[Use of Caco-2 cells for isolation of influenza virus].
Yoshino, S; Yamamoto, S; Kawabata, N
1998-04-01
In this study we assessed the usefulness of Caco-2 cells, derived from a human colon carcinoma, to isolate an influenza virus. Throat washings collected from 30 patients with influenza-like illnesses in Miyazaki Prefecture in 1997 were inoculated in MDCK and Caco-2 cells, 17 influenza virus strains were isolated in MDCK cells, and 20 in Caco-2 cells. Of all the viruses isolated, only one strain was identified as influenza virus type B; other strains were identified as type A (H3N2). Furthermore, some influenza viruses were isolated in Caco-2 cells also from the specimens collected between 1991 and 1997. With Caco-2 cells, each type of influenza virus was isolated effectively without the supplement of trypsin in the culture medium. These facts indicate the usefulness of Caco-2 cells as a host to isolate influenza virus as shown to be suitable in the detection of many types of enteric viruses. Caco-2 cells will serve as a useful cell line for the surveillance of infectious disease because Caco-2 cells are sensitive to a wide range of virus.
Isolation of dendritic-cell-like S100β-positive cells in rat anterior pituitary gland.
Horiguchi, Kotaro; Fujiwara, Ken; Yoshida, Saishu; Higuchi, Masashi; Tsukada, Takehiro; Kanno, Naoko; Yashiro, Takashi; Tateno, Kozue; Osako, Shunji; Kato, Takako; Kato, Yukio
2014-07-01
S100β-protein-positive cells in the anterior pituitary gland appear to possess multifunctional properties. Because of their pleiotropic features, S100β-positive cells are assumed to be of a heterogeneous or even a non-pituitary origin. The observation of various markers has allowed these cells to be classified into populations such as stem/progenitor cells, epithelial cells, astrocytes and dendritic cells. The isolation and characterization of each heterogeneous population is a prerequisite for clarifying the functional character and origin of the cells. We attempt to isolate two of the subpopulations of S100β-positive cells from the anterior lobe. First, from transgenic rats that express green fluorescent protein (GFP) driven by the S100β protein promoter, we fractionate GFP-positive cells with a cell sorter and culture them so that they can interact with laminin, a component of the extracellular matrix. We observe that one morphological type of GFP-positive cells possesses extended cytoplasmic processes and shows high adhesiveness to laminin (process type), whereas the other is round in shape and exhibits low adherence to laminin (round type). We successfully isolate cells of the round type from the cultured GFP-positive cells by taking advantage of their low affinity to laminin and then measure mRNA levels of the two cell types by real-time polymerase chain reaction. The resultant data show that the process type expresses vimentin (mesenchymal cell marker) and glial fibrillary acidic protein (astrocyte marker). The round type expresses dendritic cell markers, CD11b and interleukin-6. Thus, we found a method for isolating dendritic-cell-like S100β-positive cells by means of their property of adhering to laminin.
Isolation of mouse pancreatic alpha, beta, duct and acinar populations with cell surface markers.
Dorrell, Craig; Grompe, Maria T; Pan, Fong Cheng; Zhong, Yongping; Canaday, Pamela S; Shultz, Leonard D; Greiner, Dale L; Wright, Chris V; Streeter, Philip R; Grompe, Markus
2011-06-06
Tools permitting the isolation of live pancreatic cell subsets for culture and/or molecular analysis are limited. To address this, we developed a collection of monoclonal antibodies with selective surface labeling of endocrine and exocrine pancreatic cell types. Cell type labeling specificity and cell surface reactivity were validated on mouse pancreatic sections and by gene expression analysis of cells isolated using FACS. Five antibodies which marked populations of particular interest were used to isolate and study viable populations of purified pancreatic ducts, acinar cells, and subsets of acinar cells from whole pancreatic tissue or of alpha or beta cells from isolated mouse islets. Gene expression analysis showed the presence of known endocrine markers in alpha and beta cell populations and revealed that TTR and DPPIV are primarily expressed in alpha cells whereas DGKB and GPM6A have a beta cell specific expression profile. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Gubar, O S; Rodnichenko, A E; Vasyliev, R G; Zlatska, A V; Zubov, D O
2017-09-01
We aimed to isolate and characterize the cell types which could be obtained from postnatal extra-embryonic tissues. Fresh tissues (no more than 12 h after delivery) were used for enzymatic or explants methods of cell isolation. Obtained cultures were further maintained at 5% oxygen. At P3 cell phenotype was assessed by fluorescence-activated cell sorting, population doubling time was calculated and the multilineage differentiation assay was performed. We have isolated multiple cell types from postnatal tissues. Namely, placental mesenchymal stromal cells from placenta chorionic disc, chorionic membrane mesenchymal stromal cells (ChM-MSC) from free chorionic membrane, umbilical cord MSC (UC-MSC) from whole umbilical cord, human umbilical vein endothelial cells (HUVEC) from umbilical vein, amniotic epithelial cells (AEC) and amniotic MSC (AMSC) from amniotic membrane. All isolated cell types displayed high proliferation rate together with the typical MSC phenotype: CD73 + CD90 + CD105 + CD146 + CD166+CD34 - CD45 - HLA-DR - . HUVEC constitutively expressed key markers CD31 and CD309. Most MSC and AEC were capable of osteogenic and adipogenic differentiation. We have shown that a wide variety of cell types can be easily isolated from extra-embryonic tissues and expanded ex vivo for regenerative medicine applications. These cells possess typical MSC properties and can be considered an alternative for adult MSC obtained from bone marrow or fat, especially for allogeneic use.
Electrical isolation of component cells in monolithically interconnected modules
Wanlass, Mark W.
2001-01-01
A monolithically interconnected photovoltaic module having cells which are electrically connected which comprises a substrate, a plurality of cells formed over the substrate, each cell including a primary absorber layer having a light receiving surface and a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, and a cell isolation diode layer having a p-region, formed with a p-type dopant, and an n-region formed with an n-type dopant adjacent the p-region to form a single pn-junction, the diode layer intervening the substrate and the absorber layer wherein the absorber and diode interfacial regions of a same conductivity type orientation, the diode layer having a reverse-breakdown voltage sufficient to prevent inter-cell shunting, and each cell electrically isolated from adjacent cells with a vertical trench trough the pn-junction of the diode layer, interconnects disposed in the trenches contacting the absorber regions of adjacent cells which are doped an opposite conductivity type, and electrical contacts.
Viña-Almunia, Jose; Borras, Consuelo; Gambini, Juan; El Alamy, Marya; Viña, Jose
2016-01-01
Background Different methods have been used in order to isolate dental pulp stem cells. The aim of this study was to study the effect of different types of pulp treatment during isolation, under 3% O2 conditions, in the time needed and the efficacy for obtaining dental pulp stem cells. Material and Methods One hundred and twenty dental pulps were used to isolate dental pulp stem cells treating the pulp tissue during isolation using 9 different methods, using digestive, disgregation, or mechanical agents, or combining them. The cells were positive for CD133, Oct4, Nestin, Stro-1, CD34 markers, and negative for the hematopoietic cell marker CD-45, thus confirming the presence of mesenchymal stem cells. The efficacy of dental pulp stem cells obtention and the minimum time needed to obtain such cells comparing the 9 different methods was analyzed. Results Dental pulp stem cells were obtained from 97 of the 120 pulps used in the study, i.e. 80.8% of the cases. They were obtained with all the methods used except with mechanical fragmentation of the pulp, where no enzymatic digestion was performed. The minimum time needed to isolate dental pulp stem cells was 8 hours, digesting with 2mg/ml EDTA for 10 minutes, 4mg/ml of type I collagenase, 4mg/ml of type II dispase for 40 minutes, 13ng/ml of thermolysine for 40 minutes and sonicating the culture for one minute. Conclusions Dental pulp stem cells were obtained in 97 cases from a series of 120 pulps. The time for obtaining dental pulp stem cells was reduced maximally, without compromising the obtention of the cells, by combining digestive, disgregation, and mechanical agents. Key words:Dental pulp stem cells, mesenchymal stem cells, isolation method. PMID:26946201
Dorrell, Craig; Abraham, Stephanie L; Lanxon-Cookson, Kelsea M; Canaday, Pamela S; Streeter, Philip R; Grompe, Markus
2008-09-01
We have developed a novel panel of cell-surface markers for the isolation and study of all major cell types of the human pancreas. Hybridomas were selected after subtractive immunization of Balb/C mice with intact or dissociated human islets and assessed for cell-type specificity and cell-surface reactivity by immunohistochemistry and flow cytometry. Antibodies were identified by specific binding of surface antigens on islet (panendocrine or alpha-specific) and nonislet pancreatic cell subsets (exocrine and duct). These antibodies were used individually or in combination to isolate populations of alpha, beta, exocrine, or duct cells from primary human pancreas by FACS and to characterize the detailed cell composition of human islet preparations. They were also employed to show that human islet expansion cultures originated from nonendocrine cells and that insulin expression levels could be increased to up to 1% of normal islet cells by subpopulation sorting and overexpression of the transcription factors Pdx-1 and ngn3, an improvement over previous results with this culture system. These methods permit the analysis and isolation of functionally distinct pancreatic cell populations with potential for cell therapy.
Kaur, Gurpreet; Chandra, Mudit; Dwivedi, P N; Sharma, N S
2015-01-01
The aim of this study was to isolate Canine parvovirus (CPV) from suspected dogs on madin darby canine kidney (MDCK) cell line and its confirmation by polymerase chain reaction (PCR) and nested PCR (NPCR). Further, VP2 gene of the CPV isolates was amplified and sequenced to determine prevailing antigenic type. A total of 60 rectal swabs were collected from dogs showing signs of gastroenteritis, processed and subjected to isolation in MDCK cell line. The samples showing cytopathic effects (CPE) were confirmed by PCR and NPCR. These samples were subjected to PCR for amplification of VP2 gene of CPV, sequenced and analyzed to study the prevailing antigenic types of CPV. Out of the 60 samples subjected to isolation in MDCK cell line five samples showed CPE in the form of rounding of cells, clumping of cells and finally detachment of the cells. When these samples and the two commercially available vaccines were subjected to PCR for amplification of VP2 gene, a 1710 bp product was amplified. The sequence analysis revealed that the vaccines belonged to the CPV-2 type and the samples were of CPV-2b type. It can be concluded from the present study that out of a total of 60 samples 5 samples exhibited CPE as observed in MDCK cell line. Sequence analysis of the VP2 gene among the samples and vaccine strains revealed that samples belonged to CPV-2b type and vaccines belonging to CPV-2.
Variation of expression defects in cell surface 190-kDa protein antigen of Streptococcus mutans.
Lapirattanakul, Jinthana; Nomura, Ryota; Matsumoto-Nakano, Michiyo; Srisatjaluk, Ratchapin; Ooshima, Takashi; Nakano, Kazuhiko
2015-05-01
Streptococcus mutans, which consists of four serotypes, c, e, f, and k, possesses a 190-kDa cell surface protein antigen (PA) for initial tooth adhesion. We used Western blot analysis to determine PA expression in 750 S. mutans isolates from 150 subjects and found a significantly higher prevalence of the isolates with PA expression defects in serotypes f and k compared to serotypes c and e. Moreover, the defect patterns could be classified into three types; no PA expression on whole bacterial cells and in their supernatant samples (Type N1), PA expression mainly seen in supernatant samples (Type N2), and only low expression of PA in the samples of whole bacterial cells (Type W). The underlying reasons for the defects were mutations in the gene encoding PA as well as in the transcriptional processing of this gene for Type N1, defects in the sortase gene for Type N2, and low mRNA expression of PA for Type W. Since cellular hydrophobicity and phagocytosis susceptibility of the PA-defective isolates were significantly lower than those of the normal expression isolates, the potential implication of such defective isolates in systemic diseases involving bacteremia other than dental caries was suggested. Additionally, multilocus sequence typing was utilized to characterize S. mutans clones that represented a proportion of isolates with PA defects of 65-100%. Therefore, we described the molecular basis for variation defects in PA expression of S. mutans. Furthermore, we also emphasized the strong association between PA expression defects and serotypes f and k as well as the clonal relationships among these isolates. Copyright © 2015 Elsevier GmbH. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Porcine reproductive and respiratory syndrome virus (PRRSV) inhibits synthesis of type I interferons (IFNs) in infected pigs and in cultured cells. Here we report that one PRRSV mutant A2MC2 induces type I IFNs in cultured cells and has no effect on IFN downstream signaling. The mutant isolate was p...
Shinagawa-Ohama, Rei; Mochizuki, Mai; Tamaki, Yuichi; Suda, Naoto; Nakahara, Taka
2017-05-01
An undesirable complication that arises during dental treatments is external apical-root resorption, which causes root-cementum and root-dentin loss. To induce de novo cementogenesis, stem cell therapy is required. Cementum-forming cells (cementoblasts) are known to be differentiated from periodontal-lineage mesenchymal stem cells (MSCs), which are derived from the dental follicle (DF) in developing tissues and the periodontal ligament (PDL) in adult tissues, but the periodontal-lineage MSC type that is optimal for inducing de novo cementogenesis remains unidentified, as does the method to isolate these cells from harvested tissues. Thus, we investigated the cementogenic potential of DF- and PDL-derived MSCs that were isolated by using two widely used cell-isolation methods: enzymatic digestion and outgrowth (OG) methods. DF- and PDL-derived cells isolated by using both methods proliferated actively, and all four isolated cell types showed MSC gene/protein expression phenotype and ability to differentiate into adipogenic and chondrogenic lineages. Furthermore, cementogenic-potential analysis revealed that all cell types produced alizarin red S-positive mineralized materials in in vitro cultures. However, PDL-OG cells presented unique cementogenic features, such as nodular formation of mineralized deposits displaying a cellular intrinsic fiber cementum-like structure, as well as a higher expression of cementoblast-specific genes than in the other cell types. Moreover, in in vivo transplantation experiments, PDL-OG cells formed cellular cementum-like hard tissue containing embedded osteocalcin-positive cells, whereas the other cells formed acellular cementum-like materials. Given that the root-cementum defect is likely regenerated through cellular cementum deposition, PDL-OG cell-based therapies might potentially facilitate the de novo cellular cementogenesis required for regenerating the root defect.
Multiplexed Affinity-Based Separation of Proteins and Cells Using Inertial Microfluidics.
Sarkar, Aniruddh; Hou, Han Wei; Mahan, Alison E; Han, Jongyoon; Alter, Galit
2016-03-30
Isolation of low abundance proteins or rare cells from complex mixtures, such as blood, is required for many diagnostic, therapeutic and research applications. Current affinity-based protein or cell separation methods use binary 'bind-elute' separations and are inefficient when applied to the isolation of multiple low-abundance proteins or cell types. We present a method for rapid and multiplexed, yet inexpensive, affinity-based isolation of both proteins and cells, using a size-coded mixture of multiple affinity-capture microbeads and an inertial microfluidic particle sorter device. In a single binding step, different targets-cells or proteins-bind to beads of different sizes, which are then sorted by flowing them through a spiral microfluidic channel. This technique performs continuous-flow, high throughput affinity-separation of milligram-scale protein samples or millions of cells in minutes after binding. We demonstrate the simultaneous isolation of multiple antibodies from serum and multiple cell types from peripheral blood mononuclear cells or whole blood. We use the technique to isolate low abundance antibodies specific to different HIV antigens and rare HIV-specific cells from blood obtained from HIV+ patients.
Isolation, separation, and characterization of epithelial and connective cells from rat palate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Terranova, Victor Paul
1979-01-01
Epithelial and connective tissue cells were isolated from rat palate by sequential collagenase, hyaluronidase and trypsin digestion of the extracellular matrix. Differences between the two populations were noted with respect to total cell protein, total cell water, proline uptake and incorporation, percent collagen synthesized, effects of parathyroid hormone, metabolism of D-valine and cell density. Basal epithelial cells were subsequently separated from the heterogeneous epithelial cell population on shallow linear density gradients by velocity centrifugation. The type of collagen synthesized by the basal epithelial cells was compared to the type of collagen synthesized by the connective tissue cells by means ofmore » labeled amino acid incorporation ratios. Cells isolated from the epithelial and connective tissue were compared. From these studies it can be concluded that epithelial and connective tissue cells can be isolated from rat palate as viable and distinct populations with respect to the biochemical parameters examined. Furthermore, subpopulations can be separated and biochemically characterized.« less
Didar, Tohid Fatanat; Bowey, Kristen; Almazan, Guillermina; Tabrizian, Maryam
2014-02-01
Given that current cell isolation techniques are expensive, time consuming, yield low isolation purities, and/or alter target cell properties, a versatile, cost effective, and easy-to-operate microchip with the capability to simultaneously separate, capture, pattern, and culture rare and primary cells in vitro is developed. The platform is based on target cell adhesion onto the micro-fabricated interfaces produced by microcontact printing of cell-specific antibodies. Results show over 95% separation efficiency in less than 10 min for the separation of oligodendrocyte progenitor cells (OPCs) and cardiomyocytes from rat brain and heart mixtures, respectively. Target cell attachment and single cell spreading can be precisely controlled on the basis of the designed patterns. Both cell types can maintain their biofunctionality. Indeed, isolated OPCs can proliferate and differentiate into mature oligodendrocytes, while isolated cardiomyocytes retain their contractile properties on the separation platform. Successful separation of two dissimilar cell types present in varying concentrations in their respective cell mixtures and the demonstration of their integrity after separation open new avenues for time and cost-effective sorting of various cell types using the developed miniaturized platform. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kaur, Gurpreet; Chandra, Mudit; Dwivedi, P. N.; Sharma, N. S.
2015-01-01
Aim: The aim of this study was to isolate Canine parvovirus (CPV) from suspected dogs on madin darby canine kidney (MDCK) cell line and its confirmation by polymerase chain reaction (PCR) and nested PCR (NPCR). Further, VP2 gene of the CPV isolates was amplified and sequenced to determine prevailing antigenic type. Materials and Methods: A total of 60 rectal swabs were collected from dogs showing signs of gastroenteritis, processed and subjected to isolation in MDCK cell line. The samples showing cytopathic effects (CPE) were confirmed by PCR and NPCR. These samples were subjected to PCR for amplification of VP2 gene of CPV, sequenced and analyzed to study the prevailing antigenic types of CPV. Results: Out of the 60 samples subjected to isolation in MDCK cell line five samples showed CPE in the form of rounding of cells, clumping of cells and finally detachment of the cells. When these samples and the two commercially available vaccines were subjected to PCR for amplification of VP2 gene, a 1710 bp product was amplified. The sequence analysis revealed that the vaccines belonged to the CPV-2 type and the samples were of CPV-2b type. Conclusion: It can be concluded from the present study that out of a total of 60 samples 5 samples exhibited CPE as observed in MDCK cell line. Sequence analysis of the VP2 gene among the samples and vaccine strains revealed that samples belonged to CPV-2b type and vaccines belonging to CPV-2. PMID:27046996
Zhou, Jingxiang; Wang, Hao; Zhu, Xia; Li, Xingwei; Lv, Wenliang; Zhang, Dongming
2013-10-01
The explosive Koi herpesvirus (KHV) epidemic has caused the deaths of a large number of carp and carp variants and has produced serious economic losses. The mirror carp (Cyprinus carpio var. specularis) exhibits strong environmental adaptability and its primary cells can be used to isolate KHV. This study utilized the tissue explant method to systematically investigate primary cell culture conditions for mirror carp snout and caudal fin tissues. We demonstrated that cells from these two tissue types had strong adaptability, and when cultured in Medium 199 (M199) containing 20% serum at 26 to 30°C, the cells from the snout and caudal fin tissues exhibited the fastest egress and proliferation. Inoculation of these two cell types with KHV-infected fish kidney tissues produced typical cytopathic effects; additionally, identification by electron microscopy, and PCR indicated that KHV could be isolated from both cell types.
Molecular beacon-enabled purification of living cells by targeting cell type-specific mRNAs.
Wile, Brian M; Ban, Kiwon; Yoon, Young-Sup; Bao, Gang
2014-10-01
Molecular beacons (MBs) are dual-labeled oligonucleotides that fluoresce only in the presence of complementary mRNA. The use of MBs to target specific mRNAs allows sorting of specific cells from a mixed cell population. In contrast to existing approaches that are limited by available surface markers or selectable metabolic characteristics, the MB-based method enables the isolation of a wide variety of cells. For example, the ability to purify specific cell types derived from pluripotent stem cells (PSCs) is important for basic research and therapeutics. In addition to providing a general protocol for MB design, validation and nucleofection into cells, we describe how to isolate a specific cell population from differentiating PSCs. By using this protocol, we have successfully isolated cardiomyocytes differentiated from mouse or human PSCs (hPSCs) with ∼ 97% purity, as confirmed by electrophysiology and immunocytochemistry. After designing MBs, their ordering and validation requires 2 weeks, and the isolation process requires 3 h.
Cis-regulatory landscapes of four cell types of the retina
Hartl, Dominik; Jüttner, Josephine
2017-01-01
Abstract The retina is composed of ∼50 cell-types with specific functions for the process of vision. Identification of the cis-regulatory elements active in retinal cell-types is key to elucidate the networks controlling this diversity. Here, we combined transcriptome and epigenome profiling to map the regulatory landscape of four cell-types isolated from mouse retinas including rod and cone photoreceptors as well as rare inter-neuron populations such as horizontal and starburst amacrine cells. Integration of this information reveals sequence determinants and candidate transcription factors for controlling cellular specialization. Additionally, we refined parallel reporter assays to enable studying the transcriptional activity of large collection of sequences in individual cell-types isolated from a tissue. We provide proof of concept for this approach and its scalability by characterizing the transcriptional capacity of several hundred putative regulatory sequences within individual retinal cell-types. This generates a catalogue of cis-regulatory regions active in retinal cell types and we further demonstrate their utility as potential resource for cellular tagging and manipulation. PMID:29059322
Rapid, high efficiency isolation of pancreatic ß-cells.
Clardy, Susan M; Mohan, James F; Vinegoni, Claudio; Keliher, Edmund J; Iwamoto, Yoshiko; Benoist, Christophe; Mathis, Diane; Weissleder, Ralph
2015-09-02
The ability to isolate pure pancreatic ß-cells would greatly aid multiple areas of diabetes research. We developed a fluorescent exendin-4-like neopeptide conjugate for the rapid purification and isolation of functional mouse pancreatic β-cells. By targeting the glucagon-like peptide-1 receptor with the fluorescent conjugate, β-cells could be quickly isolated by flow cytometry and were >99% insulin positive. These studies were confirmed by immunostaining, microscopy and gene expression profiling on isolated cells. Gene expression profiling studies of cytofluorometrically sorted β-cells from 4 and 12 week old NOD mice provided new insights into the genetic programs at play of different stages of type-1 diabetes development. The described isolation method should have broad applicability to the β-cell field.
Pullagurla, Swathi R; Witek, Małgorzata A; Jackson, Joshua M; Lindell, Maria A M; Hupert, Mateusz L; Nesterova, Irina V; Baird, Alison E; Soper, Steven A
2014-04-15
We report the design and performance of a polymer microfluidic device that can affinity select multiple types of biological cells simultaneously with sufficient recovery and purity to allow for the expression profiling of mRNA isolated from these cells. The microfluidic device consisted of four independent selection beds with curvilinear channels that were 25 μm wide and 80 μm deep and were modified with antibodies targeting antigens specifically expressed by two different cell types. Bifurcated and Z-configured device geometries were evaluated for cell selection. As an example of the performance of these devices, CD4+ T-cells and neutrophils were selected from whole blood as these cells are known to express genes found in stroke-related expression profiles that can be used for the diagnosis of this disease. CD4+ T-cells and neutrophils were simultaneously isolated with purities >90% using affinity-based capture in cyclic olefin copolymer (COC) devices with a processing time of ∼3 min. In addition, sufficient quantities of the cells could be recovered from a 50 μL whole blood input to allow for reverse transcription-polymerase chain reaction (RT-PCR) following cell lysis. The expression of genes from isolated T-cells and neutrophils, such as S100A9, TCRB, and FPR1, was evaluated using RT-PCR. The modification and isolation procedures demonstrated here can also be used to analyze other cell types as well where multiple subsets must be interrogated.
Platre, Matthieu Pierre; Barberon, Marie; Caillieux, Erwann; Colot, Vincent
2016-01-01
Summary Multicellular organisms are composed of many cell types that acquire their specific fate through a precisely controlled pattern of gene expression in time and space dictated in part by cell type-specific promoter activity. Understanding the contribution of highly specialized cell types in the development of a whole organism requires the ability to isolate or analyze different cell types separately. We have characterized and validated a large collection of root cell type-specific promoters and have generated cell type-specific marker lines. These benchmarked promoters can be readily used to evaluate cell type-specific complementation of mutant phenotypes, or to knockdown gene expression using targeted expression of artificial miRNA. We also generated vectors and characterized transgenic lines for cell type-specific induction of gene expression and cell type-specific isolation of nuclei for RNA and chromatin profiling. Vectors and seeds from transgenic Arabidopsis plants will be freely available, and will promote rapid progress in cell type-specific functional genomics. We demonstrate the power of this promoter set for analysis of complex biological processes by investigating the contribution of root cell types in the IRT1-dependent root iron uptake. Our findings revealed the complex spatial expression pattern of IRT1 in both root epidermis and phloem companion cells and the requirement for IRT1 to be expressed in both cell types for proper iron homeostasis. PMID:26662936
Yasugi, Mayo; Sugahara, Yuki; Hoshi, Hidenobu; Kondo, Kaori; Talukdar, Prabhat K; Sarker, Mahfuzur R; Yamamoto, Shigeki; Kamata, Yoichi; Miyake, Masami
2015-08-01
Clostridium perfringens type A is a common source of food poisoning (FP) and non-food-borne (NFB) gastrointestinal diseases in humans. In the intestinal tract, the vegetative cells sporulate and produce a major pathogenic factor, C. perfringens enterotoxin (CPE). Most type A FP isolates carry a chromosomal cpe gene, whereas NFB type A isolates typically carry a plasmid-encoded cpe. In vitro, the purified CPE protein binds to a receptor and forms pores, exerting a cytotoxic activity in epithelial cells. However, it remains unclear if CPE is indispensable for C. perfringens cytotoxicity. In this study, we examined the cytotoxicity of cpe-harboring C. perfringens isolates co-cultured with human intestinal epithelial Caco-2 cells. The FP strains showed severe cytotoxicity during sporulation and CPE production, but not during vegetative cell growth. While Caco-2 cells were intact during co-culturing with cpe-null mutant derivative of strain SM101 (a FP strain carrying a chromosomal cpe gene), the wild-type level cytotoxicity was observed with cpe-complemented strain. In contrast, both wild-type and cpe-null mutant derivative of the NFB strain F4969 induced Caco-2 cell death during both vegetative and sporulation growth. Collectively, the Caco-2 cell cytotoxicity caused by C. perfringens strain SM101 is considered to be exclusively dependent on CPE production, whereas some additional toxins should be involved in F4969-mediated in vitro cytotoxicity. Copyright © 2015 Elsevier Ltd. All rights reserved.
Association of electrophoretic karyotype of Candida stellatoidea with virulence for mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kwon-Chung, K.J.; Wickes, B.L.; Merz, W.G.
1988-07-01
Seven isolates of Candida stellatoidea were studied for their electrophoretic karyotype, virulence for mice, sensitivity to UV radiation, growth rate in vitro, reaction on cycloheximide-indicator medium, and proteinase activity. The isolates exhibited one of two distinct electrophoretic karyotypes as determined by orthogonal field alternating gel electrophoresis (OFAGE). Four isolates, including the type culture of C. stellatoidea, belonged to electrophoretic karyotype type I by OFAGE, showing eight to nine bands of which at least two bands were less than 1,000 kilobases in size as estimated by comparison with the DNA bands of Saccharomyces cerevisiae. These isolates failed to produce fatal infectionmore » in mice within 20 days when 5 X 10(5) cells were injected intravenously. The yeasts were cleared from the kidneys of two of three mice tested by day 30. Type I showed proteinase activity on bovine serum albumin agar at pH 3.8 and produced a negative reaction on cycloheximide-bromcresol green medium within 48 h. The three grouped in type II by OFAGE showed banding patterns similar to those of a well-characterized isolate of Candida albicans. The isolates of type II had an electrophoretic karyotype of six to seven bands approximately 1,200 kilobases or greater in size. All three type II isolates were highly virulent for mice, producing fatality curves similar to those of a previously studied C. albicans isolate. From 80 to 90% of the mice injected with 5 X 10(5) cells intravenously died within 20 days. The type II isolates produced a positive reaction on cycloheximide-bromcresol green agar and showed no proteinase activity on bovine serum albumin agar at the low pH. In addition, the type II isolates grew faster and were significantly more resistant to UV irradiation than the type I isolates.« less
Motility of vestibular hair cells in the chick.
Ogata, Y; Sekitani, T
1993-01-01
Recent studies of the outer hair cells in cochlea have demonstrated active motilities. However, very little study has been done on the vestibular hair cells (VHCs). The present study shows the motile response of the VHCs induced by application of Ca2+/ATP promoting contraction. Reversible cell shape changes could be shown in 10 of 16 isolated type I hair cells and 9 of 15 isolated type II hair cells by applying the contraction solution. Furthermore, the sensory hair bundles in the utricular epithelium pivoted around the base and stood perpendicularly to the apical borderline of the epithelium in response to the application of the same solution. It is suggested that the contraction of the isolated VHCs may be transferred to tension which causes the sensory hair bundles to restrict their motion in normal tissue, instead of changing the cell shape.
Cis-regulatory landscapes of four cell types of the retina.
Hartl, Dominik; Krebs, Arnaud R; Jüttner, Josephine; Roska, Botond; Schübeler, Dirk
2017-11-16
The retina is composed of ∼50 cell-types with specific functions for the process of vision. Identification of the cis-regulatory elements active in retinal cell-types is key to elucidate the networks controlling this diversity. Here, we combined transcriptome and epigenome profiling to map the regulatory landscape of four cell-types isolated from mouse retinas including rod and cone photoreceptors as well as rare inter-neuron populations such as horizontal and starburst amacrine cells. Integration of this information reveals sequence determinants and candidate transcription factors for controlling cellular specialization. Additionally, we refined parallel reporter assays to enable studying the transcriptional activity of large collection of sequences in individual cell-types isolated from a tissue. We provide proof of concept for this approach and its scalability by characterizing the transcriptional capacity of several hundred putative regulatory sequences within individual retinal cell-types. This generates a catalogue of cis-regulatory regions active in retinal cell types and we further demonstrate their utility as potential resource for cellular tagging and manipulation. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Progress in Exosome Isolation Techniques
Li, Pin; Kaslan, Melisa; Lee, Sze Han; Yao, Justin; Gao, Zhiqiang
2017-01-01
Exosomes are one type of membrane vesicles secreted into extracellular space by most types of cells. In addition to performing many biological functions particularly in cell-cell communication, cumulative evidence has suggested that several biological entities in exosomes like proteins and microRNAs are closely associated with the pathogenesis of most human malignancies and they may serve as invaluable biomarkers for disease diagnosis, prognosis, and therapy. This provides a commanding impetus and growing demands for simple, efficient, and affordable techniques to isolate exosomes. Capitalizing on the physicochemical and biochemical properties of exosomes, a number of techniques have been developed for the isolation of exosomes. This article summarizes the advances in exosome isolation techniques with an emphasis on their isolation mechanism, performance, challenges, and prospects. We hope that this article will provide an overview of exosome isolation techniques, opening up new perspectives towards the development more innovative strategies and devices for more time saving, cost effective, and efficient isolations of exosomes from a wide range of biological matrices. PMID:28255367
Progress in Exosome Isolation Techniques.
Li, Pin; Kaslan, Melisa; Lee, Sze Han; Yao, Justin; Gao, Zhiqiang
2017-01-01
Exosomes are one type of membrane vesicles secreted into extracellular space by most types of cells. In addition to performing many biological functions particularly in cell-cell communication, cumulative evidence has suggested that several biological entities in exosomes like proteins and microRNAs are closely associated with the pathogenesis of most human malignancies and they may serve as invaluable biomarkers for disease diagnosis, prognosis, and therapy. This provides a commanding impetus and growing demands for simple, efficient, and affordable techniques to isolate exosomes. Capitalizing on the physicochemical and biochemical properties of exosomes, a number of techniques have been developed for the isolation of exosomes. This article summarizes the advances in exosome isolation techniques with an emphasis on their isolation mechanism, performance, challenges, and prospects. We hope that this article will provide an overview of exosome isolation techniques, opening up new perspectives towards the development more innovative strategies and devices for more time saving, cost effective, and efficient isolations of exosomes from a wide range of biological matrices.
Abendaño, Naiara; Sevilla, Iker A; Prieto, José Miguel; Garrido, Joseba M; Juste, Ramon A; Alonso-Hearn, Marta
2013-05-03
Assessment of the virulence of isolates of Mycobacterium avium subsp. paratuberculosis (Map) exhibiting distinct genotypes and isolated from different hosts may help to clarify the degree to which clinical manifestations of the disease in cattle can be attributed to bacterial or to host factors. The objective of this study was to test the ability of 10 isolates of Map representing distinct genotypes and isolated from domestic (cattle, sheep, and goat), and wildlife animal species (fallow deer, deer, wild boar, and bison) to enter and grow in bovine macrophages. The isolates were previously typed using IS1311 PCR followed by restriction endonuclease analysis into types C, S or B. Intracellular growth of the isolates in a bovine macrophage-like cell line (BoMac) and in primary bovine monocyte-derived macrophages (MDM) was evaluated by quantification of CFU numbers in the initial inoculum and inside of the host cells at 2h and 7 d p.i. using an automatic liquid culture system (Bactec MGIT 960). Individual data illustrated that growth was less variable in BoMac than in MDM cells. All the isolates from goat and sheep hosts persisted within BoMac cells in lower CFU numbers than the other tested isolates after 7 days of infection regardless of genotype. In addition, BoMac cells exhibited differential inflammatory, apoptotic and destructive responses when infected with a bovine or an ovine isolate; which correlated with the differential survival of these strains within BoMac cells. Our results indicated that the survival of the tested Map isolates within bovine macrophages is associated with the specific host from which the isolates were initially isolated. Copyright © 2013 Elsevier B.V. All rights reserved.
Song, Er-Qun; Hu, Jun; Wen, Cong-Ying; Tian, Zhi-Quan; Yu, Xu; Zhang, Zhi-Ling; Shi, Yun-Bo; Pang, Dai-Wen
2011-01-01
Fluorescent-magnetic-biotargeting multifunctional nanobioprobes (FMBMNs) have attracted great attention in recent years due to their increasing, important applications in biomedical research, clinical diagnosis, and biomedicine. We have previously developed such nanobioprobes for the detection and isolation of a single kind of tumor cells. Detection and isolation of multiple tumor markers or tumor cells from complex samples sensitively and with high efficiency is critical for the early diagnosis of tumors, especially malignant tumors or cancers, which will improve clinical diagnosis outcomes and help to select effective treatment approaches. Here, we expanded the application of the monoclonal antibody (mAb)-coupled FMBMNs for multiplexed assays. Multiple types of cancer cells, such as leukemia cells and prostate cancer cells, were detected and collected from mixed samples within 25 minutes by using a magnet and an ordinary fluorescence microscope. The capture efficiencies of mAb-coupled FMBMNs for the above mentioned two types of cells were 96% and 97% respectively. Furthermore, by using the mAb-coupled FMBMNs, specific and sensitive detection and rapid separation of a small number of spiked leukemia cells and prostate cancer cells in a large population of cultured normal cells (about 0.01% were tumor cells) were achieved simply and inexpensively without any sample pretreatment before cell analysis. Therefore, mAb-coupled multicolour FMBMNs may be used for very sensitive detection and rapid isolation of multiple cancer cells in biomedical research and medical diagnostics. PMID:21250650
Shinji, Toshiyuki; Ujike, Kozo; Ochi, Koji; Kusano, Nobuchika; Kikui, Tetsuya; Matsumura, Naoki; Emori, Yasuyuki; Seno, Toshinobu; Koide, Norio
2002-08-01
In studies of the pathogenesis of pancreatic fibrosis, pancreatic stellate cells (PSCs) have recently gained attention. In the present study, we established a new collagenase perfusion method through thoracic aorta cannulation to isolate PSCs, and we studied gene expression of TGF-beta1, type I collagen, and connective tissue growth factor using primary cultured PSCs. Our method facilitated PSC isolation, and by our new method, 4.3 +/- 1.2 x 10(6) PSCs were obtained from a rat. In comparing the expression of these genes with that of hepatic stellate cells (HSCs), we observed a similar pattern, although PSCs expressed type I collagen gene earlier than did HSCs. These results suggest that PSCs may play an important role in fibrosis of the pancreas, as HSCs do in liver fibrosis; in addition, PSCs may exist in a preactivated state or may be more easily activated than are HSCs. We also isolated the PSCs from a WBN/Kob rat, the spontaneous pancreatitis rat, and compared the gene expression with that from a normal rat.
Lionetti, Vincenzo; Cervone, Felice; De Lorenzo, Giulia
2015-04-01
Cell adhesion occurs primarily at the level of middle lamella which is mainly composed by pectin polysaccharides. These can be degraded by cell wall degrading enzymes (CWDEs) during developmental processes to allow a controlled separation of plant cells. Extensive cell wall degradation by CWDEs with consequent cell separation is performed when protoplasts are isolated from plant tissues by using mixtures of CWDEs. We have evaluated whether modification of pectin affects cell separation and protoplast isolation. Arabidopsis plants overexpressing the pectin methylesterase inhibitors AtPMEI-1 or AtPMEI-2, and Arabidopsis pme3 plants, mutated in the gene encoding pectin methylesterase 3, showed an increased efficiency of isolation of viable mesophyll protoplasts as compared with Wild Type Columbia-0 plants. The release of protoplasts was correlated with the reduced level of long stretches of de-methylesterified homogalacturonan (HGA) present in these plants. Response to elicitation, cell wall regeneration and efficiency of transfection in protoplasts from transgenic plants was comparable to those of wild type protoplasts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Presynaptic (Type III) cells in mouse taste buds sense sour (acid) taste.
Huang, Yijen A; Maruyama, Yutaka; Stimac, Robert; Roper, Stephen D
2008-06-15
Taste buds contain two types of cells that directly participate in taste transduction - receptor (Type II) cells and presynaptic (Type III) cells. Receptor cells respond to sweet, bitter and umami taste stimulation but until recently the identity of cells that respond directly to sour (acid) tastants has only been inferred from recordings in situ, from behavioural studies, and from immunostaining for putative sour transduction molecules. Using calcium imaging on single isolated taste cells and with biosensor cells to identify neurotransmitter release, we show that presynaptic (Type III) cells specifically respond to acid taste stimulation and release serotonin. By recording responses in cells isolated from taste buds and in taste cells in lingual slices to acetic acid titrated to different acid levels (pH), we also show that the active stimulus for acid taste is the membrane-permeant, uncharged acetic acid moiety (CH(3)COOH), not free protons (H(+)). That observation is consistent with the proximate stimulus for acid taste being intracellular acidification, not extracellular protons per se. These findings may also have implications for other sensory receptors that respond to acids, such as nociceptors.
An innovative cascade system for simultaneous separation of multiple cell types.
Pierzchalski, Arkadiusz; Mittag, Anja; Bocsi, Jozsef; Tarnok, Attila
2013-01-01
Isolation of different cell types from one sample by fluorescence activated cell sorting is standard but expensive and time consuming. Magnetic separation is more cost effective and faster by but requires substantial effort. An innovative pluriBead-cascade cell isolation system (pluriSelect GmbH, Leipzig, Germany) simultaneously separates two or more different cell types. It is based on antibody-mediated binding of cells to beads of different size and their isolation with sieves of different mesh-size. For the first time, we validated the pluriSelect system for simultaneous separation of CD4+- and CD8+-cells from human EDTA-blood samples. Results were compared with those obtained by magnetic activated cell sorting (MACS; two steps -first isolation of CD4+, then restaining of the residual cell suspension with anti-human CD8+ MACS antibody followed by the second isolation). pluriSelect separation was done in whole blood, MACS separation on density gradient isolated mononuclear cells. Isolated and residual cells were immunophenotyped by 7-color 9-marker panel (CD3; CD16/56; CD4; CD8; CD14; CD19; CD45; HLA-DR) using flow cytometry. Cell count, purity, yield and viability (7-AAD exclusion) were determined. There were no significant differences between both systems regarding purity (MACS (median[range]: 92.4% [91.5-94.9] vs. pluriSelect 95% [94.9-96.8])) of CD4+ cells, however CD8+ isolation showed lower purity by MACS (74.8% [67.6-77.9], pluriSelect 89.9% [89.0-95.7]). Yield was not significantly different for CD4 (MACS 58.5% [54.1-67.5], pluriSelect 67.9% [56.8-69.8]) and for CD8 (MACS 57.2% [41.3-72.0], pluriSelect 67.2% [60.0-78.5]). Viability was slightly higher with MACS for CD4+ (98.4% [97.8-99.0], pluriSelect 94.1% [92.1-95.2]) and for CD8+-cells (98.8% [98.3-99.1], pluriSelect 86.7% [84.2-89.9]). pluriSelect separation was substantially faster than MACS (1h vs. 2.5h) and no pre-enrichment steps were necessary. In conclusion, pluriSelect is a fast, simple and gentle system for efficient simultaneous separation of two and more cell subpopulation directly from whole blood and provides a simple alternative to magnetic separation.
ISOLATION AND PROPERTIES OF LIVER CELL NUCLEOLI
Monty, K. J.; Litt, M.; Kay, E. R. M.; Dounce, A. L.
1956-01-01
1. The significance of the term nucleolus has been discussed. 2. A detailed method for the isolation of nucleoli from already isolated rat or cat liver nuclei has been presented. 3. The presence of DNA in isolated liver cell nucleoli has been indicated by histochemical methods. 4. The percentages of DNA and RNA in the isolated nucleoli have been determined by chemical analysis. 5. The specific activities of aldolase, arginase, and catalase have been determined for two subnuclear fractions and for the isolated nucleoli of rat and cat liver, and the relative amounts of these enzymes in the same subnuclear fractions and nucleoli of rat liver have been measured. 6. The significance of the above findings has been discussed and consideration has been given to what types of isolated nuclei might best serve as starting material for the isolation of nucleoli. 7. A new hypothesis has been presented that nucleoli of the liver cell type may function primarily in furnishing (directly or indirectly) templates for the synthesis of the particular enzymes that must govern the chemistry of mitosis. PMID:13319377
Hou, Jin-Jun; Shen, Yao; Yang, Zhou; Fang, Lin; Cai, Lu-Ying; Yao, Shuai; Long, Hua-Li; Wu, Wan-Ying; Guo, De-An
2017-10-01
Euphorbia kansui is a commonly used traditional Chinese medicine for the treatment of edema, pleural effusion, and asthma, etc. According to the previous researches, terpenoids in E. kansui possess various biological activities, e.g., anti-virus, anti-allergy, antitumor effects. In this work, twenty five terpenoids were isolated from E. kansui, including thirteen ingenane- and eight jatrophane-type diterpenoids (with two new compounds, kansuinin P and Q) and four triterpenoids. Eighteen of them were analyzed by MTS assay for in vitro anticancer activity in five human cancer cell lines. Structure-activity relationship for 12 ingenane-type diterpenoids in colorectal cancer Colo205 cells were preliminary studied. Significant anti-proliferation activities were observed in human melanoma cells breast cancer MDA-MB-435 cells and Colo205 cells. More than half of the isolated ingenane-type diterpenoids showed inhibitory activities in MDA-MB-435 cells. Eight ingenane- and one jatrophane-type diterpenoids possessed much lower IC 50 values in MDA-MB-435 cells than positive control staurosporine. Preliminary structure-activity relationship analysis showed that substituent on position 20 was important for the activity of ingenane-type diterpenoids in Colo205 cells and substituent on position 3 contributed more significant biological activity of the compounds than that on position 5 in both MDA-MB-435 and Colo205 cells. Copyright © 2017 China Pharmaceutical University. Published by Elsevier B.V. All rights reserved.
Inhibitory effect of aniracetam on N-type calcium current in acutely isolated rat neuronal cells.
Koike, H; Saito, H; Matsuki, N
1993-04-01
Effects of aniracetam on whole-cell calcium currents were studied in acutely isolated neuronal cells from postnatal rat ventromedial hypothalamus. There were three types of inward calcium currents, one low-threshold transient current and two high-threshold sustained currents. The nicardipine sensitive L-type current was activated at -20 mV or more depolarized potentials, and the omega-conotoxin sensitive N-type current was recorded at more positive potentials than the L-type. Aniracetam inhibited the N-type current in a dose-dependent manner without affecting the other two types of calcium currents. The effect appeared soon after the addition and lasted for several minutes during washing. Since the N-type current is thought to regulate the release of transmitters, the inhibitory effect may contribute to the nootropic property of aniracetam by modifying the neurotransmission.
Grabow, W. O.; Botma, K. L.; de Villiers, J. C.; Clay, C. G.; Erasmus, B.
1999-01-01
WHO considers that environmental surveillance for wild-type polioviruses is potentially important for surveillance for acute flaccid paralysis as a means of confirming eradication of poliomyelitis. The present study investigated methods for detecting polioviruses in a variety of water environments in South Africa. Most polioviruses were isolated on L20B mouse cells, which, however, were not selective: 16 reoviruses and 8 enteroviruses, apparently animal strains, were also isolated on these cells. Vaccine strains of polioviruses were isolated from surface waters during and shortly after two rounds of mass vaccination of children in an informal settlement where there was no sewerage. The results demonstrated the feasibility of poliovirus surveillance in such settlements. It was also evident that neither poliovirus vaccine strains nor other viruses were likely to interfere significantly with the detection of wild-type polioviruses. Optimal isolation of polioviruses was accomplished by parallel inoculation of L20B mouse cells and at least the PLC/PRF/5 human liver and buffalo green monkey (BGM) kidney cell lines. Analysis of cell cultures using the polymerase chain reaction revealed that 319 test samples contained at least 263 human enteroviruses that failed to produce a cytopathogenic effect. This type of analysis thus significantly increased the sensitivity of enterovirus detection. PMID:10680244
Type II and III Taste Bud Cells Preferentially Expressed Kainate Glutamate Receptors in Rats.
Lee, Sang-Bok; Lee, Cil-Han; Kim, Se-Nyun; Chung, Ki-Myung; Cho, Young-Kyung; Kim, Kyung-Nyun
2009-12-01
Glutamate-induced cobalt uptake reveals that non-NMDA glutamate receptors (GluRs) are present in rat taste bud cells. Previous studies involving glutamate induced cobalt staining suggest this uptake mainly occurs via kainate type GluRs. It is not known which of the 4 types of taste bud cells express subunits of kainate GluR. Circumvallate and foliate papillae of Sprague-Dawley rats (45~60 days old) were used to search for the mRNAs of subunits of non-NMDA GluRs using RT-PCR with specific primers for GluR1-7, KA1 and KA2. We also performed RT-PCR for GluR5, KA1, PLCbeta2, and NCAM/SNAP 25 in isolated single cells from taste buds. Taste epithelium, including circumvallate or foliate papilla, express mRNAs of GluR5 and KA1. However, non-taste tongue epithelium expresses no subunits of non-NMDA GluRs. Isolated single cell RT-PCR reveals that the mRNAs of GluR5 and KA1 are preferentially expressed in Type II and Type III cells over Type I cells.
Vogel, B F; Jørgensen, K; Christensen, H; Olsen, J E; Gram, L
1997-01-01
Seventy-six presumed Shewanella putrefaciens isolates from fish, oil drillings, and clinical specimens, the type strain of Shewanella putrefaciens (ATCC 8071), the type strain of Shewanella alga (IAM 14159), and the type strain of Shewanella hanedai (ATCC 33224) were compared by several typing methods. Numerical analysis of sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole-cell protein and ribotyping patterns showed that the strains were separated into two distinct clusters with 56% +/- 10% and 40% +/- 14% similarity for whole-cell protein profiling and ribotyping, respectively. One cluster consisted of 26 isolates with 52 to 55 mol% G + C and included 15 human isolates, mostly clinical specimens, 8 isolates from marine waters, and the type strain of S. alga. This homogeneous cluster of mesophilic, halotolerant strains was by all analyses identical to the recently defined species S. alga (U. Simidu et al., Int. J. Syst. Bacteriol, 40:331-336, 1990). Fifty-two typically psychrotolerant strains formed the other, more heterogeneous major cluster, with 43 to 47 mol% G + C. The type strain of S. putrefaciens was included in this group. The two groups were confirmed by 16S rRNA gene sequence analysis. It is concluded that the isolates must be considered two different species, S. alga and S. putrefaciens, and that most mesophilic isolates formerly identified as S. putrefaciens belong to S. alga. The ecological role and potential pathogenicity of S. alga can be evaluated only if the organism is correctly identified. PMID:9172338
Primary Culture System for Germ Cells from Caenorhabditis elegans Tumorous Germline Mutants
Vagasi, Alexandra S.; Rahman, Mohammad M.; Chaudhari, Snehal N.; Kipreos, Edward T.
2017-01-01
The Caenorhabditis elegans germ line is an important model system for the study of germ stem cells. Wild-type C. elegans germ cells are syncytial and therefore cannot be isolated in in vitro cultures. In contrast, the germ cells from tumorous mutants can be fully cellularized and isolated intact from the mutant animals. Here we describe a detailed protocol for the isolation of germ cells from tumorous mutants that allows the germ cells to be maintained for extended periods in an in vitro primary culture. This protocol has been adapted from Chaudhari et al., 2016. PMID:28868332
Identification and isolation of adult liver stem/progenitor cells.
Tanaka, Minoru; Miyajima, Atsushi
2012-01-01
Hepatoblasts are considered to be liver stem/progenitor cells in the fetus because they propagate and differentiate into two types of liver epithelial cells, hepatocytes and cholangiocytes. In adults, oval cells that emerge in severely injured liver are considered facultative hepatic stem/progenitor cells. However, the nature of oval cells has remained unclear for long time due to the lack of a method to isolate them. It has also been unclear whether liver stem/progenitor cells exist in normal adult liver. Recently, we and others have successfully identified oval cells and adult liver stem/progenitor cells. Here, we describe the identification and isolation of mouse liver stem/progenitor cells by utilizing antibodies against specific cell surface marker molecules.
NASA Astrophysics Data System (ADS)
Worley, Jennings F.; Deitmer, Joachim W.; Nelson, Mark T.
1986-08-01
Single smooth muscle cells were enzymatically isolated from the rabbit mesenteric artery. At physiological levels of external Ca, these cells were relaxed and contracted on exposure to norepinephrine, caffeine, or high levels of potassium. The patch-clamp technique was used to measure unitary currents through single channels in the isolated cells. Single channels were selective for divalent cations and exhibited two conductance levels, 8 pS and 15 pS. Both types of channels were voltage-dependent, and channel activity occurred at potentials positive to -40 mV. The activity of both channel types was almost completely inhibited by 50 nM nisoldipine. These channels appear to be the pathways for voltage-dependent Ca influx in vascular smooth muscle and may be the targets of the clinically used dihydropyridines.
Somatic Cells Become Cancer’s “Starter Dough” | Center for Cancer Research
Cancer stem cells (CSCs) is a term that sparks animated differences of opinions among researchers in the oncology community. Much of the disagreement comes from the difficulty involved in isolating these cells and manipulating them ex vivo. When putative CSCs are isolated from clinical samples, researchers are unable to retrospectively identify the cell type that suffered the
In Vivo Myeloperoxidase Imaging and Flow Cytometry Analysis of Intestinal Myeloid Cells.
Hülsdünker, Jan; Zeiser, Robert
2016-01-01
Myeloperoxidase (MPO) imaging is a non-invasive method to detect cells that produce the enzyme MPO that is most abundant in neutrophils, macrophages, and inflammatory monocytes. While lacking specificity for any of these three cell types, MPO imaging can provide guidance for further flow cytometry-based analysis of tissues where these cell types reside. Isolation of leukocytes from the intestinal tract is an error-prone procedure. Here, we describe a protocol for intestinal leukocyte isolation that works reliable in our hands and allows for flow cytometry-based analysis, in particular of neutrophils.
Haase, Doreen; Puan, Kia Joo; Starke, Mireille; Lai, Tuck Siong; Soh, Melissa Yan Ling; Karunanithi, Iyswariya; San Luis, Boris; Poh, Tuang Yeow; Yusof, Nurhashikin; Yeap, Chun Hsien; Phang, Chew Yen; Chye, Willis Soon Yuan; Chan, Marieta; Koh, Mickey Boon Chai; Goh, Yeow Tee; Bertin-Maghit, Sebastien; Nardin, Alessandra; Ho, Liam Pock; Rotzschke, Olaf
2015-01-01
Adoptive cell therapy is an emerging treatment strategy for a number of serious diseases. Regulatory T (Treg) cells represent 1 cell type of particular interest for therapy of inflammatory conditions, as they are responsible for controlling unwanted immune responses. Initial clinical trials of adoptive transfer of Treg cells in patients with graft-versus-host disease were shown to be safe. However, obtaining sufficient numbers of highly pure and functional Treg cells with minimal contamination remains a challenge. We developed a novel approach to isolate "untouched" human Treg cells from healthy donors on the basis of negative selection using the surface markers CD49d and CD127. This procedure, which uses an antibody cocktail and magnetic beads for separation in an automated system (RoboSep), was scaled up and adapted to be compatible with good manufacturing practice conditions. With this setup we performed 9 Treg isolations from large-scale leukapheresis samples in a good manufacturing practice facility. These runs yielded sufficient numbers of "untouched" Treg cells for immediate use in clinical applications. The cell preparations consisted of viable highly pure FoxP3-positive Treg cells that were functional in suppressing the proliferation of effector T cells. Contamination with CD4 effector T cells was <10%. All other cell types did not exceed 2% in the final product. Remaining isolation reagents were reduced to levels that are considered safe. Treg cells isolated with this procedure will be used in a phase I clinical trial of adoptive transfer into leukemia patients developing graft-versus-host disease after stem cell transplantation.
Quality testing of an innovative cascade separation system for multiple cell separation
NASA Astrophysics Data System (ADS)
Pierzchalski, Arkadiusz; Moszczynska, Aleksandra; Albrecht, Bernd; Heinrich, Jan-Michael; Tarnok, Attila
2012-03-01
Isolation of different cell types from mixed samples in one separation step by FACS is feasible but expensive and slow. It is cheaper and faster but still challenging by magnetic separation. An innovative bead-based cascade-system (pluriSelect GmbH, Leipzig, Germany) relies on simultaneous physical separation of different cell types. It is based on antibody-mediated binding of cells to beads of different size and isolation with sieves of different mesh-size. We validated pluriSelect system for single parameter (CD3) and simultaneous separation of CD3 and CD15 cells from EDTA blood-samples. Results were compared with those obtained by MACS (Miltenyi-Biotech) magnetic separation (CD3 separation). pluriSelect separation was done in whole blood, MACS on Ficoll gradient isolated leukocytes, according to the manufacturer's protocols. Isolated and residual cells were immunophenotyped (7-color 8-antibody panel (CD3; CD16/56; CD4; CD8; CD14; CD19; CD45; HLADR) on a CyFlowML flow cytometer (Partec GmbH). Cell count (Coulter), purity, yield and viability (7-AAD exclusion) were determined. There were no significant differences between both systems regarding purity (92-98%), yield (50-60%) and viability (92-98%) of isolated cells. PluriSelect separation was slightly faster than MACS (1.15 h versus 1.5h). Moreover, no preenrichment steps were necessary. In conclusion, pluriSelect is a fast, simple and gentle system for efficient simultaneous separation of two cell subpopulation directly from whole blood and can provide a simple alternative to FACS. The isolated cells can be used for further research applications.
Invasion of Human Oral Epithelial Cells by Prevotella intermedia
Dorn, Brian R.; Leung, K.-P.; Progulske-Fox, Ann
1998-01-01
Invasion of oral epithelial cells by pathogenic oral bacteria may represent an important virulence factor in the progression of periodontal disease. Here we report that a clinical isolate of Prevotella intermedia, strain 17, was found to invade a human oral epithelial cell line (KB), whereas P. intermedia 27, another clinical isolate, and P. intermedia 25611, the type strain, were not found to invade the cell line. Invasion was quantified by the recovery of viable bacteria following a standard antibiotic protection assay and observed by electron microscopy. Cytochalasin D, cycloheximide, monodansylcadaverine, and low temperature (4°C) inhibited the internalization of P. intermedia 17. Antibodies raised against P. intermedia type C fimbriae and against whole cells inhibited invasion, but the anti-type-C-fimbria antibody inhibited invasion to a greater extent than the anti-whole-cell antibody. This work provides evidence that at least one strain of P. intermedia can invade an oral epithelial cell line and that the type C fimbriae and a cytoskeletal rearrangement are required for this invasion. PMID:9826397
Dalrymple, Annette; Ordoñez, Patricia; Thorne, David; Dillon, Debbie; Meredith, Clive
2015-06-01
Smoking is a cause of serious diseases, including lung cancer, emphysema, chronic bronchitis and heart disease. DNA damage is thought to be one of the mechanisms by which cigarette smoke (CS) initiates disease in the lung. Indeed, CS induced DNA damage can be measured in vitro and in vivo. The potential of the Comet assay to measure DNA damage in isolated rat lung alveolar type II epithelial cells (AEC II) was explored as a means to include a genotoxicity end-point in rodent sub-chronic inhalation studies. In this study, published AEC II isolation methods were improved to yield viable cells suitable for use in the Comet assay. The improved method reduced the level of basal DNA damage and DNA repair in isolated AEC II. CS induced DNA damage could also be quantified in isolated cells following a single or 5 days CS exposure. In conclusion, the Comet assay has the potential to determine CS or other aerosol induced DNA damage in AEC II isolated from rodents used in sub-chronic inhalation studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.
Reinisch, Andreas; Strunk, Dirk
2009-10-08
The umbilical cord is a rich source for progenitor cells with high proliferative potential including mesenchymal stromal cells (also termed mesenchymal stem cells, MSCs) and endothelial colony forming progenitor cells (ECFCs). Both cell types are key players in maintaining the integrity of tissue and are probably also involved in regenerative processes and tumor formation. To study their biology and function in a comparative manner it is important to have both cells types available from the same donor. It may also be beneficial for regenerative purposes to derive MSCs and ECFCs from the same tissue. Because cellular therapeutics should eventually find their way from bench to bedside we established a new method to isolate and further expand progenitor cells without the use of animal protein. Pooled human platelet lysate (pHPL) replaced fetal bovine serum in all steps of our protocol to completely avoid contact of the cells to xenogeneic proteins. This video demonstrates a methodology for the isolation and expansion of progenitor cells from one umbilical cord. All materials and procedures will be described.
Isolating LacZ-expressing cells from mouse inner ear tissues using flow cytometry.
Jan, Taha A; Chai, Renjie; Sayyid, Zahra N; Cheng, Alan G
2011-12-23
Isolation of specific cell types allows one to analyze rare cell populations such as stem/progenitor cells. Such an approach to studying inner ear tissues presents a unique challenge because of the paucity of cells of interest and few transgenic reporter mouse models. Here, we describe a protocol using fluorescence-conjugated probes to selectively label LacZ-positive cells from the neonatal cochleae. The most common underlying pathology of sensorineural hearing loss is the irreversible damage and loss of cochlear sensory hair cells, which are required to transduce sound waves to neural impulses. Recent evidence suggests that the murine auditory and vestibular organs harbor stem/progenitor cells that may have regenerative potential. These findings warrant further investigation, including identifying specific cell types with stem/progenitor cell characteristics. The Wnt signaling pathway has been demonstrated to play a critical role in maintaining stem/progenitor cell populations in several organ systems. We have recently identified Wnt-responsive Axin2-expressing cells in the neonatal cochlea, but their function is largely unknown. To better understand the behavior of these Wnt-responsive cells in vitro, we have developed a method of isolating Axin2-expressing cells from cochleae of Axin2-LacZ reporter mice. Using flow cytometry to isolate Axin2-LacZ positive cells from the neonatal cochleae, we could in turn execute a variety of experiments on live cells to interrogate their behavior as stem/progenitor cells. Here, we describe in detail the steps for the microdissection of neonatal cochlea, dissociation of these tissues, labeling of the LacZ-positive cells using a fluorogenic substrate, and cell sorting. Techniques for dissociating cochleae into single cells and isolating cochlear cells via flow cytometry have been described. We have made modifications to these techniques to establish a novel protocol to isolate LacZ-expressing cells from the neonatal cochlea.
Marcinkiewicz, Mariola M; Baker, Sandy T; Wu, Jichuan; Hubert, Terrence L; Wolfson, Marla R
2016-01-01
The in vivo ovine model provides a clinically relevant platform to study cardiopulmonary mechanisms and treatments of disease; however, a robust ovine primary alveolar epithelial type II (ATII) cell culture model is lacking. The objective of this study was to develop and optimize ovine lung tissue cryopreservation and primary ATII cell culture methodologies for the purposes of dissecting mechanisms at the cellular level to elucidate responses observed in vivo. To address this, we established in vitro submerged and air-liquid interface cultures of primary ovine ATII cells isolated from fresh or cryopreserved lung tissues obtained from mechanically ventilated sheep (128 days gestation-6 months of age). Presence, abundance, and mRNA expression of surfactant proteins was assessed by immunocytochemistry, Western Blot, and quantitative PCR respectively on the day of isolation, and throughout the 7 day cell culture study period. All biomarkers were significantly greater from cells isolated from fresh than cryopreserved tissue, and those cultured in air-liquid interface as compared to submerged culture conditions at all time points. Surfactant protein expression remained in the air-liquid interface culture system while that of cells cultured in the submerged system dissipated over time. Despite differences in biomarker magnitude between cells isolated from fresh and cryopreserved tissue, cells isolated from cryopreserved tissue remained metabolically active and demonstrated a similar response as cells from fresh tissue through 72 hr period of hyperoxia. These data demonstrate a cell culture methodology using fresh or cryopreserved tissue to support study of ovine primary ATII cell function and responses, to support expanded use of biobanked tissues, and to further understanding of mechanisms that contribute to in vivo function of the lung.
Enterovirus Species B Bias of RD Cell Line and Its Influence on Enterovirus Diversity Landscape.
Faleye, Temitope Oluwasegun Cephas; Adeniji, Johnson Adekunle
2015-12-01
Despite its widespread use in poliovirus isolation, studies show that most RD cell line isolates are species B enteroviruses (EB), it was therefore employed to further catalogue the EB diversity in two different regions of Nigeria. Concentrates of 18 environmental samples were inoculated into RD cell line. Isolates were subjected to PCR assays to detect enteroviruses, species C and B members and partial VP1 gene which was subsequently sequenced and used for identification and phylogenetic analysis. Isolates were further passaged in L20B cell line to detect polioviruses. Sixty-eight isolates were recovered from the 18 concentrates, all of which were positive for the enterovirus 5'-UTR screen. Thirteen of the 68 isolates were positive for the species C screen and replicated in L20B cell line, eleven of which also contained species B enteroviruses. Some of the mixed isolates were successfully typed, but as species B members. In all, isolates recovered in this study were identified as CVB5, E6, E7, E11, E13, E19, E20, E33, EVB75 and WPV3, while some could not be typed. Alongside the ten different enterovirus serotypes confirmed, results of this study document for the first time in Nigeria, EVB75. It showed the EB bias of RD cell line might indicate something much more fundamental in its biology. Finally, the finding of WPV3 in a region considered low risk for poliovirus emphasizes the need to expand poliovirus environmental surveillance to enable early detection of poliovirus silent circulation before occurrence of clinical manifestations.
Tools to study pathogen-host interactions in bats.
Banerjee, Arinjay; Misra, Vikram; Schountz, Tony; Baker, Michelle L
2018-03-15
Bats are natural reservoirs for a variety of emerging viruses that cause significant disease in humans and domestic animals yet rarely cause clinical disease in bats. The co-evolutionary history of bats with viruses has been hypothesized to have shaped the bat-virus relationship, allowing both to exist in equilibrium. Progress in understanding bat-virus interactions and the isolation of bat-borne viruses has been accelerated in recent years by the development of susceptible bat cell lines. Viral sequences similar to severe acute respiratory syndrome corona virus (SARS-CoV) have been detected in bats, and filoviruses such as Marburg virus have been isolated from bats, providing definitive evidence for the role of bats as the natural host reservoir. Although viruses can be readily detected in bats using molecular approaches, virus isolation is far more challenging. One of the limitations in using traditional culture systems from non-reservoir species is that cell types and culture conditions may not be compatible for isolation of bat-borne viruses. There is, therefore, a need to develop additional bat cell lines that correspond to different cell types, including less represented cell types such as immune cells, and culture them under more physiologically relevant conditions to study virus host interactions and for virus isolation. In this review, we highlight the current progress in understanding bat-virus interactions in bat cell line systems and some of the challenges and limitations associated with cell lines. Future directions to address some of these challenges to better understand host-pathogen interactions in these intriguing mammals are also discussed, not only in relation to viruses but also other pathogens carried by bats including bacteria and fungi. Copyright © 2018 Elsevier B.V. All rights reserved.
