Science.gov

Sample records for isobaric vapor-liquid equilibrium

  1. Isobaric vapor-liquid equilibria of methanol + 1-octanol and ethanol + 1-octanol mixtures

    SciTech Connect

    Arce, A.; Blanco, A.; Soto, A.; Tojo, J.

    1995-07-01

    Isobaric vapor-liquid equilibrium data for methanol + 1-octanol and ethanol + 1-octanol have been measured at 101.325 kPa. The results were checked for thermodynamic consistency using Fredenslund et al.`s test, correlated using Wilson, NRTL, and UNIQUAC equations for the liquid phase activity coefficients, and compared with the predictions of the ASOG, UNIFAC, and modified UNIFAC group contribution methods.

  2. Isobaric vapor-liquid equilibria in the system methyl propanoate + n-butyl alcohol

    SciTech Connect

    Susial, P.; Ortega, J. . Lab. de Termodinamica y Fisicoquimica)

    1993-10-01

    Isobaric vapor-liquid equilibria were determined at 74.66, 101.32, and 127.99 kPa for binary mixtures containing methyl propanoate + n-butyl alcohol by using a dynamic still with vapor and liquid circulation. No azeotrope was detected. The data were found to be thermodynamically consistent according to the point to point test. Application of the group-contribution models ASOG, UNIFAC, and modified UNIFAC to the activity coefficients at the three pressures studied gives average errors of less than 10%, 11%, and 3%, respectively.

  3. Isobaric vapor-liquid equilibria for methanol + ethanol + water and the three constituent binary systems

    SciTech Connect

    Kurihara, Kiyofumi; Nakamichi, Mikiyoshi; Kojima, Kazuo . Dept. of Industrial Chemistry)

    1993-07-01

    Vapor-liquid equilibrium data for methanol + ethanol + water and its three constituent binary systems methanol + ethanol, ethanol + water, and methanol + water were measured at 101.3 kPa using a liquid-vapor ebullition-type equilibrium still. The experimental binary data were correlated by the NRTL equation. The ternary system methanol + ethanol + water was predicted by means of the binary NRTL parameters with good accuracy.

  4. Molecular simulation of the thermodynamic, structural, and vapor-liquid equilibrium properties of neon.

    PubMed

    Vlasiuk, Maryna; Frascoli, Federico; Sadus, Richard J

    2016-09-14

    The thermodynamic, structural, and vapor-liquid equilibrium properties of neon are comprehensively studied using ab initio, empirical, and semi-classical intermolecular potentials and classical Monte Carlo simulations. Path integral Monte Carlo simulations for isochoric heat capacity and structural properties are also reported for two empirical potentials and one ab initio potential. The isobaric and isochoric heat capacities, thermal expansion coefficient, thermal pressure coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, and the speed of sound are reported and compared with experimental data for the entire range of liquid densities from the triple point to the critical point. Lustig's thermodynamic approach is formally extended for temperature-dependent intermolecular potentials. Quantum effects are incorporated using the Feynman-Hibbs quantum correction, which results in significant improvement in the accuracy of predicted thermodynamic properties. The new Feynman-Hibbs version of the Hellmann-Bich-Vogel potential predicts the isochoric heat capacity to an accuracy of 1.4% over the entire range of liquid densities. It also predicts other thermodynamic properties more accurately than alternative intermolecular potentials.

  5. Molecular simulation of the thermodynamic, structural, and vapor-liquid equilibrium properties of neon

    NASA Astrophysics Data System (ADS)

    Vlasiuk, Maryna; Frascoli, Federico; Sadus, Richard J.

    2016-09-01

    The thermodynamic, structural, and vapor-liquid equilibrium properties of neon are comprehensively studied using ab initio, empirical, and semi-classical intermolecular potentials and classical Monte Carlo simulations. Path integral Monte Carlo simulations for isochoric heat capacity and structural properties are also reported for two empirical potentials and one ab initio potential. The isobaric and isochoric heat capacities, thermal expansion coefficient, thermal pressure coefficient, isothermal and adiabatic compressibilities, Joule-Thomson coefficient, and the speed of sound are reported and compared with experimental data for the entire range of liquid densities from the triple point to the critical point. Lustig's thermodynamic approach is formally extended for temperature-dependent intermolecular potentials. Quantum effects are incorporated using the Feynman-Hibbs quantum correction, which results in significant improvement in the accuracy of predicted thermodynamic properties. The new Feynman-Hibbs version of the Hellmann-Bich-Vogel potential predicts the isochoric heat capacity to an accuracy of 1.4% over the entire range of liquid densities. It also predicts other thermodynamic properties more accurately than alternative intermolecular potentials.

  6. Vapor-liquid equilibrium thermodynamics of N2 + CH4 - Model and Titan applications

    NASA Technical Reports Server (NTRS)

    Thompson, W. R.; Zollweg, John A.; Gabis, David H.

    1992-01-01

    A thermodynamic model is presented for vapor-liquid equilibrium in the N2 + CH4 system, which is implicated in calculations of the Titan tropospheric clouds' vapor-liquid equilibrium thermodynamics. This model imposes constraints on the consistency of experimental equilibrium data, and embodies temperature effects by encompassing enthalpy data; it readily calculates the saturation criteria, condensate composition, and latent heat for a given pressure-temperature profile of the Titan atmosphere. The N2 content of condensate is about half of that computed from Raoult's law, and about 30 percent greater than that computed from Henry's law.

  7. Vapor-liquid equilibrium measurements for methyl propanoate-ethanol and methyl propanoate-propan-1-ol at 101. 32 kPa

    SciTech Connect

    Susial, P.; Ortega, J. ); DeAlfonso, C.; Alonso, C. )

    1989-04-01

    Isobaric vapor-liquid equilibrium measurements on binary systems of methyl propanoate with ethanol and propan-1-ol are taken at a constant pressure of 101.32 +- 0.02 kPa. These systems exhibit significant deviations from ideality and are shown to be thermodynamically consistent. The methyl propanoate-ethanol system forms an azeotrope at x = y = 0.483 and T = 345.58{Kappa}. Experimental data are fitted to a suitable equation and are likewise compared with the values predicted by the UNIFAC and ASOG models.

  8. Vapor-liquid equilibrium measurements at 101. 32 kPa for binary mixtures of methyl acetate + ethanol or 1-propanol

    SciTech Connect

    Ortega, J.: Susial, P.; de Alfonso, C. )

    1990-07-01

    This paper reports on isobaric vapor-liquid equilibrium data at 101.32 {plus minus} 0.02 kPa for methyl acetate (1) + ethane (2) or + 1-propanol (2). The results are compared with those predicted by the UNIFAC and ASOG methods. The methyl acetate (1) + ethanol (2) system forms an azeotrope at 329.8 K and a molar concentration of x{sub 1} = 0.958. Both methods predict the vapor-phase compositions equally well, with overall mean errors of less than 5%.

  9. Condensation coefficient of methanol vapor near vapor-liquid equilibrium states

    NASA Astrophysics Data System (ADS)

    Fujikawa, S.; Yano, T.; Ichijo, M.; Iwanami, K.

    This paper is concerned with the nonequilibrium condensation from a vapor to a liquid phase on the plate endwall of a shock tube behind a reflected shock wave. The growth of a liquid film on the endwall is measured by an optical interferometer using a laser beam. The experiment is carefully conducted on the precisely designed apparatus, and thereby the condensation coefficient of methanol vapor is determined in a wide range of vapor-liquid conditions from near to far from equilibrium states. The result shows that the condensation coefficient increases with the increase of the ratio of number densities of vapor and saturated vapor at the interface.

  10. A new vapor-liquid equilibrium apparatus for hydrogen fluoride containing systems

    SciTech Connect

    Jongcheon Lee; Hwayong Kim; Jong Sung Lim; Jae-Duck Kim; Youn Yong Lee

    1996-12-31

    A new circulating type apparatus has been constructed to obtain reliable equilibrium PTxy data for hydrogen fluoride (HF) containing system. Equilibrium cell with Pyrex windows protected by Teflon PFA sheets to prevent the corrosion was used. Isothermal vapor-liquid equilibrium data for the 1,1-difluoroethane (HFC-152a) + HF system at 288.23 and 298.35 K were obtained, and compared with PTx measurement results. Experimental data were correlated using Lencka and Anderko equation of state for HF with the Wong-Sandler mixing rule as well as the van der Waals one fluid mixing rule. The Wong-Sandler mixing rule gives better results. 5 refs., 3 figs.

  11. Vapor-liquid equilibrium of ethanol-water system in the presence of molecular sieves

    SciTech Connect

    Abu Al-Rub, F.A.; Banat, F.A.; Jumah, R.

    1999-09-01

    Adsorptive distillation is a new process to separate liquid mixtures in a packed distillation column. It depends on using active packing material instead of inert packing material in a packed distillation column. The active packing material can affect the intermolecular forces among the system components and thus alter its vapor-liquid equilibrium (VLE). The VLE of the ethanol-water system at 1 atm was studied using a circulation still in the absence and in the presence of different amounts of 4 {angstrom} molecular sieves. The results obtained showed that the VLE of the system was altered in the presence of the molecular sieves, the azeotropic point of the system (at 89.7 mol% ethanol in the normal case) was eliminated and considerable separation was achieved for a mixture of azeotropic composition, and the alteration in the VLE of a given binary mixture is a function of the pore size and the amount of the molecular sieves.

  12. Vapor-Liquid Equilibrium of the Mixture H2O + H2O2 (LB3902, EVLM 1112)

    NASA Astrophysics Data System (ADS)

    Wichterle, I.; Linek, J.; Wagner, Z.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A2 `Binary Liquid Systems of Nonelectrolytes, Part 2' of Volume 13 `Vapor-Liquid Equilibrium in Mixtures and Solutions' of Landolt-Börnstein Group IV `Physical Chemistry'. It corresponds to the entry LB3902 of the Print Version and the ELBT Database, respectively.

  13. Design of a vapor-liquid-equilibrium, surface tension, and density apparatus

    SciTech Connect

    Holcomb, C.D.; Outcalt, S.L.

    1997-12-31

    The design and performance of a unique vapor-liquid equilibrium (VLE) apparatus with density and surface tension capabilities is presented. The apparatus operates at temperatures ranging from 218 to 423 K, at pressures to 17 MPa, at densities to 1100 kg/m{sup 3}, and at surface tensions ranging from 0.1 to 75 mN/m. Temperatures are measured with a precision of {+-}0.02 K, pressures with a precision of {+-}0.1% of full scale, densities with a precision of {+-}0.5 kg/m{sup 3}, surface tensions with a precision of {+-}0.2 mN/m, and compositions with a precision of {+-}0.005 mole fraction. The apparatus is designed to be both accurate and versatile. Capabilities include: (1) the ability to operate the apparatus as a bubble point pressure or an isothermal pressure-volume-temperature (PVT) apparatus, (2) the ability to measure densities and surface tensions of the coexisting phases, and (3) the ability for either trapped or capillary sampling. We can validate our VLE and density data by measuring PVT or bubble point pressures in the apparatus. The use of the apparatus for measurements of VLE, densities, and surface tensions over wide ranges of temperature and pressure is important in equation of state and transport property model development. The use of different sampling procedures allows measurement of a wider variety of fluid mixtures. VLE measurements on the alternative refrigerant system R32/134a are presented and compared to literature results to verify the performance of the apparatus.

  14. Vapor-Liquid Equilibrium in the Mixture Trichloromethane CHCl3 + C6H10O Cyclohexanone (EVLM1111, LB5654_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture Trichloromethane CHCl3 + C6H10O Cyclohexanone (EVLM1111, LB5654_E)' providing data from direct measurement of pressure at variable mole fraction in liquid phase and constant temperature.

  15. Experimental Determination of Densities and Isobaric Vapor-Liquid Equilibria of Methyl Acetate and Ethyl Acetate with Alcohols (C3 and C4) at 0.3 MPa

    NASA Astrophysics Data System (ADS)

    Susial, Pedro; Estupiñan, Esteban J.; Castillo, Victor D.; Rodríguez-Henríquez, José J.; Apolinario, José C.

    2013-10-01

    The densities and excess volumes were determined at 298.15 K for the methyl acetate + 1-propanol, methyl acetate + 1-butanol, and ethyl acetate + 1-butanol mixtures. The vapor-liquid equilibria data at 0.3 MPa for these binary systems were obtained using a stainless steel equilibrium still. The activity coefficients were obtained from the experimental data using the Hayden and O’Connell method and the Yen and Woods equation. The binary systems in this study showed positive deviations from ideality. The experimental VLE data were verified with the point-to-point test of van Ness using the Barker routine and the Fredenslund criterion. The different versions of the UNIFAC and the ASOG group contribution models were applied.

  16. ARTICLES: Vapor-Liquid Equilibrium Data of Carbon Dioxide+Methyl Propionate and Carbon Dioxide+Propyl Propionate Systems

    NASA Astrophysics Data System (ADS)

    Xu, Wei; Xie, Chuan-xin; Li, Hong-ling; Tian, Yi-ling

    2010-06-01

    High-pressure vapor-liquid equilibrium data for the binary systems of methyl propionate+carbon dioxide and propyl propionate+carbon dioxide were measured at pressure from 1.00 MPa to 12.00 MPa and temperature in the range from 313 K to 373 K. Experimental results were correlated with the Peng-Robinson equation of state with the two-parameter van der Waals mixing rule. At the same time, the Henry's coefficient, partial molar enthalpy change and partial molar entropy change of CO2 during dissolution at different temperature were also calculated.

  17. New phase equilibrium analyzer for determination of the vapor-liquid equilibrium of carbon dioxide and permanent gas mixtures for carbon capture and storage.

    PubMed

    Ke, Jie; Parrott, Andrew J; Sanchez-Vicente, Yolanda; Fields, Peter; Wilson, Richard; Drage, Trevor C; Poliakoff, Martyn; George, Michael W

    2014-08-01

    A high-pressure, phase equilibrium analyzer incorporating a fiber-optic reflectometer is described. The analyzer has been designed for measuring the vapor-liquid equilibrium data of multi-component mixtures of carbon dioxide and permanent gases, providing a novel tool to acquire of a large number of phase equilibrium data for the development of the new carbon capture and storage technologies. We demonstrate that the analyzer is suitable for determining both the bubble- and dew-point lines at temperature from 253 K and pressure up to 25 MPa using pure CO2 and two binary mixtures of CO2 + N2 and CO2 + H2.

  18. New phase equilibrium analyzer for determination of the vapor-liquid equilibrium of carbon dioxide and permanent gas mixtures for carbon capture and storage

    NASA Astrophysics Data System (ADS)

    Ke, Jie; Parrott, Andrew J.; Sanchez-Vicente, Yolanda; Fields, Peter; Wilson, Richard; Drage, Trevor C.; Poliakoff, Martyn; George, Michael W.

    2014-08-01

    A high-pressure, phase equilibrium analyzer incorporating a fiber-optic reflectometer is described. The analyzer has been designed for measuring the vapor-liquid equilibrium data of multi-component mixtures of carbon dioxide and permanent gases, providing a novel tool to acquire of a large number of phase equilibrium data for the development of the new carbon capture and storage technologies. We demonstrate that the analyzer is suitable for determining both the bubble- and dew-point lines at temperature from 253 K and pressure up to 25 MPa using pure CO2 and two binary mixtures of CO2 + N2 and CO2 + H2.

  19. Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture 1,1-Difluoroethane C2H4F2 + C4H8 2-Methylpropene (EVLM1131, LB5730_E)' providing data from direct measurement of pressure and mole fraction in vapor phase at variable mole fraction in liquid phase and constant temperature.

  20. Vapor-Liquid Equilibrium in the Mixture Cyclohexanone C6H10O + C6H12O Cyclohexanol (EVLM1111, LB5657_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume A 'Binary Liquid Systems of Nonelectrolytes I' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'Vapor-Liquid Equilibrium in the Mixture Cyclohexanone C6H10O + C6H12O Cyclohexanol (EVLM1111, LB5657_E)' providing data from direct measurement of pressure at variable mole fraction in liquid phase and constant temperature.

  1. Vapor-Liquid Equilibrium in the Mixture 1-Chlorobutane C4H9Cl + C6H10O Cyclohexanone (EVLM1111, LB5637_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'vapor-Liquid Equilibrium in the Mixture 1-Chlorobutane C4H9Cl + C6H10O Cyclohexanone (EVLM1111, LB5637_E)' providing data from direct measurement of pressure at variable mole fraction in liquid phase and constant temperature.

  2. Vapor-Liquid Equilibrium in the Mixture 1,2-Dichloroethane C2H4Cl2 + C6H10O Cyclohexanone (EVLM1111, LB5653_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'vapor-Liquid Equilibrium in the Mixture 1,2-Dichloroethane C2H4Cl2 + C6H10O Cyclohexanone (EVLM1111, LB5653_E)' providing data from direct measurement of pressure at variable mole fraction in liquid phase and constant temperature.

  3. Vapor-liquid equilibrium data for the methane-dimethyl ether and methane-diethyl ether systems between 282 and 344 K

    SciTech Connect

    Garcia-Sanchez, F.; Laugier, S.; Richon, D.

    1987-04-01

    A static method described in a previous paper has been used to obtain vapor-liquid equilibrium data for the methane-dimethyl ether and methane-diethyl ether systems at three temperatures. Experimental data are fitted with the Soave, Peng and Robinson, and Mathias cubic equations of state. Adjusting two parameters instead of one allows a slight improvement of the data representation.

  4. Determination of vapor-liquid equilibrium data and decontamination factors needed for the development of evaporator technology for use in volume reduction of radioactive waste streams

    SciTech Connect

    Betts, Stephen Ellsworth

    1993-05-01

    A program is currently in progress at Argonne National Laboratory to evaluate and develop evaporator technology for concentrating radioactive waste streams. By concentrating radioactive waste streams, disposal costs can be significantly reduced. To effectively reduce the volume of waste, the evaporator must achieve high decontamination factors so that the distillate is sufficiently free of radioactive material. One technology that shows a great deal of potential for this application is being developed by LICON, Inc. In this program, Argonne plans to apply LICON`s evaporator designs to the processing of radioactive solutions. Concepts that need to be incorporated into the design of the evaporator include, criticality safety, remote operation and maintenance, and materials of construction. To design an effective process for concentrating waste streams, both solubility and vapor-liquid equilibrium data are needed. The key issue, however, is the high decontamination factors that have been demonstrated by this equipment. Two major contributions were made to this project. First, a literature survey was completed to obtain available solubility and vapor-liquid equilibrium data. Some vapor-liquid data necessary for the project but not available in the literature was obtained experimentally. Second, the decontamination factor for the evaporator was determined using neutron activation analysis (NAA).

  5. Simple approach to approximate predictions of the vapor-liquid equilibrium curve near the critical point and its application to Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Staśkiewicz, B.; Okrasiński, W.

    2012-04-01

    We propose a simple analytical form of the vapor-liquid equilibrium curve near the critical point for Lennard-Jones fluids. Coexistence densities curves and vapor pressure have been determined using the Van der Waals and Dieterici equation of state. In described method the Bernoulli differential equations, critical exponent theory and some type of Maxwell's criterion have been used. Presented approach has not yet been used to determine analytical form of phase curves as done in this Letter. Lennard-Jones fluids have been considered for analysis. Comparison with experimental data is done. The accuracy of the method is described.

  6. Measurement of Vapor-Liquid Equilibrium for the DME + Diisopropyl Ether Binary System and Correlation for the DME + CO2 + Diisopropyl Ether Ternary System

    NASA Astrophysics Data System (ADS)

    Wu, Xianghong; Du, Xiaojie; Zheng, Danxing

    2010-02-01

    Vapor-liquid equilibrium (VLE) data have been measured with a static-type VLE apparatus for the dimethyl ether (DME)-diisopropyl ether (DIPE) binary system at five temperatures within the range from 293.04 K to 352.70 K. An isothermal correlation for the experimental data has been carried out based on the Peng-Robinson equation of state. The regressed binary interaction parameters were used to estimate VLE for the DME-CO2-DIPE ternary system at 298.15 K. From the study, it is demonstrated that DIPE is an excellent absorbent for separation in the DME synthesis process from syngas.

  7. Determination of vapor-liquid equilibrium data in microfluidic segmented flows at elevated pressures using Raman spectroscopy.

    PubMed

    Luther, Sebastian K; Stehle, Simon; Weihs, Kristian; Will, Stefan; Braeuer, Andreas

    2015-08-18

    A fast, noninvasive, and efficient analytical measurement strategy for the characterization of vapor-liquid equilibria (VLE) is presented, which is based on phase (state of matter) selective Raman spectroscopy in multiphase flows inside microcapillay systems (MCS). Isothermal VLE data were measured in binary and ternary mixtures composed of acetone, water, carbon dioxide or nitrogen at elevated pressures up to 10 MPa and temperatures up to 333 K. For validation, the obtained data were compared with literature data and reference measurements in a high-pressure variable volume cell. Additionally, the mixtures were investigated at temperatures and pressures where no data is available in literature to extend the high-pressure VLE database.

  8. Vapor-liquid equilibria of binary and ternary mixtures of cyclohexane, 3-methyl-2-butanone, and octane at 101.3 kPa

    SciTech Connect

    Chen, C.C.; Tang, M.; Chen, Y.P.

    1996-05-01

    Vapor-liquid equilibria were measured at 101.3 kPa for the three binary and one ternary mixtures of cyclohexane, 3-methyl-2-butanone, and octane. The isobaric T-x-y data were reported, including an azeotropic point for the binary mixture cyclohexane + 3-methyl-2-butanone. The virial equation of state truncated after the second coefficient was used to calculate the vapor-phase fugacity coefficients. The Tsonopoulos correlation equation was applied to determine the second virial coefficients. Various activity coefficient models of the Wilson, the NRTL, and the UNIQUAC equations were used to correlate the binary experimental vapor-liquid equilibrium results. Optimally-fitted binary parameters of the activity coefficient models were obtained and those parameters of the NRTL model were employed to predict the ternary vapor-liquid equilibria. Satisfactory results were presented for the correlation and prediction of the vapor-liquid equilibrium data on binary and ternary mixtures.

  9. On the Re-engineered TIP4P Water Models for the Preduction of Vapor-Liquid Equilibrium

    SciTech Connect

    Chialvo, Ariel A; Bartok, A.; Baranayai, A.

    2006-01-01

    We perform extensive Gibbs Ensemble Monte Carlo simulations to study the capability of some recently re-parameterizations of the original TIP4P model intended to predict accurately the vapor-liquid coexistence envelope of water, its critical point, and its temperature dependence for the vapor pressure and second virial coefficient, and complement this analysis with the characterization of some specific crystalline faces of ice. We also disclose some trends between the resulting dipole moment of the models and the Lennard-Jones parameters, the location of the negative charge, as well as the estimated critical temperature. Finally, we discuss the inability of these models to predict accurately and simultaneously the melting temperature and the temperature of maximum density.

  10. Vapor-Liquid Equilibrium in the Mixture 1,1,1-Trichloroethane C2H3Cl3 + C6H10O Cyclohexanone (EVLM1111, LB5638_E)

    NASA Astrophysics Data System (ADS)

    Cibulka, I.; Fontaine, J.-C.; Sosnkowska-Kehiaian, K.; Kehiaian, H. V.

    This document is part of Subvolume C 'Binary Liquid Systems of Nonelectrolytes III' of Volume 26 'Heats of Mixing, Vapor-Liquid Equilibrium, and Volumetric Properties of Mixtures and Solutions' of Landolt-Börnstein Group IV 'Physical Chemistry'. It contains the Chapter 'vapor-Liquid Equilibrium in the Mixture 1,1,1-Trichloroethane C2H3Cl3 + C6H10O Cyclohexanone (EVLM1111, LB5638_E)' providing data from direct measurement of pressure at variable mole fraction in liquid phase and constant temperature.

  11. Vapor-liquid equilibrium and critical behavior of the square-well fluid of variable range: A theoretical study

    NASA Astrophysics Data System (ADS)

    Schöll-Paschinger, Elisabeth; Benavides, Ana Laura; Castañeda-Priego, Ramon

    2005-12-01

    The vapor-liquid phase behavior and the critical behavior of the square-well (SW) fluid are investigated as a function of the interaction range, λ ɛ [1.25, 3], by means of the self-consistent Ornstein-Zernike approximation (SCOZA) and analytical equations of state based on a perturbation theory [A. L. Benavides and F. del Rio, Mol. Phys. 68, 983 (1989); A. Gil-Villegas, F. del Rio, and A. L. Benavides, Fluid Phase Equilib. 119, 97 (1996)]. For this purpose the SCOZA, which has been restricted up to now to a few model systems, has been generalized to hard-core systems with arbitrary interaction potentials requiring a fully numerical solution of an integro-partial differential equation. Both approaches, in general, describe well the liquid-vapor phase diagram of the square-well fluid when compared with simulation data. SCOZA yields very precise predictions for the coexistence curves in the case of long ranged SW interaction (λ>1.5), and the perturbation theory is able to predict the binodal curves and the saturated pressures, for all interaction ranges considered if one stays away from the critical region. In all cases, the SCOZA gives very good predictions for the critical temperatures and the critical pressures, while the perturbation theory approach tends to slightly overestimate these quantities. Furthermore, we propose analytical expressions for the critical temperatures and pressures as a function of the square-well range.

  12. Vapor-liquid equilibrium of the Mg(NO/sub 3/)/sub 2/-HNO/sub 3/-H/sub 2/O system

    SciTech Connect

    Thompson, B.E.; Derby, J.J.; Stalzer, E.H.

    1983-06-01

    The vapor-liquid equilibrium of the Mg(NO/sub 3/)/sub 2/-HNO/sub 3/-H/sub 2/O system in concentrations of 0 to 70 wt % Mg(NO/sub 3/)/sub 2/ and 0 to 75 wt % HNO/sub 3/ at atmospheric pressure was correlated by two approaches. One was based on a dissociation equilibrium expression in which the activities of the reacting species (HNO/sub 3/, NO/sub 3//sup -/, and H/sup +/) were approximated with mole fractions. The activity coefficients of the undissociated HNO/sub 3/ and H/sub 2/O were correlated as functions of the concentrations of magnesium nitrate and nitric acid by second-order polynomials. The average absolute difference between predicted and experimental values was 8% for the mole fraction of acid in the vapor and 8/sup 0/K for the bubble-point temperature. The second approach was to correlate the mean ionic rational activity coefficient of water with a form of the excess Gibbs energy composed of two terms. One term, a function of the ionic strength, accounts for the coulombic (ionic) interactions; the other term accounts for the non-coulombic (molecular) interactions. The average absolute difference between predicted and experimental values was 9% for the mole fraction of acid in the vapor, and 10/sup 0/K for the bubble-point temperature.

  13. Applications of the Simple Multi-Fluid Model to Correlations of the Vapor-Liquid Equilibrium of Refrigerant Mixtures Containing Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Akasaka, Ryo

    This study presents a simple multi-fluid model for Helmholtz energy equations of state. The model contains only three parameters, whereas rigorous multi-fluid models developed for several industrially important mixtures usually have more than 10 parameters and coefficients. Therefore, the model can be applied to mixtures where experimental data is limited. Vapor-liquid equilibrium (VLE) of the following seven mixtures have been successfully correlated with the model: CO2 + difluoromethane (R-32), CO2 + trifluoromethane (R-23), CO2 + fluoromethane (R-41), CO2 + 1,1,1,2- tetrafluoroethane (R-134a), CO2 + pentafluoroethane (R-125), CO2 + 1,1-difluoroethane (R-152a), and CO2 + dimethyl ether (DME). The best currently available equations of state for the pure refrigerants were used for the correlations. For all mixtures, average deviations in calculated bubble-point pressures from experimental values are within 2%. The simple multi-fluid model will be helpful for design and simulations of heat pumps and refrigeration systems using the mixtures as working fluid.

  14. (Vapor + Liquid) Equilibrium (VLE) for Binary Lead-Antimony System in Vacuum Distillation: New Data and Modeling Using Nonrandom Two-Liquid (NRTL) Model

    NASA Astrophysics Data System (ADS)

    Xu, Junjie; Kong, Lingxin; Xu, Baoqiang; Yang, Bin; You, Yanjun; Xu, Shuai; Zhou, Yuezhen; Li, Yifu; Liu, Dachun

    2016-09-01

    In this work, new experimental vapor-liquid equilibrium (VLE) data of lead-antimony alloy (Pb-Sb alloy) in vacuum distillation are reported. The activity coefficients of components of Pb-Sb alloy were calculated by using the NRTL model. The calculated average relative deviations were ±0.1425 and ±0.2433 pct, and the average standard deviations were ±0.0009 and ±0.0007, respectively, for Pb and Sb. The VLE phase diagrams, such as the temperature composition ( T- x) and pressure composition ( P-x) diagrams of Pb-Sb alloy in vacuum distillation were predicted based on the NRTL model and VLE theory. The predicted results are consistent with the new experimental data indicating that VLE phase diagrams obtained by this method are reliable. The VLE phase diagrams of alloys will provide an effective and intuitive way for the technical design and realization of recycling and separation processes. The VLE data may be used in separation processes design, and the thermodynamic properties as the key parameters in specific applications.

  15. Use of neural networks for prediction of vapor/liquid equilibrium K values for light-hydrocarbon mixtures

    SciTech Connect

    Habiballah, W.A.; Startzman, R.A.; Barrufet, M.A.

    1996-05-01

    Equilibrium ratios play a fundamental role in the understanding of phase behavior of hydrocarbon mixtures. They are important in predicting compositional changes under varying temperature and pressure in reservoirs, surface separators, and production and transportation facilities. In particular, they are critical for reliable and successful compositional reservoir simulation. This paper presents a new approach for predicting K values with neural networks (NN`s). The method is applied to binary and multicomponent mixtures, and K-value prediction accuracy is on the order of the traditional methods. However, computing speed is significantly faster.

  16. Isobaric molecular dynamics version of the generalized replica exchange method (gREM): Liquid–vapor equilibrium

    DOE PAGES

    Malolepsza, Edyta; Secor, Maxim; Keyes, Tom

    2015-09-23

    A prescription for sampling isobaric generalized ensembles with molecular dynamics is presented and applied to the generalized replica exchange method (gREM), which was designed for simulating first-order phase transitions. The properties of the isobaric gREM ensemble are discussed and a study is presented of the liquid-vapor equilibrium of the guest molecules given for gas hydrate formation with the mW water model. As a result, phase diagrams, critical parameters, and a law of corresponding states are obtained.

  17. Densities and vapor-liquid equilibria in binary mixtures formed by propyl methanoate + ethanol, + propan-1-ol, and + butan-1-ol at 160.0 kPa

    SciTech Connect

    Falcon, J.; Ortega, J.; Gonzalez, E.

    1996-07-01

    Densities and excess volumes were determined at 298.15 K for propyl methanoate + ethanol, + propan-1-ol, and + butan-1-ol. The results of those quantities were then correlated to get the concentrations of vapor-liquid equilibrium obtained isobarically at 160 kPa for the same mixtures. Two mixtures show azeotropes: for propyl methanoate (1) + ethanol (2), x{sub 1} = 0.443 at T = 358.7 K; and for propyl methanoate (1) + propan-1-ol (2), x{sub 1} = 0.762 at T = 368.2 K. The mixtures are thermodynamically consistent, and the predictions made using several group-contribution models are satisfactory.

  18. Prediction of vapor-liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part I: Application to H 2O-CO 2 system

    NASA Astrophysics Data System (ADS)

    Sun, Rui; Dubessy, Jean

    2010-04-01

    Molecular based equations of state (EOS) are attractive because they can take into account the energetic contribution of the main types of molecular interactions. This study models vapor-liquid equilibrium (VLE) and PVTx properties of the H 2O-CO 2 binary system using a Lennard-Jones (LJ) referenced SAFT (Statistical Associating Fluid Theory) EOS. The improved SAFT-LJ EOS is defined in terms of the residual molar Helmholtz energy, which is a sum of four terms representing the contributions from LJ segment-segment interactions, chain-forming among the LJ segments, short-range associations and long-range multi-polar interactions. CO 2 is modeled as a linear chain molecule with a constant quadrupole moment, and H 2O is modeled as a spherical molecule with four association sites and a dipole moment. The multi-polar contribution to Helmholtz energy, including the dipole-dipole, dipole-quadrupole, and quadrupole-quadrupole contribution for H 2O-CO 2 system, is calculated using the theory of Gubbins and Twu (1978). Six parameters for pure H 2O and four parameters for pure CO 2 are needed in our model. The Van der Waals one-fluid mixing rule is used to calculate the Lennard-Jones energy parameter and volume parameter for the mixture. Two or three binary parameters are needed for CO 2-H 2O mixtures, which are evaluated from phase equilibrium data of the binary system. Comparison with the experimental data shows that our model represents the PVT properties of CO 2 better than other SAFT EOS without a quadrupole contribution. For the CO 2-H 2O system, our model agrees well with the vapor-liquid equilibrium data from 323-623 K. The average relative deviation for CO 2 solubility (expressed in mole fraction) in water is within 6%. Our model can also predict the PVTx properties of CO 2-H 2O mixtures up to 1073 K and 3000 bar. The good performance of this model indicates that: (1) taking account of the multi-polar contribution explicitly improves the agreement of calculated

  19. Vapors-liquid phase separator

    NASA Astrophysics Data System (ADS)

    Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.

    1980-10-01

    The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.

  20. Calculation of vapor-liquid equilibrium and PVTx properties of geological fluid system with SAFT-LJ EOS including multi-polar contribution. Part III. Extension to water-light hydrocarbons systems

    NASA Astrophysics Data System (ADS)

    Sun, Rui; Lai, Shaocong; Dubessy, Jean

    2014-01-01

    The SAFT-LJ EOS improved by Sun and Dubessy (2010, 2012) is extended to water-light hydrocarbon systems. Light hydrocarbons (including CH4, C2H6, C3H8 and nC4H10) are modeled as chain molecules without multi-polar moments. The contributions of the shape of molecules and main intermolecular interactions existing in water-light hydrocarbon systems (including repulsive and attractive forces between Lennard-Jones segments, the hydrogen-bonding force and the multi-polar interaction between water molecules) to the residual Helmholtz energy were accounted for by this EOS. The adjustable parameters for the interactions of H2O-CH4, H2O-C2H6, H2O-C3H8, and H2O-nC4H10 pairs were evaluated from mutual solubility data of binary water-hydrocarbon systems at vapor-liquid equilibria. Comparison with the experimental data shows this SAFT-LJ EOS can represent well vapor-liquid (and liquid-liquid) equilibria of binary water-light hydrocarbon systems over a wide P-T range. The accuracy of this EOS for mutual solubilities of methane, ethane, propane and water is within the experimental uncertainty generally. Moreover, the model is able to accurately predict the vapor-liquid equilibria and PVTx properties of multi-component systems composed of water, light hydrocarbon as well as CO2. As we know, this EOS is the first one allowing quantitative calculation of the mutual solubilities of water and light hydrocarbons over a wide P-T range among SAFT-type EOSs. This work indicates that the molecular-based EOS combined with conventional mixing rule can well describe the thermodynamic behavior of highly non-ideal systems such as water-light hydrocarbons mixtures except in the critical region for which long range density fluctuations cannot be taken into account by this analytical model.

  1. Vapor-Liquid Equilibria Using the Gibbs Energy and the Common Tangent Plane Criterion

    ERIC Educational Resources Information Center

    Olaya, Maria del Mar; Reyes-Labarta, Juan A.; Serrano, Maria Dolores; Marcilla, Antonio

    2010-01-01

    Phase thermodynamics is often perceived as a difficult subject with which many students never become fully comfortable. The Gibbsian geometrical framework can help students to gain a better understanding of phase equilibria. An exercise to interpret the vapor-liquid equilibrium of a binary azeotropic mixture, using the equilibrium condition based…

  2. Semi-empirical correlation for binary interaction parameters of the Peng-Robinson equation of state with the van der Waals mixing rules for the prediction of high-pressure vapor-liquid equilibrium.

    PubMed

    Fateen, Seif-Eddeen K; Khalil, Menna M; Elnabawy, Ahmed O

    2013-03-01

    Peng-Robinson equation of state is widely used with the classical van der Waals mixing rules to predict vapor liquid equilibria for systems containing hydrocarbons and related compounds. This model requires good values of the binary interaction parameter kij . In this work, we developed a semi-empirical correlation for kij partly based on the Huron-Vidal mixing rules. We obtained values for the adjustable parameters of the developed formula for over 60 binary systems and over 10 categories of components. The predictions of the new equation system were slightly better than the constant-kij model in most cases, except for 10 systems whose predictions were considerably improved with the new correlation.

  3. Boundary conditions on the vapor liquid interface at strong condensation

    NASA Astrophysics Data System (ADS)

    Kryukov, A. P.; Levashov, V. Yu.

    2016-07-01

    The problem of the formulation of boundary conditions on the vapor-liquid interface is considered. The different approaches to this problem and their difficulties are discussed. Usually, a quasi-equilibrium scheme is used. At sufficiently large deviations from thermodynamic equilibrium, a molecular kinetics approach should be used for the description of the vapor flow at condensation. The formulation of the boundary conditions at the vapor liquid interface to solve the Boltzmann kinetic equation for the distribution of molecules by velocity is a sophisticated problem. It appears that molecular dynamics simulation (MDS) can be used to provide this solution at the interface. The specific problems occur in the realization of MDS on large time and space scales. Some of these problems, and a hierarchy of continuum, kinetic and molecular dynamic time scales, are discussed in the paper. A description of strong condensation at the kinetic level is presented for the steady one-dimensional problem. A formula is provided for the calculation of the limiting condensation coefficient. It is shown that as the condensation coefficient approaches the limiting value, the vapor pressure rises significantly. The results of the corresponding calculations for the Mach number and temperature at different vapor flows are demonstrated. As a result of the application of the molecular kinetics method and molecular dynamics simulation to the problem of the determination of argon condensation coefficients in the range of temperatures of vapor and liquid ratio 1.0-4.0, it is concluded that the condensation coefficient is close to unity.

  4. Corner wetting during the vapor-liquid-solid growth of faceted nanowires

    NASA Astrophysics Data System (ADS)

    Spencer, Brian; Davis, Stephen

    2016-11-01

    We consider the corner wetting of liquid drops in the context of vapor-liquid-solid growth of nanowires. Specifically, we construct numerical solutions for the equilibrium shape of a liquid drop on top of a faceted nanowire by solving the Laplace-Young equation with a free boundary determined by mixed boundary conditions. A key result for nanowire growth is that for a range of contact angles there is no equilibrium drop shape that completely wets the corner of the faceted nanowire. Based on our numerical solutions we determine the scaling behavior for the singular surface behavior near corners of the nanowire in terms of the Young contact angle and drop volume.

  5. The calculation of vapor-liquid coexistence curve of Morse fluid: application to iron.

    PubMed

    Apfelbaum, E M

    2011-05-21

    The vapor-liquid coexistence curve of Morse fluid was calculated within the integral equations approach. The critical point coordinates were estimated. The parameters of Morse potential, fitted for elastic constants in solid phase, were used here to apply the results of present calculations to the determination of iron binodal. The properties of copper and sodium were considered in an analogous way. The calculations of pair correlation functions and isobars at liquid phase have shown that only for sodium these potential parameters allow one to obtain agreement with the measurements data. For iron another parameters are necessary to get this agreement in liquid phase. However, they give rise to very low critical temperature and pressure with respect to the estimates of other authors. Consequently, one can suppose that Morse potential is possibly inapplicable to the calculation of high temperature properties of non-alkali metals in disordered phases.

  6. Molecular dynamics simulation for vapor-liquid coexistence of water in nanocylinder

    NASA Astrophysics Data System (ADS)

    Mima, Toshiki; Kinefuchi, Ikuya; Yoshimoto, Yuta; Miyoshi, Nobuya; Fukushima, Akinori; Tokumasu, Takashi; Takagi, Shu; Matsumoto, Yoichiro

    2013-03-01

    Molecular dynamics simulation was conducted in order to investigate the vapor-liquid coexistence of the water molecules in nanopore. In this research, the Lennard-Jones energy parameter between a water molecule and an atom of nanopore was optimized so as to model the contact angle between a water droplet and the carbon material in the fuel cell. The TIP4P/2005 as the model of a water molecule was used; this model produces well the vapor-liquid coexistence line. All of the systems were equilibrated by Nosé-Hoover thermostat. The electrostatic interaction between water molecules was calculated through smooth particle mesh Ewald method. First, we equilibrated a water plug in the single-wall atomistic nanocylinder as a model of nanopore in the fuel cell with radius 1.3nm. Water molecules burst from an interface of the water plug in equilibration. Then, the equilibrium densities both in dense and dilute region ware sampled over 1 ns. The vapor-liquid coexistence line, density profile, free energy profile will be presented in the session.

  7. Molecular dynamics simulations of vapor/liquid coexistence using the nonpolarizable water models

    NASA Astrophysics Data System (ADS)

    Sakamaki, Ryuji; Sum, Amadeu K.; Narumi, Tetsu; Yasuoka, Kenji

    2011-03-01

    The surface tension, vapor-liquid equilibrium densities, and equilibrium pressure for common water models were calculated using molecular dynamics simulations over temperatures ranging from the melting to the critical points. The TIP4P/2005 and TIP4P-i models produced better values for the surface tension than the other water models. We also examined the correlation of the data to scaling temperatures based on the critical and melting temperatures. The reduced temperature (T/Tc) gives consistent equilibrium densities and pressure, and the shifted temperature T + (Tc, exp - Tc, sim) gives consistent surface tension among all models considered in this study. The modified fixed charge model which has the same Lennard-Jones parameters as the TIP4P-FQ model but uses an adjustable molecular dipole moment is also simulated to find the differences in the vapor-liquid coexistence properties between fixed and fluctuating charge models. The TIP4P-FQ model (2.72 Debye) gives the best estimate of the experimental surface tension. The equilibrium vapor density and pressure are unaffected by changes in the dipole moment as well as the surface tension and liquid density.

  8. The effect of sulfur on vapor liquid fractionation of metals in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Pokrovski, Gleb S.; Borisova, Anastassia Yu.; Harrichoury, Jean-Claude

    2008-02-01

    Despite the growing evidence that the vapor phase, formed through magma degassing and ore fluid boiling, can selectively concentrate and transport metals, the effects of major volatile components like sulfur, chlorine or carbon dioxide on the metal vapor-liquid fractionation and vapor-phase transport under magmatic-hydrothermal conditions remain poorly known. We performed systematic experiments to investigate the effect of sulfur ligands on metal vapor-liquid partitioning in model H 2O-S-NaCl-KCl-NaOH systems at temperatures from 350 to 500 °C. Results show that at acidic-to-neutral conditions, vapor-liquid equilibrium distribution coefficients, Km = mvapor / mliquid, where m is the mass concentration of the metal in corresponding phase, of metalloids (As, Sb) and base metals (Zn, Fe, Pb, Ag) are in the range 0.1-1.0 and 0.001-0.1, respectively, and are not significantly affected by the presence of geologically common sulfur concentrations, up to 1-3 wt.% S. In contrast, the partitioning of Cu, Au, and Pt into the vapor increases by a factor of 100 in comparison to the S-free water-salt system, yielding Km values of 0.5-1.0, 1-10, and 10-20, respectively, due to formation of volatile neutral complexes with H 2S and, possibly, SO 2. In neutral-to-basic systems, Zn, Pb, Fe and Ag show 10-100-fold increase of their partition coefficients, whereas Cu, Au and Pt exhibit Km values of up to several orders of magnitude lower, compared to acidic conditions at similar temperature, pressure and sulfur contents. These vapor-liquid distribution patterns result from combined effects of i) formation of volatile species with reduced sulfur ligands in the vapor phase, ii) changes in the metal speciation in the coexisting liquid phase as a function of pH, and iii) solute-solvent interactions in both phases. Our data explain the vapor-liquid fractionation trends for many metals as inferred in coexisting brine and vapor inclusions from magmatic-hydrothermal deposits, and provide a

  9. A field-space conformal-solution method: Binary vapor-liquid phase behavior

    NASA Astrophysics Data System (ADS)

    Storvick, T. S.; Fox, J. R.

    1990-01-01

    The field-space conformal solution method provides an entirely new thermodynamic framework for the description of fluid mixtures in terms of the properties of a pure reference fluid. The utility and performance of the method are examined in the special case of vapor-liquid equilibrium correlation for simple mixtures. This is one of several cases in which field-space methods have numerical or theoretical advantages over methods presently used in mixture property correlation; only properties along the vapor pressure curve of the purefluid reference system are required for a complete description of the mixture phase behavior. Vapor-liquid equilibrium data for three binary hydrocarbon mixtures, n-butane + n-pentane, n-butane + n-hexane, and n-butane + n-octane, are correlated with a simple implementation of the method having two independent mixture parameters. Two pure-fluid equations of state, a Peng-Robinson equation and a 32-constant modified Benedict-Webb-Rubin equation, are tested as reference systems. The effects of differences in the quality of the reference system and of a range of mixture component size ratios are examined.

  10. Combination downflow-upflow vapor-liquid separator

    DOEpatents

    Kidwell, John H.; Prueter, William P.; Eaton, Andrew M.

    1987-03-10

    An improved vapor-liquid separator having a vertically disposed conduit for flow of a mixture. A first, second and third plurality of curved arms penetrate and extend within the conduit. A cylindrical member is radially spaced from the conduit forming an annulus therewith and having perforations and a retaining lip at its upper end.

  11. A Kinetic Model for Vapor-liquid Flows

    DTIC Science & Technology

    2005-07-13

    A Kinetic Model for Vapor-liquid Flows Aldo Frezzotti, Livio Gibelli and Silvia Lorenzani Dipartimento di Matematica del Politecnico di Milano Piazza...ES) Dipartimento di Matematica del Politecnico di Milano Piazza Leonardo da Vinci 32 - 20133 Milano - Italy 8. PERFORMING ORGANIZATION REPORT NUMBER

  12. Order parameter free enhanced sampling of the vapor-liquid transition using the generalized replica exchange method.

    PubMed

    Lu, Qing; Kim, Jaegil; Straub, John E

    2013-03-14

    The generalized Replica Exchange Method (gREM) is extended into the isobaric-isothermal ensemble, and applied to simulate a vapor-liquid phase transition in Lennard-Jones fluids. Merging an optimally designed generalized ensemble sampling with replica exchange, gREM is particularly well suited for the effective simulation of first-order phase transitions characterized by "backbending" in the statistical temperature. While the metastable and unstable states in the vicinity of the first-order phase transition are masked by the enthalpy gap in temperature replica exchange method simulations, they are transformed into stable states through the parameterized effective sampling weights in gREM simulations, and join vapor and liquid phases with a succession of unimodal enthalpy distributions. The enhanced sampling across metastable and unstable states is achieved without the need to identify a "good" order parameter for biased sampling. We performed gREM simulations at various pressures below and near the critical pressure to examine the change in behavior of the vapor-liquid phase transition at different pressures. We observed a crossover from the first-order phase transition at low pressure, characterized by the backbending in the statistical temperature and the "kink" in the Gibbs free energy, to a continuous second-order phase transition near the critical pressure. The controlling mechanisms of nucleation and continuous phase transition are evident and the coexistence properties and phase diagram are found in agreement with literature results.

  13. Order parameter free enhanced sampling of the vapor-liquid transition using the generalized replica exchange method

    NASA Astrophysics Data System (ADS)

    Lu, Qing; Kim, Jaegil; Straub, John E.

    2013-03-01

    The generalized Replica Exchange Method (gREM) is extended into the isobaric-isothermal ensemble, and applied to simulate a vapor-liquid phase transition in Lennard-Jones fluids. Merging an optimally designed generalized ensemble sampling with replica exchange, gREM is particularly well suited for the effective simulation of first-order phase transitions characterized by "backbending" in the statistical temperature. While the metastable and unstable states in the vicinity of the first-order phase transition are masked by the enthalpy gap in temperature replica exchange method simulations, they are transformed into stable states through the parameterized effective sampling weights in gREM simulations, and join vapor and liquid phases with a succession of unimodal enthalpy distributions. The enhanced sampling across metastable and unstable states is achieved without the need to identify a "good" order parameter for biased sampling. We performed gREM simulations at various pressures below and near the critical pressure to examine the change in behavior of the vapor-liquid phase transition at different pressures. We observed a crossover from the first-order phase transition at low pressure, characterized by the backbending in the statistical temperature and the "kink" in the Gibbs free energy, to a continuous second-order phase transition near the critical pressure. The controlling mechanisms of nucleation and continuous phase transition are evident and the coexistence properties and phase diagram are found in agreement with literature results.

  14. Silicon nanowire synthesis by a vapor-liquid-solid approach

    NASA Technical Reports Server (NTRS)

    Mao, Aaron; Ng, H. T.; Nguyen, Pho; McNeil, Melanie; Meyyappan, M.

    2005-01-01

    Synthesis of silicon nanowires is studied by using a vapor-liquid-solid growth technique. Silicon tetrachloride reduction with hydrogen in the gas phase is used with gold serving as catalyst to facilitate growth. Only a narrow set of conditions of SiCl4 concentration and temperature yield straight nanowires. High concentrations and temperatures generally result in particulates, catalyst coverage and deactivation, and coatinglike materials.

  15. Vapor-liquid equilibria of n-hexane + cyclohexane + n-heptane and the three constituent binary systems at 101. 0 kPa

    SciTech Connect

    Jan, D.S.; Shiau, H.Y.; Tsai, F.N. . Dept. of Chemical Engineering)

    1994-07-01

    Vapor-liquid equilibrium data for the title ternary system and the three constituent binary systems have been measured at 101.0 kPa by using a dynamic equilibrium still. The binary data were tested for thermodynamic consistency and were correlated by the Wilson, NRTL, and UNIQUAC equations. Predictions for the ternary system by these equations have been compared with the experimental data.

  16. Vapor-liquid phase behavior of the iodine-sulfur water-splitting process : LDRD final report for FY03.

    SciTech Connect

    Bradshaw, Robert W.; Larson, Richard S.; Lutz, Andrew E.

    2004-01-01

    This report summarizes the results of a one-year LDRD project that was undertaken to better understand the equilibrium behavior of the iodine-water-hydriodic acid system at elevated temperature and pressure. We attempted to extend the phase equilibrium database for this system in order to facilitate development of the iodine-sulfur water-splitting process to produce hydrogen to a commercial scale. The iodine-sulfur cycle for thermochemical splitting of water is recognized as the most efficient such process and is particularly well suited to coupling to a high-temperature source of process heat. This study intended to combine experimental measurements of vapor-liquid-liquid equilibrium and equation-of-state modeling of equilibrium solutions using Sandia's Chernkin software. Vapor-liquid equilibrium experiments were conducted to a limited extent. The Liquid Chernkin software that was developed as part of an earlier LDRD project was enhanced and applied to model the non-ideal behavior of the liquid phases.

  17. Vapors-liquid phase separator. [infrared telescope heat sink

    NASA Technical Reports Server (NTRS)

    Frederking, T. H. K.; Brown, G. S.; Chuang, C.; Kamioka, Y.; Kim, Y. I.; Lee, J. M.; Yuan, S. W. K.

    1980-01-01

    The use of porous plugs, mostly with in the form of passive devices with constant area were considered as vapor-liquid phase separators for helium 2 storage vessels under reduced gravity. The incorporation of components with variable cross sectional area as a method of flow rate modification was also investigated. A particular device which uses a shutter-type system for area variation was designed and constructed. This system successfully permitted flor rate changes of up to plus or minus 60% from its mean value.

  18. A study of vapor-liquid flow in porous media

    SciTech Connect

    Satik, Cengiz; Yortsos, Yanis C.

    1994-01-20

    We study the heat transfer-driven liquid-to-vapor phase change in single-component systems in porous media by using pore network models and flow visualization experiments. Experiments using glass micromodels were conducted. The flow visualization allowed us to define the rules for the numerical pore network model. A numerical pore network model is developed for vapor-liquid displacement where fluid flow, heat transfer and capillarity are included at the pore level. We examine the growth process at two different boundary conditions.

  19. Magnetotail dynamics under isobaric constraints

    NASA Technical Reports Server (NTRS)

    Birn, Joachim; Schindler, Karl; Janicke, Lutz; Hesse, Michael

    1994-01-01

    Using linear theory and nonlinear MHD simulations, we investigate the resistive and ideal MHD stability of two-dimensional plasma configurations under the isobaric constraint dP/dt = 0, which in ideal MHD is equivalent to conserving the pressure function P = P(A), where A denotes the magnetic flux. This constraint is satisfied for incompressible modes, such as Alfven waves, and for systems undergoing energy losses. The linear stability analysis leads to a Schroedinger equation, which can be investigated by standard quantum mechanics procedures. We present an application to a typical stretched magnetotail configuration. For a one-dimensional sheet equilibrium characteristic properties of tearing instability are rediscovered. However, the maximum growth rate scales with the 1/7 power of the resistivity, which implies much faster growth than for the standard tearing mode (assuming that the resistivity is small). The same basic eigen-mode is found also for weakly two-dimensional equilibria, even in the ideal MHD limit. In this case the growth rate scales with the 1/4 power of the normal magnetic field. The results of the linear stability analysis are confirmed qualitatively by nonlinear dynamic MHD simulations. These results suggest the interesting possibility that substorm onset, or the thinning in the late growth phase, is caused by the release of a thermodynamic constraint without the (immediate) necessity of releasing the ideal MHD constraint. In the nonlinear regime the resistive and ideal developments differ in that the ideal mode does not lead to neutral line formation without the further release of the ideal MHD constraint; instead a thin current sheet forms. The isobaric constraint is critically discussed. Under perhaps more realistic adiabatic conditions the ideal mode appears to be stable but could be driven by external perturbations and thus generate the thin current sheet in the late growth phase, before a nonideal instability sets in.

  20. Transient-pressure analysis in geothermal steam reservoirs with an immobile vaporizing liquid phase

    USGS Publications Warehouse

    Moench, A.F.; Atkinson, P.G.

    1978-01-01

    A finite-difference model for the radial horizontal flow of steam through a porous medium is used to evaluate transient-pressure behavior in the presence of an immobile vaporizing or condensing liquid phase. Graphs of pressure drawdown and buildup in terms of dimensionless pressure and time are obtained for a well discharging steam at a constant mass flow rate for a specified time. The assumptions are made that the steam is in local thermal equilibrium with the reservoir rocks, that temperature changes are due only to phase change, and that effects of vapor-pressure lowering are negligible. Computations show that when a vaporizing liquid phase is present the pressure drawdown exhibits behavior similar to that observed in noncondensable gas reservoirs, but delayed in time. A theoretical analysis allows for the computation of this delay and demonstrates that it is independent of flow geometry. The response that occurs upon pressure buildup is markedly different from that in a noncondensable gas system. This result may provide a diagnostic tool for establishing the existence of phase-change phenomena within a reservoir. ?? 1979.

  1. Phase transitions and criticality in small systems: vapor-liquid transition in nanoscale spherical cavities.

    PubMed

    Neimark, Alexander V; Vishnyakov, Aleksey

    2006-05-18

    Phase transformations in fluids confined to nanoscale pores, which demonstrate characteristic signatures of first-order phase transitions, have been extensively documented in experiments and molecular simulations. They are characterized by a pronounced hysteresis, which disappears above a certain temperature. A rigorous interpretation of these observations represents a fundamental problem from the point of view of statistical mechanics. Nanoscale systems are essentially small, finite volume systems, in which the concept of the thermodynamic limit is no longer valid, and the statistical ensembles are not equivalent. Here, we present a rigorous approach to the description and molecular simulations of phase transitions and criticality in small confined systems, as illustrated by the example of vapor-liquid transition (capillary condensation) in spherical cavities. The method is based on the analysis of the canonical ensemble isotherms, which can be generated by the gauge cell Monte Carlo simulation method. The method allows one to define the critical temperature of phase transition, conditions of phase equilibrium, limits of stability of metastable states, and nucleation barriers, which determine hysteretic phase transformations.

  2. Mathematical modeling of planar and spherical vapor-liquid phase interfaces for multicomponent fluids

    NASA Astrophysics Data System (ADS)

    Celný, David; Vinš, Václav; Planková, Barbora; Hrubý, Jan

    2016-03-01

    Development of methods for accurate modeling of phase interfaces is important for understanding various natural processes and for applications in technology such as power production and carbon dioxide separation and storage. In particular, prediction of the course of the non-equilibrium phase transition processes requires knowledge of the properties of the strongly curved phase interfaces of microscopic droplets. In our work, we focus on the spherical vapor-liquid phase interfaces for binary mixtures. We developed a robust computational method to determine the density and concentration profiles. The fundamentals of our approach lie in the Cahn-Hilliard gradient theory, allowing to transcribe the functional formulation into a system of ordinary Euler-Langrange equations. This system is then split and modified into a shape suitable for iterative computation. For this task, we combine the Newton-Raphson and the shooting methods providing a good convergence speed. For the thermodynamic roperties, the PC-SAFT equation of state is used. We determine the density and concentration profiles for spherical phase interfaces at various saturation factors for the binary mixture of CO2 and C9H20. The computed concentration profiles allow to the determine the work of formation and other characteristics of the microscopic droplets.

  3. Isobaric groundwater well

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    1999-01-01

    A method of measuring a parameter in a well, under isobaric conditions, including such parameters as hydraulic gradient, pressure, water level, soil moisture content and/or aquifer properties the method as presented comprising providing a casing having first and second opposite ends, and a length between the ends, the casing supporting a transducer having a reference port; placing the casing lengthwise into the well, second end first, with the reference port vented above the water table in the well; and sealing the first end. A system is presented for measuring a parameter in a well, the system comprising a casing having first and second opposite ends, and a length between the ends and being configured to be placed lengthwise into a well second end first; a transducer, the transducer having a reference port, the reference port being vented in the well above the water table, the casing being screened across and above the water table; and a sealing member sealing the first end. In one embodiment, the transducer is a tensiometer transducer and in other described embodiments, another type transducer is used in addition to a tensiometer.

  4. Riemannian geometry study of vapor-liquid phase equilibria and supercritical behavior of the Lennard-Jones fluid.

    PubMed

    May, Helge-Otmar; Mausbach, Peter

    2012-03-01

    The behavior of thermodynamic response functions and the thermodynamic scalar curvature in the supercritical region have been studied for a Lennard-Jones fluid based on a revised modified Benedict-Webb-Rubin equation of state. Response function extrema are sometimes used to estimate the Widom line, which is characterized by the maxima of the correlation lengths. We calculated the Widom line for the Lennard-Jones fluid without using any response function extrema. Since the volume of the correlation length is proportional to the Riemannian thermodynamic scalar curvature, the locus of the Widom line follows the slope of maximum curvature. We show that the slope of the Widom line follows the slope of the isobaric heat capacity maximum only in the close vicinity of the critical point and that, therefore, the use of response function extrema in this context is problematic. Furthermore, we constructed the vapor-liquid coexistence line for the Lennard-Jones fluid using the fact that the correlation length, and therefore the thermodynamic scalar curvature, must be equal in the two coexisting phases. We compared the resulting phase envelope with those from simulation data where multiple histogram reweighting was used and found striking agreement between the two methods.

  5. Vapor-liquid equilibria of binary mixtures of alkanols with alkanes from atmospheric pressure to the critical point

    NASA Astrophysics Data System (ADS)

    Orbey, H.; Sandier, S. I.

    1995-05-01

    A reformulated version of the Wong-Sandler mixing rule and the Peng-Robinson equation of state are used for the correlation and prediction of the vapor-liquid equilibrium of several alkanol + alkane binary systems. The description of these mixtures provides a stringent test since cubic equations of state with conventional mixing rules usually predict false liquid-liquid splits for such systems. For all systems, the model parameters used were fit to data on the lowest-temperature isotherm and then higher-temperature isotherms were successfully predicted with those parameters. False phase splitting was avoided by using a constrained parameter fit. For highly asymmetric (in size) alkanol+alkane binaries four parameters were necessary for an accurate representation of the data, while for less asymmetric alkanol + alkane binaries only two parameters were used.

  6. Vapor-liquid equilibria of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems

    SciTech Connect

    Mun, S.Y.; Lee, H.

    1999-12-01

    Vapor-liquid equilibrium data of the water + 1,3-propanediol and water + 1,3-propanediol + lithium bromide systems were measured at 60, 160, 300, and 760 mmHg at temperatures ranging from 315 to 488 K. The apparatus used in this work is a modified still especially designed for the measurement of low-pressure VLE, in which both liquid and vapor are continuously recirculated. For the analysis of salt-containing solutions, a method incorporating refractometry and gravimetry was used. From the experimental measurements, the effect of lithium bromide on the VLE behavior of water + 1,3-propanediol was investigated. The experimental data of the salt-free system were successfully correlated using the Wilson, NRTL, and UNIQUAC models. In addition, the extended UNIQUAC model of Sander et al. was applied to the VLE calculation of salt-containing mixtures.

  7. EXPERIMENTAL MEASUREMENT AND MODELING OF THE VAPOR-LIQUID EQUILIBRIUM OF CARBON DIOXIDE + CHLOROFORM. (R826734)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. Naturally occurring vapor-liquid-solid (VLS) Whisker growth of germanium sulfide

    USGS Publications Warehouse

    Finkelman, R.B.; Larson, R.R.; Dwornik, E.J.

    1974-01-01

    The first naturally occurring terrestrial example of vapor-liquid-solid (VLS) growth has been observed in condensates from gases released by burning coal in culm banks. Scanning electron microscopy, X-ray diffraction, and energy dispersive analysis indicate that the crystals consist of elongated rods (??? 100 ??m) of germanium sulfide capped by bulbs depleted in germanium. ?? 1974.

  9. Universal adsorption at the vapor-liquid interface near the consolute point

    NASA Technical Reports Server (NTRS)

    Schmidt, James W.

    1990-01-01

    The ellipticity of the vapor-liquid interface above mixtures of methylcyclohexane (C7H14) and perfluoromethylcyclohexane (C7F14) has been measured near the consolute point T(c) = 318.6 K. The data are consistent with a model of the interface that combines a short-ranged density-vs height profile in the vapor phase with a much longer-ranged composition-versus-height profile in the liquid. The value of the free parameter produced by fitting the model to the data is consistent with results from two other simple mixtures and a mixture of a polymer and solvent. This experiment combines precision ellipsometry of the vapor-liquid interface with in situ measurements of refractive indices of the liquid phases, and it precisely locates the consolute point.

  10. Joule-Thomson Inversion in Vapor-Liquid-Solid Solution Systems

    NASA Astrophysics Data System (ADS)

    Nichita, Dan Vladimir; Pauly, Jerome; Daridon, Jean-Luc

    2009-07-01

    Solid phase precipitation can greatly affect thermal effects in isenthalpic expansions; wax precipitation may occur in natural hydrocarbon systems in the range of operating conditions, the wax appearance temperature being significantly higher (as high as 350 K) for hyperbaric fluids. Recently, methods for calculating the Joule-Thomson inversion curve (JTIC) for two-phase mixtures, and for three-phase vapor-liquid-multisolid systems have been proposed. In this study, an approach for calculating the JTIC for the vapor-liquid-solid solution systems is presented. The JTIC is located by tracking extrema and angular points of enthalpy departure variations versus pressure at isothermal conditions. The proposed method is applied to several complex synthetic and naturally occurring hydrocarbon systems. The JTIC can exhibit several distinct branches (which may lie within two- or three-phase regions or follow phase boundaries), multiple inversion temperatures at fixed pressure, as well as multiple inversion pressures at given temperature.

