented, providing new information regarding islet function that could improve the evaluation of islet preparations for transplantation. In addition, it will lead to a better understanding of fundamental diabetes-related islet dysfunction and the development of therapeutics through evaluation of potential drug effects. PMID:26339324

  8. Experimental studies on islets isolation, purification and function in rats

    PubMed Central

    Pang, Xinlu; Xue, Wujun; Feng, Xinshun; Tian, Xiaohui; Teng, Yan; Ding, Xiaoming; Pan, Xiaoming; Guo, Qi; He, Xiaoli

    2015-01-01

    To develop a simple and effective method of islet isolation and purification in rats. Collagenase P was injected into pancreatic duct followed by incubation in water bath to digest the pancreas and isolate islet, then discontinuous gravity gradient purification was used to purify the islet. The purified islets were identified by dithizone staining. The viability of islets was assessed by fluorescence staining of acridine orange (AO) and propidium iodide (PI). The function of purified islets was determined by glucose-stimulated insulin release test and transplantation of rat with streptozocin-induced diabetes. 738±193 islets were recovered after purification. The average purity was 77±13%, the viability of islets was more than 95%. When inspected by glucose stimulation, the secreted insulin concentration was 24.31±5.47 mIU/L when stimulated by low concentration glucose and 37.62±4.29 mIU/L by high concentration glucose. There was significant difference between the two phases (P<0.05). The blood sugar concentration recovered to normal level after two days in the animals with islet transplantation. In conclusion, islets can be procured with good function and shape by using the method of injecting collagenase into pancreatic duct followed by incubation in water bath and purification using discontinuous gravity gradient. PMID:26885021

  9. Quadrupole Magnetic Sorting of Porcine Islets of Langerhans

    PubMed Central

    Shenkman, Rustin M.; Chalmers, Jeffrey J.; Hering, Bernhard J.; Kirchhof, Nicole

    2009-01-01

    Islet transplantation is emerging as a treatment option for selected patients with type 1 diabetes. Inconsistent isolation, purification, and recovery of large numbers of high-quality islets remain substantial impediments to progress in the field. Removing islets as soon as they are liberated from the pancreas during digestion and circumventing the need for density gradient purification is likely to result in substantially increased viable islet yields by minimizing exposure to proteolytic enzymes, reactive oxygen intermediates, and mechanical stress associated with centrifugation. This study capitalized on the hypervascularity of islets compared with acinar tissue to explore their preferential enrichment with magnetic beads to enable immediate separation in a magnetic field utilizing a quadrupole magnetic sorting. The results demonstrate that (1) preferential enrichment of porcine islets is achievable, but homogeneous bead distribution within the pancreas is difficult to achieve with current protocols; (2) greater than 70% of islets in the dissociated pancreatic tissue were recovered by quadrupole magnetic sorting, but their purity was low; and (3) infused islets purified by density gradients and subsequently passed through quadrupole magnetic sorting had similar potency as uninfused islets. These results demonstrate proof of concept and define the steps for implementation of this technology in pig and human islet isolation. PMID:19505179

  10. Experimental studies on islets isolation, purification and function in rats.

    PubMed

    Pang, Xinlu; Xue, Wujun; Feng, Xinshun; Tian, Xiaohui; Teng, Yan; Ding, Xiaoming; Pan, Xiaoming; Guo, Qi; He, Xiaoli

    2015-01-01

    To develop a simple and effective method of islet isolation and purification in rats. Collagenase P was injected into pancreatic duct followed by incubation in water bath to digest the pancreas and isolate islet, then discontinuous gravity gradient purification was used to purify the islet. The purified islets were identified by dithizone staining. The viability of islets was assessed by fluorescence staining of acridine orange (AO) and propidium iodide (PI). The function of purified islets was determined by glucose-stimulated insulin release test and transplantation of rat with streptozocin-induced diabetes. 738±193 islets were recovered after purification. The average purity was 77±13%, the viability of islets was more than 95%. When inspected by glucose stimulation, the secreted insulin concentration was 24.31±5.47 mIU/L when stimulated by low concentration glucose and 37.62±4.29 mIU/L by high concentration glucose. There was significant difference between the two phases (P<0.05). The blood sugar concentration recovered to normal level after two days in the animals with islet transplantation. In conclusion, islets can be procured with good function and shape by using the method of injecting collagenase into pancreatic duct followed by incubation in water bath and purification using discontinuous gravity gradient.

  11. Assignment of the gastric inhibitory polypeptide receptor gene (GIPR) to chromosome bands 19q13.2-q13.3 by fluorescence in situ hybridization

    SciTech Connect

    Stoffel, M.; Fernald, A.A.; Bell, G.I.; Le Beau, M.M.

    1995-08-10

    The gastric inhibitory polypeptide receptor gene (GIPR) was localized, using fluorescence in situ hybridization (FISH), to human chromosome bands 19q13.2-q13.3. Gastric inhibitory polypeptide (GIP) is a potent stimulator of insulin secretion and mutations in the GIPR gene may be related to non-insulin-dependent diabetes mellitus (NIDDM). 13 refs., 1 fig.

  12. Ventromedial hypothalamic lesions change the expression of cell proliferation-related genes and morphology-related genes in rat pancreatic islets

    PubMed Central

    Kiba, Takayoshi; Ishigaki, Yasuhito

    2014-01-01

    Studies in normal rats and ob/ob mice indicated that islet neogenesis does not occur in the intact rodent pancreas. We previously reported that ventromedial hypothalamic (VMH) lesions stimulated cell proliferation of rat pancreatic islet B and acinar cells primarily through a cholinergic receptor mechanism and examined how gene families involved in cell proliferation in total pancreatic tissue are regulated after VMH lesions formation. This study examined how gene families involved in cell proliferation in pancreatic islets alone are regulated after VMH lesions formation. Pancreatic islet RNA was extracted, and differences in gene expression profiles between rats at day 3 after VMH lesioning and sham-VMH-lesioned rats were investigated using DNA microarray and real-time polymerase chain reaction. VMH lesions regulated genes that were involved in functions related to cell cycle and differentiation, growth, binding, apoptosis and morphology in pancreas islets. Real-time polymerase chain reaction also confirmed that gene expression of polo-like kinase 1 (Plk1) and topoisomerase (DNA) II α 170 kDa (Top2a), and stanniocalcin 1 (Stc1) were upregulated at day 3 after the VMH lesions. Ventromedial hypothalamic lesions may change the expression of cell proliferation-related genes and morphology-related genes in rat pancreatic islets. PMID:25658146

  13. Increased secretion of insulin and proliferation of islet {beta}-cells in rats with mesenteric lymph duct ligation

    SciTech Connect

    Nagino, Ko; Yokozawa, Junji; Sasaki, Yu; Matsuda, Akiko; Takeda, Hiroaki; Kawata, Sumio

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Insulin secretion was increased during the OGTT or IVGTT in mesenteric lymph duct-ligated rats. Black-Right-Pointing-Pointer Proliferation of islet {beta}-cells was upregulated in lymph duct-ligated rats. Black-Right-Pointing-Pointer Mesenteric lymph duct flow has a role in glucose metabolism. -- Abstract: Background and aims: It has been suggested that intestinal lymph flow plays an important role in insulin secretion and glucose metabolism after meals. In this study, we investigated the influence of ligation of the mesenteric lymph duct on glucose metabolism and islet {beta}-cells in rats. Methods: Male Sprague-Dawley rats (10 weeks old) were divided into two groups: one underwent ligation of the mesenteric lymph duct above the cistern (ligation group), and the other underwent a sham operation (sham group). After 1 and 2 weeks, fasting plasma concentrations of glucose, insulin, triglyceride, glucose-dependent insulinotropic polypeptide (GIP), and the active form of glucagon-like peptide-1 (GLP-1) were measured. At 2 weeks after the operation, the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) were performed. After the rats had been sacrificed, the insulin content of the pancreas was measured and the proliferation of {beta}-cells was assessed immunohistochemically using antibodies against insulin and Ki-67. Results: During the OGTT, the ligation group showed a significant decrease in the plasma glucose concentration at 120 min (p < 0.05) and a significant increase in the plasma insulin concentration by more than 2-fold at 15 min (p < 0.01). On the other hand, the plasma GIP concentration was significantly decreased at 60 min (p < 0.01) in the ligated group, while the active form of GLP-1 showed a significantly higher level at 90 min (1.7-fold; p < 0.05) and 120 min (2.5-fold; p < 0.01). During the IVGTT, the plasma insulin concentration in the ligation group was significantly higher at 2

  14. Pig-islet xenotransplantation: recent progress and current perspectives.

    PubMed

    Zhu, Hai-Tao; Wang, Wan-Li; Yu, Liang; Wang, Bo

    2014-01-01

    Islet xenotransplantation is one prospective treatment to bridge the gap between available human cells and needs of patients with diabetes. Pig represents an ideal candidate for obtaining such available cells. However, potential clinical application of pig islet still faces obstacles including inadequate yield of high-quality functional islets and xenorejection of the transplants. Adequate amounts of available islets can be obtained by selection of a suitable pathogen-free source herd and the development of isolation and purification method. Several studies demonstrated the feasibility of successful preclinical pig-islet xenotransplantation and provided insights and possible mechanisms of xenogeneic immune recognition and rejection. Particularly promising is the achievement of long-term insulin independence in diabetic models by means of distinct islet products and novel immunotherapeutic strategies. Nonetheless, further efforts are needed to obtain much more safety and efficacy data to translate these findings into clinic. PMID:25593932

  15. Molecular imaging: a promising tool to monitor islet transplantation.

    PubMed

    Wang, Ping; Medarova, Zdravka; Moore, Anna

    2011-01-01

    Replacement of insulin production by pancreatic islet transplantation has great potential as a therapy for type 1 diabetes mellitus. At present, the lack of an effective approach to islet grafts assessment limits the success of this treatment. The development of molecular imaging techniques has the potential to fulfill the goal of real-time noninvasive monitoring of the functional status and viability of the islet grafts. We review the application of a variety of imaging modalities for detecting endogenous and transplanted beta-cell mass. The review also explores the various molecular imaging strategies for assessing islet delivery, the metabolic effects on the islet grafts as well as detection of immunorejection. Here, we highlight the use of combined imaging and therapeutic interventions in islet transplantation and the in vivo monitoring of stem cells differentiation into insulin-producing cells. PMID:22013504

  16. Pro-inflammatory and pro-oxidant status of pancreatic islet in vitro is controlled by TLR-4 and HO-1 pathways.

    PubMed

    Vivot, Kevin; Langlois, Allan; Bietiger, William; Dal, Stéphanie; Seyfritz, Elodie; Pinget, Michel; Jeandidier, Nathalie; Maillard, Elisa; Gies, Jean-Pierre; Sigrist, Séverine

    2014-01-01

    Since their isolation until implantation, pancreatic islets suffer a major stress leading to the activation of inflammatory reactions. The maintenance of controlled inflammation is essential to preserve survival and function of the graft. Identification and targeting of pathway(s) implicated in post-transplant detrimental inflammatory events, is mandatory to improve islet transplantation success. We sought to characterize the expression of the pro-inflammatory and pro-oxidant mediators during islet culture with a focus on Heme oxygenase (HO-1) and Toll-like receptors-4 signaling pathways. Rat pancreatic islets were isolated and pro-inflammatory and pro-oxidant status were evaluated after 0, 12, 24 and 48 hours of culture through TLR-4, HO-1 and cyclooxygenase-2 (COX-2) expression, CCL-2 and IL-6 secretion, ROS (Reactive Oxygen Species) production (Dihydroethidine staining, DHE) and macrophages migration. To identify the therapeutic target, TLR4 inhibition (CLI-095) and HO-1 activation (cobalt protoporphyrin,CoPP) was performed. Activation of NFκB signaling pathway was also investigated. After isolation and during culture, pancreatic islet exhibited a proinflammatory and prooxidant status (increase levels of TLR-4, COX-2, CCL-2, IL-6, and ROS). Activation of HO-1 or inhibition of TLR-4 decreased inflammatory status and oxidative stress of islets. Moreover, the overexpression of HO-1 induced NFκB phosphorylation while the inhibition of TLR-4 had no effect NFκB activation. Finally, inhibition of pro-inflammatory pathway induced a reduction of macrophages migration. These data demonstrated that the TLR-4 signaling pathway is implicated in early inflammatory events leading to a pro-inflammatory and pro-oxidant status of islets in vitro. Moreover, these results provide the mechanism whereby the benefits of HO-1 target in TLR-4 signaling pathway. HO-1 could be then an interesting target to protect islets before transplantation. PMID:25343247

  17. Islets of Langerhans from prohormone convertase-2 knockout mice show α-cell hyperplasia and tumorigenesis with elevated α-cell neogenesis

    PubMed Central

    Jones, Huw B; Reens, Jaimini; Brocklehurst, Simon R; Betts, Catherine J; Bickerton, Sue; Bigley, Alison L; Jenkins, Richard P; Whalley, Nicky M; Morgan, Derrick; Smith, David M

    2014-01-01

    Antagonism of the effects of glucagon as an adjunct therapy with other glucose-lowering drugs in the chronic treatment of diabetes has been suggested to aggressively control blood glucose levels. Antagonism of glucagon effects, by targeting glucagon secretion or disabling the glucagon receptor, is associated with α-cell hyperplasia. We evaluated the influence of total glucagon withdrawal on islets of Langerhans using prohormone convertase-2 knockout mice (PC2-ko), in which α-cell hyperplasia is present from a young age and persists throughout life, in order to understand whether or not sustained glucagon deficit would lead to islet tumorigenesis. PC2-ko and wild-type (WT) mice were maintained drug-free, and cohorts of these groups sampled at 3, 12 and 18 months for plasma biochemical and morphological (histological, immunohistochemical, electron microscopical and image analytical) assessments. WT mice showed no islet tumours up to termination of the study, but PC2-ko animals displayed marked changes in islet morphology from α-cell hypertrophy/hyperplasia/atypical hyperplasia, to adenomas and carcinomas, these latter being first encountered at 6–8 months. Islet hyperplasias and tumours primarily consisted of α-cells associated to varying degrees with other islet endocrine cell types. In addition to substantial increases in islet neoplasia, increased α-cell neogenesis associated primarily with pancreatic duct(ule)s was present. We conclude that absolute blockade of the glucagon signal results in tumorigenesis and that the PC2-ko mouse represents a valuable model for investigation of islet tumours and pancreatic ductal neogenesis. PMID:24456331

  18. Beneficial effect of 17{beta}-estradiol on hyperglycemia and islet {beta}-cell functions in a streptozotocin-induced diabetic rat model

    SciTech Connect

    Yamabe, Noriko; Kang, Ki Sung; Zhu Baoting

    2010-11-15

    The modulating effect of estrogen on glucose homeostasis remains a controversial issue at present. In this study, we sought to determine the beneficial effect of 17{beta}-estradiol (E{sub 2}) on hyperglycemia and islet {beta}-cell functions in streptozotocin (STZ)-induced diabetic rats. Male Sprague-Dawley rats were injected i.p. with STZ to induce a relatively mild diabetic condition. The rats were then treated with E{sub 2} orally at 500 {mu}g/kg body weight/day for 15 days to evaluate the modulating effect on hyperglycemia, insulin secretion, and islet {beta}-cell proliferation. E{sub 2} administration for 10 days significantly lowered plasma glucose levels, increased plasma insulin levels, and improved glucose tolerance by attenuating insulin response to oral glucose loading. These beneficial effects of E{sub 2} were accompanied by increases in islet number and volume, rate of islet cell proliferation, and the amount of insulin secreted. The growth-stimulatory effect of E{sub 2} on islet cells was linked to the functions of the estrogen receptor {alpha}. Notably, these protective effects of E{sub 2} on diabetic conditions were basically not observed when the STZ-treated rats had a more severe degree of islet damage and hyperglycemia. Taken together, we conclude that E{sub 2} can promote the regeneration of damaged pancreatic islets by stimulating {beta}-cell proliferation in diabetic rats, and this effect is accompanied by improvements in glucose tolerance and a decrease in plasma glucose levels. These findings suggest that oral administration of E{sub 2} may be beneficial in diabetic patients with an accelerated loss of islet {beta}-cells.

  19. Brn3a and Islet1 act epistatically to regulate the gene expression program of sensory differentiation.

    PubMed

    Dykes, Iain M; Tempest, Lynne; Lee, Su-In; Turner, Eric E

    2011-07-01

    The combinatorial expression of transcription factors frequently marks cellular identity in the nervous system, yet how these factors interact to determine specific neuronal phenotypes is not well understood. Sensory neurons of the trigeminal ganglion (TG) and dorsal root ganglia (DRG) coexpress the homeodomain transcription factors Brn3a and Islet1, and past work has revealed partially overlapping programs of gene expression downstream of these factors. Here we examine sensory development in Brn3a/Islet1 double knock-out (DKO) mice. Sensory neurogenesis and the formation of the TG and DRG occur in DKO embryos, but the DRG are dorsally displaced, and the peripheral projections of the ganglia are markedly disturbed. Sensory neurons in DKO embryos show a profound loss of all early markers of sensory subtypes, including the Ntrk neurotrophin receptors, and the runt-family transcription factors Runx1 and Runx3. Examination of global gene expression in the E12.5 DRG of single and double mutant embryos shows that Brn3a and Islet1 are together required for nearly all aspects of sensory-specific gene expression, including several newly identified sensory markers. On a majority of targets, Brn3a and Islet1 exhibit negative epistasis, in which the effects of the individual knock-out alleles are less than additive in the DKO. Smaller subsets of targets exhibit positive epistasis, or are regulated exclusively by one factor. Brn3a/Islet1 double mutants also fail to developmentally repress neurogenic bHLH genes, and in vivo chromatin immunoprecipitation shows that Islet1 binds to a known Brn3a-regulated enhancer in the neurod4 gene, suggesting a mechanism of interaction between these genes. PMID:21734270

  20. Excessive Food Intake, Obesity and Inflammation Process in Zucker fa/fa Rat Pancreatic Islets

    PubMed Central

    Chentouf, Myriam; Dubois, Gregor; Jahannaut, Céline; Castex, Françoise; Lajoix, Anne Dominique; Gross, René; Peraldi-Roux, Sylvie

    2011-01-01

    Inappropriate food intake-related obesity and more importantly, visceral adiposity, are major risk factors for the onset of type 2 diabetes. Evidence is emerging that nutriment-induced β-cell dysfunction could be related to indirect induction of a state of low grade inflammation. Our aim was to study whether hyperphagia associated obesity could promote an inflammatory response in pancreatic islets leading to ß-cell dysfunction. In the hyperphagic obese insulin resistant male Zucker rat, we measured the level of circulating pro-inflammatory cytokines and estimated their production as well as the expression of their receptors in pancreatic tissue and β-cells. Our main findings concern intra-islet pro-inflammatory cytokines from fa/fa rats: IL-1β, IL-6 and TNFα expressions were increased; IL-1R1 was also over-expressed with a cellular redistribution also observed for IL-6R. To get insight into the mechanisms involved in phenotypic alterations, abArrays were used to determine the expression profile of proteins implicated in different membrane receptors signaling, apoptosis and cell cycle pathways. Despite JNK overexpression, cell viability was unaffected probably because of decreases in cleaved caspase3 as well as in SMAC/DIABLO and APP, involved in the induction and amplification of apoptosis. Concerning β-cell proliferation, decreases in important cell cycle regulators (Cyclin D1, p35) and increased expression of SMAD4 probably contribute to counteract and restrain hyperplasia in fa/fa rat islets. Finally and probably as a result of IL-1β and IL-1R1 increased expressions with sub-cellular redistribution of the receptor, islets from fa/fa rats were found more sensitive to both stimulating and inhibitory concentrations of the cytokine; this confers some physiopathological relevance to a possible autocrine regulation of β-cell function by IL-1β. These results support the hypothesis that pancreatic islets from prediabetic fa/fa rats undergo an inflammatory

  1. Synthesis of glycosaminoglycans by islets of Langerhans

    SciTech Connect

    Watkins, D.T.; Cooperstein, S.J.

    1988-01-01

    Incorporation of (/sup 35/S)-sulfate into glycosaminoglycans (GAG) of toadfish islets of Langerhans in vitro was examined. (/sup 35/S)-sulfated GAG were synthesized by a component of the microsomal fraction, and subsequently transferred to the secretion granules, mitochondria and nuclei. The predominant type of GAG synthesized was heparan sulfate, but chondroitin 4- and 6-sulfate and dermatan sulfate were also found. 36 references, 3 tables.

  2. Imaging pancreatic islet cells by positron emission tomography

    PubMed Central

    Li, Junfeng; Karunananthan, Johann; Pelham, Bradley; Kandeel, Fouad

    2016-01-01

    It was estimated that every year more than 30000 persons in the United States - approximately 80 people per day - are diagnosed with type 1 diabetes (T1D). T1D is caused by autoimmune destruction of the pancreatic islet (β cells) cells. Islet transplantation has become a promising therapy option for T1D patients, while the lack of suitable tools is difficult to directly evaluate of the viability of the grafted islet over time. Positron emission tomography (PET) as an important non-invasive methodology providing high sensitivity and good resolution, is able to accurate detection of the disturbed biochemical processes and physiological abnormality in living organism. The successful PET imaging of islets would be able to localize the specific site where transplanted islets engraft in the liver, and to quantify the level of islets remain alive and functional over time. This information would be vital to establishing and evaluating the efficiency of pancreatic islet transplantation. Many novel imaging agents have been developed to improve the sensitivity and specificity of PET islet imaging. In this article, we summarize the latest developments in carbon-11, fluorine-18, copper-64, and gallium-68 labeled radioligands for the PET imaging of pancreatic islet cells. PMID:27721939

  3. Comparison of volume estimation methods for pancreatic islet cells

    NASA Astrophysics Data System (ADS)

    Dvořák, JiřÃ.­; Å vihlík, Jan; Habart, David; Kybic, Jan

    2016-03-01

    In this contribution we study different methods of automatic volume estimation for pancreatic islets which can be used in the quality control step prior to the islet transplantation. The total islet volume is an important criterion in the quality control. Also, the individual islet volume distribution is interesting -- it has been indicated that smaller islets can be more effective. A 2D image of a microscopy slice containing the islets is acquired. The input of the volume estimation methods are segmented images of individual islets. The segmentation step is not discussed here. We consider simple methods of volume estimation assuming that the islets have spherical or ellipsoidal shape. We also consider a local stereological method, namely the nucleator. The nucleator does not rely on any shape assumptions and provides unbiased estimates if isotropic sections through the islets are observed. We present a simulation study comparing the performance of the volume estimation methods in different scenarios and an experimental study comparing the methods on a real dataset.

  4. Biological and biomaterial approaches for improved islet transplantation.

    PubMed

    Narang, Ajit S; Mahato, Ram I

    2006-06-01

    Islet transplantation may be used to treat type I diabetes. Despite tremendous progress in islet isolation, culture, and preservation, the clinical use of this modality of treatment is limited due to post-transplantation challenges to the islets such as the failure to revascularize and immune destruction of the islet graft. In addition, the need for lifelong strong immunosuppressing agents restricts the use of this option to a limited subset of patients, which is further restricted by the unmet need for large numbers of islets. Inadequate islet supply issues are being addressed by regeneration therapy and xenotransplantation. Various strategies are being tried to prevent beta-cell death, including immunoisolation using semipermeable biocompatible polymeric capsules and induction of immune tolerance. Genetic modification of islets promises to complement all these strategies toward the success of islet transplantation. Furthermore, synergistic application of more than one strategy is required for improving the success of islet transplantation. This review will critically address various insights developed in each individual strategy and for multipronged approaches, which will be helpful in achieving better outcomes. PMID:16714486

  5. Islet transplantation at the Diabetes Research Institute Japan.

    PubMed

    Noguchi, Hirofumi; Matsumoto, Shinichi

    2008-01-01

    Since the Edmonton Protocol was announced, more than 600 patients with type 1 diabetes at more than 50 institutions have received islet transplantation to treat their disease. We recently established a new islet isolation protocol, called the Kyoto Islet Isolation Method, based on the Ricordi method. It includes an in-situ cooling system for pancreas procurement, pancreatic ductal protection, a modified two-layer (M-Kyoto /perfluorochemical [PFC]) method of pancreas preservation, and a new islet purification solution (Iodixanol-based solution). Using this islet isolation method, we isolated islets from 19 human pancreata of non-heart-beating donors and transplanted 16 preparations into seven patients with type 1 diabetes between April 7, 2004 and November 18, 2005. The percentage of those meeting the release criteria of the Edmonton Protocol was more than 80%. We also performed living-donor transplantation of islets for unstable diabetes on January 19, 2005. Establishment of this method enables us to make diabetic patients insulin-independent, using islets not only from two or three pancreata of non-heart-beating donors but also using islets from half a pancreas from a living donor.

  6. Protection of islet cells from inflammatory cell death in vitro.

    PubMed Central

    Burkart, V; Kolb, H

    1993-01-01

    Islet cells cocultured with activated macrophages are lysed within 15 h in vitro. We showed previously that nitric oxide generated by macrophages is a major mediator of islet cell death. We have now probed several pathways to interfere with the chain of events leading to islet cell death. Scavenging of extracellular oxygen radicals by superoxide dismutase and catalase did not improve islet cell survival. Scavenging of extra- and intracellular oxygen radicals by two potent substances, citiolone and dimethyl-thiourea, also did not reduce islet cell lysis, while a lipid-soluble scavenger, probucol, provided partial protection. These findings argue against a synergistic action of nitric oxide and oxygen radicals in islet cell toxicity. The inhibition of poly(ADP-ribose)polymerase by 3-aminobenzamide significantly improved islet cell survival. Selective inhibitors of cyclooxygenase, such as indomethacin or acetylsalicylic acid, did not improve islet cell survival. Full protection was seen in the presence of NDGA, an inhibitor of lipoxygenase, and partial suppression was caused by BW755c, an inhibitor of both lipoxygenase and cyclooxygenase. We conclude that inflammatory islet cell death caused by activated macrophages involves the activation of arachidonic acid metabolism and of poly(ADP-ribose)polymerase, but that scavenging of oxygen free radicals provides little protection from lysis. PMID:8348756

  7. Pancreas Transplantation: Solid Organ and Islet

    PubMed Central

    Mittal, Shruti; Johnson, Paul; Friend, Peter

    2014-01-01

    Transplantation of the pancreas, either as a solid organ or as isolated islets of Langerhans, is indicated in a small proportion of patients with insulin-dependent diabetes in whom severe complications develop, particularly severe glycemic instability and progressive secondary complications (usually renal failure). The potential to reverse diabetes has to be balanced against the morbidity of long-term immunosuppression. For a patient with renal failure, the treatment of choice is often a simultaneous transplant of the pancreas and kidney (SPK), whereas for a patient with glycemic instability, specifically hypoglycemic unawareness, the choice between a solid organ and an islet transplant has to be individual to the patient. Results of SPK transplantation are comparable to other solid-organ transplants (kidney, liver, heart) and there is evidence of improved quality of life and life expectancy, but the results of solitary pancreas transplantation and islets are inferior with respect to graft survival. There is some evidence of benefit with respect to the progression of secondary diabetic complications in patients with functioning transplants for several years. PMID:24616200

  8. Different responses of mouse islets and MIN6 pseudo-islets to metabolic stimulation: a note of caution.

    PubMed

    Schulze, Torben; Morsi, Mai; Brüning, Dennis; Schumacher, Kirstin; Rustenbeck, Ingo

    2016-03-01

    MIN6 cells and MIN6 pseudo-islets are popular surrogates for the use of primary beta cells and islets. Even though it is generally agreed that the stimulus-secretion coupling may deviate from that of beta cells or islets, direct comparisons are rare. The present side-by-side comparison of insulin secretion, cytosolic Ca(2+) concentration ([Ca(2+)] i ) and oxygen consumption rate (OCR) points out where similarities and differences exist between MIN6 cells and normal mouse beta cells. In mouse islets and MIN6 pseudo-islets depolarization by 40 mM KCl was a more robust insulinotropic stimulus than 30 mM glucose. In MIN6 pseudo-islets, but not in mouse islets, the response to 30 mM glucose was much lower than to 40 mM KCl and could be suppressed by a preceding stimulation with 40 mM KCl. In MIN6 pseudo-islets, glucose was less effective to raise [Ca(2+)] i than in primary islets. In marked contrast to islets, the OCR response of MIN6 pseudo-islets to 30 mM glucose was smaller than to 40 mM KCl and was further diminished by a preceding stimulation with 40 mM KCl. The same pattern was observed when MIN6 pseudo-islets were cultured in 5 mM glucose. As with insulin secretion memory effects on the OCR remained after wash-out of a stimulus. The differences between MIN6 cells and primary beta cells were generally larger in the responses to glucose than to depolarization by KCl. Thus, the use of MIN6 cells in investigations on metabolic signalling requires particular caution.

  9. Staining Protocols for Human Pancreatic Islets

    PubMed Central

    Campbell-Thompson, Martha L.; Heiple, Tiffany; Montgomery, Emily; Zhang, Li; Schneider, Lynda

    2012-01-01

    Estimates of islet area and numbers and endocrine cell composition in the adult human pancreas vary from several hundred thousand to several million and beta mass ranges from 500 to 1500 mg 1-3. With this known heterogeneity, a standard processing and staining procedure was developed so that pancreatic regions were clearly defined and islets characterized using rigorous histopathology and immunolocalization examinations. Standardized procedures for processing human pancreas recovered from organ donors are described in part 1 of this series. The pancreas is processed into 3 main regions (head, body, tail) followed by transverse sections. Transverse sections from the pancreas head are further divided, as indicated based on size, and numbered alphabetically to denote subsections. This standardization allows for a complete cross sectional analysis of the head region including the uncinate region which contains islets composed primarily of pancreatic polypeptide cells to the tail region. The current report comprises part 2 of this series and describes the procedures used for serial sectioning and histopathological characterization of the pancreatic paraffin sections with an emphasis on islet endocrine cells, replication, and T-cell infiltrates. Pathology of pancreatic sections is intended to characterize both exocrine, ductular, and endocrine components. The exocrine compartment is evaluated for the presence of pancreatitis (active or chronic), atrophy, fibrosis, and fat, as well as the duct system, particularly in relationship to the presence of pancreatic intraductal neoplasia4. Islets are evaluated for morphology, size, and density, endocrine cells, inflammation, fibrosis, amyloid, and the presence of replicating or apoptotic cells using H&E and IHC stains. The final component described in part 2 is the provision of the stained slides as digitized whole slide images. The digitized slides are organized by case and pancreas region in an online pathology database

  10. Islet amyloid polypeptide exerts a novel autocrine action in β-cell signaling and proliferation.

    PubMed

    Visa, Montse; Alcarraz-Vizán, Gema; Montane, Joel; Cadavez, Lisa; Castaño, Carlos; Villanueva-Peñacarrillo, María Luisa; Servitja, Joan-Marc; Novials, Anna

    2015-07-01

    The toxic effects of human islet amyloid polypeptide (IAPP) on pancreatic islets have been widely studied. However, much less attention has been paid to the physiologic actions of IAPP on pancreatic β cells, which secrete this peptide together with insulin upon glucose stimulation. Here, we aimed to explore the signaling pathways and mitogenic actions of IAPP on β cells. We show that IAPP activated Erk1/2 and v-akt murine thymoma viral oncogene homolog 1 (Akt) at the picomolar range (10-100 pM) in mouse pancreatic islets and MIN6 β cells cultured at low glucose concentrations. In contrast, IAPP decreased the induction of these pathways by high glucose levels. Consistently, IAPP induced a 1.7-fold increase of β-cell proliferation at low-glucose conditions, whereas it reduced β-cell proliferation at high glucose levels. Strikingly, the specific antagonist of the IAPP receptor AC187 (100 nM) decreased the activation of Erk1/2 and Akt and reduced β-cell proliferation by 24% in glucose-stimulated β cells, uncovering a key role of endogenously released IAPP in β-cell responses to glucose. We conclude that exogenously added IAPP exerts a dual effect on β-cell mitogenic signaling and proliferation, depending on the glucose concentration. Importantly, secreted IAPP contributes to the signaling and mitogenic response of β cells to glucose through an autocrine mechanism.

  11. Effects of artificial sweeteners on insulin release and cationic fluxes in rat pancreatic islets.

    PubMed

    Malaisse, W J; Vanonderbergen, A; Louchami, K; Jijakli, H; Malaisse-Lagae, F

    1998-11-01

    Beta-L-glucose pentaacetate, but not alpha-D-galactose pentaacetate, was recently reported to taste bitter and to stimulate insulin release. This finding led, in the present study, to the investigation of the effects of both bitter and non-bitter artificial sweeteners on insulin release and cationic fluxes in isolated rat pancreatic islets. Sodium saccharin (1.0-10.0 mM), sodium cyclamate (5.0-10.0 mM), stevioside (1.0 mM) and acesulfame-K (1.0-15.0 mM), all of which display a bitter taste, augmented insulin release from islets incubated in the presence of 7.0 mM D-glucose. In contrast, aspartame (1.0-10.0 mM), which is devoid of bitter taste, failed to affect insulin secretion. A positive secretory response to acesulfame-K was still observed when the extracellular K+ concentration was adjusted to the same value as that in control media. No major changes in 86Rb and 45Ca outflow from pre-labelled perifused islets could be attributed to the saccharin, cyclamic or acesulfame anions. It is proposed that the insulinotropic action of some artificial sweeteners and, possibly, that of selected hexose pentaacetate esters may require G-protein-coupled receptors similar to those operative in the recognition of bitter compounds by taste buds.

  12. Artificial islets from hybrid spheroids of three pancreatic cell lines.

    PubMed

    Jo, Y H; Jang, I J; Nemeno, J G; Lee, S; Kim, B Y; Nam, B M; Yang, W; Lee, K M; Kim, H; Takebe, T; Kim, Y S; Lee, J I

    2014-05-01

    Pancreatic islets have been the focus of recent studies exploring the pathologic mechanisms of diabetes mellitus as well as more effective and radical treatments for this disease. Islet transplantation is a promising therapeutic strategy; however, isolation of pancreatic islets for this purpose has been challenging, because the technique is time consuming and technically difficult, and tissue handling can be variable. Pseudo-islets can be used as an alternative to naïve islets, but require cellular sources or artificial materials. In this study, pancreas-derived cells were used to generate pseudo-islets. Because the pancreas is composed of a variety of cell types, namely α cells, β cells, δ cells, and other pancreatic cells that perform different functions, we used 3 different cell lines-NIT-1 (a β-cell line), α TC1 clone 6 (an α-cell line), and TGP52 (a pancreatic epithelial-like cell line)-which we cocultured in nonadhesive culture plates to produce hybrid cellular spheroids. These pseudo-islets had an oval shape and were morphologically similar to naïve islets; additionally, they expressed and secreted the pancreatic hormones insulin, glucagon, and somatostatin, as confirmed by reverse-transcription polymerase chain reaction and enzyme-linked immunosorbent assay. The results demonstrate that pseudo-islets that mimic naïve islets can be successfully generated by a coculture method. These artificial islets can potentially be used for in vitro tests related to diabetes mellitus, specifically, in drug discovery or for investigating pathology. Moreover, they can be useful for examining basic questions pertaining to cell-cell interactions and tissue development. PMID:24815150

  13. Prevention of Nonimmunologic Loss of Transplanted Islets in Monkeys

    PubMed Central

    Koulmanda, M.; Sampathkumar, R. S.; Bhasin, M.; Qipo, A.; Fan, Z.; Singh, G.; Movahedi, B.; Duggan, M.; Chipashvili, V.; Strom, T. B.

    2014-01-01

    The nonimmunologic loss of islets in the pre-, peri-, and early post-islet transplant periods is profound. To determine the potential role that transplantation of only a marginal mass of functioning beta cells may play in triggering late nonimmunologic graft loss, we studied the effect of treatment with alpha-1-antitrypsin (AAT) in the autologous cynomolgus islet transplant model. A marginal mass of autologous islets, that is islets prepared from 70% to 80% of the pancreas, was transplanted at 1600–4100 IEQ/kg into subtotal pancreatectomized, streptozotocin-treated and insulin-deficient diabetic hosts. In this marginal mass islet transplant model, islet function is insidiously lost over time and diabetes recurs in all untreated monkeys by 180 days posttransplantation. Short-term treatment with AAT, an acute phase reactant, in the peritransplant period serves to terminate inflammation through effects upon expression of TGFβ, NFκB and AKT and favorably altering expression of cell death and survival pathways, as detected by a system biology approach and histology. These effects enabled functional expansion of the islet mass in transplanted hosts such that graft function improves rather than deteriorating over time. PMID:24913821

  14. Prevention of nonimmunologic loss of transplanted islets in monkeys.

    PubMed

    Koulmanda, M; Sampathkumar, R S; Bhasin, M; Qipo, A; Fan, Z; Singh, G; Movahedi, B; Duggan, M; Chipashvili, V; Strom, T B

    2014-07-01

    The nonimmunologic loss of islets in the pre-, peri-, and early post-islet transplant periods is profound. To determine the potential role that transplantation of only a marginal mass of functioning beta cells may play in triggering late nonimmunologic graft loss, we studied the effect of treatment with alpha-1-antitrypsin (AAT) in the autologous cynomolgus islet transplant model. A marginal mass of autologous islets, that is islets prepared from 70% to 80% of the pancreas, was transplanted at 1600-4100 IEQ/kg into subtotal pancreatectomized, streptozotocin-treated and insulin-deficient diabetic hosts. In this marginal mass islet transplant model, islet function is insidiously lost over time and diabetes recurs in all untreated monkeys by 180 days posttransplantation. Short-term treatment with AAT, an acute phase reactant, in the peri-transplant period serves to terminate inflammation through effects upon expression of TGFβ, NFκB and AKT and favorably altering expression of cell death and survival pathways, as detected by a system biology approach and histology. These effects enabled functional expansion of the islet mass in transplanted hosts such that graft function improves rather than deteriorating over time. PMID:24913821

  15. Islet and Stem Cell Encapsulation for Clinical Transplantation

    PubMed Central

    Krishnan, Rahul; Alexander, Michael; Robles, Lourdes; Foster 3rd, Clarence E.; Lakey, Jonathan R.T.

    2014-01-01

    Over the last decade, improvements in islet isolation techniques have made islet transplantation an option for a certain subset of patients with long-standing diabetes. Although islet transplants have shown improved graft function, adequate function beyond the second year has not yet been demonstrated, and patients still require immunosuppression to prevent rejection. Since allogeneic islet transplants have experienced some success, the next step is to improve graft function while eliminating the need for systemic immunosuppressive therapy. Biomaterial encapsulation offers a strategy to avoid the need for toxic immunosuppression while increasing the chances of graft function and survival. Encapsulation entails coating cells or tissue in a semipermeable biocompatible material that allows for the passage of nutrients, oxygen, and hormones while blocking immune cells and regulatory substances from recognizing and destroying the cell, thus avoiding the need for systemic immunosuppressive therapy. Despite advances in encapsulation technology, these developments have not yet been meaningfully translated into clinical islet transplantation, for which several factors are to blame, including graft hypoxia, host inflammatory response, fibrosis, improper choice of biomaterial type, lack of standard guidelines, and post-transplantation device failure. Several new approaches, such as the use of porcine islets, stem cells, development of prevascularized implants, islet nanocoating, and multilayer encapsulation, continue to generate intense scientific interest in this rapidly expanding field. This review provides a comprehensive update on islet and stem cell encapsulation as a treatment modality in type 1 diabetes, including a historical outlook as well as current and future research avenues. PMID:25148368

  16. Autologous Pancreatic Islet Transplantation in Human Bone Marrow

    PubMed Central

    Maffi, Paola; Balzano, Gianpaolo; Ponzoni, Maurilio; Nano, Rita; Sordi, Valeria; Melzi, Raffaella; Mercalli, Alessia; Scavini, Marina; Esposito, Antonio; Peccatori, Jacopo; Cantarelli, Elisa; Messina, Carlo; Bernardi, Massimo; Del Maschio, Alessandro; Staudacher, Carlo; Doglioni, Claudio; Ciceri, Fabio; Secchi, Antonio; Piemonti, Lorenzo

    2013-01-01

    The liver is the current site of choice for pancreatic islet transplantation, even though it is far from being ideal. We recently have shown in mice that the bone marrow (BM) may be a valid alternative to the liver, and here we report a pilot study to test feasibility and safety of BM as a site for islet transplantation in humans. Four patients who developed diabetes after total pancreatectomy were candidates for the autologous transplantation of pancreatic islet. Because the patients had contraindications for intraportal infusion, islets were infused in the BM. In all recipients, islets engrafted successfully as shown by measurable posttransplantation C-peptide levels and histopathological evidence of insulin-producing cells or molecular markers of endocrine tissue in BM biopsy samples analyzed during follow-up. Thus far, we have recorded no adverse events related to the infusion procedure or the presence of islets in the BM. Islet function was sustained for the maximum follow-up of 944 days. The encouraging results of this pilot study provide new perspectives in identifying alternative sites for islet infusion in patients with type 1 diabetes. Moreover, this is the first unequivocal example of successful engraftment of endocrine tissue in the BM in humans. PMID:23733196

  17. Update on islet cell transplantation for type 1 diabetes.

    PubMed

    Agarwal, Avinash; Brayman, Kenneth L

    2012-06-01

    Despite modern medical breakthroughs, diabetes mellitus is a worldwide leading cause of morbidity and mortality. Definitive surgical treatment of diabetes mellitus was established with the advent and refinement of clinical pancreas transplantation in the 1960s. During the following decades, critical discoveries involving islet isolation and engraftment took place. Clinical islet cell transplantation represents the potential for reduced insulin requirements and debilitating hypoglycemic episodes without the morbidity of surgery. Unfortunately, islet cell transplantation was unable to achieve comparable results with solid organ transplantation. This was until the Edmonton protocol (steroid-free immunosuppression) was described, which demonstrated that islet cell transplantation could be a viable alternative to pancreas transplantation. Significant advances in islet purification techniques and novel immunomodulatory agents have since renewed interest in islet cell transplantation. Yet the field is still challenged by a limited supply of islet cells, inadequate engraftment, and the deleterious effects of chronic immunosuppression. This article discusses the history and the current status of clinical islet cell transplantation. PMID:23729978

  18. The microsomal glucose-6-phosphatase enzyme of pancreatic islets.

    PubMed Central

    Waddell, I D; Burchell, A

    1988-01-01

    Microsomal fractions isolated from pancreatic islet cells were shown to contain high specific glucose-6-phosphatase activity. The islet-cell glucose-6-phosphatase enzyme has the same Mr (36,500), similar immunological properties and kinetic characteristics to the hepatic microsomal glucose-6-phosphatase enzyme. Images Fig. 1. Fig. 2. PMID:2849415

  19. The portal immunosuppressive storm: relevance to islet transplantation?

    PubMed

    Shapiro, A M James; Gallant, Heather L; Hao, Er Geng; Lakey, Jonathan R T; McCready, Tara; Rajotte, Ray V; Yatscoff, Randall W; Kneteman, Norman M

    2005-02-01

    Outcomes in clinical islet transplantation improved substantially with the introduction of combined sirolimus and tacrolimus immunosuppression. However, multiple islet preparations are often required to achieve insulin independence, suggesting that islet engraftment may not be optimal when these agents are absorbed via the portal vein. The current study was designed to assess the differential concentrations of immunosuppressive drugs within the portal and systemic circulations of a large animal model, to assess the local concentrations of drugs to which islets are exposed early after implantation. Chronic catheters were placed in the portal vein and carotid artery of 6 mongrel dogs, and immunosuppressants were administered orally. Blood samples were drawn simultaneously from portal and systemic catheters, and drug concentrations were analyzed. Peak immunosuppressant levels as well as area under the curve were dramatically elevated in portal blood relative to systemic levels for all drugs tested. This "portal storm" of immunosuppression may be relevant to intrahepatic islet transplantation. PMID:15665744

  20. Islet cell autoantigens in insulin-dependent diabetes.

    PubMed Central

    Atkinson, M A; Maclaren, N K

    1993-01-01

    A burgeoning number of antigenic targets of the islet cell autoimmunity in IDD have been identified, and more can be anticipated through improved methods for their identification. The challenge for those investigating the pathogenesis of IDD will be to assign the relative importance of these antigens to the development of the disease, and to resolve whether there is a dominant primary immunologic event that is followed by a series of secondary immunizations to a variety of normally sequestered islet cell antigens in the sequence of pathogenic events that culminate in IDD. One interesting observation that may have potential pathogenic implications is the observation that of all islet cell autoantigens described, only two (i.e., 64 kD/GAD, 38 kD) are reactive in their native configurations, implying that recognition of conformational epitopes is most important. This property argues for primary immunizing agents rather than secondary ones after release of denatured antigens and antigenic recognition through their epitopes. Given the complex and multiple physiological functions of islet cells and the continuous variation in their activity, it is reasonable to speculate that the speed of the progression to IDD could vary between individuals with respect to their insulin needs and the relative activities of their islets. Activated islets may express autoantigens that have only limited expression in quiescent islets. The often times striking variation in the severity of insulitis seen in different islets of a single pancreas may be explained by the level of activity of individual islets. Furthermore, disparity in HLA-DR/DQ associations with disease may involve differences in the immunological recognition of autoantigens. Whereas there is still much to learn, it is clear that disease predictability and disease intervention studies have been enhanced through the identification of the islet cell autoantigens in IDD. Images PMID:8408615

  1. Oxygen supply by photosynthesis to an implantable islet cell device.

    PubMed

    Evron, Y; Zimermann, B; Ludwig, B; Barkai, U; Colton, C K; Weir, G C; Arieli, B; Maimon, S; Shalev, N; Yavriyants, K; Goldman, T; Gendler, Z; Eizen, L; Vardi, P; Bloch, K; Barthel, A; Bornstein, S R; Rotem, A

    2015-01-01

    Transplantation of islet cells is an effective treatment for type 1 diabetes with critically labile metabolic control. However, during islet isolation, blood supply is disrupted, and the transport of nutrients/metabolites to and from the islet cells occurs entirely by diffusion. Adequate oxygen supply is essential for function/survival of islet cells and is the limiting factor for graft integrity. Recently, we developed an immunoisolated chamber system for transplantation of human islets without immunosuppression. This system depended on daily oxygen supply. To provide independence from this external source, we incorporated a novel approach based on photosynthetically-generated oxygen. The chamber system was packed sandwich-like with a slab of immobilized photosynthetically active microorganisms (Synechococcus lividus) on top of a flat light source (LEDs, red light at 660 nm, intensity of 8 μE/m(2)/s). Islet cells immobilized in an alginate slab (500-1,000 islet equivalents/cm(2)) were mounted on the photosynthetic slab separated by a gas permeable silicone rubber-Teflon membrane, and the complete module was sealed with a microporous polytetrafluorethylene (Teflon) membrane (pore size: 0.4 μm) to protect the contents from the host immune cells. Upon illumination, oxygen produced by photosynthesis diffused via the silicone Teflon membrane into the islet compartment. Oxygen production from implanted encapsulated microorganisms was stable for 1 month. After implantation of the device into diabetic rats, normoglycemia was achieved for 1 week. Upon retrieval of the device, blood glucose levels returned to the diabetic state. Our results demonstrate that an implanted photosynthetic bioreactor can supply oxygen to transplanted islets and thus maintain islet viability/functionality. PMID:25365509

  2. Survival prolongation of microencapsulated allogeneic islet by nanosized nordihydroguaiaretic acid.

    PubMed

    Yang, T-Y; Chen, J-P; Ku, K-W; Fu, S-H; Hsu, B R-S

    2005-05-01

    Immunoisolation such as alginate-poly-L-lysine-alginate (APA) microencapsulation may protect entrapped islet graft cells from destruction by cellular and humoral immunities, but cannot avoid aggregation of macrophages and fibroblasts around microcapsules, which has been known to cause late dysfunction. Nordihydroguaiaretic acid (NDGA) is a lipoxygenase inhibitor that prevents the activation and chemotaxis of macrophages. In this study, we used the dialysis method without surfactant to prepare poly (DL-lactide-co-glycolide) (PLGA) nanoparticles to entrap NDGA. We determined the formulation conditions suitable for sustained release when coencapsulated with the islets. Nanoparticle sizes of 0.2-0.3 microm were suitable for sustained release in electromagnetic driven APA microcapsules. In the toxicity study, we coincubated islets with PLGA-NDGA nanoparticles in vitro for 2 and 4 weeks. The glucose stimulated insulin secretion and insulin contents of islets were not influenced significantly. To test whether nanosized NDGA provides extra protection for APA islets, about 160-200 allogeneic islets of C57BL/6 mice were either encapsulated alone using APA or coencapsulated with PLGA-NDGA. At 2 and 4 weeks after implantation into the peritoneal cavities of healthy BALB/c mice, the intraperitoneal islet grafts were recovered using lavage. Mice that received islets of APA-PLGA-NDGA preparations showed a higher recovery rate of functioning grafts than those that received islets prepared using APA alone (10.1%, n = 4 vs 5.2%, n = 3). In conclusion, nanosized NDGA prolonged the graft survival of APA microencapsulated allogeneic islets.

  3. Oxygen supply by photosynthesis to an implantable islet cell device.

    PubMed

    Evron, Y; Zimermann, B; Ludwig, B; Barkai, U; Colton, C K; Weir, G C; Arieli, B; Maimon, S; Shalev, N; Yavriyants, K; Goldman, T; Gendler, Z; Eizen, L; Vardi, P; Bloch, K; Barthel, A; Bornstein, S R; Rotem, A

    2015-01-01

    Transplantation of islet cells is an effective treatment for type 1 diabetes with critically labile metabolic control. However, during islet isolation, blood supply is disrupted, and the transport of nutrients/metabolites to and from the islet cells occurs entirely by diffusion. Adequate oxygen supply is essential for function/survival of islet cells and is the limiting factor for graft integrity. Recently, we developed an immunoisolated chamber system for transplantation of human islets without immunosuppression. This system depended on daily oxygen supply. To provide independence from this external source, we incorporated a novel approach based on photosynthetically-generated oxygen. The chamber system was packed sandwich-like with a slab of immobilized photosynthetically active microorganisms (Synechococcus lividus) on top of a flat light source (LEDs, red light at 660 nm, intensity of 8 μE/m(2)/s). Islet cells immobilized in an alginate slab (500-1,000 islet equivalents/cm(2)) were mounted on the photosynthetic slab separated by a gas permeable silicone rubber-Teflon membrane, and the complete module was sealed with a microporous polytetrafluorethylene (Teflon) membrane (pore size: 0.4 μm) to protect the contents from the host immune cells. Upon illumination, oxygen produced by photosynthesis diffused via the silicone Teflon membrane into the islet compartment. Oxygen production from implanted encapsulated microorganisms was stable for 1 month. After implantation of the device into diabetic rats, normoglycemia was achieved for 1 week. Upon retrieval of the device, blood glucose levels returned to the diabetic state. Our results demonstrate that an implanted photosynthetic bioreactor can supply oxygen to transplanted islets and thus maintain islet viability/functionality.

  4. Membranes to achieve immunoprotection of transplanted islets

    PubMed Central

    Schweicher, Julien; Nyitray, Crystal; Desai, Tejal A.

    2014-01-01

    Transplantation of islet or beta cells is seen as the cure for type 1 diabetes since it allows physiological regulation of blood glucose levels without requiring any compliance from the patients. In order to circumvent the use of immunosuppressive drugs (and their side effects), semipermeable membranes have been developed to encapsulate and immunoprotect transplanted cells. This review presents the historical developments of immunoisolation and provides an update on the current research in this field. A particular emphasis is laid on the fabrication, characterization and performance of membranes developed for immunoisolation applications. PMID:24389172

  5. Re-engineering Islet Cell Transplantation

    PubMed Central

    Fotino, Nicoletta; Fotino, Carmen; Pileggi, Antonello

    2015-01-01

    We are living exciting times in the field of beta cell replacement therapies for the treatment of diabetes. While steady progress has been recorded thus far in clinical islet transplantation, novel approaches are needed to make cell-based therapies more reproducible and leading to long-lasting success. The multiple facets of diabetes impose the need for a transdisciplinary approach to attain this goal, by targeting immunity, promoting engraftment and sustained functional potency. We discuss herein the emerging technologies applied to beta cell replacement therapies. PMID:25814189

  6. Endoscopic biopsy of islet transplants in the gastric submucosal space provides evidence of islet graft rejection in diabetic pigs.

    PubMed

    Tanaka, Takayuki; Fujita, Minoru; Bottino, Rita; Piganelli, Jon D; McGrath, Kevin; Li, Jiang; Lee, Whayoung; Iwase, Hayato; Wijkstrom, Martin; Bertera, Suzanne; Long, Cassandra; Landsittel, Douglas; Haruma, Ken; Cooper, David K C; Hara, Hidetaka

    2016-01-01

    Transplantation of islets into the gastric submucosal space (GSMS) has several advantages (e.g., avoidance of the instant blood-mediated inflammatory response [IBMIR], ability to biopsy). The aim of this study was to determine whether endoscopic biopsy of islet allografts transplanted into the GSMS in diabetic pigs can provide histopathological and immunohistochemical information that correlates with the clinical course (e.g.,, blood glucose level, insulin requirement). Islet allografts (Group1: 10,000 kIEq /kg [n = 4]; Group2: 15,000 kIEq /kg [n = 2]) were transplanted into the GSMS of diabetic pigs under immunosuppression. In Group2, the anti-oxidant, BMX-001 was applied during preservation, isolation, and culture of the islets, and at the time of transplantation. Endoscopic biopsies of the islet grafts were obtained one or 2 weeks after transplantation, and histopathological features were compared with the clinical course (e.g., blood glucose, insulin requirement). In Group1, in the absence of anti-oxidant therapy, most of the islets became fragmented, and there was no reduction in exogenous insulin requirement. In Group2, with an increased number of transplanted islets in the presence of BMX-001, more healthy insulin-positive islet masses were obtained at biopsy and necropsy (4 weeks), and these correlated with reductions in both blood glucose level and insulin requirement. In all cases, inflammatory cell infiltrates were present. After islet transplantation into the GSMS, endoscopic biopsy can provide information on graft rejection, which would be an immense advantage in clinical islet transplantation. PMID:26857703

  7. Islet secretory granules contain cytochrome b561.

    PubMed

    Mackin, R B; Jones, D P; Noe, B D

    1986-08-01

    A cytochrome has been detected in secretory granules prepared from anglerfish islets of Langerhans. The heme moiety was determined to be of the b type, and the dithionite-reduced cytochrome exhibited an alpha-band maximum at 561 nm with an extinction coefficient of 13.8 mM-1 X cm-1. The protein was present at a concentration of 40 +/- 4 pmol/mg of secretory granule protein. The cytochrome was found to be an integral membrane protein and to be reduced by ascorbic acid but not by NADH, NADPH, reduced glutathione (GSH), or succinate. Because of the similarity to previously characterized secretory granule cytochrome b561's from neuroendocrine tissues, this cytochrome is also referred to as cytochrome b561. Although its function has not yet been elucidated, the apparent specificity for ascorbate suggests that it may be a component of the ascorbate-dependent peptidyl-glycine alpha-amidating monooxygenase system that functions in the amidation of islet hormones. PMID:3525285

  8. The role of rosiglitazone treatment in the modulation of islet hormones and hormone-like peptides: a combined in situ hybridization and immunohistochemical study.