De Bellis, A; Dello Iacovo, A; Bellastella, G; Savoia, A; Cozzolino, D; Sinisi, A A; Bizzarro, A; Bellastella, A; Giugliano, D
2014-10-01
Detection of antipituitary antibodies (APA) at high levels and with a particular immunofluorescence pattern in patients with autoimmune polyendocrine syndromes may indicate a possible future autoimmune pituitary involvement. This longitudinal study was aimed at characterizing in patients with a single organ-specific autoimmune disease the pituitary cells targeted by APA at start, verifying whether this characterization allows to foresee the kind of possible subsequent hypopituitarism. Thirty-six APA positive and 40 APA negative patients with isolated autoimmune diseases participated in the study. None of them had pituitary dysfunction at entry. Characterization by four-layer immunofluorescence of pituitary cells targeted by APA in APA positive patients at entry and study of pituitary function in all patients were performed every 6 months during a 5 year follow-up. Antipituitary antibodies immunostained selectively one type of pituitary-secreting cells in 21 patients (58.3 %, group 1), and several types of pituitary cells in the remaining 15 (41.7 %, group 2). All patients in group 1 showed subsequently a pituitary insufficiency, corresponding to the type of cells targeted by APA in 18 of them (85.7 %). Only 8 out of 15 patients in group 2 (53.3 %) showed a hypopituitarism, isolated in 7 and combined in the other one. None of APA negative patients showed hypopituitarism. The characterization of pituitary cells targeted by APA in patients with isolated autoimmune diseases, when the pituitary function is still normal, may help to foresee the kind of subsequent hypopituitarism, especially when APA immunostained selectively only one type of pituitary cells. A careful follow-up of pituitary function in these patients is advisable to allow an early diagnosis of hypopituitarism, even in subclinical phase and a consequent timely replacement therapy.
Optimized Methods for the Isolation of Arabidopsis Female Central Cells and Their Nuclei
Park, Kyunghyuk; Frost, Jennifer M.; Adair, Adam James; Kim, Dong Min; Yun, Hyein; Brooks, Janie S.; Fischer, Robert L.; Choi, Yeonhee
2016-01-01
The Arabidopsis female gametophyte contains seven cells with eight haploid nuclei buried within layers of sporophytic tissue. Following double fertilization, the egg and central cells of the gametophyte develop into the embryo and endosperm of the seed, respectively. The epigenetic status of the central cell has long presented an enigma due both to its inaccessibility, and the fascinating epigenome of the endosperm, thought to have been inherited from the central cell following activity of the DEMETER demethylase enzyme, prior to fertilization. Here, we present for the first time, a method to isolate pure populations of Arabidopsis central cell nuclei. Utilizing a protocol designed to isolate leaf mesophyll protoplasts, we systematically optimized each step in order to efficiently separate central cells from the female gametophyte. We use initial manual pistil dissection followed by the derivation of central cell protoplasts, during which process the central cell emerges from the micropylar pole of the embryo sac. Then, we use a modified version of the Isolation of Nuclei TAgged in specific Cell Types (INTACT) protocol to purify central cell nuclei, resulting in a purity of 75–90% and a yield sufficient to undertake downstream molecular analyses. We find that the process is highly dependent on the health of the original plant tissue used, and the efficiency of protoplasting solution infiltration into the gametophyte. By isolating pure central cell populations, we have enabled elucidation of the physiology of this rare cell type, which in the future will provide novel insights into Arabidopsis reproduction. PMID:27788573
Avian influenza virus isolation, propagation and titration in embryonated chicken eggs
USDA-ARS?s Scientific Manuscript database
Avian influenza (AI) virus is usually isolated, propagated, and titrated in embryonated chickens eggs (ECE). Most any sample type can be accommodated for culture with appropriate processing. Isolation may also be accomplished in cell culture particularly if mammalian lineage isolates are suspected, ...
Ruiz, P; Poblete, M; Yáñez, A J; Irgang, R; Toranzo, A E; Avendaño-Herrera, R
2015-02-10
Vibrio ordalii is the causative agent of atypical vibriosis and has the potential to cause severe losses in salmonid aquaculture, but the factors determining its virulence have not yet been elucidated. In this work, cell-surface-related properties of the isolates responsible for outbreaks in Atlantic salmon were investigated. We also briefly examined whether pathogenicity against fish varied for V. ordalii strains with differing cell-surface properties. Hydrocarbon adhesions indicated the hydrophobic character of V. ordalii, although only 4 of 18 isolates induced haemagglutination in Atlantic salmon erythrocytes. A minority of the studied isolates (6 of 18) and the type strain ATCC 33509T produced low-grade biofilm formation on polyethylene surface after 2 h post-inoculation (hpi), but no strains were slime producers. Interestingly, V. ordalii isolates showed wide differences in hydrophobicity. Therefore, we chose 3 V. ordalii isolates (Vo-LM-03, Vo-LM-18 and Vo-LM-16) as representative of each hydrophobicity group (strongly hydrophobic, relatively hydrophobic and quasi-hydrophilic, respectively) and ATCC 33509T was used in the pathogenicity studies. All tested V. ordalii strains except the type strain resisted the killing activity of Atlantic salmon mucus and serum, and could proliferate in these components. Moreover, all V. ordalii isolates adhered to SHK-1 cells, causing damage to fish cell membrane permeability after 16 hpi. Virulence testing using rainbow trout revealed that isolate Vo-LM-18 was more virulent than isolates Vo-LM-03 and Vo-LM-16, indicating some relationship between haemagglutination and virulence, but not with hydrophobicity.
76 FR 70410 - Application(s) for Duty-Free Entry of Scientific Instruments
Federal Register 2010, 2011, 2012, 2013, 2014
2011-11-14
... prepared from diverse cell types such as mammalian tissues, invertebrate cells, plant cells, bacterial..., invertebrate cells, plant cells, bacterial cells, and fungal cells. To determine the 3D structures of isolated...
Liu, Yang; Miller, Michael D; Kitrinos, Kathryn M
2017-03-01
Tenofovir alafenamide (TAF) is a novel prodrug of tenofovir (TFV). This study evaluated the antiviral activity of TAF against wild-type genotype A-H HBV clinical isolates as well as adefovir-resistant, lamivudine-resistant, and entecavir-resistant HBV isolates. Full length HBV genomes or the polymerase/reverse transcriptase (pol/RT) region from treatment-naïve patients infected with HBV genotypes A-H were amplified and cloned into an expression vector under the control of a CMV promoter. In addition, 11 drug resistant HBV constructs were created by site-directed mutagenesis of a full length genotype D construct. Activity of TAF was measured by transfection of each construct into HepG2 cells and assessment of HBV DNA levels following treatment across a range of TAF concentrations. TAF activity in vitro was similar against wild-type genotype A-H HBV clinical isolates. All lamivudine- and entecavir-resistant isolates and 4/5 adefovir-resistant isolates were found to be sensitive to inhibition by TAF in vitro as compared to the wild-type isolate. The adefovir-resistant isolate rtA181V + rtN236T exhibited low-level reduced susceptibility to TAF. TAF is similarly active in vitro against wild-type genotype A-H HBV clinical isolates. The TAF sensitivity results for all drug-resistant isolates are consistent with what has been observed with the parent drug TFV. The in vitro cell-based HBV phenotyping assay results support the use of TAF in treatment of HBV infected subjects with diverse HBV genotypes, in both treatment-naive and treatment-experienced HBV infected patients. Copyright © 2016 Elsevier B.V. All rights reserved.
Yi, Yanjie; Isaacs, Stuart N.; Williams, Darlisha A.; Frank, Ian; Schols, Dominique; De Clercq, Erik; Kolson, Dennis L.; Collman, Ronald G.
1999-01-01
Dual-tropic human immunodeficiency virus type 1 (HIV-1) strains infect both primary macrophages and transformed T-cell lines. Prototype T-cell line-tropic (T-tropic) strains use CXCR4 as their principal entry coreceptor (X4 strains), while macrophagetropic (M-tropic) strains use CCR5 (R5 strains). Prototype dual tropic strains use both coreceptors (R5X4 strains). Recently, CXCR4 expressed on macrophages was found to support infection by certain HIV-1 isolates, including the dual-tropic R5X4 strain 89.6, but not by T-tropic X4 prototypes like 3B. To better understand the cellular basis for dual tropism, we analyzed the macrophage coreceptors used for Env-mediated cell-cell fusion as well as infection by several dual-tropic HIV-1 isolates. Like 89.6, the R5X4 strain DH12 fused with and infected both wild-type and CCR5-negative macrophages. The CXCR4-specific inhibitor AMD3100 blocked DH12 fusion and infection in macrophages that lacked CCR5 but not in wild-type macrophages. This finding indicates two independent entry pathways in macrophages for DH12, CCR5 and CXCR4. Three primary isolates that use CXCR4 but not CCR5 (tybe, UG021, and UG024) replicated efficiently in macrophages regardless of whether CCR5 was present, and AMD3100 blocking of CXCR4 prevented infection in both CCR5 negative and wild-type macrophages. Fusion mediated by UG021 and UG024 Envs in both wild-type and CCR5-deficient macrophages was also blocked by AMD3100. Therefore, these isolates use CXCR4 exclusively for entry into macrophages. These results confirm that macrophage CXCR4 can be used for fusion and infection by primary HIV-1 isolates and indicate that CXCR4 may be the sole macrophage coreceptor for some strains. Thus, dual tropism can result from two distinct mechanisms: utilization of both CCR5 and CXCR4 on macrophages and T-cell lines, respectively (dual-tropic R5X4), or the ability to efficiently utilize CXCR4 on both macrophages and T-cell lines (dual-tropic X4). PMID:10438797
Rapid isolation of cancer cells using microfluidic deterministic lateral displacement structure.
Liu, Zongbin; Huang, Fei; Du, Jinghui; Shu, Weiliang; Feng, Hongtao; Xu, Xiaoping; Chen, Yan
2013-01-01
This work reports a microfluidic device with deterministic lateral displacement (DLD) arrays allowing rapid and label-free cancer cell separation and enrichment from diluted peripheral whole blood, by exploiting the size-dependent hydrodynamic forces. Experiment data and theoretical simulation are presented to evaluate the isolation efficiency of various types of cancer cells in the microfluidic DLD structure. We also demonstrated the use of both circular and triangular post arrays for cancer cell separation in cell solution and blood samples. The device was able to achieve high cancer cell isolation efficiency and enrichment factor with our optimized design. Therefore, this platform with DLD structure shows great potential on fundamental and clinical studies of circulating tumor cells.
Cancian, Laila; Bosshard, Rachel; Lucchesi, Walter; Karstegl, Claudio Elgueta; Farrell, Paul J.
2011-01-01
Type 1 Epstein-Barr virus (EBV) strains immortalize B lymphocytes in vitro much more efficiently than type 2 EBV, a difference previously mapped to the EBNA-2 locus. Here we demonstrate that the greater transforming activity of type 1 EBV correlates with a stronger and more rapid induction of the viral oncogene LMP-1 and the cell gene CXCR7 (which are both required for proliferation of EBV-LCLs) during infection of primary B cells with recombinant viruses. Surprisingly, although the major sequence differences between type 1 and type 2 EBNA-2 lie in N-terminal parts of the protein, the superior ability of type 1 EBNA-2 to induce proliferation of EBV-infected lymphoblasts is mostly determined by the C-terminus of EBNA-2. Substitution of the C-terminus of type 1 EBNA-2 into the type 2 protein is sufficient to confer a type 1 growth phenotype and type 1 expression levels of LMP-1 and CXCR7 in an EREB2.5 cell growth assay. Within this region, the RG, CR7 and TAD domains are the minimum type 1 sequences required. Sequencing the C-terminus of EBNA-2 from additional EBV isolates showed high sequence identity within type 1 isolates or within type 2 isolates, indicating that the functional differences mapped are typical of EBV type sequences. The results indicate that the C-terminus of EBNA-2 accounts for the greater ability of type 1 EBV to promote B cell proliferation, through mechanisms that include higher induction of genes (LMP-1 and CXCR7) required for proliferation and survival of EBV-LCLs. PMID:21857817
Juvenile porcine temporomandibular joint: Three different cartilaginous structures?
Tabeian, Hessam; Bakker, Astrid D; de Vries, Teun J; Zandieh-Doulabi, Behrouz; Lobbezoo, Frank; Everts, Vincent
2016-12-01
The temporomandibular joint (TMJ) consists of three cartilaginous structures: the fossa, disc, and condyle. In juvenile idiopathic arthritis (JIA), inflammation of the TMJ leads to destruction of the condyle, but not of the fossa or the disc. Such a different effect of inflammation might be related to differences in matrix composition of the cartilaginous structures. The matrix composition of the three TMJ structures was analyzed in juvenile porcine samples and in an in vitro system of cells isolated from each anatomical structure embedded in 3% agarose gels. The matrix of all three anatomical structures of the TMJ contained collagen type I and its gene expression was maintained after isolation. The condyle and the fossa stained positive for collagen type II and proteoglycans, but the condyle contained considerably more collagen type II and proteoglycans than the fossa. The disc contained neither collagen type II protein nor expression of its gene, and the disc did not stain positive for proteoglycans. Aggrecan gene expression was lower in the disc compared to condyle and fossa cell-isolates. In general, the cell-isolates in vitro closely mimicked the characteristic features found in the tissue. The collagen type II content of the condyle clearly distinguished this cartilaginous structure from the disc and fossa. Since autoimmunity against collagen type II is associated with JIA, the relatively abundant presence of this type of collagen in the condyle might provide an explanation why primarily this cartilaginous structure of the TMJ is affected in JIA patients. Copyright © 2016 Elsevier Ltd. All rights reserved.
Navabazam, Ali Reza; Sadeghian Nodoshan, Fatemeh; Sheikhha, Mohammad Hasan; Miresmaeili, Sayyed Mohsen; Soleimani, Mehrdad; Fesahat, Farzaneh
2013-03-01
Human dental stem cells have high proliferative potential for self-renewal that is important to the regenerative capacity of the tissue. Objective : The aim was to isolate human dental pulp stem cells (DPSC), periodontal ligament stem cells (PDLSC) and periapical follicle stem cells (PAFSC) for their potential role in tissue regeneration. In this experimental study, the postnatal stem cells were isolated from dental pulp, preapical follicle and periodontal ligament .The cells were stained for different stem cell markers by immunocytochemistry. To investigate the mesenchymal nature of cells, differentiation potential along osteoblastic and adipogenic lineages and gene expression profile were performed. For proliferation potential assay, Brdu staining and growth curve tests were performed. Finally, all three cell types were compared together regarding their proliferation, differentiation and displaying phenotype. The isolated cell populations have similar fibroblastic like morphology and expressed all examined cell surface molecule markers. These cells were capable of differentiating into osteocyte with different capability and adipocyte with the same rate. PAFSCs showed more significant proliferation rate than others. Reverse transcriptase PCR (RT-PCR) for nanog, oct4, Alkaline phosphatase (ALP) and glyceraldehydes-3-phosphate dehydrogenease (GADPH) as control gene showed strong positive expression of these genes in all three isolated cell types. PDLSCs, DPSCs and PAFSCs exist in various tissues of the teeth and can use as a source of mesenchymal stem cells for developing bioengineered organs and also in craniomaxillofacial reconstruction with varying efficiency in differentiation and proliferation.
Isolation and in vitro binding of mating type plus fertilization tubules from Chlamydomonas.
Wilson, Nedra F
2008-01-01
During fertilization in Chlamydomonas, adhesion and fusion of gametes occur at the tip of specialized regions of the plasma membrane, known as mating structures. The mating type minus (mt[-]) structure is a slightly raised dome-shaped region located at the apical end of the cell body. In contrast, the activated mating type plus (mt[+]) structure is an actin-filled, microvillouslike organelle. Interestingly, a similar type of "fusion organelle" is conserved across diverse groups. Chlamydomonas provides an ideal model system for studying the process of gametic cell fusion in that it is amenable to genetic manipulations as well as cell and molecular biological approaches. Moreover, the ease of culturing Chlamydomonas combined with the ability to isolate the mt(+) fertilization tubule and the development of in vitro assays for adhesion makes it an ideal system for biochemical studies focused on dissecting the molecular mechanisms that underlie the complex process of gametic cell fusion.
Mesenchymal stem cells: biological characteristics and potential clinical applications.
Kassem, Moustapha
2004-01-01
Mesenchymal stem cells (MSC) are clonogenic, non-hematpoietic stem cells present in the bone marrow and are able to differentiate into multiple mesoderm-type cell lineages, for example, osteoblasts, chondrocytes, endothelial-cells and also non-mesoderm-type lineages, for example, neuronal-like cells. Several methods are currently available for isolation of the MSC based on their physical and physico-chemical characteristics, for example, adherence to plastics or other extracellular matrix components. Because of the ease of their isolation and their extensive differentiation potential, MSC are among the first stem cell types to be introduced in the clinic. Several studies have demonstrated the possible use of MSC in systemic transplantation for systemic diseases, local implantation for local tissue defects, as a vehicle for genes in gene therapy protocols or to generate transplantable tissues and organs in tissue engineering protocols. Before their widespread use in therapy, methods allowing the generation of large number of cells without affecting their differentiation potential as well as technologies that overcome immunological rejection (in case allogenic transplantation) must be developed.
Goodwin, B J; Moore, J O; Weinberg, J B
1984-02-01
Freshly isolated human leukemia cells have been shown in the past to display varying in vitro responses to phorbol diesters, depending on their cell type. Specific receptors for the phorbol diesters have been demonstrated on numerous different cells. This study was designed to characterize the receptors for phorbol diesters on leukemia cells freshly isolated from patients with different kinds of leukemia and to determine if differences in binding characteristics for tritium-labeled phorbol 12,13-dibutyrate (3H-PDBu) accounted for the different cellular responses elicited in vitro by phorbol diesters. Cells from 26 patients with different kinds of leukemia were studied. PDBu or phorbol 12-myristate 13-acetate (PMA) caused cells from patients with acute myeloblastic leukemia (AML), acute promyelocytic (APML), acute myelomonocytic (AMML), acute monocytic (AMoL), acute erythroleukemia (AEL), chronic myelocytic leukemia (CML) in blast crisis (myeloid), acute undifferentiated leukemia (AUL), and hairy cell leukemia (HCL) (n = 15) to adhere to plastic and spread. However, they caused no adherence or spreading and only slight aggregation of cells from patients with acute lymphocytic leukemia (ALL), chronic lymphocytic leukemia (CLL), or CML-blast crisis (lymphoid) (n = 11). All leukemia cells studied, irrespective of cellular type, displayed specific receptors for 3H-PDBu. The time courses for binding by all leukemia types were similar, with peak binding at 5-10 min at 37 degrees C and 120 min at 4 degrees C. The binding affinities were similar for patients with ALL (96 +/- 32 nM, n = 4), CLL (126 +/- 32 nM, n = 6), and acute nonlymphoid leukemia (73 +/- 14 nM, n = 11). Likewise, the numbers of specific binding sites/cell were comparable for the patients with ALL (6.2 +/- 1.3 X 10(5) sites/cell, n = 4), CLL (5.0 +/- 2.0 X 10(5) sites/cell, n = 6), and acute nonlymphoid leukemia (4.4 +/- 1.9 X 10(5) sites/cell, n = 11). Thus, the differing responses to phorbol diesters of various types of freshly isolated leukemia cells appear to be due to differences other than initial ligand-receptor binding.
Elvenes, Jan; Knutsen, Gunnar; Johansen, Oddmund; Moe, Bjørn T; Martinez, Inigo
2009-07-01
Mesenchymal progenitor cells from bone marrow hold great potential as a cell source for cartilage repair. Aspiration from the iliac crest is the most widely used method to harvest bone marrow cells for cartilage repair. The objective of our study was to establish a new method to isolate mesenchymal progenitor cells by direct aspiration of bone marrow from the subchondral spongious bone underneath cartilage defects during microfracture treatment and to confirm the chondrogenic potential of the resulting cell cultures. Bone marrow was aspirated arthroscopically from patients treated for isolated cartilage defects. Adherent stromal cells were isolated, expanded in monolayer cultures, and characterized by flow cytometry. Chondrogenic induction of cells was achieved by combination of spheroid cultures in hanging drops and the concomitant use of transforming growth factor-beta (TGFbeta). Articular chondrocytes established in three-dimensional (3D) cultures were used as positive cartilage-forming units, and skin fibroblasts were used as negative controls. Three-dimensional constructs were stained for immunohistochemical and histological examination, and a real-time polymerase chain reaction (PCR) was performed to quantify the expression of aggrecan, collagen types 1 and 2, and Sox9. Mesenchymal stem cell-like progenitor cells (MSCs) displaying chondrogenic differentiation capacity were harvested arthroscopically from underneath cartilage lesions on distal femurs using the one-hole technique. Stem cell-related surface antigens analyzed by flow cytometry confirmed the nature of the isolated adherent cells. MSC spheroids stained positive for glycosaminoglycans and collagen type 2. Realtime PCR showed that MSCs in 3D spheroids significantly increased gene expression of collagen type 2, aggrecan, and Sox 9 and down-regulated expression of collagen type 1 when compared to the mRNA levels measured in MSCs monolayers. We describe a new technique that may be applied for harvesting bone marrow cells from cartilage defects during arthroscopic intervention of the knee. Cells harvested in this way hold full chondrogenic differentiation potential. Our data imply that MSC storage may be established by using marrow from this approach, bypassing the need for cell aspiration from the iliac crest.
Zheng, H; Ye, C; Segura, M; Gottschalk, M; Xu, J
2008-09-01
Streptococcus suis serotype 2 sequence type 7 strains emerged in 1996 and caused a streptococcal toxic shock-like syndrome in 1998 and 2005 in China. Evidence indicated that the virulence of S. suis sequence type 7 had increased, but the mechanism was unknown. The sequence type 7 strain SC84, isolated from a patient with streptococcal toxic shock-like syndrome during the Sichuan outbreak, and the sequence type 1 strain 31533, a typical highly pathogenic strain isolated from a diseased pig, were used in comparative studies. In this study we show the mechanisms underlying cytokine production differed between the two types of strains. The S. suis sequence type 7 strain SC84 possesses a stronger capacity to stimulate T cells, naive T cells and peripheral blood mononuclear cell proliferation than does S. suis sequence type 1 strain 31533. The T cell response to both strains was dependent upon the presence of antigen-presenting cells. Histo-incompatible antigen-presenting cells were sufficient to provide the accessory signals to naive T cell stimulated by the two strains, indicating that both sequence type 7 and 1 strains possess mitogens; however, the mitogenic effect was different. Therefore, we propose that the difference in the mitogenic effect of sequence type 7 strain SC84 compared with the sequence type 1 strain 31533 of S. suis may be associated with the clinical, epidemiological and microbiological difference, where the ST 7 strains have a larger mitogenic effect.
Zheng, H; Ye, C; Segura, M; Gottschalk, M; Xu, J
2008-01-01
Streptococcus suis serotype 2 sequence type 7 strains emerged in 1996 and caused a streptococcal toxic shock-like syndrome in 1998 and 2005 in China. Evidence indicated that the virulence of S. suis sequence type 7 had increased, but the mechanism was unknown. The sequence type 7 strain SC84, isolated from a patient with streptococcal toxic shock-like syndrome during the Sichuan outbreak, and the sequence type 1 strain 31533, a typical highly pathogenic strain isolated from a diseased pig, were used in comparative studies. In this study we show the mechanisms underlying cytokine production differed between the two types of strains. The S. suis sequence type 7 strain SC84 possesses a stronger capacity to stimulate T cells, naive T cells and peripheral blood mononuclear cell proliferation than does S. suis sequence type 1 strain 31533. The T cell response to both strains was dependent upon the presence of antigen-presenting cells. Histo-incompatible antigen-presenting cells were sufficient to provide the accessory signals to naive T cell stimulated by the two strains, indicating that both sequence type 7 and 1 strains possess mitogens; however, the mitogenic effect was different. Therefore, we propose that the difference in the mitogenic effect of sequence type 7 strain SC84 compared with the sequence type 1 strain 31533 of S. suis may be associated with the clinical, epidemiological and microbiological difference, where the ST 7 strains have a larger mitogenic effect. PMID:18803762
Treatment of colon cancer with oncolytic herpes simplex virus in preclinical models.
Yang, H; Peng, T; Li, J; Wang, Y; Zhang, W; Zhang, P; Peng, S; Du, T; Li, Y; Yan, Q; Liu, B
2016-05-01
Cancer stem cells (CSCs), which are a rare population in any type of cancer, including colon cancer, are tumorigenic and responsible for cancer recurrence and metastasis. CSCs have been isolated from a number of different solid tumors recently, although the isolation of CSCs in colon cancer is still challenging. We cultured colon cancer cells in stem cell medium to obtain colonosphere cells. These cells possessed the characteristics of CSCs, with a high capacity of tumorigenicity, migration and invasion in vitro and in vivo. The isolation and identification of CSCs have provided new targets for the therapeutics. Oncolytic herpes simplex viruses (oHSV) are an effective strategy for killing colon cancer cells in preclinical models. Here, we examined the efficacy of an oncolytic herpes simplex virus type 2 (oHSV2) in killing colon cancer cells and colon cancer stem-like cells (CSLCs). oHSV2 was found to be highly cytotoxic to the adherent and sphere cells in vitro, and oHSV2 treatment in vivo significantly inhibited tumor growth. This study demonstrates that oHSV2 is effective against colon cancer cells and colon CSLCs and could be a promising strategy for treating colon cancer patients.
Kobayashi, Kenji; Yamada, Lixy; Satou, Yutaka; Satoh, Nori
2013-09-01
During early embryogenesis, embryonic cells gradually restrict their developmental potential and are eventually destined to give rise to one type of cells. Molecular mechanisms underlying developmental fate restriction are one of the major research subjects within developmental biology. In this article, this subject was addressed by combining blastomere isolation with microarray analysis. During the 6th cleavage of the Ciona intestinalis embryo, from the 32-cell to the 64-cell stage, four mother cells divide into daughter cells with two distinct fates, one giving rise to notochord precursor cells and the other to nerve cord precursors. Approximately 2,200 each of notochord and nerve cord precursor cells were isolated, and their mRNA expression profiles were compared by microarray. This analysis identified 106 and 68 genes, respectively, that are differentially expressed in notochord and nerve cord precursor cells. These included not only genes for transcription factors and signaling molecules but also those with generalized functions observed in many types of cells. In addition, whole-mount in situ hybridization showed dynamic spatial expression profiles of these genes during segregation of the two fates: partitioning of transcripts present in the mother cells into either type of daughter cells, and initiation of preferential gene expression in either type of cells. Copyright © 2013 Wiley Periodicals, Inc.
Yuan, G-H; Tanaka, M; Masuko-Hongo, K; Shibakawa, A; Kato, T; Nishioka, K; Nakamura, H
2004-01-01
To identify the characteristics of cells isolated from pannus-like soft tissue on osteoarthritic cartilage (OA pannus cells), and to evaluate the role of this tissue in osteoarthritis (OA). OA pannus cells were isolated from pannus-like tissues in five joints obtained during arthroplasty. The phenotypic features of the isolated cells were characterized by safranin-O staining and immunohistochemical studies. Expression of MMP-1, MMP-3 and MMP-13 was also assessed using reverse transcriptase-polymerase chain reactions (RT-PCR), enzyme-linked immunosorbent assay (ELISA) and immunocytochemistry. Foci and plaque formation of pannus-like tissue over cartilage surface were found in 15 of 21 (71.4%) OA joints macroscopically, and among them, only five samples had enough tissue to be isolated. OA pannus cells were positive for type I collagen and vimentin, besides they also expressed type II collagen and aggrecan mRNA. Spontaneous expression of MMP-1, MMP-3 and MMP-13 was detected in OA pannus cells. Similar or higher levels of MMPs were detected in the supernatant of cultured OA pannus cells compared to OA chondrocytes, and among these MMP-3 levels were relatively higher in OA pannus cells. Immunohistochemically, MMP-3 positive cells located preferentially in pannus-like tissue on the border of original hyaline cartilage. Our results showed that OA pannus cells shared the property of mesenchymal cells and chondrocytes; however, their origin seemed different from chondrocytes or synoviocytes. The spontaneous expression of MMPs suggests that they are involved in the articular degradation in OA.
Zhou, Xiaohui; Addwebi, Tarek; Davis, Margaret A.; Orfe, Lisa; Call, Douglas R.; Guard, Jean; Besser, Thomas E.
2011-01-01
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne gastroenteritis in humans worldwide. Poultry and poultry products are considered the major vehicles of transmission to humans. Using cell invasiveness as a surrogate marker for pathogenicity, we tested the invasiveness of 53 poultry-associated isolates of S. Enteritidis in a well-differentiated intestinal epithelial cell model (Caco-2). The method allowed classification of the isolates into low (n = 7), medium (n = 18) and high (n = 30) invasiveness categories. Cell invasiveness of the isolates did not correlate with the presence of the virulence-associated gene spvB or the ability of the isolates to form biofilms. Testing of representative isolates with high and low invasiveness in a mouse model revealed that the former were more invasive in vivo and caused more and earlier mortalities, whereas the latter were significantly less invasive in vivo, causing few or no mortalities. Further characterization of representative isolates with low and high invasiveness showed that most of the isolates with low invasiveness had impaired motility and impaired secretion of either flagella-associated proteins (FlgK, FljB and FlgL) or type III secretion system (TTSS)-secreted proteins (SipA and SipD) encoded on Salmonella pathogenicity island-1. In addition, isolates with low invasiveness had impaired ability to invade and/or survive within chicken macrophages. These data suggest that not all isolates of S. Enteritidis recovered from poultry may be equally pathogenic, and that the pathogenicity of S. Enteritidis isolates is associated, in part, with both motility and secretion of TTSS effector proteins. PMID:21292746
Adenovirus type 2 DNA replication. I. Evidence for discontinuous DNA synthesis.
Winnacker, E L
1975-01-01
Isolated nuclei from adenovirus type 2-infected HeLa cells catalyze the incorporation of all four deoxyribonucleoside triphosphates into viral DNA. The observed DNA synthesis occurs via a transient formation of DNA fragments with a sedimentation coefficient of 10S. The fragments are precursors to unit-length viral DNA, they are self-complementary to an extent of at least 70%, and they are distributed along most of the viral chromosome. In addition, accumulation of 10S DNA fragments is observed either in intact, virus-infected HeLa cells under conditions where viral DNA synthesis is inhibited by hydroxyurea or in isolated nuclei from virus-infected HeLa cells at low concentrations of deoxyribonucleotides. Under these suboptimal conditions for DNA synthesis in isolated nuclei, ribonucleoside triphosphates determine the size distribution of DNA intermediates. The evidence presented suggests that a ribonucleoside-dependent initiation step as well at two DNA polymerase catalyzed reactions are involved in the discontinuous replication of adenovirus type 2 DNA. PMID:1117487
SARS-CoV replicates in primary human alveolar type II cell cultures but not in type I-like cells
Mossel, Eric C.; Wang, Jieru; Jeffers, Scott; Edeen, Karen E.; Wang, Shuanglin; Cosgrove, Gregory P.; Funk, C. Joel; Manzer, Rizwan; Miura, Tanya A.; Pearson, Leonard D.; Holmes, Kathryn V.; Mason, Robert J.
2008-01-01
Severe acute respiratory syndrome (SARS) is a disease characterized by diffuse alveolar damage. We isolated alveolar type II cells and maintained them in a highly differentiated state. Type II cell cultures supported SARS-CoV replication as evidenced by RT-PCR detection of viral subgenomic RNA and an increase in virus titer. Virus titers were maximal by 24 hours and peaked at approximately 105 pfu/mL. Two cell types within the cultures were infected. One cell type was type II cells, which were positive for SP-A, SP-C, cytokeratin, a type II cell-specific monoclonal antibody, and Ep-CAM. The other cell type was composed of spindle-shaped cells that were positive for vimentin and collagen III and likely fibroblasts. Viral replication was not detected in type I-like cells or macrophages. Hence, differentiated adult human alveolar type II cells were infectible but alveolar type I-like cells and alveolar macrophages did not support productive infection. PMID:18022664
Divakaruni, Ajit S; Rogers, George W; Murphy, Anne N
2014-05-27
Measurements of mitochondrial respiration in intact cells can help define metabolism and its dysregulation in fields such as cancer, metabolic disease, immunology, and neurodegeneration. Although cells can be offered various substrates in the assay medium, many cell types can oxidize stored pools of energy substrates. A general bioenergetic profile can therefore be obtained using intact cells, but the inability to control substrate provision to the mitochondria can restrict an in-depth, mechanistic understanding. Mitochondria can be isolated from intact cells, but the yield and quality of the end product is often poor and prone to subselection during isolation. Plasma membrane permeabilization of cells provides a solution to this challenge, allowing experimental control of the medium surrounding the mitochondria. This unit describes techniques to measure respiration in permeabilized adherent cells using a Seahorse XF Analyzer or permeabilized suspended cells in a Hansatech Oxygraph. Copyright © 2014 John Wiley & Sons, Inc.
Immune system stimulation in rats by Lactobacillus sp. isolates from Raffia wine (Raphia vinifera).
Flore, Tiepma N E; François, Zambou N; Félicité, Tchouanguep M
2010-01-01
The immune system consists of organs and several cell types. Antigen interaction with these cells induces a cellular immune response mediated by activated cells. The effects of lactic acid bacteria on the systemic immune response and on the secretory immune system are described. The current investigation sets out to examine the possible effects of isolated wine lacto-bacilli upon various hematologic and immunologic parameters in rats. We have fed rats with probiotic isolates from Raffia wine and challenged with castor oil; two control groups were fed with castor oil and others were not. We counted blood cells at the end of the experiment; all isolates seemed to cause a decrease of circulating white blood cells. The percentage of lymphocytes and the total protein in the spleen increased in the treated animals; also a normal aspect of faeces was observed compared to the control. These isolates of Lactobacillus seem to occur to immune cell-mediated responses in rats.
Structure of kaurane-type diterpenes from Parinari sprucei and their potential anticancer activity.
Braca, Alessandra; Armenise, Annahil; Morelli, Ivano; Mendez, Jeannette; Mi, Qiuwen; Chai, Hee-Byung; Swanson, Steven M; Kinghorn, A Douglas; De Tommasi, Nunziatina
2004-06-01
Twenty-three kaurane-type diterpenes 1 - 23, including twenty new natural products 1 - 20, have been isolated from the leaves of Parinari sprucei and their structures elucidated by spectroscopic and chemical analysis. The isolated compounds were tested for their cytotoxic activity towards a panel of cancer cell lines. Compounds 9 and 10 showed activity against all cell lines with ED (50) values in the range of 10 - 20 microg/mL. The previously known 13-hydroxy-15-oxozoapatlin 21 was evaluated in an in vivo hollow fiber test, and found to be active with KB and LNCaP cells at the concentrations used.
Identification and analysis of circulating exosomal microRNA in human body fluids.
Lässer, Cecilia
2013-01-01
Exosomes are 40-100 nm sized vesicles released from cells when multivesicular bodies fuse with the plasma membrane. These vesicles take part in cell-to-cell communication by binding and signalling through membrane receptors on cells or by transferring proteins, RNA, and lipids into the cells. Exosomal RNA in body fluids, such as plasma and urine, has been associated with malignancies, making the exosomal RNA a potential biomarker for early detection of these diseases. This has increased the interest in the field of extracellular RNA and in particular, the interest in exosomal RNA.In this chapter, a well-established exosome isolation method is described, as well as how to characterize the isolated vesicles by electron microscopy. Furthermore, two types of RNA isolation methods are described with a focus on isolating RNA from body fluids, which can be more viscous than cell culture media.
Clostridium perfringens Type E Virulence Traits Involved in Gut Colonization
Redondo, Leandro M.; Carrasco, Juan M. Díaz; Redondo, Enzo A.; Delgado, Fernando; Miyakawa, Mariano E. Fernández
2015-01-01
Clostridium perfringens type E disease in ruminants has been characterized by hemorrhagic enteritis or sudden death. Although type E isolates are defined by the production of alpha and iota toxin, little is known about the pathogenesis of C. perfringens type E infections. Thus far, the role of iota toxin as a virulence factor is unknown. In this report, iota toxin showed positive effects on adherence and colonization of C. perfringens type E while having negative effect on the adherence of type A cells. In-vitro and in-vivo models suggest that toxinotype E would be particularly adapted to exploit the changes induced by iota toxin in the surface of epithelial cells. In addition, type E strains produce metabolites that affected the growth of potential intra-specific competitors. These results suggest that the alteration of the enterocyte morphology induced by iota toxin concomitantly with the specific increase of type E cell adhesion and the strong intra-specific growth inhibition of other strains could be competitive traits inherent to type E isolates that improve its fitness within the bovine gut environment. PMID:25799452
Isolation of Primary Mouse Trophoblast Cells and Trophoblast Invasion Assay
Pennington, Kathleen A.; Schlitt, Jessica M.; Schulz, Laura C.
2012-01-01
The placenta is responsible for the transport of nutrients, gasses and growth factors to the fetus, as well as the elimination of wastes. Thus, defects in placental development have important consequences for the fetus and mother, and are a major cause of embryonic lethality. The major cell type of the fetal portion of the placenta is the trophoblast. Primary mouse placental trophoblast cells are a useful tool for studying normal and abnormal placental development, and unlike cell lines, may be isolated and used to study trophoblast at specific stages of pregnancy. In addition, primary cultures of trophoblast from transgenic mice may be used to study the role of particular genes in placental cells. The protocol presented here is based on the description by Thordarson et al.1, in which a percoll gradient is used to obtain a relatively pure trophoblast cell population from isolated mouse placentas. It is similar to the more widely used methods for human trophoblast cell isolation2-3. Purity may be assessed by immunocytochemical staining of the isolated cells for cytokeratin 74. Here, the isolated cells are then analyzed using a matrigel invasion assay to assess trophoblast invasiveness in vitro5-6. The invaded cells are analyzed by immunocytochemistry and stained for counting. PMID:22257865
Harding, Rachel L; Clark, Daniel L; Halevy, Orna; Coy, Cynthia S; Yahav, Shlomo; Velleman, Sandra G
2015-01-01
Satellite cells are multipotential stem cells that mediate postnatal muscle growth and respond differently to temperature based upon aerobic versus anaerobic fiber-type origin. The objective of this study was to determine how temperatures below and above the control, 38°C, affect the fate of satellite cells isolated from the anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b. femoris). At all sampling times, p. major and b. femoris cells accumulated less lipid when incubated at low temperatures and more lipid at elevated temperatures compared to the control. Satellite cells isolated from the p. major were more sensitive to temperature as they accumulated more lipid at elevated temperatures compared to b. femoris cells. Expression of adipogenic genes, CCAAT/enhancer-binding protein β (C/EBPβ) and proliferator-activated receptor gamma (PPARγ) were different within satellite cells isolated from the p. major or b. femoris. At 72 h of proliferation, C/EBPβ expression increased with increasing temperature in both cell types, while PPARγ expression decreased with increasing temperature in p. major satellite cells. At 48 h of differentiation, both C/EBPβ and PPARγ expression increased in the p. major and decreased in the b. femoris, with increasing temperature. Flow cytometry measured apoptotic markers for early apoptosis (Annexin-V-PE) or late apoptosis (7-AAD), showing less than 1% of apoptotic satellite cells throughout all experimental conditions, therefore, apoptosis was considered biologically not significant. The results support that anaerobic p. major satellite cells are more predisposed to adipogenic conversion than aerobic b. femoris cells when thermally challenged. PMID:26341996
Isolation and culture of corneal cells and their interactions with dissociated trigeminal neurons.
Chan, K Y; Haschke, R H
1982-08-01
The three cell types of rabbit cornea (epithelium, stromal fibroblasts and endothelium) were isolated by an improved method using both microdissection and selective enzyme treatment. This technique reproducibly resulted in an almost total recovery of each cell type from a given cornea. When maintained in culture, the three cell types showed different morphologic characteristics, each resembling the in vivo counterpart. The epithelial culture consisted of both attached and floating cells. The attached cells located at the marginal area of a colony were irregular in shape and possessed pseudopodia, while those in the confluent area were polygonal. Floating cells were typically vacuolated, curve-shaped and joined in groups of 2-4 cells as a spherical body enclosing a lucent interior. Comparison of mitotic rates, ultrastructure, keratin levels and other cytologic evidence suggested that the attached cells may correspond to the basal cells and less differentiated wing cells, while the floating cells may be analogous to the more differentiated wing cells and superficial cells. Neurons dissociated from neonatal rabbit trigeminal (Gasserian) ganglia were plated into multiwells partially covered with a given corneal cell type. The percentages of viable and neurite-bearing neurons were evaluated on the first three days. When neurons were grown in contact with each of the corneal cell types, neurites were extended in every case. However, when neurons were not in contact with the corneal cells in the coculture, only epithelial cells permitted neurite outgrowth. The data suggested two types of cellular interactions between corneal cells and sensory neurons, one of which may be the specific release of a neuronotrophic factor by epithelial cells. This culture system represents the first step towards developing an in vitro model for studying various cornea-trigeminal interactions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosa Borges, Andrew; Wieczorek, Lindsay; Johnson, Benitra
2010-12-05
Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3'-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC{sub 50}s ranging from 0.1 to 7.4 {mu}g/ml. Inhibition of Env-mediated membrane fusion by MVC wasmore » also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. -- Research Highlights: {yields}Multivalent carbohydrates (MVCs) inhibited infection of PBMCs by HIV-1. {yields}MVCs inhibited infection by T cell line-adapted viruses. {yields}MVCs inhibited infection by primary isolates of HIV-1. {yields}MVCs inhibited Env-mediated membrane fusion.« less
NASA Astrophysics Data System (ADS)
Abrahamse, Heidi
2009-09-01
Stem cells are characterized by the qualities of self-renewal, long term viability, and the ability to differentiate into various cell types. Historically, stem cells have been isolated from the inner cell mass of blastocysts and harvesting these cells resulted in the death of the embryo leading to religious, political and ethical issues. The identification and subsequent isolation of adult stem cells from bone marrow stroma have been welcomed as an alternate source for stem cells. The clinical use of Mesenchymal Stem Cells (MSCs) presented problems such as limited cell number, pain and morbidity upon isolation. Adipose tissue is derived from the mesenchyme, is easily isolated, a reliable source of stem cells and able to differentiate into different cell types including smooth muscle. Over the past few years, the identification and characterization of stem cells has led the potential use of these cells as a promising alternative to cell replacement therapy. Smooth muscle is a major component of human tissues and is essential for the normal functioning of many different organs. Low intensity laser irradiation has been shown to increase viability, protein expression and migration of stem cells in vitro, and to stimulate proliferation of various types of stem cells. In addition, the use of laser irradiation to stimulate differentiation in the absence of growth factors has also been demonstrated in normal human neural progenitor cells (NHNPCs) in vitro where NHNPCs are not only capable of being sustained by light in the absence of growth factors, but that they are also able to differentiate normally as assessed by neurite formation. Our work has focused on the ability of laser irradiation to proliferate adipose derived stem cells (ADSCs), maintain ADSC character and increase the rate and maintenance of differentiation of ADSCs into smooth muscle and skin fibroblast cells. Current studies are also investigating the effect of different irradiation wavelengths and fluences on ADSC viability and proliferation. This paper reviews the development of MSCs as potential therapeutic interventions such as autologous grafts as well as the contribution of low intensity laser irradiation on the maintenance of these cells.
Mochizuki, Masami; Ohshima, Takahisa; Une, Yumi; Yachi, Akiko
2008-12-01
Canine parvovirus type 2 (CPV) is a pathogen that causes severe hemorrhagic gastroenteritis with a high fatality rate in pups worldwide. Since CPV emerged in the late 1970s, its origin has been explored with the conclusion that CPV originated from feline panleukopenia virus or a closely related virus. Both high mutation rate and recombination are assumed to be key factors in the evolution of parvoviruses. Here we provide evidence for natural recombination in CPV isolated from dogs in cell culture. Antigenic and genetic properties of isolates from 10 diseased pups were elucidated. Six pups had been vaccinated beforehand with live combined vaccine containing original antigenic type CPV (CPV-2). Six isolates recovered from 4 vaccinated pups in cell cultures were found to contain either CPV-2 or CPV-2-like viruses. The other isolates, including all those from non-vaccinated pups, were CPV-2b viruses. Antigenic typing of two CPV-2-like isolates, 03-029/M and 1887/f, with a monoclonal antibody panel suggested they were a mixture of CPV-2 and CPV-2a (03-029/M) and a recombinant of CPV-2 and CPV-2b (1887/f). Genetic analysis of the VP1 gene indicated that isolate 03-029/M was a mixture of CPV-2, CPV-2a and a recombinant of CPV-2 and CPV-2a viruses, while isolate 1887/f was composed of a recombinant of CPV-2 and CPV-2b viruses. This is the first demonstration of natural CPV recombination in the field and suggests that recombination in the evolution of CPV is a more frequent and important process than previously believed.
Stem cells for kidney repair: useful tool for acute renal failure?
Yokoo, Takashi; Kawamura, Tetsuya; Kobayashi, Eiji
2008-10-01
Several cell types isolated from adult tissues have been reported to differentiate into mature kidney cells that may participate in renal repair after systemic administration. Chen et al. report that local mesenchymal stem cells derived from adult mouse kidneys are another source of cells with similar properties. Although these cells have the potential to differentiate into endothelial-lineage cell types, their therapeutic benefit to the ischemic kidney is mainly via the production of renoprotective factors.
Morikawa, Toshio; Matsuda, Hisashi; Sakamoto, Yasuko; Ueda, Kazuho; Yoshikawa, Masayuki
2002-08-01
Two new farnesane-type sesquiterpenes, hedychiols A and B 8,9-diacetate, were isolated from the methanolic extract of the fresh rhizome of Hedychium coronarium KOEN. cultivated in Japan. Their stereostructures were elucidated on the basis of chemical and physicochemical evidence. The inhibitory effects of isolated constituents on the release of beta-hexosaminidase from RBL-2H3 cells were examined, and hedychilactone A and coronarin D were found to show the inhibitory activity.
Lupane-Type Triterpenes of Phoradendron vernicosum.
Valencia-Chan, Lía S; García-Cámara, Isabel; Torres-Tapia, Luis W; Moo-Puc, Rosa E; Peraza-Sánchez, Sergio R
2017-11-22
Three new lupane-type triterpenes, 3α,24-dihydroxylup-20(29)-en-28-oic acid (1), 3α,23-dihydroxy-30-oxolup-20(29)-en-28-oic acid (2), and 3α,23-O-isopropylidenyl-3α,23-dihydroxylup-20(29)-en-28-oic acid (3), together with eight known compounds (4-11) were isolated from a methanol extract of Phoradendron vernicosum aerial parts. The chemical structures of 1-3 were determined on the basis of spectroscopic data interpretation. The isolated compounds were tested against seven human cancer cell lines and two normal cell lines.
Identification of syncytial mutations in a clinical isolate of herpes simplex virus 2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muggeridge, Martin I.; Grantham, Michael L.; Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130
2004-10-25
Small polykaryocytes resulting from cell fusion are found in herpes simplex virus (HSV) lesions in patients, but their significance for viral spread and pathogenesis is unclear. Although syncytial variants causing extensive fusion in tissue culture can be readily isolated from laboratory strains, they are rarely found in clinical isolates, suggesting that extensive cell fusion may be deleterious in vivo. Syncytial mutations have previously been identified for several laboratory strains, but not for clinical isolates of HSV type 2. To address this deficiency, we studied a recent syncytial clinical isolate, finding it to be a mixture of two syncytial and onemore » nonsyncytial strain. The two syncytial strains have novel mutations in glycoprotein B, and in vitro cell fusion assays confirmed that they are responsible for syncytium formation. This panel of clinical strains may be ideal for examining the effect of increased cell fusion on pathogenesis.« less
Laser microsurgery of higher plant cell walls permits patch-clamp access
NASA Technical Reports Server (NTRS)
Henriksen, G. H.; Taylor, A. R.; Brownlee, C.; Assmann, S. M.; Evans, M. L. (Principal Investigator)
1996-01-01
Plasma membranes of guard cells in epidermal peels of Vicia faba and Commelina communis can be made accessible to a patch-clamp pipet by removing a small portion (1-3 micrometers in diameter) of the guard cell wall using a microbeam of ultraviolet light generated by a nitrogen laser. Using this laser microsurgical technique, we have measured channel activity across plasma membranes of V. faba guard cells in both cell-attached and isolated patch configurations. Measurements made in the inside-out patch configuration revealed two distinct K(+)-selective channels. Major advantages of the laser microsurgical technique include the avoidance of enzymatic protoplast isolation, the ability to study cell types that have been difficult to isolate as protoplasts or for which enzymatic isolation protocols result in protoplasts not amenable to patch-clamp studies, the maintenance of positional information in single-channel measurements, reduced disruption of cell-wall-mediated signaling pathways, and the ability to investigate intercellular signaling through studies of cells remaining situated within tissue.
Hawwa, Renda L.; Huang, Zheping; Sharma, Surendra; Sanchez-Esteban, Juan
2013-01-01
An imbalance between pro-inflammatory and anti-inflammatory cytokines is a key factor in the lung injury of premature infants exposed to mechanical ventilation. Previous studies have shown that lung cells exposed to stretch produces reduced amounts of the anti-inflammatory cytokine IL-10. The objective of these studies was to analyze the signaling mechanisms responsible for the decreased IL-10 production in fetal type II cells exposed to mechanical stretch. Fetal mouse type II epithelial cells isolated at embryonic day 18 were exposed to 20% stretch to simulate lung injury. We show that IL-10 receptor gene expression increased with gestational age. Mechanical stretch decreased not only IL-10 receptor gene expression but also IL-10 secretion. In contrast, mechanical stretch increased release of IL-6. We then investigated IL-10 signaling pathway-associated proteins and found that in wild-type cells, mechanical stretch decreased activation of JAK1 and TYK2 and increased STAT3 and SOCS3 activation. However, opposite effects were found in cells isolated from IL-10 knockout mice. Reduction in IL-6 secretion by stretch was observed in cells isolated from IL-10 null mice. To support the idea that stretch-induced SOCS3 expression via IL-6 leads to reduced IL-10 expression, siRNA-mediated inhibition of SOCS3 restored IL-10 secretion in cells exposed to stretch and decreased IL-6 secretion. Taken together, these studies suggest that the inhibitory effect of mechanical stretch on IL-10 secretion is mediated via activation of IL-6-STAT3-SOCS3 signaling pathway. SOCS3 could be a therapeutic target to increase IL-10 production in lung cells exposed to mechanical injury. PMID:23527226
Hokenson, Michael A; Wang, Yulian; Hawwa, Renda L; Huang, Zheping; Sharma, Surendra; Sanchez-Esteban, Juan
2013-01-01
An imbalance between pro-inflammatory and anti-inflammatory cytokines is a key factor in the lung injury of premature infants exposed to mechanical ventilation. Previous studies have shown that lung cells exposed to stretch produces reduced amounts of the anti-inflammatory cytokine IL-10. The objective of these studies was to analyze the signaling mechanisms responsible for the decreased IL-10 production in fetal type II cells exposed to mechanical stretch. Fetal mouse type II epithelial cells isolated at embryonic day 18 were exposed to 20% stretch to simulate lung injury. We show that IL-10 receptor gene expression increased with gestational age. Mechanical stretch decreased not only IL-10 receptor gene expression but also IL-10 secretion. In contrast, mechanical stretch increased release of IL-6. We then investigated IL-10 signaling pathway-associated proteins and found that in wild-type cells, mechanical stretch decreased activation of JAK1 and TYK2 and increased STAT3 and SOCS3 activation. However, opposite effects were found in cells isolated from IL-10 knockout mice. Reduction in IL-6 secretion by stretch was observed in cells isolated from IL-10 null mice. To support the idea that stretch-induced SOCS3 expression via IL-6 leads to reduced IL-10 expression, siRNA-mediated inhibition of SOCS3 restored IL-10 secretion in cells exposed to stretch and decreased IL-6 secretion. Taken together, these studies suggest that the inhibitory effect of mechanical stretch on IL-10 secretion is mediated via activation of IL-6-STAT3-SOCS3 signaling pathway. SOCS3 could be a therapeutic target to increase IL-10 production in lung cells exposed to mechanical injury.
Bakkar, Mohammed; Liu, Younan; Fang, Dongdong; Stegen, Camille; Su, Xinyun; Ramamoorthi, Murali; Lin, Li-Chieh; Kawasaki, Takako; Makhoul, Nicholas; Pham, Huan; Sumita, Yoshinori; Tran, Simon D
2017-01-01
This chapter describes a simplified method that allows the systematic isolation of multiple types of dental stem cells such as dental pulp stem cells (DPSC), periodontal ligament stem cells (PDLSC), and stem cells of the apical papilla (SCAP) from a single tooth. Of specific interest is the modified laboratory approach to harvest/retrieve the dental pulp tissue by minimizing trauma to DPSC by continuous irrigation, reduction of frictional heat from the bur rotation, and reduction of the bur contact time with the dentin. Also, the use of a chisel and a mallet will maximize the number of live DPSC for culture. Steps demonstrating the potential for multiple cell differentiation lineages of each type of dental stem cell into either osteocytes, adipocytes, or chondrocytes are described. Flow cytometry, with a detailed strategy for cell gating and analysis, is described to verify characteristic markers of human mesenchymal multipotent stromal cells (MSC) from DPSC, PDLSC, or SCAP for subsequent experiments in cell therapy and in tissue engineering. Overall, this method can be adapted to any laboratory with a general setup for cell culture experiments.
Stem cells in dentistry--review of literature.
Dziubińska, P; Jaskólska, M; Przyborowska, P; Adamiak, Z
2013-01-01
Stem cells have been successfully isolated from a variety of human and animal tissues, including dental pulp. This achievement marks progress in regenerative dentistry. This article reviews the latest improvements made in regenerative dental medicine with the involvement of stem cells. Although, various types of multipotent somatic cells can be applied in dentistry, two types of cells have been investigated in this review. Dental pulp cells are classified as: DPSCs, SCAPs and SHEDs.The third group includes two types of cell associated with the periodontium: PDL and DFPC. This review aims to systematize basic knowledge about cellular engineering in dentistry.
Isolation and Characterization of Poliovirus in Cell Culture Systems.
Thorley, Bruce R; Roberts, Jason A
2016-01-01
The isolation and characterization of enteroviruses by cell culture was accepted as the "gold standard" by clinical virology laboratories. Methods for the direct detection of all enteroviruses by reverse transcription polymerase chain reaction, targeting a conserved region of the genome, have largely supplanted cell culture as the principal diagnostic procedure. However, the World Health Organization's Global Polio Eradication Initiative continues to rely upon cell culture to isolate poliovirus due to the lack of a reliable sensitive genetic test for direct typing of enteroviruses from clinical specimens. Poliovirus is able to infect a wide range of mammalian cell lines, with CD155 identified as the primary human receptor for all three seroytpes, and virus replication leads to an observable cytopathic effect. Inoculation of cell lines with extracts of clinical specimens and subsequent passaging of the cells leads to an increased virus titre. Cultured isolates of poliovirus are suitable for testing by a variety of methods and remain viable for years when stored at low temperature.This chapter describes general procedures for establishing a cell bank and routine passaging of cell lines. While the sections on specimen preparation and virus isolation focus on poliovirus, the protocols are suitable for other enteroviruses.
Potter, J W; Black, C C
1982-08-01
The distribution and molecular weights of cellular proteins in soluble and membrane-associated locations were analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Coomassie blue staining of leaf (Digitaria sanguinalis L. Scop.) extracts and isolated cell extracts. Leaf polypeptides also were pulse-labeled, followed by isolation of the labeled leaf cell types and analysis of the newly synthesized polypeptides in each cell type by electrophoresis and fluorography.Comparison of the electrophoretic patterns of crabgrass whole leaf polypeptides with isolated cell-type polypeptides indicated a difference in protein distribution patterns for the two cell types. The mesophyll cells exhibited a greater allocation of total cellular protein into membrane-associated proteins relative to soluble proteins. In contrast, the bundle sheath cells exhibited a higher percentage of total cellular protein in soluble proteins. Phosphoenolpyruvate carboxylase was the major soluble protein in the mesophyll cell and ribulose bisphosphate carboxylase was the major soluble protein in the bundle sheath cell. The majority of in vivo(35)S-pulse-labeled proteins synthesized by the two crabgrass cell types corresponded in molecular weight to the proteins present in the cell types which were detected by conventional staining techniques. The bundle sheath cell and mesophyll cell fluorograph profiles each had 15 major (35)S-labeled proteins. The major incorporation of (35)S by bundle sheath cells was into products which co-electrophoresed with the large and small subunits of ribulose bisphosphate carboxylase. In contrast, a major (35)S-labeled product in mesophyll cell extracts co-electrophoresed with the subunit of phosphoenolpyruvate carboxylase. Both cell types exhibited equivalent in vivo labeling of a polypeptide with one- and two-dimensional electrophoretic behavior similar to the major apoprotein of the light-harvesting chlorophyll a/b protein. Results from the use of protein synthesis inhibitors during pulse-labeling experiments indicated intercellular differences in both organelle and cytoplasmic protein synthesis. A majority of the (35)S incorporation by crabgrass mesophyll cell 70S ribosomes was associated with a pair of membrane-associated polypeptides of molecular weight 32,000 and 34,500; a comparison of fluorograph and stained gel profiles suggests these products resemble the precursor and mature forms of the maize chloroplast 32,000 dalton protein reported by Grebanier et al. (1978 J. Cell Biol. 28:734-746). In contrast, crabgrass bundle sheath cell organelle translation was directed predominantly into a product which co-electrophoresed with the large subunit of ribulose bisphosphate carboxylase.
Integrin Based Isolation Enables Purification of Murine Lineage Committed Cardiomyocytes
Tarnawski, Laura; Xian, Xiaojie; Monnerat, Gustavo; Macaulay, Iain C.; Malan, Daniela; Borgman, Andrew; Wu, Sean M.; Fleischmann, Bernd K.; Jovinge, Stefan
2015-01-01
In contrast to mature cardiomyocytes which have limited regenerative capacity, pluripotent stem cells represent a promising source for the generation of new cardiomyocytes. The tendency of pluripotent stem cells to form teratomas and the heterogeneity from various differentiation stages and cardiomyocyte cell sub-types, however, are major obstacles to overcome before this type of therapy could be applied in a clinical setting. Thus, the identification of extracellular markers for specific cardiomyocyte progenitors and mature subpopulations is of particular importance. The delineation of cardiomyocyte surface marker patterns not only serves as a means to derive homogeneous cell populations by FACS, but is also an essential tool to understand cardiac development. By using single-cell expression profiling in early mouse embryonic hearts, we found that a combination of integrin alpha-1, alpha-5, alpha-6 and N-cadherin enables isolation of lineage committed murine cardiomyocytes. Additionally, we were able to separate trabecular cardiomyocytes from solid ventricular myocardium and atrial murine cells. These cells exhibit expected subtype specific phenotype confirmed by electrophysiological analysis. We show that integrin expression can be used for the isolation of living, functional and lineage-specific murine cardiomyocytes. PMID:26323090
Toplin, J A; Norris, T B; Lehr, C R; McDermott, T R; Castenholz, R W
2008-05-01
Members of the rhodophytan order Cyanidiales are unique among phototrophs in their ability to live in extreme environments that combine low pH levels ( approximately 0.2 to 4.0) and moderately high temperatures of 40 to 56 degrees C. These unicellular algae occur in far-flung volcanic areas throughout the earth. Three genera (Cyanidium, Galdieria, and Cyanidioschyzon) are recognized. The phylogenetic diversity of culture isolates of the Cyanidiales from habitats throughout Yellowstone National Park (YNP), three areas in Japan, and seven regions in New Zealand was examined by using the chloroplast RuBisCO large subunit gene (rbcL) and the 18S rRNA gene. Based on the nucleotide sequences of both genes, the YNP isolates fall into two groups, one with high identity to Galdieria sulphuraria (type II) and another that is by far the most common and extensively distributed Yellowstone type (type IA). The latter is a spherical, walled cell that reproduces by internal divisions, with a subsequent release of smaller daughter cells. This type, nevertheless, shows a 99 to 100% identity to Cyanidioschyzon merolae (type IB), which lacks a wall, divides by "fission"-like cytokinesis into two daughter cells, and has less than 5% of the cell volume of type IA. The evolutionary and taxonomic ramifications of this disparity are discussed. Although the 18S rRNA and rbcL genes did not reveal diversity among the numerous isolates of type IA, chloroplast short sequence repeats did show some variation by location within YNP. In contrast, Japanese and New Zealand strains showed considerable diversity when we examined only the sequences of 18S and rbcL genes. Most exhibited identities closer to Galdieria maxima than to other strains, but these identities were commonly as low as 91 to 93%. Some of these Japanese and New Zealand strains probably represent undescribed species that diverged after long-term geographic isolation.
Hyun, Kyung-A; Jung, Hyo-Il
2013-04-01
Circulating rare cells have attracted interest because they can be good indicators of various types of diseases. For example, enumeration of circulating tumor cells is used for cancer diagnosis and prognosis, while DNA analysis or enumeration of nucleated red blood cells is useful for prenatal diagnosis or hypoxic anemia, and that of circulating stem cells to diagnose cancer metastasis. Isolation of these cells and their downstream analyses can provide significant information such as the origin and characteristics of a disease. Novel approaches based on microfluidics have many advantages, including the continuous process and integration with other components for analysis. For these reasons, a variety of microfluidic devices have been developed to isolate and characterize rare cells. In this article, we review several microfluidic devices, with a focus on affinity-based isolation (e.g. antigen-antibody reaction) and label-free separation (DEP and hydrophoresis). © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Neuropathogenicity of Two Saffold Virus Type 3 Isolates in Mouse Models
Kotani, Osamu; Naeem, Asif; Suzuki, Tadaki; Iwata-Yoshikawa, Naoko; Sato, Yuko; Nakajima, Noriko; Hosomi, Takushi; Tsukagoshi, Hiroyuki; Kozawa, Kunihisa; Hasegawa, Hideki; Taguchi, Fumihiro; Shimizu, Hiroyuki; Nagata, Noriyo
2016-01-01
Objective Saffold virus (SAFV), a picornavirus, is occasionally detected in children with acute flaccid paralysis, meningitis, and cerebellitis; however, the neuropathogenicity of SAFV remains undetermined. Methods The virulence of two clinical isolates of SAFV type 3 (SAFV-3) obtained from a patient with aseptic meningitis (AM strain) and acute upper respiratory inflammation (UR strain) was analyzed in neonatal and young mice utilizing virological, pathological, and immunological methods. Results The polyproteins of the strains differed in eight amino acids. Both clinical isolates were infective, exhibited neurotropism, and were mildly neurovirulent in neonatal ddY mice. Both strains pathologically infected neural progenitor cells and glial cells, but not large neurons, with the UR strain also infecting epithelial cells. UR infection resulted in longer inflammation in the brain and spinal cord because of demyelination, while the AM strain showed more infectivity in the cerebellum in neonatal ddY mice. Additionally, young BALB/c mice seroconverted following mucosal inoculation with the UR, but not the AM, strain. Conclusions Both SAFV-3 isolates had neurotropism and mild neurovirulence but showed different cell tropisms in both neonatal and young mouse models. This animal model has the potential to recapitulate the potential neuropathogenicity of SAFV-3. PMID:26828718
Seo, N; Tokura, Y; Ishihara, S; Takeoka, Y; Tagawa, S; Takigawa, M
2000-01-01
Recent studies have revealed the existence of a distinct type of NK cell leukaemia of the juvenile type, which presents with hypersensitivity to mosquito bites (HMB) as an essential clinical manifestation and is infected with clonal Epstein–Barr virus (EBV). This disorder is thus called HMB-EBV-NK disease and has been reported in Orientals, mostly from Japan. We investigated the profile of cytokine production and the expression of both types of NK inhibitory receptors, i.e. CD94 lectin-like dimers and killer-cell immunoglobulin-like receptors, in NK leukaemic cells from three patients with HMB-EBV-NK disease. It was found that freshly isolated NK leukaemic cells expressed mRNA for interferon-gamma (IFN-γ) and additionally produced IL-10 upon stimulation with IL-2, indicating that the NK cells were of NK1 type. More than 98% of NK cells from the patients bore CD94 at a higher level than did normal NK cells, whereas p70 or NKAT2, belonging to immunoglobulin-like receptor, was not expressed in those NK cells. Freshly isolated leukaemic NK cells transcribed mRNA for CD94-associated molecule NKG2C at an abnormally high level, and upon stimulation with IL-2 and/or IL-12 they expressed NKG2A as well. The disordered expression of these inhibitory receptors not only provides some insights into the pathogenesis of HMB-EBV-NK disease but also can be used as phenotypic markers for the diagnosis of this type of NK cell leukaemia. PMID:10844517
Rovira, Meritxell; Scott, Sherri-Gae; Liss, Andrew S.; Jensen, Jan; Thayer, Sarah P.; Leach, Steven D.