  11. Gold-catalyzed vapor-liquid-solid germanium-nanowire nucleation on porous silicon.

    PubMed

    Koto, Makoto; Marshall, Ann F; Goldthorpe, Irene A; McIntyre, Paul C

    2010-05-07

    Nanoporous Si(111) substrates are used to study the effects of Au catalyst coarsening on the nucleation of vapor-liquid-solid-synthesized epitaxial Ge nanowires (NWs) at temperatures less than 400 degrees C. Porous Si substrates, with greater effective interparticle separations for Au surface diffusion than nonporous Si, inhibit catalyst coarsening and agglomeration prior to NW nucleation. This greatly reduces the variation in wire diameter and length and increases the yield compared to nucleation on identically prepared nonporous Si substrates.

  12. Microspheres for the growth of silicon nanowires via vapor-liquid-solid mechanism

    DOE PAGES

    Gomez-Martinez, Arancha; Marquez, Francisco; Elizalde, Eduardo; ...

    2014-01-01

    Silicon nanowires have been synthesized by a simple process using a suitable support containing silica and carbon microspheres. Nanowires were grown by thermal chemical vapor deposition via a vapor-liquid-solid mechanism with only the substrate as silicon source. The curved surface of the microsized spheres allows arranging the gold catalyst as nanoparticles with appropriate dimensions to catalyze the growth of nanowires. Here, the resulting material is composed of the microspheres with the silicon nanowires attached on their surface.

  13. Isothermal vapor-liquid equilibria for methanol + ethanol + water, methanol + water, and ethanol + water

    SciTech Connect

    Kurihara, Kiyofumi; Takeda, Kouichi; Kojima, Kazuo; Minoura, Tsuyoshi

    1995-05-01

    Isothermal vapor-liquid equilibria were measured for the ternary system methanol + ethanol + water and its constituent binary systems of methanol + water and ethanol + water at 323.15, 328.15, and 333.15 K. The apparatus that was used made it possible to control the measured temperature and total pressure by computer. The experimental binary data were correlated by the NRTL equation. The ternary system was predicted using the binary NRTL parameters with good accuracy.

  14. On the Electronic Nature of the Surface Potential at the Vapor-Liquid Interface of Water

    SciTech Connect

    Kathmann, S M; Kuo, I; Mundy, C J

    2008-02-05

    The surface potential at the vapor-liquid interface of water is relevant to many areas of chemical physics. Measurement of the surface potential has been experimentally attempted many times, yet there has been little agreement as to its magnitude and sign (-1.1 to +0.5 mV). We present the first computation of the surface potential of water using ab initio molecular dynamics. We find that the surface potential {chi} = -18 mV with a maximum interfacial electric field = 8.9 x 10{sup 7} V/m. A comparison is made between our quantum mechanical results and those from previous molecular simulations. We find that explicit treatment of the electronic density makes a dramatic contribution to the electric properties of the vapor-liquid interface of water. The E-field can alter interfacial reactivity and transport while the surface potential can be used to determine the 'chemical' contribution to the real and electrochemical potentials for ionic transport through the vapor-liquid interface.

  15. Effect of molecular flexibility of Lennard-Jones chains on vapor-liquid interfacial properties.

    PubMed

    Blas, F J; Moreno-Ventas Bravo, A I; Algaba, J; Martínez-Ruiz, F J; MacDowell, L G

    2014-03-21

    We have determined the interfacial properties of short fully flexible chains formed from tangentially bonded Lennard-Jones monomeric units from direct simulation of the vapor-liquid interface. The results obtained are compared with those corresponding to rigid-linear chains formed from the same chain length, previously determined in the literature [F. J. Blas, A. I. M.-V. Bravo, J. M. Míguez, M. M. Piñeiro, and L. G. MacDowell, J. Chem. Phys. 137, 084706 (2012)]. The full long-range tails of the potential are accounted for by means of an improved version of the inhomogeneous long-range corrections of Janeček [J. Phys. Chem. B 129, 6264 (2006)] proposed recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2008)] valid for spherical as well as for rigid and flexible molecular systems. Three different model systems comprising of 3, 5, and 6 monomers per molecule are considered. The simulations are performed in the canonical ensemble, and the vapor-liquid interfacial tension is evaluated using the test-area method. In addition to the surface tension, we also obtained density profiles, coexistence densities, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the chain length and rigidity on these properties. According to our results, the main effect of increasing the chain length (at fixed temperature) is to sharpen the vapor-liquid interface and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness decreases and the surface tension increases as the molecular chains get longer. Comparison between predictions for fully flexible and rigid-linear chains, formed by the same number of monomeric units, indicates that the main effects of increasing the flexibility, i.e., passing from a rigid-linear to a fully flexible chain, are: (a) to decrease the difference between the liquid and vapor densities; (b) to decrease the critical temperature and

  16. Finite-size scaling study of dynamic critical phenomena in a vapor-liquid transition

    NASA Astrophysics Data System (ADS)

    Midya, Jiarul; Das, Subir K.

    2017-01-01

    Via a combination of molecular dynamics (MD) simulations and finite-size scaling (FSS) analysis, we study dynamic critical phenomena for the vapor-liquid transition in a three dimensional Lennard-Jones system. The phase behavior of the model has been obtained via the Monte Carlo simulations. The transport properties, viz., the bulk viscosity and the thermal conductivity, are calculated via the Green-Kubo relations, by taking inputs from the MD simulations in the microcanonical ensemble. The critical singularities of these quantities are estimated via the FSS method. The results thus obtained are in nice agreement with the predictions of the dynamic renormalization group and mode-coupling theories.

  17. Microspheres for the growth of silicon nanowires via vapor-liquid-solid mechanism

    SciTech Connect

    Gomez-Martinez, Arancha; Marquez, Francisco; Elizalde, Eduardo; Morant, Carmen

    2014-01-01

    Silicon nanowires have been synthesized by a simple process using a suitable support containing silica and carbon microspheres. Nanowires were grown by thermal chemical vapor deposition via a vapor-liquid-solid mechanism with only the substrate as silicon source. The curved surface of the microsized spheres allows arranging the gold catalyst as nanoparticles with appropriate dimensions to catalyze the growth of nanowires. Here, the resulting material is composed of the microspheres with the silicon nanowires attached on their surface.

  18. Survey of Evaluated Isobaric Analog States

    SciTech Connect

    MacCormick, M.

    2014-06-15

    Isobaric analog states (IAS) can be used to estimate the masses of members belonging to the same isospin multiplet. Experimental and estimated IAS have been used frequently within the Atomic Mass Evaluation (AME) in the past, but the associated set of evaluated masses have been published for the first time in AME2012 and NUBASE2012. In this paper the current trends of the isobaric multiplet mass equation (IMME) coefficients are shown. The T = 2 multiplet is used as a detailed illustration.

  19. Capillary stability of vapor-liquid-solid crystallization processes and their comparison to Czochralski and Stepanov growth methods

    NASA Astrophysics Data System (ADS)

    Nebol'sin, Valery A.; Suyatin, Dmitry B.; Dunaev, Alexander I.; Tatarenkov, Alexander F.

    2017-04-01

    Epitaxial semiconductor nanowires grown with vapor-liquid-solid crystallization processes are very attractive nanoscale objects for many different applications. Despite extensive studies of the growth mechanism, there is still a lack of understanding of the growth process; in particular, the stability of the vapor-liquid-solid crystallization process has not previously been studied. Here we examine the capillary stability of the vapor-liquid-solid growth of nanowires and filamentary crystals with different diameters and demonstrate that the growth is stable for small Bond numbers when the meniscus height is linearly dependent on catalyst diameter. The capillary stability of vapor-liquid-solid growth is also compared with capillary stability in the Stepanov and Czochralski crystal growth methods; it is shown that capillary stability is not possible in the Czochralski method, although it is possible in the Stepanov growth method when the ratio of crystal diameter to shaper diameter is >1/2. These findings are important for better understanding and improved control of the growth of nanowires and filamentary crystals and indicate, for example, that large diameter filamentary crystals can be grown via a vapor-liquid-solid mechanism if the influence of gravity forces on the liquid catalytic particle shape can be reduced.

  20. Diffusivity and hydrodynamic drag of nanoparticles at a vapor-liquid interface

    NASA Astrophysics Data System (ADS)

    Koplik, Joel; Maldarelli, Charles

    2017-02-01

    Measurements of the surface diffusivity of colloidal spheres translating along a vapor-liquid interface show an unexpected decrease in diffusivity, or increase in surface drag (from the Stokes-Einstein relation), when the particles situate further into the vapor phase. However, direct measurements of the surface drag from the colloid velocity due to an external force find the expected decrease with deeper immersion into the vapor. We perform molecular dynamics simulations of the diffusivity and force experiments for a nanoparticle with a small surface roughness at a vapor-liquid interface to examine the effect of contact line fluctuations. The drag calculated from both calculations agree and decrease as the particle positions further into the vapor. The surface drag is smaller than the bulk liquid drag due to the partial submersion into the liquid and the finite thickness of the interfacial zone relative to the nanoparticle size. We observe weak contact line fluctuations and transient pinning events, but these do not give rise to an anomalous increase in drag in this system.

  1. Nimbus 7 SMMR derived seasonal variations in the water vapor, liquid water, and surface winds over the global oceans

    NASA Technical Reports Server (NTRS)

    Prabhakara, C.; Short, D. A.

    1984-01-01

    A study based on monthly mean maps of atmospheric water vapor, liquid water, and surface wind derived from Nimbus-7 SMMR over the oceans for 13 months, is examined. A discussion of the retrieval technique used to derive the parameters is presented. The seasonal changes in the strength and position of several of the parameter features are revealed by the December 1978 and June 1979 maps. Zonal averages of the water vapor, liquid water, and surface wind for December and June are compared with information derived from conventional measurements and the results are presented in graphs.

  2. Vapor-liquid phase equilibria of water modelled by a Kim-Gordon potential

    SciTech Connect

    Maerzke, K A; McGrath, M J; Kuo, I W; Tabacchi, G; Siepmann, J I; Mundy, C J

    2009-03-16

    Gibbs ensemble Monte Carlo simulations were carried out to investigate the properties of a frozen-electron-density (or Kim-Gordon, KG) model of water along the vapor-liquid coexistence curve. Because of its theoretical basis, such a KG model provides for seamless coupling to Kohn-Sham density functional theory for use in mixed quantum mechanics/molecular mechanics (QM/MM) implementations. The Gibbs ensemble simulations indicate rather limited transferability of such a simple KG model to other state points. Specifically, a KG model that was parameterized by Barker and Sprik to the properties of liquid water at 300 K, yields saturated vapor pressures and a critical temperature that are significantly under- and over-estimated, respectively.

  3. Droplet growth during vapor-liquid transition in a 2D Lennard-Jones fluid.

    PubMed

    Midya, Jiarul; Das, Subir K

    2017-01-14

    Results for the kinetics of vapor-liquid phase transition have been presented from the molecular dynamics simulations of a single component two-dimensional Lennard-Jones fluid. The phase diagram for the model, primary prerequisite for this purpose, has been obtained via the Monte Carlo simulations. Our focus is on the region very close to the vapor branch of the coexistence curve. Quenches to such region provide morphology that consists of disconnected circular clusters in the vapor background. We identified that these clusters exhibit diffusive motion and grow via sticky collisions among them. The growth follows power-law behavior with time, exponent of which is found to be in nice agreement with a theoretical prediction.

  4. Physical model of the vapor-liquid (insulator-metal) transition in an exciton gas

    SciTech Connect

    Khomkin, A. L. Shumikhin, A. S.

    2015-04-15

    We propose a simple physical model describing the transition of an exciton gas to a conducting exciton liquid. The transition occurs due to cohesive coupling of excitons in the vicinity of the critical point, which is associated with transformation of the exciton ground state to the conduction band and the emergence of conduction electrons. We calculate the cohesion binding energy for the exciton gas and, using it, derive the equations of state, critical parameters, and binodal. The computational method is analogous to that used by us earlier [5] for predicting the vapor-liquid (insulator-metal) phase transition in atomic (hypothetical, free of molecules) hydrogen and alkali metal vapors. The similarity of the methods used for hydrogen and excitons makes it possible to clarify the physical nature of the transition in the exciton gas and to predict more confidently the existence of a new phase transition in atomic hydrogen.

  5. Broad compositional tunability of indium tin oxide nanowires grown by the vapor-liquid-solid mechanism

    SciTech Connect

    Zervos, M. Giapintzakis, J.; Mihailescu, C. N.; Luculescu, C. R.; Florini, N.; Komninou, Ph.; Kioseoglou, J.; Othonos, A.

    2014-05-01

    Indium tin oxide nanowires were grown by the reaction of In and Sn with O{sub 2} at 800 °C via the vapor-liquid-solid mechanism on 1 nm Au/Si(001). We obtain Sn doped In{sub 2}O{sub 3} nanowires having a cubic bixbyite crystal structure by using In:Sn source weight ratios > 1:9 while below this we observe the emergence of tetragonal rutile SnO{sub 2} and suppression of In{sub 2}O{sub 3} permitting compositional and structural tuning from SnO{sub 2} to In{sub 2}O{sub 3} which is accompanied by a blue shift of the photoluminescence spectrum and increase in carrier lifetime attributed to a higher crystal quality and Fermi level position.

  6. Atomic characterization of Au clusters in vapor-liquid-solid grown silicon nanowires

    SciTech Connect

    Chen, Wanghua; Roca i Cabarrocas, Pere; Pareige, Philippe; Castro, Celia; Xu, Tao; Grandidier, Bruno; Stiévenard, Didier

    2015-09-14

    By correlating atom probe tomography with other conventional microscope techniques (scanning electron microscope, scanning transmission electron microscope, and scanning tunneling microscopy), the distribution and composition of Au clusters in individual vapor-liquid-solid grown Si nanowires is investigated. Taking advantage of the characteristics of atom probe tomography, we have developed a sample preparation method by inclining the sample at certain angle to characterize the nanowire sidewall without using focused ion beam. With three-dimensional atomic scale reconstruction, we provide direct evidence of Au clusters tending to remain on the nanowire sidewall rather than being incorporated into the Si nanowires. Based on the composition measurement of Au clusters (28% ± 1%), we have demonstrated the supersaturation of Si atoms in Au clusters, which supports the hypothesis that Au clusters are formed simultaneously during nanowire growth rather than during the cooling process.

  7. Droplet growth during vapor-liquid transition in a 2D Lennard-Jones fluid

    NASA Astrophysics Data System (ADS)

    Midya, Jiarul; Das, Subir K.

    2017-01-01

    Results for the kinetics of vapor-liquid phase transition have been presented from the molecular dynamics simulations of a single component two-dimensional Lennard-Jones fluid. The phase diagram for the model, primary prerequisite for this purpose, has been obtained via the Monte Carlo simulations. Our focus is on the region very close to the vapor branch of the coexistence curve. Quenches to such region provide morphology that consists of disconnected circular clusters in the vapor background. We identified that these clusters exhibit diffusive motion and grow via sticky collisions among them. The growth follows power-law behavior with time, exponent of which is found to be in nice agreement with a theoretical prediction.

  8. Vapor-Liquid-Solid Etch of Semiconductor Surface Channels by Running Gold Nanodroplets

    PubMed Central

    Nikoobakht, Babak; Herzing, Andrew; Muramoto, Shin; Tersoff, Jerry

    2016-01-01

    We show that Au nanoparticles spontaneously move across the (001) surface of InP, InAs, and GaP when heated in the presence of water vapor. As they move, the particles etch crystallographically aligned grooves into the surface. We show that this process is a negative analog of the vapor-liquid-solid (VLS) growth of semiconductor nanowires: semiconductor dissolves into the catalyst, and reacts with water vapor at the catalyst surface to create volatile oxides, depleting the dissolved cations and anions and so sustaining the dissolution process. This VLS etching process provides a new tool for directed assembly of structures with sub-lithographic dimensions, as small as a few nanometers in diameter. Au particles above 100 nm in size do not exhibit this process but remain stationary, with oxide accumulating around the particles. PMID:26599639

  9. On the existence of vapor-liquid phase transition in dusty plasmas

    SciTech Connect

    Kundu, M.; Sen, A.; Ganesh, R.; Avinash, K.

    2014-10-15

    The phenomenon of phase transition in a dusty-plasma system (DPS) has attracted some attention in the past. Earlier Farouki and Hamaguchi [J. Chem. Phys. 101, 9876 (1994)] have demonstrated the existence of a liquid to solid transition in DPS where the dust particles interact through a Yukawa potential. However, the question of the existence of a vapor-liquid (VL) transition in such a system remains unanswered and relatively unexplored so far. We have investigated this problem by performing extensive molecular dynamics simulations which show that the VL transition does not have a critical curve in the pressure versus volume diagram for a large range of the Yukawa screening parameter κ and the Coulomb coupling parameter Γ. Thus, the VL phase transition is found to be super-critical, meaning that this transition is continuous in the dusty plasma model given by Farouki and Hamaguchi. We provide an approximate analytic explanation of this finding by means of a simple model calculation.

  10. Analysis of vapor-liquid-solid mechanism in Au-assisted GaAs nanowire growth

    NASA Astrophysics Data System (ADS)

    Harmand, J. C.; Patriarche, G.; Péré-Laperne, N.; Mérat-Combes, M.-N.; Travers, L.; Glas, F.

    2005-11-01

    GaAs nanowires were grown by molecular-beam epitaxy on (111)B oriented surfaces, after the deposition of Au nanoparticles. Different growth durations and different growth terminations were tested. After the growth of the nanowires, the structure and the composition of the metallic particles were analyzed by transmission electron microscopy and energy dispersive x-ray spectroscopy. We identified three different metallic compounds: the hexagonal β'Au7Ga2 structure, the orthorhombic AuGa structure, and an almost pure Au face centered cubic structure. We explain how these different solid phases are related to the growth history of the samples. It is concluded that during the wire growth, the metallic particles are liquid, in agreement with the generally accepted vapor-liquid-solid mechanism. In addition, the analysis of the wire morphology indicates that Ga adatoms migrate along the wire sidewalls with a mean length of about 3μm.

  11. Extended study of molecular dynamics simulation of homogeneous vapor-liquid nucleation of water

    NASA Astrophysics Data System (ADS)

    Matsubara, Hiroki; Koishi, Takahiro; Ebisuzaki, Toshikazu; Yasuoka, Kenji

    2007-12-01

    Using the simple point charge/extended water model, we performed molecular dynamics simulations of homogeneous vapor-liquid nucleation at various values of temperature T and supersaturation S, from which the nucleation rate J, critical nucleus size n*, and the cluster formation free energy ΔG were derived. As well as providing lots of simulation data, the results were compared with theories on homogeneous nucleation, including the classical, semiphenomenological, and scaled models, but none of these gave a satisfactory explanation for our results. It was found that two main factors made the theories fail: (1) The average cluster structure including the nonspherical shape and the core structure that is not like the bulk liquid and (2) the forward rate which is larger than assumed by the theories by about one order of magnitude. The quantitative evaluation of these factors is left for future investigations.

  12. {Delta} isobars and (p,p') reactions

    SciTech Connect

    Sammarruca, F.; Stephenson, E. J.

    2001-09-01

    We explore the role of coupling to {Delta} isobars (in both the N{Delta} and {Delta}{Delta} channels) in medium modifications of the effective NN interaction that drives 200-MeV proton inelastic scattering. A comparison of the predictions to natural-parity (p,p') cross section and analyzing power data show that isobar degrees of freedom in the medium generate overly repulsive effective interactions. Furthermore, this model extension is unable to resolve difficulties observed earlier describing polarization transfer measurements in some high-spin, unnatural-parity (p,p') transitions.

  13. Isochoric and isobaric freezing of fish muscle.

    PubMed

    Năstase, Gabriel; Lyu, Chenang; Ukpai, Gideon; Șerban, Alexandru; Rubinsky, Boris

    2017-02-19

    We have recently shown that, a living organism, which succumbs to freezing to -4 °C in an isobaric thermodynamic system (constant atmospheric pressure), can survive freezing to -4 °C in an isochoric thermodynamic system (constant volume). It is known that the mechanism of cell damage in an isobaric system is the freezing caused increase in extracellular osmolality, and, the consequent cell dehydration. An explanation for the observed survival during isochoric freezing is the thermodynamic modeling supported hypothesis that, in the isochoric frozen solution the extracellular osmolality is comparable to the cell intracellular osmolality. Therefore, cells in the isochoric frozen organism do not dehydrate, and the tissue maintains its morphological integrity. Comparing the histology of: a) fresh fish white muscle, b) fresh muscle frozen to -5 °C in an isobaric system and c) fresh muscle frozen to -5 °C I in an isochoric system, we find convincing evidence of the mechanism of cell dehydration during isobaric freezing. In contrast, the muscle tissue frozen to -5 °C in an isochoric system appears morphologically identical to fresh tissue, with no evidence of dehydration. This is the first experimental evidence in support of the hypothesis that in isochoric freezing there is no cellular dehydration and therefore the morphology of the frozen tissue remains intact.

  14. Prediction of the vapor-liquid distribution constants for volatile nonelectrolytes in water up to its critical temperature

    NASA Astrophysics Data System (ADS)

    Plyasunov, Andrey V.; Shock, Everett L.

    2003-12-01

    The distribution of solutes between coexisting liquid and vapor phases of water can be expressed by the distribution constant, K D, defined as K D= limitlim x→0y/x, where y and x stand for the mole fraction concentrations of a solute in vapor and liquid phases, respectively. Research reported here is concerned with the prediction of this property, K D, for volatile nonelectrolytes, over the whole temperature range of existence of the vapor-liquid equilibrium for water, i.e. from 273 K to the critical temperature at 647.1 K. A simple empirical method is proposed to extrapolate the values of K D from 298 K to 500-550 K. Calculations at higher temperatures are based on the theoretical relation that establishes the proportionality between RTlnK D and the Krichevskii parameter, A Kr, which is the single most important property of a solute at near-critical conditions, and can be evaluated using the method proposed here. The comparison of predicted and experimental values of K D and A Kr for a few well-studied solutes reveals the satisfactory performance of the proposed method. It appears that the accuracy of predictions in the framework of this method is limited mainly by the accuracy of the values of the thermodynamic functions of hydration of solutes at 298 K, and that the best way to improve the quality of predictions of K D and A Kr is to increase the inventory of accurate calorimetric enthalpy and heat capacity data for aqueous solutes at 298 K. We stress that the values of the Krichevskii parameter, such as those generated in this study, are of crucial importance for reliable predictions of the chemical potential and its derivatives (V 2o, Cp 2o) for aqueous solutes at near-critical and supercritical conditions. Values of K D and A Kr are predicted for many inorganic volatile nonelectrolytes and some halogenated derivatives of methane and ethene. We show that both ln K D and A Kr for aqueous organic solutes follow group additivity systematics, and we derive a set

  15. Isobar separator for radioactive nuclear beams project

    SciTech Connect

    Davids, C.N.; Nolen, J.A.

    1995-08-01

    In order to produce pure beams of radioactive products emanating from the production target/ion source system, both mass and isobar separation is required. A preliminary mass separation with a resolution {triangle}M/M of approximately 10{sup -3} will select the proper mass beam. An isobar separator is needed because the masses of adjacent isobars are usually quite close, especially for beams near stability. In general, a mass resolution of 5 x 10{sup -5} is needed for isobar separation in the A < 120 region, while a resolution of 3 x 10{sup -5} or better is needed for heavier masses. Magnets are used to obtain mass separation. However, in addition to having mass dispersion properties, magnets also have an equal energy dispersion. This means that an energy variation in the beam cannot be distinguished from a mass difference. This is important because ions emerge from the ion source having a small ({approximately} 10{sup -5} - 10{sup -4}) energy spread. In order to make the system respond only to mass differences, it must be made energy dispersion. This is normally accomplished by using a combination of electric and magnetic fields. The most convenient way of doing this is to use an electric deflection following the magnet separator. A preliminary isobar separator which achieves a mass resolution of 2.7 x 10{sup -5} is shown in Figure I-38. It uses two large 60{degrees} bending magnets to obtain a mass dispersion of 140 mm/%, and four electric dipoles with bending angles of 39{degrees} to cancel the energy dispersion. Sextupole and octupole correction elements are used to reduce the geometrical aberrations.

  16. Isothermal vapor-liquid equilibrium of 1,2-dibromoethane + tetrachlorolmethane at temperatures between 283. 15 and 323. 15 K

    SciTech Connect

    Perez, P.; Valero, J.; Gracia, M. . Dept. de Quimica Organica-Quimica Fisica)

    1994-10-01

    Vapor pressures of 1, 2-dibromoethane + tetrachlormethane, at 5 K interval between 283.15 and 323.15 K, were measured by a static method. Activity coefficients and excess molar Gibbs free energies G[sup E] were calculated by Barker's method. Reduction of the vapor pressure results is well represented by the Redlich-Kister, Wilson, and NRTL correlations.

  17. Scaling phenomena of isobaric yields in projectile fragmentation, spallation, and fission reactions

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Huang, Ling; Song, Yi-Dan

    2017-02-01

    Background: The isobaric ratio difference scaling phenomenon, which has been found for the fragments produced in projectile fragmentation reactions, is related to the nuclear density change in reaction systems. Purpose: To verify whether the isobaric ratio difference scaling exists in the fragments produced in the spallation and fission reactions. Methods: The isobaric ratio difference scaling, denoted by SΔ lnR21 , is in theory deduced within the framework of the canonical ensemble theory at the grand-canonical limitation. The fragments measured in a series of projectile fragmentation, spallation, and fission reactions have been analyzed. Results: A good SΔ lnR21 scaling phenomenon is shown for the fragments produced both in the projectile fragmentation reactions and in the spallation reactions, whereas the SΔ lnR21 scaling phenomenon for the fragments in the fission reaction is less obvious. Conclusions: The SΔ lnR21 scaling is used to probe the properties of the equilibrium system at the time of fragment formation. The good scaling of SΔ lnR21 suggests that the equilibrium state can be achieved in the projectile fragmentation and spallation reactions. Whereas in the fission reaction, the result of SΔ lnR21 indicates that the equilibrium of the system is hard to achieve.

  18. Nickel oxide nanowires: vapor liquid solid synthesis and integration into a gas sensing device

    NASA Astrophysics Data System (ADS)

    Kaur, N.; Comini, E.; Zappa, D.; Poli, N.; Sberveglieri, G.

    2016-05-01

    In the field of advanced sensor technology, metal oxide nanostructures are promising materials due to their high charge carrier mobility, easy fabrication and excellent stability. Among all the metal oxide semiconductors, nickel oxide (NiO) is a p-type semiconductor with a wide band gap and excellent optical, electrical and magnetic properties, which has not been much investigated. Herein, we report the growth of NiO nanowires by using the vapor liquid solid (VLS) technique for gas sensing applications. Platinum, palladium and gold have been used as a catalyst for the growth of NiO nanowires. The surface morphology of the nanowires was investigated through scanning electron microscopy to find out which catalyst and growth conditions are best for the growth of nanowires. GI-XRD and Raman spectroscopies were used to confirm the crystalline structure of the material. Different batches of sensors have been prepared, and their sensing performances towards different gas species such as carbon monoxide, ethanol, acetone and hydrogen have been explored. NiO nanowire sensors show interesting and promising performances towards hydrogen.

  19. n-Type Doping of Vapor-Liquid-Solid Grown GaAs Nanowires.

    PubMed

    Gutsche, Christoph; Lysov, Andrey; Regolin, Ingo; Blekker, Kai; Prost, Werner; Tegude, Franz-Josef

    2011-12-01

    In this letter, n-type doping of GaAs nanowires grown by metal-organic vapor phase epitaxy in the vapor-liquid-solid growth mode on (111)B GaAs substrates is reported. A low growth temperature of 400°C is adjusted in order to exclude shell growth. The impact of doping precursors on the morphology of GaAs nanowires was investigated. Tetraethyl tin as doping precursor enables heavily n-type doped GaAs nanowires in a relatively small process window while no doping effect could be found for ditertiarybutylsilane. Electrical measurements carried out on single nanowires reveal an axially non-uniform doping profile. Within a number of wires from the same run, the donor concentrations ND of GaAs nanowires are found to vary from 7 × 10(17) cm(-3) to 2 × 10(18) cm(-3). The n-type conductivity is proven by the transfer characteristics of fabricated nanowire metal-insulator-semiconductor field-effect transistor devices.

  20. Directed synthesis of germanium oxide nanowires by vapor-liquid-solid oxidation.

    PubMed

    Gunji, M; Thombare, S V; Hu, S; McIntyre, P C

    2012-09-28

    We report on the directed synthesis of germanium oxide (GeO(x)) nanowires (NWs) by locally catalyzed thermal oxidation of aligned arrays of gold catalyst-tipped germanium NWs. During oxygen anneals conducted above the Au-Ge binary eutectic temperature (T > 361 °C), one-dimensional oxidation of as-grown Ge NWs occurs by diffusion of Ge through the Au-Ge catalyst droplet, in the presence of an oxygen containing ambient. Elongated GeO(x) wires grow from the liquid catalyst tip, consuming the adjoining Ge NWs as they grow. The oxide NWs' diameter is dictated by the catalyst diameter and their alignment generally parallels that of the growth direction of the initial Ge NWs. Growth rate comparisons reveal a substantial oxidation rate enhancement in the presence of the Au catalyst. Statistical analysis of GeO(x) nanowire growth by ex situ transmission electron microscopy and scanning electron microscopy suggests a transition from an initial, diameter-dependent kinetic regime, to diameter-independent wire growth. This behavior suggests the existence of an incubation time for GeO(x) NW nucleation at the start of vapor-liquid-solid oxidation.

  1. Vapor-liquid equilibria simulation and an equation of state contribution for dipole-quadrupole interactions.

    PubMed

    Vrabec, Jadran; Gross, Joachim

    2008-01-10

    A systematic investigation on vapor-liquid equilibria (VLEs) of dipolar and quadrupolar fluids is carried out by molecular simulation to develop a new Helmholtz energy contribution for equations of state (EOSs). Twelve two-center Lennard-Jones plus point dipole and point quadrupole model fluids (2CLJDQ) are studied for different reduced dipolar moments micro*2=6 or 12, reduced quadrupolar moments Q*2=2 or 4 and reduced elongations L*=0, 0.505, or 1. Temperatures cover a wide range from about 55% to 95% of the critical temperature of each fluid. The NpT+test particle method is used for the calculation of vapor pressure, saturated densities, and saturated enthalpies. Critical data and the acentric factor are obtained from fits to the simulation data. On the basis of this data, an EOS contribution for the dipole-quadrupole cross-interactions of nonspherical molecules is developed. The expression is based on a third-order perturbation theory, and the model constants are adjusted to the present 2CLJDQ simulation results. When applied to mixtures, the model is found to be in excellent agreement with results from simulation and experiment. The new EOS contribution is also compatible with segment-based EOS, such as the various forms of the statistical associating fluid theory EOS.

  2. Thermodynamic models for vapor-liquid equilibria of nitrogen + oxygen + carbon dioxide at low temperatures

    NASA Astrophysics Data System (ADS)

    Vrabec, Jadran; Kedia, Gaurav Kumar; Buchhauser, Ulrich; Meyer-Pittroff, Roland; Hasse, Hans

    2009-02-01

    For the design and optimization of CO 2 recovery from alcoholic fermentation processes by distillation, models for vapor-liquid equilibria (VLE) are needed. Two such thermodynamic models, the Peng-Robinson equation of state (EOS) and a model based on Henry's law constants, are proposed for the ternary mixture N 2 + O 2 + CO 2. Pure substance parameters of the Peng-Robinson EOS are taken from the literature, whereas the binary parameters of the Van der Waals one-fluid mixing rule are adjusted to experimental binary VLE data. The Peng-Robinson EOS describes both binary and ternary experimental data well, except at high pressures approaching the critical region. A molecular model is validated by simulation using binary and ternary experimental VLE data. On the basis of this model, the Henry's law constants of N 2 and O 2 in CO 2 are predicted by molecular simulation. An easy-to-use thermodynamic model, based on those Henry's law constants, is developed to reliably describe the VLE in the CO 2-rich region.

  3. Influences of depletion potential on vapor-liquid critical point metastability

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Liu, G.

    2016-04-01

    Phase behavior of a neutral colloid dispersion is investigated based on an improved Asakura-Oosawa (AO) model. Several observations are made: (i) an increase of solvent fugacity can enlarge the fluid-solid (FS) coexistence region, and this makes fugacity become a powerful factor in tuning a vapor-liquid transition (VLT) critical point metastability. (ii) A reducing of size ratio of the solvent versus colloid particle can enlarge the FS coexistence region as well as lower the VLT critical temperature, and a combination of the two effects makes the size ratio an extremely powerful factor adjusting the VLT critical point metastability. (iii) Existence of a long-range attraction term in the effective colloid potential is not a necessary condition for occurrence of a vapor-solid transition (VST), and short-ranged oscillatory depletion potential also can induce the VST over an even broader temperature range. (iv) Sensitivity of the freezing line on the size ratio is disclosed, and one can make use of the sensitivity to prepare mono-disperse colloid of well-controlled diameter by following a fractionated crystallization scheme; moreover, broadening of the FST coexistence region by raising the solvent fugacity and/or lowering the size ratio has important implication for crystallization process.

  4. Nonequilibrium kinetic boundary condition at the vapor-liquid interface of argon.

    PubMed

    Ishiyama, Tatsuya; Fujikawa, Shigeo; Kurz, Thomas; Lauterborn, Werner

    2013-10-01

    A boundary condition for the Boltzmann equation (kinetic boundary condition, KBC) at the vapor-liquid interface of argon is constructed with the help of molecular dynamics (MD) simulations. The KBC is examined at a constant liquid temperature of 85 K in a wide range of nonequilibrium states of vapor. The present investigation is an extension of a previous one by Ishiyama, Yano, and Fujikawa [Phys. Rev. Lett. 95, 084504 (2005)] and provides a more complete form of the KBC. The present KBC includes a thermal accommodation coefficient in addition to evaporation and condensation coefficients, and these coefficients are determined in MD simulations uniquely. The thermal accommodation coefficient shows an anisotropic behavior at the interface for molecular velocities normal versus tangential to the interface. It is also found that the evaporation and condensation coefficients are almost constant in a fairly wide range of nonequilibrium states. The thermal accommodation coefficient of the normal velocity component is almost unity, while that of the tangential component shows a decreasing function of the density of vapor incident on the interface, indicating that the tangential velocity distribution of molecules leaving the interface into the vapor phase may deviate from the tangential parts of the Maxwell velocity distribution at the liquid temperature. A mechanism for the deviation of the KBC from the isotropic Maxwell KBC at the liquid temperature is discussed in terms of anisotropic energy relaxation at the interface. The liquid-temperature dependence of the present KBC is also discussed.

  5. Fabrication and performance evaluation of a high temperature co-fired ceramic vaporizing liquid microthruster

    NASA Astrophysics Data System (ADS)

    How Cheah, Kean; Low, Kay-Soon

    2015-01-01

    This paper presents the study of a microelectromechanical system (MEMS)-scaled microthruster using ceramic as the structural material. A vaporizing liquid microthruster (VLM) has been fabricated using the high temperature co-fired ceramic (HTCC) technology. The developed microthruster consists of five components, i.e. inlet, injector, vaporizing chamber, micronozzle and microheater, all integrated in a chip with a dimension of 30 mm × 26 mm × 8 mm. In the dry test, the newly developed microheater which is deposited on zirconia substrate consumes 21% less electrical power than those deposited on silicon substrate to achieve a temperature of 100 °C. Heating temperature as high as 409.1 °C can be achieved using just 5 W of electrical power. For simplicity and safety, a functional test of the VLM with water as propellant has been conducted in the laboratory. Full vaporization of water propellant feeding at different flow rates has been successfully demonstrated. A maximum thrust of 633.5 µN at 1 µl s-1 propellant consumption rate was measured using a torsional thrust stand.

  6. Thermal-hydraulic behaviors of vapor-liquid interface due to arrival of a pressure wave

    SciTech Connect

    Inoue, Akira; Fujii, Yoshifumi; Matsuzaki, Mitsuo

    1995-09-01

    In the vapor explosion, a pressure wave (shock wave) plays a fundamental role for triggering, propagation and enhancement of the explosion. Energy of the explosion is related to the magnitude of heat transfer rate from hot liquid to cold volatile one. This is related to an increasing rate of interface area and to an amount of transient heat flux between the liquids. In this study, the characteristics of transient heat transfer and behaviors of vapor film both on the platinum tube and on the hot melt tin drop, under same boundary conditions have been investigated. It is considered that there exists a fundamental mechanism of the explosion in the initial expansion process of the hot liquid drop immediately after arrival of pressure wave. The growth rate of the vapor film is much faster on the hot liquid than that on the solid surface. Two kinds of roughness were observed, one due to the Taylor instability, by rapid growth of the explosion bubble, and another, nucleation sites were observed at the vapor-liquid interface. Based on detailed observation of early stage interface behaviors after arrival of a pressure wave, the thermal fragmentation mechanism is proposed.

  7. Rational Concept for Reducing Growth Temperature in Vapor-Liquid-Solid Process of Metal Oxide Nanowires.

    PubMed

    Zhu, Zetao; Suzuki, Masaru; Nagashima, Kazuki; Yoshida, Hideto; Kanai, Masaki; Meng, Gang; Anzai, Hiroshi; Zhuge, Fuwei; He, Yong; Boudot, Mickaël; Takeda, Seiji; Yanagida, Takeshi

    2016-12-14

    Vapor-liquid-solid (VLS) growth process of single crystalline metal oxide nanowires has proven the excellent ability to tailor the nanostructures. However, the VLS process of metal oxides in general requires relatively high growth temperatures, which essentially limits the application range. Here we propose a rational concept to reduce the growth temperature in VLS growth process of various metal oxide nanowires. Molecular dynamics (MD) simulation theoretically predicts that it is possible to reduce the growth temperature in VLS process of metal oxide nanowires by precisely controlling the vapor flux. This concept is based on the temperature dependent "material flux window" that the appropriate vapor flux for VLS process of nanowire growth decreases with decreasing the growth temperature. Experimentally, we found the applicability of this concept for reducing the growth temperature of VLS processes for various metal oxides including MgO, SnO2, and ZnO. In addition, we show the successful applications of this concept to VLS nanowire growths of metal oxides onto tin-doped indium oxide (ITO) glass and polyimide (PI) substrates, which require relatively low growth temperatures.

  8. Isospin purity in the A=42 isobars

    SciTech Connect

    Orce, J.N.; McKay, C.J.; Choudry, S.N.; Lesher, S.L.; Mynk, M.; Bandyopadhyay, D.; Yates, S.W.; McEllistrem, M.T.; Petkov, P.

    2004-09-13

    The lifetime of the first 2{sub T=1}{sup +} state in 42Sc has been measured as 74(16) fs. This result gives a value for the isoscalar matrix element of M0=6.63(76). From the mirror nuclei, 42Ca and 42Ti, the isoscalar matrix element is given as 7.15(48) W.u., confirming isospin purity in the A=42 isobars.

  9. Effect of three-body interactions on the vapor-liquid phase equilibria of binary fluid mixtures.

    PubMed

    Wang, Liping; Sadus, Richard J

    2006-08-21

    Gibbs-Duhem Monte Carlo simulations are reported for the vapor-liquid phase coexistence of binary argon+krypton mixtures at different temperatures. The calculations employ accurate two-body potentials in addition to contributions from three-body dispersion interactions resulting from third-order triple-dipole interactions. A comparison is made with experiment that illustrates the role of three-body interactions on the phase envelope. In all cases the simulations represent genuine predictions with input parameters obtained independently from sources other than phase equilibria data. Two-body interactions alone are insufficient to adequately describe vapor-liquid coexistence. In contrast, the addition of three-body interactions results in very good agreement with experiment. In addition to the exact calculation of three-body interactions, calculations are reported with an approximate formula for three-body interactions, which also yields good results.

  10. Isobar Separator for Anions: Current status

    NASA Astrophysics Data System (ADS)

    Alary, Jean-François; Javahery, Gholamreza; Kieser, William; Zhao, Xiao-Lei; Litherland, Albert; Cousins, Lisa; Charles, Christopher

    2015-10-01

    The Isobar Separator for Anions (ISA) is an emerging separation technique of isobars applied first to the selective removal of 36S from 36Cl, achieving a relative suppression ratio of 6 orders of magnitude. Using a radio-frequency quadrupole (RFQ) column incorporating low energy gas cells, this innovative technique enables the use of a wide range of low energy ion-molecule reactions and collisional-induced dissociation processes for suppressing specific atomic of molecular anions with a high degree of selectivity. Other elemental pairs (analyte/isobar) successfully separated at AMS level include Ca/K, Sr/(Y, Zr), Cs/Ba, Hf/W and Pu/U. In view of these initial successes, an effort to develop a version of the ISA that can be used as a robust technique for routine AMS analysis has been undertaken. We will discuss the detailed layout of a practical ISA and the functional requirements that a combined ISA/AMS should meet. These concepts are currently being integrated in a pre-commercial ISA system that will be installed soon at the newly established A.E. Lalonde Laboratory in Ottawa, Canada.

  11. Physics-Based Modeling of Permeation: Simulation of Low-Volatility Agent Permeation and Aerosol Vapor Liquid Assessment Group Experiments

    DTIC Science & Technology

    2015-06-01

    PHYSICS-BASED MODELING OF PERMEATION: SIMULATION OF LOW-VOLATILITY AGENT PERMEATION AND AEROSOL VAPOR LIQUID...REPORT TYPE Final 3. DATES COVERED (From - To) Jan 2014 – Sep 2014 4. TITLE AND SUBTITLE Physics-Based Modeling of Permeation: Simulation of Low...Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY NOTES 14. ABSTRACT: Physics-based models were developed to predict agent

  12. Correlation of Zeno (Z = 1) line for supercritical fluids with vapor-liquid rectilinear diameters

    SciTech Connect

    Ben-Amotz, D.; Herschbach, D.R.

    1996-08-01

    For a wide range of substances, extending well beyond the regime of corresponding states behavior, the contour in the temperature-density plane along which the compressibility factor Z = P/{rho}kT is the same as for an ideal gas is nearly linear. This Z = 1 contour, termed the Zeno line, begins deep in the liquid region and ascends as the density decreases to the Boyle point of the supercritical fluid, specified by the temperature T{sub B} for which (dZ/d{rho}){sub T} = 0 as {rho} {r_arrow} 0; equivalent, at T{sub B} the second virial coefficient vanishes. The slope of the Z = 1 line is {minus}B{sub 3}/(dB{sub 2}/dT), in terms of the third virial coefficient and the derivative of the second, evaluated at T{sub B}. Previous work has examined the Zeno line as a means to extend corresponding states and to enhance other practical approximations. Here the authors call attention to another striking aspect, a strong correlation with the line of rectilinear diameters defined by the average of the subcritical vapor and liquid densities. This correlation is obeyed well by empirical data for many substances and computer simulations for a Lennard-jones potential; the ratios of the intercepts and slopes for the Zeno and rectilinear diameter liens are remarkably close to those predicted by the van der Waals equation, 8/9 and 16/9, respectively. Properties of the slightly imperfect fluid far above the critical point thus implicitly determine the diameter of the vapor-liquid coexistence curve below the critical point.

  13. Vapor-liquid equilibria for copolymer+solvent systems: Effect of intramolecular repulsion

    SciTech Connect

    Gupta, R.B.; Prausnitz, J.M.

    1995-03-01

    Role of intramolecular interactions in blend miscibility is well documented for polymer+copolymer mixtures. Some copolymer+polymer mixtures are miscible although their corresponding homopolymers are not miscible; for example, over a range of acrylonitrile content, styrene/acrylonitrile copolymers are miscible with poly(methyl methacrylate) but neither polystyrene nor polyacrylonitrile is miscible with poly(methyl methacrylate). Similarly, over a composition range, butadiene/acrylonitrile copolymers are miscible with poly(vinyl chloride) while none of the binary combinations of the homopolymers [polybutadiene, polyacrylonitrile, and poly(vinyl chloride)] are miscible. This behavior has been attributed to ``intramolecular repulsion`` between unlike copolymer segments. We have observed similar behavior in vapor-liquid equilibria (VLE) of copolymer+solvent systems. We find that acrylonitrile/butadiene copolymers have higher affinity for acetonitrile solvent than do polyacrylonitrile or polybutadiene. We attribute this non-intuitive behavior to ``intramolecular repulsion`` between unlike segments of the copolymer. This repulsive interaction is weakened when acetonitrile molecules are in the vicinity of unlike copolymer segments, favoring copolymer+solvent miscibility. We find similar behavior when acetonitrile is replaced by methyl ethyl ketone. To best knowledge, this effect has not been reported previously for VLE. We have obtained VLE data for mixtures containing a solvent and a copolymer as a function of copolymer composition. It appears that, at a given solvent partial pressure, there may be copolymer composition that yields maximum absorption of the solvent. This highly non-ideal VLE phase behavior may be useful for optimum design of a membrane for a separation process.

  14. Quantification of Cell-Penetrating Peptide Associated with Polymeric Nanoparticles Using Isobaric-Tagging and MALDI-TOF MS/MS

    NASA Astrophysics Data System (ADS)

    Chiu, Jasper Z. S.; Tucker, Ian G.; McDowell, Arlene

    2016-11-01

    High sensitivity quantification of the putative cell-penetrating peptide di-arginine-histidine (RRH) associated with poly (ethyl-cyanoacrylate) (PECA) nanoparticles was achieved without analyte separation, using a novel application of isobaric-tagging and high matrix-assisted laser desorption/ionization coupled to time-of-flight (MALDI-TOF) mass spectrometry. Isobaric-tagging reaction equilibrium was reached after 5 min, with 90% or greater RRH peptide successfully isobaric-tagged after 60 min. The accuracy was greater than 90%, which indicates good reliability of using isobaric-tagged RRH as an internal standard for RRH quantification. The sample intra- and inter-spot coefficients of variations were less than 11%, which indicate good repeatability. The majority of RRH peptides in the nanoparticle formulation were physically associated with the nanoparticles (46.6%), whereas only a small fraction remained unassociated (13.7%). The unrecovered RRH peptide (~40%) was assumed to be covalently associated with PECA nanoparticles.

  15. Diameter dependence of the growth velocity of silicon nanowires synthesized via the vapor-liquid-solid mechanism

    NASA Astrophysics Data System (ADS)

    Schmidt, V.; Senz, S.; Gösele, U.

    2007-01-01

    We present a model for the radius dependence of the growth velocity of Si nanowires synthesized via the vapor-liquid-solid mechanism. By considering the interplay of the Si incorporation and crystallization rate at steady state conditions we show that the radius dependence of the growth velocity in general depends on the derivatives of the incorporation and crystallization velocity with respect to the supersaturation. Taking this into account, the apparently contradictory experimental observations regarding the radius dependence of the growth velocity can be reconciled and explained consistently.

  16. Experimental measurements of vapor-liquid equilibria of the H2O + CO2 + CH4 ternary system

    USGS Publications Warehouse

    Qin, J.; Rosenbauer, R.J.; Duan, Zhenhao

    2008-01-01

    Reported are the experimental measurements on vapor-liquid equilibria in the H2O + CO2 + CH4 ternary system at temperatures from (324 to 375) K and pressures from (10 to 50) MPa. The results indicate that the CH4 solubility in the ternary mixture is about 10 % to 40 % more than that calculated by interpolation from the Henry's law constants of the binary system, H2O + CH4, and the solubility of CO2 is 6 % to 20 % more than what is calculated by the interpolation from the Henry's law constants of the binary mixture, H 2O + CO2. ?? 2008 American Chemical Society.

  17. Engineering scale development of the Vapor-Liquid-Solid (VLS) process for the production of silicon carbide fibrils

    SciTech Connect

    Hollar, W.E. Jr.; Mills, W.H.

    1993-09-01

    Vapor-liquid-solid (VLS)SiC fibrils are used as reinforcement in ceramic matrix composites (CMC). A program has been completed for determining process scaleup parameters and to produce material for evaluation in a CMC. The scaleup is necessary to lower production cost and increase material availability. Scaleup parameters were evaluated in a reactor with a vertical dimension twice that of the LANL reactor. Results indicate that the scaleup will be possible. Feasibility of recycling process gas was demonstrated and the impact of postprocessing on yields determined.

  18. QUANTITY: An Isobaric Tag for Quantitative Glycomics

    PubMed Central

    Yang, Shuang; Wang, Meiyao; Chen, Lijun; Yin, Bojiao; Song, Guoqiang; Turko, Illarion V.; Phinney, Karen W.; Betenbaugh, Michael J.; Zhang, Hui; Li, Shuwei

    2015-01-01

    Glycan is an important class of macromolecules that play numerous biological functions. Quantitative glycomics - analysis of glycans at global level - however, is far behind genomics and proteomics owing to technical challenges associated with their chemical properties and structural complexity. As a result, technologies that can facilitate global glycan analysis are highly sought after. Here, we present QUANTITY (Quaternary Amine Containing Isobaric Tag for Glycan), a quantitative approach that can not only enhance detection of glycans by mass spectrometry, but also allow high-throughput glycomic analysis from multiple biological samples. This robust tool enabled us to accomplish glycomic survey of bioengineered Chinese Hamster Ovary (CHO) cells with knock-in/out enzymes involved in protein glycosylation. Our results demonstrated QUANTITY is an invaluable technique for glycan analysis and bioengineering. PMID:26616285

  19. Vapor-liquid transitions of dipolar fluids in disordered porous media: Performance of angle-averaged potentials

    NASA Astrophysics Data System (ADS)

    Spöler, C.; Klapp, S. H. L.

    2004-11-01

    Using replica integral equations in the reference hypernetted-chain (RHNC) approximation we calculate vapor-liquid spinodals, chemical potentials, and compressibilities of fluids with angle-averaged dipolar interactions adsorbed to various disordered porous media. Comparison with previous RHNC results for systems with true angle-dependent Stockmayer (dipolar plus Lennard-Jones) interactions [C. Spöler and S. H. L. Klapp, J. Chem. Phys. 118, 3628 (2003); ibid.120, 6734 (2004)] indicate that, for a dilute hard sphere matrix, the angle-averaged fluid-fluid (ff) potential is a reasonable alternative for reduced fluid dipole moments m*2=μ2/(ɛ0σ3)⩽2.0. This range is comparable to that estimated in bulk fluids, for which RHNC results are presented as well. Finally, results for weakly polar matrices suggest that angle-averaged fluid-matrix (fm) interactions can reproduce main features observed for true dipolar (fm) interactions such as the shift of the vapor-liquid spinodals towards lower temperatures and higher densities. However, the effective attraction induced by dipolar (fm) interaction is underestimated rather than overestimated as in the case of angle-averaged ff interactions.

  20. Structure and dynamics of single hydrophobic/ionic heteropolymers at the vapor-liquid interface of water.

    PubMed

    Vembanur, Srivathsan; Venkateshwaran, Vasudevan; Garde, Shekhar

    2014-04-29

    We focus on the conformational stability, structure, and dynamics of hydrophobic/charged homopolymers and heteropolymers at the vapor-liquid interface of water using extensive molecular dynamics simulations. Hydrophobic polymers collapse into globular structures in bulk water but unfold and sample a broad range of conformations at the vapor-liquid interface of water. We show that adding a pair of charges to a hydrophobic polymer at the interface can dramatically change its conformations, stabilizing hairpinlike structures, with molecular details depending on the location of the charged pair in the sequence. The translational dynamics of homopolymers and heteropolymers are also different, whereas the homopolymers skate on the interface with low drag, the tendency of charged groups to remain hydrated pulls the heteropolymers toward the liquid side of the interface, thus pinning them, increasing drag, and slowing the translational dynamics. The conformational dynamics of heteropolymers are also slower than that of the homopolymer and depend on the location of the charged groups in the sequence. Conformational dynamics are most restricted for the end-charged heteropolymer and speed up as the charge pair is moved toward the center of the sequence. We rationalize these trends using the fundamental understanding of the effects of the interface on primitive pair-level interactions between two hydrophobic groups and between oppositely charged ions in its vicinity.

  1. The vapor-liquid interface potential of (multi)polar fluids and its influence on ion solvation.

    PubMed

    Horváth, Lorand; Beu, Titus; Manghi, Manoel; Palmeri, John

    2013-04-21

    The interface between the vapor and liquid phase of quadrupolar-dipolar fluids is the seat of an electric interfacial potential whose influence on ion solvation and distribution is not yet fully understood. To obtain further microscopic insight into water specificity we first present extensive classical molecular dynamics simulations of a series of model liquids with variable molecular quadrupole moments that interpolates between SPC/E water and a purely dipolar liquid. We then pinpoint the essential role played by the competing multipolar contributions to the vapor-liquid and the solute-liquid interface potentials in determining an important ion-specific direct electrostatic contribution to the ionic solvation free energy for SPC/E water-dominated by the quadrupolar and dipolar parts-beyond the dominant polarization one. Our results show that the influence of the vapor-liquid interfacial potential on ion solvation is strongly reduced due to the strong partial cancellation brought about by the competing solute-liquid interface potential.

  2. Shadowing and mask opening effects during selective-area vapor-liquid-solid growth of InP nanowires by metalorganic molecular beam epitaxy.

    PubMed

    Kelrich, A; Calahorra, Y; Greenberg, Y; Gavrilov, A; Cohen, S; Ritter, D

    2013-11-29

    Indium phosphide nanowires were grown by metalorganic molecular beam epitaxy using the selective-area vapor-liquid-solid method. We show experimentally and theoretically that the size of the annular opening around the nanowire has a major impact on nanowire growth rate. In addition, we observed a considerable reduction of the growth rate in dense two-dimensional arrays, in agreement with a calculation of the shadowing of the scattered precursors. Due to the impact of these effects on growth, they should be considered during selective-area vapor-liquid-solid nanowire epitaxy.

  3. Symmetry energy II: Isobaric analog states

    NASA Astrophysics Data System (ADS)

    Danielewicz, Pawel; Lee, Jenny

    2014-02-01

    Using excitation energies to isobaric analog states (IAS) and charge invariance, we extract nuclear symmetry coefficients, representing a mass formula, on a nucleus-by-nucleus basis. Consistently with charge invariance, the coefficients vary weakly across an isobaric chain. However, they change strongly with nuclear mass and range from aa˜10 MeV at mass A˜10 to aa˜22 MeV at A˜240. Variation with mass can be understood in terms of dependence of nuclear symmetry energy on density and the rise in importance of low densities within nuclear surface in smaller systems. At A≳30, the dependence of coefficients on mass can be well described in terms of a macroscopic volume-surface competition formula with aaV≃33.2 MeV and aaS≃10.7 MeV. Our further investigation shows, though, that the fitted surface symmetry coefficient likely significantly underestimates that for the limit of half-infinite matter. Following the considerations of a Hohenberg-Kohn functional for nuclear systems, we determine how to find in practice the symmetry coefficient using neutron and proton densities, even when those densities are simultaneously affected by significant symmetry-energy and Coulomb effects. These results facilitate extracting the symmetry coefficients from Skyrme-Hartree-Fock (SHF) calculations, that we carry out using a variety of Skyrme parametrizations in the literature. For the parametrizations, we catalog novel short-wavelength instabilities. In our further analysis, we retain only those parametrizations which yield systems that are adequately stable both in the long- and short-wavelength limits. In comparing the SHF and IAS results for the symmetry coefficients, we arrive at narrow (±2.4 MeV) constraints on the symmetry-energy values S(ρ) at 0.04≲ρ≲0.13 fm. Towards normal density the constraints significantly widen, but the normal value of energy aaV and the slope parameter L are found to be strongly correlated. To narrow the constraints, we reach for the

  4. Pion production via isobar giant resonance formation and decay

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Deutchman, P. A.; Madigan, R. L.; Norbury, J. W.

    1984-01-01

    A spin, isotopic-spin formalism for the production of pions due to decays of isobar giant resonances formed in peripheral heavy-ion collisions is presented. The projectile nucleus isobar giant resonance state is assumed to coherently form and then incoherently decay to produce the pions. Total spin and isotopic spin for the system are conserved through the concomitant excitation of the target nucleus to an isobaric analog giant resonance state. Comparisons of the predicted total pion cross sections, over a range of energies, are made with heavy-ion pion data.

  5. Structural and electronic properties of InN nanowire network grown by vapor-liquid-solid method

    SciTech Connect

    Barick, B. K. E-mail: subho-dh@yahoo.co.in; Dhar, S. E-mail: subho-dh@yahoo.co.in; Rodríguez-Fernández, Carlos; Cantarero, Andres

    2015-05-15

    Growth of InN nanowires have been carried out on quartz substrates at different temperatures by vapor-liquid-solid (VLS) technique using different thicknesses of Au catalyst layer. It has been found that a narrow window of Au layer thickness and growth temperature leads to multi-nucleation, in which each site acts as the origin of several nanowires. In this multi-nucleation regime, several tens of micrometer long wires with diameter as small as 20 nm are found to grow along [112{sup -}0] direction (a-plane) to form a dense network. Structural and electronic properties of these wires are studied. As grown nanowires show degenerate n-type behavior. Furthermore, x-ray photoemission study reveals an accumulation of electrons on the surface of these nanowires. Interestingly, the wire network shows persistence of photoconductivity for several hours after switching off the photoexcitation.

  6. III-Vs at Scale: A PV Manufacturing Cost Analysis of the Thin Film Vapor-Liquid-Solid Growth Mode

    SciTech Connect

    Zheng, Maxwell; Horowitz, Kelsey; Woodhouse, Michael; Battaglia, Corsin; Kapadia, Rehan; Javey, Ali

    2016-06-01

    The authors present a manufacturing cost analysis for producing thin-film indium phosphide modules by combining a novel thin-film vapor-liquid-solid (TF-VLS) growth process with a standard monolithic module platform. The example cell structure is ITO/n-TiO2/p-InP/Mo. For a benchmark scenario of 12% efficient modules, the module cost is estimated to be $0.66/W(DC) and the module cost is calculated to be around $0.36/W(DC) at a long-term potential efficiency of 24%. The manufacturing cost for the TF-VLS growth portion is estimated to be ~$23/m2, a significant reduction compared with traditional metalorganic chemical vapor deposition. The analysis here suggests the TF-VLS growth mode could enable lower-cost, high-efficiency III-V photovoltaics compared with manufacturing methods used today and open up possibilities for other optoelectronic applications as well.

  7. Prediction of vapor-liquid equilibria for the alcohol + glycerol systems using UNIFAC and modified UNIFAC (Dortmund)

    NASA Astrophysics Data System (ADS)

    Hartanto, Dhoni; Mustain, Asalil; Nugroho, Febry Dwi

    2017-03-01

    The vapor-liquid equilibria for eight systems of alcohols + glycerol at 101.325 kPa have been predicted in this study using UNIFAC and Modified UNIFAC (Dortmund) group contribution methods. The investigated alcohols were methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, 2-butanol, 2-methyl-1-propanol and 2-methyl-2-propanol. In order to study the accuracy of both contribution methods, the predicted data obtained from both approaches were compared to the experimental data from the literature. The prediction accuracy using modified UNIFAC (Dortmund) give better results compared to the UNIFAC method for (ethanol, 1-propanol, 2-propanol and 1-butanol) + glycerol but UNIFAC method show better accuracy for methanol + glycerol system. In addition, the influences of carbon chain length on the phase behaviours of alcohol + glycerol systems were also discussed as well.

  8. Transition region width of nanowire hetero- and pn-junctions grown using vapor-liquid-solid processes

    NASA Astrophysics Data System (ADS)

    Li, Na; Tan, Teh Y.; Gösele, U.

    2008-03-01

    The transition region width of nanowire heterojunctions and pn-junctions grown using vapor-liquid-solid (VLS) processes has been modeled. With two constituents or dopants I and II, the achievable width or abruptness of the junctions is attributed to the residual I atom/molecule stored in the liquid droplet at the onset of introducing II to grow the junction, and the stored I atom/molecule consumption into the subsequently grown crystal layers. The model yields satisfactory quantitative fits to a set of available Si-Ge junction data. Moreover, the model provides a satisfactory explanation to the relative junction width or abruptness differences between elemental and compound semiconductor junction cases, as well as a guideline for achieving the most desirable pn-junction widths.

  9. Constructing a superhydrophobic surface on polydimethylsiloxane via spin coating and vapor-liquid sol-gel process.

    PubMed

    Peng, Yu-Ting; Lo, Kuo-Feng; Juang, Yi-Je

    2010-04-06

    In this study, a superhydrophobic surface on polydimethylsiloxane (PDMS) substrate was constructed via the proposed vapor-liquid sol-gel process in conjunction with spin coating of dodecyltrichlorosilane (DTS). Unlike the conventional sol-gel process where the reaction takes place in the liquid phase, layers of silica (SiO(2)) particles were formed through the reaction between the reactant spin-coated on the PDMS surface and vapor of the acid solution. This led to the SiO(2) particles inlaid on the PDMS surface. Followed by subsequent spin coating of DTS solution, the wrinkle-like structure was formed, and the static contact angle of the water droplet on the surface could reach 162 degrees with 2 degrees sliding angle and less than 5 degrees contact angle hysteresis. The effect of layers of SiO(2) particles, concentrations of DTS solution and surface topography on superhydrophobicity of the surface is discussed.

  10. Method for locating the vapor-liquid critical point of multicomponent fluid mixtures using a shear mode piezoelectric sensor.

    PubMed

    Ke, Jie; King, P J; George, Michael W; Poliakoff, Martyn

    2005-01-01

    A new approach to locating the critical point of fluid mixtures is reported, utilizing a shear mode piezoelectric sensor. This technique employs a single piece of quartz crystal that is installed at the bottom of a strongly stirred high-pressure vessel. The sensor response indicates whether liquid or gas is in contact with its surfaces. Thus, the sensor is able to identify vapor-liquid phase separation by registering a discontinuity in the impedance minimum of the sensor as a function of pressure. Two systems (methanol + CO2 and H2 + CO2) have been investigated using this method. The critical point data of the methanol + CO2 system were chosen to validate the approach against a wealth of literature data, and good agreement was obtained. The sensor behavior in the two-phase region, as well as the effect of stirring, is discussed. The method is general and can be used with other sensors.

  11. Combined effect of carbon dioxide and sulfur on vapor-liquid partitioning of metals in hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Kokh, Maria A.; Lopez, Mathieu; Gisquet, Pascal; Lanzanova, Aurélie; Candaudap, Frédéric; Besson, Philippe; Pokrovski, Gleb S.