    PubMed

    Yildirim, Sukriye; Bolkent, Sema; Sundler, Frank

    2008-12-01

    Rosiglitazone, peroxisome proliferator-activated receptor-gamma agonist, is an insulin sensitizing agent in peripheral tissues. This study investigated islet hormones and hormone-like peptides expression patterns in rosiglitazone treated streptozotocin (STZ)-diabetic rats by using immunohistochemistry and in situ hybridization methods. Animals were divided into four groups. I. Group: Intact control rats. II. Group: Rosiglitazone-treated controls. III. Group: STZ-diabetic rats. IV. Group: Rosiglitazone-treated diabetic animals. Rosiglitazone was given for 7 days at a dose of 20 mg/kg body weight. In the STZ-diabetic group, there were significant differences in islet hormones and hormone like peptides cell numbers compared to rosiglitazone control group and intact control group. There were significant differences in cocaine- and amphetamine-regulated transcript (CART) and pancreatic polypeptide (PP) cell numbers between rosiglitazone control group and rosiglitazone + STZ-diabetic group. We detected a significant decrease in glucagon mRNA signals in rosiglitazone-treated control group compared to intact controls. We found a statistically significant difference in islet amyloid polypeptide (IAPP) mRNA signals between the STZ-diabetic group and the rosiglitazone + STZ-diabetic group. Besides, we also demonstrated co-localization of peptides by using double and triple histochemistry. In conclusion, our results show that short-term rosiglitazone treatment had a preservative effect to some extent on the expression of islet hormones and hormone-like peptides to maintain the islet function.

  9. Serotonin- and Dopamine-Related Gene Expression in db/db Mice Islets and in MIN6 β-Cells Treated with Palmitate and Oleate.

    PubMed

    Cataldo, L R; Mizgier, M L; Busso, D; Olmos, P; Galgani, J E; Valenzuela, R; Mezzano, D; Aranda, E; Cortés, V A; Santos, J L

    2016-01-01

    High circulating nonesterified fatty acids (NEFAs) concentration, often reported in diabetes, leads to impaired glucose-stimulated insulin secretion (GSIS) through not yet well-defined mechanisms. Serotonin and dopamine might contribute to NEFA-dependent β-cell dysfunction, since extracellular signal of these monoamines decreases GSIS. Moreover, palmitate-treated β-cells may enhance the expression of the serotonin receptor Htr2c, affecting insulin secretion. Additionally, the expression of monoamine-oxidase type B (Maob) seems to be lower in islets from humans and mice with diabetes compared to nondiabetic islets, which may lead to increased monoamine concentrations. We assessed the expression of serotonin- and dopamine-related genes in islets from db/db and wild-type (WT) mice. In addition, the effect of palmitate and oleate on the expression of such genes, 5HT content, and GSIS in MIN6 β-cell was determined. Lower Maob expression was found in islets from db/db versus WT mice and in MIN6 β-cells in response to palmitate and oleate treatment compared to vehicle. Reduced 5HT content and impaired GSIS in response to palmitate (-25%; p < 0.0001) and oleate (-43%; p < 0.0001) were detected in MIN6 β-cells. In conclusion, known defects of GSIS in islets from db/db mice and MIN6 β-cells treated with NEFAs are accompanied by reduced Maob expression and reduced 5HT content.

  10. Serotonin- and Dopamine-Related Gene Expression in db/db Mice Islets and in MIN6 β-Cells Treated with Palmitate and Oleate

    PubMed Central

    Cataldo, L. R.; Olmos, P.; Galgani, J. E.; Valenzuela, R.; Aranda, E.; Cortés, V. A.; Santos, J. L.

    2016-01-01

    High circulating nonesterified fatty acids (NEFAs) concentration, often reported in diabetes, leads to impaired glucose-stimulated insulin secretion (GSIS) through not yet well-defined mechanisms. Serotonin and dopamine might contribute to NEFA-dependent β-cell dysfunction, since extracellular signal of these monoamines decreases GSIS. Moreover, palmitate-treated β-cells may enhance the expression of the serotonin receptor Htr2c, affecting insulin secretion. Additionally, the expression of monoamine-oxidase type B (Maob) seems to be lower in islets from humans and mice with diabetes compared to nondiabetic islets, which may lead to increased monoamine concentrations. We assessed the expression of serotonin- and dopamine-related genes in islets from db/db and wild-type (WT) mice. In addition, the effect of palmitate and oleate on the expression of such genes, 5HT content, and GSIS in MIN6 β-cell was determined. Lower Maob expression was found in islets from db/db versus WT mice and in MIN6 β-cells in response to palmitate and oleate treatment compared to vehicle. Reduced 5HT content and impaired GSIS in response to palmitate (−25%; p < 0.0001) and oleate (−43%; p < 0.0001) were detected in MIN6 β-cells. In conclusion, known defects of GSIS in islets from db/db mice and MIN6 β-cells treated with NEFAs are accompanied by reduced Maob expression and reduced 5HT content. PMID:27366756

  11. 2007 update on allogeneic islet transplantation from the Collaborative Islet Transplant Registry (CITR).

    PubMed

    2009-01-01

    As of October 1, 2007, 25 North American medical institutions and one European islet transplant center reported detailed information to the Registry on 315 allograft recipients, of which 285 were islet alone (IA) and 30 were islet after kidney (IAK). Of the 114 IA recipients expected at 4 years after their last infusion, 12% were insulin independent, 16% were insulin dependent with detectable C-peptide, 40% had no detectable C-peptide, and 32% had missing C-peptide data or were lost to follow-up. Of the IA recipients, 72% achieved insulin independence at least once over 3 years and multiple infusions. Factors associated with achievement of insulin independence included islet size >1.0 expressed as IEQs per islet number [hazard ratio (HR) = 1.5, p = 0.06], additional infusions given (HR = 1.5, p = 0.01), lower pretransplant HbA(1c) (HR = 1.2 each %-age unit, p = 0.02), donor given insulin (HR = 2, p = 0.003), daclizumab given at any infusion (HR = 1.9, p = 0.06), and shorter cold storage time (HR = 1.04, p = 0.03), mutually adjusted in a multivariate model. Severe hypoglycemia prevalence was reduced from 78-83% preinfusion to less than 5% throughout the first year post-last infusion, and to 18% adjusted for missing data at 3 years post-last infusion. In Year 1 post-first infusion for IA recipients, 53% experienced a Grade 3-5 or serious adverse event (AE) and 35% experienced a severe AE related to either an infusion procedure or immunosuppression. In Year 1 post-first infusion, 33% of IA subjects and 35% of IAK subjects had an AE related to the infusion procedure, while 35% of IA subjects and only 27% of IAK subjects had an AE related to the immunosuppression therapy. Five deaths were reported, of which two were classified as probably related to the infusion procedure or immunosuppression, and 10 cases of neoplasm, of which two were classified as probably related to the procedure or immunosuppression. Islet transplantation continues to show short-term benefits of

  12. Improved physiological properties of gravity-enforced reassembled rat and human pancreatic pseudo-islets.

    PubMed

    Zuellig, R A; Cavallari, G; Gerber, P; Tschopp, O; Spinas, G A; Moritz, W; Lehmann, R

    2014-04-16

    Previously we demonstrated the superiority of small islets vs large islets in terms of function and survival after transplantation, and we generated reaggregated rat islets (pseudo-islets) of standardized small dimensions by the hanging-drop culture method (HDCM). The aim of this study was to generate human pseudo-islets by HDCM and to evaluate and compare the physiological properties of rat and human pseudo-islets. Isolated rat and human islets were dissociated into single cells and incubated for 6-14 days by HDCM. Newly formed pseudo-islets were analysed for dimensions, morphology, glucose-stimulated insulin secretion (GSIS) and total insulin content. The morphology of reaggregated human islets was similar to that of native islets, while rat pseudo-islets had a reduced content of α and δ cells. GSIS of small rat and human pseudo-islets (250 cells) was increased up to 4.0-fold (p < 0.01) and 2.5-fold (p < 0.001), respectively, when compared to their native counterparts. Human pseudo-islets showed a more pronounced first-phase insulin secretion as compared to intact islets. GSIS was inversely correlated to islet size, and small islets (250 cells) contained up to six-fold more insulin/cell than large islets (1500 cells). Tissue loss with this new technology could be reduced to 49.2 ± 1.5% in rat islets, as compared to the starting amount. With HDCM, pseudo-islets of standardized size with similar cellular composition and improved biological function can be generated, which compensates for tissue loss during production. Transplantation of small pseudo-islets may represent an attractive strategy to improve graft survival and function, due to better oxygen and nutrient supply during the phase of revascularization. Copyright © 2014 John Wiley & Sons, Ltd.

  13. Improved insulin sensitivity and islet function after PPARdelta activation in diabetic db/db mice.

    PubMed

    Winzell, Maria Sörhede; Wulff, Erik Max; Olsen, Grith Skytte; Sauerberg, Per; Gotfredsen, Carsten F; Ahrén, Bo

    2010-01-25

    The peroxisome proliferator-activated receptors (PPARs) are transcription factors belonging to the nuclear receptor superfamily. Several reports have shown that PPARdelta is involved in lipid metabolism, increasing fat oxidation and depleting lipid accumulation. Whether PPARdelta is involved in the regulation of glucose metabolism is not completely understood. In this study, we examined effects of long-term PPARdelta activation on glycemic control, islet function and insulin sensitivity in diabetic db/db mice. Male db/db mice were administered orally once daily with a selective and partial PPARdelta agonist (NNC 61-5920, 30 mg/kg) for eight weeks; control mice received vehicle. Fasting and non-fasting plasma glucose were reduced, reflected in reduced hemoglobinA(1c) (3.6+/-1.6% vs. 5.4+/-1.8 in db/db controls, P<0.05) and furthermore, the AUC(glucose) after oral glucose (3g/kg) was reduced by 67% (P<0.05) after long-term PPARdelta activation. Following intravenous glucose (1g/kg), glucose tolerance was improved after PPARdelta activation (K(G) 1.3+/-0.6 vs. -0.05+/-0.7 %/min, P=0.048). Insulin sensitivity, measured as the glucose clearance after intravenous injection of glucose (1g/kg) and insulin (0.75 or 1.0 U/kg), during inhibition of endogenous insulin secretion by diazoxide (25mg/kg), was improved (K(G) 2.9+/-0.6 vs. 1.3+/-0.3 %/min in controls, P<0.05) despite lower insulin levels. Furthermore, islets isolated from PPARdelta agonist treated mice demonstrated improved glucose responsiveness as well as improved cellular topography. In conclusion, PPARdelta agonism alleviates insulin resistance and improves islet function and topography, resulting in improved glycemia in diabetic db/db mice. This suggests that activation of PPARdelta improves glucose metabolism and may therefore potentially be target for treatment of type 2 diabetes.

  14. The use of the long-acting somatostatin analogue, octreotide acetate, in patients with islet cell tumors.

    PubMed

    Maton, P N

    1989-12-01

    Octreotide lowers plasma concentrations of the marker peptide in the majority of patients with islet cell tumors. However, as described above the effect of octreotide on plasma concentrations of marker peptides is not necessarily related to the effect on symptoms. Nevertheless octreotide is capable of producing symptomatic relief in a large proportion of patients with islet cell tumor syndromes. The data on the effect of octreotide on the symptoms due to VIPoma and due to the carcinoid syndrome (presumably including some who have islet cell tumors) are strong and the drug has been approved for these indications by the Food and Drug Administration. With respect to the other islet cell tumor syndromes, the published data suggest that the utility of octreotide differs in the different syndromes. Insulinomas are usually single, benign, and can and should be removed surgically, resulting in cure. Octreotide therefore has no role to play in such patients, particularly since the response of insulinomas is variable. However in the 10 per cent of insulinomas that are malignant octreotide is certainly effective in at least a portion of cases, although as yet the true response rate and efficacy compared with diazoxide is not clear. Although octreotide is effective at reducing acid output, and thus improving symptoms in patients with Zollinger-Ellison syndrome, because of the effectiveness of histamine H2-receptor antagonists and omeprazole, there is no need for octreotide in this syndrome. For patients with glucagonoma, GHRHoma, Cushing's syndrome, and other rare islet cell tumor syndromes octreotide may well be of benefit and should be considered. The current data do not support the use of octreotide for an antitumor effect.

  15. Trefoil factor 3 stimulates human and rodent pancreatic islet beta-cell replication with retention of function.

    PubMed

    Fueger, Patrick T; Schisler, Jonathan C; Lu, Danhong; Babu, Daniella A; Mirmira, Raghavendra G; Newgard, Christopher B; Hohmeier, Hans E

    2008-05-01

    Both major forms of diabetes involve a decline in beta-cell mass, mediated by autoimmune destruction of insulin-producing cells in type 1 diabetes and by increased rates of apoptosis secondary to metabolic stress in type 2 diabetes. Methods for controlled expansion of beta-cell mass are currently not available but would have great potential utility for treatment of these diseases. In the current study, we demonstrate that overexpression of trefoil factor 3 (TFF3) in rat pancreatic islets results in a 4- to 5-fold increase in [(3)H]thymidine incorporation, with full retention of glucose-stimulated insulin secretion. This increase was almost exclusively due to stimulation of beta-cell replication, as demonstrated by studies of bromodeoxyuridine incorporation and co-immunofluorescence analysis with anti-bromodeoxyuridine and antiinsulin or antiglucagon antibodies. The proliferative effect of TFF3 required the presence of serum or 0.5 ng/ml epidermal growth factor. The ability of TFF3 overexpression to stimulate proliferation of rat islets in serum was abolished by the addition of epidermal growth factor receptor antagonist AG1478. Furthermore, TFF3-induced increases in [3H]thymidine incorporation in rat islets cultured in serum was blocked by overexpression of a dominant-negative Akt protein or treatment with triciribine, an Akt inhibitor. Finally, overexpression of TFF3 also caused a doubling of [3H]thymidine incorporation in human islets. In summary, our findings reveal a novel TFF3-mediated pathway for stimulation of beta-cell replication that could ultimately be exploited for expansion or preservation of islet beta-cell mass.

  16. Islet Transplantation in Pediatric Patients: Current Indications and Future Perspectives.

    PubMed

    Bertuzzi, Federico; Antonioli, Barbara; Tosca, Marta C; Galuzzi, Marta; Bonomo, Matteo; Marazzi, Mario; Colussi, Giacomo

    2016-01-01

    The first islet transplantation in diabetes mellitus was performed more than 20 years ago. Since then, clinical results have progressively improved. Nowadays, islet transplantation can be considered a real therapeutic option after pancreatectomy for painful chronic pancreatitis (autotransplantation) and in selected adult patients affected by type 1 diabetes mellitus (allotransplantation). Better results are mainly due to the advances in the standardization of islet isolation and purification procedures as well as in the pharmacological treatment of recipients. Anti-inflammatory treatments facilitate islet engraftment and prevent metabolic exhaustion and functional β-cell apoptosis; new strategies better control islet graft rejection. As a consequence, islet transplantation activities are no longer confined to few centers only, rather thousands of transplants are now performed all over the world. Many attempts are actually undertaken to find solutions to current problems of islets transplantation, from toxicity of immunosuppressive therapy to the limited engraftment, function and duration. There is general hope that these procedures will offer a safe and feasible therapeutic option for an increasing number of patients suffering from diabetes mellitus, including pediatric patients. PMID:26682915

  17. Has the gap between pancreas and islet transplantation closed?

    PubMed

    Niclauss, Nadja; Morel, Philippe; Berney, Thierry

    2014-09-27

    Both pancreas and islet transplantations are therapeutic options for complicated type 1 diabetes. Until recent years, outcomes of islet transplantation have been significantly inferior to those of whole pancreas. Islet transplantation is primarily performed alone in patients with severe hypoglycemia, and recent registry reports have suggested that results of islet transplantation alone in this indication may be about to match those of pancreas transplant alone in insulin independence. Figures of 50% insulin independence at 5 years for either procedure have been cited. In this article, we address the question whether islet transplantation has indeed bridged the gap with whole pancreas. Looking at the evidence to answer this question, we propose that although pancreas may still be more efficient in taking recipients off insulin than islets, there are in fact numerous "gaps" separating both procedures that must be taken into the equation. These "gaps" relate to organ utilization, organ allocation, indication for transplantation, and morbidity. In-depth analysis reveals that islet transplantation, in fact, has an edge on whole pancreas in some of these aspects. Accordingly, attempts should be made to bridge these gaps from both sides to achieve the same level of success with either procedure. More realistically, it is likely that some of these gaps will remain and that both procedures will coexist and complement each other, to ensure that β cell replacement can be successfully implemented in the greatest possible number of patients with type 1 diabetes.

  18. Glucose Oscillations Can Activate an Endogenous Oscillator in Pancreatic Islets

    PubMed Central

    Mukhitov, Nikita; Roper, Michael G.; Bertram, Richard

    2016-01-01

    Pancreatic islets manage elevations in blood glucose level by secreting insulin into the bloodstream in a pulsatile manner. Pulsatile insulin secretion is governed by islet oscillations such as bursting electrical activity and periodic Ca2+ entry in β-cells. In this report, we demonstrate that although islet oscillations are lost by fixing a glucose stimulus at a high concentration, they may be recovered by subsequently converting the glucose stimulus to a sinusoidal wave. We predict with mathematical modeling that the sinusoidal glucose signal’s ability to recover islet oscillations depends on its amplitude and period, and we confirm our predictions by conducting experiments with islets using a microfluidics platform. Our results suggest a mechanism whereby oscillatory blood glucose levels recruit non-oscillating islets to enhance pulsatile insulin output from the pancreas. Our results also provide support for the main hypothesis of the Dual Oscillator Model, that a glycolytic oscillator endogenous to islet β-cells drives pulsatile insulin secretion. PMID:27788129

  19. Mesobiliverdin IXα Enhances Rat Pancreatic Islet Yield and Function.

    PubMed

    Ito, Taihei; Chen, Dong; Chang, Cheng-Wei Tom; Kenmochi, Takashi; Saito, Tomonori; Suzuki, Satoshi; Takemoto, Jon Y

    2013-01-01

    The aims of this study were to produce mesobiliverdin IXα, an analog of anti-inflammatory biliverdin IXα, and to test its ability to enhance rat pancreatic islet yield for allograft transplantation into diabetic recipients. Mesobiliverdin IXα was synthesized from phycocyanobilin derived from cyanobacteria, and its identity and purity were analyzed by chromatographic and spectroscopic methods. Mesobiliverdin IXα was a substrate for human NADPH biliverdin reductase. Excised Lewis rat pancreata infused with mesobiliverdin IXα and biliverdin IXα-HCl (1-100 μM) yielded islet equivalents as high as 86.7 and 36.5%, respectively, above those from non-treated controls, and the islets showed a high degree of viability based on dithizone staining. When transplanted into livers of streptozotocin-induced diabetic rats, islets from pancreata infused with mesobiliverdin IXα lowered non-fasting blood glucose (BG) levels in 55.6% of the recipients and in 22.2% of control recipients. In intravenous glucose tolerance tests, fasting BG levels of 56 post-operative day recipients with islets from mesobiliverdin IXα infused pancreata were lower than those for controls and showed responses that indicate recovery of insulin-dependent function. In conclusion, mesobiliverdin IXα infusion of pancreata enhanced yields of functional islets capable of reversing insulin dysfunction in diabetic recipients. Since its production is scalable, mesobiliverdin IXα has clinical potential as a protectant of pancreatic islets for allograft transplantation. PMID:23630498

  20. Characterization of an islet carboxypeptidase B involved in prohormone processing.

    PubMed

    Mackin, R B; Noe, B D

    1987-02-01

    An islet carboxypeptidase B-like enzyme (CP B) has been identified and characterized in secretory granules of anglerfish islets. By employing several different column chromatography methods (gel filtration, ion exchange, and hydroxylapatite), it was determined that the islet secretory granules contained only one detectable CP B. This enzyme is present in both secretory granule- and microsome-enriched subcellular fractions and is membrane associated at pH 5.2. The specific activity of the islet CP B was approximately 4-fold higher in the secretory granule- and microsome-enriched subcellular fractions than in the lysosome-enriched fraction. It is a metallo-enzyme that is stimulated by Co++, and has a pH optimum in the range of 5.2-6.2. The isoelectric point of the islet CP B is at pH 4.9. The enzyme is a glycoprotein and has an approximate molecular size of Mr 30,000 by gel filtration. The substrate analogs guanidinoethylmercaptosuccinic acid, guanidinopropylsuccinic acid, and aminopropylmercaptosuccinic acid competitively inhibited the islet CP B with inhibition constant (Ki) values of 23, 21, and 230 nM, respectively. In experiments employing purified prohormone substrates it was demonstrated that the action of a CP B-like enzyme was required for the complete processing of anglerfish proinsulin and prosomatostatin-II. These results indicate that the anglerfish islet CP B is involved in prohormone processing and has properties which are very similar to those of enkephalin convertase. PMID:3542502

  1. Labeling and Tracking of Human Pancreatic Islets Using Carbon Nanotubes.

    PubMed

    Syed, Farooq; Riggio, Cristina; Masini, Matilde; Bugliani, Marco; Battaglia, Valentina; Novelli, Michela; Suleiman, Mara; Vittorio, Orazio; Boggi, Ugo; Filipponi, Franco; Marselli, Lorella; Bartolozzi, Carlo; Masiello, Pellegrino; Raffa, Vittoria; Marchetti, Piero

    2015-04-01

    Limited tools are available for the non-invasive monitoring of transplanted islets. In this study, we have compared the widely used superparamagnetic iron oxide nanoparticle ferumoxide (Endorem) and multiwalled carbon nanotubes (MWCNTs) for islet cell labeling and tracking. INS-1 E cells and human pancreatic islets isolated from 12 non-diabetic cadaveric organ donors (age: 62 ±16 yr, BMI: 24.6 ± 3.3 kg/m2) were incubated with 50 μg/ml Endorem or 15 μg/ml MWCNTs and studied after 7 or 14 days to assess beta cell morphology, ultrastructure, function, cell survival and in-vitro and in-vivo magnetic resonance imaging (MRI). Light and electron (EM) microscopy showed the well-maintained morphology and ultrastructure of both INS-1 E and human islets during the incubation. EM also revealed the presence of Endorem and MWCNTs within the beta but not the alpha cells. The compounds did not affect beta cell function and viability, and in-vitro MRI showed that labeled INS-1 E cells and human islets could be imaged. Finally, MWCNT labeled human islets were successfully transplanted into the subcutis of rats localized in the desired site via magnetic field and tracked by MRI. These data suggest that MWCNTs can be an alternative labeling compound to be used with human islets for experimental and transplantation studies.

  2. Biomolecular Surface Engineering of Pancreatic Islets with Thrombomodulin

    PubMed Central

    Wilson, John T.; Haller, Carolyn A.; Qu, Zheng; Cui, Wanxing; Urlam, Murali K.; Chaikof, Elliot L.

    2010-01-01

    Islet transplantation has emerged as a promising treatment for Type 1 diabetes, but its clinical impact remains limited by early islet destruction mediated by prothrombotic and innate inflammatory responses elicited upon transplantation. Thrombomodulin (TM) acts as an important regulator of thrombosis and inflammation through its capacity to channel the catalytic activity of thrombin towards generation of activated protein C (APC), a potent anti-coagulant and anti-inflammatory agent. We describe herein a novel biomolecular strategy for re-engineering the surface of pancreatic islets with TM. A biosynthetic approach was employed to generate recombinant human TM (rTM) bearing a C-terminal azide group, which facilitated site-specific biotinylation of rTM through Staudinger ligation. Murine pancreatic islets were covalently biotinylated through targeting of cell surface amines and aldehydes, and both islet viability and the surface density of streptavidin were maximized through optimization of biotinylation conditions. rTM was immobilized on islet surfaces through streptavidin-biotin interactions, resulting in a nearly three-fold increase in the catalytic capacity of islets to generate APC. PMID:20102751

  3. Labeling and Tracking of Human Pancreatic Islets Using Carbon Nanotubes.

    PubMed

    Syed, Farooq; Riggio, Cristina; Masini, Matilde; Bugliani, Marco; Battaglia, Valentina; Novelli, Michela; Suleiman, Mara; Vittorio, Orazio; Boggi, Ugo; Filipponi, Franco; Marselli, Lorella; Bartolozzi, Carlo; Masiello, Pellegrino; Raffa, Vittoria; Marchetti, Piero

    2015-04-01

    Limited tools are available for the non-invasive monitoring of transplanted islets. In this study, we have compared the widely used superparamagnetic iron oxide nanoparticle ferumoxide (Endorem) and multiwalled carbon nanotubes (MWCNTs) for islet cell labeling and tracking. INS-1 E cells and human pancreatic islets isolated from 12 non-diabetic cadaveric organ donors (age: 62 ±16 yr, BMI: 24.6 ± 3.3 kg/m2) were incubated with 50 μg/ml Endorem or 15 μg/ml MWCNTs and studied after 7 or 14 days to assess beta cell morphology, ultrastructure, function, cell survival and in-vitro and in-vivo magnetic resonance imaging (MRI). Light and electron (EM) microscopy showed the well-maintained morphology and ultrastructure of both INS-1 E and human islets during the incubation. EM also revealed the presence of Endorem and MWCNTs within the beta but not the alpha cells. The compounds did not affect beta cell function and viability, and in-vitro MRI showed that labeled INS-1 E cells and human islets could be imaged. Finally, MWCNT labeled human islets were successfully transplanted into the subcutis of rats localized in the desired site via magnetic field and tracked by MRI. These data suggest that MWCNTs can be an alternative labeling compound to be used with human islets for experimental and transplantation studies. PMID:26310079

  4. Photoacoustic imaging of angiogenesis in subdermal islet transplant sites

    NASA Astrophysics Data System (ADS)

    Shi, Wei; Pawlick, Rena; Bruni, Antonio; Rafiei, Yasmin; Pepper, Andrew R.; Gala-Lopez, Boris; Choi, Min; Malcolm, Andrew; Zemp, Roger J.; Shapiro, A. M. James

    2016-03-01

    Exogenous insulin administration is the mainstay treatment therapy for patients with Type-1 diabetes mellitus (T1DM). However, for select patients, clinical islet transplantation is an alternative therapeutic treatment. In this procedure, islets are transplanted into the hepatic portal vein, and despite improved success within the last decade, obstacles are still associated with this approach. It has been discovered that the subcutaneous space may be an effective alternative site for islet transplantation, and may provide advantages of easy access and potential for simple monitoring. The ability to monitor islet viability and the transplant microenvironment may be key to future success in islet transplantation. A subcutaneous device-less technique has been developed to facilitate angiogenesis in the islet transplant site, however, a method for monitoring the potential engraftment site have yet to be explored fully. Here we demonstrate the ability to track angiogenesis in mice with 1, 2, 3 and 4 weeks post-catheter implant on both sides of the abdomen using a FujiFilm VisualSonics Vevo-LAZR system. Quantitative analysis on vessel densities exhibited gradual vessel growth successfully induced by catheter implantation. Our study demonstrates the ability of employing photoacoustic and micro-ultrasound imaging to track angiogenesis around the catheter site prior to islet transplantation.

  5. Mesenchymal Stem Cells as Feeder Cells for Pancreatic Islet Transplants

    PubMed Central

    Sordi, Valeria; Piemonti, Lorenzo

    2010-01-01

    Allogeneic islet transplantation serves as a source of insulin-secreting beta-cells for the maintenance of normal glucose levels and treatment of diabetes. However, limited availability of islets, high rates of islet graft failure, and the need for life-long non-specific immunosuppressive therapy are major obstacles to the widespread application of this therapeutic approach. To overcome these problems, pancreatic islet transplantation was recently suggested as a potential target of the "therapeutic plasticity" of adult stem cells. In fact, new results suggest that stem/precursor cells, and mesenchymal stem cells in particular, co-transplanted with islets can promote tissue engraftment and beta-cell survival via bystander mechanisms, mainly exerted by creating a milieu of cytoprotective and immunomodulatory molecules. This evidence consistently challenges the limited view that stem/precursor cells work exclusively through beta-cell replacement in diabetes therapy. It proposes that stem cells also act as "feeder" cells for islets, and supporter of graft protection, tissue revascularization, and immune acceptance. This article reviews the experience of using stem cell co-transplantation as strategy to improve islet transplantation. It highlights that comprehension of the mechanisms involved will help to identify new molecular targets and promote development of new pharmacological strategies to treat type 1 and type 2 diabetes patients. PMID:21060972

  6. Mesenchymal stem cells as feeder cells for pancreatic islet transplants.

    PubMed

    Sordi, Valeria; Piemonti, Lorenzo

    2010-01-01

    Allogeneic islet transplantation serves as a source of insulin-secreting beta-cells for the maintenance of normal glucose levels and treatment of diabetes. However, limited availability of islets, high rates of islet graft failure, and the need for life-long non-specific immunosuppressive therapy are major obstacles to the widespread application of this therapeutic approach. To overcome these problems, pancreatic islet transplantation was recently suggested as a potential target of the "therapeutic plasticity" of adult stem cells. In fact, new results suggest that stem/precursor cells, and mesenchymal stem cells in particular, co-transplanted with islets can promote tissue engraftment and beta-cell survival via bystander mechanisms, mainly exerted by creating a milieu of cytoprotective and immunomodulatory molecules. This evidence consistently challenges the limited view that stem/precursor cells work exclusively through beta-cell replacement in diabetes therapy. It proposes that stem cells also act as "feeder" cells for islets, and supporter of graft protection, tissue revascularization, and immune acceptance. This article reviews the experience of using stem cell co-transplantation as strategy to improve islet transplantation. It highlights that comprehension of the mechanisms involved will help to identify new molecular targets and promote development of new pharmacological strategies to treat type 1 and type 2 diabetes patients. PMID:21060972

  7. Hexose metabolism in pancreatic islets: the Pasteur effect.

    PubMed

    Malaisse, W J; Rasschaert, J; Zähner, D; Sener, A

    1988-02-01

    In rat pancreatic islets, hypoxia severely decreased both the oxidation of D-[U-14C]glucose and the release of insulin evoked by D-glucose. The production of [14C]lactate was increased in the hypoxic islets, the relative magnitude of such an increment being greater at low (2.8 mM) than high (8.3 and 16.7 mM) D-glucose concentrations. Hypoxia increased the detritiation of D-[5-3H]glucose at low glucose concentration (2.8 mM), failed to affect 3H2O production at an intermediate glucose level (8.3 mM), and inhibited the utilization of D-[5-3H]glucose at a higher hexose concentration (16.7 mM). In tumoral islet cells (RINm5F line) exposed to 16.7 mM D-glucose, hypoxia decreased D-[U-14C]glucose oxidation to the same extent as in normal islet cells, but increased the production of [14C]lactate and 3H2O to a greater extent than in normal islets. These findings indicate that the Pasteur effect is operative in islet cells. The experimental data also suggest that, under normal conditions of oxygenation, high concentrations of D-glucose lead to both activation of phosphofructokinase and stimulation of mitochondrial oxidative events in normal, but not tumoral, islet cells.

  8. Leptin rapidly suppresses insulin release from insulinoma cells, rat and human islets and, in vivo, in mice.

    PubMed Central

    Kulkarni, R N; Wang, Z L; Wang, R M; Hurley, J D; Smith, D M; Ghatei, M A; Withers, D J; Gardiner, J V; Bailey, C J; Bloom, S R

    1997-01-01

    Obesity is associated with diabetes, and leptin is known to be elevated in obesity. To investigate whether leptin has a direct effect on insulin secretion, isolated rat and human islets and cultured insulinoma cells were studied. In all cases, mouse leptin inhibited insulin secretion at concentrations within the plasma range reported in humans. Insulin mRNA expression was also suppressed in the cultured cells and rat islets. The long form of the leptin receptor (OB-Rb) mRNA was present in the islets and insulinoma cell lines. To determine the significance of these findings in vivo, normal fed mice were injected with two doses of leptin. A significant decrease in plasma insulin and associated rise in glucose concentration were observed. Fasted normal and leptin receptor-deficient db/db mice showed no response to leptin. A dose of leptin, which mimicked that found in normal mice, was administered to leptin-deficient, hyperinsulinemic ob/ob mice. This caused a marked lowering of plasma insulin concentration and a doubling of plasma glucose. Thus, leptin has a powerful acute inhibitory effect on insulin secretion. These results suggest that the action of leptin may be one mechanism by which excess adipose tissue could acutely impair carbohydrate metabolism. PMID:9389736

  9. A Multicenter Study: North American Islet Donor Score in Donor Pancreas Selection for Human Islet Isolation for Transplantation.

    PubMed

    Wang, Ling-Jia; Kin, Tatsuya; O'Gorman, Doug; Shapiro, A M James; Naziruddin, Bashoo; Takita, Morihito; Levy, Marlon F; Posselt, Andrew M; Szot, Gregory L; Savari, Omid; Barbaro, Barbara; McGarrigle, James; Yeh, Chun Chieh; Oberholzer, Jose; Lei, Ji; Chen, Tao; Lian, Moh; Markmann, James F; Alvarez, Alejandro; Linetsky, Elina; Ricordi, Camillo; Balamurugan, A N; Loganathan, Gopalakrishnan; Wilhelm, Joshua J; Hering, Bernhard J; Bottino, Rita; Trucco, Massimo; Liu, Chengyang; Min, Zaw; Li, Yanjing; Naji, Ali; Fernandez, Luis A; Ziemelis, Martynas; Danobeitia, Juan S; Millis, J Michael; Witkowski, Piotr

    2016-01-01

    Selection of an optimal donor pancreas is the first key task for successful islet isolation. We conducted a retrospective multicenter study in 11 centers in North America to develop an islet donor scoring system using donor variables. The data set consisting of 1,056 deceased donors was used for development of a scoring system to predict islet isolation success (defined as postpurification islet yield >400,000 islet equivalents). With the aid of univariate logistic regression analyses, we developed the North American Islet Donor Score (NAIDS) ranging from 0 to 100 points. The c index in the development cohort was 0.73 (95% confidence interval 0.70-0.76). The success rate increased proportionally as the NAIDS increased, from 6.8% success in the NAIDS < 50 points to 53.7% success in the NAIDS ≥ 80 points. We further validated the NAIDS using a separate set of data consisting of 179 islet isolations. A comparable outcome of the NAIDS was observed in the validation cohort. The NAIDS may be a useful tool for donor pancreas selection in clinical practice. Apart from its utility in clinical decision making, the NAIDS may also be used in a research setting as a standardized measurement of pancreas quality. PMID:26922947

  10. Effector-memory T cells develop in islets and report islet pathology in type 1 diabetes.

    PubMed

    Chee, Jonathan; Ko, Hyun-Ja; Skowera, Ania; Jhala, Gaurang; Catterall, Tara; Graham, Kate L; Sutherland, Robyn M; Thomas, Helen E; Lew, Andrew M; Peakman, Mark; Kay, Thomas W H; Krishnamurthy, Balasubramanian

    2014-01-15

    CD8(+) T cells are critical in human type 1 diabetes and in the NOD mouse. In this study, we elucidated the natural history of islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)-specific CD8(+) T cells in NOD diabetes using MHC-tetramer technology. IGRP206-214-specific T cells in the peripheral lymphoid tissue increased with age, and their numbers correlated with insulitis progression. IGRP206-214-specific T cells in the peripheral lymphoid tissue expressed markers of chronic Ag stimulation, and their numbers were stable after diagnosis of diabetes, consistent with their memory phenotype. IGRP206-214-specific T cells in NOD mice expand, acquire the phenotype of effector-memory T cells in the islets, and emigrate to the peripheral lymphoid tissue. Our observations suggest that enumeration of effector-memory T cells of multiple autoantigen specificities in the periphery of type 1 diabetic subjects could be a reliable reporter for progression of islet pathology.

  11. [Xenogeneic cell therapeutics: Treatment of type 1 diabetes using porcine pancreatic islets and islet cells].

    PubMed

    Godehardt, Antonia W; Schilling-Leiß, Dagmar; Sanzenbacher, Ralf; Tönjes, Ralf R

    2015-11-01

    In view of the existing shortage of human donor organs and tissues, xenogeneic cell therapeutics (xCT) offer an alternative for adequate treatment. In particular, porcine pancreatic islets and islet cells have already entered the field of experimental therapy for type-1 diabetes mellitus (T1DM) patients. Thereby, xCT depict challenging products with a glance on medical, ethical, and regulatory questions. With cross-species transplantation (xenotransplantation), the risk of immunological graft rejection as well as the risk of infectious transmission of microbial and viral pathogens must be considered. This includes the bidirectional transmission of microorganisms from graft to host as well as from host to graft. Crossing the border of species requires a critical risk-benefit evaluation as well as a thorough longtime surveillance of transplant recipients after treatment. The international legal and regulatory requirements for xCT are inter alia based on the World Health Organization criteria summarized in the Changsha Communiqué (2008). In the European Union, they were reflected by the European Medicines Agency (EMA) Guideline on Xenogeneic Cell-based Medicinal Products following the implementation of the Regulation on Advanced Therapies (ATMP). On the basis of this regulation, the first non-clinical and clinical experiences were obtained for porcine islets. The results suggest that supportive treatment of T1DM risk patients with xCT may be an alternative to established allogeneic organ transplantation in the future.

  12. Fibrillar dimer formation of islet amyloid polypeptides

    SciTech Connect

    Chiu, Chi -cheng; de Pablo, Juan J.

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  13. Fibrillar dimer formation of islet amyloid polypeptides

    NASA Astrophysics Data System (ADS)

    Chiu, Chi-cheng; de Pablo, Juan J.

    2015-09-01

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 - 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 - 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimental and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.

  14. Islet cell xenotransplantation: a serious look toward the clinic.

    PubMed

    Samy, Kannan P; Martin, Benjamin M; Turgeon, Nicole A; Kirk, Allan D

    2014-01-01

    Type I diabetes remains a significant clinical problem in need of a reliable, generally applicable solution. Both whole organ pancreas and islet allotransplantation have been shown to grant patients insulin independence, but organ availability has restricted these procedures to an exceptionally small subset of the diabetic population. Porcine islet xenotransplantation has been pursued as a potential means of overcoming the limits of allotransplantation, and several preclinical studies have achieved near-physiologic function and year-long survival in clinically relevant pig-to-primate model systems. These proof-of-concept studies have suggested that xenogeneic islets may be poised for use in clinical trials. In this review, we examine recent progress in islet xenotransplantation, with a critical eye toward the gaps between the current state of the art and the state required for appropriate clinical investigation.

  15. Natural history of intrahepatic canine islet cell autografts.

    PubMed Central

    Alejandro, R; Cutfield, R G; Shienvold, F L; Polonsky, K S; Noel, J; Olson, L; Dillberger, J; Miller, J; Mintz, D H

    1986-01-01

    We have serially followed the function of intrahepatic canine islet autografts in 15 beagle dogs for up to 24 mo. Of these, only 20% sustained normal levels of fasting blood glucose for greater than 15 mo posttransplant. Failure of autograft function was accompanied by a preferential loss of well-granulated beta cells in the engrafted islets. The chronic stimulation of an initially marginal intrahepatic beta-cell mass ultimately resulted in metabolic deterioration and loss of beta cells below the minimal threshold required to maintain normal fasting blood glucose levels. It is possible that transplantation of a larger mass of islets would result in indefinite graft function in dogs. However, it remains to be demonstrated in larger mammals, including humans, whether an islet cell mass that is initially adequate in a heterotropic site such as the liver can remain functionally competent over a prolonged period. Images PMID:3095376

  16. Islet cell xenotransplantation: a serious look toward the clinic.

    PubMed

    Samy, Kannan P; Martin, Benjamin M; Turgeon, Nicole A; Kirk, Allan D

    2014-01-01

    Type I diabetes remains a significant clinical problem in need of a reliable, generally applicable solution. Both whole organ pancreas and islet allotransplantation have been shown to grant patients insulin independence, but organ availability has restricted these procedures to an exceptionally small subset of the diabetic population. Porcine islet xenotransplantation has been pursued as a potential means of overcoming the limits of allotransplantation, and several preclinical studies have achieved near-physiologic function and year-long survival in clinically relevant pig-to-primate model systems. These proof-of-concept studies have suggested that xenogeneic islets may be poised for use in clinical trials. In this review, we examine recent progress in islet xenotransplantation, with a critical eye toward the gaps between the current state of the art and the state required for appropriate clinical investigation. PMID:24806830

  17. Islet amyloid polypeptide toxicity and membrane interactions.

    PubMed

    Cao, Ping; Abedini, Andisheh; Wang, Hui; Tu, Ling-Hsien; Zhang, Xiaoxue; Schmidt, Ann Marie; Raleigh, Daniel P

    2013-11-26

    Islet amyloid polypeptide (IAPP) is responsible for amyloid formation in type 2 diabetes and contributes to the failure of islet cell transplants, however the mechanisms of IAPP-induced cytotoxicity are not known. Interactions with model anionic membranes are known to catalyze IAPP amyloid formation in vitro. Human IAPP damages anionic membranes, promoting vesicle leakage, but the features that control IAPP-membrane interactions and the connection with cellular toxicity are not clear. Kinetic studies with wild-type IAPP and IAPP mutants demonstrate that membrane leakage is induced by prefibrillar IAPP species and continues over the course of amyloid formation, correlating additional membrane disruption with fibril growth. Analyses of a set of designed mutants reveal that membrane leakage does not require the formation of β-sheet or α-helical structures. A His-18 to Arg substitution enhances leakage, whereas replacement of all of the aromatic residues via a triple leucine mutant has no effect. Biophysical measurements in conjunction with cytotoxicity studies show that nonamyloidogenic rat IAPP is as effective as human IAPP at disrupting standard anionic model membranes under conditions where rat IAPP does not induce cellular toxicity. Similar results are obtained with more complex model membranes, including ternary systems that contain cholesterol and are capable of forming lipid rafts. A designed point mutant, I26P-IAPP; a designed double mutant, G24P, I26P-IAPP; a double N-methylated variant; and pramlintide, a US Food and Drug Administration-approved IAPP variant all induce membrane leakage, but are not cytotoxic, showing that there is no one-to-one relationship between disruption of model membranes and induction of cellular toxicity. PMID:24218607

  18. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk-associated variants.

    PubMed

    Pasquali, Lorenzo; Gaulton, Kyle J; Rodríguez-Seguí, Santiago A; Mularoni, Loris; Miguel-Escalada, Irene; Akerman, Ildem; Tena, Juan J; Morán, Ignasi; Gómez-Marín, Carlos; van de Bunt, Martijn; Ponsa-Cobas, Joan; Castro, Natalia; Nammo, Takao; Cebola, Inês; García-Hurtado, Javier; Maestro, Miguel Angel; Pattou, François; Piemonti, Lorenzo; Berney, Thierry; Gloyn, Anna L; Ravassard, Philippe; Gómez-Skarmeta, José Luis; Müller, Ferenc; McCarthy, Mark I; Ferrer, Jorge

    2014-02-01

    Type 2 diabetes affects over 300 million people, causing severe complications and premature death, yet the underlying molecular mechanisms are largely unknown. Pancreatic islet dysfunction is central in type 2 diabetes pathogenesis, and understanding islet genome regulation could therefore provide valuable mechanistic insights. We have now mapped and examined the function of human islet cis-regulatory networks. We identify genomic sequences that are targeted by islet transcription factors to drive islet-specific gene activity and show that most such sequences reside in clusters of enhancers that form physical three-dimensional chromatin domains. We find that sequence variants associated with type 2 diabetes and fasting glycemia are enriched in these clustered islet enhancers and identify trait-associated variants that disrupt DNA binding and islet enhancer activity. Our studies illustrate how islet transcription factors interact functionally with the epigenome and provide systematic evidence that the dysregulation of islet enhancers is relevant to the mechanisms underlying type 2 diabetes. PMID:24413736

  19. A 3D map of the islet routes throughout the healthy human pancreas

    PubMed Central

    Ionescu-Tirgoviste, Constantin; Gagniuc, Paul A.; Gubceac, Elvira; Mardare, Liliana; Popescu, Irinel; Dima, Simona; Militaru, Manuella

    2015-01-01

    Islets of Langerhans are fundamental in understanding diabetes. A healthy human pancreas from a donor has been used to asses various islet parameters and their three-dimensional distribution. Here we show that islets are spread gradually from the head up to the tail section of the pancreas in the form of contracted or dilated islet routes. We also report a particular anatomical structure, namely the cluster of islets. Our observations revealed a total of 11 islet clusters which comprise of small islets that surround large blood vessels. Additional observations in the peripancreatic adipose tissue have shown lymphoid-like nodes and blood vessels captured in a local inflammatory process. Our observations are based on regional slice maps of the pancreas, comprising of 5,423 islets. We also devised an index of sphericity which briefly indicates various islet shapes that are dominant throughout the pancreas. PMID:26417671

  20. Pancreatic islet enhancer clusters enriched in type 2 diabetes risk–associated variants

    PubMed Central

    Mularoni, Loris; Miguel-Escalada, Irene; Akerman, İldem; Tena, Juan J.; Morán, Ignasi; Gómez-Marín, Carlos; van de Bunt, Martijn; Ponsa-Cobas, Joan; Castro, Natalia; Nammo, Takao; Cebola, Inês; García-Hurtado, Javier; Maestro, Miguel Angel; Pattou, François; Piemonti, Lorenzo; Berney, Thierry; Gloyn, Anna L.; Ravassard, Philippe; Skarmeta, José Luis Gómez; Müller, Ferenc; McCarthy, Mark I.; Ferrer, Jorge

    2013-01-01

    Type 2 diabetes affects over 300 million people, causing severe complications and premature death, yet the underlying molecular mechanisms are largely unknown. Pancreatic islet dysfunction is central for type 2 diabetes pathogenesis, and therefore understanding islet genome regulation could provide valuable mechanistic insights. We have now mapped and examined the function of human islet cis-regulatory networks. We identify genomic sequences that are targeted by islet transcription factors to drive islet-specific gene activity, and show that most such sequences reside in clusters of enhancers that form physical 3D chromatin domains. We find that sequence variants associated with type 2 diabetes and fasting glycemia are enriched in these clustered islet enhancers, and identify trait-associated variants that disrupt DNA-binding and islet enhancer activity. Our studies illustrate how islet transcription factors interact functionally with the epigenome, and provide systematic evidence that dysregulation of islet enhancers is relevant to the mechanisms underlying type 2 diabetes. PMID:24413736

  1. Magnetic separation of encapsulated islet cells labeled with superparamagnetic iron oxide nano particles.

    PubMed

    Mettler, Esther; Trenkler, Anja; Feilen, Peter J; Wiegand, Frederik; Fottner, Christian; Ehrhart, Friederike; Zimmermann, Heiko; Hwang, Yong Hwa; Lee, Dong Yun; Fischer, Stefan; Schreiber, Laura M; Weber, Matthias M

    2013-01-01

    Islet cell transplantation is a promising option for the restoration of normal glucose homeostasis in patients with type 1 diabetes. Because graft volume is a crucial issue in islet transplantations for patients with diabetes, we evaluated a new method for increasing functional tissue yield in xenogeneic grafts of encapsulated islets. Islets were labeled with three different superparamagnetic iron oxide nano particles (SPIONs; dextran-coated SPION, siloxane-coated SPION, and heparin-coated SPION). Magnetic separation was performed to separate encapsulated islets from the empty capsules, and cell viability and function were tested. Islets labeled with 1000 μg Fe/ml dextran-coated SPIONs experienced a 69.9% reduction in graft volume, with a 33.2% loss of islet-containing capsules. Islets labeled with 100 μg Fe/ml heparin-coated SPIONs showed a 46.4% reduction in graft volume, with a 4.5% loss of capsules containing islets. No purification could be achieved using siloxane-coated SPIONs due to its toxicity to the primary islets. SPION labeling of islets is useful for transplant purification during islet separation as well as in vivo imaging after transplantation. Furthermore, purification of encapsulated islets can also reduce the volume of the encapsulated islets without impairing their function by removing empty capsules.

  2. Islet isolation from human pancreas with extended cold ischemia time.

    PubMed

    Kühtreiber, W M; Ho, L T; Kamireddy, A; Yacoub, J A W; Scharp, D W

    2010-01-01

    The general consensus among transplant centers is that a cold ischemia time (CIT) beyond 8 hours results in reduced yields and quality of human islets. We sought to optimize the isolation process and enzymes for pancreata with extended CIT. We processed 16 extended CIT pancreata (13.2 +/- 0.7 hours). Donors averaged 50.8 +/- 2.6 (standard error of the mean) years old with a body mass index of 28.6 +/- 1.5. Glands were shipped in cold organ preservation solution without oxygenated perfluorocarbon. Isolations were performed under a protocol optimized for digestion with the new cGMP collagenase from Roche. Purification used continuous Euroficoll/University of Wisconsin gradients. Islets were cultured in two types of Prodo cGMP islet culture media and/or in Miami 1A media. Glucose-stimulated insulin secretion assays were performed after 8 to 16 days of culture. Prepurification yield averaged 415 +/- 41 KIEQ postpurification, 359 +/- 29 KIEQ (purification loss 13.5%); and postculture 317 +/- 27 KIEQ (culture loss 11.7%). Our process liberated an average of 4278 IEQ/g of pancreas (97 +/- 5 g). Most islets were recovered in the purest fraction (purity 79.7% +/- 1.9%). Culture loss in our enhanced culture media was 11.7%. After 2 to 3 days in culture, viability was 92% +/- 1%. Islets exhibited compactness and dithizone staining. Glucose-stimulated insulin secretion assays performed after 3 to 23 days in our PIM(R) media resulted in a stimulation index of 6.8 +/- 1.7 (G50 to G350). We concluded that our human islet isolation process permitted the recovery of large numbers of high-quality human islets from extended CIT pancreata and that our cGMP islet culture media was superior to the current standard CMRL-based media. PMID:20692399

  3. Compensatory islet response to insulin resistance revealed by quantitative proteomics

    SciTech Connect

    El Ouaamari, Abdelfattah; Zhou, Jian -Ying; Liew, Chong Wee; Shirakawa, Jun; Dirice, Ercument; Gedeon, Nicholas; Kahraman, Sevim; De Jesus, Dario F.; Bhatt, Shweta; Kim, Jong -Seo; Clauss, Therese R. W.; Camp, II, David G.; Smith, Richard D.; Qian, Wei -Jun; Kulkarni, Rohit N.

    2015-07-07

    Compensatory islet response is a distinct feature of the pre-diabetic insulin resistant state in humans and rodents. To identify alterations in the islet proteome that characterize the adaptive response, we analyzed islets from five-month-old male control, high-fat diet fed (HFD) or obese ob/ob mice by LC-MS(/MS) and quantified ~1,100 islet proteins (at least two peptides) with a false discovery rate <1%. Significant alterations in abundance were observed for ~350 proteins between groups. A majority of alterations were common to both models, and the changes of a subset of ~40 proteins and 12 proteins were verified by targeted quantification using selected reaction monitoring and Western blots, respectively. The insulin resistant islets in both groups exhibited reduced expression of proteins controlling energy metabolism, oxidative phosphorylation, hormone processing, and secretory pathways. Conversely, an increased expression of molecules involved in protein synthesis and folding suggested effects in endoplasmic reticulum stress response, cell survival, and proliferation in both insulin resistant models. In conclusion, we report a unique comparison of the islet proteome that is focused on the compensatory response in two insulin resistant rodent models that are not overtly diabetic. In conclusion, these data provide a valuable resource of candidate proteins to the scientific community to undertake further studies aimed at enhancing β-cell mass in patients with diabetes. The data are available via the MassIVE repository, with accession MSV000079093.

  4. Compensatory islet response to insulin resistance revealed by quantitative proteomics

    DOE PAGES

    El Ouaamari, Abdelfattah; Zhou, Jian -Ying; Liew, Chong Wee; Shirakawa, Jun; Dirice, Ercument; Gedeon, Nicholas; Kahraman, Sevim; De Jesus, Dario F.; Bhatt, Shweta; Kim, Jong -Seo; et al

    2015-07-07

    Compensatory islet response is a distinct feature of the pre-diabetic insulin resistant state in humans and rodents. To identify alterations in the islet proteome that characterize the adaptive response, we analyzed islets from five-month-old male control, high-fat diet fed (HFD) or obese ob/ob mice by LC-MS(/MS) and quantified ~1,100 islet proteins (at least two peptides) with a false discovery rate <1%. Significant alterations in abundance were observed for ~350 proteins between groups. A majority of alterations were common to both models, and the changes of a subset of ~40 proteins and 12 proteins were verified by targeted quantification using selectedmore » reaction monitoring and Western blots, respectively. The insulin resistant islets in both groups exhibited reduced expression of proteins controlling energy metabolism, oxidative phosphorylation, hormone processing, and secretory pathways. Conversely, an increased expression of molecules involved in protein synthesis and folding suggested effects in endoplasmic reticulum stress response, cell survival, and proliferation in both insulin resistant models. In conclusion, we report a unique comparison of the islet proteome that is focused on the compensatory response in two insulin resistant rodent models that are not overtly diabetic. In conclusion, these data provide a valuable resource of candidate proteins to the scientific community to undertake further studies aimed at enhancing β-cell mass in patients with diabetes. The data are available via the MassIVE repository, with accession MSV000079093.« less

  5. Adaptation of pancreatic islet cyto-architecture during development

    NASA Astrophysics Data System (ADS)

    Striegel, Deborah A.; Hara, Manami; Periwal, Vipul

    2016-04-01

    Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, β, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of β cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of β cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for β cells between 1-35 weeks and 12-24 months.