2009-01-01
The question of whether dedicated progenitor cells exist in adult vertebrate pancreas remains controversial. Centroacinar cells and terminal duct (CA/TD) cells lie at the junction between peripheral acinar cells and the adjacent ductal epithelium, and are frequently included among cell types proposed as candidate pancreatic progenitors. However these cells have not previously been isolated in a manner that allows formal assessment of their progenitor capacities. We have found that a subset of adult CA/TD cells are characterized by high levels of ALDH1 enzymatic activity, related to high-level expression of both Aldh1a1 and Aldh1a7. This allows their isolation by FACS using a fluorogenic ALDH1 substrate. FACS-isolated CA/TD cells are relatively depleted of transcripts associated with differentiated pancreatic cell types. In contrast, they are markedly enriched for transcripts encoding Sca1, Sdf1, c-Met, Nestin, and Sox9, markers previously associated with progenitor populations in embryonic pancreas and other tissues. FACS-sorted CA/TD cells are uniquely able to form self-renewing “pancreatospheres” in suspension culture, even when plated at clonal density. These spheres display a capacity for spontaneous endocrine and exocrine differentiation, as well as glucose-responsive insulin secretion. In addition, when injected into cultured embryonic dorsal pancreatic buds, these adult cells display a unique capacity to contribute to both the embryonic endocrine and exocrine lineages. Finally, these cells demonstrate dramatic expansion in the setting of chronic epithelial injury. These findings suggest that CA/TD cells are indeed capable of progenitor function and may contribute to the maintenance of tissue homeostasis in adult mouse pancreas. PMID:20018761
Stevenson, M; Haggerty, S; Lamonica, C; Mann, A M; Meier, C; Wasiak, A
1990-01-01
The phenomenon of interference was exploited to isolate low-abundance noncytopathic human immunodeficiency virus type 1 (HIV-1) variants from a primary HIV-1 isolate from an asymptomatic HIV-1-seropositive hemophiliac. Successive rounds of virus infection of a cytolysis-susceptible CD4+ cell line and isolation of surviving cells resulted in selective amplification of an HIV-1 variant reduced in the ability to induce cytolysis. The presence of a PvuII polymorphism facilitated subsequent amplification and cloning of cytopathic and noncytopathic HIV-1 variants from the primary isolate. Cloned virus stocks from cytopathic and noncytopathic variants exhibited similar replication kinetics, infectivity, and syncytium induction in susceptible host cells. The noncytopathic HIV-1 variant was unable, however, to induce single-cell killing in susceptible host cells. Construction of viral hybrids in which regions of cytopathic and noncytopathic variants were exchanged indicated that determinants for the noncytopathic phenotype map to the envelope glycoprotein. Sequence analysis of the envelope coding regions indicated the absence of two highly conserved N-linked glycosylation sites in the noncytopathic HIV-1 variant, which accompanied differences in processing of precursor gp160 envelope glycoprotein. These results demonstrate that determinants for syncytium-independent single-cell killing are located within the envelope glycoprotein and suggest that single-cell killing is profoundly influenced by alterations in envelope sequence which affect posttranslational processing of HIV-1 envelope glycoprotein within the infected cell. Images PMID:1695254
Ullah, Mujib; Hamouda, Houda; Stich, Stefan; Sittinger, Michael; Ringe, Jochen
2012-12-01
Administration of chondrogenically differentiated mesenchymal stem cells (MSC) is discussed as a promising approach for the regenerative treatment of injured or diseased cartilage. The high-density pellet culture is the standard culture for chondrogenic differentiation, but cells in pellets secrete extracellular matrix (ECM) that they become entrapped in. Protocols for cell isolation from pellets often result in cell damage and dedifferentiation towards less differentiated MSC. Therefore, our aim was to develop a reliable protocol for the isolation of viable, chondrogenically differentiated MSC from high-density pellet cultures. Human bone marrow MSC were chondrogenically stimulated with transforming growth factor-β3, and the cartilaginous structure of the pellets was verified by alcian blue staining of cartilage proteoglycans, antibody staining of cartilage collagen type II, and quantitative real-time reverse-transcription polymerase chain reaction of the marker genes COL2A1 and SOX9. Trypsin and collagenases II and P were tested alone or in combination, and for different concentrations and times, to find a protocol for optimized pellet digestion. Whereas trypsin was not able to release viable cells, 90-min digestion with 300 U of collagenase II, 20 U of collagenase P, and 2 mM CaCl2 worked quite well and resulted in about 2.5×10(5) cells/pellet. The protocol was further optimized for the separation of released cells and ECM from each other. Cells were alcian blue and collagen type II positive and expressed COL2A1 and SOX9, verifying a chondrogenic character. However, they had different morphological shapes. The ECM was also uniformly alcian blue and collagen type II positive but showed different organizational and structural forms. To conclude, our protocol allows the reliable isolation of a defined number of viable, chondrogenically differentiated MSC from high-density pellet cultures. Such cells, as well as the ECM components, are of interest as research tools and for cartilage tissue engineering.
A Cell Culture Model of Resistance Arteries.
Biwer, Lauren A; Lechauve, Christophe; Vanhoose, Sheri; Weiss, Mitchell J; Isakson, Brant E
2017-09-08
The myoendothelial junction (MEJ), a unique signaling microdomain in small diameter resistance arteries, exhibits localization of specific proteins and signaling processes that can control vascular tone and blood pressure. As it is a projection from either the endothelial or smooth muscle cell, and due to its small size (on average, an area of ~1 µm 2 ), the MEJ is difficult to study in isolation. However, we have developed a cell culture model called the vascular cell co-culture (VCCC) that allows for in vitro MEJ formation, endothelial cell polarization, and dissection of signaling proteins and processes in the vascular wall of resistance arteries. The VCCC has a multitude of applications and can be adapted to suit different cell types. The model consists of two cell types grown on opposite sides of a filter with 0.4 µm pores in which the in vitro MEJs can form. Here we describe how to create the VCCC via plating of cells and isolation of endothelial, MEJ, and smooth muscle fractions, which can then be used for protein isolation or activity assays. The filter with intact cell layers can be fixed, embedded, and sectioned for immunofluorescent analysis. Importantly, many of the discoveries from this model have been confirmed using intact resistance arteries, underscoring its physiological relevance.
Isolation, Identification, and Culture of Human Lymphatic Endothelial Cells.
Lokmic, Zerina
2016-01-01
A protocol describing the isolation of foreskin lymphatic endothelial cells (LECs) and lymphatic malformation lymphatic endothelial cells (LM LECs) is presented herein. To isolate LECs and LM LECs, tissues are mechanically disrupted to make a single-cell suspension, which is then enzymatically digested in dispase and collagenase type II. LECs and LM LECs, in the resulting single-cell suspension, are then sequentially labeled with antibodies recognizing fibroblast and endothelial cell surface antigens CD34 and CD31 and separated from the remaining components in the cell suspension by capture with magnetic beads. Viable LECs and LM LECs are then seeded and expanded on fibronectin-coated flasks. LEC and LM LEC purity is determined immunohistochemically using cell surface markers CD31, CD34, podoplanin, VEGFR-3 and nuclear marker PROX-1. Cells whose purity is >98 % are used for experiments between passage 4 and 6.
Isolation and gene expression analysis of single potential human spermatogonial stem cells.
von Kopylow, K; Schulze, W; Salzbrunn, A; Spiess, A-N
2016-04-01
It is possible to isolate pure populations of single potential human spermatogonial stem cells without somatic contamination for down-stream applications, for example cell culture and gene expression analysis. We isolated pure populations of single potential human spermatogonial stem cells (hSSC) without contaminating somatic cells and analyzed gene expression of these cells via single-cell real-time RT-PCR. The isolation of a pure hSSC fraction could enable clinical applications such as fertility preservation for prepubertal boys and in vitro-spermatogenesis. By utilizing largely nonspecific markers for the isolation of spermatogonia (SPG) and hSSC, previously published cell selection methods are not able to deliver pure target cell populations without contamination by testicular somatic cells. However, uniform cell populations free of somatic cells are necessary to guarantee defined growth conditions in cell culture experiments and to prevent unintended stem cell differentiation. Fibroblast growth factor receptor 3 (FGFR3) is a cell surface protein of human undifferentiated A-type SPG and a promising candidate marker for hSSC. It is exclusively expressed in small, non-proliferating subgroups of this spermatogonial cell type together with the pluripotency-associated protein and spermatogonial nuclear marker undifferentiated embryonic cell transcription factor 1 (UTF1). We specifically selected the FGFR3-positive spermatogonial subpopulation from two 30 mg biopsies per patient from a total of 37 patients with full spermatogenesis and three patients with meiotic arrest. We then employed cell selection with magnetic beads in combination with a fluorescence-activated cell sorter antibody directed against human FGFR3 to tag and visually identify human FGFR3-positive spermatogonia. Positively selected and bead-labeled cells were subsequently picked with a micromanipulator. Analysis of the isolated cells was carried out by single-cell real-time RT-PCR, real-time RT-PCR, immunocytochemistry and live/dead staining. Single-cell real-time RT-PCR and real-time RT-PCR of pooled cells indicate that bead-labeled single cells express FGFR3 with high heterogeneity at the mRNA level, while bead-unlabeled cells lack FGFR3 mRNA. Furthermore, isolated cells exhibit strong immunocytochemical staining for the stem cell factor UTF1 and are viable. The cell population isolated in this study has to be tested for their potential stem cell characteristics via xenotransplantation. Due to the small amount of the isolated cells, propagation by cell culture will be essential. Other potential hSSC without FGFR3 surface expression will not be captured with the provided experimental design. The technical approach as developed in this work could encourage the scientific community to test other established or novel hSSC markers on single SPG that present with potential stem cell-like features. The project was funded by the DFG Research Unit FOR1041 Germ cell potential (SCH 587/3-2) and DFG grants to K.v.K. (KO 4769/2-1) and A.-N.S. (SP 721/4-1). The authors declare no competing interests. © The Author 2016. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Harding, Rachel L; Clark, Daniel L; Halevy, Orna; Coy, Cynthia S; Yahav, Shlomo; Velleman, Sandra G
2015-09-01
Satellite cells are multipotential stem cells that mediate postnatal muscle growth and respond differently to temperature based upon aerobic versus anaerobic fiber-type origin. The objective of this study was to determine how temperatures below and above the control, 38°C, affect the fate of satellite cells isolated from the anaerobic pectoralis major (p. major) or mixed fiber biceps femoris (b. femoris). At all sampling times, p. major and b. femoris cells accumulated less lipid when incubated at low temperatures and more lipid at elevated temperatures compared to the control. Satellite cells isolated from the p. major were more sensitive to temperature as they accumulated more lipid at elevated temperatures compared to b. femoris cells. Expression of adipogenic genes, CCAAT/enhancer-binding protein β (C/EBPβ) and proliferator-activated receptor gamma (PPARγ) were different within satellite cells isolated from the p. major or b. femoris. At 72 h of proliferation, C/EBPβ expression increased with increasing temperature in both cell types, while PPARγ expression decreased with increasing temperature in p. major satellite cells. At 48 h of differentiation, both C/EBPβ and PPARγ expression increased in the p. major and decreased in the b. femoris, with increasing temperature. Flow cytometry measured apoptotic markers for early apoptosis (Annexin-V-PE) or late apoptosis (7-AAD), showing less than 1% of apoptotic satellite cells throughout all experimental conditions, therefore, apoptosis was considered biologically not significant. The results support that anaerobic p. major satellite cells are more predisposed to adipogenic conversion than aerobic b. femoris cells when thermally challenged. © 2015 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.
Zika Virus Antagonizes Type I Interferon Responses during Infection of Human Dendritic Cells
Maddur, Mohan S.; O’Neal, Justin T.; Fedorova, Nadia B.; Puri, Vinita; Pulendran, Bali; Suthar, Mehul S.
2017-01-01
Zika virus (ZIKV) is an emerging mosquito-borne flavivirus that is causally linked to severe neonatal birth defects, including microcephaly, and is associated with Guillain-Barre syndrome in adults. Dendritic cells (DCs) are an important cell type during infection by multiple mosquito-borne flaviviruses, including dengue virus, West Nile virus, Japanese encephalitis virus, and yellow fever virus. Despite this, the interplay between ZIKV and DCs remains poorly defined. Here, we found human DCs supported productive infection by a contemporary Puerto Rican isolate with considerable variability in viral replication, but not viral binding, between DCs from different donors. Historic isolates from Africa and Asia also infected DCs with distinct viral replication kinetics between strains. African lineage viruses displayed more rapid replication kinetics and infection magnitude as compared to Asian lineage viruses, and uniquely induced cell death. Infection of DCs with both contemporary and historic ZIKV isolates led to minimal up-regulation of T cell co-stimulatory and MHC molecules, along with limited secretion of inflammatory cytokines. Inhibition of type I interferon (IFN) protein translation was observed during ZIKV infection, despite strong induction at the RNA transcript level and up-regulation of other host antiviral proteins. Treatment of human DCs with RIG-I agonist potently restricted ZIKV replication, while type I IFN had only modest effects. Mechanistically, we found all strains of ZIKV antagonized type I IFN-mediated phosphorylation of STAT1 and STAT2. Combined, our findings show that ZIKV subverts DC immunogenicity during infection, in part through evasion of type I IFN responses, but that the RLR signaling pathway is still capable of inducing an antiviral state, and therefore may serve as an antiviral therapeutic target. PMID:28152048
Reece, Kimberly S; Scott, Gail P; Dang, Cécile; Dungan, Christopher F
2017-09-01
A monoclonal Perkinsus chesapeaki isolate was established from 1 of 10 infected Australian Anadara trapezia cockles. Morphological features were similar to those of described P. chesapeaki isolates, and also included a unique vermiform schizont cell-type. Perkinsus olseni-specific PCR primers amplified DNAs from all 10 cockles. Perkinsus chesapeaki-specific primers also amplified DNAs from 4/10 cockles, including DNA from the isolate source cockle. Three different sets of DNA sequences from the monoclonal isolate grouped with the homologous, previously deposited, P. chesapeaki sequences in phylogenetic analyses. In situ hybridization assays detected both P. chesapeaki and P. olseni cells in histological sections from the source cockle for monoclonal isolate ATCC PRA-425. Copyright © 2017 Elsevier Inc. All rights reserved.
Epstein-Barr Virus Sequence Variation—Biology and Disease
Tzellos, Stelios; Farrell, Paul J.
2012-01-01
Some key questions in Epstein-Barr virus (EBV) biology center on whether naturally occurring sequence differences in the virus affect infection or EBV associated diseases. Understanding the pattern of EBV sequence variation is also important for possible development of EBV vaccines. At present EBV isolates worldwide can be grouped into Type 1 and Type 2, a classification based on the EBNA2 gene sequence. Type 1 EBV is the most prevalent worldwide but Type 2 is common in parts of Africa. Type 1 transforms human B cells into lymphoblastoid cell lines much more efficiently than Type 2 EBV. Molecular mechanisms that may account for this difference in cell transformation are now becoming clearer. Advances in sequencing technology will greatly increase the amount of whole EBV genome data for EBV isolated from different parts of the world. Study of regional variation of EBV strains independent of the Type 1/Type 2 classification and systematic investigation of the relationship between viral strains, infection and disease will become possible. The recent discovery that specific mutation of the EBV EBNA3B gene may be linked to development of diffuse large B cell lymphoma illustrates the importance that mutations in the virus genome may have in infection and human disease. PMID:25436768
Paramyxovirus fusion: Real-time measurement of parainfluenza virus 5 virus-cell fusion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Connolly, Sarah A.; Lamb, Robert A.
2006-11-25
Although cell-cell fusion assays are useful surrogate methods for studying virus fusion, differences between cell-cell and virus-cell fusion exist. To examine paramyxovirus fusion in real time, we labeled viruses with fluorescent lipid probes and monitored virus-cell fusion by fluorimetry. Two parainfluenza virus 5 (PIV5) isolates (W3A and SER) and PIV5 containing mutations within the fusion protein (F) were studied. Fusion was specific and temperature-dependent. Compared to many low pH-dependent viruses, the kinetics of PIV5 fusion was slow, approaching completion within several minutes. As predicted from cell-cell fusion assays, virus containing an F protein with an extended cytoplasmic tail (rSV5 F551)more » had reduced fusion compared to wild-type virus (W3A). In contrast, virus-cell fusion for SER occurred at near wild-type levels, despite the fact that this isolate exhibits a severely reduced cell-cell fusion phenotype. These results support the notion that virus-cell and cell-cell fusion have significant differences.« less
Okuda, Ken-Ichi; Nagahori, Ryuichi; Yamada, Satomi; Sugimoto, Shinya; Sato, Chikara; Sato, Mari; Iwase, Tadayuki; Hashimoto, Kazuhiro; Mizunoe, Yoshimitsu
2018-01-01
The present study aimed to understand the biofilm formation mechanism of Propionibacterium acnes by analyzing the components and structure of the biofilms. P. acnes strains were isolated from the surface of explanted cardiac pacemaker devices that exhibited no clinical signs of infection. Culture tests using a simple stamp culture method (pressing pacemakers against the surface of agar plates) revealed frequent P. acnes colonization on the surface of cardiac pacemaker devices. P . acnes was isolated from 7/31 devices, and the isolates were categorized by multilocus sequence typing into five different sequence types (STs): ST4 (JK18.2), ST53 (JK17.1), ST69 (JK12.2 and JK13.1), ST124 (JK5.3), ST125 (JK6.2), and unknown ST (JK19.3). An in vitro biofilm formation assay using microtiter plates demonstrated that 5/7 isolates formed biofilms. Inhibitory effects of DNase I and proteinase K on biofilm formation varied among isolates. In contrast, dispersin B showed no inhibitory activity against all isolates. Three-dimensional live/dead imaging of P. acnes biofilms with different biochemical properties using confocal laser microscopy demonstrated different distributions and proportions of living and dead cells. Additionally, it was suggested that extracellular DNA (eDNA) plays a role in the formation of biofilms containing living cells. Ultrastructural analysis of P. acnes biofilms using a transmission electron microscope and atmospheric scanning electron microscope revealed leakage of cytoplasmic components along with cell lysis and fibrous structures of eDNA connecting cells. In conclusion, the biochemical properties and structures of the biofilms differed among P. acnes isolates. These findings may provide clues for establishing countermeasures against biofilm-associated infection by P. acnes .
Okuda, Ken-ichi; Nagahori, Ryuichi; Yamada, Satomi; Sugimoto, Shinya; Sato, Chikara; Sato, Mari; Iwase, Tadayuki; Hashimoto, Kazuhiro; Mizunoe, Yoshimitsu
2018-01-01
The present study aimed to understand the biofilm formation mechanism of Propionibacterium acnes by analyzing the components and structure of the biofilms. P. acnes strains were isolated from the surface of explanted cardiac pacemaker devices that exhibited no clinical signs of infection. Culture tests using a simple stamp culture method (pressing pacemakers against the surface of agar plates) revealed frequent P. acnes colonization on the surface of cardiac pacemaker devices. P. acnes was isolated from 7/31 devices, and the isolates were categorized by multilocus sequence typing into five different sequence types (STs): ST4 (JK18.2), ST53 (JK17.1), ST69 (JK12.2 and JK13.1), ST124 (JK5.3), ST125 (JK6.2), and unknown ST (JK19.3). An in vitro biofilm formation assay using microtiter plates demonstrated that 5/7 isolates formed biofilms. Inhibitory effects of DNase I and proteinase K on biofilm formation varied among isolates. In contrast, dispersin B showed no inhibitory activity against all isolates. Three-dimensional live/dead imaging of P. acnes biofilms with different biochemical properties using confocal laser microscopy demonstrated different distributions and proportions of living and dead cells. Additionally, it was suggested that extracellular DNA (eDNA) plays a role in the formation of biofilms containing living cells. Ultrastructural analysis of P. acnes biofilms using a transmission electron microscope and atmospheric scanning electron microscope revealed leakage of cytoplasmic components along with cell lysis and fibrous structures of eDNA connecting cells. In conclusion, the biochemical properties and structures of the biofilms differed among P. acnes isolates. These findings may provide clues for establishing countermeasures against biofilm-associated infection by P. acnes. PMID:29491850
Isolation of Human Innate Lymphoid Cells.
Krabbendam, Lisette; Nagasawa, Maho; Spits, Hergen; Bal, Suzanne M
2018-06-29
Innate lymphoid cells (ILCs) are innate immune cells of lymphoid origin that have important effector and regulatory functions in the first line of defense against pathogens, but also regulate tissue homeostasis, remodeling, and repair. Their function mirrors T helper cells and cytotoxic CD8 + T lymphocytes, but they lack expression of rearranged antigen-specific receptors. Distinct ILC subsets are classified in group 1 ILCs (ILC1s), group 2 ILCs (ILC2s), and group 3 ILCs (ILC3s and lymphoid tissue-inducer cells), based on the expression of transcription factors and the cytokines they produce. As the frequency of ILCs is low, their isolation requires extensive depletion of other cell types. The lack of unique cell surface antigens further complicates the identification of these cells. Here, methods for ILC isolation and characterization from human peripheral blood and different tissues are described. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Myoung Woo; Moon, Young Joon; Yang, Mal Sook
2007-06-29
Umbilical cord blood (UCB) is a rich source of hematopoietic stem cells, with practical and ethical advantages. To date, the presence of other stem cells in UCB remains to be established. We investigated whether other stem cells are present in cryopreserved UCB. Seeded mononuclear cells formed adherent colonized cells in optimized culture conditions. Over a 4- to 6-week culture period, colonized cells gradually developed into adherent mono-layer cells, which exhibited homogeneous fibroblast-like morphology and immunophenotypes, and were highly proliferative. Isolated cells were designated 'multipotent progenitor cells (MPCs)'. Under appropriate conditions for 2 weeks, MPCs differentiated into neural tissue-specific cell types,more » including neuron, astrocyte, and oligodendrocyte. Differentiated cells presented their respective markers, specifically, NF-L and NSE for neurons, GFAP for astrocytes, and myelin/oligodendrocyte for oligodendrocytes. In this study, we successfully isolated MPCs from cryopreserved UCB, which differentiated into the neural tissue-specific cell types. These findings suggest that cryopreserved human UCB is a useful alternative source of neural progenitor cells, such as MPCs, for experimental and therapeutic applications.« less
Agley, Chibeza C.; Rowlerson, Anthea M.; Velloso, Cristiana P.; Lazarus, Norman L.; Harridge, Stephen D. R.
2015-01-01
The repair and regeneration of skeletal muscle requires the action of satellite cells, which are the resident muscle stem cells. These can be isolated from human muscle biopsy samples using enzymatic digestion and their myogenic properties studied in culture. Quantitatively, the two main adherent cell types obtained from enzymatic digestion are: (i) the satellite cells (termed myogenic cells or muscle precursor cells), identified initially as CD56+ and later as CD56+/desmin+ cells and (ii) muscle-derived fibroblasts, identified as CD56– and TE-7+. Fibroblasts proliferate very efficiently in culture and in mixed cell populations these cells may overrun myogenic cells to dominate the culture. The isolation and purification of different cell types from human muscle is thus an important methodological consideration when trying to investigate the innate behavior of either cell type in culture. Here we describe a system of sorting based on the gentle enzymatic digestion of cells using collagenase and dispase followed by magnetic activated cell sorting (MACS) which gives both a high purity (>95% myogenic cells) and good yield (~2.8 x 106 ± 8.87 x 105 cells/g tissue after 7 days in vitro) for experiments in culture. This approach is based on incubating the mixed muscle-derived cell population with magnetic microbeads beads conjugated to an antibody against CD56 and then passing cells though a magnetic field. CD56+ cells bound to microbeads are retained by the field whereas CD56– cells pass unimpeded through the column. Cell suspensions from any stage of the sorting process can be plated and cultured. Following a given intervention, cell morphology, and the expression and localization of proteins including nuclear transcription factors can be quantified using immunofluorescent labeling with specific antibodies and an image processing and analysis package. PMID:25650991
Cytochrome components of nitrate- and sulfate-respiring Desulfovibrio desulfuricans ATCC 27774.
Liu, M C; Costa, C; Coutinho, I B; Moura, J J; Moura, I; Xavier, A V; LeGall, J
1988-01-01
Three multiheme c-type cytochromes--the tetraheme cytochrome c3 (molecular weight [MW] 13,500), a dodecaheme cytochrome c (MW 40,800), and a "split-Soret" cytochrome c (MW 51,540), which is a dimer with 2 hemes per subunit (MW 26,300)--were isolated from the soluble fraction of Desulfovibrio desulfuricans (ATCC 27774) grown under nitrate- or sulfate-respiring conditions. Two of them, the dodecaheme and the split-Soret cytochromes, showed no similarities to any of the c-type cytochromes isolated from other sulfate-reducing bacteria, while the tetraheme cytochrome c3 appeared to be analogous to the cytochrome c3 found in other sulfate-reducing bacteria. For all three multiheme c-type cytochromes isolated, the homologous proteins from nitrate- and sulfate-grown cells were indistinguishable in amino acid composition, physical properties, and spectroscopic characteristics. It therefore appears that the same c-type cytochrome components are present when D. desulfuricans ATCC 27774 cells are grown under either condition. This is in contrast to the considerable difference found in Pseudomonas perfectomarina (Liu et al., J. Bacteriol. 154:278-286, 1983), a marine denitrifier, when the cells are grown on nitrate or oxygen as the terminal electron acceptor. In addition, two spectroscopy methods capable of revealing minute structural variations in proteins provided identical information about the tetraheme cytochrome c3 from nitrate-grown and sulfate-grown cells. PMID:2848008
Yamazaki, Mami; Aizawa, Sayaka; Tanaka, Toru; Sakai, Takafumi; Sakata, Ichiro
2012-09-20
Ghrelin, isolated from the stomach as an endogenous ligand for the growth hormone secretagogue receptor (GHS-R), has potent growth hormone release ability in vivo and in vitro. Although GHS-R is abundantly expressed in the pituitary gland, there is no direct evidence of a relationship between hormone-producing cells and functional GHS-R in the pituitary gland. The aim of this study was to determine which anterior pituitary cells respond to ghrelin stimulation in male rats. We performed Fura-2 Ca(2+) imaging analysis using isolated pituitary cells, and performed immunocytochemistry to identify the type of pituitary hormone-producing cells. In Fura-2 Ca(2+) imaging analysis, ghrelin administration increased the intracellular Ca(2+) concentration in approximately 50% of total isolated anterior pituitary cells, and 20% of these cells strongly responded to ghrelin. Immunocytochemical analysis revealed that 82.9 ± 1.3% of cells that responded to ghrelin stimulation were GH-immunopositive. On the other hand, PRL-, LH-, and ACTH-immunopositive cells constituted 2.0 ± 0.3%, 12.6 ± 0.3%, and 2.5 ± 0.8% of ghrelin-responding pituitary cells, respectively. TSH-immunopositive cells did not respond to ghrelin treatment. These results suggest that ghrelin directly acts not only on somatotrophs, but also on mammotrophs, gonadotrophs, and corticotrophs in the rat pituitary gland. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Cytotoxic steroids from the leaves of Dysoxylum binectariferum.
Yan, Hui-Jiao; Wang, Jun-Song; Kong, Ling-Yi
2014-08-01
Four new cholestane-type (1-4) and two new ergostane-type (5, 6) steroids were isolated from the leaves of Dysoxylum binectariferum. Their structures were elucidated on the basis of spectroscopic analysis, including 1D and 2D NMR techniques. The absolute configurations were established by comparison with the literature and Mo2(OAc)4-induced electronic circular dichroism (ECD) data. All the isolates were evaluated for cytotoxicity against A549 (lung carcinoma), MCF-7 (breast adenocarcinoma), and HepG2 (hepatocellular carcinoma) human cancer cell lines. Three of the new cholestane-type steroids displayed potent antiproliferative effects on the tumor cells with IC50 values ranging from 1.5 to 9.6μM, whereas the two new ergostane-type (5, 6) steroids were deemed inactive. Copyright © 2014 Elsevier Inc. All rights reserved.
Antarctic isolation: immune and viral studies
NASA Technical Reports Server (NTRS)
Tingate, T. R.; Lugg, D. J.; Muller, H. K.; Stowe, R. P.; Pierson, D. L.
1997-01-01
Stressful environmental conditions are a major determinant of immune reactivity. This effect is pronounced in Australian National Antarctic Research Expedition populations exposed to prolonged periods of isolation in the Antarctic. Alterations of T cell function, including depression of cutaneous delayed-type hypersensitivity responses and a peak 48.9% reduction of T cell proliferation to the mitogen phytohaemagglutinin, were documented during a 9-month period of isolation. T cell dysfunction was mediated by changes within the peripheral blood mononuclear cell compartment, including a paradoxical atypical monocytosis associated with altered production of inflammatory cytokines. There was a striking reduction in the production by peripheral blood mononuclear cells of the predominant pro-inflammatory monokine TNF-alpha and changes were also detected in the production of IL-1, IL-2, IL-6, IL-1ra and IL-10. Prolonged Antarctic isolation is also associated with altered latent herpesvirus homeostasis, including increased herpesvirus shedding and expansion of the polyclonal latent Epstein-Barr virus-infected B cell population. These findings have important long-term health implications.
Plasma Cell Neoplasms (Including Multiple Myeloma)—Health Professional Version
There are several types of plasma cell neoplasms, including monoclonal gammopathy of undetermined significance (MGUS), isolated plasmacytoma of the bone, extramedullary plasmacytoma, and multiple myeloma. Find evidence-based information on plasma cell neoplasms treatment, research, and statistics.
Trkola, Alexandra; Matthews, Jamie; Gordon, Cynthia; Ketas, Tom; Moore, John P.
1999-01-01
We describe here a cell line-based assay for the evaluation of human immunodeficiency virus type 1 (HIV-1) neutralization. The assay is based on CEM.NKR cells, transfected to express the HIV-1 coreceptor CCR5 to supplement the endogenous expression of CD4 and the CXCR4 coreceptor. The resulting CEM.NKR-CCR5 cells efficiently replicate primary HIV-1 isolates of both R5 and X4 phenotypes. A comparison of the CEM.NKR-CCR5 cells with mitogen-activated peripheral blood mononuclear cells (PBMC) in neutralization assays with sera from HIV-1-infected individuals or specific anti-HIV-1 monoclonal antibodies shows that the sensitivity of HIV-1 neutralization is similar in the two cell types. The CEM.NKR-CCR5 cell assay, however, is more convenient to perform and eliminates the donor-to-donor variation in HIV-1 replication efficiency, which is one of the principal drawbacks of the PBMC-based neutralization assay. We suggest that this new assay is suitable for the general measurement of HIV-1 neutralization by antibodies. PMID:10516002
Technical note: Method for isolation of the bovine sweat gland and conditions for in vitro culture.
Hamzaoui, S; Burger, C A; Collier, J L; Collier, R J
2018-05-01
Apocrine sweat glands in bovine skin are involved in thermoregulation. Human, horse, and sheep sweat gland epithelial cells have been isolated and grown in vitro. The present study was conducted to identify a method to isolate bovine sweat glands and culture apocrine bovine sweat gland epithelial cells in vitro. Mechanical shearing, collagenase digestion, centrifugation, and neutral red staining were used to identify and isolate the apocrine glands from skin. Bovine sweat glands in situ and after isolation comprised 2 major cell types consisting of a single layer of cuboidal epithelial cells resting on a layer of myoepithelial cells. In situ, the glands were embedded in a collagen matrix primarily comprising fibroblasts, and some of these cells were also present in the isolated material. The isolated material was transferred to complete medium (keratinocyte serum-free medium, bovine pituitary extract, and human recombinant epidermal growth factor + 2.5% fetal bovine serum) in a T 25 flask (Falcon, Franklin Lakes, NJ) with media film and then incubated at 37°C for 24 h. After sweat glands adhered to the bottom of the flask, an additional 2 mL of complete medium was added and the medium was changed every 3 d. Isolated apocrine sweat glands and bovine sweat gland epithelial cells were immunostained for cytokeratin and fibroblast specific protein, indicating fibroblast-free cultures. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Liu, Jia; Huang, Xuan; Werner, Melanie; Broering, Ruth; Yang, Dongliang; Lu, Mengji
2017-01-01
Separation of pure cell populations from the liver is a prerequisite to study the role of hepatic parenchymal and non-parenchymal cells in liver physiology, pathophysiology, and immunology. Traditional methods for hepatic cell separation usually purify only single cell types from liver specimens. Here, we describe an efficient method that can simultaneously purify populations of hepatocytes (HCs), liver sinusoidal endothelial cells (LSECs), and Kupffer cells (KCs) from a single mouse liver specimen. A liberase-based perfusion technique in combination with a low-speed centrifugation and magnetic-activated cell sorting (MACS) led to the isolation and purification of HCs, KCs, and LSECs with high yields and purity.
Isolation and biological characterization of tendon-derived stem cells from fetal bovine.
Yang, Jinjuan; Zhao, Qianjun; Wang, Kunfu; Liu, Hao; Ma, Caiyun; Huang, Hongmei; Liu, Yingjie
2016-09-01
The lack of appropriate candidates of cell sources for cell transplantation has hampered efforts to develop therapies for tendon injuries, such as tendon rupture, tendonitis, and tendinopathy. Tendon-derived stem cells (TDSCs) are a type of stem cells which may be used in the treatment of tendon injuries. In this study, TDSCs were isolated from 5-mo-old Luxi Yellow fetal bovine and cultured in vitro and further analyzed for their biological characteristics using immunofluorescence and reverse transcription-polymerase chain reaction (RT-PCR) assays. It was found that primary TDSCs could be expanded for 42 passages in vitro maintaining proliferation. The expressions of stem cell marker nucleostemin and tenocyte-related markers, such as collagen I, collagen II, collagen III, and tenascin-C, were observed on different passage cells by immunofluorescence. The results from RT-PCR show that TDSCs were positive for collagen type I, CD44, tenascin-C, and collagen type III but negative for collagen type II. Meanwhile, TDSC passage 4 was successfully induced to differentiate into osteoblasts, adipocytes, and chondrocytes. Our results indicate that the fetal bovine TDSCs not only had strong self-renewal capacity but also possess the potential for multi-lineage differentiation. This study provides theoretical basis and experimental foundation for potential therapeutic application of the fetal bovine TDSCs in the treatment of tendon injuries.
Characterization and Separation of Cancer Cells with a Wicking Fiber Device.
Tabbaa, Suzanne M; Sharp, Julia L; Burg, Karen J L
2017-12-01
Current cancer diagnostic methods lack the ability to quickly, simply, efficiently, and inexpensively screen cancer cells from a mixed population of cancer and normal cells. Methods based on biomarkers are unreliable due to complexity of cancer cells, plasticity of markers, and lack of common tumorigenic markers. Diagnostics are time intensive, require multiple tests, and provide limited information. In this study, we developed a novel wicking fiber device that separates cancer and normal cell types. To the best of our knowledge, no previous work has used vertical wicking of cells through fibers to identify and isolate cancer cells. The device separated mouse mammary tumor cells from a cellular mixture containing normal mouse mammary cells. Further investigation showed the device separated and isolated human cancer cells from a heterogeneous mixture of normal and cancerous human cells. We report a simple, inexpensive, and rapid technique that has potential to identify and isolate cancer cells from large volumes of liquid samples that can be translated to on-site clinic diagnosis.
Stachelscheid, Harald; Urbaniak, Thomas; Ring, Alexander; Spengler, Berlind; Gerlach, Jörg C; Zeilinger, Katrin
2009-07-01
Recent evidence suggests that progenitor cells in adult tissues and embryonic stem cells share a high resistance to hypoxia and ischemic stress. To study the ischemic resistance of adult liver progenitors, we characterized remaining viable cells in human liver tissue after cold ischemic treatment for 24-168 h, applied to the tissue before cell isolation. In vitro cultures of isolated cells showed a rapid decline of the number of different cell types with increasing ischemia length. After all ischemic periods, liver progenitor-like cells could be observed. The comparably small cells exhibited a low cytoplasm-to-nucleus ratio, formed densely packed colonies, and showed a hepatobiliary marker profile. The cells expressed epithelial cell adhesion molecule, epithelial-specific (CK8/18) and biliary-specific (CK7/19) cytokeratins, albumin, alpha-1-antitrypsin, cytochrome-P450 enzymes, as well as weak levels of hepatocyte nuclear factor-4 and gamma-glutamyl transferase, but not alpha-fetoprotein or Thy-1. In vitro survival and expansion was facilitated by coculture with mouse embryonic fibroblasts. Hepatic progenitor-like cells exhibit a high resistance to ischemic stress and can be isolated from human liver tissue after up to 7 days of ischemia. Ischemic liver tissue from various sources, thought to be unsuitable for cell isolation, may be considered as a prospective source of hepatic progenitor cells.
Differentiation of human umbilical cord mesenchymal stem cells into dermal fibroblasts in vitro
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yanfu; Chai, Jiake, E-mail: cjk304@126.com; Sun, Tianjun
2011-10-07
Highlights: {yields} Mesenchymal stem cells (MSCs) are potential seed cells for tissue-engineered skin. {yields} Tissue-derived umbilical cord MSCs (UCMSCs) can readily be isolated in vitro. {yields} We induce UCMSCs to differentiate into dermal fibroblasts via conditioned medium. {yields} Collagen type I and collagen type III mRNA level was higher in differentiated cells. {yields} UCMSCs-derived fibroblast-like cells strongly express fibroblast-specific protein. -- Abstract: Tissue-derived umbilical cord mesenchymal stem cells (UCMSCs) can be readily obtained, avoid ethical or moral constraints, and show excellent pluripotency and proliferation potential. UCMSCs are considered to be a promising source of stem cells in regenerative medicine. Inmore » this study, we collected newborn umbilical cord tissue under sterile conditions and isolated UCMSCs through a tissue attachment method. UCMSC cell surface markers were examined using flow cytometry. On the third passage, UCMSCs were induced to differentiate into dermal fibroblasts in conditioned induction media. The induction results were detected using immunofluorescence with a fibroblast-specific monoclonal antibody and real time PCR for type I and type III collagen. UCMSCs exhibited a fibroblast-like morphology and reached 90% confluency 14 to 18 days after primary culture. Cultured UCMSCs showed strong positive staining for CD73, CD29, CD44, CD105, and HLA-I, but not CD34, CD45, CD31, or HLA-DR. After differentiation, immunostaining for collagen type I, type III, fibroblast-specific protein, vimentin, and desmin were all strongly positive in induced cells, and staining was weak or negative in non-induced cells; total transcript production of collagen type I and collagen type III mRNA was higher in induced cells than in non-induced cells. These results demonstrate that UCMSCs can be induced to differentiate into fibroblasts with conditioned induction media and, in turn, could be used as seed cells for tissue-engineered dermis.« less
A novel method for isolation of epithelial cells from ovine esophagus for tissue engineering.
Macheiner, Tanja; Kuess, Anna; Dye, Julian; Saxena, Amulya K
2014-01-01
The yield of a critical number of basal epithelial cells with high mitotic rates from native tissue is a challenge in the field of tissue engineering. There are many protocols that use enzymatic methods for isolation of epithelial cells with unsatisfactory results for tissue engineering. This study aimed to develop a protocol for isolating a sufficient number of epithelial cells with a high Proliferating Index from ovine esophagus for tissue engineering applications. Esophageal mucosa was pretreated with dispase-collagenase solution and plated on collagen-coated culture dishes. Distinction of the various types of epithelial cells and developmental stages was done with specific primary antibodies to Cytokeratins and to Proliferating Cell Nuclear Antigen (PCNA). Up to approximately 8100 epithelial cells/mm2 of mucosa tissue were found after one week of migration. Cytokeratin 14 (CK 14) was positive identified in cells even after 83 days. At the same time the Proliferating Index was 71%. Our protocol for isolation of basal epithelial cells was successful to yield sufficient numbers of cells predominantly with proliferative character and without noteworthy negative enzymatic affection. The results at this study offer the possibility of generation critical cell numbers for tissue engineering applications.
Investigating the effect of cell substrate on cancer cell stiffness by optical tweezers.
Yousafzai, Muhammad Sulaiman; Coceano, Giovanna; Bonin, Serena; Niemela, Joseph; Scoles, Giacinto; Cojoc, Dan
2017-07-26
The mechanical properties of cells are influenced by their microenvironment. Here we report cell stiffness alteration by changing the cell substrate stiffness for isolated cells and cells in contact with other cells. Polydimethylsiloxane (PDMS) is used to prepare soft substrates with three different stiffness values (173, 88 and 17kPa respectively). Breast cancer cells lines, namely HBL-100, MCF-7 and MDA-MB-231 with different level of aggressiveness are cultured on these substrates and their local elasticity is investigated by vertical indentation of the cell membrane. Our preliminary results show an unforeseen behavior of the MDA-MB-231 cells. When cultured on glass substrate as isolated cells, they are less stiff than the other two types of cells, in agreement with the general statement that more aggressive and metastatic cells are softer. However, when connected to other cells the stiffness of MDA-MB-231 cells becomes similar to the other two cell lines. Moreover, the stiffness of MDA-MB-231 cells cultured on soft PDMS substrates is significantly higher than the stiffness of the other cell types, demonstrating thus the strong influence of the environmental conditions on the mechanical properties of the cells. Copyright © 2017. Published by Elsevier Ltd.
Medina-Rodríguez, Eva María; Arenzana, Francisco Javier; Bribián, Ana; de Castro, Fernando
2013-01-01
During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS) and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair. PMID:24303061
Medina-Rodríguez, Eva María; Arenzana, Francisco Javier; Bribián, Ana; de Castro, Fernando
2013-01-01
During development, oligodendrocytes are generated from oligodendrocyte precursor cells (OPCs), a cell type that is a significant proportion of the total cells (3-8%) in the adult central nervous system (CNS) of both rodents and humans. Adult OPCs are responsible for the spontaneous remyelination that occurs in demyelinating diseases like Multiple Sclerosis (MS) and they constitute an interesting source of cells for regenerative therapy in such conditions. However, there is little data regarding the neurobiology of adult OPCs isolated from mice since an efficient method to isolate them has yet to be established. We have designed a protocol to obtain viable adult OPCs from the cerebral cortex of different mouse strains and we have compared its efficiency with other well-known methods. In addition, we show that this protocol is also useful to isolate functional OPCs from human brain biopsies. Using this method we can isolate primary cortical OPCs in sufficient quantities so as to be able to study their survival, maturation and function, and to facilitate an evaluation of their utility in myelin repair.
Efficient adhesion-based plasma membrane isolation for cell surface N-glycan analysis.
Mun, Ji-Young; Lee, Kyung Jin; Seo, Hoon; Sung, Min-Sun; Cho, Yee Sook; Lee, Seung-Goo; Kwon, Ohsuk; Oh, Doo-Byoung
2013-08-06
Glycans, which decorate cell surfaces, play crucial roles in various physiological events involving cell surface recognition. Despite the importance of surface glycans, most analyses have been performed using total cells or whole membranes rather than plasma membranes due to difficulties related to isolation. In the present study, we employed an adhesion-based method for plasma membrane isolation to analyze N-glycans on cell surfaces. Cells were attached to polylysine-coated glass plates and then ruptured by hypotonic pressure. After washing to remove intracellular organelles, only a plasma membrane fraction remained attached to the plates, as confirmed by fluorescence imaging using organelle-specific probes. The plate was directly treated with trypsin to digest and detach the glycoproteins from the plasma membrane. From the resulting glycopeptides, N-glycans were released and analyzed using MALDI-TOF mass spectrometry and HPLC. When N-glycan profiles obtained by this method were compared to those by other methods, the amount of high-mannose type glycans mainly contaminated from the endoplasmic reticulum was dramatically reduced, which enabled the efficient detection of complex type glycans present on the cell surface. Moreover, this method was successfully used to analyze the increase of high-mannose glycans on the surface as induced by a mannosidase inhibitor treatment.
Li, Jihong; Sayeed, Sameera; Robertson, Susan; Chen, Jianming; McClane, Bruce A
2011-12-01
Clostridium perfringens type B or D isolates, which cause enterotoxemias or enteritis in livestock, produce epsilon toxin (ETX). ETX is exceptionally potent, earning it a listing as a CDC class B select toxin. Most C. perfringens strains also express up to three different sialidases, although the possible contributions of those enzymes to type B or D pathogenesis remain unclear. Type D isolate CN3718 was found to carry two genes (nanI and nanJ) encoding secreted sialidases and one gene (nanH) encoding a cytoplasmic sialidase. Construction in CN3718 of single nanI, nanJ and nanH null mutants, as well as a nanI/nanJ double null mutant and a triple sialidase null mutant, identified NanI as the major secreted sialidase of this strain. Pretreating MDCK cells with NanI sialidase, or with culture supernatants of BMC206 (an isogenic CN3718 etx null mutant that still produces sialidases) enhanced the subsequent binding and cytotoxic effects of purified ETX. Complementation of BMC207 (an etx/nanH/nanI/nanJ null mutant) showed this effect is mainly attributable to NanI production. Contact between BMC206 and certain mammalian cells (e.g., enterocyte-like Caco-2 cells) resulted in more rapid sialidase production and this effect involved increased transcription of BMC206 nanI gene. BMC206 was shown to adhere to some (e.g. Caco-2 cells), but not all mammalian cells, and this effect was dependent upon sialidase, particularly NanI, expression. Finally, the sialidase activity of NanI (but not NanJ or NanH) could be enhanced by trypsin. Collectively these in vitro findings suggest that, during type D disease originating in the intestines, trypsin may activate NanI, which (in turn) could contribute to intestinal colonization by C. perfringens type D isolates and also increase ETX action.
Borges, Andrew Rosa; Wieczorek, Lindsay; Johnson, Benitra; Benesi, Alan J.; Brown, Bruce K.; Kensinger, Richard D.; Krebs, Fred C.; Wigdahl, Brian; Blumenthal, Robert; Puri, Anu; McCutchan, Francine E.; Birx, Deborah L.; Polonis, Victoria R.; Schengrund, Cara-Lynne
2010-01-01
Specific glycosphingolipids (GSL), found on the surface of target immune cells, are recognized as alternate cell surface receptors by the human immunodeficiency virus type 1 (HIV-1) external envelope glycoprotein. In this study, the globotriose and 3’-sialyllactose carbohydrate head groups found on two GSL were covalently attached to a dendrimer core to produce two types of unique multivalent carbohydrates (MVC). These MVC inhibited HIV-1 infection of T cell lines and primary peripheral blood mononuclear cells (PBMC) by T cell line-adapted viruses or primary isolates, with IC50s ranging from 0.1 – 7.4 µg/ml. Inhibition of Env-mediated membrane fusion by MVC was also observed using a dye-transfer assay. These carbohydrate compounds warrant further investigation as a potential new class of HIV-1 entry inhibitors. The data presented also shed light on the role of carbohydrate moieties in HIV-1 virus-host cell interactions. PMID:20880566
Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque.
Goh, Share-Yuan; Khan, Saad Ahmed; Tee, Kok Keng; Abu Kasim, Noor Hayaty; Yin, Wai-Fong; Chan, Kok-Gan
2016-02-10
Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium.
Quorum sensing activity of Citrobacter amalonaticus L8A, a bacterium isolated from dental plaque
Goh, Share-Yuan; Khan, Saad Ahmed; Tee, Kok Keng; Abu Kasim, Noor Hayaty; Yin, Wai-Fong; Chan, Kok-Gan
2016-01-01
Cell-cell communication is also known as quorum sensing (QS) that happens in the bacterial cells with the aim to regulate their genes expression in response to increased cell density. In this study, a bacterium (L8A) isolated from dental plaque biofilm was identified as Citrobacter amalonaticus by matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry (MS). Its N-acylhomoserine-lactone (AHL) production was screened by using two types of AHL biosensors namely Chromobacterium violaceum CV026 and Escherichia coli [pSB401]. Citrobacter amalonaticus strain L8A was identified and confirmed producing numerous types of AHL namely N-butyryl-L-homoserine lactone (C4-HSL), N-hexanoyl-L-homoserine lactone (C6-HSL), N-octanoyl-L-homoserine lactone (C8-HSL) and N-hexadecanoyl-L-homoserine lactone (C16-HSL). We performed the whole genome sequence analysis of this oral isolate where its genome sequence reveals the presence of QS signal synthase gene and our work will pave the ways to study the function of the related QS genes in this bacterium. PMID:26860259
DOE Office of Scientific and Technical Information (OSTI.GOV)
Young, D.M.; Ogden, K.L.; Unkefer, P.J.
1997-03-05
The biotransformation of hexahydro-1,3,5-trinitro-1,3,5 triazine (RDX) has been observed in liquid culture by a consortium of bacteria found in horse manure. Five types of bacteria were found to predominate in the consortium and were isolated. The most effective of these isolates at transforming RDX was Serratia marcescens. The biotransformation of RDX by all of these bacteria was found to occur only in the anoxic stationary phase. The process of bacterial growth and RDX biotransformation was quantified for the purpose of developing a predictive type model. Cell growth was assumed to follow Monod kinetics. All of the aerobic and anoxid growthmore » parameters were determined: {mu}{sub max}, K{sub s}, and Y{sub x/s}. RDX was found to competitively inhibit cell growth in both atmospheres. Degradation of RDX by Serratia marcescens was found to proceed through the stepwise reduction of the three nitro groups to nitroso groups. Each of these reductions was found to be first order in both component and cell concentrations. The degradation rate constant for the first step in this reduction process by the consortium was 0.022 L/g cells {center_dot} h compared to 0.033 L/g cells {center_dot} h for the most efficient isolate.« less
Catanuto, Paola; Espinosa-Heidmann, Diego; Pereira-Simon, Simone; Sanchez, Patricia; Salas, Pedro; Hernandez, Eleut; Cousins, Scott W.; Elliot, Sharon J.
2009-01-01
Development of immortalized mouse retinal pigmented epithelial cell (RPE) lines that retain many of their in vivo phenotypic characteristics, would aid in studies of ocular diseases including age related macular degeneration (AMD). RPE cells were isolated from 16 month old (estrogen receptor knockout) ERKOα and ERKOβ mice and their C57Bl/6 wild type littermates. RPE65 and cellular retinaldehyde binding protein (CRALBP) expression, in vivo markers of RPE cells, were detected by real-time RT-PCR and western analysis. We confirmed the presence of epithelial cell markers, ZO1, cytokeratin 8 and 18 by immunofluorescence staining. In addition, we confirmed the distribution of actin filaments and the expression of ezrin. To develop cell lines, RPE cells were isolated, propagated and immortalized using human papilloma virus (HPV) 16 (E6/E7). RPE-specific markers and morphology were assessed before and after immortalization. In wildtype littermate controls, there was no evidence of any alterations in the parameters that we examined including MMP-2, TIMP-2, collagen type IV, and estrogen receptor (ER) α and ERβ protein expression and ER copy number ratio. Therefore, immortalized mouse RPE cell lines that retain their in vivo phenotype can be isolated from either pharmacologically or genetically manipulated mice, and may be used to study RPE cell biology. PMID:19013153
Macias, Maria I; Grande, Jesús; Moreno, Ana; Domínguez, Irene; Bornstein, Rafael; Flores, Ana I
2010-11-01
The objective of the study was to isolate and characterize a population of mesenchymal stem cells (MSCs) from human term placental membranes. We isolated an adherent cell population from extraembryonic membranes. Morphology, phenotype, growth characteristics, karyotype, and immunological and differentiation properties were analyzed. The isolated placental MSCs were from maternal origin and named as decidua-derived mesenchymal stem cells (DMSCs). DMSCs differentiated into derivatives of all germ layers. It is the first report about placental MSC differentiation into alveolar type II cells. Clonally expanded DMSCs differentiated into all embryonic layers, including pulmonary cells. DMSCs showed higher life span than placental cells from fetal origin and proliferated without genomic instability. The data suggest that DMSCs are true multipotent MSCs, distinguishing them from other placental MSCs. DMSCs could be safely used in the mother as a potential source of MSCs for pelvic floor dysfunctions and immunological diseases. Additionally, frozen DMSCs can be stored for both autologous and allogeneic tissue regeneration. Copyright © 2010 Mosby, Inc. All rights reserved.
Saykally, Victoria R; Rast, Luke I; Sasaki, Jeff; Jung, Seung-Yong; Bolovan-Fritts, Cynthia; Weinberger, Leor S
2017-11-05
Human cytomegalovirus (HCMV) infection is a major cause of morbidity and mortality in transplant patients and a leading cause of congenital birth defects (Saint Louis, 2016). Vaccination and therapeutic studies often require scalable cell culture production of wild type virus, represented by clinical isolates. Obtaining sufficient stocks of wild-type clinical HCMV is often labor intensive and inefficient due to low yield and genetic loss, presenting a barrier to studies of clinical isolates. Here we report a bioreactor method based on continuous infection, where retinal pigment epithelial (ARPE-19) cells adhered to microcarrier beads are infected in a bioreactor and used to produce high-titers of clinical isolate HCMV that maintain genetic integrity of key viral tropism factors and the viral genome. In this bioreactor, an end-stage infection can be maintained by regular addition of uninfected ARPE-19 cells, providing convenient preparation of 10 7 -10 8 pfu/ml of concentrated TB40/E IE2-EYFP stocks without daily cell passaging or trypsinization. Overall, this represents a 100-fold increase in gain of virus production of 100-times compared to conventional static-culture plates, while requiring 90% less handling time. Moreover, this continuous infection environment has the potential to monitor infection dynamics with applications for real-time tracking of viral evolution.
Razin, Shmuel; Hasin, Miriam; Ne'eman, Zvi; Rottem, Shlomo
1973-01-01
Thin sections of Spiroplasma citri, a mycoplasma-like organism isolated from citrus infected with “Stubborn” disease, showed the organisms to be limited by a single trilaminar plasma membrane. An additional outer layer could, however, be frequently seen in freeze-etched preparations of unwashed cells. The organisms were found to be extremely sensitive to lysis by osmotic shock. The cell membrane of S. citri isolated in this way resembled that of mycoplasmas in ultrastructure and gross chemical composition. The isolated membranes showed the characteristic trilaminar shape in section and the typical particle-studded fracture faces in freeze-etched preparations. Protein and lipid formed over 80% of the total dry weight of the membrane, which had a density of ~1.180 g/cm3. Cholesterol constituted over 20% of the total membrane lipid. Phosphatidyl-glycerol, synthesized by the organisms, was the major phospholipid. Significant amounts of hexosamine (15 to 35 μg/mg of membrane protein) could be found in the membrane preparations. Our results support the thesis that S. citri does not possess a cell wall, either of the gram-positive or the gram-negative type, though it may be coated by some other type of an envelope or by a slime layer, at least temporarily. Images PMID:4127633
Mosiej, Ewa; Krysztopa-Grzybowska, Katarzyna; Polak, Maciej; Prygiel, Marta; Lutyńska, Anna
2017-06-01
Despite the long history of pertussis vaccination and high vaccination coverage in Poland and many other developed countries, pertussis incidence rates have increased substantially, making whooping cough one of the most prevalent vaccine-preventable diseases. Among the factors potentially involved in pertussis resurgence, the adaptation of the Bordetella pertussis population to country-specific vaccine-induced immunity through selection of non-vaccine-type strains still needs detailed studies. Multi-locus variable-number tandem repeat analysis (MLVA), also linked to MLST and PFGE profiling, was applied to trace the genetic changes in the B. pertussis population circulating in Poland in the period 1959-2013 versus country-specific vaccine strains. Generally, among 174 B. pertussis isolates, 31 MLVA types were detected, of which 11 were not described previously. The predominant MLVA types of recent isolates in Poland were different from those of the typical isolates circulating in other European countries. The MT27 type, currently predominant in Europe, was rarely seen and detected in only five isolates among all studied. The features of the vaccine strains used for production of the pertussis component of a national whole-cell diphtheria-tetanus-pertussis (DTP) vaccine, as studied by MLVA and MLST tools, were found to not match those observed in the currently circulating B. pertussis isolates in Poland. Differences traced by MLVA in relation to the MLST and PFGE profiling confirmed that the B. pertussis strain types currently observed elsewhere in Europe, even if appearing in Poland, were not able to successfully disseminate within a human population in Poland that has been vaccinated with a whole-cell pertussis vaccine not used in other countries.
Karimzadeh, Alborz; Scarfone, Vanessa M.; Varady, Erika; Chao, Connie; Grathwohl, Karin; Fathman, John W.; Fruman, David A.; Serwold, Thomas
2018-01-01
Abstract Hematopoietic stem cells (HSCs) are the self‐renewing multipotent progenitors to all blood cell types. Identification and isolation of HSCs for study has depended on the expression of combinations of surface markers on HSCs that reliably distinguish them from other cell types. However, the increasing number of markers required to isolate HSCs has made it tedious, expensive, and difficult for newcomers, suggesting the need for a simpler panel of HSC markers. We previously showed that phenotypic HSCs could be separated based on expression of CD11a and that only the CD11a negative fraction contained true HSCs. Here, we show that CD11a and another HSC marker, endothelial protein C receptor (EPCR), can be used to effectively identify and purify HSCs. We introduce a new two‐color HSC sorting method that can highly enrich for HSCs with efficiencies comparable to the gold standard combination of CD150 and CD48. Our results demonstrate that adding CD11a and EPCR to the HSC biologist's toolkit improves the purity of and simplifies isolation of HSCs. stem cells translational medicine 2018;7:468–476 PMID:29543389
Haslan, Ezgi; Kimiran-Erdem, Ayten
2013-09-01
In this study, 99 Gram-negative rod bacteria were isolated from cooling tower water, and biofilm samples were examined for cell-to-cell signaling systems, N-acyl homoserine lactone (AHL) signal molecule types, and biofilm formation capacity. Four of 39 (10 %) strains isolated from water samples and 14 of 60 (23 %) strains isolated from biofilm samples were found to be producing a variety of AHL signal molecules. It was determined that the AHL signal molecule production ability and the biofilm formation capacity of sessile bacteria is higher than planktonic bacteria, and there was a statistically significant difference between the AHL signal molecule production of these two groups (p < 0.05). In addition, it was found that bacteria belonging to the same species isolated from cooling tower water and biofilm samples produced different types of AHL signal molecules and that there were different types of AHL signal molecules in an AHL extract of bacteria. In the present study, it was observed that different isolates of the same strains did not produce the same AHLs or did not produce AHL molecules, and bacteria known as AHL producers did not produce AHL. These findings suggest that detection of signal molecules in bacteria isolated from cooling towers may contribute to prevention of biofilm formation, elimination of communication among bacteria in water systems, and blockage of quorum-sensing controlled virulence of these bacteria.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bragg, S.L.
1988-01-01
Two populations of fimbriae, which differ both in antigenicity and biological activity, have been identified on Actinomyces viscosus T14V cells. Although A. naeslundii serotype 1 isolates possess only one of these fimbrial populations (type 2 fimbriae), there was functional evidence to suggest that A. naeslundii serotype 3 strain N16 had both types of fimbriae. The purpose of this study was to characterize the fimbriae of A. naeslundii N16 immunologically by using both monoclonal and polyclonal antibodies. Three monoclonal antibodies (MAbs) to N16 were produced; all three bound to N16 fimbriae as determined by immunoelectron microscopy. In a solid-phase radioimmunoassay MAbmore » 3B5.A1 reacted with 100% of the A. naeslundii serotype 3 isolates tested, but it did not react with any heterologous isolates. Type 1 and type 2 fimbriae were detected in Lancefield extracts of N16 cells by crossed immunoelectrophoresis (XIEP) using rabbit antiserum against N16 whole cells. When {sup 125}I-MAb 3B5.A1 was also incorporated into the gel, autoradiography indicated that MAb 3B5.A1 was specific for type 2 fimbriae. The N16 type 2 fimbriae were purified by gel filtration and immunoaffinity chromatography on a MAb 3B5.A1 column. Fimbriae-specific polyclonal and monoclonal antibodies were used in various immunological assays to determine that (a) N16 type 1 fimbriae are not related antigenically to type 2 fimbriae, (b) each type of fimbriae has epitopes that are present on the corresponding fimbriae of certain heterologous strains, and (c) MAb 3B5.A1 recognizes a serotype-specific epitope residing on the type 2 fimbriae of A. naeslundii serotype 3 strains.« less
Liljeqvist, Jan-Åke; Svennerholm, Bo; Bergström, Tomas
1999-01-01
Herpes simplex virus (HSV) codes for several envelope glycoproteins, including glycoprotein G-2 (gG-2) of HSV type 2 (HSV-2), which are dispensable for replication in cell culture. However, clinical isolates which are deficient in such proteins occur rarely. We describe here five clinical HSV-2 isolates which were found to be unreactive to a panel of anti-gG-2 monoclonal antibodies and therefore considered phenotypically gG-2 negative. These isolates were further examined for expression of the secreted amino-terminal and cell-associated carboxy-terminal portions of gG-2 by immunoblotting and radioimmunoprecipitation. The gG-2 gene was completely inactivated in four isolates, with no expression of the two protein products. For one isolate a normally produced secreted portion and a truncated carboxy-terminal portion of gG-2 were detected in virus-infected cell medium. Sequencing of the complete gG-2 gene identified a single insertion or deletion of guanine or cytosine nucleotides in all five strains, resulting in a premature termination codon. The frameshift mutations were localized within runs of five or more guanine or cytosine nucleotides and were dispersed throughout the gene. For the isolate for which a partially inactivated gG-2 gene was detected, the frameshift mutation was localized upstream of but adjacent to the nucleotides coding for the transmembranous region. Thus, this study demonstrates the existence of clinical HSV-2 isolates which do not express an envelope glycoprotein and identifies the underlying molecular mechanism to be a single frameshift mutation. PMID:10559290
Przekora, Agata; Zarnowski, Tomasz; Ginalska, Grazyna
2017-01-01
Human Tenon's fibroblasts (HTFs) play a crucial role in wound healing. They cause postoperative scarring of the filtering bleb and are thus responsible for trabeculectomy failure. This study aimed to find an effective and fast protocol for HTF isolation from trabeculectomy biopsies. The protocol was compared with the commonly recommended HTF isolation procedure, which uses Dulbecco's modified Eagle's medium (DMEM). We used Eagle's minimum essential medium (EMEM) enriched with fibroblast growth factor (FGF), which selectively promoted the proliferation of HTF cells. A secondary goal was to compare HTF morphology, metabolism and growth during parallel cultivation of the isolated cells in FGF-enriched EMEM and DMEM. Standard procedures for HTF isolation from tissue biopsies require a 20- to 30-day culture of the explants to obtain the first monolayer. Our protocol yielded the first monolayer after approx. 15 days. More importantly, the majority of the cells were fibroblasts with only individual epithelium-derived cells present. Using FGF-enriched EMEM allowed 1.3 × 10 6 vimentin-positive fibroblasts to be obtained from a single biopsy within approx. 25 days. Using DMEM resulted in isolation failure and required exchange to FGF-enriched medium to recover the fibroblast culture. HTFs maintained in FGF-enriched EMEM also showed faster proliferation and a different type I collagen production ability compared to HTFs cultured in DMEM. Thus, FGF-enriched EMEM is recommended for fast propagation of HTFs unless the aim of the study is to assess the effect of a tested agent on proliferation ability or type I collagen production. Our fast protocol for HTF isolation allows easy setup of cell banks by researchers under laboratory conditions and could be very useful during testing of novel ophthalmologic anti-fibrotic agents in vitro. Molecular analysis of HTFs isolated from patients with known treatment histories may provide valuable information on the effects of some medications taken before glaucoma surgery on the subsequent wound-healing process and potential for trabeculectomy failure.
Tokuyama, Yuka; Furusawa, Yoshiya; Ide, Hiroshi; Yasui, Akira; Terato, Hiroaki
2015-05-01
Clustered DNA damage is a specific type of DNA damage induced by ionizing radiation. Any type of ionizing radiation traverses the target DNA molecule as a beam, inducing damage along its track. Our previous study showed that clustered DNA damage yields decreased with increased linear energy transfer (LET), leading us to investigate the importance of clustered DNA damage in the biological effects of heavy ion beam radiation. In this study, we analyzed the yield of clustered base damage (comprising multiple base lesions) in cultured cells irradiated with various heavy ion beams, and investigated isolated base damage and the repair process in post-irradiation cultured cells. Chinese hamster ovary (CHO) cells were irradiated by carbon, silicon, argon and iron ion beams with LETs of 13, 55, 90 and 200 keV µm(-1), respectively. Agarose gel electrophoresis of the cells with enzymatic treatments indicated that clustered base damage yields decreased as the LET increased. The aldehyde reactive probe procedure showed that isolated base damage yields in the irradiated cells followed the same pattern. To analyze the cellular base damage process, clustered DNA damage repair was investigated using DNA repair mutant cells. DNA double-strand breaks accumulated in CHO mutant cells lacking Xrcc1 after irradiation, and the cell viability decreased. On the other hand, mouse embryonic fibroblast (Mef) cells lacking both Nth1 and Ogg1 became more resistant than the wild type Mef. Thus, clustered base damage seems to be involved in the expression of heavy ion beam biological effects via the repair process. © The Author 2015. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.
Traditional and Modern Cell Culture in Virus Diagnosis.
Hematian, Ali; Sadeghifard, Nourkhoda; Mohebi, Reza; Taherikalani, Morovat; Nasrolahi, Abbas; Amraei, Mansour; Ghafourian, Sobhan
2016-04-01
Cell cultures are developed from tissue samples and then disaggregated by mechanical, chemical, and enzymatic methods to extract cells suitable for isolation of viruses. With the recent advances in technology, cell culture is considered a gold standard for virus isolation. This paper reviews the evolution of cell culture methods and demonstrates why cell culture is a preferred method for identification of viruses. In addition, the advantages and disadvantages of both traditional and modern cell culture methods for diagnosis of each type of virus are discussed. Detection of viruses by the novel cell culture methods is considered more accurate and sensitive. However, there is a need to include some more accurate methods such as molecular methods in cell culture for precise identification of viruses.
Somatic Cells Become Cancer’s “Starter Dough” | Center for Cancer Research
Cancer stem cells (CSCs) is a term that sparks animated differences of opinions among researchers in the oncology community. Much of the disagreement comes from the difficulty involved in isolating these cells and manipulating them ex vivo. When putative CSCs are isolated from clinical samples, researchers are unable to retrospectively identify the cell type that suffered the first oncogenic hit that led to tumorigenesis. Without this ability to make a clear pre- and post-cancer comparison, researchers are unable to characterize with confidence the origin and cellular properties of human CSCs.
Slavicek, J M; Mercer, M J; Pohlman, D; Kelly, M E; Bischoff, D S
1998-07-01
In previous studies on the formation of Lymantria dispar nuclear polyhedrosis virus (LdMNPV) few polyhedra (FP) mutants, several polyhedron formation mutants (PFM) were identified that appeared to be unique. These viral mutants are being characterized to investigate the processes of polyhedron formation and virion occlusion. LdMNPV isolate PFM-1 is one of these mutants, and is described in this report. Genetic techniques were used to determine if isolate PFM-1 contained a mutation in the polyhedrin or 25K FP gene. Wild-type viruses were recovered after coinfection of Ld652Y cells with isolate PFM-1 and a FP mutant, and with isolates PFM-1 and PFM-C (isolate PFM-C contains a mutation in the polyhedrin gene). These viruses were analyzed by genomic restriction endonuclease digestion and found to be chimeras of the original PFMs used in the coinfections. Marker rescue studies mapped the mutation in isolate PFM-1 to a genomic region that does not include the polyhedrin or 25K FP genes. Isolate PFM-1 produced approximately 14-fold fewer polyhedra than LdMNPV isolate A21-MPV, an isolate that produces wild-type levels of polyhedra, and approximately 2-fold more polyhedra compared to the FP isolate 122-2. Polyhedra generated by isolate PFM-1 were normal in size and shape but contained very few viral nucleocapsids. The same amount of budded virus (BV) was released from cells infected with isolates PFM-1 and A21-MPV. In contrast, isolate 122-2 yielded significantly more BV than isolates PFM-1 and A21-MPV.