    2016-08-01

    Although CO2 is a ubiquitous volatile in geological fluids typically ranging from a few to more than 50 wt%, its effect on metal vapor-liquid fractionation during fluid boiling and immiscibility phenomena in the Earth's crust remains virtually unknown. Here we conducted first experiments to quantify the influence of CO2 on the partition of different metals in model water + salt + sulfur + CO2 systems at 350 °C and CO2 pressures up to 100 bar, which are typical conditions of formation of many hydrothermal ore deposits. In addition, we performed in situ Raman spectroscopy measurements on these two-phase systems, to determine sulfur and carbon speciation in the liquid and vapor phases. Results show that, in S-free systems and across a CO2 concentration range of 0-50 wt% in the vapor phase, the absolute vapor-liquid partitioning coefficients of metals (Kvap/liq = Cvap/Cliq, where C is the mass concentration of the metal in the corresponding vapor and liquid phase) are in the range 10-6-10-5 for Mo; 10-4-10-3 for Na, K, Cu, Fe, Zn, Au; 10-3-10-2 for Si; and 10-4-10-1 for Pt. With increasing CO2 from 0 to 50 wt%, Kvap/liq values decrease for Fe, Cu and Si by less than one order of magnitude, remain constant within errors (±0.2 log unit) for Na, K and Zn, and increase by 0.5 and 2 orders of magnitude, respectively for Au and Pt. The negative effect of CO2 on the partitioning of some metals is due to weakening of hydration of chloride complexes of some metals (Cu, Fe) in the vapor phase and/or salting-in effects in the liquid phase (Si), whereas both phenomena are negligible for complexes of other metals (Na, K, Zn, Mo). The only exception is Pt (and in a lesser extent Au), which partitions significantly more to the vapor of S-free systems in the presence of CO2, likely due to formation of volatile carbonyl (CO) complexes. In the S-bearing system, with H2S content of 0.1-1.0 wt% in the vapor, Kvap/liq values of Cu, Fe, Mo, and Au are in the range 0.01-0.1, those of Pt 0

  12. Theoretical study of vapor-liquid homogeneous nucleation using stability analysis of a macroscopic phase.

    PubMed

    Carreón-Calderón, Bernardo

    2012-10-14

    Stability analysis is generally used to verify that the solution to phase equilibrium calculations corresponds to a stable state (minimum of the free energy). In this work, tangent plane distance analysis for stability of macroscopic mixtures is also used for analyzing the nucleation process, reconciling thus this analysis with classical nucleation theories. In the context of the revised nucleation theory, the driving force and the nucleation work are expressed as a function of the Lagrange multiplier corresponding to the mole fraction constraint from the minimization problem of stability analysis. Using a van der Waals fluid applied to a ternary mixture, Lagrange multiplier properties are illustrated. In particular, it is shown how the Lagrange multiplier value is equal to one on the binodal and spinodal curves at the same time as the driving force of nucleation vanishes on these curves. Finally, it is shown that, on the spinodal curve, the nucleation work from the revised and generalized nucleation theories are characterized by two different local minima from stability analysis, irrespective of any interfacial tension models.

  13. Isobar giant resonance formation in self-conjugate nuclei

    NASA Astrophysics Data System (ADS)

    Townsend, L. W.; Deutchman, P. A.

    1981-03-01

    The production of isobars with concomitant giant resonance excitations due to peripheral collisions of relativistic heavy ions is investigated. The interaction is described by a modified form of the central term in the one-pion-exchange potential (OPEP) where the projectile ordinary spin operator is replaced by a transition spin operator which describes the creation of an isobar from a nucleon. The scattering is analyzed using time-dependent harmonic perturbation theory to determine the reaction total cross sections. The results obtained, which are valid for reactions involving self-conjugate nuclei, are applied to the specific collison of 2.1 {GeV}/{nucleon}16O projectiles with 12C targets at rest. Cross sections are investigated using two different models for the nuclear spin states. In the first model, the many-body nuclear spin state is reduced, in the spirit of a particle-hole state, to an equivalent two-body state called a particle-core state. In the second model, the many-body spin states are described by unsymmetrized products of individual particle spins. Properties of the spin giant resonance and isobar giant resonance states are investigated. Finally, isobar decay and isobar/pion absorption effects are discussed.

  14. Interatomic Lennard-Jones potentials of linear and branched alkanes calibrated by Gibbs ensemble simulations for vapor-liquid equilibria

    NASA Astrophysics Data System (ADS)

    Chang, Jaeeon; Sandler, Stanley I.

    2004-10-01

    We propose Lennard-Jones potential parameters for interatomic interactions of linear and branched alkanes based on matching the results of Gibbs ensemble simulations of vapor-liquid equilibria to experimental data. The alkane model is similar as in the OPLS-AA [W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996)], but multiple atom types for carbon based on the number of covalently bonded hydrogen atoms are necessary to accurately reproduce liquid densities and enthalpies of vaporization with the errors of 2.1% and 3.3%, respectively, for hydrocarbons of various chain lengths and structures. We find that the attraction energies of the carbon atoms are almost proportional to the number of covalent hydrogen atoms with each increasing the carbon energy parameter by ≈0.033 kcal/mol. Though the present force field outperforms the OPLS-AA force field for alkanes we studied, systematic deviations for vapor pressures are still observed with errors of 15%-30%, and critical temperatures are slightly underestimated. We think that these shortcomings are probably due to the inadequacy of the two-parameter Lennard-Jones potential, and especially its behavior at short distances.

  15. A flux induced crystal phase transition in the vapor-liquid-solid growth of indium-tin oxide nanowires.

    PubMed

    Meng, Gang; Yanagida, Takeshi; Yoshida, Hideto; Nagashima, Kazuki; Kanai, Masaki; Zhuge, Fuwei; He, Yong; Klamchuen, Annop; Rahong, Sakon; Fang, Xiaodong; Takeda, Seiji; Kawai, Tomoji

    2014-06-21

    Single crystalline metal oxide nanowires formed via a vapor-liquid-solid (VLS) route provide a platform not only for studying fundamental nanoscale properties but also for exploring novel device applications. Although the crystal phase variation of metal oxides, which exhibits a variety of physical properties, is an interesting feature compared with conventional semiconductors, it has been difficult to control the crystal phase of metal oxides during the VLS nanowire growth. Here we show that a material flux critically determines the crystal phase of indium-tin oxide nanowires grown via the VLS route, although thermodynamical parameters, such as temperature and pressure, were previously believed to determine the crystal phase. The crystal phases of indium-tin oxide nanowires varied from the rutile structures (SnO2), the metastable fluorite structures (InxSnyO3.5) and the bixbyite structures (Sn-doped In2O3) when only the material flux was varied within an order of magnitude. This trend can be interpreted in terms of the material flux dependence of crystal phases (rutile SnO2 and bixbyite In2O3) on the critical nucleation at the liquid-solid (LS) interface. Thus, precisely controlling the material flux, which has been underestimated for VLS nanowire growths, allows us to design the crystal phase and properties in the VLS nanowire growth of multicomponent metal oxides.

  16. Ab initio potential energy surface for methane and carbon dioxide and application to vapor-liquid coexistence

    NASA Astrophysics Data System (ADS)

    Pai, Sung Jin; Bae, Young Chan

    2014-08-01

    A six-dimensional intermolecular potential energy surface for a rigid methane (CH4) and carbon dioxide (CO2) dimer was developed from the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory. A total of 466 grid points distributed to 46 orientations were calculated from the complete basis set limit extrapolation based on up to aug-cc-pVQZ basis set. A modified site-site pair potential function was proposed for rapid representation of the high level ab initio calculations. A nonadditive three-body interaction was represented by the Axilrod-Teller-Muto expression for mixtures with the polarizability and the London dispersion constant of each molecule. Second to fourth virial coefficients of CH4 and CO2 mixtures were calculated using both the Mayer sampling Monte Carlo method and the present potential functions. The virial equation of state derived from these coefficients was used to predict the pVT values and showed good agreement with experimental data below 200 bar at 300 K. The vapor-liquid coexistence curves of pure CH4, CO2 and their mixtures were presented with the aid of Gibbs ensemble Monte Carlo simulations. The predicted tie lines agreed with the experimental data within the uncertainties up to near the critical point.

  17. A density functional theory for vapor-liquid interfaces using the PCP-SAFT equation of state.

    PubMed

    Gross, Joachim

    2009-11-28

    A Helmholtz energy functional for inhomogeneous fluid phases based on the perturbed-chain polar statistical associating fluid theory (PCP-SAFT) equation of state is proposed. The model is supplemented with a capillary wave contribution to the surface tension to account for long-wavelength fluctuations of a vapor-liquid interface. The functional for the dispersive attraction is based on a nonlocal perturbation theory for chain fluids and the difference of the perturbation theory to the dispersion term of the PCP-SAFT equation of state is treated with a local density approximation. This approach suggested by Gloor et al. [Fluid Phase Equilib. 194, 521 (2002)] leads to full compatibility with the PCP-SAFT equation of state. Several levels of approximation are compared for the nonlocal functional of the dispersive attractions. A first-order non-mean-field description is found to be superior to a mean-field treatment, whereas the inclusion of a second-order perturbation term does not contribute significantly to the results. The proposed functional gives excellent results for the surface tension of nonpolar or only moderately polar fluids, such as alkanes, aromatic substances, ethers, and ethanoates. A local density approximation for the polar interactions is sufficient for carbon dioxide as a strongly quadrupolar compound. The surface tension of acetone, as an archetype dipolar fluid, is overestimated, suggesting that a nonisotropic orientational distribution function across an interface should for strong dipolar substances be accounted for.

  18. Grand canonical Monte Carlo simulations of vapor-liquid equilibria using a bias potential from an analytic equation of state.

    PubMed

    Castillo Sanchez, Juan Manuel; Danner, Timo; Gross, Joachim

    2013-06-21

    This article introduces an efficient technique for the calculation of vapor-liquid equilibria of fluids. Umbrella Sampling Monte Carlo simulations in the grand canonical ensemble were conducted for various types of molecules. In Umbrella Sampling, a weight function is used for allowing the simulation to reach unlikely states in the phase space. In the present case this weight function, that allows the system to overcome the energetic barrier between a vapor and liquid phase, was determined by a trivialized Density Functional Theory (DFT) using the PC-SAFT equation of state. The implementation presented here makes use of a multicanonical ensemble approach to divide the space of fluctuating particle number N into various subsystems. The a priori estimate of the weight function from the analytic DFT allows the parallelization of the calculation, which significantly reduces the computation time. In addition, it is shown that the analytic equation of state can be used to substitute sampling the dense liquid phase, where the sampling of insertion and deletion moves become demanding.

  19. Ab initio potential energy surface for methane and carbon dioxide and application to vapor-liquid coexistence.

    PubMed

    Pai, Sung Jin; Bae, Young Chan

    2014-08-14

    A six-dimensional intermolecular potential energy surface for a rigid methane (CH4) and carbon dioxide (CO2) dimer was developed from the counterpoise-corrected supermolecular approach at the CCSD(T) level of theory. A total of 466 grid points distributed to 46 orientations were calculated from the complete basis set limit extrapolation based on up to aug-cc-pVQZ basis set. A modified site-site pair potential function was proposed for rapid representation of the high level ab initio calculations. A nonadditive three-body interaction was represented by the Axilrod-Teller-Muto expression for mixtures with the polarizability and the London dispersion constant of each molecule. Second to fourth virial coefficients of CH4 and CO2 mixtures were calculated using both the Mayer sampling Monte Carlo method and the present potential functions. The virial equation of state derived from these coefficients was used to predict the pVT values and showed good agreement with experimental data below 200 bar at 300 K. The vapor-liquid coexistence curves of pure CH4, CO2 and their mixtures were presented with the aid of Gibbs ensemble Monte Carlo simulations. The predicted tie lines agreed with the experimental data within the uncertainties up to near the critical point.

  20. Effects of an applied electric field on the vapor-liquid equilibria of water, methanol, and dimethyl ether.

    PubMed

    Maerzke, Katie A; Siepmann, J Ilja

    2010-04-01

    Gibbs ensemble Monte Carlo simulations are employed to examine the influence of moderately strong electric fields on the vapor-liquid coexistence curves and on structural and energetic properties of the saturated phases of water, methanol, and dimethyl ether. The application of an electric field of 0.1 V/A increases the critical temperature and normal boiling point by approximately 3% compared to the zero field case for all three compounds, whereas the critical density is found to decrease by 1% for methanol and dimethly ether and by 3% for water. For the special case of an electric field applied in only the liquid phase, these effects are magnified with a 4% increase in T(C) and a 13% decrease in rho(C). For the case of an electric field in only the vapor phase, the opposite effect is seen with a 4% decrease in T(C) and a 12% increase in rho(C). Structural analysis shows very little change in the radial distribution functions, but greatly increased orientational ordering with the application of an electric field. The orientational ordering effect is stronger in the liquid phase than in the vapor phase. An examination of the energetics reveals that, in the presence of an electric field, the interactions with the first and second solvation shells become less favorable but these are outweighed by a larger increase in the favorable long-range interactions with more distant molecules and the field.

  1. Vapor-liquid activity coefficients for methanol and ethanol from heat of solution data: application to steam-methane reforming.

    PubMed

    Kunz, R G; Baade, W F

    2001-11-16

    This paper presents equations and curves to calculate vapor-liquid phase equilibria for methanol and ethanol in dilute aqueous solution as a function of temperature, using activity coefficients at infinite dilution. These thermodynamic functions were originally derived to assess the distribution of by-product contaminants in the process condensate and the steam-system deaerator of a hydrogen plant [Paper ENV-00-171 presented at the NPRA 2000 Environmental Conference, San Antonio, TX, 10-12 September 2000], but have general applicability to other systems as well. The functions and calculation method described here are a necessary piece of an overall prediction technique to estimate atmospheric emissions from the deaerator-vent when the process condensate is recycled as boiler feed water (BFW) make-up. Having such an estimation technique is of particular significance at this time because deaerator-vent emissions are already coming under regulatory scrutiny in California [Emissions from Hydrogen Plant Process Vents, Adopted 21 January 2000] followed closely elsewhere in the US, and eventually worldwide. The overall technique will enable a permit applicant to estimate environmental emissions to comply with upcoming regulations, and a regulatory agency to evaluate those estimates. It may also be useful to process engineers as a tool to estimate contaminant concentrations and flow rates in internal process streams such as the steam-generating system. Metallurgists and corrosion engineers might be able to use the results for materials selection.

  2. Synthesis of epitaxial Si(100) nanowires on Si(100) substrate using vapor liquid solid growth in anodic aluminum oxide nanopore arrays

    NASA Astrophysics Data System (ADS)

    Shimizu, T.; Senz, S.; Shingubara, S.; Gösele, U.

    2007-06-01

    The synthesis of epitaxial Si nanowires with growth direction parallel to Si [100] on Si(100) substrate was demonstrated using a combination of anodic aluminum oxide (AAO) template, catalytic gold film sandwiched between the template and the Si(100) substrate and vapor-liquid-solid growth using SiH4 as the Si source. After growing out from the AAO nanopores, most Si nanowires changed their diameter and growth direction into larger diameter and <111> direction.

  3. Vapor-liquid partitioning of alkaline earth and transition metals in NaCl-dominated hydrothermal fluids: An experimental study from 360 to 465 °C, near-critical to halite saturated conditions

    NASA Astrophysics Data System (ADS)

    Pester, Nicholas J.; Ding, Kang; Seyfried, William E.

    2015-11-01

    Multi-phase fluid flow is a common occurrence in magmatic hydrothermal systems; and extensive modeling efforts using currently established P-V-T-x properties of the NaCl-H2O system are impending. We have therefore performed hydrothermal flow experiments (360-465 °C) to observe vapor-liquid partitioning of alkaline earth and first row transition metals in NaCl-dominated source solutions. The data allow extraction of partition coefficients related to the intrinsic changes in both chlorinity and density along the two-phase solvus. The coefficients yield an overall decrease in vapor affinity in the order Cu(I) > Na > Fe(II) > Zn > Ni(II) ⩾ Mg ⩾ Mn(II) > Co(II) > Ca > Sr > Ba, distinguished with 95% confidence for vapor densities greater than ∼0.2 g/cm3. The alkaline earth metals are limited to purely electrostatic interactions with Cl ligands, resulting in an excellent linear correlation (R2 > 0.99) between their partition coefficients and respective ionic radii. Though broadly consistent with this relationship, relative behavior of the transition metals is not well resolved, being likely obscured by complex bonding processes and the potential participation of Na in the formation of tetra-chloro species. At lower densities (at/near halite saturation) partitioning behavior of all metals becomes highly non-linear, where M/Cl ratios in the vapor begin to increase despite continued decreases in chlorinity and density. We refer to this phenomenon as "volatility", which is broadly associated with substantial increases in the HCl/NaCl ratio (eventually to >1) due to hydrolysis of NaCl. Some transition metals (e.g., Fe, Zn) exhibit volatility prior to halite stability, suggesting a potential shift in vapor speciation relative to nearer critical regions of the vapor-liquid solvus. The chemistry of deep-sea hydrothermal fluids appears affected by this process during magmatic events, however, our results do not support suggestions of subseafloor halite precipitation

  4. Study of the Vapor-Liquid Coexistence Curve and the Critical Curve for Nonazeotropic Refrigerant Mixture R152a + R114 System

    NASA Astrophysics Data System (ADS)

    Kabata, Yasuo; Higashi, Yukihiro; Uematsu, Masahiko; Watanabe, Koichi

    Measurements of the vapor-liquid coexistence curve in the critical region for the refrigerant mixture of R152a (CH3CHF2: 1, l-difluoroethane) +R 114 (CCIF2CCIF2 :1, 2-dichloro-1, 1, 2, 2-tetrafluoroethane) system were made by visual observation of the disappearance of the meniscus at the vapor-liquid interface within an optical cell. Forty-eight saturated densities along the vapor-liquid coexistence curve between 204 and 861 kg·m-3 for five different compositions of 10, 20, 50, 80 and 90 wt% R 152a were obtained in the temperature range 370 to 409 K. The experimental errors of temperature, density, and mass fraction were estimated within ±10mK, ±0.5% and +0.05 %, respectively. On the basis of these measurements, the critical parameters of five different compositions for the R 152a +R 114 system were determined in consideration of the meniscus disappearance level as well as intensity of the critical opalescence. In accordance with the previous results of three other refrigerant mixtures, i.e., R 12 +R 22 system, R 22 +R 114 system and R 13B1 + R 114 system, the coexistence curve and critical curve on the temperature-density diagram for binary refrigerant mixtures were discussed. In addition, correlations of its composition dependence for this system were proposed.

  5. Removal of the samarium isobaric interference from promethium mass analysis

    SciTech Connect

    Shaw, R.W.; Young, J.P.; Smith, D.H.

    1988-02-01

    Resonance ionization mass spectroscopy (RIMS) is used to eliminate isobaric interference when determining the isotopic abundances of an element. In this application, RIMS is applied to the determination of promethium with the removal of samarium interference. In particular, promethium-147 is separated form samarium-147 and samarium-152.

  6. Analysis of the vapor-liquid-solid mechanism for nanowire growth and a model for this mechanism.

    PubMed

    Mohammad, S Noor

    2008-05-01

    The vapor-liquid-solid (VLS) mechanism is most widely employed to grow nanowires (NWs). The mechanism uses foreign element catalytic agent (FECA) to mediate the growth. Because of this, it is believed to be very stable with the FECA-mediated droplets not consumed even when reaction conditions change. Recent experiments however differ, which suggest that even under cleanest growth conditions, VLS mechanism may not produce long, thin, uniform, single-crystal nanowires of high purity. The present investigation has addressed various issues involving fundamentals of VLS growth. While addressing these issues, it has taken into consideration the influence of the electrical, hydrodynamic, thermodynamic, and surface tension effects on NW growth. It has found that parameters such as mesoscopic effects on nanoparticle seeds, charge distribution in FECA-induced droplets, electronegativity of the droplet with respect to those of reactive nanowire vapor species, growth temperature, and chamber pressure play important role in the VLS growth. On the basis of an in-depth analysis of various issues, a simple, novel, malleable (SNM) model has been presented for the VLS mechanism. The model appears to explain the formation and observed characteristics of a wide variety of nanowires, including elemental and compound semiconductor nanowires. Also it provides an understanding of the influence of the dynamic behavior of the droplets on the NW growth. This study finds that increase in diameter with time of the droplet of tapered nanowires results primarily from gradual incorporation of oversupplied nanowire species into the FECA-mediated droplet, which is supported by experiments. It finds also that optimum compositions of the droplet constituents are crucial for VLS nanowire growth. An approximate model presented to exemplify the parametric dependency of VLS growth provides good description of NW growth rate as a function of temperature.

  7. Dissipative Particle Dynamics at Isothermal, Isobaric Conditions Using Shardlow-Like Splitting Algorithms

    DTIC Science & Technology

    2013-09-01

    Dissipative Particle Dynamics at Isothermal, Isobaric Conditions Using Shardlow-Like Splitting Algorithms by John K. Brennan and Martin...5066 ARL-TR-6583 September 2013 Dissipative Particle Dynamics at Isothermal, Isobaric Conditions Using Shardlow-Like Splitting...From - To) May 2010–February 2013 4. TITLE AND SUBTITLE Dissipative Particle Dynamics at Isothermal, Isobaric Conditions Using Shardlow-Like

  8. Isobaric Analogue States Studied in Mirrored Fragmentation and Knockout Reactions

    SciTech Connect

    Bentley, M.A.; Pritychenko, B.; Paterson,I.; Brown,J.R.; Taylor,M.J.; Digen,C.Aa.; Adrich,P.; Bazin,D.; Cook.J.M.; Gade,A.; Glasmacher,T.; McDaniel,S.; Ratkiewicz,A.; Siwek,K.; D.Weisshaar,D.; Pritychenko,B.; Lenzi,S.M.

    2010-05-21

    A Gamma-ray spectroscopic study of excited states of isobaric multiplets has been performed in recent years, with a view to gaining a quantitative understanding of energy differences between excited states in terms of a range of Coulomb and other isospin breaking phenomena. Recently, the experimental programme has been augmented by a study of isobaric analogue states of mirror nuclei populated in mirrored fragmentation reactions. In this presentation, recent results on the T = 3/2 analogue states in the T{sub z} = {+-} 3/2 mirror pair {sup 53}Ni/{sup 53}Mn will be summarised. In this work, further strong evidence is found for the need to include an anomalous isospin-breaking two-body matrix element for angular-momentum couplings of J = 2, in addition the expected Coulomb contribution, in order to account for the experimental data.

  9. Isobaric Multiplet Yrast Energies and Isospin Nonconserving Forces

    NASA Astrophysics Data System (ADS)

    Zuker, A. P.; Lenzi, S. M.; Martínez-Pinedo, G.; Poves, A.

    2002-09-01

    The isovector and isotensor energy differences between yrast states of isobaric multiplets in the lower half of the pf region are quantitatively reproduced in a shell model context. The isospin nonconserving nuclear interactions are found to be at least as important as the Coulomb potential. Their isovector and isotensor channels are dominated by J=2 and J=0 pairing terms, respectively. The results are sensitive to the radii of the states, whose evolution along the yrast band can be accurately followed.

  10. Reference pressure changes and available potential energy in isobaric coordinates

    NASA Technical Reports Server (NTRS)

    Robertson, F. R.

    1985-01-01

    A formulation of the available potential energy (APE) equation in isobaric coordinates which alleviates the need for computing temporal derivatives of reference pressure and describes how work done relates to changes in the APE of a limited region is presented. The APE budget equation possesses terms analogous to those in Johnson's (1970) isentropic version. It is shown that APE changes result from either mechanical work inside the domain or an exchange of energy via boundary processes with the surrounding environment.

  11. Phase equilibrium measurements on twelve binary mixtures

    SciTech Connect

    Giles, N.F.; Wilson, H.L.; Wilding, W.V.

    1996-11-01

    Phase equilibrium measurements have been performed on twelve binary mixtures. The PTx method was used to obtain vapor-liquid equilibrium data for the following binary systems at two temperatures each: ethanethiol + propylene; nitrobenzene + methanol; pyridine + ethyl acetate; octane + tert-amyl methyl ether; diisopropyl ether + butane; 1,3-dichloro-2-propanol + epichlorohydrin; 2,3-dichloro-1-propanol + epichlorohydrin; 2,3-epoxy-1-propanol + epichlorohydrin; 3-chloro-1,2-propanediol + epichlorohydrin; methanol + hydrogen cyanide. For these systems, equilibrium vapor and liquid phase compositions were derived from the PTx data using the Soave equation of state to represent the vapor phase and the Wilson, NRTL, or Redlich-Kister activity coefficient model to represent the liquid phase. The infinite dilution activity coefficient of methylamine in N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone was determined at three temperatures by performing PTx measurements on the N-methyl-2-pyrrolidone-rich half of the binary. Liquid-liquid equilibrium studies were made on the triethylene glycol + 1-pentene system at two temperatures by directly analyzing samples taken from each liquid phase.

  12. Neutrino scattering rates in neutron star matter with {delta} isobars

    SciTech Connect

    Chen Yanjun; Guo Hua; Liu Yuxin

    2007-03-15

    We take the {delta}-isobar degrees of freedom into account in neutron star matter and evaluate their contributions to neutrino scattering cross sections and mean free paths. The neutron star matter is described by means of an effective hadronic model in the relativistic mean-field approximation. It is found that {delta} isobars may be present in neutron stars. The electron chemical potential does not decrease and the neutrino abundance does not increase with the increase of the density when neutrinos are trapped in the matter with {delta} isobars. The large vector coupling constant between the {delta}{sup -} and neutrino and the high spin of the {delta} influence significantly the neutrino scattering cross section and lead the contribution of the {delta}{sup -} to the dominance of the scattering rates. In neutrino-trapped case, the presence of {delta}s causes the neutrino mean free path to decrease drastically compared to that in the matter in which baryons are only nucleons.

  13. TITAN's multiple-reflection time-of-flight isobar separator

    NASA Astrophysics Data System (ADS)

    Reiter, Moritz Pascal; Titan Collaboration

    2016-09-01

    At the ISAC facility located at TRIUMF exotic nuclei are produced by the ISOL method. Exotic nuclei are separated by a magnetic separator and transported to TRIUMF's Ion Trap for Atomic and Nuclear science (TITAN). TITAN is a system of multiple ion traps for high precision mass measurements and in-trap decay spectroscopy. Although ISAC can deliver some of the highest yields for even many of the most exotic species many measurements suffer from a strong isobaric background. This background often prevents the high precision measurement of the species of interest. To overcome this limitation an additional isobar separator based on the Multiple-Reflection Time-Of-Flight Mass Spectrometry (MR-TOF-MS) technique has been developed for TITAN. Mass selection is achieved using dynamic re-trapping of the species of interest after a time-of-flight analysis in an electrostatic isochronous reflector system. Additionally the MR-TOF-MS will, on its own, enable mass measurements of very short-lived nuclides that are weakly produced. Being able to measure all isobars of a given mass number at the same time the MR-TOF-MS can be used for beam diagnostics or determination of beam compositions. Results from the offline commissioning showing mass resolving power and separation power will be presented.

  14. Volume crossover in deeply supercooled water adiabatically freezing under isobaric conditions.

    PubMed

    Aliotta, Francesco; Giaquinta, Paolo V; Pochylski, Mikolaj; Ponterio, Rosina C; Prestipino, Santi; Saija, Franz; Vasi, Cirino

    2013-05-14

    The irreversible return of a supercooled liquid to stable thermodynamic equilibrium often begins as a fast process which adiabatically drives the system to solid-liquid coexistence. Only at a later stage will solidification proceed with the expected exchange of thermal energy with the external bath. In this paper we discuss some aspects of the adiabatic freezing of metastable water at constant pressure. In particular, we investigated the thermal behavior of the isobaric gap between the molar volume of supercooled water and that of the warmer ice-water mixture which eventually forms at equilibrium. The available experimental data at ambient pressure, extrapolated into the metastable region within the scheme provided by the reference IAPWS-95 formulation, show that water ordinarily expands upon (partially) freezing under isenthalpic conditions. However, the same scheme also suggests that, for increasing undercoolings, the volume gap is gradually reduced and eventually vanishes at a temperature close to the currently estimated homogeneous ice nucleation temperature. This behavior is contrasted with that of substances which do not display a volumetric anomaly. The effect of increasing pressures on the alleged volume crossover from an expanded to a contracted ice-water mixture is also discussed.

  15. Controlling Axial p-n Heterojunction Abruptness Through Catalyst Alloying in Vapor-Liquid-Solid Grown Semiconductor Nanowires

    SciTech Connect

    Perea, Daniel E.; Schreiber, Daniel K.; Devaraj, Arun; Thevuthasan, Suntharampillai; Yoo, Jinkyoung; Dayeh, Shadi A.; Picraux, Samuel T.

    2012-07-30

    The p-n junction can be regarded as the most important electronic structure that is responsible for the ubiquity of semiconductor microelectronics today. Efforts to continually scale down the size of electronic components is guiding research to explore the use of nanomaterials synthesized from a bottom-up approach - group-IV semiconductor nanowires being one such material. However, Au-catalyzed synthesis of Si/Si1-x-Gex semiconductor nanowire heterojunctions using the commonly-used vapor-liquid-solid (VLS) growth technique results in diffuse heterojunction interfaces [1], leading to doubts of producing compositionally-sharp p-n junctions using this approach. However, we have recently reported the ability to increase Ge-Si nanowire heterojunction abruptness by VLS synthesis from a Au(1-x)Ga(x) catalyst alloy as shown by EDX analysis in an SEM [2]. In this work, we have extended the use of a AuGa catalyst alloy to produce more compositionally abrupt p-n junction interfaces compared to using pure Au as directly measured by atom probe tomography. As shown in Figure 1(a-b), individual Ge-Si heterostructured nanowires were grown vertically atop Ge(111) microposts. Direct growth on the microposts provides a facile approach to nanowire analysis which circumvents the need to use FIB-based sample preparation techniques. Both nanowires grown from pure Au and a AuGa catalyst alloy were analyzed. The corresponding 3D APT reconstruction of an individual heterostructured nanowire is shown in Figure 1(c) with the corresponding materials labeled. A 1-dimensional composition profile along the analysis direction in Figure 1(d) confirms an increase in heterojunction abruptness for nanowires grown from AuGa (~10nm) compared to nanowires grown from pure Au (~65nm). Analysis of the P distribution within the Si region (Figure 1(e)) indicates that P reaches a constant distribution over approximately 10nm when incorporated through the AuGa catalyst, whereas it continually increases over 100

  16. Molecular Simulations of the Vapor-Liquid Phase Interfaces of Pure Water Modeled with the SPC/E and the TIP4P/2005 Molecular Models

    NASA Astrophysics Data System (ADS)

    Vinš, Václav; Celný, David; Planková, Barbora; Němec, Tomáš; Duška, Michal; Hrubý, Jan

    2016-03-01

    In our previous study [Planková et al., EPJWeb. Conf. 92, 02071 (2015)], several molecular simulations of vapor-liquid phase interfaces for pure water were performed using the DL_POLY Classic software. The TIP4P/2005 molecular model was successfully used for the modeling of the density profile and the thickness of phase interfaces together with the temperature dependence of the surface tension. In the current study, the extended simple point charge (SPC/E) model for water was employed for the investigation of vapor-liquid phase interfaces over a wide temperature range from 250 K to 600 K. The TIP4P/2005 model was also used with the temperature step of 25 K to obtain more consistent data compared to our previous study. Results of the new simulations are in a good agreement with most of the literature data. TIP4P/2005 provides better results for the saturated liquid density with its maximum close to 275 K, while SPC/E predicts slightly better saturated vapor density. Both models give qualitatively correct representation for the surface tension of water. The maximum absolute deviation from the IAPWS standard for the surface tension of ordinary water is 10.4 mN · m-1 and 4.1 mN · m-1 over the temperature range from 275 K to 600 K in case of SPC/E and TIP4P/2005, respectively.

  17. Vapor-liquid critical surface of ternary difluoromethane + pentafluoroethane + 1,1,1,2-tetrafluoroethane (R-32/125/134a) mixtures

    SciTech Connect

    Higashi, Y.

    1999-09-01

    The plane of vapor-liquid criticality for ternary refrigerant mixtures of difluoromethane (R-32) + pentafluoroethane (R-125) + 1,1,1,2-tetrafluoroethane (R-134a) was determined from data on the vapor-liquid coexistence curve near the mixture critical points. The composition (mass percentage) of the mixtures studied were 23% R-32 + 25% R-125 + 52% R-134a (R-407C). 25% R-32 + 15% R-125 + 60% R-134a (R-407E), and 20% R-32 + 40% R-125 + 40% R-134a (R-407A). The critical temperature of each mixture was determined by observation of the disappearance of the meniscus. The critical density of each mixture was determined on the basis of meniscus disappearance level and the intensity of the critical opalescence. The uncertainties of the temperature, density, and composition measurements are estimated as {+-}10mK, {+-}5kg{center_dot}m{sup {minus}3}, and {+-}0.05%, respectively. In addition, predictive methods for the critical parameters of R-32/125/134a mixtures are discussed.

  18. Improvement of non-isobaric model for shock ignition

    NASA Astrophysics Data System (ADS)

    Farahbod, Amir Hossein; Abolfazl Ghasemi, Seyed; Jafar Jafari, Mohammad; Rezaei, Somayeh; Sobhanian, Samad

    2014-10-01

    In this paper, improved relations of total fuel energy, fuel gain, hot-spot radius and total areal density in a non-isobaric model of fuel assembly have been derived and compared with the numerical results of [J. Schmitt, J.W. Bates, S.P. Obenschain, S.T. Zalesak, D.E. Fyfe, Phys. Plasmas 17, 042701 (2010); S. Atzeni, A. Marocchino, A. Schiavi, G. Schurtz, New J. Phys. 15, 045004 (2013)] and several simulations performed by MULTI-1D radiation hydrodynamic code for shock ignition scenario. Our calculations indicate that the approximations made by [M.D. Rosen, J.D. Lindl, A.R. Thiessen, LLNL Laser Program Annual Report, UCRL-50021-83, pp. 3-5 (1983); J. Schmitt, J.W. Bates, S.P. Obenschain, S.T. Zalesak, D.E. Fyfe, Phys. Plasmas 17, 042701 (2010)] for the calculation of burn-up fraction are not accurate enough to give results consistent with simulations. Therefore, we have introduced more appropriate approximations for the burn-up fraction and total areal density of the fuel that are in more agreement with simulation results of shock ignition. Meanwhile, it is shown that the related formulas of the non-isobaric model for total fuel energy, fuel gain and also hot-spot radius cannot determine the model parameters independently, but improved model choose a better selection and less restrictions on determination of the parameters for the non-isobaric model. Such derivations can be used in theoretical studies of the ignition conditions and burn-up fraction of the fuel in shock ignition scenario.

  19. Laser ion source for isobaric heavy ion collider experiment

    SciTech Connect

    Kanesue, T. Okamura, M.; Kumaki, M.; Ikeda, S.

    2016-02-15

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is {sup 96}Ru + {sup 96}Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  20. Laser ion source for isobaric heavy ion collider experiment.

    PubMed

    Kanesue, T; Kumaki, M; Ikeda, S; Okamura, M

    2016-02-01

    Heavy-ion collider experiment in isobaric system is under investigation at Relativistic Heavy Ion Collider. For this experiment, ion source is required to maximize the abundance of the intended isotope. The candidate of the experiment is (96)Ru + (96)Zr. Since the natural abundance of particular isotope is low and composition of isotope from ion source depends on the composites of the target, an isotope enriched material may be needed as a target. We studied the performance of the laser ion source required for the experiment for Zr ions.

  1. Partition Equilibrium

    NASA Astrophysics Data System (ADS)

    Feldman, Michal; Tennenholtz, Moshe

    We introduce partition equilibrium and study its existence in resource selection games (RSG). In partition equilibrium the agents are partitioned into coalitions, and only deviations by the prescribed coalitions are considered. This is in difference to the classical concept of strong equilibrium according to which any subset of the agents may deviate. In resource selection games, each agent selects a resource from a set of resources, and its payoff is an increasing (or non-decreasing) function of the number of agents selecting its resource. While it has been shown that strong equilibrium exists in resource selection games, these games do not possess super-strong equilibrium, in which a fruitful deviation benefits at least one deviator without hurting any other deviator, even in the case of two identical resources with increasing cost functions. Similarly, strong equilibrium does not exist for that restricted two identical resources setting when the game is played repeatedly. We prove that for any given partition there exists a super-strong equilibrium for resource selection games of identical resources with increasing cost functions; we also show similar existence results for a variety of other classes of resource selection games. For the case of repeated games we identify partitions that guarantee the existence of strong equilibrium. Together, our work introduces a natural concept, which turns out to lead to positive and applicable results in one of the basic domains studied in the literature.

  2. An objective isobaric/isentropic technique for upper air analysis

    NASA Technical Reports Server (NTRS)

    Mancuso, R. L.; Endlich, R. M.; Ehernberger, L. J.

    1981-01-01

    An objective meteorological analysis technique is presented whereby both horizontal and vertical upper air analyses are performed. The process used to interpolate grid-point values from the upper-air station data is the same as for grid points on both an isobaric surface and a vertical cross-sectional plane. The nearby data surrounding each grid point are used in the interpolation by means of an anisotropic weighting scheme, which is described. The interpolation for a grid-point potential temperature is performed isobarically; whereas wind, mixing-ratio, and pressure height values are interpolated from data that lie on the isentropic surface that passes through the grid point. Two versions (A and B) of the technique are evaluated by qualitatively comparing computer analyses with subjective handdrawn analyses. The objective products of version A generally have fair correspondence with the subjective analyses and with the station data, and depicted the structure of the upper fronts, tropopauses, and jet streams fairly well. The version B objective products correspond more closely to the subjective analyses, and show the same strong gradients across the upper front with only minor smoothing.

  3. Nested sampling of isobaric phase space for the direct evaluation of the isothermal-isobaric partition function of atomic systems

    SciTech Connect

    Wilson, Blake A.; Nielsen, Steven O.; Gelb, Lev D.

    2015-10-21

    Nested Sampling (NS) is a powerful athermal statistical mechanical sampling technique that directly calculates the partition function, and hence gives access to all thermodynamic quantities in absolute terms, including absolute free energies and absolute entropies. NS has been used predominately to compute the canonical (NVT) partition function. Although NS has recently been used to obtain the isothermal-isobaric (NPT) partition function of the hard sphere model, a general approach to the computation of the NPT partition function has yet to be developed. Here, we describe an isobaric NS (IBNS) method which allows for the computation of the NPT partition function of any atomic system. We demonstrate IBNS on two finite Lennard-Jones systems and confirm the results through comparison to parallel tempering Monte Carlo. Temperature-entropy plots are constructed as well as a simple pressure-temperature phase diagram for each system. We further demonstrate IBNS by computing part of the pressure-temperature phase diagram of a Lennard-Jones system under periodic boundary conditions.

  4. Structural and optical properties of the In(x)Ga(1-x)As nanowires grown on SiO2 via vapor-liquid-solid method.

    PubMed

    Shin, Hyun Wook; Shin, Jae Cheol; Kim, Do Yang; Choi, Won Jun; Choe, Jeong-Woo

    2014-08-01

    We report the crystal growth of the In(x)Ga(1-x)As nanowires (NWs) on SiO2 substrate using metal organic chemical vapor deposition. Au nanoparticles which are disintegrated from thin Au film have been used as a catalyst for the vapor-liquid-solid growth. Electron microscopy characterization is performed to investigate the structural properties of the In(x)Ga(1-x)As NW. The In(x)Ga(1-x)As NW grown under an optimal condition has a single-crystal wurtzite structure without any misfit dislocation or stacking fault. Strong room temperature photoluminescence peaks are observed from In(x)Ga(1-x)As NWs passivated by GaAs. Very low light reflectance is measured at the NW surface in the wavelength range from 250 to 1200 nm. The single crystal In(x)Ga(1-x)As NWs are applicable to the various electrical and optical devices.

  5. Heat pipes for spacecraft temperature control: An assessment of the state-of-the-art. [gas, vapor, liquid, and voltage control

    NASA Technical Reports Server (NTRS)

    Groll, M.; Kirkpatrick, J. P.

    1976-01-01

    Spacecraft applications that require the efficient cooling of high-powered components, the precise temperature control of sensitive electronic and optical components, and the protection of cooled components from temporary, adverse environmental conditions are increasing. Heat pipes using gas, vapor, liquid, or voltage control to provide variable conductance or diode thermal behavior have been and are continuing to be developed to meet increasingly difficult requirements. The various control techniques are critically evaluated using characteristic features and properties, including heat transport capability, volume and mass requirements, complexity and ease of fabrication, reliability, and control characteristics. As a result, advantages and disadvantages of specific approaches are derived and discussed. Using four development levels, the state-of-the-art of the various heat pipe temperature control techniques is assessed.

  6. Remote sensing of atmospheric water vapor, liquid water, and wind speed at the ocean surface by passive microwave techniques from the Nimbus 5 satellite

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Wilheit, T. T.

    1979-01-01

    The microwave brightness temperature measurements for Nimbus 5 electrically scanned microwave radiometer (ESMR) and Nimbus-E microwave spectrometer (NEMS) are used to retrieve the atmospheric water vapor, liquid water, and wind speed by a quasi-statistical retrieval technique. It is shown that the brightness temperature can be utilized to yield these parameters under various weather conditions. Observations at 19.35, 22.235, and 31.4 GHz were input to the regression equations. The retrieved values of these parameters for portions of two Nimbus 5 orbits are presented. Then comparison between the retrieved parameters and the available observations on the total water vapor content and the surface wind speed are made.

  7. Remote sensing of atmospheric water vapor, liquid water and wind speed at the ocean surface by passive microwave techniques from the Nimbus-5 satellite

    NASA Technical Reports Server (NTRS)

    Chang, A. T. C.; Wilheit, T. T.

    1977-01-01

    The microwave brightness temperature measurements for Nimbus-5 electrically scanned microwave radiometer and Nimbus E microwave spectrometer are used to retrieve the atmospheric water vapor, liquid water and wind speed by a quasi-statistical retrieval technique. It is shown that the brightness temperature can be utilized to yield these parameters under various weather conditions. Observations at 19.35 GHz, 22.235 GHz and 31.4 GHz were input to the regression equations. The retrieved values of these parameters for portions of two Nimbus-5 orbits are presented. Then comparison between the retrieved parameters and the available observations on the total water vapor content and the surface wind speed are made. The estimated errors for retrieval are approximately 0.15 g/sq cm for water vapor content, 6.5 mg/sq cm for liquid water content and 6.6 m/sec for surface wind speed.

  8. An accurate density functional theory for the vapor-liquid interface of associating chain molecules based on the statistical associating fluid theory for potentials of variable range

    NASA Astrophysics Data System (ADS)

    Gloor, Guy J.; Jackson, George; Blas, Felipe J.; del Río, Elvira Martín; de Miguel, Enrique

    2004-12-01

    A Helmholtz free energy density functional is developed to describe the vapor-liquid interface of associating chain molecules. The functional is based on the statistical associating fluid theory with attractive potentials of variable range (SAFT-VR) for the homogenous fluid [A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, and A. N. Burgess, J. Chem. Phys. 106, 4168 (1997)]. A standard perturbative density functional theory (DFT) is constructed by partitioning the free energy density into a reference term (which incorporates all of the short-range interactions, and is treated locally) and an attractive perturbation (which incorporates the long-range dispersion interactions). In our previous work [F. J. Blas, E. Martı´n del Rı´o, E. de Miguel, and G. Jackson, Mol. Phys. 99, 1851 (2001); G. J. Gloor, F. J. Blas, E. Martı´n del Rı´o, E. de Miguel, and G. Jackson, Fluid Phase Equil. 194, 521 (2002)] we used a mean-field version of the theory (SAFT-HS) in which the pair correlations were neglected in the attractive term. This provides only a qualitative description of the vapor-liquid interface, due to the inadequate mean-field treatment of the vapor-liquid equilibria. Two different approaches are used to include the correlations in the attractive term: in the first, the free energy of the homogeneous fluid is partitioned such that the effect of correlations are incorporated in the local reference term; in the second, a density averaged correlation function is incorporated into the perturbative term in a similar way to that proposed by Toxvaerd [S. Toxvaerd, J. Chem. Phys. 64, 2863 (1976)]. The latter is found to provide the most accurate description of the vapor-liquid surface tension on comparison with new simulation data for a square-well fluid of variable range. The SAFT-VR DFT is used to examine the effect of molecular chain length and association on the surface tension. Different association schemes (dimerization, straight and

  9. Absence of vapor-liquid-solid growth during molecular beam epitaxy of self-induced InAs nanowires on Si

    NASA Astrophysics Data System (ADS)

    Hertenberger, S.; Rudolph, D.; Bolte, S.; Döblinger, M.; Bichler, M.; Spirkoska, D.; Finley, J. J.; Abstreiter, G.; Koblmüller, G.

    2011-03-01

    The growth mechanism of self-induced InAs nanowires (NWs) grown on Si (111) by molecular beam epitaxy was investigated by in situ reflection high energy electron diffraction and ex situ scanning and transmission electron microscopy. Abrupt morphology transition and in-plane strain relaxation revealed that InAs NWs nucleate without any significant delay and under the absence of indium (In) droplets. These findings are independent of the As/In-flux ratio, revealing entirely linear vertical growth rate and nontapered NWs. No evidence of In droplets nor associated change in the NW apex morphology was observed for various growth termination procedures. These results highlight the absence of vapor-liquid-solid growth, providing substantial benefits for realization of atomically abrupt doping and composition profiles in future axial InAs-based NW heterostructures on Si.

  10. The isobaric multiplet mass equation for A≤71 revisited

    SciTech Connect

    Lam, Yi Hua; Blank, Bertram; Smirnova, Nadezda A.; Bueb, Jean Bernard; Antony, Maria Susai

    2013-11-15

    Accurate mass determination of short-lived nuclides by Penning-trap spectrometers and progress in the spectroscopy of proton-rich nuclei have triggered renewed interest in the isobaric multiplet mass equation (IMME). The energy levels of the members of T=1/2,1,3/2, and 2 multiplets and the coefficients of the IMME are tabulated for A≤71. The new compilation is based on the most recent mass evaluation (AME2011) and it includes the experimental results on energies of the states evaluated up to end of 2011. Taking into account the error bars, a significant deviation from the quadratic form of the IMME for the A=9,35 quartets and the A=32 quintet is observed.

  11. Rapid cooling of neutron stars by hyperons and Delta isobars

    NASA Technical Reports Server (NTRS)

    Prakash, Madappa; Prakash, Manju; Lattimer, James M.; Pethick, C. J.

    1992-01-01

    Direct Urca processes with hyperons and/or nucleon isobars can occur in dense matter as long as the concentration of Lambda hyperons exceeds a critical value that is less than 3 percent and is typically about 0.1 percent. The neutrino luminosities from the hyperon Urca processes are about 5-100 times less than the typical luminosity from the nucleon direct Urca process, if the latter process is not forbidden, but they are larger than those expected from other sources. These direct Urca processes provide avenues for rapid cooling of neutron stars which invoke neither exotic states nor the large proton fraction (of order 0.11-0.15) required for the nucleon direct Urca process.

  12. The isobaric multiplet mass equation for A≤71 revisited

    NASA Astrophysics Data System (ADS)

    Lam, Yi Hua; Blank, Bertram; Smirnova, Nadezda A.; Bueb, Jean Bernard; Antony, Maria Susai

    2013-11-01

    Accurate mass determination of short-lived nuclides by Penning-trap spectrometers and progress in the spectroscopy of proton-rich nuclei have triggered renewed interest in the isobaric multiplet mass equation (IMME). The energy levels of the members of T=1/2,1,3/2, and 2 multiplets and the coefficients of the IMME are tabulated for A≤71. The new compilation is based on the most recent mass evaluation (AME2011) and it includes the experimental results on energies of the states evaluated up to end of 2011. Taking into account the error bars, a significant deviation from the quadratic form of the IMME for the A=9,35 quartets and the A=32 quintet is observed.

  13. Hard breakup of the deuteron into two {Delta} isobars

    SciTech Connect

    Granados, Carlos G.; Sargsian, Misak M.

    2011-05-15

    We study high-energy photodisintegration of the deuteron into two {Delta} isobars at large center of mass angles within the QCD hard rescattering model (HRM). According to the HRM, the process develops in three main steps: the photon knocks a quark from one of the nucleons in the deuteron; the struck quark rescatters off a quark from the other nucleon sharing the high energy of the photon; then the energetic quarks recombine into two outgoing baryons which have large transverse momenta. Within the HRM, the cross section is expressed through the amplitude of pn{yields}{Delta}{Delta} scattering which we evaluated based on the quark-interchange model of hard hadronic scattering. Calculations show that the angular distribution and the strength of the photodisintegration is mainly determined by the properties of the pn{yields}{Delta}{Delta} scattering. We predict that the cross section of the deuteron breakup to {Delta}{sup ++}{Delta}{sup -} is 4-5 times larger than that of the breakup to the {Delta}{sup +}{Delta}{sup 0} channel. Also, the angular distributions for these two channels are markedly different. These can be compared with the predictions based on the assumption that two hard {Delta} isobars are the result of the disintegration of the preexisting {Delta}{Delta} components of the deuteron wave function. In this case, one expects the angular distributions and cross sections of the breakup in both {Delta}{sup ++}{Delta}{sup -} and {Delta}{sup +}{Delta}{sup 0} channels to be similar.

  14. Calculation of NARM's equilibrium with Peng-Robinson equation of state

    NASA Astrophysics Data System (ADS)

    Li, Tingxun; Guo, Kaihua; Wang, Ruzhu; Fan, Shuanshi

    2001-04-01

    The liquid molar volumes of nonazeotropic refrigerant mixtures (NARM), calculated with Peng Robinson (PR) equation, were compared with vapor -liquid equilibrium experimental data in this paper. Provided with co-reaction coefficient k ij , the discrepancies of liquid molar volume data for R22+R114 and R22+R142b using PR equation are 7.7% and 8.1%, respectively. When HBT (Hankinson-Brobst-Thomson) equation was joined with PR equation, the deviations are reduced to less than 1.5% for both R22+R114 and R22+R142b.

  15. Comparison of united-atom potentials for the simulation of vapor-liquid equilibria and interfacial properties of long-chain n-alkanes up to n-C100.

    PubMed

    Müller, Erich A; Mejía, Andrés

    2011-11-10

    Canonical ensemble molecular dynamics (MD) simulations are reported which compute both the vapor-liquid equilibrium properties (vapor pressure and liquid and vapor densities) and the interfacial properties (density profiles, interfacial tensions, entropy and enthalpy of surface formation) of four long-chained n-alkanes: n-decane (n-C(10)), n-eicosane (n-C(20)), n-hexacontane (n-C(60)), and n-decacontane (n-C(100)). Three of the most commonly employed united-atom (UA) force fields for alkanes (SKS: Smit, B.; Karaborni, S.; Siepmann, J. I. J. Chem. Phys. 1995,102, 2126-2140; J. Chem. Phys. 1998,109, 352; NERD: Nath, S. K.; Escobedo, F. A.; de Pablo, J. J. J. Chem. Phys. 1998, 108, 9905-9911; and TraPPE: Martin M. G.; Siepmann, J. I. J. Phys. Chem. B1998, 102, 2569-2577.) are critically appraised. The computed results have been compared to the available experimental data and those fitted using the square gradient theory (SGT). In the latter approach, the Lennard-Jones chain equation of state (EoS), appropriately parametrized for long hydrocarbons, is used to model the homogeneous bulk phase Helmholtz energy. The MD results for phase equilibria of n-decane and n-eicosane exhibit sensible agreement both to the experimental data and EoS correlation for all potentials tested, with the TraPPE potential showing the lowest deviations. However, as the molecular chain increases to n-hexacontane and n-decacontane, the reliability of the UA potentials decreases, showing notorious subpredictions of both saturated liquid density and vapor pressure. Based on the recommended data and EoS results for the heaviest hydrocarbons, it is possible to attest, that in this extreme, the TraPPE potential shows the lowest liquid density deviations. The low absolute values of the vapor pressure preclude the discrimination among the three UA potentials studied. On the other hand, interfacial properties are very sensitive to the type of UA potential thus allowing a differentiation of the

  16. Informational Equilibrium.

    DTIC Science & Technology

    1982-09-01

    that for variouis standard types of equilibria* they hold. In particular, if one uses the teaporary equilibrium framework one can use the standard ...T, the integral converges toward f’ia(da) f fU(b~dc)6(a,b,c)T( asdm ) A B C which is fR (da) f d(lib,c) U0 T (cab) A BxC Me converse Is obvious

  17. Compact high resolution isobar separator for study of exotic decays

    NASA Astrophysics Data System (ADS)

    Shchepunov, V.; Piechaczek, A.; Carter, H. K.; Batchelder, J. C.; Zganjar, E. F.

    2009-05-01

    A compact isobar separator, based on the Multi-Pass-Time-of-Flight (MTOF) principle, is developed. A mass resolving power (MRP) of 110,000 (FWHM) is achieved as spectrometer with a transmission of 50 - 80%. The transverse beam acceptance and the energy acceptance are 42 π mm mrad and about ± 2.5%. Operated as a separator, molecules of N2 and CO with δM/M = 1/2500 or 10.433 MeV were separated with a Bradbury Nielsen gate. In that mode of operation, the MRP (FWHM) is about 40,000 after 120 laps. To inject radioactive ion beams into the separator, and to further improve its MRP, cooler and buncher RF quadrupoles were designed^1 and tested. A bunch width of 30 ns at 1% of the peak height (FWHM = 9 ns) and a transmission in DC mode of 75 -- 80 % were achieved. With such bunch parameters, MRPs of ˜ 400,000 (FWHM) are expected for the MTOF separator. At HRIBF, it will provide pure samples of exotic nuclides around ^100Sn, of neutron deficient rare-earth nuclei and of neutron-rich nuclei. Incidental measurements of mass differences will determine Qβ values with accuracies of ˜ 1%. ^1 V. Shchepunov and V. Kozlovskiy et al., to be published

  18. Testing the chiral magnetic effect with isobaric collisions

    NASA Astrophysics Data System (ADS)

    Deng, Wei-Tian; Huang, Xu-Guang; Ma, Guo-Liang; Wang, Gang

    2016-10-01

    The quark-gluon matter produced in relativistic heavy-ion collisions may contain local domains in which parity (P ) and combined charge conjugation and parity (C P ) symmetries are not preserved. When coupled with an external magnetic field, such P - and C P -odd domains will generate electric currents along the magnetic field—a phenomenon called the chiral magnetic effect (CME). Recently, the STAR Collaboration at the BNL Relativistic Heavy Ion Collider (RHIC) and the ALICE Collaboration at the CERN Large Hadron Collider (LHC) released data of charge-dependent azimuthal-angle correlators with features consistent with the CME expectation. However, the experimental observable is contaminated with significant background contributions from elliptic-flow-driven effects, which makes the interpretation of the data ambiguous. We show that the collisions of isobaric nuclei, Ru9644+Ru9644 and Zr9640+Zr9640, provide an ideal tool to disentangle the CME signal from the background effects. Our simulation demonstrates that the two collision types at √{sN N}=200 GeV have more than 10 % difference in the CME signal and less than 2 % difference in the elliptic-flow-driven backgrounds for the centrality range of 20-60%.

  19. Rapid Analysis of Isobaric Exogenous Metabolites by Differential Mobility Spectrometry Mass Spectrometry

    SciTech Connect

    Parson, Whitney B; Schneider, Bradley B; Kertesz, Vilmos; Corr, Jay; Covey, Thomas R.; Van Berkel, Gary J

    2011-01-01

    The direct separation of isobaric glucuronide metabolites from propranolol dosed tissue extracts by differential mobility spectrometry mass spectrometry (DMS-MS) with the use of a polar gas-phase chemical modifier was demonstrated. The DMS gas-phase separation was able to resolve the isobaric metabolites with separation times on the order of ms instead of mins to hrs typically required when using pre-ionization chromatographic separation methods. Direct separation of isobaric metabolites from the complex tissue extract was validated using standards as well as implementing an HPLC separation prior to the DMS-MS analysis to pre-separate the species of interest. The ability to separate isobaric exogenous metabolites directly from a complex tissue extract is expected to facilitate the drug development process by increasing analytical throughput without the requirement for pre-ionization cleanup or separation strategies.

  20. New isobaric lignans from Refined Olive Oils as quality markers for Virgin Olive Oils.

    PubMed

    Cecchi, Lorenzo; Innocenti, Marzia; Melani, Fabrizio; Migliorini, Marzia; Conte, Lanfranco; Mulinacci, Nadia

    2017-03-15

    Herein we describe the influence of olive oil refining processes on the lignan profile. The detection of new isobaric lignans is suggested to reveal frauds in commercial extra-Virgin Olive Oils. We analyzed five commercial olive oils by HPLC-DAD-TOF/MS to evaluate their lignan content and detected, for the first time, some isobaric forms of natural (+)-pinoresinol and (+)-1-acetoxypinoresinol. Then we analyzed partially and fully-refined oils from Italy, Tunisia and Spain. The isobaric forms occur only during the bleaching step of the refining process and remain unaltered after the final deodorizing step. Molecular dynamic simulation helped to identify the most probable chemical structures corresponding to these new isobars with data in agreement with the chromatographic findings. The total lignan amounts in commercial olive oils was close to 2mg/L. Detection of these new lignans can be used as marker of undeclared refining procedures in commercial extra-virgin and/or Virgin Olive Oils.

  1. Growth mechanism of metal-oxide nanowires synthesized by electron beam evaporation: A self-catalytic vapor-liquid-solid process

    PubMed Central

    Yu, Hak Ki; Lee, Jong-Lam

    2014-01-01

    We report the growth mechanism of metal oxide nanostructures synthesized by electron beam evaporation. The condensed electron beam can easily decompose metal oxide sources that have a high melting point, thereby creating a self-catalytic metal nanodot for the vapor-liquid-solid process. The metal oxide nanostructures can be grown at a temperature just above the melting point of the self-catalyst by dissolving oxygen. The morphology of nanostructures, such as density and uniformity, strongly depends on the surface energy and surface migration energy of the substrate. The density of the self-catalytic metal nanodots increased with decreasing surface energies of the substrate due to the perfect wetting phenomenon of the catalytic materials on the high surface energy substrate. However, the surfaces with extremely low surface energy had difficulty producing the high density of self-catalyst nanodot, due to positive line tension, which increases the contact angle to >180°. Moreover, substrates with low surface migration energy, such as single layer graphene, make nanodots agglomerate to produce a less-uniform distribution compared to those produced on multi-layer graphene with high surface migration energy. PMID:25300518

  2. The generation of HCl in the system CaCl2-H2O: Vapor-liquid relations from 380-500°C

    USGS Publications Warehouse

    Bischoff, James L.; Rosenbauer, Robert J.; Fournier, Robert O.

    1996-01-01

    We determined vapor-liquid relations (P-T-x) and derived critical parameters for the system CaCl2-H2O from 380-500??C. Results show that the two-phase region of this system is extremely large and occupies a significant portion of the P-T space to which circulation of fluids in the Earth's crust is constrained. Results also show the system generates significant amounts of HCl (as much as 0.1 mol/kg) in the vapor phase buffered by the liquid at surprisingly high pressures (???230 bars at 380??C, <580 bars at 500??C), presumably by hydrolysis of CaCl2: CaCl2 + 2H2O = Ca(OH)2 + 2HCl. We interpret the abundance of HCl in the vapor as due to its preference for the vapor phase, and by the preference of Ca(OH)2 for either the liquid phase or solid. The recent recognition of the abundance of CaCl2 in deep brines of the Earth's crust and their hydrothermal mobilization makes the hydrolysis of CaCl2 geologically important. The boiling of Ca-rich brines produces abundant HCl buffered by the presence of the liquid at moderate pressures. The resultant Ca(OH)2 generated by this process reacts with silicates to form a variety of alteration products, such as epidote, whereas the vapor produces acid-alteration of rocks through which it ascends.

  3. Preparation of carbon nano-microcoils by Ni3S2-catalyzed pyrolysis of acetylene and its vapor-liquid-solid-solid growth mechanism.

    PubMed

    Li, Wenjun; Guo, Yanchuan; Chen, Lijuan

    2006-12-01

    Carbon microcoils are generally prepared by catalytic chemical vapor deposition of acetylene, using Ni as the catalyst and thiophene as the promoter. In this work, Ni3S2 was chosen as the catalyst on purpose to avoid the introducing of noxious and unpleasant thiophene during the reaction process. The products obtained in the temperature range of 1013-1033 K were pure, regular and had perfect morphology. Using transmission electron microscope, Raman spectrometer and X-ray diffractometer, the microstructure of the as-prepared carbon microcoils were characterized, furthmore, energy dispersive spectrum and selected area electron diffraction analysis reveal that the growth of carbon microcoils is always accomplished with the transformation of the catalyst from Ni3S2 to Ni3C. We first observed that the fiber constructing the carbon microcoil is composed of three sub-fibers, which strongly supports the proposition of vapor-liquid-solid-solid growth mechanism. In this mechanism, every catalyst particle is in the state of the coexistence of solid and liquid. Carbon atoms firstly permeate into the liquid portion from gas, then disperse into the solid portion, and finally deposit from the catalyst grain to form the carbon microcoil.

  4. Interface pn junction arrays with high yielded grown p-Si microneedles by vapor-liquid-solid method at low temperature

    NASA Astrophysics Data System (ADS)

    Islam, Md. Shofiqul; Ishida, Makoto

    2015-01-01

    In this work we report the fabrication and investigation of the properties of interface pn junction arrays formed at the interface of vertically aligned p-Si microneedles and n-Si substrate. Arrays of boron doped p-Si microneedles were grown on n-Si substrate with the maximum yield of 100% by Au-catalysed vapor-liquid-solid (VLS) growth using in-situ doping with the mixed gas of Si2H6 and B2H6 at temperature less than 700 °C, which is low as compared to the temperature (1100 °C) required by diffusion process to dope Si microneedles after VLS growth. The physical dimension (diameter, length) and position of these p-Si microneedles can be controlled. The variation of growth rate, diameter, conductivity, impurity concentration and hole mobility of these p-Si microneeedles were investigated with the variation of boron doping. The pn junctions, formed with p-Si microneedles having different diameters, were found to exhibit standard diode characteristics. These pn junction embedded Si microneedle arrays might be potential candidate in sensor area applications. Again, low temperature processing would be compatible to integrate these junction arrays with other circuitry on a chip. This work provides one step forward to realize more sophisticated vertical active devices (BJT, MOSFET, etc) with Si microneedles.

  5. Investigation of crystallinity and planar defects in the Si nanowires grown by vapor-liquid-solid mode using indium catalyst for solar cell applications

    NASA Astrophysics Data System (ADS)

    Ajmal Khan, Muhammad; Ishikawa, Yasuaki; Kita, Ippei; Tani, Ayumi; Yano, Hiroshi; Fuyuki, Takashi; Konagai, Makoto

    2016-01-01

    Stacking-fault-free and planar defect (twinning plane)-free In-catalyzed Si nanowires (NWs) are essential for carrier transport and nanoscale device applications. In this article, In-catalyzed, vertically aligned, and cone-shaped Si NWs on Si(111) were grown successfully, in the vapor-liquid-solid (VLS) mode. In particular, the influences of substrate temperature (TS) and cooling rate (ΔTS/Δt) on the formation of planar defects, twinning planes along the [112] direction, and stacking faults in Si NWs were investigated. When TS was decreased from 600 °C to room temperature at a rate of 100 °C/240 s after Si NW growth, twinning plane defects perpendicular to the substrate and along different segments of (111)-oriented Si NWs were observed. Finally, one simple model was proposed to explain the stacking fault formation as well as Si NW length limitation due to the In-nanoparticle (In-NP) migration, and root causes of the twinning plane defects in the Si-NWs.

  6. Electrical interfacing between neurons and electronics via vertically integrated sub-4 microm-diameter silicon probe arrays fabricated by vapor-liquid-solid growth.

    PubMed

    Kawano, Takeshi; Harimoto, Tetsuhiro; Ishihara, Akito; Takei, Kuniharu; Kawashima, Takahiro; Usui, Shiro; Ishida, Makoto

    2010-03-15

    We report here a technique for use in electrical interfaces between neurons and microelectronics, using vertically integrated silicon probe arrays with diameters of 2-3.5 microm and lengths of 60-120 microm. Silicon probe arrays can be fabricated by selective vapor-liquid-solid (VLS) growth. A doped n-type silicon probe with the resistance of 1 k Omega has an electrical impedance of less than 10 M Omega in physiological saline. After inserting the probe arrays into the retina of a carp (Cyrpinus carpio), we conducted electrical recording of neural signals, using the probes to measure light-evoked electrical neural signals. We determined that recorded signals represented local field potentials of the retina (electroretinogram (ERG)). The VLS-probe can provide minimally invasive neural recording/stimulation capabilities at high spatial resolution for fundamental studies of nervous systems. In addition, the probe arrays can be integrated with microelectronics; therefore, these probes make it possible to construct interfaces between neurons and microelectronics in advanced neuroscience applications.