  6. Adaptation of pancreatic islet cyto-architecture during development

    NASA Astrophysics Data System (ADS)

    Striegel, Deborah A.; Hara, Manami; Periwal, Vipul

    2016-04-01

    Plasma glucose in mammals is regulated by hormones secreted by the islets of Langerhans embedded in the exocrine pancreas. Islets consist of endocrine cells, primarily α, β, and δ cells, which secrete glucagon, insulin, and somatostatin, respectively. β cells form irregular locally connected clusters within islets that act in concert to secrete insulin upon glucose stimulation. Varying demands and available nutrients during development produce changes in the local connectivity of β cells in an islet. We showed in earlier work that graph theory provides a framework for the quantification of the seemingly stochastic cyto-architecture of β cells in an islet. To quantify the dynamics of endocrine connectivity during development requires a framework for characterizing changes in the probability distribution on the space of possible graphs, essentially a Fokker-Planck formalism on graphs. With large-scale imaging data for hundreds of thousands of islets containing millions of cells from human specimens, we show that this dynamics can be determined quantitatively. Requiring that rearrangement and cell addition processes match the observed dynamic developmental changes in quantitative topological graph characteristics strongly constrained possible processes. Our results suggest that there is a transient shift in preferred connectivity for β cells between 1–35 weeks and 12–24 months.

  7. Islet Transplantation and Encapsulation: An Update on Recent Developments

    PubMed Central

    Vaithilingam, Vijayaganapathy; Tuch, Bernard E.

    2011-01-01

    Human islet transplantation can provide good glycemic control in diabetic recipients without exogenous insulin. However, a major factor limiting its application is the recipient's need to adhere to life-long immunosuppression, something that has serious side effects. Microencapsulating human islets is a strategy that should prevent rejection of the grafted tissue without the need for anti-rejection drugs. Despite promising studies in various animal models, the encapsulated human islets so far have not made an impact in the clinical setting. Many non-immunological and immunological factors such as biocompatibility, reduced immunoprotection, hypoxia, pericapsular fibrotic overgrowth, effects of the encapsulation process and post-transplant inflammation hamper the successful application of this promising technology. In this review, strategies are discussed to overcome the above-mentioned factors and to enhance the survival and function of encapsulated insulin-producing cells, whether in islets or surrogate β-cells. Studies at our center show that barium alginate microcapsules are biocompatible in rodents, but not in humans, raising concerns over the use of rodents to predict outcomes. Studies at our center also show that the encapsulation process had little or no effect on the cellular transcriptome of human islets and on their ability to function either in vitro or in vivo. New approaches incorporating further modifications to the microcapsule surface to prevent fibrotic overgrowth are vital, if encapsulated human islets or β-cell surrogates are to become a viable therapy option for type 1 diabetes in humans. PMID:21720673

  8. Over-expression of sterol-regulatory-element-binding protein-1c (SREBP1c) in rat pancreatic islets induces lipogenesis and decreases glucose-stimulated insulin release: modulation by 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR).

    PubMed Central

    Diraison, Frédérique; Parton, Laura; Ferré, Pascal; Foufelle, Fabienne; Briscoe, Celia P; Leclerc, Isabelle; Rutter, Guy A

    2004-01-01

    Accumulation of intracellular lipid by pancreatic islet beta-cells has been proposed to inhibit normal glucose-regulated insulin secretion ('glucolipotoxicity'). In the present study, we determine whether over-expression in rat islets of the lipogenic transcription factor SREBP1c (sterol-regulatory-element-binding protein-1c) affects insulin release, and whether changes in islet lipid content may be reversed by activation of AMPK (AMP-activated protein kinase). Infection with an adenovirus encoding the constitutively active nuclear fragment of SREBP1c resulted in expression of the protein in approx. 20% of islet cell nuclei, with a preference for beta-cells at the islet periphery. Real-time PCR (TaqMan) analysis showed that SREBP1c up-regulated the expression of FAS (fatty acid synthase; 6-fold), acetyl-CoA carboxylase-1 (2-fold), as well as peroxisomal-proliferator-activated receptor-gamma (7-fold), uncoupling protein-2 (1.4-fold) and Bcl2 (B-cell lymphocytic-leukaemia proto-oncogene 2; 1.3-fold). By contrast, levels of pre-proinsulin, pancreatic duodenal homeobox-1, glucokinase and GLUT2 (glucose transporter isoform-2) mRNAs were unaltered. SREBP1c-transduced islets displayed a 3-fold increase in triacylglycerol content, decreased glucose oxidation and ATP levels, and a profound inhibition of glucose-, but not depolarisation-, induced insulin secretion. Culture of islets with the AMPK activator 5-amino-4-imidazolecarboxamide riboside decreased the expression of the endogenous SREBP1c and FAS genes, and reversed the effect of over-expressing active SREBP1c on FAS mRNA levels and cellular triacylglycerol content. We conclude that SREBP1c over-expression, even when confined to a subset of beta-cells, leads to defective insulin secretion from islets and may contribute to some forms of Type II diabetes. PMID:14690455

  9. Continuous Glucose Monitoring Analysis as Predictor of Islet Yield and Insulin Requirements in Autologous Islet Transplantation After Complete Pancreatectomy

    PubMed Central

    Georgiev, George Ivanov; Cercone, Renee; Tiwari, Mukesh; Rilo, Horacio L. R.

    2014-01-01

    We analyzed the pretransplant continuous glucose monitoring (CGM) data of 45 patients that underwent total pancreatectomy followed by autologous islet transplantation (AIT) at the University of Arizona Medical Center. Traditional and novel metrics of CGM time series were correlated to the total islet count (TIC), islet equivalents (IEQs), and weight-normalized IEQs (IEQ/kg). In a subset cohort (n = 26) we analyzed the relationship among the infused number of islets, the CGM indicators, and the first recorded insulin requirement after the procedure. We conclude that receiving a high islet yield is sufficient yet not necessary to achieve low or null insulin requirements within the first 50 days after surgery. Furthermore, CGM inertia and CGM length of curve (2 novel CGM indicators) are shown to be correlated to islet yield, and the CGMs normalized area (Ao) and time ratio above hyperglycemic level (To) are strongly correlated to insulin requirement. A screening test based on To is shown to have 100% sensitivity and 88% specificity discriminating insulin independence upon discharge. PMID:25190081

  10. Characterization of Pancreatic Ductal Cell in Human Islet Preparations

    PubMed Central

    Ichii, Hirohito; Miki, Atsushi; Yamamoto, Toshiyuki; Molano, R. Damaris; Barker, Scott; Mita, Atsuyoshi; Rodriguez-Diaz, Rayner; Klein, Dagmar; Pastori, Ricardo; Alejandro, Rodolfo; Inverardi, Luca; Pileggi, Antonello; Ricordi 6, Camillo

    2013-01-01

    Substantial amounts of non-endocrine cells are implanted as part of human islet grafts, and possible influence of non-endocrine cells on clinical islet transplantation outcome has been postulated. There are currently no product release criteria specific for non-endocrine cells due to lack of available methods. Aims of this study were to develop a method for the evaluation of pancreatic ductal cells (PDC) for clinical islet transplantation, and to characterize them regarding phenotype, viability and function. We assessed 161 human islet preparations using laser scanning cytometer (LSC/iCys) for phenotypic analysis of non-endocrine cells and flow cytometer (FACS) for PDC viability. PDC and β-cells obtained from different density fractions during the islet cell purification were compared in terms of viability. Furthermore, we examined PDC ability to produce pro-inflammatory cytokines/chemokines, vascular endothelial growth factor (VEGF) and tissue factor (TF), relevant to islet graft outcome. Phenotypic analysis by LSC/iCys indicated that single staining for CK19 or CA19-9 was not enough for identifying PDC, and that double staining for amylase and CK19 or CA19-9 allowed for quantitative evaluation of acinar cells and PDC content in human islet preparation. PDC showed a significantly higher viability than β-cells (PDC vs. β-cell: 75.5±13.9 and 62.7±18.7 %; p<0.0001). Although β-cells viability was independent from the density, that of PDC was higher as the density from which they were recovered increased. There was no correlation between PDC and β-cells viability (R2=0.0078). PDC sorted from high-density fractions produced significantly higher amount of pro-inflammatory mediators and VEGF, but not TF. PDC isolated from different fractions had different viability and function. The precise characterization and assessment of these cells in addition to β-cells in human islet cell products may be of assistance in understanding their contribution to islet

  11. Effect of Modified Roux-en-Y Gastric Bypass Surgery on GLP-1, GIP in Patients with Type 2 Diabetes Mellitus

    PubMed Central

    Xiong, Shao-Wei; Cao, Jing; Liu, Xian-Ming; Deng, Xing-Ming; Liu, Zeng; Zhang, Fang-Ting

    2015-01-01

    The type 2 diabetes mellitus (T2DM) is one of the most serious diseases that threaten public health. Modified gastric bypass surgery has been applied to the treatment of T2DM patients in the 1990s, but the therapeutic mechanism to this function is still unclear. The aim of this study was to further clarify the effect and the mechanism of modified gastric bypass surgery on glucose metabolism in patients with T2DM. In the study, the incretin indexes and blood glucose indexes were analyzed before surgery and 1 week and 1, 3, and 6 months after surgery. The results suggested that modified Roux-en-Y gastric bypass can promote GLP-1 secretion in patients with T2DM, while reducing the secretion of GIP. Thus it could effectively control blood glucose of patients with T2DM. PMID:26167177

  12. Pancreatic Islet Survival and Engraftment Is Promoted by Culture on Functionalized Spider Silk Matrices

    PubMed Central

    Johansson, Ulrika; Dekki Shalaly, Nancy; Zaitsev, Sergei V.; Berggren, Per-Olof; Hedhammar, My

    2015-01-01

    Transplantation of pancreatic islets is one approach for treatment of diabetes, however, hampered by the low availability of viable islets. Islet isolation leads to disruption of the environment surrounding the endocrine cells, which contributes to eventual cell death. The reestablishment of this environment is vital, why we herein investigated the possibility of using recombinant spider silk to support islets in vitro after isolation. The spider silk protein 4RepCT was formulated into three different formats; 2D-film, fiber mesh and 3D-foam, in order to provide a matrix that can give the islets physical support in vitro. Moreover, cell-binding motifs from laminin were incorporated into the silk protein in order to create matrices that mimic the natural cell environment. Pancreatic mouse islets were thoroughly analyzed for adherence, necrosis and function after in vitro maintenance on the silk matrices. To investigate their suitability for transplantation, we utilized an eye model which allows in vivo imaging of engraftment. Interestingly, islets that had been maintained on silk foam during in vitro culture showed improved revascularization. This coincided with the observation of preserved islet architecture with endothelial cells present after in vitro culture on silk foam. Selected matrices were further evaluated for long-term preservation of human islets. Matrices with the cell-binding motif RGD improved human islet maintenance (from 36% to 79%) with preserved islets architecture and function for over 3 months in vitro. The islets established cell-matrix contacts and formed vessel-like structures along the silk. Moreover, RGD matrices promoted formation of new, insulin-positive islet-like clusters that were connected to the original islets via endothelial cells. On silk matrices with islets from younger donors (<35 year), the amount of newly formed islet-like clusters found after 1 month in culture were almost double compared to the initial number of islets

  13. Involvement of a proapoptotic gene (BBC3) in islet injury mediated by cold preservation and rewarming.

    PubMed

    Omori, Keiko; Kobayashi, Eiji; Komatsu, Hirotake; Rawson, Jeffrey; Agrawal, Garima; Parimi, Mounika; Oancea, Alina R; Valiente, Luis; Ferreri, Kevin; Al-Abdullah, Ismail H; Kandeel, Fouad; Takahashi, Masafumi; Mullen, Yoko

    2016-06-01

    Long-term pancreatic cold ischemia contributes to decreased islet number and viability after isolation and culture, leading to poor islet transplantation outcome in patients with type 1 diabetes. In this study, we examined mechanisms of pancreatic cold preservation and rewarming-induced injury by interrogating the proapoptotic gene BBC3/Bbc3, also known as Puma (p53 upregulated modulator of apoptosis), using three experimental models: 1) bioluminescence imaging of isolated luciferase-transgenic ("Firefly") Lewis rat islets, 2) cold preservation of en bloc-harvested pancreata from Bbc3-knockout (KO) mice, and 3) cold preservation and rewarming of human pancreata and isolated islets. Cold preservation-mediated islet injury occurred during rewarming in "Firefly" islets. Silencing Bbc3 by transfecting Bbc3 siRNA into islets in vitro prior to cold preservation improved postpreservation mitochondrial viability. Cold preservation resulted in decreased postisolation islet yield in both wild-type and Bbc3 KO pancreata. However, after culture, the islet viability was significantly higher in Bbc3-KO islets, suggesting that different mechanisms are involved in islet damage/loss during isolation and culture. Furthermore, Bbc3-KO islets from cold-preserved pancreata showed reduced HMGB1 (high-mobility group box 1 protein) expression and decreased levels of 4-hydroxynonenal (4-HNE) protein adducts, which was indicative of reduced oxidative stress. During human islet isolation, BBC3 protein was upregulated in digested tissue from cold-preserved pancreata. Hypoxia in cold preservation increased BBC3 mRNA and protein in isolated human islets after rewarming in culture and reduced islet viability. These results demonstrated the involvement of BBC3/Bbc3 in cold preservation/rewarming-mediated islet injury, possibly through modulating HMGB1- and oxidative stress-mediated injury to islets. PMID:27117005

  14. Exocrine contamination impairs implantation of pancreatic islets transplanted beneath the kidney capsule.

    PubMed

    Gray, D W; Sutton, R; McShane, P; Peters, M; Morris, P J

    1988-11-01

    The effect of exocrine contamination on islets implanted under the kidney capsule has been studied by histological examination of pure or exocrine-contamination human, monkey, or rat islets transplanted to the kidney capsule of the nude rat, monkey, or rat, respectively. Exocrine contamination resulted in an appearance suggestive of impaired islet implantation, due to tissue necrosis and subsequent fibrosis. The effect of exocrine contamination was examined quantitatively in a rat islet isograft model in which handpicked DA rat islets were transplanted under the kidney capsule of normal DA rats. The islets were either pure or deliberately recontaminated with exocrine tissue (50 or 90% contamination). Four hundred pure islets were placed under one kidney capsule and 400 islets (of similar size and from the same islet preparation) were contaminated and then placed under the contralateral kidney capsule. After 2 weeks the kidneys were removed and extracted for insulin content. The insulin content of kidneys bearing islets contaminated by either 50 or 90% exocrine tissue was significantly reduced when compared to the contralateral kidney bearing pure islets. These findings support the view that exocrine contamination of islets resulted in impaired islet implantation when transplanted to a confined site such as the kidney subcapsule.

  15. Impact of donor-related variables on islet isolation outcome in dogs.

    PubMed

    van der Burg, M P; Guicherit, O R; Frölich, M; Scherft, J P; Bruijn, J A; Gooszen, H G

    1994-01-01

    Clinical human islet transplantation programmes are considerably hampered by the variability of islet isolation outcome. The effects of the islet content of the pancreas and other donor-related variables on isolation outcome have not been evaluated systematically so far--either in large animals, or in man. We studied the impact of interindividual differences in age, body weight and pancreatic islet content on the outcome of collagenase isolation of islets from the splenic pancreas of beagle dogs (n = 31). The islet volume of the splenic pancreas amounted to a mean (+/- SEM) 15.7 +/- 0.9 microliters per gramme pancreas, and varied three-fold (from 8.4 to 27.3 microliters). Isolated islet yield was 7.6 +/- 0.7 microliters/g and varied nine-fold (1.8-16.3 microliters). Animals also varied in age eight-fold (8-67 months) and body weight two-fold (8.6-18.3 kg). Differences in body weight and age explained 60% of variance in the fractional islet volume of the pancreas and 50% of the variance in islet yield (p < 0.001). Fractional islet volume of the splenic pancreas also explained 50% of the variance in islet yield (p < 0.001). We conclude that the outcome of islet isolation may be predictable after controlling for the variable islet content of pancreases, and other donor-related variables, and suggest that similar studies should be done in man.

  16. Pancreatic islet cell transplantation using non-heart-beating donors (NHBDs).

    PubMed

    Matsumoto, Shinichi; Tanaka, Koichi

    2005-01-01

    Recent dramatic improvements in clinical islet cell transplantation demonstrated by the Edmonton group have increased the demand for this treatment, and donor shortage could become a major problem. Utilization of marginal donors could alleviate the donor shortage, and non-heart-beating donors (NHBDs) might be good resources. The University of Pennsylvania group demonstrated that it was possible to isolate islets from NHBDs, and the group actually transplanted islets from NHBDs, for the first time. The patient became insulin-independent; however, there had been no more cases using NHBDs until our group initiated islet transplantations from NHBDs in Japan. In order to utilize NHBDs effectively, we modified the standard islet isolation method. These modifications included minimizing the warm ischemic time, the use of trypsin inhibition during isolation, carrying out density measurement before purification and the use of a less toxic islet purification solution. With these modifications we were able to transplant nine of ten islet preparations from ten NHBDs (90%), into five type-1 diabetic patients. The first transplantation was performed on April 7, 2004 (the first time in Japan), and this patient became insulin-independent after the second islet transplantation (first time in Japan). All patients showed improved glycemic control and reduced insulin requirements, without hypoglycemic events. We also performed living-donor islet transplantation, with our modified islet isolation protocol, on January 19, 2005. The improved islet isolation protocol enabled us to perform effective islet transplantations from NHBDs, and it also enabled us to perform the living-donor islet transplantation.

  17. Evaluation of the NanoCHIP® Gastrointestinal Panel (GIP) Test for Simultaneous Detection of Parasitic and Bacterial Enteric Pathogens in Fecal Specimens

    PubMed Central

    Ken Dror, Shifra; Pavlotzky, Elsa; Barak, Mira

    2016-01-01

    Infectious gastroenteritis is a global health problem associated with high morbidity and mortality rates. Rapid and accurate diagnosis is crucial to allow appropriate and timely treatment. Current laboratory stool testing has a long turnaround time (TAT) and demands highly qualified personnel and multiple techniques. The need for high throughput and the number of possible enteric pathogens compels the implementation of a molecular approach which uses multiplex technology, without compromising performance requirements. In this work we evaluated the feasibility of the NanoCHIP® Gastrointestinal Panel (GIP) (Savyon Diagnostics, Ashdod, IL), a molecular microarray-based screening test, to be used in the routine workflow of our laboratory, a big outpatient microbiology laboratory. The NanoCHIP® GIP test provides simultaneous detection of nine major enteric bacteria and parasites: Campylobacter spp., Salmonella spp., Shigella spp., Giardia sp., Cryptosporidium spp., Entamoeba histolytica, Entamoeba dispar, Dientamoeba fragilis, and Blastocystis spp. The required high-throughput was obtained by the NanoCHIP® detection system together with the MagNA Pure 96 DNA purification system (Roche Diagnostics Ltd., Switzerland). This combined system has demonstrated a higher sensitivity and detection yield compared to the conventional methods in both, retrospective and prospective samples. The identification of multiple parasites and bacteria in a single test also enabled increased efficiency of detecting mixed infections, as well as reduced hands-on time and work load. In conclusion, the combination of these two automated systems is a proper response to the laboratory needs in terms of improving laboratory workflow, turn-around-time, minimizing human errors and can be efficiently integrated in the routine work of the laboratory. PMID:27447173

  18. Evaluation of the NanoCHIP® Gastrointestinal Panel (GIP) Test for Simultaneous Detection of Parasitic and Bacterial Enteric Pathogens in Fecal Specimens.

    PubMed

    Ken Dror, Shifra; Pavlotzky, Elsa; Barak, Mira

    2016-01-01

    Infectious gastroenteritis is a global health problem associated with high morbidity and mortality rates. Rapid and accurate diagnosis is crucial to allow appropriate and timely treatment. Current laboratory stool testing has a long turnaround time (TAT) and demands highly qualified personnel and multiple techniques. The need for high throughput and the number of possible enteric pathogens compels the implementation of a molecular approach which uses multiplex technology, without compromising performance requirements. In this work we evaluated the feasibility of the NanoCHIP® Gastrointestinal Panel (GIP) (Savyon Diagnostics, Ashdod, IL), a molecular microarray-based screening test, to be used in the routine workflow of our laboratory, a big outpatient microbiology laboratory. The NanoCHIP® GIP test provides simultaneous detection of nine major enteric bacteria and parasites: Campylobacter spp., Salmonella spp., Shigella spp., Giardia sp., Cryptosporidium spp., Entamoeba histolytica, Entamoeba dispar, Dientamoeba fragilis, and Blastocystis spp. The required high-throughput was obtained by the NanoCHIP® detection system together with the MagNA Pure 96 DNA purification system (Roche Diagnostics Ltd., Switzerland). This combined system has demonstrated a higher sensitivity and detection yield compared to the conventional methods in both, retrospective and prospective samples. The identification of multiple parasites and bacteria in a single test also enabled increased efficiency of detecting mixed infections, as well as reduced hands-on time and work load. In conclusion, the combination of these two automated systems is a proper response to the laboratory needs in terms of improving laboratory workflow, turn-around-time, minimizing human errors and can be efficiently integrated in the routine work of the laboratory. PMID:27447173

  19. Insights into islet development and biology through characterization of a human iPSC-derived endocrine pancreas model

    PubMed Central

    van de Bunt, Martijn; Lako, Majlinda; Barrett, Amy; Gloyn, Anna L.; Hansson, Mattias; McCarthy, Mark I.; Honoré, Christian

    2016-01-01

    ABSTRACT Directed differentiation of stem cells offers a scalable solution to the need for human cell models recapitulating islet biology and T2D pathogenesis. We profiled mRNA expression at 6 stages of an induced pluripotent stem cell (iPSC) model of endocrine pancreas development from 2 donors, and characterized the distinct transcriptomic profiles associated with each stage. Established regulators of endodermal lineage commitment, such as SOX17 (log2 fold change [FC] compared to iPSCs = 14.2, p-value = 4.9 × 10−5) and the pancreatic agenesis gene GATA6 (log2 FC = 12.1, p-value = 8.6 × 10−5), showed transcriptional variation consistent with their known developmental roles. However, these analyses highlighted many other genes with stage-specific expression patterns, some of which may be novel drivers or markers of islet development. For example, the leptin receptor gene, LEPR, was most highly expressed in published data from in vivo-matured cells compared to our endocrine pancreas-like cells (log2 FC = 5.5, p-value = 2.0 × 10−12), suggesting a role for the leptin pathway in the maturation process. Endocrine pancreas-like cells showed significant stage-selective expression of adult islet genes, including INS, ABCC8, and GLP1R, and enrichment of relevant GO-terms (e.g. “insulin secretion”; odds ratio = 4.2, p-value = 1.9 × 10−3): however, principal component analysis indicated that in vitro-differentiated cells were more immature than adult islets. Integration of the stage-specific expression information with genetic data from T2D genome-wide association studies revealed that 46 of 82 T2D-associated loci harbor genes present in at least one developmental stage, facilitating refinement of potential effector transcripts. Together, these data show that expression profiling in an iPSC islet development model can further understanding of islet biology and T2D pathogenesis. PMID:27246810

  20. Survival of encapsulated islets: More than a membrane story

    PubMed Central

    Barkai, Uriel; Rotem, Avi; de Vos, Paul

    2016-01-01

    At present, proven clinical treatments but no cures are available for diabetes, a global epidemic with a huge economic burden. Transplantation of islets of Langerhans by their infusion into vascularized organs is an experimental clinical protocol, the first approach to attain cure. However, it is associated with lifelong use of immunosuppressants. To overcome the need for immunosuppression, islets are encapsulated and separated from the host immune system by a permselective membrane. The lead material for this application is alginate which was tested in many animal models and a few clinical trials. This review discusses all aspects related to the function of transplanted encapsulated islets such as the basic requirements from a permselective membrane (e.g., allowable hydrodynamic radii, implications of the thickness of the membrane and relative electrical charge). Another aspect involves adequate oxygen supply, which is essential for survival/performance of transplanted islets, especially when using large retrievable macro-capsules implanted in poorly oxygenated sites like the subcutis. Notably, islets can survive under low oxygen tension and are physiologically active at > 40 Torr. Surprisingly, when densely crowded, islets are fully functional under hyperoxic pressure of up to 500 Torr (> 300% of atmospheric oxygen tension). The review also addresses an additional category of requirements for optimal performance of transplanted islets, named auxiliary technologies. These include control of inflammation, apoptosis, angiogenesis, and the intra-capsular environment. The review highlights that curing diabetes with a functional bio-artificial pancreas requires optimizing all of these aspects, and that significant advances have already been made in many of them. PMID:27011906

  1. Thiobenzothiazole-modified Hydrocortisones Display Anti-inflammatory Activity with Reduced Impact on Islet β-Cell Function*

    PubMed Central

    Burke, Susan J.; May, Amanda L.; Noland, Robert C.; Lu, Danhong; Brissova, Marcela; Powers, Alvin C.; Sherrill, Elizabeth M.; Karlstad, Michael D.; Campagna, Shawn R.; Stephens, Jacqueline M.; Collier, J. Jason

    2015-01-01

    Glucocorticoids signal through the glucocorticoid receptor (GR) and are administered clinically for a variety of situations, including inflammatory disorders, specific cancers, rheumatoid arthritis, and organ/tissue transplantation. However, glucocorticoid therapy is also associated with additional complications, including steroid-induced diabetes. We hypothesized that modification of the steroid backbone is one strategy to enhance the therapeutic potential of GR activation. Toward this goal, two commercially unavailable, thiobenzothiazole-containing derivatives of hydrocortisone (termed MS4 and MS6) were examined using 832/13 rat insulinoma cells as well as rodent and human islets. We found that MS4 had transrepression properties but lacked transactivation ability, whereas MS6 retained both transactivation and transrepression activities. In addition, MS4 and MS6 both displayed anti-inflammatory activity. Furthermore, MS4 displayed reduced impact on islet β-cell function in both rodent and human islets. Similar to dexamethasone, MS6 promoted adipocyte development in vitro, whereas MS4 did not. Moreover, neither MS4 nor MS6 activated the Pck1 (Pepck) gene in primary rat hepatocytes. We conclude that modification of the functional groups attached to the D-ring of the hydrocortisone steroid molecule produces compounds with altered structure-function GR agonist activity with decreased impact on insulin secretion and reduced adipogenic potential but with preservation of anti-inflammatory activity. PMID:25851902

  2. PDX-1 haploinsufficiency limits the compensatory islet hyperplasia that occurs in response to insulin resistance.

    PubMed

    Kulkarni, Rohit N; Jhala, Ulupi S; Winnay, Jonathon N; Krajewski, Stan; Montminy, Marc; Kahn, C Ronald

    2004-09-01

    Inadequate compensatory beta cell hyperplasia in insulin-resistant states triggers the development of overt diabetes. The mechanisms that underlie this crucial adaptive response are not fully defined. Here we show that the compensatory islet-growth response to insulin resistance in 2 models--insulin receptor (IR)/IR substrate-1 (IRS-1) double heterozygous mice and liver-specific IR KO (LIRKO) mice--is severely restricted by PDX-1 heterozygosity. Six-month-old IR/IRS-1 and LIRKO mice both showed up to a 10-fold increase in beta cell mass, which involved epithelial-to-mesenchymal transition. In both models, superimposition of PDX-1 haploinsufficiency upon the background of insulin resistance completely abrogated the adaptive islet hyperplastic response, and instead the beta cells showed apoptosis resulting in premature death of the mice. This study shows that, in postdevelopmental states of beta cell growth, PDX-1 is a critical regulator of beta cell replication and is required for the compensatory response to insulin resistance.

  3. Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling.

    PubMed

    Huang, Yao; Chang, Yongchang

    2014-01-01

    Dysfunction and destruction of pancreatic islet beta cells is a hallmark of diabetes. Better understanding of cellular signals in beta cells will allow development of therapeutic strategies for diabetes, such as preservation and expansion of beta-cell mass and improvement of beta-cell function. During the past several decades, the number of studies analyzing the molecular mechanisms, including growth factor/hormone signaling pathways that impact islet beta-cell mass and function, has increased exponentially. Notably, somatolactogenic hormones including growth hormone (GH), prolactin (PRL), and insulin-like growth factor-1 (IGF-1) and their receptors (GHR, PRLR, and IGF-1R) are critically involved in beta-cell growth, survival, differentiation, and insulin secretion. In this chapter, we focus more narrowly on GH, PRL, and IGF-1 signaling, and GH-IGF-1 cross talk. We also discuss how these signaling aspects contribute to the regulation of beta-cell proliferation and apoptosis. In particular, our novel findings of GH-induced formation of GHR-JAK2-IGF-1R protein complex and synergistic effects of GH and IGF-1 on beta-cell signaling, proliferation, and antiapoptosis lead to a new concept that IGF-1R may serve as a proximal component of GH/GHR signaling.

  4. The Effects of Exendin-4 Treatment on Graft Failure: An Animal Study Using a Novel Re-Vascularized Minimal Human Islet Transplant Model

    PubMed Central

    Sahraoui, Afaf; Winzell, Maria Sörhede; Gorman, Tracy; Smith, Dave M.; Skrtic, Stanko; Hoeyem, Merete; Abadpour, Shadab; Johansson, Lars; Korsgren, Olle; Foss, Aksel; Scholz, Hanne

    2015-01-01

    Islet transplantation has become a viable clinical treatment, but is still compromised by long-term graft failure. Exendin-4, a glucagon-like peptide 1 receptor agonist, has in clinical studies been shown to improve insulin secretion in islet transplanted patients. However, little is known about the effect of exendin-4 on other metabolic parameters. We therefore aimed to determine what influence exendin-4 would have on revascularized minimal human islet grafts in a state of graft failure in terms of glucose metabolism, body weight, lipid levels and graft survival. Introducing the bilateral, subcapsular islet transplantation model, we first transplanted diabetic mice with a murine graft under the left kidney capsule sufficient to restore normoglycemia. After a convalescent period, we performed a second transplantation under the right kidney capsule with a minimal human islet graft and allowed for a second recovery. We then performed a left-sided nephrectomy, and immediately started treatment with exendin-4 with a low (20μg/kg/day) or high (200μg/kg/day) dose, or saline subcutaneously twice daily for 15 days. Blood was sampled, blood glucose and body weight monitored. The transplanted human islet grafts were collected at study end point and analyzed. We found that exendin-4 exerts its effect on failing human islet grafts in a bell-shaped dose-response curve. Both doses of exendin-4 equally and significantly reduced blood glucose. Glucagon-like peptide 1 (GLP-1), C-peptide and pro-insulin were conversely increased. In the course of the treatment, body weight and cholesterol levels were not affected. However, immunohistochemistry revealed an increase in beta cell nuclei count and reduced TUNEL staining only in the group treated with a low dose of exendin-4 compared to the high dose and control. Collectively, these results suggest that exendin-4 has a potential rescue effect on failing, revascularized human islets in terms of lowering blood glucose, maintaining beta

  5. Fibril structure of human islet amyloid polypeptide.

    PubMed

    Bedrood, Sahar; Li, Yiyu; Isas, J Mario; Hegde, Balachandra G; Baxa, Ulrich; Haworth, Ian S; Langen, Ralf

    2012-02-17

    Misfolding and amyloid fibril formation by human islet amyloid polypeptide (hIAPP) are thought to be important in the pathogenesis of type 2 diabetes, but the structures of the misfolded forms remain poorly understood. Here we developed an approach that combines site-directed spin labeling with continuous wave and pulsed EPR to investigate local secondary structure and to determine the relative orientation of the secondary structure elements with respect to each other. These data indicated that individual hIAPP molecules take up a hairpin fold within the fibril. This fold contains two β-strands that are much farther apart than expected from previous models. Atomistic structural models were obtained using computational refinement with EPR data as constraints. The resulting family of structures exhibited a left-handed helical twist, in agreement with the twisted morphology observed by electron microscopy. The fibril protofilaments contain stacked hIAPP monomers that form opposing β-sheets that twist around each other. The two β-strands of the monomer adopt out-of-plane positions and are staggered by about three peptide layers (∼15 Å). These results provide a mechanism for hIAPP fibril formation and could explain the remarkable stability of the fibrils. Thus, the structural model serves as a starting point for understanding and preventing hIAPP misfolding. PMID:22187437

  6. Fibrillar dimer formation of islet amyloid polypeptides

    DOE PAGES

    Chiu, Chi -cheng; de Pablo, Juan J.

    2015-05-08

    Amyloid deposits of human islet amyloid polypeptide (hIAPP), a 37-residue hormone co-produced with insulin, have been implicated in the development of type 2 diabetes. Residues 20 – 29 of hIAPP have been proposed to constitute the amyloidogenic core for the aggregation process, yet the segment is mostly unstructured in the mature fibril, according to solid-state NMR data. Here we use molecular simulations combined with bias-exchange metadynamics to characterize the conformational free energies of hIAPP fibrillar dimer and its derivative, pramlintide. We show that residues 20 – 29 are involved in an intermediate that exhibits transient β-sheets, consistent with recent experimentalmore » and simulation results. By comparing the aggregation of hIAPP and pramlintide, we illustrate the effects of proline residues on inhibition of the dimerization of IAPP. The mechanistic insights presented here could be useful for development of therapeutic inhibitors of hIAPP amyloid formation.« less

  7. Resistance to adenovirally induced hyperleptinemia in rats. Comparison of ventromedial hypothalamic lesions and mutated leptin receptors.

    PubMed Central

    Koyama, K; Shimabukuro, M; Chen, G; Wang, M Y; Lee, Y; Kalra, P S; Dube, M G; Kalra, S P; Newgard, C B; Unger, R H

    1998-01-01

    Leptin regulates appetite and body weight via hypothalamic targets, but it can act directly on cultured pancreatic islets to regulate their fat metabolism. To obtain in vivo evidence that leptin may act peripherally as well as centrally, we compared the effect of adenovirally induced hyperleptinemia on food intake, body weight, and islet fat content in ventromedial hypothalamic-lesioned (VMHL) rats, sham-lesioned (SL) controls, and Zucker Diabetic Fatty (ZDF) rats in which the leptin receptor is mutated. Infusion with recombinant adenovirus containing the rat leptin cDNA increased plasma leptin by approximately 20 ng/ml in VMHL and ZDF rats but had no effect on their food intake, body weight, or fat tissue weight. Caloric matching of hyperphagic VMHL rats to SL controls did not reduce their resistance to hyperleptinemia. Whereas prediabetic ZDF rats had a fourfold elevation in islet fat, in VMHL rats islet fat was normal and none of them became diabetic. Isolated islets from ZDF rats were completely resistant to the lipopenic action of leptin, while VMHL islets exhibited 50% of the normal response; caloric matching of VMHL rats to SL controls increased leptin responsiveness of their islets to 92% of controls. We conclude that leptin regulation of adipocyte fat requires an intact VMH but that islet fat content is regulated independently of the VMH. PMID:9710441

  8. Transforming growth factor-beta/Smad3 signaling regulates insulin gene transcription and pancreatic islet beta-cell function.

    PubMed

    Lin, Huei-Min; Lee, Ji-Hyeon; Yadav, Hariom; Kamaraju, Anil K; Liu, Eric; Zhigang, Duan; Vieira, Anthony; Kim, Seong-Jin; Collins, Heather; Matschinsky, Franz; Harlan, David M; Roberts, Anita B; Rane, Sushil G

    2009-05-01

    Pancreatic islet beta-cell dysfunction is a signature feature of Type 2 diabetes pathogenesis. Consequently, knowledge of signals that regulate beta-cell function is of immense clinical relevance. Transforming growth factor (TGF)-beta signaling plays a critical role in pancreatic development although the role of this pathway in the adult pancreas is obscure. Here, we define an important role of the TGF-beta pathway in regulation of insulin gene transcription and beta-cell function. We identify insulin as a TGF-beta target gene and show that the TGF-beta signaling effector Smad3 occupies the insulin gene promoter and represses insulin gene transcription. In contrast, Smad3 small interfering RNAs relieve insulin transcriptional repression and enhance insulin levels. Transduction of adenoviral Smad3 into primary human and non-human primate islets suppresses insulin content, whereas, dominant-negative Smad3 enhances insulin levels. Consistent with this, Smad3-deficient mice exhibit moderate hyperinsulinemia and mild hypoglycemia. Moreover, Smad3 deficiency results in improved glucose tolerance and enhanced glucose-stimulated insulin secretion in vivo. In ex vivo perifusion assays, Smad3-deficient islets exhibit improved glucose-stimulated insulin release. Interestingly, Smad3-deficient islets harbor an activated insulin-receptor signaling pathway and TGF-beta signaling regulates expression of genes involved in beta-cell function. Together, these studies emphasize TGF-beta/Smad3 signaling as an important regulator of insulin gene transcription and beta-cell function and suggest that components of the TGF-beta signaling pathway may be dysregulated in diabetes.

  9. Neuronal influence on hormone release from anglerfish islet cells.

    PubMed

    Milgram, S L; McDonald, J K; Noe, B D

    1991-10-01

    Pancreatic islets in anglerfish (AF) are macroscopic collections of nearly pure endocrine cells that are densely innervated. Immunohistochemical staining for neurotransmitter biosynthetic enzymes revealed noradrenergic and cholinergic innervation of AF islets. An in vitro preparation of perifused dispersed AF islet cells was developed to study nutrient and neural control of islet hormone secretion. Glucose stimulated insulin and somatostatin-14 (SS-14) secretion in a dose-dependent manner, and 16.7 mM glucose inhibited glucagon secretion. In 2 mM glucose, norepinephrine and isoproterenol stimulated glucagon and SS-14 release. Isoproterenol stimulated insulin secretion, and norepinephrine stimulated or inhibited insulin release, depending on the concentration. Clonidine potently inhibited glucose-stimulated insulin secretion but stimulated glucagon release. Methacholine, a muscarinic cholinergic agonist, stimulated insulin, glucagon, and SS-14 release. The control of AF hormone release by neurotransmitter agonists in vitro was similar to that in higher vertebrate species. Therefore we used this tissue preparation to study postsynaptic interactions between glucose and neurotransmitters in islets. PMID:1681734

  10. Groundwater dynamics of Fongafale Islet, Funafuti Atoll, Tuvalu.

    PubMed

    Nakada, Satoshi; Umezawa, Yu; Taniguchi, Makoto; Yamano, Hiroya

    2012-01-01

    Geoelectric and hydrologic surveys during spring tides revealed the spatiotemporal distribution of groundwater quality produced by tidal forcing in Fongafale Islet, Funafuti Atoll, Tuvalu. The observed low resistivity showed that saline water largely immersed the surficial Holocene aquifer, indicating that there is no thick freshwater lens in Fongafale Islet, unlike in other atoll islands of comparable size. Half of the islet was constructed by reclaiming the original swamp with porous, highly permeable coral blocks; this reclaimed area should not be considered as part of the islet width for calculation of the expected thickness of the freshwater lens. The degree of aquifer salinization depends on the topographic characteristics and the hydrologic controls on the inland propagation of the tidal forcing. Large changes in bulk resistivity and the electrical conductivity of groundwater from wells indicate that periodic salinization in phase with the semidiurnal tides was occurring widely, especially in areas at lower elevation than the high-tide level and in reclaimed areas with high permeability. Thin sheets of nearly fresh and brackish water were observed in the surficial aquifer in areas above the high-tide level and in taro swamps, respectively. The thinness of the brackish and freshwater sheets suggests that the taro swamps and the fresh groundwater resources of the islet are highly vulnerable to salinization from anticipated sea-level rise. An understanding of the inherent geologic and topographic features of an atoll is necessary to evaluate the groundwater resources of the atoll and assess the vulnerability of its water resources to climate change.

  11. Protein-Mediated Interactions of Pancreatic Islet Cells

    PubMed Central

    Meda, Paolo

    2013-01-01

    The islets of Langerhans collectively form the endocrine pancreas, the organ that is soley responsible for insulin secretion in mammals, and which plays a prominent role in the control of circulating glucose and metabolism. Normal function of these islets implies the coordination of different types of endocrine cells, noticeably of the beta cells which produce insulin. Given that an appropriate secretion of this hormone is vital to the organism, a number of mechanisms have been selected during evolution, which now converge to coordinate beta cell functions. Among these, several mechanisms depend on different families of integral membrane proteins, which ensure direct (cadherins, N-CAM, occludin, and claudins) and paracrine communications (pannexins) between beta cells, and between these cells and the other islet cell types. Also, other proteins (integrins) provide communication of the different islet cell types with the materials that form the islet basal laminae and extracellular matrix. Here, we review what is known about these proteins and their signaling in pancreatic β-cells, with particular emphasis on the signaling provided by Cx36, given that this is the integral membrane protein involved in cell-to-cell communication, which has so far been mostly investigated for effects on beta cell functions. PMID:24278783

  12. Use of genetically-engineered pig donors in islet transplantation

    PubMed Central

    Bottino, Rita; Trucco, Massimo

    2015-01-01

    Type 1 diabetes (T1D) is an autoimmune disease wherein the pancreas does not produce enough insulin due to islet beta cell destruction. Despite improvements in delivering exogenous insulin to T1D patients, pancreas or islet transplantation remains the best way to regulate their glycaemia. Results from experimental islet transplantation have improved dramatically in the last 15 years, to the point where it can be comparable to pancreas transplantation, but without the accompanying morbidity associated with this procedure. As with other transplants, the limiting factor in islet allotransplantation is the relatively small number of organs made available by deceased human donors throughout the world. A strong case can be made for islet xenotransplantation to fill the gap between supply and demand; however, transplantation across species presents challenges that are unique to that setting. In the search for the most suitable animal for human xenotransplantation, the pig has many advantages that make it the likely animal of choice. Potentially one of the most beneficial advantages is the ability to genetically engineer porcine donors to be more compatible with human recipients. Several genetic manipulations have already proven useful in relation to hyperacute rejection and inflammation (instant blood mediated inflammatory reaction), with the potential of even further advancement in the near future. PMID:26722651

  13. Multicenter Australian trial of islet transplantation: improving accessibility and outcomes.

    PubMed

    O'Connell, P J; Holmes-Walker, D J; Goodman, D; Hawthorne, W J; Loudovaris, T; Gunton, J E; Thomas, H E; Grey, S T; Drogemuller, C J; Ward, G M; Torpy, D J; Coates, P T; Kay, T W

    2013-07-01

    Whilst initial rates of insulin independence following islet transplantation are encouraging, long-term function using the Edmonton Protocol remains a concern. The aim of this single-arm, multicenter study was to evaluate an immunosuppressive protocol of initial antithymocyte globulin (ATG), tacrolimus and mycophenolate mofetil (MMF) followed by switching to sirolimus and MMF. Islets were cultured for 24 h prior to transplantation. The primary end-point was an HbA1c of <7% and cessation of severe hypoglycemia. Seventeen recipients were followed for ≥ 12 months. Nine islet preparations were transported interstate for transplantation. Similar outcomes were achieved at all three centers. Fourteen of the 17 (82%) recipients achieved the primary end-point. Nine (53%) recipients achieved insulin independence for a median of 26 months (range 7-39 months) and 6 (35%) remain insulin independent. All recipients were C-peptide positive for at least 3 months. All subjects with unstimulated C-peptide >0.2 nmol/L had cessation of severe hypoglycemia. Nine of the 17 recipients tolerated switching from tacrolimus to sirolimus with similar graft outcomes. There was a small but significant reduction in renal function in the first 12 months. The combination of islet culture, ATG, tacrolimus and MMF is a viable alternative for islet transplantation. PMID:23668890

  14. Considerations for successful transplantation of encapsulated pancreatic islets.

    PubMed

    de Vos, P; Hamel, A F; Tatarkiewicz, K

    2002-02-01

    Encapsulation of pancreatic islets allows for transplantion in the absence of immunosuppression. The technology is based on the principle that transplanted tissue is protected for the host immune system by an artificial membrane. Encapsulation offers a solution to the shortage of donors in clinical islet transplantation because it allows animal islets or insulin-producing cells engineered from stem cells to be used. During the past two decades three major approaches to encapsulation have been studied. These include intravascular macrocapsules, which are anastomosed to the vascular system as AV shunt; extravascular macrocapsules, which are mostly diffusion chambers transplanted at different sites; and extravascular microcapsules transplanted in the peritoneal cavity. The advantages and pitfalls of these three approaches are discussed and compared in the light of their applicability to clinical islet transplantation. All systems have been shown to be successful in preclinical studies but not all approaches meet the technical or physiological requirements for application in human beings. The extravascular approach has advantages over the intravascular because since it is associated with less complications such as thrombosis and infection. Microcapsules, due to their spatial characteristics, have a better diffusion capacity than macrocapsules. Recent progress in biocompatibility of microcapsules has brought this technology close to clinical application. Critical issues such as limitations in the functional performance and survival are being discussed. The latest results show that both issues can be solved by the transplantation of microencapsulated islets close to blood vessels in prevascularized solid supports. PMID:11935147

  15. Islet neogenesis: a potential therapeutic tool in type 1 diabetes.

    PubMed

    Lipsett, Mark; Aikin, Reid; Castellarin, Mauro; Hanley, Stephen; Jamal, Al-Maleek; Laganiere, Simon; Rosenberg, Lawrence

    2006-01-01

    Current therapies for type 1 diabetes, including fastidious blood glucose monitoring and multiple daily insulin injections, are not sufficient to prevent complications of the disease. Though pancreas and possibly islet transplantation can prevent the progression of complications, the scarcity of donor organs limits widespread application of these approaches. Understanding the mechanisms of beta-cell mass expansion as well as the means to exploit these pathways has enabled researchers to develop new strategies to expand and maintain islet cell mass. Potential new therapeutic avenues include ex vivo islet expansion and improved viability of islets prior to implantation, as well as the endogenous expansion of beta-cell mass within the diabetic patient. Islet neogenesis, through stem cell activation and/or transdifferentiation of mature fully differentiated cells, has been proposed as a means of beta-cell mass expansion. Finally, any successful new therapy for type 1 diabetes via beta-cell mass expansion will require prevention of beta-cell death and maintenance of long-term endocrine function. PMID:16216541

  16. Islet neogenesis: a potential therapeutic tool in type 1 diabetes.

    PubMed

    Lipsett, Mark; Aikin, Reid; Hanley, Stephen; Al-Maleek, Jamal; Laganiere, Simon; Rosenburg, Lawrence

    2006-01-01

    Current therapies for type 1 diabetes, including fastidious blood glucose monitoring and multiple daily insulin injections, are not sufficient to prevent complications of the disease. Though pancreas and possibly islet transplantation can prevent the progression of complications, the scarcity of donor organs limits widespread application of these approaches. Understanding the mechanisms of beta-cell mass expansion as well as the means to exploit these pathways has enabled researchers to develop new strategies to expand and maintain islet cell mass. Potential new therapeutic avenues include ex vivo islet expansion and improved viability of islets prior to implantation, as well as the endogenous expansion of beta-cell mass within the diabetic patient. Islet neogenesis, through stem cell activation and/or transdifferentiation of mature fully differentiated cells, has been proposed as a means of beta-cell mass expansion. Finally, any successful new therapy for type 1 diabetes via beta-cell mass expansion will require prevention of beta-cell death and maintenance of long-term endocrine function. PMID:16607698

  17. Origin of induced pancreatic islet tumors: a radioautographic study

    SciTech Connect

    Michels, J.E.; Bauer, G.E.; Dixit, P.K.

    1987-02-01

    Endocrine tumors of the pancreas are induced in a high percentage of young rats by injections of streptozotocin and nicotinamide (SZ/NA). Benign tumors first appear 20 to 36 weeks after drug injections. To determine the possible site of their origin, the incorporation of (/sup 3/H)thymidine into islets, ducts, acini, microtumors, and gross tumors was examined by radioautography of histologic sections at 1 to 36 weeks after drug injection. Drug treatment led to early (1- to 6-week) increases in nuclear /sup 3/H labeling of exocrine pancreatic structures (ductal and acinar cells), which may involve DNA repair processes. A secondary increase in labeling of duct cells during the period of tumor emergence supports the assumption that SZ/NA-induced tumors are of ductal origin. Microtumors and gross tumors also exhibited markedly elevated rates of (/sup 3/H)thymidine incorporation compared to control islets. Nontumorous islet tissue, which exhibited a gradual decrease in volume due to B-cell destruction by the drug injection, showed about 10-fold higher /sup 3/H labeling than islets of controls at all time points. The results suggest that in addition to ductal precursors, islets that survive SZ/NA-induced injury may also provide sites of focal endocrine cell differentiation to tumor tissue. Once established, both microtumors and gross tumors continue to grow by accelerated cell division.

  18. Research-Focused Isolation of Human Islets From Donors With and Without Diabetes at the Alberta Diabetes Institute IsletCore.

    PubMed

    Lyon, James; Manning Fox, Jocelyn E; Spigelman, Aliya F; Kim, Ryekjang; Smith, Nancy; O'Gorman, Doug; Kin, Tatsuya; Shapiro, A M James; Rajotte, Raymond V; MacDonald, Patrick E

    2016-02-01

    Recent years have seen an increased focus on human islet biology, and exciting findings in the stem cell and genomic arenas highlight the need to define the key features of mature human islets and β-cells. Donor and organ procurement parameters impact human islet yield, although for research purposes islet yield may be secondary in importance to islet function. We examined the feasibility of a research-only human islet isolation, distribution, and biobanking program and whether key criteria such as cold ischemia time (CIT) and metabolic status may be relaxed and still allow successful research-focused isolations, including from donors with type 1 diabetes and type 2 diabetes. Through 142 isolations over approximately 5 years, we confirm that CIT and glycated hemoglobin each have a weak negative impacts on isolation purity and yield, and extending CIT beyond the typical clinical isolation cutoff of 12 hours (to ≥ 18 h) had only a modest impact on islet function. Age and glycated hemoglobin/type 2 diabetes status negatively impacted secretory function; however, these and other biological (sex, body mass index) and procurement/isolation variables (CIT, time in culture) appear to make only a small contribution to the heterogeneity of human islet function. This work demonstrates the feasibility of extending acceptable CIT for research-focused human islet isolation and highlights the biological variation in function of human islets from donors with and without diabetes.

  19. Measurement of apoptosis of intact human islets by confocal optical sectioning and stereologic analysis of YO-PRO-1-stained islets.

    PubMed

    Boffa, Daniel J; Waka, John; Thomas, Dolca; Suh, Sungwook; Curran, Kevin; Sharma, Vijay K; Besada, Melissa; Muthukumar, Thangamani; Yang, Hua; Suthanthiran, Manikkam; Manova, Katia

    2005-04-15

    Apoptosis is an established pathway for islet cell demise. Current protocols for assessment of islet cell apoptosis are time-consuming (as with terminal deoxynucleotide transferase-mediated dUTP nick-end labeling reaction) and involve disruption of the islet architecture (as with flow cytometry) or destruction of cell integrity (as with enzyme-linked immunosorbent assay). The membranes of apoptotic cells, but not those of live cells, are permeant to the DNA-intercalant dye YO-PRO-1. We report a novel methodology for the rapid quantification of apoptosis of human islets: confocal laser optical sectioning and stereologic analysis of intact human islets stained with YO-PRO-1 and Hoechst 33342. The advantages include (1) rapid quantification of apoptosis without disrupting islet architecture and (2) identification of significant heterogeneity in the extent of apoptosis among islets from the same isolate. Confocal laser scanning microscopy microscopic imaging of YO-PRO-1-stained islets may advance investigation of islet cell apoptosis and help develop islet parameters predictive of posttransplant function. PMID:15818328

  20. Selective destruction of mouse islet beta cells by human T lymphocytes in a newly-established humanized type 1 diabetic model

    SciTech Connect

    Zhao, Yong; Guo, Chengshan; Hwang, David; Lin, Brian; Dingeldein, Michael; Mihailescu, Dan; Sam, Susan; Sidhwani, Seema; Zhang, Yongkang; Jain, Sumit; Skidgel, Randal A.; Prabhakar, Bellur S.; Mazzone, Theodore; Holterman, Mark J.

    2010-09-03

    Research highlights: {yields} Establish a human immune-mediated type 1 diabetic model in NOD-scid IL2r{gamma}{sup null} mice. {yields} Using the irradiated diabetic NOD mouse spleen mononuclear cells as trigger. {yields} The islet {beta} cells were selectively destroyed by infiltrated human T cells. {yields} The model can facilitate translational research to find a cure for type 1 diabetes. -- Abstract: Type 1 diabetes (T1D) is caused by a T cell-mediated autoimmune response that leads to the loss of insulin-producing {beta} cells. The optimal preclinical testing of promising therapies would be aided by a humanized immune-mediated T1D model. We develop this model in NOD-scid IL2r{gamma}{sup null} mice. The selective destruction of pancreatic islet {beta} cells was mediated by human T lymphocytes after an initial trigger was supplied by the injection of irradiated spleen mononuclear cells (SMC) from diabetic nonobese diabetic (NOD) mice. This resulted in severe insulitis, a marked loss of total {beta}-cell mass, and other related phenotypes of T1D. The migration of human T cells to pancreatic islets was controlled by the {beta} cell-produced highly conserved chemokine stromal cell-derived factor 1 (SDF-1) and its receptor C-X-C chemokine receptor (CXCR) 4, as demonstrated by in vivo blocking experiments using antibody to CXCR4. The specificity of humanized T cell-mediated immune responses against islet {beta} cells was generated by the local inflammatory microenvironment in pancreatic islets including human CD4{sup +} T cell infiltration and clonal expansion, and the mouse islet {beta}-cell-derived CD1d-mediated human iNKT activation. The selective destruction of mouse islet {beta} cells by a human T cell-mediated immune response in this humanized T1D model can mimic those observed in T1D patients. This model can provide a valuable tool for translational research into T1D.

  1. Somatostatin receptor expression and biological functions in endocrine pancreatic cells: review based on a doctoral thesis.