Yamada, Mitsuhiro; Kubo, Hiroshi; Ota, Chiharu; Takahashi, Toru; Tando, Yukiko; Suzuki, Takaya; Fujino, Naoya; Makiguchi, Tomonori; Takagi, Kiyoshi; Suzuki, Takashi; Ichinose, Masakazu
2013-09-24
The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined. Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR. The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial cells during bleomycin-induced lung fibrosis and human idiopathic pulmonary fibrosis. MicroRNA-21 was also upregulated in the cultured alveolar epithelial cells under the conditions that enhance epithelial-mesenchymal transition. Exogenous administration of a microRNA-21 inhibitor prevented the increased expression of vimentin and alpha-smooth muscle actin in cultured primary mouse alveolar type II cells under culture conditions that induce epithelial-mesenchymal transition. Our experiments demonstrate that microRNA-21 is increased in lung epithelial cells during lung fibrosis and that it promotes epithelial-mesenchymal transition.
Isolation and culture of neural crest cells from embryonic murine neural tube.
Pfaltzgraff, Elise R; Mundell, Nathan A; Labosky, Patricia A
2012-06-02
The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types. NC also has the unique ability to influence the differentiation and maturation of target organs. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter. The method presented here is adapted from protocols optimized for the culture of rat NC. The advantages of this protocol compared to previous methods are that 1) the cells are not grown on a feeder layer, 2) FACS is not required to obtain a relatively pure NC population, 3) premigratory NC cells are isolated and 4) results are easily quantified. Furthermore, this protocol can be used for isolation of NC from any mutant mouse model, facilitating the study of NC characteristics with different genetic manipulations. The limitation of this approach is that the NC is removed from the context of the embryo, which is known to influence the survival, migration and differentiation of the NC.
Isolation and RFLP genotyping of Toxoplasma gondii from the gray wolf (Canis lupus).
Dubey, J P; Choudhary, S; Ferreira, L R; Kwok, O C H; Butler, E; Carstensen, M; Yu, L; Su, C
2013-11-08
Little is known of the genetic diversity of Toxoplasma gondii circulating in wildlife. In the present study feral gray wolves (Canis lupus) from Minnesota were examined for T. gondii infection. Antibodies to T. gondii were detected in 130 (52.4%) of 248 wolves tested by the modified agglutination test (cut-off titer of 25). Tissues (hearts, brains or both) of 109 wolves were bioassayed in mice for protozoal isolation. Viable T. gondii was isolated from 25 and the isolates were further propagated in cell culture. T. gondii DNA from these isolates was characterized using 10 PCR-RFLP markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1 and Apico). Four genotypes were detected. Twenty-one isolates were Type 12 (ToxoDB PCR-RFLP genotype #5), 2 were Type II clonal (ToxoDB #1), 1 was Type II variant (ToxoDB #3), and 1 was a new genotype designated as ToxoDB genotype #219. Published by Elsevier B.V.
Single cell gene expression profiling of cortical osteoblast lineage cells.
Flynn, James M; Spusta, Steven C; Rosen, Clifford J; Melov, Simon
2013-03-01
In tissues with complex architectures such as bone, it is often difficult to purify and characterize specific cell types via molecular profiling. Single cell gene expression profiling is an emerging technology useful for characterizing transcriptional profiles of individual cells isolated from heterogeneous populations. In this study we describe a novel procedure for the isolation and characterization of gene expression profiles of single osteoblast lineage cells derived from cortical bone. Mixed populations of different cell types were isolated from adult long bones of C57BL/6J mice by enzymatic digestion, and subsequently subjected to FACS to purify and characterize osteoblast lineage cells via a selection strategy using antibodies against CD31, CD45, and alkaline phosphatase (AP), specific for mature osteoblasts. The purified individual osteoblast lineage cells were then profiled at the single cell level via nanofluidic PCR. This method permits robust gene expression profiling on single osteoblast lineage cells derived from mature bone, potentially from anatomically distinct sites. In conjunction with this technique, we have also shown that it is possible to carry out single cell profiling on cells purified from fixed and frozen bone samples without compromising the gene expression signal. The latter finding means the technique can be extended to biopsies of bone from diseased individuals. Our approach for single cell expression profiling provides a new dimension to the transcriptional profile of the primary osteoblast lineage population in vivo, and has the capacity to greatly expand our understanding of how these cells may function in vivo under normal and diseased states. Copyright © 2012 Elsevier Inc. All rights reserved.
Xu, Yan; Liu, Biao; Ding, Fengan; Zhou, Xiaodie; Tu, Pin; Yu, Bo; He, Yan; Huang, Peilin
2017-06-01
Circulating tumor cells (CTCs), isolated as a 'liquid biopsy', may provide important diagnostic and prognostic information. Therefore, rapid, reliable and unbiased detection of CTCs are required for routine clinical analyses. It was demonstrated that negative enrichment, an epithelial marker-independent technique for isolating CTCs, exhibits a better efficiency in the detection of CTCs compared with positive enrichment techniques that only use specific anti-epithelial cell adhesion molecules. However, negative enrichment techniques incur significant cell loss during the isolation procedure, and as it is a method that uses only one type of antibody, it is inherently biased. The detection procedure and identification of cell types also relies on skilled and experienced technicians. In the present study, the detection sensitivity of using negative enrichment and a previously described unbiased detection method was compared. The results revealed that unbiased detection methods may efficiently detect >90% of cancer cells in blood samples containing CTCs. By contrast, only 40-60% of CTCs were detected by negative enrichment. Additionally, CTCs were identified in >65% of patients with stage I/II lung cancer. This simple yet efficient approach may achieve a high level of sensitivity. It demonstrates a potential for the large-scale clinical implementation of CTC-based diagnostic and prognostic strategies.
Karimzadeh, Alborz; Scarfone, Vanessa M; Varady, Erika; Chao, Connie; Grathwohl, Karin; Fathman, John W; Fruman, David A; Serwold, Thomas; Inlay, Matthew A
2018-06-01
Hematopoietic stem cells (HSCs) are the self-renewing multipotent progenitors to all blood cell types. Identification and isolation of HSCs for study has depended on the expression of combinations of surface markers on HSCs that reliably distinguish them from other cell types. However, the increasing number of markers required to isolate HSCs has made it tedious, expensive, and difficult for newcomers, suggesting the need for a simpler panel of HSC markers. We previously showed that phenotypic HSCs could be separated based on expression of CD11a and that only the CD11a negative fraction contained true HSCs. Here, we show that CD11a and another HSC marker, endothelial protein C receptor (EPCR), can be used to effectively identify and purify HSCs. We introduce a new two-color HSC sorting method that can highly enrich for HSCs with efficiencies comparable to the gold standard combination of CD150 and CD48. Our results demonstrate that adding CD11a and EPCR to the HSC biologist's toolkit improves the purity of and simplifies isolation of HSCs. Stem Cells Translational Medicine 2018;7:468-476. © 2018 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.
[Differentiation of Staphylococcus aureus isolates based on phenotypical characters].
Miedzobrodzki, Jacek; Małachowa, Natalia; Markiewski, Tomasz; Białecka, Anna; Kasprowicz, Andrzej
2008-06-30
Typing of Staphylococcus aureus isolates is a necessary procedure for monitoring the transmission of S. aureus among carriers and in epidemiology. Evaluation of the range of relationship among isolates rely on epidemiological markers and is possible because of the clonal character of S. aureus species. Effective typing shows the scheme of transmission of infection in a selected area, enables identifying the reservoir of the microorganism, and may enhance effective eradication. A set of typing methods for use in analyses of epidemiological correlations and the identification of S. aureus isolates is presented. The following methods of typing are described: biotyping, serotyping, antibiogram, protein electrophoresis, cell protein profiles (proteom), immunoblotting, multilocus enzyme electrophoresis (MLEE), zymotyping, and standard species identification of S. aureus in the diagnostic laboratory. Phenotyping methods for S. aureus isolates used in the past and today in epidemiological investigations and in analyses of correlations among S. aureus isolates are presented in this review. The presented methods use morphological characteristics, physiological properties, and chemical structures of the bacteria as criteria for typing. The precision of these standard methods is not always satisfactory as S. aureus strains with atypical biochemical characters have evolved recently. Therefore it is essential to introduce additional typing procedures using molecular biology methods without neglecting phenotypic methods.
T Cells that Recognize HPV Protein Can Target Virus-Infected Cells | Center for Cancer Research
Treating patients with T cells isolated from a tumor and subsequently expanded in the lab can cause the complete regression of some melanomas and cervical cancers, but the treatment is currently restricted to a few cancer types.
Recent research has demonstrated that neoantigen-specific T-cell receptors (TCRs) can be isolated from a cancer patient’s lymphocytes. These TCRs may be used to engineer populations of tumor-reactive T cells for cancer immunotherapies. Obtaining sequences of these functional TCRs is a critical initial step in preparing this type of personalized cancer treatment; however, current methods are time-consuming and labor-intensive. Scientists at the National Cancer Institute (NCI) have developed a rapid and robust method of isolating the sequences of mutation-specific TCRs to alleviate these issues; they seek licensing and/or co-development research collaborations for the development of a method for isolating the sequences of tumor-reactive TCRs. For collaboration opportunities, please contact Steven A. Rosenberg, M.D., Ph.D. at sar@nih.gov.
Pindyurin, Alexey V
2017-01-01
A thorough study of the genome-wide binding patterns of chromatin proteins is essential for understanding the regulatory mechanisms of genomic processes in eukaryotic nuclei, including DNA replication, transcription, and repair. The DNA adenine methyltransferase identification (DamID) method is a powerful tool to identify genomic binding sites of chromatin proteins. This method does not require fixation of cells and the use of specific antibodies, and has been used to generate genome-wide binding maps of more than a hundred different proteins in Drosophila tissue culture cells. Recent versions of inducible DamID allow performing cell type-specific profiling of chromatin proteins even in small samples of Drosophila tissues that contain heterogeneous cell types. Importantly, with these methods sorting of cells of interest or their nuclei is not necessary as genomic DNA isolated from the whole tissue can be used as an input. Here, I describe in detail an FLP-inducible DamID method, namely generation of suitable transgenic flies, activation of the Dam transgenes by the FLP recombinase, isolation of DNA from small amounts of dissected tissues, and subsequent identification of the DNA binding sites of the chromatin proteins.
A High-Throughput Microenvironment for Single-Cell Operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christian, A T; Buckley, P; Miles, R R
2003-01-07
This project was conducted as a feasibility study, in preparation for including this work in the forthcoming ''Instrumented Cell'' (IC) Strategic Initiative. The goal of the IC is to study individual cells; the goal of this feasibility study was to determine the best method for isolating large numbers of individual cells in a way that facilitates various types of environmental changes and intracellular measurements. We have the capability to do this with one cell, and sought to expand the number of cells that we could study simultaneously. Our specific goal for this feasibility study was to discover a way tomore » isolate individual cells, and impale them on a nanopipette. This would enable samples to be introduced into and removed from a cell.« less
Negative Enrichment and Isolation of Circulating Tumor Cells for Whole Genome Amplification.
Kanwar, Nisha; Done, Susan J
2017-01-01
Circulating tumor cells (CTCs) are a rare population of cells found in the peripheral blood of patients with many types of cancer such as breast, prostate, colon, and lung cancers. Higher numbers of these cells in blood are associated with a poorer prognosis of patients. Genomic profiling of CTCs would help characterize markers specific for the identification of these cells in blood, and also define genomic alterations that give these cells a metastatic advantage over other cells in the primary tumor. Here, we describe an immunomagnetic method to enrich CTCs from the blood of patients with breast cancer, followed by single-cell laser capture microdissection to isolate single CTCs. Whole genome amplification of isolated CTCs allows for many downstream applications to be performed to aide in their characterization, such as whole genome or exome sequencing, Single Nucleotide Polymorphism (SNP) and copy number analysis, and targeted sequencing or quantitative Polymerase Chain Reaction (qPCR) for genomic analyses.
Romano, G
2017-09-01
Certain malignant cells may detach from the primary tumor and enter the vascular system, forming so-called circulating tumor cells (CTCs). Clusters of malignant cells associated with other cell types can also be observed in the peripheral blood of oncological patients. Such cell clusters are termed circulating tumor microemboli (CTM). The isolation and quantification of CTCs and/or CTM from blood samples allow for an accurate prognosis of the clinical course of the disease and to monitor the response to therapy. Current protocols rely on epithelial markers for the isolation of CTCs and/or CTM from hematopoietic cells. However, epithelial markers may be silenced during the progression of the epithelial-mesenchymal transition, which regulates the detachment and migration of malignant cells from the primary tumor. This review summarizes the achievements and challenges of various modalities for the isolation, enrichment, analysis and enumeration of CTCs and/or CTM, in order to assess the advancement of the disease and the response to therapy.
Kosiak, Elzbieta Barbara; Holst-Jensen, Arne; Rundberget, Thomas; Gonzalez Jaen, Maria Teresa; Torp, Mona
2005-03-15
The morphological variation, secondary metabolite profiles and restriction fragment length polymorphisms (RFLPs) of PCR amplified intergenic spacer (IGS) ribosomal DNA (rDNA) were studied in 27 isolates of Fusarium equiseti, 25 isolated from Norwegian cereals and 2 from soil obtained from the IBT culture collection (BioCentrum, Technical University of Denmark). All 27 isolates were tested for production of fusarochromanone (FUSCHR), zearalenone (ZEA) and the trichothecenes: 15-monoacetoxy-scirpentriol (MAS), diacetoxy-scirpenol (DAS), T-2 and HT-2 toxins, T2-triol, neosolaniol (NEO), deoxynivalenol (DON), nivalenol (NIV) and 4-acetylnivalenol (Fus-X). The trichothecenes were analysed by GC-MS in a selected ion monitoring mode, while FUSCHR was determined by ion pair HPLC with fluorometric detection and production of ZEA by TLC. For amplification of IGS rDNA primers CNL12 and CNS1 were applied. IGS rDNA was digested with the four restriction enzymes: AvaII, CfoI, EcoRI and Sau3A. In addition, we sequenced the IGS rDNA region of three of the Norwegian isolates. There were two morphological types among the Norwegian strains of F. equiseti, type I with short apical cells (dominating) and type II with long apical cells, with four haplotypes identified based on the RFLP data. Variation in secondary metabolite profiles within and between the morphological groups was observed and the levels of produced toxins were: FUSCHR 3000-42,500 and 25-30 ng/g, NIV 20-2500 and 120-700 ng/g, FUS-X 20-15,000 and 0 ng/g, DAS 30-7500 and 0-600 ng/g, and MAS 10-600 and 0-500 ng/g, for strains with short and long apical cells, respectively. NEO was detected in 16/27 strains tested (all morphotype I). All but four strains of type I (these four lacked a restriction site for EcoRI) had identical RFLP profiles. The isolates of type II had two haplotypes. The IGS sequence similarity data indicated differences between these morphotypes corresponding to two separate lineages apparently at the species level.
Biomimetic and synthetic esophageal tissue engineering.
Jensen, Todd; Blanchette, Alex; Vadasz, Stephanie; Dave, Apeksha; Canfarotta, Michael; Sayej, Wael N; Finck, Christine
2015-07-01
A tissue-engineered esophagus offers an alternative for the treatment of pediatric patients suffering from severe esophageal malformations, caustic injury, and cancer. Additionally, adult patients suffering from carcinoma or trauma would benefit. Donor rat esophageal tissue was physically and enzymatically digested to isolate epithelial and smooth muscle cells, which were cultured in epithelial cell medium or smooth muscle cell medium and characterized by immunofluorescence. Isolated cells were also seeded onto electrospun synthetic PLGA and PCL/PLGA scaffolds in a physiologic hollow organ bioreactor. After 2 weeks of in vitro culture, tissue-engineered constructs were orthotopically transplanted. Isolated cells were shown to give rise to epithelial, smooth muscle, and glial cell types. After 14 days in culture, scaffolds supported epithelial, smooth muscle and glial cell phenotypes. Transplanted constructs integrated into the host's native tissue and recipients of the engineered tissue demonstrated normal feeding habits. Characterization after 14 days of implantation revealed that all three cellular phenotypes were present in varying degrees in seeded and unseeded scaffolds. We demonstrate that isolated cells from native esophagus can be cultured and seeded onto electrospun scaffolds to create esophageal constructs. These constructs have potential translatable application for tissue engineering of human esophageal tissue. Copyright © 2015 Elsevier Ltd. All rights reserved.
Cottle, Beverley J; Lewis, Fiona C; Shone, Victoria; Ellison-Hughes, Georgina M
2017-07-04
The development of cellular therapies to treat muscle wastage with disease or age is paramount. Resident muscle satellite cells are not currently regarded as a viable cell source due to their limited migration and growth capability ex vivo. This study investigated the potential of muscle-derived PW1 + /Pax7 - interstitial progenitor cells (PICs) as a source of tissue-specific stem/progenitor cells with stem cell properties and multipotency. Sca-1 + /PW1 + PICs were identified on tissue sections from hind limb muscle of 21-day-old mice, isolated by magnetic-activated cell sorting (MACS) technology and their phenotype and characteristics assessed over time in culture. Green fluorescent protein (GFP)-labelled PICs were used to determine multipotency in vivo in a tumour formation assay. Isolated PICs expressed markers of pluripotency (Oct3/4, Sox2, and Nanog), were clonogenic, and self-renewing with >60 population doublings, and a population doubling time of 15.8 ± 2.9 h. PICs demonstrated an ability to generate both striated and smooth muscle, whilst also displaying the potential to differentiate into cell types of the three germ layers both in vitro and in vivo. Moreover, PICs did not form tumours in vivo. These findings open new avenues for a variety of solid tissue engineering and regeneration approaches, utilising a single multipotent stem cell type isolated from an easily accessible source such as skeletal muscle.
Todaro, G J; Sherr, C J; Sen, A; King, N; Daniel, M D; Fleckenstein, B
1978-01-01
A type C virus (OMC-1) detected in a culture of owl monkey kidney cells resembled typical type C viruses morphologically, but was slightly larger than previously characterized mammalian type C viruses. OMC-1 can be transmitted to bat lung cells and cat embryo fibroblasts. The virions band at a density of 1.16 g/ml in isopycnic sucrose density gradients and contain reverse transcriptase and a 60-65S RNA genome composed of approximately 32S subunits. The reverse transcriptase is immunologically and biochemically distinct from the polymerases of othe retroviruses. Radioimmunoassays directed to the interspecies antigenic determinants of the major structure proteins of other type C viruses do not detect a related antigen in OMC-1. Nucleic acid hybridization experiments using labeled viral genomic RNA or proviral cDNA transcripts to normal cellular DNA of different species show that OMC-1 is an endogenous virus with multiple virogene copies (20-50 per haploid genome) present in normal owl monkey cells and is distinct from previously isolated type C and D viruses. Sequences related to the OMC-1 genome can be detected in other New World monkeys. Thus, similar to the Old World primates (e.g., baboons as a prototype), the New World monkeys contain endogenous type C viral genes that appear to have been transmitted in the primate germ line. Images PMID:76312
Gil-Sanchis, Claudia; Cervelló, Irene; Khurana, Satish; Faus, Amparo; Verfaillie, Catherine; Simón, Carlos
2015-06-01
To study the involvement of seven types of bone marrow-derived cells (BMDCs) in the endometrial regeneration in mice after total body irradiation. Prospective experimental animal study. University research laboratories. β-Actin-green fluorescent protein (GFP) transgenic C57BL/6-Tg (CAG-EGFP) and C57BL/6J female mice. The BMDCs were isolated from CAG-EGFP mice: unfractionated bone marrow cells, hematopoietic progenitor cells, endothelial progenitor cells (EPCs), and mesenchymal stem cells (MSCs). In addition three murine GFP(+) cell lines were used: mouse Oct4 negative BMDC multipotent adult progenitor cells (mOct4(-)BM-MAPCs), BMDC hypoblast-like stem cells (mOct4(+) BM-HypoSCs), and MSCs. All cell types were injected through the tail vein of 9 Gy-irradiated C57BL/6J female mice. Flow cytometry, cell culture, bone marrow transplantation assays, histologic evaluation, immunohistochemistry, proliferation, apoptosis, and statistical analysis. After 12 weeks, histologic analysis revealed that uteri of mice with mOct4(-)BM-MAPCs and MSC line were significantly smaller than uteri of mice with uncultured BMDCs or mOct4(+) BM-HypoSCs. The percentage of engrafted GFP(+) cells ranged from 0.13%-4.78%. Expression of Ki-67 was lower in all uteri from BMDCs treated mice than in the control, whereas TUNEL(+) cells were increased in the EPCs and mOct4(+)BM-HypoSCs groups. Low number of some BMDCs can be found in regenerating endometrium, including stromal, endotelial, and epithelial compartments. Freshly isolated MSCs and EPCs together with mOct4(+) BM-HypoSCs induced the greatest degree of regeneration, whereas culture isolated MSCs and mOct4(-)BM-MAPCs transplantation may have an inhibitory effect on endometrial regeneration. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Isolating and Analyzing Cells of the Pancreas Mesenchyme by Flow Cytometry.
Epshtein, Alona; Sakhneny, Lina; Landsman, Limor
2017-01-28
The pancreas is comprised of epithelial cells that are required for food digestion and blood glucose regulation. Cells of the pancreas microenvironment, including endothelial, neuronal, and mesenchymal cells were shown to regulate cell differentiation and proliferation in the embryonic pancreas. In the adult, the function and mass of insulin-producing cells were shown to depend on cells in their microenvironment, including pericyte, immune, endothelial, and neuronal cells. Lastly, changes in the pancreas microenvironment were shown to regulate pancreas tumorigenesis. However, the cues underlying these processes are not fully defined. Therefore, characterizing the different cell types that comprise the pancreas microenvironment and profiling their gene expression are crucial to delineate the tissue development and function under normal and diseased states. Here, we describe a method that allows for the isolation of mesenchymal cells from the pancreas of embryonic, neonatal, and adult mice. This method utilizes the enzymatic digestion of mouse pancreatic tissue and the subsequent fluorescence-activated cell sorting (FACS) or flow-cytometric analysis of labeled cells. Cells can be labeled by either immunostaining for surface markers or by the expression of fluorescent proteins. Cell isolation can facilitate the characterization of genes and proteins expressed in cells of the pancreas mesenchyme. This protocol was successful in isolating and culturing highly enriched mesenchymal cell populations from the embryonic, neonatal, and adult mouse pancreas.
Type II restriction modification system methylation subunit of Alicyclobacillus acidocaldarius
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Brady D.; Newby, Deborah T.; Lacey, Jeffrey A.
2018-02-13
Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for modulating or altering recombination inside or outside of a cell using isolated and/or purified polypeptides and/or nucleic acid sequences from Alicyclobacillus acidocaldarius.
Type II restriction-modification system methylation subunit of Alicyclobacillus acidocaldarius
Lee, Brady D; Newby, Deborah T; Lacey, Jeffrey A; Thompson, David N; Thompson, Vicki S; Apel, William A; Roberto, Francisco F; Reed, David W
2013-10-29
Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for modulating or altering recombination inside or outside of a cell using isolated and/or purified polypeptides and/or nucleic acid sequences from Alicyclobacillus acidocaldarius.
Type II restriction-modification system methylation subunit of Alicyclobacillus acidocaldarius
Lee, Brady D; Newby, Deborah T; Lacey, Jeffrey A; Thompson, David N; Thompson, Vicki S; Apel, William A; Roberto, Francisco F; Reed, David W
2015-05-12
Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for modulating or altering recombination inside or outside of a cell using isolated and/or purified polypeptides and/or nucleic acid sequences from Alicyclobacillus acidocaldarius.
Type II restriction modification system methylation subunit of Alicyclobacillus acidocaldarius
Lee, Brady D.; Newby, Deborah T.; Lacey, Jeffrey A.; Thompson, David N.; Thompson, Vicki S.; Apel, William A.; Roberto, Francisco F.; Reed, David W.
2017-02-14
Isolated and/or purified polypeptides and nucleic acid sequences encoding polypeptides from Alicyclobacillus acidocaldarius are provided. Further provided are methods for modulating or altering recombination inside or outside of a cell using isolated and/or purified polypeptides and/or nucleic acid sequences from Alicyclobacillus acidocaldarius.
Development of a chick embryo heart cell for the cultivation of poliovirus.
PRIER, J E; SULLIVAN, R
1959-04-17
An epithelial-like cell has been developed in line culture that apparently is stable. Although initially isolated cells were incapable of supporting the growth of poliovirus, the cells of the sixth and later passages allowed virus to propagate. The early, nonsusceptible cells were fibroblastic in appearance, in contrast to the epithelial type, poliovirussusceptible, derived cell of later passages.
Isolation, characterization, and differentiation of stem cells for cartilage regeneration.
Beane, Olivia S; Darling, Eric M
2012-10-01
The goal of tissue engineering is to create a functional replacement for tissues damaged by injury or disease. In many cases, impaired tissues cannot provide viable cells, leading to the investigation of stem cells as a possible alternative. Cartilage, in particular, may benefit from the use of stem cells since the tissue has low cellularity and cannot effectively repair itself. To address this need, researchers are investigating the chondrogenic capabilities of several multipotent stem cell sources, including adult and extra-embryonic mesenchymal stem cells (MSCs), embryonic stem cells (ESCs), and induced pluripotent stem cells (iPSCs). Comparative studies indicate that each cell type has advantages and disadvantages, and while direct comparisons are difficult to make, published data suggest some sources may be more promising for cartilage regeneration than others. In this review, we identify current approaches for isolating and chondrogenically differentiating MSCs from bone marrow, fat, synovium, muscle, and peripheral blood, as well as cells from extra-embryonic tissues, ESCs, and iPSCs. Additionally, we assess chondrogenic induction with growth factors, identifying standard cocktails used for each stem cell type. Cell-only (pellet) and scaffold-based studies are also included, as is a discussion of in vivo results.
Isolation and characterization of spermatogenic cells from cattle, yak and cattleyak.
Shah, Mujahid Ali; Xu, Chuanfei; Wu, Shixin; Zhao, Wangsheng; Luo, Hui; Yi, Chuanping; Liu, Wenjing; Cai, Xin
2018-06-01
Cattleyak forms the first generation in the cross-breeding of cattle (Bos taurus) and yak (Bos grunniens), the purpose of which is to increase the yak's performance in meat and milk production. The female cattleyak is fertile while the male remains sterile due to spermatogenic arrest. The spermatogenic cells (including spermatogonia and spermatocytes) of cattle, yak and cattleyak have not been successfully isolated so far. In this work, spermatogenic cells were isolated from these bovid species with the STA-PUT method that has been previously used for germ cell sorting in human and mouse, and the isolated cells could be used to investigate the mechanisms involved in male sterility observed in cattleyak. The characteristics and size of the isolated cells were investigated through microscopic examination, and the cell types were identified by RT-PCR amplification of the marker genes. The purity of spermatogonia and spermatocytes isolated from each bovid species was found to be higher than 85%. The spermatogonium diameter of cattle (10.10 ± 1.04 μm) and yak (14.90 ± 2.30 μm) were significantly larger (P < 0.01) than that of cattleyak (8.60 ± 0.92 μm). The spermatocyte diameter of cattle (19.40 ± 1.50 μm) and yak (20.50 ± 2.42 μm) were also significantly larger (P < 0.01) than that of cattleyak (17.70 ± 2.05 μm). Therefore, the STA-PUT was again validated to be a convenient, economical and efficient method for isolation of spermatogenic cells as it yields more cells within a short time frame. Copyright © 2018 Elsevier B.V. All rights reserved.
Triterpenoid saponins from the roots of Clematis argentilucida.
Zhao, Mei; Ma, Ning; Qiu, Feng; Tian, Xiangrong; Zhang, Yan; Tang, Haifeng; Liu, Xinyou
2014-09-01
Reinvestigation of the n-BuOH extract of the roots of Clematis argentilucida led to the isolation of a new ursane-type triterpenoid saponin 1 and a new taraxerane-type saponin 2, four known saponins 3-6 first isolated from the species, together with seven saponins 7-13 reported in the previous papers. The structures of saponins 1-6 were elucidated by extensive spectroscopic analysis and chemical evidences. The ursane-type and taraxerane-type triterpenoid saponins were obtained from genus Clematis for the first time, and the aglycone of saponin 1, 3β,28-dihydroxy-18αH-ursan-20-en was first encountered. The cytotoxicity of all the saponins was evaluated against human glioblastoma U251MG cell lines. The monodesmosidic saponins 1, 2 and 4-8 exhibited cytotoxic activity against the cells with IC50 values ranging from 6.95 to 38.51 μM. Copyright © 2014 Elsevier B.V. All rights reserved.
Randelli, Pietro; Conforti, Erika; Piccoli, Marco; Ragone, Vincenza; Creo, Pasquale; Cirillo, Federica; Masuzzo, Pamela; Tringali, Cristina; Cabitza, Paolo; Tettamanti, Guido; Gagliano, Nicoletta; Anastasia, Luigi
2013-07-01
Stem cell therapy is expected to offer new alternatives to the traditional therapies of rotator cuff tendon tears. In particular, resident, tissue-specific, adult stem cells seem to have a higher regenerative potential for the tissue where they reside. Rotator cuff tendon and long head of the biceps tendon possess a resident stem cell population that, when properly stimulated, may be induced to proliferate, thus being potentially usable for tendon regeneration. Controlled laboratory study. Human tendon samples from the supraspinatus and the long head of the biceps were collected during rotator cuff tendon surgeries from 26 patients, washed with phosphate-buffered saline, cut into small pieces, and digested with collagenase type I and dispase. After centrifugation, cell pellets were resuspended in appropriate culture medium and plated. Adherent cells were cultured, phenotypically characterized, and then compared with human bone marrow stromal cells (BMSCs), as an example of adult stem cells, and human dermal fibroblasts, as normal proliferating cells with no stem cell properties. Two new adult stem cell populations from the supraspinatus and long head of the biceps tendons were isolated, characterized, and cultured in vitro. Cells showed adult stem cell characteristics (ie, they were self-renewing in vitro, clonogenic, and multipotent), as they could be induced to differentiate into different cell types--namely, osteoblasts, adipocytes, and skeletal muscle cells. This work demonstrated that human rotator cuff tendon stem cells and human long head of the biceps tendon stem cells can be isolated and possess a high regenerative potential, which is comparable with that of BMSCs. Moreover, comparative analysis of the sphingolipid pattern of isolated cells with that of BMSCs and fibroblasts revealed the possibility of using this class of lipids as new possible markers of the cell differentiation status. Rotator cuff and long head of the biceps tendons contain a stem cell population that can proliferate in vitro and could constitute an easily accessible stem cell source to develop novel therapies for tendon regeneration.
Characterization of microsieves recovery efficiency in isolation of circulating tumor cells
NASA Astrophysics Data System (ADS)
Osuchowska, Paulina Natalia; Sarzyński, Antoni; Strzelec, Marek; Bogdanowicz, Zdzisław; Marczak, Jan; Łapiński, Mariusz Piotr; Trafny, ElŻbieta Anna
2016-12-01
Isolation of circulating tumor cells (CTCs) from the blood is important in the diagnosis of malignant tumors and for monitoring therapeutic responses. The two main problems to be solved are extremely low CTCs numbers in the blood (average 1-10 CTC per 10 ml of whole blood) and the absence of one particular phenotype or genotype, which would allow for precise identification. Isolation of CTCs can be based on physical characteristics, e.g. the size of the cells (ISET, Isolation by Size of Epithelial Tumor cells) or the biological properties of these cells (the expression of specific proteins on their surface). In the IOE WAT the copper alloy microsieves with a pore diameter of 10.85 +/- 0.89 μm designed for cell isolation by ISET method were produced. The microsieves with 100 000 pores with a 50 μm interval was made using precise, percussion laser drilling. The performance microsieves filtration was determined using fluorescent beads with three dimensions: 4 μm, 10 μm and 15 μm. Furthermore, the suspensions of cells lines from different types of tumor were used in the process of filtration. The efficiency of the cells filtration process was affected by lack of biocompatibility of the material used for the microsieves production as well as the roughness and porosity of the microsieves surface. Moreover, the diameter of the pores and the course of the filtration process were also significant.
Isolation and characterization of porcine adipose tissue-derived adult stem cells.
Williams, Kellie J; Picou, Alicia A; Kish, Sharon L; Giraldo, Angelica M; Godke, Robert A; Bondioli, Kenneth R
2008-01-01
Stem cell characteristics such as self-renewal, differentiation and expression of CD34 and CD44 stem cell markers have not been identified in porcine adipose tissue-derived adult stem (ADAS) cells. The objective of this study was to develop a protocol for the isolation and culture of porcine adipose tissue-derived cells and to determine stem cell-like characteristics. Primary cultures were established and cell cultures were maintained. Cloning capacity was determined using a ring cloning procedure. Primary cultures and clones were differentiated and stained for multiple differentiated phenotypes. CD34 and CD44 messenger ribonucleic acid (mRNA) was isolated and reverse transcriptase polymerase chain reaction was used to compare expression profiles. An average of 2,700,000 nucleated cells/ml was isolated; 26% were adherent, and cells completed a cell cycle approximately every 3.3 days. Ring cloning identified 19 colonies. Primary cultures and clones were determined to differentiate along osteogenic, adipogenic and chondrogenic tissue lineages. The mRNA expression profiles showed CD34 expression was higher for undifferentiated ADAS cells versus differentiated cell types and the CD34 expression level was lower than that of CD44 among differentiated cells. Improved culture conditions and defined cellular characteristics of these porcine ADAS cells have been identified. Porcine ADAS can self-renew, can differentiate into multiple tissue lineages and they express CD34. Copyright 2008 S. Karger AG, Basel.
Feng, Allen L; Xiang, Yun-Yan; Gui, Le; Kaltsidis, Gesthika; Feng, Qingping; Lu, Wei-Yang
2017-06-01
This study aimed to elucidate the mechanism of increased proliferation of alpha cells in recent-onset type 1 diabetes. Pancreatic beta cells express GAD and produce γ-aminobutyric acid (GABA), which inhibits alpha cell secretion of glucagon. We explored the roles of GABA in alpha cell proliferation in conditions corresponding to type 1 diabetes in a mouse model and in vitro. Type 1 diabetes was induced by injecting the mice with streptozotocin (STZ). Some of the STZ-injected mice were treated with GABA (10 mg/kg daily) for 12 days. Isolated pancreatic islets were treated with STZ or STZ together with GABA for 2 days. The effects of GABA treatment on STZ-induced alpha cell proliferation in vivo and in vitro were assessed. The effect of muscimol, a GABA receptor agonist, on αTC1-6 cell proliferation was also examined. STZ injection substantially decreased levels of GAD, GABA and insulin in pancreatic beta cells 12 h after injection; this was followed by an upsurge of phosphorylated mechanistic target of rapamycin (p-mTOR) in the alpha cells at day 1, and a significant increase in alpha cell mass at day 3. Treating STZ-injected mice with GABA largely restored the immunodetectable levels of insulin and GAD in the beta cells and significantly decreased the number of aldehyde dehydrogenase 1 family, member A3 (ALDH1a3)-positive cells, alpha cell mass and hyperglucagonaemia. STZ treatment also increased alpha cell proliferation in isolated islets, which was reversed by co-treatment with GABA. Muscimol, together with insulin, significantly lowered the level of cytosolic Ca 2+ and p-mTOR, and decreased the proliferation rate of αTC1-6 cells. GABA signalling critically controls the alpha cell population in pancreatic islets. Low intraislet GABA may contribute to alpha cell hyperplasia in early type 1 diabetes.
Ii, Hisataka; Warraich, Sumeeta; Tenn, Neil; Quinonez, Diana; Holdsworth, David W; Hammond, James R; Dixon, S Jeffrey; Séguin, Cheryle A
2016-09-01
Equilibrative nucleoside transporter 1 (ENT1) mediates passage of adenosine across the plasma membrane. We reported previously that mice lacking ENT1 (ENT1(-/-)) exhibit progressive ectopic mineralization of spinal tissues resembling diffuse idiopathic skeletal hyperostosis (DISH) in humans. Here, we investigated mechanisms underlying aberrant mineralization in ENT1(-/-) mice. Micro-CT revealed ectopic mineralization of spinal tissues in both male and female ENT1(-/-) mice, involving the annulus fibrosus of the intervertebral discs (IVDs) of older mice. IVDs were isolated from wild-type and ENT1(-/-) mice at 2months of age (prior to disc mineralization), 4, and 6months of age (disc mineralization present) and processed for real-time PCR, cell isolation, or histology. Relative to the expression of ENTs in other tissues, ENT1 was the primary nucleoside transporter expressed in wild-type IVDs and mediated the functional uptake of [(3)H]2-chloroadenosine by annulus fibrosus cells. No differences in candidate gene expression were detected in IVDs from ENT1(-/-) and wild-type mice at 2 or 4months of age. However, at 6months of age, expression of genes that inhibit biomineralization Mgp, Enpp1, Ank, and Spp1 were reduced in IVDs from ENT1(-/-) mice. To assess whether changes detected in ENT1(-/-) mice were cell autonomous, annulus fibrosus cell cultures were established. Compared to wild-type cells, cells isolated from ENT1(-/-) IVDs at 2 or 6months of age demonstrated greater activity of alkaline phosphatase, a promoter of biomineralization. Cells from 2-month-old ENT1(-/-) mice also showed greater mineralization than wild-type. Interestingly, altered localization of alkaline phosphatase activity was detected in the inner annulus fibrosus of ENT1(-/-) mice in vivo. Alkaline phosphatase activity, together with the marked reduction in mineralization inhibitors, is consistent with the mineralization of IVDs seen in ENT1(-/-) mice at older ages. These findings establish that both cell-autonomous and systemic mechanisms contribute to ectopic mineralization in ENT1(-/-) mice. Copyright © 2016 Elsevier Inc. All rights reserved.
Zoonotic Potential and Antibiotic Resistance of Escherichia coli in Neonatal Calves in Uruguay.
Umpiérrez, Ana; Bado, Inés; Oliver, Martín; Acquistapace, Sofía; Etcheverría, Analía; Padola, Nora Lía; Vignoli, Rafael; Zunino, Pablo
2017-09-27
Escherichia coli is one of the main etiological agents of neonatal calf diarrhea (NCD). The objective of this study was to assess the presence of virulence genes, genetic diversity, and antibiotic resistance mechanisms in E. coli associated with NCD in Uruguay. PCR was used to assess the presence of intimin, Shiga-like toxin, and stable and labile enterotoxin genes. Resistance to fluoroquinolones and oxyimino-cephalosporins was estimated on Müller-Hinton agar plates. Further antibiotic disc-diffusion tests were performed to assess bacterial multi-resistance. The presence of PMQR, ESBL, MCR-1, and integron genes was evaluated. Isolates were typed using ERIC-PCR, and 20 were selected for MLST, adhesion to Hep-2 cells, in vitro biofilm formation, and eukaryotic cytotoxicity. The prevalence of ETEC genes was lower than 3% in each case (estA and elt). Six isolates were EPEC (eae+) and 2 were EHEC/STEC (eae+/stx1+). The results of a diversity analysis showed high genetic heterogenicity among isolates. Additionally, different sequence types, including ST10, ST21, and ST69, were assigned to selected isolates. Thirty-six percent (96/264) of the isolates were fluoroquinolone-resistant, with 61/96 (63.5%) being multidrug-resistant. Additionally, 6 were oxyimino-cephalosporin-resistant. The qnrB, qnrS1, and bla CTX-M-14 genes were detected, whereas no isolates carried the mcr-1 gene. Isolates had the ability to adhere to Hep-2 cells and form biofilms. Only 1 isolate expressed toxins in vitro. E. coli from NCD cases in Uruguay are very diverse, potentially virulent, and may interact with eukaryotic cells. Zoonotic potential, together with resistance traits and the presence of horizontal transfer mechanisms, may play a significant role in infections caused by these microorganisms.
Kaleta, Erhard F; Kummerfeld, Norbert
2012-01-01
Herpesvirus isolations from peripheral white blood cells of 253 White Storks (Ciconia ciconia) were obtained during a long-term study (1983 to 2001). The storks lived for a few months to 20 years at four rehabilitation centres. Isolates were obtained from 83 of 253 storks. This herpesvirus is indigenous for storks and unrelated to any other avian herpesvirus. Significantly more herpesvirus isolates were obtained during spring than in autumn samplings. The intervals between the first and last virus isolation ranged from 1 to 15 years. Herpesvirus isolates were simultaneously obtained from white blood cells and from pharyngeal swabs of four of 34 storks but not from cloacal swabs. Neutralizing antibodies to stork herpesvirus were detected in 178 of 191 examined blood plasma samples. Neutralizing antibodies against stork herpesvirus did not correlate with herpesvirus viraemia. The results further substantiate the persistence of herpesvirus in White Storks and underline the previously unrecorded long periods of virus and antibody presence. Virulent avian paramyxovirus type 1 (APMV-1; Newcastle disease virus) was isolated from white blood cells during 1992 and 1993 from four healthy migrating storks, and possessed virulence markers on the cleavage site of the H and F genes. These properties resemble the NE type of APMV-1. Haemagglutination inhibition antibodies against APMV-1 were detected in 16 of 191 blood plasma samples. Avian influenza A virus was not isolated and antibodies against subtypes H5 and H7 were not detected.
Zoonotic Potential and Antibiotic Resistance of Escherichia coli in Neonatal Calves in Uruguay
Umpiérrez, Ana; Bado, Inés; Oliver, Martín; Acquistapace, Sofía; Etcheverría, Analía; Padola, Nora Lía; Vignoli, Rafael; Zunino, Pablo
2017-01-01
Escherichia coli is one of the main etiological agents of neonatal calf diarrhea (NCD). The objective of this study was to assess the presence of virulence genes, genetic diversity, and antibiotic resistance mechanisms in E. coli associated with NCD in Uruguay. PCR was used to assess the presence of intimin, Shiga-like toxin, and stable and labile enterotoxin genes. Resistance to fluoroquinolones and oxyimino-cephalosporins was estimated on Müller-Hinton agar plates. Further antibiotic disc-diffusion tests were performed to assess bacterial multi-resistance. The presence of PMQR, ESBL, MCR-1, and integron genes was evaluated. Isolates were typed using ERIC-PCR, and 20 were selected for MLST, adhesion to Hep-2 cells, in vitro biofilm formation, and eukaryotic cytotoxicity. The prevalence of ETEC genes was lower than 3% in each case (estA and elt). Six isolates were EPEC (eae+) and 2 were EHEC/STEC (eae+/stx1+). The results of a diversity analysis showed high genetic heterogenicity among isolates. Additionally, different sequence types, including ST10, ST21, and ST69, were assigned to selected isolates. Thirty-six percent (96/264) of the isolates were fluoroquinolone-resistant, with 61/96 (63.5%) being multidrug-resistant. Additionally, 6 were oxyimino-cephalosporin-resistant. The qnrB, qnrS1, and blaCTX-M-14 genes were detected, whereas no isolates carried the mcr-1 gene. Isolates had the ability to adhere to Hep-2 cells and form biofilms. Only 1 isolate expressed toxins in vitro. E. coli from NCD cases in Uruguay are very diverse, potentially virulent, and may interact with eukaryotic cells. Zoonotic potential, together with resistance traits and the presence of horizontal transfer mechanisms, may play a significant role in infections caused by these microorganisms. PMID:28904264
Ledbetter, Eric C.; Mun, James J.; Kowbel, David; Fleiszig, Suzanne M. J.
2009-01-01
Purpose This study was designed to determine whether the ability to adversely affect corneal epithelial cell health is a factor common to Pseudomonas aeruginosa keratitis strains and to assess the prevalence of each pathogenic phenotype and genotype in a canine model of naturally-acquired P. aeruginosa ocular infection. Methods P. aeruginosa ocular isolates were collected by sampling 100 dogs without disease (six isolates collected) and by sampling dogs with conjunctivitis (two isolates), endophthalmitis (one isolate), active keratitis (12 isolates), and resolved P. aeruginosa keratitis (four isolates). Phenotype was determined in vitro by quantifying corneal epithelial cell invasion by gentamicin survival assays, and cytotoxic activity by Trypan blue exclusion assays. Genotyping was performed for genes encoding the type III secreted effectors. Results The ratio of invasive to cytotoxic strains with 95% confidence intervals (CI) was 0.83 (CI, 0.42– 0.99) for conjunctival microflora isolates, 0.80 (CI, 0.54 – 0.94) for ocular infection isolates, and 1.0 (CI, 0.45–1.0) for strains isolated post-resolution of keratitis. Among ocular infection isolates, invasive and cytotoxic strains were significantly (P ≤ 0.02) associated with older and younger dogs, respectively. Visible adverse effects on epithelial cells were significantly (P ≤ 0.03) more frequent for keratitis strains (6/12) than other strains (1/13), but only three of these keratitis strains and the single non-keratitis strain possessed ExoU. Conclusions Invasive strains predominated in the dogs of this study. Only keratitis strains had visible adverse effects on epithelial cells without overt cytotoxicity, suggesting virulence strategies affecting live corneal epithelial cell health are selected for among keratitis strains. PMID:18836164
Castilho, Ivana G; Dantas, Stéfani Thais Alves; Langoni, Hélio; Araújo, João P; Fernandes, Ary; Alvarenga, Fernanda C L; Maia, Leandro; Cagnini, Didier Q; Rall, Vera L M
2017-08-01
Staphylococcus aureus is a common pathogen that causes subclinical bovine mastitis due to several virulence factors. In this study, we analyzed S. aureus isolates collected from the milk of cows with subclinical mastitis that had 8 possible combinations of bap, icaA, and icaD genes, to determine their capacity to produce biofilm on biotic (bovine primary mammary epithelial cells and HeLa cells) and abiotic (polystyrene microplates) surfaces, and their ability to adhere to and invade these cells. We also characterized isolates for microbial surface components recognizing adhesive matrix molecules (MSCRAMM) and agr genes, and for their susceptibility to cefquinome sulfate in the presence of biofilm. All isolates adhered to and invaded both cell types, but invasion indexes were higher in bovine primary mammary epithelial cells. Using tryptic soy broth + 1% glucose on abiotic surfaces, 5 out of 8 isolates were biofilm producers, but only the bap + icaA + icaD + isolate was positive in Dulbecco's Modified Eagle's medium. The production of biofilm on biotic surfaces occurred only with this isolate and only on HeLa cells, because the invasion index for bovine primary mammary epithelial cells was too high, making it impossible to use these cells in this assay. Of the 5 biofilm producers in tryptic soy broth + 1% glucose, 4 presented with the bap/fnbA/clfA/clfB/eno/fib/ebpS combination, and all were protected from cefquinome sulfate. We found no predominance of any agr group. The high invasive potential of S. aureus made it impossible to observe biofilm in bovine primary mammary epithelial cells, and we concluded that cells with lower invasion rates, such as HeLa cells, were more appropriate for this assay. Copyright © 2017 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Activation of ERK signaling and induction of colon cancer cell death by piperlongumine
USDA-ARS?s Scientific Manuscript database
Piperlongumine (PPLGM) is a bioactive compound isolated from long peppers that shows selective toxicity towards a variety of cancer cell types including colon cancer. The signaling pathways that lead to cancer cell death in response to PPLGM exposure have not been previously identified. Our objectiv...
In vitro expression of Streptococcus pneumoniae ply gene in human monocytes and pneumocytes.
Hu, Da-Kang; Liu, Yang; Li, Xiang-Yang; Qu, Ying
2015-05-07
Streptococcus pneumoniae is one major cause of pneumonia in human and contains various virulence factors that contribute to pathogenesis of pneumococcal disease. This study investigated the role of pneumolysin, Ply, in facilitating S. pneumoniae invasion into the host blood stream. S. pneumoniae strains were isolated from clinical blood and sputum samples and confirmed by PCR. Expression of ply gene was assessed by infecting human monocytes and pneumocytes. A total of 23 strains of S. pneumoniae isolated from blood (n = 11) and sputum (n = 12) along with S. pneumoniae ATCC49619 were used to infect human monocyte (THP-1) and Type II pneumocyte (A549) cell lines. All clinical strains of S. pneumoniae showed higher expression of ply mRNA than the American Type Culture Collection (ATCC) strain. Among the clinical strains, blood isolates showed higher expression of ply genes than sputum isolates, i.e., 2(1.5)- to 2(1.6)-folds in THP-1 and 2(0.4)- to 2(4.9)-folds in A549 cell lines. The data from the current study demonstrated that ply gene of blood- and sputum-derived S. pneumoniae is differentially expressed in two different cell lines. Under survival pressure, ply is highly expressed in these two cell lines for blood-derived S. pneumoniae, indicating that ply gene may facilitate S. pneumoniae invasion into the host blood system.
Microfluidic antibody arrays for simultaneous cell separation and stimulus.
Liu, Yan; Germain, Todd; Pappas, Dimitri
2014-12-01
A microfluidic chip containing stamped antibody arrays was developed for simultaneous cell separation and drug testing. Poly(dimethyl siloxane) (PDMS) stamping was used to deposit antibodies in a microfluidic channel, forming discrete cell-capture regions on the surface. Cell mixtures were then introduced, resulting in the separation of cells when specific antibodies were used. Anti-CD19 antibody regions resulted in 94 % capture purity for CD19+ Ramos cells. An antibody that captures multiple cell types, for example anti-CD71, can also be used to capture several cell types simultaneously. Cells could also be loaded onto the arrays with spatial control using laminar streams. Both Ramos B cells and HuT 78 T cells were isolated in the chip and exposed to staurosporine in the same channel. Both cell lines had similar responses to the drug, with 2-10 % of cells remaining viable after 20 h of drug treatment, depending on cell type. The chip can also be used to analyze the efficacy of antibody therapy against cancer cells. Anti-CD95 was deposited on the surface and used for simultaneous cell capture and apoptosis induction via the extrinsic pathway. Cells captured on anti-CD95 surfaces had significant viability loss (15 % viability after 24 h) when compared with a control anti-CD71 antibody (81 % viability after 24 h). This chip can be used for a variety of cell separation and/or drug testing studies, enabling researchers to isolate cells and test them against different anti-cancer compounds and to follow cell response using fluorescence or other readout methods.
Lewandowski, L. J.; Lief, F. S.; Verini, M. A.; Pienkowski, M. M.; ter Meulen, V.; Koprowski, H.
1974-01-01
A virus originally isolated from cell cultures obtained by lysolecithin-induced fusion of human multiple sclerosis brain cells with CV-1 cells has been analyzed for its antigenic, RNA, and polypeptide compositions, and for selective biological properties. Our findings establish that this isolate, designated 6/94 virus, contains a 50S RNA genome and is, as yet, indistinguishable from Sendai virus in its antigenic and total polypeptide compositions. Despite these similarities, the 6/94 and Sendai viruses differ in certain phenotypic properties. 6/94 virus is markedly less cytocidal for chick fibroblasts, especially at 37 C and, after β-propiolactone inactivation, it possesses a greater capacity for cell fusion and a lower toxicity than does comparably treated Sendai virus. In addition, 6/94 virus shows greater hemolytic activity. Images PMID:4363249
Isolation of sphere-forming stem cells from the mouse inner ear.
Oshima, Kazuo; Senn, Pascal; Heller, Stefan
2009-01-01
The mammalian inner ear has very limited ability to regenerate lost sensory hair cells. This deficiency becomes apparent when hair cell loss leads to hearing loss as a result of either ototoxic insult or the aging process. Coincidently, with this inability to regenerate lost hair cells, the adult cochlea does not appear to harbor cells with a proliferative capacity that could serve as progenitor cells for lost cells. In contrast, adult mammalian vestibular sensory epithelia display a limited ability for hair cell regeneration, and sphere-forming cells with stem cell features can be isolated from the adult murine vestibular system. The neonatal inner ear, however, does harbor sphere-forming stem cells residing in cochlear and vestibular tissues. Here, we provide protocols to isolate sphere-forming stem cells from neonatal vestibular and cochlear sensory epithelia as well as from the spiral ganglion. We further describe procedures for sphere propagation, cell differentiation, and characterization of inner ear cell types derived from spheres. Sphere-forming stem cells from the mouse inner ear are an important tool for the development of cellular replacement strategies of damaged inner ears and are a bona fide progenitor cell source for transplantation studies.
Kang, Yoon-Tae; Doh, Il; Byun, Jiyoung; Chang, Hee Jin; Cho, Young-Ho
2017-01-01
We present a clinical device for simple, rapid, and viable isolation of circulating tumor cells (CTCs) from cancer patient bloods. In spite of the clinical importance of CTCs, the lack of easy and non-biased isolation methods is a big hurdle for implementing CTC into clinical use. The present device made of photosensitive polymer was designed to attach to conventional syringe to isolate the CTCs at minimal resources. Its unique tapered-slits on the filter are capable not only to isolate the cell based on their size and deformability, but also to increase sample flow rate, thus achieving label-free rapid viable CTC isolation. We verified our device performance using 9 different types of cancer cells at the cell concentration from 5 to 100cells/ml, showing that the device capture 77.7% of the CTCs while maintaining their viability of 80.6%. We extended our study using the 18 blood samples from lung, colorectal, pancreatic and renal cancer patients and captured 1-172 CTCs or clustered CTCs by immunofluorescent or immunohistochemical staining. The captured CTCs were also molecularly assayed by RT-PCR with three cancer-associated genes (CK19, EpCAM, and MUC1). Those comprehensive studies proved to use our device for cancer study, thereby inaugurating further in-depth CTC-based clinical researches.
Chen, Shaodan; Li, Xiangmin; Yong, Tianqiao; Wang, Zhanggen; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen; Yang, Burton B
2017-02-07
We conducted a study of Ganoderma lucidum metabolites and isolated 35 lanostane-type triterpenoids, including 5 new ganoderols (1-5). By spectroscopy, we compared the structures of these compounds with known related compounds in this group. All of the isolated compounds were assayed for their effect against the human breast carcinoma cell line MDA-MB-231 and hepatocellular carcinoma cell line HepG2. Corresponding three-dimensional quantitative structure-activity relationship (3D-QSAR) models were built and analyzed using Discovery Studio. These results provide further evidence for anti-cancer constituents within Ganoderma lucidum, and may provide a theoretical foundation for designing novel therapeutic compounds.
Wang, Zhanggen; Su, Jiyan; Jiao, Chunwei; Xie, Yizhen; Yang, Burton B.
2017-01-01
We conducted a study of Ganoderma lucidum metabolites and isolated 35 lanostane-type triterpenoids, including 5 new ganoderols (1-5). By spectroscopy, we compared the structures of these compounds with known related compounds in this group. All of the isolated compounds were assayed for their effect against the human breast carcinoma cell line MDA-MB-231 and hepatocellular carcinoma cell line HepG2. Corresponding three-dimensional quantitative structure–activity relationship (3D-QSAR) models were built and analyzed using Discovery Studio. These results provide further evidence for anti-cancer constituents within Ganoderma lucidum, and may provide a theoretical foundation for designing novel therapeutic compounds. PMID:28052025
Yamamuro, Kazuhiko; Yoshino, Hiroki; Ogawa, Yoichi; Makinodan, Manabu; Toritsuka, Michihiro; Yamashita, Masayuki; Corfas, Gabriel; Kishimoto, Toshifumi
2018-03-01
Juvenile social experience is crucial for the functional development of forebrain regions, especially the prefrontal cortex (PFC). We previously reported that social isolation for 2 weeks after weaning induces prefrontal cortex dysfunction and hypomyelination. However, the effect of social isolation on physiological properties of PFC neuronal circuit remained unknown. Since hypomyelination due to isolation is prominent in deep-layer of medial PFC (mPFC), we focused on 2 types of Layer-5 pyramidal cells in the mPFC: prominent h-current (PH) cells and nonprominent h-current (non-PH) cells. We found that a 2-week social isolation after weaning leads to a specific deterioration in action potential properties and reduction in excitatory synaptic inputs in PH cells. The effects of social isolation on PH cells, which involve reduction in functional glutamatergic synapses and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-d-aspartate charge ratio, are specific to the 2 weeks after weaning and to the mPFC. We conclude that juvenile social experience plays crucial roles in the functional development in a subtype of Layer-5 pyramidal cells in the mPFC. Since these neurons project to subcortical structures, a deficit in social experience during the critical period may result in immature neural circuitry between mPFC and subcortical targets. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Cell-to-cell stimulation of movement in nonmotile mutants of Myxococcus
Hodgkin, Jonathan; Kaiser, Dale
1977-01-01
A large number of nonmotile mutants of the gliding bacterium Myxococcus xanthus have been isolated and partly characterized. About [unk] of these mutants are conditional mutants of a novel kind: mutant cells become transiently motile after contact with nonmutant cells or with cells of a different mutant type. These “stimulatable” mutants fall into five phenotypic classes (types B, C, D, E, and F). Most mutants are nonstimulatable (type A) and never become motile, but type A cells (and wild-type cells) can stimulate cells of any of the other five types. Stimulatable mutants of different types are capable of stimulating each other. For example, in a mixture of B and C cells, both become motile. Linkage analysis using a generalized transducing phage has shown that each of types B, C, D, E, and F corresponds to a single distinct genetic locus. Type A mutants, by contrast, belong to at least 17 different loci. Stimulation depends on close apposition of interacting cells, because stimulation does not occur when contact between cells is prevented. It is possible that the stimulatable mutants are defective in components of the gliding mechanism that can be exchanged between cells. Alternatively, they may be defective in a system of cell communication controlling the coordinated cell movements observed in Myxococcus. Images PMID:16592422
Isolation of osteogenic cells from the trauma-activated periosteum
NASA Astrophysics Data System (ADS)
Wu, Chang-Hsiao; Bullock, John
1987-12-01
Closed, greenstick type fractures were created in adult male white New Zealand rabbits. After a waiting period of 5 days the developing callous and bone approximately 1 cm to each side of the callous was harvested and cell cultures established. Biochemical assays for total protein, alkaline phosphatase activity and glycosamino-glycan content were performed on spent media collected at each change and upon the cells after their termination, in an attempt to more fully characterize the osteoblast population. Since little is known about bone forming cells isolated from this source it is important to establish baseline data so as to be able to relate reactions of these cells to altered environmental conditions.
Gholizadeh-Ghaleh Aziz, Shiva; Pashaei-Asl, Fatima; Fardyazar, Zahra; Pashaiasl, Maryam
2016-01-01
Human stem cells and progenitor cells can be used to treat cancer and replace dysfunctional cells within a tissue or organ. The objective of this study was to identify the appropriate cells type in regenerative medicine and targeted therapy. As an alternative to embryonic and bone marrow stem cells, we examined human amniotic fluid stem cells (hAFSCs), one of the potential source of multipotent stem cells isolated from both cell pellet (using single-stage method), and supernatant of human amniotic fluid. Source of isolation and unique property of the cells emphasize that these cells are one of the promising new tools in therapeutic field. Double sources for isolation and availability of the left over samples in diagnostic laboratory at the same time have less legal and ethical concerns compared with embryonic stem cell studies. Cells were isolated, cultured for 18th passage for 6 months and characterized using qPCR and flow cytometry. Cells showed good proliferative ability in culture condition. The cells successfully differentiated into the adipogenic and osteogenic lineages. Based on these findings, amniotic fluid can be considered as an appropriate and convenient source of human amniotic fluid stem cells. These cells provide potential tools for therapeutic applications in the field of regenerative medicine. To get a better understanding of crosstalk between Oct4/NANOG with osteogenesis and adipogenesis, we used network analysis based on Common Targets algorithm and Common Regulators algorithm as well as subnetwork discovery based on gene set enrichment. Network analysis highlighted the possible role of MIR 302A and MIR let-7g. We demonstrated the high expression of MIR 302A and low expression of MIR let7g in hAFSCs by qPCR. PMID:27434028
Genetic diversity of Toxoplasma gondii isolates from Ethiopian feral cats.
Dubey, J P; Choudhary, S; Tilahun, G; Tiao, N; Gebreyes, W A; Zou, X; Su, C
2013-09-01
Recent studies indicate greater genetic variability among isolates of Toxoplasma gondii worldwide than previously thought. However, there is no information on genetic diversity of T. gondii from any host in Ethiopia. In the present study, genotyping was performed on viable T. gondii isolates by bioassays in mice from tissues and feces of 27 cats from Ethiopia. Viable T. gondii was isolated from hearts of 26 cats, feces alone of 1 cat, and feces and tissues of 6 cats; in total there were 33 isolates. Genotyping was performed on DNA from cell-cultured derived T. gondii tachyzoites and by using 10 PCR-restriction fragment length polymorphism markers (SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico). Four genotypes were recognized, including ToxoDB #1 (Type II clonal, nine isolates), ToxoDB #2 (Type III, five isolates), Toxo DB #3 (Type II variant, ten isolates), and ToxoDB #20 (nine isolates). Of interest is the isolation of different genotypes from tissues and feces of two cats, suggesting re-infection or mixed strain T. gondii infection. These findings are of epidemiological significance with respect to shedding of oocysts by cats. This is the first report of genotyping of T. gondii from any host in Ethiopia. Published by Elsevier B.V.
Stem cells from fetal membranes and amniotic fluid: markers for cell isolation and therapy.
Pozzobon, Michela; Piccoli, Martina; De Coppi, Paolo
2014-06-01
Stem cell therapy is in constant need of new cell sources to conceive regenerative medicine approaches for diseases that are still without therapy. Scientists drew the attention toward amniotic membrane and amniotic fluid stem cells, since these sources possess many advantages: first of all as cells can be extracted from discarded foetal material it is inexpensive, secondly abundant stem cells can be obtained and finally, these stem cell sources are free from ethical considerations. Many studies have demonstrated the differentiation potential in vitro and in vivo toward mesenchymal and non-mesenchymal cell types; in addition the immune-modulatory properties make these cells a good candidate for allo- and xenotransplantation. This review offers an overview on markers characterisation and on the latest findings in pre-clinical or clinical setting of the stem cell populations isolated from these sources.
Prediction of Developmentally Competent Chromatin Conformation in Mouse Antral Oocytes.
Daszkiewicz, Regina; Szymoniak, Magdalena; Gąsior, Łukasz; Polański, Zbigniew
Mouse prophase oocytes isolated from antral follicles may possess two alternative types of chromatin configuration: NSN configuration represents more dispersed chromatin and is characteristic mainly for growing oocytes whereas SN configuration, attained upon oocyte growth, comprises more condensed chromatin with a significant fraction concentrated around the nucleolus. Importantly, fully grown oocytes isolated from antral follicles represent a non-homogenous population in which some oocytes posses NSN-type and others SN-type of chromatin conformation. From these two, only oocytes with SN configuration are able to complete full development upon fertilization. We show that among mouse oocytes isolated from antral follicles, those surrounded by cumulus cells were larger and more frequently possessed SN chromatin than oocytes lacking the complete cumulus cell layer. Females primed with PMSG gave a higher number of oocytes with a complete layer of cumulus cells and the frequency of oocytes with SN chromatin was also elevated. Within the whole population of isolated antral oocytes, we observed subtle variation in size which allowed fractionation of oocytes under a stereomicroscope into groups representing oocytes of slightly different sizes. The occurrence of SN chromatin configuration was highly dependent on the oocyte size and its frequency increased gradually in subsequent size groups reaching 95-100% in the group representing the largest oocytes. These findings demonstrate that the subtle differences in the size of antral oocytes allow prediction of the status of their chromatin, thus providing a simple, fast, non-invasive and non-expensive way to select good quality oocytes for ART purposes in mammals.
Arai, Masayoshi
2016-01-01
With the development of cell biology and microbiology, it has become easy to culture many types of animal cells and microbes, and they are frequently used for phenotypic screening to explore medicinal seeds. On the other hand, it is recognized that cells and pathogenic microbes present in pathologic sites and infected regions of the human body display unique properties different from those under general culture conditions. We isolated several bioactive compounds from marine medicinal resources using constructed bioassay-guided separation focusing on the unique changes in the characteristics of cells and pathogenic microbes (Mycobacterium spp.) in the human body under disease conditions. In addition, we also carried out identification studies of target molecules of the bioactive compounds by methods utilizing the gene expression profile, transformants of cells or microbes, synthetic probe molecules of the isolated compounds, etc., since bioactive compounds isolated from the phenotypic screening system often target new molecules. This review presents our phenotypic screening systems, isolation of bioactive compounds from marine medicinal resources, and target identification of bioactive compounds.