  7. Comparative study of the effects of phosphorus and boron doping in vapor-liquid-solid growth with fixed flow of silicon gas

    NASA Astrophysics Data System (ADS)

    Islam, Md. Shofiqul; Mehedi, Ibrahim Mustafa

    2016-04-01

    This work was carried out to investigate the comparative effects of phosphorus and boron doing in vapor-liquid-solid (VLS) growth. Doped Si microneedles were grown by VLS mechanism at the temperature of 700 °C or less using Au as the catalyst. VLS growth using in-situ doping with the mixed gas of Si2H6 and PH3 produced phosphorus doped n-Si microneedles at Au dot sites, whereas, the mixed gas of Si2H6 and B2H6 produced boron doped p-Si microneedles. The variation of growth rate, diameter, resistivity, impurity concentration and carrier (electron, hole) mobility of these n-Si and p-Si microneeedles were investigated and compared with the variation of dopant gas (PH3 or B2H6) flow, with a fixed flow of Si gas (Si2H6). This comparative study shall be helpful while fabricating devices by growing n-Si and p-Si microneedles one above another by multistep (2-step or 3-step) VLS growth.

  8. Neutrino mean free path in neutron star matter with {delta} isobars

    SciTech Connect

    Chen Yanjun; Yuan Yefei; Liu Yuxin

    2009-05-15

    The {delta}-isobar degrees of freedom are taken into account in neutron star matter and their contributions to neutrino mean free paths are evaluated. It is found that the charged-current contributions are comparable to those from the neutral-current reactions. The contributions of {delta}-isobars may be a leading sector of neutrino opacities in neutron star matter, but the effects of the process in which the baryon transforms between nucleon and {delta} are unimportant.

  9. Tagging of Isobars Using Energy Loss and Time-of-flight Measurements

    SciTech Connect

    Shapira, D.

    2001-11-02

    The technique for tagging isobars in a mixed beam by measuring energy loss by time-of-flight has been tested. With this method, isobar separation should improve by allowing more energy loss (thicker absorber), but only if one can control absorber homogeneity. Measurements of beam energy toss and energy spread obtained under such conditions were shown to be close to predicted values using both collisional and charge exchange contributions to energy straggling. The calculation of energy straggling allows us to study the efficacy of this method for isobar separation when applied to different mass ranges and beam energies. Separation in a most difficult case, an analyzed beam of A = 132 isobars at energies near 3 MeV/A has been demonstrated. The time-of-flight information can be added on line as an additional tag to the data stream for events of interest. Such event by event tagging enables one to study the effect of differences in isobaric mixture in the beam on the reaction outcome even when isobar separation is not complete.

  10. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces.

    PubMed

    Ghobadi, Ahmadreza F; Elliott, J Richard

    2014-07-14

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of "statistical associating fluid theory" that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH2 and CH3 and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ∼2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ∼1% from simulation data while the theory reproduces the

  11. The non-Newtonian heat and mass transport of He 2 in porous media used for vapor-liquid phase separation. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.

    1985-01-01

    This investigation of vapor-liquid phase separation (VLPS) of He 2 is related to long-term storage of cryogenic liquid. The VLPS system utilizes porous plugs in order to generate thermomechanical (thermo-osmotic) force which in turn prevents liquid from flowing out of the cryo-vessel (e.g., Infrared Astronomical Satellite). An apparatus was built and VLPS data were collected for a 2 and a 10 micrometer sintered stainless steel plug and a 5 to 15 micrometer sintered bronze plug. The VLPS data obtained at high temperature were in the nonlinear turbulent regime. At low temperature, the Stokes regime was approached. A turbulent flow model was developed, which provides a phenomenological description of the VLPS data. According to the model, most of the phase separation data are in the turbulent regime. The model is based on concepts of the Gorter-Mellink transport involving the mutual friction known from the zero net mass flow (ZNMF) studies. The latter had to be modified to obtain agreement with the present experimental VLPS evidence. In contrast to the well-known ZNMF mode, the VLPS results require a geometry dependent constant (Gorter-Mellink constant). A theoretical interpretation of the phenomenological equation for the VLPS data obtained, is based on modelling of the dynamics of quantized vortices proposed by Vinen. In extending Vinen's model to the VLPS transport of He 2 in porous media, a correlation between the K*(GM) and K(p) was obtained which permits an interpretation of the present findings. As K(p) is crucial, various methods were introduced to measure the permeability of the porous media at low temperatures. Good agreement was found between the room temperature and the low temperature K(p)-value of the plugs.

  12. Finite-size scaling study of the vapor-liquid critical properties of confined fluids: Crossover from three dimensions to two dimensions

    NASA Astrophysics Data System (ADS)

    Liu, Yang; Panagiotopoulos, Athanassios Z.; Debenedetti, Pablo G.

    2010-04-01

    We perform histogram-reweighting grand canonical Monte Carlo simulations of the Lennard-Jones fluid confined between two parallel hard walls and determine the vapor-liquid critical and coexistence properties in the range of σ ≤H≤6σ and 10σ≤Lx,Ly≤28σ, where H is the wall separation, Lx=Ly is the system size and σ is the characteristic length. By matching the probability distribution of the ordering operator, P(M ), to the three-dimensional (3D) and two-dimensional (2D) Ising universality classes according to the mixed-field finite-size scaling approach, we establish a "phase diagram" in the (H,L) plane, showing the boundary between four types of behavior: 3D, quasi-3D, quasi-2D, and 2D. In order to facilitate 2D critical point calculation, we present a four-parameter analytical expression for the 2D Ising universal distribution. We show that the infinite-system-size critical points obtained by extrapolation from the apparent 3D and 2D critical points have only minor differences with each other. In agreement with recent reports in the literature [Jana et al., J. Chem. Phys. 130, 214707 (2009)], we find departure from linearity in the relationship between critical temperature and inverse wall separation, as well as nonmonotonic dependence of the critical density and the liquid density at coexistence upon wall separation. Additional studies of the ST2 model of water show similar behavior, which suggests that these are quite general properties of confined fluids.

  13. Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires. Composition dependence on precursor reactivity and morphology control for vertical forests

    DOE PAGES

    Choi, S. G.; Manandhar, P.; Picraux, S. T.

    2015-07-07

    The growth of high-density group IV alloy nanowire forests is critical for exploiting their unique functionalities in many applications. Here, the compositional dependence on precursor reactivity and optimized conditions for vertical growth are studied for Si1- x Ge x alloy nanowires grown by the vapor-liquid-solid method. The nanowire composition versus gas partial-pressure ratio for germane-silane and germane-disilane precursor combinations is obtained at 350°C over a wide composition range (0.05 ≤ x ≤ 0.98) and a generalized model to predict composition for alloy nanowires is developed based on the relative precursor partial pressures and reactivity ratio. In combination with germane, silanemore » provides more precise compositional control at high Ge concentrations (x > 0.7), whereas disilane greatly increases the Si concentration for a given gas ratio and enables more precise alloy compositional control at small Ge concentrations (x < 0.3). Vertically oriented, non-kinking nanowire forest growth on Si (111) substrates is then discussed for silane/germane over a wide range of compositions, with temperature and precursor partial pressure optimized by monitoring the nanowire growth front using in-situ optical reflectance. For high Ge compositions (x ≈ 0.9), a “two-step” growth approach with nucleation at higher temperatures results in nanowires with high-density and uniform vertical orientation. Furthermore, increasing Si content (x ≈ 0.8), the optimal growth window is shifted to higher temperatures, which minimizes nanowire kinking morphologies. For Si-rich Si1- x Ge x alloys (x ≈ 0.25), vertical nanowire growth is enhanced by single-step, higher-temperature growth at reduced pressures.« less

  14. Encoding abrupt and uniform dopant profiles in vapor-liquid-solid nanowires by suppressing the reservoir effect of the liquid catalyst.

    PubMed

    Christesen, Joseph D; Pinion, Christopher W; Zhang, Xing; McBride, James R; Cahoon, James F

    2014-11-25

    Semiconductor nanowires (NWs) are often synthesized by the vapor-liquid-solid (VLS) mechanism, a process in which a liquid droplet-supplied with precursors in the vapor phase-catalyzes the growth of a solid, crystalline NW. By changing the supply of precursors, the NW composition can be altered as it grows to create axial heterostructures, which are applicable to a range of technologies. The abruptness of the heterojunction is mediated by the liquid catalyst, which can act as a reservoir of material and impose a lower limit on the junction width. Here, we demonstrate that this "reservoir effect" is not a fundamental limitation and can be suppressed by selection of specific VLS reaction conditions. For Au-catalyzed Si NWs doped with P, we evaluate dopant profiles under a variety of synthetic conditions using a combination of elemental imaging with energy-dispersive X-ray spectroscopy and dopant-dependent wet-chemical etching. We observe a diameter-dependent reservoir effect under most conditions. However, at sufficiently slow NW growth rates (≤250 nm/min) and low reactor pressures (≤40 Torr), the dopant profiles are diameter independent and radially uniform with abrupt, sub-10 nm axial transitions. A kinetic model of NW doping, including the microscopic processes of (1) P incorporation into the liquid catalyst, (2) P evaporation from the catalyst, and (3) P crystallization in the Si NW, quantitatively explains the results and shows that suppression of the reservoir effect can be achieved when P evaporation is much faster than P crystallization. We expect similar reaction conditions can be developed for other NW systems and will facilitate the development of NW-based technologies that require uniform and abrupt heterostructures.

  15. Finite-size scaling study of the vapor-liquid critical properties of confined fluids: Crossover from three dimensions to two dimensions.

    PubMed

    Liu, Yang; Panagiotopoulos, Athanassios Z; Debenedetti, Pablo G

    2010-04-14

    We perform histogram-reweighting grand canonical Monte Carlo simulations of the Lennard-Jones fluid confined between two parallel hard walls and determine the vapor-liquid critical and coexistence properties in the range of sigma

  16. Adapting SAFT-γ perturbation theory to site-based molecular dynamics simulation. II. Confined fluids and vapor-liquid interfaces

    SciTech Connect

    Ghobadi, Ahmadreza F.; Elliott, J. Richard

    2014-07-14

    In this work, a new classical density functional theory is developed for group-contribution equations of state (EOS). Details of implementation are demonstrated for the recently-developed SAFT-γ WCA EOS and selective applications are studied for confined fluids and vapor-liquid interfaces. The acronym WCA (Weeks-Chandler-Andersen) refers to the characterization of the reference part of the third-order thermodynamic perturbation theory applied in formulating the EOS. SAFT-γ refers to the particular form of “statistical associating fluid theory” that is applied to the fused-sphere, heteronuclear, united-atom molecular models of interest. For the monomer term, the modified fundamental measure theory is extended to WCA-spheres. A new chain functional is also introduced for fused and soft heteronuclear chains. The attractive interactions are taken into account by considering the structure of the fluid, thus elevating the theory beyond the mean field approximation. The fluctuations of energy are also included via a non-local third-order perturbation theory. The theory includes resolution of the density profiles of individual groups such as CH{sub 2} and CH{sub 3} and satisfies stoichiometric constraints for the density profiles. New molecular simulations are conducted to demonstrate the accuracy of each Helmholtz free energy contribution in reproducing the microstructure of inhomogeneous systems at the united-atom level of coarse graining. At each stage, comparisons are made to assess where the present theory stands relative to the current state of the art for studying inhomogeneous fluids. Overall, it is shown that the characteristic features of real molecular fluids are captured both qualitatively and quantitatively. For example, the average pore density deviates ∼2% from simulation data for attractive pentadecane in a 2-nm slit pore. Another example is the surface tension of ethane/heptane mixture, which deviates ∼1% from simulation data while the theory

  17. Measurement of vapor/liquid distributions in a binary-component fuel spray using laser imaging of droplet scattering and vapor absorption

    NASA Astrophysics Data System (ADS)

    Li, Shiyan; Zhang, Yuyin; Wu, Shenqi; Xu, Bin

    2014-08-01

    Fuel volatility has a great effect on its evaporation processes and the mixture formation and thus combustion and emissions formation processes in internal combustion engines. To date, however, instead of the actual gasoline or diesel fuel, many researchers have been using single-component fuel in their studies, because the composition of the former is too complicated to understand the real physics behind the evaporation and combustion characteristics. Several research groups have reported their results on droplets evaporation in a spray of multi-component fuel, carried out both numerically and experimentally. However, there are plenty of difficulties in quantitative determination of vapor concentration and droplet distributions of each component in a multicomponent fuel spray. In this study, to determine the vapor phase concentration and droplet distributions in an evaporating binary component fuel spray, a laser diagnostics based on laser extinction by droplet scattering and vapor absorption was developed. In practice, measurements of the vapor concentration distributions of the lower (n-tridencane) and higher (n-octane) volatility components in the binary component fuel sprays have been carried out at ambient temperatures of 473K and 573K, by substituting p-xylene for noctane or α-methylnaphthalene for n-tridecane. p-Xylene and α-methylnaphthalene were selected as the substitutes is because they have strong absorption band near 266nm and transparent near 532nm and, their thermo-physical properties are similar to those of the original component. As a demonstration experiment, vapor/liquid distribution of the lower boiling point (LBP) and higher boiling point (HBP) components in the binary component fuel spray have been obtained.

  18. Periodicity of monoisotopic mass isomers and isobars in proteomics.

    PubMed

    Yu, Long; Xiong, Yan-Mei; Polfer, Nick C

    2011-10-15

    We report trends in the theoretically derived number of compositionally distinct peptides (i.e., peptides made up of different amino acid residues) up to a nominal mass of 1000. A total of 21 amino acid residues commonly found in proteomics studies are included in this study, 19 natural, nonisomeric amino acid residues as well as oxidated methione and acetamidated cysteine. The number of possibilities is found to increase in an exponential fashion with increasing nominal mass, and the data show a periodic oscillation that starts at mass ~200 and continues throughout to 1000. Note that similar effects are reported in the companion article on fragment ions from electron capture/transfer dissociation (ECD/ETD) (Mao et al. Anal. Chem.2011, DOI: 10.1021/ac201619t). The spacing of this oscillation is ~15 mass units at lower masses and ~14 mass units at higher nominal masses. This correlates with the most common mass differences between the amino acid building blocks. In other words, some mass differences are more common than others, thus determining the periodicity in this data. From an analytical point of view, nominal masses with a larger number of compositionally distinct peptides include a substantial number of isomers, which cannot be separated based on mass. Consequently, even ultrahigh mass accuracy (i.e., 0.5 ppm) does not lead to a substantially enhanced rate of identification. Conversely, for adjacent nominal masses with a lower number of isomers, moderately accurate mass (i.e., 10 ppm) gives a higher degree of certainty in identification. These effects are limited to the mass range between 200 and 500 Da. At higher masses, the percentage of uniquely identified peptides drops off to close to zero, independent of nominal mass, due the inherently high number of isomers. While the exact number of isobars/isomers at each nominal mass depends on the amino acid building blocks that are considered, the periodicity in the data is found to be remarkably robust; for

  19. Equilibrium solubilities of CO/sub 2/ and H/sub 2/S in diethanolamine (DEA) and methyldiethanolamine (MDEA) solutions

    SciTech Connect

    Ho, A.S.; Equren, P.R. )

    1988-01-01

    The ability to predict equilibrium phase behavior in systems containing CO/sub 2/ and/or H/sub 2/S in alkanolamine solutions such as diethanolamine (DEA) and methyldiethanolamine (MDEA) is of vital importance for proper design and operation of acid gases treating systems. Literature data for the solubilities of CO/sub 2/ and/or H/sub 2/S in DEA and MDEA systems have been compiled and evaluated. Experimental measurements have also been made to confirm literature data and to expand the data base. A vapor-liquid equilibrium (VLE) model similar to the one developed by Kent and Eisenberg has been developed to correlate the data. The model gives the most accurate predictions when compared to other VLE models available for predicting equilibrium acid gas partial pressures over DEA and MDEA solutions.

  20. The role of iterative isobar processes in nuclear matter and the effective nucleon-nucleon interaction

    NASA Astrophysics Data System (ADS)

    Dey, J.; Samanta, B. C.; Dey, M.

    1980-09-01

    A calculation is performed using lowest order Brueckner theory in momentum space, with explicit isobar configurations included through the coupled channel mathod. The effective interaction for the1 S 0-5 D 0 channel is extracted from this calculation. Two different transition potentials are used — one due to Green and Niskanen (1976), the other, due to Green and co-workers (1978). The nucleon-nucleon (NN) interaction used is the Reid soft core potential, compensated for the inclusion of the explicit isobar channel. The effective interaction shows marked momentum dependence in the intermediate range. The loss of attraction depends on the transition potential one chooses. The correlation function involving the nucleon-isobar intermediate state is anti-correlated to the NN part.

  1. Covariant and self-consistent vertex corrections for pions and isobars in nuclear matter

    SciTech Connect

    Korpa, C. L.; Lutz, M. F. M.; Riek, F.

    2009-08-15

    We evaluate the pion and isobar propagators in cold nuclear matter self-consistently applying a covariant form of the isobar-hole model. Migdal's vertex correction effects are considered systematically in the absence of phenomenological soft form factors. Saturated nuclear matter is modeled by scalar and vector mean fields for the nucleon. It is shown that the short-range dressing of the {pi}N{delta} vertex has a significant effect on the pion and isobar properties. Using realistic parameters sets we predict a downward shift of about 50 MeV for the {delta} resonance at nuclear saturation density. The pionic soft modes are much less pronounced than in previous studies.

  2. Gas-phase purification enables accurate, large-scale, multiplexed proteome quantification with isobaric tagging

    PubMed Central

    Wenger, Craig D; Lee, M Violet; Hebert, Alexander S; McAlister, Graeme C; Phanstiel, Douglas H; Westphall, Michael S; Coon, Joshua J

    2011-01-01

    We describe a mass spectrometry method, QuantMode, which improves the accuracy of isobaric tag–based quantification by alleviating the pervasive problem of precursor interference—co-isolation of impurities—through gas-phase purification. QuantMode analysis of a yeast sample ‘contaminated’ with interfering human peptides showed substantially improved quantitative accuracy compared to a standard scan, with a small loss of spectral identifications. This technique will allow large-scale, multiplexed quantitative proteomics analyses using isobaric tagging. PMID:21963608

  3. Isobaric expansion coefficient and isothermal compressibility for a finite-size ideal Fermi gas system

    NASA Astrophysics Data System (ADS)

    Su, Guozhen; Chen, Liwei; Chen, Jincan

    2014-06-01

    Due to quantum size effects (QSEs), the isobaric thermal expansion coefficient and isothermal compressibility well defined for macroscopic systems are invalid for finite-size systems. The two parameters are redefined and calculated for a finite-size ideal Fermi gas confined in a rectangular container. It is found that the isobaric thermal expansion coefficient and isothermal compressibility are generally anisotropic, i.e., they are generally different in different directions. Moreover, it is found the thermal expansion coefficient may be negative in some directions under the condition that the pressures in all directions are kept constant.

  4. Quantitation of isobaric phosphatidylcholine species in human plasma using a hybrid quadrupole linear ion trap mass spectrometer

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Phosphatidylcholine (PC) species in human plasma are used as biomarkers of disease. PC biomarkers are often limited by the inability to separate isobaric PC. In this work, we developed a targeted shotgun approach for analysis of isobaric and isomeric PC. This approach is comprised of two mass spectr...

  5. Residue Coulomb Interaction Among Isobars and Its Influence in Symmetry Energy of Neutron-Rich Fragment

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Wang, Shan-Shan; Zhang, Yan-Li; Zhao, Yi-Long; Wei, Hui-Ling

    2015-09-01

    The residue Coulomb interaction (RCI), which affects the result of symmetry-energy coefficient of neutron-rich nucleus in isobaric yield ratio (IYR) method, is difficult to be determined. Four RCI approximations are investigated: (i) The M1-RCI adopting the ac/T (the ratio of Coulomb energy coefficient to temperature) determined from the IYR of mirror-nucleus fragments; (ii) The M2-RCI by fitting the difference between IYRs; (iii) The M3-RCI adopting the standard Coulomb energy at a temperature T = 2 MeV; and (iv) Neglecting the RCI among isobars. The M1-, M2- and M3-RCI are no larger than 0.4. In particular, the M2-RCI is very close to zero. The effects of RCI in asym/T of fragment are also studied. The M1- and M4-asym/T are found to be the lower and upper limitations of asym/T, respectively. The M2-asym/T overlaps the M4-asym/T, which indicates that the M2-RCI is negligible in the IYR method, and the RCI among the three isobars can be neglected. The relative consistent low values of M3-asym/T (7.5 ± 2.5) are found in very neutron-rich isobars. Supported by the Program for Science & Technology Innovation Talents in Universities of Henan Province (13HASTIT046), and Young Teacher Project in Henan Normal University (HNU), China

  6. High-Resolution Enabled 12-Plex DiLeu Isobaric Tags for Quantitative Proteomics

    PubMed Central

    2015-01-01

    Multiplex isobaric tags (e.g., tandem mass tags (TMT) and isobaric tags for relative and absolute quantification (iTRAQ)) are a valuable tool for high-throughput mass spectrometry based quantitative proteomics. We have developed our own multiplex isobaric tags, DiLeu, that feature quantitative performance on par with commercial offerings but can be readily synthesized in-house as a cost-effective alternative. In this work, we achieve a 3-fold increase in the multiplexing capacity of the DiLeu reagent without increasing structural complexity by exploiting mass defects that arise from selective incorporation of 13C, 15N, and 2H stable isotopes in the reporter group. The inclusion of eight new reporter isotopologues that differ in mass from the existing four reporters by intervals of 6 mDa yields a 12-plex isobaric set that preserves the synthetic simplicity and quantitative performance of the original implementation. We show that the new reporter variants can be baseline-resolved in high-resolution higher-energy C-trap dissociation (HCD) spectra, and we demonstrate accurate 12-plex quantitation of a DiLeu-labeled Saccharomyces cerevisiae lysate digest via high-resolution nano liquid chromatography–tandem mass spectrometry (nanoLC–MS2) analysis on an Orbitrap Elite mass spectrometer. PMID:25405479

  7. MilQuant: a free, generic software tool for isobaric tagging-based quantitation.

    PubMed

    Zou, Xiao; Zhao, Minzhi; Shen, Hongyan; Zhao, Xuyang; Tong, Yuanpeng; Wang, Qingsong; Wei, Shicheng; Ji, Jianguo

    2012-09-18

    Isobaric tagging techniques such as iTRAQ and TMT are widely used in quantitative proteomics and especially useful for samples that demand in vitro labeling. Due to diversity in choices of MS acquisition approaches, identification algorithms, and relative abundance deduction strategies, researchers are faced with a plethora of possibilities when it comes to data analysis. However, the lack of generic and flexible software tool often makes it cumbersome for researchers to perform the analysis entirely as desired. In this paper, we present MilQuant, mzXML-based isobaric labeling quantitator, a pipeline of freely available programs that supports native acquisition files produced by all mass spectrometer types and collection approaches currently used in isobaric tagging based MS data collection. Moreover, aside from effective normalization and abundance ratio deduction algorithms, MilQuant exports various intermediate results along each step of the pipeline, making it easy for researchers to customize the analysis. The functionality of MilQuant was demonstrated by four distinct datasets from different laboratories. The compatibility and extendibility of MilQuant makes it a generic and flexible tool that can serve as a full solution to data analysis of isobaric tagging-based quantitation.

  8. Strategies for differentiation of isobaric flavonoids using liquid chromatography coupled to electrospray ionization mass spectrometry.

    PubMed

    Fridén, Mikael E; Sjöberg, Per J R

    2014-07-01

    Flavonoids are a class of secondary plant metabolites existing in great variety in nature. Due to this variety, identification can be difficult, especially as overlapping compounds in both chromatographic separations and mass spectrometric detection are common. Methods for distinguishing isobaric flavonoids using MS(2) and MS(3) have been developed. Chromatographic separation of various plant extracts was done with RP-HPLC and detected with positive ESI-MS operated in information-dependent acquisition (IDA) mode. Two methods for the determination of flavonoid identity and substitution pattern, both featuring IDA criteria, were used together with the HPLC equipment. A third method where the collision energy was ramped utilized direct infusion. With the developed strategies, it is possible to differentiate between many isobaric flavonoids. Various classes of flavonoids were found in all of the plant extracts, in the red onion extract 45 components were detected and for 29 of them the aglycone was characterized, while the substituents were tentatively identified for 31 of them. For the strawberry extract, those numbers were 66, 30 and 60, and for the cherry extract 99, 56 and 71. The great variety of flavonoids, several of them isobaric, found in each of the extracts highlights the need for reliable methods for flavonoid characterization. Methods capable of differentiating between most of the isobars analyzed have been developed.

  9. Tandem mass spectrometric analysis of a mixture of isobars using the survival yield technique.

    PubMed

    Memboeuf, Antony; Jullien, Laure; Lartia, Rémy; Brasme, Bernard; Gimbert, Yves

    2011-10-01

    Collision induced dissociation tandem mass spectrometry experiments were performed to unequivocally separate compounds from an isobaric mixture of two products. The Survival Yield curve was obtained and is shown to consist in a linear combination of the curves corresponding to the two components separately. For such a mixture, a plateau appears on the diagram in lieu of the continuous decrease expected allowing for the structural study of the two components separately. The width of the plateau critically relates to the fragmentation parameters of the two molecular ions, which need to be sufficiently different structurally for the plateau to be observed. However, at constant fragmentation parameters, we have observed the width significantly increases at large m/z. This makes the separation more and more efficient as isobars have larger m/z and the technique complementary to those applicable at low m/z only. We have observed that the vertical position of the plateau relates linearly to the relative concentration of the two compounds that may be useful for quantification. Repeatability was estimated at 2% on a quadrupole ion trap. An advantage of using survival yield curves only, is that a priori knowledge of the respective fragmentation patterns of the two isobars becomes unnecessary. Consequently, similar performances are obtained if fragments are isobaric, which is also demonstrated in our study. The critical case of reverse peptides, at low m/z and similar fragmentation parameters, is also presented as a limitation of the method.

  10. Formation of isobaric discontinuities in large-scale flute drift motions

    SciTech Connect

    Dreizin, Y.A.; Sokolov, E.P.

    1982-05-01

    The flute drift motion in MHD-stable plasma configurations with closed lines of force is analyzed qualitatively. The onset of this motion can lead to isobaric discontinuities in experimentally observable quantitites: the electric potential and the electron and ion densities and temperatures.

  11. Nuclear matter properties from local chiral interactions with Δ isobar intermediate states

    NASA Astrophysics Data System (ADS)

    Logoteta, Domenico; Bombaci, Ignazio; Kievsky, Alejandro

    2016-12-01

    Using two-nucleon and three-nucleon interactions derived in the framework of chiral perturbation theory (ChPT) with and without the explicit Δ isobar contributions, we calculate the energy per particle of symmetric nuclear matter and pure neutron matter in the framework of the microscopic Brueckner-Hartree-Fock approach. In particular, we present for the first time nuclear matter calculations using the new fully local in coordinate-space two-nucleon interaction at the next-to-next-to-next-to-leading-order (N3LO) of ChPT with Δ isobar intermediate states (N 3 LO Δ ) recently developed by Piarulli et al. [arXiv:1606.06335]. We find that using this N 3 LO Δ potential, supplemented with a local N2LO three-nucleon interaction with explicit Δ isobar degrees of freedom, it is possible to obtain a satisfactory saturation point of symmetric nuclear matter. For this combination of two- and three-nucleon interactions we also calculate the nuclear symmetry energy and we compare our results with the empirical constraints on this quantity obtained using the excitation energies to isobaric analog states in nuclei and using experimental data on the neutron skin thickness of heavy nuclei, finding a very good agreement in all the considered nucleonic density range. In addition, we find that the explicit inclusion of Δ isobars diminishes the strength of the three-nucleon interactions needed to get a good saturation point of symmetric nuclear matter. We also compare the results of our calculations with those obtained by other research groups using chiral nuclear interactions with different many-body methods, finding in many cases a very satisfactory agreement.

  12. Monte Carlo simulations of 1,3,5-triamino-2,4,6-trinitrobenzene (TATB): Pressure and temperature effects for the solid phase and vapor-liquid phase equilibria.

    PubMed

    Rai, Neeraj; Bhatt, Divesh; Siepmann, J Ilja; Fried, Laurence E

    2008-11-21

    The transferable potentials for phase equilibria (TraPPE) force field was extended to nitro and amino substituents for aromatic rings via parametrization to the vapor-liquid coexistence curves of nitrobenzene and aniline, respectively. These groups were then transferred to model 1,3,5-triamino-2,4,6-trinitrobenzene (TATB). Without any further parametrization to solid state data, the TraPPE force field is able to predict TATB's unit cell lengths and angles at 295 K with mean unsigned percentage errors of 0.3% and 1.8% and the specific density within 0.5%. These predictions are comparable in accuracy to the GRBF model [Gee et al., J. Chem. Phys. 120, 7059 (2004)] that was parametrized directly to TATB's solid state properties. Both force fields are able to reproduce the pressure dependence of TATB's unit cell volume, but they underestimate its thermal expansion. Due to its energetic nature and unusually large cohesive energy, TATB is not chemically stable at temperature in its liquid range. Gibbs ensemble simulations allow one to determine TATB's vapor-liquid coexistence curve at elevated temperatures and the predicted critical temperature and density for the TraPPE and GRBF model are 937+/-8 and 1034+/-8 K, and 0.52+/-0.02 and 0.50+/-0.02 gcm(3), respectively.

  13. Liquid-vapor equilibrium in the systems hexane-benzene-petroleum sulfoxides-diethylene glycol and hexane-benzene-petroleum sulfoxides-dimethylformamide

    SciTech Connect

    Vakhitova, N.G.; Baikova, A.Y.; Murinov, Y.I.; Nikitin, Y.E.

    1985-12-01

    This paper reports the results of studies of liquid-vapor equilibrium in the benzene-hexane system in presence of binary extractants: petroleum sulfoxide-dimethylformamide (DMFA) and petroleum sulfoxide-diethylene glycol (DEG). The physicochemical properties of the extractants are presented and the influence of the content of slelective solvent on vapor-liquid equilibrium was studied; the total concentration of the binary solvent in the experiments was 50 vol. %. Results also show that the introduction of a second solvent into petroleum sulfoxides alters the vapor-liquid equilibrium in the system substantially. The volatility of hexane is increased considerably, especially in the case of the PSO-DMFA mixed extractant. In the case of benzene, petroleum sulfoxides and their mixtures with diethylene glycol and dimethylformamide are approximately equal in effectiveness in the region of low benzene concentrations. In the region of high benzene concentrations mixed extractants are more effective than petroleum sulfoxides; this is decisive for isolation of aromatic hydrocarbons from mixtures rich in aromatics.

  14. Identification of isobaric product ions in electrospray ionization mass spectra of fentanyl using multistage mass spectrometry and deuterium labeling.

    PubMed

    Wichitnithad, Wisut; McManus, Terence J; Callery, Patrick S

    2010-09-15

    Isobaric product ions cannot be differentiated by exact mass determinations, although in some cases deuterium labeling can provide useful structural information for identifying isobaric ions. Proposed fragmentation pathways of fentanyl were investigated by electrospray ionization ion trap mass spectrometry coupled with deuterium labeling experiments and spectra of regiospecific deuterium labeled analogs. The major product ion of fentanyl under tandem mass spectrometry (MS/MS) conditions (m/z 188) was accounted for by a neutral loss of N-phenylpropanamide. 1-(2-Phenylethyl)-1,2,3,6-tetrahydropyridine (1) was proposed as the structure of the product ion. However, further fragmentation (MS(3)) of the fentanyl m/z 188 ion gave product ions that were different from the product ion in the MS/MS fragmentation of synthesized 1, suggesting that the m/z 188 product ion from fentanyl includes an isobaric structure different from the structure of 1. MS/MS fragmentation of fentanyl in deuterium oxide moved one of the isobars to 1 Da higher mass, and left the other isobar unchanged in mass. Multistage mass spectral data from deuterium-labeled proposed isobaric structures provided support for two fragmentation pathways. The results illustrate the utility of multistage mass spectrometry and deuterium labeling in structural assignment of isobaric product ions.

  15. Non-equilibrium configurational Prigogine-Defay ratio

    NASA Astrophysics Data System (ADS)

    Garden, Jean-Luc; Guillou, Hervé; Richard, Jacques; Wondraczek, Lothar

    2012-06-01

    Classically, the Prigogine-Defay (PD) ratio involves differences in isobaric heat capacity, isothermal compressibility, and isobaric thermal expansion coefficient between a super-cooled liquid and the corresponding glass at the glass transition. However, determining such differences by extrapolation of coefficients that have been measured for super-cooled liquid and glassy state, respectively, poses the problem that it does not exactly take into account the non-equilibrium character of the glass transition. In this paper, we assess this question by taking into account the time dependence of configurational contributions to the three thermodynamic coefficients in the glass transition range upon varying temperature and/or pressure. Macroscopic non-equilibrium thermodynamics is applied to obtain a generalised form of the PD ratio. The classical PD ratio can then be taken as a particular case of this generalisation. Under some assumptions, the configurational PD ratio (CPD ratio) can be expressed in terms of fictive temperature and fictive pressure which, hence, provides another possibility to experimentally verify this formalism.

  16. Revalidation of the isobaric multiplet mass equation for the A=20 quintet

    DOE PAGES

    Glassman, B. E.; Pérez-Loureiro, D.; Wrede, C.; ...

    2015-10-29

    An unexpected breakdown of the isobaric multiplet mass equation in the A = 20, T = 2 quintet was recently reported, presenting a challenge to modern theories of nuclear structure. In the present work, the excitation energy of the lowest T = 2 state in Na-20 has been measured to be 6498.4 +/- 0.2stat ± 0.4syst keV by using the superallowed 0+ → 0+ beta decay of Mg-20 to access it and an array of high-purity germanium detectors to detect its gamma-ray deexcitation. This value differs by 27 keV (1.9 standard deviations) from the recommended value of 6525 ± 14more » keV and is a factor of 28 more precise. The isobaric multiplet mass equation is shown to be revalidated when the new value is adopted.« less

  17. Isobar model analysis of {pi}{sup 0{eta}} photoproduction on protons

    SciTech Connect

    Fix, A.; Lee, A.; Kashevarov, V. L.; Ostrick, M.

    2010-09-15

    Photoproduction of {pi}{sup 0{eta}} on protons in the energy range from threshold to 1.4 GeV is discussed. The data for representative angular distributions recently obtained at MAMI C are analyzed using an isobar model. The isobars considered are {Delta}(1232) and S{sub 11}(1535) for {pi}{sup 0}p and {eta}p states, respectively. In accordance with the results of earlier works, the main features of the reaction are explained through the dominance of the D{sub 33} wave with a relatively small admixture of positive parity resonances. Comparison with recent experimental results for the photon beam asymmetry is carried out.

  18. Isobars of an ideal Bose gas within the grand canonical ensemble

    SciTech Connect

    Jeon, Imtak; Park, Jeong-Hyuck; Kim, Sang-Woo

    2011-08-15

    We investigate the isobar of an ideal Bose gas confined in a cubic box within the grand canonical ensemble for a large yet finite number of particles, N. After solving the equation of the spinodal curve, we derive precise formulas for the supercooling and the superheating temperatures that reveal an N{sup -1/3} or N{sup -1/4} power correction to the known Bose-Einstein condensation temperature in the thermodynamic limit. Numerical computations confirm the accuracy of our analytical approximation, and further show that the isobar zigzags on the temperature-volume plane if N{>=}14 393. In particular, for the Avogadro's number of particles, the volume expands discretely about 10{sup 5} times. Our results quantitatively agree with a previous study on the canonical ensemble within 0.1% error.

  19. Isobars of an ideal Bose gas within the grand canonical ensemble

    NASA Astrophysics Data System (ADS)

    Jeon, Imtak; Kim, Sang-Woo; Park, Jeong-Hyuck

    2011-08-01

    We investigate the isobar of an ideal Bose gas confined in a cubic box within the grand canonical ensemble for a large yet finite number of particles, N. After solving the equation of the spinodal curve, we derive precise formulas for the supercooling and the superheating temperatures that reveal an N-1/3 or N-1/4 power correction to the known Bose-Einstein condensation temperature in the thermodynamic limit. Numerical computations confirm the accuracy of our analytical approximation, and further show that the isobar zigzags on the temperature-volume plane if N≥14393. In particular, for the Avogadro’s number of particles, the volume expands discretely about 105 times. Our results quantitatively agree with a previous study on the canonical ensemble within 0.1% error.

  20. Isobaric Heat Capacity, Isothermal Compressibility and Fluctuational Properties of 1-Bromoalkanes

    NASA Astrophysics Data System (ADS)

    Korotkovskii, V. I.; Ryshkova, O. S.; Neruchev, Yu. A.; Goncharov, A. L.; Postnikov, E. B.

    2016-06-01

    We present results of the experimental measurements of the isobaric heat capacity for 1-bromohexane, 1-bromoheptane, 1-bromooctane, 1-bromononane, 1-bromodecane, 1-bromoundecane, 1-bromododecane and 1-bromotetradecane at normal pressure and the speed of sound and the density for 1-bromotetradecane within the temperature range 298.15-423.15 K. These data on the isobaric heat capacity and the literature-based reference data for the density and the speed of sound were used to calculate the isothermal compressibility and the inverse reduced fluctuations. Based on the comparison of the results for pure n-alkanes and α ,ω -dibromoalkanes, we discuss the influence of bromine atom on the volume fluctuations.

  1. Oxygen chemisorption on V/sub 2/O/sub 5/: isotherms and isobars of adsorption

    SciTech Connect

    Rey, L.; Gambaro, L.A.; Thomas, H.J.

    1984-06-01

    Experimental results of oxygen adsorption on V/sub 2/O/sub 5/ (isotherms and isobars) are reported. In its normal state V/sub 2/O/sub 5/ is a nonstoichiometric oxide that shows oxygen vacancies with the subsequent formation of V/sup 4 +/ ions. A model is developed for the interaction between oxygen (gaseous, adsorbed, and bulk) and the solid phase (V/sub 2/O/sub 5/). 12 references, 4 figures, 1 table.

  2. Resonance ionization mass spectrometric study of the promethium/samarium isobaric pair

    SciTech Connect

    Shaw, R.W.; Young, J.P.; Smith, D.H.

    1988-01-01

    Samarium daughters are problematic in isotope ratio measurements of promethium because they are isobaric. Resonance ionization mass spectrometry was utilized to circumvent this problem. An ionization selectivity factor of at least 1000:1 has been measured for promethium over samarium at 584.6 nm. Resonance ionization spectra have been recorded for both elements over the 528-560 and 580-614 nm wavelength ranges.

  3. A regression model for calculating the boiling point isobars of tetrachloromethane-based binary solutions

    NASA Astrophysics Data System (ADS)

    Preobrazhenskii, M. P.; Rudakov, O. B.

    2016-01-01

    A regression model for calculating the boiling point isobars of tetrachloromethane-organic solvent binary homogeneous systems is proposed. The parameters of the model proposed were calculated for a series of solutions. The correlation between the nonadditivity parameter of the regression model and the hydrophobicity criterion of the organic solvent is established. The parameter value of the proposed model is shown to allow prediction of the potential formation of azeotropic mixtures of solvents with tetrachloromethane.

  4. Vapor-liquid equilibria from the triple point up to the critical point for the new generation of TIP4P-like models: TIP4P/Ew, TIP4P/2005, and TIP4P/ice.

    PubMed

    Vega, C; Abascal, J L F; Nezbeda, I

    2006-07-21

    The vapor-liquid equilibria of three recently proposed water models have been computed using Gibbs-Duhem simulations. These models are TIP4P/Ew, TIP4P/2005, and TIP4P/ice and can be considered as modified versions of the TIP4P model. By design TIP4P reproduces the vaporization enthalpy of water at room temperature, whereas TIP4P/Ew and TIP4P/2005 match the temperature of maximum density and TIP4P/ice the melting temperature of water. Recently, the melting point for each of these models has been computed, making it possible for the first time to compute the complete vapor-liquid equilibria curve from the triple point to the critical point. From the coexistence results at high temperature, it is possible to estimate the critical properties of these models. None of them is capable of reproducing accurately the critical pressure or the vapor pressures and densities. Additionally, in the cases of TIP4P and TIP4P/ice the critical temperatures are too low and too high, respectively, compared to the experimental value. However, models accounting for the density maximum of water, such as TIP4P/Ew and TIP4P/2005 provide a better estimate of the critical temperature. In particular, TIP4P/2005 provides a critical temperature just 7 K below the experimental result as well as an extraordinarily good description of the liquid densities from the triple point to the critical point. All TIP4P-like models present a ratio of the triple point temperature to the critical point temperature of about 0.39, compared with the experimental value of 0.42. As is the case for any effective potential neglecting many body forces, TIP4P/2005 fails in describing simultaneously the vapor and the liquid phases of water. However, it can be considered as one of the best effective potentials of water for describing condensed phases, both liquid and solid. In fact, it provides a completely coherent view of the phase diagram of water including fluid-solid, solid-solid, and vapor-liquid equilibria.

  5. [Nursing Care of Lumbar Spine Fusion Surgery Using a Semi-Rigid Device (ISOBAR)].

    PubMed

    Wu, Meng-Shan; Su, Shu-Fen

    2016-04-01

    Aging frequently induces degenerative changes in the spine. Patients who suffer from lumbar degenerative disease tend to have lower back pain, neurological claudication, and neuropathy. Furthermore, incontinence may be an increasing issue as symptoms become severe. Lumbar spine fusion surgery is necessary if clinical symptoms continue to worsen or if the patient fails to respond to medication, physical therapy, or alternative treatments. However, this surgical procedure frequently induces adjacent segment disease (ASD), which is evidenced by the appearance of pathological changes in the upper and lower sections of the spinal surgical sites. In 1997, ISOBAR TTL dynamic rod stabilization was developed for application in spinal fusion surgery to prevent ASD-related complications. The device has proven effective in reducing pain in the lower back and legs, decreasing functional disability, improving quality of life, and retarding disc degeneration. However, the effectiveness of this intervention in decreasing the incidence of ASD requires further research investigation, and relevant literature and research in Taiwan is still lacking. This article discusses lumbar degenerative disease, its indications, the contraindications of lumbar spine fusion surgery using ISOBAR, and related postoperative nursing care. We hope this article provides proper and new knowledge to clinical nurses for the care of patients undergoing lumbar spine fusion surgery with ISOBAR.

  6. Coupled-channel Treatment of Isobaric Analog Resonances in (p,p‧) Capture Processes

    NASA Astrophysics Data System (ADS)

    Thompson, I. J.; Arbanas, G.

    2014-04-01

    With the advent of nuclear reactions on unstable isotopes, there has been a renewed interest in using isobaric analogue resonances (IAR) as a tool for probing the nuclear structure. The position and width of isobaric analogue resonances in nucleon-nucleus scattering are accurate and detailed indicators of the positions of resonances and bound states with good single-particle characters. We report on implementation within our coupled-channels code FRESCO of the charge-exchange interaction term that transforms an incident proton into a neutron. Isobaric analog resonances are seen as peaks in γ-ray spectrum when the proton is transformed into a neutron at an energy near a neutron bound state. The Lane coupled-channels formalism was extended to follow the non-orthogonality of this neutron channel with that configuration of an inelastic outgoing proton, and the target being left in a particle-hole excited state. This is tested for 208Pb, for which good (p,p'γ) coincidence data exists.

  7. Coupled-channel treatment of Isobaric Analog Resonances in (p,p') Capture Processes

    SciTech Connect

    Thompson, I J; Arbanas, Goran

    2013-01-01

    With the advent of nuclear reactions on unstable isotopes, there has been a renewed interest in using isobaric analogue resonances (IAR) as a tool for probing the nuclear structure. The position and width of isobaric analogue resonances in nucleon-nucleus scattering are accurate and detailed indicators of the positions of resonances and bound states with good single-particle characters. We report on implementation within our coupled-channels code FRESCO of the charge-exchange interaction term that transforms an incident proton into a neutron. Isobaric analog resonances are seen as peaks in gamma-ray spectrum when the proton is transformed into a neutron at an energy near a neutron bound state. The Lane coupled-channels formalism was extended to follow the nonorthogonality of this neutron channel with that configuration of an inelastic outgoing proton, and the target being left in a particle-hole excited state. This is tested for 208Pb, for which good (p,p g)

  8. Liquid-Vapor Equilibrium of Multicomponent Cryogenic Systems

    NASA Technical Reports Server (NTRS)

    Thompson, W. Reid; Calado, Jorge C. G.; Zollweg, John A.

    1990-01-01

    Liquid-vapor and solid-vapor equilibria at low to moderate pressures and low temperatures are important in many solar system environments, including the surface and clouds of Titan, the clouds of Uranus and Neptune, and the surfaces of Mars and Triton. The familiar cases of ideal behavior are limiting cases of a general thermodynamic representation for the vapor pressure of each component in a homogeneous multicomponent system. The fundamental connections of laboratory measurements to thermodynamic models are through the Gibbs-Duhem relation and the Gibbs-Helmholtz relation. Using laboratory measurements of the total pressure, temperature, and compositions of the liquid and vapor phases at equilibrium, the values of these parameters can be determined. The resulting model for vapor-liquid equilibrium can then conveniently and accurately be used to calculate pressures, compositions, condensation altitudes, and their dependencies on changing climatic conditions. A specific system being investigated is CH4-C2H6-N2, at conditions relevant to Titan's surface and atmosphere. Discussed are: the modeling of existing data on CH4-N2, with applications to the composition of Titan's condensate clouds; some new measurements on the CH4-C2H6 binary, using a high-precision static/volumetric system, and on the C2H6-N2 binary, using the volumetric system and a sensitive cryogenic flow calorimeter; and describe a new cryogenic phase-equilibrium vessel with which we are beginning a detailed, systematic study of the three constituent binaries and the ternary CH4-C2H6-N2 system at temperatures ranging from 80 to 105 K and pressures from 0.1 to 7 bar.

  9. Dialysate pressure isobars in a hollow-fiber dialyzer determined from magnetic resonance imaging and numerical simulation of dialysate flow.

    PubMed

    Osuga, T; Obata, T; Ikehira, H; Tanada, S; Sasaki, Y; Naito, H

    1998-10-01

    A procedure to determine dialysate pressure isobars by comparing the results of magnetic resonance imaging (MRI) and numerical simulation of the dialysate flow was established. The assumption used in the filtration analyses, that the dialysate pressure varies only in the central-axial direction, is supported by the finding that the determined isobars have no steep radial gradient. MRI of the contrast solution permeating the hollow fibers verifies the uniformity of the hollow fiber density in the dialyzer.

  10. Verification of Onsager's reciprocal relations for evaporation and condensation using non-equilibrium molecular dynamics.

    PubMed

    Xu, J; Kjelstrup, S; Bedeaux, D; Røsjorde, A; Rekvig, L

    2006-07-01

    Non-equilibrium molecular dynamic (NEMD) simulations have been used to study heat and mass transfer across a vapor-liquid interface for a one-component system using a Lennard-Jones spline potential. It was confirmed that the relation between the surface tension and the surface temperature in the non-equilibrium system was the same as in equilibrium (local equilibrium). Interfacial transfer coefficients were evaluated for the surface, which expressed the heat and mass fluxes in temperature and chemical potential differences across the interfacial region (film). In this analysis it was assumed that the Onsager reciprocal relations were valid. In this paper we extend the number of simulations such that we can calculate all four interface film transfer coefficients along the whole liquid-vapor coexistence curve. We do this analysis both for the case where we use the measurable heat flux on the vapor side and for the case where we use the measurable heat flux on the liquid side. The most important result we found is that the coupling coefficients within the accuracy of the calculation are equal. This is the first verification of the validity of the Onsager relations for transport through a surface using molecular dynamics. The interfacial film transfer coefficients are found to be a function of the surface temperature alone. New expressions are given for the kinetic theory values of these coefficients which only depend on the surface temperature. The NEMD values were found to be in good agreement with these expressions.

  11. Effect of isospin dependence of radius on transverse flow and fragmentation in isobaric pairs

    NASA Astrophysics Data System (ADS)

    Gautam, Sakshi

    2013-11-01

    We study the role of nuclear structure effects through radius in reaction dynamics via transverse flow and multifragmentation of isobaric colliding pairs. Our study reveals that isospin-dependent radius [proposed by Royer and Rousseau [Eur. Phys. J. A10.1140/epja/i2008-10745-8 42, 541 (2009)] has significant effect towards isospin effects. The collective flow behavior and fragmentation pattern of neutron-rich system with respect to neutron-deficient system is found to get reversed with isospin-dependent radius compared to that with liquid drop radius.

  12. Fragmentation in isotopic and isobaric systems as probe of density dependence of nuclear symmetry energy

    NASA Astrophysics Data System (ADS)

    Kaur, Mandeep; Gautam, Sakshi; Puri, Rajeev K.

    2016-11-01

    We probe the density-dependent behavior of symmetry energy using the yield of various fragments in central collisions of various isotopic and isobaric colliding pairs. We calculate the yields of free nucleons, light charged particles and intermediate mass fragments in neutron-rich colliding systems as well as the ratio of relative yields of above fragments and free nucleons. Our findings reveal that the ratio of relative yield of light charged particles poses better candidate to probe the density dependence of nuclear symmetry energy.

  13. Characterization of the vanadium-nitrogen system with nitrogen pressure isobars.

    SciTech Connect

    Wang, W.-E.; Kim, Y. S.; Hong, H. S.; Engineering Division; Univ. of California

    2000-01-01

    The partial thermodynamic functions of the V-N system from V to VN over the temperature range 1000 to 2100 K have been investigated. The discrepancies among the pressure-composition-temperature (p-C-T) relationships in the {delta}-VN single-phase region have been resolved. The p-C-T relationships for other phases, where no data were available from the literature, have been established by applying the appropriate thermodynamic constraints and a modified form of Sieverts law. The results are presented as the nitrogen isobars superimposed on the phase diagram.

  14. Isobaric Melt Productivity of Peridotite: Constraints from Simple and Complex Systems

    NASA Astrophysics Data System (ADS)

    Matzen, A.; Baker, M.; Stolper, E.

    2006-12-01

    Isobaric melt productivity, (dF/dT)P, is an important term in the expression for isentropic melt productivity, (dF/dP)S. Theoretical analysis [1] suggests that (dF/dT)P is low near the fertile peridotite solidus and increases with increasing melt fraction, F, but experimental studies on natural peridotite bulk compositions yield conflicting results; this ambiguity may reflect difficulty in achieving equilibrium, analyzing low-degree melts, and/or calculating F near the solidus. Five component systems based on CaO-MgO-Al2O3- SiO2 plus one of FeO, Na2O, or K2O capture much of the complexity of natural peridotites but are simple enough to allow detailed characterization of melting relations without resorting to rigorous thermodynamic modeling. We used parameterizations of solid and liquid compositions as functions of T and P in the systems CMASK [2], CMASNa [3], and CMASFe [4] to calculate F (by wt) of model peridotite compositions by mass balance. The selected bulk composition for each system maximized the range in F over which liquid coexists with ol+opx+cpx and either sp or pl (depending on P); F varied up to 0.2. For sp-lherzolite (lherz) at F=0.005, calculated (dF/dT)P for CMASK, CMASNa, and CMASFe are 0.00012, 0.00082, and 0.048/°C. In both CMASK and CMASNa, productivity increases dramatically with increasing F yielding strongly concave down curves (semi-log plot). CMASFe shows a limited increase in (dF/dT)P with increasing F. For pl- saturated melts, (dF/dT)P in CMASNa shows, like CMASFe, limited variation with increasing F and similar productivities. We also parameterized liquid and solid compositions in CMASCrK [5] and calculated F as a function of T. At F=0.005, productivity is nearly identical to that of CMASK but with increasing F, (dF/dT)P levels off and more closely tracks the variation shown by CMASNa (sp lherz); i.e., productivity does not reach the high values found in CMASK at high F. As discussed in [1], (dF/dT)P is inversely proportional to the

  15. Zr/Nb isobar separation experiment for future 93Zr AMS measurement

    NASA Astrophysics Data System (ADS)

    Lu, W.; Anderson, T.; Bowers, M.; Bauder, W.; Collon, P.; Kutschera, W.; Kashiv, Y.; Lachner, J.; Martschini, M.; Ostdiek, K.; Robertson, D.; Schmitt, C.; Skulski, M.; Steier, P.

    2015-10-01

    93Zr (t1/2 = 1.6 Ma) is mostly produced by the main s-process in low-to-intermediate mass AGB stars. Large uncertainty exists in the current 92Zr(n,γ)93Zr Maxwellian Average cross section. This could have significant impact on nucleosynthesis calculations. Large amounts of 93Zr are also produced in nuclear reactors and pose long-term environmental radioactivity. Hence, measurement of 93Zr by the AMS is important for both fields above. We report here on progress in the development of AMS method to measure 93Zr. Compared with 98 MeV beam energy, Zr/Nb isobar position separation was improved using 155.2 MeV beam energy and Gas-Filled Magnet. Energy loss measurement with increased beam energy inside the detector indicates that higher beam energy can improve isobar energy loss separation. A chemical procedure to reduce the Nb content in Zr samples has been developed and tested. It reduces the 93Nb content by a factor of 1000.

  16. Simultaneous quantitative analysis of isobars by tandem mass spectrometry from unresolved chromatographic peaks.

    PubMed

    Kushnir, Mark M; Rockwood, Alan L; Nelson, Gordon J

    2004-05-01

    A method was developed for the simultaneous quantitation of isobars from unresolved chromatographic peaks. The method is based on differences in branching ratios of ion abundances in their tandem mass spectra and an assumption that the product ion mass spectra of a mixture can be considered as a linear combination of the spectra of individual constituents. We present analytical equations and a matrix-based approach for deconvoluting the concentration of individual components from the total peak intensity for two and three isobars and also a matrix-based generalization to any number of compounds. The feasibility of the simultaneous analysis of mixtures containing two compounds was assessed. The approach was evaluated for the analysis of structural isomers of methylmalonic and succinic acids in human plasma and urine samples for a group of 270 samples. The linear regression equation, standard error and correlation coefficient for the agreement with a traditional method utilizing chromatographic separation of the isomers were y = 0.999x - 0.005, 0.024 micro mol l(-1), and 0.985, respectively. The utility of a spectral contrast angle as a predictor of analysis feasibility was evaluated.

  17. Isobaric yield ratios and the symmetry energy in heavy-ion reactions near the Fermi energy

    SciTech Connect

    Huang, M.; Chen, Z.; Kowalski, S.; Ma, Y. G.; Wada, R.; Hagel, K.; Barbui, M.; Bottosso, C.; Materna, T.; Natowitz, J. B.; Qin, L.; Rodrigues, M. R. D.; Sahu, P. K.; Keutgen, T.; Bonasera, A.; Wang, J.

    2010-04-15

    The relative isobaric yields of fragments produced in a series of heavy-ion-induced multifragmentation reactions have been analyzed in the framework of a modified Fisher model, primarily to determine the ratio of the symmetry energy coefficient to the temperature, a{sub sym}/T, as a function of fragment mass A. The extracted values increase from 5 to approx16 as A increases from 9 to 37. These values have been compared to the results of calculations using the antisymmetrized molecular dynamics (AMD) model together with the statistical decay code gemini. The calculated ratios are in good agreement with those extracted from the experiment. In contrast, the values extracted from the ratios of the primary isobars from the AMD model calculation are approx4 to 5 and show little variation with A. This observation indicates that the value of the symmetry energy coefficient derived from final fragment observables may be significantly different than the actual value at the time of fragment formation. The experimentally observed pairing effect is also studied within the same simulations. The Coulomb coefficient is also discussed.

  18. Fractionation of Cu and Mo isotopes caused by vapor-liquid partitioning, evidence from the Dahutang W-Cu-Mo ore field

    NASA Astrophysics Data System (ADS)

    Yao, Junming; Mathur, Ryan; Sun, Weidong; Song, Weile; Chen, Huayong; Mutti, Laurence; Xiang, Xinkui; Luo, Xiaohong

    2016-05-01

    The study presents δ65Cu and δ97Mo isotope values from cogenetic chalcopyrite and molybdenite found in veins and breccias of the Dahutang W-Cu-Mo ore field in China. The samples span a 3-4 km range. Both isotopes show a significant degree of fractionation. Cu isotope values in the chalcopyrite range from -0.31‰ to +1.48‰, and Mo isotope values in the molybdenite range from -0.03‰ to +1.06‰. For the cogenetic sulfide veined samples, a negative slope relationship exists between δ65Cu and δ97Mo values, which suggest a similar fluid history. Rayleigh distillation models the vein samples' change in isotope values. The breccia samples do not fall on the trend, thus indicating a different source mineralization event. Measured fluid inclusion and δD and δ18O data from cogenetic quartz indicate changes in temperature, and mixing of fluids do not appear to cause the isotopic shifts measure. Related equilibrium processes associated with the partitioning of metal between the vapor-fluid in the hydrothermal system could be the probable cause for the relationship seen between the two isotope systems.

  19. Getting Freshman in Equilibrium.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 1983

    1983-01-01

    Various aspects of chemical equilibrium were discussed in six papers presented at the Seventh Biennial Conference on Chemical Education (Stillwater, Oklahoma 1982). These include student problems in understanding hydrolysis, helping students discover/uncover topics, equilibrium demonstrations, instructional strategies, and flaws to kinetic…

  20. Equilibrium of KSTAR Plasma

    NASA Astrophysics Data System (ADS)

    You, K.-I.; Lee, D.-K.; Lee, S. G.; Bak, J. G.; Hahn, S. H.; Lao, L.; Kstar Team

    2011-10-01

    We have installed the EFIT code on our computing system and made some modification to reconstruct the plasma equilibrium of KSTAR (Korea Superconducting Tokamak Advanced Research). KSTAR PF and TF coil systems use a CICC (Cable-In-Conduit Conductor) type superconductor. The CICC jacket material for most PF and all TF coils is Incoloy 908, which is a magnetic material with relative magnetic permeability greater than 10 in low external field. We newly introduced Diamagnetic Loop and variational Motion Stark Effect signals to equilibrium reconstruction. In this paper, we present some results of equilibrium reconstruction with the EFIT code, assess the effects of newly introduced diagnsotics signal on the equilibrium reconstruction and compare the EFIT results with the various diagnostics data in various plasma conditions including H- and L- modes. In addition, we will show the Incoloy908 effects on the plasma equilibrium.

  1. Polymorphs of 1,1-diamino-2,2-dinitroethene (FOX-7): Isothermal compression versus isobaric heating

    NASA Astrophysics Data System (ADS)

    Dreger, Z. A.; Tao, Y.; Gupta, Y. M.

    2013-10-01

    Raman spectroscopy was used to examine polymorphic changes in 1,1-diamino-2,2-dinitroethene (FOX-7) single crystals under: isothermal compression to 15 GPa and isobaric heating to 500 K. Changes in the Raman spectra were observed at ˜2.0 and ˜4.5 GPa, and at ˜390 K and ˜450 K. These onsets are in general accord with previously reported onsets from IR measurements under isothermal compression and from X-ray diffraction measurements under isobaric heating, respectively. In contrast to recent suggestions, we show that the high pressure polymorphs have different vibrational structures, and likely different crystal structures, than the high temperature polymorphs.

  2. Direct Monte Carlo simulation of the chemical equilibrium composition of detonation products

    SciTech Connect

    Shaw, M.S.

    1993-06-01

    A new Monte Carlo simulation method has been developed by the author which gives the equilibrium chemical composition of a molecular fluid directly. The usual NPT ensemble (isothermal-isobaric) is implemented with N being the number of atoms instead of molecules. Changes in chemical composition are treated as correlated spatial moves of atoms. Given the interaction potentials between molecular products, ``exact`` EOS points including the equilibrium chemical composition can be determined from the simulations. This method is applied to detonation products at conditions in the region near the Chapman- Jouget state. For the example of NO, it is shown that the CJ detonation velocity can be determined to a few meters per second. A rather small change in cross potentials is shown to shift the chemical equilibrium and the CJ conditions significantly.

  3. Large-Scale Hybrid Density Functional Theory Calculations in the Condensed-Phase: Ab Initio Molecular Dynamics in the Isobaric-Isothermal Ensemble

    NASA Astrophysics Data System (ADS)

    Ko, Hsin-Yu; Santra, Biswajit; Distasio, Robert A., Jr.; Wu, Xifan; Car, Roberto

    Hybrid functionals are known to alleviate the self-interaction error in density functional theory (DFT) and provide a more accurate description of the electronic structure of molecules and materials. However, hybrid DFT in the condensed-phase has a prohibitively high associated computational cost which limits their applicability to large systems of interest. In this work, we present a general-purpose order(N) implementation of hybrid DFT in the condensed-phase using Maximally localized Wannier function; this implementation is optimized for massively parallel computing architectures. This algorithm is used to perform large-scale ab initio molecular dynamics simulations of liquid water, ice, and aqueous ionic solutions. We have performed simulations in the isothermal-isobaric ensemble to quantify the effects of exact exchange on the equilibrium density properties of water at different thermodynamic conditions. We find that the anomalous density difference between ice I h and liquid water at ambient conditions as well as the enthalpy differences between ice I h, II, and III phases at the experimental triple point (238 K and 20 Kbar) are significantly improved using hybrid DFT over previous estimates using the lower rungs of DFT This work has been supported by the Department of Energy under Grants No. DE-FG02-05ER46201 and DE-SC0008626.

  4. Chemical Principles Revisited: Chemical Equilibrium.

    ERIC Educational Resources Information Center

    Mickey, Charles D.

    1980-01-01

    Describes: (1) Law of Mass Action; (2) equilibrium constant and ideal behavior; (3) general form of the equilibrium constant; (4) forward and reverse reactions; (5) factors influencing equilibrium; (6) Le Chatelier's principle; (7) effects of temperature, changing concentration, and pressure on equilibrium; and (8) catalysts and equilibrium. (JN)

  5. Non-equilibrium Thermodynamic Processes: Space Plasmas and the Inner Heliosheath

    NASA Astrophysics Data System (ADS)

    Livadiotis, G.; McComas, D. J.

    2012-04-01

    Recently, empirical kappa distribution, commonly used to describe non-equilibrium systems like space plasmas, has been connected with non-extensive statistical mechanics. Here we show how a consistent definition of the temperature and pressure is developed for stationary states out of thermal equilibrium, so that the familiar ideal gas state equation still holds. In addition to the classical triplet of temperature, pressure, and density, this generalization requires the kappa index as a fourth independent thermodynamic variable that characterizes the non-equilibrium stationary states. All four of these thermodynamic variables have key roles in describing the governing thermodynamical processes and transitions in space plasmas. We introduce a novel characterization of isothermal and isobaric processes that describe a system's transition into different stationary states by varying the kappa index. In addition, we show how the variation of temperature or/and pressure can occur through an "iso-q" process, in which the system remains in a fixed stationary state (fixed kappa index). These processes have been detected in the proton plasma in the inner heliosheath via specialized data analysis of energetic neutral atom (ENA) observations from Interstellar Boundary Explorer. In particular, we find that the temperature is highly correlated with (1) kappa, asymptotically related to isothermal (~1,000,000 K) and iso-q (κ ~ 1.7) processes; and (2) density, related to an isobaric process, which separates the "Ribbon," P ≈ 3.2 pdyn cm-2, from the globally distributed ENA flux, P ≈ 2 pdyn cm-2.