    PubMed

    Ludvigsen, Eva

    2007-01-01

    Type 1 diabetes is resulting from the selective destruction of insulin-producing betacells within the pancreatic islets. Somatostatin acts as an inhibitor of hormone secretion through specific receptors (sst1-5). All ssts were expressed in normal rat and mouse pancreatic islets, although the expression intensity and the co-expression pattern varied between ssts as well as between species. This may reflect a difference in response to somatostatin in islet cells of the two species. The Non-Obese Diabetic (NOD) mouse model is an experimental model of type 1 diabetes, with insulitis accompanied by spontaneous hyperglycaemia. Pancreatic specimens from NOD mice at different age and stage of disease were stained for ssts. The islet cells of diabetic NOD mice showed increased islet expression of sst2-5 compared to normoglycemic NOD mice. The increase in sst2-5 expression in the islets cells may suggest either a contributing factor in the process leading to diabetes, or a defense response against ongoing beta-cell destruction. Somatostatin analogues were tested on a human endocrine pancreatic tumour cell line and cultured pancreatic islets. Somatostatin analogues had an effect on cAMP accumulation, chromogranin A secretion and MAP kinase activity in the cell line. Treatment of rat pancreatic islets with somatostatin analogues with selective receptor affinity was not sufficient to induce an inhibition of insulin and glucagon secretion. However, a combination of selective analogues or non-selective analogues via costimulation of receptors can cause inhibition of hormone production. For insulin and glucagon, combinations of sst2 + sst5 and sst1 + sst2, respectively, showed a biological effect. In summary, knowledge of islet cell ssts expression and the effect of somatostatin analogues with high affinity to ssts may be valuable in the future attempts to influence beta-cell function in type 1 diabetes mellitus, since down-regulation of beta-cell function may promote survival of

  2. Islet autotransplantation in a patient with hypercoagulable disorder

    PubMed Central

    Desai, Chirag S; Khan, Khalid M; Cui, Wanxing

    2016-01-01

    Total pancreatectomy and islet auto transplantation is a good option for chronic pancreatitis patients who suffer from significant pain, poor quality of life, and the potential of type 3C diabetes and pancreatic cancer. Portal vein thrombosis is the most feared complication of the surgery and chances are increased if the patient has a hypercoagulable disorder. We present a challenging case of islet auto transplantation from our institution. A 29-year-old woman with plasminogen activator inhibitor-4G/4G variant and a clinical history of venous thrombosis was successfully managed with a precise peri- and post-operative anticoagulation protocol. In this paper we discuss the anti-coagulation protocol for safely and successfully caring out islet transplantation and associated risks and benefits. PMID:27358790

  3. Pancreas procurement and preservation for islet transplantation: personal considerations.

    PubMed

    Noguchi, Hirofumi

    2011-01-01

    Pancreatic islet transplantation is a promising option for the treatment of type 1 diabetic patients. After the successful demonstration of the Edmonton protocol, islet transplantation has advanced significantly on several fronts, including improved pancreas procurement and preservation systems. Since we frequently use pancreata from donors after cardiac death in Japan,we have applied the in situ regional organ cooling system for pancreas procurement to reduce the warm ischemic time. To reduce the apoptosis of pancreatic tissue during cold preservation, we have applied the ductal injection of preservation solution. For pancreas preservation, we use modified Kyoto solution, which is advantageous at trypsin inhibition and less collagenase inhibition. In this paper, we show pancreas procurement and preservation in our group for islet transplantation.

  4. Matrix Metalloproteinase-9 Protects Islets from Amyloid-induced Toxicity.

    PubMed

    Meier, Daniel T; Tu, Ling-Hsien; Zraika, Sakeneh; Hogan, Meghan F; Templin, Andrew T; Hull, Rebecca L; Raleigh, Daniel P; Kahn, Steven E

    2015-12-18

    Deposition of human islet amyloid polypeptide (hIAPP, also known as amylin) as islet amyloid is a characteristic feature of the pancreas in type 2 diabetes, contributing to increased β-cell apoptosis and reduced β-cell mass. Matrix metalloproteinase-9 (MMP-9) is active in islets and cleaves hIAPP. We investigated whether hIAPP fragments arising from MMP-9 cleavage retain the potential to aggregate and cause toxicity, and whether overexpressing MMP-9 in amyloid-prone islets reduces amyloid burden and the resulting β-cell toxicity. Synthetic hIAPP was incubated with MMP-9 and the major hIAPP fragments observed by MS comprised residues 1-15, 1-25, 16-37, 16-25, and 26-37. The fragments 1-15, 1-25, and 26-37 did not form amyloid fibrils in vitro and they were not cytotoxic when incubated with β cells. Mixtures of these fragments with full-length hIAPP did not modulate the kinetics of fibril formation by full-length hIAPP. In contrast, the 16-37 fragment formed fibrils more rapidly than full-length hIAPP but was less cytotoxic. Co-incubation of MMP-9 and fragment 16-37 ablated amyloidogenicity, suggesting that MMP-9 cleaves hIAPP 16-37 into non-amyloidogenic fragments. Consistent with MMP-9 cleavage resulting in largely non-amyloidogenic degradation products, adenoviral overexpression of MMP-9 in amyloid-prone islets reduced amyloid deposition and β-cell apoptosis. These findings suggest that increasing islet MMP-9 activity might be a strategy to limit β-cell loss in type 2 diabetes.

  5. The start of an islet transplantation program in Japan.

    PubMed

    Saito, T; Ise, K; Sato, Y; Gotoh, M; Matsumoto, S; Kenmochi, T; Kuroda, Y; Yasunami, Y; Inoue, K; Teraoka, S

    2005-10-01

    In Japan, pancreas donation had become possible from cadaveric donor sources, both heart-beating or non-heart-beating (NHB). Pancreas allografts have been distributed in the organ allocation system of the Japan Organ Transplant Network. Meanwhile, islet transplantation has been categorized as a tissue transplantation; it is free from legal restraints. Thus, pancreata for islet isolation must be obtained from NHB donors. Herein we report the starting program and preliminary results of islet transplantation in Japan. Selection and listing criteria for transplantation include regional priority, ABO blood type, previous islet transplant status with insulin independence, and a longer waiting time. Five institutes in Japan (Fukushima, Chiba, Kyoto, Kobe, and Fukuoka) are prepared to start programs. A two-layer cold storage method using perfluorocarbons and UW solution is recommended for pancreas preservation. Islet isolation and purification procedures are performed according to institute-specific protocol. Immunosuppression is based on sirolimus/tacrolimus combined with basiliximab induction. Two or three consecutive infusions of >5000 IE/kg are planned for each recipient until achieving insulin independence. Twenty-seven isolations and 14 transplants were performed in eight non-insulin-dependent diabetes mellitus (IDDM) recipients. Almost all (26 of 27) were NHB donors. All recipients are free from hypoglycemic episode after transplantation. One of these recipients is insulin independent; the others are currently on minimal doses of exogenous insulin. The feasibility of islet transplantation using NHB donors was confirmed using a two-layer cold storage method and a steroid-free immunosuppressive protocol, with a high rate of graft function.

  6. Islet-intrinsic effects of CFTR mutation.

    PubMed

    Koivula, Fiona N Manderson; McClenaghan, Neville H; Harper, Alan G S; Kelly, Catriona

    2016-07-01

    Cystic fibrosis-related diabetes (CFRD) is the most significant extra-pulmonary comorbidity in cystic fibrosis (CF) patients, and accelerates lung decline. In addition to the traditional view that CFRD is a consequence of fibrotic destruction of the pancreas as a whole, emerging evidence may implicate a role for cystic fibrosis transmembrane-conductance regulator (CFTR) in the regulation of insulin secretion from the pancreatic islet. Impaired first-phase insulin responses and glucose homeostasis have also been reported in CF patients. CFTR expression in both human and mouse beta cells has been confirmed, and recent studies have shown differences in endocrine pancreatic morphology from birth in CF. Recent experimental evidence suggests that functional CFTR channels are required for insulin exocytosis and the regulation of membrane potential in the pancreatic beta cell, which may account for the impairments in insulin secretion observed in many CF patients. These novel insights suggest that the pathogenesis of CFRD is more complicated than originally thought, with implications for diabetes treatment and screening in the CF population. This review summarises recent emerging evidence in support of a primary role for endocrine pancreatic dysfunction in the development of CFRD. Summary • CF is an autosomal recessive disorder caused by mutations in the CFTR gene • The vast majority of morbidity and mortality in CF results from lung disease. However CFRD is the largest extra-pulmonary co-morbidity and rapidly accelerates lung decline • Recent experimental evidence shows that functional CFTR channels are required for normal patterns of first phase insulin secretion from the pancreatic beta cell • Current clinical recommendations suggest that insulin is more effective than oral glucose-lowering drugs for the treatment of CFRD. However, the emergence of CFTR corrector and potentiator drugs may offer a personalised approach to treating diabetes in the CF population

  7. A central role for GRB10 in regulation of islet function in man.

    PubMed

    Prokopenko, Inga; Poon, Wenny; Mägi, Reedik; Prasad B, Rashmi; Salehi, S Albert; Almgren, Peter; Osmark, Peter; Bouatia-Naji, Nabila; Wierup, Nils; Fall, Tove; Stančáková, Alena; Barker, Adam; Lagou, Vasiliki; Osmond, Clive; Xie, Weijia; Lahti, Jari; Jackson, Anne U; Cheng, Yu-Ching; Liu, Jie; O'Connell, Jeffrey R; Blomstedt, Paul A; Fadista, Joao; Alkayyali, Sami; Dayeh, Tasnim; Ahlqvist, Emma; Taneera, Jalal; Lecoeur, Cecile; Kumar, Ashish; Hansson, Ola; Hansson, Karin; Voight, Benjamin F; Kang, Hyun Min; Levy-Marchal, Claire; Vatin, Vincent; Palotie, Aarno; Syvänen, Ann-Christine; Mari, Andrea; Weedon, Michael N; Loos, Ruth J F; Ong, Ken K; Nilsson, Peter; Isomaa, Bo; Tuomi, Tiinamaija; Wareham, Nicholas J; Stumvoll, Michael; Widen, Elisabeth; Lakka, Timo A; Langenberg, Claudia; Tönjes, Anke; Rauramaa, Rainer; Kuusisto, Johanna; Frayling, Timothy M; Froguel, Philippe; Walker, Mark; Eriksson, Johan G; Ling, Charlotte; Kovacs, Peter; Ingelsson, Erik; McCarthy, Mark I; Shuldiner, Alan R; Silver, Kristi D; Laakso, Markku; Groop, Leif; Lyssenko, Valeriya

    2014-04-01

    Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father. PMID:24699409

  8. A central role for GRB10 in regulation of islet function in man.

    PubMed

    Prokopenko, Inga; Poon, Wenny; Mägi, Reedik; Prasad B, Rashmi; Salehi, S Albert; Almgren, Peter; Osmark, Peter; Bouatia-Naji, Nabila; Wierup, Nils; Fall, Tove; Stančáková, Alena; Barker, Adam; Lagou, Vasiliki; Osmond, Clive; Xie, Weijia; Lahti, Jari; Jackson, Anne U; Cheng, Yu-Ching; Liu, Jie; O'Connell, Jeffrey R; Blomstedt, Paul A; Fadista, Joao; Alkayyali, Sami; Dayeh, Tasnim; Ahlqvist, Emma; Taneera, Jalal; Lecoeur, Cecile; Kumar, Ashish; Hansson, Ola; Hansson, Karin; Voight, Benjamin F; Kang, Hyun Min; Levy-Marchal, Claire; Vatin, Vincent; Palotie, Aarno; Syvänen, Ann-Christine; Mari, Andrea; Weedon, Michael N; Loos, Ruth J F; Ong, Ken K; Nilsson, Peter; Isomaa, Bo; Tuomi, Tiinamaija; Wareham, Nicholas J; Stumvoll, Michael; Widen, Elisabeth; Lakka, Timo A; Langenberg, Claudia; Tönjes, Anke; Rauramaa, Rainer; Kuusisto, Johanna; Frayling, Timothy M; Froguel, Philippe; Walker, Mark; Eriksson, Johan G; Ling, Charlotte; Kovacs, Peter; Ingelsson, Erik; McCarthy, Mark I; Shuldiner, Alan R; Silver, Kristi D; Laakso, Markku; Groop, Leif; Lyssenko, Valeriya

    2014-04-01

    Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father.

  9. A Central Role for GRB10 in Regulation of Islet Function in Man

    PubMed Central

    Prasad B, Rashmi; Salehi, S. Albert; Almgren, Peter; Osmark, Peter; Bouatia-Naji, Nabila; Wierup, Nils; Fall, Tove; Stančáková, Alena; Barker, Adam; Lagou, Vasiliki; Osmond, Clive; Xie, Weijia; Lahti, Jari; Jackson, Anne U.; Cheng, Yu-Ching; Liu, Jie; O'Connell, Jeffrey R.; Blomstedt, Paul A.; Fadista, Joao; Alkayyali, Sami; Dayeh, Tasnim; Ahlqvist, Emma; Taneera, Jalal; Lecoeur, Cecile; Kumar, Ashish; Hansson, Ola; Hansson, Karin; Voight, Benjamin F.; Kang, Hyun Min; Levy-Marchal, Claire; Vatin, Vincent; Palotie, Aarno; Syvänen, Ann-Christine; Mari, Andrea; Weedon, Michael N.; Loos, Ruth J. F.; Ong, Ken K.; Nilsson, Peter; Isomaa, Bo; Tuomi, Tiinamaija; Wareham, Nicholas J.; Stumvoll, Michael; Widen, Elisabeth; Lakka, Timo A.; Langenberg, Claudia; Tönjes, Anke; Rauramaa, Rainer; Kuusisto, Johanna; Frayling, Timothy M.; Froguel, Philippe; Walker, Mark; Eriksson, Johan G.; Ling, Charlotte; Kovacs, Peter; Ingelsson, Erik; McCarthy, Mark I.; Shuldiner, Alan R.; Silver, Kristi D.; Laakso, Markku; Groop, Leif; Lyssenko, Valeriya

    2014-01-01

    Variants in the growth factor receptor-bound protein 10 (GRB10) gene were in a GWAS meta-analysis associated with reduced glucose-stimulated insulin secretion and increased risk of type 2 diabetes (T2D) if inherited from the father, but inexplicably reduced fasting glucose when inherited from the mother. GRB10 is a negative regulator of insulin signaling and imprinted in a parent-of-origin fashion in different tissues. GRB10 knock-down in human pancreatic islets showed reduced insulin and glucagon secretion, which together with changes in insulin sensitivity may explain the paradoxical reduction of glucose despite a decrease in insulin secretion. Together, these findings suggest that tissue-specific methylation and possibly imprinting of GRB10 can influence glucose metabolism and contribute to T2D pathogenesis. The data also emphasize the need in genetic studies to consider whether risk alleles are inherited from the mother or the father. PMID:24699409

  10. Import pathways of precursor proteins into mitochondria: multiple receptor sites are followed by a common membrane insertion site

    PubMed Central

    1988-01-01

    The precursor of porin, a mitochondrial outer membrane protein, competes for the import of precursors destined for the three other mitochondrial compartments, including the Fe/S protein of the bc1- complex (intermembrane space), the ADP/ATP carrier (inner membrane), subunit 9 of the F0-ATPase (inner membrane), and subunit beta of the F1- ATPase (matrix). Competition occurs at the level of a common site at which precursors are inserted into the outer membrane. Protease- sensitive binding sites, which act before the common insertion site, appear to be responsible for the specificity and selectivity of mitochondrial protein uptake. We suggest that distinct receptor proteins on the mitochondrial surface specifically recognize precursor proteins and transfer them to a general insertion protein component (GIP) in the outer membrane. Beyond GIP, the import pathways diverge, either to the outer membrane or to translocation contact-sites, and then subsequently to the other mitochondrial compartments. PMID:2974457

  11. Automated digital image analysis of islet cell mass using Nikon's inverted eclipse Ti microscope and software to improve engraftment may help to advance the therapeutic efficacy and accessibility of islet transplantation across centers.

    PubMed

    Gmyr, Valery; Bonner, Caroline; Lukowiak, Bruno; Pawlowski, Valerie; Dellaleau, Nathalie; Belaich, Sandrine; Aluka, Isanga; Moermann, Ericka; Thevenet, Julien; Ezzouaoui, Rimed; Queniat, Gurvan; Pattou, Francois; Kerr-Conte, Julie

    2015-01-01

    Reliable assessment of islet viability, mass, and purity must be met prior to transplanting an islet preparation into patients with type 1 diabetes. The standard method for quantifying human islet preparations is by direct microscopic analysis of dithizone-stained islet samples, but this technique may be susceptible to inter-/intraobserver variability, which may induce false positive/negative islet counts. Here we describe a simple, reliable, automated digital image analysis (ADIA) technique for accurately quantifying islets into total islet number, islet equivalent number (IEQ), and islet purity before islet transplantation. Islets were isolated and purified from n = 42 human pancreata according to the automated method of Ricordi et al. For each preparation, three islet samples were stained with dithizone and expressed as IEQ number. Islets were analyzed manually by microscopy or automatically quantified using Nikon's inverted Eclipse Ti microscope with built-in NIS-Elements Advanced Research (AR) software. The AIDA method significantly enhanced the number of islet preparations eligible for engraftment compared to the standard manual method (p < 0.001). Comparisons of individual methods showed good correlations between mean values of IEQ number (r(2) = 0.91) and total islet number (r(2) = 0.88) and thus increased to r(2) = 0.93 when islet surface area was estimated comparatively with IEQ number. The ADIA method showed very high intraobserver reproducibility compared to the standard manual method (p < 0.001). However, islet purity was routinely estimated as significantly higher with the manual method versus the ADIA method (p < 0.001). The ADIA method also detected small islets between 10 and 50 µm in size. Automated digital image analysis utilizing the Nikon Instruments software is an unbiased, simple, and reliable teaching tool to comprehensively assess the individual size of each islet cell preparation prior to transplantation. Implementation of this

  12. Mesenchymal Stromal Cells as a Therapeutic Strategy to Support Islet Transplantation in Type 1 Diabetes Mellitus.

    PubMed

    Busch, Sarah A; van Crutchen, Saskia T J; Deans, Robert J; Ting, Anthony E

    2011-01-01

    Type 1 diabetes is an autoimmune disorder that leads to destruction of pancreatic β islet cells and is a growing global health issue. While insulin replacement remains the standard therapy for type 1 diabetes, exogenous insulin does not mimic the physiology of insulin secretion. Transplantation of pancreatic islets has the potential to cure this disease; however, there are several major limitations to widespread implementation of islet transplants. The use of mesenchymal stromal cells (MSCs) in the treatment of type 1 diabetes has been investigated as an adjunct therapy during islet graft administration to prevent initial islet loss and promote engraftment and revascularization of islets. In this review we will discuss the results of recent MSC studies in animal models of diabetes with a focus on islet transplantation and explore the potential for these findings to be extended to clinical use for the treatment of type 1 diabetes.

  13. The morphology of islets within the porcine donor pancreas determines the isolation result: successful isolation of pancreatic islets can now be achieved from young market pigs.

    PubMed

    Krickhahn, Mareike; Bühler, Christoph; Meyer, Thomas; Thiede, Arnulf; Ulrichs, Karin

    2002-01-01

    Clinical islet allotransplantation has become an increasingly efficient "routine" therapy in recent years. Shortage of human donor organs leads to porcine pancreatic islets as a potential source for islet xenotransplantation. Yet it is still very difficult to isolate sufficient numbers of intact porcine islets, particularly from young market pigs. In the following study islets were successfully isolated from retired breeders [4806 +/- 720 islet equivalents per gram organ (IEQ/g); n = 25; 2-3 years old; RB] and also from young hybrid pigs [2868 +/- 260 IEQ/g; n = 65; 4-6 months old; HY] using LiberasePI and a modified version of Ricordi's digestion-filtration technique. As expected, isolations from RB showed significantly better results (p < 0.002). A retrospective histological analysis of almost all donor pancreases showed that the majority of organs from RB (80%) contained mainly large islets (diameter > 200 microm), in contrast to only 35% of all pancreases from HY. Remarkably, the islet size in situ, regardless whether detected in RB or HY, strongly determined the isolation result. A donor organ with predominantly large islets resulted in significantly higher numbers of IEQs compared with a donor organ with predominantly small islets [RB(Large Islets): 5680 +/- 3,318 IEQ/g (n= 20); RB(Small Islets): 1353 +/- 427 IEQ/g (n = 5); p < 0.02]. In addition, isolation results were strongly influenced by the quality of the LiberasePI batch, and therefore single batch testing is invariably required. Purification was performed using Ficoll or OptiPrep density gradient centrifugation manually or in the COBE cell processor. Although islet purity was highest when OptiPrep was used, final islet yields did not differ between the different purification methods. Our study demonstrates that islet size in situ is an extremely critical parameter for highly successful islet isolation; consequently, we are now performing a morphological screening of each donor organ prior to the

  14. Pretreatment of donor islets with papain improves allograft survival without systemic immunosuppression in mice.

    PubMed

    Kumano, Kenjiro; Nishinakamura, Hitomi; Mera, Toshiyuki; Itoh, Takeshi; Takahashi, Hiroyuki; Fujiwara, Toshiyoshi; Kodama, Shohta

    2016-09-01

    Although current immunosuppression protocols improve the efficacy of clinical allogenic islet transplantation, T cell-mediated allorejection remains unresolved, and major histocompatibility complexes (MHCs) play a crucial role in this process. Papain, a cysteine protease, has the unique ability to cleave the extracellular domain of the MHC class I structure. We hypothesized that pretreatment of donor islets with papain would diminish the expression of MHC class I on islets, reducing allograft immunogenicity and contributing to prolongation of islet allograft survival. BALB/c islets pretreated with papain were transplanted into C57BL/6J mice as an acute allorejection model. Treatment with 1 mg/mL papain significantly prolonged islet allograft survival. In vitro, to determine the inhibitory effect on T cell-mediated alloreactions, we performed lymphocyte proliferation assays and mixed lymphocyte reactions. Host T cell activation against allogenic islet cells was remarkably suppressed by pretreatment of donor islet cells with 10 mg/mL papain. Flow cytometric analysis was also performed to investigate the effect of papain treatment on the expression of MHC class I on islets. One or 10 mg/mL papain treatment reduced MHC class I expression on the islet cell surface. Pretreatment of donor islets with papain suppresses MHC class I-mediated allograft rejection in mice and contributes to prolongation of islet allograft survival without administration of systemic immunosuppressants. These results suggest that pretreatment of human donor islets with papain may reduce the immunogenicity of the donor islets and minimize the dosage of systemic immunosuppressants required in a clinical setting. PMID:27618231

  15. Immunohistochemical analysis of pancreatic islets of platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus ssp.).

    PubMed

    He, Chuan; Myers, Mark A; Forbes, Briony E; Grützner, Frank

    2015-04-01

    Monotremes have undergone remarkable changes to their digestive and metabolic control system; however, the monotreme pancreas remains poorly characterized. Previous work in echidna demonstrated the presence of pancreatic islets, but no information is available for platypus and the fine structure has not been described for either monotreme. Based on our recent finding that monotremes lack the ghrelin gene, which is expressed in mouse and human pancreatic islets, we investigated the structure of monotreme islets in more detail. Generally, as in birds, the islets of monotremes were smaller but greater in number compared with mouse. β-cells were the most abundant endocrine cell population in platypus islets and were located peripherally, while α-cells were observed both in the interior and periphery of the islets. δ-cells and pancreatic polypeptide (PP)-cells were mainly found in the islet periphery. Distinct PP-rich (PP-lobe) and PP-poor areas (non-PP-lobe) are present in therian mammals, and we identified these areas in echidna but not platypus pancreas. Interestingly, in some of the echidna islets, α- and β-cells tended to form two poles within the islets, which to our knowledge is the first time this has been observed in any species. Overall, monotreme pancreata share the feature of consisting of distinct PP-poor and PP-rich islets with other mammals. A higher number of islets and α- or β-cell only islets are shared between monotremes and birds. The islets of monotremes were larger than those of birds but smaller compared with therian mammals. This may indicate a trend of having fewer larger islets comprising several endocrine cell types during mammalian evolution.

  16. Immunohistochemical analysis of pancreatic islets of platypus (Ornithorhynchus anatinus) and echidna (Tachyglossus aculeatus ssp.).

    PubMed

    He, Chuan; Myers, Mark A; Forbes, Briony E; Grützner, Frank

    2015-04-01

    Monotremes have undergone remarkable changes to their digestive and metabolic control system; however, the monotreme pancreas remains poorly characterized. Previous work in echidna demonstrated the presence of pancreatic islets, but no information is available for platypus and the fine structure has not been described for either monotreme. Based on our recent finding that monotremes lack the ghrelin gene, which is expressed in mouse and human pancreatic islets, we investigated the structure of monotreme islets in more detail. Generally, as in birds, the islets of monotremes were smaller but greater in number compared with mouse. β-cells were the most abundant endocrine cell population in platypus islets and were located peripherally, while α-cells were observed both in the interior and periphery of the islets. δ-cells and pancreatic polypeptide (PP)-cells were mainly found in the islet periphery. Distinct PP-rich (PP-lobe) and PP-poor areas (non-PP-lobe) are present in therian mammals, and we identified these areas in echidna but not platypus pancreas. Interestingly, in some of the echidna islets, α- and β-cells tended to form two poles within the islets, which to our knowledge is the first time this has been observed in any species. Overall, monotreme pancreata share the feature of consisting of distinct PP-poor and PP-rich islets with other mammals. A higher number of islets and α- or β-cell only islets are shared between monotremes and birds. The islets of monotremes were larger than those of birds but smaller compared with therian mammals. This may indicate a trend of having fewer larger islets comprising several endocrine cell types during mammalian evolution. PMID:25682842

  17. Diffusion into human islets is limited to molecules below 10 kDa.

    PubMed

    Williams, S J; Schwasinger-Schmidt, T; Zamierowski, D; Stehno-Bittel, L

    2012-10-01

    Isolated islets are important tools in diabetes research and are used for islet transplantation as a treatment for type 1 diabetes. Yet these cell clusters have a dramatic diffusion barrier that leads to core cell death. Computer modeling has provided theoretical size limitations, but little has been done to measure the actual rate of diffusion in islets. The purpose of this study was to directly measure the diffusion barrier in intact human islets and determine its role in restricting insulin secretion. Impeded diffusion into islets was monitored with fluorescent dextran beads. Dextran beads of 10-70 kDa failed to diffuse into the core of the intact islets, while 0.9 kDa probe was observed within the core of smaller islets. Diffusion of the fluorescent form of glucose, 2-NBDG, had similar diffusion limitations as the beads, with an average intra-islet diffusion rate of 1.5 ± 0.2 μm/min. The poor diffusion properties were associated with core cell death from necrosis, not apoptosis. Short-term exposure to a mild papain/0 Ca(2+) cocktail, dramatically reduced the diffusion barrier so that all cells within islets were exposed to media components. Lowering the diffusion barrier increased the immediate and long-term viability of islet cells, and tended to increase the amount of insulin released, especially in low glucose conditions. However, it failed to improve the large islet's glucose-stimulated insulin secretion. Thus, the islet diffusion barrier leads to low viability and poor survival of large islets, but is not solely responsible for the reduced insulin secretion of large isolated islets.

  18. PD-1 pathway-mediated regulation of islet-specific CD4+ T cell subsets in autoimmune diabetes

    PubMed Central

    Martinov, Tijana; Spanier, Justin A.; Pauken, Kristen E.; Fife, Brian T.

    2016-01-01

    Type 1 diabetes (T1D) is a CD4+ T cell-driven autoimmune disease resulting from the destruction of insulin-producing pancreatic beta cells. Clinical evidence and studies in non-obese diabetic (NOD) mice suggest that insulin is a major autoantigen. With this in mind, we developed insulin B10-23:IAg7 tetramer reagents to track insulin-specific CD4+ T cells in mice and interrogated the role of Programmed death-1 (PD-1) for peripheral tolerance. PD-1 is a T cell inhibitory receptor necessary to maintain tolerance and prevent T1D in NOD mice. PD-1 pathway inhibitors are increasingly used in the clinic for treating malignancies, and while many patients benefit, some develop adverse autoimmune events, including T1D. We therefore sought to understand the role of PD-1 in maintaining islet-specific tolerance in diabetes-resistant strains. B6.g7 mice express the same MHC Class II allele as NOD mice, have predominantly naïve insulin-specific CD4+ T cells in the periphery, and remain diabetes-free even after PD-1 pathway blockade. Here, we examined the trafficking potential of insulin-specific CD4+ T cells in NOD and B6.g7 mice with or without anti-PD-L1 treatment, and found that PD-L1 blockade preferentially increased the number of CD44highCXCR3+ insulin-specific cells in NOD but not B6.g7 mice. Additionally, we investigated whether pancreatic islets in NOD and B6.g7 mice expressed CXCL10, a lymphocyte homing chemokine and ligand for CXCR3. Anti-PD-L1 treated and control NOD mice had detectable CXCL10 expression in the islets, while B6.g7 islets did not. These data suggest that islet tolerance may be in part attributed to the pancreatic environment and in the absence of pancreas inflammation, chemotactic cytokines may be missing. This, together with our previous data showing that PD-1 pathway blockade preferentially affects effector but not anergic self-specific T cells has implications for the use of checkpoint blockade in treating tumor patients. Our work suggests that

  19. 1. AERIAL VIEW, NAVAL INACTIVE SHIPS MAINTENANCE FACILITY, SINCLAIR ISLET, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. AERIAL VIEW, NAVAL INACTIVE SHIPS MAINTENANCE FACILITY, SINCLAIR ISLET, BREMERTON, KITSAP COUNTY, WASHINGTON WITH EX-USS HORNET CVS-12, THREE MINECRAFT ALONGSIDE TO PORT. OTHER INACTIVE SHIPS IN BACKGROUND. - U.S.S. HORNET, Puget Sound Naval Shipyard, Sinclair Inlet, Bremerton, Kitsap County, WA

  20. Animal Models of Diabetes Mellitus for Islet Transplantation

    PubMed Central

    Sakata, Naoaki; Yoshimatsu, Gumpei; Tsuchiya, Haruyuki; Egawa, Shinichi; Unno, Michiaki

    2012-01-01

    Due to current improvements in techniques for islet isolation and transplantation and protocols for immunosuppressants, islet transplantation has become an effective treatment for severe diabetes patients. Many diabetic animal models have contributed to such improvements. In this paper, we focus on 3 types of models with different mechanisms for inducing diabetes mellitus (DM): models induced by drugs including streptozotocin (STZ), pancreatomized models, and spontaneous models due to autoimmunity. STZ-induced diabetes is one of the most commonly used experimental diabetic models and is employed using many specimens including rodents, pigs or monkeys. The management of STZ models is well established for islet studies. Pancreatomized models reveal different aspects compared to STZ-induced models in terms of loss of function in the increase and decrease of blood glucose and therefore are useful for evaluating the condition in total pancreatomized patients. Spontaneous models are useful for preclinical studies including the assessment of immunosuppressants because such models involve the same mechanisms as type 1 DM in the clinical setting. In conclusion, islet researchers should select suitable diabetic animal models according to the aim of the study. PMID:23346100

  1. Animal models of diabetes mellitus for islet transplantation.

    PubMed

    Sakata, Naoaki; Yoshimatsu, Gumpei; Tsuchiya, Haruyuki; Egawa, Shinichi; Unno, Michiaki

    2012-01-01

    Due to current improvements in techniques for islet isolation and transplantation and protocols for immunosuppressants, islet transplantation has become an effective treatment for severe diabetes patients. Many diabetic animal models have contributed to such improvements. In this paper, we focus on 3 types of models with different mechanisms for inducing diabetes mellitus (DM): models induced by drugs including streptozotocin (STZ), pancreatomized models, and spontaneous models due to autoimmunity. STZ-induced diabetes is one of the most commonly used experimental diabetic models and is employed using many specimens including rodents, pigs or monkeys. The management of STZ models is well established for islet studies. Pancreatomized models reveal different aspects compared to STZ-induced models in terms of loss of function in the increase and decrease of blood glucose and therefore are useful for evaluating the condition in total pancreatomized patients. Spontaneous models are useful for preclinical studies including the assessment of immunosuppressants because such models involve the same mechanisms as type 1 DM in the clinical setting. In conclusion, islet researchers should select suitable diabetic animal models according to the aim of the study. PMID:23346100

  2. Stress-induced adaptive islet cell identity changes.

    PubMed

    Cigliola, V; Thorel, F; Chera, S; Herrera, P L

    2016-09-01

    The different forms of diabetes mellitus differ in their pathogenesis but, ultimately, they are all characterized by progressive islet β-cell loss. Restoring the β-cell mass is therefore a major goal for future therapeutic approaches. The number of β-cells found at birth is determined by proliferation and differentiation of pancreatic progenitor cells, and it has been considered to remain mostly unchanged throughout adult life. Recent studies in mice have revealed an unexpected plasticity in islet endocrine cells in response to stress; under certain conditions, islet non-β-cells have the potential to reprogram into insulin producers, thus contributing to restore the β-cell mass. Here, we discuss the latest findings on pancreas and islet cell plasticity upon physiological, pathological and experimental conditions of stress. Understanding the mechanisms involved in cell reprogramming in these models will allow the development of new strategies for the treatment of diabetes, by exploiting the intrinsic regeneration capacity of the pancreas. PMID:27615136

  3. Biosynthesis of glucagon in isolated pancreatic islets of guinea pigs

    PubMed Central

    Hellerström, Claes; Howell, Simon L.; Edwards, John C.; Andersson, Arne; Östenson, Claes-Göran

    1974-01-01

    1. The biosynthesis of glucagon in guinea-pig A2 cells was investigated by incubation of isolated islets of Langerhans in the presence of [3H]tryptophan for periods of up to 14 days. Proteins were extracted from islets and incubation media and analysed by gel filtration. 2. In addition to very-high-molecular-weight (100000) proteins, the principal tryptophan-containing biosynthetic product after incubation for up to 17h was a protein of minimum mol.wt. 9000, which co-eluted on gel filtration with a peak of glucagon-like immunoreactivity, but was apparently devoid of biological activity in a fat-cell assay. A discrete peak of labelled glucagon was only recovered after incubation for at least 6 days. Losses of glucagon during the extraction and rapid secretion of newly synthesized glucagon into incubation media were excluded as reasons for the lack of recovery of labelled hormone from islets after shorter incubations. 3. The 9000-mol.wt. protein was localized to A2 cells in experiments using B-cell-depleted islets, and to A2-cell granules by subcellular fractionation and electron-microscopic radioautography. Only glucagon was secreted into the incubation medium. 4. Possible relationships between the 9000-mol.wt. protein and glucagon are discussed in the light of postulated mechanisms of glucagon biosynthesis. PMID:4615708

  4. Autologous islet transplantation to prevent diabetes after pancreatic resection.

    PubMed Central

    Wahoff, D C; Papalois, B E; Najarian, J S; Kendall, D M; Farney, A C; Leone, J P; Jessurun, J; Dunn, D L; Robertson, R P; Sutherland, D E

    1995-01-01

    BACKGROUND: Extensive pancreatic resection for small-duct chronic pancreatitis is often required for pain relief, but the risk of diabetes is a major deterrent. OBJECTIVE: Incidence of pain relief, prevention of diabetes, and identification of factors predictive of success were the goals in this series of 48 patients who underwent pancreatectomy and islet autotransplantation for chronic pancreatitis. PATIENTS AND METHODS: Of the 48 patients, 43 underwent total or near-total (> 95%) pancreatectomy and 5 underwent partial pancreatectomy. The resected pancreas was dispersed by either old (n = 26) or new (n = 22) methods of collagenase digestion. Islets were injected into the portal vein of 46 of the 48 patients and under the kidney capsule in the remaining 2. Postoperative morbidity, mortality, pain relief, and need for exogenous insulin were determined, and actuarial probability of postoperative insulin independence was calculated based on several variables. RESULTS: One perioperative death occurred. Surgical complications occurred in 12 of the 48 patients (25%): of these, 3 had a total (n = 27); 8, a near-total (n = 16); and 1, a partial pancreatectomy (p = 0.02). Most of the 48 patients had a transient increase in portal venous pressure after islet infusion, but no serious sequelae developed. More than 80% of patients experienced significant pain relief after pancreatectomy. Of the 39 patients who underwent total or near-total pancreatectomy, 20 (51%) were initially insulin independent. Between 2 and 10 years after transplantation, 34% were insulin independent, with no grafts failing after 2 years. The main predictor of insulin independence was the number of islets transplanted (of 14 patients who received > 300,000 islets, 74% were insulin independent at > 2 years after transplantation). In turn, the number of islets recovered correlated with the degree of fibrosis (r = -0.52, p = 0.006) and the dispersion method (p = 0.005). CONCLUSION: Pancreatectomy can relieve

  5. Groundwater dynamics of Fongafale Islet, Funafuti Atoll, Tuvalu.

    PubMed

    Nakada, Satoshi; Umezawa, Yu; Taniguchi, Makoto; Yamano, Hiroya

    2012-01-01

    Geoelectric and hydrologic surveys during spring tides revealed the spatiotemporal distribution of groundwater quality produced by tidal forcing in Fongafale Islet, Funafuti Atoll, Tuvalu. The observed low resistivity showed that saline water largely immersed the surficial Holocene aquifer, indicating that there is no thick freshwater lens in Fongafale Islet, unlike in other atoll islands of comparable size. Half of the islet was constructed by reclaiming the original swamp with porous, highly permeable coral blocks; this reclaimed area should not be considered as part of the islet width for calculation of the expected thickness of the freshwater lens. The degree of aquifer salinization depends on the topographic characteristics and the hydrologic controls on the inland propagation of the tidal forcing. Large changes in bulk resistivity and the electrical conductivity of groundwater from wells indicate that periodic salinization in phase with the semidiurnal tides was occurring widely, especially in areas at lower elevation than the high-tide level and in reclaimed areas with high permeability. Thin sheets of nearly fresh and brackish water were observed in the surficial aquifer in areas above the high-tide level and in taro swamps, respectively. The thinness of the brackish and freshwater sheets suggests that the taro swamps and the fresh groundwater resources of the islet are highly vulnerable to salinization from anticipated sea-level rise. An understanding of the inherent geologic and topographic features of an atoll is necessary to evaluate the groundwater resources of the atoll and assess the vulnerability of its water resources to climate change. PMID:22035506

  6. Paternal high-fat diet consumption induces common changes in the transcriptomes of retroperitoneal adipose and pancreatic islet tissues in female rat offspring.

    PubMed

    Ng, Sheau-Fang; Lin, Ruby C Y; Maloney, Christopher A; Youngson, Neil A; Owens, Julie A; Morris, Margaret J

    2014-04-01

    We previously showed that paternal high-fat diet (HFD) consumption programs β-cell dysfunction in female rat offspring, together with transcriptome alterations in islets. Here we investigated the retroperitoneal white adipose tissue (RpWAT) transcriptome using gene and pathway enrichment and pathway analysis to determine whether commonly affected network topologies exist between these two metabolically related tissues. In RpWAT, 5108 genes were differentially expressed due to a paternal HFD; the top 5 significantly enriched networks identified by pathway analysis in offspring of HFD fathers compared with those of fathers fed control diet were: mitochondrial and cellular response to stress, telomerase signaling, cell death and survival, cell cycle, cellular growth and proliferation, and cancer. A total of 187 adipose olfactory receptor genes were down-regulated. Interrogation against the islet transcriptome identified specific gene networks and pathways, including olfactory receptor genes that were similarly affected in both tissues (411 common genes, P<0.05). In particular, we highlight a common molecular network, cell cycle and cancer, with the same hub gene, Myc, suggesting early onset developmental changes that persist, shared responses to programmed systemic factors, or crosstalk between tissues. Thus, paternal HFD consumption triggers unique gene signatures, consistent with premature aging and chronic degenerative disorders, in both RpWAT and pancreatic islets of daughters. PMID:24421403

  7. Expression of Innate Immunity Genes and Damage of Primary Human Pancreatic Islets by Epidemic Strains of Echovirus: Implication for Post-Virus Islet Autoimmunity

    PubMed Central

    Sarmiento, Luis; Frisk, Gun; Anagandula, Mahesh; Cabrera-Rode, Eduardo; Roivainen, Merja; Cilio, Corrado M.

    2013-01-01

    Three large-scale Echovirus (E) epidemics (E4,E16,E30), each differently associated to the acute development of diabetes related autoantibodies, have been documented in Cuba. The prevalence of islet cell autoantibodies was moderate during the E4 epidemic but high in the E16 and E30 epidemic. The aim of this study was to evaluate the effect of epidemic strains of echovirus on beta-cell lysis, beta-cell function and innate immunity gene expression in primary human pancreatic islets. Human islets from non-diabetic donors (n = 7) were infected with the virus strains E4, E16 and E30, all isolated from patients with aseptic meningitis who seroconverted to islet cell antibody positivity. Viral replication, degree of cytolysis, insulin release in response to high glucose as well as mRNA expression of innate immunity genes (IFN-b, RANTES, RIG-I, MDA5, TLR3 and OAS) were measured. The strains of E16 and E30 did replicate well in all islets examined, resulting in marked cytotoxic effects. E4 did not cause any effects on cell lysis, however it was able to replicate in 2 out of 7 islet donors. Beta-cell function was hampered in all infected islets (P<0.05); however the effect of E16 and E30 on insulin secretion appeared to be higher than the strain of E4. TLR3 and IFN-beta mRNA expression increased significantly following infection with E16 and E30 (P<0.033 and P<0.039 respectively). In contrast, the expression of none of the innate immunity genes studied was altered in E4-infected islets. These findings suggest that the extent of the epidemic-associated islet autoimmunity may depend on the ability of the viral strains to damage islet cells and induce pro-inflammatory innate immune responses within the infected islets. PMID:24223733

  8. Islet Stellate Cells Isolated from Fibrotic Islet of Goto-Kakizaki Rats Affect Biological Behavior of Beta-Cell.

    PubMed

    Li, Feng-Fei; Chen, Bi-Jun; Li, Wei; Li, Ling; Zha, Min; Zhou, S; Bachem, M G; Sun, Zi-Lin

    2016-01-01

    We previously isolated islet stellate cells (ISCs) from healthy Wistar rat islets. In the present study, we isolated "already primed by diabetic environment" ISCs from islets of Goto-Kakizaki rats, determined the gene profile of these cells, and assessed the effects of these ISCs on beta-cell function and survival. We detected gene expression of ISCs by digital gene expression. INS-1 cell proliferation, apoptosis, and insulin production were measured after being treated with ISCs supernatant (SN). We observed the similar expression pattern of ISCs and PSCs, but 1067 differentially expressed genes. Insulin production in INS-1 cells cultured with ISC-SN was significantly reduced. The 5-ethynyl-2'-deoxyuridine-positive INS-1 cells treated with ISC-SN were decreased. Propidium iodide- (PI-) positive INS-1 cells were 2.6-fold higher than those in control groups. Caspase-3 activity was increased. In conclusion, ISCs presented in fibrotic islet of GK rats might be special PSCs, which impaired beta-cell function and proliferation and increased beta-cell apoptosis.

  9. Islet Stellate Cells Isolated from Fibrotic Islet of Goto-Kakizaki Rats Affect Biological Behavior of Beta-Cell

    PubMed Central

    Li, Feng-Fei; Chen, Bi-Jun; Li, Wei; Li, Ling; Zha, Min; Zhou, S.; Bachem, M. G.; Sun, Zi-Lin

    2016-01-01

    We previously isolated islet stellate cells (ISCs) from healthy Wistar rat islets. In the present study, we isolated “already primed by diabetic environment” ISCs from islets of Goto-Kakizaki rats, determined the gene profile of these cells, and assessed the effects of these ISCs on beta-cell function and survival. We detected gene expression of ISCs by digital gene expression. INS-1 cell proliferation, apoptosis, and insulin production were measured after being treated with ISCs supernatant (SN). We observed the similar expression pattern of ISCs and PSCs, but 1067 differentially expressed genes. Insulin production in INS-1 cells cultured with ISC-SN was significantly reduced. The 5-ethynyl-2′-deoxyuridine-positive INS-1 cells treated with ISC-SN were decreased. Propidium iodide- (PI-) positive INS-1 cells were 2.6-fold higher than those in control groups. Caspase-3 activity was increased. In conclusion, ISCs presented in fibrotic islet of GK rats might be special PSCs, which impaired beta-cell function and proliferation and increased beta-cell apoptosis. PMID:26697502

  10. Quantitative analysis of cell composition and purity of human pancreatic islet preparations.

    PubMed

    Pisania, Anna; Weir, Gordon C; O'Neil, John J; Omer, Abdulkadir; Tchipashvili, Vaja; Lei, Ji; Colton, Clark K; Bonner-Weir, Susan

    2010-11-01

    Despite improvements in outcomes for human islet transplantation, characterization of islet preparations remains poorly defined. This study used both light microscopy (LM) and electron microscopy (EM) to characterize 33 islet preparations used for clinical transplants. EM allowed an accurate identification and quantification of cell types with measured cell number fractions (mean±s.e.m.) of 35.6±2.1% β-cells, 12.6±1.0% non-β-islet cells (48.3±2.6% total islet cells), 22.7±1.5% duct cells, and 25.3±1.8% acinar cells. Of the islet cells, 73.6±1.7% were β-cells. For comparison with the literature, estimates of cell number fraction, cell volume, and extracellular volume were combined to convert number fraction data to volume fractions applicable to cells, islets, and the entire preparation. The mathematical framework for this conversion was developed. By volume, β-cells were 86.5±1.1% of the total islet cell volume and 61.2±0.8% of intact islets (including the extracellular volume), which is similar to that of islets in the pancreas. Our estimates produced 1560±20 cells in an islet equivalent (volume of 150-μm diameter sphere), of which 1140±15 were β-cells. To test whether LM analysis of the same tissue samples could provide reasonable estimates of purity of the islet preparations, volume fraction of the islet tissue was measured on thin sections available from 27 of the clinical preparations by point counting morphometrics. Islet purity (islet volume fraction) of individual preparations determined by LM and EM analyses correlated linearly with excellent agreement (R²=0.95). However, islet purity by conventional dithizone staining was substantially higher with a 20-30% overestimation. Thus, both EM and LM provide accurate methods to determine the cell composition of human islet preparations and can help us understand many of the discrepancies of islet composition in the literature. PMID:20697378

  11. Kidney Versus Islet Allograft Survival After Induction of Mixed Chimerism With Combined Donor Bone Marrow Transplantation.

    PubMed

    Oura, Tetsu; Ko, Dicken S C; Boskovic, Svjetlan; O'Neil, John J; Chipashvili, Vaja; Koulmanda, Maria; Hotta, Kiyohiko; Kawai, Kento; Nadazdin, Ognjenka; Smith, R Neal; Cosimi, A B; Kawai, Tatsuo

    2016-01-01

    We have previously reported successful induction of transient mixed chimerism and long-term acceptance of renal allografts in MHC mismatched nonhuman primates. In this study, we attempted to extend this tolerance induction approach to islet allografts. A total of eight recipients underwent MHC mismatched combined islet and bone marrow (BM) transplantation after induction of diabetes by streptozotocin. Three recipients were treated after a nonmyeloablative conditioning regimen that included low-dose total body and thymic irradiation, horse Atgam (ATG), six doses of anti-CD154 monoclonal antibody (mAb), and a 1-month course of cyclosporine (CyA) (Islet A). In Islet B, anti-CD8 mAb was administered in place of CyA. In Islet C, two recipients were treated with Islet B, but without ATG. The results were compared with previously reported results of eight cynomolgus monkeys that received combined kidney and BM transplantation (Kidney A) following the same conditioning regimen used in Islet A. The majority of kidney/BM recipients achieved long-term renal allograft survival after induction of transient chimerism. However, prolonged islet survival was not achieved in similarly conditioned islet/BM recipients (Islet A), despite induction of comparable levels of chimerism. In order to rule out islet allograft loss due to CyA toxicity, three recipients were treated with anti-CD8 mAb in place of CyA. Although these recipients developed significantly superior mixed chimerism and more prolonged islet allograft survival (61, 103, and 113 days), islet function was lost soon after the disappearance of chimerism. In Islet C recipients, neither prolonged chimerism nor islet survival was observed (30 and 40 days). Significant improvement of mixed chimerism induction and islet allograft survival were achieved with a CyA-free regimen that included anti-CD8 mAb. However, unlike the kidney allograft, islet allograft tolerance was not induced with transient chimerism. Induction of more

  12. Deletion of GPR40 Impairs Glucose-Induced Insulin Secretion In Vivo in Mice Without Affecting Intracellular Fuel Metabolism in Islets

    SciTech Connect

    Alquier, Thierry; Peyot, Marie-Line; Latour, M. G.; Kebede, Melkam; Sorensen, Christina M.; Gesta, Stephane; Kahn, C. R.; Smith, Richard D.; Jetton, Thomas L.; Metz, Thomas O.; Prentki, Marc; Poitout, Vincent J.

    2009-11-01

    The G protein-coupled receptor GPR40 mediates fatty-acid potentiation of glucose-stimulated insulin secretion, but its contribution to insulin secretion in vivo and mechanisms of action remain uncertain. This study was aimed to ascertain whether GPR40 controls insulin secretion in vivo and modulates intracellular fuel metabolism in islets. We observed that glucose- and arginine-stimulated insulin secretion, assessed by hyperglycemic clamps, was decreased by approximately 60% in GPR40 knock-out (KO) fasted and fed mice, without changes in insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps. Glucose and palmitate metabolism were not affected by GPR40 deletion. Lipid profiling revealed a similar increase in triglyceride and decrease in lysophosphatidylethanolamine species in WT and KO islets in response to palmitate. These results demonstrate that GPR40 regulates insulin secretion in vivo not only in response to fatty acids but also to glucose and arginine, without altering intracellular fuel metabolism.

  13. A model utilizing adult murine stem cells for creation of personalized islets for transplantation.

    PubMed

    Wang, J; Song, L J; Gerber, D A; Fair, J H; Rice, L; LaPaglia, M; Andreoni, K A

    2004-05-01

    Clinical islet cell transplantation has demonstrated great promise for diabetes treatment. Two major obstacles are the organ donor shortage and the immunoresponse. The purpose of this study was to create a model using the patient's own adult stem cell sources, possibly in combination with non-self cells, such as pancreatic, hepatic, or embryonic stem cells, to create "personalized" islets. We hypothesize that the reconstructed islets have the normal capability to produce insulin and glucagon with reduced immunoresponses after transplantation. Stem cells are a proliferating population of master cells that have the ability for self-renewal and multilineage differentiation. The recently developed photolithograph-based, biologic, microelectromechanic system (BioMEMS) technique supplies a useful tool for biomedical applications. Our lab has developed a novel method that integrates the adult stem cell and BioMEMS to reconstruct personalized islets. We selected islet-derived progenitor cells (IPC) for repairing and reconstructing STZ-diabetic islets. A6(+)/PYY(+) or A6(+)/ngn3(+) cells were selected to manipulate the neoislets. After 3 to 4 weeks in culture, the reconstructed cells formed islet-like clusters containing insulin or glucagon producing cells. The pilot results showed the ability of these reconstructed islets to correct hyperglycemia when transplanted into a STZ-diabetic isograft mouse model. Although several technical problems remain with the mouse model, namely, the difficulty to collect enough islets from a single mouse because of animal size, the mouse isograft model is suitable for personalized islet development.

  14. A Combinatorial Protein Microarray for Probing Materials Interaction with Pancreatic Islet Cell Populations

    PubMed Central

    Delalat, Bahman; Rojas-Canales, Darling M.; Rasi Ghaemi, Soraya; Waibel, Michaela; Harding, Frances J.; Penko, Daniella; Drogemuller, Christopher J.; Loudovaris, Thomas; Coates, Patrick T. H.; Voelcker, Nicolas H.

    2016-01-01

    Pancreatic islet transplantation has become a recognized therapy for insulin-dependent diabetes mellitus. During isolation from pancreatic tissue, the islet microenvironment is disrupted. The extracellular matrix (ECM) within this space not only provides structural support, but also actively signals to regulate islet survival and function. In addition, the ECM is responsible for growth factor presentation and sequestration. By designing biomaterials that recapture elements of the native islet environment, losses in islet function and number can potentially be reduced. Cell microarrays are a high throughput screening tool able to recreate a multitude of cellular niches on a single chip. Here, we present a screening methodology for identifying components that might promote islet survival. Automated fluorescence microscopy is used to rapidly identify islet derived cell interaction with ECM proteins and immobilized growth factors printed on arrays. MIN6 mouse insulinoma cells, mouse islets and, finally, human islets are progressively screened. We demonstrate the capability of the platform to identify ECM and growth factor protein candidates that support islet viability and function and reveal synergies in cell response. PMID:27600088

  15. Positron Emission Tomography to Assess the Outcome of Intraportal Islet Transplantation.

    PubMed

    Eriksson, Olof; Selvaraju, Ramkumar; Eich, Torsten; Willny, Mariam; Brismar, Torkel B; Carlbom, Lina; Ahlström, Håkan; Tufvesson, Gunnar; Lundgren, Torbjörn; Korsgren, Olle

    2016-09-01

    No imaging methodology currently exists to monitor viable islet mass after clinical intraportal islet transplantation. We investigated the potential of the endocrine positron emission tomography (PET) marker [(11)C]5-hydroxytryptophan ([(11)C]5-HTP) for this purpose. In a preclinical proof-of-concept study, the ex vivo and in vivo [(11)C]5-HTP signal was compared with the number of islets transplanted in rats. In a clinical study, human subjects with an intraportal islet graft (n = 8) underwent two [(11)C]5-HTP PET and MRI examinations 8 months apart. The tracer concentration in the liver as a whole, or in defined hotspots, was correlated to measurements of islet graft function. In rat, hepatic uptake of [(11)C]5-HTP correlated with the number of transplanted islets. In human subjects, uptake in hepatic hotspots showed a correlation with metabolic assessments of islet function. Change in hotspot standardized uptake value (SUV) predicted loss of graft function in one subject, whereas hotspot SUV was unchanged in subjects with stable graft function. The endocrine marker [(11)C]5-HTP thus shows a correlation between hepatic uptake and transplanted islet function and promise as a tool for noninvasive detection of viable islets. The evaluation procedure described can be used as a benchmark for novel agents targeting intraportally transplanted islets. PMID:27325286

  16. Intrinsic Islet Heterogeneity and Gap Junction Coupling Determine Spatiotemporal Ca2+ Wave Dynamics

    PubMed Central

    Benninger, Richard K.P.; Hutchens, Troy; Head, W. Steven; McCaughey, Michael J.; Zhang, Min; Le Marchand, Sylvain J.; Satin, Leslie S.; Piston, David W.