Gascoyne, Peter R. C.; Shim, Sangjo; Noshari, Jamileh; Becker, Frederick F.; Stemke-Hale, Katherine
2013-01-01
Although dielectrophoresis (DEP) has great potential for addressing clinical cell isolation problems based on cell dielectric differences, a biological basis for predicting the DEP behavior of cells has been lacking. Here, the dielectric properties of the NCI-60 panel of tumor cell types have been measured by dielectrophoretic (DEP) field-flow fractionation, correlated with the exterior morphologies of the cells during growth, and compared with the dielectric and morphological characteristics of the subpopulations of peripheral blood. In agreement with earlier findings, cell total capacitance varied with both cell size and plasma membrane folding and the dielectric properties of the NCI-60 cell types in suspension reflected the plasma membrane area and volume of the cells at their growth sites. Therefore, the behavior of cells in DEP-based manipulations is largely determined by their exterior morphological characteristics prior to release into suspension. As a consequence, DEP is able to discriminate between cells of similar size having different morphological origins, offering a significant advantage over size-based filtering for isolating circulating tumor cells, for example. The findings provide a framework for anticipating cell dielectric behavior on the basis of structure-function relationships and suggest that DEP should be widely applicable as a surface marker-independent method for sorting cells. PMID:23172680
Nguyen, Hai X; Nguyen, Mai T T; Nguyen, Nhan T; Awale, Suresh
2017-08-25
The ethanol extract of propolis from the Vietnamese stingless bee Trigona minor possessed potent preferential cytotoxicity against PANC-1 human pancreatic cancer cells in nutrient-deprived medium, with a PC 50 value of 14.0 μg/mL. Chemical investigation of this extract led to the isolation of 15 cycloartane-type triterpenoids, including five new compounds (1-5), and a lanostane-type triterpenoid. The structures of the new compounds were elucidated on the basis of NMR spectroscopic analysis. Among the isolated compounds, 23-hydroxyisomangiferolic acid B (5) and 27-hydroxyisomangiferolic acid (13) exhibited the most potent preferential cytotoxicity against PANC-1 human pancreatic cancer cells under nutrition-deprived conditions, with PC 50 values of 4.3 and 3.7 μM, respectively.
Isolation and characterization of dental epithelial cells derived from amelogenesis imperfecta rat.
Adiningrat, A; Tanimura, A; Miyoshi, K; Hagita, H; Yanuaryska, R D; Arinawati, D Y; Horiguchi, T; Noma, T
2016-03-01
Disruption of the third zinc finger domain of specificity protein 6 (SP6) presents an enamel-specific defect in a rat model of amelogenesis imperfecta (AMI rats). To understand the molecular basis of amelogenesis imperfecta caused by the Sp6 mutation, we established and characterized AMI-derived rat dental epithelial (ARE) cells. ARE cell clones were isolated from the mandibular incisors of AMI rats, and amelogenesis-related gene expression was analyzed by reverse transcription polymerase chain reaction (RT-PCR). Localization of wild-type SP6 (SP6WT) and mutant-type SP6 (SP6AMI) was analyzed by immunocytochemistry. SP6 transcriptional activity was monitored by rho-associated protein kinase 1 (Rock1) promoter activity with its specific binding to the promoter region in dental (G5 and ARE) and non-dental (COS-7) epithelial cells. Isolated ARE cells were varied in morphology and gene expression. Both SP6WT and SP6AMI were mainly detected in nuclei. The promoter analysis revealed that SP6WT and SP6AMI enhanced Rock1 promoter activity in G5 cells but that enhancement by SP6AMI was weaker, whereas no enhancement was observed in the ARE and COS-7 cells, even though SP6WT and SP6AMI bound to the promoter in all instances. ARE cell clones can provide a useful in vitro model to study the mechanism of SP6-mediated amelogenesis imperfecta. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Park, Seon Ah; Park, Seung-Yong; Song, Chang-Seon; Choi, In-Soo; Kim, Hwi Yool; Lee, Joong-Bok; Lee, Nak-Hyung
2012-07-01
In spite of an extensive vaccination program, parvoviral infections still pose a major threat to the health of dogs. We isolated a novel canine parvovirus (CPV) strain from a dog with enteritis. Nucleotide and amino acid sequence analysis of the isolate showed that it is a novel type 2b CPV with asparagine at the 426th position and valine at the 555th position in VP2. To develop a vaccine against CPV infection, we passaged the isolate 4 times in A72 cells. The attenuated isolate conferred complete protection against lethal homologous CPV infection in dogs such that they did not develop any clinical symptoms, and their antibody titers against CPV were significantly high at 7-11 days post infection. These results suggest that the virus isolate obtained after passaging can be developed as a novel vaccine against paroviral infection.
Genomic characterization of two new enterovirus types, EV-A114 and EV-A121.
Deshpande, Jagadish M; Sharma, Deepa K; Saxena, Vinay K; Shetty, Sushmitha A; Qureshi, Tarique Husain I H; Nalavade, Uma P
2016-12-01
Enteroviruses cause a variety of illnesses of the gastrointestinal tract, central nervous system and cardiovascular system. Phylogenetic analysis of VP1 sequences has identified 106 different human enteroviruses classified into four enterovirus species within the genus Enterovirus of the family Picornaviridae. It is likely that not all enterovirus types have been discovered. Between September 2013 and October 2014, stool samples of 6274 apparently healthy children of up to 5 years of age residing in Gorakhpur district, Uttar Pradesh, India were screened for enteroviruses. Virus isolates obtained in RD and Hep-2c cells were identified by complete VP1 sequencing. Enteroviruses were isolated from 3042 samples. A total of 87 different enterovirus types were identified. Two isolates with 71 and 74 % nucleotide sequence similarity to all other known enteroviruses were recognized as novel types. In this paper we report identification and complete genome sequence analysis of these two isolates classified as EV-A114 and EV-A121.
NASA Astrophysics Data System (ADS)
Eron, Joseph J.; Gorczyca, Paul; Kaplan, Joan C.; D'Aquila, Richard T.
1992-04-01
Polymerase chain reaction (PCR) DNA quantitation (PDQ) susceptibility testing rapidly and directly measures nucleoside sensitivity of human immunodeficiency virus type 1 (HIV-1) isolates. PCR is used to quantitate the amount of HIV-1 DNA synthesized after in vitro infection of peripheral blood mononuclear cells. The relative amounts of HIV-1 DNA in cell lysates from cultures maintained at different drug concentrations reflect drug inhibition of virus replication. The results of PDQ susceptibility testing of 2- or 3-day cultures are supported by assays measuring HIV-1 p24 antigen production in supernatants of 7- or 10-day cultures. DNA sequence analyses to identify mutations in the reverse transcriptase gene that cause resistance to 3'-azido-3'-deoxythymidine also support the PDQ results. With the PDQ method, both infectivity titration and susceptibility testing can be performed on supernatants from primary cultures of peripheral blood mononuclear cells. PDQ susceptibility testing should facilitate epidemiologic studies of the clinical significance of drug-resistant HIV-1 isolates.
Leptin's effect on taste bud calcium responses and transmitter secretion.
Meredith, Tricia L; Corcoran, Alan; Roper, Stephen D
2015-05-01
Leptin, a peptide hormone released by adipose tissue, acts on the hypothalamus to control cravings and appetite. Leptin also acts to decrease taste responses to sweet substances, though there is little detailed information regarding where leptin acts in the taste transduction cascade. The present study examined the effects of leptin on sweet-evoked responses and neuro transmitter release from isolated taste buds. Our results indicate that leptin moderately decreased sweet-evoked calcium mobilization in isolated mouse taste buds. We also employed Chinese hamster ovary biosensor cells to examine taste transmitter release from isolated taste buds. Leptin reduced ATP and increased serotonin release in response to sweet stimulation. However, leptin has no effect on bitter-evoked transmitter release, further showing that the action of leptin is sweet specific. Our results support those of previous studies, which state that leptin acts on taste tissue via the leptin receptor, most likely on Type II (Receptor) cells, but also possibly on Type III (Presynaptic) cells. © The Author 2014. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Borge, O J; Funderud, S
2001-08-30
We present a literature review of the plasticity observed by adult stem cells. We have reviewed the literature regarding stem cells from adults in order to summarise their ability to generate cells of other types than those of the tissue/organ from which they were isolated. Adult stem cells have recently been demonstrated to terminally differentiate into cells of other tissues than those from which they were originally isolated. For example, bone marrow cells have been shown to generate liver, nerve, heart and skeletal muscle cells in addition to their well-known ability to produce blood and mesenchymal cells. Most studies demonstrate a proof-of-principle in animal models; much more research is needed before adult stem cells can be utilised in human medicine. However, the published reports are encouraging and give reasons for a cautious optimism with regard to future clinical use.
Vandekerckhove, Annelies P; Glorieux, S; Gryspeerdt, A C; Steukers, L; Duchateau, L; Osterrieder, N; Van de Walle, G R; Nauwynck, H J
2010-08-01
Equine herpesvirus type 1 (EHV-1) is the causative agent of equine herpes myeloencephalopathy, of which outbreaks are reported with increasing frequency throughout North America and Europe. This has resulted in its classification as a potentially emerging disease by the US Department of Agriculture. Recently, it was found that a single nucleotide polymorphism (SNP) in the viral DNA polymerase gene (ORF30) at aa 752 (N-->D) is associated with the neurovirulent potential of EHV-1. In the present study, equine respiratory mucosal explants were inoculated with several Belgian isolates typed in their ORF30 as D(752) or N(752), to evaluate a possible difference in replication in the upper respiratory tract. In addition, to evaluate whether any observed differences could be attributed to the SNP associated with neurovirulence, the experiments were repeated with parental Ab4 (reference neurovirulent strain), parental NY03 (reference non-neurovirulent strain) and their N/D revertant recombinant viruses. The salient findings were that EHV-1 spreads plaquewise in the epithelium, but plaques never cross the basement membrane (BM). However, single EHV-1-infected cells could be observed below the BM at 36 h post-inoculation (p.i.) for all N(752) isolates and at 24 h p.i. for all D(752) isolates, and were identified as monocytic cells and T lymphocytes. Interestingly, the number of infected cells was two to five times higher for D(752) isolates compared with N(752) isolates at every time point analysed. Finally, this study showed that equine respiratory explants are a valuable and reproducible model to study EHV-1 neurovirulence in vitro, thereby reducing the need for horses as experimental animals.
Hastings, C; Rand, T; Bergen, H T; Thliveris, J A; Shaw, A R; Lombaert, G A; Mantsch, H H; Giles, B L; Dakshinamurti, S; Scott, J E
2005-03-01
Stachybotry chartarum, a fungal contaminant of water-damaged buildings commonly grows on damp cellulose-containing materials. It produces a complex array of mycotoxins. Their mechanisms of action on the pulmonary system are not entirely clear. Previous studies suggest spore products may depress formation of disaturated phosphatidylcholine (DSPC), the major surface-active component of pulmonary surfactant (PS). If S. chartarum can indeed affect formation of this phospholipid, then mold exposure may be a significant issue for pulmonary function in both mature lung and developing fetal lung. To address this possibility, fetal rat type II cells, the principal source of DSPC, were used to assess effects of S. chartarum extract on formation of DSPC. Isolated fetal rat lung type II cells prelabeled with 3H-choline and incubated with spore extract showed decreased incorporation of 3H-choline into DSPC. The activity of CTP:cholinephosphate cytidylyltransferase (CPCT), the rate-limiting enzyme in phosphatidylcholine synthesis was reduced by approximately 50% by a 1:10 dilution of spore extract. Two different S. chartarum extracts (isolates from S. chartarum (Cleveland) and S. chartarum (Hawaiian)) were used to compare activity of CPCT in the presence of phosphatidylglycerol (PG), a known activator. PG produced an approximate two-fold increase in CPCT activity. The spore isolate from Hawaii did not alter enzyme activity. S. chartarum (Cleveland) eliminated the PG-induced activation of CPCT. These results support previous observations that mold products alter PS metabolism and may pose a risk in developing lung, inhibiting surfactant synthesis. Different isolates of the same species of fungus are not equivalent in terms of potential exposure risks.
Blixt, Martin; Niklasson, Bo; Sandler, Stellan
2007-01-01
Bank voles (Clethrionomys glareolus) kept in captivity develop diabetes mellitus to a significant extent. Also in wild bank voles, elevated blood glucose has been observed. A newly isolated picornavirus named Ljungan virus (LV) has been found in the pancreas of these bank voles. Moreover, LV infection in combination with environmental factors may cause glucose intolerance/diabetes (GINT/D) in normal mice. The aim of the present study was to investigate the functional characteristics of pancreatic islets, isolated from bank voles, bred in the laboratory but considered LV infected. About 20% of all males and females were classified as GINT/D following a glucose tolerance test. Of these animals the majority had become diabetic by 20 weeks of age, with a tendency towards an earlier onset in the males. GINT/D animals had increased serum insulin levels. Islets were tested on the day of isolation (day 0) and after 1 week of culture for their insulin content and their capacity to synthesize (pro)insulin, secrete insulin and metabolize glucose. Functional differences could be observed between normal and GINT/D animals as well as between genders. An elevated basal insulin secretion was observed on day 0 indicating beta-cell dysfunction among islets isolated from diabetic males. In vitro culture could reverse some functional changes. The increased serum insulin level and the increased basal islet insulin secretion may suggest that the animals had developed a type 2 diabetes-like condition. It is likely that the putative stress imposed in the laboratory, maybe in combination with LV infection, can lead to an increased functional demand on the beta-cells.
Norepinephrine is coreleased with serotonin in mouse taste buds.
Huang, Yijen A; Maruyama, Yutaka; Roper, Stephen D
2008-12-03
ATP and serotonin (5-HT) are neurotransmitters secreted from taste bud receptor (type II) and presynaptic (type III) cells, respectively. Norepinephrine (NE) has also been proposed to be a neurotransmitter or paracrine hormone in taste buds. Yet, to date, the specific stimulus for NE release in taste buds is not well understood, and the identity of the taste cells that secrete NE is not known. Chinese hamster ovary cells were transfected with alpha(1A) adrenoceptors and loaded with fura-2 ("biosensors") to detect NE secreted from isolated mouse taste buds and taste cells. Biosensors responded to low concentrations of NE (>or=10 nm) with a reliable fura-2 signal. NE biosensors did not respond to stimulation with KCl or taste compounds. However, we recorded robust responses from NE biosensors when they were positioned against mouse circumvallate taste buds and the taste buds were stimulated with KCl (50 mm) or a mixture of taste compounds (cycloheximide, 10 microm; saccharin, 2 mm; denatonium, 1 mm; SC45647, 100 microm). NE biosensor responses evoked by stimulating taste buds were reversibly blocked by prazosin, an alpha(1A) receptor antagonist. Together, these findings indicate that taste bud cells secrete NE when they are stimulated. We isolated individual taste bud cells to identify the origin of NE release. NE was secreted only from presynaptic (type III) taste cells and not receptor (type II) cells. Stimulus-evoked NE release depended on Ca(2+) in the bathing medium. Using dual biosensors (sensitive to 5-HT and NE), we found all presynaptic cells secrete 5-HT and 33% corelease NE with 5-HT.
[Breakthrough in research on pluripotent stem cells and their application in medicine].
Valdimarsdóttir, Guðrún; Richter, Anne
2015-12-01
Embryonic stem cells are, as the name indicates, isolated from embryos. They are pluripotent cells which can be maintained undifferentiated or induced to differentiate into any cell type of the body. In 1998 the first isolation of human embryonic stem cells was successful and they became an interesting source for stem cell regenerative medicine. Only 8 years later pluripotent stem cells were generated by reprogramming somatic cells into induced pluripotent stem cells (iPSCs). This was a revolution in the way people thought of cell commitment during development. Since then, a lot of research has been done in understanding the molecular biology of pluripotent stem cells. iPSCs can be generated from somatic cells of a patient and therefore have the same genome. Hence, iPSCs have great potential application in medicine, as they can be utilized in disease modelling, drug screening and cell replacement therapy.
Isolation and Culture of Neural Crest Cells from Embryonic Murine Neural Tube
Pfaltzgraff, Elise R.; Mundell, Nathan A.; Labosky, Patricia A.
2012-01-01
The embryonic neural crest (NC) is a multipotent progenitor population that originates at the dorsal aspect of the neural tube, undergoes an epithelial to mesenchymal transition (EMT) and migrates throughout the embryo, giving rise to diverse cell types 1-3. NC also has the unique ability to influence the differentiation and maturation of target organs4-6. When explanted in vitro, NC progenitors undergo self-renewal, migrate and differentiate into a variety of tissue types including neurons, glia, smooth muscle cells, cartilage and bone. NC multipotency was first described from explants of the avian neural tube7-9. In vitro isolation of NC cells facilitates the study of NC dynamics including proliferation, migration, and multipotency. Further work in the avian and rat systems demonstrated that explanted NC cells retain their NC potential when transplanted back into the embryo10-13. Because these inherent cellular properties are preserved in explanted NC progenitors, the neural tube explant assay provides an attractive option for studying the NC in vitro. To attain a better understanding of the mammalian NC, many methods have been employed to isolate NC populations. NC-derived progenitors can be cultured from post-migratory locations in both the embryo and adult to study the dynamics of post-migratory NC progenitors11,14-20, however isolation of NC progenitors as they emigrate from the neural tube provides optimal preservation of NC cell potential and migratory properties13,21,22. Some protocols employ fluorescence activated cell sorting (FACS) to isolate a NC population enriched for particular progenitors11,13,14,17. However, when starting with early stage embryos, cell numbers adequate for analyses are difficult to obtain with FACS, complicating the isolation of early NC populations from individual embryos. Here, we describe an approach that does not rely on FACS and results in an approximately 96% pure NC population based on a Wnt1-Cre activated lineage reporter23. The method presented here is adapted from protocols optimized for the culture of rat NC11,13. The advantages of this protocol compared to previous methods are that 1) the cells are not grown on a feeder layer, 2) FACS is not required to obtain a relatively pure NC population, 3) premigratory NC cells are isolated and 4) results are easily quantified. Furthermore, this protocol can be used for isolation of NC from any mutant mouse model, facilitating the study of NC characteristics with different genetic manipulations. The limitation of this approach is that the NC is removed from the context of the embryo, which is known to influence the survival, migration and differentiation of the NC2,24-28. PMID:22688801
Woma, Timothy Y; van Vuuren, Moritz; Bosman, Ana-Mari; Quan, Melvyn; Oosthuizen, Marinda
2010-07-14
There are no reports of CDV isolations in southern Africa, and although CDV is said to have geographically distinct lineages, molecular information of African strains has not yet been documented. Viruses isolated in cell cultures were subjected to reverse transcription-polymerase chain reaction (RT-PCR), and the complete H gene was sequenced and phylogenetically analysed with other strains from GenBank. Phylogenetic comparisons of the complete H gene of CDV isolates from different parts of the world (available in GenBank) with wild-type South African isolates revealed nine clades. All South African isolates form a separate African clade of their own and thus are clearly separated from the American, European, Asian, Arctic and vaccine virus clades. It is likely that only the 'African lineage' of CDV may be circulating in South Africa currently, and the viruses isolated from dogs vaccinated against CDV are not the result of reversion to virulence of vaccine strains, but infection with wild-type strains. (c) 2009 Elsevier B.V. All rights reserved.
Purification of Lysosomes Using Supraparamagnetic Iron Oxide Nanoparticles (SPIONs).
Rofe, Adam P; Pryor, Paul R
2016-04-01
Lysosomes can be rapidly isolated from tissue culture cells using supraparamagnetic iron oxide particles (SPIONs). In this protocol, colloidal iron dextran (FeDex) particles, a type of SPION, are taken up by cultured mouse macrophage cells via the endocytic pathway. The SPIONs accumulate in lysosomes, the end point of the endocytic pathway, permitting the lysosomes to be isolated magnetically. The purified lysosomes are suitable for in vitro fusion assays or for proteomic analysis. © 2016 Cold Spring Harbor Laboratory Press.
Isolation and biological evaluation of jatrophane diterpenoids from Euphorbia dendroides.
Aljancić, Ivana S; Pesić, Milica; Milosavljević, Slobodan M; Todorović, Nina M; Jadranin, Milka; Milosavljević, Goran; Povrenović, Dragan; Banković, Jasna; Tanić, Nikola; Marković, Ivanka D; Ruzdijić, Sabera; Vajs, Vlatka E; Tesević, Vele V
2011-07-22
From the Montenegrin spurge Euphorbia dendroides, seven new diterpenoids [jatrophanes (1-6) and a tigliane (7)] were isolated and their structures elucidated by spectroscopic techniques. The biological activity of the new compounds was studied against four human cancer cell lines. The most effective jatrophane-type compound (2) and its structurally closely related derivative (1) were evaluated for their interactions with paclitaxel and doxorubicin using a multi-drug-resistant cancer cell line. Both compounds exerted a strong reversal potential resulting from inhibition of P-glycoprotein transport.
Typing of mutans streptococci by arbitrarily primed polymerase chain reaction.
Saarela, M; Hannula, J; Mättö, J; Asikainen, S; Alaluusua, S
1996-01-01
The discriminative power of the arbitrarily primed polymerase chain reaction (AP-PCR) in differentiating between Streptococcus mutans and Strep. sobrinus species, serotypes and clones was investigated. Mutans streptococcal isolates (12(7)) obtained from 65 individuals (1-10 isolates per individual) were AP-PCR typed separately with two random primers, OPA-05 and OPA-13. Bacterial cell lysates were used as a template in PCR reactions, which made AP-PCR easy and fast to perform. Eighty-one isolates from 19 individuals were also ribotyped to compare the discriminative ability of ribotyping and AP-PCR techniques. AP-PCR performed with the two primers differentiated between Strep. mutans and Strep. sobrinus isolates, but neither primer detected serotype-specific amplification products. OPA-05 distinguished two main AP-PCR patterns among Strep. mutans isolates and one main pattern among Strep. sobrinus isolates, whereas OPA-13 found one main AP-PCR pattern among Strep. mutans isolates and two main patterns among Strep. sobrinus isolates. Ribotyping and AP-PCR revealed 40 and 33 different types among 81 selected isolates, respectively. Both techniques detected intra-individual heterogeneity in 16 out of 19 participants. The results indicate that AP-PCR has good discriminative ability in differentiating between mutans streptococcal clones and that the technique is suitable for epidemiological studies on mutans streptococci.
Statistical Modeling of Single Target Cell Encapsulation
Moon, SangJun; Ceyhan, Elvan; Gurkan, Umut Atakan; Demirci, Utkan
2011-01-01
High throughput drop-on-demand systems for separation and encapsulation of individual target cells from heterogeneous mixtures of multiple cell types is an emerging method in biotechnology that has broad applications in tissue engineering and regenerative medicine, genomics, and cryobiology. However, cell encapsulation in droplets is a random process that is hard to control. Statistical models can provide an understanding of the underlying processes and estimation of the relevant parameters, and enable reliable and repeatable control over the encapsulation of cells in droplets during the isolation process with high confidence level. We have modeled and experimentally verified a microdroplet-based cell encapsulation process for various combinations of cell loading and target cell concentrations. Here, we explain theoretically and validate experimentally a model to isolate and pattern single target cells from heterogeneous mixtures without using complex peripheral systems. PMID:21814548
Weng, Tingting; Gao, Li; Bhaskaran, Manoj; Guo, Yujie; Gou, Deming; Narayanaperumal, Jeyaparthasarathy; Chintagari, Narendranath Reddy; Zhang, Kexiong; Liu, Lin
2009-10-09
The role of pleiotrophin in fetal lung development was investigated. We found that pleiotrophin and its receptor, protein-tyrosine phosphatase receptor beta/zeta, were highly expressed in mesenchymal and epithelial cells of the fetal lungs, respectively. Using isolated fetal alveolar epithelial type II cells, we demonstrated that pleiotrophin promoted fetal type II cell proliferation and arrested type II cell trans-differentiation into alveolar epithelial type I cells. Pleiotrophin also increased wound healing of injured type II cell monolayer. Knockdown of pleiotrophin influenced lung branching morphogenesis in a fetal lung organ culture model. Pleiotrophin increased the tyrosine phosphorylation of beta-catenin, promoted beta-catenin translocation into the nucleus, and activated T cell factor/lymphoid enhancer factor transcription factors. Dlk1, a membrane ligand that initiates the Notch signaling pathway, was identified as a downstream target of the pleiotrophin/beta-catenin pathway by endogenous dlk1 expression, promoter assay, and chromatin immunoprecipitation. These results provide evidence that pleiotrophin regulates fetal type II cell proliferation and differentiation via integration of multiple signaling pathways including pleiotrophin, beta-catenin, and Notch pathways.
Balachandran, C; Sangeetha, B; Duraipandiyan, V; Raj, M Karunai; Ignacimuthu, S; Al-Dhabi, N A; Balakrishna, K; Parthasarathy, K; Arulmozhi, N M; Arasu, M Valan
2014-12-05
The aim of this study was to investigate the anticancer activity of a flavonoid type of compound isolated from soil derived filamentous bacterium Streptomyces sp. (ERINLG-4) and to explore the molecular mechanisms of action. Cytotoxic properties of ethyl acetate extract was carried out against A549 lung cancer cell line using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Cytotoxic properties of isolated compound were investigated in A549 lung cancer cell line, COLO320DM cancer cell line and Vero cells. The compound showed potent cytotoxic properties against A549 lung cancer cell line and moderate cytotoxic properties against COLO320DM cancer cell line. Isolated compound showed no toxicity up to 2000 μg/mL in Vero cells. So we have chosen the A549 lung cancer cell line for further anticancer studies. Intracellular visualization was done by using a laser scanning confocal microscope. Apoptosis was measured using DNA fragmentation technique. Treatment of the A549 cancer cells with isolated compound significantly reduced cell proliferation, increased formation of fragmented DNA and apoptotic body. Activation of caspase-9 and caspase-3 indicated that compound may be inducing intrinsic and extrinsic apoptosis pathways. Bcl-2, p53, pro-caspases, caspase-3, caspase-9 and cytochrome c release were detected by western blotting analysis after compound treatment (123 and 164 μM). The activities of pro-caspases-3, caspase-9 cleaved to caspase-3 and caspase-9 gradually increased after the addition of isolated compound. But Bcl-2 protein was down regulated after treatment with isolated compound. Molecular docking studies showed that the compound bound stably to the active sites of caspase-3 and caspase-9. These results strongly suggest that the isolated compound induces apoptosis in A549 cancer cells via caspase activation through cytochrome c release from mitochondria. The present results might provide helpful suggestions for the design of antitumor drugs toward lung cancer treatment. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Adenosine enhances sweet taste through A2B receptors in the taste bud
Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D.
2012-01-01
Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (Type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca2+ mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 µM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (Type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 µM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell RT-PCR on isolated vallate taste cells, we show that many Receptor cells express adenosine receptors, Adora2b, while Presynaptic (Type III) and Glial-like (Type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5′-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase (ACPP). Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste. PMID:22219293
Adenosine enhances sweet taste through A2B receptors in the taste bud.
Dando, Robin; Dvoryanchikov, Gennady; Pereira, Elizabeth; Chaudhari, Nirupa; Roper, Stephen D
2012-01-04
Mammalian taste buds use ATP as a neurotransmitter. Taste Receptor (type II) cells secrete ATP via gap junction hemichannels into the narrow extracellular spaces within a taste bud. This ATP excites primary sensory afferent fibers and also stimulates neighboring taste bud cells. Here we show that extracellular ATP is enzymatically degraded to adenosine within mouse vallate taste buds and that this nucleoside acts as an autocrine neuromodulator to selectively enhance sweet taste. In Receptor cells in a lingual slice preparation, Ca(2+) mobilization evoked by focally applied artificial sweeteners was significantly enhanced by adenosine (50 μM). Adenosine had no effect on bitter or umami taste responses, and the nucleoside did not affect Presynaptic (type III) taste cells. We also used biosensor cells to measure transmitter release from isolated taste buds. Adenosine (5 μM) enhanced ATP release evoked by sweet but not bitter taste stimuli. Using single-cell reverse transcriptase (RT)-PCR on isolated vallate taste cells, we show that many Receptor cells express the adenosine receptor, Adora2b, while Presynaptic (type III) and Glial-like (type I) cells seldom do. Furthermore, Adora2b receptors are significantly associated with expression of the sweet taste receptor subunit, Tas1r2. Adenosine is generated during taste stimulation mainly by the action of the ecto-5'-nucleotidase, NT5E, and to a lesser extent, prostatic acid phosphatase. Both these ecto-nucleotidases are expressed by Presynaptic cells, as shown by single-cell RT-PCR, enzyme histochemistry, and immunofluorescence. Our findings suggest that ATP released during taste reception is degraded to adenosine to exert positive modulation particularly on sweet taste.
Andrys, D; Adaszyńska-Skwirzyńska, M; Kulpa, D
2018-04-01
The aim of the study was to determine the influence of the essential oils isolated from the field - grown and micropropagated in vitro narrow - leaved lavender of the 'Munstead' cultivar, on human skin cells, and their capability to synthesise procollagen. The amount of procollagen type I produced by fibroblast cells was determined using ELISA kit. Essential oil isolated from micropropagated lavender was further used as a protective ingredient against the development of microorganisms in O/W cosmetic emulsion. The presented results demonstrate that the use of 0.01, 0.001 and 0.0001% essential oils isolated from in vitro plants stimulate HSF cells to the production of procollagen. It was further performed that the tested essential oil used in the concentration of 0.1% in a cosmetic emulsion is characterised by preservative effect for cosmetic preparations for the period of 3 months.
Reporter-Based Isolation of Developmental Myogenic Progenitors
Kheir, Eyemen; Cusella, Gabriella; Messina, Graziella; Cossu, Giulio; Biressi, Stefano
2018-01-01
The formation and activity of mammalian tissues entail finely regulated processes, involving the concerted organization and interaction of multiple cell types. In recent years the prospective isolation of distinct progenitor and stem cell populations has become a powerful tool in the hands of developmental biologists and has rendered the investigation of their intrinsic properties possible. In this protocol, we describe how to purify progenitors with different lineage history and degree of differentiation from embryonic and fetal skeletal muscle by fluorescence-activated cell sorting (FACS). The approach takes advantage of a panel of murine strains expressing fluorescent reporter genes specifically in the myogenic progenitors. We provide a detailed description of the dissection procedures and of the enzymatic dissociation required to maximize the yield of mononucleated cells for subsequent FACS-based purification. The procedure takes ~6–7 h to complete and allows for the isolation and the subsequent molecular and phenotypic characterization of developmental myogenic progenitors. PMID:29674978
Schneider, Sandra; Unger, Marina; van Griensven, Martijn; Balmayor, Elizabeth R
2017-05-19
The use of mesenchymal stem cells (MSCs) in research and in regenerative medicine has progressed. Bone marrow as a source has drawbacks because of subsequent morbidities. An easily accessible and valuable source is adipose tissue. This type of tissue contains a high number of MSCs, and obtaining higher quantities of tissue is more feasible. Fat tissue can be harvested using different methods such as liposuction and resection. First, a detailed isolation protocol with complete characterization is described. This also includes highlighting problems and pitfalls. Furthermore, some comparisons of these different harvesting methods exist. However, the later characterization of the cells is conducted poorly in most cases. We performed an in-depth characterization over five passages including an investigation of the effect of freezing and thawing. Characterization was performed using flow cytometry with CD markers, metabolic activity with Alamar Blue, growth potential in between passages, and cytoskeleton staining. Our results show that the cells isolated with distinct isolation methods (solid versus liposuction "liquid") have the same MSC potential. However, the percentage of cells positive for the markers CD73, CD90, and CD105 is initially quite low. The cells isolated from the liquid fat tissue grow faster at higher passages, and significantly more cells display MSC markers. In summary, we show a simple and efficient method to isolate adipose-derived mesenchymal stem cells from different preparations. Liposuctions and resection can be used, whereas liposuction has more growth potential at higher passages.
Reading, Patrick C; Leung, Vivian K; Buettner, Iwona; Gillespie, Leah; Deng, Yi-Mo; Shaw, Robert; Spirason, Natalie; Todd, Angela; Shah, Aparna Singh; Konings, Frank; Barr, Ian G
2017-12-01
The isolation and propagation of influenza viruses from clinical specimens are essential tools for comprehensive virologic surveillance. Influenza viruses must be amplified in cell culture for detailed antigenic analysis and for phenotypic assays assessing susceptibility to antiviral drugs or for other assays. To conduct an external quality assessment (EQA) of proficiency for isolation and identification of influenza viruses using cell culture techniques among National Influenza Centres (NICs) in the World Health Organisation (WHO) South East Asia and Western Pacific Regions. Twenty-one NICs performed routine influenza virus isolation and identification techniques on a proficiency testing panel comprising 16 samples, containing influenza A or B viruses and negative control samples. One sample was used exclusively to determine their capacity to measure hemagglutination titer and the other 15 samples were used for virus isolation and identification. All NICs performed influenza virus isolation using Madin Darby canine kidney (MDCK) or MDCK-SIAT-1 cells. If virus growth was detected, the type, subtype and/or lineage of virus present in isolates was determined using immunofluorescence, RT-PCR and/or hemagglutination inhibition (HI) assays. Most participating laboratories could detect influenza virus growth and could identify virus amplified from EQA samples. However, some laboratories failed to isolate and identify viruses from EQA samples that contained lower titres of virus, highlighting issues regarding the sensitivity of influenza virus isolation methods between laboratories. This first round of EQA was successfully conducted by NICs in the Asia Pacific Region, revealing good proficiency in influenza virus isolation and identification. Copyright © 2017 Elsevier B.V. All rights reserved.
Kroneis, Thomas; El-Heliebi, Amin
2015-01-01
Understanding details of a complex biological system makes it necessary to dismantle it down to its components. Immunostaining techniques allow identification of several distinct cell types thereby giving an inside view of intercellular heterogeneity. Often staining reveals that the most remarkable cells are the rarest. To further characterize the target cells on a molecular level, single cell techniques are necessary. Here, we describe the immunostaining, micromanipulation, and whole genome amplification of single cells for the purpose of genomic characterization. First, we exemplify the preparation of cell suspensions from cultured cells as well as the isolation of peripheral mononucleated cells from blood. The target cell population is then subjected to immunostaining. After cytocentrifugation target cells are isolated by micromanipulation and forwarded to whole genome amplification. For whole genome amplification, we use GenomePlex(®) technology allowing downstream genomic analysis such as array-comparative genomic hybridization.
Zhao, Jianjun; Yan, Ruxun; Zhang, Hailing; Zhang, Lei; Hu, Bo; Bai, Xue; Shao, Xiqun; Chai, Xiuli; Yan, Xijun; Wu, Wei
2012-12-04
The signaling lymphocyte activation molecule (SLAM, also known as CD150), is used as a cellular receptor by canine distemper virus (CDV). Wild-type strains of CDVs can be isolated and propagated efficiently in non-lymphoid cells expressing this protein. Our aim is to establish a Vero cells expressing raccoon dog SLAM (rSLAM) to efficiently isolate CDV from pathological samples. A eukaryotic expression plasmid, pIRES2-EGFP-rSLAMhis, containing rSLAM gene fused with six histidine-coding sequence, EGFP gene, and neomycin resistance gene was constructed. After transfection with the plasmid, a stable cell line, Vero-rSLAM, was screened from Vero cells with the identification of EGFP reporter and G418 resistance. Three CD positive specimens from infected foxes and raccoon dogs were inoculated to Vero-rSLAM cells for CDV isolation. Foxes and raccoon dogs were inoculated subcutaneously LN (10)fl strain with 4 x 10(2.39)TCID50 dose to evaluate pathogenicity of CDV isolations. The rSLAMh fused gene was shown to transcript and express stably in Vero-rSLAM cells by RT-PCR and Immunohistochemistry assay. Three CDV strains were isolated successfully in Vero-rSLAM cells 36 -48 hours after inoculation with spleen or lung specimens from foxes and raccoon dogs with distemper. By contrast, no CDV was recovered from those CD positive specimens when Vero cells were used for virus isolation. Infected foxes and raccoon dogs with LN(10)f1 strain all showed typical CD symptoms and high mortality (2/3 for foxes and 3/3 for raccoon dogs) in 22 days post challenge. Our results indicate that Vero-rSLAM cells stably expressing raccoon dog SLAM are highly sensitive to CDV in clinical specimens and the CDV isolation can maintain high virulence to its host animals.
Isolation of Circulating Tumor Cells by Dielectrophoresis
Gascoyne, Peter R. C.; Shim, Sangjo
2014-01-01
Dielectrophoresis (DEP) is an electrokinetic method that allows intrinsic dielectric properties of suspended cells to be exploited for discrimination and separation. It has emerged as a promising method for isolating circulation tumor cells (CTCs) from blood. DEP-isolation of CTCs is independent of cell surface markers. Furthermore, isolated CTCs are viable and can be maintained in culture, suggesting that DEP methods should be more generally applicable than antibody-based approaches. The aim of this article is to review and synthesize for both oncologists and biomedical engineers interested in CTC isolation the pertinent characteristics of DEP and CTCs. The aim is to promote an understanding of the factors involved in realizing DEP-based instruments having both sufficient discrimination and throughput to allow routine analysis of CTCs in clinical practice. The article brings together: (a) the principles of DEP; (b) the biological basis for the dielectric differences between CTCs and blood cells; (c) why such differences are expected to be present for all types of tumors; and (d) instrumentation requirements to process 10 mL blood specimens in less than 1 h to enable routine clinical analysis. The force equilibrium method of dielectrophoretic field-flow fractionation (DEP-FFF) is shown to offer higher discrimination and throughput than earlier DEP trapping methods and to be applicable to clinical studies. PMID:24662940
Miller, N W; Deuter, A; Clem, L W
1986-01-01
Vigorous mixed leucocyte reactions (MLR) were obtained using channel catfish peripheral blood leucocytes (PBL) when equal numbers of responder and stimulator cells (5 X 10(5) cells each) were cocultured. The use of 2000 rads of X-irradiation was sufficient to block subsequent proliferative responses of the stimulator cells. The cellular requirements for channel catfish MLR responses were assessed by using three functionally distinct leucocyte subpopulations isolated from the PBL. B cells (sIg+ lymphocytes) and T cells (sIg- lymphocytes) were isolated by an indirect panning procedure employing a monoclonal antibody specific for channel catfish Ig. A third population, monocytes, was isolated or depleted by adherence to baby hamster kidney cell microexudate-coated surfaces or adherence to Sephadex G-10, respectively. The results indicated that only the T cells were able to respond in the fish MLR, with monocytes being required as accessory cells. In contrast, all three cell types could function as stimulator cells. In addition, it was observed that low in vitro culture temperatures inhibited the generation of channel catfish MLRs, thereby supporting the contention that low temperature immunosuppression in fish results from a preferential inhibition of the generation of primary T-cell responses. PMID:2944817
From “ES-like” cells to induced pluripotent stem cells: A historical perspective in domestic animals
Koh, Sehwon; Piedrahita, Jorge A.
2013-01-01
Pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide great potential as cell sources for gene editing to generate genetically modified animals, as well as in the field of regenerative medicine. Stable, long-term ESCs have been established in laboratory mouse and rat, however, isolation of true pluripotent ESCs in domesticated animals such as pigs and dogs have been less successful. Initially, domesticated animal pluripotent cell lines were referred to as “ES-like” cells due to similar morphological characteristics to mouse ESCs but accompanied by a limited ability to proliferate in vitro in an undifferentiated state. That is, they shared some but not all the characteristics of true ESCs. More recently, advances in reprogramming using exogenous transcription factors, combined with the utilization of small chemical inhibitors of key biochemical pathways, have led to the isolation of induced pluripotent stem cells. In this review, we provide a historical perspective of the isolation of various types of pluripotent stem cells in domesticated animals. In addition, we summarize the latest progress and limitations in the derivation and application of induced pluripotent stem cells. PMID:24274415
Evolution of supersonic corner vortex in a hypersonic inlet/isolator model
NASA Astrophysics Data System (ADS)
Huang, He-Xia; Tan, Hui-Jun; Sun, Shu; Ling, Yu
2016-12-01
There are complex corner vortex flows in a rectangular hypersonic inlet/isolator. The corner vortex propagates downstream and interacts with the shocks and expansion waves in the isolator repeatedly. The supersonic corner vortex in a generic hypersonic inlet/isolator model is theoretically and numerically analyzed at a freestream Mach number of 4.92. The cross-flow topology of the corner vortex flow is found to obey Zhang's theory ["Analytical analysis of subsonic and supersonic vortex formation," Acta Aerodyn. Sin. 13, 259-264 (1995)] strictly, except for the short process with the vortex core situated in a subsonic flow which is surrounded by a supersonic flow. In general, the evolution history of the corner vortex under the influence of the background waves in the hypersonic inlet/isolator model can be classified into two types, namely, from the adverse pressure gradient region to the favorable pressure gradient region and the reversed one. For type 1, the corner vortex is a one-celled vortex with the cross-sectional streamlines spiraling inwards at first. Then the Hopf bifurcation occurs and the streamlines in the outer part of the limit cycle switch to spiraling outwards, yielding a two-celled vortex. The limit cycle shrinks gradually and finally vanishes with the streamlines of the entire corner vortex spiraling outwards. For type 2, the cross-sectional streamlines of the corner vortex spiral outwards first. Then a stable limit cycle is formed, yielding a two-celled vortex. The short-lived limit cycle forces the streamlines in the corner vortex to change the spiraling trends rapidly. Although it is found in this paper that there are some defects on the theoretical proof of the limit cycle, Zhang's theory is proven useful for the prediction and qualitative analysis of the complex corner vortex in a hypersonic inlet/isolator. In addition, three conservation laws inside the limit cycle are obtained.
Kellner, Manuela; Steindorff, Marina M; Strempel, Jürgen F; Winkel, Andreas; Kühnel, Mark P; Stiesch, Meike
2014-06-01
Autologous therapy via stem cell-based tissue regeneration is an aim to rebuild natural teeth. One option is the use of adult stem cells from the dental pulp (DPSCs), which have been shown to differentiate into several types of tissue in vitro and in vivo, especially into tooth-like structures. DPSCs are mainly isolated from the dental pulp of third molars routinely extracted for orthodontic reasons. Due to the extraction of third molars at various phases of life, DPSCs are isolated at different developmental stages of the tooth. The present study addressed the question whether DPSCs from patients of different ages were similar in their growth characteristics with respect to the stage of tooth development. Therefore DPSCs from third molars of 12-30 year-old patients were extracted, and growth characteristics, e.g. doubling time and maximal cell division potential were analysed. In addition, pulp and hard dental material weight were recorded. Irrespective of the age of patients almost all isolated cells reached 40-60 generations with no correlation between maximal cell division potential and patient age. Cells from patients <22 years showed a significantly faster doubling time than the cells from patients ≥22 years. The age of patients at the time of stem cell isolation is not a crucial factor concerning maximal cell division potential, but does have an impact on the doubling time. However, differences in individuals regarding growth characteristics were more pronounced than age-dependent differences. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pel, Pisey; Chae, Hee-Sung; Nhoek, Piseth; Kim, Young-Mi; Chin, Young-Won
2017-07-05
Phytochemical investigation for a chloroform-soluble extract of dried Morus alba fruits, selected by proprotein convertase subtilisin-kexin type 9 (PCSK9) mRNA expression monitoring assay in HepG2 cells, led to the isolation of a new benzofuran, isomoracin D (1), and a naturally occurring compound, N-(N-benzoyl-l-phenylalanyl)-l-phenylalanol (2), along with 13 known compounds (3-15). All of the structures were established by NMR spectroscopic data as well as MS analysis. Of the isolates, moracin C (7) was found to inhibit PCSK9 mRNA expression with an IC 50 value of 16.8 μM in the HepG2 cells.
Gastrointestinal Epithelial Organoid Cultures from Postsurgical Tissues.
Hahn, Soojung; Yoo, Jongman
2017-08-17
An organoid is a cellular structure three-dimensionally (3D) cultured from self-organizing stem cells in vitro, which has a cell population, architectures, and organ specific functions like the originating organs. Recent advances in the 3D culture of isolated intestinal crypts or gastric glands have enabled the generation of human gastrointestinal epithelial organoids. Gastrointestinal organoids recapitulate the human in vivo physiology because of all the intestinal epithelial cell types that differentiated and proliferated from tissue resident stem cells. Thus far, gastrointestinal organoids have been extensively used for generating gastrointestinal disease models. This protocol describes the method of isolating a gland or crypt using stomach or colon tissue after surgery and establishing them into gastroids or colonoids.
Preisner, Ornella; Guiomar, Raquel; Machado, Jorge; Menezes, José Cardoso; Lopes, João Almeida
2010-06-01
Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques were used to discriminate five closely related Salmonella enterica serotype Enteritidis phage types, phage type 1 (PT1), PT1b, PT4b, PT6, and PT6a. Intact cells and outer membrane protein (OMP) extracts from bacterial cell membranes were subjected to FT-IR analysis in transmittance mode. Spectra were collected over a wavenumber range from 4,000 to 600 cm(-1). Partial least-squares discriminant analysis (PLS-DA) was used to develop calibration models based on preprocessed FT-IR spectra. The analysis based on OMP extracts provided greater separation between the Salmonella Enteritidis PT1-PT1b, PT4b, and PT6-PT6a groups than the intact cell analysis. When these three phage type groups were considered, the method based on OMP extract FT-IR spectra was 100% accurate. Moreover, complementary local models that considered only the PT1-PT1b and PT6-PT6a groups were developed, and the level of discrimination increased. PT1 and PT1b isolates were differentiated successfully with the local model using the entire OMP extract spectrum (98.3% correct predictions), whereas the accuracy of discrimination between PT6 and PT6a isolates was 86.0%. Isolates belonging to different phage types (PT19, PT20, and PT21) were used with the model to test its robustness. For the first time it was demonstrated that FT-IR analysis of OMP extracts can be used for construction of robust models that allow fast and accurate discrimination of different Salmonella Enteritidis phage types.
Morrison, Ellen; Kosiak, Barbara; Ritieni, Alberto; Aastveit, Are H; Uhlig, Silvio; Bernhoft, Aksel
2002-05-08
The secondary metabolites of 24 isolates of Fusarium avenaceum from Norwegian cereals and grown on rice have been characterized. Moniliformin (MON), enniatins (ENNs), and beauvericin (BEA) were analyzed by high-performance liquid chromatography. Porcine kidney epithelial cells (PK15, American Type Culture Collection) were used to study the cytotoxicity of MON in the extracts. The following metabolites were produced by all isolates, ranked by concentration in rice cultures: ENN-B, MON, ENN-B1, and ENN-A. BEA was produced by eight isolates. The productions of BEA and ENN-A were significantly correlated, as was the case with ENN-B and ENN-B1. MON production was correlated neither to any of the other toxins nor to toxicity.
Hsieh-Bonassera, Nancy D; Wu, Iwen; Lin, Jonathan K; Schumacher, Barbara L; Chen, Albert C; Masuda, Koichi; Bugbee, William D; Sah, Robert L
2009-11-01
To determine if selected culture conditions enhance the expansion and redifferentiation of chondrocytes isolated from human osteoarthritic cartilage with yields appropriate for creation of constructs for treatment of joint-scale cartilage defects, damage, or osteoarthritis. Chondrocytes isolated from osteoarthritic cartilage were analyzed to determine the effects of medium supplement on cell expansion in monolayer and then cell redifferentiation in alginate beads. Expansion was assessed as cell number estimated from DNA, growth rate, and day of maximal growth. Redifferentiation was evaluated quantitatively from proteoglycan and collagen type II content, and qualitatively by histology and immunohistochemistry. Using either serum or a growth factor cocktail (TFP: transforming growth factor beta1, fibroblast growth factor 2, and platelet-derived growth factor type bb), cell growth rate in monolayer was increased to 5.5x that of corresponding conditions without TFP, and cell number increased 100-fold within 17 days. In subsequent alginate bead culture with human serum or transforming growth factor beta1 and insulin-transferrin-selenium-linoleic acid-bovine serum albumin, redifferentiation was enhanced with increased proteoglycan and collagen type II production. Effects of human serum were dose dependent, and 5% or higher induced formation of chondron-like structures with abundant proteoglycan-rich matrix. Chondrocytes from osteoarthritic cartilage can be stimulated to undergo 100-fold expansion and then redifferentiation, suggesting that they may be useful as a cell source for joint-scale cartilage tissue engineering.
Liu, Shing-Hwa; Su, Chin-Chuan; Lee, Kuan-I; Chen, Ya-Wen
2016-01-01
Bisphenol A (BPA) is recognized as a major pollutant worldwide. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) is a major active metabolite of BPA. The epidemiological and animal studies have reported that BPA is harmful to lung function. The role of MBP in lung dysfunction after BPA exposure still remains unclear. This study investigated whether MBP would induce lung alveolar cell damage and evaluated the role of MBP in the BPA exposure-induced lung dysfunction. An in vitro type 2 alveolar epithelial cell (L2) model and an ex vivo isolated reperfused rat lung model were used to determine the effects of BPA or MBP on cell growth and lung function. MBP, but not BPA, dose-dependently increased the mean artery pressure (Pa), pulmonary capillary pressure (Pc), pulmonary capillary filtration coefficient (Kfc), and wet/dry weight ratio in isolated reperfused rat lungs. MBP significantly reduced cell viability and induced caspases-3/7 cleavage and apoptosis and increased AMP-activated protein kinas (AMPK) phosphorylation and endoplasmic reticulum (ER) stress-related molecules expression in L2 cells, which could be reversed by AMPK-siRNA transfection. These findings demonstrated for the first time that MBP exposure induced type 2 alveolar cell apoptosis and lung dysfunction through an AMPK-regulated ER stress signaling pathway. PMID:27982077
Liu, Shing-Hwa; Su, Chin-Chuan; Lee, Kuan-I; Chen, Ya-Wen
2016-12-16
Bisphenol A (BPA) is recognized as a major pollutant worldwide. 4-Methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP) is a major active metabolite of BPA. The epidemiological and animal studies have reported that BPA is harmful to lung function. The role of MBP in lung dysfunction after BPA exposure still remains unclear. This study investigated whether MBP would induce lung alveolar cell damage and evaluated the role of MBP in the BPA exposure-induced lung dysfunction. An in vitro type 2 alveolar epithelial cell (L2) model and an ex vivo isolated reperfused rat lung model were used to determine the effects of BPA or MBP on cell growth and lung function. MBP, but not BPA, dose-dependently increased the mean artery pressure (Pa), pulmonary capillary pressure (Pc), pulmonary capillary filtration coefficient (K fc ), and wet/dry weight ratio in isolated reperfused rat lungs. MBP significantly reduced cell viability and induced caspases-3/7 cleavage and apoptosis and increased AMP-activated protein kinas (AMPK) phosphorylation and endoplasmic reticulum (ER) stress-related molecules expression in L2 cells, which could be reversed by AMPK-siRNA transfection. These findings demonstrated for the first time that MBP exposure induced type 2 alveolar cell apoptosis and lung dysfunction through an AMPK-regulated ER stress signaling pathway.
Oleanane-type saponins from Anemone taipaiensis and their cytotoxic activities.
Wang, Xiaoyang; Zhang, Wei; Gao, Kai; Lu, Yunyang; Tang, Haifeng; Sun, Xiaoli
2013-09-01
Phytochemical investigation of the n-BuOH extract of the rhizomes of Anemone taipaiensis led to the isolation of three new oleanane-type triterpenoid saponins (1-3), together with four known saponins (4-7). Their structures were elucidated on the basis of spectroscopic analysis and chemical derivatization. All the compounds were isolated for the first time from A. taipaiensis. The cytotoxicity of these compounds was evaluated in five human cancer cell lines including A549 (lung carcinoma), HeLa (cervical carcinoma), HepG2 (hepatocellular carcinoma), HL-60 (promyelocytic leukemia), and U87MG (glioblastoma). The monodesmosidic saponin 4 exhibited cytotoxic activity toward all cancer cell lines, with IC50 values ranging from 6.42 to 18.16 μM. In addition, the bisdesmosidic saponins 1 and 7 showed selective cytotoxicity against the U87MG cells. Copyright © 2013 Elsevier B.V. All rights reserved.
Sukumaran, Sunil K.; Margolskee, Robert F.; Bachmanov, Alexander A.
2016-01-01
Responses in the amiloride-insensitive (AI) pathway, one of the two pathways mediating salty taste in mammals, are modulated by the size of the anion of a salt. This “anion effect” has been hypothesized to result from inhibitory transepithelial potentials (TPs) generated across the lingual epithelium as cations permeate through tight junctions and leave their larger and less permeable anions behind (Ye et al., 1991). We tested directly the necessity of TPs for the anion effect by measuring responses to NaCl and Na-gluconate (small and large anion sodium salts, respectively) in isolated taste cells from mouse circumvallate papillae. Using calcium imaging, we identified AI salt-responsive type III taste cells and demonstrated that they compose a subpopulation of acid-responsive taste cells. Even in the absence of TPs, many (66%) AI salt-responsive type III taste cells still exhibited the anion effect, demonstrating that some component of the transduction machinery for salty taste in type III cells is sensitive to anion size. We hypothesized that osmotic responses could explain why a minority of type III cells (34%) had AI salt responses but lacked anion sensitivity. All AI type III cells had osmotic responses to cellobiose, which were significantly modulated by extracellular sodium concentration, suggesting the presence of a sodium-conducting osmotically sensitive ion channel. However, these responses were significantly larger in AI type III cells that did not exhibit the anion effect. These findings indicate that multiple mechanisms could underlie AI salt responses in type III taste cells, one of which may contribute to the anion effect. SIGNIFICANCE STATEMENT Understanding the mechanisms underlying salty taste will help inform strategies to combat the health problems associated with NaCl overconsumption by humans. Of the two pathways underlying salty taste in mammals, the amiloride-insensitive (AI) pathway is the least understood. Using calcium imaging of isolated mouse taste cells, we identify two separate populations of AI salt-responsive type III taste cells distinguished by their sensitivity to anion size and show that these cells compose subpopulations of acid-responsive taste cells. We also find evidence that a sodium-conducting osmotically sensitive mechanism contributes to salt responses in type III taste cells. Our data not only provide new insights into the transduction mechanisms of AI salt taste but also have important implications for general theories of taste encoding. PMID:26865617
Zhu, Haijing; Liu, Chao; Li, Mingzhao; Sun, Junwei; Song, Wencong; Hua, Jinlian
2013-02-01
Male germline stem cells (mGSC) reside in the basement of seminiferous tubules of the testis and have the capacity of self-renewal and differentiation into sperm throughout the life of animals. Reports on mice and human mGSC have demonstrated that mGSC are an unlimited resource of pluripotent stem cells for sperm production. The conditions of isolation and culture of mouse and human mGSC are well developed; however, the systematic culture conditions of dairy goat mGSC are still deficient although there have been several reports of successful cultures. With the present research, several key elements of isolation and culture of dairy goat mGSC have been determined. Details for the conditions of isolation of dairy testicular spermatogonium cells were optimized, and effects of several extracellular matrix types, ages of dairy goat, and cytokines on enrichment and culture of mGSC were compared. Biological characteristics of the cells were also evaluated by RT-PCR and immunofluorescent staining. The results indicated there is one kind of enzyme cocktail (CTHD (1mg/ml collagenase, 10μg/ml DNase, 1mg/ml hyaluronidase and 1mg/ml trypsin) combined TD (0.25% trypsin and 10mg/ml DNaseI)) that can be used to successfully isolate dairy goat testicular spermatogonium cells efficiently; and fibronectin as well as laminin were efficient extracellular matrix to enrich mGSC among the extracellular matrix types evaluated. Age of dairy goat clearly influenced the cultures of dairy goat mGSC with the efficiency of establishment of an mGSC line being greater if the age of the dairy goat is younger. Some cytokines e.g. BIO (A GSK3 inhibitor, 6-bromoindirubin-3'-oxime) and basic fibroblast growth factor (bFGF) acted positively on the maintenance of proliferation and pluripotency of mGSC. Leukemia inhibitory factor (LIF) might, however, inhibit the proliferation of dairy goat mGSC. These cultured mGSC maintained similar characteristics as mouse and human mGSC. These results provide an efficient system to isolate and culture of dairy goat mGSC. Copyright © 2012 Elsevier B.V. All rights reserved.
Bahmed, Karim; Messier, Elise M; Zhou, Wenbo; Tuder, Rubin M; Freed, Curt R; Chu, Hong Wei; Kelsen, Steven G; Bowler, Russell P; Mason, Robert J; Kosmider, Beata
2016-09-01
Cigarette smoke (CS) is a main source of oxidative stress and a key risk factor for emphysema, which consists of alveolar wall destruction. Alveolar type (AT) II cells are in the gas exchange regions of the lung. We isolated primary ATII cells from deidentified organ donors whose lungs were not suitable for transplantation. We analyzed the cell injury obtained from nonsmokers, moderate smokers, and heavy smokers. DJ-1 protects cells from oxidative stress and induces nuclear erythroid 2-related factor-2 (Nrf2) expression, which activates the antioxidant defense system. In ATII cells isolated from moderate smokers, we found DJ-1 expression by RT-PCR, and Nrf2 and heme oxygenase (HO)-1 translocation by Western blotting and immunocytofluorescence. In ATII cells isolated from heavy smokers, we detected Nrf2 and HO-1 cytoplasmic localization. Moreover, we found high oxidative stress, as detected by 4-hydroxynonenal (4-HNE) (immunoblotting), inflammation by IL-8 and IL-6 levels by ELISA, and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in ATII cells obtained from heavy smokers. Furthermore, we detected early DJ-1 and late Nrf2 expression after ATII cell treatment with CS extract. We also overexpressed DJ-1 by adenovirus construct and found that this restored Nrf2 and HO-1 expression and induced nuclear translocation in heavy smokers. Moreover, DJ-1 overexpression also decreased ATII cell apoptosis caused by CS extract in vitro. Our results indicate that DJ-1 activates the Nrf2-mediated antioxidant defense system. Furthermore, DJ-1 overexpression can restore the impaired Nrf2 pathway, leading to ATII cell protection in heavy smokers. This suggests a potential therapeutic strategy for targeting DJ-1 in CS-related lung diseases.
Bahmed, Karim; Messier, Elise M.; Zhou, Wenbo; Tuder, Rubin M.; Freed, Curt R.; Chu, Hong Wei; Kelsen, Steven G.; Bowler, Russell P.; Mason, Robert J.
2016-01-01
Cigarette smoke (CS) is a main source of oxidative stress and a key risk factor for emphysema, which consists of alveolar wall destruction. Alveolar type (AT) II cells are in the gas exchange regions of the lung. We isolated primary ATII cells from deidentified organ donors whose lungs were not suitable for transplantation. We analyzed the cell injury obtained from nonsmokers, moderate smokers, and heavy smokers. DJ-1 protects cells from oxidative stress and induces nuclear erythroid 2–related factor-2 (Nrf2) expression, which activates the antioxidant defense system. In ATII cells isolated from moderate smokers, we found DJ-1 expression by RT-PCR, and Nrf2 and heme oxygenase (HO)-1 translocation by Western blotting and immunocytofluorescence. In ATII cells isolated from heavy smokers, we detected Nrf2 and HO-1 cytoplasmic localization. Moreover, we found high oxidative stress, as detected by 4-hydroxynonenal (4-HNE) (immunoblotting), inflammation by IL-8 and IL-6 levels by ELISA, and apoptosis by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in ATII cells obtained from heavy smokers. Furthermore, we detected early DJ-1 and late Nrf2 expression after ATII cell treatment with CS extract. We also overexpressed DJ-1 by adenovirus construct and found that this restored Nrf2 and HO-1 expression and induced nuclear translocation in heavy smokers. Moreover, DJ-1 overexpression also decreased ATII cell apoptosis caused by CS extract in vitro. Our results indicate that DJ-1 activates the Nrf2-mediated antioxidant defense system. Furthermore, DJ-1 overexpression can restore the impaired Nrf2 pathway, leading to ATII cell protection in heavy smokers. This suggests a potential therapeutic strategy for targeting DJ-1 in CS-related lung diseases. PMID:27093578
Sasaki, Nozomi; Moriwaki, Kenta; Uozumi, Naofumi; Noda, Katsuhisa; Taniguchi, Naoyuki; Kameyama, Akihiko; Narimatsu, Hisashi; Takeishi, Shunsaku; Yamada, Masao; Koyama, Nobuto; Miyoshi, Eiji
2009-12-01
Oligosaccharides serve as markers of the cell surface and have been used as certain kinds of tumor markers. In the present study, we established a simple method for isolating hepatic progenitor cells using a lectin, which recognizes a characteristic oligosaccharide structure. Rat liver epithelial (RLE) cells, which have been established as a hepatic stem-like cell, were used to identify characteristic oligosaccharide structures on hepatic stem cells. As a result from lectin micro array, several types of lectin including E4-PHA were identified to bind RLE cells specifically. Furthermore, lectin blot and lectin flow cytometry analyses showed that binding to E(4)-PHA lectin was significantly increased in RLE cells, compared to hepatocytes, and hepatoma cells. The induction of differentiation into a hepatocyte lineage of RLE cells by treatment with Oncostatin M and dexamethasone resulted in a decrease in E(4)-PHA binding. Using an E(4)-PHA column, we succeeded in isolating hepatic stem cells from LEC (Long-Evans with cinnamon coat color) rat livers with fluminant hepatitis. The characteristics of the established cells were similar to RLE cells and had a potential of proliferating in rat liver. These results suggest that oligosaccharides can serve as a novel marker for the isolation of the hepatic progenitor cells.
Sokolova, T G; González, J M; Kostrikina, N A; Chernyh, N A; Tourova, T P; Kato, C; Bonch-Osmolovskaya, E A; Robb, F T
2001-01-01
A new anaerobic, thermophilic, CO-utilizing marine bacterium, strain JMT, was isolated from a submarine hot vent in Okinawa Trough. Cells of strain JMT were non-motile thin straight rods, sometimes branching, with a cell wall of the Gram-positive type, surrounded with an S-layer. Chains of three to five cells were often observed. The isolate grew chemolithotrophically on CO, producing equimolar quantities of H2 and CO2 (according to the equation CO+H2O-->CO2+H2) and organotrophically on peptone, yeast extract, starch, cellobiose, glucose, galactose, fructose and pyruvate, producing H2, acetate and CO2. Growth was observed from 50 to 80 degrees C with an optimum at 70 degrees C. The optimum pH was 6.8-7.1. The optimum concentration of sea salts in the medium was 20.5-25.5 g l(-1). The generation time under optimal conditions was 7.1 h. The DNA G+C content was 33 mol %. Growth of isolate JMT was not inhibited by penicillin, but ampicillin, streptomycin, kanamycin and neomycin completely inhibited growth. The results of 16S rDNA sequence analysis revealed that strain JMT belongs to the Thermoanaerobacter phylogenetic group within the Bacillus-Clostridium subphylum of Gram-positive bacteria but represents a separate branch of this group. On the basis of morphological and physiological features and phylogenetic data, this isolate should be assigned to a new genus, for which the name Carboxydobrachium is proposed. The type species is Carboxydobrachium pacificum; the type strain is JMT (= DSM 12653T).
Lu, Yusheng; Liang, Haiyan; Yu, Ting; Xie, Jingjing; Chen, Shuming; Dong, Haiyan; Sinko, Patrick J; Lian, Shu; Xu, Jianguo; Wang, Jichuang; Yu, Suhong; Shao, Jingwei; Yuan, Bo; Wang, Lie; Jia, Lee
2015-09-01
This study was aimed at establishing a sensitive and specific isolation, characterization, and enumeration method for living circulating tumor cells (CTCs) in patients with colorectal carcinoma. Quantitative isolation and characterization of CTCs were performed through a combination of immunomagnetic negative enrichment and fluorescence-activated cell sorting. Isolated CTCs were identified by immunofluorescence staining. The viability and purity of the sorted cells were determined by flow cytometry. Blood samples spiked with HCT116 cells (range, 3-250 cells) were used to determine specificity, recovery, and sensitivity. The method was used to enumerate, characterize, and isolate living CTCs in 10 mL of blood from patients with colorectal carcinoma. The average recovery of HCT116 cells was 61% or more at each spiking level, and the correlation coefficient was 0.992. An analysis of samples from all 18 patients with colorectal carcinoma revealed that 94.4% were positive for CTCs with an average of 33 ± 24 CTCs per 10 mL of blood and with a diameter of 14 to 20 μm (vs 8-12 μm for lymphoma). All patients were CD47(+) , with only 4.3% to 61.2% being CD44(+) . The number of CTCs was well correlated with the patient TNM stage and could be detected in patients at an early cancer stage. The sorted cells could be recultured, and their viability was preserved. This method provides a novel technique for highly sensitive and specific detection and isolation of CTCs in patients with colorectal carcinoma. This method complements the existing approaches for the de novo functional identification of a wide variety of CTC types. It is likely to help in predicting a patient's disease progression and potentially in selecting the appropriate treatment. © 2015 American Cancer Society.
Schneevoigt, J; Fabian, C; Leovsky, C; Seeger, J; Bahramsoltani, M
2017-02-01
The extracellular matrix (ECM) of hyaline cartilage is perfectly suited to transmit articular pressure load to the subchondral bone. Pressure is transferred by a high amount of aggrecan-based proteoglycans and collagen type II fibres in particular. After any injury, the hyaline cartilage is replaced by fibrocartilage, which is low in proteoglycans and contains collagen type I predominantly. Until now, long-term results of therapeutic procedures including cell-based therapies like autologous chondrocyte transplantation (ACT) lead to a replacement tissue meeting the composition of fibrocartilage. Therefore, it is of particular interest to discover how and to what extent isolation and in vitro cultivation of chondrocytes affect the cells and their expression of ECM components. Hyaline cartilage-derived chondrocytes were cultivated in vitro and observed microscopically over a time period of 35 days. The expression of collagen type I, collagen type II and aggrecan was analysed using RT-qPCR and Western blot at several days of cultivation. Chondrocytes presented a longitudinal shape for the entire cultivation period. While expression of collagen type I prevailed within the first days, only prolonged cultivation led to an increase in collagen type II and aggrecan expression. The results indicate that chondrocyte isolation and in vitro cultivation lead to a dedifferentiation at least to the stage of chondroprogenitor cells. © 2016 Blackwell Verlag GmbH.
[Islet isolation outcome is influenced by pancreas preparation method].