  6. Response reactions: equilibrium coupling.

    PubMed

    Hoffmann, Eufrozina A; Nagypal, Istvan

    2006-06-01

    It is pointed out and illustrated in the present paper that if a homogeneous multiple equilibrium system containing k components and q species is composed of the reactants actually taken and their reactions contain only k + 1 species, then we have a unique representation with (q - k) stoichiometrically independent reactions (SIRs). We define these as coupling reactions. All the other possible combinations with k + 1 species are the coupled reactions that are in equilibrium when the (q - k) SIRs are in equilibrium. The response of the equilibrium state for perturbation is determined by the coupling and coupled equilibria. Depending on the circumstances and the actual thermodynamic data, the effect of coupled equilibria may overtake the effect of the coupling ones, leading to phenomena that are in apparent contradiction with Le Chatelier's principle.

  7. NIPTL-Novo: Non-isobaric peptide termini labeling assisted peptide de novo sequencing.

    PubMed

    Zhang, Shen; Shan, Yichu; Zhang, Shurong; Sui, Zhigang; Zhang, Lihua; Liang, Zhen; Zhang, Yukui

    2017-02-10

    A simple and effective de novo sequencing strategy assisted by non-isobaric peptide termini labeling, NIPTL-Novo, was established. The y-series ions and b-series ions of peptides can be clearly distinguished according to the different mass tags incorporated in N-terminus and C-terminus. This is helpful for improving the accuracy of peptide sequencing and increasing the sequencing speed. For the spectra commonly identified by both de novo sequencing and database searching software (Mascot or Maxquant), NIPTL-Novo gave identical result to more than 85% of these spectra. Furthermore, the quantitative profiling of the sample can be performed simultaneously along with de novo sequencing. Finally, this strategy can be applied to discover the peptides with potential mutation sites by combining with mass-defect based isotopic labeling.

  8. Thermodynamic Quantities of Redlich-Kwong Gases in Isobaric Processes of Coexistence of Two Phases

    NASA Astrophysics Data System (ADS)

    Matsumoto, Akira

    2005-12-01

    The coexistence of gaseous and liquid phases in an isobaric process are investigated by applying the thermodynamic functions of the Redlich-Kwong equation. The boiling temperatures and the enthalpy changes of vaporization of 45 substances are obtained by numerical calculations. The results agree with the experimental data within a few percent for the 45 considered substances. Some thermodynamic quantities for C3H6 at 1 atm are calculated numerically as a function of T and drawn graphically. The Gibbs free energy indicates a polygonal line; entropy, volume and enthalpy jump from the liquid to the gaseous phase at the boiling point. The heat capacity does not diverge to infinity but shows a finite jump at the boiling point. This suggests that a first-order phase transition may occur at the boiling point.

  9. An ion guide laser ion source for isobar-suppressed rare isotope beams

    SciTech Connect

    Raeder, Sebastian Ames, Friedhelm; Bishop, Daryl; Bricault, Pierre; Kunz, Peter; Mjøs, Anders; Heggen, Henning; Lassen, Jens Teigelhöfer, Andrea

    2014-03-15

    Modern experiments at isotope separator on-line (ISOL) facilities like ISAC at TRIUMF often depend critically on the purity of the delivered rare isotope beams. Therefore, highly selective ion sources are essential. This article presents the development and successful on-line operation of an ion guide laser ion source (IG-LIS) for the production of ion beams free of isobaric contamination. Thermionic ions from the hot ISOL target are suppressed by an electrostatic potential barrier, while neutral radio nuclides effusing out are resonantly ionized by laser radiation within a quadrupole ion guide behind this barrier. The IG-LIS was developed through detailed thermal and ion optics simulation studies and off-line tests with stable isotopes. In a first on-line run with a SiC target a suppression of surface-ionized Na contaminants in the ion beam of up to six orders of magnitude was demonstrated.

  10. A new gas lesion syndrome in man, induced by 'isobaric gas counterdiffusion'

    NASA Technical Reports Server (NTRS)

    Lambertsen, C. J.; Idicula, J.

    1975-01-01

    Normal men have been found to develop pruritis and gas bubble lesions in the skin, and disruption of vestibular function, when breathing nitrogen or neon with oxygen while surrounded by helium at increased ambient pressure. This phenomenon, which occurs at stable ambient pressures, at 1 or many ATA, has been designated the isobaric gas counterdiffusion syndrome. In a series of analyses and experiments in vivo and in vitro the cause of the syndrome has been established as due to gas accumulation and development of gas bubbles in tissues as a result of differences in selective diffusivities, for various respired and ambient gases, in the tissue substances between capillary blood and the surrounding atmosphere. The phenomenon described in man is an initial stage of a process shown later in animals to progress to continuous, massive, lethal, intravascular gas embolization.

  11. Computing Equilibrium Chemical Compositions

    NASA Technical Reports Server (NTRS)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  12. Intrathecal hyperbaric versus isobaric bupivacaine for adult non-caesarean-section surgery: systematic review protocol

    PubMed Central

    Uppal, Vishal; Shanthanna, Harsha; Prabhakar, Christopher; McKeen, Dolores M

    2016-01-01

    Introduction Bupivacaine is the most commonly used local anaesthetic for spinal anaesthesia (SA). There are two forms of commercially available bupivacaine; isobaric bupivacaine (IB): a formulation with a specific gravity or density equal to cerebrospinal fluid, and hyperbaric bupivacaine (HB): a formulation with density heavier than cerebrospinal fluid. The difference in densities of the two available preparations is believed to affect the diffusion pattern that determines the effectiveness, spread and side-effect profile of bupivacaine. This systematic review will summarise the best available evidence regarding the effectiveness and safety on the use of HB compared with IB, when used to provide SA for surgery. Primarily, we will analyse the need for conversion to general anaesthesia. As secondary outcomes, we will compare the incidence of hypotension, incidence of nausea/vomiting, the onset time and duration of anaesthesia. Methods and analysis We will search key electronic databases using search strategy (1) injections, spinal OR intrathecal OR subarachnoid; (2) bupivacaine OR levobupivacaine; (3) hypobaric OR isobaric OR plain; (4) baricity. We will search MEDLINE, EMBASE and Cochrane databases, from their inception for randomised controlled trials, with no restrictions on language. Caesarean section surgery will be excluded. 2 reviewers will independently extract the data using a standardised form. Extracted items will include study characteristics, risk of bias domains, as per modified Cochrane risk of bias, participant disposition and study outcomes. We will conduct a meta-analysis for variables that can be compared across the studies. We will evaluate clinical heterogeneity by qualitatively appraising differences in study characteristics in participants, interventions and the outcomes assessed. We will report our findings as relative risks (dichotomous), and weighted mean differences (continuous) for individual outcomes, along with their 95% CIs. Ethics and

  13. Geological, isothermal, and isobaric 3-D model construction in early stage of geothermal exploration

    NASA Astrophysics Data System (ADS)

    Saputra, M. P.; Suryantini; Catigtig, D.; Regandara, R.; Asnin, S. N.; Pratama, A. B.

    2016-09-01

    Construction of geology, thermal anomaly and pressure distribution of a geothermal system in the early stage of exploration where data is limited is described using a 3-D software, Leapfrog Geothermal. The geological 3-D model was developed from a topographic map (derived from DEM data), geological map and literature studies reported in an early geological survey. The isothermal 3-D model was constructed using reservoir temperature estimation from geothermometry calculated from chemical analyses on surface manifestations, available shallow gradient temperature hole data and the normal gradient temperature (3°C/100m) for a nonthermal area. The isobaric 3-D model was built using hydrostatic pressure where the hydrostatic pressure is determined by the product of the fluid density, acceleration due to gravity, and depth. Fluid density is given by saturated liquid density as a function of temperature. There are some constraints on the modelling result such as (1) within the predicted reservoir, the geothermal gradient is not constant but continues to increase, thus, creating an anomalously high temperature at depth, and (2) the lithology model is made by interpolating and extrapolating cross-sections whereas usually only two to three geology sections were available for this study. Hence, the modeller must understand the geology. An additional cross section was developed by the modeller which may not be as suitable as the geologist constructed sections. The results of this study can be combined with geophysical data such as gravity, geomagnetic, micro-tremor and resistivity data. The combination of geological, geochemical, isothermal, isobaric and geophysical data could be used in (1) estimating the geometry and size of the geothermal reservoir, (2) predicting the depth of top reservoir, and (3) creating well prognosis for exploration and production wells.

  14. Quantitation of isobaric phosphatidylcholine species in human plasma using a hybrid quadrupole linear ion-trap mass spectrometer.

    PubMed

    Zacek, Petr; Bukowski, Michael; Rosenberger, Thad A; Picklo, Matthew

    2016-12-01

    Phosphatidylcholine (PC) species in human plasma are used as biomarkers of disease. PC biomarkers are often limited by the inability to separate isobaric PCs. In this work, we developed a targeted shotgun approach for analysis of isobaric and isomeric PCs. This approach is comprised of two MS methods: a precursor ion scanning (PIS) of mass m/z 184 in positive mode (PIS m/z +184) and MS(3) fragmentation in negative mode, both performed on the same instrument, a hybrid triple quadrupole ion-trap mass spectrometer. The MS(3) experiment identified the FA composition and the relative abundance of isobaric and sn-1, sn-2 positional isomeric PC species, which were subsequently combined with absolute quantitative data obtained by PIS m/z +184 scan. This approach was applied to the analysis of a National Institute of Standards and Technology human blood plasma standard reference material (SRM 1950). We quantified more than 70 PCs and confirmed that a majority are present in isobaric and isomeric mixtures. The FA content determined by this method was comparable to that obtained using GC with flame ionization detection, supporting the quantitative nature of this MS method. This methodology will provide more in-depth biomarker information for clinical and mechanistic studies.

  15. Quantitation of isobaric phosphatidylcholine species in human plasma using a hybrid quadrupole linear ion-trap mass spectrometer[S

    PubMed Central

    Zacek, Petr; Bukowski, Michael; Rosenberger, Thad A.; Picklo, Matthew

    2016-01-01

    Phosphatidylcholine (PC) species in human plasma are used as biomarkers of disease. PC biomarkers are often limited by the inability to separate isobaric PCs. In this work, we developed a targeted shotgun approach for analysis of isobaric and isomeric PCs. This approach is comprised of two MS methods: a precursor ion scanning (PIS) of mass m/z 184 in positive mode (PIS m/z +184) and MS3 fragmentation in negative mode, both performed on the same instrument, a hybrid triple quadrupole ion-trap mass spectrometer. The MS3 experiment identified the FA composition and the relative abundance of isobaric and sn-1, sn-2 positional isomeric PC species, which were subsequently combined with absolute quantitative data obtained by PIS m/z +184 scan. This approach was applied to the analysis of a National Institute of Standards and Technology human blood plasma standard reference material (SRM 1950). We quantified more than 70 PCs and confirmed that a majority are present in isobaric and isomeric mixtures. The FA content determined by this method was comparable to that obtained using GC with flame ionization detection, supporting the quantitative nature of this MS method. This methodology will provide more in-depth biomarker information for clinical and mechanistic studies. PMID:27688258

  16. Phase equilibrium of liquid mixtures: Experimental and modeled data using statistical associating fluid theory for potential of variable range approach

    NASA Astrophysics Data System (ADS)

    Giner, Beatriz; Bandrés, Isabel; Carmen López, M.; Lafuente, Carlos; Galindo, Amparo

    2007-10-01

    A study of the phase equilibrium (experimental and modeled) of mixtures formed by a cyclic ether and haloalkanes has been derived. Experimental data for the isothermal vapor liquid equilibrium of mixtures formed by tetrahydrofuran and tetrahydropyran and isomeric chlorobutanes at temperatures of 298.15, 313.15, and 328.15K are presented. Experimental results have been discussed in terms of both molecular characteristics of pure compounds and potential intermolecular interaction between them using thermodynamic information of the mixtures obtained earlier. The statistical associating fluid theory for potential of variable range (SAFT-VR) approach together with standard combining rules without adjustable parameters has been used to model the phase equilibrium. Good agreement between experiment and the prediction is found with such a model. Mean absolute deviations for pressures are of the order of 1kPa, while less than 0.013mole fraction for vapor phase compositions. In order to improve the results obtained, a new modeling has been carried out by introducing a unique transferable parameter kij, which modifies the strength of the dispersion interaction between unlike components in the mixtures, and is valid for all the studied mixtures being not temperature or pressure dependent. This parameter together with the SAFT-VR approach provides a description of the vapor-liquid equilibrium of the mixtures that is in excellent agreement with the experimental data for most cases. The absolute deviations are of the order of 0.005mole fraction for vapor phase compositions and less than 0.3kPa for pressure, excepting for mixtures containing 2-chloro-2-methylpropane which deviations for pressure are larger. Results obtained in this work in the modeling of the phase equilibrium with the SAFT-VR equation of state have been compared to the ones obtained in a previous study when the approach was used to model similar mixtures with clear differences in the thermodynamic behavior. We

  17. Vapor-liquid-solid epitaxial growth of Si1-xGex alloy nanowires. Composition dependence on precursor reactivity and morphology control for vertical forests

    SciTech Connect

    Choi, S. G.; Manandhar, P.; Picraux, S. T.

    2015-07-07

    The growth of high-density group IV alloy nanowire forests is critical for exploiting their unique functionalities in many applications. Here, the compositional dependence on precursor reactivity and optimized conditions for vertical growth are studied for Si1- x Ge x alloy nanowires grown by the vapor-liquid-solid method. The nanowire composition versus gas partial-pressure ratio for germane-silane and germane-disilane precursor combinations is obtained at 350°C over a wide composition range (0.05 ≤ x ≤ 0.98) and a generalized model to predict composition for alloy nanowires is developed based on the relative precursor partial pressures and reactivity ratio. In combination with germane, silane provides more precise compositional control at high Ge concentrations (x > 0.7), whereas disilane greatly increases the Si concentration for a given gas ratio and enables more precise alloy compositional control at small Ge concentrations (x < 0.3). Vertically oriented, non-kinking nanowire forest growth on Si (111) substrates is then discussed for silane/germane over a wide range of compositions, with temperature and precursor partial pressure optimized by monitoring the nanowire growth front using in-situ optical reflectance. For high Ge compositions (x ≈ 0.9), a “two-step” growth approach with nucleation at higher temperatures results in nanowires with high-density and uniform vertical orientation. Furthermore, increasing Si content (x ≈ 0.8), the optimal growth window is shifted to higher temperatures, which minimizes nanowire kinking morphologies. For Si-rich Si1- x Ge x alloys (x ≈ 0.25), vertical nanowire growth is enhanced by single-step, higher-temperature growth at reduced pressures.

  18. Determination of nonaxisymmetric equilibrium

    SciTech Connect

    Elkin, D.

    1980-01-01

    The Princeton Equilibrium Code is modified to determine the equilibrium surfaces for a large aspect ratio toroidal system with helical magnetic fields. The code may easily be made to include any variety of modes. Verification of the code is made by comparison with an analytic solution for l = 3. Previously observed shifting of the magnetic axis with increasing pressure or with a changed externally applied vertical field is obtained. The case l = 0, a bumpy torus, gives convergence only for the lenient convergence tolerance of epsilon/sub b/ = 1.0 x 10-/sup 2/.

  19. Beyond Equilibrium Thermodynamics

    NASA Astrophysics Data System (ADS)

    Öttinger, Hans Christian

    2005-01-01

    Beyond Equilibrium Thermodynamics fills a niche in the market by providing a comprehensive introduction to a new, emerging topic in the field. The importance of non-equilibrium thermodynamics is addressed in order to fully understand how a system works, whether it is in a biological system like the brain or a system that develops plastic. In order to fully grasp the subject, the book clearly explains the physical concepts and mathematics involved, as well as presenting problems and solutions; over 200 exercises and answers are included. Engineers, scientists, and applied mathematicians can all use the book to address their problems in modelling, calculating, and understanding dynamic responses of materials.

  20. An Updated Equilibrium Machine

    ERIC Educational Resources Information Center

    Schultz, Emeric

    2008-01-01

    A device that can demonstrate equilibrium, kinetic, and thermodynamic concepts is described. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when the leaf blower is turned on and various air pressures are…

  1. Differentiating Isobaric Steroid Hormone Metabolites Using Multi-Stage Tandem Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Tedmon, Lauren; Barnes, Jeremy S.; Nguyen, Hien P.; Schug, Kevin A.

    2013-03-01

    Steroid hormones and their metabolites are currently undergoing clinical trials as potential therapeutics for traumatic brain injury (TBI). To support this work, it is necessary to develop improved procedures for differentiating isobaric species in this compound class. Equilin sulfate (E-S), estrone sulfate (E1-S), 17α-dihydroequilin sulfate (ADHE-S), and 17β-dihydroequilin sulfate (BDHE-S) are primary constituents in hormone replacement therapies, such as Premarin, which are among pharmaceuticals being investigated for TBI treatment. The latter three compounds are isomers and can be difficult to differentiate in trace analytical determinations. In this work, a systematic study of the fragmentation of ADHE-S, BDHE-S, E1-S, and E-S under different stages of higher order tandem mass spectrometry (MSn) and variation of collision energy, allowed optimization of conditions for distinguishing the isomeric structures. For epimeric variants (e.g., ADHE-S versus BDHE-S; α- versus β-stereoisomerization in the C-17 position), differentiation was achieved at MS4 and fragmentation was demonstrated through MS5. Computational analysis was performed to further explore differences in the fragmentation pathways due to changes in stereochemistry.

  2. Excitation energies of double isobar-analog states in heavy nuclei

    SciTech Connect

    Poplavskii, I. V.

    1988-12-01

    Several new relationships are established for isomultiplets on the basis of a theory in which the Coulomb coupling constant (CCC) is allowed to be complex. In particular, the following rule is formulated: the energies for fission or decay of members of an isomultiplet into a charged cluster and members of the corresponding daughter isomultiplet are equidistant. This relationship is well satisfied for isomultiplets with /ital A/less than or equal to60. By extrapolating the rule for fission and decay energies to the region of heavy nuclei, the excitation energies /ital E//sub /ital x// of double isobar-analog states (DIASs) are found for the nuclei /sup 197,199/Hg, /sup 205/Pb, /sup 205 - -209/Po, /sup 209/At, and /sup 238/Pu. A comparison of the computed energies /ital E//sub /ital x// with the experimentally measured values for /sup 208/Po attest to the reliability and good accuracy of the method proposed here when used to determine the excitation energies of DIASs in heavy nuclei.

  3. Isobar channels and nucleon resonances in pi+ pi- electroproduction on protons

    SciTech Connect

    Fedotov, Gleb; Burkert, Volker; Golovach, Evgeny; Elouadrhiri, Latifa; Isupov, Evgeny; Ishkhanov, Boris; Mokeev, Viktor; Shvedunov, Nikolay

    2008-07-01

    http://dx.doi.org/10.1134/S1063778808070272
    A comprehensive set of differential cross sections for the reaction y v p--> pi - pi + p at the square of the photon 4-momentum in the range 0.2 < Q 2 < 0.6 GeV2 and the invariant mass of final-state hadrons in the range 1.3 < W < 1.6 GeV was first obtained with the CLAS detector at the Thomas Jefferson Laboratory. An analysis of these data on the basis of the phenomenological model developed by physicists from the Institute of Nuclear Physics at Moscow State University (INP MSU) and Thomas Jefferson Laboratory (INP MSU-Hall B at Jefferson Lab Collaboration) made it possible to determine, for the first time, the contributions of all isobar channels to the differential cross sections in question. The possibility of extracting the Q 2 dependences of the electromagnetic form factors for the P 11(1440) and D 13(1520) resonances in a kinematical region that is the most sensitive to the contribution of the meson-baryon cloud to the str

  4. Improved Isobaric Tandem Mass Tag Quantification by Ion Mobility-Mass Spectrometry

    PubMed Central

    Li, Lingjun

    2014-01-01

    Isobaric tandem mass tags are an attractive alternative to mass difference tags and label free approaches for quantitative proteomics due to the high degree of multiplexing that can be performed with their implementation. A drawback of tandem mass tags are that the co-isolation and co-fragmentation of labeled peptide precursors can result in chimeric MS/MS spectra that can underestimate the fold-change expression of each peptide. Two methods (QuantMode and MS3) have addressed this concern for ion trap and orbitrap instruments, but there is still a need to solve this problem for quadrupole time-of-flight (Q-TOF) instruments. Ion mobility (IM) separations coupled to Q-TOF instruments have the potential to mitigate MS/MS spectra chimeracy since IM-MS has the ability to separate ions based on charge, m/z, and collision cross section (CCS). This work presents results that showcase the power of IM-MS to improve tandem mass tag peptide quantitation accuracy by resolving co-isolated differently charged and same charged peptides prior to MS/MS fragmentation. PMID:24677527

  5. Sensitivity of N/Z ratio in projectile break-up of isobaric systems

    NASA Astrophysics Data System (ADS)

    De Filippo, E.; Pagano, A.; Russotto, P.; Acosta, L.; Auditore, L.; Baran, V.; Cap, T.; Cardella, G.; Colonna, M.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Marquínez-Durán, G.; Maiolino, C.; Minniti, T.; Norella, S.; Pagano, E. V.; Papa, M.; Piasecki, E.; Pirrone, S.; Politi, G.; Porto, F.; Quattrocchi, L.; Rizzo, F.; Rosato, E.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.; Siwek-Wilczyńska, K.; Wilczyński, J.

    2016-05-01

    The binary break-up of projectile-like fragments in non central heavy-ion collisions follows different decay patterns, from equilibrated emission towards dynamical (prompt) fission. Recently, comparing two systems with different N/Z in the entrance channel, it has been shown that the dynamical emission cross-section is enhanced for the most neutron rich system while the statistical emission cross-section is independent from the isotopic composition. In order to understand this dependence and disentangle it from the initial size of the nuclei, we have studied the two isobaric systems 124Xe+64 Zn and 124Xe+64 Ni at 35 A MeV (InKiIsSy experiment), in comparison with the previous studied reactions (124Sn +64 Ni and 112Sn +58 Ni) at the same bombarding energy. We present the first results evidencing a striking similar effect in the dynamical decay as a function of the N/Z of the target for equal size systems.

  6. Quantifying the Chiral Magnetic Effect in Isobaric Heavy Ion Collisions Using Hydrodynamic Simulations

    NASA Astrophysics Data System (ADS)

    Lilleskov, Elias; Liao, Jinfeng; Jiang, Yin; Shi, Shuzhe

    2016-09-01

    The quark-gluon plasma created in heavy ion collisions is an exotic state of matter in which many unusual phenomena are manifested. One such phenomenon is the ``Chiral-Magnetic Effect'' (CME), wherein the powerful magnetic fields generated by colliding ions spin-polarize chiral quarks, causing a net transport effect in the direction of the fields. The CME predicts specific charge-dependent correlation observables, for which experimental evidence was reported, although the evidence is subject to background contamination. Isobaric collision experiments have been planned for 2018 at RHIC, which will study this effect by comparing 96Ru-96Ru and 96Zr-96Zr collisions. The two colliding systems are expected to have nearly identical bulk properties (including background contamination), yet about 10% difference in their magnetic fields due to different nuclear charges. This provides a unique opportunity to disentangle the CME observable and background effects. By simulating this effect using anomalous hydrodynamic simulations, we make a quantitative prediction for the CME-induced signal for several centralities in each of these two colliding systems. Our results suggest a significant enough difference in the signal to be experimentally detected- on the order of 15-20%. Thanks to the Indiana University REU program for their support.

  7. Type II shell evolution in A = 70 isobars from the N ≥ 40 island of inversion

    NASA Astrophysics Data System (ADS)

    Morales, A. I.; Benzoni, G.; Watanabe, H.; Tsunoda, Y.; Otsuka, T.; Nishimura, S.; Browne, F.; Daido, R.; Doornenbal, P.; Fang, Y.; Lorusso, G.; Patel, Z.; Rice, S.; Sinclair, L.; Söderström, P.-A.; Sumikama, T.; Wu, J.; Xu, Z. Y.; Yagi, A.; Yokoyama, R.; Baba, H.; Avigo, R.; Bello Garrote, F. L.; Blasi, N.; Bracco, A.; Camera, F.; Ceruti, S.; Crespi, F. C. L.; de Angelis, G.; Delattre, M.-C.; Dombradi, Zs.; Gottardo, A.; Isobe, T.; Kojouharov, I.; Kurz, N.; Kuti, I.; Matsui, K.; Melon, B.; Mengoni, D.; Miyazaki, T.; Modamio-Hoybjor, V.; Momiyama, S.; Napoli, D. R.; Niikura, M.; Orlandi, R.; Sakurai, H.; Sahin, E.; Sohler, D.; Schaffner, H.; Taniuchi, R.; Taprogge, J.; Vajta, Zs.; Valiente-Dobón, J. J.; Wieland, O.; Yalcinkaya, M.

    2017-02-01

    The level structures of 70Co and 70Ni, populated from the β decay of 70Fe, have been investigated using β-delayed γ-ray spectroscopy following in-flight fission of a 238U beam. The experimental results are compared to Monte-Carlo Shell-Model calculations including the pf +g9/2 +d5/2 orbitals. The strong population of a (1+) state at 274 keV in 70Co is at variance with the expected excitation energy of ∼1 MeV from near spherical single-particle estimates. This observation indicates a dominance of prolate-deformed intruder configurations in the low-lying levels, which coexist with the normal near spherical states. It is shown that the β decay of the neutron-rich A = 70 isobars from the new island of inversion to the Z = 28 closed-shell regime progresses in accordance with a newly reported type of shell evolution, the so-called Type II, which involves many particle-hole excitations across energy gaps.

  8. Differentiation of hydroxyproline isomers and isobars in peptides by tandem mass spectrometry.

    PubMed

    Kassel, D B; Biemann, K

    1990-08-01

    The isomeric 3- and 4-hydroxyprolines are isobaric with the isomers leucine and isoleucine, and all four have, therefore, the same "residue mass" of 113. Secondary fragmentation processes were found that differentiate the hydroxyproline isomers from each other and from the leucines. Variants of synthetic bradykinin containing one or two hydroxyproline moieties were prepared by using manual Edman degradation and/or enzymatic methods. The tandem mass spectra of these peptides were recorded. The C-terminal wn fragment ions allow the differentiation of 4-hydroxyproline from the 3-isomer and isoleucine, while the N-terminal an ions containing 4-hydroxyproline undergo H2O elimination to differentiate this amino acid from the 3-isomer and leucine. Lys-C digestion of a mussel adhesive protein produced a set of decapeptides varying in the degree of hydroxylation of proline and tyrosine. Heterogeneity with respect to 3-hydroxyproline and 4-hydroxyproline at a certain position in these peptides was assessed by tandem mass spectrometry based on the wn ion series in the CID spectra of these Lys-C peptides. Some N-terminal ions further allow for the differentiation of these two isomeric species.

  9. Adsorption of water vapor by poly(styrenesulfonic acid), sodium salt: isothermal and isobaric adsorption equilibria.

    PubMed

    Toribio, F; Bellat, J P; Nguyen, P H; Dupont, M

    2004-12-15

    Air conditioning and dehumidifying systems based on sorption on solids are of great interest, especially in humid climates, because they allow reduction of thermal loads and use of chlorofluorocarbons. Previous studies have shown that hydrophilic polymers such as sulfonic polymers can have very high performance in water adsorption from air. The aim of this study was to characterize the water vapor adsorption properties of fully sulfonated and monosulfonated poly(styrenesulfonic acid), sodium salt, and to elucidate the mechanism of adsorption on these materials. Adsorption isotherms have been determined by TGA between 298 and 317 K for pressures ranging from 0.1 to 45 hPa. They have type II of the IUPAC classification and a small hysteresis loop between adsorption and desorption processes was observed only for the monosulfonated sample. Water content is up to 80% weight at 80% relative humidity. Adsorption isotherms have been well fitted with the FHH model. Adsorption-desorption isobars have been determined by TGA under 37 hPa in the temperature range 298-373 K. They show that these polymers can be completely regenerated by heating at 313 K under humidified air. No degradation of the adsorption properties has been observed after several regenerations. Adsorption enthalpies and entropies have been deduced from the Clapeyron equation and from DSC measurements. A good agreement was found. A mechanism of adsorption is proposed considering two kinds of adsorbate: bounded water in electrostatic interaction with functional groups and free water resulting from condensation.

  10. A novel method for molecular dynamics simulation in the isothermal-isobaric ensemble

    NASA Astrophysics Data System (ADS)

    Huang, Cunkui; Li, Chunli; Choi, Phillip Y. K.; Nandakumar, K.; Kostiuk, Larry W.

    2011-01-01

    A novel algorithm is proposed to study fluid properties in the isothermal-isobaric (NPT) ensemble. The major feature of this approach is that the constant pressure in the NPT ensemble is created by two auto-adjusting boundaries that allow the system volume to fluctuate. Relative to other methods used to create the NPT ensemble, this approach is simpler to perform since no additional variables are introduced into the simulation system. To test this method, two systems with the same constant target pressure and temperature but different thermostats (Nose-Hoover and Berendsen) were performed by using a commonly used cut-off distance (i.e. r c = 2.5σ). The simulation results show that the proposed method works well in terms of creating spatially uniform mean temperature, pressure and density while still allowing appropriate levels of instantaneous fluctuations for observable quantities. The fluctuations of the system volume produced by this method were compared with that calculated by the theoretical equation. To test the reliability of the proposed method, additional simulations were carried out at eight different thermodynamic states but with the use of a longer cut-off distance (r c = 4.5σ). The results were compared with those obtained using the Nose-Hoover barostat with an r c of 4.5σ, as well as with experiments. The comparison shows that the results using the algorithm proposed in this article agree well with those obtained using other methods.

  11. Optimized proteomic analysis of a mouse model of cerebellar dysfunction using amine-specific isobaric tags

    PubMed Central

    Hu, Jun; Qian, Jin; Borisov, Oleg; Pan, Sanqiang; Li, Yan; Liu, Tong; Deng, Longwen; Wannemacher, Kenneth; Kurnellas, Michael; Patterson, Christa; Elkabes, Stella; Li, Hong

    2008-01-01

    Recent proteomic applications have demonstrated their potential for revealing the molecular mechanisms underlying neurodegeneration. The present study quantifies cerebellar protein changes in mice that are deficient in plasma membrane calcium ATPase 2 (PMCA2), an essential neuronal pump that extrudes calcium from cells and is abundantly expressed in Purkinje neurons. PMCA2-null mice display motor dyscoordination and unsteady gait deficits observed in neurological diseases such as multiple sclerosis and ataxia. We optimized an amine-specific isobaric tags (iTRAQ™)-based shotgun proteomics workflow for this study. This workflow took consideration of analytical variance as a function of ion signal intensity and employed biological repeats to aid noise reduction. Even with stringent protein identification criteria, we could reliably quantify nearly 1000 proteins, including many neuronal proteins that are important for synaptic function. We identified 21 proteins that were differentially expressed in PMCA2-null mice. These proteins are involved in calcium homeostasis, cell structure and chromosome organization. Our findings shed light on the molecular changes that underlie the neurological deficits observed in PMCA2-null mice. The optimized workflow presented here will be valuable for others who plan to implement the iTRAQ method. PMID:16800037

  12. Proteomic analysis of astrocytic secretion that regulates neurogenesis using quantitative amine-specific isobaric tagging

    SciTech Connect

    Yan, Hu; Zhou, Wenhao; Wei, Liming; Zhong, Fan; Yang, Yi

    2010-01-08

    Astrocytes are essential components of neurogenic niches that affect neurogenesis through membrane association and/or the release of soluble factors. To identify factors released from astrocytes that could regulate neural stem cell differentiation and proliferation, we used mild oxygen-glucose deprivation (OGD) to inhibit the secretory capacity of astrocytes. Using the Transwell co-culture system, we found that OGD-treated astrocytes could not promote neural stem cell differentiation and proliferation. Next, isobaric tagging for the relative and absolute quantitation (iTRAQ) proteomics techniques was performed to identify the proteins in the supernatants of astrocytes (with or without OGD). Through a multi-step analysis and gene ontology classification, 130 extracellular proteins were identified, most of which were involved in neuronal development, the inflammatory response, extracellular matrix composition and supportive functions. Of these proteins, 44 had never been reported to be produced by astrocytes. Using ProteinPilot software analysis, we found that 60 extracellular proteins were significantly altered (27 upregulated and 33 downregulated) in the supernatant of OGD-treated astrocytes. Among these proteins, 7 have been reported to be able to regulate neurogenesis, while others may have the potential to regulate neurogenesis. This study profiles the major proteins released by astrocytes, which play important roles in the modulation of neurogenesis.

  13. A Triple Knockout (TKO) Proteomics Standard for Diagnosing Ion Interference in Isobaric Labeling Experiments

    NASA Astrophysics Data System (ADS)

    Paulo, Joao A.; O'Connell, Jeremy D.; Gygi, Steven P.

    2016-10-01

    Isobaric labeling is a powerful strategy for quantitative mass spectrometry-based proteomic investigations. A complication of such analyses has been the co-isolation of multiple analytes of similar mass-to-charge resulting in the distortion of relative protein abundance measurements across samples. When properly implemented, synchronous precursor selection and triple-stage mass spectrometry (SPS-MS3) can reduce the occurrence of this phenomenon, referred to as ion interference. However, no diagnostic tool is available currently to rapidly and accurately assess ion interference. To address this need, we developed a multiplexed tandem mass tag (TMT)-based standard, termed the triple knockout (TKO). This standard is comprised of three yeast proteomes in triplicate, each from a strain deficient in a highly abundant protein (Met6, Pfk2, or Ura2). The relative abundance patterns of these proteins, which can be inferred from dozens of peptide measurements can demonstrate ion interference in peptide quantification. We expect no signal in channels where the protein is knocked out, permitting maximum sensitivity for measurements of ion interference against a null background. Here, we emphasize the need to investigate further ion interference-generated ratio distortion and promote the TKO standard as a tool to investigate such issues.

  14. Acute Aortic Dissection Biomarkers Identified Using Isobaric Tags for Relative and Absolute Quantitation

    PubMed Central

    Xiao, Ziya; Xue, Yuan; Gu, Guorong; Zhang, Yaping; Zhang, Jin; Fan, Fan; Luan, Xiao; Deng, Zhi; Tao, Zhengang; Song, Zhen-ju; Tong, Chaoyang; Wang, Haojun

    2016-01-01

    The purpose of this study was to evaluate the utility of potential serum biomarkers for acute aortic dissection (AAD) that were identified by isobaric Tags for Relative and Absolute Quantitation (iTRAQ) approaches. Serum samples from 20 AAD patients and 20 healthy volunteers were analyzed using iTRAQ technology. Protein validation was performed using samples from 120 patients with chest pain. A total of 355 proteins were identified with the iTRAQ approach; 164 proteins reached the strict quantitative standard, and 125 proteins were increased or decreased more than 1.2-fold (64 and 61 proteins were up- and downregulated, resp.). Lumican, C-reactive protein (CRP), thrombospondin-1 (TSP-1), and D-dimer were selected as candidate biomarkers for the validation tests. Receiver operating characteristic (ROC) curves show that Lumican and D-dimer have diagnostic value (area under the curves [AUCs] 0.895 and 0.891, P < 0.05). For Lumican, the diagnostic sensitivity and specificity were 73.33% and 98.33%, while the corresponding values for D-dimer were 93.33% and 68.33%. For Lumican and D-dimer AAD combined diagnosis, the sensitivity and specificity were 88.33% and 95%, respectively. In conclusion, Lumican has good specificity and D-dimer has good sensitivity for the diagnosis of AAD, while the combined detection of D-dimer and Lumican has better diagnostic value. PMID:27403433

  15. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS.

    PubMed

    Gritsenko, Marina A; Xu, Zhe; Liu, Tao; Smith, Richard D

    2016-01-01

    Comprehensive, quantitative information on abundances of proteins and their posttranslational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labeling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.

  16. Vapor-liquid phase separator studies

    NASA Technical Reports Server (NTRS)

    Yuan, S. W. K.; Lee, J. M.; Kim, Y. I.; Hepler, W. A.; Frederking, T. H. K.

    1983-01-01

    Porous plugs serve as both entropy rejection devices and phase separation components separating the vapor phase on the downstream side from liquid Helium 2 upstream. The liquid upstream is the cryo-reservoir fluid needed for equipment cooling by means of Helium 2, i.e Helium-4 below its lambda temperature in near-saturated states. The topics outlined are characteristic lengths, transport equations and plug results.

  17. Non-Equilibrium Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Ciccotti, Giovanni; Kapral, Raymond; Sergi, Alessandro

    Statistical mechanics provides a well-established link between microscopic equilibrium states and thermodynamics. If one considers systems out of equilibrium, the link between microscopic dynamical properties and non-equilibrium macroscopic states is more difficult to establish [1,2]. For systems lying near equilibrium, linear response theory provides a route to derive linear macroscopic laws and the microscopic expressions for the transport properties that enter the constitutive relations. If the system is displaced far from equilibrium, no fully general theory exists to treat such systems. By restricting consideration to a class of non-equilibrium states which arise from perturbations (linear or non-linear) of an equilibrium state, methods can be developed to treat non-equilibrium states. Furthermore, non-equilibrium molecular dynamics (NEMD) simulation methods can be devised to provide estimates for the transport properties of these systems.

  18. Modeling of phase equilibrium and vapor adsorption on carbon black based on a combination of a lattice theory and equation of state.

    PubMed

    Ustinov, E A; Do, D D

    2002-09-15

    A thermodynamic approach is developed in this paper to describe the behavior of a subcritical fluid in the neighborhood of vapor-liquid interface and close to a graphite surface. The fluid is modeled as a system of parallel molecular layers. The Helmholtz free energy of the fluid is expressed as the sum of the intrinsic Helmholtz free energies of separate layers and the potential energy of their mutual interactions calculated by the 10-4 potential. This Helmholtz free energy is described by an equation of state (such as the Bender or Peng-Robinson equation), which allows us a convenient means to obtain the intrinsic Helmholtz free energy of each molecular layer as a function of its two-dimensional density. All molecular layers of the bulk fluid are in mechanical equilibrium corresponding to the minimum of the total potential energy. In the case of adsorption the external potential exerted by the graphite layers is added to the free energy. The state of the interface zone between the liquid and the vapor phases or the state of the adsorbed phase is determined by the minimum of the grand potential. In the case of phase equilibrium the approach leads to the distribution of density and pressure over the transition zone. The interrelation between the collision diameter and the potential well depth was determined by the surface tension. It was shown that the distance between neighboring molecular layers substantially changes in the vapor-liquid transition zone and in the adsorbed phase with loading. The approach is considered in this paper for the case of adsorption of argon and nitrogen on carbon black. In both cases an excellent agreement with the experimental data was achieved without additional assumptions and fitting parameters, except for the fluid-solid potential well depth. The approach has far-reaching consequences and can be readily extended to the model of adsorption in slit pores of carbonaceous materials and to the analysis of multicomponent adsorption

  19. An Updated Equilibrium Machine

    NASA Astrophysics Data System (ADS)

    Schultz, Emeric

    2008-08-01

    A device that can demonstrate equilibrium, kinetic, and thermodynamic concepts is described. The device consists of a leaf blower attached to a plastic container divided into two chambers by a barrier of variable size and form. Styrofoam balls can be exchanged across the barrier when the leaf blower is turned on and various air pressures are applied. Equilibrium can be approached from different distributions of balls in the container under different conditions. The Le Châtelier principle can be demonstrated. Kinetic concepts can be demonstrated by changing the nature of the barrier, either changing the height or by having various sized holes in the barrier. Thermodynamic concepts can be demonstrated by taping over some or all of the openings and restricting air flow into container on either side of the barrier.

  20. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  1. Isobar Separation in a Multiple-Reflection Time-of-Flight Mass Spectrometer by Mass-Selective Re-Trapping

    NASA Astrophysics Data System (ADS)

    Dickel, Timo; Plaß, Wolfgang R.; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I.; Geissel, Hans; Scheidenberger, Christoph

    2017-03-01

    A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry.

  2. Influence of multiple scattering and absorption on the full scattering profile and the isobaric point in tissue.

    PubMed

    Duadi, Hamootal; Fixler, Dror

    2015-05-01

    Light reflectance and transmission from soft tissue has been utilized in noninvasive clinical measurement devices such as the photoplethysmograph (PPG) and reflectance pulse oximeter. Incident light on the skin travels into the underlying layers and is in part reflected back to the surface, in part transferred and in part absorbed. Most methods of near infrared (NIR) spectroscopy focus on the volume reflectance from a semi-infinite sample, while very few measure transmission. We have previously shown that examining the full scattering profile (angular distribution of exiting photons) provides more comprehensive information when measuring from a cylindrical tissue. Furthermore, an isobaric point was found which is not dependent on changes in the reduced scattering coefficient. The angle corresponding to this isobaric point depends on the tissue diameter. We investigated the role of multiple scattering and absorption on the full scattering profile of a cylindrical tissue. First, we define the range in which multiple scattering occurs for different tissue diameters. Next, we examine the role of the absorption coefficient in the attenuation of the full scattering profile. We demonstrate that the absorption linearly influences the intensity at each angle of the full scattering profile and, more importantly, the absorption does not change the position of the isobaric point. The findings of this work demonstrate a realistic model for optical tissue measurements such as NIR spectroscopy, PPG, and pulse oximetery.

  3. Isobar Separation in a Multiple-Reflection Time-of-Flight Mass Spectrometer by Mass-Selective Re-Trapping.

    PubMed

    Dickel, Timo; Plaß, Wolfgang R; Lippert, Wayne; Lang, Johannes; Yavor, Mikhail I; Geissel, Hans; Scheidenberger, Christoph

    2017-03-15

    A novel method for (ultra-)high-resolution spatial mass separation in time-of-flight mass spectrometers is presented. Ions are injected into a time-of-flight analyzer from a radio frequency (rf) trap, dispersed in time-of-flight according to their mass-to-charge ratios and then re-trapped dynamically in the same rf trap. This re-trapping technique is highly mass-selective and after sufficiently long flight times can provide even isobaric separation. A theoretical treatment of the method is presented and the conditions for optimum performance of the method are derived. The method has been implemented in a multiple-reflection time-of-flight mass spectrometer and mass separation powers (FWHM) in excess of 70,000, and re-trapping efficiencies of up to 35% have been obtained for the protonated molecular ion of caffeine. The isobars glutamine and lysine (relative mass difference of 1/4000) have been separated after a flight time of 0.2 ms only. Higher mass separation powers can be achieved using longer flight times. The method will have important applications, including isobar separation in nuclear physics and (ultra-)high-resolution precursor ion selection in multiple-stage tandem mass spectrometry. Graphical Abstract ᅟ.

  4. Solids Far from Equilibrium

    NASA Astrophysics Data System (ADS)

    Godrèche, C.

    2011-03-01

    Preface; 1. Shape and growth of crystals P. Nozières; 2. Instabilities of planar solidification fronts B. Caroli, C. Caroli and B. Roulet; 3. An introduction to the kinetics of first-order phase transition J. S. Langer; 4. Dendritic growth and related topics Y. Pomeau and M. Ben Amar; 5. Growth and aggregation far from equilibrium L. M. Sander; 6. Kinetic roughening of growing surfaces J. Krug and H. Spohn; Acknowledgements; References; Index.

  5. Molecular equilibrium with condensation

    NASA Astrophysics Data System (ADS)

    Sharp, C. M.; Huebner, W. F.

    1990-02-01

    Minimization of the Gibbs energy of formation for species of chemical elements and compounds in their gas and condensed phases determines their relative abundances in a mixture in chemical equilibrium. The procedure is more general and more powerful than previous abundance determinations in multiphase astrophysical mixtures. Some results for astrophysical equations of state are presented, and the effects of condensation on opacity are briefly indicated.

  6. Equilibrium Electroconvective Instability

    NASA Astrophysics Data System (ADS)

    Rubinstein, I.; Zaltzman, B.

    2015-03-01

    Since its prediction 15 years ago, hydrodynamic instability in concentration polarization at a charge-selective interface has been attributed to nonequilibrium electro-osmosis related to the extended space charge which develops at the limiting current. This attribution had a double basis. On the one hand, it has been recognized that neither equilibrium electro-osmosis nor bulk electroconvection can yield instability for a perfectly charge-selective solid. On the other hand, it has been shown that nonequilibrium electro-osmosis can. The first theoretical studies in which electro-osmotic instability was predicted and analyzed employed the assumption of perfect charge selectivity for the sake of simplicity and so did the subsequent studies of various time-dependent and nonlinear features of electro-osmotic instability. In this Letter, we show that relaxing the assumption of perfect charge selectivity (tantamount to fixing the electrochemical potential of counterions in the solid) allows for the equilibrium electroconvective instability. In addition, we suggest a simple experimental test for determining the true, either equilibrium or nonequilibrium, origin of instability in concentration polarization.

  7. MRI analysis of the ISOBAR TTL internal fixation system for the dynamic fixation of intervertebral discs: a comparison with rigid internal fixation

    PubMed Central

    2014-01-01

    Objectives Using magnetic resonance imaging (MRI), we analyzed the efficacy of the posterior approach lumbar ISOBAR TTL internal fixation system for the dynamic fixation of intervertebral discs, with particular emphasis on its effects on degenerative intervertebral disc disease. Methods We retrospectively compared the MRIs of 54 patients who had previously undergone either rigid internal fixation of the lumbar spine or ISOBAR TTL dynamic fixation for the treatment of lumbar spondylolisthesis. All patients had received preoperative and 6-, 12-, and 24-month postoperative MRI scans of the lumbar spine with acquisition of both routine and diffusion-weighted images (DWI). The upper-segment discs of the fusion were subjected to Pfirrmann grading, and the lumbar intervertebral discs in the DWI sagittal plane were manually drawn; the apparent diffusion coefficient (ADC) value was measured. Results ADC values in the ISOBAR TTL dynamic fixation group measured at the 6-, 12-, and 24-month postoperative MRI studies were increased compared to the preoperative ADC values. The ADC values in the ISOBAR TTL dynamic fixation group at 24 months postoperatively were significantly different from the preoperative values (P < 0.05). At 24 months, the postoperative ADC values were significantly different between the rigid fixation group and the ISOBAR TTL dynamic fixation group (P < 0.05). Conclusion MRI imaging findings indicated that the posterior approach lumbar ISOBAR TTL internal fixation system can prevent or delay the degeneration of intervertebral discs. PMID:24898377

  8. Light-front representation of chiral dynamics with Δ isobar and large-Nc relations

    DOE PAGES

    Granados, C.; Weiss, C.

    2016-06-13

    Transverse densities describe the spatial distribution of electromagnetic current in the nucleon at fixed light-front time. At peripheral distances b = O(Mπ–1) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). Recent work has shown that the EFT results can be represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft-pion-nucleon intermediate states, resulting in a quantum-mechanical picture of the peripheral transverse densities. We now extend this representation to include intermediate states with Δ isobars and implement relations based on themore » large-Nc limit of QCD. We derive the wave function overlap formulas for the Δ contributions to the peripheral transverse densities by way of a three-dimensional reduction of relativistic chiral EFT expressions. Our procedure effectively maintains rotational invariance and avoids the ambiguities with higher-spin particles in the light-front time-ordered approach. We study the interplay of πN and πΔ intermediate states in the quantum-mechanical picture of the densities in a transversely polarized nucleon. We show that the correct Nc-scaling of the charge and magnetization densities emerges as the result of the particular combination of currents generated by intermediate states with degenerate N and Δ. The off-shell behavior of the chiral EFT is summarized in contact terms and can be studied easily. As a result, the methods developed here can be applied to other peripheral densities and to moments of the nucleon's generalized parton distributions.« less

  9. Reaction chemistry and collisional processes in multiple devices for resolving isobaric interferences in ICP-MS.

    PubMed

    Bandura, D R; Baranov, V I; Tanner, S D

    2001-07-01

    A low-level review of the fundamentals of ion-molecule interactions is presented. These interactions are used to predict the efficiencies of collisional fragmentation, energy damping and reaction for a variety of neutral gases as a function of pressure in a rf-driven collision/reaction cell. It is shown that the number of collisions increases dramatically when the ion energies are reduced to near-thermal (< 0.1 eV), because of the ion-induced dipole and ion-dipole interaction. These considerations suggest that chemical reaction can be orders of magnitude more efficient at improving the analyte signal/background ratio than can collisional fragmentation. Considerations that lead to an appropriate selection of type of gas, operating pressure, and ion energies for efficient operation of the cell for the alleviation of spectral interferences are discussed. High efficiency (large differences between reaction efficiencies of the analyte and interference ions, and concomitant suppression of secondary chemistry) might be required to optimize the chemical resolution (determination of an analyte in the presence of an isobaric interference) when using ion-molecule chemistry to suppress the interfering ion. In many instances atom transfer to the analyte, which shifts the analytical m/z by the mass of the atom transferred, provides high chemical resolution, even when the efficiency of reaction is relatively low. Examples are given of oxidation, hydroxylation, and chlorination of analyte ions (V+, Fe+, As+, Se+, Sr+, Y+, and Zr+) to improve the capability of determination of complex samples. Preliminary results are given showing O-atom abstraction by CO from CaO+ to enable the determination of Fe in high-Ca samples.

  10. Light-front representation of chiral dynamics with Δ isobar and large- N c relations

    NASA Astrophysics Data System (ADS)

    Granados, C.; Weiss, C.

    2016-06-01

    Transverse densities describe the spatial distribution of electromagnetic current in the nucleon at fixed light-front time. At peripheral distances b = O( M π - 1 ) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). Recent work has shown that the EFT results can be represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft-pion-nucleon intermediate states, resulting in a quantum-mechanical picture of the peripheral transverse densities. We now extend this representation to include intermediate states with Δ isobars and implement relations based on the large- N c limit of QCD. We derive the wave function overlap formulas for the Δ contributions to the peripheral transverse densities by way of a three-dimensional reduction of relativistic chiral EFT expressions. Our procedure effectively maintains rotational invariance and avoids the ambiguities with higher-spin particles in the light-front time-ordered approach. We study the interplay of π N and πΔ intermediate states in the quantum-mechanical picture of the densities in a transversely polarized nucleon. We show that the correct N c -scaling of the charge and magnetization densities emerges as the result of the particular combination of currents generated by intermediate states with degenerate N and Δ. The off-shell behavior of the chiral EFT is summarized in contact terms and can be studied easily. The methods developed here can be applied to other peripheral densities and to moments of the nucleon's generalized parton distributions.

  11. Amplitude, isobar and grey-scale imaging of ultrasonic shadows behind rigid, elastic and gaseous spheres.

    PubMed

    Filipczyński, L; Kujawska, T; Tymkiewicz, R; Wójcik, J

    1996-01-01

    The theory of wave reflection from spherical obstacles was applied for determination of the cause of the shadow created by plane wave pulses incident on rigid, steel, gaseous spheres and on spheres made of kidney stones. The spheres were immersed in water which was assumed to be a tissue-like medium. Acoustic pressure distributions behind the spheres with the radii of 1 mm, 2.5 mm and 3.5 mm were determined at the frequency of 5 MHz. The use of the exact wave theory enabled us to take into account the diffraction effects. The computed pressure distributions were verified experimentally at the frequency of 5 MHz for a steel sphere with a 2.5-mm radius. The experimental and theoretical pulses were composed of about three ultrasonic frequency periods. Acoustic pressure distributions in the shadow zone of all spheres were shown in the amplitude axonometric projection, in the grey scale and also as acoustic isobar patterns. Our analysis confirmed existing simpler descriptions of the shadow from the point of view of reflection and refraction effects; however, our approach is more general, also including diffraction effects and assuming the pulse mode. The analysis has shown that gaseous spherical inclusions caused shadows with very high dynamics of acoustic pressures that were about 15 dB higher in relation to all the other spheres. The shadow length, determined as the length at which one observes a 6-dB drop of the acoustic pressure, followed the relation r-6dB = 3.7a2/lambda with the accuracy of about 20% independent of the sphere type. lambda denotes the wavelength and a the sphere radius. Thus, a theoretical possibility of differentiating between gaseous and other inclusions and of estimation of the inclusion size in the millimeter range from the shadow was shown. The influence of the frequency-dependent attenuation on the shadow will be considered in the next study.

  12. Structural design using equilibrium programming

    NASA Technical Reports Server (NTRS)

    Scotti, Stephen J.

    1992-01-01

    Multiple nonlinear programming methods are combined in the method of equilibrium programming. Equilibrium programming theory has been appied to problems in operations research, and in the present study it is investigated as a framework to solve structural design problems. Several existing formal methods for structural optimization are shown to actually be equilibrium programming methods. Additionally, the equilibrium programming framework is utilized to develop a new structural design method. Selected computational results are presented to demonstrate the methods.

  13. A steady-state non-equilibrium molecular dynamics approach for the study of evaporation processes

    NASA Astrophysics Data System (ADS)

    Zhang, Jianguo; Müller-Plathe, Florian; Yahia-Ouahmed, Méziane; Leroy, Frédéric

    2013-10-01

    Two non-equilibrium methods (called bubble method and splitting method, respectively) have been developed and tested to study the steady state evaporation of a droplet surrounded by its vapor, where the evaporation continuously occurs at the vapor-liquid interface while the droplet size remains constant. In the bubble method, gas molecules are continuously reinserted into a free volume (represented by a bubble) located at the centre of mass of the droplet to keep the droplet size constant. In the splitting method, a molecule close to the centre of mass of the droplet is split into two: In this way, the droplet size is also maintained during the evaporation. By additional local thermostats confined to the area of insertion, the effect of frequent insertions on properties such as density and temperature can be limited to the immediate insertion area. Perturbations are not observed in other parts of the droplet. In the end, both the bubble method and the splitting method achieve steady-state droplet evaporation. Although these methods have been developed using an isolated droplet, we anticipate that they will find a wide range of applications in the study of the evaporation of isolated films and droplets or thin films on heated substrates or under confinement. They can in principle also be used to study the steady-state of other physical processes, such as the diffusion or permeation of gas molecules or ions in a pressure gradient or a concentration gradient.

  14. Thermal equilibrium of goats.

    PubMed

    Maia, Alex S C; Nascimento, Sheila T; Nascimento, Carolina C N; Gebremedhin, Kifle G

    2016-05-01

    The effects of air temperature and relative humidity on thermal equilibrium of goats in a tropical region was evaluated. Nine non-pregnant Anglo Nubian nanny goats were used in the study. An indirect calorimeter was designed and developed to measure oxygen consumption, carbon dioxide production, methane production and water vapour pressure of the air exhaled from goats. Physiological parameters: rectal temperature, skin temperature, hair-coat temperature, expired air temperature and respiratory rate and volume as well as environmental parameters: air temperature, relative humidity and mean radiant temperature were measured. The results show that respiratory and volume rates and latent heat loss did not change significantly for air temperature between 22 and 26°C. In this temperature range, metabolic heat was lost mainly by convection and long-wave radiation. For temperature greater than 30°C, the goats maintained thermal equilibrium mainly by evaporative heat loss. At the higher air temperature, the respiratory and ventilation rates as well as body temperatures were significantly elevated. It can be concluded that for Anglo Nubian goats, the upper limit of air temperature for comfort is around 26°C when the goats are protected from direct solar radiation.

  15. Applications of the Soave-Redlich-Kwong Equations of State Using Mathematic

    NASA Astrophysics Data System (ADS)

    Sun, Lanyi; Zhai, Cheng; Zhang, Hui

    The application of the Peng-Robinson equations of state (PR EOS) using Matlab and Mathematic has already been demonstrated. In this paper, using Mathematic to solve Soave-Redlich-Kwong (SRK) EOS, as well as the estimation of pure component properties, plotting of vapor-liquid equilibrium (VLE) diagram and calculation of chemical equilibrium, is presented. First the SRK EOS is used to predict several pure-component properties, such as liquid and gas molar volumes for isobutane. The vapor-liquid isobaric diagram is then plotted for a binary mixture composed of n-pentane and n-hexane under the pressures of 2*10^5 and 8*10^5 Pa respectively.

  16. Equilibrium of nematic vesicles

    NASA Astrophysics Data System (ADS)

    Napoli, Gaetano; Vergori, Luigi

    2010-11-01

    A variational scheme is proposed which allows the derivation of a concise and elegant formulation of the equilibrium equations for closed fluid membranes, endowed with a nematic microstructure. The nematic order is described by an in-plane nematic director and a degree of orientation, as customary in the theory of uniaxial nematics. The only constitutive ingredient in this scheme is a free-energy density which depends on the vesicle geometry and order parameters. The stress and the couple stress tensors related to this free-energy density are provided. As an application of the proposed scheme, a certain number of special theories are deduced: soap bubbles, lipid vesicles, chiral and achiral nematic membranes, and nematics on curved substrates.

  17. Statistical physics ""Beyond equilibrium

    SciTech Connect

    Ecke, Robert E

    2009-01-01

    The scientific challenges of the 21st century will increasingly involve competing interactions, geometric frustration, spatial and temporal intrinsic inhomogeneity, nanoscale structures, and interactions spanning many scales. We will focus on a broad class of emerging problems that will require new tools in non-equilibrium statistical physics and that will find application in new material functionality, in predicting complex spatial dynamics, and in understanding novel states of matter. Our work will encompass materials under extreme conditions involving elastic/plastic deformation, competing interactions, intrinsic inhomogeneity, frustration in condensed matter systems, scaling phenomena in disordered materials from glasses to granular matter, quantum chemistry applied to nano-scale materials, soft-matter materials, and spatio-temporal properties of both ordinary and complex fluids.

  18. NON-EQUILIBRIUM THERMODYNAMIC PROCESSES: SPACE PLASMAS AND THE INNER HELIOSHEATH

    SciTech Connect

    Livadiotis, G.; McComas, D. J.

    2012-04-10

    Recently, empirical kappa distribution, commonly used to describe non-equilibrium systems like space plasmas, has been connected with non-extensive statistical mechanics. Here we show how a consistent definition of the temperature and pressure is developed for stationary states out of thermal equilibrium, so that the familiar ideal gas state equation still holds. In addition to the classical triplet of temperature, pressure, and density, this generalization requires the kappa index as a fourth independent thermodynamic variable that characterizes the non-equilibrium stationary states. All four of these thermodynamic variables have key roles in describing the governing thermodynamical processes and transitions in space plasmas. We introduce a novel characterization of isothermal and isobaric processes that describe a system's transition into different stationary states by varying the kappa index. In addition, we show how the variation of temperature or/and pressure can occur through an 'iso-q' process, in which the system remains in a fixed stationary state (fixed kappa index). These processes have been detected in the proton plasma in the inner heliosheath via specialized data analysis of energetic neutral atom (ENA) observations from Interstellar Boundary Explorer. In particular, we find that the temperature is highly correlated with (1) kappa, asymptotically related to isothermal ({approx}1,000,000 K) and iso-q ({kappa} {approx} 1.7) processes; and (2) density, related to an isobaric process, which separates the 'Ribbon', P Almost-Equal-To 3.2 pdyn cm{sup -2}, from the globally distributed ENA flux, P Almost-Equal-To 2 pdyn cm{sup -2}.

  19. Limits of the energy-spin phase space beyond the proton drip line : entry distributions fo Pt and Au isobars.

    SciTech Connect

    Smith, M. B.; Cizewski, J. A.; Carpenter, M. P.; Kondev, F. G.; Khoo, T. L.; Lauritsen, T.; Janssens, R. V. F.; Abu Saleem, K.; Ahmad, I.; Amro, H.; Danchev, M.; Davids, C. N.; Hartley, D. J.; Heinz, A.; Lister, C. J.; Ma, W. C.; Poli, G. L.; Ressler, J. J.; Reviol, W.; Riedinger, L. L.; Seweryniak, D.; Wiedenhoever, I.; Rutgers univ.; Illinois Inst. of Tech.; Mississippi State Univ.; Univ. of Tennessee; Univ. of Maryland; Washington Univ.

    2003-01-09

    Entry distributions in angular momentum and excitation energy have been measured for several very proton-rich isotopes of Pt and Au. This is the first systematic study of the energy-spin phase space for nuclei near and beyond the proton drip line. Comparisons are made between the distributions associated with proton-unbound Au nuclei and more stable Pt isobars. In {sup 173}Au the first evidence is seen for the limits of excitation energy and angular momentum which a nucleus beyond the proton drip line can sustain.

  20. The Isospin Admixture of The Ground State and The Properties of The Isobar Analog Resonances In Deformed Nuclei

    SciTech Connect

    Aygor, H. Ali; Maras, Ismail; Cakmak, Necla; Selam, Cevad

    2008-11-11

    Within quasiparticle random phase approximation (QRPA), Pyatov-Salamov method for the self-consistent determination of the isovector effective interaction strength parameter, restoring a broken isotopic symmetry for the nuclear part of the Hamiltonian, is used. The isospin admixtures in the ground state of the parent nucleus, and the isospin structure of the isobar analog resonance (IAR) state are investigated by including the pairing correlations between nucleons for {sup 72-80}Kr isotopes. Our results are compared with the spherical case and with other theoretical results.

  1. Equilibrium Policy Proposals with Abstentions.

    DTIC Science & Technology

    1981-05-01

    AB I I I EQUILIBRIUM POLICY PROPOSALS WITH ABSTENTIONS* by Peter Coughlin** 1. Introduction Spatial analyses of economic policy formation in elections...alternative in S at which there is a local equilibrium when the incumbent must defend the status quo. 5. Applications to Related Spatial Voting Models...York: Holt, Rinehart and Winston. Hestenes, M. [19751, Optimization Theoy, New York: Wiley. Hinich, M. [1977], " Equilibrium in Spatial Voting: The Median

  2. Grinding kinetics and equilibrium states

    NASA Technical Reports Server (NTRS)

    Opoczky, L.; Farnady, F.

    1984-01-01

    The temporary and permanent equilibrium occurring during the initial stage of cement grinding does not indicate the end of comminution, but rather an increased energy consumption during grinding. The constant dynamic equilibrium occurs after a long grinding period indicating the end of comminution for a given particle size. Grinding equilibrium curves can be constructed to show the stages of comminution and agglomeration for certain particle sizes.

  3. Thermodynamic properties of supercritical n-m Lennard-Jones fluids and isochoric and isobaric heat capacity maxima and minima.

    PubMed

    Mairhofer, Jonas; Sadus, Richard J

    2013-10-21

    Molecular dynamics simulations are reported for the thermodynamic properties of n-m Lennard-Jones fluids, where n = 10 and 12, and m = 5 and 6. Results are reported for the thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound at supercritical conditions covering a wide range of fluid densities. The thermodynamic criteria for maxima∕minima in the isochoric and isobaric heat capacities are identified and the simulation results are also compared with calculations from Lennard-Jones equations of state. The Johnson et al. [Mol. Phys. 78, 591 (1993)] equation of state can be used to reproduce all heat capacity phenomena reported [T. M. Yigzawe and R. J. Sadus, J. Chem. Phys. 138, 194502 (2013)] from molecular dynamics simulations for the 12-6 Lennard-Jones potential. Significantly, these calculations and molecular dynamics results for other n-m Lennard-Jones potentials support the existence of Cp minima at supercritical conditions. The values of n and m also have a significant influence on many other thermodynamic properties.

  4. Thermodynamic properties of supercritical n-m Lennard-Jones fluids and isochoric and isobaric heat capacity maxima and minima

    NASA Astrophysics Data System (ADS)

    Mairhofer, Jonas; Sadus, Richard J.