    2014-01-01

    Insulin is released from the islets of Langerhans in discrete pulses that are linked to synchronized oscillations of intracellular free calcium ([Ca2+]i). Associated with each synchronized oscillation is a propagating calcium wave mediated by Connexin36 (Cx36) gap junctions. A computational islet model predicted that waves emerge due to heterogeneity in β-cell function throughout the islet. To test this, we applied defined patterns of glucose stimulation across the islet using a microfluidic device and measured how these perturbations affect calcium wave propagation. We further investigated how gap junction coupling regulates spatiotemporal [Ca2+]i dynamics in the face of heterogeneous glucose stimulation. Calcium waves were found to originate in regions of the islet having elevated excitability, and this heterogeneity is an intrinsic property of islet β-cells. The extent of [Ca2+]i elevation across the islet in the presence of heterogeneity is gap-junction dependent, which reveals a glucose dependence of gap junction coupling. To better describe these observations, we had to modify the computational islet model to consider the electrochemical gradient between neighboring β-cells. These results reveal how the spatiotemporal [Ca2+]i dynamics of the islet depend on β-cell heterogeneity and cell-cell coupling, and are important for understanding the regulation of coordinated insulin release across the islet. PMID:25468351

  17. A Combinatorial Protein Microarray for Probing Materials Interaction with Pancreatic Islet Cell Populations.

    PubMed

    Delalat, Bahman; Rojas-Canales, Darling M; Rasi Ghaemi, Soraya; Waibel, Michaela; Harding, Frances J; Penko, Daniella; Drogemuller, Christopher J; Loudovaris, Thomas; Coates, Patrick T H; Voelcker, Nicolas H

    2016-01-01

    Pancreatic islet transplantation has become a recognized therapy for insulin-dependent diabetes mellitus. During isolation from pancreatic tissue, the islet microenvironment is disrupted. The extracellular matrix (ECM) within this space not only provides structural support, but also actively signals to regulate islet survival and function. In addition, the ECM is responsible for growth factor presentation and sequestration. By designing biomaterials that recapture elements of the native islet environment, losses in islet function and number can potentially be reduced. Cell microarrays are a high throughput screening tool able to recreate a multitude of cellular niches on a single chip. Here, we present a screening methodology for identifying components that might promote islet survival. Automated fluorescence microscopy is used to rapidly identify islet derived cell interaction with ECM proteins and immobilized growth factors printed on arrays. MIN6 mouse insulinoma cells, mouse islets and, finally, human islets are progressively screened. We demonstrate the capability of the platform to identify ECM and growth factor protein candidates that support islet viability and function and reveal synergies in cell response. PMID:27600088

  18. The effectiveness of components of University of Wisconsin solution in improving human pancreatic islet purification.

    PubMed

    Robertson, G S; Chadwick, D R; Davies, J; Rose, S; Contractor, H; James, R F; Bell, P R; London, N J

    1994-02-01

    The purification of human pancreatic islets before transplantation relies on the density-dependent separation of islets from exocrine fragments after collagenase digestion of the donor pancreas. The results vary among pancreases despite increasing automation of the digestion and purification processes, reflecting variations in the overlapping densities of islets and contaminating exocrine tissue. Hypothermic storage of both the pancreas and the pancreatic digest alters cell volumes and tissue densities, thereby affecting islet purification. By biochemical analysis of the isopycnic distribution of islets and exocrine tissue fragments from 23 human pancreases on linear continuous density gradients, the effect of various solutions for cold storage of pancreatic digest was studied. The use of the University of Wisconsin cold storage solution, which resulted in a significant decrease in digest volume (P = 0.006) and increase in the densities of both exocrine tissue (P = 0.001) and islets (P = 0.005), produced a significant improvement in islet purity compared with tissue culture medium (P = 0.035), predominantly due to the inclusion of a colloid, which increased the difference in density between exocrine tissue and islets. The addition of large molecular weight cellular impermeants without alteration in the concentration of permeable anions produced no effect. The results of this study support the concept that the use of solutions that minimize cell swelling throughout the process of islet purification would result in significant improvements in density-dependent islet separation, and that such solutions should contain a colloid. PMID:8108869

  19. Extracellular Matrix Protein-Coated Scaffolds Promote the Reversal of Diabetes After Extrahepatic Islet Transplantation

    PubMed Central

    Salvay, David M.; Rives, Christopher B.; Zhang, Xiaomin; Chen, Fei; Kaufman, Dixon B.; Lowe, William L.; Shea, Lonnie D.

    2008-01-01

    Background The survival and function of transplanted pancreatic islets is limited, owing in part to disruption of islet-matrix attachments during the isolation procedure. Using polymer scaffolds as a platform for islet transplantation, we investigated the hypothesis that replacement of key extracellular matrix components known to surround islets in vivo would improve graft function at an extrahepatic implantation site. Methods Microporous polymer scaffolds fabricated from copolymers of lactide and glycolide were adsorbed with collagen IV, fibronectin, laminin-332 or serum proteins before seeding with 125 mouse islets. Islet-seeded scaffolds were then implanted onto the epididymal fat pad of syngeneic mice with streptozotocin-induced diabetes. Nonfasting glucose levels, weight gain, response to glucose challenges, and histology were used to assess graft function for 10 months after transplantation. Results Mice transplanted with islets seeded onto scaffolds adsorbed with collagen IV achieved euglycemia fastest and their response to glucose challenge was similar to normal mice. Fibronectin and laminin similarly promoted euglycemia, yet required more time than collagen IV and less time than serum. Histopathological assessment of retrieved grafts demonstrated that coating scaffolds with specific extracellular matrix proteins increased total islet area in the sections and vessel density within the transplanted islets, relative to controls. Conclusions Extracellular matrix proteins adsorbed to microporous scaffolds can enhance the function of transplanted islets, with collagen IV maximizing graft function relative to the other proteins tested. These scaffolds enable the creation of well-defined microenvironments that promote graft efficacy at extrahepatic sites. PMID:18497687

  20. Matrix metalloproteinase-9 is essential for physiological Beta cell function and islet vascularization in adult mice.

    PubMed

    Christoffersson, Gustaf; Waldén, Tomas; Sandberg, Monica; Opdenakker, Ghislain; Carlsson, Per-Ola; Phillipson, Mia

    2015-04-01

    The availability of paracrine factors in the islets of Langerhans, and the constitution of the beta cell basement membrane can both be affected by proteolytic enzymes. This study aimed to investigate the effects of the extracellular matrix-degrading enzyme gelatinase B/matrix metalloproteinase-9 (Mmp-9) on islet function in mice. Islet function of Mmp9-deficient (Mmp9(-/-)) mice and their wild-type littermates was evaluated both in vivo and in vitro. The pancreata of Mmp9(-/-) mice did not differ from wild type in islet mass or distribution. However, Mmp9(-/-) mice had an impaired response to a glucose load in vivo, with lower serum insulin levels. The glucose-stimulated insulin secretion was reduced also in vitro in isolated Mmp9(-/-) islets. The vascular density of Mmp9(-/-) islets was lower, and the capillaries had fewer fenestrations, whereas the islet blood flow was threefold higher. These alterations could partly be explained by compensatory changes in the expression of matrix-related proteins. This in-depth investigation of the effects of the loss of MMP-9 function on pancreatic islets uncovers a deteriorated beta cell function that is primarily due to a shift in the beta cell phenotype, but also due to islet vascular aberrations. This likely reflects the importance of a normal islet matrix turnover exerted by MMP-9, and concomitant release of paracrine factors sequestered on the matrix.

  1. Keep on rolling: optimizing human islet transport conditions using a perfused rotary system.

    PubMed

    Hermann, Martin; Wurm, Martin; Lubei, Verena; Pirkebner, Daniela; Draxl, Anna; Margreiter, Raimund; Hengster, Paul

    2012-01-01

    The setup of an islet isolation facility designed along the rules of good manufacturing practice (GMP) is a technically challenging, cost and time intensive process. ( 1) Consequently, several institutions have decided to perform transplantation of islets isolated at another center with an already standing expertise. Such a solution includes the necessity to transport the isolated islets from the isolation to the transplantation facility. In spite of its importance, an ideal solution for the transport of the isolated human islets has still not been established.   Here, we present an islet transport device suited to transport human islet cells under reproducible conditions and minimized cell stress. The transport simulation of the human islets was performed in a transfused "rotary transport system for islets" termed "ROTi." Besides measuring standard metabolic (LDH, lactate, glucose) and physical parameters (pH, dissolved oxygen and temperature), we used five different live stains in combination with real time live confocal microscopy to document islet quality parameters. As live stains we added tetramethylrhodamine methyl ester, cell permeant acetoxymethylester, propidium iodide, annexin-fitc and fluorescent wheat germ agglutinin, and assessed mitochondrial membrane potentials, calcium levels, cell death, apoptosis or cell morphology, respectively. We compared the viability of human islets after 24 h incubation in the ROTi device to an incubation simulating "standard" shipment of islets in 50 ml tubes. All cell viability parameters studied (mitochondrial membrane potentials, calcium content, apoptosis, cell death as well as cell morphology) documented a significantly better cell viability in the ROTi fraction compared with the simulated "standard" shipment fraction. Besides maintaining islet cell viability, the ROTi bears the advantage of a better reproducibility of islet transport conditions.

  2. Mechanisms of islet damage mediated by pancreas cold ischemia/rewarming.

    PubMed

    Omori, Keiko; Kobayashi, Eiji; Rawson, Jeffrey; Takahashi, Masafumi; Mullen, Yoko

    2016-10-01

    Prolonged pancreas cold ischemia is known to negatively correlate with islet isolation outcomes, hindering successful islet transplantation to treat Type-1 Diabetes. Due to poor islet isolation outcome, pancreata with over 16 h cold ischemia are currently not considered for islet transplantation. Mechanisms involved in pancreas cold ischemia/rewarming mediated islet damage during islet isolation and culture are not well understood. Using an en bloc cold preserved rat pancreas preparation, we attempted to clarify possible mechanisms of islet death associated with prolonged pancreas cold ischemia and subsequent rewarming. Cold ischemia lasting 16 h decreased post-isolation islet yield and increased islet death during the initial 6 h of culture. Electron micrographs revealed swelling and severe disruption of cellular and mitochondrial membranes, as well as an enlarged endoplasmic reticulum (ER) in β-cells isolated from cold preserved pancreata. Prolonged cold ischemia of the pancreas transiently activated mitogen-activated protein kinases (MAPKs) in isolated islets and increased lipid peroxidation products 4-hydroxynonenal (HNE) and heat shock protein (Hsp) 70 after culture, indicating the activation of oxidative stress signaling pathways. The islet isolation process, irrespective of pancreas cold ischemia, activated unfolded protein response (UPR), while the ER protective chaperon BiP was further upregulated by pancreas cold ischemia/rewarming. During the first 6 h of culture following islet isolation, p53 upregulated modulator of apoptosis (Puma) and caspase-3 activation were also upregulated. Our study indicates the involvement of both apoptosis and necrosis in islet death, and suggests oxidative stress and disruption of membranes are critical mechanisms mediated by pancreas cold ischemia/rewarming. PMID:27587006

  3. Effect of nicotinamide on early graft failure following intraportal islet transplantation

    PubMed Central

    Jung, Da-Yeon; Park, Jae Berm; Joo, Sung-Yeon; Joh, Jae-Won; Kwon, Choon-Hyuck; Kwon, Ghee-Young

    2009-01-01

    Intraportal islet transplantation (IPIT) may potentially cure Type 1 diabetes mellitus; however, graft failure in the early post-transplantation period presents a major obstacle. In this study, we tested the ability of nicotinamide to prevent early islet destruction in a syngeneic mouse model. Mice (C57BL/6) with chemically-induced diabetes received intraportal transplants of syngeneic islet tissue in various doses. Islets were cultured for 24 h in medium with or without 10 mM nicotinamide supplementation. Following IPIT, islet function was confirmed by an intraperitoneal glucose tolerance test (IPGTT) and hepatectomy. The effects of nicotinamide were evaluated by blood glucose concentration, serum monocyte chemoattractant protein-1 (MCP-1) concentration, and immunohistology at 3 h and 24 h after IPIT. Among the various islet doses, an infusion of 300 syngeneic islets treated with nicotinamide exhibited the greatest differences in glucose tolerance between recipients of treated and untreated (i.e., control) islets. One day after 300 islet equivalent (IEQ) transplantation, islets treated with nicotinamide were better granulated than the untreated islets (P = 0.01), and the recipients displayed a slight decrease in serum MCP-1 concentration, as compared to controls. After 15 days, recipients of nicotinamide-pretreated islets showed higher levels of graft function (as measured by IPGTT) than controls. The pretreatment also prolonged graft survival (> 100 days) and function; these were confirmed by partial hepatectomy, which led to the recurrence of diabetes. Pretreatment of islet grafts with nicotinamide may prevent their deterioration on the early period following IPIT in a syngeneic mouse model. PMID:19641379

  4. Calcium-signaling components in rat insulinoma β-cells (INS-1) and pancreatic islets are differentially influenced by melatonin.

    PubMed

    Bazwinsky-Wutschke, Ivonne; Mühlbauer, Eckhard; Albrecht, Elke; Peschke, Elmar

    2014-05-01

    The pineal secretory product melatonin exerts its influence on the insulin secretion of pancreatic islets by different signaling pathways. The purpose of this study was to analyze the impact of melatonin on calcium-signaling components under different conditions. In a transfected INS-1 cell line overexpressing the human MT2 receptor (hMT2-INS-1), melatonin treatment induced even stronger depressive effects on calcium/calmodulin-dependent kinase 2d and IV (Camk2d, CamkIV) transcripts during 3-isobutyl-1-methylxanthine (IBMX) treatment than in normal INS-1 cells, indicating a crucial influence of melatonin receptor density on transcript-level regulation. In addition, melatonin induced a significant downregulation of calmodulin (Calm1) in IBMX-treated hMT2-INS-1 cells. Long-term administration of melatonin alone reduced CamkIV transcript levels in INS-1 cells; however, transcript levels of Camk2d remained unchanged. The release of insulin was diminished under long-term melatonin treatment. The impact of melatonin also involved reductions in CAMK2D protein during IBMX or forskolin treatments in INS-1 cells, as measured by an enzyme-linked immunosorbent assay, indicating a functional significance of transcriptional changes in pancreatic islets. Furthermore, analysis of melatonin receptor knockout mice showed that the transcript levels of Camk2d, CamkIV, and Calm1 were differentially influenced according to the melatonin receptor subtype deleted. In conclusion, this study provides evidence that melatonin has different impacts on the regulation of Calm1 and Camk. These calcium-signaling components are known as participants in the calcium/calmodulin pathway, which plays an important functional role in the modulation of the β-cell signaling pathways leading to insulin secretion.

  5. Validation of Islet Transport From a Geographically Distant Isolation Center Enabling Equitable Access and National Health Service Funding of a Clinical Islet Transplant Program for England.

    PubMed

    Aldibbiat, Ali; Huang, Guo Cai; Zhao, Min; Holliman, Graham N; Ferguson, Linda; Hughes, Stephen; Brigham, Ken; Wardle, Julie; Williams, Rob; Dickinson, Anne; White, Steven A; Johnson, Paul R V; Manas, Derek; Amiel, Stephanie A; Shaw, James A M

    2012-01-01

    Islet transplantation has become established as a successful treatment for type 1 diabetes complicated by recurrent severe hypoglycemia. In the UK access has been limited to a few centrally located units. Our goal was to validate a quality-assured system for safe/effective transport of human islets in the UK and to successfully undertake the first transplants with transported islets. Pancreases were retrieved from deceased donors in the north of England and transported to King's College London using two-layer method (TLM) or University of Wisconsin solution alone. Islets were isolated and transported back to Newcastle in standard blood transfusion or gas-permeable bags with detailed evaluation pre- and posttransport. In the preclinical phase, islets were isolated from 10 pancreases with mean yield of 258,000 islet equivalents. No significant differences were seen between TLM and University of Wisconsin solution organ preservation. A significant loss of integrity was demonstrated in islets shipped in gas-permeable bags, whereas sterility, number, purity, and viability were maintained in blood transfusion bags. Maintenance of secretory granules and glucose-stimulated insulin secretion was confirmed following transport. A Standard Operating Procedure enabling final pretransplant quality control from a simple side-arm sample was validated. Moreover, levels of insulin and cytokines in transport medium were low, enabling transplant without centrifugation/resuspension at the recipient site. Six clinical transplants of transported islets were undertaken in five recipients with 100% primary graft function and resolution of severe hypoglycemia. Safe and clinically effective islet transport has been established facilitating sustainable NHS funding of a clinical islet transplant program for the UK.

  6. Minireview: Emerging Concepts in Islet Macrophage Biology in Type 2 Diabetes

    PubMed Central

    2015-01-01

    Chronic systemic inflammation is a hallmark feature of obesity and type 2 diabetes. Both resident and recruited islet macrophages contribute to the proinflammatory milieu of the diabetic islet. However, macrophages also appear to be critical for β-cell formation during development and support β-cell replication in experimental models of pancreas regeneration. In light of these findings, perhaps macrophages in the islet need to be viewed more as a fulcrum where deleterious inflammatory activation is balanced with beneficial tissue repair processes. Undoubtedly, defining the factors that contribute to the ontogeny, heterogeneity, and functionality of macrophages in normal, diseased, and regenerating islets will be necessary to determine whether that fulcrum can be moved to preserve functional β-cell mass in persons with diabetes. The intent of this review is to introduce the reader to emerging concepts of islet macrophage biology that may challenge the perception that macrophage accumulation in islets is merely a pathological feature of type 2 diabetes. PMID:26001058

  7. Sympathetic innervation during development is necessary for pancreatic islet architecture and functional maturation

    PubMed Central

    Borden, Philip; Houtz, Jessica; Leach, Steven D.; Kuruvilla, Rejji

    2013-01-01

    Summary Sympathetic neurons depend on target-derived neurotrophic cues to control their survival and growth. However, whether sympathetic innervation contributes reciprocally to the development of target tissues is less clear. Here, we report that sympathetic innervation is necessary for the formation of the pancreatic islets of Langerhans and for their functional maturation. Genetic or pharmacological ablation of sympathetic innervation during development resulted in altered islet architecture, reduced insulin secretion and impaired glucose tolerance in mice. Similar defects were observed with pharmacological blockade of β-adrenergic signaling. Conversely, the administration of a β-adrenergic agonist restored islet morphology and glucose tolerance in de-innervated animals. Furthermore, in neuron-islet co-cultures, sympathetic neurons promoted islet cell migration in a β-adrenergic dependent manner. This study reveals that islet architecture requires extrinsic inductive cues from neighboring tissues such as sympathetic nerves, and suggests that early perturbations in sympathetic innervation might underlie metabolic disorders. PMID:23850289

  8. Functional imaging of glucose-evoked rat islet activities using transient intrinsic optical signals

    NASA Astrophysics Data System (ADS)

    Yao, Xin-Cheng; Cui, Wan-Xing; Li, Yi-Chao; Zhang, Wei; Lu, Rong-Wen; Thompson, Anthony; Amthor, Franklin; Wang, Xu-Jing

    2012-05-01

    We demonstrate intrinsic optical signal (IOS) imaging of intact rat islet, which consists of many endocrine cells working together. A near-infrared digital microscope was employed for optical monitoring of islet activities evoked by glucose stimulation. Dynamic NIR images revealed transient IOS responses in the islet activated by low-dose (2.75 mM) and high-dose (5.5 mM) glucose stimuli. Comparative experiments and quantitative analysis indicated that both glucose metabolism and calcium/insulin dynamics might contribute to the observed IOS responses. Further investigation of the IOS imaging technology may provide a high resolution method for ex vivo functional examination of the islet, which is important for advanced study of diabetes associated islet dysfunctions and for improved quality control of donor islets for transplantation.

  9. Tissue dissociation enzymes for isolating human islets for transplantation: factors to consider in setting enzyme acceptance criteria.

    PubMed

    McCarthy, Robert C; Breite, Andrew G; Green, Michael L; Dwulet, Francis E

    2011-01-27

    Tissue dissociation enzymes are critical reagents that affect the yield and quality of human pancreatic islets required for islet transplantation. The United States Food and Drug Administration's oversight of this procedure recommends laboratories to set acceptance criteria for enzymes used in the manufacture of islet products for transplantation. Currently, many laboratories base this selection on personal experience because biochemical analysis is not predictive of success of the islet isolation procedure. This review identifies the challenges of correlating results from enzyme biochemical analysis to their effectiveness in human islet isolation and suggests a path forward to address these challenges to improve control of the islet manufacturing process.

  10. Standardized Transportation of Human Islets: An Islet Cell Resource Center Study of More Than 2,000 Shipments

    PubMed Central

    Kaddis, John S.; Hanson, Matthew S.; Cravens, James; Qian, Dajun; Olack, Barbara; Antler, Martha; Papas, Klearchos K.; Iglesias, Itzia; Barbaro, Barbara; Fernandez, Luis; Powers, Alvin C.; Niland, Joyce C.

    2013-01-01

    Preservation of cell quality during shipment of human pancreatic islets for use in laboratory research is a crucial, but neglected, topic. Mammalian cells, including islets, have been shown to be adversely affected by temperature changes in vitro and in vivo, yet protocols that control for thermal fluctuations during cell transport are lacking. To evaluate an optimal method of shipping human islets, an initial assessment of transportation conditions was conducted using standardized materials and operating procedures in 48 shipments sent to a central location by 8 pancreas-processing laboratories using a single commercial airline transporter. Optimization of preliminary conditions was conducted, and human islet quality was then evaluated in 2,338 shipments pre- and post-implementation of a finalized transportation container and standard operating procedures. The initial assessment revealed that the outside temperature ranged from a mean of −4.6±10.3°C to 20.9±4.8°C. Within-container temperature drops to or below 15°C occurred in 16 shipments (36%), while the temperature was found to be stabilized between 15–29°C in 29 shipments (64%). Implementation of an optimized transportation container and operating procedure reduced the number of within-container temperature drops (≤15°C) to 13% (n=37 of 289 winter shipments), improved the number desirably maintained between 15–29°C to 86% (n=250), but also increased the number reaching or exceeding 29°C to 1% (n=2; overall p<0.0001). Additionally, post-receipt quality ratings of excellent to good improved pre- vs. post- implementation of the standardized protocol, adjusting for pre-shipment purity/viability levels (p<0.0001). Our results show that extreme temperature fluctuations during transport of human islets, occurring when using a commercial airline transporter for long distance shipping, can be controlled using standardized containers, materials, and operating procedures. This cost-effective and

  11. Differences in insulin biosynthesis pathway between small and large islets do not correspond to insulin secretion

    PubMed Central

    Huang, Han-Hung; Stehno-Bittel, Lisa

    2015-01-01

    In a variety of mammalian species, small islets secrete more insulin per volume than large islets. This difference may be due to diffusional limitations of large islets, or inherent differences in the insulin production pathways. The purpose of this study was to identify possible differences in the early phase of glucose-stimulated insulin biosynthesis between large and small islets. Isolated small and large rat islets were challenged with 30 minutes of high glucose. The expression of insulin gene transcription factors (MafA, NeuroD/ Beta2, and PDX-1), preproinsulin mRNA, proinsulin and insulin were compared between large and small islets. Under basal (low glucose) conditions, MafA and NeuroD had higher mRNA levels and greater protein amounts in large islets compared to small when normalized to GAPDH levels. 30 minutes of high glucose stimulation failed to alter the mRNA or subsequent protein levels of either gene. However, 30 minutes of high glucose suppressed activated PDX-1 protein levels in both small and large islets. High glucose stimulation did not statistically alter the preproinsulin mRNA (insulin 1 and insulin 2) levels. At the translational level, high glucose increased the proinsulin levels, and large islets showed a higher proinsulin content per cell than small islets. Insulin content per cell was not significantly different between small and large islets under basal or high glucose levels. The results fail to explain the higher level of insulin secretion noted in small versus large islets and may suggest that possible differences lie downstream in the secretory pathway rather than insulin biosynthesis. PMID:26752360

  12. Gene expression changes in human islets exposed to type 1 diabetic serum

    PubMed Central

    Jackson, Andrew M.; Kanak, Mazhar A.; Grishman, Ellen K.; Chaussabel, Damien; Levy, Marlon F.; Naziruddin, Bashoo

    2012-01-01

    A major obstacle to the success of islet cell transplantation as a standard treatment for labile type 1 diabetes mellitus is the immediate loss of up to 70% of the transplanted islet mass. Activation of the complement cascade and coagulation factors has been implicated in initiating the destruction of the islet graft. In this study, we analyzed the gene expression changes in islet cells following exposure to type 1 diabetes mellitus serum (T1DM). Isolated human pancreatic islet cells were cultured for 2 d to stabilize islet cell gene expression. Cultured islets were divided into three groups for treatment as follows: group 1 was treated with autologous donor serum, while groups two and three were treated with sera from ABO-matched allogeneic donors or autoantibody positive type 1 diabetic patient, respectively. Complement was detected using anti-C3 FITC and CH50 assay. Islet gene expression was analyzed using Illumina micro-array technology. Results were confirmed using real-time PCR. Immunofluorescent imaging demonstrated complement deposition only in the T1DM condition. Gene array and class prediction analysis generated a list of 50 genes that were able to predict the effect of T1DM serum on islets. Quantitative PCR corroborated microarray results. Both techniques demonstrated upregulation of MMP9 (243%), IL-1β (255%), IL-11 (220%), IL-12A (132%), RAD (343%) and a concomitant downregulation of IL-1RN (64%) in islets treated with T1DM serum. Islets treated with T1DM serum overexpressed genes associated with angiogenesis while decreasing transcription of genes that protect islets from inflammatory cytokines and reactive oxygen species. PMID:22885994

  13. Can pancreatic duct-derived progenitors be a source of islet regeneration?

    SciTech Connect

    Xia, Bing; Zhan, Xiao-Rong; Yi, Ran; Yang, Baofeng

    2009-06-12

    The regenerative process of the pancreas is of interest because the main pathogenesis of diabetes mellitus is an inadequate number of insulin-producing {beta}-cells. The functional mass of {beta}-cells is decreased in type 1 diabetes, so replacing missing {beta}-cells or triggering their regeneration may allow for improved type 1 diabetes treatment. Therefore, expansion of the {beta}-cell mass from endogenous sources, either in vivo or in vitro, represents an area of increasing interest. The mechanism of islet regeneration remains poorly understood, but the identification of islet progenitor sources is critical for understanding {beta}-cell regeneration. One potential source is the islet proper, via the dedifferentiation, proliferation, and redifferentiation of facultative progenitors residing within the islet. Neogenesis, or that the new pancreatic islets can derive from progenitor cells present within the ducts has been reported, but the existence and identity of the progenitor cells have been debated. In this review, we focus on pancreatic ductal cells, which are islet progenitors capable of differentiating into islet {beta}-cells. Islet neogenesis, seen as budding of hormone-positive cells from the ductal epithelium, is considered to be one mechanism for normal islet growth after birth and in regeneration, and has suggested the presence of pancreatic stem cells. Numerous results support the neogenesis hypothesis, the evidence for the hypothesis in the adult comes primarily from morphological studies that have in common the production of damage to all or part of the pancreas, with consequent inflammation and repair. Although numerous studies support a ductal origin for new islets after birth, lineage-tracing experiments are considered the 'gold standard' of proof. Lineage-tracing experiments show that pancreatic duct cells act as progenitors, giving rise to new islets after birth and after injury. The identification of differentiated pancreatic ductal cells as

  14. Collagen IV-Modified Scaffolds Improve Islet Survival and Function and Reduce Time to Euglycemia

    PubMed Central

    Yap, Woon Teck; Salvay, David M.; Silliman, Michael A.; Zhang, Xiaomin; Bannon, Zachary G.; Kaufman, Dixon B.; Lowe, William L.

    2013-01-01

    Islet transplantation on extracellular matrix (ECM) protein-modified biodegradable microporous poly(lactide-co-glycolide) scaffolds is a potential curative treatment for type 1 diabetes mellitus (T1DM). Collagen IV-modified scaffolds, relative to control scaffolds, significantly decreased the time required to restore euglycemia from 17 to 3 days. We investigated the processes by which collagen IV-modified scaffolds enhanced islet function and mediated early restoration of euglycemia post-transplantation. We characterized the effect of collagen IV-modified scaffolds on islet survival, metabolism, and insulin secretion in vitro and early- and intermediate-term islet mass and vascular density post-transplantation and correlated these with early restoration of euglycemia in a syngeneic mouse model. Control scaffolds maintained native islet morphologies and architectures as well as collagen IV-modified scaffolds in vivo. The islet size and vascular density increased, while β-cell proliferation decreased from day 16 to 113 post-transplantation. Collagen IV-modified scaffolds promoted islet cell viability and decreased early-stage apoptosis in islet cells in vitro—phenomena that coincided with enhanced islet metabolic function and glucose-stimulated insulin secretion. These findings suggest that collagen IV-modified scaffolds promote the early restoration of euglycemia post-transplantation by enhancing islet metabolism and glucose-stimulated insulin secretion. These studies of ECM proteins, in particular collagen IV, and islet function provide key insights for the engineering of a microenvironment that would serve as a platform for enhancing islet transplantation as a viable clinical therapy for T1DM. PMID:23713524

  15. Functional studies of rat, porcine, and human pancreatic islets cultured in ten commercially available media.

    PubMed

    Holmes, M A; Clayton, H A; Chadwick, D R; Bell, P R; London, N J; James, R F

    1995-10-27

    There have been no extensive studies investigating the effect of tissue culture media on the in vitro functional characteristics of rat, porcine and human Islets of Langerhans. We therefore aimed to compare ten commercially available tissue culture media on the basis of their ability to maintain islet viability. Following isolation, islets were cultured free-floating in the ten media (RPMI 1640-11mM glucose (control), RPMI 1640-2.2mM glucose, Dulbecco's MEM, TCM 199, CMRL 1066, Iscove's MEM, Waymouth's MEM, Serum-Free medium, Ex-cell 300, Ham's F-12) and viability was assessed after 24 hr, 3 days, and 7 days on the basis of macroscopic appearance, cell membrane integrity, and insulin secretion in response to glucose stimulation both by dynamic incubation and by perifusion. Each islet species demonstrated physiological insulin release characteristics in all media--however, it was possible to distinguish between the media by comparing the stimulation indices calculated from the insulin release studies. Significantly higher stimulation indices were produced in Iscove's MEM for rat islets, in Ham's F-12 for porcine islets and in CMRL 1066 for human islets. Over the entire culture period a significant deterioration in function was observed in all species cultured in the control media, although this was reversed when islets were cultured in the optimal media. Furthermore, in the case of porcine and human islets a significant improvement in function over the seven-day period was noted in the optimal media. In conclusion, of the commercially available media, the optimal tissue culture medium for rat islets is Iscove's MEM, for porcine islets is Ham's F-12, and for human islets is CMRL 1066. PMID:7482747

  16. Lung-Derived Microscaffolds Facilitate Diabetes Reversal after Mouse and Human Intraperitoneal Islet Transplantation

    PubMed Central

    Pawlick, Rena L.; Kahana, Meygal; Pepper, Andrew R.; Bruni, Antonio; Gala-Lopez, Boris; Kin, Tatsuya; Mitrani, Eduardo; Shapiro, A. M. James

    2016-01-01

    There is a need to develop three-dimensional structures that mimic the natural islet tissue microenvironment. Endocrine micro-pancreata (EMPs) made up of acellular organ-derived micro-scaffolds seeded with human islets have been shown to express high levels of key beta-cell specific genes and secrete quantities of insulin per cell similar to freshly isolated human islets in a glucose-regulated manner for more than three months in vitro. The aim of this study was to investigate the capacity of EMPs to restore euglycemia in vivo after transplantation of mouse or human islets in chemically diabetic mice. We proposed that the organ-derived EMPs would restore the extracellular components of the islet microenvironment, generating favorable conditions for islet function and survival. EMPs seeded with 500 mouse islets were implanted intraperitoneally into streptozotocin-induced diabetic mice and reverted diabetes in 67% of mice compared to 13% of controls (p = 0.018, n = 9 per group). Histological analysis of the explanted grafts 60 days post-transplantation stained positive for insulin and exhibited increased vascular density in a collagen-rich background. EMPs were also seeded with human islets and transplanted into the peritoneal cavity of immune-deficient diabetic mice at 250 islet equivalents (IEQ), 500 IEQ and 1000 IEQ. Escalating islet dose increased rates of normoglycemia (50% of the 500 IEQ group and 75% of the 1000 IEQ group, n = 3 per group). Human c-peptide levels were detected 90 days post-transplantation in a dose-response relationship. Herein, we report reversal of diabetes in mice by intraperitoneal transplantation of human islet seeded on EMPs with a human islet dose as low as 500 IEQ. PMID:27227978

  17. Human islets contain four distinct subtypes of β cells

    PubMed Central

    Dorrell, Craig; Schug, Jonathan; Canaday, Pamela S.; Russ, Holger A.; Tarlow, Branden D.; Grompe, Maria T.; Horton, Tamara; Hebrok, Matthias; Streeter, Philip R.; Kaestner, Klaus H.; Grompe, Markus

    2016-01-01

    Human pancreatic islets of Langerhans contain five distinct endocrine cell types, each producing a characteristic hormone. The dysfunction or loss of the insulin-producing β cells causes diabetes mellitus, a disease that harms millions. Until now, β cells were generally regarded as a single, homogenous cell population. Here we identify four antigenically distinct subtypes of human β cells, which we refer to as β1–4, and which are distinguished by differential expression of ST8SIA1 and CD9. These subpopulations are always present in normal adult islets and have diverse gene expression profiles and distinct basal and glucose-stimulated insulin secretion. Importantly, the β cell subtype distribution is profoundly altered in type 2 diabetes. These data suggest that this antigenically defined β cell heterogeneity is functionally and likely medically relevant. PMID:27399229

  18. Multifunctional Antibody Agonists Targeting Glucagon-like Peptide-1, Glucagon, and Glucose-Dependent Insulinotropic Polypeptide Receptors.

    PubMed

    Wang, Ying; Du, Jintang; Zou, Huafei; Liu, Yan; Zhang, Yuhan; Gonzalez, Jose; Chao, Elizabeth; Lu, Lucy; Yang, Pengyu; Parker, Holly; Nguyen-Tran, Van; Shen, Weijun; Wang, Danling; Schultz, Peter G; Wang, Feng

    2016-09-26

    Glucagon-like peptide-1 (GLP-1) receptor (GLP-1R), glucagon (GCG) receptor (GCGR), and glucose-dependent insulinotropic polypeptide (GIP, also known as gastric inhibitory polypeptide) receptor (GIPR), are three metabolically related peptide hormone receptors. A novel approach to the generation of multifunctional antibody agonists that activate these receptors has been developed. Native or engineered peptide agonists for GLP-1R, GCGR, and GIPR were fused to the N-terminus of the heavy chain or light chain of an antibody, either alone or in pairwise combinations. The fusion proteins have similar in vitro biological activities on the cognate receptors as the corresponding peptides, but circa 100-fold longer plasma half-lives. The GLP-1R mono agonist and GLP-1R/GCGR dual agonist antibodies both exhibit potent effects on glucose control and body weight reduction in mice, with the dual agonist antibody showing enhanced activity in the latter. PMID:27595986

  19. Glucose activates prenyltransferases in pancreatic islet beta-cells.

    PubMed

    Goalstone, Marc; Kamath, Vasudeva; Kowluru, Anjaneyulu

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet beta-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 beta-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20mM] markedly stimulated the expression of the alpha-subunits of FTase/GGTase-1, but not the beta-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  20. Glucose activates prenyltransferases in pancreatic islet {beta}-cells

    SciTech Connect

    Goalstone, Marc; Kamath, Vasudeva; Kowluru, Anjaneyulu

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet {beta}-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 {beta}-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the {alpha}-subunits of FTase/GGTase-1, but not the {beta}-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  1. Dual Islet Transplantation Modeling of the Instant Blood-Mediated Inflammatory Reaction

    PubMed Central

    Martin, BM; Samy, KP; Lowe, MC; Thompson, PW; Cano, J; Farris, AB; Song, M; Dove, CR; Leopardi, FV; Strobert, EA; Jenkins, JB; Collins, BH; Larsen, CP; Kirk, AD

    2015-01-01

    Islet xenotransplantation is a potential treatment for diabetes without the limitations of tissue availability. Although successful experimentally, early islet loss remains substantial and attributed to an instant blood mediated inflammatory reaction (IBMIR). This syndrome of islet destruction has been incompletely defined and characterization in pig-to-primate models has been hampered by logistical and statistical limitations of large animal studies. To further investigate IBMIR, we developed a novel in vivo dual islet transplant model to precisely characterize IBMIR as proof-of-concept that this model can serve to properly control experiments comparing modified xenoislet preparations. Wild-type (WT) and α1,3-galactosyltransferase knockout (GTKO) neonatal porcine islets (NPIs) were studied in non-immunosuppressed rhesus macaques. Inert polyethylene microspheres served as a control for the effects of portal embolization. Digital analysis of immunohistochemistry targeting IBMIR mediators was performed at one and 24 hours after intraportal islet infusion. Early findings observed in transplanted islets include complement and antibody deposition, and infiltration by neutrophils, macrophages, and platelets. Insulin, complement, antibody, neutrophils, macrophages, and platelets were similar between GTKO and WT islets, with increasing macrophage infiltration at 24 hours in both phenotypes. This model provides an objective and internally controlled study of distinct islet preparations and documents the temporal histology of IBMIR. PMID:25702898

  2. PIG-TO-MONKEY ISLET XENOTRANSPLANTATION USING MULTI-TRANSGENIC PIGS

    PubMed Central

    Bottino, R.; Wijkstrom, M.; van der Windt, D.J.; Hara, H.; Ezzelarab, M.; Murase, N.; Bertera, S.; He, J.; Phelps, C.; Ayares, D.; Cooper, D.K.C.; Trucco, M.

    2014-01-01

    The generation of pigs with genetic modifications has significantly advanced the field of xenotransplantation. New genetically-engineered pigs were produced on an α1,3-galactosyltransferase gene-knockout background with ubiquitous expression of human CD46 (GTKO/CD46 pigs), with islet beta cell-specific expression of human tissue factor pathway inhibitor (hTFPI) and/or human CD39 and/or porcine CTLA4-lg. Isolated islets from pigs with 3, 4, or 5 genetic modifications were transplanted intraportally into streptozotocin-diabetic, immunosuppressed cynomolgus monkeys (n=5). Immunosuppression was based on anti-CD154mAb costimulation blockade. Monitoring included features of early islet destruction, glycemia, exogenous insulin requirement, and histopathology of the islets at necropsy. Using these modified pig islets, there was evidence of reduced islet destruction in the first hours after transplantation, compared with two series of historical controls that received identical therapy but were transplanted with islets from pigs with either no or only one genetic modification. Despite encouraging effects on early islet loss, these multi-transgenic islet grafts did not demonstrate consistency in regard to long-term success, with only 2 of 5 demonstrating function beyond 5 months. PMID:25220221

  3. Transcriptional Regulation of Chemokine Genes: A Link to Pancreatic Islet Inflammation?

    PubMed Central

    Burke, Susan J.; Collier, J. Jason

    2015-01-01

    Enhanced expression of chemotactic cytokines (aka chemokines) within pancreatic islets likely contributes to islet inflammation by regulating the recruitment and activation of various leukocyte populations, including macrophages, neutrophils, and T-lymphocytes. Because of the powerful actions of these chemokines, precise transcriptional control is required. In this review, we highlight what is known about the signals and mechanisms that govern the transcription of genes encoding specific chemokine proteins in pancreatic islet β-cells, which include contributions from the NF-κB and STAT1 pathways. We further discuss increased chemokine expression in pancreatic islets during autoimmune-mediated and obesity-related development of diabetes. PMID:26018641

  4. Survival of free and encapsulated human and rat islet xenografts transplanted into the mouse bone marrow.

    PubMed

    Meier, Raphael P H; Seebach, Jörg D; Morel, Philippe; Mahou, Redouan; Borot, Sophie; Giovannoni, Laurianne; Parnaud, Geraldine; Montanari, Elisa; Bosco, Domenico; Wandrey, Christine; Berney, Thierry; Bühler, Leo H; Muller, Yannick D

    2014-01-01

    Bone marrow was recently proposed as an alternative and potentially immune-privileged site for pancreatic islet transplantation. The aim of the present study was to assess the survival and rejection mechanisms of free and encapsulated xenogeneic islets transplanted into the medullary cavity of the femur, or under the kidney capsule of streptozotocin-induced diabetic C57BL/6 mice. The median survival of free rat islets transplanted into the bone marrow or under the kidney capsule was 9 and 14 days, respectively, whereas that of free human islets was shorter, 7 days (bone marrow) and 10 days (kidney capsule). Infiltrating CD8+ T cells and redistributed CD4+ T cells, and macrophages were detected around the transplanted islets in bone sections. Recipient mouse splenocytes proliferated in response to donor rat stimulator cells. One month after transplantation under both kidney capsule or into bone marrow, encapsulated rat islets had induced a similar degree of fibrotic reaction and still contained insulin positive cells. In conclusion, we successfully established a small animal model for xenogeneic islet transplantation into the bone marrow. The rejection of xenogeneic islets was associated with local and systemic T cell responses and macrophage recruitment. Although there was no evidence for immune-privilege, the bone marrow may represent a feasible site for encapsulated xenogeneic islet transplantation.

  5. Impact of adverse pancreatic injury at surgical procurement upon islet isolation outcome.

    PubMed

    Andres, Axel; Kin, Tatsuya; O'Gorman, Doug; Bigam, David; Kneteman, Norman; Senior, Peter; Shapiro, Am James

    2014-11-01

    The consequence of a pancreas injury during the procurement for islet isolation purpose is unknown. The goal of this work was to assess the injuries of the pancreata procured for islet isolation, and to determine their effect on the islet yield. Between January 2007 and October 2013, we prospectively documented every injury of the pancreata processed in our centre for islet isolation. Injuries involving the main duct were classified as major, the others as minor. Donors' characteristics and islet yields were compared between the groups of injuries. A pancreas injury was identified in 42 of 452 pancreata received for islet isolation (9.3%). In 15 cases, the injury was major (3.3% of all pancreata). Although a minor injury did not affect the islet yield, a major injury was significantly associated with unfavourable outcomes (postpurification mean islet equivalent of 364 ± 181, 405 ± 190 and 230 ± 115 × 10(3) for absence of injury, minor injury and major injury, respectively). A major injury was significantly more prevalent in lean and short donors. We recommend assessing the quality of the pancreas in the islet isolation centre before starting the isolation procedure. Each centre should determine its own policy based on its financial resources and on the wait list.

  6. Maintenance of Normoglycemia in Diabetic Mice by Subcutaneous Xenografts of Encapsulated Islets

    NASA Astrophysics Data System (ADS)

    Lacy, Paul E.; Hegre, Orion D.; Gerasimidi-Vazeou, Andriani; Gentile, Frank T.; Dionne, Keith E.

    1991-12-01

    The goal of islet transplantation in human diabetes is to maintain the islet grafts in the recipients without the use of immunosuppression. One approach is to encapsulate the donor islets in permselective membranes. Hollow fibers fabricated from an acrylic copolymer were used to encapsulate small numbers of rat islets that were immobilized in an alginate hydrogel for transplantation in diabetic mice. The fibers were biocompatible, prevented rejection, and maintained normoglycemia when transplanted intraperitoneally; hyperglycemia returned when the fibers were removed at 60 days. Normoglycemia was also maintained by subcutaneous implants that had an appropriately constructed outer surface on the fibers.

  7. Anti-diabetic and neuroprotective effects of pancreatic islet transplantation into the central nervous system.

    PubMed

    Lazard, Daniel; Vardi, Pnina; Bloch, Konstantin

    2016-01-01

    During the last decades, the central nervous system (CNS) was intensively tested as a site for islet transplantation in different animal models of diabetes. Immunoprivilege properties of intracranial and intrathecal sites were found to delay and reduce rejection of transplanted allo-islets and xeno-islets, especially in the form of dispersed single cells. Insulin released from islets grafted in CNS was shown to cross the blood-brain barrier and to act as a regulator of peripheral glucose metabolism. In diabetic animals, sufficient nutrition and oxygen supply to islets grafted in the CNS provide adequate insulin response to increase glucose level resulting in rapid normoglycemia. In addition to insulin, pancreatic islets produce and secrete several other hormones, as well as neurotrophic and angiogenic factors with potential neuroprotective properties. Recent experimental studies and clinical trials provide a strong support for delivery of islet-derived macromolecules to CNS as a promising strategy to treat various brain disorders. This review article focuses mainly on analysis of current status of intracranial and intrathecal islet transplantations for treatment of experimental diabetes and discusses the possible neuroprotective properties of grafted islets into CNS as a novel therapeutic approach to brain disorders with cognitive dysfunctions characterized by impaired brain insulin signalling. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Anti-caspase-3 preconditioning increases proinsulin secretion and deteriorates posttransplant function of isolated human islets.

    PubMed

    Brandhorst, Daniel; Brandhorst, Heide; Maataoui, Vidya; Maataoui, Adel; Johnson, Paul R V

    2013-06-01

    Human islet isolation is associated with adverse conditions inducing apoptosis and necrosis. The aim of the present study was to assess whether antiapoptotic preconditioning can improve in vitro and posttransplant function of isolated human islets. A dose-finding study demonstrated that 200 μmol/L of the caspase-3 inhibitor Ac-DEVD-CMK was most efficient to reduce the expression of activated caspase-3 in isolated human islets exposed to severe heat shock. Ac-DEVD-CMK-pretreated or sham-treated islets were transplanted into immunocompetent or immunodeficient diabetic mice and subjected to static glucose incubation to measure insulin and proinsulin secretion. Antiapoptotic pretreatment significantly deteriorated graft function resulting in elevated nonfasting serum glucose when compared to sham-treated islets transplanted into diabetic nude mice (p < 0.01) and into immunocompetent mice (p < 0.05). Ac-DEVD-CMK pretreatment did not significantly change basal and glucose-stimulated insulin release compared to sham-treated human islets but increased the proinsulin release at high glucose concentrations (20 mM) thus reducing the insulin-to-proinsulin ratio in preconditioned islets (p < 0.05). This study demonstrates that the caspase-3 inhibitor Ac-DEVD-CMK interferes with proinsulin conversion in preconditioned islets reducing their potency to cure diabetic mice. The mechanism behind this phenomenon is unclear so far but may be related to the ketone CMK linked to the Ac-DEVD molecule. Further studies are required to identify biocompatible caspase inhibitors suitable for islet preconditioning.

  9. Macro- or microencapsulation of pig islets to cure type 1 diabetes

    PubMed Central

    Dufrane, Denis; Gianello, Pierre

    2012-01-01

    Although allogeneic islet transplantation can successfully cure type 1 diabetes, it has limited applicability. For example, organs are in short supply; several human pancreas donors are often needed to treat one diabetic recipient; the intrahepatic site may not be the most appropriate site for islet implantation; and immunosuppressive regimens, which are associated with side effects, are often required to prolong survival of the islet graft. An alternative source of insulin-producing cells would therefore be of major interest. Pigs represent a possible alternative source of beta cells. Grafting of pig islets may appear difficult because of the immunologic species barrier, but pig islets have been shown to function in primates for at least 6 mo with clinically incompatible immunosuppression. Therefore, a bioartificial pancreas made of encapsulated pig islets may resolve issues associated with islet allotransplantation. Although several groups have shown that encapsulated pig islets are functional in small-animal models, less is known about the use of bioartificial pancreases in large-animal models. In this review, we summarize current knowledge of encapsulated pig islets, to determine obstacles to implantation in humans and possible solutions to overcome these obstacles. PMID:23322985

  10. The lizard fauna of Guam's fringing islets: Island biogeography, phylogenetic history, and conservation implications

    USGS Publications Warehouse

    Perry, G.; Rodda, G.H.; Fritts, T.H.; Sharp, T.R.

    1998-01-01

    We sampled the lizard fauna of twenty-two small islets fringing the Pacific island of Guam and used these data to shed light on the processes responsible for present-day diversity. Habitat diversity, measured by islet area and vegetation complexity, was significantly correlated with the number of species found on an islet. However, islet distance and elevation were not significant predictors of diversity. Distribution patterns were slightly different for the two major families in our sample, Scincidae and Gekkonidae: skinks needed larger islets to maintain a population than did geckos. Presence/absence patterns were highly and significantly nested, and population density was correlated with the number of islets on which a species was found. An area cladogram was poorly supported and showed no faunal similarity between nearby islands. These patterns indicate that extinctions on most islets were due mostly to non-catastrophic, long-acting biological causes. The presence on the islets of species extirpated on Guam and the lack of significant nestedness on islands with greater maximum elevation highlight the impact that predators (primarily brown treesnakes) can have. Our findings also show that small reserves will not suffice to protect endangered lizard faunas, and that the islets may serve as a short-term repository of such species until snake-free areas can be established on Guam.

  11. Magnetic resonance imaging and biological properties of pancreatic islets labeled with iron oxide nanoparticles.

    PubMed

    Kim, Hoe Suk; Choi, YoonSeok; Song, In Chan; Moon, Woo Kyung

    2009-10-01

    This study was undertaken to investigate the in vitro effect of islet labeling with iron oxide nanoparticles for MRI on islet viability, insulin secretion, and gene expression. Isolated rat islets were labeled with Resovist (25-200 microg Fe/mL, a clinically approved MRI contrast agent) in the presence or absence of poly-l-Lysine (PLL, 1.5 microg/mL) for 48 h. The iron content of labeled islets was found to increase in a dose-dependent manner. More than 90% of the islets were labeled with 100 microg Fe/mL. We confirmed the localizations of iron oxide nanoparticles within islet beta-cells by insulin immunostaining. As the concentration of Resovist increased, T(2) values as determined by T(2)-weighted MRI on a 1.5 Tesla MR scanner decreased. Labeling of 100 islets in a medium containing 100 microg Fe/mL of Resovist in the absence of PLL provided sufficient contrast for islet visualization on T(2)-weighted MRI. MTT assays showed that the viability of labeled islets was not different from that of unlabeled islets. No statistical difference was observed between labeled (2.91 +/- 0.36) and unlabeled islets (2.83 +/- 0.61) in terms of the ability to secrete insulin, as determined by the glucose stimulation index. We also evaluated the effect of iron oxide incorporation on the gene expressions in islet cells using RT-PCR (reverse transcriptase PCR). Insulin expression in labeled islets was significantly elevated (1.83 +/- 0.25 fold vs. unlabeled; p = 0.005), but not the expression of somatostatin (1.39 +/- 0.18 fold vs. unlabeled; p = 0.085) or glucagons (1.28 +/- 0.13 fold vs. unlabeled; p = 0.09). Expression of an important transcription factor for insulin gene transcription, BETA2 (beta-cell E-box trans-activator), was increased in labeled islets (1.67 +/- 0.15 fold vs. unlabeled; p = 0.029). The findings of this study indicate that Resovist provides a satisfactory means to image islets and has no deleterious effect on islet function or gene expression.

  12. Impact of Pancreatic Rat Islet Density on Cell Survival during Hypoxia

    PubMed Central

    Rodriguez-Brotons, A.; Bietiger, W.; Peronet, C.; Magisson, J.; Sookhareea, C.; Langlois, A.; Mura, C.; Jeandidier, N.; Pinget, M.; Sigrist, S.; Maillard, E.