Pokrywczyńska, Marta; Drewa, Tomasz; Cieślak, Zaneta
2008-09-01
Pancreatic islet transplantation is a treatment method for type I diabetes. Its outcome is influenced by numerous factors, islet quantity and function being important ones of them. was to estimate the influence of pancreas preparation method on the outcome of islet isolation in rat. 6 pancreata harvested from Lewis rats were used in this research. Pancreatic duct was cannulated and pancreas was injected with 1 mg/ml collagenase P solution (Sigma) and then excised. After cutting into smaller fragments, it was digested in collagenase P solution for 15-20 min. Enzyme activity was then stopped by adding dilution medium. Heterogenous cell suspension was centrifuged in density gradient (Gradisol) to isolate islets. Pancreatic islets were collected and islet equivalent was calculated. Islet purity degree was estimated as islet cells to all cells, including exocrine, ratio. Islet viability was estimated using propidium iodide and fluorescein diacetate staining. Photographic documentation was made. Proper islet morphology, highest number and viability was obtained when pancreas was excised properly (isolation 3 and 4). Pancreas preparation method is one of which influences on islet isolation outcome.
Virulence of Renibacterium salmoninarum to salmonids
Starliper, C.E.; Smith, D.R.; Shatzer, T.
1997-01-01
Virulence of Renibacterium salmoninarum isolates representing five origins was evaluated in eight salmonid hosts; four origins were of Lake Michigan and the fifth was of the Pacific Northwest. The species type strain, ATCC (American Type Culture Collection) 33209, was also included. Each isolate was grown in a kidney disease medium (KDM2) supplemented with 1 % ATCC 33209 culture metabolite; serial 10-fold dilutions were prepared, and groups of fish were challenged by intraperitoneal injection with 0.1 mL of each dilution. A 70-d observation period followed, and bacterial kidney disease (BKD) was diagnosed by the fluorescent antibody technique. Virulence of isolates was quantified as a dose lethal to 50% of fish (LD50) for each host–isolate challenge. In the first set of experiments, 23 isolates were used to challenge groups of brook trout Salvelinus fontinalis. The mean LD50 was 1.087 x 106 colony-forming units per milliliter (cfu/mL; SD = 2.022 x 106), and the LD50 values ranged from 8.457 x 106 to 2.227 x 104 cfu/mL. Analysis of variance to evaluate the effect of isolate origin on virulence in brook trout revealed no significant difference (F = 1.502; P = 0.243). Susceptibilities of the other salmonid hosts were evaluated by challenge with six isolates of R. salmoninarum representing each origin and the species type strain. For many of the host–isolate challenge combinations, time to death was highly dependent on the dilution (number of bacteria) injected. In general, the isolates MCO4M, B26, and A34 (all of Lake Michigan origin) tended to be more virulent. Also, LD50 values were dispersed throughout a wider range among the more susceptible hosts. Lake trout Salvelinus namaycush, rainbow trout Oncorhynchus mykiss, and brook trout were relatively resistant to challenge with the strains, whereas coho salmon O. kisutch, domestic Atlantic salmon Saltno salar, and chinook salmon O. tshawytscha were relatively susceptible. Another challenge evaluated the effect of washing R. salmoninarum MCO4M cells before injection into brook trout. The calculated LD50 value, 2.009 x 105 cfu/mL, was similar (X2 = 0.878; P = 0.645) to that of the unwashed cells (1.163 x 105 cfu/mL). Furthermore, times to death for successive dilutions were similar regardless of whether or not the cells were washed.
Kaul, G; Kaur, J; Rafeeqi, T A
2010-12-01
Spermatogonial stem cells transplantation provides a unique approach for studying spermatogenesis. Initially developed in mice, this technique has now been extended in farm animals and provides an alternative means to preserve valuable male germ line and to produce transgenic animals. The aim of this study was to enrich type A spermatogonial cells amongst the isolated cells from goat testis, to cryopreserve these enriched populations of cells and their subsequent transplantation in unrelated recipient goats under ultrasound guidance. The cells were isolated enzymatically and enriched by differential plating and separation on discontinuous percoll gradient. Ultrasound guided injection of trypan blue dye into rete testis resulted in 20-30% filling of the seminiferous tubules. Prior to transplantation, the cells were labelled with a fluorescent dye to trace donor cells in recipient seminiferous tubules after transplantation. The fluorescent-labelled cells were observed up to 12 weeks after transplantation. © 2009 Blackwell Verlag GmbH.
NASA Astrophysics Data System (ADS)
Ariffin, Shahrul Hisham Zainal; Manogaran, Thanaletchumi; Abidin, Intan Zarina Zainol; Senafi, Sahidan; Wahab, Rohaya Megat Abdul
2016-11-01
Dental pulp is a tissue obtained from pulp chamber of deciduous and permanent tooth which contain stem cells. Stem cell isolation procedure is performed to obtain cells from tissue using enzymatic digestion. The aim of this study is to isolate and observe the morphology of stem cells during passage 0 and passage 3. Dental pulp from deciduous and permanent tooth was enzymatically digested using collagenase Type I and cells obtained were cultured in DMEM-KO that contains 10% fetal bovine serum, 1% antibiotic-antimycotic solution and 0.001× GlutaMax®. During culture, cell morphology was observed under the microscope on day 3, 16 and 33 and captured using cellB software. Giemsa staining was conducted on cells at passage 3. Cells attached at the bottom of the flask on day 3 and started forming small colonies. Cells became confluent after approximately 4 weeks. Both Stem Cells from Deciduous Tooth (SHED) and Human Dental Pulp Stem Cells (hDPSC) exhibited fibroblast-like morphology during passage 0 and passage 3. Meanwhile, Giemsa staining at passage 3 revealed single intact nucleus surrounded by fibroblastic cytoplasm structure. It can be concluded that SHED and hDPSC showed consistent fibroblast-like morphology throughout culture period.
GursesCila, Hacer E; Acar, Muradiye; Barut, Furkan B; Gunduz, Mehmet; Grenman, Reidar; Gunduz, Esra
2016-12-01
Recent studies have shown that cancer stem cells are resistant to chemotherapy. The aim of this study was to compare RIF1 gene expression in head and neck, pancreatic cancer and glioma cell lines and the cancer stem cells isolated from these cell lines. UT-SCC-74 from Turku University and UT-SCC-74B primary tumor metastasis and neck cancer cell lines, YKG-1 glioma cancer cell line from RIKEN, pancreatic cancer cell lines and ASPC-1 cells from ATCC were grown in cell culture. To isolate cancer stem cells, ALDH-1 for UT-SCC-74 and UT-SCC-74B cell line, CD-133 for YKG-1 cell line and CD-24 for ASPC-1 cell line, were used as markers of cancer stem cells. RNA isolation was performed for both cancer lines and cancer stem cells. RNAs were converted to cDNA. RIF1 gene expression was performed by qRT-PCR analysis. RIF1 gene expression was compared with cancer cell lines and cancer stem cells isolated from these cell lines. The possible effect of RIF1 gene was evaluated. In the pancreatic cells, RIF1 gene expression in the stem cell-positive cell line was 256 time that seen in the stem cell-negative cell line. Considering the importance of RIF1 in NHEJ and of NHEJ in pancreatic cancer, RIF1 may be one of the genes that plays an important role in the diagnoses and therapeutic treatment of pancreatic cancer. The results of head and neck and brain cancers are inconclusive and further studies are required to elucidate the connection between RIF1 gene and these other types of cancers.
Chen, Yu-Chih; Ingram, Patrick; Yoon, Euisik
2016-01-01
Cancer-stromal interaction is a critical process in tumorigenesis. Conventional dish-based co-culture assays simply mix two cell types in the same dish; thus, they are deficient in controlling cell locations and precisely tracking single cell behavior from heterogeneous cell populations. Microfluidic technology can provide a good spatial temporal control of microenvironments, but the control has been typically realized by using external pumps, making long-term cultures cumbersome and bulky. In this work, we present a cell-cell interaction microfluidic platform that can accurately control co-culture microenvironment by using a novel electrolytic cell isolation scheme without using any valves or pneumatic pumps. The proposed microfluidic platform can also precisely control the number of interacting cells and pairing ratios to emulate cancer niches. More than 80% of the chambers captured the desired number of cells. The duration of cell isolation can be adjusted by electrolytic bubble generation and removal. We verified that electrolytic process has a negligible effect on cell viability and proliferation in our platform. To the best of our knowledge, this work is the first attempt to incorporate electrolytic bubble generation as a cell isolation method in microfluidics. For proof of feasibility, we performed cell-cell interaction assays between prostate cancer (PC3) cells and myoblast (C2C12) cells. The preliminary results demonstrated the potential of using electrolysis for micro-environmental control during cell culture. Also, the ratio controlled cell-cell interaction assays was successfully performed showing that the cell pairing ratios of PC3 to C2C12 affected the proliferation rate of myoblast cells due to increased secretion of growth factors from prostate cancer cells. PMID:25118341
Takano, Isamu; Arima, Kenji
1979-01-01
The possible function of the α-inc allele (an α mating-type allele that is insensitive to the function of the homothallic gene system) was investigated by means of protoplast fusion. The fusion of protoplasts prepared from haploid strains of α-inc HO HMα HMa and α ho hmα HMa gave rise mainly to nonmating clones (58 of 64 isolates) and a few clones (six of 64 isolates) showing α mating type. Thirty of the 58 nonmating clones showed the diploid cell size and 28 clones had a larger cell size. Tetrad analysis of the nonmating clones with diploid cell size indicated that they were a/α-inc diploid; the normal α allele in α/α-inc cells was preferentially switched to an a allele. This observation further indicated that the HO/ho HMα/hmα HMa/HMa genotype is effective for the conversion of the α to a and that the inconvertibility of the α-inc allele is due to the insensitivity of the mating-type allele to the functional combination of the homothallic genes. It was suspected that fusion products larger than diploid cells might have been caused by multiple fusion of protoplasts. PMID:17248884
Hu, Pengfei; Pu, Yabin; Li, Xiayun; Zhu, Zhiqiang; Zhao, Yuhua; Guan, Weijun; Ma, Yuehui
2015-09-01
Lung‑derived mesenchymal stem cells (LMSCs) are considered to be important in lung tissue repair and regenerative processes. However, the biological characteristics and differentiation potential of LMSCs remain to be elucidated. In the present study, fetal lung‑derived mesenchymal stem cells (FLMSCs) were isolated from fetal bovine lung tissues by collagenase digestion. The in vitro culture conditions were optimized and stabilized and the self‑renewal ability and differentiation potential were evaluated. The results demonstrated that the FLMSCs were morphologically consistent with fibroblasts, were able to be cultured and passaged for at least 33 passages and the cell morphology and proliferative ability were stable during the first 10 passages. In addition, FLMSCs were found to express CD29, CD44, CD73 and CD166, however, they did not express hematopoietic cell specific markers, including CD34, CD45 and BOLA‑DRα. The growth kinetics of FLMSCs consisted of a lag phase, a logarithmic phase and a plateau phase, and as the passages increased, the proliferative ability of cells gradually decreased. The majority of FLMSCs were in G0/G1 phase. Following osteogenic induction, FLMSCs were positive for the expression of osteopontin and collagen type I α2. Following neurogenic differentiation, the cells were morphologically consistent with neuronal cells and positive for microtubule‑associated protein 2 and nestin expression. It was concluded that the isolated FLMSCs exhibited typical characteristics of mesenchymal stem cells and that the culture conditions were suitable for their proliferation and the maintenance of stemness. The present study illustrated the potential application of lung tissue as an adult stem cell source for regenerative therapies.
Higher Caspase-like activity in symptomatic isolates of Blastocystis spp
2014-01-01
Background Biochemical evidence of a caspase-like execution pathway has been demonstrated in a variety of protozoan parasites, including Blastocystis spp. The distinct differences in the phenotypic characterization reported previously have prompted us to compare the rate of apoptosis in Blastocystis spp. isolated from individuals who were symptomatic and asymptomatic. In the current study, we analysed the caspase activation involved in PCD mediated by a cytotoxic drug, (metronidazole) in both symptomatic & asymptomatic isolates. Methods Apoptosis was induced in Blastocystis spp. by treating cultures of symptomatic and asymptomatic isolates of 3 sub-types namely 1, 3 and 5 with two different concentrations, 0.1 and 0.0001 mg/ml of metronidazole (with and without pre-treatment with a pan-caspase inhibitor, zVAD.fmk). The experiment was repeated to assess the number of apoptotic cells in all the isolates of both conditions. Results Symptomatic isolates of subtype 3 (without pre-treatment with a pan-caspase inhibitor, zVAD.fmk) showed high fluorescence intensity for active caspase-like proteases [0.0001 mg/ml, 88% (p < 0.001) at 0.1 mg/ml, 70% (p < 0.001)] at the 72nd hour in vitro culture in comparison with asymptomatic isolates [0.0001 mg/ml, 65%, at 0.1 mg/ml, 55%]. The number of apoptotic cells was higher [0.0001 mg/ml, 89% (p < 0.001) and at 0.1 mg/ml, 70% (p < 0.001)] at the 72nd hour of in vitro culture in comparison with asymptomatic isolates [0.0001 mg/ml, 66% (p < 0.001) and at 0.1 mg/ml, 45% (p < 0.01)]. Cells treated with metronidazole in the presence of zVAD.fmk showed less than 10% caspase activation. Conclusion The high number of symptomatic cells expressing active caspase-like proteases and becoming apoptotic compared to asymptomatic cells clearly demonstrates that the response to metronidazole treatment is isolate dependent. Hence this justifies the conflicting reports on the curative success rates when treated with this drug. The study has also created a need to identify apoptosis effectors in Blastocystis spp of different isolates especially as it was shown that apoptosis was sub-typed related. These findings can be exploited for the development of diagnostic markers and novel therapeutic drugs to enhance the effectiveness of the diagnosis and treatment of the patients infected with Blastocystis spp. PMID:24886677
Koh, Sehwon; Piedrahita, Jorge A
2014-01-01
Pluripotent stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) provide great potential as cell sources for gene editing to generate genetically modified animals, as well as in the field of regenerative medicine. Stable, long-term ESCs have been established in laboratory mouse and rat; however, isolation of true pluripotent ESCs in domesticated animals such as pigs and dogs have been less successful. Initially, domesticated animal pluripotent cell lines were referred to as "embryonic stem-like" cells owing to their similar morphologic characteristics to mouse ESCs, but accompanied by a limited ability to proliferate in vitro in an undifferentiated state. That is, they shared some but not all the characteristics of true ESCs. More recently, advances in reprogramming using exogenous transcription factors, combined with the utilization of small chemical inhibitors of key biochemical pathways, have led to the isolation of iPSCs. In this review, we provide a historical perspective of the isolation of various types of pluripotent stem cells in domesticated animals. In addition, we summarize the latest progress and limitations in the derivation and application of iPSCs. Copyright © 2014 Elsevier Inc. All rights reserved.
CD24 can be used to isolate Lgr5+ putative colonic epithelial stem cells in mice
King, Jeffrey B.; von Furstenberg, Richard J.; Smith, Brian J.; McNaughton, Kirk K.; Galanko, Joseph A.
2012-01-01
A growing body of evidence has implicated CD24, a cell-surface protein, as a marker of colorectal cancer stem cells and target for antitumor therapy, although its presence in normal colonic epithelium has not been fully characterized. Previously, our group showed that CD24-based cell sorting can be used to isolate a fraction of murine small intestinal epithelial cells enriched in actively cycling stem cells. Similarly, we hypothesized that CD24-based isolation of colonic epithelial cells would generate a fraction enriched in actively cycling colonic epithelial stem cells (CESCs). Immunohistochemistry performed on mouse colonic tissue showed CD24 expression in the bottom half of proximal colon crypts and the crypt base in the distal colon. This pattern of distribution was similar to enhanced green fluorescent protein (EGFP) expression in Lgr5-EGFP mice. Areas expressing CD24 contained actively proliferating cells as determined by ethynyl deoxyuridine (EdU) incorporation, with a distinct difference between the proximal colon, where EdU-labeled cells were most frequent in the midcrypt, and the distal colon, where they were primarily at the crypt base. Flow cytometric analyses of single epithelial cells, identified by epithelial cell adhesion molecule (EpCAM) positivity, from mouse colon revealed an actively cycling CD24+ fraction that contained the majority of Lgr5-EGFP+ putative CESCs. Transcript analysis by quantitative RT-PCR confirmed enrichment of active CESC markers [leucine-rich-repeat-containing G protein-coupled receptor 5 (Lgr5), ephrin type B receptor 2 (EphB2), and CD166] in the CD24+EpCAM+ fraction but also showed enrichment of quiescent CESC markers [leucine-rich repeats and immunoglobin domains (Lrig), doublecortin and calmodulin kinase-like 1 (DCAMKL-1), and murine telomerase reverse transcriptase (mTert)]. We conclude that CD24-based sorting in wild-type mice isolates a colonic epithelial fraction highly enriched in actively cycling and quiescent putative CESCs. Furthermore, the presence of CD24 expression in normal colonic epithelium may have important implications for the use of anti-CD24-based colorectal cancer therapies. PMID:22723265
Antitumor activity of Type I and Type III interferons in BNL hepatoma model
Abushahba, Walid; Balan, Murugabaskar; Castaneda, Ismael; Yuan, Yao; Reuhl, Kenneth; Raveche, Elizabeth; de la Torre, Andrew
2015-01-01
Hepatocellular carcinoma (HCC) occurs most commonly secondary to cirrhosis due to chronic hepatitis C or B virus (HCV/HBV) infections. Type I interferon (IFN-α) treatment of chronic HCV/HBV infections reduces the incidence of HCC in cirrhotic patients. However, IFN-α toxicity limits its tolerability and efficacy highlighting a need for better therapeutic treatments. A recently discovered type III IFN (IFN-λ) has been shown to possess antiviral properties against HCV and HBV in vitro. In phase I clinical trials, IFN-λ treatment did not cause significant adverse reactions. Using a gene therapy approach, we compared the antitumor properties of IFN-α and IFN-λ in a transplantable hepatoma model of HCC. BALB/c mice were inoculated with syngeneic BNL hepatoma cells, or BNL cells expressing IFN-λ (BNL.IFN-λ cells) or IFN-α (BNL.IFN-α cells). Despite the lack of antiproliferative activity of IFNs on BNL cells, both BNL.IFN-λ and BNL.IFN-α cells displayed retarded growth kinetics in vivo. Depletion of NK cells from splenocytes inhibited splenocyte-mediated cytotoxicity, demonstrating that NK cells play a role in IFN-induced antitumor responses. However, isolated NK cells did not respond directly to IFN-λ. There was also a marked NK cell infiltration in IFN-λ producing tumors. In addition, IFN-λ and, to a lesser extent, IFN-α enhanced immunocytotoxicity of splenocytes primed with irradiated BNL cells. Splenocyte cytotoxicity against BNL cells was dependent on IL-12 and IFN-λ, and mediated by dendritic cells. In contrast to NK cells, isolated from spleen CD1 1c+ and mPDCA+ dendritic cells responded directly to IFN-λ. The antitumor activities of IFN-λ against hepatoma, in combination with HCV and HBV antiviral activities warrant further investigation into the clinical use of IFN-λ to prevent HCC in HCV/HBV-infected cirrhotic patients, as well as to treat liver cancer. PMID:20217081
Antitumor activity of type I and type III interferons in BNL hepatoma model.
Abushahba, Walid; Balan, Murugabaskar; Castaneda, Ismael; Yuan, Yao; Reuhl, Kenneth; Raveche, Elizabeth; de la Torre, Andrew; Lasfar, Ahmed; Kotenko, Sergei V
2010-07-01
Hepatocellular carcinoma (HCC) occurs most commonly secondary to cirrhosis due to chronic hepatitis C or B virus (HCV/HBV) infections. Type I interferon (IFN-alpha) treatment of chronic HCV/HBV infections reduces the incidence of HCC in cirrhotic patients. However, IFN-alpha toxicity limits its tolerability and efficacy highlighting a need for better therapeutic treatments. A recently discovered type III IFN (IFN-lambda) has been shown to possess antiviral properties against HCV and HBV in vitro. In phase I clinical trials, IFN-lambda treatment did not cause significant adverse reactions. Using a gene therapy approach, we compared the antitumor properties of IFN-alpha and IFN-lambda in a transplantable hepatoma model of HCC. BALB/c mice were inoculated with syngeneic BNL hepatoma cells, or BNL cells expressing IFN-lambda (BNL.IFN-lambda cells) or IFN-alpha (BNL.IFN-alpha cells). Despite the lack of antiproliferative activity of IFNs on BNL cells, both BNL.IFN-lambda and BNL.IFN-alpha cells displayed retarded growth kinetics in vivo. Depletion of NK cells from splenocytes inhibited splenocyte-mediated cytotoxicity, demonstrating that NK cells play a role in IFN-induced antitumor responses. However, isolated NK cells did not respond directly to IFN-lambda. There was also a marked NK cell infiltration in IFN-lambda producing tumors. In addition, IFN-lambda and, to a lesser extent, IFN-alpha enhanced immunocytotoxicity of splenocytes primed with irradiated BNL cells. Splenocyte cytotoxicity against BNL cells was dependent on IL-12 and IFN-gamma, and mediated by dendritic cells. In contrast to NK cells, isolated from spleen CD11c+ and mPDCA+ dendritic cells responded directly to IFN-lambda. The antitumor activities of IFN-lambda against hepatoma, in combination with HCV and HBV antiviral activities warrant further investigation into the clinical use of IFN-lambda to prevent HCC in HCV/HBV-infected cirrhotic patients, as well as to treat liver cancer.
T cell reactivity with allergoids: influence of the type of APC.
Kahlert, H; Grage-Griebenow, E; Stüwe, H T; Cromwell, O; Fiebig, H
2000-08-15
The use of allergoids for allergen-specific immunotherapy has been established for many years. The characteristic features of these chemically modified allergens are their strongly reduced IgE binding activity compared with the native form and the retained immunogenicity. T cell reactivity of chemically modified allergens is documented in animals, but in humans indirect evidence of reactivity has been concluded from the induction of allergen-specific IgG during immunotherapy. Direct evidence of T cell reactivity was obtained recently using isolated human T cells. To obtain further insight into the mechanism of action of allergoids, we compared the Ag-presenting capacity of different APC types, including DC and macrophages, generated from CD14+ precursor cells from the blood of grass pollen allergic subjects, autologous PBMC, and B cells. These APC were used in experiments together with Phl p 5-specific T cell clones under stimulation with grass pollen allergen extract, rPhl p 5b, and the respective allergoids. Using DC and macrophages, allergoids exhibited a pronounced and reproducible T cell-stimulating capacity. Responses were superior to those with PBMC, and isolated B cells failed to present allergoids. Considerable IL-12 production was observed only when using the DC for Ag presentation of both allergens and allergoids. The amount of IL-10 in supernatants was dependent on the phenotype of the respective T cell clone. High IL-10 production was associated with suppressed IL-12 production from the DC in most cases. In conclusion, the reactivity of Th cells with allergoids is dependent on the type of the APC.
Arsic, Nikola; Mamaeva, Daria; Lamb, Ned J; Fernandez, Anne
2008-04-01
Stem cells with the ability to differentiate in specialized cell types can be extracted from a wide array of adult tissues including skeletal muscle. Here we have analyzed a population of cells isolated from skeletal muscle on the basis of their poor adherence on uncoated or collagen-coated dishes that show multi-lineage differentiation in vitro. When analysed under proliferative conditions, these cells express stem cell surface markers Sca-1 (65%) and Bcrp-1 (80%) but also MyoD (15%), Neuronal beta III-tubulin (25%), GFAP (30%) or Nkx2.5 (1%). Although capable of growing as non-attached spheres for months, when given an appropriate matrix, these cells adhere giving rise to skeletal muscle, neuronal and cardiac muscle cell lineages. A similar cell population could not be isolated from either bone marrow or cardiac tissue suggesting their specificity to skeletal muscle. When injected into damaged muscle, these non-adherent muscle-derived cells are retrieved expressing Pax7, in a sublaminar position characterizing satellite cells and participate in forming new myofibers. These data show that a non-adherent stem cell population can be specifically isolated and expanded from skeletal muscle and upon attachment to a matrix spontaneously differentiate into muscle, cardiac and neuronal lineages in vitro. Although competing with resident satellite cells, these cells are shown to significantly contribute to repair of injured muscle in vivo supporting that a similar muscle-derived non-adherent cell population from human muscle may be useful in treatment of neuromuscular disorders.
Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract.
Connell, I; Agace, W; Klemm, P; Schembri, M; Mărild, S; Svanborg, C
1996-09-03
Type 1 fimbriae are adhesion organelles expressed by many Gram-negative bacteria. They facilitate adherence to mucosal surfaces and inflammatory cells in vitro, but their contribution to virulence has not been defined. This study presents evidence that type 1 fimbriae increase the virulence of Escherichia coli for the urinary tract by promoting bacterial persistence and enhancing the inflammatory response to infection. In a clinical study, we observed that disease severity was greater in children infected with E. coli O1:K1:H7 isolates expressing type 1 fimbriae than in those infected with type 1 negative isolates of the same serotype. The E. coli O1:K1:H7 isolates had the same electrophoretic type, were hemolysin-negative, expressed P fimbriae, and carried the fim DNA sequences. When tested in a mouse urinary tract infection model, the type 1-positive E. coli O1:K1:H7 isolates survived in higher numbers, and induced a greater neutrophil influx into the urine, than O1:K1:H7 type 1-negative isolates. To confirm a role of type 1 fimbriae, a fimH null mutant (CN1016) was constructed from an O1:K1:H7 type 1-positive parent. E. coli CN1016 had reduced survival and inflammatogenicity in the mouse urinary tract infection model. E. coli CN1016 reconstituted with type 1 fimbriae (E. coli CN1018) had restored virulence similar to that of the wild-type parent strain. These results show that type 1 fimbriae in the genetic background of a uropathogenic strain contribute to the pathogenesis of E. coli in the urinary tract.
Sadoyama, Shinko; Sekine, Akimasa; Satoh, Hiroaki; Iwasawa, Tae; Kato, Terufumi; Ikeda, Satoshi; Sata, Masafumi; Baba, Tomohisa; Tabata, Erina; Minami, Yuko; Nemoto, Kenji; Hayashihara, Kenji; Saito, Takefumi; Okudela, Koji; Ohashi, Kenichi; Tajiri, Michihiko; Ogura, Takashi
2018-01-01
The aim of this study was to clarify the incidence and disease behavior of brain metastases (BM) without extracranial disease (ie, isolated BM) as the first relapse after curative surgery in non-small-cell lung cancer (NSCLC) patients, analyzed according to epidermal growth factor receptor (EGFR) mutation status. A review of the medical charts of consecutive NSCLC patients diagnosed between 2005 and 2016 with BM as the first relapse after curative surgery was performed. Among 1191 patients evaluated for EGFR mutation status, 28 patients who met the inclusion criteria were divided into 2 groups: EGFR mutation group (16 patients) and wild type group (12 patients). At BM diagnosis, the EGFR-mutation group tended to have more commonly isolated BM compared with that in the wild type group (11 of 16 vs. 3 of 12; P = .054). In the EGFR mutation group, the patients with isolated BM showed longer overall survival than those with non-isolated BM (39.6 vs. 18.7 months; P = .038). Notably, isolated BM in the EGFR mutation group was neurologically asymptomatic in 10 of the 11 patients. With regard to upfront treatment for isolated BM in the EGFR mutation group, 10 of 11 patients were treated with only cranial radiotherapy without EGFR tyrosine kinase inhibitors, but two-thirds of the patients (7 of 11; 64%) developed extracranial disease during the study period. In curatively resected NSCLC patients with EGFR mutation, isolated BM would be correlated with better prognosis, but regarded as a precursor to systemic disease. Because isolated BM can be neurologically asymptomatic, it would be important to periodically perform cranial evaluation to detect isolated BM. Copyright © 2017 Elsevier Inc. All rights reserved.
Marshall, Owen J; Southall, Tony D; Cheetham, Seth W; Brand, Andrea H
2016-09-01
This protocol is an extension to: Nat. Protoc. 2, 1467-1478 (2007); doi:10.1038/nprot.2007.148; published online 7 June 2007The ability to profile transcription and chromatin binding in a cell-type-specific manner is a powerful aid to understanding cell-fate specification and cellular function in multicellular organisms. We recently developed targeted DamID (TaDa) to enable genome-wide, cell-type-specific profiling of DNA- and chromatin-binding proteins in vivo without cell isolation. As a protocol extension, this article describes substantial modifications to an existing protocol, and it offers additional applications. TaDa builds upon DamID, a technique for detecting genome-wide DNA-binding profiles of proteins, by coupling it with the GAL4 system in Drosophila to enable both temporal and spatial resolution. TaDa ensures that Dam-fusion proteins are expressed at very low levels, thus avoiding toxicity and potential artifacts from overexpression. The modifications to the core DamID technique presented here also increase the speed of sample processing and throughput, and adapt the method to next-generation sequencing technology. TaDa is robust, reproducible and highly sensitive. Compared with other methods for cell-type-specific profiling, the technique requires no cell-sorting, cross-linking or antisera, and binding profiles can be generated from as few as 10,000 total induced cells. By profiling the genome-wide binding of RNA polymerase II (Pol II), TaDa can also identify transcribed genes in a cell-type-specific manner. Here we describe a detailed protocol for carrying out TaDa experiments and preparing the material for next-generation sequencing. Although we developed TaDa in Drosophila, it should be easily adapted to other organisms with an inducible expression system. Once transgenic animals are obtained, the entire experimental procedure-from collecting tissue samples to generating sequencing libraries-can be accomplished within 5 d.
STUDIES ON NON-HEMOLYTIC STREPTOCOCCI ISOLATED FROM THE RESPIRATORY TRACT OF MAN
Horsfall, Frank L.
1951-01-01
The type specific immunological properties of certain non-hemolytic streptococci, including Str. salivarius type I and type II, present in the respiratory tract of human beings appear to be dependent upon the presence of capsular polysaccharides. The levans formed from sucrose by Str. salivarius (encapsulated S cells or non-encapsulated R variants), or by cell-free enzymes derived from these microorganisms, are indistinguishable immunologically and show no evidence of type specificity. Such levans appear to be immunologically distinct from and unrelated to the capsular polysaccharides of the microorganisms which produce them. PMID:14824398
Jeske, Nathaniel A; Por, Elaine D; Belugin, Sergei; Chaudhury, Sraboni; Berg, Kelly A; Akopian, Armen N; Henry, Michael A; Gomez, Ruben
2011-06-08
A-kinase anchoring protein 150 (AKAP150) is a scaffolding protein that controls protein kinase A- and C-mediated phosphorylation of the transient receptor potential family V type 1 (TRPV1), dictating receptor response to nociceptive stimuli. The phospholipid phosphatidylinositol-4,5-bisphosphate (PIP(2)) anchors AKAP150 to the plasma membrane in naive conditions and also affects TRPV1 activity. In the present study, we sought to determine whether the effects of PIP(2) on TRPV1 are mediated through AKAP150. In trigeminal neurons and CHO cells, the manipulation of cellular PIP(2) led to significant changes in the association of AKAP150 and TRPV1. Following PIP(2) degradation, increased TRPV1:AKAP150 coimmunoprecipitation was observed, resulting in increased receptor response to capsaicin treatment. Phospholipase C activation in neurons isolated from AKAP150(-/-) animals indicated that PIP(2)-mediated inhibition of TRPV1 in the whole-cell environment requires expression of the scaffolding protein. Furthermore, the addition of PIP(2) to neurons isolated from AKAP150 wild-type mice reduced PKA sensitization of TRPV1 compared with isolated neurons from AKAP150(-/-) mice. These findings suggest that PIP(2) degradation increases AKAP150 association with TRPV1 in the whole-cell environment, leading to sensitization of the receptor to nociceptive stimuli.
Choudhary, Shanti; Zieger, Ulrike; Sharma, Ravindra N; Chikweto, Alfred; Tiwari, Keshaw P; Ferreira, Leandra R; Oliveira, Solange; Barkley, Lovell J; Verma, Shiv Kumar; Kwok, Oliver C H; Su, Chunlei; Dubey, J P
2013-12-01
Little is known of the genetic diversity and epidemiology of Toxoplasma gondii infection in wildlife in Caribbean Islands. The prevalence and genetic diversity of T. gondii in mongooses (Herpestes auropunctatus) was investigated. During 2011 and 2012, 91 mongooses were trapped in different parts of Grenada, bled, euthanized, and examined at necropsy. Antibodies to T. gondii were found in 27 mongooses tested by the modified agglutination test (cut-off titer 25). Muscles (heart, tongue, neck) of 25 of the seropositive mongooses were bioassayed for T. gondii infection in mice. Viable T. gondii was isolated by bioassay in mice from four mongooses with MAT titers of 1:50 in two, 1:200 for one, and 1:400 for one mongoose. The four T. gondii isolates were further propagated in cell culture. Strain typing of T. gondii DNA extracted from cell-cultured tachyzoites using the 10 PCR-restriction fragment length polymorphism (RFLP) markers SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico revealed one isolate belongs to the Type III (ToxoDB #2) lineage, two to ToxoDB#7 lineage, and one to the ToxoDB #216 lineage. This is the first report of T. gondii isolation and genotyping in H. auropunctatus worldwide.
Enrichment and isolation of neurons from adult mouse brain for ex vivo analysis.
Berl, Sabina; Karram, Khalad; Scheller, Anja; Jungblut, Melanie; Kirchhoff, Frank; Waisman, Ari
2017-05-01
Isolation of neurons from the adult mouse CNS is important in order to study their gene expression during development or the course of different diseases. Here we present two different methods for the enrichment or isolation of neurons from adult mouse CNS. These methods: are either based on flow cytometry sorting of eYFP expressing neurons, or by depletion of non-neuronal cells by sorting with magnetic-beads. Enrichment by FACS sorting of eYFP positive neurons results in a population of 62.4% NeuN positive living neurons. qPCR data shows a 3-5fold upregulation of neuronal markers. The isolation of neurons based on depletion of non-neuronal cells using the Miltenyi Neuron Isolation Kit, reaches a purity of up to 86.5%. qPCR data of these isolated neurons shows an increase in neuronal markers and an absence of glial markers, proving pure neuronal RNA isolation. Former data related to neuronal gene expression are mainly based on histology, which does not allow for high-throughput transcriptome analysis to examine differential gene expression. These protocols can be used to study cell type specific gene expression of neurons to unravel their function in the process of damage to the CNS. Copyright © 2017 Elsevier B.V. All rights reserved.
Cell size and type may affect availability of bacteria for consumption by bacterivorous nematodes in the soil and in culture. This study explored the bacterial preferences of the bacterivorous soil nematode Cephalobus brevicauda (Cephalobidae) by comparing bactgeria isolated dir...
NASA Astrophysics Data System (ADS)
Das, Ishani; Padhi, Avinash; Mukherjee, Sitabja; Dash, Debi P.; Kar, Santosh; Sonawane, Avinash
2017-04-01
The activation of cell-mediated and humoral immune responses to Mycobacterium tuberculosis (Mtb) is critical for protection against the pathogen and nanoparticle-mediated delivery of antigens is a more potent way to induce different immune responses. Herein, we show that mice immunized with Mtb lipid-bound chitosan nanoparticles (NPs) induce secretion of prominent type-1 T-helper (Th-1) and type-2 T-helper (Th-2) cytokines in lymph node and spleen cells, and also induces significantly higher levels of IgG, IgG1, IgG2 and IgM in comparison to control mice. Furthermore, significantly enhanced γδ-T-cell activation was observed in lymph node cells isolated from mice immunized with Mtb lipid-coated chitosan NPs as compared to mice immunized with chitosan NPs alone or Mtb lipid liposomes. In comparison to CD8+ cells, significantly higher numbers of CD4+ cells were present in both the lymph node and spleen cells isolated from mice immunized with Mtb lipid-coated chitosan NPs. In conclusion, this study represents a promising new strategy for the efficient delivery of Mtb lipids using chitosan NPs to trigger an enhanced cell-mediated and antibody response against Mtb lipids.
Linnemann, Amelia K; Krawetz, Stephen A
2009-05-01
DNA loop organization by nuclear scaffold/matrix attachment is a key regulator of gene expression that may provide a means to modulate phenotype. We have previously shown that attachment of genes to the NaCl-isolated nuclear matrix correlates with their silencing in HeLa cells. In contrast, expressed genes were associated with the lithium 3,5-diiodosalicylate (LIS)-isolated nuclear scaffold. To define their role in determining phenotype matrix attached regions (MARs) on human chromosomes 14-18 were identified as a function of expression in a primary cell line. The locations of MARs in aortic adventitial fibroblast (AoAF) cells were very stable (r = 0.909) and 96% of genes attached at MARs are silent (P < 0.001). Approximately one-third of the genes uniquely expressed in AoAF cells were associated with the HeLa cell nuclear matrix and silenced. Comparatively, 81% were associated with the AoAF cell nuclear scaffold (P < 0.001) and expressed. This suggests that nuclear scaffold/matrix association mediates a portion of cell type-specific gene expression thereby modulating phenotype. Interestingly, nuclear matrix attachment and thus silencing of specific genes that regulate proliferation and maintain the integrity of the HeLa cell genome suggests that transformation may at least in part be achieved through aberrant nuclear matrix attachment.
Miao, Ruidong; Wei, Juan; Zhang, Qi; Sajja, Venkateswara; Yang, Jinbo; Wang, Qin
2008-12-01
Bisabolane-type sesquiterpenes are a class of biologically active compounds that has antitumour,antifungal, antibacterial,antioxidant and antivenom properties.We investigated the effect of two new highly oxygenated bisabolane-type sesquiterpenes (HOBS)isolated from Cremanthodium discoideum (C.discoideum) on tumour cells. Our results showed that HOBS induced morphological differentiation and reduced microvilli formation on the cell surface in SMMC-7721 cells.Flow cytometry analysis demonstrated that HOBS could induce cell-cycle arrest in the G1 phase. Moreover,HOBS was able to increase tyrosine-alpha ketoglutarate transaminase activity,decrease alpha- foetoprotein level and gamma-glutamyl transferase activity. In addition,we found that HOBS inhibited the anchorage- independent growth of SMMC-7721 cells in a dose-dependent manner.Taken together,all the above observations indicate that HOBS might be able to normalize malignant SMMC-7721 cells by inhibiting cell proliferation and inducing redifferentiation.
Lee, Ada; Park, Juhee; Lim, Minji; Sunkara, Vijaya; Kim, Shine Young; Kim, Gwang Ha; Kim, Mi-Hyun; Cho, Yoon-Kyoung
2014-11-18
Circulating tumor cells (CTCs) have gained increasing attention owing to their roles in cancer recurrence and progression. Due to the rarity of CTCs in the bloodstream, an enrichment process is essential for effective target cell characterization. However, in a typical pressure-driven microfluidic system, the enrichment process generally requires complicated equipment and long processing times. Furthermore, the commonly used immunoaffinity-based positive selection method is limited, as its recovery rate relies on EpCAM expression of target CTCs, which shows heterogeneity among cell types. Here, we propose a centrifugal-force-based size-selective CTC isolation platform that can isolate and enumerate CTCs from whole blood within 30 s with high purity. The device was validated using the MCF-7 breast cancer cell line spiked in phosphate-buffered saline and whole blood, and an average capture efficiency of 61% was achieved, which is typical for size-based filtration. The capture efficiency for whole blood samples varied from 44% to 84% under various flow conditions and dilution factors. Under the optimized operating conditions, a few hundred white blood cells per 1 mL of whole blood were captured, representing a 20-fold decrease compared to those obtained using a commercialized size-based CTC isolation device. In clinical validation, normalized CTC counts varied from 10 to 60 per 7.5 mL of blood from gastric and lung cancer patients, yielding a detection rate of 50% and 38%, respectively. Overall, our CTC isolation device enables rapid and label-free isolation of CTCs with high purity, which should greatly improve downstream molecular analyses of captured CTCs.
Gas/liquid sensing via chemotaxis of Euglena cells confined in an isolated micro-aquarium.
Ozasa, Kazunari; Lee, Jeesoo; Song, Simon; Hara, Masahiko; Maeda, Mizuo
2013-10-21
We demonstrate on-chip gas/liquid sensing by using the chemotaxis of live bacteria (Euglena gracilis) confined in an isolated micro-aquarium, and gas/liquid permeation through porous polydimethylsiloxane (PDMS). The sensing chip consisted of one closed micro-aquarium and two separated bypass microchannels along the perimeter of the micro-aquarium. Test gas/liquid and reference samples were introduced into the two individual microchannels separately, and the gas/liquid permeated through the PDMS walls and dissolved in the micro-aquarium water, resulting in a chemical concentration gradient in the micro-aquarium. By employing the closed micro-aquarium isolated from sample flows, we succeeded in measuring the chemotaxis of Euglena for a gas substance quantitatively, which cannot be achieved with the conventional flow-type or hydro-gel-type microfluidic devices. We found positive (negative) chemotaxis for CO2 concentrations below (above) 15%, with 64 ppm as the minimum concentration affecting the cells. We also observed chemotaxis for ethanol and H2O2. By supplying culture medium via the microchannels, the Euglena culture remained alive for more than 2 months. The sensing chip is thus useful for culturing cells and using them for environmental toxicity/nutrition studies by monitoring their motion.
REMEDIAL APPLICATIONS OF EXOSOMES IN CANCER, INFECTIONS AND DIABETES.
Wang, Qianhuai; Ding, Xiaoqing; Zhen, Fei; Ma, Jianwei; Meng, Fanxing
2017-03-01
Different cell types under normal and diseased states constantly secrete numerous membrane vesicles including exosomes into extracellular space wkich can be isolated from various biological fluids and cell culture supernatants. Exosomal diameter ranges between 40-100 nm. In current research, exosomes are being exploited as biomarkers for pathological diagnosis and potential remedy against various disease conditions such as infections and autoimmune disorders. In cancer immunotherapy, exosomes have promisingly been employed due to the identical immunogenic antigens of exosomes produced by neoplastic cells and the originating tissues. Antigen-specific T-cell activation and immunomodulatory activity is observed to be performed by exosomes isolated from tumor and dendritic cells (DCs). However, more research is still required to uncover the realistic uses of exosomes, particularly as drug delivery tool in autoimmune diseases, cancers and diabetes.
Klebsiella pneumoniae type 3 fimbriae agglutinate yeast in a mannose-resistant manner.
Stahlhut, Steen G; Struve, Carsten; Krogfelt, Karen A
2012-03-01
The ability of bacterial pathogens to express different fimbrial adhesins plays a significant role in virulence. Thus, specific detection of fimbrial expression is an important task in virulence characterization and epidemiological studies. Most clinical Klebsiella pneumoniae isolates express type 1 and type 3 fimbriae, which are characterized by mediation of mannose-sensitive agglutination of yeast cells and agglutination of tannic acid-treated ox red blood cells (RBCs), respectively. It has been observed that K. pneumoniae isolates agglutinate yeast cells and commercially available sheep RBCs in a mannose-resistant manner. Thus, this study was initiated to identify the adhesin involved. Screening of a mutant library surprisingly revealed that the mannose-resistant agglutination of yeast and sheep RBCs was mediated by type 3 fimbriae. Specific detection of type 1 fimbriae expression in K. pneumoniae was feasible only by the use of guinea pig RBCs. This was further verified by the use of isogenic fimbriae mutants and by cloning and expressing K. pneumoniae fimbrial gene clusters in Escherichia coli. Yeast agglutination assays are commonly used to detect type 1 fimbriae expression but should not be used for bacterial species able to express type 3 fimbriae. For these species, the use of guinea pig blood for specific type 1 fimbriae detection is essential. The use of commercially available sheep RBCs or yeast is an easy alternative to traditional methods to detect type 3 fimbriae expression. Easy and specific detection of expression of type 1 and type 3 fimbriae is essential in the continuous characterization of these important adhesive virulence factors present in members of the Enterobacteriaceae.
Japour, A J; Mayers, D L; Johnson, V A; Kuritzkes, D R; Beckett, L A; Arduino, J M; Lane, J; Black, R J; Reichelderfer, P S; D'Aquila, R T
1993-01-01
A standardized antiviral drug susceptibility assay for clinical human immunodeficiency virus type 1 (HIV-1) isolates has been developed for use in clinical trials. The protocol is a two-step procedure that first involves cocultivation of patient infected peripheral blood mononuclear cells (PBMC) with seronegative phytohemagglutinin-stimulated donor PBMC to obtain an HIV-1 stock. The virus stock is titrated for viral infectivity (50% tissue culture infective dose) by use of serial fourfold virus dilutions in donor PBMC. A standardized inoculum of 1,000 50% tissue culture infective doses per 10(6) cells is used in the second step of the procedure to acutely infect seronegative donor PBMC in a 7-day microtiter plate assay with triplicate wells containing zidovudine (ZDV) concentrations ranging from 0 to 5.0 microM. The ZDV 50% inhibitory concentrations (IC50) for reference ZDV-susceptible and ZDV-resistant HIV-1 isolates ranged from 0.002 to 0.113 microM and from 0.15 to > 5.0 microM, respectively. Use of this consensus protocol reduced interlaboratory variability for ZDV IC50 determinations with reference HIV-1 isolates. Among eight laboratories, the coefficient of variation ranged from 0.85 to 1.25 with different PBMC protocols and was reduced to 0.39 to 0.98 with the standardized assay. Among the clinical HIV-1 isolates assayed by the standardized drug susceptibility assay, the median ZDV IC50 increased gradually with more ZDV therapy. This protocol provides an efficient and reproducible means to assess the in vitro susceptibility to antiretroviral agents of virtually all clinical HIV-1 isolates. PMID:8517697
Chikweto, Alfred; Sharma, Ravindra N; Tiwari, Keshaw P; Verma, Shiv K; Calero-Bernal, Rafael; Jiang, Tiantian; Su, Chunlei; Kwok, Oliver C; Dubey, Jitender P
2017-02-01
The objectives of the present cross-sectional study were to isolate and genotype Toxoplasma gondii in free-range chickens from Grenada, West Indies. Using the modified agglutination test, antibodies to T. gondii were found in 39 (26.9%) of 145 free-range chickens with titers of 25 in 7 chickens, 50 in 6 chickens, 100 in 2 chickens, and 200 or higher in 24 chickens. The hearts of the 39 seropositive chickens were bioassayed in mice; viable T. gondii was isolated from 20 and further propagated in cell culture. Genotyping of T. gondii DNA extracted from cell-cultured tachyzoites using the 10 PCR-restriction fragment length polymorphism (RFLP) markers SAG1, SAG2, SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico revealed 4 genotypes, including ToxoDB PCR-RFLP no. 2 (Type III), no. 7, no. 13, and no. 259 (new). These results indicated that T. gondii population genetics in free-range chickens seems to be moderately diverse with ToxoDB no. 2 (Type III) as the most frequent (15/20 = 75%) compared to other genotypes in Grenada.
Culturing primary mouse pancreatic ductal cells.
Reichert, Maximilian; Rhim, Andrew D; Rustgi, Anil K
2015-06-01
The most common subtype of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC). PDAC resembles ductal cells morphologically. To study pancreatic ductal cell (PDC) and pancreatic intraepithelial neoplasia (PanIN)/PDAC biology, it is essential to have reliable in vitro culture conditions. Here we describe a methodology to isolate, culture, and passage PDCs and duct-like cells from the mouse pancreas. It can be used to isolate cells from genetically engineered mouse models (GEMMs), providing a valuable tool to study disease models in vitro to complement in vivo findings. The culture conditions allow epithelial cells to outgrow fibroblast and other "contaminating" cell types within a few passages. However, the resulting cultures, although mostly epithelial, are not completely devoid of fibroblasts. Regardless, this protocol provides guidelines for a robust in vitro culture system to isolate, maintain, and expand primary pancreatic ductal epithelial cells. It can be applied to virtually all GEMMs of pancreatic disease and other diseases and cancers that arise from ductal structures. Because most carcinomas resemble ductal structures, this protocol has utility in the study of other cancers in addition to PDAC, such as breast and prostate cancers. © 2015 Cold Spring Harbor Laboratory Press.
Abdoli, Shahriyar; Roohvand, Farzin; Teimoori-Toolabi, Ladan; Shokrgozar, Mohammad Ali; Bahrololoumi, Mina; Azadmanesh, Kayhan
2017-07-01
Oncolytic herpes simplex virus (oHSV)-based vectors lacking γ34.5 gene, are considered as ideal templates to construct efficient vectors for (targeted) cancer gene therapy. Herein, we reported the construction of three single/dually-flourescence labeled and γ34.5-deleted, recombinant HSV-1 vectors for rapid generation and easy selection/isolation of different HSV-Based vectors. Generation of recombinant viruses was performed with conventional homologous recombination methods using green fluorescent protein (GFP) and BleCherry harboring shuttle vectors. Viruses were isolated by direct fluorescence observation and standard plaque purifying methods and confirmed by PCR and sequencing and flow cytometry. XTT and plaque assay titration were performed on Vero, U87MG, and T98 GBM cell lines. We generated three recombinant viruses, HSV-GFP, HSV-GR (Green-Red), and HSV-Red. The HSV-GFP showed two log higher titer (1010 PFU) than wild type (108 PFU). In contrast, HSV-GR and HSV-Red showed one log lower titer (107 PFU) than parental HSV. Cytotoxicity analysis showed that HSV-GR and HSV-Red can lyse target tumor cells at multiplicity of infection of 10 and 1 (P<0.001). Moreover, HSV-GFP showed higher infection potency (98%) in comparison with HSV-GR (82%). Our oHSVs provide a simple and an efficient platform for construction and rapid isolation of 2nd and 3rd generation oHSVs by replacing the inserted dyes with transgenes and also for rapid identification via fluorescence activated cell sorting. These vectors can also be used for tracing the efficacy of therapeutic agents on target cells, imaging of neural or tumoral cells in vitro/in vivo and as oncolytic agents in cancer therapy.
Mei, Jun; Guo, Qizhen; Wu, Yan; Li, Yunfei
2014-01-01
The biochemical changes occurring during cheese ripening are directly and indirectly dependent on the microbial associations of starter cultures. Freeze-dried Tibetan kefir coculture was used as a starter culture in the Camembert-type cheese production for the first time. Therefore, it's necessary to elucidate the stability, organization and identification of the dominant microbiota presented in the cheese. Bacteria and yeasts were subjected to culture-dependent on selective media and culture-independent polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) analysis and sequencing of dominant bands to assess the microbial structure and dynamics through ripening. In further studies, kefir grains were observed using scanning electron microscopy (SEM) methods. A total of 147 bacteria and 129 yeasts were obtained from the cheese during ripening. Lactobacillus paracasei represents the most commonly identified lactic acid bacteria isolates, with 59 of a total of 147 isolates, followed by Lactococcus lactis (29 isolates). Meanwhile, Kazachstania servazzii (51 isolates) represented the mainly identified yeast isolate, followed by Saccharomyces cerevisiae (40 isolates). However, some lactic acid bacteria detected by sequence analysis of DGGE bands were not recovered by plating. The yeast S. cerevisiae and K. servazzii are described for the first time with kefir starter culture. SEM showed that the microbiota were dominated by a variety of lactobacilli (long and curved) cells growing in close association with a few yeasts in the inner portion of the grain and the short lactobacilli were observed along with yeast cells on the exterior portion. Results indicated that conventional culture method and PCR-DGGE should be combined to describe in maximal detail the microbiological composition in the cheese during ripening. The data could help in the selection of appropriate commercial starters for Camembert-type cheese.
Mei, Jun; Guo, Qizhen; Wu, Yan; Li, Yunfei
2014-01-01
The biochemical changes occurring during cheese ripening are directly and indirectly dependent on the microbial associations of starter cultures. Freeze-dried Tibetan kefir coculture was used as a starter culture in the Camembert-type cheese production for the first time. Therefore, it's necessary to elucidate the stability, organization and identification of the dominant microbiota presented in the cheese. Bacteria and yeasts were subjected to culture-dependent on selective media and culture-independent polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE) analysis and sequencing of dominant bands to assess the microbial structure and dynamics through ripening. In further studies, kefir grains were observed using scanning electron microscopy (SEM) methods. A total of 147 bacteria and 129 yeasts were obtained from the cheese during ripening. Lactobacillus paracasei represents the most commonly identified lactic acid bacteria isolates, with 59 of a total of 147 isolates, followed by Lactococcus lactis (29 isolates). Meanwhile, Kazachstania servazzii (51 isolates) represented the mainly identified yeast isolate, followed by Saccharomyces cerevisiae (40 isolates). However, some lactic acid bacteria detected by sequence analysis of DGGE bands were not recovered by plating. The yeast S. cerevisiae and K. servazzii are described for the first time with kefir starter culture. SEM showed that the microbiota were dominated by a variety of lactobacilli (long and curved) cells growing in close association with a few yeasts in the inner portion of the grain and the short lactobacilli were observed along with yeast cells on the exterior portion. Results indicated that conventional culture method and PCR-DGGE should be combined to describe in maximal detail the microbiological composition in the cheese during ripening. The data could help in the selection of appropriate commercial starters for Camembert-type cheese. PMID:25360757
Novembre, F J; de Rosayro, J; Nidtha, S; O'Neil, S P; Gibson, T R; Evans-Strickfaden, T; Hart, C E; McClure, H M
2001-02-01
To investigate the pathogenicity of a virus originating in a chimpanzee with AIDS (C499), two chimpanzees were inoculated with a plasma-derived isolate termed human immunodeficiency virus type 1(NC) (HIV-1(NC)). A previously uninfected chimpanzee, C534, experienced rapid peripheral CD4(+) T-cell loss to fewer than 26 cells/microl by 14 weeks after infection. CD4(+) T-cell depletion was associated with high plasma HIV-1 loads but a low virus burden in the peripheral lymph node. The second chimpanzee, C459, infected 13 years previously with HIV-1(LAV), experienced a more protracted course of peripheral CD4(+) T-cell loss after HIV-1(NC) inoculation, resulting in fewer than 200 cells/microl by 96 weeks postinoculation. The quantities of viral RNA in the plasma and peripheral lymph node from C459 were below the lower limits of detection prior to inoculation with HIV-1(NC) but were significantly and persistently increased after superinfection, with HIV-1(NC) representing the predominant viral genotype. These results show that viruses derived from C499 are more pathogenic for chimpanzees than any other HIV-1 isolates described to date.
Ljungh, A; Osterlind, M; Wadström, T
1986-05-01
Sixty-three strains of Group D streptococci and viridans streptococci isolated from blood cultures during a two year period were typed to the species level with conventional biochemical tests and API Strep. Streptococcus faecalis was the most common species isolated followed by S. sanguis, S. mitis and S. constellatus (S. milleri). One of the two isolates of S. faecium was a contamination. The reported increasing frequency of this organism and other Group D and viridans streptococci as well as the association of S. bovis with malignant bowel disease indicate the need for full identification of streptococcal isolates from blood cultures. Pronounced surface hydrophobicity as measured with the salt aggregation test (SAT) was expressed by 59/63 (94%) of the blood culture isolates whereas strains isolated from commercial fermentation products and strains passaged several times were hydrophilic. In the presence of human serum albumin which binds to lipoteichoic acid only one strain decreased in surface hydrophobicity. The surface hydrophobicity of two strains even slightly increased indicating that lipoteichoic acid but marginally contributes to surface hydrophobicity of streptococcal cells from these species.
Regional differences in lectin binding patterns of vestibular hair cells
NASA Technical Reports Server (NTRS)
Baird, Richard A.; Schuff, N. R.; Bancroft, J.
1994-01-01
Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not stain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type 1 hair cells while labeling, as in the bullfrog, Type 2 hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.
Pan-Genotype Hepatitis E Virus Replication in Stem Cell-Derived Hepatocellular Systems.
Wu, Xianfang; Dao Thi, Viet Loan; Liu, Peng; Takacs, Constantin N; Xiang, Kuanhui; Andrus, Linda; Gouttenoire, Jérôme; Moradpour, Darius; Rice, Charles M
2018-02-01
The 4 genotypes of hepatitis E virus (HEV) that infect humans (genotypes 1-4) vary in geographical distribution, transmission, and pathogenesis. Little is known about the properties of HEV or its hosts that contribute to these variations. Primary isolates grow poorly in cell culture; most studies have relied on variants adapted to cancer cell lines, which likely alter virus biology. We investigated the infection and replication of primary isolates of HEV in hepatocyte-like cells (HLCs) derived from human embryonic and induced pluripotent stem cells. Using a cell culture-adapted genotype 3 strain and primary isolates of genotypes 1 to 4, we compared viral replication kinetics, sensitivity to drugs, and ability of HEV to activate the innate immune response. We studied HLCs using quantitative reverse-transcriptase polymerase chain reaction and immunofluorescence assay and enzyme-linked immunosorbent assays. We used an embryonic stem cell line that can be induced to express the CRISPR-Cas9 machinery to disrupt the peptidylprolyl isomerase A gene, encoding cyclophilin A (CYPA), a protein reported to inhibit replication of cell culture-adapted HEV. We further modified this line to rescue expression of CYPA before terminal differentiation to HLCs and performed HEV infection studies. HLCs were permissive for infection by nonadapted, primary isolates of HEV genotypes 1 to 4. HEV infection of HLCs induced a replication-dependent type III interferon response. Replication of primary HEV isolates, unlike the cell culture-adapted strain, was not affected by disruption of the peptidylprolyl isomerase A gene or exposure to the CYPA inhibitor cyclosporine A. Cell culture adaptations alter the replicative capacities of HEV. HLCs offer an improved, physiologically relevant, and genetically tractable system for studying the replication of primary HEV isolates. HLCs could provide a model to aid development of HEV drugs and a system to guide personalized regimens, especially for patients with chronic hepatitis E who have developed resistance to ribavirin. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Bovine viral diarrhea virus (BVDV) is a member of the Flaviviradae family. BVDV isolates are classified into two biotypes based on the development of cytopathic (cp) or non-cytopathic (ncp) effects in epithelial cell culture. In addition, BVDV isolates are further separated into species, BVDV1 and 2...
Serena, Maria Soledad; Metz, Germán Ernesto; Lozada, Maria Ines; Aspitia, Carolina Gabriela; Nicolino, Edgardo Héctor; Pidone, Claudio Luis; Fossaroli, Melisa; Balsalobre, Agustin; Quiroga, Maria Alejandra; Echeverria, Maria Gabriela
2018-01-01
Since Aujeszky`s disease (pseudorabies), which is caused by Suid herpesvirus type 1 (SuHV-1), was first notified in Argentina in 1978, many SuHV-1 strains have been isolated from swine. However, this disease can affect other vertebrates, such as dogs (secondary hosts), and lead to fatal neurological disease. The objective of the current work is to report the first isolation and molecular characterization of SuHV-1 from a dead domestic dog from Santa Fe Province (Argentina), which had had nervous signs compatible with pseudorabies. Samples of brain and trigeminal ganglia from this dog were obtained and fixed in formol for histopathology, and virology studies were conducted after cell disruption. Supernatants of both samples were inoculated onto RK13 cells and, after 72 h, DNA was extracted with phenol-chloroform. Purified DNA was cut with a restriction enzyme and subjected to agarose gel and an aliquot was used to amplify the gD and gC genes by PCR. The gC sequence was compared with other public sequences. The strain isolated from the dog was similar to other Argentinean swine strains. PMID:29721443
Stem Cells in the Trabecular Meshwork for Regulating Intraocular Pressure.
Yun, Hongmin; Zhou, Yi; Wills, Andrew; Du, Yiqin
2016-06-01
Intraocular pressure (IOP) is still the main treatment target for glaucoma. Outflow resistance mainly exists at the trabecular meshwork (TM) outflow pathway, which is responsible for IOP regulation. Changes of TM cellularity and TM extracellular matrix turnover may play important roles in IOP regulation. In this article, we review basic anatomy and physiology of the outflow pathway and TM stem cell characteristics regarding the location, isolation, identification and function. TM stem cells are localized at the insert region of the TM and are label-retaining in vivo. They can be isolated by side-population cell sorting, cloning culture, or sphere culture. TM stem cells are multipotent with the ability to home to the TM region and differentiate into TM cells in vivo. Other stem cell types, such as adipose-derived stem cells, mesenchymal stem cells and induced pluripotent stem cells have been discovered for TM cell differentiation and TM regeneration. We also review glaucomatous animal models, which are suitable to study stem cell-based therapies for TM regeneration.
Stem Cells in the Trabecular Meshwork for Regulating Intraocular Pressure
Yun, Hongmin; Zhou, Yi; Wills, Andrew
2016-01-01
Abstract Intraocular pressure (IOP) is still the main treatment target for glaucoma. Outflow resistance mainly exists at the trabecular meshwork (TM) outflow pathway, which is responsible for IOP regulation. Changes of TM cellularity and TM extracellular matrix turnover may play important roles in IOP regulation. In this article, we review basic anatomy and physiology of the outflow pathway and TM stem cell characteristics regarding the location, isolation, identification and function. TM stem cells are localized at the insert region of the TM and are label-retaining in vivo. They can be isolated by side-population cell sorting, cloning culture, or sphere culture. TM stem cells are multipotent with the ability to home to the TM region and differentiate into TM cells in vivo. Other stem cell types, such as adipose-derived stem cells, mesenchymal stem cells and induced pluripotent stem cells have been discovered for TM cell differentiation and TM regeneration. We also review glaucomatous animal models, which are suitable to study stem cell-based therapies for TM regeneration. PMID:27183473
Electrochemical cell and separator plate thereof
Baker, Bernard S.; Dharia, Dilip J.
1979-10-02
A fuel cell includes a separator plate having first and second flow channels extending there through contiguously with an electrode and respectively in flow communication with the cell electrolyte and in flow isolation with respect to such electrolyte. In fuel cell system arrangement, the diverse type channels are supplied in common with process gas for thermal control purposes. The separator plate is readily formed by corrugation of integral sheet material. 10 figs.
T Cells that Recognize HPV Protein Can Target Virus-Infected Cells | Center for Cancer Research
Adoptive T-cell transfer (ACT) is a promising form of cancer immunotherapy. Treating patients with T cells isolated from a tumor and subsequently expanded in the lab can cause the complete regression of some melanomas and cervical cancers, but the treatment is currently restricted to a few cancer types. An approach that may be applied to a wider array of cancers involves
Isolation and Characterization of Prostate Cancer Stem Cells
2009-08-01
The Prostate Manuscript ID: PROS-09-224.R1 Wiley - Manuscript type: Original Article Date Submitted by the Author: 18-Sep-2009 Complete List of ...subpopulation of basal cells has stem cell characteristics raises some interesting questions about the cell of origin for prostate cancer. Can both basal...positively for AMACR and the retention of 7 a p63+ basal layer, the basal-derived lesions fulfill the histologic criteria used
Pope, Christopher; Wilson, Janet; Taboada, Eduardo N.; MacKinnon, Joanne; Felipe Alves, Cristiano A.; Nash, John H. E.; Rahn, Kris; Tannock, Gerald W.
2007-01-01
One hundred forty-one Campylobacter jejuni isolates from humans with diarrhea and 100 isolates from retailed poultry meat were differentiated by flaA typing. The bacteria were isolated in a specific geographical area (Dunedin) in New Zealand over a common time period. Twenty nine flaA types were detected, one of which (flaA restriction fragment length polymorphism type 15 [flaA-15]) predominated among isolates from humans (∼30% of isolates). This strain was of low prevalence (5% of isolates) among poultry isolates. flaA-15 strains were five to six times more invasive of HEp2 cells in an in vitro assay than a flaA type (flaA-3) that was commonly encountered on poultry meat (23% of isolates) but was seldom associated with human illness (5%). Competitive-exclusion experiments with chickens, utilizing real-time quantitative PCR to measure the population sizes of specific strains representing flaA-15 (T1016) and flaA-3 (Pstau) in digesta, were carried out. These experiments showed that T1016 always outcompeted Pstau in the chicken intestine. Genomic comparisons of T1016 and Pstau were made using DNA microarrays representing the genome of C. jejuni NCTC 11168. These comparisons revealed differences between the strains in the gene content of the Cj1417c-to-Cj1442c region of the genome, which is associated with the formation of capsular polysaccharide. The strains differed in Penner type (T1016, O42; Pstau, O53). It was concluded that poultry meat was at least one source of human infection with C. jejuni, that some Campylobacter strains detected in poultry meat are of higher virulence for humans than others, and that bacterial attributes affecting strain virulence and commensal colonization ability may be linked. PMID:17921281
Jeong, Jiwoon; Choi, Kyuhyung; Kang, Ikjae; Park, Changhoon; Chae, Chanhee
2016-08-30
Type 2 porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) was first isolated in Korea in 1994. The commercial PRRS modified live vaccine (Ingelvac(®) PRRS MLV, Boehringer Ingelheim Vetmedica Inc., St. Joseph, Missouri, USA) based on type 2 PRRSV, was first licensed for use in 3- to 18-week-old pigs in Korea in 1996. The objective of the present study was to evaluate the efficacy of this 20year old commercial PRRS modified live vaccine (MLV) against two recent PRRSV isolates. Two genetically distant type 2 PRRSV strains (SNUVR150004 for lineage 1 and SNUVR150324 for lineage 5), isolated in 2015, were used as challenge virus. Regardless of the challenge virus, vaccination of pigs effectively reduced the level of viremia, the lung lesions, and of the PRRSV antigen within the lung lesions. The induction of virus-specific interferon-γ secreting cells by the PRRS vaccine produced a protective immune response, leading to the reduction of PRRSV viremia. There were no significant differences in efficacy against the two recently isolated viruses by the PRRS MLV based on virological results, immunological responses, and pathological outcomes. This study demonstrates that the PRRS MLV used in this study is still effective against recently isolated heterologous type 2 PRRSV strains even after 20 years of use in over 35 million pigs. Copyright © 2016 Elsevier B.V. All rights reserved.