    2013-10-01

    Molecular dynamics simulations are reported for the thermodynamic properties of n-m Lennard-Jones fluids, where n = 10 and 12, and m = 5 and 6. Results are reported for the thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound at supercritical conditions covering a wide range of fluid densities. The thermodynamic criteria for maxima/minima in the isochoric and isobaric heat capacities are identified and the simulation results are also compared with calculations from Lennard-Jones equations of state. The Johnson et al. [Mol. Phys. 78, 591 (1993)] equation of state can be used to reproduce all heat capacity phenomena reported [T. M. Yigzawe and R. J. Sadus, J. Chem. Phys. 138, 194502 (2013)] from molecular dynamics simulations for the 12-6 Lennard-Jones potential. Significantly, these calculations and molecular dynamics results for other n-m Lennard-Jones potentials support the existence of Cp minima at supercritical conditions. The values of n and m also have a significant influence on many other thermodynamic properties.

  5. Large-Scale and Deep Quantitative Proteome Profiling Using Isobaric Labeling Coupled with Two-Dimensional LC-MS/MS

    SciTech Connect

    Gritsenko, Marina A.; Xu, Zhe; Liu, Tao; Smith, Richard D.

    2016-02-12

    Comprehensive, quantitative information on abundances of proteins and their post-translational modifications (PTMs) can potentially provide novel biological insights into diseases pathogenesis and therapeutic intervention. Herein, we introduce a quantitative strategy utilizing isobaric stable isotope-labelling techniques combined with two-dimensional liquid chromatography-tandem mass spectrometry (2D-LC-MS/MS) for large-scale, deep quantitative proteome profiling of biological samples or clinical specimens such as tumor tissues. The workflow includes isobaric labeling of tryptic peptides for multiplexed and accurate quantitative analysis, basic reversed-phase LC fractionation and concatenation for reduced sample complexity, and nano-LC coupled to high resolution and high mass accuracy MS analysis for high confidence identification and quantification of proteins. This proteomic analysis strategy has been successfully applied for in-depth quantitative proteomic analysis of tumor samples, and can also be used for integrated proteome and PTM characterization, as well as comprehensive quantitative proteomic analysis across samples from large clinical cohorts.

  6. Napoleon Is in Equilibrium

    NASA Astrophysics Data System (ADS)

    Phillips, Rob

    2015-03-01

    It has been said that the cell is the test tube of the twenty-first century. If so, the theoretical tools needed to quantitatively and predictively describe what goes on in such test tubes lag sorely behind the stunning experimental advances in biology seen in the decades since the molecular biology revolution began. Perhaps surprisingly, one of the theoretical tools that has been used with great success on problems ranging from how cells communicate with their environment and each other to the nature of the organization of proteins and lipids within the cell membrane is statistical mechanics. A knee-jerk reaction to the use of statistical mechanics in the description of cellular processes is that living organisms are so far from equilibrium that one has no business even thinking about it. But such reactions are probably too hasty given that there are many regimes in which, because of a separation of timescales, for example, such an approach can be a useful first step. In this article, we explore the power of statistical mechanical thinking in the biological setting, with special emphasis on cell signaling and regulation. We show how such models are used to make predictions and describe some recent experiments designed to test them. We also consider the limits of such models based on the relative timescales of the processes of interest.

  7. Napoleon Is in Equilibrium.

    PubMed

    Phillips, Rob

    2015-03-01

    It has been said that the cell is the test tube of the twenty-first century. If so, the theoretical tools needed to quantitatively and predictively describe what goes on in such test tubes lag sorely behind the stunning experimental advances in biology seen in the decades since the molecular biology revolution began. Perhaps surprisingly, one of the theoretical tools that has been used with great success on problems ranging from how cells communicate with their environment and each other to the nature of the organization of proteins and lipids within the cell membrane is statistical mechanics. A knee-jerk reaction to the use of statistical mechanics in the description of cellular processes is that living organisms are so far from equilibrium that one has no business even thinking about it. But such reactions are probably too hasty given that there are many regimes in which, because of a separation of timescales, for example, such an approach can be a useful first step. In this article, we explore the power of statistical mechanical thinking in the biological setting, with special emphasis on cell signaling and regulation. We show how such models are used to make predictions and describe some recent experiments designed to test them. We also consider the limits of such models based on the relative timescales of the processes of interest.

  8. Rapid-Equilibrium Enzyme Kinetics

    ERIC Educational Resources Information Center

    Alberty, Robert A.

    2008-01-01

    Rapid-equilibrium rate equations for enzyme-catalyzed reactions are especially useful because if experimental data can be fit by these simpler rate equations, the Michaelis constants can be interpreted as equilibrium constants. However, for some reactions it is necessary to use the more complicated steady-state rate equations. Thermodynamics is…

  9. Equilibrium states for hyperbolic potentials

    NASA Astrophysics Data System (ADS)

    Ramos, Vanessa; Viana, Marcelo

    2017-02-01

    We prove the existence of finitely many ergodic equilibrium states for local homeomorphisms and hyperbolic potentials. We also deal with partially hyperbolic skew-products over non-uniformly expanding maps with uniform contraction on the fibre. For these systems we prove the existence and finiteness of the equilibrium states associated with a class of Hölder continuous potentials.

  10. Thermodynamic efficiency out of equilibrium

    NASA Astrophysics Data System (ADS)

    Sivak, David; Crooks, Gavin

    2011-03-01

    Molecular-scale machines typically operate far from thermodynamic equilibrium, limiting the applicability of equilibrium statistical mechanics to understand their efficiency. Thermodynamic length analysis relates a non-equilibrium property (dissipation) to equilibrium properties (equilibrium fluctuations and their relaxation time). Herein we demonstrate that the thermodynamic length framework follows directly from the assumptions of linear response theory. Uniting these two frameworks provides thermodynamic length analysis a firmer statistical mechanical grounding, and equips linear response theory with a metric structure to facilitate the prediction and discovery of optimal (minimum dissipation) paths in complicated free energy landscapes. To explore the applicability of this theoretical framework, we examine its accuracy for simple bistable systems, parametrized to model single-molecule force-extension experiments. Through analytic derivation of the equilibrium fluctuations and numerical calculation of the dissipation and relaxation time, we verify that thermodynamic length analysis (though derived in a near-equilibrium limit) provides a strikingly good approximation even far from equilibrium, and thus provides a useful framework for understanding molecular motor efficiency.

  11. A randomized controlled study comparing intrathecal hyperbaric bupivacaine-fentanyl mixture and isobaric bupivacaine-fentanyl mixture in common urological procedures

    PubMed Central

    Upadya, Madhusudan; Neeta, S; Manissery, Jesni Joseph; Kuriakose, Nigel; Singh, Rakesh Raushan

    2016-01-01

    Background and Aims: Bupivacaine is available in isobaric and hyperbaric forms for intrathecal use and opioids are used as additives to modify their effects. The aim of this study was to compare the efficacy and haemodynamic effect of intrathecal isobaric bupivacaine-fentanyl mixture and hyperbaric bupivacaine-fentanyl mixture in common urological procedures. Methods: One hundred American Society of Anesthesiologists physical status 1 and 2 patients undergoing urological procedures were randomized into two groups. Group 1 received 3 ml of 0.5% isobaric bupivacaine with 25 μg fentanyl while Group 2 received 3 ml of 0.5% hyperbaric bupivacaine with 25 μg fentanyl. The parameters measured include heart rate, blood pressure, respiratory rate, onset and duration of motor and sensory blockade. Student's unpaired t-test and the χ2 test were used to analyse the results, using the SPSS version 11.5 software. Results: The haemodynamic stability was better with isobaric bupivacaine fentanyl mixture (Group 1) than with hyperbaric bupivacaine fentanyl mixture (Group 2). The mean onset time in Group 1 for both sensory block (4 min) and motor block (5 min) was longer compared with Group 2. The duration of sensory block (127.8 ± 38.64 min) and motor block (170.4 ± 27.8 min) was less with isobaric bupivacaine group compared with hyperbaric bupivacaine group (sensory blockade 185.4 ± 16.08 min and motor blockade 201.6 ± 14.28 min). Seventy percent of patients in Group 2 had maximum sensory block level of T6 whereas it was 53% in Group 1. More patients in Group 1 required sedation compared to Group 2. Conclusion: Isobaric bupivacaine fentanyl mixture was found to provide adequate anaesthesia with minimal incidence of haemodynamic instability. PMID:26962255

  12. Equilibrium Shape of Colloidal Crystals.

    PubMed

    Sehgal, Ray M; Maroudas, Dimitrios

    2015-10-27

    Assembling colloidal particles into highly ordered configurations, such as photonic crystals, has significant potential for enabling a broad range of new technologies. Facilitating the nucleation of colloidal crystals and developing successful crystal growth strategies require a fundamental understanding of the equilibrium structure and morphology of small colloidal assemblies. Here, we report the results of a novel computational approach to determine the equilibrium shape of assemblies of colloidal particles that interact via an experimentally validated pair potential. While the well-known Wulff construction can accurately capture the equilibrium shape of large colloidal assemblies, containing O(10(4)) or more particles, determining the equilibrium shape of small colloidal assemblies of O(10) particles requires a generalized Wulff construction technique which we have developed for a proper description of equilibrium structure and morphology of small crystals. We identify and characterize fully several "magic" clusters which are significantly more stable than other similarly sized clusters.

  13. The feasibility of isobaric suppression of 26Mg via post-accelerator foil stripping for the measurement of 26Al [The feasibility of isobaric suppression of 26Mg via post-accelerator foil stripping for the measurement of 26Al.

    DOE PAGES

    Tumey, Scott J.; Brown, Thomas A.; Finkel, Robert C.; ...

    2012-09-13

    Most accelerator mass spectrometry measurements of 26Al utilize the Al- ion despite lower source currents compared with AlO- since the stable isobar 26Mg does not form elemental negative ions. A gas-filled magnet allows sufficient suppression of 26Mg thus enabling the use of the more intense 26AlO- ion. However, most AMS systems do not include a gas-filled magnet. We therefore explored the feasibility of suppressing 26Mg by using a post-accelerator stripping foil. With this approach, combined with the use of alternative cathode matrices, we were able to suppress 26Mg by a factor of twenty. This suppression was insufficient to enable themore » use of 26AlO-, however further refinement of our system may permit its use in the future.« less

  14. Guided self-assembly of electrostatic binary monolayers via isothermal-isobaric control

    NASA Astrophysics Data System (ADS)

    Shestopalov, Nickolay V.; Henkelman, Graeme; Rodin, Gregory J.

    2011-10-01

    Self-assembly of a binary monolayer of charged particles is modeled using molecular dynamics and statistical mechanics. The equilibrium phase diagram for the system has three distinct phases: an ionic crystal; a geometrically ordered crystal with disordered charges; and a fluid. We show that self-assembly occurs near the phase transition between the ionic crystal and the fluid, and that the rate of ordering is sensitive to the applied pressure. By assuming an Arrhenius form for the rate of ordering, an optimality condition for the temperature and pressure is derived that maximizes the rate. Using the Clausius-Clapeyron equation, the optimal point on the phase boundary is expressed in terms of the thermodynamic changes in state variables across the boundary. The predicted optimal temperature and pressure conditions are in good agreement with numerical simulations and result in self-organization rates five times that of a simulation without applied pressure.

  15. Non-equilibrium supramolecular polymerization.

    PubMed

    Sorrenti, Alessandro; Leira-Iglesias, Jorge; Markvoort, Albert J; de Greef, Tom F A; Hermans, Thomas M

    2017-03-28

    Supramolecular polymerization has been traditionally focused on the thermodynamic equilibrium state, where one-dimensional assemblies reside at the global minimum of the Gibbs free energy. The pathway and rate to reach the equilibrium state are irrelevant, and the resulting assemblies remain unchanged over time. In the past decade, the focus has shifted to kinetically trapped (non-dissipative non-equilibrium) structures that heavily depend on the method of preparation (i.e., pathway complexity), and where the assembly rates are of key importance. Kinetic models have greatly improved our understanding of competing pathways, and shown how to steer supramolecular polymerization in the desired direction (i.e., pathway selection). The most recent innovation in the field relies on energy or mass input that is dissipated to keep the system away from the thermodynamic equilibrium (or from other non-dissipative states). This tutorial review aims to provide the reader with a set of tools to identify different types of self-assembled states that have been explored so far. In particular, we aim to clarify the often unclear use of the term "non-equilibrium self-assembly" by subdividing systems into dissipative, and non-dissipative non-equilibrium states. Examples are given for each of the states, with a focus on non-dissipative non-equilibrium states found in one-dimensional supramolecular polymerization.

  16. Helical axis stellarator equilibrium model

    SciTech Connect

    Koniges, A.E.; Johnson, J.L.

    1985-02-01

    An asymptotic model is developed to study MHD equilibria in toroidal systems with a helical magnetic axis. Using a characteristic coordinate system based on the vacuum field lines, the equilibrium problem is reduced to a two-dimensional generalized partial differential equation of the Grad-Shafranov type. A stellarator-expansion free-boundary equilibrium code is modified to solve the helical-axis equations. The expansion model is used to predict the equilibrium properties of Asperators NP-3 and NP-4. Numerically determined flux surfaces, magnetic well, transform, and shear are presented. The equilibria show a toroidal Shafranov shift.

  17. Interregional equilibrium with heterogeneous labor.

    PubMed

    Michel, P; Perrot, A; Thisse J-f

    1996-02-01

    "The impact of labor migration on interregional equilibrium is studied when workers are heterogeneous in productivity and regional mobility. The skilled respond to market disequilibrium by moving into the most attractive region. The unskilled are immobile in the short-run and move with the skilled in the long-run. Both regions have a neoclassical production function affected by an externality depending on the number of skilled. Workers move according to the utility differential when regional amenities vary with population or according to the wage differential. The equilibrium pattern depends on the unskilled's mobility and on migration incentives. Typically, regional imbalance characterizes the equilibrium which is often suboptimal."

  18. Phase equilibrium data for development of correlations for coal fluids

    SciTech Connect

    Robinson, R.L. Jr.; Gasem, K.A.M.; Darwish, N.A.; Raff, A.M.

    1991-02-01

    The overall objective of the authors' work is to develop accurate predictive methods for representations of vapor-liquid equilibria in systems encountered in coal-conversion processes. The objectives pursued in the present project include: (1) Measurements of binary vapor-liquid phase behavior data for selected solute gases (e.g., C{sub 2}H{sub 6}, CH{sub 4}) in a series of paraffinic, naphthenic, and aromatic hydrocarbon solvents to permit evaluations of interaction parameters in models for phase behavior. Solubilities of the gases in the liquid phase have been determined. (2) Evaluation of existing equations of state and other models for representations of phase behavior in systems of the type studied experimentally; development of new correlation frameworks as needed. (3) Generalization of the interaction parameters for the solutes studied to a wide spectrum of heavy solvents; presentation of final results in formats useful in the design/optimization of coal liquefaction processes.

  19. Spectroscopy of the neutron-deficient isobars {sup 163}Re and {sup 163}W using tagging techniques

    SciTech Connect

    Joss, D. T.; Thomson, J.; Page, R. D.; Bianco, L.; Darby, I. G.; Grahn, T.; Pakarinen, J.; Paul, E. S.; Scholey, C.; Eeckhaudt, S.; Greenlees, P. T.; Jones, P. M.; Julin, R.; Juutinen, S.; Ketelhut, S.; Leino, M.; Leppaennen, A.-P.; Nyman, M.; Rahkila, P.; Sorri, J.

    2008-11-11

    Selective tagging techniques have been used to establish new band structures in the transitional isobars {sup 163}Re and {sup 163}W. These nuclei were produced in the {sup 106}Cd({sup 60}Ni, xp yn {gamma}) reaction at a bombarding energy of 270 MeV. Prompt {gamma} rays were detected at the target position using the JUROGAM spectrometer while recoiling ions were separated by the RITU separator and implanted into the GREAT spectrometer. At low spin, the yrast band of {sup 163}Re is shown to be a strongly coupled collective band based on a proton h{sub 11/2} configuration. In {sup 163}W, the decay path of the 13/2{sup +} isomeric state to the ground state has been identified and negative parity structures based on the ground state established.

  20. Observation of the double isobaric analog transition 18O(π+,π-) 18Ne at 50 MeV

    NASA Astrophysics Data System (ADS)

    Altman, A.; Johnson, R. R.; Wienands, U.; Hessey, N.; Barnett, B. M.; Forster, B. M.; Grion, N.; Mills, D.; Rozon, F. M.; Smith, G. R.; Trelle, And R.; Gill, D. R.; Sheffer, G.; Anderl, T.

    1985-09-01

    The angular distribution of the differential cross sections for the transition to the double isobaric analog state in the reaction 18(π+,π-) 18Ne was measured at six angles from 20° to 120°. Extrapolation of the differential cross section results in 5.3+/-0.5 μb/sr at 0° and an angle-integrated cross section of 16.7+/-1.2 μb. The forward peaking and magnitude of the cross sections differ from those predicted by simple sequential models and the trends of data at higher energies. The results are compared to recent data for the same transition on 14C at 50 MeV and to a calculation in the six-quark bag model.

  1. Delta. sub 33 -isobar contribution to the soft nucleon-nucleon potentials. I. 2. pi. -exchange potentials

    SciTech Connect

    Rijken, T.A.; Stoks, V.G.J. )

    1992-07-01

    Two-pion-exchange (TPE) nucleon-nucleon potentials are derived for one or two {Delta} isobars in the intermediate states. Strong dynamical pair suppression is assumed. At the {ital NN}{pi} and the {ital N}{Delta}{pi} vertices Gaussian form factors are incorporated into the relativistic two-body framework by using a dispersion representation for the one-pion-exchange amplitudes. The Fourier transformations are performed using factorization techniques for the energy denominators, taking into account the mass difference between the nucleon and the {Delta} isobar. Analytic expressions for the TPE potentials are obtained, which contain at most one-dimensional integrals. The TPE potentials are first calculated up to orders ({ital f}{sub {ital N}{ital N}{pi}} f{sub {ital N}{Delta}{pi}}){sup 2} and {ital f}{sub {ital N}{Delta}{pi}}{sup 4}. These come from the adiabatic contributions of all planar and crossed three-dimensional momentum-space TPE diagrams. We also give the contributions of the OPE iteration, which can be subtracted or not, depending on whether one performs a coupled-channel calculation for, e.g., the {ital NN}, {ital N}{Delta} system, or a single {ital NN}-channel calculation. Next, we calculate the ({ital m}{sub {pi}}/{ital M}) corrections. These are due to the 1/{ital M} terms in the pion-nucleon vertices, and the 1/{ital M} terms in the nonadiabatic expansion of the nucleon energies in the intermediate states.

  2. Molecular dynamics in the isothermal-isobaric ensemble: the requirement of a "shell" molecule. III. Discontinuous potentials.

    PubMed

    Uline, Mark J; Corti, David S

    2008-07-07

    Based on the approach of Gruhn and Monson [Phys. Rev. E 63, 061106 (2001)], we present a new method for deriving the collisions dynamics for particles that interact via discontinuous potentials. By invoking the conservation of the extended Hamiltonian, we generate molecular dynamics (MD) algorithms for simulating the hard-sphere and square-well fluids within the isothermal-isobaric (NpT) ensemble. Consistent with the recent rigorous reformulation of the NpT ensemble partition function, the equations of motion impose a constant external pressure via the introduction of a shell particle of known mass [M. J. Uline and D. S. Corti, J. Chem. Phys. 123, 164101 (2005); 123, 164102 (2005)], which serves to define uniquely the volume of the system. The particles are also connected to a temperature reservoir through the use of a chain of Nose-Hoover thermostats, the properties of which are not affected by a hard-sphere or square-well collision. By using the Liouville operator formalism and the Trotter expansion theorem to integrate the equations of motion, the update of the thermostat variables can be decoupled from the update of the positions of the particles and the momentum changes upon a collision. Hence, once the appropriate collision dynamics for the isobaric-isenthalpic (NpH) equations of motion is known, the adaptation of the algorithm to the NpT ensemble is straightforward. Results of MD simulations for the pure component square-well fluid are presented and serve to validate our algorithm. Finally, since the mass of the shell particle is known, the system itself, and not a piston of arbitrary mass, controls the time scales for internal pressure and volume fluctuations. We therefore consider the influence of the shell particle algorithm on the dynamics of the square-well fluid.

  3. Proteomic Identification and Quantification of S-glutathionylation in Mouse Macrophages Using Resin-Assisted Enrichment and Isobaric Labeling

    PubMed Central

    Su, Dian; Gaffrey, Matthew J.; Guo, Jia; Hatchell, Kayla E.; Chu, Rosalie K.; Clauss, Therese R. W.; Aldrich, Joshua T.; Wu, Si; Purvine, Sam; Camp, David G.; Smith, Richard D.; Thrall, Brian D.; Qian, Wei-Jun

    2014-01-01

    S-glutathionylation (SSG) is an important regulatory posttranslational modification on protein cysteine (Cys) thiols, yet the role of specific cysteine residues as targets of modification is poorly understood. We report a novel quantitative mass spectrometry (MS)-based proteomic method for site-specific identification and quantification of S-glutathionylation across different conditions. Briefly, this approach consists of initial blocking of free thiols by alkylation, selective reduction of glutathionylated thiols and covalent capture of reduced thiols using thiol affinity resins, followed by on-resin tryptic digestion and isobaric labeling with iTRAQ (isobaric tags for relative and absolute quantitation) for MS-based identification and quantification. The overall approach was initially validated by application to RAW 264.7 mouse macrophages treated with different doses of diamide to induce glutathionylation. A total of 1071 Cys-sites from 690 proteins were identified in response to diamide treatment, with ~90% of the sites displaying >2-fold increases in SSG-modification compared to controls. This approach was extended to identify potential SSG- modified Cys-sites in response to H2O2, an endogenous oxidant produced by activated macrophages and many pathophysiological stimuli. The results revealed 364 Cys-sites from 265 proteins that were sensitive to S-glutathionylation in response to H2O2 treatment, thus providing a database of proteins and Cys-sites susceptible to this modification under oxidative stress. Functional analysis revealed that the most significantly enriched molecular function categories for proteins sensitive to SSG modifications were free radical scavenging and cell death/survival. Overall the results demonstrate that our approach is effective for site-specific identification and quantification of SSG-modified proteins. The analytical strategy also provides a unique approach to determining the major pathways and cellular processes most susceptible

  4. Proteomic Identification and Quantification of S-glutathionylation in Mouse Macrophages Using Resin-Assisted Enrichment and Isobaric Labeling

    SciTech Connect

    Su, Dian; Gaffrey, Matthew J.; Guo, Jia; Hatchell, Kayla E.; Chu, Rosalie K.; Clauss, Therese RW; Aldrich, Joshua T.; Wu, Si; Purvine, Samuel O.; Camp, David G.; Smith, Richard D.; Thrall, Brian D.; Qian, Weijun

    2014-02-11

    Protein S-glutathionylation (SSG) is an important regulatory posttranslational modification of protein cysteine (Cys) thiol redox switches, yet the role of specific cysteine residues as targets of modification is poorly understood. We report a novel quantitative mass spectrometry (MS)-based proteomic method for site-specific identification and quantification of S-glutathionylation across different conditions. Briefly, this approach consists of initial blocking of free thiols by alkylation, selective reduction of glutathionylated thiols and enrichment using thiol affinity resins, followed by on-resin tryptic digestion and isobaric labeling with iTRAQ (isobaric tags for relative and absolute quantitation) for MS-based identification and quantification. The overall approach was validated by application to RAW 264.7 mouse macrophages treated with different doses of diamide to induce glutathionylation. A total of 1071 Cys-sites from 690 proteins were identified in response to diamide treatment, with ~90% of the sites displaying >2-fold increases in SSG-modification compared to controls.. This approach was extended to identify potential SSG modified Cys-sites in response to H2O2, an endogenous oxidant produced by activated macrophages and many pathophysiological stimuli. The results revealed 364 Cys-sites from 265 proteins that were sensitive to S-glutathionylation in response to H2O2 treatment. These proteins covered a range of molecular types and molecular functions with free radical scavenging, and cell death and survival included as the most significantly enriched functional categories. Overall the results demonstrate that our approach is effective for site-specific identification and quantification of S-glutathionylated proteins. The analytical strategy also provides a unique approach to determining the major pathways and cell processes most susceptible to glutathionylation at a proteome-wide scale.

  5. Equilibrium Constants You Can Smell.

    ERIC Educational Resources Information Center

    Anderson, Michael; Buckley, Amy

    1996-01-01

    Presents a simple experiment involving the sense of smell that students can accomplish during a lecture. Illustrates the important concepts of equilibrium along with the acid/base properties of various ions. (JRH)

  6. Equilibrium and Orientation in Cephalopods.

    ERIC Educational Resources Information Center

    Budelmann, Bernd-Ulrich

    1980-01-01

    Describes the structure of the equilibrium receptor system in cephalopods, comparing it to the vertebrate counterpart--the vestibular system. Relates the evolution of this complex system to the competition of cephalopods with fishes. (CS)

  7. Simulations for Teaching Chemical Equilibrium

    NASA Astrophysics Data System (ADS)

    Huddle, Penelope A.; White, Margaret Dawn; Rogers, Fiona

    2000-07-01

    This paper outlines a systematic approach to teaching chemical equilibrium using simulation experiments that address most known alternate conceptions in the topic. Graphs drawn using the data from the simulations are identical to those obtained using real experimental data for reactions that go to equilibrium. This allows easy mapping of the analogy to the target. The requirements for the simulations are simple and inexpensive, making them accessible to even the poorest schools. The simulations can be adapted for all levels, from pupils who are first encountering equilibrium through students in tertiary education to qualified teachers who have experienced difficulty in teaching the topic. The simulations were piloted on four very different audiences. Minor modifications were then made before the Equilibrium Games as reported in this paper were tested on three groups of subjects: a Grade 12 class, college students, and university Chemistry I students. Marked improvements in understanding of the concept were shown in two of the three sets of subjects.

  8. Liquid-vapor relations for the system NaCl-H2O: summary of the P-T- x surface from 300° to 500°C

    USGS Publications Warehouse

    Bischoff, J.L.; Pitzer, Kenneth S.

    1989-01-01

    Experimental data on the vapor-liquid equilibrium relations for the system NaCl-H2O were compiled and compared in order to provide an improved estimate of the P-T-x surface between 300° to 500°C, a range for which the system changes from subcritical to critical behavior. Data for the three-phase curve (halite + liquid + vapor) and the NaCl-H2O critical curve were evaluated, and the best fits for these extrema then were used to guide selection of best fit for isothermal plots for the vapor-liquid region in-between. Smoothing was carried out in an iterative procedure by replotting the best-fit data as isobars and then as isopleths, until an internally consistent set of data was obtained. The results are presented in table form that will have application to theoretical modelling and to the understanding of two-phase behavior in saline geothermal systems.

  9. Edge equilibrium code for tokamaks

    SciTech Connect

    Li, Xujing; Drozdov, Vladimir V.

    2014-01-15

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids.

  10. A search for equilibrium states

    NASA Technical Reports Server (NTRS)

    Zeleznik, F. J.

    1982-01-01

    An efficient search algorithm is described for the location of equilibrium states in a search set of states which differ from one another only by the choice of pure phases. The algorithm has three important characteristics: (1) it ignores states which have little prospect for being an improved approximation to the true equilibrium state; (2) it avoids states which lead to singular iteration equations; (3) it furnishes a search history which can provide clues to alternative search paths.

  11. Relevance of equilibrium in multifragmentation

    SciTech Connect

    Furuta, Takuya; Ono, Akira

    2009-01-15

    The relevance of equilibrium in a multifragmentation reaction of very central {sup 40}Ca + {sup 40}Ca collisions at 35 MeV/nucleon is investigated by using simulations of antisymmetrized molecular dynamics (AMD). Two types of ensembles are compared. One is the reaction ensemble of the states at each reaction time t in collision events simulated by AMD, and the other is the equilibrium ensemble prepared by solving the AMD equation of motion for a many-nucleon system confined in a container for a long time. The comparison of the ensembles is performed for the fragment charge distribution and the excitation energies. Our calculations show that there exists an equilibrium ensemble that well reproduces the reaction ensemble at each reaction time t for the investigated period 80{<=}t{<=}300 fm/c. However, there are some other observables that show discrepancies between the reaction and equilibrium ensembles. These may be interpreted as dynamical effects in the reaction. The usual static equilibrium at each instant is not realized since any equilibrium ensemble with the same volume as that of the reaction system cannot reproduce the fragment observables.

  12. Shape characteristics of equilibrium and non-equilibrium fractal clusters.

    PubMed

    Mansfield, Marc L; Douglas, Jack F

    2013-07-28

    It is often difficult in practice to discriminate between equilibrium and non-equilibrium nanoparticle or colloidal-particle clusters that form through aggregation in gas or solution phases. Scattering studies often permit the determination of an apparent fractal dimension, but both equilibrium and non-equilibrium clusters in three dimensions frequently have fractal dimensions near 2, so that it is often not possible to discriminate on the basis of this geometrical property. A survey of the anisotropy of a wide variety of polymeric structures (linear and ring random and self-avoiding random walks, percolation clusters, lattice animals, diffusion-limited aggregates, and Eden clusters) based on the principal components of both the radius of gyration and electric polarizability tensor indicates, perhaps counter-intuitively, that self-similar equilibrium clusters tend to be intrinsically anisotropic at all sizes, while non-equilibrium processes such as diffusion-limited aggregation or Eden growth tend to be isotropic in the large-mass limit, providing a potential means of discriminating these clusters experimentally if anisotropy could be determined along with the fractal dimension. Equilibrium polymer structures, such as flexible polymer chains, are normally self-similar due to the existence of only a single relevant length scale, and are thus anisotropic at all length scales, while non-equilibrium polymer structures that grow irreversibly in time eventually become isotropic if there is no difference in the average growth rates in different directions. There is apparently no proof of these general trends and little theoretical insight into what controls the universal anisotropy in equilibrium polymer structures of various kinds. This is an obvious topic of theoretical investigation, as well as a matter of practical interest. To address this general problem, we consider two experimentally accessible ratios, one between the hydrodynamic and gyration radii, the other

  13. Drop tower experiment for performance evaluation of gas-liquid equilibrium thruster for small spacecraft

    NASA Astrophysics Data System (ADS)

    Motooka, Norizumi; Yamamoto, Takayuki; Mori, Osamu; Okano, Yoshinobu; Kishino, Yoshihiro; Kawaguchi, Junichiro

    JAXA/ISAS is developing the gas-liquid equilibrium thruster for a small spacecraft. In small spacecrafts, the thruster system must be simple and its weight must be light. This thruster system uses HFC-134a (1,1,1,2-tetrafluoroethane) , a kind of liquefied gas, as propellant because of its harmlessness and ease of handling. And this thruster stores propellant as liquid in the tank and ejects propellant as gas using the gas-liquid equilibrium pressure to produce thrust, so the propellant tank only needs to resist the vapor pressure of propellant. In this thruster system, the porous metal is also equipped in the tank for the following performance advantages: (1) liquid fuel retention: The porous metal reduces sloshing problems which cause bad effects on spacecraft attitude by retaining liquid propellant inside the porous metal: (2) vapor-liquid separation: The porous metal also helps propellant separate gas from liquid by advancing propellant vaporization on its large surface area and retaining liquid propellant using its surface tension. In last autumn, we carried out the experiment to evaluate these two advantages of porous metal under micro gravity condition using 50 meters drop tower in Hokkaido, Japan. The system of this experiment divides into two different systems. The first one evaluates liquid propellant retention performance by adding disturbance to liquid propellant absorbed in porous metal. The disturbance is centrifugal force and angular acceleration worked on the liquid propellant by rotating propellant tank controlled by motor. A high speed camera records the behavior of the liquid propellant. The other one evaluates the ability of gas-liquid separation on the case of propellant ejection. In this evaluation, the parameters are full filling porous metal or some ullage in the tank, nozzle diameters and the filling ratio of liquid propellant in the tank. As for (1) liquid fuel retention, in all conducted cases without propellant ejection, liquid propellant

  14. Tuning universality far from equilibrium

    PubMed Central

    Karl, Markus; Nowak, Boris; Gasenzer, Thomas

    2013-01-01

    Possible universal dynamics of a many-body system far from thermal equilibrium are explored. A focus is set on meta-stable non-thermal states exhibiting critical properties such as self-similarity and independence of the details of how the respective state has been reached. It is proposed that universal dynamics far from equilibrium can be tuned to exhibit a dynamical transition where these critical properties change qualitatively. This is demonstrated for the case of a superfluid two-component Bose gas exhibiting different types of long-lived but non-thermal critical order. Scaling exponents controlled by the ratio of experimentally tuneable coupling parameters offer themselves as natural smoking guns. The results shed light on the wealth of universal phenomena expected to exist in the far-from-equilibrium realm. PMID:23928853

  15. Neutron-skin effects in isobaric yield ratios for mirror nuclei in a statistical abrasion-ablation model

    NASA Astrophysics Data System (ADS)

    Ma, Chun-Wang; Wei, Hui-Ling; Ma, Yu-Gang

    2013-10-01

    Background: The isobaric yield ratio for mirror nuclei [IYR(m)] in heavy-ion collisions, which is assumed to depend linearly on x=2(Z-1)/A1/3 of a fragment, is applied to study some coefficients of the energy terms in the binding energy, as well as the difference between the chemical potentials of a neutron and proton. It is found that the IYR(m) has a systematic dependence on the reaction, which has been explained as the volume and/or the isospin effects in previous studies. However, neither the volume nor the isospin effects can fully interpret the data.Purpose: We suppose that the IYR(m) depends on the neutron-skin thickness (δnp) of the projectile, and check the idea of whether the neutron-skin thickness effects can fully explain the systematic dependence of the IYR(m).Methods: A modified statistical abrasion-ablation model is used to calculate the reactions induced by projectiles of three series: (1) the calcium isotopes from 36Ca to 56Ca as projectiles with different limitations on the impact parameters (bmax) to show the volume effects according to bmax; (2) the A=45 isobars as the projectiles having different isospins and δnp; and (3) projectiles having similar δnp to show whether the IYR(m) depends on the volume or the isospin of the projectile.Results: The IYR(m) shows a distribution of a linear part in the small-x fragments, and a nonlinear part in the large-x fragments. The linear part of IYR(m) is fitted. (1) In the calcium isotopic reactions, the IYR(m) depends on the isospin or the volume of the projectile, but δnp greatly influences the nonlinear part of the IYR(m). The IYR(m) does not depend on the colliding source in reactions of small bmax for the nonneutron-rich projectiles, and does not depend on the collision sources in reactions by the neutron-rich projectiles. (2) In reactions of the A=45 isobars, though IYR(m) depends on the isospin of projectile, IYR(m) shows small dependence on isospin if δnp>0. (3) In the reactions of projectiles

  16. Adiabatic evolution of plasma equilibrium

    PubMed Central

    Grad, H.; Hu, P. N.; Stevens, D. C.

    1975-01-01

    A new theory of plasma equilibrium is introduced in which adiabatic constraints are specified. This leads to a mathematically nonstandard structure, as compared to the usual equilibrium theory, in which prescription of pressure and current profiles leads to an elliptic partial differential equation. Topologically complex configurations require further generalization of the concept of adiabaticity to allow irreversible mixing of plasma and magnetic flux among islands. Matching conditions across a boundary layer at the separatrix are obtained from appropriate conservation laws. Applications are made to configurations with planned islands (as in Doublet) and accidental islands (as in Tokamaks). Two-dimensional, axially symmetric, helically symmetric, and closed line equilibria are included. PMID:16578729

  17. Equilibrium in a Production Economy

    SciTech Connect

    Chiarolla, Maria B.; Haussmann, Ulrich G.

    2011-06-15

    Consider a closed production-consumption economy with multiple agents and multiple resources. The resources are used to produce the consumption good. The agents derive utility from holding resources as well as consuming the good produced. They aim to maximize their utility while the manager of the production facility aims to maximize profits. With the aid of a representative agent (who has a multivariable utility function) it is shown that an Arrow-Debreu equilibrium exists. In so doing we establish technical results that will be used to solve the stochastic dynamic problem (a case with infinite dimensional commodity space so the General Equilibrium Theory does not apply) elsewhere.

  18. Chemical Principles Revisited: Using the Equilibrium Concept.

    ERIC Educational Resources Information Center

    Mickey, Charles D., Ed.

    1981-01-01

    Discusses the concept of equilibrium in chemical systems, particularly in relation to predicting the position of equilibrium, predicting spontaneity of a reaction, quantitative applications of the equilibrium constant, heterogeneous equilibrium, determination of the solubility product constant, common-ion effect, and dissolution of precipitates.…

  19. Equilibrium Principles: A Game for Students

    NASA Astrophysics Data System (ADS)

    Edmonson, Lionel J., Jr.; Lewis, Don L.

    1999-04-01

    The laboratory exercise is a game using marked sugar cubes as dice. The game emphasizes the dynamic character of equilibrium. Forward and reverse rate-constant values are used to calculate an equilibrium constant and to predict equilibrium populations. Predicted equilibrium populations are compared with experimental results.

  20. Magnetospheric equilibrium with anisotropic pressure

    SciTech Connect

    Cheng, C.Z.

    1991-07-01

    Self-consistent magnetospheric equilibrium with anisotropic pressure is obtained by employing an iterative metric method for solving the inverse equilibrium equation in an optimal flux coordinate system. A method of determining plasma parallel and perpendicular pressures from either analytic particle distribution or particle distribution measured along the satellite's path is presented. The numerical results of axisymmetric magnetospheric equilibrium including the effects of finite beta, pressure anisotropy, and boundary conditions are presented for a bi-Maxwellian particle distribution. For the isotropic pressure cases, the finite beta effect produces an outward expansion of the constant magnetic flux surfaces in relation to the dipole field lines, and along the magnetic field the toroidal ring current is maximum at the magnetic equator. The effect of pressure anisotropy is found to further expand the flux surfaces outward. Along the magnetic field lines the westward ring current can be peak away from the equator due to an eastward current contribution resulting from pressure anisotropy. As pressure anisotropy increases, the peak westward current can become more singular. The outer boundary flux surface has significant effect on the magnetospheric equilibrium. For the outer flux boundary resembling dayside compressed flux surface due to solar wind pressure, the deformation of the magnetic field can be quite different from that for the outer flux boundary resembling the tail-like surface. 23 refs., 17 figs.

  1. Thermodynamic theory of equilibrium fluctuations

    SciTech Connect

    Mishin, Y.

    2015-12-15

    The postulational basis of classical thermodynamics has been expanded to incorporate equilibrium fluctuations. The main additional elements of the proposed thermodynamic theory are the concept of quasi-equilibrium states, a definition of non-equilibrium entropy, a fundamental equation of state in the entropy representation, and a fluctuation postulate describing the probability distribution of macroscopic parameters of an isolated system. Although these elements introduce a statistical component that does not exist in classical thermodynamics, the logical structure of the theory is different from that of statistical mechanics and represents an expanded version of thermodynamics. Based on this theory, we present a regular procedure for calculations of equilibrium fluctuations of extensive parameters, intensive parameters and densities in systems with any number of fluctuating parameters. The proposed fluctuation formalism is demonstrated by four applications: (1) derivation of the complete set of fluctuation relations for a simple fluid in three different ensembles; (2) fluctuations in finite-reservoir systems interpolating between the canonical and micro-canonical ensembles; (3) derivation of fluctuation relations for excess properties of grain boundaries in binary solid solutions, and (4) derivation of the grain boundary width distribution for pre-melted grain boundaries in alloys. The last two applications offer an efficient fluctuation-based approach to calculations of interface excess properties and extraction of the disjoining potential in pre-melted grain boundaries. Possible future extensions of the theory are outlined.

  2. Understanding Thermal Equilibrium through Activities

    ERIC Educational Resources Information Center

    Pathare, Shirish; Huli, Saurabhee; Nachane, Madhura; Ladage, Savita; Pradhan, Hemachandra

    2015-01-01

    Thermal equilibrium is a basic concept in thermodynamics. In India, this concept is generally introduced at the first year of undergraduate education in physics and chemistry. In our earlier studies (Pathare and Pradhan 2011 "Proc. episteme-4 Int. Conf. to Review Research on Science Technology and Mathematics Education" pp 169-72) we…

  3. Charge-Exchange Excitation of the Isobaric Analog State and Implication for the Nuclear Symmetry Energy and Neutron Skin

    NASA Astrophysics Data System (ADS)

    Khoa, Dao T.; Loc, Bui Minh; Zegers, R. G. T.

    The charge-exchange (p, n) or (3He,t) reaction can be considered as elastic scattering of proton or 3He by the isovector term of the optical potential that flips the projectile isospin. Therefore, the accurately measured charge-exchange scattering cross section for the isobaric analog states can be a good probe of the isospin dependence of the optical potential, which is determined exclusively within the folding model by the difference between the neutron and proton densities and isospin dependence of the nucleon-nucleon interaction. On the other hand, the same isospin- and density-dependent nucleon-nucleon interaction can also be used in a Hartree-Fock calculation of asymmetric nuclear matter, to estimate the nuclear matter energy and its asymmetry part. As a result, the fine-tuning of the isospin dependence of the effective nucleon-nucleon interaction against the measured (p, n) or (3He,t) cross sections should allow us to make some realistic prediction of the nuclear symmetry energy and its density dependence. Moreover, given the neutron skin of the target related directly to the neutron-proton difference of the ground-state density, it can be well probed in the analysis of the charge-exchange (3He,t) reactions at medium energies when the two-step processes can be neglected and the t-matrix interaction can be used in the folding calculation.

  4. Quantitative Analysis of Single Amino Acid Variant Peptides Associated with Pancreatic Cancer in Serum by an Isobaric Labeling Quantitative Method

    PubMed Central

    2015-01-01

    Single amino acid variations are highly associated with many human diseases. The direct detection of peptides containing single amino acid variants (SAAVs) derived from nonsynonymous single nucleotide polymorphisms (SNPs) in serum can provide unique opportunities for SAAV associated biomarker discovery. In the present study, an isobaric labeling quantitative strategy was applied to identify and quantify variant peptides in serum samples of pancreatic cancer patients and other benign controls. The largest number of SAAV peptides to date in serum including 96 unique variant peptides were quantified in this quantitative analysis, of which five variant peptides showed a statistically significant difference between pancreatic cancer and other controls (p-value < 0.05). Significant differences in the variant peptide SDNCEDTPEAGYFAVAVVK from serotransferrin were detected between pancreatic cancer and controls, which was further validated by selected reaction monitoring (SRM) analysis. The novel biomarker panel obtained by combining α-1-antichymotrypsin (AACT), Thrombospondin-1 (THBS1) and this variant peptide showed an excellent diagnostic performance in discriminating pancreatic cancer from healthy controls (AUC = 0.98) and chronic pancreatitis (AUC = 0.90). These results suggest that large-scale analysis of SAAV peptides in serum may provide a new direction for biomarker discovery research. PMID:25393578

  5. Multichannel study on the fragmentation of the 1g9/2 isobaric analog resonance in 53Mn

    NASA Astrophysics Data System (ADS)

    Sziklai, J.; Cameron, J. A.; Szöghy, I. M.; Vass, T.

    1994-02-01

    Fragments of the 1g9/2 isobaric analog resonance in 53Mn corresponding to the 3.715 MeV state (Sn=0.57) in 53Cr were located using the 52Cr(p,p0), 52Cr(p,p1), 52Cr(p,p1γ), 52Cr(p,p2γ), and 52Cr(p,γ)53Mn reactions. Differential cross sections were measured in the 4.06-4.28 MeV, and the γ-excitation curves in the 4.04-4.35 MeV proton energy region. Spins, parities, and partial widths were determined with the aid of R-matrix analysis for all resonances observed in the region. The spins of the 1g9/2 resonance fragments were found independently from (p,p1γ), (p,p2γ), and (p,γ) angular distribution measurements and their analyses. Nineteen fragments were identified and their γ-branching ratios to low lying levels of 53Mn were also deduced. Partial widths for each fragment in all four channels were derived. Channel-channel correlations were calculated. Fine structure analyses were carried out in all open channels. Inelastic spectroscopic factors and Coulomb displacement energy for the 1g9/2 state were also derived.

  6. Extracting survival parameters from isothermal, isobaric, and "iso-concentration" inactivation experiments by the "3 end points method".

    PubMed

    Corradini, M G; Normand, M D; Newcomer, C; Schaffner, D W; Peleg, M

    2009-01-01

    Theoretically, if an organism's resistance can be characterized by 3 survival parameters, they can be found by solving 3 simultaneous equations that relate the final survival ratio to the lethal agent's intensity. (For 2 resistance parameters, 2 equations will suffice.) In practice, the inevitable experimental scatter would distort the results of such a calculation or render the method unworkable. Averaging the results obtained with more than 3 final survival ratio triplet combinations, determined in four or more treatments, can remove this impediment. This can be confirmed by the ability of a kinetic inactivation model derived from the averaged parameters to predict survival patterns under conditions not employed in their determination, as demonstrated with published isothermal survival data of Clostridium botulinum spores, isobaric data of Escherichia coli under HPP, and Pseudomonas exposed to hydrogen peroxide. Both the method and the underlying assumption that the inactivation followed a Weibull-Log logistic (WeLL) kinetics were confirmed in this way, indicating that when an appropriate survival model is available, it is possible to predict the entire inactivation curves from several experimental final survival ratios alone. Where applicable, the method could simplify the experimental procedure and lower the cost of microbial resistance determinations. In principle, the methodology can be extended to deteriorative chemical reactions if they too can be characterized by 2 or 3 kinetic parameters.

  7. Revalidation of the isobaric multiplet mass equation for the A=20 quintet

    SciTech Connect

    Glassman, B. E.; Pérez-Loureiro, D.; Wrede, C.; Allen, J.; Bardayan, D. W.; Bennett, M. B.; Brown, B. A.; Chipps, K. A.; Febbraro, M.; Fry, C.; Hall, M. R.; Hall, O.; Liddick, S. N.; O'Malley, P.; Ong, W.; Pain, S. D.; Schwartz, S. B.; Shidling, P.; Sims, H.; Thompson, P.; Zhang, H.

    2015-10-29

    An unexpected breakdown of the isobaric multiplet mass equation in the A = 20, T = 2 quintet was recently reported, presenting a challenge to modern theories of nuclear structure. In the present work, the excitation energy of the lowest T = 2 state in Na-20 has been measured to be 6498.4 +/- 0.2stat ± 0.4syst keV by using the superallowed 0+ → 0+ beta decay of Mg-20 to access it and an array of high-purity germanium detectors to detect its gamma-ray deexcitation. This value differs by 27 keV (1.9 standard deviations) from the recommended value of 6525 ± 14 keV and is a factor of 28 more precise. The isobaric multiplet mass equation is shown to be revalidated when the new value is adopted.

  8. Spectroscopy of {sup 20}Mg: The isobaric mass multiplet equation for the 2{sup +} states of the A=20, T=2 quintet and distant mirror nuclei

    SciTech Connect

    Gade, A.; Bowen, M. D.; Brown, B. A.; Campbell, C. M.; Cook, J. M.; Glasmacher, T.; McDaniel, S.; Siwek, K.; Adrich, P.; Bazin, D.; Obertelli, A.; Weisshaar, D.; Hosier, K.; McGlinchery, D.; Riley, L. A.

    2007-08-15

    We report on the first determination of the 2{sub 1}{sup +} energy of {sup 20}Mg, the most neutron-deficient Mg isotope known to exist. The result, E(2{sub 1}{sup +})=1598(10) keV, obtained from in-beam {gamma}-ray spectroscopy following the two-neutron removal from a {sup 22}Mg secondary beam, is discussed in the framework of the isobaric mass multiplet equation (IMME). Resulting predictions for the excitation energies of the T=2,2{sup +} states in the {sup 20}F and {sup 20}Na isobars are presented. The mirror energy difference, E(2{sub 1}{sup +},{sup 20}Mg)-E(2{sub 1}{sup +},{sup 20}O)=-77(10) keV, is compared to a recent prediction within the nuclear shell model based on the 'USD'm - gap Z14<'' modification of the universal sd (USD) effective interaction.

  9. Identification of the Lowest T =2 , Jπ=0+ Isobaric Analog State in 52Co and Its Impact on the Understanding of β -Decay Properties of 52Ni

    NASA Astrophysics Data System (ADS)

    Xu, X.; Zhang, P.; Shuai, P.; Chen, R. J.; Yan, X. L.; Zhang, Y. H.; Wang, M.; Litvinov, Yu. A.; Xu, H. S.; Bao, T.; Chen, X. C.; Chen, H.; Fu, C. Y.; Kubono, S.; Lam, Y. H.; Liu, D. W.; Mao, R. S.; Ma, X. W.; Sun, M. Z.; Tu, X. L.; Xing, Y. M.; Yang, J. C.; Yuan, Y. J.; Zeng, Q.; Zhou, X.; Zhou, X. H.; Zhan, W. L.; Litvinov, S.; Blaum, K.; Audi, G.; Uesaka, T.; Yamaguchi, Y.; Yamaguchi, T.; Ozawa, A.; Sun, B. H.; Sun, Y.; Dai, A. C.; Xu, F. R.

    2016-10-01

    Masses of 52g,52mCo were measured for the first time with an accuracy of ˜10 keV , an unprecedented precision reached for short-lived nuclei in the isochronous mass spectrometry. Combining our results with the previous β -γ measurements of 52Ni, the T =2 , Jπ=0+ isobaric analog state (IAS) in 52Co was newly assigned, questioning the conventional identification of IASs from the β -delayed proton emissions. Using our energy of the IAS in 52Co, the masses of the T =2 multiplet fit well into the isobaric multiplet mass equation. We find that the IAS in 52Co decays predominantly via γ transitions while the proton emission is negligibly small. According to our large-scale shell model calculations, this phenomenon has been interpreted to be due to very low isospin mixing in the IAS.

  10. Effect of isobaric breathing gas shifts from air to heliox mixtures on resolution of air bubbles in lipid and aqueous tissues of recompressed rats.

    PubMed

    Hyldegaard, O; Kerem, D; Melamed, Y

    2011-09-01

    Deep tissue isobaric counterdiffusion that may cause unwanted bubble formation or transient bubble growth has been referred to in theoretical models and demonstrated by intravascular gas formation in animals, when changing inert breathing gas from nitrogen to helium after hyperbaric air breathing. We visually followed the in vivo resolution of extravascular air bubbles injected at 101 kPa into nitrogen supersaturated rat tissues: adipose, spinal white matter, skeletal muscle or tail tendon. Bubbles were observed during isobaric breathing-gas shifts from air to normoxic (80:20) heliox mixture while at 285 kPa or following immediate recompression to either 285 or 405 kPa, breathing 80:20 and 50:50 heliox mixtures. During the isobaric shifts, some bubbles in adipose tissue grew marginally for 10-30 min, subsequently they shrank and disappeared at a rate similar to or faster than during air breathing. No such bubble growth was observed in spinal white matter, skeletal muscle or tendon. In spinal white matter, an immediate breathing gas shift after the hyperbaric air exposure from air to both (80:20) and (50:50) heliox, coincident with recompression to either 285 or 405 kPa, caused consistent shrinkage of all air bubbles, until they disappeared from view. Deep tissue isobaric counterdiffusion may cause some air bubbles to grow transiently in adipose tissue. The effect is marginal and of no clinical consequence. Bubble disappearance rate is faster with heliox breathing mixtures as compared to air. We see no reason for reservations in the use of heliox breathing during treatment of air-diving-induced decompression sickness.

  11. Non-Equilibrium Properties from Equilibrium Free Energy Calculations

    NASA Technical Reports Server (NTRS)

    Pohorille, Andrew; Wilson, Michael A.

    2012-01-01

    Calculating free energy in computer simulations is of central importance in statistical mechanics of condensed media and its applications to chemistry and biology not only because it is the most comprehensive and informative quantity that characterizes the eqUilibrium state, but also because it often provides an efficient route to access dynamic and kinetic properties of a system. Most of applications of equilibrium free energy calculations to non-equilibrium processes rely on a description in which a molecule or an ion diffuses in the potential of mean force. In general case this description is a simplification, but it might be satisfactorily accurate in many instances of practical interest. This hypothesis has been tested in the example of the electrodiffusion equation . Conductance of model ion channels has been calculated directly through counting the number of ion crossing events observed during long molecular dynamics simulations and has been compared with the conductance obtained from solving the generalized Nernst-Plank equation. It has been shown that under relatively modest conditions the agreement between these two approaches is excellent, thus demonstrating the assumptions underlying the diffusion equation are fulfilled. Under these conditions the electrodiffusion equation provides an efficient approach to calculating the full voltage-current dependence routinely measured in electrophysiological experiments.

  12. The significance of monoisotopic and carbon-13 isobars for the identification of a 19-component dodecapeptide library by positive ion electrospray Fourier transform ion cyclotron resonance mass spectrometry.

    PubMed

    Ramjit, H G; Kruppa, G H; Spier, J P; Ross, C W; Garsky, V M

    2000-01-01

    Harnessing the ultra high resolution capabilities of Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and positive ion electrospray, we have demonstrated the significance and utility of cumulative mass defect high resolution mass separation stable isotope distribution, exact mass measurement and elemental formula as a means of simultaneously identifying 19 components of the dodecapeptide library Ac-ANKISYQS[X]STE-NH(2). With an instrument resolution of 275 000 (average), isobaric multiplets attributed to monoisotopic and carbon-13 components of peptides: Ac approximately SLS approximately NH(2); Ac approximately SNS approximately NH(2); Ac approximately SOS approximately NH(2); Ac approximately SDS approximately NH(2); within the mass window of 1380-1385 Da, and Ac approximately SQS approximately NH(2); Ac approximately SKS approximately NH(2); Ac approximately SES approximately NH(2); Ac approximately SMS approximately NH(2), within the mass window 1395-1400 Da, were mass resolved, accurately mass measured and identified from the computed molecular formulas. This experimental procedure enabled the separation of monoisotopic and carbon-13 isobars yielding enhanced selectivity and specificity and serves to illustrate the significance of monoisotopic and carbon-13 isobars in final product analysis. Chromatographic separation (HPLC) was of limited utility except for monitoring the overall extent of reaction and apparent product distribution. Positive ion electrospray-FTICR-MS and fast atom bombardment (FAB) MS were used to assess final product quality and apparent component distribution.

  13. Korshunov instantons out of equilibrium

    NASA Astrophysics Data System (ADS)

    Titov, M.; Gutman, D. B.

    2016-04-01

    Zero-dimensional dissipative action possesses nontrivial minima known as Korshunov instantons. They have been known so far only for imaginary time representation that is limited to equilibrium systems. In this work we reconstruct and generalise Korshunov instantons using real-time Keldysh approach. This allows us to formulate the dissipative action theory for generic nonequilibrium conditions. Possible applications of the theory to transport in strongly biased quantum dots are discussed.

  14. Local equilibrium in bird flocks

    NASA Astrophysics Data System (ADS)

    Mora, Thierry; Walczak, Aleksandra M.; Del Castello, Lorenzo; Ginelli, Francesco; Melillo, Stefania; Parisi, Leonardo; Viale, Massimiliano; Cavagna, Andrea; Giardina, Irene

    2016-12-01

    The correlated motion of flocks is an example of global order emerging from local interactions. An essential difference with respect to analogous ferromagnetic systems is that flocks are active: animals move relative to each other, dynamically rearranging their interaction network. This non-equilibrium characteristic has been studied theoretically, but its impact on actual animal groups remains to be fully explored experimentally. Here, we introduce a novel dynamical inference technique, based on the principle of maximum entropy, which accommodates network rearrangements and overcomes the problem of slow experimental sampling rates. We use this method to infer the strength and range of alignment forces from data of starling flocks. We find that local bird alignment occurs on a much faster timescale than neighbour rearrangement. Accordingly, equilibrium inference, which assumes a fixed interaction network, gives results consistent with dynamical inference. We conclude that bird orientations are in a state of local quasi-equilibrium over the interaction length scale, providing firm ground for the applicability of statistical physics in certain active systems.

  15. X-ray continuum as a measure of pressure and fuel–shell mix in compressed isobaric hydrogen implosion cores

    SciTech Connect

    Epstein, R.; Goncharov, V. N.; Marshall, F. J.; Betti, R.; Nora, R.; Christopherson, A. R.; Golovkin, I. E.; MacFarlane, J. J.

    2015-02-01

    Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus’kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolved core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion’s central hot spot, the hot-spot “fuel–shell” mix mass can be inferred.

  16. X-ray continuum as a measure of pressure and fuel–shell mix in compressed isobaric hydrogen implosion cores

    SciTech Connect

    Epstein, R.; Goncharov, V. N.; Marshall, F. J.; Betti, R.; Nora, R.; Christopherson, A. R.; Golovkin, I. E.; MacFarlane, J. J.

    2015-02-15

    Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus'kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolved core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion's central hot spot, the hot-spot “fuel–shell” mix mass can be inferred.

  17. Quantitative analysis of human cerebrospinal fluid proteins using a combination of cysteine tagging and amine-reactive isobaric labeling.

    PubMed

    Giron, Priscille; Dayon, Loïc; Turck, Natacha; Hoogland, Christine; Sanchez, Jean-Charles

    2011-01-07

    Highly complex and dynamic protein mixtures are hardly comprehensively resolved by direct shotgun proteomic analysis. As many proteins of biological interest are of low abundance, numerous analytical methodologies have been developed to reduce sample complexity and go deeper into proteomes. The present work describes an analytical strategy to perform cysteinyl-peptide subset enrichment and relative quantification through successive cysteine and amine-isobaric tagging. A cysteine-reactive covalent capture tag (C³T) allowed derivatization of cysteines and specific isolation on a covalent capture (CC) resin. The 6-plex amine-reactive tandem mass tags (TMT) served for relative quantification of the targeted peptides. The strategy was first evaluated on a model protein mixture with increasing concentrations to assess the specificity of the enrichment and the quantitative performances of the workflow. It was then applied to human cerebrospinal fluid (CSF) from post-mortem and ante-mortem samples. These studies confirmed the specificity of the C³T and the CC technique to cysteine-containing peptides. The model protein mixture analysis showed high precision and accuracy of the quantification with coefficients of variation and mean absolute errors of less than 10% on average. The CSF experiments demonstrated the potential of the strategy to study complex biological samples and identify differential brain-related proteins. In addition, the quantification data were highly correlated with a classical TMT experiment (i.e., without C³T cysteine-tagging and enrichment steps). Altogether, these results legitimate the use of this quantitative C³T strategy to enrich and relatively quantify cysteine-containing peptides in complex mixtures.

  18. Differential proteomics analysis of liver failure in peripheral blood mononuclear cells using isobaric tags for relative and absolute quantitation

    PubMed Central

    Lin, Hua; Tan, Qiu-Pei; Sui, Wei-Guo; Chen, Wen-Biao; Peng, Wu-Jian; Liu, Xing-Chao; Dai, Yong

    2017-01-01

    The aim of the present study was to examine differentially expressed proteome profiles for candidate biomarkers in peripheral blood mononuclear cells (PBMCs) of liver failure (LF) patients. Ten patients were diagnosed as LF and 10 age- and gender-matched subjects were recruited as healthy controls. Isobaric tags for relative and absolute quantitation (iTRAQ)-based quantitative proteomic technology is efficiently applicable for identification and relative quantitation of the proteomes of PBMCs. Eight-plex iTRAQ coupled with strong cation exchange chromatography, and liquid chromatography coupled with tandem mass spectrometry were used to analyze total proteins in LF patients and healthy control subjects. Molecular variations were detected using the iTRAQ method, and western blotting was used to verify the results. LF is a complex type of medical emergency that evolves following a catastrophic insult to the liver, and its outcome remains the most ominous of all gastroenterologic diseases. Serious complications tend to occur during the course of the disease and further exacerbate the problems. Using the iTRAQ method, differentially expressed proteome profiles of LF patients were determined. In the present study, 627 proteins with different expression levels were identified in LF patients compared with the control subjects; with 409 proteins upregulated and 218 proteins downregulated. Among them, four proteins were significantly differentially expressed; acylaminoacyl-peptide hydrolase and WW domain binding protein 2 were upregulated, and resistin and tubulin β 2A class IIa were downregulated. These proteins demonstrated differences in their expression levels compared with other proteins with normal expression levels and the significant positive correlation with LF. The western blot results were consistent with the results from iTRAQ. Thus, investigation of the molecular mechanism of the proteins involved in LF may facilitate an improved understanding of the

  19. Light-front representation of chiral dynamics with Δ isobar and large-Nc relations

    SciTech Connect

    Granados, C.; Weiss, C.

    2016-06-13

    Transverse densities describe the spatial distribution of electromagnetic current in the nucleon at fixed light-front time. At peripheral distances b = O(Mπ–1) the densities are governed by chiral dynamics and can be calculated model-independently using chiral effective field theory (EFT). Recent work has shown that the EFT results can be represented in first-quantized form, as overlap integrals of chiral light-front wave functions describing the transition of the nucleon to soft-pion-nucleon intermediate states, resulting in a quantum-mechanical picture of the peripheral transverse densities. We now extend this representation to include intermediate states with Δ isobars and implement relations based on the large-Nc limit of QCD. We derive the wave function overlap formulas for the Δ contributions to the peripheral transverse densities by way of a three-dimensional reduction of relativistic chiral EFT expressions. Our procedure effectively maintains rotational invariance and avoids the ambiguities with higher-spin particles in the light-front time-ordered approach. We study the interplay of πN and πΔ intermediate states in the quantum-mechanical picture of the densities in a transversely polarized nucleon. We show that the correct Nc-scaling of the charge and magnetization densities emerges as the result of the particular combination of currents generated by intermediate states with degenerate N and Δ. The off-shell behavior of the chiral EFT is summarized in contact terms and can be studied easily. As a result, the methods developed here can be applied to other peripheral densities and to moments of the nucleon's generalized parton distributions.

  20. High-Field Asymmetric-Waveform Ion Mobility Spectrometry and Electron Detachment Dissociation of Isobaric Mixtures of Glycosaminoglycans

    NASA Astrophysics Data System (ADS)

    Kailemia, Muchena J.; Park, Melvin; Kaplan, Desmond A.; Venot, Andre; Boons, Geert-Jan; Li, Lingyun; Linhardt, Robert J.; Amster, I. Jonathan

    2013-11-01

    High-field asymmetric waveform ion mobility spectrometry (FAIMS) is shown to be capable of resolving isomeric and isobaric glycosaminoglycan negative ions and to have great utility for the analysis of this class of molecules when combined with Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) and tandem mass spectrometry. Electron detachment dissociation (EDD) and other ion activation methods for tandem mass spectrometry can be used to determine the sites of labile sulfate modifications and for assigning the stereochemistry of hexuronic acid residues of glycosaminoglycans (GAGs). However, mixtures with overlapping mass-to-charge values present a challenge, as their precursor species cannot be resolved by a mass analyzer prior to ion activation. FAIMS is shown to resolve two types of mass-to-charge overlaps. A mixture of chondroitin sulfate A (CSA) oligomers with 4-10 saccharides units produces ions of a single mass-to-charge by electrospray ionization, as the charge state increases in direct proportion to the degree of polymerization for these sulfated carbohydrates. FAIMS is shown to resolve the overlapping charge. A more challenging type of mass-to-charge overlap occurs for mixtures of diastereomers. FAIMS is shown to separate two sets of epimeric GAG tetramers. For the epimer pairs, the complexity of the separation is reduced when the reducing end is alkylated, suggesting that anomers are also resolved by FAIMS. The resolved components were activated by EDD and the fragment ions were analyzed by FTICR-MS. The resulting tandem mass spectra were able to distinguish the two epimers from each other.

  1. X-ray continuum as a measure of pressure and fuel-shell mix in compressed isobaric hydrogen implosion cores

    NASA Astrophysics Data System (ADS)

    Epstein, R.; Goncharov, V. N.; Marshall, F. J.; Betti, R.; Nora, R.; Christopherson, A. R.; Golovkin, I. E.; MacFarlane, J. J.