    2016-01-01

    In bioartificial pancreases (BP), the number of islets needed to restore normoglycaemia in the diabetic patient is critical. However, the confinement of a high quantity of islets in a limited space may impact islet survival, particularly in regard to the low oxygen partial pressure (PO2) in such environments. The aim of the present study was to evaluate the impact of islet number in a confined space under hypoxia on cell survival. Rat islets were seeded at three different concentrations (150, 300, and 600 Islet Equivalents (IEQ)/cm2) and cultured in normal atmospheric pressure (160 mmHg) as well as hypoxic conditions (15 mmHg) for 24 hours. Cell viability, function, hypoxia-induced changes in gene expression, and cytokine secretion were then assessed. Notably, hypoxia appeared to induce a decrease in viability and increasing islet density exacerbated the observed increase in cellular apoptosis as well as the loss of function. These changes were also associated with an increase in inflammatory gene transcription. Taken together, these data indicate that when a high number of islets are confined to a small space under hypoxia, cell viability and function are significantly impacted. Thus, in order to improve islet survival in this environment during transplantation, oxygenation is of critical importance. PMID:26824040

  13. Impact of Pancreatic Rat Islet Density on Cell Survival during Hypoxia.

    PubMed

    Rodriguez-Brotons, A; Bietiger, W; Peronet, C; Magisson, J; Sookhareea, C; Langlois, A; Mura, C; Jeandidier, N; Pinget, M; Sigrist, S; Maillard, E

    2016-01-01

    In bioartificial pancreases (BP), the number of islets needed to restore normoglycaemia in the diabetic patient is critical. However, the confinement of a high quantity of islets in a limited space may impact islet survival, particularly in regard to the low oxygen partial pressure (PO2) in such environments. The aim of the present study was to evaluate the impact of islet number in a confined space under hypoxia on cell survival. Rat islets were seeded at three different concentrations (150, 300, and 600 Islet Equivalents (IEQ)/cm(2)) and cultured in normal atmospheric pressure (160 mmHg) as well as hypoxic conditions (15 mmHg) for 24 hours. Cell viability, function, hypoxia-induced changes in gene expression, and cytokine secretion were then assessed. Notably, hypoxia appeared to induce a decrease in viability and increasing islet density exacerbated the observed increase in cellular apoptosis as well as the loss of function. These changes were also associated with an increase in inflammatory gene transcription. Taken together, these data indicate that when a high number of islets are confined to a small space under hypoxia, cell viability and function are significantly impacted. Thus, in order to improve islet survival in this environment during transplantation, oxygenation is of critical importance. PMID:26824040

  14. Comparison of surface modification chemistries in mouse, porcine, and human islets.

    PubMed

    SoRelle, Jeffrey A; Kanak, Mazhar A; Itoh, Takeshi; Horton, Joshua M; Naziruddin, Bashoo; Kane, Robert R

    2015-03-01

    Beta cell replacement therapy, the transplantation of isolated pancreatic islets by intraportal infusion, offers patients with brittle type 1 diabetes blood glucose regulation with a minimally invasive technique. Chemical modification of islets prior to transplantation, providing a nanothin barrier that potentially includes active protective compounds, has been proposed as a strategy to minimize the inflammatory and immune reactions that often significantly limit graft function and duration. Chemical modification also has the potential to allow the use of alternative sources of islets, such as porcine islets, for transplantation. This investigation compared three orthogonal covalent islet modification techniques across three species (human, porcine, and murine), using multiple measures to determine biocompatibility and effectiveness. All three conjugation chemistries were well tolerated, and the overall efficiency, gross uniformity, and stability of the surface modifications were dependent upon the conjugation chemistry as well as the islet source (human, porcine, or murine). Notably, the reductive modification of surface disulfides was shown to afford intense and long-lasting modification of human islets. This study demonstrates that murine, human, and porcine islets tolerate a variety of covalent modifications, that these modifications are relatively stable, and that the murine islet model may not be predictive for some chemical contexts. PMID:24829144

  15. Excitation wave propagation as a possible mechanism for signal transmission in pancreatic islets of Langerhans.

    PubMed Central

    Aslanidi, O V; Mornev, O A; Skyggebjerg, O; Arkhammar, P; Thastrup, O; Sørensen, M P; Christiansen, P L; Conradsen, K; Scott, A C

    2001-01-01

    In response to glucose application, beta-cells forming pancreatic islets of Langerhans start bursting oscillations of the membrane potential and intracellular calcium concentration, inducing insulin secretion by the cells. Until recently, it has been assumed that the bursting activity of beta-cells in a single islet of Langerhans is synchronized across the whole islet due to coupling between the cells. However, time delays of several seconds in the activity of distant cells are usually observed in the islets of Langerhans, indicating that electrical/calcium wave propagation through the islets can occur. This work presents both experimental and theoretical evidence for wave propagation in the islets of Langerhans. Experiments with Fura-2 fluorescence monitoring of spatiotemporal calcium dynamics in the islets have clearly shown such wave propagation. Furthermore, numerical simulations of the model describing a cluster of electrically coupled beta-cells have supported our view that the experimentally observed calcium waves are due to electric pulses propagating through the cluster. This point of view is also supported by independent experimental results. Based on the model equations, an approximate analytical expression for the wave velocity is introduced, indicating which parameters can alter the velocity. We point to the possible role of the observed waves as signals controlling the insulin secretion inside the islets of Langerhans, in particular, in the regions that cannot be reached by any external stimuli such as high glucose concentration outside the islets. PMID:11222284

  16. Effect of sex on histomorphometric properties of Langerhans islets in native chickens

    PubMed Central

    Parchami, Ali; Kusha, Sanaz

    2015-01-01

    The aim of the present study was to investigate the effect of gender on the distribution of pancreatic islets in native chicken. Ten adult male and ten adult female Isfahan native chickens were used in this experiment. Results showed a distinct sexual dimorphism in the native chicken pancreas which depends upon the various fractions of the pancreatic lobes, which were occupied by alpha, beta and mixed islets. In both sexes, the islets were more frequently found in the splenic and the third lobes, whereas they were more scarcely observed in the ventral and the dorsal lobes. In both sexes, there were no alpha islets in the dorsal and ventral pancreatic lobes. The mean percentage of beta islets in the third and splenic lobes were significantly greater in males than females (p < 0.05). However, the mean percentage of mixed islets in the third and splenic lobes were significantly greater in females than males (p < 0.05). The mean percentage of the alpha islets in the splenic and third lobes and the mean percentage of beta and mixed islets in the dorsal and ventral lobes was similar in both sexes in chickens. There was no sex difference in the mean percentage of whole gland islets (p > 0.05). PMID:26973769

  17. Macro- or microencapsulation of pig islets to cure type 1 diabetes.

    PubMed

    Dufrane, Denis; Gianello, Pierre

    2012-12-21

    Although allogeneic islet transplantation can successfully cure type 1 diabetes, it has limited applicability. For example, organs are in short supply; several human pancreas donors are often needed to treat one diabetic recipient; the intrahepatic site may not be the most appropriate site for islet implantation; and immunosuppressive regimens, which are associated with side effects, are often required to prolong survival of the islet graft. An alternative source of insulin-producing cells would therefore be of major interest. Pigs represent a possible alternative source of beta cells. Grafting of pig islets may appear difficult because of the immunologic species barrier, but pig islets have been shown to function in primates for at least 6 mo with clinically incompatible immunosuppression. Therefore, a bioartificial pancreas made of encapsulated pig islets may resolve issues associated with islet allotransplantation. Although several groups have shown that encapsulated pig islets are functional in small-animal models, less is known about the use of bioartificial pancreases in large-animal models. In this review, we summarize current knowledge of encapsulated pig islets, to determine obstacles to implantation in humans and possible solutions to overcome these obstacles.

  18. Enhanced ultrasonography using a nano/microbubble contrast agent for islet transplantation.

    PubMed

    Sakata, N; Sax, N; Yoshimatsu, G; Tsuchiya, H; Kato, S; Aoki, T; Ishida, M; Katayose, Y; Egawa, S; Kodama, T; Unno, M

    2015-06-01

    Recent basic and clinical studies have assessed the use of highly sensitive imaging modalities for visualizing transplanted islets. We investigated the utility of enhanced ultrasonography, combined with fluorescent acoustic liposome nano/microbubbles (FALs), for evaluating angiogenesis and the endocrine function of transplanted islets. BALB/c mice were classified into three groups: Diabetic mice that underwent syngeneic islet transplantation into the subrenal capsule and achieved normoglycemia (Tx group); those that failed to achieve normoglycemia (Tx-DM group); and those not receiving any treatment (DM group). Mice were examined by FAL-enhanced high frequency ultrasonography. The echogenicity of the islets increased rapidly within the first minute after injection of FALs and remained at a higher level in the Tx group, while small increases were observed in the other two groups. In histological assessments, fluorescently stained erythrocytes could be seen in and around the transplanted islets, indicating that the transplanted islets were enhanced by infusion of FALs via vessel networks between the engrafted islets and tissue. Furthermore, the echogenicity correlated significantly with endocrine parameters, including blood glucose (BG), serum insulin, and the BG change in the glucose tolerance test. In conclusion, the echogenicity of the islets under FAS-enhanced ultrasonosonography correlated with the endocrine status of transplanted islets.

  19. Engineering of microscale three-dimensional pancreatic islet models in vitro and their biomedical applications.

    PubMed

    Gao, Bin; Wang, Lin; Han, Shuang; Pingguan-Murphy, Belinda; Zhang, Xiaohui; Xu, Feng

    2016-08-01

    Diabetes now is the most common chronic disease in the world inducing heavy burden for the people's health. Based on this, diabetes research such as islet function has become a hot topic in medical institutes of the world. Today, in medical institutes, the conventional experiment platform in vitro is monolayer cell culture. However, with the development of micro- and nano-technologies, several microengineering methods have been developed to fabricate three-dimensional (3D) islet models in vitro which can better mimic the islet of pancreases in vivo. These in vitro islet models have shown better cell function than monolayer cells, indicating their great potential as better experimental platforms to elucidate islet behaviors under both physiological and pathological conditions, such as the molecular mechanisms of diabetes and clinical islet transplantation. In this review, we present the state-of-the-art advances in the microengineering methods for fabricating microscale islet models in vitro. We hope this will help researchers to better understand the progress in the engineering 3D islet models and their biomedical applications such as drug screening and islet transplantation.

  20. Pancreatic islets and their roles in metabolic programming.

    PubMed

    Barella, Luiz Felipe; de Oliveira, Júlio Cezar; Mathias, Paulo Cezar de Freitas

    2014-04-01

    Experimental and epidemiologic data have confirmed that undernutrition or overnutrition during critical periods of life can result in metabolic dysfunction, leading to the development of obesity, hypertension, and type 2 diabetes, later in life. These studies have contributed to the concept of the developmental origins of health and disease (DOHaD), which involves metabolic programming patterns. Beyond the earlier phases of development, puberty can be an additional period of plasticity, during which any insult can lead to changes in metabolism. Impaired brain development, associated with imbalanced autonomous nervous system activity due to metabolic programming, is pivotal to the creation of pathophysiology. Excess glucocorticoid exposure, due to hypothalamic-pituitary-adrenal axis deregulation, is also involved in malprogramming in early life. Additionally, the pancreatic islets appear to play a decisive role in the setup and maintenance of these metabolic dysfunctions as key targets of metabolic programming, and epigenetic mechanisms may underlie these changes. Moreover, studies have indicated the possibility that deprogramming renders the islets able to recover their functioning after malprogramming. In this review, we discuss the key roles of the pancreatic islets as targets of malprogramming; however, we also discuss their roles as important targets for the treatment and prevention of metabolic diseases.

  1. Temporal decline in sirolimus elimination immediately after pancreatic islet transplantation.

    PubMed

    Sato, Eriko; Shimomura, Masahiro; Masuda, Satohiro; Yano, Ikuko; Katsura, Toshiya; Matsumoto, Shin-ichi; Okitsu, Teru; Iwanaga, Yasuhiro; Noguchi, Hirofumi; Nagata, Hideo; Yonekawa, Yukihide; Inui, Ken-ichi

    2006-12-01

    Pancreatic islet transplantation is a curable treatment for type 1 diabetes and has been put into practice in various countries. In this study, we analyzed the pharmacokinetic characteristics of sirolimus and tacrolimus in six Japanese patients with pancreatic islet transplants immediately after surgery, and monitored efficacy and toxicity. The patients were treated with immunosuppressive therapy based on the Edmonton protocol, that is, sirolimus and low-dose tacrolimus. Pharmacokinetic analyses were performed using the nonlinear mixed-effects modeling program NONMEM. Large inter- and intra-individual variability was observed in the pharmacokinetics of sirolimus and tacrolimus. A model with increased apparent clearance in the postoperative period explained well the intra-individual variability in the pharmacokinetics of both drugs. The most frequent drug-induced toxicity was a decrease in the white blood cell count, and two of six patients required the administration of granulocyte colony-stimulating factor. Clinical laboratory tests immediately before the transplantation and cytochrome P450 3A5 genotype were not related to the high blood concentrations of sirolimus after the loading dose. From these results, the apparent clearance of sirolimus and tacrolimus might temporally decline immediately after pancreatic islet transplantation. A high trough concentration of sirolimus might increase the risk of hematological toxicy, and adjustment of the dosage for immunosuppressive treatment will be necessary in Japanese patients.

  2. Commercially Available Gas-Permeable Cell Culture Bags May Not Prevent Anoxia in Cultured or Shipped Islets

    PubMed Central

    Avgoustiniatos, E.S.; Hering, B.J.; Rozak, P.R.; Wilson, J.R.; Tempelman, L.A.; Balamurugan, A.N.; Welch, D.P.; Weegman, B.P.; Suszynski, T.M.; Papas, K.K.

    2009-01-01

    Prolonged anoxia has deleterious effects on islets. Gas-permeable cell culture devices can be used to minimize anoxia during islet culture and especially during shipment when elimination of gas-liquid interfaces is required to prevent the formation of damaging gas bubbles. Gas-permeable bags may have several drawbacks, such as propensity for puncture and contamination, difficult islet retrieval, and significantly lower oxygen permeability than silicone rubber membranes (SRM). We hypothesized that oxygen permeability of bags may be insufficient for islet oxygenation. We measured oxygen transmission rates through the membrane walls of three different types of commercially available bags and through SRM currently used for islet shipment. We found that the bag membranes have oxygen transmission rates per unit area about 100-fold lower than SRM. We solved the oxygen diffusion-reaction equation for 150-μm diameter islets seeded at 3000 islet equivalents per cm2, a density adequate to culture and ship an entire human or porcine islet preparation in a single gas-permeable device, predicting that about 40% of the islet volume would be anoxic at 22°C and about 70% would be anoxic at 37°C. Islets of larger size or islets accumulated during shipment would be even more anoxic. The model predicted no anoxia in islets similarly seeded in devices with SRM bottoms. We concluded that commercially available bags may not prevent anoxia during islet culture or shipment; devices with SRM bottoms are more suitable alternatives. PMID:18374080

  3. High-Fat Diet-Induced Insulin Resistance Does Not Increase Plasma Anandamide Levels or Potentiate Anandamide Insulinotropic Effect in Isolated Canine Islets

    PubMed Central

    Woolcott, Orison O.; Richey, Joyce M.; Kabir, Morvarid; Chow, Robert H.; Iyer, Malini S.; Kirkman, Erlinda L.; Stefanovski, Darko; Lottati, Maya; Kim, Stella P.; Harrison, L. Nicole; Ionut, Viorica; Zheng, Dan; Hsu, Isabel R.; Catalano, Karyn J.; Chiu, Jenny D.; Bradshaw, Heather; Wu, Qiang; Bergman, Richard N.

    2015-01-01

    Background Obesity has been associated with elevated plasma anandamide levels. In addition, anandamide has been shown to stimulate insulin secretion in vitro, suggesting that anandamide might be linked to hyperinsulinemia. Objective To determine whether high-fat diet-induced insulin resistance increases anandamide levels and potentiates the insulinotropic effect of anandamide in isolated pancreatic islets. Design and Methods Dogs were fed a high-fat diet (n = 9) for 22 weeks. Abdominal fat depot was quantified by MRI. Insulin sensitivity was assessed by the euglycemic-hyperinsulinemic clamp. Fasting plasma endocannabinoid levels were analyzed by liquid chromatography-mass spectrometry. All metabolic assessments were performed before and after fat diet regimen. At the end of the study, pancreatic islets were isolated prior to euthanasia to test the in vitro effect of anandamide on islet hormones. mRNA expression of cannabinoid receptors was determined in intact islets. The findings in vitro were compared with those from animals fed a control diet (n = 7). Results Prolonged fat feeding increased abdominal fat content by 81.3±21.6% (mean±S.E.M, P<0.01). In vivo insulin sensitivity decreased by 31.3±12.1% (P<0.05), concomitant with a decrease in plasma 2-arachidonoyl glycerol (from 39.1±5.2 to 15.7±2.0 nmol/L) but not anandamide, oleoyl ethanolamide, linoleoyl ethanolamide, or palmitoyl ethanolamide. In control-diet animals (body weight: 28.8±1.0 kg), islets incubated with anandamide had a higher basal and glucose-stimulated insulin secretion as compared with no treatment. Islets from fat-fed animals (34.5±1.3 kg; P<0.05 versus control) did not exhibit further potentiation of anandamide-induced insulin secretion as compared with control-diet animals. Glucagon but not somatostatin secretion in vitro was also increased in response to anandamide, but there was no difference between groups (P = 0.705). No differences in gene expression of CB1R or CB2R between groups

  4. Clock-controlled output gene Dbp is a regulator of Arnt/Hif-1β gene expression in pancreatic islet β-cells

    SciTech Connect

    Nakabayashi, Hiroko; Ohta, Yasuharu Yamamoto, Masayoshi; Susuki, Yosuke; Taguchi, Akihiko; Tanabe, Katsuya; Kondo, Manabu; Hatanaka, Masayuki; Nagao, Yuko; Tanizawa, Yukio

    2013-05-03

    Highlights: •Arnt mRNA expressed in a circadian manner in mouse pancreatic islets. •Expressions of Dbp and Arnt damped in the islets of a diabetic model mouse. •DBP and E4BP4 regulate Arnt promoter activity by direct binding. •Arnt may have a role in connecting circadian rhythm and metabolism. -- Abstract: Aryl hydrocarbon receptor nuclear translocator (ARNT)/hypoxia inducible factor-1β (HIF-1β) has emerged as a potential determinant of pancreatic β-cell dysfunction and type 2 diabetes in humans. An 82% reduction in Arnt expression was observed in islets from type 2 diabetic donors as compared to non-diabetic donors. However, few regulators of Arnt expression have been identified. Meanwhile, disruption of the clock components CLOCK and BMAL1 is known to result in hypoinsulinemia and diabetes, but the molecular details remain unclear. In this study, we identified a novel molecular connection between Arnt and two clock-controlled output genes, albumin D-element binding protein (Dbp) and E4 binding protein 4 (E4bp4). By conducting gene expression studies using the islets of Wfs1{sup −/−} A{sup y}/a mice that develop severe diabetes due to β-cell apoptosis, we demonstrated clock-related gene expressions to be altered in the diabetic mice. Dbp mRNA decreased by 50%, E4bp4 mRNA increased by 50%, and Arnt mRNA decreased by 30% at Zeitgever Time (ZT) 12. Mouse pancreatic islets exhibited oscillations of clock gene expressions. E4BP4, a D-box negative regulator, oscillated anti-phase to DBP, a D-box positive regulator. We also found low-amplitude circadian expression of Arnt mRNA, which peaked at ZT4. Over-expression of DBP raised both mRNA and protein levels of ARNT in HEK293 and MIN6 cell lines. Arnt promoter-driven luciferase reporter assay in MIN6 cells revealed that DBP increased Arnt promoter activity by 2.5-fold and that E4BP4 competitively inhibited its activation. In addition, on ChIP assay, DBP and E4BP4 directly bound to D-box elements within the

  5. Pancreatic islet-specific overexpression of Reg3β protein induced the expression of pro-islet genes and protected the mice against streptozotocin-induced diabetes mellitus.

    PubMed

    Xiong, Xiaoquan; Wang, Xiao; Li, Bing; Chowdhury, Subrata; Lu, Yarong; Srikant, Coimbatore B; Ning, Guang; Liu, Jun-Li

    2011-04-01

    Reg family proteins have been implicated in islet β-cell proliferation, survival, and regeneration. The expression of Reg3β (pancreatitis-associated protein) is highly induced in experimental diabetes and acute pancreatitis, but its precise role has not been established. Through knockout studies, this protein was shown to be mitogenic, antiapoptotic, and anti-inflammatory in the liver and pancreatic acinars. To test whether it can promote islet cell growth or survival against experimental damage, we developed β-cell-specific overexpression using rat insulin I promoter, evaluated the changes in normal islet function, gene expression profile, and the response to streptozotocin-induced diabetes. Significant and specific overexpression of Reg3β was achieved in the pancreatic islets of RIP-I/Reg3β mice, which exhibited normal islet histology, β-cell mass, and in vivo and in vitro insulin secretion in response to high glucose yet were slightly hyperglycemic and low in islet GLUT2 level. Upon streptozotocin treatment, in contrast to wild-type littermates that became hyperglycemic in 3 days and lost 15% of their weight, RIP-I/Reg3β mice were significantly protected from hyperglycemia and weight loss. To identify specific targets affected by Reg3β overexpression, a whole genome DNA microarray on islet RNA isolated from the transgenic mice revealed more than 45 genes significantly either up- or downregulated. Among them, islet-protective osteopontin/SPP1 and acute responsive nuclear protein p8/NUPR1 were significantly induced, a result further confirmed by real-time PCR, Western blots, and immunohistochemistry. Our results suggest that Reg3β is unlikely an islet growth factor but a putative protector that prevents streptozotocin-induced damage by inducing the expression of specific genes.

  6. Pancreatic Beta Cell G-Protein Coupled Receptors and Second Messenger Interactions: A Systems Biology Computational Analysis.

    PubMed

    Fridlyand, Leonid E; Philipson, Louis H

    2016-01-01

    Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. The regulatory properties of adenylyl cyclase isoforms determine fluctuations in cytoplasmic cAMP concentration and reveal a synergistic action of glucose, GLP-1 and GIP on insulin secretion. On the other hand, the regulatory properties of phospholipase C isoforms determine the interaction of glucose, acetylcholine and free fatty acids (FFA) (that act through the FFA receptors) on insulin secretion. We found that a combination of GPCR agonists activating different messenger pathways can stimulate insulin secretion more effectively than a combination of GPCR agonists for a single pathway. This analysis also suggests that the activators of GLP-1, GIP and FFA receptors may have a relatively low risk of hypoglycemia in fasting conditions whereas an activator of muscarinic receptors can increase this risk. This computational analysis demonstrates that study of second messenger

  7. Pancreatic Beta Cell G-Protein Coupled Receptors and Second Messenger Interactions: A Systems Biology Computational Analysis

    PubMed Central

    Fridlyand, Leonid E.; Philipson, Louis H.

    2016-01-01

    Insulin secretory in pancreatic beta-cells responses to nutrient stimuli and hormonal modulators include multiple messengers and signaling pathways with complex interdependencies. Here we present a computational model that incorporates recent data on glucose metabolism, plasma membrane potential, G-protein-coupled-receptors (GPCR), cytoplasmic and endoplasmic reticulum calcium dynamics, cAMP and phospholipase C pathways that regulate interactions between second messengers in pancreatic beta-cells. The values of key model parameters were inferred from published experimental data. The model gives a reasonable fit to important aspects of experimentally measured metabolic and second messenger concentrations and provides a framework for analyzing the role of metabolic, hormones and neurotransmitters changes on insulin secretion. Our analysis of the dynamic data provides support for the hypothesis that activation of Ca2+-dependent adenylyl cyclases play a critical role in modulating the effects of glucagon-like peptide 1 (GLP-1), glucose-dependent insulinotropic polypeptide (GIP) and catecholamines. The regulatory properties of adenylyl cyclase isoforms determine fluctuations in cytoplasmic cAMP concentration and reveal a synergistic action of glucose, GLP-1 and GIP on insulin secretion. On the other hand, the regulatory properties of phospholipase C isoforms determine the interaction of glucose, acetylcholine and free fatty acids (FFA) (that act through the FFA receptors) on insulin secretion. We found that a combination of GPCR agonists activating different messenger pathways can stimulate insulin secretion more effectively than a combination of GPCR agonists for a single pathway. This analysis also suggests that the activators of GLP-1, GIP and FFA receptors may have a relatively low risk of hypoglycemia in fasting conditions whereas an activator of muscarinic receptors can increase this risk. This computational analysis demonstrates that study of second messenger

  8. The pathological role of advanced glycation end products-downregulated heat shock protein 60 in islet β-cell hypertrophy and dysfunction

    PubMed Central

    Wu, Cheng-Tien; Yang, Ting-Hua; Chiang, Chih-Kang; Liu, Shing-Hwa

    2016-01-01

    Heat shock protein 60 (HSP60) is a mitochondrial chaperone. Advanced glycation end products (AGEs) have been shown to interfere with the β-cell function. We hypothesized that AGEs induced β-cell hypertrophy and dysfunction through a HSP60 dysregulation pathway during the stage of islet/β-cell hypertrophy of type-2-diabetes. We investigated the role of HSP60 in AGEs-induced β-cell hypertrophy and dysfunction using the models of diabetic mice and cultured β-cells. Hypertrophy, increased levels of p27Kip1, AGEs, and receptor for AGEs (RAGE), and decreased levels of HSP60, insulin, and ATP content were obviously observed in pancreatic islets of 12-week-old db/db diabetic mice. Low-concentration AGEs significantly induced the cell hypertrophy, increased the p27Kip1 expression, and decreased the HSP60 expression, insulin secretion, and ATP content in cultured β-cells, which could be reversed by RAGE neutralizing antibody. HSP60 overexpression significantly reversed AGEs-induced hypertrophy, dysfunction, and ATP reduction in β-cells. Oxidative stress was also involved in the AGEs-decreased HSP60 expression in β-cells. Pancreatic sections from diabetic patient showed islet hypertrophy, increased AGEs level, and decreased HSP60 level as compared with normal subject. These findings highlight a novel mechanism by which a HSP60-correlated signaling pathway contributes to the AGEs-RAGE axis-induced β-cell hypertrophy and dysfunction under diabetic hyperglycemia. PMID:27056903

  9. Enzymes for Pancreatic Islet Isolation Impact Chemokine-Production and Polarization of Insulin-Producing β-Cells with Reduced Functional Survival of Immunoisolated Rat Islet-Allografts as a Consequence.

    PubMed

    de Vos, Paul; Smink, Alexandra M; Paredes, Genaro; Lakey, Jonathan R T; Kuipers, Jeroen; Giepmans, Ben N G; de Haan, Bart J; Faas, Marijke M

    2016-01-01

    The primary aim of this study was to determine whether normal variations in enzyme-activities of collagenases applied for rat-islet isolation impact longevity of encapsulated islet grafts. Also we studied the functional and immunological properties of rat islets isolated with different enzyme preparations to determine whether this impacts these parameters. Rat-islets were isolated from the pancreas with two different collagenases with commonly accepted collagenase, neutral protease, and clostripain activities. Islets had a similar and acceptable glucose-induced insulin-release profile but a profound statistical significant difference in production of the chemokines IP-10 and Gro-α. The islets were studied with nanotomy which is an EM-based technology for unbiased study of ultrastructural features of islets such as cell-cell contacts, endocrine-cell condition, ER stress, mitochondrial conditions, and cell polarization. The islet-batch with higher chemokine-production had a lower amount of polarized insulin-producing β-cells. All islets had more intercellular spaces and less interconnected areas with tight cell-cell junctions when compared to islets in the pancreas. Islet-graft function was studied by implanting encapsulated and free islet grafts in rat recipients. Alginate-based encapsulated grafts isolated with the enzyme-lot inducing higher chemokine production and lower polarization survived for a two-fold shorter period of time. The lower survival-time of the encapsulated grafts was correlated with a higher influx of inflammatory cells at 7 days after implantation. Islets from the same two batches transplanted as free unencapsulated-graft, did not show any difference in survival or function in vivo. Lack of insight in factors contributing to the current lab-to-lab variation in longevity of encapsulated islet-grafts is considered to be a threat for clinical application. Our data suggest that seemingly minor variations in activity of enzymes applied for islet

  10. Cocaine- and amphetamine-regulated transcript: a novel regulator of energy homeostasis expressed in a subpopulation of pancreatic islet cells.

    PubMed

    Gilon, Patrick

    2016-09-01

    Type 2 diabetes is characterised by chronic hyperglycaemia and its incidence is highly increased by exaggerated food consumption. It results from a lack of insulin action/production, but growing evidence suggests that it might also involve hyperglucagonaemia and impaired control of glucose homeostasis by the brain. In recent years, the cocaine and amphetamine-regulated transcript (CART) peptides have generated a lot of interest in the battle against obesity because, via the brain, they exert anorexic effects and they increase energy expenditure. They are also localised, outside the brain, in discrete regions of the body and play a hormonal role in controlling various functions. In this issue of Diabetologia, the Wierup group (doi: 10.1007/s00125-016-4020-6 ) shows that CART peptides are expressed heterogeneously in islet cells of various species, including humans, and that their expression is upregulated in diabetes. The authors also shine a spotlight on some interesting effects of CART peptides on islet function, including stimulation of insulin secretion and inhibition of glucagon release. CART peptides would thus be at the centre of a cooperation between the brain and the endocrine pancreas to control glucose homeostasis. Although the mechanisms of action of CART peptides remain enigmatic because no specific receptor for these peptides has so far been discovered, their potential therapeutic use is evident and represents a new challenge for future research. PMID:27421727

  11. Comparison of Neutral Proteases and Collagenase Class I as Essential Enzymes for Human Islet Isolation

    PubMed Central

    Brandhorst, Heide; Kurfürst, Manfred; Johnson, Paul R.; Korsgren, Olle; Brandhorst, Daniel

    2016-01-01

    Background Efficient islet isolation requires synergistic interaction between collagenase class I (CI) and class II (CII). The CI degradation alters the ratio between CI and CII and is responsible for batch-to-batch variations. This study compares the role of neutral protease (NP) plus clostripain (CP) with CI as essential enzymes for human islet isolation. Methods Human islets were isolated using 4 different enzyme mixtures composed of CII plus either intact (CI-115) or degraded CI (CI-100). Blends were administered either with or without NP/CP. Purified islets were cultured for 3 to 4 days before islet quality assessment. Results Whereas using intact CI-115 without NP/CP did not significantly reduce islet yield (3429 ± 631 vs 3087 ± 970 islet equivalent/g, nonsignificant), administration of degraded CI-100 without NP/CP decreased islet yield from 3501 ± 580 to 1312 ± 244 islet equivalent/g (P < 0.01), doubled the amount of undigested tissue from 11.8 ± 1.6 to 24.4 ± 1.2% (P < 0.01) and triplicated the percentage of trapped islets from 7.7 ± 2.8 to 22.5 ± 3.6% (P < 0.05). Islet yield did not vary between supplemented CI-115 and CI-100, but was increased using CI-115 when NP/CP was omitted (P < 0.05). A trend toward higher viability and increased secretory insulin response was noted in both CI-100 and CI-115 when NP/CP was not added. Conclusions This study suggests that NP/CP can compensate reduced CI activity. Future attempts to optimize enzyme blends should consider the possibility to increase the proportion of collagenase CI to reduce the need for potentially harmful NPs. PMID:27500241

  12. Human islet preparations distributed for research exhibit a variety of insulin-secretory profiles

    PubMed Central

    Kayton, Nora S.; Poffenberger, Gregory; Henske, Joseph; Dai, Chunhua; Thompson, Courtney; Aramandla, Radhika; Shostak, Alena; Nicholson, Wendell; Brissova, Marcela; Bush, William S.

    2015-01-01

    Human islet research is providing new insights into human islet biology and diabetes, using islets isolated at multiple US centers from donors with varying characteristics. This creates challenges for understanding, interpreting, and integrating research findings from the many laboratories that use these islets. In what is, to our knowledge, the first standardized assessment of human islet preparations from multiple isolation centers, we measured insulin secretion from 202 preparations isolated at 15 centers over 11 years and noted five distinct patterns of insulin secretion. Approximately three quarters were appropriately responsive to stimuli, but one quarter were dysfunctional, with unstable basal insulin secretion and/or an impairment in stimulated insulin secretion. Importantly, the patterns of insulin secretion by responsive human islet preparations (stable Baseline and Fold stimulation of insulin secretion) isolated at different centers were similar and improved slightly over the years studied. When all preparations studied were considered, basal and stimulated insulin secretion did not correlate with isolation center, biological differences of the islet donor, or differences in isolation, such as Cold Ischemia Time. Dysfunctional islet preparations could not be predicted from the information provided by the isolation center and had altered expression of genes encoding components of the glucose-sensing pathway, but not of insulin production or cell death. These results indicate that insulin secretion by most preparations from multiple centers is similar but that in vitro responsiveness of human islets cannot be predicted, necessitating preexperimental human islet assessment. These results should be considered when one is designing, interpreting, and integrating experiments using human islets. PMID:25648831

  13. Abnormal infant islet morphology precedes insulin resistance in PCOS-like monkeys.

    PubMed

    Nicol, Lindsey E; O'Brien, Timothy D; Dumesic, Daniel A; Grogan, Tristan; Tarantal, Alice F; Abbott, David H

    2014-01-01

    Polycystic ovary syndrome (PCOS) is prevalent in reproductive-aged women and confounded by metabolic morbidities, including insulin resistance and type 2 diabetes. Although the etiology of PCOS is undefined, contribution of prenatal androgen (PA) exposure has been proposed in a rhesus monkey model as premenopausal PA female adults have PCOS-like phenotypes in addition to insulin resistance and decreased glucose tolerance. PA female infants exhibit relative hyperinsulinemia, suggesting prenatal sequelae of androgen excess on glucose metabolism and an antecedent to future metabolic disease. We assessed consequences of PA exposure on pancreatic islet morphology to identify evidence of programming on islet development. Islet counts and size were quantified and correlated with data from intravenous glucose tolerance tests (ivGTT) obtained from dams and their offspring. Average islet size was decreased in PA female infants along with corresponding increases in islet number, while islet fractional area was preserved. Infants also demonstrated an increase in both the proliferation marker Ki67 within islets and the beta to alpha cell ratio suggestive of enhanced beta cell expansion. PA adult females have reduced proportion of small islets without changes in proliferative or apoptotic markers, or in beta to alpha cell ratios. Together, these data suggest in utero androgen excess combined with mild maternal glucose intolerance alter infant and adult islet morphology, implicating deviant islet development. Marked infant, but subtle adult, morphological differences provide evidence of islet post-natal plasticity in adapting to changing physiologic demands: from insulin sensitivity and relative hypersecretion to insulin resistance and diminished insulin response to glucose in the mature PCOS-like phenotype. PMID:25207967

  14. Isles within islets: The lattice origin of small-world networks in pancreatic tissues

    NASA Astrophysics Data System (ADS)

    Barua, Amlan K.; Goel, Pranay

    2016-02-01

    The traditional computational model of the pancreatic islets of Langerhans is a lattice of β-cells connected with gap junctions. Numerous studies have investigated the behavior of networks of coupled β-cells and have shown that gap junctions synchronize bursting strongly. This simplistic architecture of islets, however, seems increasingly untenable at the face of recent experimental advances. In a microfluidics experiment on isolated islets, Rocheleau et al. (2004) showed a failure of penetration of excitation when one end received high glucose and other end was not excited sufficiently; this suggested that gap junctions may not be efficient at inducing synchrony throughout the islet. Recently, Stozer et al. (2013) have argued that the functional networks of β-cells in an islet are small world. Their results implicate the existence of a few long-range connections among cells in the network. The physiological reason underlying this claim is not well understood. These studies cast doubt on the original lattice model that largely predict an all-or-none synchrony among the cells. Here we have attempted to reconcile these observations in a unified framework. We assume that cells in the islet are coupled randomly to their nearest neighbors with some probability, p. We simulated detailed β-cell bursting in such islets. By varying p systematically we were led to network parameters similar to those obtained by Stozer et al. (2013). We find that the networks within islets break up into components giving rise to smaller isles within the super structure-isles-within-islets, as it were. This structure can also account for the partial excitation seen by Rocheleau et al. (2004). Our updated view of islet architecture thus explains the paradox how islets can have strongly synchronizing gap junctions, and be weakly coordinated at the same time.

  15. Pancreatic islet and stem cell transplantation: new strategies in cell therapy of diabetes mellitus.

    PubMed

    Bretzel, R G; Eckhard, M; Brendel, M D

    2004-03-01

    Long-term studies strongly suggest that tight control of blood glucose can prevent the development and retard the progression of chronic complications of type 1 diabetes mellitus. In contrast to conventional insulin treatment, replacement of a patient's islets of Langerhans either by pancreas organ transplantation of by isolated islet transplantation is the only treatment to achieve a constant normoglycemic state and avoiding hypoglycemic episodes, a typical adverse event of multiple daily insulin injections. However, the expense of this benefit is still the need for immunosuppressive treatment of the recipient with all its potential risks. Islet cell transplantation offers the advantage of being performed as a minimally invasive procedure, in which islets can be perfused percutaneously into the liver via the portal vein. As of June 2003, 705 pancreatic islet transplants worldwide have been reported to the International Islet Transplant Registry (ITR) at our Third Medical Department, University of Giessen/Germany. Data analysis shows at 1 year after adult islet transplantation a patient survival rate of 97%, a functioning islet graft in 54% of the cases, whereas insulin independence was meanwhile achieved in 20% of the cases. However, using a novel protocol established by the Edmonton Center/Canada, the insulin independence rates have improved significantly reaching meanwhile a 50-80% level. Finally, the concept of islet cell or stem cell transplantation is most attractive since it offers many perspectives: islet cell availability could become unlimited and islet or stem cells my be transplanted without life-long immunosuppressive treatment of the recipient, just to mention 2 of them. PMID:15238879

  16. Effect of low temperature cultivation on insulin secretory of human pancreatic islets.

    PubMed

    Nikolic, D M; Djordjevic, P B; Lackovic, V B; Stojiljkovic, V; Stanojevic, B

    2013-01-01

    The experiment compared the physiological function (insulin secretory capacity) and membrane integrity of human adult pancreatic islets incubated in culture at 37°C and 24°C. Pancreatic tissue was digested with Collagenase XI, using a non-automated method. Cultures were incubated at 37°C and 24°C. Secretory capacity of the islets is determined by measuring of the stimulation index (SI) on the 1st, 3rd and 7th day of cultivation. Membrane integrity of the islets was determined by dithizone staining. Both groups of examined cultures show a slight increase in SI during the incubation. However islets incubated at 24°C show higher SI values than those incubated at 37°C on the 1st, 3rd and 7th day of incubation. And on the first day of incubation, this difference was statistically significant (p <0.05). Islets incubated at 37°C showed preservation of membrane integrity, the islets are regular spherical shape, while those incubated at 24°C lose such an organization. During the seven-day cultivation, islets incubated at a standard temperature of 37°C show less preserve physiological functions in relation to cultures incubated at 24°C, but islets incubated at 37°C show more regular morphological forms. PMID:23489685

  17. B7-H4 as a protective shield for pancreatic islet beta cells

    PubMed Central

    Sun, Annika C; Ou, Dawei; Luciani, Dan S; Warnock, Garth L

    2014-01-01

    Auto- and alloreactive T cells are major culprits that damage β-cells in type 1 diabetes (T1D) and islet transplantation. Current immunosuppressive drugs can alleviate immune-mediated attacks on islets. T cell co-stimulation blockade has shown great promise in autoimmunity and transplantation as it solely targets activated T cells, and therefore avoids toxicity of current immunosuppressive drugs. An attractive approach is offered by the newly-identified negative T cell co-signaling molecule B7-H4 which is expressed in normal human islets, and its expression co-localizes with insulin. A concomitant decrease in B7-H4/insulin co-localization is observed in human type 1 diabetic islets. B7-H4 may play protective roles in the pancreatic islets, preserving their function and survival. In this review we outline the protective effect of B7-H4 in the contexts of T1D, islet cell transplantation, and potentially type 2 diabetes. Current evidence offers encouraging data regarding the role of B7-H4 in reversal of autoimmune diabetes and donor-specific islet allograft tolerance. Additionally, unique expression of B7-H4 may serve as a potential biomarker for the development of T1D. Future studies should continue to focus on the islet-specific effects of B7-H4 with emphasis on mechanistic pathways in order to promote B7-H4 as a potential therapy and cure for T1D. PMID:25512776

  18. Mouse and human islets survive and function after coating by biosilicification

    PubMed Central

    Jaroch, David B.; Lu, Jing; Madangopal, Rajtarun; Stull, Natalie D.; Stensberg, Matthew; Shi, Jin; Kahn, Jennifer L.; Herrera-Perez, Ruth; Zeitchek, Michael; Sturgis, Jennifer; Robinson, J. Paul; Yoder, Mervin C.; Porterfield, D. Marshall; Mirmira, Raghavendra G.

    2013-01-01

    Inorganic materials have properties that can be advantageous in bioencapsulation for cell transplantation. Our aim was to engineer a hybrid inorganic/soft tissue construct by inducing pancreatic islets to grow an inorganic shell. We created pancreatic islets surrounded by porous silica, which has potential application in the immunoprotection of islets in transplantation therapies for type 1 diabetes. The new method takes advantage of the islet capsule surface as a template for silica formation. Mouse and human islets were exposed to medium containing saturating silicic acid levels for 9–15 min. The resulting tissue constructs were then cultured for up to 4 wk under normal conditions. Scanning electron microscopy and energy dispersive X-ray spectroscopy was used to monitor the morphology and elemental composition of the material at the islet surface. A cytokine assay was used to assess biocompatibility with macrophages. Islet survival and function were assessed by confocal microscopy, glucose-stimulated insulin release assays, oxygen flux at the islet surface, expression of key genes by RT-PCR, and syngeneic transplant into diabetic mice. PMID:24002572

  19. Quantitative Phosphoproteomics Revealed Glucose-Stimulated Responses of Islet Associated with Insulin Secretion.

    PubMed

    Li, Jiaming; Li, Qingrun; Tang, Jiashu; Xia, Fangying; Wu, Jiarui; Zeng, Rong

    2015-11-01

    As central tissue of glucose homeostasis, islet has been an important focus of diabetes research. Phosphorylation plays pivotal roles in islet function, especially in islet glucose-stimulated insulin secretion. A systematic view on how phosphorylation networks were coordinately regulated in this process remains lacking, partially due to the limited amount of islets from an individual for a phosphoproteomic analysis. Here we optimized the in-tip and best-ratio phosphopeptide enrichment strategy and a SILAC-based workflow for processing rat islet samples. With limited islet lysates from each individual rat (20-47 μg), we identified 8539 phosphosites on 2487 proteins. Subsequent quantitative analyses uncovered that short-term (30 min) high glucose stimulation induced coordinate responses of islet phosphoproteome on multiple biological levels, including insulin secretion related pathways, cytoskeleton dynamics, protein processing in ER and Golgi, transcription and translation, and so on. Furthermore, three glucose-responsive phosphosites (Prkar1a pT75pS77 and Tagln2 pS163) from the data set were proved to be correlated with insulin secretion. Overall, we initially gave an in-depth map of islet phosphoproteome regulated by glucose on individual rat level. This was a significant addition to our knowledge about how phosphorylation networks responded in insulin secretion. Also, the list of changed phosphosites was a valuable resource for molecular researchers in diabetes field. PMID:26437020

  20. Antiaging Glycopeptide Protects Human Islets Against Tacrolimus-Related Injury and Facilitates Engraftment in Mice.

    PubMed

    Gala-Lopez, Boris L; Pepper, Andrew R; Pawlick, Rena L; O'Gorman, Doug; Kin, Tatsuya; Bruni, Antonio; Abualhassan, Nasser; Bral, Mariusz; Bautista, Austin; Manning Fox, Jocelyn E; Young, Lachlan G; MacDonald, Patrick E; Shapiro, A M James

    2016-02-01

    Clinical islet transplantation has become an established treatment modality for selected patients with type 1 diabetes. However, a large proportion of transplanted islets is lost through multiple factors, including immunosuppressant-related toxicity, often requiring more than one donor to achieve insulin independence. On the basis of the cytoprotective capabilities of antifreeze proteins (AFPs), we hypothesized that supplementation of islets with synthetic AFP analog antiaging glycopeptide (AAGP) would enhance posttransplant engraftment and function and protect against tacrolimus (Tac) toxicity. In vitro and in vivo islet Tac exposure elicited significant but reversible reduction in insulin secretion in both mouse and human islets. Supplementation with AAGP resulted in improvement of islet survival (Tac(+) vs. Tac+AAGP, 31.5% vs. 67.6%, P < 0.01) coupled with better insulin secretion (area under the curve: Tac(+) vs. Tac+AAGP, 7.3 vs. 129.2 mmol/L/60 min, P < 0.001). The addition of AAGP reduced oxidative stress, enhanced insulin exocytosis, improved apoptosis, and improved engraftment in mice by decreasing expression of interleukin (IL)-1β, IL-6, keratinocyte chemokine, and tumor necrosis factor-α. Finally, transplant efficacy was superior in the Tac+AAGP group and was similar to islets not exposed to Tac, despite receiving continuous treatment for a limited time. Thus, supplementation with AAGP during culture improves islet potency and attenuates long-term Tac-induced graft dysfunction. PMID:26581595

  1. Characterization of the Human Pancreatic Islet Proteome by Two-Dimensional LC/MS/MS

    SciTech Connect

    Metz, Thomas O.; Jacobs, Jon M.; Gritsenko, Marina A.; Fontes, Ghislaine; Qian, Weijun; Camp, David G.; Poitout, Vincent J.; Smith, Richard D.

    2006-12-01

    Research to elucidate the pathogenesis of type 1 diabetes mellitus has traditionally focused on the genetic and immunological factors associated with the disease, and, until recently, has not considered the target cell. While there have been reports detailing proteomic analyses of established islet cell lines or isolated rodent islets, the information gained is not always easily extrapolated to humans. Therefore, extensive characterization of the human islet proteome could result in better understanding of islet biology and lead to more effective treatment strategies. We have applied a two-dimensional LC-MS/MS-based analysis to the characterization of the human islet proteome, resulting in the detection of 29,021 unique peptides corresponding to 4,925 proteins. As expected, major islet hormones (insulin, glucagon, somatostatin), beta-cell enriched secretory products (IAPP), ion channels (K-ATP channel), and transcription factors (PDX-1, Nkx 6.1, HNF-1 beta) were detected. In addition, significant proteome coverage of metabolic enzymes and cellular pathways was obtained, including the insulin signaling cascade and the MAP kinase, NF-κβ, and JAK/STAT pathways. This work represents the most extensive characterization of the human islet proteome to date and provides a peptide reference library that may be utilized in future studies of islet biology and type 1 diabetes.

  2. Phase transitions in pancreatic islet cellular networks and implications for type-1 diabetes

    NASA Astrophysics Data System (ADS)

    Stamper, I. J.; Jackson, Elais; Wang, Xujing

    2014-01-01

    In many aspects the onset of a chronic disease resembles a phase transition in a complex dynamic system: Quantitative changes accumulate largely unnoticed until a critical threshold is reached, which causes abrupt qualitative changes of the system. In this study we examine a special case, the onset of type-1 diabetes (T1D), a disease that results from loss of the insulin-producing pancreatic islet β cells. Within each islet, the β cells are electrically coupled to each other via gap-junctional channels. This intercellular coupling enables the β cells to synchronize their insulin release, thereby generating the multiscale temporal rhythms in blood insulin that are critical to maintaining blood glucose homeostasis. Using percolation theory we show how normal islet function is intrinsically linked to network connectivity. In particular, the critical amount of β-cell death at which the islet cellular network loses site percolation is consistent with laboratory and clinical observations of the threshold loss of β cells that causes islet functional failure. In addition, numerical simulations confirm that the islet cellular network needs to be percolated for β cells to synchronize. Furthermore, the interplay between site percolation and bond strength predicts the existence of a transient phase of islet functional recovery after onset of T1D and introduction of treatment, potentially explaining the honeymoon phenomenon. Based on these results, we hypothesize that the onset of T1D may be the result of a phase transition of the islet β-cell network.

  3. Early metabolic markers that anticipate loss of insulin independence in type 1 diabetic islet allograft recipients.

    PubMed

    Hirsch, D; Odorico, J; Danobeitia, J S; Alejandro, R; Rickels, M R; Hanson, M; Radke, N; Baidal, D; Hullett, D; Naji, A; Ricordi, C; Kaufman, D; Fernandez, L

    2012-05-01

    The objective of this study was to identify predictors of insulin independence and to establish the best clinical tools to follow patients after pancreatic islet transplantation (PIT). Sequential metabolic responses to intravenous (I.V.) glucose (I.V. glucose tolerance test [IVGTT]), arginine and glucose-potentiated arginine (glucose-potentiated arginine-induced insulin secretion [GPAIS]) were obtained from 30 patients. We determined the correlation between transplanted islet mass and islet engraftment and tested the ability of each assay to predict return to exogenous insulin therapy. We found transplanted islet mass within an average of 16 709 islet equivalents per kg body weight (IEQ/kg BW; range between 6602 and 29 614 IEQ/kg BW) to be a poor predictor of insulin independence at 1 year, having a poor correlation between transplanted islet mass and islet engraftment. Acute insulin response to IVGTT (AIR(GLU) ) and GPAIS (AIR(max) ) were the most accurate methods to determine suboptimal islet mass engraftment. AIR(GLU) performed 3 months after transplant also proved to be a robust early metabolic marker to predict return to insulin therapy and its value was positively correlated with duration of insulin independence. In conclusion, AIR(GLU) is an early metabolic assay capable of anticipating loss of insulin independence at 1 year in T1D patients undergoing PIT and constitutes a valuable, simple and reliable method to follow patients after transplant.

  4. Metabolic assessment prior to total pancreatectomy and islet autotransplant: utility, limitations and potential.

    PubMed

    Lundberg, R; Beilman, G J; Dunn, T B; Pruett, T L; Chinnakotla, S C; Radosevich, D M; Robertson, R P; Ptacek, P; Balamurugan, A N; Wilhelm, J J; Hering, B J; Sutherland, D E R; Moran, A; Bellin, M D

    2013-10-01

    Islet autotransplant (IAT) may ameliorate postsurgical diabetes following total pancreatectomy (TP), but outcomes are dependent upon islet mass, which is unknown prior to pancreatectomy. We evaluated whether preoperative metabolic testing could predict islet isolation outcomes and thus improve assessment of TPIAT candidates. We examined the relationship between measures from frequent sample IV glucose tolerance tests (FSIVGTT) and mixed meal tolerance tests (MMTT) and islet mass in 60 adult patients, with multivariate logistic regression modeling to identify predictors of islet mass ≥2500 IEQ/kg. The acute C-peptide response to glucose (ACRglu) and disposition index from FSIVGTT correlated modestly with the islet equivalents per kilogram body weight (IEQ/kg). Fasting and MMTT glucose levels and HbA1c correlated inversely with IEQ/kg (r values -0.33 to -0.40, p ≤ 0.05). In multivariate logistic regression modeling, normal fasting glucose (<100 mg/dL) and stimulated C-peptide on MMTT ≥4 ng/mL were associated with greater odds of receiving an islet mass ≥2500 IEQ/kg (OR 0.93 for fasting glucose, CI 0.87-1.0; OR 7.9 for C-peptide, CI 1.75-35.6). In conclusion, parameters obtained from FSIVGTT correlate modestly with islet isolation outcomes. Stimulated C-peptide ≥4 ng/mL on MMTT conveyed eight times the odds of receiving ≥2500 IEQ/kg, a threshold associated with reasonable metabolic control postoperatively.

  5. Stress-impaired transcription factor expression and insulin secretion in transplanted human islets

    PubMed Central

    Dai, Chunhua; Kayton, Nora S.; Shostak, Alena; Poffenberger, Greg; Cyphert, Holly A.; Aramandla, Radhika; Thompson, Courtney; Papagiannis, Ioannis G.; Shiota, Masakazu; Stafford, John M.; Greiner, Dale L.; Herrera, Pedro L.; Shultz, Leonard D.; Stein, Roland; Powers, Alvin C.

    2016-01-01

    Type 2 diabetes is characterized by insulin resistance, hyperglycemia, and progressive β cell dysfunction. Excess glucose and lipid impair β cell function in islet cell lines, cultured rodent and human islets, and in vivo rodent models. Here, we examined the mechanistic consequences of glucotoxic and lipotoxic conditions on human islets in vivo and developed and/or used 3 complementary models that allowed comparison of the effects of hyperglycemic and/or insulin-resistant metabolic stress conditions on human and mouse islets, which responded quite differently to these challenges. Hyperglycemia and/or insulin resistance impaired insulin secretion only from human islets in vivo. In human grafts, chronic insulin resistance decreased antioxidant enzyme expression and increased superoxide and amyloid formation. In human islet grafts, expression of transcription factors NKX6.1 and MAFB was decreased by chronic insulin resistance, but only MAFB decreased under chronic hyperglycemia. Knockdown of NKX6.1 or MAFB expression in a human β cell line recapitulated the insulin secretion defect seen in vivo. Contrary to rodent islet studies, neither insulin resistance nor hyperglycemia led to human β cell proliferation or apoptosis. These results demonstrate profound differences in how excess glucose or lipid influence mouse and human insulin secretion and β cell activity and show that reduced expression of key islet-enriched transcription factors is an important mediator of glucotoxicity and lipotoxicity. PMID:27064285

  6. Quantitative Phosphoproteomics Revealed Glucose-Stimulated Responses of Islet Associated with Insulin Secretion.

    PubMed

    Li, Jiaming; Li, Qingrun; Tang, Jiashu; Xia, Fangying; Wu, Jiarui; Zeng, Rong

    2015-11-01

    As central tissue of glucose homeostasis, islet has been an important focus of diabetes research. Phosphorylation plays pivotal roles in islet function, especially in islet glucose-stimulated insulin secretion. A systematic view on how phosphorylation networks were coordinately regulated in this process remains lacking, partially due to the limited amount of islets from an individual for a phosphoproteomic analysis. Here we optimized the in-tip and best-ratio phosphopeptide enrichment strategy and a SILAC-based workflow for processing rat islet samples. With limited islet lysates from each individual rat (20-47 μg), we identified 8539 phosphosites on 2487 proteins. Subsequent quantitative analyses uncovered that short-term (30 min) high glucose stimulation induced coordinate responses of islet phosphoproteome on multiple biological levels, including insulin secretion related pathways, cytoskeleton dynamics, protein processing in ER and Golgi, transcription and translation, and so on. Furthermore, three glucose-responsive phosphosites (Prkar1a pT75pS77 and Tagln2 pS163) from the data set were proved to be correlated with insulin secretion. Overall, we initially gave an in-depth map of islet phosphoproteome regulated by glucose on individual rat level. This was a significant addition to our knowledge about how phosphorylation networks responded in insulin secretion. Also, the list of changed phosphosites was a valuable resource for molecular researchers in diabetes field.