Aguilera, Valeria; Briceño, Luis; Contreras, Hector; Lamperti, Liliana; Sepúlveda, Esperanza; Díaz-Perez, Francisca; León, Marcelo; Veas, Carlos; Maura, Rafael; Toledo, Jorge Roberto; Fernández, Paulina; Covarrubias, Ambart; Zuñiga, Felipe Andrés; Radojkovic, Claudia; Escudero, Carlos; Aguayo, Claudio
2014-01-01
Mesenchymal stem cells have a high capacity for trans-differentiation toward many adult cell types, including endothelial cells. Feto-placental tissue, such as Wharton's jelly is a potential source of mesenchymal stem cells with low immunogenic capacity; make them an excellent source of progenitor cells with a potential use for tissue repair. We evaluated whether administration of endothelial cells derived from mesenchymal stem cells isolated from Wharton's jelly (hWMSCs) can accelerate tissue repair in vivo. Mesenchymal stem cells were isolated from human Wharton's jelly by digestion with collagenase type I. Endothelial trans-differentiation was induced for 14 (hWMSC-End14d) and 30 (hWMSC-End30d) days. Cell phenotyping was performed using mesenchymal (CD90, CD73, CD105) and endothelial (Tie-2, KDR, eNOS, ICAM-1) markers. Endothelial trans-differentiation was demonstrated by the expression of endothelial markers and their ability to synthesize nitric oxide (NO). hWMSCs can be differentiated into adipocytes, osteocytes, chondrocytes and endothelial cells. Moreover, these cells show high expression of CD73, CD90 and CD105 but low expression of endothelial markers prior to differentiation. hWMSCs-End express high levels of endothelial markers at 14 and 30 days of culture, and also they can synthesize NO. Injection of hWMSC-End30d in a mouse model of skin injury significantly accelerated wound healing compared with animals injected with undifferentiated hWMSC or injected with vehicle alone. These effects were also observed in animals that received conditioned media from hWMSC-End30d cultures. These results demonstrate that mesenchymal stem cells isolated from Wharton's jelly can be cultured in vitro and trans-differentiated into endothelial cells. Differentiated hWMSC-End may promote neovascularization and tissue repair in vivo through the secretion of soluble pro-angiogenic factors.
T-bet expression by Th cells promotes type 1 inflammation but is dispensable for colitis.
Zimmermann, J; Kühl, A A; Weber, M; Grün, J R; Löffler, J; Haftmann, C; Riedel, R; Maschmeyer, P; Lehmann, K; Westendorf, K; Mashreghi, M-F; Löhning, M; Mack, M; Radbruch, A; Chang, H D
2016-11-01
The transcription factor T-bet is highly expressed by Th cells isolated from the inflamed intestine of Crohn's disease patients, and has been regarded a critical driver of murine T cell-induced colitis. However, we show here that T-bet expression by Th cells is not required for the manifestation of T-cell-induced colitis in the presence of segmented filamentous bacteria and Helicobacter hepaticus. T-bet expression by Th cells controls their survival and localization, their repertoire of chemokine and chemokine receptor expression, the accumulation of monocytes and macrophages in the inflamed colon, and their differentiation to the M1 type, i.e., type 1 inflammation. Nevertheless, T-bet-deficient Th cells efficiently induce colitis, as reflected by weight loss, diarrhea, and colon histopathology. T-bet-deficient Th cells differentiate into Th1/17 cells, able to express IFN-γ and IL-17A upon restimulation. While neutralization of IL-17A exacerbated colitis induced by wild-type or T-bet-deficient Th cells, neutralization of IFN-γ completely abolished colitis.
Patients with Long-Term Oral Carriage Harbor High-Persister Mutants of Candida albicans▿
LaFleur, Michael D.; Qi, Qingguo; Lewis, Kim
2010-01-01
Fungal biofilms produce a small number of persister cells which can tolerate high concentrations of fungicidal agents. Persisters form upon attachment to a surface, an important step in the pathogenesis of Candida strains. The periodic application of antimicrobial agents may select for strains with increased levels of persister cells. In order to test this possibility, 150 isolates of Candida albicans and C. glabrata were obtained from cancer patients who were at high risk for the development of oral candidiasis and who had been treated with topical chlorhexidine once a day. Persister levels were measured by exposing biofilms growing in the wells of microtiter plates to high concentrations of amphotericin B and plating for survivors. The persister levels of the isolates varied from 0.2 to 9%, and strains isolated from patients with long-term carriage had high levels of persisters. High-persister strains were isolated from every patient with Candida carriage of more than 8 consecutive weeks but from no patients with transient carriage. All of the high-persister isolates had an amphotericin B MIC that was the same as that for the wild type, indicating that these strains were drug-tolerant rather than drug-resistant mutants. Biofilms of the majority of high-persister strains also showed an increased tolerance to chlorhexidine and had the same MIC for this antimicrobial as the wild type. This study suggests that persister cells are clinically relevant, and antimicrobial therapy selects for high-persister strains in vivo. The drug tolerance of persisters may be a critical but overlooked component responsible for antimicrobial drug failure and relapsing infections. PMID:19841146
Xu, Yan; Xie, Jianhui; Chen, Ronghua; Cao, Yu; Ping, Yuan; Xu, Qingwen; Hu, Wei; Wu, Dan; Gu, Lihua; Zhou, Huaigu; Chen, Xin; Zhao, Ziqin; Zhong, Jiang; Li, Rui
2016-01-01
No effective method has been developed to distinguish sperm cells originating from different men in multi-suspect sexual assault cases. Here we combined MACS and FACS to isolate single donor sperm cells from forensic mixture samples including female vaginal epithelial cells and sperm cells from multiple contributors. Sperms from vaginal swab were isolated by MACS using FITC-conjugated A kinase anchor protein 3 (AKAP3) antibody; target individual sperm cells involving two or three donors were separated by FACS using FITC-labeled blood group A/B antigen antibody. This procedure was further tested in two mock multi-suspect sexual assault samples and one practical casework sample. Our results showed that complete single donor STR profiles could be successfully obtained from sperm/epithelial cell and sperm mixtures from two contributors. For unbalanced sperm/epithelial cells and sperm cells mixtures, sensitivity results revealed that target cells could be detected at as low as 1:32 and 1:8 mixed ratios, respectively. Although highly relies on cell number and blood types or secretor status of the individuals, this procedure would still be useful tools for forensic DNA analysis of multi-suspect sexual assault cases by the combined use of FACS and MACS based on sperm-specific AKAP3 antigen and human blood type antigen. PMID:27857155
Loss of end-differentiated β-cell phenotype following pancreatic islet transplantation.
Anderson, S J; White, M G; Armour, S L; Maheshwari, R; Tiniakos, D; Muller, Y D; Berishvili, E; Berney, T; Shaw, J A M
2018-03-01
Replacement of pancreatic β-cells through deceased donor islet transplantation is a proven therapy for preventing recurrent life-threatening hypoglycemia in type 1 diabetes. Although near-normal glucose levels and insulin independence can be maintained for many years following successful islet transplantation, restoration of normal functional β-cell mass has remained elusive. It has recently been proposed that dedifferentiation/plasticity towards other endocrine phenotypes may play an important role in stress-induced β-cell dysfunction in type 2 diabetes. Here we report loss of end-differentiated β-cell phenotype in 2 intraportal islet allotransplant recipients. Despite excellent graft function and sustained insulin independence, all examined insulin-positive cells had lost expression of the end-differentiation marker, urocortin-3, or appeared to co-express the α-cell marker, glucagon. In contrast, no insulin + /urocortin-3 - cells were seen in nondiabetic deceased donor control pancreatic islets. Loss of end-differentiated phenotype may facilitate β-cell survival during the stresses associated with islet isolation and culture, in addition to sustained hypoxia following engraftment. As further refinements in islet isolation and culture are made in parallel with exploration of alternative β-cell sources, graft sites, and ultimately fully vascularized bioengineered insulin-secreting microtissues, differentiation status immunostaining provides a novel tool to assess whether fully mature β-cell phenotype has been maintained. © 2017 The American Society of Transplantation and the American Society of Transplant Surgeons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sherr, C.J.; Todaro, G.J.
1974-09-01
The major group specific (gs) protein of the endogenous baboon type C virus M7 was purified to homogeneity by gel filtration and isoelectric focusing. The protein has a molecular weight of approximately 33,000, as determined by electrophoresis in polyacrylamide gels containing sodium dodecyl sulfate, and an isoelectric point (pl) of 7.1, different from the pls of similarly purified gs proteins from six other mammalian type C viruses. Detergent disrupted M7 virus, whether grown in canine thymus or human rhabdomyosarcoma cells, fully displaced radiolabeled M7 gs protein from antigen-antibody complexes in a competitive radioimmunoassay. No antigenic differences were detected among themore » gs proteins of five independent isolates of baboon type C viruses grown in various cultured cell lines. The gs proteins of six independently isolated feline viruses of the RD-114/CCC group were antigenically related to, but could be distinguished from, the gs proteins of baboon type C viruses. No significant cross-reactions were observed in the radioimmunoassay for M7 gs protein using several other type C viruses, including two previously isolated from a woolly monkey and a gibbon ape. Group specific antigen was found in normal baboon testicular and splenic tissues using the M7 radioimmunoassay; no gs antigen could be detected in these same tissues using a radioimmunoassay for the gs protein of the woolly monkey type C virus. No gs antigen was found in baboon liver or in the tissues of several other primates. (auth)« less
TANG, XIAO-BO; DONG, PEI-LONG; WANG, JIAN; ZHOU, HAI-YANG; ZHANG, HAI-XIANG; WANG, SHAN-ZHENG
2015-01-01
This study aimed to isolate rabbit adipose-derived stem cells (ADSCs) and explore the potential of platelet-rich plasma (PRP) in the chondrogenic differentiation of ADSCs, thereby potentially providing a new approach for the repair and regeneration of cartilage injury. Rabbit ADSCs were isolated and characterized by induction towards adipogenic, osteogenic and chondrogenic lineages in vitro. The isolated ADSCs were also cultured with or without 10% PRP. Immunofluorescence staining, toluidine blue staining and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) were used to detect type II collagen (Col II) and aggrecan (AGC) expression. Col II immunofluorescence staining and toluidine blue staining indicated that following induction by autologous PRP, ADSCs manifested Col II and AGC expression. The expression of Col II and AGC mRNA was significantly upregulated in the PRP-treated cells when compared with that in control cells. Autologous PRP produced by laboratory centrifugation was able to promote the chondrogenic differentiation of rabbit ADSCs in vitro. PMID:26622340
Isolation and identification of group A rotaviruses among neonatal diarrheic calves, Morocco.
Ennima, Imane; Sebbar, Ghizlane; Harif, Bachir; Amzazi, Saaid; Loutfi, Chafiqa; Touil, Nadia
2016-05-05
Group A rotaviruses (RVA) are the main cause of neonatal calve diarrhea (NCD) in Morocco. In this study, we isolated RVA strains from NCD clinical samples in order to support RVA disease control in Morocco. This isolation process constitutes a first step toward vaccine development. Thirteen fecal samples were obtained from calves with a single episode of neonate calf diarrhea at three different dairies and two samples were collected from field during a severe NCD outbreak. Diagnosis of RVA infection was based on fecal immune-chromatographic rapid test and further evaluated for their hemagglutination (HA) activity. RVA isolation was carried out on MA104 cells after inoculates were treated with different concentrations of trypsin TPCK. All RVA isolates were confirmed by LSI VetMAX™ Triplex Ruminant Rotavirus & Coronavirus Real-Time PCR kit. G and P typing were determined by direct sequencing of the VP4 and VP7 amplicons. RVA isolation was achieved for nine clinical samples following one or two passages (60 %) and was properly depended on HA activity and trypsin treatment of inoculates. The first sign of CPE detected consisted of increased cell granularity, obscure cell boundaries, cell rounding, and eventual degeneration and detachment of cells. At lower TPCK concentration (3-10 μg/inoculum), no changes at the cellular level were observed, while cells activated with 25-30 μg of trypsin/inoculums, they degenerated and trypsin cytotoxicity was enhanced. Appreciable changes in cell's morphology were detected with optimal trypsin concentration of 15-20 μg trypsin/inoculums. Data from qRT-PCR confirmed that unsuccessful cultivations have No-Ct, and all nine isolates have Ct values ranged between 12.17 and 24.69. Analysis sequencing revealed that field isolates were of G6 P[5] serotype and isolates from the dairy NCD samples were of G10 P[14] serotype. To our knowledge, this is the first study in Morocco which reports the circulation of G10P[14] in NCD on dairy farms and G6P[5] in the field. Our study constitutes a crucial and a necessary step allowing preventive and veterinary medicine to support RVA disease controls in the country.
Imanse, Sierra M.; Cornwell, Emily R.; Getchell, Rodman G.; Kurath, Gael; Bowser, Paul R.
2014-01-01
Viral hemorrhagic septicemia virus (VHSV) is an aquatic rhabdovirus first recognized in farmed rainbow trout in Denmark. In the past decade, a new genotype of this virus, IVb was discovered in the Laurentian Great Lakes basin and has caused several massive die-offs in some of the 28 species of susceptible North American freshwater fishes. Since its colonization of the Great Lakes, several closely related sequence types within genotype IVb have been reported, the two most common of which are vcG001 and vcG002. These sequence types have different spatial distributions in the Great Lakes. The aim of this study was to determine whether the genotypic differences between representative vcG001 (isolate MI03) and vcG002 (isolate 2010-030 #91) isolates correspond to phenotypic differences in terms of virulence using both an in vitro and in vivo approach. In vitro infection of epithelioma papulosum cyprini (EPC), bluegill fry (BF-2), and Chinook salmon embryo (CHSE) cells demonstrated some differences in onset and rate of growth in EPC and BF-2 cells, without any difference in the quantity of RNA produced. In vivo infection of round gobies (Neogobius melanostomus) via immersion exposure to different concentrations of vcG001 or vcG002 caused a significantly greater mortality in round gobies exposed to 102 plaque forming units ml−1 of vcG001. These experiments suggest that there are phenotypic differences between Great Lakes isolates of VHSV genotype IVb. PMID:25722533
Imanse, Sierra M.; Cornwell, Emily R.; Getchell, Rodman G.; Kurath, Gael; Bowser, Paul R.
2014-01-01
Viral hemorrhagic septicemia virus (VHSV) is an aquatic rhabdovirus first recognized in farmed rainbow trout in Denmark. In the past decade, a new genotype of this virus, IVb was discovered in the Laurentian Great Lakes basin and has caused several massive die-offs in some of the 28 species of susceptible North American freshwater fishes. Since its colonization of the Great Lakes, several closely related sequence types within genotype IVb have been reported, the two most common of which are vcG001 and vcG002. These sequence types have different spatial distributions in the Great Lakes. The aim of this study was to determine whether the genotypic differences between representative vcG001 (isolate MI03) and vcG002 (isolate 2010-030 #91) isolates correspond to phenotypic differences in terms of virulence using both in vitro and in vivo approaches. In vitro infection of epithelioma papulosum cyprini (EPC), bluegill fry (BF-2), and Chinook salmon embryo (CHSE) cells demonstrated some differences in onset and rate of growth in EPC and BF-2 cells, without any difference in the quantity of RNA produced. In vivo infection of round gobies (Neogobius melanostomus) via immersion exposure to different concentrations of vcG001 or vcG002 caused a significantly greater mortality in round gobies exposed to 102 plaque forming units ml− 1 of vcG001. These experiments suggest that there are phenotypic differences between Great Lakes isolates of VHSV genotype IVb.
Steinhäuser, C; Kressin, K; Kuprijanova, E; Weber, M; Seifert, G
1994-10-01
In the present study, we were interested in a quantitative analysis of voltage-activated channels in a subpopulation of hippocampal glial cells, termed "complex" cells. The patch-clamp technique in the whole-cell mode was applied to identified cells in situ and to glial cells acutely isolated from tissue slices. The outward current was composed of two components: a sustained and a transient current. The transient K+ channel had electrophysiological and pharmacological properties resembling those of the channel through which the A-currents pass. In addition, this glial A-type current possessed a significant Ca2+ dependence. The current parameters determined in situ or in isolated cells corresponded well. Due to space clamp problems in situ, properties of voltage-dependent Na+ currents were only analysed in suspended glial cells. The tetrodotoxin (TTX) sensitivity and the stationary and kinetic characteristics of this current were similar to corresponding properties of hippocampal neurons. These quantitative data demonstrate that at an early postnatal stage of central nervous system maturation, glial cells in situ express a complex pattern of voltage-gated ion channels. The results are compared to findings in other preparations and the possible consequences of transmitter-mediated channel modulation in glial cells are discussed.
Pigments, size and distribution of Synechococcus spp. in the Black Sea
NASA Astrophysics Data System (ADS)
Uysal, Zahit
2000-03-01
Pigments, size and distribution of Phycoerythrin-containing unicellular cyanobacteria Synechococcus spp. within the euphotic zone were studied for the first time in April-May 1994 in the western and southwestern Black Sea by epifluorescence microscopy and flow-cytometry. Synechococcus was present in varying quantities at every station and depth studied. Surface spatial distribution of Synechococcus revealed that cells were much more abundant in offshore waters than near coastal regions under the direct influence of the Danube river. Minimum and maximum cell concentrations ranged between 9×10 2 and 1.45×10 5 cells/ml at the surface, between 2×10 3 and 1.23×10 5 cells/ml at the chlorophyll sub-maximum layer, and between 1.3×10 2 and 3.5×10 2 at the nitrite maximum layer. Cells at the chlorophyll sub-maximum layer (based on in-situ fluorometer readings) fluoresce brighter and longer than the ones at the surface and lower depths. Spectral properties of chromophore pigment types of total 64 clonal isolates from different depths down to the lower layer of the euphotic zone (˜60 m) in the southern Black Sea coast revealed that all have type 2 phycoerythrobilin in common, lacking in phycourobilin. In vivo fluorescence emission maxima for the phycoerythrobilin were about the same (˜578 nm) for all isolates. All isolates examined showed in vivo absorption maxima at between 435 and 442 nm and at about 681 nm due to chlorophyll- a. Based on the flow cytometer mean forward light scatter data for size distribution, it could be concluded that cells at the surface mixed layer (0-10 m) were larger in cell size than the cells at lower depths (20-60 m).
Moscoso, Miriam; Obregón, Virginia; López, Rubens; García, José L; García, Ernesto
2005-12-01
The choline-binding protein LytB, an N-acetylglucosaminidase of Streptococcus pneumoniae, is the key enzyme for daughter cell separation and is believed to play a critical pathogenic role, facilitating bacterial spreading during infection. Because of these peculiarities LytB is a putative vaccine target. To determine the extent of LytB polymorphism, the lytB alleles from seven typical, clinical pneumococcal isolates of various serotypes and from 13 additional streptococci of the mitis group (12 atypical pneumococci and the Streptococcus mitis type strain) were sequenced. Sequence alignment showed that the main differences among alleles were differences in the number of repeats (range, 12 to 18) characteristic of choline-binding proteins. These differences were located in the region corresponding to repeats 11 to 17. Typical pneumococcal strains contained either 14, 16, or 18 repeats, whereas all of the atypical isolates except strains 1283 and 782 (which had 14 and 16 repeats, respectively) and the S. mitis type strain had only 12 repeats; atypical isolate 10546 turned out to be a DeltalytB mutant. We also found that there are two major types of alternating repeats in lytB, which encode 21 and 23 amino acids. Choline-binding proteins are linked to the choline-containing cell wall substrate through choline residues at the interface of two consecutive choline-binding repeats that create a choline-binding site. The observation that all strains contained an even number of repeats suggests that the duplication events that gave rise to the choline-binding repeats of LytB involved two repeats simultaneously, an observation that is in keeping with previous crystallographic data. Typical pneumococcal isolates usually grew as diplococci, indicating that an active LytB enzyme was present. In contrast, most atypical isolates formed long chains of cells that did not disperse after addition of purified LytB, suggesting that in these strains chains were produced through mechanisms unrelated to LytB.
Transmitter responsiveness in two newly isolated clones of neuroblastoma X glioma hybrid.
Ogura, A; Amano, T
1983-01-10
Mouse neuroblastoma clone N1E-115 cells and rat glioma clone C6 cells were hybridized and two new clones were isolated. One clone, designated NG115-301, possessed weak electric excitability to an applied current pulse, while another clone, NG115-401, generated an action potential in response to the pulse. The former clone responded to serotonin and catecholamines with slow hyperpolarizations, while the latter clone responded to catecholamines with transient depolarizations. Both clones did not respond to acetylcholine. These types of responses have not been reported in any available clones. These clones may enrich the repertoire of cell clones useful for the characterization of transmitter reception mechanisms in the nervous system.
Occurrence of the invasion associated marker (iam) in Campylobacter jejuni isolated from cattle
2011-01-01
Background The invasion associated marker (iam) has been detected in the majority of invasive Campylobacter jejuni retrieved from humans. Furthermore, the detection of iam in C. jejuni isolated from two important hosts, humans and chickens, suggested a role for this marker in C. jejuni's colonization of multiple hosts. However, no data exist regarding the occurrence of this marker in C. jejuni isolated from non-poultry food-animals such as cattle, an increasingly important source for human infections. Since little is known about the genetics associated with C. jejuni's capability for colonizing physiologically disparate hosts, we investigated the occurrence of the iam in C. jejuni isolated from cattle and assessed the potential of iam-containing cattle and human isolates for chicken colonization and human cell invasion. Results Simultaneous RAPD typing and iam-specific PCR analysis of 129 C. jejuni isolated from 1171 cattle fecal samples showed that 8 (6.2%) of the isolates were iam-positive, while 7 (54%) of human-associated isolates were iam-positive. The iam sequences were mostly heterogeneous and occurred in diverse genetic backgrounds. All iam-positive isolates were motile and possessed important genes (cadF, ciaB, cdtB) associated with adhesion and virulence. Although certain iam-containing isolates invaded and survived in INT-407 cells in high numbers and successfully colonized live chickens, there was no clear association between the occurrence, allelic sequence, and expression levels of the iam and the aforementioned phenotypes. Conclusions We show that the prevalence of iam in cattle C. jejuni is relatively lower as compared to isolates occurring in humans and chickens. In addition, iam was polymorphic and certain alleles occur in cattle isolates that were capable of colonizing and invading chickens and human intestinal cells, respectively. However, the iam did not appear to contribute to the cattle-associated C. jejuni's potential for invasion and intracellular survival in human intestinal cells as well as chicken colonization. PMID:22208406
Endophytic fungi from mangrove inhibit lung cancer cell growth and angiogenesis in vitro.
Liu, Xin; Wu, Xin; Ma, Yuefan; Zhang, Wenzhang; Hu, Liang; Feng, Xiaowei; Li, Xiangyong; Tang, Xudong
2017-03-01
The secondary metabolites of mangrove-derived endophytic fungi contain multiple substances with novel structures and biological activities. In the present study, three types of mangrove plants, namely Kandelia candel, Rhizophora stylosa and Rhizophoraceae from Zhanjiang region including the leaves, roots and stems were collected, and endophytic fungi were isolated, purified and identified from these mangrove plants. MTT assay was used to observe the effects of the isolated endophytic fungi on the growth of A549 and NCI-H460 lung cancer cells. The effect of the endophytic fungi on lung cancer angiogenesis in vitro induced by the HPV-16 E7 oncoprotein was observed. Our results showed that 28 strains of endophytic fungi were isolated, purified and identified from the three types of mangrove plants. Ten strains of endophytic fungi significantly suppressed the growth of A549 and NCI-H460 cells. The average inhibitory rates in the A549 cells were 64.4, 59.5, 81.9, 43.9, 58.3, 56.2, 48.3, 42.4, 93.0 and 49.7%, respectively. The average inhibitory rates in the NCI-H460 cells were 41.2, 49.3, 82.7, 40.7, 53.9, 52.6, 56.8, 64.3, 91.0 and 45.6%, respectively. Particularly, three strains of endophytic fungi markedly inhibited HPV-16 E7 oncoprotein‑induced lung cancer angiogenesis in vitro. These findings contribute to the further screening of potential chemotherapeutic agents from mangrove-derived endophytic fungi.
Toro Nieves, Dianedis M; Plaud, Marinés; Wojna, Valerie; Skolasky, Richard; Meléndez, Loyda M
2009-01-01
Human immunodeficiency virus type 1 (HIV-1) tropism plays an important role in HIV-associated dementia. In this study, aimed at determining if the tropism and coreceptor usage of circulating viruses correlates with cognitive function, the authors isolated and characterized HIV from the peripheral blood of 21 Hispanic women using antiretroviral therapy. Macrophage tropism was determined by inoculation of HIV isolates onto monocyte-derived macrophages and lymphocyte cultures. To define coreceptor usage, the HIV isolates were inoculated onto the U87.CD4 glioma cell lines with specific CCR5 and CXCR4 coreceptors. HIV isolates from cognitively impaired patients showed higher levels of replication in mitogen-stimulated peripheral blood mononuclear cells than did isolates from patients with normal cognition (P < .05). The viral growth of HIV primary isolates in macrophages and lymphocytes did not differ between patients with and those without cognitive impairment. However, isolates from the cognitively impaired women preferentially used the X4 coreceptor (P < .05). These phenotypic studies suggest that cognitively impaired HIV-infected women receiving treatment may have a more highly replicating and more pathogenic X4 virus in the circulation that could contribute to their neuropathogenesis. PMID:17849315
Pérez, Andy J; Pecio, Łukasz; Kowalczyk, Mariusz; Kontek, Renata; Gajek, Gabriela; Stopinsek, Lidija; Mirt, Ivan; Stochmal, Anna; Oleszek, Wiesław
2017-11-01
For centuries wood containers have been used in aging of wines and spirits, due to the pleasant flavors they give to the beverages. Together with oak, sweet chestnut wood (Castanea sativa) have been often used for such purpose. The maturation process involves the transfer of secondary metabolites, mainly phenolics, from the wood to the liquid. At the same time, other metabolites, such as triterpenoids and their glycosides, can also be released. Searching for the extractable triterpenoids from sweet chestnut heartwood (C. sativa), two new ursane-type triterpenoid saponins named chestnoside A (1) and chestnoside B (2), together with two known oleanen-type analogs (3 and 4) were isolated and characterized. The cytotoxicity of isolated compounds was tested against two cancer cell lines (PC3 and MCF-7), and normal lymphocytes. Breast cancer cells (MCF-7) were more affected by tested compounds than prostate cancer cells (PC3). Chestnoside B (2) exhibited the strongest cytotoxicity with an IC 50 of 12.3 μM against MCF-7 cells, lower than those of positive controls, while it was moderately active against normal lymphocytes (IC 50 = 67.2 μM). These results highlight the occurrence of triterpenoid saponins in sweet chestnut heartwood and their potential for the chemoprevention of breast cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.
Noté, Olivier Placide; Jihu, Dong; Antheaume, Cyril; Zeniou, Maria; Pegnyemb, Dieudonné Emmanuel; Guillaume, Dominique; Chneiwess, Hervé; Kilhoffer, Marie Claude; Lobstein, Annelise
2015-03-02
As part of our search of new bioactive triterpenoid saponins from Cameroonian Mimosaceae plants, phytochemical investigation of the roots of Albizia lebbeck led to the isolation of two new oleanane-type saponins, named lebbeckosides A-B (1-2). Their structures were established on the basis of extensive 1D and 2D NMR ((1)H, (13)C NMR, DEPT, COSY, TOCSY, ROESY, HSQC, and HMBC) and HRESIMS studies, and by chemical evidence. Compounds 1-2 were evaluated for their inhibitory effect on the metabolism of high grade human brain tumor cells, the human glioblastoma U-87 MG cell lines and the glioblastoma stem-like TG1 cells isolated from a patient tumor, and known to be particularly resistant to standard therapies. The isolated saponins showed significant cytotoxic activity against U-87 MG and TG1 cancer cells with IC50 values of 3.46 μM and 1.36 μM for 1, and 2.10 μM and 2.24 μM for 2, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.
Hirano, Shino; Yokota, Yasushi; Eda, Mika; Kuda, Takashi; Shikano, Ayane; Takahashi, Hajime; Kimura, Bon
2017-03-01
The probiotic properties and inhibitory effect on Salmonella Typhimurium adhesion on human enterocyte-like HT-29-Luc cells of three Lactobacillus plantarum strains isolated from fermented fish, beach sand and a coastal plant were determined. Compared with the type strain L. plantarum NBRC 15891 T , which was isolated from pickled cabbage, L. plantarum Tennozu-SU2 isolated from the acorn of a coastal tree showed high autoaggregation in de Man, Rogosa and Sharpe (MRS) broth and an antagonistic effect against S. Typhimurium in brain heart infusion (BHI) broth. Furthermore, heat-killed L. plantarum Tennozu-SU2 cells inhibited S. Typhimurium adhesion on HT-29-Luc cells. Both live and heat-killed L. plantarum Tennozu-SU2 cells showed an inhibitory effect on gut colonisation in BALB/c mice, as assessed by viable Salmonella count in faecal samples and by invasion into liver and spleen tissues. The properties shown in this study suggest that L. plantarum Tennozu-SU2 is useful as a starter and probiotic bacteria in functional food material.
Samuel L. Zelinka; Michael J. Lambrecht; Samuel V. Glass; Alex C. Wiedenhoeft; Daniel J. Yelle
2012-01-01
This paper examines phase transformations of water in wood and isolated wood cell wall components using differential scanning calorimetry with the purpose of better understanding "Type II water" or "freezable bound water" that has been reported for cellulose and other hydrophilic polymers. Solid loblolly pine (Pinus taeda...
Modes of isolated, severe convective storm formation along the dryline
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bluestein, H.B.; Parker, S.S.
1993-05-01
Patterns of the formation of isolated, severe convective storms along the dryline in the Southern plains of the United States during the spring over a 16-year period were determined from an examination of the evolution of radar echoes as depicted by WSR-57 microfilm data. It was found that in the first 30 min after the first echo, more than half of the radar echoes evolved into isolated storms as isolated cells from the start; others developed either from a pair of cells, from a line segment, from a cluster of cells, from the merger of mature cells, or from amore » squall line. Proximity soundings were constructed from both standard and special soundings, and from standard surface data. It was found that the estimated convective available potential energy and vertical shear are characteristic of the environment of supercell storms. The average time lag between the first echo and the first occurrence of severe weather of any type, or tornadoes alone, was approximately 2 h. There were no significant differences in the environmental parameters for the different modes of storm formation. 49 refs., 15 figs., 3 tabs.« less
Suárez, Viviana B; Maciel, Natalia; Guglielmotti, Daniela; Zago, Miriam; Giraffa, Giorgio; Reinheimer, Jorge
2008-12-10
The aim of this work was to study the relationship between the cell morphological heterogeneity and the phage-resistance in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1. Two morphological variants (named C and T) were isolated from this strain. Phage-resistant derivatives were isolated from them and the percentage of occurrence of confirmed phage-resistant cells was 0.001% of the total cellular population. Within these phage-resistant cell derivatives there were T (3 out of 4 total isolates) and C (1 out of 4 total isolates) variants. The study of some technological properties (e.g. proteolytic and acidifying activities) demonstrated that most of phage-resistant derivatives were not as good as the parental strain. However, for one derivative (a T variant), the technological properties were better than those of the parental strain. On the other hand, it was possible to determinate that the system of phage-resistance in the T variants was interference in adsorption step, with adsorption rates <15%. For the C variant derivative it was possible to demonstrate the presence of a restriction/modification system and, moreover, to determinate that this system could be Type I R/M.
Shyaka, Anselme; Kusumoto, Akiko; Chaisowwong, Warangkhana; Okouchi, Yoshiki; Fukumoto, Shinya; Yoshimura, Aya; Kawamoto, Keiko
2015-08-01
The prevalence of Campylobacter jejuni in wild birds is a potential hazard for human and animal health. The aim of this study was to establish the prevalence of C. jejuni in wild birds in Tokachi area, Hokkaido, Japan and investigate their virulence in vitro. In total, 173 cloacal swabs from individual wild birds were collected for the detection of Campylobacter spp. Thirty four samples (19.7%) were positive for Campylobacter of which 94.1% (32/34 samples) were C. jejuni. Additionally, one C. coli and one C. fetus were isolated. Seven C. jejuni isolates (one from crows and the other from pigeons) had important virulence genes including all three CDT genes (cdtA, cdtB and cdtC) and flaA, flaB, ciaB and cadF, and the other isolates were lacking cdtA gene. Further studies on in vitro virulence-associated phenotypes, such as motility assay on soft agar and invasion assay in Caco-2 cells, were performed. The wild bird C. jejuni isolates adhered and invaded human cells. Although the numbers of viable intracellular bacteria of wild bird isolates were lower than a type strain NCTC11168, they persisted at 48-hr and underwent replication in host cells.
SHYAKA, Anselme; KUSUMOTO, Akiko; CHAISOWWONG, Warangkhana; OKOUCHI, Yoshiki; FUKUMOTO, Shinya; YOSHIMURA, Aya; KAWAMOTO, Keiko
2015-01-01
The prevalence of Campylobacter jejuni in wild birds is a potential hazard for human and animal health. The aim of this study was to establish the prevalence of C. jejuni in wild birds in Tokachi area, Hokkaido, Japan and investigate their virulence in vitro. In total, 173 cloacal swabs from individual wild birds were collected for the detection of Campylobacter spp. Thirty four samples (19.7%) were positive for Campylobacter of which 94.1% (32/34 samples) were C. jejuni. Additionally, one C. coli and one C. fetus were isolated. Seven C. jejuni isolates (one from crows and the other from pigeons) had important virulence genes including all three CDT genes (cdtA, cdtB and cdtC) and flaA, flaB, ciaB and cadF, and the other isolates were lacking cdtA gene. Further studies on in vitro virulence-associated phenotypes, such as motility assay on soft agar and invasion assay in Caco-2 cells, were performed. The wild bird C. jejuni isolates adhered and invaded human cells. Although the numbers of viable intracellular bacteria of wild bird isolates were lower than a type strain NCTC11168, they persisted at 48-hr and underwent replication in host cells. PMID:25843040
Microchip Module for Blood Sample Preparation and Nucleic Acid Amplification Reactions
Yuen, Po Ki; Kricka, Larry J.; Fortina, Paolo; Panaro, Nicholas J.; Sakazume, Taku; Wilding, Peter
2001-01-01
A computer numerical control-machined plexiglas-based microchip module was designed and constructed for the integration of blood sample preparation and nucleic acid amplification reactions. The microchip module is comprised of a custom-made heater-cooler for thermal cycling, a series of 254 μm × 254 μm microchannels for transporting human whole blood and reagents in and out of an 8–9 μL dual-purpose (cell isolation and PCR) glass-silicon microchip. White blood cells were first isolated from a small volume of human whole blood (<3 μL) in an integrated cell isolation–PCR microchip containing a series of 3.5-μm feature-sized “weir-type” filters, formed by an etched silicon dam spanning the flow chamber. A genomic target, a region in the human coagulation Factor V gene (226-bp), was subsequently directly amplified by microchip-based PCR on DNA released from white blood cells isolated on the filter section of the microchip mounted onto the microchip module. The microchip module provides a convenient means to simplify nucleic acid analyses by integrating two key steps in genetic testing procedures, cell isolation and PCR and promises to be adaptable for additional types of integrated assays. PMID:11230164
Amen, Yhiya M; Zhu, Qinchang; Tran, Hai-Bang; Afifi, Mohamed S; Halim, Ahmed F; Ashour, Ahmed; Mira, Amira; Shimizu, Kuniyoshi
2016-07-01
A new oxygenated lanostane-type triterpene, named lucidumol C, together with six known compounds, was isolated from the chloroform extract of the fruiting bodies of Ganoderma lingzhi. Structures were established based on extensive spectroscopic and chemical studies. Potential cytotoxic activities of the isolated compounds were evaluated against human colorectal carcinoma (HCT-116, Caco-2), human liver carcinoma (HepG2), and human cervical carcinoma (HeLa) cell lines using WST-1 reagent. Selectivity was evaluated using normal human fibroblast cells (TIG-1 and HF19). Among the compounds, lucidumol C showed potent selective cytotoxicity against HCT-116 cells with an IC50 value of 7.86 ± 4.56 µM and selectivity index (SI) >10 with remarkable cytotoxic activities against Caco-2, HepG2 and HeLa cell lines.
Mesenchymal Stem Cells Improve Motor Functions and Decrease Neurodegeneration in Ataxic Mice
Jones, Jonathan; Estirado, Alicia; Redondo, Carolina; Pacheco-Torres, Jesus; Sirerol-Piquer, Maria-Salomé; Garcia-Verdugo, José M; Martinez, Salvador
2015-01-01
The main objective of this work is to demonstrate the feasibility of using bone marrow-derived stem cells in treating a neurodegenerative disorder such as Friedreich's ataxia. In this disease, the dorsal root ganglia of the spinal cord are the first to degenerate. Two groups of mice were injected intrathecally with mesenchymal stem cells isolated from either wild-type or Fxntm1Mkn/Tg(FXN)YG8Pook (YG8) mice. As a result, both groups presented improved motor skills compared to nontreated mice. Also, frataxin expression was increased in the dorsal root ganglia of the treated groups, along with lower expression of the apoptotic markers analyzed. Furthermore, the injected stem cells expressed the trophic factors NT3, NT4, and BDNF, which bind to sensory neurons of the dorsal root ganglia and increase their survival. The expression of antioxidant enzymes indicated that the stem cell-treated mice presented higher levels of catalase and GPX-1, which are downregulated in the YG8 mice. There were no significant differences in the use of stem cells isolated from wild-type and YG8 mice. In conclusion, bone marrow mesenchymal stem cell transplantation, both autologous and allogeneic, is a feasible therapeutic option to consider in delaying the neurodegeneration observed in the dorsal root ganglia of Friedreich's ataxia patients. PMID:25070719
Gene Expression by Mouse Inner Ear Hair Cells during Development
Scheffer, Déborah I.; Shen, Jun
2015-01-01
Hair cells of the inner ear are essential for hearing and balance. As a consequence, pathogenic variants in genes specifically expressed in hair cells often cause hereditary deafness. Hair cells are few in number and not easily isolated from the adjacent supporting cells, so the biochemistry and molecular biology of hair cells can be difficult to study. To study gene expression in hair cells, we developed a protocol for hair cell isolation by FACS. With nearly pure hair cells and surrounding cells, from cochlea and utricle and from E16 to P7, we performed a comprehensive cell type-specific RNA-Seq study of gene expression during mouse inner ear development. Expression profiling revealed new hair cell genes with distinct expression patterns: some are specific for vestibular hair cells, others for cochlear hair cells, and some are expressed just before or after maturation of mechanosensitivity. We found that many of the known hereditary deafness genes are much more highly expressed in hair cells than surrounding cells, suggesting that genes preferentially expressed in hair cells are good candidates for unknown deafness genes. PMID:25904789
Giant Syncytia and Virus-Like Particles in Ovarian Carcinoma Cells Isolated from Ascites Fluid
Rakowicz-Szulczynska, Eva M.; McIntosh, David G.; Smith, McClure L.
1999-01-01
Ovarian cancer cells were isolated from ascites fluid of 30 different patients diagnosed with cystadenocarcinoma of ovaries. Large colonies of malignant ASC cells were observed during the first week of cell growth in vitro. Colony formation was followed by fusion of cells and formation of large multinucleated and highly vacuolated syncytia. In contrast, cells isolated from the ascites fluid produced by patients with benign mucinous cystadenoma of ovaries did not form syncytia. Nonmalignant Brenner tumor cells, isolated from the ascites fluid, also did not form syncytia. Syncytia, but not the nonmalignant tumor cells, were immunofluorescence stained with an anti-human immunodeficiency virus type 1 (HIV-1) gp120 monoclonal antibody (MAb) and MAb RAK-BrI. Both MAbs recognized cancer-associated antigens RAK (for Rakowicz markers) p120, p42, and p25. Exposure of ASC cells to either the anti-HIV-1 gp120 MAb or MAb RAK-BrI inhibited syncytium formation. PCR with HIV-1 Env-derived primers revealed DNA sequences with over 90% homology to HIV-1 gp41 in syncytia and in ovarian cancer cells but not in normal ovary cells. Electron microscopic analysis revealed viral particles, hexagonal in shape (90 nm in diameter), with a dense central core surrounded by an inner translucent capsid and dense outer shell with projections. Negative staining detected membrane-covered particles (100 to 110 nm in diameter) in the cell culture medium. Incubation of normal breast cells with viral particles resulted in drastic morphological changes and syncytium formation by the transformed breast cells. The cytopathic effects of the identified virus resembled those of spumaviruses, which, in addition to their epitopic and genetic homology to HIV-1, might suggest a common phylogeny. PMID:9874674
Giant syncytia and virus-like particles in ovarian carcinoma cells isolated from ascites fluid.
Rakowicz-Szulczynska, E M; McIntosh, D G; Smith, M L
1999-01-01
Ovarian cancer cells were isolated from ascites fluid of 30 different patients diagnosed with cystadenocarcinoma of ovaries. Large colonies of malignant ASC cells were observed during the first week of cell growth in vitro. Colony formation was followed by fusion of cells and formation of large multinucleated and highly vacuolated syncytia. In contrast, cells isolated from the ascites fluid produced by patients with benign mucinous cystadenoma of ovaries did not form syncytia. Nonmalignant Brenner tumor cells, isolated from the ascites fluid, also did not form syncytia. Syncytia, but not the nonmalignant tumor cells, were immunofluorescence stained with an anti-human immunodeficiency virus type 1 (HIV-1) gp120 monoclonal antibody (MAb) and MAb RAK-BrI. Both MAbs recognized cancer-associated antigens RAK (for Rakowicz markers) p120, p42, and p25. Exposure of ASC cells to either the anti-HIV-1 gp120 MAb or MAb RAK-BrI inhibited syncytium formation. PCR with HIV-1 Env-derived primers revealed DNA sequences with over 90% homology to HIV-1 gp41 in syncytia and in ovarian cancer cells but not in normal ovary cells. Electron microscopic analysis revealed viral particles, hexagonal in shape (90 nm in diameter), with a dense central core surrounded by an inner translucent capsid and dense outer shell with projections. Negative staining detected membrane-covered particles (100 to 110 nm in diameter) in the cell culture medium. Incubation of normal breast cells with viral particles resulted in drastic morphological changes and syncytium formation by the transformed breast cells. The cytopathic effects of the identified virus resembled those of spumaviruses, which, in addition to their epitopic and genetic homology to HIV-1, might suggest a common phylogeny.
Brown, William R. A.; Liti, Gianni; Rosa, Carlos; James, Steve; Roberts, Ian; Robert, Vincent; Jolly, Neil; Tang, Wen; Baumann, Peter; Green, Carter; Schlegel, Kristina; Young, Jonathan; Hirchaud, Fabienne; Leek, Spencer; Thomas, Geraint; Blomberg, Anders; Warringer, Jonas
2011-01-01
The fission yeast Schizosaccharomyces pombe has been widely used to study eukaryotic cell biology, but almost all of this work has used derivatives of a single strain. We have studied 81 independent natural isolates and 3 designated laboratory strains of Schizosaccharomyces pombe. Schizosaccharomyces pombe varies significantly in size but shows only limited variation in proliferation in different environments compared with Saccharomyces cerevisiae. Nucleotide diversity, π, at a near neutral site, the central core of the centromere of chromosome II is approximately 0.7%. Approximately 20% of the isolates showed karyotypic rearrangements as detected by pulsed field gel electrophoresis and filter hybridization analysis. One translocation, found in 6 different isolates, including the type strain, has a geographically widespread distribution and a unique haplotype and may be a marker of an incipient speciation event. All of the other translocations are unique. Exploitation of this karyotypic diversity may cast new light on both the biology of telomeres and centromeres and on isolating mechanisms in single-celled eukaryotes. PMID:22384373
Morris, Renée; Mehta, Prachi
2018-01-01
In mammals, the central nervous system (CNS) is constituted of various cellular elements, posing a challenge to isolating specific cell types to investigate their expression profile. As a result, tissue homogenization is not amenable to analyses of motor neurons profiling as these represent less than 10% of the total spinal cord cell population. One way to tackle the problem of tissue heterogeneity and obtain meaningful genomic, proteomic, and transcriptomic profiling is to use laser capture microdissection technology (LCM). In this chapter, we describe protocols for the capture of isolated populations of motor neurons from spinal cord tissue sections and for downstream transcriptomic analysis of motor neurons with RT-PCR. We have also included a protocol for the immunological confirmation that the captured neurons are indeed motor neurons. Although focused on spinal cord motor neurons, these protocols can be easily optimized for the isolation of any CNS neurons.
Electrical filtering in gerbil isolated type I semicircular canal hair cells
NASA Technical Reports Server (NTRS)
Rennie, K. J.; Ricci, A. J.; Correia, M. J.
1996-01-01
1. Membrane potential responses of dissociated gerbil type I semicircular canal hair cells to current injections in whole cell current-clamp have been measured. The input resistance of type I cells was 21.4 +/- 14.3 (SD) M omega, (n = 25). Around the zero-current potential (Vz = -66.6 +/- 9.3 mV, n = 25), pulsed current injections (from approximately -200 to 750 pA) produced only small-amplitude, pulse-like changes in membrane potential. 2. Injecting constant current to hyperpolarize the membrane to around -100 mV resulted in a approximately 10-fold increase in membrane resistance. Current pulses superimposed on this constant hyperpolarization produced larger and more complex membrane potential changes. Depolarizing currents > or = 200 pA caused a rapid transient peak voltage before a plateau. 3. Membrane voltage was able to faithfully follow sine-wave current injections around Vz over the range 1-1,000 Hz with < 25% attenuation at 1 kHz. A previously described K conductance, IKI, which is active at Vz, produces the low input resistance and frequency response. This was confirmed by pharmacologically blocking IKI. This conductance, present in type I cells but not type II hair cells, would appear to confer on type I cells a lower gain, but a much broader bandwidth at Vz, than seen in type II cells.
Wild type measles virus attenuation independent of type I IFN.
Druelle, Johan; Sellin, Caroline I; Waku-Kouomou, Diane; Horvat, Branka; Wild, Fabian T
2008-02-03
Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the alpha/beta IFN system.
Wild type measles virus attenuation independent of type I IFN
Druelle, Johan; Sellin, Caroline I; Waku-Kouomou, Diane; Horvat, Branka; Wild, Fabian T
2008-01-01
Background Measles virus attenuation has been historically performed by adaptation to cell culture. The current dogma is that attenuated virus strains induce more type I IFN and are more resistant to IFN-induced protection than wild type (wt). Results The adaptation of a measles virus isolate (G954-PBL) by 13 passages in Vero cells induced a strong attenuation of this strain in vivo. The adapted virus (G954-V13) differs from its parental strain by only 5 amino acids (4 in P/V/C and 1 in the M gene). While a vaccine strain, Edmonston Zagreb, could replicate equally well in various primate cells, both G954 strains exhibited restriction to the specific cell type used initially for their propagation. Surprisingly, we observed that both G954 strains induced type I IFN, the wt strain inducing even more than the attenuated ones, particularly in human plasmacytoid Dendritic Cells. Type I IFN-induced protection from the infection of both G954 strains depended on the cell type analyzed, being less efficient in the cells used to grow the viral strain. Conclusion Thus, mutations in M and P/V/C proteins can critically affect MV pathogenicity, cellular tropism and lead to virus attenuation without interfering with the α/β IFN system. PMID:18241351
Huang, Xiao-Jun; Tang, Jing-Qun; Li, Man-Mei; Liu, Qing; Li, Yao-Lan; Fan, Chun-Lin; Pei, Hong; Zhao, Hui-Nan; Wang, Ying; Ye, Wen-Cai
2014-01-01
A new ursane-type triterpenoid saponin, flaccidoside IV (1), and three new oleanane-type triterpenoid saponins, flaccidosides V-VII (2-4), along with 17 known saponins (5-21), were isolated from the rhizomes of Anemone flaccida. The structures of the new triterpenoid saponins were determined based on spectroscopic analyses and chemical methods. All the isolated saponins were tested for their inhibitory activities on lipopolysaccharide-induced nitric oxide production in RAW264.7 macrophages, and several bisdesmosidic oleanane-type triterpenoid saponins (2, 7, and 10) showed significant inhibitory activities, which indicated they had potential anti-inflammatory activities under their noncytotoxic concentrations in vitro.
A Laboratory Exercise to Determine Human ABO Blood Type by Noninvasive Methods
ERIC Educational Resources Information Center
Martin, Michael P.; Detzel, Stephen M.
2008-01-01
Analysis of single-nucleotide polymorphisms and their association with diseases and nondisease phenotypes is of growing importance in human biology studies. In this laboratory exercise, students determine the genetic basis for their ABO blood type; however, no blood is drawn. Students isolate genomic DNA from buccal mucosa cells that are present…
Masujin, Kentaro; Okada, Hiroyuki; Ushiki-Kaku, Yuko; Matsuura, Yuichi; Yokoyama, Takashi
2017-01-01
In our previous study, we demonstrated the propagation of mouse-passaged scrapie isolates with long incubation periods (L-type) derived from natural Japanese sheep scrapie cases in murine hypothalamic GT1-7 cells, along with disease-associated prion protein (PrPSc) accumulation. We here analyzed the susceptibility of GT1-7 cells to scrapie prions by exposure to infected mouse brains at different passages, following interspecies transmission. Wild-type mice challenged with a natural sheep scrapie case (Kanagawa) exhibited heterogeneity of transmitted scrapie prions in early passages, and this mixed population converged upon one with a short incubation period (S-type) following subsequent passages. However, when GT1-7 cells were challenged with these heterologous samples, L-type prions became dominant. This study demonstrated that the susceptibility of GT1-7 cells to L-type prions was at least 105 times higher than that to S-type prions and that L-type prion-specific biological characteristics remained unchanged after serial passages in GT1-7 cells. This suggests that a GT1-7 cell culture model would be more useful for the economical and stable amplification of L-type prions at the laboratory level. Furthermore, this cell culture model might be used to selectively propagate L-type scrapie prions from a mixed prion population. PMID:28636656
Miyazawa, Kohtaro; Masujin, Kentaro; Okada, Hiroyuki; Ushiki-Kaku, Yuko; Matsuura, Yuichi; Yokoyama, Takashi
2017-01-01
In our previous study, we demonstrated the propagation of mouse-passaged scrapie isolates with long incubation periods (L-type) derived from natural Japanese sheep scrapie cases in murine hypothalamic GT1-7 cells, along with disease-associated prion protein (PrPSc) accumulation. We here analyzed the susceptibility of GT1-7 cells to scrapie prions by exposure to infected mouse brains at different passages, following interspecies transmission. Wild-type mice challenged with a natural sheep scrapie case (Kanagawa) exhibited heterogeneity of transmitted scrapie prions in early passages, and this mixed population converged upon one with a short incubation period (S-type) following subsequent passages. However, when GT1-7 cells were challenged with these heterologous samples, L-type prions became dominant. This study demonstrated that the susceptibility of GT1-7 cells to L-type prions was at least 105 times higher than that to S-type prions and that L-type prion-specific biological characteristics remained unchanged after serial passages in GT1-7 cells. This suggests that a GT1-7 cell culture model would be more useful for the economical and stable amplification of L-type prions at the laboratory level. Furthermore, this cell culture model might be used to selectively propagate L-type scrapie prions from a mixed prion population.
Genetic studies of cell fusion induced by herpes simplex virus type 1
DOE Office of Scientific and Technical Information (OSTI.GOV)
Read, G.S.; Person, S.; Keller, P.M.
1980-07-01
Eight cell fusion-causing syn mutants were isolated from the KOS strain of herpes simplex virus type 1. Unlike the wild-type virus, the mutants produced plaques containing multinucleated cells, or syncytia. Fusion kinetics curves were established with a Coulter Counter assay for the mutants and wild-type virus in single infections of human embryonic lung (HEL) cells, for the mutants and wild-type virus in mixed infections (dominance test), and for pairs of mutants in mixed infection and proceeded with an exponential decrease in the number of small single cells. At some later time that was characteristic of the mutant, there was amore » significant reduction in the rate of fusion for all but possibly one of the mutants. Although the wild-type virus did not produce syncytial plaques, it did induce a small amount of fusion that stopped abruptly about 2 h after it started. These data are consistent with the hypothesis that both mutants and wild type induce an active fusion inducer and that the activity of this inducer is subsequently inhibited. The extent of fusion is apparently determined by the length of the interval during which the fusion inducer is active. That fusion is actively inhibited in wild-type infections is indicated by the observation that syn mutant-infected cells fused more readily with uninfected cells than with wild type-infected cells.« less
Cell-Based Therapies in Lower Urinary Tract Disorders.
Gopinath, Chaitanya; Ponsaerts, Peter; Wyndaele, Jean Jacques
2015-01-01
Cell-based therapy for the bladder has its beginnings in the 1990s with the successful isolation and culture of bladder smooth muscle cells. Since then, several attempts have been made to artificially implant native cell types and stem cell-derived cells into damaged bladders in the form of single-cell injectables or as grafts seeded onto artificial extracellular matrix. We critically examined in the literature the types of cells and their probable role as an alternative to non-drug-based, non-bowel-based graft replacement therapy in disorders of the urinary bladder. The limitations and plausible improvements to these novel therapies have also been discussed, keeping in mind an ideal therapy that could suit most bladder abnormalities arising out of varied number of disorders. In conclusion, muscle-derived cell types have consistently proven to be a promising therapy to emerge in the coming decade. However, tissue-engineered constructs have yet to prove their success in preclinical and long-term clinical setting.
Extranodal non-Hodgkins lymphoma of larynx.
Aiyer, R G; Soni, Geeta; Chougule, Sachin; Unnikrishnan; Nagpal, Tapan
2004-10-01
Non-Hodgkins lymphoma is found in the older age group with extranoda involvement more commonly seen than in Hodgkins lymphomna. It isusually of B-cell type which has a better prognosis than T-cell type, Extranodal Non-Hodkin's lymphomas of larynx are rare. they can present as isolated lesions in larynx or associated with multiple involvement. They are usually found in the supraglottic region of the larynx. We present a case of 70-year-old female with extranodal Hodgkins lymphoma of epiglottis with metastasis in the liver.
Worobec, E A; Shastry, P; Smart, W; Bradley, R; Singh, B; Paranchych, W
1983-09-01
Hybridomas secreting monoclonal antibodies directed against intact colonization factor antigen I pili have been produced by the fusion of spleen cells from immunized BALB/c mice with NS1/SP2 myeloma cells. The four monoclones with the highest antibody titer, as detected by enzyme-linked immunosorbant assay (ELISA), were chosen for antibody amplification by production of mouse ascitic fluid. These four were examined for antibody specificity by ELISA and immunoblot assays, using six different pilus types. Three of the four monoclonal isolates were specific for only colonization factor antigen I pili in both assays, whereas the remaining isolate showed a distinct cross-reactivity with K99 pili in the ELISA assay but not in immunoblot analysis. These results indicate that this monoclone may be recognizing a common structural element between the two adhesive pilus types.
Worobec, E A; Shastry, P; Smart, W; Bradley, R; Singh, B; Paranchych, W
1983-01-01
Hybridomas secreting monoclonal antibodies directed against intact colonization factor antigen I pili have been produced by the fusion of spleen cells from immunized BALB/c mice with NS1/SP2 myeloma cells. The four monoclones with the highest antibody titer, as detected by enzyme-linked immunosorbant assay (ELISA), were chosen for antibody amplification by production of mouse ascitic fluid. These four were examined for antibody specificity by ELISA and immunoblot assays, using six different pilus types. Three of the four monoclonal isolates were specific for only colonization factor antigen I pili in both assays, whereas the remaining isolate showed a distinct cross-reactivity with K99 pili in the ELISA assay but not in immunoblot analysis. These results indicate that this monoclone may be recognizing a common structural element between the two adhesive pilus types. Images PMID:6136463
Hatakeyama, Kaoru; Obata, Hiromi; Yokoyama, Keiko; Konishi, Noriko; Itoh, Takeshi; Kai, Akemi
2015-01-01
The epidemiological and bacteriological investigations on four foodborne outbreaks caused by a new type of enterotoxin-producing Clostridium perfringens are described. C. perfringens isolated from patients of these outbreaks did not produce any known enterotoxin and did not carry the C. perfringens enterotoxin gene. However, the culture filtrates of these isolates induced the accumulation of fluid in rabbit ileal loop tests. The molecular weight of the new enterotoxin may be between 50,000 and 100,000, although the known C. perfringens enterotoxin is ca. 35,000. This new enterotoxin was heat labile, and its biological activities were inactivated by heating for 5 min at 60°C. The new enterotoxin was sensitive to pH values higher than 11.0 and protease treatment but was resistant to trypsin treatment. These results suggest that the new enterotoxin may be a protein. Although C. perfringens enterotoxin induced morphological changes in Vero cells, the changes induced by the new enterotoxin differed from those by the known C. perfringens enterotoxin. The new enterotoxin also induced morphological changes in L929 cells, whereas the known C. perfringens enterotoxin did not, because L929 cells lacked an appropriate enterotoxin receptor. Although C. perfringens enterotoxin is recognized as the only diarrheagenic toxin responsible for C. perfringens foodborne outbreaks, the results of the present study indicate that C. perfringens isolated from these four outbreaks produced a new type of enterotoxin. PMID:25568432
Li, Wei; Zhou, Wei; Cha, Ji Yun; Kwon, Se Uk; Baek, Kwang-Hyun; Shim, Sang Hee; Lee, Young Mi; Kim, Young Ho
2015-07-01
Erinarols G-J and 10 known ergostane-type sterols were isolated from a methanol extract of the dried fruiting bodies of Hericium erinaceum. Their chemical structures were elucidated using extensive spectroscopic analyses including 1D and 2D NMR experiments and HR-ESI-MS analysis, as well as through comparison with previously reported data. Anti-inflammatory effects of the isolated compounds were evaluated in terms of inhibition of tumor necrosis factor α (TNF-α) and nitric oxide (NO) production in lipopolysaccharide (LPS)-stimulated murine RAW264.7 macrophage cells. The results showed that erinarols H and J, as well as 2 of the ergostane-type sterols exhibited inhibitory activity against TNF-α secretion, with inhibition values ranging from 33.7% to 43.3% at 10 μM. Erinarols J and three ergostane-type sterols exhibited significant inhibitory effects against NO production, with inhibition values ranging from 38.4% to 71.5% at 10 μM. Copyright © 2015 Elsevier Ltd. All rights reserved.
Proton and Fe Ion-Induced Early and Late Chromosome Aberrations in Different Cell Types
NASA Technical Reports Server (NTRS)
Wu, Honglu; Lu, Tao; Yeshitla, Samrawit; Zhang, Ye; Kadhim, Munira
2016-01-01
An early stage of cancer development is believed to be genomic instability (GI) which accelerates the mutation rate in the descendants of the cells surviving radiation exposure. To investigate GI induced by charged particles, we exposed human lymphocytes, human fibroblast cells, and human mammary epithelial cells to high energy protons and Fe ions. In addition, we also investigated GI in bone marrow cells isolated from CBA/CaH (CBA) and C57BL/6 (C57) mice, by analyzing cell survival and chromosome aberrations in the cells after multiple cell divisions. Results analyzed so far from the experiments indicated different sensitivities to charged particles between CBA/CaH (CBA) and C57BL/6 (C57) mouse strains, suggesting that there are two main types of response to irradiation: 1) responses associated with survival of damaged cells and 2) responses associated with the induction of non-clonal chromosomal instability in the surviving progeny of stem cells. Previously, we reported that the RBE for initial chromosome damages was high in human lymphocytes exposed to Fe ions. Our results with different cell types demonstrated different RBE values between different cell types and between early and late chromosomal damages. This study also attempts to offer an explanation for the varying RBE values for different cancer types.
Polonis, Victoria R.; Souza, Mark S. de; Darden, Janice M.; Chantakulkij, Somsak; Chuenchitra, Thippawan; Nitayaphan, Sorachai; Brown, Arthur E.; Robb, Merlin L.; Birx, Deborah L.
2003-01-01
A number of human immunodeficiency virus type 1 (HIV-1) non-B-subtype products have been developed for present or future vaccine trials; in Thailand, several studies using subtype B and/or CRF01_AE vaccines have been conducted. To better characterize the biologic properties of these subtypes, 70 HIV-1 subtype B and E isolates were phenotyped as syncytium-inducing (SI) or non-syncytium-inducing (NSI) isolates and assessed for sensitivity to neutralizing antibody (NAb). A significantly higher number of NSI subtype E viruses were neutralization sensitive than SI subtype E viruses (P = 0.009), while no association between viral phenotype and sensitivity to NAb was observed for subtype B (P = 0.856), suggesting a difference in the neutralization patterns of subtypes B and E. Strikingly, concurrent CD4 T-cell numbers were significantly lower for subtype E-infected patients whose isolates were more resistant to NAb, both for the overall study group (P < 0.001) as well as for the 22 patients with NSI isolates (P = 0.013). Characterization of the evolution of biologic properties of both B and non-B HIV-1 subtypes will provide a clearer understanding of the repertoire of antibodies that must be elicited for a vaccine to be effective against all phenotypes and subtypes. PMID:12857927
Nielsen, Dennis S; Schillinger, Ulrich; Franz, Charles M A P; Bresciani, José; Amoa-Awua, Wisdom; Holzapfel, Wilhelm H; Jakobsen, Mogens
2007-07-01
Three Gram-positive, catalase-negative, motile, rod-shaped strains, designated L486, L489(T) and L499, were isolated from fermenting cocoa. These organisms produced DL-lactic acid from glucose without gas formation. Ammonia was not produced from arginine. Acid was produced from amygdalin, D-cellobiose, aesculin, D-fructose, D-glucose, D-galactose, D-mannitol, D-mannose, N-acetylglucosamine, L-rhamnose, sucrose, salicin and D-trehalose. The cell walls contained peptidoglycan of the d-meso-diaminopimelic acid type. A 16S rRNA gene sequence analysis revealed that the isolates belong phylogenetically to the genus Lactobacillus and are closely related to Lactobacillus nagelii, Lactobacillus vini and Lactobacillus satsumensis. Low DNA-DNA reassociation values were obtained between the isolates and the phylogenetically closest neighbours. On the basis of the genetic and phenotypic results, the isolates are considered to represent a novel species, for which the name Lactobacillus ghanensis is proposed. The type strain is L489(T) (=DSM 18630(T)=CCUG 53453(T)).
Linnemann, Amelia K.; Krawetz, Stephen A.
2009-01-01
DNA loop organization by nuclear scaffold/matrix attachment is a key regulator of gene expression that may provide a means to modulate phenotype. We have previously shown that attachment of genes to the NaCl-isolated nuclear matrix correlates with their silencing in HeLa cells. In contrast, expressed genes were associated with the lithium 3,5-diiodosalicylate (LIS)-isolated nuclear scaffold. To define their role in determining phenotype matrix attached regions (MARs) on human chromosomes 14–18 were identified as a function of expression in a primary cell line. The locations of MARs in aortic adventitial fibroblast (AoAF) cells were very stable (r = 0.909) and 96% of genes attached at MARs are silent (P < 0.001). Approximately one-third of the genes uniquely expressed in AoAF cells were associated with the HeLa cell nuclear matrix and silenced. Comparatively, 81% were associated with the AoAF cell nuclear scaffold (P < 0.001) and expressed. This suggests that nuclear scaffold/matrix association mediates a portion of cell type-specific gene expression thereby modulating phenotype. Interestingly, nuclear matrix attachment and thus silencing of specific genes that regulate proliferation and maintain the integrity of the HeLa cell genome suggests that transformation may at least in part be achieved through aberrant nuclear matrix attachment. PMID:19276204
Douglas, Timothy E L; Vandrovcová, Marta; Kročilová, Nikola; Keppler, Julia K; Zárubová, Jana; Skirtach, Andre G; Bačáková, Lucie
2018-01-01
Recently, milk-derived proteins have attracted attention for applications in the biomedical field such as tissue regeneration. Whey protein isolate (WPI), especially its main component β-lactoglobulin, can modulate immunity and acts as an antioxidant, antitumor, antiviral, and antibacterial agent. There are very few reports of the application of WPI in tissue engineering, especially in bone tissue engineering. In this study, we tested the influence of different concentrations of WPI on behavior of human osteoblast-like Saos-2 cells, human adipose tissue-derived stem cells (ASC), and human neonatal dermal fibroblasts (FIB). The positive effect on growth was apparent for Saos-2 cells and FIB but not for ASC. However, the expression of markers characteristic for early osteogenic cell differentiation [type-I collagen (COL1) and alkaline phosphatase (ALP)] as well as ALP activity, increased dose-dependently in ASC. Importantly, Saos-2 cells were able to deposit calcium in the presence of WPI, even in a proliferation medium without other supplements that support osteogenic cell differentiation. The results indicate that, depending on the cell type, WPI can act as an enhancer of cell proliferation and osteogenic differentiation. Therefore, enrichment of biomaterials for bone regeneration with WPI seems a promising approach, especially due to the low cost of WPI. Copyright © 2018 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Zhang, Yu; Nagata, Hiroshi; Ikeuchi, Tatsuro; Mukai, Hiroyuki; Oyoshi, Michiko K; Demachi, Ayako; Morio, Tomohiro; Wakiguchi, Hiroshi; Kimura, Nobuhiro; Shimizu, Norio; Yamamoto, Kohtaro
2003-06-01
In this study, we describe the cytological and cytogenetic features of six Epstein-Barr virus (EBV)-infected natural killer (NK) cell clones. Three cell clones, SNK-1, -3 and -6, were derived from patients with nasal T/NK-cell lymphomas; two cell clones, SNK-5 and -10, were isolated from patients with chronic active EBV infection (CAEBV); and the other cell clone, SNK-11, was from a patient with hydroa vacciniforme (HV)-like eruptions. An analysis of the number of EBV-terminal repeats showed that the SNK cell clones had monoclonal EBV genomes identical to the original EBV-infected cells of the respective patients, and SNK cells had the type II latency of EBV infection, suggesting that not only the cell clones isolated from nasal T/NK-cell lymphomas but also those isolated from CAEBV and HV-like eruptions had been transformed by EBV to a certain degree. Cytogenetic analysis detected deletions in chromosome 6q in five out of the six SNK cell clones, while 6q was not deleted in four control cell lines of T-cell lineage. This suggested that a 6q deletion is a characteristic feature of EBV-positive NK cells, which proliferated in the diseased individuals. The results showed that EBV-positive NK cells in malignant and non-malignant lymphoproliferative diseases shared common cytological and cytogenetic features.