    2015-02-01

    Pressure, by definition, characterizes the conditions within an isobaric implosion core at peak compression [Gus'kov et al., Nucl. Fusion 16, 957 (1976); Betti et al., Phys. Plasmas 8, 5257 (2001)] and is a key parameter in quantifying its near-ignition performance [Lawson, Proc. Phys. Soc. London, B 70, 6 (1957); Betti et al., Phys. Plasmas 17, 058102 (2010); Goncharov et al., Phys. Plasmas 21, 056315 (2014); and Glenzer et al., Phys. Plasmas 19, 056318 (2012)]. At high spectral energy, where the x-ray emission from an imploded hydrogen core is optically thin, the emissivity profile can be inferred from the spatially resolved core emission. This emissivity, which can be modeled accurately under hot-core conditions, is dependent almost entirely on the pressure when measured within a restricted spectral range matched to the temperature range anticipated for the emitting volume. In this way, the hot core pressure at the time of peak emission can be inferred from the measured free-free emissivity profile. The pressure and temperature dependences of the x-ray emissivity and the neutron-production rate explain a simple scaling of the total filtered x-ray emission as a constant power of the total neutron yield for implosions of targets of similar design over a broad range of shell implosion isentropes. This scaling behavior has been seen in implosion simulations and is confirmed by measurements of high-isentrope implosions [Sangster et al., Phys. Plasmas 20, 056317 (2013)] on the OMEGA laser system [Boehly et al., Opt. Commun. 133, 495 (1997)]. Attributing the excess emission from less-stable, low-isentrope implosions, above the level expected from this neutron-yield scaling, to the higher emissivity of shell carbon mixed into the implosion's central hot spot, the hot-spot "fuel-shell" mix mass can be inferred.

  2. A Quantitative Tool to Distinguish Isobaric Leucine and Isoleucine Residues for Mass Spectrometry-Based De Novo Monoclonal Antibody Sequencing

    NASA Astrophysics Data System (ADS)

    Poston, Chloe N.; Higgs, Richard E.; You, Jinsam; Gelfanova, Valentina; Hale, John E.; Knierman, Michael D.; Siegel, Robert; Gutierrez, Jesus A.

    2014-07-01

    De novo sequencing by mass spectrometry (MS) allows for the determination of the complete amino acid (AA) sequence of a given protein based on the mass difference of detected ions from MS/MS fragmentation spectra. The technique relies on obtaining specific masses that can be attributed to characteristic theoretical masses of AAs. A major limitation of de novo sequencing by MS is the inability to distinguish between the isobaric residues leucine (Leu) and isoleucine (Ile). Incorrect identification of Ile as Leu or vice versa often results in loss of activity in recombinant antibodies. This functional ambiguity is commonly resolved with costly and time-consuming AA mutation and peptide sequencing experiments. Here, we describe a set of orthogonal biochemical protocols, which experimentally determine the identity of Ile or Leu residues in monoclonal antibodies (mAb) based on the selectivity that leucine aminopeptidase shows for n-terminal Leu residues and the cleavage preference for Leu by chymotrypsin. The resulting observations are combined with germline frequencies and incorporated into a logistic regression model, called Predictor for Xle Sites (PXleS) to provide a statistical likelihood for the identity of Leu at an ambiguous site. We demonstrate that PXleS can generate a probability for an Xle site in mAbs with 96% accuracy. The implementation of PXleS precludes the expression of several possible sequences and, therefore, reduces the overall time and resources required to go from spectra generation to a biologically active sequence for a mAb when an Ile or Leu residue is in question.

  3. Vapor-liquid coexistence curves in the critical region and the critical temperatures and densities of 1,1,1,2-tetrafluoroethane (R-134a), 1,1,1-trifluoroethane (R-143a), and 1,1,1,2,3,3-hexafluoropropane (R-236ea)

    SciTech Connect

    Aoyama, H.; Kishizawa, G.; Sato, H.; Watanabe, K.

    1996-09-01

    The vapor-liquid coexistence curves in the critical region of 1,1,1,2-tetrafluoroethane (R-134a), 1,1,1-trifluoroethane (R-143a), and 1,1,1,2,3,3-hexafluoropropane (R-236ea) were measured by a visual observation of the meniscus disappearance in an optical cell. Seventeen saturated-vapor and -liquid densities have been measured for R-134a. Thirty-five saturated-vapor and -liquid densities have been measured for R-143a. Twenty-seven saturated-vapor and -liquid densities have been measured for R-236ea. The level and location of the meniscus, as well as the intensity of the critical opalescence were considered in the determination of the critical temperature and density for each fluid. R-134a was found to have (374.083 {+-} 0.010) K and (509 {+-} 1) kg/m{sup 3}, R-143a, (345.860 {+-} 0.010) K and (434 {+-} 1) kg/m{sup 3}, and R-236ea, (412.375 {+-} 0.015) K and (568 {+-} 1) kg/m{sup 3}.

  4. Torque equilibrium attitude control for Skylab reentry

    NASA Technical Reports Server (NTRS)

    Glaese, J. R.; Kennel, H. F.

    1979-01-01

    All the available torque equilibrium attitudes (most were useless from the standpoint of lack of electrical power) and the equilibrium seeking method are presented, as well as the actual successful application during the 3 weeks prior to Skylab reentry.

  5. Accelerating Multiagent Reinforcement Learning by Equilibrium Transfer.

    PubMed

    Hu, Yujing; Gao, Yang; An, Bo

    2015-07-01

    An important approach in multiagent reinforcement learning (MARL) is equilibrium-based MARL, which adopts equilibrium solution concepts in game theory and requires agents to play equilibrium strategies at each state. However, most existing equilibrium-based MARL algorithms cannot scale due to a large number of computationally expensive equilibrium computations (e.g., computing Nash equilibria is PPAD-hard) during learning. For the first time, this paper finds that during the learning process of equilibrium-based MARL, the one-shot games corresponding to each state's successive visits often have the same or similar equilibria (for some states more than 90% of games corresponding to successive visits have similar equilibria). Inspired by this observation, this paper proposes to use equilibrium transfer to accelerate equilibrium-based MARL. The key idea of equilibrium transfer is to reuse previously computed equilibria when each agent has a small incentive to deviate. By introducing transfer loss and transfer condition, a novel framework called equilibrium transfer-based MARL is proposed. We prove that although equilibrium transfer brings transfer loss, equilibrium-based MARL algorithms can still converge to an equilibrium policy under certain assumptions. Experimental results in widely used benchmarks (e.g., grid world game, soccer game, and wall game) show that the proposed framework: 1) not only significantly accelerates equilibrium-based MARL (up to 96.7% reduction in learning time), but also achieves higher average rewards than algorithms without equilibrium transfer and 2) scales significantly better than algorithms without equilibrium transfer when the state/action space grows and the number of agents increases.

  6. Equilibrium and non-equilibrium metal-ceramic interfaces

    SciTech Connect

    Gao, Y.; Merkle, K.L.

    1991-12-31

    Metal-ceramic interfaces in thermodynamic equilibrium (Au/ZrO{sub 2}) and non-equilibrium (Au/MgO) have been studied by TEM and HREM. In the Au/ZrO{sub 2} system, ZrO{sub 2} precipitates formed by internal oxidation of a 7%Zr-Au alloy show a cubic ZrO{sub 2} phase. It appears that formation of the cubic ZrO{sub 2} is facilitated by alignment with the Au matrix. Most of the ZrO{sub 2} precipitates have a perfect cube-on-cube orientation relationship with the Au matrix. The large number of interfacial steps observed in a short-time annealing experiment indicate that the precipitates are formed by the ledge growth mechanism. The lowest interfacial energy is indicated by the dominance of closed-packed [111] Au/ZrO{sub 2} interfaces. In the Au/MgO system, composite films with small MgO smoke particles embedded in a Au matrix were prepared by a thin film technique. HREM observations show that most of the Au/MgO interfaces have a strong tendency to maintain a dense lattice structure across the interfaces irrespective of whether the interfaces are incoherent of semi-coherent. This indicates that there may be relatively strong bond between MgO and Au.

  7. Equilibrium and non-equilibrium metal-ceramic interfaces

    SciTech Connect

    Gao, Y.; Merkle, K.L.

    1991-01-01

    Metal-ceramic interfaces in thermodynamic equilibrium (Au/ZrO{sub 2}) and non-equilibrium (Au/MgO) have been studied by TEM and HREM. In the Au/ZrO{sub 2} system, ZrO{sub 2} precipitates formed by internal oxidation of a 7%Zr-Au alloy show a cubic ZrO{sub 2} phase. It appears that formation of the cubic ZrO{sub 2} is facilitated by alignment with the Au matrix. Most of the ZrO{sub 2} precipitates have a perfect cube-on-cube orientation relationship with the Au matrix. The large number of interfacial steps observed in a short-time annealing experiment indicate that the precipitates are formed by the ledge growth mechanism. The lowest interfacial energy is indicated by the dominance of closed-packed (111) Au/ZrO{sub 2} interfaces. In the Au/MgO system, composite films with small MgO smoke particles embedded in a Au matrix were prepared by a thin film technique. HREM observations show that most of the Au/MgO interfaces have a strong tendency to maintain a dense lattice structure across the interfaces irrespective of whether the interfaces are incoherent of semi-coherent. This indicates that there may be relatively strong bond between MgO and Au.

  8. Open problems in non-equilibrium physics

    SciTech Connect

    Kusnezov, D.

    1997-09-22

    The report contains viewgraphs on the following: approaches to non-equilibrium statistical mechanics; classical and quantum processes in chaotic environments; classical fields in non-equilibrium situations: real time dynamics at finite temperature; and phase transitions in non-equilibrium conditions.

  9. Fluid-solid equilibrium of carbon dioxide as obtained from computer simulations of several popular potential models: the role of the quadrupole.

    PubMed

    Pérez-Sánchez, G; González-Salgado, D; Piñeiro, M M; Vega, C

    2013-02-28

    In this work the solid-fluid equilibrium for carbon dioxide (CO2) has been evaluated using Monte Carlo simulations. In particular the melting curve of the solid phase denoted as I, or dry ice, was computed for pressures up to 1000 MPa. Four different models, widely used in computer simulations of CO2 were considered in the calculations. All of them are rigid non-polarizable models consisting of three Lennard-Jones interaction sites located on the positions of the atoms of the molecule, plus three partial charges. It will be shown that although these models predict similar vapor-liquid equilibria their predictions for the fluid-solid equilibria are quite different. Thus the prediction of the entire phase diagram is a severe test for any potential model. It has been found that the Transferable Potentials for Phase Equilibria (TraPPE) model yields the best description of the triple point properties and melting curve of carbon dioxide. It is shown that the ability of a certain model to predict the melting curve of carbon dioxide is related to the value of the quadrupole moment of the model. Models with low quadrupole moment tend to yield melting temperatures too low, whereas the model with the highest quadrupole moment yields the best predictions. That reinforces the idea that not only is the quadrupole needed to provide a reasonable description of the properties in the fluid phase, but also it is absolutely necessary to describe the properties of the solid phase.

  10. Analyzing slowly exchanging protein conformations by ion mobility mass spectrometry: study of the dynamic equilibrium of prolyl oligopeptidase.

    PubMed

    López, Abraham; Vilaseca, Marta; Madurga, Sergio; Varese, Monica; Tarragó, Teresa; Giralt, Ernest

    2016-07-01

    Ion mobility mass spectrometry (IMMS) is a biophysical technique that allows the separation of isobaric species on the basis of their size and shape. The high separation capacity, sensitivity and relatively fast time scale measurements confer IMMS great potential for the study of proteins in slow (µs-ms) conformational equilibrium in solution. However, the use of this technique for examining dynamic proteins is still not generalized. One of the major limitations is the instability of protein ions in the gas phase, which raises the question as to what extent the structures detected reflect those in solution. Here, we addressed this issue by analyzing the conformational landscape of prolyl oligopeptidase (POP) - a model of a large dynamic enzyme in the µs-ms range - by native IMMS and compared the results obtained in the gas phase with those obtained in solution. In order to interpret the experimental results, we used theoretical simulations. In addition, the stability of POP gaseous ions was explored by charge reduction and collision-induced unfolding experiments. Our experiments disclosed two species of POP in the gas phase, which correlated well with the open and closed conformations in equilibrium in solution; moreover, a gas-phase collapsed form of POP was also detected. Therefore, our findings not only support the potential of IMMS for the study of multiple co-existing conformations of large proteins in slow dynamic equilibrium in solution but also stress the need for careful data analysis to avoid artifacts. Copyright © 2016 John Wiley & Sons, Ltd.

  11. Conformations of Proteins in Equilibrium

    NASA Astrophysics Data System (ADS)

    Micheletti, Cristian; Banavar, Jayanth R.; Maritan, Amos

    2001-08-01

    We introduce a simple theoretical approach for an equilibrium study of proteins with known native-state structures. We test our approach with results on well-studied globular proteins, chymotrypsin inhibitor (2ci2), barnase, and the alpha spectrin SH3 domain, and present evidence for a hierarchical onset of order on lowering the temperature with significant organization at the local level even at high temperatures. A further application to the folding process of HIV-1 protease shows that the model can be reliably used to identify key folding sites that are responsible for the development of drug resistance.

  12. Princeton spectral equilibrium code: PSEC

    SciTech Connect

    Ling, K.M.; Jardin, S.C.

    1984-03-01

    A fast computer code has been developed to calculate free-boundary solutions to the plasma equilibrium equation that are consistent with the currents in external coils and conductors. The free-boundary formulation is based on the minimization of a mean-square error epsilon while the fixed-boundary solution is based on a variational principle and spectral representation of the coordinates x(psi,theta) and z(psi,theta). Specific calculations using the Columbia University Torus II, the Poloidal Divertor Experiment (PDX), and the Tokamak Fusion Test Reactor (TFTR) geometries are performed.

  13. Quantum Cluster Equilibrium Theory Applied in Hydrogen Bond Number Studies of Water. 1. Assessment of the Quantum Cluster Equilibrium Model for Liquid Water.

    PubMed

    Lehmann, S B C; Spickermann, C; Kirchner, B

    2009-06-09

    Different cluster sets containing only 2-fold coordinated water, 2- and 3-fold coordinated water, and 2-fold, 3-fold, and tetrahedrally coordinated water molecules were investigated by applying second-order Møller-Plesset perturbation theory and density functional theory based on generalized gradient approximation functionals in the framework of the quantum cluster equilibrium theory. We found an improvement of the calculated isobars at low temperatures if tetrahedrally coordinated water molecules were included in the set of 2-fold hydrogen-bonded clusters. This was also reflected in a reduced parameter for the intercluster interaction. If all parameters were kept constant and only the electronic structure methods were varied, large basis set dependencies in the liquid state for the density functional theory results were found. The behavior of the intercluster parameter was also examined for the case that cooperative effects were neglected. The values were 3 times as large as in the calculations including the total electronic structure. Furthermore, these effects are more severe in the tetrahedrally coordinated clusters. Different populations were considered, one weighted by the total number of clusters and one depending on the monomers.

  14. [Hardy-Weinberg equilibrium in genetic epidemiology].

    PubMed

    Liu, Hong; Hu, Yonghua

    2010-01-01

    Hardy-Weinberg equilibrium test is the base of genetic epidemiology. The new methods for Hardy-Weinberg equilibrium test involve: X chromosome-linked single nucleotide polymorphism Hardy-Weinberg test, inbreeding coefficient (F) test, an incomplete enumeration algorithm for an exact test of Hardy-Weinberg proportions with multiple alleles, and graphical tests for Hardy-Weinberg equilibrium based on the ternary plot. It is necessary to conduct Hardy-Weinberg equilibrium test in genetic epidemiology studies and adjust the associations as deviation of Hardy-Weinberg equilibrium occurs.

  15. The geometry of structural equilibrium

    PubMed Central

    2017-01-01

    Building on a long tradition from Maxwell, Rankine, Klein and others, this paper puts forward a geometrical description of structural equilibrium which contains a procedure for the graphic analysis of stress resultants within general three-dimensional frames. The method is a natural generalization of Rankine’s reciprocal diagrams for three-dimensional trusses. The vertices and edges of dual abstract 4-polytopes are embedded within dual four-dimensional vector spaces, wherein the oriented area of generalized polygons give all six components (axial and shear forces with torsion and bending moments) of the stress resultants. The relevant quantities may be readily calculated using four-dimensional Clifford algebra. As well as giving access to frame analysis and design, the description resolves a number of long-standing problems with the incompleteness of Rankine’s description of three-dimensional trusses. Examples are given of how the procedure may be applied to structures of engineering interest, including an outline of a two-stage procedure for addressing the equilibrium of loaded gridshell rooves.

  16. Isobaric Inert Gas Counterdiffusion,

    DTIC Science & Technology

    1982-11-01

    20 minutes. A second group of animals pretreated with 10 milligrams of valium, intramuscularly, showed a time lag of 248 minutes with an SE of 24...low z 20 - T x Pf Is. Cc) tPo L Q" TIME - 15- . N 200 w X N= a30 _. Dr O N=aIO " H 1 0 z1 0-- , / a- . 0 05 1- 20 CRUSHING PRESSURE PCRUSH Pm-Po

  17. Vadose zone isobaric well

    DOEpatents

    Hubbell, Joel M.; Sisson, James B.

    2001-01-01

    A deep tensiometer is configured with an outer guide tube having a vented interval along a perforate section at its lower end, which is isolated from atmospheric pressure at or above grade. A transducer having a monitoring port and a reference port is located within a coaxial inner guide tube. The reference port of the transducer is open to the vented interval of the outer guide tube, which has the same gas pressure as in the sediment surrounding the tensiometer. The reference side of the pressure transducer is thus isolated from the effects of atmospheric pressure changes and relative to pressure changes in the material surrounding the tensiometer measurement location and so it is automatically compensated for such pressure changes.

  18. Are the Concepts of Dynamic Equilibrium and the Thermodynamic Criteria for Spontaneity, Nonspontaneity, and Equilibrium Compatible?

    ERIC Educational Resources Information Center

    Silverberg, Lee J.; Raff, Lionel M.

    2015-01-01

    Thermodynamic spontaneity-equilibrium criteria require that in a single-reaction system, reactions in either the forward or reverse direction at equilibrium be nonspontaneous. Conversely, the concept of dynamic equilibrium holds that forward and reverse reactions both occur at equal rates at equilibrium to the extent allowed by kinetic…

  19. Quantitative Proteomic Analysis of Wheat Seeds during Artificial Ageing and Priming Using the Isobaric Tandem Mass Tag Labeling

    PubMed Central

    Lv, Yangyong; Zhang, Shuaibing; Wang, Jinshui; Hu, Yuansen

    2016-01-01

    Wheat (Triticum aestivum L.) is an important crop worldwide. The physiological deterioration of seeds during storage and seed priming is closely associated with germination, and thus contributes to plant growth and subsequent grain yields. In this study, wheat seeds during different stages of artificial ageing (45°C; 50% relative humidity; 98%, 50%, 20%, and 1% Germination rates) and priming (hydro-priming treatment) were subjected to proteomics analysis through a proteomic approach based on the isobaric tandem mass tag labeling. A total of 162 differentially expressed proteins (DEPs) mainly involved in metabolism, energy supply, and defense/stress responses, were identified during artificial ageing and thus validated previous physiological and biochemical studies. These DEPs indicated that the inability to protect against ageing leads to the incremental decomposition of the stored substance, impairment of metabolism and energy supply, and ultimately resulted in seed deterioration. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the up-regulated proteins involved in seed ageing were mainly enriched in ribosome, whereas the down-regulated proteins were mainly accumulated in energy supply (starch and sucrose metabolism) and stress defense (ascorbate and aldarate metabolism). Proteins, including hemoglobin 1, oleosin, agglutinin, and non-specific lipid-transfer proteins, were first identified in aged seeds and might be regarded as new markers of seed deterioration. Of the identified proteins, 531 DEPs were recognized during seed priming compared with unprimed seeds. In contrast to the up-regulated DEPs in seed ageing, several up-regulated DEPs in priming were involved in energy supply (tricarboxylic acid cycle, glycolysis, and fatty acid oxidation), anabolism (amino acids, and fatty acid synthesis), and cell growth/division. KEGG and protein-protein interaction analysis indicated that the up-regulated proteins in seed priming were mainly

  20. Quantitative Proteomic Analysis of Wheat Seeds during Artificial Ageing and Priming Using the Isobaric Tandem Mass Tag Labeling.

    PubMed

    Lv, Yangyong; Zhang, Shuaibing; Wang, Jinshui; Hu, Yuansen

    2016-01-01

    Wheat (Triticum aestivum L.) is an important crop worldwide. The physiological deterioration of seeds during storage and seed priming is closely associated with germination, and thus contributes to plant growth and subsequent grain yields. In this study, wheat seeds during different stages of artificial ageing (45°C; 50% relative humidity; 98%, 50%, 20%, and 1% Germination rates) and priming (hydro-priming treatment) were subjected to proteomics analysis through a proteomic approach based on the isobaric tandem mass tag labeling. A total of 162 differentially expressed proteins (DEPs) mainly involved in metabolism, energy supply, and defense/stress responses, were identified during artificial ageing and thus validated previous physiological and biochemical studies. These DEPs indicated that the inability to protect against ageing leads to the incremental decomposition of the stored substance, impairment of metabolism and energy supply, and ultimately resulted in seed deterioration. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the up-regulated proteins involved in seed ageing were mainly enriched in ribosome, whereas the down-regulated proteins were mainly accumulated in energy supply (starch and sucrose metabolism) and stress defense (ascorbate and aldarate metabolism). Proteins, including hemoglobin 1, oleosin, agglutinin, and non-specific lipid-transfer proteins, were first identified in aged seeds and might be regarded as new markers of seed deterioration. Of the identified proteins, 531 DEPs were recognized during seed priming compared with unprimed seeds. In contrast to the up-regulated DEPs in seed ageing, several up-regulated DEPs in priming were involved in energy supply (tricarboxylic acid cycle, glycolysis, and fatty acid oxidation), anabolism (amino acids, and fatty acid synthesis), and cell growth/division. KEGG and protein-protein interaction analysis indicated that the up-regulated proteins in seed priming were mainly

  1. Parametric study and characterization of the isobaric thermomechanical transformation fatigue of nickel-rich NiTi SMA actuators

    NASA Astrophysics Data System (ADS)

    Bertacchini, Olivier W.; Schick, Justin; Lagoudas, Dimitris C.

    2009-03-01

    The recent development of various aerospace applications utilizing Ni-rich NiTi Shape memory Alloys (SMAs) as actuators motivated the need to characterize the cyclic response and the transformation fatigue behavior of such alloys. The fatigue life validation and certification of new designs is required in order to be implemented and used in future applications. For that purpose, a custom built fatigue test frame was designed to perform isobaric thermally induced transformation cycles on small dogbones SMA actuators (test gauge cross-section up to: 1.270 x 0.508 mm2). A parametric study on the cyclic response and transformation fatigue behavior of Ni-rich NiTi SMAs led to the optimization of several material/process and test parameters, namely: the applied stress range, the heat treatment, the heat treatment environment and the specimen thickness. However, fatigue testing was performed in a chilled waterless glycol environment maintained at a temperature of 5°C that showed evidence of corrosion-assisted transformation fatigue failure. Therefore, it was necessary to build a fatigue test frame that would employ a dry and inert cooling methodology to get away from any detrimental interactions between the specimens and the cooling medium (corrosion). The selected cooling method was gaseous nitrogen, sprayed into a thermally insulated chamber, maintaining a temperature of -20°C. The design of the gaseous nitrogen cooling was done in such a way that the actuation frequency is similar to the one obtained using the original design (~ 0.1 Hz). For both cooling methods, Joule resistive heating was used to heat the specimens. In addition and motivated by the difference in surface quality resulting from different material processing such as EDM wire cutting and heat treatments, EDM recast layer and oxide layer were removed. The removal was followed by an ultra-fine polish (0.05 μm) that was performed on a subset of the fatigue specimens. Experimental results are presented

  2. Simultaneous quantification of protein phosphorylation sites using liquid chromatography-tandem mass spectrometry-based targeted proteomics: a linear algebra approach for isobaric phosphopeptides.

    PubMed

    Xu, Feifei; Yang, Ting; Sheng, Yuan; Zhong, Ting; Yang, Mi; Chen, Yun

    2014-12-05

    As one of the most studied post-translational modifications (PTM), protein phosphorylation plays an essential role in almost all cellular processes. Current methods are able to predict and determine thousands of phosphorylation sites, whereas stoichiometric quantification of these sites is still challenging. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS)-based targeted proteomics is emerging as a promising technique for site-specific quantification of protein phosphorylation using proteolytic peptides as surrogates of proteins. However, several issues may limit its application, one of which relates to the phosphopeptides with different phosphorylation sites and the same mass (i.e., isobaric phosphopeptides). While employment of site-specific product ions allows for these isobaric phosphopeptides to be distinguished and quantified, site-specific product ions are often absent or weak in tandem mass spectra. In this study, linear algebra algorithms were employed as an add-on to targeted proteomics to retrieve information on individual phosphopeptides from their common spectra. To achieve this simultaneous quantification, a LC-MS/MS-based targeted proteomics assay was first developed and validated for each phosphopeptide. Given the slope and intercept of calibration curves of phosphopeptides in each transition, linear algebraic equations were developed. Using a series of mock mixtures prepared with varying concentrations of each phosphopeptide, the reliability of the approach to quantify isobaric phosphopeptides containing multiple phosphorylation sites (≥ 2) was discussed. Finally, we applied this approach to determine the phosphorylation stoichiometry of heat shock protein 27 (HSP27) at Ser78 and Ser82 in breast cancer cells and tissue samples.

  3. Rare evidence for formation of garnet + corundum during isobaric cooling of ultrahigh temperature metapelites: New insights for retrograde P-T trajectory of the Highland Complex, Sri Lanka

    NASA Astrophysics Data System (ADS)

    Dharmapriya, P. L.; Malaviarachchi, Sanjeeva P. K.; Galli, Andrea; Su, Ben-Xun; Subasinghe, N. D.; Dissanayake, C. B.

    2015-04-01

    We report the occurrence of coexisting garnet + corundum in spinel- and corundum-bearing, garnet-sillimanite-biotite-graphite gneiss (pelitic granulites) from the Highland Complex (HC), Sri Lanka. In the investigated pelitic granulites, two domains such as quartz-saturated and quartz-undersaturated are distinguishable. The quartz-saturated domains consist of porphyroblastic garnet, quartz, plagioclase, alkali-feldspar and biotite flakes rimming garnet. The quartz-undersaturated domains are constituted of two generations of garnet (Grt1 and Grt2), sillimanite, plagioclase, alkali-feldspar, corundum, spinel and biotite. Grt1 encloses rare Ti-rich biotite and numerous rutile needles and apatite rods. Grt2 contains rare sillimanite and/or spinel inclusions. Corundum occurs in mutual contact with Grt2, partially embedded at the rim or as an inclusions in Grt2. Thermobarometry on inclusion phases in Grt1 indicates that during the prograde history pelitic granulites attained a P of 10.5-11 kbar at T of ~ 850 °C. Textural observations coupled with both pseudosections calculated in the NCKFMASHTMnO system and Ti-in-Garnet geothermobarometry suggest that peak metamorphism occurred at ultrahigh temperature (UHT) conditions of 950-975 °C and pressures of 9-9.5 kbar. Peak T was followed by a period of isobaric cooling that formed corundum and Grt2 at approx. 930 °C along with exsolution of rutile needles and apatite rods in Grt1. Thermodynamic modelling confirms that corundum appears along an isobaric cooling path at about 920-930 °C and 9-9.5 kbar. Therefore, the investigated granulites provide a rare example of post-peak crystallization of garnet + corundum along a retrograde metamorphic trajectory under UHT conditions. Thus, isobaric cooling at the base of the crust could be regarded as an alternative process to form coexisting garnet + corundum.

  4. Measurement and isobar-model analysis of the doubly differential cross section for the. pi. /sup +/ produced in. pi. /sup -/p. -->. pi. /sup +/. pi. /sup -/n

    SciTech Connect

    Manley, D.M.

    1981-11-01

    The doubly differential cross section d/sup 2/sigma/d..cap omega..dT for ..pi../sup +/ mesons produced in the reaction ..pi../sup -/p ..-->.. ..pi../sup +/..pi../sup -/n was measured at 203, 230, 256, and 358 MeV with a single-arm magnetic spectrometer. A set of five previous measurements at 254, 280, 292, 331, and 356 MeV was reanalyzed with the new measurements. Integrated cross sections were calculated for the combined data set with unprecedented accuracy for this energy range. The chiral-symmetry-breaking parameter was determined to be epsilon = -0.03 +- 0.26 by extrapolating the mean square modulus of the matrix element to threshold and comparing the threshold matrix element with the prediction of soft-pion theory. This value of epsilon is consistent with zero as required by the Weinberg Lagrangian. Measurements at the three highest energies were compared with the results of an isobar-model analysis of bubble-chamber events by an LBL-SLAC collaboration. After allowing for an overall normalization difference, the measurements at 331 and 358 MeV were in excellent agreement with the results of their analysis. The measurement at 292 MeV required variation of the PS11(epsilonN) amplitude, as well as the overall normalization, which could be due to the limited number of bubble-chamber events available for the LBL-SLAC analysis at this energy. A partial-wave analysis of the measurements was also carried out with the VPI isobar model. Within this model, the matrix element contains a background term calculated from a phenomenological ..pi..N Lagrangian that is consistent with the hypotheses of current algebra and PCAC. The reaction was found to be dominated by the initial P11 wave. Production of the ..delta.. isobar from initial D waves was found to be significant at the two highest energies.

  5. Nanomechanics Model for Static Equilibrium

    NASA Astrophysics Data System (ADS)

    Jung, Sunghoon

    2002-09-01

    This study presented a computational technique to model and simulate atomistic behavior of materials under static loads, Interatomic potential energy was used to maintain equilibrium among atoms under static loads and constraints, In addition, the atomistic model was coupled with the finite element analysis model so that more flexible loads and constraints could be applied to the atomistic model A multi-scale technique was also presented for some single wall nanotubes of both zigzag and armchair and then their effective stiffness were estimated Those designed nanotubes are woven into fabric composites, which can be used in various military applications including body armored, vehicles, and infantry transportation vehicles because advanced nano- composites could be much lighter and stronger than current ones, Some example problems were presented to illustrate the developed technique for the nano-composites and SWNTs, The proposed technique for nanomechanics can be used for design and analysis of materials at the atomic or molecular level,

  6. Equilibrium structure of ferrofluid aggregates.

    PubMed

    Yoon, Mina; Tománek, David

    2010-11-17

    We study the equilibrium structure of large but finite aggregates of magnetic dipoles, representing a colloidal suspension of magnetite particles in a ferrofluid. With increasing system size, the structural motif evolves from chains and rings to multi-chain and multi-ring assemblies. Very large systems form single- and multi-wall coils, tubes and scrolls. These structural changes result from a competition between various energy terms, which can be approximated analytically within a continuum model. We also study the effect of external parameters such as magnetic field on the relative stability of these structures. Our results may give insight into experimental data obtained during solidification of ferrofluid aggregates at temperatures where thermal fluctuations become negligible in comparison to inter-particle interactions. These data may also help to experimentally control the aggregation of magnetic particles.

  7. Equilibrium structure of ferrofluid aggregates

    SciTech Connect

    Yoon, Mina; Tomanek, David

    2010-01-01

    We study the equilibrium structure of large but finite aggregates of magnetic dipoles, representing a colloidal suspension of magnetite particles in a ferrofluid. With increasing system size, the structural motif evolves from chains and rings to multi-chain and multi-ring assemblies. Very large systems form single- and multi-wall coils, tubes and scrolls. These structural changes result from a competition between various energy terms, which can be approximated analytically within a continuum model. We also study the effect of external parameters such as magnetic field on the relative stability of these structures. Our results may give insight into experimental data obtained during solidification of ferrofluid aggregates at temperatures where thermal fluctuations become negligible in comparison to inter-particle interactions. These data may also help to experimentally control the aggregation of magnetic particles.

  8. Local non-equilibrium thermodynamics

    PubMed Central

    Jinwoo, Lee; Tanaka, Hajime

    2015-01-01

    Local Shannon entropy lies at the heart of modern thermodynamics, with much discussion of trajectory-dependent entropy production. When taken at both boundaries of a process in phase space, it reproduces the second law of thermodynamics over a finite time interval for small scale systems. However, given that entropy is an ensemble property, it has never been clear how one can assign such a quantity locally. Given such a fundamental omission in our knowledge, we construct a new ensemble composed of trajectories reaching an individual microstate, and show that locally defined entropy, information, and free energy are properties of the ensemble, or trajectory-independent true thermodynamic potentials. We find that the Boltzmann-Gibbs distribution and Landauer's principle can be generalized naturally as properties of the ensemble, and that trajectory-free state functions of the ensemble govern the exact mechanism of non-equilibrium relaxation. PMID:25592077

  9. Equilibrium avalanches in spin glasses

    NASA Astrophysics Data System (ADS)

    Le Doussal, Pierre; Müller, Markus; Wiese, Kay Jörg

    2012-06-01

    We study the distribution of equilibrium avalanches (shocks) in Ising spin glasses which occur at zero temperature upon small changes in the magnetic field. For the infinite-range Sherrington-Kirkpatrick (SK) model, we present a detailed derivation of the density ρ(ΔM) of the magnetization jumps ΔM. It is obtained by introducing a multicomponent generalization of the Parisi-Duplantier equation, which allows us to compute all cumulants of the magnetization. We find that ρ(ΔM)˜ΔM-τ with an avalanche exponent τ=1 for the SK model, originating from the marginal stability (criticality) of the model. It holds for jumps of size 1≪ΔMequilibrium dynamics of the SK model. For finite-range models, using droplet arguments, we obtain the prediction τ=(df+θ)/dm where df,dm, and θ are the fractal dimension, magnetization exponent, and energy exponent of a droplet, respectively. This formula is expected to apply to other glassy disordered systems, such as the random-field model and pinned interfaces. We make suggestions for further numerical investigations, as well as experimental studies of the Barkhausen noise in spin glasses.

  10. Experimental studies on equilibrium adsorption isosteres and determination of the thermodynamic quantities of polar media on alumina Al2O3

    NASA Astrophysics Data System (ADS)

    Yonova, Albena

    2017-03-01

    The present work is a revieif of theoretical and experimental study on the adsorption performance of the adsorbent Alumina (Al2O3) used in the adsorption system. An experimental investigation on the equilibrium adsorption isosteres at low pressure (< 1 atm) of working pairs Al2O3/H2O and Al2O3/C2H6O2 is carried out. The isovolume measurement method is adopted in the test setup to directly measure the saturated vapor pressures of working pairs at vapor-liquid equilibrium (dG=0 and dμi=0). Quantity adsorbed is determined from pressure, volume and temperature using gas law. The isosteric heat of adsorption is calculated from the slope of the plot of lnP versus 1/T different amounts of adsorbate onto adsorbent as follows: 0,01 vol% Al2O3/H2O; 0,03 vol% Al2O3/H2O; 0,1 vol% Al2O3/H2O; 0,01 vol% Al2O3/C2H6O2; 0,03 vol% Al2O3/C2H6O2; 0,1 vol% Al2O3/C2H6O2. This study shows that adsorption working pair Al2O3 C2H6O2 has better adsorption performances than those of the A2O3/H2O. Surface acidity! is a most important property! far both adsorption and catalysis and therefore is examined structure of active sites of alumina surface. Thermodynamic parameters such as isosteric heat of adsorption, isosteric enthalpy and entropy of adsorption are critical design variables in estimating the performance and predicting the mechanism of an adsorption process and are also one of the basic requirements for the characterization and optimization of an adsorption process

  11. Philicities, Fugalities, and Equilibrium Constants.

    PubMed

    Mayr, Herbert; Ofial, Armin R

    2016-05-17

    The mechanistic model of Organic Chemistry is based on relationships between rate and equilibrium constants. Thus, strong bases are generally considered to be good nucleophiles and poor nucleofuges. Exceptions to this rule have long been known, and the ability of iodide ions to catalyze nucleophilic substitutions, because they are good nucleophiles as well as good nucleofuges, is just a prominent example for exceptions from the general rule. In a reaction series, the Leffler-Hammond parameter α = δΔG(⧧)/δΔG° describes the fraction of the change in the Gibbs energy of reaction, which is reflected in the change of the Gibbs energy of activation. It has long been considered as a measure for the position of the transition state; thus, an α value close to 0 was associated with an early transition state, while an α value close to 1 was considered to be indicative of a late transition state. Bordwell's observation in 1969 that substituent variation in phenylnitromethanes has a larger effect on the rates of deprotonation than on the corresponding equilibrium constants (nitroalkane anomaly) triggered the breakdown of this interpretation. In the past, most systematic investigations of the relationships between rates and equilibria of organic reactions have dealt with proton transfer reactions, because only for few other reaction series complementary kinetic and thermodynamic data have been available. In this Account we report on a more general investigation of the relationships between Lewis basicities, nucleophilicities, and nucleofugalities as well as between Lewis acidities, electrophilicities, and electrofugalities. Definitions of these terms are summarized, and it is suggested to replace the hybrid terms "kinetic basicity" and "kinetic acidity" by "protophilicity" and "protofugality", respectively; in this way, the terms "acidity" and "basicity" are exclusively assigned to thermodynamic properties, while "philicity" and "fugality" refer to kinetics

  12. Isobaric Quantification of Cerebrospinal Fluid Amyloid-β Peptides in Alzheimer's Disease: C-Terminal Truncation Relates to Early Measures of Neurodegeneration.

    PubMed

    Rogeberg, Magnus; Almdahl, Ina Selseth; Wettergreen, Marianne; Nilsson, Lars N G; Fladby, Tormod

    2015-11-06

    The amyloid beta (Aβ) peptide is the main constituent of the plaques characteristic of Alzheimer's disease (AD). Measurement of Aβ1-42 in cerebrospinal fluid (CSF) is a valuable marker in AD research, where low levels indicate AD. Although the use of immunoassays measuring Aβ1-38 and Aβ1-40 in addition to Aβ1-42 has increased, quantitative assays of other Aβ peptides remain rarely explored. We recently discovered novel Aβ peptides in CSF using antibodies recognizing the Aβ mid-domain region. Here we have developed a method using both Aβ N-terminal and mid-domain antibodies for immunoprecipitation in combination with isobaric labeling and liquid chromatography-tandem mass spectrometry (LC-MS/MS) for relative quantification of endogenous Aβ peptides in CSF. The developed method was used in a pilot study to produce Aβ peptide profiles from 38 CSF samples. Statistical comparison between CSF samples from 19 AD patients and 19 cognitively healthy controls revealed no significant differences at group level. A significant correlation was found between several larger C-terminally truncated Aβ peptides and protein biomarkers for neuronal damage, particularly prominent in the control group. Comparison of the isobaric quantification with immunoassays measuring Aβ1-38 or Aβ1-40 showed good correlation (r(2) = 0.84 and 0.85, respectively) between the two analysis methods. The developed method could be used to assess disease-modifying therapies directed at Aβ production or degradation.

  13. Extensive Peptide Fractionation and y1 Ion-Based Interference Detection Method for Enabling Accurate Quantification by Isobaric Labeling and Mass Spectrometry.

    PubMed

    Niu, Mingming; Cho, Ji-Hoon; Kodali, Kiran; Pagala, Vishwajeeth; High, Anthony A; Wang, Hong; Wu, Zhiping; Li, Yuxin; Bi, Wenjian; Zhang, Hui; Wang, Xusheng; Zou, Wei; Peng, Junmin

    2017-02-22

    Isobaric labeling quantification by mass spectrometry (MS) has emerged as a powerful technology for multiplexed large-scale protein profiling, but measurement accuracy in complex mixtures is confounded by the interference from coisolated ions, resulting in ratio compression. Here we report that the ratio compression can be essentially resolved by the combination of pre-MS peptide fractionation, MS2-based interference detection, and post-MS computational interference correction. To recapitulate the complexity of biological samples, we pooled tandem mass tag (TMT)-labeled Escherichia coli peptides at 1:3:10 ratios and added in ∼20-fold more rat peptides as background, followed by the analysis of two-dimensional liquid chromatography (LC)-MS/MS. Systematic investigation shows that quantitative interference was impacted by LC fractionation depth, MS isolation window, and peptide loading amount. Exhaustive fractionation (320 × 4 h) can nearly eliminate the interference and achieve results comparable to the MS3-based method. Importantly, the interference in MS2 scans can be estimated by the intensity of contaminated y1 product ions, and we thus developed an algorithm to correct reporter ion ratios of tryptic peptides. Our data indicate that intermediate fractionation (40 × 2 h) and y1 ion-based correction allow accurate and deep TMT profiling of more than 10 000 proteins, which represents a straightforward and affordable strategy in isobaric labeling proteomics.

  14. Collective-coupling analysis of spectra of mass-7 isobars: {sup 7}He, {sup 7}Li, {sup 7}Be, and {sup 7}B

    SciTech Connect

    Canton, L.; Pisent, G.; Amos, K.; Karataglidis, S.; Svenne, J. P.; Knijff, D. van der

    2006-12-15

    A nucleon-nucleus interaction model has been applied to ascertain the underlying character of the negative-parity spectra of four isobars of mass-7, from neutron- to proton-emitter drip lines. With a single nuclear potential defined by a simple coupled-channel model, a multichannel algebraic scattering approach (MCAS) has been used to determine the bound and resonant spectra of the four nuclides, of which {sup 7}He and {sup 7}B are particle unstable. Incorporation of Pauli blocking into the model enables a description of all known spin-parity states of the mass-7 isobars. We have also obtained spectra of similar quality by using a large space no-core shell model. Additionally, we have studied {sup 7}Li and {sup 7}Be using a dicluster model. We have found a dicluster-model potential that can reproduce the lowest four states of the two nuclei, as well as the relevant low-energy elastic scattering cross sections. But, with this model, the rest of the energy spectra cannot be obtained.

  15. Equilibrium sampling by reweighting nonequilibrium simulation trajectories.

    PubMed

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  16. Equilibrium sampling by reweighting nonequilibrium simulation trajectories

    NASA Astrophysics Data System (ADS)

    Yang, Cheng; Wan, Biao; Xu, Shun; Wang, Yanting; Zhou, Xin

    2016-03-01

    Based on equilibrium molecular simulations, it is usually difficult to efficiently visit the whole conformational space of complex systems, which are separated into some metastable regions by high free energy barriers. Nonequilibrium simulations could enhance transitions among these metastable regions and then be applied to sample equilibrium distributions in complex systems, since the associated nonequilibrium effects can be removed by employing the Jarzynski equality (JE). Here we present such a systematical method, named reweighted nonequilibrium ensemble dynamics (RNED), to efficiently sample equilibrium conformations. The RNED is a combination of the JE and our previous reweighted ensemble dynamics (RED) method. The original JE reproduces equilibrium from lots of nonequilibrium trajectories but requires that the initial distribution of these trajectories is equilibrium. The RED reweights many equilibrium trajectories from an arbitrary initial distribution to get the equilibrium distribution, whereas the RNED has both advantages of the two methods, reproducing equilibrium from lots of nonequilibrium simulation trajectories with an arbitrary initial conformational distribution. We illustrated the application of the RNED in a toy model and in a Lennard-Jones fluid to detect its liquid-solid phase coexistence. The results indicate that the RNED sufficiently extends the application of both the original JE and the RED in equilibrium sampling of complex systems.

  17. Equilibrium coexistence of three amphiboles

    USGS Publications Warehouse

    Robinson, P.; Jaffe, H.W.; Klein, C.; Ross, M.

    1969-01-01

    Electron probe and wet chemical analyses of amphibole pairs from the sillimanite zone of central Massachusetts and adjacent New Hampshire indicated that for a particular metamorphic grade there should be a restricted composition range in which three amphiboles can coexist stably. An unequivocal example of such an equilibrium three amphibole rock has been found in the sillimanite-orthoclase zone. It contains a colorless primitive clinoamphibole, space group P21/m, optically and chemically like cummingtonite with blue-green hornblende exsolution lamellae on (100) and (-101) of the host; blue-green hornblende, space group C2/m, with primitive cummingtonite exsolution lamellae on (100) and (-101) of the host; and pale pinkish tan anthophyllite, space group Pnma, that is free of visible exsolution lamellae but is a submicroscopic intergrowth of two orthorhombic amphiboles. Mutual contacts and coarse, oriented intergrowths of two and three host amphiboles indicate the three grew as an equilibrium assemblage prior to exsolution. Electron probe analyses at mutual three-amphibole contacts showed little variation in the composition of each amphibole. Analyses believed to represent most closely the primary amphibole compositions gave atomic proportions on the basis of 23 oxygens per formula unit as follows: for primitive cummingtonite (Na0.02Ca0.21- Mn0.06Fe2+2.28Mg4.12Al0.28) (Al0.17Si7.83), for hornblende (Na0.35Ca1.56Mn0.02Fe1.71Mg2.85Al0.92) (Al1.37Si6.63), and for anthophyllite (Na0.10Ca0.06Mn0.06Fe2.25Mg4.11Al0.47) (Al0.47Si7.53). The reflections violating C-symmetry, on X-ray single crystal photographs of the primitive cummingtonite, are weak and diffuse, and suggest a partial inversion from a C-centered to a primitive clinoamphibole. Single crystal photographs of the anthophyllite show split reflections indicating it is an intergrowth of about 80% anthophyllite and about 20% gedrite which differ in their b crystallographic dimensions. Split reflections are

  18. EASI - EQUILIBRIUM AIR SHOCK INTERFERENCE

    NASA Technical Reports Server (NTRS)

    Glass, C. E.

    1994-01-01

    New research on hypersonic vehicles, such as the National Aero-Space Plane (NASP), has raised concerns about the effects of shock-wave interference on various structural components of the craft. State-of-the-art aerothermal analysis software is inadequate to predict local flow and heat flux in areas of extremely high heat transfer, such as the surface impingement of an Edney-type supersonic jet. EASI revives and updates older computational methods for calculating inviscid flow field and maximum heating from shock wave interference. The program expands these methods to solve problems involving the six shock-wave interference patterns on a two-dimensional cylindrical leading edge with an equilibrium chemically reacting gas mixture (representing, for example, the scramjet cowl of the NASP). The inclusion of gas chemistry allows for a more accurate prediction of the maximum pressure and heating loads by accounting for the effects of high temperature on the air mixture. Caloric imperfections and specie dissociation of high-temperature air cause shock-wave angles, flow deflection angles, and thermodynamic properties to differ from those calculated by a calorically perfect gas model. EASI contains pressure- and temperature-dependent thermodynamic and transport properties to determine heating rates, and uses either a calorically perfect air model or an 11-specie, 7-reaction reacting air model at equilibrium with temperatures up to 15,000 K for the inviscid flowfield calculations. EASI solves the flow field and the associated maximum surface pressure and heat flux for the six common types of shock wave interference. Depending on the type of interference, the program solves for shock-wave/boundary-layer interaction, expansion-fan/boundary-layer interaction, attaching shear layer or supersonic jet impingement. Heat flux predictions require a knowledge (from experimental data or relevant calculations) of a pertinent length scale of the interaction. Output files contain flow

  19. Structural properties of methanol-water binary mixtures within the quantum cluster equilibrium model.

    PubMed

    Matisz, G; Kelterer, A-M; Fabian, W M F; Kunsági-Máté, S

    2015-04-07

    Density functional theory (B3LYP-D3, M06-2X) has been used to calculate the structures, interaction energies and vibrational frequencies of a set of 93 methanol-water clusters of different type (cubic, ring, spiro, lasso, bicyclic), size and composition. These interaction energies have been used within the framework of the Quantum Cluster Equilibrium Theory (QCE) to calculate cluster populations as well as thermodynamic properties of binary methanol-water mixtures spanning the whole range from pure water to pure methanol. The necessary parameters amf and bxv of the QCE model were obtained by fitting to experimental isobars of MeOH-H2O mixtures with different MeOH content. The cubic and spiro motifs dominate the distribution of methanol-water clusters in the mixtures with a maximum of mixed clusters at x(MeOH) = 0.365. Reasonable agreement with experimental data as well as earlier molecular dynamics simulations was found for excess enthalpies H(E), entropies S(E) as well as Gibbs free energies of mixing G(E). In contrast, heat capacities Cp and C showed only poor agreement with experimental data.

  20. RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS

    SciTech Connect

    Pugliese, D.; Stuchlík, Z. E-mail: zdenek.stuchlik@physics.cz

    2015-12-15

    We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.

  1. The Sulfur-Iodine Cycle: Process Analysis and Design Using Comprehensive Phase Equilibrium Measurements and Modeling

    SciTech Connect

    Thies, Mark C.; O'Connell, J. P.; Gorensek, Maximilian B.

    2010-01-10

    Of the 100+ thermochemical hydrogen cycles that have been proposed, the Sulfur-Iodine (S-I) Cycle is a primary target of international interest for the centralized production of hydrogen from nuclear power. However, the cycle involves complex and highly nonideal phase behavior at extreme conditions that is only beginning to be understood and modeled for process simulation. The consequence is that current designs and efficiency projections have large uncertainties, as they are based on incomplete data that must be extrapolated from property models. This situation prevents reliable assessment of the potential viability of the system and, even more, a basis for efficient process design. The goal of this NERI award (05-006) was to generate phase-equilibrium data, property models, and comprehensive process simulations so that an accurate evaluation of the S-I Cycle could be made. Our focus was on Section III of the Cycle, where the hydrogen is produced by decomposition of hydroiodic acid (HI) in the presence of water and iodine (I2) in a reactive distillation (RD) column. The results of this project were to be transferred to the nuclear hydrogen community in the form of reliable flowsheet models for the S-I process. Many of the project objectives were achieved. At Clemson University, a unique, tantalum-based, phase-equilibrium apparatus incorporating a view cell was designed and constructed for measuring fluid-phase equilibria for mixtures of iodine, HI, and water (known as HIx) at temperatures to 350 °C and pressures to 100 bar. Such measurements were of particular interest for developing a working understanding of the expected operation of the RD column in Section III. The view cell allowed for the IR observation and discernment of vapor-liquid (VL), liquid-liquid, and liquid-liquid-vapor (LLVE) equilibria for HIx systems. For the I2-H2O system, liquid-liquid equilibrium (LLE) was discovered to exist at temperatures up to 310-315 °C, in contrast to the models and

  2. Zeroth Law, Entropy, Equilibrium, and All That

    ERIC Educational Resources Information Center

    Canagaratna, Sebastian G.

    2008-01-01

    The place of the zeroth law in the teaching of thermodynamics is examined in the context of the recent discussion by Gislason and Craig of some problems involving the establishment of thermal equilibrium. The concept of thermal equilibrium is introduced through the zeroth law. The relation between the zeroth law and the second law in the…

  3. Far from Equilibrium: The Gas Pendulum.

    ERIC Educational Resources Information Center

    Soltzberg, Leonard J.

    1986-01-01

    Discusses the importance of studying the far-from-equilibrium phenomena in college chemistry. Presents a system using the gas pendulum which displays all of the essential characteristics of dissipative systems. Promotes the use of the gas pendulum as a teaching example of a nonlinear far-from-equilibrium process. (TW)

  4. Equilibrium Tail Distribution Due to Touschek Scattering

    SciTech Connect

    Nash,B.; Krinsky, S.

    2009-05-04

    Single large angle Coulomb scattering is referred to as Touschek scattering. In addition to causing particle loss when the scattered particles are outside the momentum aperture, the process also results in a non-Gaussian tail, which is an equilibrium between the Touschek scattering and radiation damping. Here we present an analytical calculation for this equilibrium distribution.

  5. Effect of dimensionality on vapor-liquid phase transition

    SciTech Connect

    Singh, Sudhir Kumar

    2014-04-24

    Dimensionality play significant role on ‘phase transitions’. Fluids in macroscopic confinement (bulk or 3-Dimensional, 3D) do not show significant changes in their phase transition properties with extent of confinement, since the number of molecules away from the surrounding surfaces is astronomically higher than the number of molecules in close proximity of the confining surfaces. In microscopic confinement (quasi 3D to quasi-2D), however, the number of molecules away from the close proximity of the surface is not as high as is the case with macroscopic (3D) confinement. Hence, under the same thermodynamic conditions ‘phase transition’ properties at microscopic confinement may not remain the same as the macroscopic or 3D values. Phase transitions at extremely small scale become very sensitive to the dimensions as well as the surface characteristics of the system. In this work our investigations reveal the effect of dimensionality on the phase transition from 3D to quasi-2D to 2D behavior. We have used grand canonical transition matrix Monte Carlo simulation to understand the vapor–liquid phase transitions from 3D to quasi-2D behavior. Such studies can be helpful in understanding and controlling the fluid film behaviour confined between solid surfaces of few molecular diameters, for example, in lubrication applications.

  6. Two-Step Vapor/Liquid/Solid Purification

    NASA Technical Reports Server (NTRS)

    Holland, L. R.

    1986-01-01

    Vertical distillation system combines in single operation advantages of multiple zone refining with those of distillation. Developed specifically to load Bridgman-Stockbarger (vertical-solidification) growth ampoules with ultrapure tellurium and cadmium, system, with suitable modifications, serves as material refiner. In first phase of purification process, ampoule heated to drive off absorbed volatiles. Second phase, evaporator heated to drive off volatiles in charge. Third phase, slowly descending heater causes distillation from evaporator to growing crystal in ampoule.

  7. Implementing an Equilibrium Law Teaching Sequence for Secondary School Students to Learn Chemical Equilibrium

    ERIC Educational Resources Information Center

    Ghirardi, Marco; Marchetti, Fabio; Pettinari, Claudio; Regis, Alberto; Roletto, Ezio

    2015-01-01

    A didactic sequence is proposed for the teaching of chemical equilibrium law. In this approach, we have avoided the kinetic derivation and the thermodynamic justification of the equilibrium constant. The equilibrium constant expression is established empirically by a trial-and-error approach. Additionally, students learn to use the criterion of…

  8. Information-theoretic equilibrium and observable thermalization

    PubMed Central

    Anzà, F.; Vedral, V.

    2017-01-01

    A crucial point in statistical mechanics is the definition of the notion of thermal equilibrium, which can be given as the state that maximises the von Neumann entropy, under the validity of some constraints. Arguing that such a notion can never be experimentally probed, in this paper we propose a new notion of thermal equilibrium, focused on observables rather than on the full state of the quantum system. We characterise such notion of thermal equilibrium for an arbitrary observable via the maximisation of its Shannon entropy and we bring to light the thermal properties that it heralds. The relation with Gibbs ensembles is studied and understood. We apply such a notion of equilibrium to a closed quantum system and show that there is always a class of observables which exhibits thermal equilibrium properties and we give a recipe to explicitly construct them. Eventually, an intimate connection with the Eigenstate Thermalisation Hypothesis is brought to light. PMID:28266646

  9. Disturbances in equilibrium function after major earthquake

    NASA Astrophysics Data System (ADS)

    Honma, Motoyasu; Endo, Nobutaka; Osada, Yoshihisa; Kim, Yoshiharu; Kuriyama, Kenichi

    2012-10-01

    Major earthquakes were followed by a large number of aftershocks and significant outbreaks of dizziness occurred over a large area. However it is unclear why major earthquake causes dizziness. We conducted an intergroup trial on equilibrium dysfunction and psychological states associated with equilibrium dysfunction in individuals exposed to repetitive aftershocks versus those who were rarely exposed. Greater equilibrium dysfunction was observed in the aftershock-exposed group under conditions without visual compensation. Equilibrium dysfunction in the aftershock-exposed group appears to have arisen from disturbance of the inner ear, as well as individual vulnerability to state anxiety enhanced by repetitive exposure to aftershocks. We indicate potential effects of autonomic stress on equilibrium function after major earthquake. Our findings may contribute to risk management of psychological and physical health after major earthquakes with aftershocks, and allow development of a new empirical approach to disaster care after such events.

  10. Information-theoretic equilibrium and observable thermalization

    NASA Astrophysics Data System (ADS)

    Anzà, F.; Vedral, V.

    2017-03-01

    A crucial point in statistical mechanics is the definition of the notion of thermal equilibrium, which can be given as the state that maximises the von Neumann entropy, under the validity of some constraints. Arguing that such a notion can never be experimentally probed, in this paper we propose a new notion of thermal equilibrium, focused on observables rather than on the full state of the quantum system. We characterise such notion of thermal equilibrium for an arbitrary observable via the maximisation of its Shannon entropy and we bring to light the thermal properties that it heralds. The relation with Gibbs ensembles is studied and understood. We apply such a notion of equilibrium to a closed quantum system and show that there is always a class of observables which exhibits thermal equilibrium properties and we give a recipe to explicitly construct them. Eventually, an intimate connection with the Eigenstate Thermalisation Hypothesis is brought to light.

  11. Information-theoretic equilibrium and observable thermalization.

    PubMed

    Anzà, F; Vedral, V

    2017-03-07

    A crucial point in statistical mechanics is the definition of the notion of thermal equilibrium, which can be given as the state that maximises the von Neumann entropy, under the validity of some constraints. Arguing that such a notion can never be experimentally probed, in this paper we propose a new notion of thermal equilibrium, focused on observables rather than on the full state of the quantum system. We characterise such notion of thermal equilibrium for an arbitrary observable via the maximisation of its Shannon entropy and we bring to light the thermal properties that it heralds. The relation with Gibbs ensembles is studied and understood. We apply such a notion of equilibrium to a closed quantum system and show that there is always a class of observables which exhibits thermal equilibrium properties and we give a recipe to explicitly construct them. Eventually, an intimate connection with the Eigenstate Thermalisation Hypothesis is brought to light.

  12. Probing local equilibrium in nonequilibrium fluids.

    PubMed

    del Pozo, J J; Garrido, P L; Hurtado, P I

    2015-08-01

    We use extensive computer simulations to probe local thermodynamic equilibrium (LTE) in a quintessential model fluid, the two-dimensional hard-disks system. We show that macroscopic LTE is a property much stronger than previously anticipated, even in the presence of important finite-size effects, revealing a remarkable bulk-boundary decoupling phenomenon in fluids out of equilibrium. This allows us to measure the fluid's equation of state in simulations far from equilibrium, with an excellent accuracy comparable to the best equilibrium simulations. Subtle corrections to LTE are found in the fluctuations of the total energy which strongly point to the nonlocality of the nonequilibrium potential governing the fluid's macroscopic behavior out of equilibrium.

  13. How Far from Equilibrium Is Active Matter?

    PubMed

    Fodor, Étienne; Nardini, Cesare; Cates, Michael E; Tailleur, Julien; Visco, Paolo; van Wijland, Frédéric

    2016-07-15

    Active matter systems are driven out of thermal equilibrium by a lack of generalized Stokes-Einstein relation between injection and dissipation of energy at the microscopic scale. We consider such a system of interacting particles, propelled by persistent noises, and show that, at small but finite persistence time, their dynamics still satisfy a time-reversal symmetry. To do so, we compute perturbatively their steady-state measure and show that, for short persistent times, the entropy production rate vanishes. This endows such systems with an effective fluctuation-dissipation theorem akin to that of thermal equilibrium systems. Last, we show how interacting particle systems with viscous drags and correlated noises can be seen as in equilibrium with a viscoelastic bath but driven out of equilibrium by nonconservative forces, hence providing energetic insight into the departure of active systems from equilibrium.

  14. How Far from Equilibrium Is Active Matter?

    NASA Astrophysics Data System (ADS)

    Fodor, Étienne; Nardini, Cesare; Cates, Michael E.; Tailleur, Julien; Visco, Paolo; van Wijland, Frédéric

    2016-07-01

    Active matter systems are driven out of thermal equilibrium by a lack of generalized Stokes-Einstein relation between injection and dissipation of energy at the microscopic scale. We consider such a system of interacting particles, propelled by persistent noises, and show that, at small but finite persistence time, their dynamics still satisfy a time-reversal symmetry. To do so, we compute perturbatively their steady-state measure and show that, for short persistent times, the entropy production rate vanishes. This endows such systems with an effective fluctuation-dissipation theorem akin to that of thermal equilibrium systems. Last, we show how interacting particle systems with viscous drags and correlated noises can be seen as in equilibrium with a viscoelastic bath but driven out of equilibrium by nonconservative forces, hence providing energetic insight into the departure of active systems from equilibrium.

  15. CO2-dominated Atmosphere in Equilibrium with NH3-H2O Ocean: Application to Early Titan and Ocean Planets

    NASA Astrophysics Data System (ADS)

    Marounina, N.; Grasset, O.; Tobie, G.; Carpy, S.

    2015-12-01

    During the accretion of Titan, impact heating may have been sufficient to allow the global melting of water ice (Monteux et al. 2014) and the release of volatile compounds, with CO2 and NH3 as main constituents (Tobie et al. 2012). Thus, on primitive Titan, it is thought that a massive atmosphere was in contact with a global water ocean. Similar configurations may occur on temperate water-rich planets called ocean planets (Léger et al. 2004, Kitzmann et al. 2015).Due to its rather low solubility in liquid water, carbon dioxide is expected to be one of the major components in the atmosphere. The atmospheric amount of CO2 is a key parameter for assessing the thermal evolution of the planetary surface because of its strong greenhouse effect. However, ammonia significantly affects the solubility of CO2 in water and hence the atmosphere-ocean thermo-chemical equilibrium. For primitive Titan, estimating the mass, temperature and composition of the primitive atmosphere is important to determine mechanisms that led to the present-day N2-CH4 dominated atmosphere. Similarly, for ocean planets, the influence of ammonia on the atmospheric abundance in CO2 has consequences for the definition of the habitable zone.To investigate the atmospheric composition of the water-rich worlds for a wide range of initial compositions, we have developed a vapor-liquid equilibrium model of the NH3-CO2-H2O system, where we account for the non-ideal comportment of both vapor and liquid phases and the ion speciation of volatiles dissolved in the aqueous phase. We show that adding NH3 to the CO2-H2O binary system induces an efficient absorption of the CO2 in the liquid phase and thus a lower CO2 partial pressure in the vapor phase. Indeed, the CO2 partial pressure remains low for the CO2/NH3 ratio of liquid concentrations lower than 0.5.Assuming various initial compositions of Titan's global water ocean, we explore the thermal and compositional evolution of a massive primitive atmosphere using

  16. Local Nash equilibrium in social networks.

    PubMed

    Zhang, Yichao; Aziz-Alaoui, M A; Bertelle, Cyrille; Guan, Jihong

    2014-08-29

    Nash equilibrium is widely present in various social disputes. As of now, in structured static populations, such as social networks, regular, and random graphs, the discussions on Nash equilibrium are quite limited. In a relatively stable static gaming network, a rational individual has to comprehensively consider all his/her opponents' strategies before they adopt a unified strategy. In this scenario, a new strategy equilibrium emerges in the system. We define this equilibrium as a local Nash equilibrium. In this paper, we present an explicit definition of the local Nash equilibrium for the two-strategy games in structured populations. Based on the definition, we investigate the condition that a system reaches the evolutionary stable state when the individuals play the Prisoner's dilemma and snow-drift game. The local Nash equilibrium provides a way to judge whether a gaming structured population reaches the evolutionary stable state on one hand. On the other hand, it can be used to predict whether cooperators can survive in a system long before the system reaches its evolutionary stable state for the Prisoner's dilemma game. Our work therefore provides a theoretical framework for understanding the evolutionary stable state in the gaming populations with static structures.