  7. Mesenchymal stem cell and derived exosome as small RNA carrier and Immunomodulator to improve islet transplantation.

    PubMed

    Wen, Di; Peng, Yang; Liu, Di; Weizmann, Yossi; Mahato, Ram I

    2016-09-28

    Human bone marrow mesenchymal stem cells (hBMSCs) and their exosomes can suppress immune reaction and deliver small RNAs. Thus, they may improve islet transplantation by delivering small RNAs for promoting islet function and inhibiting immune rejection. Here, we proposed an hBMSC and its exosome-based therapy to overcome immune rejection and poor islet function, both of which hinder the success of islet transplantation. We found overexpressed siFas and anti-miR-375 in plasmid encoding shFas and anti-miR-375 transfected hBMSC-derived exosomes, which silenced Fas and miR-375 of human islets and improved their viability and function against inflammatory cytokines. This plasmid transfected hBMSCs downregulated Fas and miR-375 of human islets in a humanized NOD scid gamma (NSG) mouse model, whose immune reaction was inhibited by injecting hBMSC and peripheral blood mononuclear cell (PBMC) co-cultured exosomes. These exosomes suppressed immune reaction by inhibiting PBMC proliferation and enhancing regulatory T cell (Treg) function. Collectively, our studies elucidated the mechanisms of RNA delivery from hBMSCs to human islets and the immunosuppressive effect of hBMSC and peripheral blood mononuclear cell co-cultured exosomes for improving islet transplantation. PMID:27475298

  8. In Vivo Imaging of Transplanted Islets Labeled with a Novel Cationic Nanoparticle

    PubMed Central

    Oishi, Koichi; Miyamoto, Yoshitaka; Saito, Hiroaki; Murase, Katsutoshi; Ono, Kenji; Sawada, Makoto; Watanabe, Masami; Noguchi, Yasufumi; Fujiwara, Toshiyoshi; Hayashi, Shuji; Noguchi, Hirofumi

    2013-01-01

    To monitor pancreatic islet transplantation efficiency, reliable noninvasive imaging methods, such as magnetic resonance imaging (MRI) are needed. Although an efficient uptake of MRI contrast agent is required for islet cell labeling, commercially-available magnetic nanoparticles are not efficiently transduced into cells. We herein report the in vivo detection of transplanted islets labeled with a novel cationic nanoparticle that allowed for noninvasive monitoring of islet grafts in diabetic mice in real time. The positively-charged nanoparticles were transduced into a β-cell line, MIN6 cells, and into isolated islets for 1 hr. MRI showed a marked decrease in the signal intensity on T1- and T2-weighted images at the implantation site of the labeled MIN 6 cells or islets in the left kidneys of mice. These data suggest that the novel positively-charged nanoparticle could be useful to detect and monitor islet engraftment, which would greatly aid in the clinical management of islet transplant patients. PMID:23451139

  9. Beta-cell metabolic alterations under chronic nutrient overload in rat and human islets

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The aim of this study was to assess multifactorial Beta-cell responses to metabolic perturbations in primary rat and human islets. Treatment of dispersed rat islet cells with elevated glucose and free fatty acids (FFAs, oleate:palmitate = 1:1 v/v) resulted in increases in the size and the number of ...

  10. Treatment of diabetes with encapsulated pig islets: an update on current developments*

    PubMed Central

    Zhu, Hai-tao; Lu, Lu; Liu, Xing-yu; Yu, Liang; Lyu, Yi; Wang, Bo

    2015-01-01

    The potential use of allogeneic islet transplantation in curing type 1 diabetes mellitus has been adequately demonstrated, but its large-scale application is limited by the short supply of donor islets and the need for sustained and heavy immunosuppressive therapy. Encapsulation of pig islets was therefore suggested with a view to providing a possible alternative source of islet grafts and avoiding chronic immunosuppression and associated adverse or toxic effects. Nevertheless, several vital elements should be taken into account before this therapy becomes a clinical reality, including cell sources, encapsulation approaches, and implantation sites. This paper provides a comprehensive review of xenotransplantation of encapsulated pig islets for the treatment of type 1 diabetes mellitus, including current research findings and suggestions for future studies. PMID:25990050

  11. A pumpless microfluidic device driven by surface tension for pancreatic islet analysis.

    PubMed

    Xing, Yuan; Nourmohammadzadeh, Mohammad; Elias, Joshua E Mendoza; Chan, Manwai; Chen, Zequn; McGarrigle, James J; Oberholzer, José; Wang, Yong

    2016-10-01

    We present a novel pumpless microfluidic array driven by surface tension for studying the physiology of pancreatic islets of Langerhans. Efficient fluid flow in the array is achieved by surface tension-generated pressure as a result of inlet and outlet size differences. Flow properties are characterized in numerical simulation and further confirmed by experimental measurements. Using this device, we perform a set of biological assays, which include real-time fluorescent imaging and insulin secretion kinetics for both mouse and human islets. Our results demonstrate that this system not only drastically simplifies previously published experimental protocols for islet study by eliminating the need for external pumps/tubing and reducing the volume of solution consumption, but it also achieves a higher analytical spatiotemporal resolution due to efficient flow exchanges and the extremely small volume of solutions required. Overall, the microfluidic platform presented can be used as a potential powerful tool for understanding islet physiology, antidiabetic drug development, and islet transplantation.

  12. Layer-by-Layer Assembly of a Conformal Nanothin PEG Coating for Intraportal Islet Transplantation

    PubMed Central

    Wilson, John T.; Cui, Wanxing; Chaikof, Elliot L.

    2009-01-01

    Encapsulation of cells and tissue offers a rational approach for attenuating deleterious host responses toward transplanted cells, but a need exists to develop cell encapsulation strategies that minimize transplant volume. In this report, we describe the formation of nanothin, PEG-rich conformal coatings on individual pancreatic islets via layer-by-layer self-assembly of poly(l-lysine)-g-poly(ethylene glycol)(biotin) (PPB) and streptavidin (SA). Through control of grafting ratio, PPB could be rendered nontoxic and facilitated growth of PPB/SA multilayer thin films that conformed to the heterogeneous islet surface. (PPB/SA)8 multilayer films could be assembled without loss of islet viability or function, and coated islets performed comparably to untreated controls in vivo in a murine model of allogenic intraportal islet transplantation. PMID:18547122

  13. Modeling K,ATP-Dependent Excitability in Pancreatic Islets

    PubMed Central

    Silva, Jonathan R.; Cooper, Paige; Nichols, Colin G.

    2014-01-01

    In pancreatic β-cells, K,ATP channels respond to changes in glucose to regulate cell excitability and insulin release. Confirming a high sensitivity of electrical activity to K,ATP activity, mutations that cause gain of K,ATP function cause neonatal diabetes. Our aim was to quantitatively assess the contribution of K,ATP current to the regulation of glucose-dependent bursting by reproducing experimentally observed changes in excitability when K,ATP conductance is altered by genetic manipulation. A recent detailed computational model of single cell pancreatic β-cell excitability reproduces the β-cell response to varying glucose concentrations. However, initial simulations showed that the model underrepresents the significance of K,ATP activity and was unable to reproduce K,ATP conductance-dependent changes in excitability. By altering the ATP and glucose dependence of the L-type Ca2+ channel and the Na-K ATPase to better fit experiment, appropriate dependence of excitability on K,ATP conductance was reproduced. Because experiments were conducted in islets, which contain cell-to-cell variability, we extended the model from a single cell to a three-dimensional model (10×10×10 cell) islet with 1000 cells. For each cell, the conductance of the major currents was allowed to vary as was the gap junction conductance between cells. This showed that single cell glucose-dependent behavior was then highly variable, but was uniform in coupled islets. The study highlights the importance of parameterization of detailed models of β-cell excitability and suggests future experiments that will lead to improved characterization of β-cell excitability and the control of insulin secretion. PMID:25418087

  14. Automated Digital Image Analysis of islet cell mass using Nikon's inverted Eclipse Ti microscope and software to improve engraftment may help to advance the therapeutic efficacy and accessibility of islet transplantation across centers.

    PubMed

    Gmyr, Valery; Bonner, Caroline; Lukowiak, Bruno; Pawlowski, Valerie; Dellaleau, Nathalie; Belaich, Sandrine; Aluka, Isanga; Moermann, Ericka; Thevenet, Julien; Ezzouaoui, Rimed; Queniat, Gurvan; Pattou, Francois; Kerr-Conte, Julie

    2013-04-29

    Reliable assessment of islet viability, mass and purity must be met prior to transplanting an islet preparation into patients with type 1 diabetes. The standard method for quantifying human islet preparations is by direct microscopic analysis of dithizone-stained islet samples,but this technique may be susceptible to inter / intra observer variability, which may induce false positive / negative islet counts. Here we describe a simple, reliable, automated digitalimage analysis (ADIA) technique, for accurately quantifying islets into total islet number,islet equivalent number (IEQ), and islet purity before islet transplantation.Islets were isolated and purified from n=42 human pancreata according to the automated method of Ricordi et al. For each preparation, three islet samples were stained with dithizone,and expressed as IEQ number. Islets were analyzed manually by microscopy, or automaticallyquantified using Nikon's inverted Eclipse Ti microscope, with built in NIS-ElementsAdvanced Research (AR) software.The AIDA method significantly enhanced the number of islet preparations eligible forengraftment compared to the standard manual method (P<0.001). Comparisons of individual methods showed good correlations between mean values of IEQ number (r(sup)2(/sup)≤0.91), and total islet number (r(sup)2(/sup)=0.88), and thus, increased to (r(sup)2(/sup)=0.93) when islet surface area was estimated comparatively with IEQ number. The ADIA method showed very high intra-observer reproducibility compared to the standard manual method (P<0.001). However, islet purity was routinely estimated as significantly higher with the manual method vs. the ADIA method(p<0.001). The ADIA method also detected small islets between 10-50 μm in size.Automated digital image analysis utilizing the Nikon Instruments (Nikon) software is anunbiased, simple, and reliable teaching tool to comprehensively assess the individual size ofeach islet cell preparation prior to transplantation. Implementation of

  15. Kinetic analyses of peptidylglycine alpha-amidating monooxygenase from pancreatic islets.

    PubMed

    Noe, B D; Katopodis, A G; May, S W

    1991-08-01

    Peptidylglycine alpha-amidating monooxygenase (PAM) plays an important role in the post-translational processing of bioactive neuropeptides by participating in C-terminal amidation. We have examined PAM activity in the pancreatic islets of the anglerfish (AF), Lophius americanus. It was previously demonstrated that the cofactor requirements and pH optimum for the fish PAM are essentially identical to PAM obtained from other tissues and species. The present study was performed to examine the enzymatic characteristics of the fish islet PAM in more detail. One of the questions addressed was the suitability of the AF islet neuropeptide Y-like peptide, aPY-Gly, as a substrate for the islet PAM. Partially purified PAM from AF islet secretory granules was incubated with [125I] aPY-Gly and the resulting products were analyzed by HPLC. The islet PAM readily mediated the formation of aPY-amide from aPY-Gly. PAM purified from bovine adrenal chromaffin granules also catalyzed the amidation of [125I] aPY-Gly. The kinetic parameters of the islet PAM were examined using trinitrophenylated-D-Tyr-Val-Gly (TNP-D-YVG) and 4-nitrohippuric acid (4-NHA). The Km of the islet PAM was 25 +/- 5 microM for TNP-D-YVG and 3.4 +/- 1 mM for 4-NHA. The competitive inhibitor of mammalian PAM activity, 4-methoxybenzoxyacetic acid, proved to be a potent inhibitor of the islet PAM as well, with an apparent KI of 0.06 mM. These results demonstrate that the AF islet PAM exhibits substrate compatibility, kinetic parameters, and inhibitor susceptibility quite similar to the characteristics of PAM from other tissues and species. PMID:1916206

  16. Assessment of DNA synthesis in Islet-1{sup +} cells in the adult murine heart

    SciTech Connect

    Weinberger, Florian Mehrkens, Dennis Starbatty, Jutta Nicol, Philipp Eschenhagen, Thomas

    2015-01-02

    Highlights: • Islet-1 was expressed in the adult heart. • Islet-1-positive cells did not proliferate in the adult heart. • Sinoatrial node cells did not proliferate in the adult heart. - Abstract: Rationale: Islet-1 positive (Islet-1{sup +}) cardiac progenitor cells give rise to the right ventricle, atria and outflow tract during murine cardiac development. In the adult heart Islet-1 expression is limited to parasympathetic neurons, few cardiomyocytes, smooth muscle cells, within the proximal aorta and pulmonary artery and sinoatrial node cells. Its role in these cells is unknown. Here we tested the hypothesis that Islet-1{sup +} cells retain proliferative activity and may therefore play a role in regenerating specialized regions in the heart. Methods and results: DNA synthesis was analyzed by the incorporation of tritiated thymidine ({sup 3}H-thymidine) in Isl-1-nLacZ mice, a transgenic model with an insertion of a nuclear beta-galactosidase in the Islet-1 locus. Mice received daily injections of {sup 3}H-thymidine for 5 days. DNA synthesis was visualized throughout the heart by dipping autoradiography of cryosections. Colocalization of an nLacZ-signal and silver grains would indicate DNA synthesis in Islet-1{sup +} cells. Whereas Islet{sup −} non-myocyte nuclei were regularly marked by accumulation of silver grains, colocalization with nLacZ-signals was not detected in >25,000 cells analyzed. Conclusions: Islet-1{sup +} cells are quiescent in the adult heart, suggesting that, under normal conditions, even pacemaking cells do not proliferate at higher rates than normal cardiac myocytes.

  17. Improvement of rat islet viability during transplantation: validation of pharmacological approach to induce VEGF overexpression.

    PubMed

    Langlois, A; Bietiger, W; Seyfritz, E; Maillard, E; Vivot, K; Peronet, C; Meyer, N; Kessler, L; Jeandidier, N; Pinget, M; Sigrist, S

    2011-01-01

    Delayed and insufficient revascularization during islet transplantation deprives islets of oxygen and nutrients, resulting in graft failure. Vascular endothelial growth factor (VEGF) could play a critical role in islet revascularization. We aimed to develop pharmacological strategies for VEGF overexpression in pancreatic islets using the iron chelator deferoxamine (DFO), thus avoiding obstacles or safety risks associated with gene therapy. Rat pancreatic islets were infected in vivo using an adenovirus (ADE) encoding human VEGF gene (4.10(8) pfu/pancreas) or were incubated in the presence of DFO (10 μmol/L). In vitro viability, functionality, and the secretion of VEGF were evaluated in islets 1 and 3 days after treatment. Infected islets or islets incubated with DFO were transplanted into the liver of syngenic diabetic rats and the graft efficiency was estimated in vivo by measuring body weight, glycemia, C-peptide secretion, and animal survival over a period of 2 months. DFO induced transient VEGF overexpression over 3 days, whereas infection with ADE resulted in prolonged VEGF overexpression lasting 14 days; however, this was toxic and decreased islet viability and functionality. The in vivo study showed a decrease in rat deaths after the transplantation of islets treated with DFO or ADE compared with the sham and control group. ADE treatment improved body weight and C-peptide levels. Gene therapy and DFO improved metabolic control in diabetic rats after transplantation, but this effect was limited in the presence of DFO. The pharmacological approach is an interesting strategy for improving graft efficiency during transplantation, but this approach needs to be improved with drugs that are more specific. PMID:21294962

  18. Pancreatic islet purification using bovine serum albumin: the importance of density gradient temperature and osmolality.

    PubMed

    Chadwick, D R; Robertson, G S; Toomey, P; Contractor, H; Rose, S; James, R F; Bell, P R; London, N J

    1993-01-01

    Euro-Ficoll and bovine serum albumin (BSA) are two of the most commonly used density gradient media for the purification of pancreatic islets. Euro-Ficoll is based upon Euro-Collins, a cold storage medium, and must, therefore, be used at 4 degrees C. The ionic composition of BSA, however, is likely to contribute to hypothermic cellular swelling, and this may influence the efficiency of islet purification using this medium at 4 degrees C. Experience in this laboratory also suggested that batch-to-batch variation in islet purity using BSA was related to differences in BSA osmolality. The aim of this study was to assess the effect of gradient medium temperature and osmolality on the purification of human and porcine islets using BSA. Pancreata were collagenase-digested, and islets were purified on continuous linear density gradients of BSA. The distribution of insulin and amylase in each gradient was assayed, and used to calculate the median density of islets and exocrine tissue, and the efficiency of islet purification (% amylase contamination at a fixed insulin yield), using: 1) gradient osmolalities of 300, 400, and 500 mOsm/kg H2O (seven porcine pancreata), and 2) gradients at 4 degrees C and at 22 degrees C (eight human and seven porcine pancreata). Increase in density gradient osmolality produced increases in porcine exocrine tissue density which exceeded changes in islet density, resulting in improved islet purity, maximal at a BSA osmolality of 400 mOsm/kg H2O. For human pancreata there was no significant change in pancreatic tissue densities nor islet purity with temperature.(ABSTRACT TRUNCATED AT 400 WORDS) PMID:7512874

  19. In vivo synchronous membrane potential oscillations in mouse pancreatic beta-cells: lack of co-ordination between islets.

    PubMed Central

    Valdeolmillos, M; Gomis, A; Sánchez-Andrés, J V

    1996-01-01

    1. The properties of the oscillations in electrical activity of different beta-cells within the same islet of Langerhans, and of different islets within the same pancreas, recorded in vivo, are described. 2. Simultaneous recordings of two cells within the same islet showed that the oscillations were synchronous. A rapid increase in blood glucose led to the simultaneous appearance of a transitory phase of continuous electrical activity in both cells. These results indicate that under physiological conditions, the islets operate as a functional syncytium. 3. Simultaneous recordings of cells from two different islets within the same pancreas showed that the oscillations in the electrical activity were not synchronous, which suggests that each islet is a functionally independent unit. Rapid changes in blood glucose led to the appearance of a transitory phase of increased electrical activity in both islets, although of different duration. These results suggest that the endocrine pancreas lacks a pacemaker driving the electrical activity of all the islets. 4. The comparison of the degree of activation of different islets, simultaneously recorded at different glucose concentrations, indicated that all the islets had a similar sensitivity to glucose. Furthermore, when the glucose concentration was increased, the electrical activity in both islets increased in parallel, suggesting that the amount of insulin released due to the increase in glycaemia was produced by the simultaneous response of all the islets and not by the recruitment of islets with different sensitivities to glucose. 5. Our results predict that the synchronous electrical activity of all the cells within an islet will result in widespread intracellular calcium oscillations and pulsatile insulin secretion. The periodicity of the pulses of insulin secretion in different islets is suggested to be of slightly different length and asynchronous. PMID:8735691

  20. Demonstration of pepsinogen C in human pancreatic islets.

    PubMed Central

    Szecsi, P B; Halgreen, H; Poulsen, S S; Axelsson, C K; Damkjaer-Nielsen, M; Kjaer, T; Foltmann, B

    1987-01-01

    Pancreatic tissue from 16 post mortem kidney donors have been examined for the content of pepsinogens. A zymogen with electrophoretic mobility, isoelectric point and molecular weight equal to that of pepsinogen C of gastric origin was found in all specimens. A comparison between pepsinogen C extracted from pancreatic tissue and gastric mucosa demonstrated immunological identity. Quantitative measurements with a radioimmunoassay showed pepsinogen C concentrations in pancreatic tissue three to 80 times higher than those of blood serum. Immunohistochemical staining gave positive reaction for pepsinogen C only in the alpha cells of the pancreatic islets. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:3315877

  1. Nitric oxide-induced expression of C-reactive protein in islet cells as a very early marker for islet stress in the rat pancreas.

    PubMed

    Fehsel, K; Plewe, D; Kolb-Bachofen, V

    1997-06-01

    In searches for marker molecules specifically expressed in nitric oxide-treated islet cells as a means to recognize early events in islet destruction, we now establish the presence of neo-C-reactive protein (neoCRP) in rat islet cells as early as 2 hr after treatment. We detected this altered molecular form of the acute-phase-reactant C-reactive protein (CRP) using immunocytochemistry with an anti-neoCRP-specific monoclonal antibody as well as reverse transcription-polymerase chain reaction with CRP-specific primers and in situ hybridization to demonstrate the presence of CRP-specific mRNA. After induction of a generalized inflammatory reaction in rats with heat-inactivated Corynebacterium parvum in vivo, neoCRP expression in islets is also found and within the pancreas restricted to pancreatic islet cells only. Our findings suggest an early heat-shock-like expression of this molecule in response to local nitrite oxide production or to exogeneously added nitric oxide in islet cells. PMID:9704587

  2. Th1-Like ICOS+ Foxp3+ Treg Cells Preferentially Express CXCR3 and Home to β-Islets during Pre-Diabetes in BDC2.5 NOD Mice.

    PubMed

    Kornete, Mara; Mason, Edward S; Girouard, Julien; Lafferty, Erin I; Qureshi, Salman; Piccirillo, Ciriaco A

    2015-01-01

    Type 1 diabetes (T1D) occurs through a breakdown of self-tolerance resulting in the autoimmune destruction of the insulin producing β-islets of the pancreas. A numerical and functional waning of CD4+ Foxp3+ regulatory T (Treg) cells, prompted by a pancreatic IL-2 deficiency, accompanies Th1 autoimmunity and T1D progression in non-obese diabetic (NOD) mice. Recently, we identified a dominant subset of intra-islet Treg cells that expresses the ICOS costimulatory receptor and promotes self-tolerance delaying the onset of T1D. ICOS co-stimulation potently enhances IL-2 induced survival and proliferation, and suppressive activity of Treg cells in situ. Here, we propose an ICOS-dependent mechanism of Treg cell homing to the β-islets during pre-diabetes in the NOD model via upregulation of the CXCR3 chemokine receptor. The islet-specific ICOS+ Treg cell subset preferentially expresses CXCR3 in the pancreatic lymph nodes (pLN) in response to Teff cell-mediated pancreatic inflammation, an expression correlating with the onset and magnitude of IFN-γ production by Teff cells in pancreatic sites. We also reveal that intra-pancreatic APC populations and insulin-producing β, but not α nor δ, islet cells secrete the CXCR3 chemokines, CXCL9, 10 and 11, and selectively promote ICOS+ CXCR3+ Treg cell chemotaxis in vitro. Strikingly, islet-derived Treg cells also produce these chemokines suggesting an auto-regulation of homing by this subset. Unlike ICOS- cells, ICOS+ Treg cells adopt a Th1-like Treg phenotype while maintaining their suppressive capacity, characterized by expression of T-bet and CXCR3 and production of IFN-γ in the draining pLNs. Finally, in vivo neutralization of IFN-γ blocked Treg cell CXCR3 upregulation evincing its role in regulating expression of this chemokine receptor by Treg cells. Thus, CXCR3-mediated trafficking of Treg cells could represent a mechanism of homeostatic immunoregulation during diabetogeneesis. PMID:25946021

  3. Islet α cells and glucagon--critical regulators of energy homeostasis.

    PubMed

    Campbell, Jonathan E; Drucker, Daniel J

    2015-06-01

    Glucagon is secreted from islet α cells and controls blood levels of glucose in the fasting state. Impaired glucagon secretion predisposes some patients with type 1 diabetes mellitus (T1DM) to hypoglycaemia; whereas hyperglycaemia in patients with T1DM or type 2 diabetes mellitus (T2DM) is often associated with hyperglucagonaemia. Hence, therapeutic strategies to safely achieve euglycaemia in patients with diabetes mellitus now encompass bihormonal approaches to simultaneously deliver insulin and glucagon (in patients with T1DM) or reduce excess glucagon action (in patients with T1DM or T2DM). Glucagon also reduces food intake and increases energy expenditure through central and peripheral mechanisms, which suggests that activation of signalling through the glucagon receptor might be useful for controlling body weight. Here, we review new data that is relevant to understanding α-cell biology and glucagon action in the brain, liver, adipose tissue and heart, with attention to normal physiology, as well as conditions associated with dysregulated glucagon action. The feasibility and safety of current and emerging glucagon-based therapies that encompass both gain-of-function and loss-of-function approaches for the treatment of T1DM, T2DM and obesity is discussed in addition to developments, challenges and critical gaps in our knowledge that require additional investigation.

  4. Islet neogenesis associated protein (ingap): structural and dynamical properties of its active pentadecapeptide.

    PubMed

    McCarthy, Andrés N; Mogilner, Inés G; Grigera, J Raúl; Borelli, M Inés; Del Zotto, Hector; Gagliardino, Juan José

    2009-02-01

    We have studied the structural and dynamical properties of the biologically active pentadecapeptide of the islet neogenesis associated protein (INGAP-PP) and of two other pentadecapeptides with the same amino acid composition but randomly scrambled primary sequences, using molecular dynamic simulations. Our data demonstrates that whilst the peptides with scrambled sequences show no definite prevalent structure in solution, INGAP-PP maintains a notably stable tertiary fold, namely, a conformer with a central beta-sheet and closed C-terminal. Such structure resembles the one corresponding to the amino acid sequence of human pancreatitis associated protein-1 (PAP-1), which presents 85% sequence homology with INGAP. These results could reasonably explain why the two scrambled sequences tested showed no biological activity, while INGAP-PP significantly increases beta-cells function and mass both in vitro and in vivo conditions. The capability of INGAP-PP to temporarily adopt other closely related conformations offers also a plausible explanation for the 50 fold experimental difference in potency between the active pentadecapeptide and the whole protein. They also suggest that the C-terminal region of INGAP-PP may plausibly be the locus for its interaction with the cell receptor. Consequently, the knowledge gathered through our data can help to obtain more potent INGAP-PP analogs, suitable for the prevention and treatment of diabetes.

  5. Low-protein diets reduce PKAalpha expression in islets from pregnant rats.

    PubMed

    Milanski, Marciane; Arantes, Vanessa Cristina; Ferreira, Fabiano; de Barros Reis, Marise Auxiliadora; Carneiro, Everardo Magalhães; Boschero, Antonio Carlos; Collares-Buzato, Carla Beatriz; Latorraca, Márcia Queiroz

    2005-08-01

    We investigated the effect of protein restriction on insulin secretion and the expression of protein kinase (PK)Aalpha and PKCalpha in islets from control and pregnant rats. Adult control nonpregnant (CN) and control pregnant (CP) rats were fed a normal-protein diet (17%), whereas low-protein nonpregnant (LPN) and low-protein pregnant (LPP) rats were fed a low-protein diet (6%) for 15 d. In the presence of 2.8 and 8.3 mmol glucose/L, insulin secretion by islets of CP rats was higher than that by islets of CN rats. Compared with the CN groups, insulin secretion by islets of LPN rats was lower with 8.3 but not with 2.8 mmol glucose/L. The insulin secretion by islets of LPP rats was higher than by LPN rats at both glucose concentrations. IBMX (1 mmol/L), a phosphodiesterase inhibitor, increased insulin secretion by islets from pregnant rats, and this effect was greater in islets of CP rats than in LPP rats. Forskolin (0.01-100 micromol/L), a stimulator of adenylyl cyclase, increased insulin secretion only in islets of CN and CP rats, with a higher 50% effective concentration in islets of CP rats compared with CN rats. The insulin secretion induced by phorbol 12-myristate 13-acetate (a stimulator of PKC) was higher in islets of LPN and LPP rats than in the respective controls, especially at 8.3 mmol glucose/L. PKAalpha, but not PKCalpha, expression was lower in islets of rats fed low protein than in the controls, regardless of the physiological status of the rats. All endocrine cells of the islets, including beta-cells, expressed the PKAalpha isoform. The cytoplasmic distribution of this enzyme in beta-cells was not modified by pregnancy and/or protein restriction. In conclusion, our results indicate that the response of islets from rats fed low protein during pregnancy is similar to that of control rats, at least for physiologic glucose concentration. However, the decreased response to IBMX and forskolin indicates decreased production and/or sensitivity to cAMP; this

  6. [Treatment of type 1 diabetics by transplantation of isolated pancreatic islets].

    PubMed

    Ono, Junko

    2006-04-01

    Type 1 diabetes is an autoimmune disease with selective destruction of insulin-producing pancreatic beta cells. Since insulin plays pivotal roles in energy homeostasis by transferring glucose into cells, type 1 diabetic patients can not survive without insulin replacement. Insulin secretion is precisely controlled by ingested glucose as well as hormones and neural factors, therefore it is impossible to reproduce the physiological secretory pattern of insulin via exogenous insulin, even by multiple or continuous delivery by injection. Transplantation of beta cells has long been expected as the fundamental treatment to cure type 1 diabetics, and transplantation of the whole pancreas, both exocrine pancreas and islets, has been applied with success, resulting insulin independence. However, the exocrine pancreas, which releases amylase and trypsin to the digestive tract, is not indispensable for insulin replacement, so the interest in islet transplantation has increased enormously. In the past 20 years, the techniques for isolating large numbers of human islets have been advanced and more potent immunosuppressive agents have also been introduced, permitting newer attempts at islet transplantation. In 2000, insulin independence was first achieved in Canada using the Edmonton protocol. The success rates have increased gradually using this protocol, and 5 institutes in Japan have started to prepare human islet transplantation under the control of the Japan Pancreas and Islet Transplant Society. In 2004, insulin independence by islet transplantation was first achieved at Kyoto University Hospital and the number of islet transplantations has increased, though very slowly. By the end of 2005, approximately 100 patients were on the waiting list for islet transplantation in Japan. Many problems remain unsolved in islet transplantation to meet clinical practice: these are the shortage of insulin-producing cells, further progress in immunosuppressive agents that do not interfere

  7. Low gravity rotational culture and the integration of immunomodulatory stem cells reduce human islet allo-reactivity.

    PubMed

    Qureshi, Khalid M; Lee, Jou; Paget, Michelle B; Bailey, Clifford J; Curnow, S John; Murray, Hilary E; Downing, Richard

    2015-01-01

    Modification of human islets prior to transplantation may improve long-term clinical outcome in terms of diabetes management, by supporting graft function and reducing the potential for allo-rejection. Intragraft incorporation of stem cells secreting beta (β)-cell trophic and immunomodulatory factors represents a credible approach, but requires suitable culture methods to facilitate islet alteration without compromising integrity. This study employed a three-dimensional rotational cell culture system (RCCS) to achieve modification, preserve function, and ultimately influence immune cell responsiveness to human islets. Islets underwent intentional dispersal and rotational culture-assisted aggregation with amniotic epithelial cells (AEC) exhibiting intrinsic immunomodulatory potential. Reassembled islet constructs were assessed for functional integrity, and their ability to induce an allo-response in discrete T-cell subsets determined using mixed islet:lymphocyte reaction assays. RCCS supported the formation of islet:AEC aggregates with improved insulin secretory capacity compared to unmodified islets. Further, the allo-response of peripheral blood mononuclear cell (PBMC) and purified CD4+ and CD8+ T-cell subsets to AEC-bearing grafts was significantly (p < 0.05) attenuated. Rotational culture enables pre-transplant islet modification involving their integration with immunomodulatory stem cells capable of subduing the allo-reactivity of T cells relevant to islet rejection. The approach may play a role in achieving acute and long-term graft survival in islet transplantation.

  8. The use of hydrogen gas clearance for blood flow measurements in single endogenous and transplanted pancreatic islets.

    PubMed

    Barbu, Andreea; Jansson, Leif; Sandberg, Monica; Quach, My; Palm, Fredrik

    2015-01-01

    The blood perfusion of pancreatic islets is regulated independently from that of the exocrine pancreas, and is of importance for multiple aspects of normal islet function, and probably also during impaired glucose tolerance. Single islet blood flow has been difficult to evaluate due to technical limitations. We therefore adapted a hydrogen gas washout technique using microelectrodes to allow such measurements. Platinum micro-electrodes monitored hydrogen gas clearance from individual endogenous and transplanted islets in the pancreas of male Lewis rats and in human and mouse islets implanted under the renal capsule of male athymic mice. Both in the rat endogenous pancreatic islets as well as in the intra-pancreatically transplanted islets, the vascular conductance and blood flow values displayed a highly heterogeneous distribution, varying by factors 6-10 within the same pancreas. The blood flow of human and mouse islet grafts transplanted in athymic mice was approximately 30% lower than that in the surrounding renal parenchyma. The present technique provides unique opportunities to study the islet vascular dysfunction seen after transplantation, but also allows for investigating the effects of genetic and environmental perturbations on islet blood flow at the single islet level in vivo.

  9. Alpha-, Delta- and PP-cells: Are They the Architectural Cornerstones of Islet Structure and Co-ordination?

    PubMed

    Brereton, Melissa F; Vergari, Elisa; Zhang, Quan; Clark, Anne

    2015-08-01

    Islet non-β-cells, the α- δ- and pancreatic polypeptide cells (PP-cells), are important components of islet architecture and intercellular communication. In α-cells, glucagon is found in electron-dense granules; granule exocytosis is calcium-dependent via P/Q-type Ca(2+)-channels, which may be clustered at designated cell membrane sites. Somatostatin-containing δ-cells are neuron-like, creating a network for intra-islet communication. Somatostatin 1-28 and 1-14 have a short bioactive half-life, suggesting inhibitory action via paracrine signaling. PP-cells are the most infrequent islet cell type. The embryologically separate ventral pancreas anlage contains PP-rich islets that are morphologically diffuse and α-cell deficient. Tissue samples taken from the head region are unlikely to be representative of the whole pancreas. PP has anorexic effects on gastro-intestinal function and alters insulin and glucagon secretion. Islet architecture is disrupted in rodent diabetic models, diabetic primates and human Type 1 and Type 2 diabetes, with an increased α-cell population and relocation of non-β-cells to central areas of the islet. In diabetes, the transdifferentiation of non-β-cells, with changes in hormone content, suggests plasticity of islet cells but cellular function may be compromised. Understanding how diabetes-related disordered islet structure influences intra-islet cellular communication could clarify how non-β-cells contribute to the control of islet function.

  10. Phosphoinositide phosphorylation and hydrolysis in pancreatic islet cell membrane

    SciTech Connect

    Dunlop, M.E.; Malaisse, W.J.

    1986-02-01

    Membranes were isolated from dispersed rat pancreatic islet cells by attachment to Sephadex beads. When these membranes were exposed to (gamma-32P)ATP, formation of 32P-labeled phosphatidate, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate was observed. Carbamylcholine, added 10 s prior to lipid extraction, caused a dose-related fall in 32P-labeled phospholipids. The effect of the cholinergic agent was suppressed by atropine, ethylene glycol bis(beta-aminoethyl ether)-N,N'-tetraacetic acid, and verapamil, and simulated, in part, by an increase in Ca2+ concentration. When the membranes were derived from islet cells prelabeled with (U-14C)arachidonate, carbamylcholine stimulation, in addition to decreasing labeled polyphosphoinositides, was accompanied by an increased production of labeled diacylglycerol, without a concomitant increase in labeled phosphatidylinositol. These results indicate that activation of a plasma membrane-associated phospholipase C directed against polyphosphoinositides represents a primary event in the functional response of the pancreatic beta cell to cholinergic agents.

  11. Islet-1 is required for ventral neuron survival in Xenopus

    SciTech Connect

    Shi, Yu; Zhao, Shuhua; Li, Jiejing; Mao, Bingyu

    2009-10-23

    Islet-1 is a LIM domain transcription factor involved in several processes of embryonic development. Xenopus Islet-1 (Xisl-1) has been shown to be crucial for proper heart development. Here we show that Xisl-1 and Xisl-2 are differentially expressed in the nervous system in Xenopus embryos. Knock-down of Xisl-1 by specific morpholino leads to severe developmental defects, including eye and heart failure. Staining with the neuronal markers N-tubulin and Xisl-1 itself reveals that the motor neurons and a group of ventral interneurons are lost in the Xisl-1 morphants. Terminal dUTP nick-end labeling (TUNEL) analysis shows that Xisl-1 morpholino injection induces extensive apoptosis in the ventral neural plate, which can be largely inhibited by the apoptosis inhibitor M50054. We also find that over-expression of Xisl-1 is able to promote cell proliferation and induce Xstat3 expression in the injected side, suggesting a potential role for Xisl-1 in the regulation of cell proliferation in co-operation with the Jak-Stat pathway.

  12. Weight loss in rats following intraventricular transplants of pancreatic islets.

    PubMed

    Richardson, R D; Ramsay, D S; Lernmark, A; Scheurink, A J; Baskin, D G; Woods, S C

    1994-01-01

    Because of the body's resistance to permanent weight change, obesity remains a major health problem in modern society. It is hypothesized that the regulatory system defending body weight utilizes pancreatic insulin as an indicator of adiposity to the brain. To take advantage of this negative feedback system, we transplanted neonatal (experiment 1) or adult (experiment 2) pancreatic islets containing insulin-secreting cells into the 3rd ventricle of syngeneic Lewis rats. This resulted in an elevation of the insulin signal within the brain and a significant long-term reduction of body weight. Changes in food intake were consistent with the changes of body weight. The implantation of more islets resulted in a greater reduction of body weight, and changes in weight were inversely correlated with the level of insulin achieved in the cerebrospinal fluid. After the two studies were completed, histological examination revealed the presence of insulin-containing cells within the 3rd ventricle and adjacent hypothalamus. These studies suggest that transplanted insulin-secreting cells may provide a potential therapeutic strategy for maintenance of weight loss.

  13. Pancreatic mixed ductal-islet tumors. Is this an entity?

    PubMed

    Permert, J; Mogaki, M; Andrén-Sandberg, A; Kazakoff, K; Pour, P M

    1992-02-01

    Thirty-eight human pancreatic cancer specimens were studied for the reactivity of cancer cells with monoclonal antibodies against insulin, glucagon, somatostatin, pancreatic polypeptide (PP), vasoactive intestinal peptide (VIP), gastrin, calcitonin, and with argyrophilic reactivity. Immunoreactivity with one or several antibodies or argyrophilic reactivity were found in 30 (79%) cases. In 17 cases, the number of endocrine cells was excessive and morphologically consistent with the mixed ductal-islet tumor. Although most immunoreactive cells were located at the base of the malignant glands, some had intraepithelial location and were also present in the invasive portion of cancers, indicating their malignant nature. Endocrine cell proliferation were found in the pancreatic tissue adjacent to the carcinoma in 8 out of 12 specimens examined. In these cases, the immunoreactive cells were either distributed among the acinar cells or ductal cells. More endocrine cells were found in the hyperplastic ducts; however, no correlation was found between the degree of hyperplasia and the occurrence of any type of immunoreactive cells. Although several types of endocrine cells occurred in different pancreatic regions (head, body, and tail), PP cells were restricted to tissues taken from the head of the pancreas. Experimental data and similar observations by other investigators led us to conclude that participation of endocrine cells in ductal-type carcinomas is a general phenomenon and does not justify the classification of these lesions to mixed ductal-islet entity. However, because immunoreactive cells were more common and numerous in well-differentiated carcinomas, they may have some prognostic values. PMID:1316418

  14. Insulin Resistance Alters Islet Morphology in Nondiabetic Humans

    PubMed Central

    Mezza, Teresa; Muscogiuri, Giovanna; Sorice, Gian Pio; Clemente, Gennaro; Hu, Jiang; Pontecorvi, Alfredo; Holst, Jens J.; Giaccari, Andrea; Kulkarni, Rohit N.

    2014-01-01

    Type 2 diabetes is characterized by poor glucose uptake in metabolic tissues and manifests when insulin secretion fails to cope with worsening insulin resistance. In addition to its effects on skeletal muscle, liver, and adipose tissue metabolism, it is evident that insulin resistance also affects pancreatic β-cells. To directly examine the alterations that occur in islet morphology as part of an adaptive mechanism to insulin resistance, we evaluated pancreas samples obtained during pancreatoduodenectomy from nondiabetic subjects who were insulin-resistant or insulin-sensitive. We also compared insulin sensitivity, insulin secretion, and incretin levels between the two groups. We report an increased islet size and an elevated number of β- and α-cells that resulted in an altered β-cell–to–α-cell area in the insulin- resistant group. Our data in this series of studies suggest that neogenesis from duct cells and transdifferentiation of α-cells are potential contributors to the β-cell compensatory response to insulin resistance in the absence of overt diabetes. PMID:24215793

  15. Membrane Permeation Induced by Aggregates of Human Islet Amyloid Polypeptides

    PubMed Central

    Poojari, Chetan; Xiao, Dequan; Batista, Victor S.; Strodel, Birgit

    2013-01-01

    Several neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases as well as nonneuropathic diseases such as type II diabetes and atrial amyloidosis are associated with aggregation of amyloid polypeptides into fibrillar structures, or plaques. In this study, we use molecular dynamics simulations to test the stability and orientation of membrane-embedded aggregates of the human islet amyloid polypeptide (hIAPP) implicated in type II diabetes. We find that in both monolayers and bilayers of dipalmitoylphosphatidylglycerol (DPPG) hIAPP trimers and tetramers remain inside the membranes and preserve their β-sheet secondary structure. Lipid bilayer-inserted hIAPP trimers and tetramers orient inside DPPG at 60° relative to the membrane/water interface and lead to water permeation and Na+ intrusion, consistent with ion-toxicity in islet β-cells. In particular, hIAPP trimers form a water-filled β-sandwich that induce water permeability comparable with channel-forming proteins, such as aquaporins and gramicidin-A. The predicted disruptive orientation is consistent with the amphiphilic properties of the hIAPP aggregates and could be probed by chiral sum frequency generation (SFG) spectroscopy, as predicted by the simulated SFG spectra. PMID:24268144

  16. Minireview: Dopaminergic Regulation of Insulin Secretion from the Pancreatic Islet

    PubMed Central

    Ustione, Alessandro

    2013-01-01

    Exogenous dopamine inhibits insulin secretion from pancreatic β-cells, but the lack of dopaminergic neurons in pancreatic islets has led to controversy regarding the importance of this effect. Recent data, however, suggest a plausible physiologic role for dopamine in the regulation of insulin secretion. We review the literature underlying our current understanding of dopaminergic signaling that can down-regulate glucose-stimulated insulin secretion from pancreatic islets. In this negative feedback loop, dopamine is synthesized in the β-cells from circulating l-dopa, serves as an autocrine signal that is cosecreted with insulin, and causes a tonic inhibition on glucose-stimulated insulin secretion. On the whole animal scale, l-dopa is produced by cells in the gastrointestinal tract, and its concentration in the blood plasma increases following a mixed meal. By reviewing the outcome of certain types of bariatric surgery that result in rapid amelioration of glucose tolerance, we hypothesize that dopamine serves as an “antiincretin” signal that counterbalances the stimulatory effect of glucagon-like peptide 1. PMID:23744894

  17. Rapid deposition of amyloid in human islets transplanted into nude mice.

    PubMed

    Westermark, P; Eizirik, D L; Pipeleers, D G; Hellerström, C; Andersson, A

    1995-05-01

    Human islets of Langerhans were transplanted to the subcapsular space of the kidneys of nude mice which were either normoglycaemic or made diabetic with alloxan. After 2 weeks, the transplants were processed for light and electron microscopical analyses. In all transplants, islet amyloid polypeptide (IAPP)-positive cells were found with highest frequency in normoglycaemic animals. IAPP-positive amyloid was seen in 16 out of 22 transplants (73%), either by polarisation microscopy after Congo red staining or by immune electron microscopy. At variance with previous findings of amyloid deposits exclusively in the extracellular space of islets of non-insulin-dependent diabetic patients, the grafted islets contained intracellular amyloid deposits as well. There was no clear difference in occurrence of amyloid between diabetic and non-diabetic animals. The present study indicates that human islets transplanted into nude mice very soon present IAPP-positive amyloid deposits. This technique may provide a valuable model for studies of the pathogenesis of islet amyloid and its impact on islet cell function.

  18. Prevention of murine autoimmune diabetes by CCL22-mediated Treg recruitment to the pancreatic islets.

    PubMed

    Montane, Joel; Bischoff, Loraine; Soukhatcheva, Galina; Dai, Derek L; Hardenberg, Gijs; Levings, Megan K; Orban, Paul C; Kieffer, Timothy J; Tan, Rusung; Verchere, C Bruce

    2011-08-01

    Type 1 diabetes is characterized by destruction of insulin-producing β cells in the pancreatic islets by effector T cells. Tregs, defined by the markers CD4 and FoxP3, regulate immune responses by suppressing effector T cells and are recruited to sites of action by the chemokine CCL22. Here, we demonstrate that production of CCL22 in islets after intrapancreatic duct injection of double-stranded adeno-associated virus encoding CCL22 recruits endogenous Tregs to the islets and confers long-term protection from autoimmune diabetes in NOD mice. In addition, adenoviral expression of CCL22 in syngeneic islet transplants in diabetic NOD recipients prevented β cell destruction by autoreactive T cells and thereby delayed recurrence of diabetes. CCL22 expression increased the frequency of Tregs, produced higher levels of TGF-β in the CD4+ T cell population near islets, and decreased the frequency of circulating autoreactive CD8+ T cells and CD8+ IFN-γ–producing T cells. The protective effect of CCL22 was abrogated by depletion of Tregs with a CD25-specific antibody. Our results indicate that islet expression of CCL22 recruits Tregs and attenuates autoimmune destruction of β cells. CCL22-mediated recruitment of Tregs to islets may be a novel therapeutic strategy for type 1 diabetes. PMID:21737880

  19. FRET-based voltage probes for confocal imaging: membrane potential oscillations throughout pancreatic islets.

    PubMed

    Kuznetsov, Andrey; Bindokas, Vytautas P; Marks, Jeremy D; Philipson, Louis H

    2005-07-01

    Insulin secretion is dependent on coordinated pancreatic islet physiology. In the present study, we found a way to overcome the limitations of cellular electrophysiology to optically determine cell membrane potential (V(m)) throughout an islet by using a fast voltage optical dye pair. Using laser scanning confocal microscopy (LSCM), we observed fluorescence (Förster) resonance energy transfer (FRET) with the fluorescent donor N-(6-chloro-7-hydroxycoumarin-3-carbonyl)-dimyristoylphosphatidyl-ethanolamine and the acceptor bis-(1,3-diethylthiobarbiturate) trimethine oxonol in the plasma membrane of essentially every cell within an islet. The FRET signal was approximately linear from V(m) -70 to +50 mV with a 2.5-fold change in amplitude. We evaluated the responses of islet cells to glucose and tetraethylammonium. Essentially, every responding cell in a mouse islet displayed similar time-dependent changes in V(m). When V(m) was measured simultaneously with intracellular Ca2+, all active cells showed tight coupling of V(m) to islet cell Ca2+ changes. Our findings indicate that FRET-based, voltage-sensitive dyes used in conjunction with LSCM imaging could be extremely useful in studies of excitation-secretion coupling in intact islets of Langerhans. PMID:15758044

  20. Application of Rotating Wall Vessel (RWV) Cell Culture for Pancreas Islet Cell Transplantation

    NASA Technical Reports Server (NTRS)

    Rutzky, Lynne P.

    1998-01-01

    Type I insulin-dependent diabetes mellitus (IDDM) remains a major cause of morbidity and mortality in both pediatric and adult populations, despite significant advances in medical management. While insulin therapy treats symptoms of acute diabetes, it fails to prevent chronic complications such as microvascular disease, blindness, neuropathy, and chronic renal failure. Strict control of blood glucose concentrations delays but does not prevent the onset and progression of secondary complications. Although, whole pancreas transplantation restores physiological blood glucose levels, a continuous process of allograft rejection causes vascular and exocrine-related complications. Recent advances in methods for isolation and purification of pancreatic islets make transplantation of islet allografts an attractive alternative to whole pancreas transplantation. However, immunosuppressive drugs are necessary to prevent rejection of islet allografts and many of these drugs are known to be toxic to the islets. Since auto-transplants of isolated islets following total pancreatectomy survive and function in vivo, it is apparent that a major obstacle to successful clinical islet transplantation is the immunogenicity of the islet allografts.

  1. Storage of human pancreatic digest in University of Wisconsin solution significantly improves subsequent islet purification.

    PubMed

    Robertson, G S; Chadwick, D; Contractor, H; Rose, S; Chamberlain, R; Clayton, H; Bell, P R; James, R F; London, N J

    1992-09-01

    Density-gradient purification of human pancreatic islets from the collagenase-digested pancreas relies on the exocrine tissue being denser than the islets. Cold storage of the pancreas before and after digestion causes cell swelling, which can decrease the density of pancreatic exocrine tissue and adversely affect subsequent purification. Using 14 human pancreata (seven perfused in situ with hyperosmolar citrate (HOC) and seven with University of Wisconsin solution (UW)), it is shown that storage of the pancreatic digest in UW significantly increases the density of pancreatic exocrine tissue compared with storage in minimal essential medium (MEM) (P = 0.009). This results in an improvement in islet purity (P = 0.036) for HOC- but not UW-perfused pancreata. Storage in UW for 1 h not only prevented the deterioration that occurred in MEM, but resulted in an improvement in islet purity for five of the seven HOC-perfused pancreata. Most pancreata in the UK are perfused with HOC, but storage of the digest in UW results in significantly better islet purity and, when islets cannot be purified immediately, a period of storage will often improve separation and allow islets to be purified. PMID:1422750

  2. Human islet purification: a prospective comparison of Euro-Ficoll and bovine serum albumin density gradients.

    PubMed

    Chadwick, D R; Robertson, G S; Contractor, H; Swift, S; Rose, S; Thirdborough, S T; Chamberlain, R; James, R F; Bell, P R; London, N J

    1993-01-01

    Euro-Ficoll (EF) and bovine serum albumin (BSA) are the two most commonly used media for the density gradient purification of human pancreatic islets. The aim of this study was to compare these two media with respect to the efficiency of human islet isolation. Ten human pancreata were collagenase-digested, and samples of digest were separated on either a continuous linear density gradient of BSA or a discontinuous gradient of EF (1.108/1.096/1.037/Euro-Collins). Efficiency of islet purification was assessed by insulin and amylase assay of aliquots aspirated from the BSA gradients, and from the interfaces of the EF gradients. Islets were obtained from two interfaces in the EF gradients. Islet yield from the upper interface was generally poor (median 28% of total insulin; range 2-71%), but purity was better than for an equivalent yield using BSA [1% (0-3%) amylase contamination for EF versus 6% (0-37%) for BSA; P = 0.013]. Pooling both EF interfaces increased yield to 66% (17-81%) but markedly reduced purity [46% (0-50%) amylase for EF versus 31% (0-52%) for BSA]. In conclusion, the efficiency of human islet purification is similar, though disappointingly low, with BSA and with EF. Considerable scope exists, therefore, for improvement in the density gradient purification of human islets. PMID:8329732

  3. New insights into the role of connexins in pancreatic islet function and diabetes

    PubMed Central

    Farnsworth, Nikki L.; Benninger, Richard K.P.

    2014-01-01

    Multi-cellular systems require complex signaling mechanisms for proper tissue function, to mediate signaling between cells in close proximity and at distances. This holds true for the islets of Langerhans, which are multicellular micro-organs located in the pancreas responsible for glycemic control, through secretion of insulin and other hormones. Coupling of electrical and metabolic signaling between islet β-cells is required for proper insulin secretion and effective glycemic control. β-cell specific coupling is established through gap junctions composed of connexin36, which results in coordinated insulin release across the islet. Islet connexins have been implicated in both Type-1 and Type-2 diabetes; however a clear link remains to be determined. The goal of this review is to discuss recent discoveries regarding the role of connexins in regulating insulin secretion, the regulation of connexins within the islet, and recent studies which support a role for connexins in diabetes. Further studies which investigate the regulation of connexins in the islet and their role in diabetes may lead to novel diabetes therapies which regulate islet function and β-cell survival through modulation of gap junction coupling. PMID:24583073

  4. Current progress in stem cell research and its potential for islet cell transplantation.

    PubMed

    Leung, P S; Ng, K Y

    2013-01-01

    Diabetes is characterized by insulin deficiency concomitant with hyperglycemia due to reduced islet cell mass and/or dysfunction. Currently, insulin replacement is the first-line treatment option for patients with type 1 and a severe form of type 2 diabetes. Treatment by insulin injection is generally effective but nonphysiological, and has the potential of producing chronic complications. On the other hand, islet transplantation can maintain normoglycemia without hypoglycemic side effects, potentially freeing diabetic patients of insulin dependence. In practice, islet transplantation remains hindered by the lack of organ donors and transplant rejection concerns. Recent advances in stem cell research and regenerative medicine, however, offer promise for the clinical application of islet cell transplantation. This review article offers a critical appraisal of current molecular induction approaches, such as directed differentiation, microenvironment induction, and genetic modification, which mimic islet cell development by inducing a variety of stem cells; they include embryonic stem cells, induced pluripotent stem cells, and various tissue-derived stem cells to become functional and transplantable insulin-producing islet cells. Despite good progress, several obstacles remain to be overcome before islet transplantation can be translated into a therapy for human patients, including, but are not limited to, immunogenicity and risk of tumorogenesis. PMID:22834839

  5. Transplantation of Heterospheroids of Islet Cells and Mesenchymal Stem Cells for Effective Angiogenesis and Antiapoptosis

    PubMed Central

    Shin, Jung-Youn; Jeong, Jee-Heon; Han, Jin; Bhang, Suk Ho; Jeong, Gun-Jae; Haque, Muhammad R.; Al-Hilal, Taslim A.; Noh, Myungkyung

    2015-01-01

    Although islet transplantation has been suggested as an alternative therapy for type 1 diabetes, there are efficiency concerns that are attributed to poor engraftment of transplanted islets. Hypoxic condition and delayed vasculogenesis induce necrosis and apoptosis of the transplanted islets. To overcome these limitations in islet transplantation, heterospheroids (HSs), which consist of rat islet cells (ICs) and human bone marrow-derived mesenchymal stem cells (hMSCs), were transplanted to the kidney and liver. The HSs cultured under the hypoxic condition system exhibited a significant increase in antiapoptotic gene expression in ICs. hMSCs in the HSs secreted angiogenic and antiapoptotic proteins. With the HS system, ICs and hMSCs were successfully located in the same area of the liver after transplantation of HSs through the portal vein, whereas the transplantation of islets and the dissociated hMSCs did not result in localization of transplanted ICs and hMSCs in the same area. HS transplantation resulted in an increase in angiogenesis at the transplantation area and a decrease in the apoptosis of transplanted ICs after transplantation into the kidney subcapsule compared with transplantation of islet cell clusters (ICCs). Insulin production levels of ICs were higher in the HS transplantation group compared with the ICC transplantation group. The HS system may be a more efficient transplantation method than the conventional methods for the treatment of type 1 diabetes. PMID:25344077

  6. Novel Stable Isotope Analyses Demonstrate Significant Rates of Glucose Cycling in Mouse Pancreatic Islets

    PubMed Central

    Pound, Lynley D.; Trenary, Irina; O’Brien, Richard M.