  17. Teaching Chemical Equilibrium with the Jigsaw Technique

    NASA Astrophysics Data System (ADS)

    Doymus, Kemal

    2008-03-01

    This study investigates the effect of cooperative learning (jigsaw) versus individual learning methods on students’ understanding of chemical equilibrium in a first-year general chemistry course. This study was carried out in two different classes in the department of primary science education during the 2005-2006 academic year. One of the classes was randomly assigned as the non-jigsaw group (control) and other as the jigsaw group (cooperative). Students participating in the jigsaw group were divided into four “home groups” since the topic chemical equilibrium is divided into four subtopics (Modules A, B, C and D). Each of these home groups contained four students. The groups were as follows: (1) Home Group A (HGA), representin g the equilibrium state and quantitative aspects of equilibrium (Module A), (2) Home Group B (HGB), representing the equilibrium constant and relationships involving equilibrium constants (Module B), (3) Home Group C (HGC), representing Altering Equilibrium Conditions: Le Chatelier’s principle (Module C), and (4) Home Group D (HGD), representing calculations with equilibrium constants (Module D). The home groups then broke apart, like pieces of a jigsaw puzzle, and the students moved into jigsaw groups consisting of members from the other home groups who were assigned the same portion of the material. The jigsaw groups were then in charge of teaching their specific subtopic to the rest of the students in their learning group. The main data collection tool was a Chemical Equilibrium Achievement Test (CEAT), which was applied to both the jigsaw and non-jigsaw groups The results indicated that the jigsaw group was more successful than the non-jigsaw group (individual learning method).

  18. Nuclear structure beyond the neutron drip line: The lowest energy states in 9He via their T = 5/2 isobaric analogs in 9Li

    NASA Astrophysics Data System (ADS)

    Uberseder, E.; Rogachev, G. V.; Goldberg, V. Z.; Koshchiy, E.; Roeder, B. T.; Alcorta, M.; Chubarian, G.; Davids, B.; Fu, C.; Hooker, J.; Jayatissa, H.; Melconian, D.; Tribble, R. E.

    2016-03-01

    The level structure of the very neutron rich and unbound 9He nucleus has been the subject of significant experimental and theoretical study. Many recent works have claimed that the two lowest energy 9He states exist with spins Jπ = 1 /2+ and Jπ = 1 /2- and widths on the order of 100-200 keV. These findings cannot be reconciled with our contemporary understanding of nuclear structure. The present work is the first high-resolution study with low statistical uncertainty of the relevant excitation energy range in the 8He+n system, performed via a search for the T = 5 / 2 isobaric analog states in 9Li populated through 8He+p elastic scattering. The present data show no indication of any narrow structures. Instead, we find evidence for a broad Jπ = 1 /2+ state in 9He located approximately 3 MeV above the neutron decay threshold.

  19. First online multireflection time-of-flight mass measurements of isobar chains produced by fusion-evaporation reactions: Toward identification of superheavy elements via mass spectroscopy

    NASA Astrophysics Data System (ADS)

    Schury, P.; Wada, M.; Ito, Y.; Kaji, D.; Arai, F.; MacCormick, M.; Murray, I.; Haba, H.; Jeong, S.; Kimura, S.; Koura, H.; Miyatake, H.; Morimoto, K.; Morita, K.; Ozawa, A.; Rosenbusch, M.; Reponen, M.; Söderström, P.-A.; Takamine, A.; Tanaka, T.; Wollnik, H.

    2017-01-01

    Using a multireflection time-of-flight mass spectrograph located after a gas cell coupled with the gas-filled recoil ion separator GARIS-II, the masses of several α -decaying heavy nuclei were directly and precisely measured. The nuclei were produced via fusion-evaporation reactions and separated from projectilelike and targetlike particles using GARIS-II before being stopped in a helium-filled gas cell. Time-of-flight spectra for three isobar chains, 204Fr-204Rn-204At-204Po , 205Fr-205Rn-205At-205Po-205Bi , and 206Fr-206Rn-206At , were observed. Precision atomic mass values were determined for Fr-206204, Rn,205204, and At,205204. Identifications of 205Bi, Po,205204, 206Rn, and 206At were made with N ≲10 detected ions, representing the next step toward use of mass spectrometry to identify exceedingly low-yield species such as superheavy element ions.

  20. Isobaric Tags for Relative and Absolute Quantitation (iTRAQ)-Based Comparative Proteome Analysis of the Response of Ramie under Drought Stress

    PubMed Central

    An, Xia; Zhang, Jingyu; Dai, Lunjin; Deng, Gang; Liao, Yiwen; Liu, Lijun; Wang, Bo; Peng, Dingxiang

    2016-01-01

    In this study, we conducted the first isobaric tags for relative and absolute quantitation (isobaric tags for relative and absolute quantitation (iTRAQ))-based comparative proteomic analysis of ramie plantlets after 0 (minor drought stress), 24 (moderate drought stress), and 72 h (severe drought stress) of treatment with 15% (w/v) poly (ethylene glycol)6000 (PEG6000) to simulate drought stress. In our study, the association analysis of proteins and transcript expression revealed 1244 and 968 associated proteins identified in leaves and roots, respectively. L1, L2, and L3 are leaf samples which were harvested at 0, 24, and 72 h after being treated with 15% PEG6000, respectively. Among those treatment groups, a total of 118, 216, and 433 unique proteins were identified as differentially expressed during L1 vs. L2, L2 vs. L3, and L1 vs. L3, respectively. R1, R2, and R3 are root samples which were harvested at 0, 24, and 72 h after being treated with 15% PEG6000, respectively. Among those treatment groups,a total of 124, 27, and 240 unique proteins were identified as differentially expressed during R1 vs. R2, R2 vs. R3, and R1 vs. R3, respectively. Bioinformatics analysis indicated that glycolysis/gluconeogenesis was significantly upregulated in roots in response to drought stress. This enhancement may result in more glycolytically generated adenosine triphosphate (ATP) in roots to adapt to adverse environmental conditions. To obtain complementary information related to iTRAQ data, the mRNA levels of 12 proteins related to glycolysis/gluconeogenesis in leaves and 7 in roots were further analyzed by qPCR. Most of their expression levels were higher in R3 than R1 and R2, suggesting that these compounds may promote drought tolerance by modulating the production of available energy. PMID:27689998

  1. Structure of even-even A=138 isobars and the yrast spectra of semi-magic Sn isotopes above the {sup 132}Sn core

    SciTech Connect

    Sarkar, S.; Sarkar, M. Saha

    2008-08-15

    Large basis untruncated shell model (SM) calculations have been done for the A=138 neutron-rich nuclei in the {pi}(gdsh)+{nu}(hfpi) valence space above the {sup 132}Sn core using two (1+2) -body nuclear Hamiltonians, viz., realistic CWG and empirical SMPN. Calculated binding energies, excitation spectra, and wave function structures are compared for even-even A=138 isobars for which experimental data are available. The nearly vibrational states in {sup 138}Te, Xe, and the B(E2;2{sup +}{yields}0{sup +}) value in {sup 138}Xe are excellently reproduced by both the interactions. For {sup 138}Ba, the calculated spectra and the B(E2;2{sup +}{yields}0{sup +}) value also agree very well with the experimental results. But the two theoretical results differ dramatically for {sup 138}Sn, a nucleus on the r-process path. CWG predicts nearly constant energies of 2{sub 1}{sup +} states for the even-even Sn isotopes above the {sup 132}Sn core, normally expected for semi-magic nuclei. But SMPN predicts a remarkable new feature: decreasing E(2{sub 1}{sup +}) energies with increasing neutron number. The predicted energies for the Sn isotopes fit in the systematics for the E(2{sub 1}{sup +}) energies of their isotones with Z>50. Despite their differences, both interactions predict the 6{sub 1}{sup +} state to be a {approx_equal}0.3 {mu}s isomer in {sup 138}Sn. Calculated magnetic dipole moments and electric quadrupole moments of the states in these isobars are compared with the experimental data wherever available. The appearance of deformation and evolution of collectivity in nuclei in this valence space are discussed.

  2. The Conceptual Change Approach to Teaching Chemical Equilibrium

    ERIC Educational Resources Information Center

    Canpolat, Nurtac; Pinarbasi, Tacettin; Bayrakceken, Samih; Geban, Omer

    2006-01-01

    This study investigates the effect of a conceptual change approach over traditional instruction on students' understanding of chemical equilibrium concepts (e.g. dynamic nature of equilibrium, definition of equilibrium constant, heterogeneous equilibrium, qualitative interpreting of equilibrium constant, changing the reaction conditions). This…

  3. Radiative-dynamical equilibrium states for Jupiter

    NASA Technical Reports Server (NTRS)

    Trafton, L. M.; Stone, P. H.

    1974-01-01

    In order to obtain accurate estimates of the radiative heating that drives motions in Jupiter's atmosphere, previous radiative equilibrium calculations are improved by including the NH3 opacities and updated results for the pressure-induced opacities. These additions increase the radiative lapse rate near the top of the statically unstable region and lead to a fairly constant radiative lapse rate below the tropopause. The radiative-convective equilibrium temperature structure consistent with these changes is calculated, but it differs only slightly from earlier calculations. The radiative equilibrium calculations are used to calculate whether equilibrium states can occur on Jupiter which are similar to the baroclinic instability regimes on the earth and Mars. The results show that Jupiter's dynamical regime cannot be of this kind, except possibly at very high latitudes, and that its regime must be a basically less stable one than this kind.

  4. Rapid Equilibrium-Ordered Enzyme Mechanisms.

    ERIC Educational Resources Information Center

    Chauncey, Thomas R.; And Others

    1985-01-01

    Discusses: (1) characteristic initial velocity behavior (considering the five-step reaction sequence for rapid equilibrium-order bisubstrate mechanisms); (2) dead-end inhibition; (3) inhibition by single products; and (4) an activator as a leading reactant. (JN)

  5. Stochastic approach to equilibrium and nonequilibrium thermodynamics.

    PubMed

    Tomé, Tânia; de Oliveira, Mário J

    2015-04-01

    We develop the stochastic approach to thermodynamics based on stochastic dynamics, which can be discrete (master equation) and continuous (Fokker-Planck equation), and on two assumptions concerning entropy. The first is the definition of entropy itself and the second the definition of entropy production rate, which is non-negative and vanishes in thermodynamic equilibrium. Based on these assumptions, we study interacting systems with many degrees of freedom in equilibrium or out of thermodynamic equilibrium and how the macroscopic laws are derived from the stochastic dynamics. These studies include the quasiequilibrium processes; the convexity of the equilibrium surface; the monotonic time behavior of thermodynamic potentials, including entropy; the bilinear form of the entropy production rate; the Onsager coefficients and reciprocal relations; and the nonequilibrium steady states of chemical reactions.

  6. Equilibrium capillary forces with atomic force microscopy.

    PubMed

    Sprakel, J; Besseling, N A M; Leermakers, F A M; Cohen Stuart, M A

    2007-09-07

    We present measurements of equilibrium forces resulting from capillary condensation. The results give access to the ultralow interfacial tensions between the capillary bridge and the coexisting bulk phase. We demonstrate this with solutions of associative polymers and an aqueous mixture of gelatin and dextran, with interfacial tensions around 10 microN/m. The equilibrium nature of the capillary forces is attributed to the combination of a low interfacial tension and a microscopic confinement geometry, based on nucleation and growth arguments.

  7. Edge Equilibrium Code (EEC) For Tokamaks

    SciTech Connect

    Li, Xujling

    2014-02-24

    The edge equilibrium code (EEC) described in this paper is developed for simulations of the near edge plasma using the finite element method. It solves the Grad-Shafranov equation in toroidal coordinate and uses adaptive grids aligned with magnetic field lines. Hermite finite elements are chosen for the numerical scheme. A fast Newton scheme which is the same as implemented in the equilibrium and stability code (ESC) is applied here to adjust the grids

  8. Approaches to the Treatment of Equilibrium Perturbations

    NASA Astrophysics Data System (ADS)

    Canagaratna, Sebastian G.

    2003-10-01

    Perturbations from equilibrium are treated in the textbooks by a combination of Le Châtelier's principle, the comparison of the equilibrium constant K with the reaction quotient Q,and the kinetic approach. Each of these methods is briefly reviewed. This is followed by derivations of the variation of the equilibrium value of the extent of reaction, ξeq, with various parameters on which it depends. Near equilibrium this relationship can be represented by a straight line. The equilibrium system can be regarded as moving on this line as the parameter is varied. The slope of the line depends on quantities like enthalpy of reaction, volume of reaction and so forth. The derivation shows that these quantities pertain to the equilibrium system, not the standard state. Also, the derivation makes clear what kind of assumptions underlie our conclusions. The derivation of these relations involves knowledge of thermodynamics that is well within the grasp of junior level physical chemistry students. The conclusions that follow from the derived relations are given as subsidiary rules in the form of the slope of ξeq, with T, p, et cetera. The rules are used to develop a visual way of predicting the direction of shift of a perturbed system. This method can be used to supplement one of the other methods even at the introductory level.

  9. Inferring unstable equilibrium configurations from experimental data

    NASA Astrophysics Data System (ADS)

    Virgin, L. N.; Wiebe, R.; Spottswood, S. M.; Beberniss, T.

    2016-09-01

    This research considers the structural behavior of slender, mechanically buckled beams and panels of the type commonly found in aerospace structures. The specimens were deflected and then clamped in a rigid frame in order to exhibit snap-through. That is, the initial equilibrium and the buckled (snapped-through) equilibrium configurations both co-existed for the given clamped conditions. In order to transit between these two stable equilibrium configurations (for example, under the action of an externally applied load), it is necessary for the structural component to pass through an intermediate unstable equilibrium configuration. A sequence of sudden impacts was imparted to the system, of various strengths and at various locations. The goal of this impact force was to induce relatively intermediate-sized transients that effectively slowed-down in the vicinity of the unstable equilibrium configuration. Thus, monitoring the velocity of the motion, and specifically its slowing down, should give an indication of the presence of an equilibrium configuration, even though it is unstable and not amenable to direct experimental observation. A digital image correlation (DIC) system was used in conjunction with an instrumented impact hammer to track trajectories and statistical methods used to infer the presence of unstable equilibria in both a beam and a panel.

  10. Equilibrium and Non-Equilibrium Condensation Phenomena in Tuneable 3D and 2D Bose Gases

    DTIC Science & Technology

    2016-04-01

    equilibrium and non-equilibrium many-body phenomena, trapping ultracold atomic gases in different geometries including both 3 and 2 spatial dimensions...box trap we created the world’s first atomic BEC in a quasi-uniform potential. 15. SUBJECT TERMS EOARD, Bose gas, ultracold, condensation, equilibrium... atom trap, Bose-Einstein condensate 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT SAR 18. NUMBER OF PAGES 3 19a. NAME OF RESPONSIBLE

  11. On equilibrium structures of the water molecule

    NASA Astrophysics Data System (ADS)

    Császár, Attila G.; Czakó, Gábor; Furtenbacher, Tibor; Tennyson, Jonathan; Szalay, Viktor; Shirin, Sergei V.; Zobov, Nikolai F.; Polyansky, Oleg L.

    2005-06-01

    Equilibrium structures are fundamental entities in molecular sciences. They can be inferred from experimental data by complicated inverse procedures which often rely on several assumptions, including the Born-Oppenheimer approximation. Theory provides a direct route to equilibrium geometries. A recent high-quality ab initio semiglobal adiabatic potential-energy surface (PES) of the electronic ground state of water, reported by Polyansky et al. [Polyansky et al.Science 299, 539 (2003)] and called CVRQD here, is analyzed in this respect. The equilibrium geometries resulting from this direct route are deemed to be of higher accuracy than those that can be determined by analyzing experimental data. Detailed investigation of the effect of the breakdown of the Born-Oppenheimer approximation suggests that the concept of an isotope-independent equilibrium structure holds to about 3×10-5Å and 0.02° for water. The mass-independent [Born-Oppenheimer (BO)] equilibrium bond length and bond angle on the ground electronic state PES of water is reBO=0.95782Å and θeBO=104.485°, respectively. The related mass-dependent (adiabatic) equilibrium bond length and bond angle of H2O16 is read=0.95785Å and θead=104.500°, respectively, while those of D2O16 are read=0.95783Å and θead=104.490°. Pure ab initio prediction of J =1 and 2 rotational levels on the vibrational ground state by the CVRQD PESs is accurate to better than 0.002cm-1 for all isotopologs of water considered. Elaborate adjustment of the CVRQD PESs to reproduce all observed rovibrational transitions to better than 0.05cm-1 (or the lower ones to better than 0.0035cm-1) does not result in noticeable changes in the adiabatic equilibrium structure parameters. The expectation values of the ground vibrational state rotational constants of the water isotopologs, computed in the Eckart frame using the CVRQD PESs and atomic masses, deviate from the experimentally measured ones only marginally, especially for A0 and B0. The

  12. Aerospace Applications of Non-Equilibrium Plasma

    NASA Technical Reports Server (NTRS)

    Blankson, Isaiah M.

    2016-01-01

    Nonequilibrium plasma/non-thermal plasma/cold plasmas are being used in a wide range of new applications in aeronautics, active flow control, heat transfer reduction, plasma-assisted ignition and combustion, noise suppression, and power generation. Industrial applications may be found in pollution control, materials surface treatment, and water purification. In order for these plasma processes to become practical, efficient means of ionization are necessary. A primary challenge for these applications is to create a desired non-equilibrium plasma in air by preventing the discharge from transitioning into an arc. Of particular interest is the impact on simulations and experimental data with and without detailed consideration of non-equilibrium effects, and the consequences of neglecting non-equilibrium. This presentation will provide an assessment of the presence and influence of non-equilibrium phenomena for various aerospace needs and applications. Specific examples to be considered will include the forward energy deposition of laser-induced non-equilibrium plasmoids for sonic boom mitigation, weakly ionized flows obtained from pulsed nanosecond discharges for an annular Hall type MHD generator duct for turbojet energy bypass, and fundamental mechanisms affecting the design and operation of novel plasma-assisted reactive systems in dielectric liquids (water purification, in-pipe modification of fuels, etc.).

  13. Non-equilibrium quantum heat machines

    NASA Astrophysics Data System (ADS)

    Alicki, Robert; Gelbwaser-Klimovsky, David

    2015-11-01

    Standard heat machines (engine, heat pump, refrigerator) are composed of a system (working fluid) coupled to at least two equilibrium baths at different temperatures and periodically driven by an external device (piston or rotor) sometimes called the work reservoir. The aim of this paper is to go beyond this scheme by considering environments which are stationary but cannot be decomposed into a few baths at thermal equilibrium. Such situations are important, for example in solar cells, chemical machines in biology, various realizations of laser cooling or nanoscopic machines driven by laser radiation. We classify non-equilibrium baths depending on their thermodynamic behavior and show that the efficiency of heat machines powered by them is limited by the generalized Carnot bound.

  14. Interfaces at equilibrium: A guide to fundamentals.

    PubMed

    Marmur, Abraham

    2016-05-20

    The fundamentals of the thermodynamics of interfaces are reviewed and concisely presented. The discussion starts with a short review of the elements of bulk thermodynamics that are also relevant to interfaces. It continues with the interfacial thermodynamics of two-phase systems, including the definition of interfacial tension and adsorption. Finally, the interfacial thermodynamics of three-phase (wetting) systems is discussed, including the topic of non-wettable surfaces. A clear distinction is made between equilibrium conditions, in terms of minimizing energies (internal, Gibbs or Helmholtz), and equilibrium indicators, in terms of measurable, intrinsic properties (temperature, chemical potential, pressure). It is emphasized that the equilibrium indicators are the same whatever energy is minimized, if the boundary conditions are properly chosen. Also, to avoid a common confusion, a distinction is made between systems of constant volume and systems with drops of constant volume.

  15. Analytic prediction of airplane equilibrium spin characteristics

    NASA Technical Reports Server (NTRS)

    Adams, W. M., Jr.

    1972-01-01

    The nonlinear equations of motion are solved algebraically for conditions for which an airplane is in an equilibrium spin. Constrained minimization techniques are employed in obtaining the solution. Linear characteristics of the airplane about the equilibrium points are also presented and their significance in identifying the stability characteristics of the equilibrium points is discussed. Computer time requirements are small making the method appear potentially applicable in airplane design. Results are obtained for several configurations and are compared with other analytic-numerical methods employed in spin prediction. Correlation with experimental results is discussed for one configuration for which a rather extensive data base was available. A need is indicated for higher Reynolds number data taken under conditions which more accurately simulate a spin.

  16. KSTAR Equilibrium Reconstruction with EFIT Code

    NASA Astrophysics Data System (ADS)

    You, Kwang-Il; Lee, D. K.; Hahn, S. H.; Lao, L. L.

    2007-11-01

    For application to the KSTAR (Korea Superconducting Tokamak Advanced Research) device, we have made some modification to the EFIT code and installed it on our computing system. The main function of EFIT is reconstruction of plasma equilibrium using discharge data. After every discharge, the code will be automatically run for a chosen time array and the results will be stored in the same way as experimental data will be. An MDSplus system will be used as the data storage for KSTAR; therefore, the EFIT reads experimental data from the MDSplus server and writes the results to it. We have added some subroutines to EFIT for direct link with the MDSplus server and also converted EFIT to Fortran 95 form. Test runs of the code will be made by using plasma simulator in the KSTAR plasma control system. This paper will also present some results of equilibrium data obtained with the equilibrium mode of EFIT.

  17. Equilibrium reconstruction using EFIT code for KSTAR

    NASA Astrophysics Data System (ADS)

    You, Kwang-Il; Lee, D. K.; Jeon, Y. M.; Hahn, S. H.; Lao, L. L.

    2006-10-01

    For application to the KSTAR (Korea Superconducting Tokamak Advanced Research) device, we have made some modification to the EFIT code and installed it on our computing system. The main function of EFIT is reconstruction of plasma equilibrium using discharge data. After every discharge, the code will be run for a chosen time array and the results will be stored in the same way as experimental data will be. An MDSplus system will be used as the data storage for KSTAR; therefore, the EFIT reads experimental data from the MDSplus server and writes the results to it. We have added some subroutines to EFIT for direct link with the MDSplus server and also converted it to Fortran 95 form. Test runs of the code will be made by using the KSTAR plasma control system. This paper will also present results of equilibrium data obtained with the equilibrium mode of EFIT.

  18. The transformation dynamics towards equilibrium in non-equilibrium w/w/o double emulsions

    NASA Astrophysics Data System (ADS)

    Chao, Youchuang; Mak, Sze Yi; Shum, Ho Cheung

    2016-10-01

    We use a glass-based microfluidic device to generate non-equilibrium water-in-water-in-oil (w/w/o) double emulsions and study how they transform into equilibrium configurations. The method relies on using three immiscible liquids, with two of them from the phase-separated aqueous two-phase systems. We find that the transformation is accompanied by an expansion rim, while the characteristic transformation speed of the rim mainly depends on the interfacial tension between the innermost and middle phases, as well as the viscosity of the innermost phase when the middle phase is non-viscous. Remarkably, the viscosity of the outermost phase has little effect on the transformation speed. Our results account for the dynamics of non-equilibrium double emulsions towards their equilibrium structure and suggest a possibility to utilize the non-equilibrium drops to synthesize functional particles.

  19. Pions in and out of equilibrium

    SciTech Connect

    Gavin, S.

    1991-12-01

    Can final state scattering wrestle the secondaries in nucleus-nucleus collisions into a fluid state near local thermal equilibrium What do the pion p{sub T} spectra measured in pp, pA and SPS light ion experiments already tell us about the approach to equilibrium To begin to address these questions, we must face the nonequilibrium nature of hadronic evolution in the late stages of these collisions. I will outline efforts to apply transport theory to the nonequilibrium pion fluid at midrapidity focusing on two phenomena: partial thermalization and pion conservation.

  20. Pions in and out of equilibrium

    SciTech Connect

    Gavin, S.

    1991-12-01

    Can final state scattering wrestle the secondaries in nucleus-nucleus collisions into a fluid state near local thermal equilibrium? What do the pion p{sub T} spectra measured in pp, pA and SPS light ion experiments already tell us about the approach to equilibrium? To begin to address these questions, we must face the nonequilibrium nature of hadronic evolution in the late stages of these collisions. I will outline efforts to apply transport theory to the nonequilibrium pion fluid at midrapidity focusing on two phenomena: partial thermalization and pion conservation.

  1. Isodynamic axisymmetric equilibrium near the magnetic axis

    SciTech Connect

    Arsenin, V. V.

    2013-08-15

    Plasma equilibrium near the magnetic axis of an axisymmetric toroidal magnetic confinement system is described in orthogonal flux coordinates. For the case of a constant current density in the vicinity of the axis and magnetic surfaces with nearly circular cross sections, expressions for the poloidal and toroidal magnetic field components are obtained in these coordinates by using expansion in the reciprocal of the aspect ratio. These expressions allow one to easily derive relationships between quantities in an isodynamic equilibrium, in which the absolute value of the magnetic field is constant along the magnetic surface (Palumbo’s configuration)

  2. Putting A Human Face on Equilibrium

    NASA Astrophysics Data System (ADS)

    Glickstein, Neil

    2005-03-01

    A short biography of chemist Fritz Haber is used to personalize the abstract concepts of equilibrium chemistry for high school students in an introductory course. In addition to giving the Haber Bosch process an historic, an economic, and a scientific background the reading and subsequent discussion allows students for whom the human perspective is of paramount importance a chance to investigate the irony of balance or equilibrium in Haber's life story. Since the inclusion of the Haber biography, performance in the laboratory and on examinations for those students who are usually only partially engaged has dramatically improved.

  3. Algorithm For Hypersonic Flow In Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Palmer, Grant

    1989-01-01

    Implicit, finite-difference, shock-capturing algorithm calculates inviscid, hypersonic flows in chemical equilibrium. Implicit formulation chosen because overcomes limitation on mathematical stability encountered in explicit formulations. For dynamical portion of problem, Euler equations written in conservation-law form in Cartesian coordinate system for two-dimensional or axisymmetric flow. For chemical portion of problem, equilibrium state of gas at each point in computational grid determined by minimizing local Gibbs free energy, subject to local conservation of molecules, atoms, ions, and total enthalpy. Major advantage: resulting algorithm naturally stable and captures strong shocks without help of artificial-dissipation terms to damp out spurious numerical oscillations.

  4. Computing Properties Of Chemical Mixtures At Equilibrium

    NASA Technical Reports Server (NTRS)

    Mcbride, B. J.; Gordon, S.

    1995-01-01

    Scientists and engineers need data on chemical equilibrium compositions to calculate theoretical thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93 is general program that calculates chemical equilibrium compositions and properties of mixtures for any chemical system for which thermodynamic data are available. Includes thermodynamic data for more than 1,300 gaseous and condensed species and thermal-transport data for 151 gases. Written in FORTRAN 77.

  5. Equilibrium properties of hybrid field reversed configurations

    NASA Astrophysics Data System (ADS)

    Tuszewski, M.; Gupta, D.; Gupta, S.; Onofri, M.; Osin, D.; Deng, B. H.; Dettrick, S. A.; Hubbard, K.; Gota, H.

    2017-01-01

    Field Reversed Configurations (FRCs) heated by neutral beam injection may include a large fast ion pressure that significantly modifies the equilibrium. A new analysis is required to characterize such hybrid FRCs, as the simple relations used up to now prove inaccurate. The substantial contributions of fast ions to FRC radial pressure balance and diamagnetism are described. A simple model is offered to reconstruct more accurately the equilibrium parameters of elongated hybrid FRCs. Further modeling requires new measurements of either the magnetic field or the plasma pressure.

  6. Isodynamic axisymmetric equilibrium near the magnetic axis

    NASA Astrophysics Data System (ADS)

    Arsenin, V. V.

    2013-08-01

    Plasma equilibrium near the magnetic axis of an axisymmetric toroidal magnetic confinement system is described in orthogonal flux coordinates. For the case of a constant current density in the vicinity of the axis and magnetic surfaces with nearly circular cross sections, expressions for the poloidal and toroidal magnetic field components are obtained in these coordinates by using expansion in the reciprocal of the aspect ratio. These expressions allow one to easily derive relationships between quantities in an isodynamic equilibrium, in which the absolute value of the magnetic field is constant along the magnetic surface (Palumbo's configuration).

  7. Equilibrium stellar systems with genetic algorithms

    NASA Astrophysics Data System (ADS)

    Gularte, E.; Carpintero, D. D.

    In 1979, M Schwarzschild showed that it is possible to build an equilibrium triaxial stellar system. However, the linear programmation used to that goal was not able to determine the uniqueness of the solution, nor even if that solution was the optimum one. Genetic algorithms are ideal tools to find a solution to this problem. In this work, we use a genetic algorithm to reproduce an equilibrium spherical stellar system from a suitable set of predefined orbits, obtaining the best solution attainable with the provided set. FULL TEXT IN SPANISH

  8. 14 CFR 67.305 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Ear, nose, throat, and equilibrium. 67.305..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a third-class airman... by, or that may reasonably be expected to be manifested by, vertigo or a disturbance of equilibrium....

  9. 46 CFR 42.20-12 - Conditions of equilibrium.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Conditions of equilibrium. 42.20-12 Section 42.20-12... BY SEA Freeboards § 42.20-12 Conditions of equilibrium. The following conditions of equilibrium are... stability. Through an angle of 20 degrees beyond its position of equilibrium, the vessel must meet...

  10. 14 CFR 67.205 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Ear, nose, throat, and equilibrium. 67.205..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a second-class airman..., vertigo or a disturbance of equilibrium....

  11. 14 CFR 67.305 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Ear, nose, throat, and equilibrium. 67.305..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a third-class airman... by, or that may reasonably be expected to be manifested by, vertigo or a disturbance of equilibrium....

  12. 14 CFR 67.105 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Ear, nose, throat, and equilibrium. 67.105..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a first-class airman... may reasonably be expected to be manifested by, vertigo or a disturbance of equilibrium....

  13. 14 CFR 67.205 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Ear, nose, throat, and equilibrium. 67.205..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a second-class airman..., vertigo or a disturbance of equilibrium....

  14. 46 CFR 42.20-12 - Conditions of equilibrium.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Conditions of equilibrium. 42.20-12 Section 42.20-12... BY SEA Freeboards § 42.20-12 Conditions of equilibrium. The following conditions of equilibrium are... stability. Through an angle of 20 degrees beyond its position of equilibrium, the vessel must meet...

  15. 14 CFR 67.105 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Ear, nose, throat, and equilibrium. 67.105..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a first-class airman... may reasonably be expected to be manifested by, vertigo or a disturbance of equilibrium....

  16. 14 CFR 67.305 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Ear, nose, throat, and equilibrium. 67.305..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a third-class airman... by, or that may reasonably be expected to be manifested by, vertigo or a disturbance of equilibrium....

  17. 46 CFR 42.20-12 - Conditions of equilibrium.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Conditions of equilibrium. 42.20-12 Section 42.20-12... BY SEA Freeboards § 42.20-12 Conditions of equilibrium. The following conditions of equilibrium are... stability. Through an angle of 20 degrees beyond its position of equilibrium, the vessel must meet...

  18. 14 CFR 67.305 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Ear, nose, throat, and equilibrium. 67.305..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a third-class airman... by, or that may reasonably be expected to be manifested by, vertigo or a disturbance of equilibrium....

  19. 14 CFR 67.105 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Ear, nose, throat, and equilibrium. 67.105..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a first-class airman... may reasonably be expected to be manifested by, vertigo or a disturbance of equilibrium....

  20. 14 CFR 67.205 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 2 2010-01-01 2010-01-01 false Ear, nose, throat, and equilibrium. 67.205..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a second-class airman..., vertigo or a disturbance of equilibrium....

  1. 46 CFR 42.20-12 - Conditions of equilibrium.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Conditions of equilibrium. 42.20-12 Section 42.20-12... BY SEA Freeboards § 42.20-12 Conditions of equilibrium. The following conditions of equilibrium are... stability. Through an angle of 20 degrees beyond its position of equilibrium, the vessel must meet...

  2. 14 CFR 67.105 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Ear, nose, throat, and equilibrium. 67.105..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a first-class airman... may reasonably be expected to be manifested by, vertigo or a disturbance of equilibrium....

  3. 46 CFR 42.20-12 - Conditions of equilibrium.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Conditions of equilibrium. 42.20-12 Section 42.20-12... BY SEA Freeboards § 42.20-12 Conditions of equilibrium. The following conditions of equilibrium are... stability. Through an angle of 20 degrees beyond its position of equilibrium, the vessel must meet...

  4. 14 CFR 67.305 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Ear, nose, throat, and equilibrium. 67.305..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a third-class airman... by, or that may reasonably be expected to be manifested by, vertigo or a disturbance of equilibrium....

  5. 14 CFR 67.205 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Ear, nose, throat, and equilibrium. 67.205..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a second-class airman..., vertigo or a disturbance of equilibrium....

  6. 14 CFR 67.205 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Ear, nose, throat, and equilibrium. 67.205..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a second-class airman..., vertigo or a disturbance of equilibrium....

  7. 14 CFR 67.105 - Ear, nose, throat, and equilibrium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Ear, nose, throat, and equilibrium. 67.105..., nose, throat, and equilibrium. Ear, nose, throat, and equilibrium standards for a first-class airman... may reasonably be expected to be manifested by, vertigo or a disturbance of equilibrium....

  8. Quantitative Proteomic Analysis of Serum from Pregnant Women Carrying a Fetus with Conotruncal Heart Defect Using Isobaric Tags for Relative and Absolute Quantitation (iTRAQ) Labeling

    PubMed Central

    Zhang, Ying; Kang, Yuan; Zhou, Qiongjie; Zhou, Jizi; Wang, Huijun; Jin, Hong; Liu, Xiaohui; Ma, Duan; Li, Xiaotian

    2014-01-01

    Objective To identify differentially expressed proteins from serum of pregnant women carrying a conotruncal heart defects (CTD) fetus, using proteomic analysis. Methods The study was conducted using a nested case-control design. The 5473 maternal serum samples were collected at 14–18 weeks of gestation. The serum from 9 pregnant women carrying a CTD fetus, 10 with another CHD (ACHD) fetus, and 11 with a normal fetus were selected from the above samples, and analyzed by using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with two-dimensional liquid chromatography-tandem mass spectrometry(2D LC-MS/MS). The differentially expressed proteins identified by iTRAQ were further validated with Western blot. Results A total of 105 unique proteins present in the three groups were identified, and relative expression data were obtained for 92 of them with high confidence by employing the iTRAQ-based experiments. The downregulation of gelsolin in maternal serum of fetus with CTD was further verified by Western blot. Conclusions The identification of differentially expressed protein gelsolin in the serum of the pregnant women carrying a CTD fetus by using proteomic technology may be able to serve as a foundation to further explore the biomarker for detection of CTD fetus from the maternal serum. PMID:25393621

  9. Global Metabolomic and Isobaric Tagging Capillary Liquid Chromatography–Tandem Mass Spectrometry Approaches for Uncovering Pathway Dysfunction in Diabetic Mouse Aorta

    PubMed Central

    2015-01-01

    Despite the prevalence of diabetes and the global health risks it poses, the biochemical pathogenesis of diabetic complications remains poorly understood with few effective therapies. This study employs capillary liquid chromatography (capLC) and tandem mass spectrometry (MS/MS) in conjunction with both global metabolomics and isobaric tags specific to amines and carbonyls to probe aortic metabolic content in diabetic mice with hyperglycemia, hyperlipidemia, hypertension, and stenotic vascular damage. Using these combined techniques, metabolites well-characterized in diabetes as well as novel pathways were investigated. A total of 53 986 features were detected, 719 compounds were identified as having significant fold changes (thresholds ≥2 or ≤0.5), and 48 metabolic pathways were found to be altered with at least 2 metabolite hits in diabetic samples. Pathways related to carbonyl stress, carbohydrate metabolism, and amino acid metabolism showed the greatest number of metabolite changes. Three novel pathways with previously limited or undescribed roles in diabetic complications—vitamin B6, propanoate, and butanoate metabolism—were also shown to be altered in multiple points along the pathway. These discoveries support the theory that diabetic vascular complications arise from the interplay of a myriad of metabolic pathways in conjunction with oxidative and carbonyl stress, which may provide not only new and much needed biomarkers but also insights into novel therapeutic targets. PMID:25368974

  10. Ambient isobaric heat capacities, C(p,m), for ionic solids and liquids: an application of volume-based thermodynamics (VBT).

    PubMed

    Glasser, Leslie; Jenkins, H Donald Brooke

    2011-09-05

    Thermodynamic properties, such as standard entropy, among others, have been shown to correlate well with formula volume, V(m), thus permitting prediction of these properties on the basis of chemical formula and density alone, with no structural detail required. We have termed these procedures "volume-based thermodynamics" (VBT). We here extend these studies to ambient isobaric heat capacities, C(p,m), of a wide range of materials. We show that heat capacity is strongly linearly correlated with formula volume for large sets of minerals, for ionic solids in general, and for ionic liquids and that the results demonstrate that the Neumann-Kopp rule (additivity of heat capacity contributions per atom) is widely valid for ionic materials, but the smaller heat capacity contribution per unit volume for ionic liquids is noted and discussed. Using these correlations, it is possible to predict values of ambient (298 K) heat capacities quite simply. We also show that the heat capacity contribution of water molecules of crystallization is remarkably constant, at 41.3 ± 4.7 J K(-1) (mol of water)(-1), so that the heat capacities of various hydrates may be reliably estimated from the values of their chemical formula neighbors. This result complements similar observations that we have reported for other thermodynamic differences of hydrates.

  11. First and Second-Phase Transitions of Gases at Isobaric Process; Lennard-Jones (9,6) Gases with a Hard Core

    NASA Astrophysics Data System (ADS)

    Matsumoto, Akira

    2014-12-01

    The thermodynamic functions for Lennard-Jones (9,6) gases with a hard core that are evaluated till the third virial coefficients, are investigated at an isobaric process. Some thermodynamic functions are analytically expressed as functions of intensive variables, temperature, and pressure. Some thermodynamic quantities for carbon dioxide are calculated numerically and drawn graphically. In critical states, the heat capacity diverges to infinity at the critical point while the Gibbs free energy, volume, enthalpy, and entropy are continuous at the critical point. In the coexistence of two phases, the boiling temperatures and the enthalpy changes of vaporization are obtained by numerical calculations for 20 substances. The Gibbs free energy indicates a polygonal line; entropy, volume, and enthalpy jump from the liquid to gaseous phase at the boiling point. The heat capacity does not diverge to infinity but shows a finite discrepancy at boiling point. This suggests that a first-order phase transition at the boiling point and a second-order phase transition may occur at the critical point.

  12. Nuclear structure beyond the neutron drip line. The lowest energy states in 9He via their T=5/2 isobaric analogs in 9Li

    DOE PAGES

    Uberseder, E.; Rogachev, G. V.; Goldberg, V. Z.; ...

    2016-03-01

    The level structure of the very neutron rich and unbound 9He nucleus has been the subject of significant experimental and theoretical study. Many recent works have claimed that the two lowest energy 9He states exist with spins Jπ=1/2+and Jπ=1/2-and widths on the order of 100–200 keV. These find-ings cannot be reconciled with our contemporary understanding of nuclear structure. Our present work is the first high-resolution study with low statistical uncertainty of the relevant excitation energy range in the 8He+n system, performed via a search for the T =5/2 isobaric analog states in 9Li populated through 8He+p elastic scattering. Moreover, themore » present data show no indication of any narrow structures. Instead, we find evidence for a broad Jπ=1/2+state in 9He located approximately 3 MeV above the neutron decay threshold.« less

  13. A paired ions scoring algorithm based on Morpheus for simultaneous identification and quantification of proteome samples prepared by isobaric peptide termini labeling strategies.

    PubMed

    Zhang, Shen; Wu, Qi; Shan, Yichu; Sui, Zhigang; Zhang, Lihua; Zhang, Yukui

    2015-06-01

    The isobaric peptide termini labeling (IPTL) method is a promising strategy in quantitative proteomics for its high accuracy, while the increased complexity of MS2 spectra originated from the paired b, y ions has adverse effect on the identification and the coverage of quantification. Here, a paired ions scoring algorithm (PISA) based on Morpheus, a database searching algorithm specifically designed for high-resolution MS2 spectra, was proposed to address this issue. PISA was first tested on two 1:1 mixed IPTL datasets, and increases in peptide to spectrum matchings, distinct peptides and protein groups compared to Morpheus itself and MASCOT were shown. Furthermore, the quantification is simultaneously performed and 100% quantification coverage is achieved by PISA since each of the identified peptide to spectrum matchings has several pairs of fragment ions which could be used for quantification. Then the PISA was applied to the relative quantification of human hepatocellular carcinoma cell lines with high and low metastatic potentials prepared by an IPTL strategy.

  14. Group Contribution Methods for Phase Equilibrium Calculations.

    PubMed

    Gmehling, Jürgen; Constantinescu, Dana; Schmid, Bastian

    2015-01-01

    The development and design of chemical processes are carried out by solving the balance equations of a mathematical model for sections of or the whole chemical plant with the help of process simulators. For process simulation, besides kinetic data for the chemical reaction, various pure component and mixture properties are required. Because of the great importance of separation processes for a chemical plant in particular, a reliable knowledge of the phase equilibrium behavior is required. The phase equilibrium behavior can be calculated with the help of modern equations of state or g(E)-models using only binary parameters. But unfortunately, only a very small part of the experimental data for fitting the required binary model parameters is available, so very often these models cannot be applied directly. To solve this problem, powerful predictive thermodynamic models have been developed. Group contribution methods allow the prediction of the required phase equilibrium data using only a limited number of group interaction parameters. A prerequisite for fitting the required group interaction parameters is a comprehensive database. That is why for the development of powerful group contribution methods almost all published pure component properties, phase equilibrium data, excess properties, etc., were stored in computerized form in the Dortmund Data Bank. In this review, the present status, weaknesses, advantages and disadvantages, possible applications, and typical results of the different group contribution methods for the calculation of phase equilibria are presented.

  15. Spontaneity and Equilibrium II: Multireaction Systems

    ERIC Educational Resources Information Center

    Raff, Lionel M.

    2014-01-01

    The thermodynamic criteria for spontaneity and equilibrium in multireaction systems are developed and discussed. When N reactions are occurring simultaneously, it is shown that G and A will depend upon N independent reaction coordinates, ?a (a = 1,2, ..., N), in addition to T and p for G or T and V for A. The general criteria for spontaneity and…

  16. ON THE EQUILIBRIUM STRUCTURE OF SIMPLE LIQUIDS

    DTIC Science & Technology

    It is shown that the repulsive (not merely the positive) portion of the Lennard - Jones potential quantitatively dominates the equilibrium structure of...the Lennard - Jones liquid. A simple and accurate approximation for the radial distribution function at high densities is presented.

  17. A Progression of Static Equilibrium Laboratory Exercises

    ERIC Educational Resources Information Center

    Kutzner, Mickey; Kutzner, Andrew

    2013-01-01

    Although simple architectural structures like bridges, catwalks, cantilevers, and Stonehenge have been integral in human societies for millennia, as have levers and other simple tools, modern students of introductory physics continue to grapple with Newton's conditions for static equilibrium. As formulated in typical introductory physics…

  18. Generalized convective quasi-equilibrium principle

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi; Plant, Robert S.

    2016-03-01

    A generalization of Arakawa and Schubert's convective quasi-equilibrium principle is presented for a closure formulation of mass-flux convection parameterization. The original principle is based on the budget of the cloud work function. This principle is generalized by considering the budget for a vertical integral of an arbitrary convection-related quantity. The closure formulation includes Arakawa and Schubert's quasi-equilibrium, as well as both CAPE and moisture closures as special cases. The formulation also includes new possibilities for considering vertical integrals that are dependent on convective-scale variables, such as the moisture within convection. The generalized convective quasi-equilibrium is defined by a balance between large-scale forcing and convective response for a given vertically-integrated quantity. The latter takes the form of a convolution of a kernel matrix and a mass-flux spectrum, as in the original convective quasi-equilibrium. The kernel reduces to a scalar when either a bulk formulation is adopted, or only large-scale variables are considered within the vertical integral. Various physical implications of the generalized closure are discussed. These include the possibility that precipitation might be considered as a potentially-significant contribution to the large-scale forcing. Two dicta are proposed as guiding physical principles for the specifying a suitable vertically-integrated quantity.

  19. Calculating Shocks In Flows At Chemical Equilibrium

    NASA Technical Reports Server (NTRS)

    Eberhardt, Scott; Palmer, Grant

    1988-01-01

    Boundary conditions prove critical. Conference paper describes algorithm for calculation of shocks in hypersonic flows of gases at chemical equilibrium. Although algorithm represents intermediate stage in development of reliable, accurate computer code for two-dimensional flow, research leading up to it contributes to understanding of what is needed to complete task.

  20. Teaching Chemical Equilibrium with the Jigsaw Technique

    ERIC Educational Resources Information Center

    Doymus, Kemal

    2008-01-01

    This study investigates the effect of cooperative learning (jigsaw) versus individual learning methods on students' understanding of chemical equilibrium in a first-year general chemistry course. This study was carried out in two different classes in the department of primary science education during the 2005-2006 academic year. One of the classes…

  1. Equilibrium Molecular Thermodynamics from Kirkwood Sampling

    PubMed Central

    2015-01-01

    We present two methods for barrierless equilibrium sampling of molecular systems based on the recently proposed Kirkwood method (J. Chem. Phys.2009, 130, 134102). Kirkwood sampling employs low-order correlations among internal coordinates of a molecule for random (or non-Markovian) sampling of the high dimensional conformational space. This is a geometrical sampling method independent of the potential energy surface. The first method is a variant of biased Monte Carlo, where Kirkwood sampling is used for generating trial Monte Carlo moves. Using this method, equilibrium distributions corresponding to different temperatures and potential energy functions can be generated from a given set of low-order correlations. Since Kirkwood samples are generated independently, this method is ideally suited for massively parallel distributed computing. The second approach is a variant of reservoir replica exchange, where Kirkwood sampling is used to construct a reservoir of conformations, which exchanges conformations with the replicas performing equilibrium sampling corresponding to different thermodynamic states. Coupling with the Kirkwood reservoir enhances sampling by facilitating global jumps in the conformational space. The efficiency of both methods depends on the overlap of the Kirkwood distribution with the target equilibrium distribution. We present proof-of-concept results for a model nine-atom linear molecule and alanine dipeptide. PMID:25915525

  2. Equilibrium molecular thermodynamics from Kirkwood sampling.

    PubMed

    Somani, Sandeep; Okamoto, Yuko; Ballard, Andrew J; Wales, David J

    2015-05-21

    We present two methods for barrierless equilibrium sampling of molecular systems based on the recently proposed Kirkwood method (J. Chem. Phys. 2009, 130, 134102). Kirkwood sampling employs low-order correlations among internal coordinates of a molecule for random (or non-Markovian) sampling of the high dimensional conformational space. This is a geometrical sampling method independent of the potential energy surface. The first method is a variant of biased Monte Carlo, where Kirkwood sampling is used for generating trial Monte Carlo moves. Using this method, equilibrium distributions corresponding to different temperatures and potential energy functions can be generated from a given set of low-order correlations. Since Kirkwood samples are generated independently, this method is ideally suited for massively parallel distributed computing. The second approach is a variant of reservoir replica exchange, where Kirkwood sampling is used to construct a reservoir of conformations, which exchanges conformations with the replicas performing equilibrium sampling corresponding to different thermodynamic states. Coupling with the Kirkwood reservoir enhances sampling by facilitating global jumps in the conformational space. The efficiency of both methods depends on the overlap of the Kirkwood distribution with the target equilibrium distribution. We present proof-of-concept results for a model nine-atom linear molecule and alanine dipeptide.

  3. Assessing Students' Conceptual Understanding of Solubility Equilibrium.

    ERIC Educational Resources Information Center

    Raviolo, Andres

    2001-01-01

    Presents a problem on solubility equilibrium which involves macroscopic, microscopic, and symbolic levels of representation as a resource for the evaluation of students, and allows for assessment as to whether students have acquired an adequate conceptual understanding of the phenomenon. Also diagnoses difficulties with regard to previous…

  4. Conditions for the Existence of Market Equilibrium.

    ERIC Educational Resources Information Center

    Bryant, William D. A.

    1997-01-01

    Maintains that most graduate-level economics textbooks rarely mention the need for consumers to be above their minimum wealth position as a condition for market equilibrium. Argues that this omission leaves students with a mistaken sense about the range of circumstances under which market equilibria can exist. (MJP)

  5. Payload specialists Patrick Baudry conducts equilibrium experiments

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Payload specialists Patrick Baudry participates in an experiment involving equilibrium and vertigo. He is anchored to the orbiter floor by foot restraints and is wearing a device over his eyes to measure angular head movement and up and down eye movement.

  6. Non-equilibrium spatial dynamics of ecosystems.

    PubMed

    Guichard, Frederic; Gouhier, Tarik C

    2014-09-01

    Ecological systems show tremendous variability across temporal and spatial scales. It is this variability that ecologists try to predict and that managers attempt to harness in order to mitigate risk. However, the foundations of ecological science and its mainstream agenda focus on equilibrium dynamics to describe the balance of nature. Despite a rich body of literature on non-equilibrium ecological dynamics, we lack a well-developed set of predictions that can relate the spatiotemporal heterogeneity of natural systems to their underlying ecological processes. We argue that ecology needs to expand its current toolbox for the study of non-equilibrium ecosystems in order to both understand and manage their spatiotemporal variability. We review current approaches and outstanding questions related to the study of spatial dynamics and its application to natural ecosystems, including the design of reserves networks. We close by emphasizing the importance of ecosystem function as a key component of a non-equilibrium ecological theory, and of spatial synchrony as a central phenomenon for its inference in natural systems.

  7. General Equilibrium Models: Improving the Microeconomics Classroom

    ERIC Educational Resources Information Center

    Nicholson, Walter; Westhoff, Frank

    2009-01-01

    General equilibrium models now play important roles in many fields of economics including tax policy, environmental regulation, international trade, and economic development. The intermediate microeconomics classroom has not kept pace with these trends, however. Microeconomics textbooks primarily focus on the insights that can be drawn from the…

  8. Exploring Equilibrium Chemistry for Hot Exoplanets

    NASA Astrophysics Data System (ADS)

    Blumenthal, Sarah; Harrington, Joseph; Mandell, Avi; Hébrard, Eric; Venot, Olivia; Cubillos, Patricio; Challener, Ryan

    2015-11-01

    It has been established that equilibrium chemistry is usually achieved deep in the atmosphere of hot Jovians where timescales are short (Line and Young 2013). Thus, equilibrium chemistry has been used as a starting point (setting initial conditions) for evaluating disequilibrium processes. We explore parameters of setting these initial conditions including departures from solar metallicity, the number of species allowed in a system, the types of species allowed in a system, and different thermodynamic libraries in an attempt to create a standard for evaluating equilibrium chemistry. NASA's open source code Chemical Equilibrium and Applications (CEA) is used to calculate model planet abundances by varying the metallicity, in the pressure regime of 0.1 to 1 bar. These results are compared to a variety of exoplanets (Teq between 600 and 2100K) qualitatively by color maps of the dayside with different temperature redistributions. Additionally, CEA (with an updated thermodynamic library) is validated with the thermochemical model presented in Venot et al. (2012) for HD 209458b and HD 189733b. This same analysis has then been extended to the cooler planet HD 97658b. Spectra are generated from both models’ abundances using the open source code transit (https://github.com/exosports/transit) using the opacities of 15 molecules. We make the updated CEA thermodyanamic library and supporting Python scripts to do the CEA analyses available open source. This work was supported by NASA Planetary Atmospheres grant NNX12AI69G.

  9. Exploring Chemical Equilibrium in Hot Jovians

    NASA Astrophysics Data System (ADS)

    Blumenthal, Sarah; Harrington, Joseph; Mandell, Avi; Hébrard, Eric; Venot, Olivia; Cubillos, Patricio; Blecic, Jasmina; Challener, Ryan

    2016-01-01

    It has been established that equilibrium chemistry is usually achieved deep in the atmosphere of hot Jovians where timescales are short (Line and Yung 2013). Thus, equilibrium chemistry has been used as a starting point (setting initial conditions) for evaluating disequilibrium processes. We explore parameters of setting these initial conditions including departures from solar metallicity, the number of species allowed in a system, the types of species allowed in a system, and different thermodynamic libraries in an attempt to create a standard for evaluating equilibrium chemistry. NASA's open source code Chemical Equilibrium and Applications (CEA) is used to calculate model planet abundances by varying the metallicity, in the pressure regime 0.1 to 1 bar. These results are compared to a variety of exoplanets(Teq between 600 and 2100K) qualitatively by color maps of the dayside with different temperature redistributions. Additionally, CEA (with an up-dated thermodynamic library) is compared with the thermochemical model presented in Venotet al. (2012) for HD 209458b and HD 189733b. This same analysis is then applied to the cooler planet HD 97658b. Spectra are generated and we compare both models' outputs using the open source codetransit (https://github.com/exosports/transit) using the opacities of 15 molecules. We make the updated CEA thermodyanamic library and supporting Python scripts to do the CEA analyses available open source. Thiswork was supported by NASA Planetary Atmospheres grant NNX12AI69G.

  10. The 'Schwarzschild-Kerr' Equilibrium Configurations

    SciTech Connect

    Manko, V. S.; Ruiz, E.

    2010-12-07

    We discuss the possibility of equilibrium between a Schwarzschild black hole possessing zero intrinsic angular momentum and a hyperextreme Kerr source. The balance occurs due to frame-dragging exerted by the latter source on the black-hole constituent, thus giving rise to a non-zero horizon's angular velocity parallel to the angular momentum of the Kerr object.

  11. The feasibility of isobaric suppression of 26Mg via post-accelerator foil stripping for the measurement of 26Al [The feasibility of isobaric suppression of 26Mg via post-accelerator foil stripping for the measurement of 26Al.

    SciTech Connect

    Tumey, Scott J.; Brown, Thomas A.; Finkel, Robert C.; Rood, Dylan H.

    2012-09-13

    Most accelerator mass spectrometry measurements of 26Al utilize the Al- ion despite lower source currents compared with AlO- since the stable isobar 26Mg does not form elemental negative ions. A gas-filled magnet allows sufficient suppression of 26Mg thus enabling the use of the more intense 26AlO- ion. However, most AMS systems do not include a gas-filled magnet. We therefore explored the feasibility of suppressing 26Mg by using a post-accelerator stripping foil. With this approach, combined with the use of alternative cathode matrices, we were able to suppress 26Mg by a factor of twenty. This suppression was insufficient to enable the use of 26AlO-, however further refinement of our system may permit its use in the future.

  12. Equilibrium and Sudden Events in Chemical Evolution

    NASA Astrophysics Data System (ADS)

    Weinberg, David H.; Andrews, Brett H.; Freudenburg, Jenna

    2017-03-01

    We present new analytic solutions for one-zone (fully mixed) chemical evolution models that incorporate a realistic delay time distribution for Type Ia supernovae (SNe Ia) and can therefore track the separate evolution of α-elements produced by core collapse supernovae (CCSNe) and iron peak elements synthesized in both CCSNe and SNe Ia. Our solutions allow constant, exponential, or linear–exponential ({{te}}-t/{τ {sfh}}) star formation histories, or combinations thereof. In generic cases, α and iron abundances evolve to an equilibrium at which element production is balanced by metal consumption and gas dilution, instead of continuing to increase over time. The equilibrium absolute abundances depend principally on supernova yields and the outflow mass loading parameter η, while the equilibrium abundance ratio [α /{Fe}] depends mainly on yields and secondarily on star formation history. A stellar population can be metal-poor either because it has not yet evolved to equilibrium or because high outflow efficiency makes the equilibrium abundance itself low. Systems with ongoing gas accretion develop metallicity distribution functions (MDFs) that are sharply peaked, while “gas starved” systems with rapidly declining star formation, such as the conventional “closed box” model, have broadly peaked MDFs. A burst of star formation that consumes a significant fraction of a system’s available gas and retains its metals can temporarily boost [α /{Fe}] by 0.1–0.3 dex, a possible origin for rare, α-enhanced stars with intermediate age and/or high metallicity. Other sudden transitions in system properties can produce surprising behavior, including backward evolution of a stellar population from high to low metallicity.

  13. Equilibrium and non-equilibrium dynamics simultaneously operate in the Galápagos islands.

    PubMed

    Valente, Luis M; Phillimore, Albert B; Etienne, Rampal S

    2015-08-01

    Island biotas emerge from the interplay between colonisation, speciation and extinction and are often the scene of spectacular adaptive radiations. A common assumption is that insular diversity is at a dynamic equilibrium, but for remote islands, such as Hawaii or Galápagos, this idea remains untested. Here, we reconstruct the temporal accumulation of terrestrial bird species of the Galápagos using a novel phylogenetic method that estimates rates of biota assembly for an entire community. We show that species richness on the archipelago is in an ascending phase and does not tend towards equilibrium. The majority of the avifauna diversifies at a slow rate, without detectable ecological limits. However, Darwin's finches form an exception: they rapidly reach a carrying capacity and subsequently follow a coalescent-like diversification process. Together, these results suggest that avian diversity of remote islands is rising, and challenge the mutual exclusivity of the non-equilibrium and equilibrium ecological paradigms.

  14. Gibbs ensemble Monte Carlo simulations of binary mixtures of methane, difluoromethane, and carbon dioxide.

    PubMed

    Do, Hainam; Wheatley, Richard J; Hirst, Jonathan D

    2010-03-25

    Gibbs ensemble Monte Carlo simulations were used to study the vapor-liquid equilibrium of binary mixtures of carbon dioxide + methane and carbon dioxide + difluoromethane. The potential forcefields we employ are all atomistic models, and have not previously been mixed together to study the vapor-liquid equilibrium of the binary mixtures. In addition, we characterize the microscopic structure of these liquid mixtures. In carbon dioxide + methane at 230 K and 56 bar, the microscopic structure of carbon dioxide in the mixture is the same as that in the pure liquid. In carbon dioxide + difluoromethane at 283 K and 56 bar, the presence of carbon dioxide does not noticeably perturb the liquid structure of difluoromethane, but the structure of carbon dioxide is subtly changed, due to a strong interaction between it and difluoromethane. The simulations in the isobaric-isothermal (NPT) ensemble agree well with the experimental data, except at the two extreme regions of the pressure range. The good agreement of most simulated state points with experimental data encourages one to develop more accurate potentials for predicting the thermodynamic properties of these systems as well as other complicated systems, which are less amenable to measurement by experiment.

  15. Spectra from pair-equilibrium plasmas

    NASA Technical Reports Server (NTRS)

    Zdziarski, A. A.

    1984-01-01

    A numerical model of relativistic nonmagnetized plasma with uniform temperature and electron density distributions is considered, and spectra from plasma in pair equilibrium are studied. A range of dimensionless temperature (T) greater than about 0.2 is considered. The spectra from low pair density plasmas in pair equilibrium vary from un-Comptonized bremsstrahlung spectra at Thomson cross section tau(N) much less than one to Comptonized bremsstrahlung spectra with tau(N) over one. For high pair density plasmas the spectra are flat for T greater than about one, and have broad intensity peaks at energy roughly equal to 3T for T less than one. In the latter region the total luminosity is approximately twice the annihilation luminosity. All spectra are flat in the X-ray region, in contradiction to observed AGN spectra. For dimensionless luminosity greater than about 100, the cooling time becomes shorter than the Thomson time.

  16. Fluctuation theorem for constrained equilibrium systems.

    PubMed

    Gilbert, Thomas; Dorfman, J Robert

    2006-02-01

    We discuss the fluctuation properties of equilibrium chaotic systems with constraints such as isokinetic and Nosé-Hoover thermostats. Although the dynamics of these systems does not typically preserve phase-space volumes, the average phase-space contraction rate vanishes, so that the stationary states are smooth. Nevertheless, finite-time averages of the phase-space contraction rate have nontrivial fluctuations which we show satisfy a simple version of the Gallavotti-Cohen fluctuation theorem, complementary to the usual fluctuation theorem for nonequilibrium stationary states and appropriate to constrained equilibrium states. Moreover, we show that these fluctuations are distributed according to a Gaussian curve for long enough times. Three different systems are considered here: namely, (i) a fluid composed of particles interacting with Lennard-Jones potentials, (ii) a harmonic oscillator with Nosé-Hoover thermostatting, and (iii) a simple hyperbolic two-dimensional map.

  17. Fluctuation theorem for constrained equilibrium systems

    NASA Astrophysics Data System (ADS)

    Gilbert, Thomas; Dorfman, J. Robert

    2006-02-01

    We discuss the fluctuation properties of equilibrium chaotic systems with constraints such as isokinetic and Nosé-Hoover thermostats. Although the dynamics of these systems does not typically preserve phase-space volumes, the average phase-space contraction rate vanishes, so that the stationary states are smooth. Nevertheless, finite-time averages of the phase-space contraction rate have nontrivial fluctuations which we show satisfy a simple version of the Gallavotti-Cohen fluctuation theorem, complementary to the usual fluctuation theorem for nonequilibrium stationary states and appropriate to constrained equilibrium states. Moreover, we show that these fluctuations are distributed according to a Gaussian curve for long enough times. Three different systems are considered here: namely, (i) a fluid composed of particles interacting with Lennard-Jones potentials, (ii) a harmonic oscillator with Nosé-Hoover thermostatting, and (iii) a simple hyperbolic two-dimensional map.

  18. Adaptive resolution simulation in equilibrium and beyond

    NASA Astrophysics Data System (ADS)

    Wang, H.; Agarwal, A.

    2015-09-01

    In this paper, we investigate the equilibrium statistical properties of both the force and potential interpolations of adaptive resolution simulation (AdResS) under the theoretical framework of grand-canonical like AdResS (GC-AdResS). The thermodynamic relations between the higher and lower resolutions are derived by considering the absence of fundamental conservation laws in mechanics for both branches of AdResS. In order to investigate the applicability of AdResS method in studying the properties beyond the equilibrium, we demonstrate the accuracy of AdResS in computing the dynamical properties in two numerical examples: The velocity auto-correlation of pure water and the conformational relaxation of alanine dipeptide dissolved in water. Theoretical and technical open questions of the AdResS method are discussed in the end of the paper.

  19. Spatial distribution of thermal energy in equilibrium.

    PubMed

    Bar-Sinai, Yohai; Bouchbinder, Eran

    2015-06-01

    The equipartition theorem states that in equilibrium, thermal energy is equally distributed among uncoupled degrees of freedom that appear quadratically in the system's Hamiltonian. However, for spatially coupled degrees of freedom, such as interacting particles, one may speculate that the spatial distribution of thermal energy may differ from the value predicted by equipartition, possibly quite substantially in strongly inhomogeneous or disordered systems. Here we show that for systems undergoing simple Gaussian fluctuations around an equilibrium state, the spatial distribution is universally bounded from above by 1/2k(B)T. We further show that in one-dimensional systems with short-range interactions, the thermal energy is equally partitioned even for coupled degrees of freedom in the thermodynamic limit and that in higher dimensions nontrivial spatial distributions emerge. Some implications are discussed.

  20. Cosmic curvature from de Sitter equilibrium cosmology.

    PubMed

    Albrecht, Andreas

    2011-10-07

    I show that the de Sitter equilibrium cosmology generically predicts observable levels of curvature in the Universe today. The predicted value of the curvature, Ω(k), depends only on the ratio of the density of nonrelativistic matter to cosmological constant density ρ(m)(0)/ρ(Λ) and the value of the curvature from the initial bubble that starts the inflation, Ω(k)(B). The result is independent of the scale of inflation, the shape of the potential during inflation, and many other details of the cosmology. Future cosmological measurements of ρ(m)(0)/ρ(Λ) and Ω(k) will open up a window on the very beginning of our Universe and offer an opportunity to support or falsify the de Sitter equilibrium cosmology.