    2015-01-01

    A polymorphism located in the G6PC2 gene, which encodes an islet-specific glucose-6-phosphatase catalytic subunit, is the most important common determinant of variations in fasting blood glucose (FBG) levels in humans. Studies of G6pc2 knockout (KO) mice suggest that G6pc2 represents a negative regulator of basal glucose-stimulated insulin secretion (GSIS) that acts by hydrolyzing glucose-6-phosphate (G6P), thereby reducing glycolytic flux. However, this conclusion conflicts with the very low estimates for the rate of glucose cycling in pancreatic islets, as assessed using radioisotopes. We have reassessed the rate of glucose cycling in pancreatic islets using a novel stable isotope method. The data show much higher levels of glucose cycling than previously reported. In 5 mmol/L glucose, islets from C57BL/6J chow-fed mice cycled ∼16% of net glucose uptake. The cycling rate was further increased at 11 mmol/L glucose. Similar cycling rates were observed using islets from high fat–fed mice. Importantly, glucose cycling was abolished in G6pc2 KO mouse islets, confirming that G6pc2 opposes the action of the glucose sensor glucokinase by hydrolyzing G6P. The demonstration of high rates of glucose cycling in pancreatic islets explains why G6pc2 deletion enhances GSIS and why variants in G6PC2 affect FBG in humans. PMID:25552595

  7. Light scattering as an intrinsic indicator for pancreatic islet cell mass and secretion.

    PubMed

    Ilegems, E; van Krieken, P P; Edlund, P K; Dicker, A; Alanentalo, T; Eriksson, M; Mandic, S; Ahlgren, U; Berggren, P-O

    2015-01-01

    The pancreatic islet of Langerhans is composed of endocrine cells producing and releasing hormones from secretory granules in response to various stimuli for maintenance of blood glucose homeostasis. In order to adapt to a variation in functional demands, these islets are capable of modulating their hormone secretion by increasing the number of endocrine cells as well as the functional response of individual cells. A failure in adaptive mechanisms will lead to inadequate blood glucose regulation and thereby to the development of diabetes. It is therefore necessary to develop tools for the assessment of both pancreatic islet mass and function, with the aim of understanding cellular regulatory mechanisms and factors guiding islet plasticity. Although most of the existing techniques rely on the use of artificial indicators, we present an imaging methodology based on intrinsic optical properties originating from mature insulin secretory granules within endocrine cells that reveals both pancreatic islet mass and function. We demonstrate the advantage of using this imaging strategy by monitoring in vivo scattering signal from pancreatic islets engrafted into the anterior chamber of the mouse eye, and how this versatile and noninvasive methodology permits the characterization of islet morphology and plasticity as well as hormone secretory status.

  8. Choosing between GLP-1 Receptor Agonists and DPP-4 Inhibitors: A Pharmacological Perspective

    PubMed Central

    Brown, Dominique Xavier; Evans, Marc

    2012-01-01

    In recent years the incretin therapies have provided a new treatment option for patients with type 2 diabetes mellitus (T2DM). The incretin therapies focus on the increasing levels of the two incretin hormones, glucagon-like peptide 1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP). This results in increased glucose dependent insulin synthesis and release. GLP-1 receptor agonists such as liraglutide and exenatide exert an intrinsic biological effect on GLP-1 receptors directly stimulating the release of insulin from pancreatic beta cells. DPP-4 inhibitors such as sitagliptin and linagliptin prevent the inactivation of endogenous GLP-1 and GIP through competitive inhibition of the DPP-4 enzyme. Both incretin therapies have good safety and tolerability profiles and interact minimally with a number of medications commonly prescribed in T2DM. This paper focuses on the pharmacological basis by which the incretin therapies function and how this knowledge can inform and benefit clinical decisions. Each individual incretin agent has benefits and pitfalls relating to aspects such as glycaemic and nonglycaemic efficacy, safety and tolerability, ease of administration, and cost. Overall, a personalized medicine approach has been found to be favourable, tailoring the incretin agent to benefit and suit patient's needs such as renal impairment (RI) or hepatic impairment (HI). PMID:23125920

  9. Absence of Shb impairs insulin secretion by elevated FAK activity in pancreatic islets.

    PubMed

    Alenkvist, Ida; Dyachok, Oleg; Tian, Geng; Li, Jia; Mehrabanfar, Saba; Jin, Yang; Birnir, Bryndis; Tengholm, Anders; Welsh, Michael

    2014-12-01

    The Src homology-2 domain containing protein B (SHB) has previously been shown to function as a pleiotropic adapter protein, conveying signals from receptor tyrosine kinases to intracellular signaling intermediates. The overexpression of Shb in β-cells promotes β-cell proliferation by increased insulin receptor substrate (IRS) and focal adhesion kinase (FAK) activity, whereas Shb deficiency causes moderate glucose intolerance and impaired first-peak insulin secretion. Using an array of techniques, including live-cell imaging, patch-clamping, immunoblotting, and semi-quantitative PCR, we presently investigated the causes of the abnormal insulin secretory characteristics in Shb-knockout mice. Shb-knockout islets displayed an abnormal signaling signature with increased activities of FAK, IRS, and AKT. β-catenin protein expression was elevated and it showed increased nuclear localization. However, there were no major alterations in the gene expression of various proteins involved in the β-cell secretory machinery. Nor was Shb deficiency associated with changes in glucose-induced ATP generation or cytoplasmic Ca(2+) handling. In contrast, the glucose-induced rise in cAMP, known to be important for the insulin secretory response, was delayed in the Shb-knockout compared with WT control. Inhibition of FAK increased the submembrane cAMP concentration, implicating FAK activity in the regulation of insulin exocytosis. In conclusion, Shb deficiency causes a chronic increase in β-cell FAK activity that perturbs the normal insulin secretory characteristics of β-cells, suggesting multi-faceted effects of FAK on insulin secretion depending on the mechanism of FAK activation.

  10. In vitro maturation of viable islets from partially digested young pig pancreas.

    PubMed

    Lamb, Morgan; Laugenour, Kelly; Liang, Ouwen; Alexander, Michael; Foster, Clarence E; Lakey, Jonathan R T

    2014-03-01

    Isolation of islets from market-sized pigs is costly, with considerable islet losses from fragmentation occurring during isolation and tissue culture. Fetal and neonatal pigs yield insulin unresponsive islet-like cell clusters that become glucose-responsive after extended periods of time. Both issues impact clinical applicability and commercial scale-up. We have focused our efforts on a cost-effective scalable method of isolating viable insulin-responsive islets. Young Yorkshire pigs (mean age 20 days, range 4-30 days) underwent rapid pancreatectomy (<5 min) and partial digestion using low-dose collagenase, followed by in vitro culture at 37°C and 5% CO2 for up to 14 days. Islet viability was assessed using FDA/PI or Newport Green, and function was assessed using a glucose-stimulated insulin release (GSIR) assay. Islet yield was performed using enumeration of dithizone-stained aliquots. The young porcine (YP) islet yield at dissociation was 12.6 ± 2.1 × 10(3) IEQ (mean ± SEM) per organ and increased to 33.3 ± 6.4 × 10(3) IEQ after 7 days of in vitro culture. Viability was 97.3 ± 7% at dissociation and remained over 90% viable after 11 days in tissue culture (n = ns). Glucose responsiveness increased throughout maturation in culture. The stimulation index (SI) of the islets increased from 1.7 ± 2 on culture day 3 to 2.58 ± 0.5 on culture day 7. These results suggest that this method is both efficient and scalable for isolating and maturing insulin-responsive porcine islets in culture. PMID:23394130

  11. β-cell metabolic alterations under chronic nutrient overload in rat and human islets.

    PubMed

    Vernier, Stephanie; Chiu, Angela; Schober, Joseph; Weber, Theresa; Nguyen, Phuong; Luer, Mark; McPherson, Timothy; Wanda, Paul E; Marshall, Connie A; Rohatgi, Nidhi; McDaniel, Michael L; Greenberg, Andrew S; Kwon, Guim

    2012-01-01

    The aim of this study was to assess multifactorial β-cell responses to metabolic perturbations in primary rat and human islets. Treatment of dispersed rat islet cells with elevated glucose and free fatty acids (FFAs, oleate:palmitate = 1:1 v/v) resulted in increases in the size and the number of lipid droplets in β-cells in a time- and concentration-dependent manner. Glucose and FFAs synergistically stimulated the nutrient sensor mammalian target of rapamycin complex 1 (mTORC1). A potent mTORC1 inhibitor, rapamycin (25 nM), significantly reduced triglyceride accumulation in rat islets. Importantly, lipid droplets accumulated only in β-cells but not in α-cells in an mTORC1-dependent manner. Nutrient activation of mTORC1 upregulated the expression of adipose differentiation related protein (ADRP), known to stabilize lipid droplets. Rat islet size and new DNA synthesis also increased under nutrient overload. Insulin secretion into the culture medium increased steadily over a 4-day period without any significant difference between glucose (10 mM) alone and the combination of glucose (10 mM) and FFAs (240 μM). Insulin content and insulin biosynthesis, however, were significantly reduced under the combination of nutrients compared with glucose alone. Elevated nutrients also stimulated lipid droplet formation in human islets in an mTORC1-dependent manner. Unlike rat islets, however, human islets did not increase in size under nutrient overload despite a normal response to nutrients in releasing insulin. The different responses of islet cell growth under nutrient overload appear to impact insulin biosynthesis and storage differently in rat and human islets. PMID:23247575

  12. Outcomes of Pancreatic Islet Allotransplantation Using the Edmonton Protocol at the University of Chicago

    PubMed Central

    Tekin, Zehra; Garfinkel, Marc R.; Chon, W. James; Schenck, Lindsay; Golab, Karolina; Savari, Omid; Thistlethwaite, J. Richard; Philipson, Louis H.; Majewski, Colleen; Pannain, Silvana; Ramachandran, Sabarinathan; Rezania, Kourosh; Hariprasad, Seenu M.; Millis, J. Michael; Witkowski, Piotr

    2016-01-01

    Objective The aim of this study was to assess short-term and long-term results of the pancreatic islet transplantation using the Edmonton protocol at the University of Chicago. Materials and Methods Nine patients underwent pancreatic islet cell transplantation using the Edmonton Protocol; they were followed up for 10 years after initial islet transplant with up to 3 separate islet infusions. They were given induction treatment using an IL-2R antibody and their maintenance immunosuppression regimen consisted of sirolimus and tacrolimus. Results Nine patients received a total of 18 islet infusions. Five patients dropped out in the early phase of the study. Greater than 50% drop-out and noncompliance rate resulted from both poor islet function and recurrent side effects of immunosuppression. The remaining 4 (44%) patients stayed insulin free with intervals for at least over 5 years (cumulative time) after the first transplant. Each of them received 3 infusions, on average 445 000 islet equivalent per transplant. Immunosuppression regimen required multiple adjustments in all patients due to recurrent side effects. In the long-term follow up, kidney function remained stable, and diabetic retinopathy and polyneuropathy did not progress in any of the patients. Patients' panel reactive antibodies remained zero and anti-glutamic acid decarboxylase 65 antibody did not rise after the transplant. Results of metabolic tests including hemoglobin A1c, arginine stimulation, and mixed meal tolerance test were correlated with clinical islet function. Conclusions Pancreatic islet transplantation initiated according to Edmonton protocol offered durable long-term insulin-free glycemic control in only highly selected brittle diabetics providing stable control of diabetic neuropathy and retinopathy and without increased sensitization or impaired renal function. Immunosuppression adjustments and close follow-up were critical for patient retention and ultimate success.

  13. Fluorescent protein vectors for pancreatic islet cell identification in live-cell imaging.

    PubMed

    Shuai, Hongyan; Xu, Yunjian; Yu, Qian; Gylfe, Erik; Tengholm, Anders

    2016-10-01

    The islets of Langerhans contain different types of endocrine cells, which are crucial for glucose homeostasis. β- and α-cells that release insulin and glucagon, respectively, are most abundant, whereas somatostatin-producing δ-cells and particularly pancreatic polypeptide-releasing PP-cells are more scarce. Studies of islet cell function are hampered by difficulties to identify the different cell types, especially in live-cell imaging experiments when immunostaining is unsuitable. The aim of the present study was to create a set of vectors for fluorescent protein expression with cell-type-specific promoters and evaluate their applicability in functional islet imaging. We constructed six adenoviral vectors for expression of red and green fluorescent proteins controlled by the insulin, preproglucagon, somatostatin, or pancreatic polypeptide promoters. After transduction of mouse and human islets or dispersed islet cells, a majority of the fluorescent cells also immunostained for the appropriate hormone. Recordings of the sub-plasma membrane Ca(2+) and cAMP concentrations with a fluorescent indicator and a protein biosensor, respectively, showed that labeled cells respond to glucose and other modulators of secretion and revealed a striking variability in Ca(2+) signaling among α-cells. The measurements allowed comparison of the phase relationship of Ca(2+) oscillations between different types of cells within intact islets. We conclude that the fluorescent protein vectors allow easy identification of specific islet cell types and can be used in live-cell imaging together with organic dyes and genetically encoded biosensors. This approach will facilitate studies of normal islet physiology and help to clarify molecular defects and disturbed cell interactions in diabetic islets.

  14. Fluorescent protein vectors for pancreatic islet cell identification in live-cell imaging.

    PubMed

    Shuai, Hongyan; Xu, Yunjian; Yu, Qian; Gylfe, Erik; Tengholm, Anders

    2016-10-01

    The islets of Langerhans contain different types of endocrine cells, which are crucial for glucose homeostasis. β- and α-cells that release insulin and glucagon, respectively, are most abundant, whereas somatostatin-producing δ-cells and particularly pancreatic polypeptide-releasing PP-cells are more scarce. Studies of islet cell function are hampered by difficulties to identify the different cell types, especially in live-cell imaging experiments when immunostaining is unsuitable. The aim of the present study was to create a set of vectors for fluorescent protein expression with cell-type-specific promoters and evaluate their applicability in functional islet imaging. We constructed six adenoviral vectors for expression of red and green fluorescent proteins controlled by the insulin, preproglucagon, somatostatin, or pancreatic polypeptide promoters. After transduction of mouse and human islets or dispersed islet cells, a majority of the fluorescent cells also immunostained for the appropriate hormone. Recordings of the sub-plasma membrane Ca(2+) and cAMP concentrations with a fluorescent indicator and a protein biosensor, respectively, showed that labeled cells respond to glucose and other modulators of secretion and revealed a striking variability in Ca(2+) signaling among α-cells. The measurements allowed comparison of the phase relationship of Ca(2+) oscillations between different types of cells within intact islets. We conclude that the fluorescent protein vectors allow easy identification of specific islet cell types and can be used in live-cell imaging together with organic dyes and genetically encoded biosensors. This approach will facilitate studies of normal islet physiology and help to clarify molecular defects and disturbed cell interactions in diabetic islets. PMID:27539300

  15. Prophylactically Decontaminating Human Islet Product for Safe Clinical Application: Effective and Potent Method

    PubMed Central

    Qi, Meirigeng; Omori, Keiko; Mullen, Yoko; McFadden, Brian; Valiente, Luis; Juan, Jemily; Bilbao, Shiela; Tegtmeier, Bernard R.; Dafoe, Donald; Kandeel, Fouad; Al-Abdullah, Ismail H.

    2016-01-01

    Background Transplanting pancreatic islets into recipients must be safe and effective to treat type 1 diabetes. Islet quality and quantity are important; however, the final product must also be free from microbial contamination and low endotoxin levels. Methods This study explored a method to eliminate contamination in manufacturing islets for transplantation. A simple (single antibiotic n = 164) and refined (triple antimicrobial agents, n = 279) pancreas decontaminating methods were used to test their effects on reducing the contamination rates in the islet final product. A total of 443 pancreata were processed for islet isolations. Three samples for microbial tests (Gram stain, aerobic, and anaerobic culture) were taken at preprocess (pancreas preservation), postisolation, and postculture. Endotoxin levels were measured only for islets considered for transplantation. Results Of 443 pancreata used for islet isolation, 79 (17.8%) showed signs of contamination in preprocess samples; 10 (2.3%) were contaminated in both preprocess and in the final product (postisolation and postculture) samples. Contamination rates in which preprocess and final product samples were positive for contamination was significantly lower using the refined method (refined vs simple method: 5% vs 20.5%, P = 0.045). Identical microbial species were present in both preprocess and in the final product. Conclusions This study demonstrated that the refined method reduces the rate of contamination of the islet final product and is safe for clinical application. Moreover, it may be used as a standard method during human islet manufacturing facilitating the application of a biological license agreement from United States Food and Drug Administration. PMID:26894230

  16. Copper addition prevents the inhibitory effects of interleukin 1-beta on rat pancreatic islets.

    PubMed

    Vinci, C; Caltabiano, V; Santoro, A M; Rabuazzo, A M; Buscema, M; Purrello, R; Rizzarelli, E; Vigneri, R; Purrello, F

    1995-01-01

    Since copper [Cu(II)] is a necessary cofactor for both intra-mitochondrial enzymes involved in energy production and hydroxyl scavenger enzymes, two hypothesised mechanisms for action of interleukin-I beta (IL-1 beta), we studied whether Cu(II) addition could prevent the inhibitory effect of IL-1 beta on insulin release and glucose oxidation in rat pancreatic islets. Islets were incubated with or without 50 U/ml IL-1 beta, in the presence or absence of various concentrations of Cu(II)-GHL (Cu(II) complexed with glycyl-L-histidyl-L-lysine, a tripeptide known to enhance copper uptake into cultured cells). CuSO4 (1-1000 ng/ml) was used as a control for Cu(II) effect when present as an inorganic salt. At the end of the incubation period, insulin secretion was evaluated in the presence of either 2.8 mmol/l (basal insulin secretion) or 16.7 mmol/l glucose (glucose-induced release). In control islets basal insulin secretion was 92.0 +/- 11.4 pg.islet-1 h-1 (mean +/- SEM, n = 7) and glucose-induced release was 2824.0 +/- 249.0 pg.islet-1 h-1. In islets pre-exposed to 50 U/ml IL-1 beta, basal insulin release was not significantly affected but glucose-induced insulin release was greatly reduced (841.2 +/- 76.9, n = 7, p < 0.005). In islets incubated with IL-1 beta and Cu-GHL (0.4 mumol/l, maximal effect) basal secretion was 119.0 +/- 13.1 pg.islet-1 h-1 and glucose-induced release was 2797.2 +/- 242.2, (n = 7, p < 0.01 in respect to islets exposed to IL-1 beta alone).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:7744228

  17. Ultraviolet light immunomodulation of canine islets for prolongation of allograft survival

    SciTech Connect

    Kenyon, N.S.; Strasser, S.; Alejandro, R. )

    1990-03-01

    Ultraviolet (UV) light treatment of donor islets has been shown to be effective for the prolongation of islet allograft survival in rodent models. This study evaluated UV as an immunomodulator of canine islets. The effects of UV irradiation on islet secretory function in vitro revealed a trend of increasing basal insulin release with increasing doses of UV and a corresponding significant decrease in glucose-mediated insulin release (expressed as percentage of basal fractional insulin release) beginning at UV light exposures of 200-300 J/m2 (n = 3, P less than 0.05). Proliferative responses to UV-irradiated allogeneic peripheral blood leukocytes and islets were significantly decreased by 53-112% (P less than 0.05) in 27 of 29 mixed-lymphocyte cultures and by 35-74% (P less than 0.05) in 4 of 5 mixed-lymphocyte islet culture experiments, respectively, beginning at 200-600 J/m2. Autotransplantation of nonirradiated (n = 8) and irradiated islets (600 J/m2, n = 6) resulted in a 1-mo graft survival rate of 75% for the control group and 50% for the irradiated group. Allotransplantation of irradiated islets (600 J/m2) into either nonimmunosuppressed recipients (1 donor to 1 recipient, n = 8) or recipients of subimmunosuppressive doses of cyclosporin (2 donors to 1 recipient, n = 4) resulted in 100% rejection by day 10. In contrast, when islets were cultured for 24 h postirradiation and transplanted into cyclosporin-treated pancreatectomized recipients (2 donors to 1 recipient), 3 of 7 grafts were prolonged beyond day 10 to days 16, 26, and greater than 100.

  18. Characterization of the mouse pancreatic islet proteome and comparative analysis with other mouse tissues

    SciTech Connect

    Petyuk, Vladislav A.; Qian, Weijun; Hinault, Charlotte; Gritsenko, Marina A.; Singhal, Mudita; Monroe, Matthew E.; Camp, David G.; Kulkarni, Rohit N.; Smith, Richard D.

    2008-08-01

    The pancreatic islets of Langerhans and insulin-producing beta cells in particular play a central role in the maintenance of glucose homeostasis and the islet dysfunction is associated with the pathogenesis of both type 1 and type 2 diabetes mellitus. To contribute to the understanding of the biology of the pancreatic islets we applied proteomic techniques based on liquid chromatography coupled with mass spectrometry. Here as an initial step we present the first comprehensive proteomic characterization of pancreas islets of the mouse, the commonly used animal model for diabetes research. Two-dimensional SCX LC/RP LC-MS/MS has been applied to characterize of the mouse islet proteome, resulting in the confident identification of 17,350 different tryptic peptides covering 2,612 proteins with at least two unique peptide identifications per protein. The dataset also allowed identification of a number of post-translational modifications including several modifications relevant to oxidative stress and phosphorylation. While many of the identified phosphorylation sites corroborates with previous known sites, the oxidative modifications observed on cysteinyl residues potentially reveal novel information related to the role of oxidation stress in islet functions. Comparative analysis of the islet proteome database with 15 available proteomic datasets from other mouse tissues and cells revealed a set of 68 proteins uniquely detected only in the pancreatic islets. Besides proteins with known functions, like islet secreted peptide hormones, this unique set contains a number of proteins with yet unknown functions. The resulting peptide and protein database will be available at ncrr.pnl.gov web site of the NCRR proteomic center (ncrr.pnl.gov).

  19. Tumor necrosis factor-alpha modifies adhesion properties of rat islet B cells.

    PubMed Central

    Cirulli, V; Halban, P A; Rouiller, D G

    1993-01-01

    The characteristic three-dimensional cell type organization of islets of Langerhans is perturbed in animal models of diabetes, suggesting that it may be important for islet function. Rat islet cells in culture are able to form aggregates with an architecture similar to native islets (pseudoislets), thus providing a good model to study the molecular basis of islet architecture and its role in islet function. Sorted islet B cells and non-B cells were permanently labeled with two different fluorescent dyes (DiO and DiI), mixed, and allowed to form aggregates during a 5-d culture in the presence or absence of TNF-alpha (100 U/ml), a cytokine suggested to be implicated in the early physiological events leading to insulin-dependent diabetes mellitus. Confocal microscopy of aggregates revealed that TNF-alpha reversibly perturbs the typical segregation between B and non-B cells. Insulin secretion, was altered in the disorganized aggregates, and returned towards normal when pseudoislets had regained their typical architecture. The homotypic adhesion properties of sorted B and non-B cells cultured for 20 h in the presence or absence of TNF-alpha were studied in a short term aggregation assay. TNF-alpha induced a significant rise in Ca(2+)-independent adhesion of B cells (from 24 +/- 1.1% to 44.3 +/- 1.2%; n = 4, P < 0.001). These findings raise the possibility that the increased expression of Ca(2+)-independent adhesion molecules on B cells leads to altered islet architecture, which might be a factor in the perturbation of islet function induced by TNF-alpha. Images PMID:8098044

  20. Islet Transplantation in Type 1 Diabetes: Ongoing Challenges, Refined Procedures, and Long-Term Outcome

    PubMed Central

    Shapiro, A.M. James

    2012-01-01

    Remarkable progress has been made in islet transplantation over a span of 40 years. Once just an experimental curiosity in mice, this therapy has moved forward, and can now provide robust therapy for highly selected patients with type 1 diabetes (T1D), refractory to stabilization by other means. This progress could not have occurred without extensive dynamic international collaboration. Currently, 1,085 patients have undergone islet transplantation at 40 international sites since the Edmonton Protocol was reported in 2000 (752 allografts, 333 autografts), according to the Collaborative Islet Transplant Registry. The long-term results of islet transplantation in selected centers now match registry data of pancreas-alone transplantation, with 6 sites reporting five-year insulin independence rates ≥50%. Islet transplantation has been criticized for the use of multiple donor pancreas organs, but progress has also occurred in single-donor success, with 10 sites reporting increased single-donor engraftment. The next wave of innovative clinical trial interventions will address instant blood-mediated inflammatory reaction (IBMIR), apoptosis, and inflammation, and will translate into further marked improvements in single-donor success. Effective control of auto- and alloimmunity is the key to long-term islet function, and high-resolution cellular and antibody-based assays will add considerable precision to this process. Advances in immunosuppression, with new antibody-based targeting of costimulatory blockade and other T-B cellular signaling, will have further profound impact on the safety record of immunotherapy. Clinical trials will move forward shortly to test out new human stem cell derived islets, and in parallel trials will move forward, testing pig islets for compatibility in patients. Induction of immunological tolerance to self-islet antigens and to allografts is a difficult challenge, but potentially within our grasp. PMID:23804275

  1. Enterovirus infection of human islets of Langerhans affects β-cell function resulting in disintegrated islets, decreased glucose stimulated insulin secretion and loss of Golgi structure

    PubMed Central

    Hodik, M; Skog, O; Lukinius, A; Isaza-Correa, J M; Kuipers, J; Giepmans, B N G; Frisk, G

    2016-01-01

    Aims/hypothesis In type 1 diabetes (T1D), most insulin-producing β cells are destroyed, but the trigger is unknown. One of the possible triggers is a virus infection and the aim of this study was to test if enterovirus infection affects glucose stimulated insulin secretion and the effect of virus replication on cellular macromolecules and organelles involved in insulin secretion. Methods Isolated human islets were infected with different strains of coxsackievirus B (CVB) virus and the glucose-stimulated insulin release (GSIS) was measured in a dynamic perifusion system. Classical morphological electron microscopy, large-scale electron microscopy, so-called nanotomy, and immunohistochemistry were used to study to what extent virus-infected β cells contained insulin, and real-time PCR was used to analyze virus induced changes of islet specific genes. Results In islets infected with CVB, GSIS was reduced in correlation with the degree of virus-induced islet disintegration. The expression of the gene encoding insulin was decreased in infected islets, whereas the expression of glucagon was not affected. Also, in islets that were somewhat disintegrated, there were uninfected β cells. Ultrastructural analysis revealed that virus particles and virus replication complexes were only present in β cells. There was a significant number of insulin granules remaining in the virus-infected β cells, despite decreased expression of insulin mRNA. In addition, no typical Golgi apparatus was detected in these cells. Exposure of islets to synthetic dsRNA potentiated glucose-stimulated insulin secretion. Conclusions/interpretation Glucose-stimulated insulin secretion; organelles involved in insulin secretion and gene expression were all affected by CVB replication in β cells. PMID:27547409

  2. Caprine pancreatic islet xenotransplantation into diabetic immunosuppressed BALB/c mice

    PubMed Central

    Hani, Homayoun; Allaudin, Zeenathul N; Mohd-Lila, Mohd-Azmi; Ibrahim, Tengku A Tengku; Othman, Abas M

    2014-01-01

    Background Type 1 diabetes mellitus is a devastating disease for which there is currently no cure, but only lifetime management. Islet xenotransplantation is a promising technique for the restoration of blood glucose control in patients with diabetes mellitus. The purpose of this study was to explore the potential use of caprine (goat) islet cells as xenogeneic grafts in the treatment for diabetes in a mouse model. Methods Caprine pancreases were harvested and transported to the laboratory under conditions optimized to prevent ischemia. Islets were isolated, purified, and tested for functionality. Caprine islets (2000 islet equivalent) were transplanted beneath the kidney capsules of diabetic BALB/c mice under thalidomide-induced immunosuppression. Blood glucose and insulin levels of grafted mice were evaluated by glucometer and enzyme-linked immunosorbent assay kit, respectively. The functionality and quality of caprine pancreatic islet grafts were assessed by intraperitoneal glucose tolerance tests. Results The viability of purified islet cells exceeded 90%. Recipient mice exhibited normoglycemia (<11 mm glucose) for 30 days. In addition, weight gain negatively correlated with blood glucose level. The findings verified diabetes reversal in caprine islet recipient mice. A significant drop in non-fasting blood glucose level (from 23.3 ± 5.4 to 8.04 ± 0.44 mm) and simultaneous increase in serum insulin level (from 0.01 ± 0.001 to 0.56 ± 0.17 μg/l) and body weights (from 23.64 ± 0.31 to 25.85 ± 0.34 g) were observed (P < 0.05). Immunohistochemical analysis verified insulin production in the transplanted islets. Conclusions Purified caprine islets were demonstrated to successfully sustain viability and functionality for controlling blood glucose levels in an immunosuppressed mouse model of diabetes. These results suggest the use of caprine islets as an addition to the supply of xenogeneic islets for diabetes research. PMID:24645790

  3. Human fetal pancreatic islet-like structures as source material to treat type 1 diabetes.

    PubMed

    Ikeda, Yasuhiro; Kudva, Yogish C

    2013-01-01

    The incidence of type 1 diabetes is increasing worldwide. Current therapy continues to be suboptimal. An exciting therapeutic advance in the short term is closed loop technology development and application. However, cell and tissue therapy continues to be an unmet need for the disorder. Human islets isolated from deceased donors will be clinically available to treat type 1 diabetes within the next 1 to 2 years. Other approaches such as xenotransplantation and islet products derived from human embryonic stem cells and induced pluripotent stem cells are currently being pursued. The current commentary provides context and discusses future endeavors for transplantation of islet-like structures derived from fetal pancreas. PMID:24377429

  4. [Islet transplantation as a clinical tool: present state and future perspectives].

    PubMed

    Eliaschewitz, Freddy Goldberg; Franco, Denise Reis; Mares-Guia, Thiago Rennó; Noronha, Irene L; Labriola, Leticia; Sogayar, Mari Cleide

    2009-02-01

    Islet transplant is an innovative treatment for type 1 diabetic patients, which still lies between experimental and approved transplant therapy. Islet cells are seeded in a non-physiological territory where an uncertain fraction will be able to adapt and survive. Thus, the challenge lies in improving the whole procedure, employing the tools of cell biology, immunology and laboratory techniques, in order to reach the results obtained with whole organ transplant. This review describes the procedure, its progress to the present methodology and clinical results obtained. Future perspectives of islet transplantation in the light of recent biotechnological advances are also focused.

  5. That which does not kill us makes us stronger--does Nietzsche's quote apply to islets? A re-evaluation of the passenger leukocyte theory, free radicals, and glucose toxicity in islet cell transplantation.

    PubMed

    Wright, J R; Xu, B-Y

    2014-07-01

    In clinical islet transplantation, isolated islets are embolized into the liver via the portal vein (PV); however, up to 70% of the islets are lost in the first few days after transplantation (i.e., too quickly to be mediated by the adaptive immune system). Part of early loss is due to instant blood-mediated inflammatory reaction, an immune/thrombotic process caused by islets interacting with complement. We have shown that glucose toxicity (GT) also plays a critical role based upon the observation that islets embolized into the PVs of diabetic athymic mice are rapidly lost but, if recipients are not diabetic, the islet grafts persist. Using donor islets resistant to the β-cell toxin streptozotocin, we have shown that intraportal islets engrafted in non-diabetic athymic mice for as little as 3 days will maintain normoglycemia when streptozotocin is administered destroying the recipient's native pancreas β-cells. What is the mechanism of GT in β-cells? Chronic exposure to hyperglycemia over-exerts β-cells and their electron transport chains leak superoxide radicals during aerobic metabolism. Here we reinterpret old data and present some compelling new data supporting a new model of early intraportal islet graft loss. We hypothesize that diabetes stimulates overproduction of superoxide in both the β-cells of the islet grafts and the endothelial cells lining the intraportal microvasculature adjacent to where the embolized islets become lodged. This double dose of oxidant damage stresses both the islets, which are highly susceptible to free radicals because of inherent low levels of scavenging enzymes, and the adjacent hepatic endothelial cells. This, superimposed upon localized endothelial damage caused by embolization, precipitates inflammation and coagulation which further damages islet grafts. Based upon this model, we predict that pre-exposing islets to sub-lethal hyperoxia should up-regulate islet free radical scavenging enzyme levels and promote initial

  6. GABAB receptors and glucose homeostasis: evaluation in GABAB receptor knockout mice.

    PubMed

    Bonaventura, M M; Catalano, P N; Chamson-Reig, A; Arany, E; Hill, D; Bettler, B; Saravia, F; Libertun, C; Lux-Lantos, V A

    2008-01-01

    GABA has been proposed to inhibit insulin secretion through GABAB receptors (GABABRs) in pancreatic beta-cells. We investigated whether GABABRs participated in the regulation of glucose homeostasis in vivo. The animals used in this study were adult male and female BALB/C mice, mice deficient in the GABAB1 subunit of the GABABR (GABAB(-/-)), and wild types (WT). Blood glucose was measured under fasting/fed conditions and in glucose tolerance tests (GTTs) with a Lifescan Glucose meter, and serum insulin was measured by ELISA. Pancreatic insulin content and islet insulin were released by RIA. Western blots for the GABAB1 subunit in islet membranes and immunohistochemistry for insulin and GABAB1 were performed in both genotypes. BALB/C mice preinjected with Baclofen (GABABR agonist, 7.5 mg/kg ip) presented impaired GTTs and decreased insulin secretion compared with saline-preinjected controls. GABAB(-/-) mice showed fasting and fed glucose levels similar to WT. GABAB(-/-) mice showed improved GTTs at moderate glucose overloads (2 g/kg). Baclofen pretreatment did not modify GTTs in GABAB(-/-) mice, whereas it impaired normal glycemia reinstatement in WT. Baclofen inhibited glucose-stimulated insulin secretion in WT isolated islets but was without effect in GABAB(-/-) islets. In GABAB(-/-) males, pancreatic insulin content was increased, basal and glucose-stimulated insulin secretion were augmented, and impaired insulin tolerance test and increased homeostatic model assessment of insulin resistance index were determined. Immunohistochemistry for insulin demonstrated an increase of very large islets in GABAB(-/-) males. Results demonstrate that GABABRs are involved in the regulation of glucose homeostasis in vivo and that the constitutive absence of GABABRs induces alterations in pancreatic histology, physiology, and insulin resistance. PMID:17971510

  7. Determination of Optimal Sample Size for Quantification of β-Cell Area, Amyloid Area and β-Cell Apoptosis in Isolated Islets.

    PubMed

    Meier, Daniel T; Entrup, Leon; Templin, Andrew T; Hogan, Meghan F; Samarasekera, Thanya; Zraika, Sakeneh; Boyko, Edward J; Kahn, Steven E

    2015-08-01

    Culture of isolated rodent islets is widely used in diabetes research to assess different endpoints, including outcomes requiring histochemical staining. As islet yields during isolation are limited, we determined the number of islets required to obtain reliable data by histology. We found that mean values for insulin-positive β-cell area/islet area, thioflavin S-positive amyloid area/islet area and β-cell apoptosis do not vary markedly when more than 30 islets are examined. Measurement variability declines as more islets are quantified, so that the variability of the coefficient of variation (CV) in human islet amyloid polypeptide (hIAPP) transgenic islets for β-cell area/islet area, amyloid area/islet area and β-cell apoptosis are 13.20% ± 1.52%, 10.03% ± 1.76% and 6.78% ± 1.53%, respectively (non-transgenic: 7.65% ± 1.17% β-cell area/islet area and 8.93% ± 1.56% β-cell apoptosis). Increasing the number of islets beyond 30 had marginal effects on the CV. Using 30 islets, 6 hIAPP-transgenic preparations are required to detect treatment effects of 14% for β-cell area/islet area, 30% for amyloid area/islet area and 23% for β-cell apoptosis (non-transgenic: 9% for β-cell area/islet area and 45% for β-cell apoptosis). This information will be of value in the design of studies using isolated islets to examine β cells and islet amyloid.

  8. Improving efficacy of clinical islet transplantation with iodixanol-based islet purification, thymoglobulin induction, and blockage of IL-1β and TNF-α.

    PubMed

    Matsumoto, Shinichi; Takita, Morihito; Chaussabel, Damien; Noguchi, Hirofumi; Shimoda, Masayuki; Sugimoto, Koji; Itoh, Takeshi; Chujo, Daisuke; SoRelle, Jeff; Onaca, Nicholas; Naziruddin, Bashoo; Levy, Marlon F

    2011-01-01

    Poor efficacy is one of the issues for clinical islet transplantation. Recently, we demonstrated that pancreatic ductal preservation significantly improved the success rate of islet isolation; however, two transplants were necessary to achieve insulin independence. In this study, we introduced iodixanol-based purification, thymoglobulin induction, and double blockage of IL-1β and TNF-α as well as sirolimus-free immunosuppression to improve the efficacy of clinical islet transplantation. Nine clinical-grade human pancreata were procured. Pancreatic ductal preservation was performed using ET-Kyoto solution in all cases. When the isolated islets met the clinical criteria, they were transplanted. We utilized two methods of immunosuppression and anti-inflammation. The first protocol prescribed daclizumab for induction, then sirolimus and tacrolimus to maintain immunosuppression. The second protocol used thymoglobulin for induction and tacrolimus and mycophenolate mofetil to maintain immunosuppression. Eternacept and anakinra were administered as anti-inflammatory drugs. The total amount of insulin required, HbA1c, and the SUITO index were determined to analyze and compare the results of transplantation. All isolated islet preparations (9/9) met the criteria for clinical transplantation, and they were transplanted into six type 1 diabetic patients. All patients achieved insulin independence with normal HbA1c levels; however, the first protocol required two islet infusions (N = 3) and the second protocol only required a single infusion (N = 3). The average SUITO index, at 1 month after a single-donor islet transplantation, was significantly higher in the second protocol (49.6 ± 8.3 vs. 19.3 ± 6.3, p < 0.05). Pancreatic ductal preservation, iodixanol-based purification combined with thymoglobulin induction, and blockage of IL-1β and TNF-α as well as sirolimus-free immunosuppression dramatically improved the efficacy of clinical islet transplantations. This protocol

  9. Human amniotic epithelial cells induce localized cell-mediated immune privilege in vitro: implications for pancreatic islet transplantation.

    PubMed

    Qureshi, Khalid M; Oliver, Robert J; Paget, Michelle B; Murray, Hilary E; Bailey, Clifford J; Downing, Richard

    2011-01-01

    Chronic systemic immunosuppression in cell replacement therapy restricts its clinical application. This study sought to explore the potential of cell-based immune modulation as an alternative to immunosuppressive drug therapy in the context of pancreatic islet transplantation. Human amniotic epithelial cells (AEC) possess innate anti-inflammatory and immunosuppressive properties that were utilized to create localized immune privilege in an in vitro islet cell culture system. Cellular constructs composed of human islets and AEC (islet/AEC) were bioengineered under defined rotational cell culture conditions. Insulin secretory capacity was validated by glucose challenge and immunomodulatory potential characterized using a peripheral blood lymphocyte (PBL) proliferation assay. Results were compared to control constructs composed of islets or AEC cultured alone. Studies employing AEC-conditioned medium examined the role of soluble factors, and fluorescence immunocytochemistry was used to identify putative mediators of the immunosuppressive response in isolated AEC monocultures. Sustained, physiologically appropriate insulin secretion was observed in both islets and islet/AEC constructs. Activation of resting PBL proliferation occurred on exposure to human islets alone but this response was significantly (p < 0.05) attenuated by the presence of AEC and AEC-conditioned medium. Mitogen (phytohaemagglutinin, 5 μg/ml)-induced PBL proliferation was sustained on contact with isolated islets but abrogated by AEC, conditioned medium, and the islet/AEC constructs. Immunocytochemical analysis of AEC monocultures identified a subpopulation of cells that expressed the proapoptosis protein Fas ligand. This study demonstrates that human islet/AEC constructs exhibit localized immunosuppressive properties with no impairment of β-cell function. The data suggest that transplanted islets may benefit from the immune privilege status conferred on them as a consequence of their close

  10. Islet adaptation to obesity and insulin resistance in WNIN/GR-Ob rats

    PubMed Central

    Singh, Himadri; Ganneru, Sireesha; Malakapalli, Venkata; Chalasani, Maniprabha; Nappanveettil, Giridharan; Bhonde, Ramesh R; Venkatesan, Vijayalakshmi

    2014-01-01

    WNIN/GR-Ob mutant rat is a novel animal model to study metabolic syndrome (obesity, insulin resistance, hyperinsulinemia, impaired glucose tolerance and cardiovascular diseases). We have investigated the islet characteristics of obese mutants at different age groups (1, 6 and 12 months) to assess the islet changes in response to early and chronic metabolic stress. Our data demonstrates altered islet cell morphology and function (hypertrophy, fibrotic lesions, vacuolation, decreased stimulation index, increased TNFα, ROS and TBARS levels) in mutants as compared to controls. Furthermore, network analysis (gene-gene interaction) studied in pancreas demonstrated increased inflammation as a key factor underlying obesity/metabolic syndrome in mutants. These observations pave way to explore this model to understand islet adaptation in response to metabolic syndrome. PMID:25833252

  11. Islet amyloid polypeptide and high hydrostatic pressure: towards an understanding of the fibrillization process

    NASA Astrophysics Data System (ADS)

    Lopes, D. H. J.; Smirnovas, V.; Winter, R.

    2008-07-01

    Type II Diabetes Mellitus is a disease which is characterized by peripheral insulin resistance coupled with a progressive loss of insulin secretion that is associated with a decrease in pancreatic islet β-cell mass and the deposition of amyloid in the extracellular matrix of β-cells, which lead to islet cell death. The principal component of the islet amyloid is a pancreatic hormone called islet amyloid polypeptide (IAPP). High-pressure coupled with FT-IR, CD, ThT fluorescence spectroscopic and AFM studies were carried out to reveal information on the aggregation pathway as well as the aggregate structure of IAPP. Our data indicate that IAPP pre-formed fibrils exhibit a strong polymorphism with heterogeneous structures very sensitive to high hydrostatic pressure, indicating a high percentage of ionic and hydrophobic interactions being responsible for the stability the IAPP fibrils.

  12. Inducing human parthenogenetic embryonic stem cells into islet-like clusters

    PubMed Central

    LI, JIN; HE, JINGJING; LIN, GE; LU, GUANGXIU

    2014-01-01

    In order to determine whether human parthenogenetic embryonic stem (hpES) cells have the potential to differentiate into functional cells, a modified four-step protocol was used to induce the hpES cells into islet-like clusters (ILCs) in vitro. Growth factors activin A, retinoic acid, nicotinamide, Exendin-4 and betacellulin were added sequentially to the hpES cells at each step. The terminally differentiated cells were shown to gather into ILCs. Immunohistochemistry and semi quantitative polymerase chain reaction analyses demonstrated that the ILCs expressed islet specific hormones and functional markers. Furthermore, an insulin release test indicated that the clusters had the same physiological function as islets. The ILCs derived from hpES cells shared similar characteristics with islets. These results indicate that hpES cell-derived ILCs may be used as reliable material for the treatment of type I diabetes mellitus. PMID:25241773

  13. Islet adaptation to obesity and insulin resistance in WNIN/GR-Ob rats.

    PubMed

    Singh, Himadri; Ganneru, Sireesha; Malakapalli, Venkata; Chalasani, Maniprabha; Nappanveettil, Giridharan; Bhonde, Ramesh R; Venkatesan, Vijayalakshmi

    2014-01-01

    WNIN/GR-Ob mutant rat is a novel animal model to study metabolic syndrome (obesity, insulin resistance, hyperinsulinemia, impaired glucose tolerance and cardiovascular diseases). We have investigated the islet characteristics of obese mutants at different age groups (1, 6 and 12 months) to assess the islet changes in response to early and chronic metabolic stress. Our data demonstrates altered islet cell morphology and function (hypertrophy, fibrotic lesions, vacuolation, decreased stimulation index, increased TNFα, ROS and TBARS levels) in mutants as compared to controls. Furthermore, network analysis (gene-gene interaction) studied in pancreas demonstrated increased inflammation as a key factor underlying obesity/metabolic syndrome in mutants. These observations pave way to explore this model to understand islet adaptation in response to metabolic syndrome.

  14. Microfabricated biocapsules for the immunoisolation of pancreatic islets of Langerhans

    NASA Astrophysics Data System (ADS)

    Desai, Tejal Ashwin

    1998-08-01

    A silicon-based microfabricated biocapsule was developed and evaluated for use in the immunoisolation of transplanted cells, specifically pancreatic islets of Langerhans for the treatment of Type I diabetes. The transplantation of cells with specific functions is a promising therapy for a wide variety of pathologies including diabetes, Parkinson's, and hemophilia. Such transplanted cells, however, are sensitive to both cellular and humoral immune rejection as well as damage by autoimmune activity, without chronic immunosuppression. The research presented in this dissertation investigated whether microfabricated silicon-based biocapsules, with uniform membrane pore sizes in the tens of nanometer range, could provide an immunoprotective environment for pancreatic islets and other insulin-secreting cell lines, while maintaining cell viability and functionality. By utilizing fabrication techniques commonly employed in the microelectronics industry (MEMS), membranes were fabricated with precisely controlled and uniform pore sizes, allowing the optimization of biocapsule membrane parameters for the encapsulation of specific hormone-secreting cell types. The biocapsule-forming process employed bulk micromachining to define cell-containing chambers within single crystalline silicon wafers. These chambers interface with the surrounding biological environment through polycrystalline silicon filter membranes, which were surface micromachined to present a high density of uniform pores to allow sufficient permeability to oxygen, glucose, and insulin. Both in vitro and in vivo experiments established the biocompatibility of the microfabricated biocapsule, and demonstrated that encapsulated cells could live and function normally in terms of insulin-secretion within microfabricated environments for extended periods of time. This novel research shows the potential of using microfabricated biocapsules for the encapsulation of several different cell xenografts. The semipermeability

  15. Inducible VEGF Expression by Human Embryonic Stem Cell-Derived Mesenchymal Stromal Cells Reduces the Minimal Islet Mass Required to Reverse Diabetes

    PubMed Central

    Hajizadeh-Saffar, E.; Tahamtani, Y.; Aghdami, N.; Azadmanesh, K.; Habibi-Anbouhi, M.; Heremans, Y.; De Leu, N.; Heimberg, H.; Ravassard, P.; Shokrgozar, M. A.; Baharvand, H.

    2015-01-01

    Islet transplantation has been hampered by loss of function due to poor revascularization. We hypothesize that co-transplantation of islets with human embryonic stem cell-derived mesenchymal stromal cells that conditionally overexpress VEGF (hESC-MSC:VEGF) may augment islet revascularization and reduce the minimal islet mass required to reverse diabetes in mice. HESC-MSCs were transduced by recombinant lentiviruses that allowed conditional (Dox-regulated) overexpression of VEGF. HESC-MSC:VEGF were characterized by tube formation assay. After co-transplantation of hESC-MSC:VEGF with murine islets in collagen-fibrin hydrogel in the omental pouch of diabetic nude mice, we measured blood glucose, body weight, glucose tolerance and serum C-peptide. As control, islets were transplanted alone or with non-transduced hESC-MSCs. Next, we compared functional parameters of 400 islets alone versus 200 islets co-transplanted with hESC-MSC:VEGF. As control, 200 islets were transplanted alone. Metabolic function of islets transplanted with hESC-MSC:VEGF significantly improved, accompanied by superior graft revascularization, compared with control groups. Transplantation of 200 islets with hESC-MSC:VEGF showed superior function over 400 islets alone. We conclude that co-transplantation of islets with VEGF-expressing hESC-MSCs allowed for at least a 50% reduction in minimal islet mass required to reverse diabetes in mice. This approach may contribute to alleviate the need for multiple donor organs per patient. PMID:25818803

  16. Regulation of islet beta-cell pyruvate metabolism: interactions of prolactin, glucose, and dexamethasone.

    PubMed

    Arumugam, Ramamani; Horowitz, Eric; Noland, Robert C; Lu, Danhong; Fleenor, Donald; Freemark, Michael

    2010-07-01

    Prolactin (PRL) induces beta-cell proliferation and glucose-stimulated insulin secretion (GSIS) and counteracts the effects of glucocorticoids on insulin production. The mechanisms by which PRL up-regulates GSIS are unknown. We used rat islets and insulinoma (INS-1) cells to explore the interactions of PRL, glucose, and dexamethasone (DEX) in the regulation of beta-cell pyruvate carboxylase (PC), pyruvate dehydrogenase (PDH), and the pyruvate dehydrogenase kinases (PDKs), which catalyze the phosphorylation and inactivation of PDH. PRL increased GSIS by 37% (P < 0.001) in rat islets. Glucose at supraphysiological concentrations (11 mm) increased PC mRNA in islets; in contrast, PRL suppressed PC mRNA levels in islets and INS-1 cells, whereas DEX was without effect. Neither PRL nor DEX altered PC protein or activity levels. In INS-1 cells, PRL increased PDH activity 1.4- to 2-fold (P < 0.05-0.001) at glucose concentrations ranging from 2.5-11 mm. DEX reduced PDH activity; this effect was reversed by PRL. PDK1, -2, -3, and -4 mRNAs were detected in both islets and insulinoma cells, but the latter expressed trivial amounts of PDK4. PRL reduced PDK2 mRNA and protein levels in rat islets and INS-1 cells and PDK4 mRNA in islets; DEX increased PDK2 mRNA in islets and INS-1 cells; this effect was reversed by PRL. Our findings suggest that PRL induction of GSIS is mediated by increases in beta-cell PDH activity; this is facilitated by suppression of PDKs. PRL counteracts the effects of DEX on PDH and PDK expression, suggesting novel roles for the lactogens in the defense against diabetes. PMID:20484462

  17. Accurate measurement of pancreatic islet beta-cell mass using a second-generation fluorescent exendin-4 analog.

    PubMed

    Reiner, Thomas; Thurber, Greg; Gaglia, Jason; Vinegoni, Claudio; Liew, Chong Wee; Upadhyay, Rabi; Kohler, Rainer H; Li, Li; Kulkarni, Rohit N; Benoist, Christophe; Mathis, Diane; Weissleder, Ralph

    2011-08-01

    The hallmark of type 1 diabetes is autoimmune destruction of the insulin-producing β-cells of the pancreatic islets. Autoimmune diabetes has been difficult to study or treat because it is not usually diagnosed until substantial β-cell loss has already occurred. Imaging agents that permit noninvasive visualization of changes in β-cell mass remain a high-priority goal. We report on the development and testing of a near-infrared fluorescent β-cell imaging agent. Based on the amino acid sequence of exendin-4, we created a neopeptide via introduction of an unnatural amino acid at the K(12) position, which could subsequently be conjugated to fluorophores via bioorthogonal copper-catalyzed click-chemistry. Cell assays confirmed that the resulting fluorescent probe (E4(×12)-VT750) had a high binding affinity (~3 nM). Its in vivo properties were evaluated using high-resolution intravital imaging, histology, whole-pancreas visualization, and endoscopic imaging. According to intravital microscopy, the probe rapidly bound to β-cells and, as demonstrated by confocal microscopy, it was internalized. Histology of the whole pancreas showed a close correspondence between fluorescence and insulin staining, and there was an excellent correlation between imaging signals and β-cell mass in mice treated with streptozotocin, a β-cell toxin. Individual islets could also be visualized by endoscopic imaging. In short, E4(×12)-VT750 showed strong and selective binding to glucose-like peptide-1 receptors and permitted accurate measurement of β-cell mass in both diabetic and nondiabetic mice. This near-infrared imaging probe, as well as future radioisotope-labeled versions of it, should prove to be important tools for monitoring diabetes, progression, and treatment in both experimental and clinical contexts. PMID:21768367

  18. Accurate measurement of pancreatic islet β-cell mass using a second-generation fluorescent exendin-4 analog

    PubMed Central

    Reiner, Thomas; Thurber, Greg; Gaglia, Jason; Vinegoni, Claudio; Liew, Chong Wee; Upadhyay, Rabi; Kohler, Rainer H.; Kulkarni, Rohit N.; Benoist, Christophe; Mathis, Diane; Weissleder, Ralph

    2011-01-01

    The hallmark of type 1 diabetes is autoimmune destruction of the insulin-producing β-cells of the pancreatic islets. Autoimmune diabetes has been difficult to study or treat because it is not usually diagnosed until substantial β-cell loss has already occurred. Imaging agents that permit noninvasive visualization of changes in β-cell mass remain a high-priority goal. We report on the development and testing of a near-infrared fluorescent β-cell imaging agent. Based on the amino acid sequence of exendin-4, we created a neopeptide via introduction of an unnatural amino acid at the K12 position, which could subsequently be conjugated to fluorophores via bioorthogonal copper-catalyzed click-chemistry. Cell assays confirmed that the resulting fluorescent probe (E4×12-VT750) had a high binding affinity (∼3 nM). Its in vivo properties were evaluated using high-resolution intravital imaging, histology, whole-pancreas visualization, and endoscopic imaging. According to intravital microscopy, the probe rapidly bound to β-cells and, as demonstrated by confocal microscopy, it was internalized. Histology of the whole pancreas showed a close correspondence between fluorescence and insulin staining, and there was an excellent correlation between imaging signals and β-cell mass in mice treated with streptozotocin, a β-cell toxin. Individual islets could also be visualized by endoscopic imaging. In short, E4×12-VT750 showed strong and selective binding to glucose-like peptide-1 receptors and permitted accurate measurement of β-cell mass in both diabetic and nondiabetic mice. This near-infrared imaging probe, as well as future radioisotope-labeled versions of it, should prove to be important tools for monitoring diabetes, progression, and treatment in both experimental and clinical contexts. PMID:21768367

  19. Effects of Tocotrienols on Insulin Secretion-Associated Genes Expression of Rat Pancreatic Islets in a Dynamic Culture.

    PubMed

    Chia, Ling L; Jantan, Ibrahim; Chua, Kien H; Lam, Kok W; Rullah, Kamal; Aluwi, Mohd F M

    2016-01-01

    Tocotrienols (T3) are well-known for their antioxidant properties besides showing therapeutic potential in clinical complications such as hyperlipidemia induced by diabetes. The aim of this study was to determine the effects of δ-T3, γ-T3, and α-T3 on insulin secretion-associated genes expression of rat pancreatic islets in a dynamic culture. Pancreatic islets freshly isolated from male Wistar rats were treated with T3 for 1 h at 37°C in a microfluidic system with continuous operation. The cells were collected for total RNA extraction and reverse-transcribed, followed by measurement of insulin secretion-associated genes expression using quantitative real-time polymerase chain reaction. Molecular docking experiments were performed to gain insights on how the T3 bind to the receptors. Short-term exposure of δ- and γ-T3 to pancreatic β cells in a stimulant glucose condition (16.7 mM) significantly regulated preproinsulin mRNA levels and insulin gene transcription. In contrast, α-T3 possessed less ability in the activation of insulin synthesis level. Essentially, potassium chloride (KCl), a β cell membrane depolarising agent added into the treatment further enhanced the insulin production. δ- and γ-T3 revealed significantly higher quantitative expression in most of the insulin secretion-associated genes groups containing 16.7 mM glucose alone and 16.7 mM glucose with 30 mM