Retinal pigment epithelium culture;a potential source of retinal stem cells.
Akrami, Hassan; Soheili, Zahra-Soheila; Khalooghi, Keynoush; Ahmadieh, Hamid; Rezaie-Kanavi, Mojgan; Samiei, Shahram; Davari, Malihe; Ghaderi, Shima; Sanie-Jahromi, Fatemeh
2009-07-01
To establish human retinal pigment epithelial (RPE) cell culture as a source for cell replacement therapy in ocular diseases. Human cadaver globes were used to isolate RPE cells. Each globe was cut into several pieces of a few millimeters in size. After removing the sclera and choroid, remaining tissues were washed in phosphate buffer saline and RPE cells were isolated using dispase enzyme solution and cultured in Dulbecco's Modified Eagle's Medium: Nutrient Mixture F-12 supplemented with 10% fetal calf serum. Primary cultures of RPE cells were established and spheroid colonies related to progenitor/stem cells developed in a number of cultures. The colonies included purely pigmented or mixed pigmented and non-pigmented cells. After multiple cellular passages, several types of photoreceptors and neural-like cells were detected morphologically. Cellular plasticity in RPE cell cultures revealed promising results in terms of generation of stem/progenitor cells from human RPE cells. Whether the spheroids and neural-like retinal cells were directly derived from retinal stem cells or offspring of trans-differentiating or de-differentiating RPE cells remains to be answered.
Retinal Pigment Epithelium Culture;a Potential Source of Retinal Stem Cells
Akrami, Hassan; Soheili, Zahra-Soheila; Khalooghi, Keynoush; Ahmadieh, Hamid; Rezaie-Kanavi, Mojgan; Samiei, Shahram; Davari, Malihe; Ghaderi, Shima; Sanie-Jahromi, Fatemeh
2009-01-01
Purpose To establish human retinal pigment epithelial (RPE) cell culture as a source for cell replacement therapy in ocular diseases. Methods Human cadaver globes were used to isolate RPE cells. Each globe was cut into several pieces of a few millimeters in size. After removing the sclera and choroid, remaining tissues were washed in phosphate buffer saline and RPE cells were isolated using dispase enzyme solution and cultured in Dulbecco’s Modified Eagle’s Medium: Nutrient Mixture F-12 supplemented with 10% fetal calf serum. Results Primary cultures of RPE cells were established and spheroid colonies related to progenitor/stem cells developed in a number of cultures. The colonies included purely pigmented or mixed pigmented and non-pigmented cells. After multiple cellular passages, several types of photoreceptors and neural-like cells were detected morphologically. Conclusion Cellular plasticity in RPE cell cultures revealed promising results in terms of generation of stem/progenitor cells from human RPE cells. Whether the spheroids and neural-like retinal cells were directly derived from retinal stem cells or offspring of trans-differentiating or de-differentiating RPE cells remains to be answered. PMID:23198062
Adipose, Bone Marrow and Synovial Joint-Derived Mesenchymal Stem Cells for Cartilage Repair
Fellows, Christopher R.; Matta, Csaba; Zakany, Roza; Khan, Ilyas M.; Mobasheri, Ali
2016-01-01
Current cell-based repair strategies have proven unsuccessful for treating cartilage defects and osteoarthritic lesions, consequently advances in innovative therapeutics are required and mesenchymal stem cell-based (MSC) therapies are an expanding area of investigation. MSCs are capable of differentiating into multiple cell lineages and exerting paracrine effects. Due to their easy isolation, expansion, and low immunogenicity, MSCs are an attractive option for regenerative medicine for joint repair. Recent studies have identified several MSC tissue reservoirs including in adipose tissue, bone marrow, cartilage, periosteum, and muscle. MSCs isolated from these discrete tissue niches exhibit distinct biological activities, and have enhanced regenerative potentials for different tissue types. Each MSC type has advantages and disadvantages for cartilage repair and their use in a clinical setting is a balance between expediency and effectiveness. In this review we explore the challenges associated with cartilage repair and regeneration using MSC-based cell therapies and provide an overview of phenotype, biological activities, and functional properties for each MSC population. This paper also specifically explores the therapeutic potential of each type of MSC, particularly focusing on which cells are capable of producing stratified hyaline-like articular cartilage regeneration. Finally we highlight areas for future investigation. Given that patients present with a variety of problems it is unlikely that cartilage regeneration will be a simple “one size fits all,” but more likely an array of solutions that need to be applied systematically to achieve regeneration of a biomechanically competent repair tissue. PMID:28066501
Chan, Pei-Chi; Wang, Ya-Chin; Chen, Yi-Ling; Hsu, Wan-Ning; Tian, Yu-Feng; Hsieh, Po-Shiuan
2017-11-01
Elevations in C-reactive protein (CRP) levels are positively correlated with the progress of type 2 diabetes mellitus. However, the effect of CRP on pancreatic insulin secretion is unknown. Here, we showed that purified human CRP impaired insulin secretion in isolated mouse islets and NIT-1 insulin-secreting cells in dose- and time-dependent manners. CRP increased NADPH oxidase-mediated ROS (reactive oxygen species) production, which simultaneously promoted the production of nitrotyrosine (an indicator of RNS, reactive nitrogen species) and TNFα, to diminish cell viability, insulin secretion in islets and insulin-secreting cells. These CRP-mediated detrimental effects on cell viability and insulin secretion were significantly reversed by adding NAC (a potent antioxidant), apocynin (a selective NADPH oxidase inhibitor), L-NAME (a non-selective nitric oxide synthase (NOS) inhibitor), aminoguanidine (a selective iNOS inhibitor), PDTC (a selective NFκB inhibitor) or Enbrel (an anti-TNFα fusion protein). However, CRP-induced ROS production failed to change after adding L-NAME, aminoguanidine or PDTC. In isolated islets and NIT-1 cells, the elevated nitrotyrosine contents by CRP pretreatment were significantly suppressed by adding L-NAME but not PDTC. Conversely, CRP-induced increases in TNF-α production were significantly reversed by administration of PDTC but not L-NAME. In addition, wild-type mice treated with purified human CRP showed significant decreases in the insulin secretion index (HOMA-β cells) and the insulin stimulation index in isolated islets that were reversed by the addition of L-NAME, aminoguanidine or NAC. It is suggested that CRP-activated NADPH-oxidase redox signaling triggers iNOS-mediated RNS and NFκB-mediated proinflammatory cytokine production to cause β cell damage in state of inflammation. Copyright © 2017 Elsevier Inc. All rights reserved.
Kim, Yong Tae; Park, Kyun Joo; Kim, Seyl; Kim, Soon Ae; Lee, Seok Jae; Kim, Do Hyun; Lee, Tae Jae; Lee, Kyoung G
2018-03-01
Isolation of specific cells from whole blood is important to monitor disease prognosis and diagnosis. In this study, a vibration-assisted filtration (VF) device has been developed for isolation and recovery of specific cells such as leukocytes and pathogenic bacteria from human whole blood. The VF device is composed of three layers which was fabricated using injection molding with cyclic olefin copolymer (COC) pellets consisting of: a top layer with coin-type vibration motor (Ф = 10mm), a middle plate with a 1μm or 3μm-pore filter membrane to separate of Staphylococcus aureus (S. aureus) cells or leukocytes (i.e. white blood cells) respectively, and a bottom chamber with conical-shaped microstructure. One milliliter of human whole blood was injected into a sample loading chamber using a 3μm-pore filter equipped in the VF device and the coin-type vibration motor applied external vibration force by generating a rotational fluid which enhances the filtration velocity due to the prevention of the cell clogging on the filter membrane. The effluent blood such as erythrocytes, platelet, and plasma was collected at the bottom chamber while the leukocytes were sieved by the filter membrane. The vibration-assisted leukocyte separation was able to finish within 200s while leukocyte separation took 1200s without vibration. Moreover, we successfully separated S. aureus from human whole blood using a 1μm-pore filter equipped VF device and it was further confirmed by genetic analysis. The proposed VF device provides an advanced cell separation platform in terms of simplicity, fast separation, and portability in the fields of point-of-care diagnostics. Copyright © 2017 Elsevier B.V. All rights reserved.
Wu, Z-F; Liu, G-L; Zhou, Z; Wang, G-X; Xia, L; Liu, J-L
2012-08-01
This study was undertaken to isolate active secondary metabolites from immunostimulatory Alcaligenes faecalis FY-3 and evaluate their activities using grass carp Ctenopharyngodon idella kidney (CIK) cells. By applying chromatography techniques and successive recrystallization, three purified metabolites were obtained and identified by spectral data (mass spectrometry and nuclear magnetic resonance) as: (1) phenylacetic acid, (2) p-hydroxyphenylacetylamide and (3) cyclo-(Gly-(L)-Pro). CIK cells were stimulated by different concentrations (1, 10 and 100 μg/ml) of the isolated compounds, and expression of MyD88, IL-1β, TNF-α, type I-IFN and IL-8 genes at different time points (2, 8 and 24 h) post-stimulation was quantified by real-time PCR. The known immunostimulatory agent lipopolysaccharide (LPS) was used as a positive control. To analyse whether these compounds are toxic to the cells, the methyl tetrazolium assay was employed to measure changes in cell viability. The obtained results revealed that transcribing level of MyD88, an important adaptor molecule in toll-like receptor signalling pathway, was augmented remarkably by all the three isolated compounds and LPS as early as 2-h exposure. These compounds also induced gene expression of cytokines such as IL-1β, TNF-α and type I-IFN. Under the experimental conditions, none of the test compounds is toxic to the CIK cells. These findings demonstrate that the immunostimulatory properties of the three metabolites [phenylacetic acid, p-hydroxyphenylacetylamide and cyclo-(Gly-(L)-Pro)] from A. faecalis FY-3 in CIK cells and highlight the potential of using these metabolites as immunostimulants in fish aquaculture. © 2012 The Authors. Scandinavian Journal of Immunology © 2012 Blackwell Publishing Ltd.
Campylobacter subantarcticus sp. nov., isolated from birds in the sub-Antarctic region.
Debruyne, Lies; Broman, Tina; Bergström, Sven; Olsen, Björn; On, Stephen L W; Vandamme, Peter
2010-04-01
Six Gram-stain-negative, spiral-shaped, microaerobic isolates were obtained during a sampling from wild birds in the sub-Antarctic region. Based on initial observations, these isolates were classified as Campylobacter lari-like. The isolates were further characterized by whole-cell protein and amplified fragment length polymorphism (AFLP) analysis, which revealed that they were distinct from C. lari and all other known species of the genus Campylobacter. Here, we present comprehensive phylogenetic, genomic and phenotypic evidence that these isolates represent a novel species within the genus Campylobacter, for which the name Campylobacter subantarcticus sp. nov. is proposed. The type strain is R-3023(T) (=LMG 24377(T) =CCUG 38513(T)).
Symbiotic root nodule bacteria isolated from yam bean (Pachyrhizus erosus).
Fuentes, Jenet B; Abe, Mikiko; Uchiumi, Toshiki; Suzuki, Akihiro; Higashi, Shiro
2002-08-01
A total of 25 isolates from root nodules of yam bean (Pachyrhizus erosus L. Urban), a tuber-producing leguminous plant, were characterized. All isolates formed effective nodules mainly on lateral roots while edible tubers were developed on the taproot. The root nodules formed were identified as the typical determinate type. By an analysis of the partial sequences of the 16S rRNA gene (approximately 300 bp) of 10 strains which were selected randomly, the isolated root nodule bacteria of yam bean were classified into two different genera, Rhizobium and Bradyrhizobium. Two strains, YB2 (Bradyrhizobium group) and YB4 (Rhizobium group) were selected and used for further analyses. The generation time of each strain was shown to be 22.5 h for strain YB2 and 0.8 h for strain YB4, respectively. Differences between strains YB2 and YB4 were also reflected in the bacteroid state in the symbiosome. Symbiosome in nodule cells for the strain YB4 contained one bacteroid cell in a peribacteroid membrane, whereas a symbiosome for strain YB2 contained several bacteroid cells.
Assem, Mostafa; Kamal, Samia; Sabry, Dina; Soliman, Nadia; Aly, Riham M
2018-02-15
Stem cells have recently received great interest as potential therapeutics alternative for a variety of diseases. The oral and maxillofacial region, in particular, encompasses a variety of distinctive mesenchymal (MSC) populations and is characterized by a potent multilineage differentiation capacity. In this report, we aimed to investigate the effect of diabetes on the proliferation potential of stem cells isolated from controlled diabetic patients (type 2) and healthy individuals. The proliferation rate of gingival and periodontal derived stem cells isolated from diabetic & healthy individuals were compared using MTT Assay. Expression levels of Survivin in isolated stem cells from all groups were measured by qRt - PCR. There was a significantly positive correlation between proliferation rate and expression of Survivin in all groups which sheds light on the importance of Survivin as a reliable indicator of proliferation. The expression of Survivin further confirmed the proliferation results from MTT Assay where the expression of stem cells from non - diabetic individuals was higher than diabetic patients. Taking together all the results, it could be concluded that PDLSC and GSC are promising candidates for autologous regenerative therapy due to their ease of accessibility in addition to their high proliferative rates.
Young, Chiu-Chung; Kämpfer, Peter; Shen, Fo-Ting; Lai, Wei-An; Arun, A B
2005-01-01
A yellow-pigmented bacterial strain (CC-H3-2T), isolated from the rhizosphere of Lactuca sativa L. (garden lettuce) in Taiwan, was investigated using a polyphasic taxonomic approach. The cells were Gram-negative, rod-shaped and non-spore-forming. Phylogenetic analyses using the 16S rRNA gene sequence of the isolate indicated that the organism belongs to the genus Chryseobacterium, with the highest sequence similarity to the type strains of Chryseobacterium indoltheticum (97.7 %), Chryseobacterium scophthalmum (97.5 %), Chryseobacterium joostei (97.2 %) and Chryseobacterium defluvii (97.2 %). The major whole-cell fatty acids were iso-C(15 : 0) (52.2 %) and iso-C(17 : 0) 3-OH. DNA-DNA hybridization experiments revealed levels of only 27.4 % to C. scophthalmum, 27.1 % to C. indoltheticum, 14.1 % to C. joostei and 7.8 % to C. defluvii. DNA-DNA relatedness and biochemical and chemotaxonomic properties demonstrate that strain CC-H3-2T represents a novel species, for which the name Chryseobacterium formosense sp. nov. is proposed. The type strain is CC-H3-2T (=CCUG 49271T=CIP 108367T).
2012-01-01
Background Haemophilus parasuis is the causative agent of Glässer’s disease and is a pathogen of swine in high-health status herds. Reports on serotyping of field strains from outbreaks describe that approximately 30% of them are nontypeable and therefore cannot be traced. Molecular typing methods have been used as alternatives to serotyping. This study was done to compare random amplified polymorphic DNA (RAPD) profiles and whole cell protein (WCP) lysate profiles as methods for distinguishing H. parasuis reference strains and field isolates. Results The DNA and WCP lysate profiles of 15 reference strains and 31 field isolates of H. parasuis were analyzed using the Dice and neighbor joining algorithms. The results revealed unique and reproducible DNA and protein profiles among the reference strains and field isolates studied. Simpson’s index of diversity showed significant discrimination between isolates when three 10mer primers were combined for the RAPD method and also when both the RAPD and WCP lysate typing methods were combined. Conclusions The RAPD profiles seen among the reference strains and field isolates did not appear to change over time which may reflect a lack of DNA mutations in the genes of the samples. The recent field isolates had different WCP lysate profiles than the reference strains, possibly because the number of passages of the type strains may affect their protein expression. PMID:22703293
Cluster formation in liverwort-associated methylobacteria and its implications.
Kutschera, U; Thomas, J; Hornschuh, M
2007-08-01
Pink-pigmented methylotropic bacteria of the genus Methylobacterium inhabit the surfaces of plant organs. In bryophytes, these methylobacteria enhance cell growth, but the nature of this plant-microbe interaction is largely unknown. In this study, methylobacteria were isolated from the upper surface of the free-living thalli of the liverwort Marchantia polymorpha L. Identification of one strain by 16S ribosomal RNA (rRNA) gene-targeted polymerase chain reaction (PCR) and other data show that these microbes represent an undescribed species of the genus Methylobacterium (Methylobacterium sp.). The growth-promoting activity of these wild-type methylobacteria was tested and compared with that of the type strain Methylobacterium mesophilicum. Both types of methylobacteria stimulated surface expansion of isolated gemmae from Marchantia polymorpha by about 350%. When suspended in water, the liverwort-associated bacteria (Methylobacterium sp.) formed dense clusters of up to 600 cells. In liquid cultures of Methylobacterium mesophilicum, single cells were observed, but no clustering occurred. We suggest that the liverwort-associated methylobacteria are co-evolved symbionts of the plants: Cluster formation may be a behavior that enhances the survival of the epiphytic microbes during periods of drought of these desiccation-tolerant lower plants.
Cluster formation in liverwort-associated methylobacteria and its implications
NASA Astrophysics Data System (ADS)
Kutschera, U.; Thomas, J.; Hornschuh, M.
2007-08-01
Pink-pigmented methylotropic bacteria of the genus Methylobacterium inhabit the surfaces of plant organs. In bryophytes, these methylobacteria enhance cell growth, but the nature of this plant-microbe interaction is largely unknown. In this study, methylobacteria were isolated from the upper surface of the free-living thalli of the liverwort Marchantia polymorpha L. Identification of one strain by 16S ribosomal RNA (rRNA) gene-targeted polymerase chain reaction (PCR) and other data show that these microbes represent an undescribed species of the genus Methylobacterium ( Methylobacterium sp.). The growth-promoting activity of these wild-type methylobacteria was tested and compared with that of the type strain Methylobacterium mesophilicum. Both types of methylobacteria stimulated surface expansion of isolated gemmae from Marchantia polymorpha by about 350%. When suspended in water, the liverwort-associated bacteria ( Methylobacterium sp.) formed dense clusters of up to 600 cells. In liquid cultures of Methylobacterium mesophilicum, single cells were observed, but no clustering occurred. We suggest that the liverwort-associated methylobacteria are co-evolved symbionts of the plants: Cluster formation may be a behavior that enhances the survival of the epiphytic microbes during periods of drought of these desiccation-tolerant lower plants.
Ferreira, V.; Barbosa, J.; Stasiewicz, M.; Vongkamjan, K.; Moreno Switt, A.; Hogg, T.; Gibbs, P.; Teixeira, P.; Wiedmann, M.
2011-01-01
The persistence of Listeria monocytogenes in food-associated environments represents a key factor in transmission of this pathogen. To identify persistent and transient strains associated with production of fermented meat sausages in northern Portugal, 1,723 L. monocytogenes isolates from raw material and finished products from 11 processors were initially characterized by random amplification of polymorphic DNA (RAPD), PCR-based molecular serotyping, and epidemic clone characterization, as well as cadmium, arsenic, and tetracycline resistance typing. Pulsed-field gel electrophoresis (PFGE) typing of 240 representative isolates provided evidence for persistence of L. monocytogenes for periods of time ranging from 10 to 32 months for all seven processors for which isolates from different production dates were available. Among 50 L. monocytogenes isolates that included one representative for each PFGE pattern obtained from a given sample, 12 isolates showed reduced invasion efficiency in Caco-2 cells, including 8 isolates with premature stop codons in inlA. Among 41 isolates representing sporadic and persistent PFGE types, 22 isolates represented lysogens. Neither strains with reduced invasion nor lysogens were overrepresented among persistent isolates. While the susceptibility of isolates to lysogenic phages also did not correlate with persistence, it appeared to be associated with molecular serotype. Our data show the following. (i) RAPD may not be suitable for analysis of large sets of L. monocytogenes isolates. (ii) While a large diversity of L. monocytogenes subtypes is found in Portuguese fermented meat sausages, persistence of L. monocytogenes in this food chain is common. (iii) Persistent L. monocytogenes strains are diverse and do not appear to be characterized by unique genetic or phenotypic characteristics. PMID:21378045
Lian, Qizhou; Yeo, KengSuan; Que, Jianwen; Tan, EileenKhiaWay; Yu, Fenggang; Yin, Yijun; Salto-Tellez, Manuel; Oakley, Reida Menshawe El; Lim, Sai-Kiang
2006-01-01
Background Differentiation of embryonic stem cells (ESCs) into specific cell types with minimal risk of teratoma formation could be efficiently directed by first reducing the differentiation potential of ESCs through the generation of clonal, self-renewing lineage-restricted stem cell lines. Efforts to isolate these stem cells are, however, mired in an impasse where the lack of purified lineage-restricted stem cells has hindered the identification of defining markers for these rare stem cells and, in turn, their isolation. Methodology/Principal Findings We describe here a method for the isolation of clonal lineage-restricted cell lines with endothelial potential from ESCs through a combination of empirical and rational evidence-based methods. Using an empirical protocol that we have previously developed to generate embryo-derived RoSH lines with endothelial potential, we first generated E-RoSH lines from mouse ESC-derived embryoid bodies (EBs). Despite originating from different mouse strains, RoSH and E- RoSH lines have similar gene expression profiles (r2 = 0.93) while that between E-RoSH and ESCs was 0.83. In silico gene expression analysis predicted that like RoSH cells, E-RoSH cells have an increased propensity to differentiate into vasculature. Unlike their parental ESCs, E-RoSH cells did not form teratomas and differentiate efficiently into endothelial-like cells in vivo and in vitro. Gene expression and FACS analysis revealed that RoSH and E-RoSH cells are CD9hi, SSEA-1− while ESCs are CD9lo, SSEA-1+. Isolation of CD9hi, SSEA-1− cells that constituted 1%–10% of EB-derived cultures generated an E-RoSH-like culture with an identical E-RoSH-like gene expression profile (r2 = 0.95) and a propensity to differentiate into endothelial-like cells. Conclusions By combining empirical and rational evidence-based methods, we identified definitive selectable surface antigens for the isolation and propagation of lineage-restricted stem cells with endothelial-like potential from mouse ESCs. PMID:17183690
Biophotonics sensor acclimatization to stem cells environment
NASA Astrophysics Data System (ADS)
Mohamad Shahimin, Mukhzeer
2017-11-01
The ability to discriminate, characterise and purify biological cells from heterogeneous population of cells is fundamental to numerous prognosis and diagnosis applications; often forming the basis for current and emerging clinical protocols in stem cell therapy. Current sorting approaches exploit differences in cell density, specific immunologic targets, or receptor-ligand interactions to isolate particular cells. Identification of novel properties by which different cell types may be discerned and of new ways for their selective manipulation are clearly fundamental components for improving sorting methodologies. Biophotonics sensor developed by our team are potentially capable of discriminating cells according to their refractive index (which is highly dependable on the organelles inside the cell), size (indicator to cell stage) and shape (in certain cases as an indicator to cell type). The sensor, which already discriminate particles efficiently, is modified to acclimatize into biological environment, especially for stem cell applications.
Kurath, Gael; Purcell, Maureen K.; Wargo, Andrew; Park, Jeong Woo; Moon, Chang Hoon
2010-01-01
Infectious haematopoietic necrosis virus (IHNV) is one of the most important viral pathogens of salmonids. In rainbow trout, IHNV isolates in the M genogroup are highly pathogenic, while U genogroup isolates are significantly less pathogenic. We show here that, at a multiplicity of infection (MOI) of 1, a representative U type strain yielded 42-fold less infectious virus than an M type strain in the rainbow trout–derived RTG-2 cell line at 24 h post-infection (p.i.). However, at an MOI of 10, there was only fivefold difference in the yield of infectious virus between the U and M strains. Quantification of extracellular viral genomic RNA suggested that the number of virus particles released from cells infected with the U strain at a MOI of 1 was 47-fold lower than from M-infected cells, but U and M virions were equally infectious by particle to infectivity ratios. At an MOI of 1, U strain intracellular viral genome accumulation and transcription were 37- and 12-fold lower, respectively, than those of the M strain at 24 h p.i. Viral nucleocapsid (N) protein accumulation in U strain infections was fivefold lower than in M strain infections. These results suggest that the block in U type strain growth in RTG-2 cells was because of the effects of reduced genome replication and transcription. The reduced growth of the U strain does not seem to be caused by defective genes, because the U and M strains grew equally well in the permissive epithelioma papulosum cyprini cell line at an MOI of 1. This suggests that host-specific factors in RTG-2 cells control the growth of the IHNV U and M strains differently, leading to growth restriction of the U type virus during the RNA synthesis step.
Droplet microfluidics--a tool for single-cell analysis.
Joensson, Haakan N; Andersson Svahn, Helene
2012-12-03
Droplet microfluidics allows the isolation of single cells and reagents in monodisperse picoliter liquid capsules and manipulations at a throughput of thousands of droplets per second. These qualities allow many of the challenges in single-cell analysis to be overcome. Monodispersity enables quantitative control of solute concentrations, while encapsulation in droplets provides an isolated compartment for the single cell and its immediate environment. The high throughput allows the processing and analysis of the tens of thousands to millions of cells that must be analyzed to accurately describe a heterogeneous cell population so as to find rare cell types or access sufficient biological space to find hits in a directed evolution experiment. The low volumes of the droplets make very large screens economically viable. This Review gives an overview of the current state of single-cell analysis involving droplet microfluidics and offers examples where droplet microfluidics can further biological understanding. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Human adipose-derived stem cells: definition, isolation, tissue-engineering applications.
Nae, S; Bordeianu, I; Stăncioiu, A T; Antohi, N
2013-01-01
Recent researches have demonstrated that the most effective repair system of the body is represented by stem cells - unspecialized cells, capable of self-renewal through successive mitoses, which have also the ability to transform into different cell types through differentiation. The discovery of adult stem cells represented an important step in regenerative medicine because they no longer raises ethical or legal issues and are more accessible. Only in 2002, stem cells isolated from adipose tissue were described as multipotent stem cells. Adipose tissue stem cells benefits in tissue engineering and regenerative medicine are numerous. Development of adipose tissue engineering techniques offers a great potential in surpassing the existing limits faced by the classical approaches used in plastic and reconstructive surgery. Adipose tissue engineering clinical applications are wide and varied, including reconstructive, corrective and cosmetic procedures. Nowadays, adipose tissue engineering is a fast developing field, both in terms of fundamental researches and medical applications, addressing issues related to current clinical pathology or trauma management of soft tissue injuries in different body locations.
Isolation and analysis of group 2 innate lymphoid cells in mice.
Moro, Kazuyo; Ealey, Kafi N; Kabata, Hiroki; Koyasu, Shigeo
2015-05-01
Recent studies have identified distinct subsets of innate lymphocytes, collectively called innate lymphoid cells (ILCs), which lack antigen receptor expression but produce various effector cytokines. Group 2 ILCs (ILC2s) respond to epithelial cell-derived cytokines such as interleukin (IL)-25, IL-33 and thymic stromal lymphopoietin (TSLP), produce large amounts of type 2 cytokines, and have a key role in anti-helminth innate immunity and in the pathophysiology of allergic inflammation. The reported phenotypic characteristics of mouse ILC2s vary, depending on the tissue source and preparation method. This protocol describes improved methods for tissue-specific isolation and analysis of mouse ILC2s of high purity and yield from fat tissue, lung, bronchoalveolar lavage fluid (BALF) and small intestine. These improved methods are the result of our thorough investigation of enzymes used for tissue digestion, methods for the elimination of undesired cells, and a combination of antibodies for the detection and isolation of ILC2s. In addition, this new protocol now enables the isolation of ILC2s of high yield, even from inflamed tissues. Depending on the tissue being analyzed, it takes ∼2-4 h for isolation and flow cytometric analysis of ILC2s from the various tissues of a single mouse and ∼4-8 h to sort purified ILC2s from pooled tissues of multiple mice.
Rashmi, B S; Gayathri, D
2017-09-01
To isolate and characterize indigenous gluten hydrolysing bacteria from wheat sourdough and curd samples and further evaluation of their probiotic potentiality. Indigenous gluten hydrolysing isolates GS 33, GS 143, GS 181 and GS 188 were identified as Bacillus sp. by molecular-typing methods and studied extensively for their functional and probiotic attributes. All the tested isolates could survive at pH 2 and toxicity of 0·3% bile and also exhibited cell surface hydrophobicity and autoaggregation phenotype. The isolates were adhered strongly to Caco-2 cells and coaggregated with Escherichia coli MTCC 433 and Listeria monocytogenes MTCC 1143 preventing pathogen invasion into Caco-2 cells in vitro. In addition, the minimum inhibitory concentration of selected antibiotics for all the investigated gluten hydrolysing isolates was within the breakpoint values as recommended by the European Food Safety Authority. The indigenous high intensity gluten hydrolysing bacteria exhibited high resistance to gastric and pancreatic stress and possessed antibacterial, aggregation, adhesion and pathogen exclusion properties, and as a potential probiotics, either alone or in consortium would be useful in the development of gluten-free wheat foods. Exploring new indigenous gluten hydrolysing bacteria from wheat sourdough and curd samples would be beneficial in developing gluten-free wheat foods using potential indigenous probiotics. © 2017 The Society for Applied Microbiology.
Lacy, E R
1983-01-01
Carbonic anhydrase (CAH) activity was biochemically measured and histochemically localized (at both the light and electron microscope levels) in isolated opercular membranes from teleost fish, Fundulus heteroclitus, adapted to freshwater (FW), seawater (SW), and double-strength seawater (2 x SW). The normal morphology of this membrane showed that its epithelial portion consisted of five cell types: (1) chloride cells, which have been previously implicated as responsible for the active chloride transport across the epithelium; (2) mucous cells; (3) pavement cells, which formed the major portion of the free epithelial surface; (4) supportive cells, which had an abundance of intermediate (10 nm)-type filaments suggesting a structural role for these cells; and (5) vesicular cells, which were characterized by various types of membrane-bound vesicles, including lysosomes, and numerous free ribosomes. Vesicular cells may be stem cells and/or endocrine cells. Hansson's histochemical method for CAH revealed cobalt sulfide reaction product confined to the following structures in fish from each environment: (1) chloride cells: throughout the cytoplasm and some nuclear staining; (2) mucous cells: throughout the cytoplasm, some nuclear staining, and some in mucous granules; (3) vesicular cells: confined to lysosomes, some of the vesicles, and nucleoli; (4) a small portion of the intracellular space between adjacent vesicular cells and supportive cells; and (5) supportive cells: in nucleoli and occasionally in larger membrane-bound lysosomelike structures. Acetazolamide (10(-5) M) and potassium cyanate (KCNO) (10(-1) M) in Hansson's incubation medium completely inhibited the formation of reaction product. Biochemical determination of CAH activity on vascularly perfused, isolated opercular membranes showed no statistically significant difference in enzyme activity between environmental groups. The following units of activity/mg opercular membrane protein were measured: FW: 0.63 +/- 0.02; SW: 0.43 +/- 0.08; 2 x SW: 0.64 +/- 0.09.
Ludvigsen, Jane; Porcellato, Davide; Amdam, Gro V; Rudi, Knut
2018-05-01
The gut microbiota of honeybees (Apis) and bumblebees (Bombus) include the symbiotic bacterial genus Gilliamella. This genus shows a high degree of functional and genomic diversity and separates into distinct lineages. Gilliamella apicola wkB1 T , which was isolated from Apis, was the first species to be described. Recently four new species, isolated from Bombus, were identified. In this paper, we compare several genomes/strains from previous studies spanning this diversity, which gives insight into the phylogenetic relationship among different Gilliamella species. We show that one lineage, isolated only from Apis, is different from other gilliamellas described, based on average nucleotide identity calculation (about 80 %) and phenotypic characterizations. We propose the new species name for this lineage: Gilliamella apis sp. nov. We present the characterization of the type strain NO3 T (=DSM 105629 T =LMG 30293 T ), a strain isolated from the Western honeybee Apis mellifera, which clusters within this lineage. Cells of strain NO3 T grow best in a microaerophilic atmosphere with enhanced CO2 levels at 36 °C and pH 7.0-7.5. Cells also grow well in anaerobic conditions, but not in aerobic conditions. Cells are approximately 1 µm in length and rod-shaped, and the genomic G+C content is 34.7 mol%. Differential characteristics between strain NO3 T and the different type strains of Gilliamella were revealed based on API kit tests and genomic content comparisons. The main respiratory quinone of strain NO3 T was ubiquinone-8, and the predominant fatty acids were C18 : 1ω7c/C18 : 1ω6c, C16 : 0, consistent with the genus Gilliamella.
Perez-Gonzalez, Rocio; Gauthier, Sebastien A.; Kumar, Asok; Levy, Efrat
2012-01-01
In vitro studies have shown that neuronal cell cultures secrete exosomes containing amyloid-β precursor protein (APP) and the APP-processing products, C-terminal fragments (CTFs) and amyloid-β (Aβ). We investigated the secretion of full-length APP (flAPP) and APP CTFs via the exosome secretory pathway in vivo. To this end, we developed a novel protocol designed to isolate exosomes secreted into mouse brain extracellular space. Exosomes with typical morphology were isolated from freshly removed mouse brains and from frozen mouse and human brain tissues, demonstrating that exosomes can be isolated from post-mortem tissue frozen for long periods of time. flAPP, APP CTFs, and enzymes that cleave both flAPP and APP CTFs were identified in brain exosomes. Although higher levels of both flAPP and APP CTFs were observed in exosomes isolated from the brains of transgenic mice overexpressing human APP (Tg2576) compared with wild-type control mice, there was no difference in the number of secreted brain exosomes. These data indicate that the levels of flAPP and APP CTFs associated with exosomes mirror the cellular levels of flAPP and APP CTFs. Interestingly, exosomes isolated from the brains of both Tg2576 and wild-type mice are enriched with APP CTFs relative to flAPP. Thus, we hypothesize that the exosome secretory pathway plays a pleiotropic role in the brain: exosome secretion is beneficial to the cell, acting as a specific releasing system of neurotoxic APP CTFs and Aβ, but the secretion of exosomes enriched with APP CTFs, neurotoxic proteins that are also a source of secreted Aβ, is harmful to the brain. PMID:23129776
Mechanisms of Cytotoxicity of the Aids Virus
1992-10-10
viruses such as Epstein - Barr virus , HTLV- formation between infected and uninfected cells. Pen- I, cytomegalovirus, hepatitis B virus , human herpes...therapeutic maneuvers which may suppress virus replication and/or cytopathicity, and assist in the development of a vaccine for HIV prevention. 7 Viral...infection of B cells with Epstein - Barr virus or (HIV-1) and explosive escape from an isolated human infection of other cell types with HTLV-l increases
Kannler, Martina; Lüling, Robin; Yildirim, Ali Önder; Gudermann, Thomas; Steinritz, Dirk; Dietrich, Alexander
2018-05-12
Transient receptor potential A1 (TRPA1) channels were originally characterized in neuronal tissues but also identified in lung epithelium by staining with fluorescently coupled TRPA1 antibodies. Its exact function in non-neuronal tissues, however, is elusive. TRPA1 is activated in vitro by hypoxia and hyperoxia and is therefore a promising TRP candidate for sensing hyperoxia in pulmonary epithelial cells and for inducing alveolar epithelial hyperplasia. Here, we isolated tracheal, bronchial, and alveolar epithelial cells and show low but detectable TRPA1 mRNA levels in all these cells as well as TRPA1 protein by Western blotting in alveolar type II (AT II) cells. We quantified changes in intracellular Ca 2+ ([Ca 2+ ] i ) levels induced by application of hyperoxic solutions in primary tracheal epithelial, bronchial epithelial, and AT II cells isolated from wild-type (WT) and TRPA1-deficient (TRPA1-/-) mouse lungs. In all cell types, we detected hyperoxia-induced rises in [Ca 2+ ] i levels, which were not significantly different in TRPA1-deficient cells compared to WT cells. We also tested TRPA1 function in a mouse model for hyperoxia-induced alveolar epithelial hyperplasia. A characteristic significant increase in thickening of alveolar tissues was detected in mouse lungs after exposure to hyperoxia, but not in normoxic WT and TRPA1-/- controls. Quantification of changes in lung morphology in hyperoxic WT and TRPA1-/- mice, however, again revealed no significant changes. Therefore, TRPA1 expression does neither appear to be a key player for hyperoxia-induced changes in [Ca 2+ ] i levels in primary lung epithelial cells, nor being essential for the development of hyperoxia-induced alveolar epithelial hyperplasia.
Kopf, Manfred; Herren, Suzanne; Wiles, Michael V.; Pepys, Mark B.; Kosco-Vilbois, Marie H.
1998-01-01
Mice rendered deficient for interleukin (IL) 6 by gene targeting were evaluated for their response to T cell–dependent antigens. Antigen-specific immunoglobulin (Ig)M levels were unaffected whereas all IgG isotypes showed varying degrees of alteration. Germinal center reactions occurred but remained physically smaller in comparison to those in the wild-type mice. This concurred with the observations that molecules involved in initial signaling events leading to germinal center formation were not altered (e.g., B7.2, CD40 and tumor necrosis factor R1). T cell priming was not impaired nor was a gross imbalance of T helper cell (Th) 1 versus Th2 cytokines observed. However, B7.1 molecules, absent from wild-type counterparts, were detected on germinal center B cells isolated from the deficient mice suggesting a modification of costimulatory signaling. A second alteration involved impaired de novo synthesis of C3 both in serum and germinal center cells from IL-6–deficient mice. Indeed, C3 provided an essential stimulatory signal for wild-type germinal center cells as both monoclonal antibodies that interrupted C3-CD21 interactions and sheep anti–mouse C3 antibodies caused a significant decrease in antigen-specific antibody production. In addition, germinal center cells isolated from C3–deficient mice produced a similar defect in isotype production. Low density cells with dendritic morphology were the local source of IL-6 and not the germinal center lymphocytes. Adding IL-6 in vitro to IL-6–deficient germinal center cells stimulated cell cycle progression and increased levels of antibody production. These findings reveal that the germinal center produces and uses molecules of the innate immune system, evolutionarily pirating them in order to optimally generate high affinity antibody responses. PMID:9815267
Cattaruzza, Sabrina; Nicolosi, Pier Andrea; Braghetta, Paola; Pazzaglia, Laura; Benassi, Maria Serena; Picci, Piero; Lacrima, Katia; Zanocco, Daniela; Rizzo, Erika; Stallcup, William B; Colombatti, Alfonso; Perris, Roberto
2013-06-01
In soft-tissue sarcoma patients, enhanced expression of NG2/CSPG4 proteoglycan in pre-surgical primary tumours predicts post-surgical metastasis formation and thereby stratifies patients into disease-free survivors and patients destined to succumb to the disease. Both primary and secondary sarcoma lesions also up-regulate collagen type VI, a putative extracellular matrix ligand of NG2, and this matrix alteration potentiates the prognostic impact of NG2. Enhanced constitutive levels of the proteoglycan in isolated sarcoma cells closely correlate with a superior engraftment capability and local growth in xenogenic settings. This apparent NG2-associated malignancy was also corroborated by the diverse tumorigenic behaviour in vitro and in vivo of immunoselected NG2-expressing and NG2-deficient cell subsets, by RNAi-mediated knock down of endogenous NG2, and by ectopic transduction of full-length or deletion constructs of NG2. Cells with modified expression of NG2 diverged in their interaction with purified Col VI, matrices supplemented with Col VI, and cell-free matrices isolated from wild-type and Col VI null fibroblasts. The combined use of dominant-negative NG2 mutant cells and purified domain fragments of the collagen allowed us to pinpoint the reciprocal binding sites within the two molecules and to assert the importance of this molecular interaction in the control of sarcoma cell adhesion and motility. The NG2-mediated binding to Col VI triggered activation of convergent cell survival- and cell adhesion/migration-promoting signal transduction pathways, implicating PI-3K as a common denominator. Thus, the findings point to an NG2-Col VI interplay as putatively involved in the regulation of the cancer cell-host microenvironment interactions sustaining sarcoma progression.
Novembre, Francis J.; de Rosayro, Juliette; Nidtha, Soumya; O'Neil, Shawn P.; Gibson, Terri R.; Evans-Strickfaden, Tammy; Hart, Clyde E.; McClure, Harold M.
2001-01-01
To investigate the pathogenicity of a virus originating in a chimpanzee with AIDS (C499), two chimpanzees were inoculated with a plasma-derived isolate termed human immunodeficiency virus type 1NC (HIV-1NC). A previously uninfected chimpanzee, C534, experienced rapid peripheral CD4+ T-cell loss to fewer than 26 cells/μl by 14 weeks after infection. CD4+ T-cell depletion was associated with high plasma HIV-1 loads but a low virus burden in the peripheral lymph node. The second chimpanzee, C459, infected 13 years previously with HIV-1LAV, experienced a more protracted course of peripheral CD4+ T-cell loss after HIV-1NC inoculation, resulting in fewer than 200 cells/μl by 96 weeks postinoculation. The quantities of viral RNA in the plasma and peripheral lymph node from C459 were below the lower limits of detection prior to inoculation with HIV-1NC but were significantly and persistently increased after superinfection, with HIV-1NC representing the predominant viral genotype. These results show that viruses derived from C499 are more pathogenic for chimpanzees than any other HIV-1 isolates described to date. PMID:11152525
Regional differences in lectin binding patterns of vestibular hair cells
NASA Technical Reports Server (NTRS)
Baird, R. A.; Schuff, N. R.; Bancroft, J.
1993-01-01
Surface glycoconjugates of hair cells and supporting cells in the vestibular endorgans of the bullfrog were identified using biotinylated lectins with different carbohydrate specificities. Lectin binding in hair cells was consistent with the presence of glucose and mannose (CON A), galactose (RCA-I), N-acetylglucosamine (WGA), N-acetylgalactosamine (VVA), but not fucose (UEA-I) residues. Hair cells in the bullfrog sacculus, unlike those in the utriculus and semicircular canals, did not strain for N-acetylglucosamine (WGA) or N-acetylgalactosamine (VVA). By contrast, WGA and, to a lesser extent, VVA, differentially stained utricular and semicircular canal hair cells, labeling hair cells located in peripheral, but not central, regions. In mammals, WGA uniformly labeled Type I hair cells while labeling, as in the bullfrog, Type II hair cells only in peripheral regions. These regional variations were retained after enzymatic digestion. We conclude that vestibular hair cells differ in their surface glycoconjugates and that differences in lectin binding patterns can be used to identify hair cell types and to infer the epithelial origin of isolated vestibular hair cells.
Tsai, Ming-Han; Bernhardt, Katharina; Feederle, Regina; Poirey, Remy; Kopp-Schneider, Annette; Pereira, Bruno; Almeida, Raquel; Delecluse, Henri-Jacques
2017-01-01
The Epstein-Barr virus (EBV) is etiologically associated with the development of multiple types of tumors, but it is unclear whether this diversity is due to infection with different EBV strains. We report a comparative characterization of SNU719, GP202, and YCCEL1, three EBV strains that were isolated from gastric carcinomas, M81, a virus isolated in a nasopharyngeal carcinoma and several well-characterized laboratory type A strains. We found that B95-8, Akata and GP202 induced cell growth more efficiently than YCCEL1, SNU719 and M81 and this correlated positively with the expression levels of the viral BHRF1 miRNAs. In infected B cells, all strains except Akata and B95-8 induced lytic replication, a risk factor for carcinoma development, although less efficiently than M81. The panel of viruses induced tumors in immunocompromised mice with variable speed and efficacy that did not strictly mirror their in vitro characteristics, suggesting that additional parameters play an important role. We found that YCCEL1 and M81 infected primary epithelial cells, gastric carcinoma cells and gastric spheroids more efficiently than Akata or B95-8. Reciprocally, Akata and B95-8 had a stronger tropism for B cells than YCCEL1 or M81. These data suggest that different EBV strains will induce the development of lymphoid tumors with variable efficacy in immunocompromised patients and that there is a parallel between the cell tropism of the viral strains and the lineage of the tumors they induce. Thus, EBV strains can be endowed with properties that will influence their transforming abilities and the type of tumor they induce. PMID:28052012
Tsai, Ming-Han; Lin, Xiaochen; Shumilov, Anatoliy; Bernhardt, Katharina; Feederle, Regina; Poirey, Remy; Kopp-Schneider, Annette; Pereira, Bruno; Almeida, Raquel; Delecluse, Henri-Jacques
2017-02-07
The Epstein-Barr virus (EBV) is etiologically associated with the development of multiple types of tumors, but it is unclear whether this diversity is due to infection with different EBV strains. We report a comparative characterization of SNU719, GP202, and YCCEL1, three EBV strains that were isolated from gastric carcinomas, M81, a virus isolated in a nasopharyngeal carcinoma and several well-characterized laboratory type A strains. We found that B95-8, Akata and GP202 induced cell growth more efficiently than YCCEL1, SNU719 and M81 and this correlated positively with the expression levels of the viral BHRF1 miRNAs. In infected B cells, all strains except Akata and B95-8 induced lytic replication, a risk factor for carcinoma development, although less efficiently than M81. The panel of viruses induced tumors in immunocompromised mice with variable speed and efficacy that did not strictly mirror their in vitro characteristics, suggesting that additional parameters play an important role. We found that YCCEL1 and M81 infected primary epithelial cells, gastric carcinoma cells and gastric spheroids more efficiently than Akata or B95-8. Reciprocally, Akata and B95-8 had a stronger tropism for B cells than YCCEL1 or M81. These data suggest that different EBV strains will induce the development of lymphoid tumors with variable efficacy in immunocompromised patients and that there is a parallel between the cell tropism of the viral strains and the lineage of the tumors they induce. Thus, EBV strains can be endowed with properties that will influence their transforming abilities and the type of tumor they induce.
Analyses of Mitochondrial Calcium Influx in Isolated Mitochondria and Cultured Cells.
Maxwell, Joshua T; Tsai, Chin-Hsien; Mohiuddin, Tahmina A; Kwong, Jennifer Q
2018-04-27
Ca 2+ handling by mitochondria is a critical function regulating both physiological and pathophysiological processes in a broad spectrum of cells. The ability to accurately measure the influx and efflux of Ca 2+ from mitochondria is important for determining the role of mitochondrial Ca 2+ handling in these processes. In this report, we present two methods for the measurement of mitochondrial Ca 2+ handling in both isolated mitochondria and cultured cells. We first detail a plate reader-based platform for measuring mitochondrial Ca 2+ uptake using the Ca 2+ sensitive dye calcium green-5N. The plate reader-based format circumvents the need for specialized equipment, and the calcium green-5N dye is ideally suited for measuring Ca 2+ from isolated tissue mitochondria. For our application, we describe the measurement of mitochondrial Ca 2+ uptake in mitochondria isolated from mouse heart tissue; however, this procedure can be applied to measure mitochondrial Ca 2+ uptake in mitochondria isolated from other tissues such as liver, skeletal muscle, and brain. Secondly, we describe a confocal microscopy-based assay for measurement of mitochondrial Ca 2+ in permeabilized cells using the Ca 2+ sensitive dye Rhod-2/AM and imaging using 2-dimensional laser-scanning microscopy. This permeabilization protocol eliminates cytosolic dye contamination, allowing for specific recording of changes in mitochondrial Ca 2+ . Moreover, laser-scanning microscopy allows for high frame rates to capture rapid changes in mitochondrial Ca 2+ in response to various drugs or reagents applied in the external solution. This protocol can be applied to measure mitochondrial Ca 2+ uptake in many cell types including primary cells such as cardiac myocytes and neurons, and immortalized cell lines.
Yi, Yanjie; Shaheen, Farida; Collman, Ronald G.
2005-01-01
Coreceptor specificity of human immunodeficiency virus type 1 (HIV-1) strains is generally defined in vitro in cell lines expressing CCR5 or CXCR4, but lymphocytes and macrophages are the principal targets in vivo. CCR5-using (R5) variants dominate early in infection, but strains that use CXCR4 emerge later in a substantial minority of subjects. Many or most CXCR4-using variants can use both CXCR4 and CCR5 (R5X4), but the pathways that are actually used to cause infection in primary cells and in vivo are unknown. We examined several R5X4 prototype and primary isolates and found that they all were largely or completely restricted to CXCR4-mediated entry in primary lymphocytes, even though lymphocytes are permissive for CCR5-mediated entry by R5 strains. In contrast, in primary macrophages R5X4 isolates used both CCR5 and CXCR4. The R5X4 strains were also more sensitive than R5 strains to CCR5 blocking, suggesting that interactions between the R5X4 strains and CCR5 are less efficient. These results indicate that coreceptor phenotyping in transformed cells does not necessarily predict utilization in primary cells, that variability exists among HIV-1 isolates in the ability to use CCR5 expressed on lymphocytes, and that many or most strains characterized as R5X4 are functionally X4 in primary lymphocytes. Less efficient interactions between R5X4 strains and CCR5 may be responsible for the inability to use CCR5 on lymphocytes, which express relatively low CCR5 levels. Since isolates that acquire CXCR4 utilization retain the capacity to use CCR5 on macrophages despite their inability to use it on lymphocytes, these results also raise the possibility that a CCR5-mediated macrophage reservoir is required for sustained infection in vivo. PMID:15650174
Sule, W F; Oyedele, O I; Osei-Kwasi, M; Odoom, J K; Adu, F D
2008-03-01
To determine some virulent trait-related properties of poliovirus isolates from children with acute flaccid paralysis following vaccination with oral polio vaccine (OPV). Six polioviruses earlier characterised into wild, vaccine-derived and OPV-like were studied using the plaque morphology and growth kinetics at supra-optimal temperature. Department of Virology, University of Ibadan, Nigeria. Polio isolates from six children who developed acute flaccid paralysis following vaccinations with various doses of OPV were used. All the children were located in the Northern part of the country where poliovirus is still circulating. The two vaccine-derived polioviruses acquired wild type characteristics. All the six poliovirus isolates developed different forms of plaques ranging from tiny, small and large. The plaque formed could however not be used to identify the different isolates. Growth of the different isolates at supra-optimal temperature showed that the three wild polioviruses grew to a higher titre when compared with the Sabin 2 control. The two vaccine derived isolates behaved like the wild poliovirus while the OPV-like virus acquired an intermediate characteristics between wild and sabin. The wild polioviruses represented in this study are among the last vestiges of the circulating polioviruses found in the world. It is possible that the observed biological properties of wild types 1 and 3 described in the study are typical of the West African polioviruses. These properties will provide useful previews to the final identification of some important clinical isolates especially type 1 which may grow rapidly in cell culture.
Cavanagh, Jorunn Pauline; Hjerde, Erik; Holden, Matthew T G; Kahlke, Tim; Klingenberg, Claus; Flægstad, Trond; Parkhill, Julian; Bentley, Stephen D; Sollid, Johanna U Ericson
2014-11-01
Staphylococcus haemolyticus is an emerging cause of nosocomial infections, primarily affecting immunocompromised patients. A comparative genomic analysis was performed on clinical S. haemolyticus isolates to investigate their genetic relationship and explore the coding sequences with respect to antimicrobial resistance determinants and putative hospital adaptation. Whole-genome sequencing was performed on 134 isolates of S. haemolyticus from geographically diverse origins (Belgium, 2; Germany, 10; Japan, 13; Norway, 54; Spain, 2; Switzerland, 43; UK, 9; USA, 1). Each genome was individually assembled. Protein coding sequences (CDSs) were predicted and homologous genes were categorized into three types: Type I, core genes, homologues present in all strains; Type II, unique core genes, homologues shared by only a subgroup of strains; and Type III, unique genes, strain-specific CDSs. The phylogenetic relationship between the isolates was built from variable sites in the form of single nucleotide polymorphisms (SNPs) in the core genome and used to construct a maximum likelihood phylogeny. SNPs in the genome core regions divided the isolates into one major group of 126 isolates and one minor group of isolates with highly diverse genomes. The major group was further subdivided into seven clades (A-G), of which four (A-D) encompassed isolates only from Europe. Antimicrobial multiresistance was observed in 77.7% of the collection. High levels of homologous recombination were detected in genes involved in adherence, staphylococcal host adaptation and bacterial cell communication. The presence of several successful and highly resistant clones underlines the adaptive potential of this opportunistic pathogen. © The Author 2014. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy.
Cavanagh, Jorunn Pauline; Hjerde, Erik; Holden, Matthew T. G.; Kahlke, Tim; Klingenberg, Claus; Flægstad, Trond; Parkhill, Julian; Bentley, Stephen D.; Sollid, Johanna U. Ericson
2014-01-01
Objectives Staphylococcus haemolyticus is an emerging cause of nosocomial infections, primarily affecting immunocompromised patients. A comparative genomic analysis was performed on clinical S. haemolyticus isolates to investigate their genetic relationship and explore the coding sequences with respect to antimicrobial resistance determinants and putative hospital adaptation. Methods Whole-genome sequencing was performed on 134 isolates of S. haemolyticus from geographically diverse origins (Belgium, 2; Germany, 10; Japan, 13; Norway, 54; Spain, 2; Switzerland, 43; UK, 9; USA, 1). Each genome was individually assembled. Protein coding sequences (CDSs) were predicted and homologous genes were categorized into three types: Type I, core genes, homologues present in all strains; Type II, unique core genes, homologues shared by only a subgroup of strains; and Type III, unique genes, strain-specific CDSs. The phylogenetic relationship between the isolates was built from variable sites in the form of single nucleotide polymorphisms (SNPs) in the core genome and used to construct a maximum likelihood phylogeny. Results SNPs in the genome core regions divided the isolates into one major group of 126 isolates and one minor group of isolates with highly diverse genomes. The major group was further subdivided into seven clades (A–G), of which four (A–D) encompassed isolates only from Europe. Antimicrobial multiresistance was observed in 77.7% of the collection. High levels of homologous recombination were detected in genes involved in adherence, staphylococcal host adaptation and bacterial cell communication. Conclusions The presence of several successful and highly resistant clones underlines the adaptive potential of this opportunistic pathogen. PMID:25038069
Rödiger, Stefan; Kramer, Toni; Frömmel, Ulrike; Weinreich, Jörg; Roggenbuck, Dirk; Guenther, Sebastian; Schaufler, Katharina; Schröder, Christian; Schierack, Peter
2015-09-01
We report the population structure and dynamics of one Escherichia coli population of wild mallard ducks in their natural environment over four winter seasons, following the characterization of 100 isolates each consecutive season. Macro-restriction analysis was used to define isolates variously as multi- or 1-year pulsed-field gel electrophoresis (PFGE) types. Isolates were characterized genotypically based on virulence-associated genes (VAGs), phylogenetic markers, and phenotypically based on haemolytic activity, antimicrobial resistance, adhesion to epithelial cells, microcin production, motility and carbohydrate metabolism. Only 12 out of 220 PFGE types were detectable over more than one winter, and classified as multi-year PFGE types. There was a dramatic change of PFGE types within two winter seasons. Nevertheless, the genetic pool (VAGs) and antimicrobial resistance pattern remained remarkably stable. The high diversity and dynamics of this E. coli population were also demonstrated by the occurrence of PFGE subtypes and differences between isolates of one PFGE type (based on VAGs, antimicrobial resistance and adhesion rates). Multi- and 1-year PFGE types differed in antimicrobial resistance, VAGs and adhesion. Other parameters were not prominent colonization factors. In conclusion, the high diversity, dynamics and stable genetic pool of an E. coli population seem to enable their successful colonization of host animal population over time. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
Gao, Xiu-Li; Lin, Hua; Zhao, Wei; Hou, Ya-Qin; Bao, Yong-Li; Song, Zhen-Bo; Sun, Lu-Guo; Tian, Shang-Yi; Liu, Biao; Li, Yu-Xin
2016-03-01
Juglans mandshurica Maxim (Juglandaceae) is a famous folk medicine for cancer treatment and some natural compounds isolated from it have been studied extensively. Previously we isolated a type of ω-9 polyunsaturated fatty acid (JA) from the bark of J. mandshurica, however little is known about its activity and the underlying mechanisms. In this study, we studied anti-tumor activity of JA on several human cancer cell lines. Results showed that JA is cytotoxic to HepG2, MDA-MB-231, SGC-7901, A549 and Huh7 cells at a concentration exerting minimal toxic effects on L02 cells. The selective toxicity of JA was better than other classical anti-cancer drugs. Further investigation indicated that JA could induce cell apoptosis, characterized by chromatin condensation, DNA fragmentation and activation of the apoptosis-associated proteins such as Caspase-3 and PARP-1. Moreover, we investigated the cellular apoptosis pathway involved in the apoptosis process in HepG2 cells. We found that proteins involved in mitochondrion (cleaved-Caspase-9, Apaf-1, HtrA2/Omi, Bax, and Mitochondrial Bax) and endocytoplasmic reticulum (XBP-1s, GRP78, cleaved-Caspase-7 and cleaved-Caspase-12) apoptotic pathways were up-regulated when cells were treated by JA. In addition, a morphological change in the mitochondrion was detected. Furthermore, we found that JA could inhibit DNA synthesis and induce G2/M cell cycle arrest. The expression of G2-to-M transition related proteins, such as CyclinB1 and phosphorylated-CDK1, were reduced. In contrast, the G2-to-M inhibitor p21 was increased in JA-treated cells. Overall, our results suggest that JA can induce mitochondrion- and endocytoplasmic reticulum-mediated apoptosis, and G2/M phase arrest in HepG2 cells, making it a promising therapeutic agent against hepatoma.
Isolation of a virulent Newcastle disease virus from confiscated LaSota vaccine.
Pedersen, Janice C; Hines, Nichole L; Killian, Mary Lea; Predgen, Ann S; Schmitt, Beverly J
2013-06-01
Vials of Newcastle disease vaccine labeled as LaSota were confiscated by the Arizona Division of Customs and Border Protection officials. Two different avian type 1 paramyxoviruses were isolated from all three vials of vaccine submitted to the National Veterinary Services Laboratories. The LaSota strain of avian paramyxovirus type 1 virus was isolated from all three vials and analyzed by nucleotide sequence analysis. A virulent Newcastle disease virus was also present in all three vials, but in low concentration. The virulence of the Newcastle disease virus was characterized by the intracerebral chicken pathogenicity index chicken inoculation assay but could not be determined by nucleotide sequence analysis from the virus isolated from embryonating chicken eggs. The intracerebral chicken pathogenicity index value for the isolated Newcastle disease virus was 1.55. Strains of Newcastle disease virus with intracerebral pathogenicity indexes significantly above 1.0 have been found to selectively kill many types of cancer cells while not affecting normal nonneoplastic cells and are considered to be a viable option for cancer treatment in humans by alternative medical researchers; however, the treatment is not approved for use in the United States by the Food and Drug Administration. Customs and Border Protection officials have been notified of an increased risk of Newcastle disease virus entering the United States for use as a nonapproved cancer treatment. Illegal importation of Newcastle disease vaccine for vaccination of backyard poultry is also a threat. This case report emphasizes the importance of conducting chicken inoculation for complete virus pathotyping and demonstrates the need for stringent security procedures at U.S. borders to detect known livestock pathogens that may be smuggled in for use in animal agriculture and reasons unrelated to animal agriculture.
Sterner, Rosalie M.; Kremer, Kimberly N.; Al-Kali, Aref; Patnaik, Mrinal M.; Gangat, Naseema; Litzow, Mark R.; Kaufmann, Scott H.; Westendorf, Jennifer J.; van Wijnen, Andre J.; Hedin, Karen E.
2017-01-01
The bone marrow microenvironment protects acute myeloid leukemia (AML) cells during chemotherapy and is a major factor in relapse. Here, we examined which type(s) of bone marrow cells are responsible for the relapse of AML following treatment with cytarabine (Ara-C), and we identified a means to inhibit this protection. To determine the protective cell type(s), AML cells were treated with Ara-C, and AML cell survival in the presence or absence of osteoblast lineage cells was assessed. Cultured AML cells and patient bone marrow isolates were each significantly protected from Ara-C-induced apoptosis by co-culture with differentiating osteoblasts. Moreover, pretreating differentiating osteoblasts with the histone deacetylase inhibitors (HDACi) vorinostat and panobinostat abrogated the ability of the differentiating osteoblasts to protect AML cells. Together, our results indicate that differentiating osteoblasts have the potential to promote residual AML in the bone marrow following standard chemotherapy and act via a mechanism requiring HDACi-sensitive gene expression. Using HDACi to target the leukemic microenvironment in combination with Ara-C could potentially improve treatment of AML. Moreover, other strategies for manipulating bone marrow osteoblasts may also help eradicate AML cells and reduce relapse. PMID:29212250
Clinical potentials of human pluripotent stem cells.
Mora, Cristina; Serzanti, Marialaura; Consiglio, Antonella; Memo, Maurizio; Dell'Era, Patrizia
2017-08-01
Aging, injuries, and diseases can be considered as the result of malfunctioning or damaged cells. Regenerative medicine aims to restore tissue homeostasis by repairing or replacing cells, tissues, or damaged organs, by linking and combining different disciplines including engineering, technology, biology, and medicine. To pursue these goals, the discipline is taking advantage of pluripotent stem cells (PSCs), a peculiar type of cell possessing the ability to differentiate into every cell type of the body. Human PSCs can be isolated from the blastocysts and maintained in culture indefinitely, giving rise to the so-called embryonic stem cells (ESCs). However, since 2006, it is possible to restore in an adult cell a pluripotent ESC-like condition by forcing the expression of four transcription factors with the rejuvenating reprogramming technology invented by Yamanaka. Then the two types of PSC can be differentiated, using standardized protocols, towards the cell type necessary for the regeneration. Although the use of these derivatives for therapeutic transplantation is still in the preliminary phase of safety and efficacy studies, a lot of efforts are presently taking place to discover the biological mechanisms underlying genetic pathologies, by differentiating induced PSCs derived from patients, and new therapies by challenging PSC-derived cells in drug screening.
Mohanty, Niharika; Gulati, Baldev R; Kumar, Rajesh; Gera, Sandeep; Kumar, Pawan; Somasundaram, Rajesh K; Kumar, Sandeep
2014-06-01
Mesenchymal stem cells (MSCs) isolated from umbilical cord blood (UCB) in equines have not been well characterized with respect to the expression of pluripotency and mesenchymal markers and for tenogenic differentiation potential in vitro. The plastic adherent fibroblast-like cells isolated from 13 out of 20 UCB samples could proliferate till passage 20. The cells expressed pluripotency markers (OCT4, NANOG, and SOX2) and MSC surface markers (CD90, CD73, and CD105) by RT-PCR, but did not express CD34, CD45, and CD14. On immunocytochemistry, the isolated cells showed expression of CD90 and CD73 proteins, but tested negative for CD34 and CD45. In flow cytometry, CD29, CD44, CD73, and CD90 were expressed by 96.36 ± 1.28%, 93.40 ± 0.70%, 73.23 ± 1.29% and 46.75 ± 3.95% cells, respectively. The UCB-MSCs could be differentiated to tenocytes by culturing in growth medium supplemented with 50 ng/ml of BMP-12 by day 10. The differentiated cells showed the expression of mohawk homeobox (Mkx), collagen type I alpha 1 (Col1α1), scleraxis (Scx), tenomodulin (Tnmd) and decorin (Dcn) by RT-PCR. In addition, flow cytometry detected tenomodulin and decorin protein in 95.65 ± 2.15% and 96.30 ± 1.00% of differentiated cells in comparison to 11.30 ± 0.10% and 19.45 ± 0.55% cells, respect vely in undifferentiated control cells. The findings support the observation that these cells may be suitable for therapeutic applications, including ruptured tendons in racehorses.
Isolation and Flow Cytometry Analysis of Innate Lymphoid Cells from the Intestinal Lamina Propria.
Gronke, Konrad; Kofoed-Nielsen, Michael; Diefenbach, Andreas
2017-01-01
The intestinal mucosa constitutes the biggest surface area of the body. It is constantly challenged by bacteria, commensal and pathogenic, protozoa, and food-derived irritants. In order to maintain homeostasis, a complex network of signaling circuits has evolved that includes contributions of immune cells. In recent years a subset of lymphocytes, which belong to the innate immune system, has caught particular attention. These so-called innate lymphoid cells (ILC) reside within the lamina propria of the small and large intestines and rapidly respond to environmental challenges. They provide immunity to various types of infections but may also contribute to organ homeostasis as they produce factors acting on epithelial cells thereby enhancing barrier integrity. Here, we describe how these cells can be isolated from their environment and provide an in-depth protocol how to visualize the various ILC subsets by flow cytometry.
HIV type 1 chemokine receptor usage in mother-to-child transmission.
Salvatori, F; Scarlatti, G
2001-07-01
To investigate the role of the HIV-1 phenotype in mother-to-child HIV-1 transmission, we evaluated coreceptor usage and replication kinetics in chemokine receptor-expressing U87MG.CD4 cells of primary isolates from 32 HIV-1-infected mothers of Italian origin, none under preventive antiretroviral therapy, and from their infected infants. Five of 15 mothers of infected children and 2 of 17 mothers of uninfected children harbored viruses able to use CXCR4 as coreceptor. However, all isolates used CCR5, alone or in association with CXCR4. The replicative capacity in coreceptor-expressing cells of the viral isolates did not differ between the two groups of mothers. All mothers with an R5 virus transmitted a virus with the same coreceptor usage, whereas those four with a multitropic virus transmitted such a virus in one case. Although the presence of a mixed viral population was documented in the mothers, we did not observe transmission solely of X4 viruses. Interestingly, the only child infected with a multitropic virus carried a defective CCR5 allele. Analysis of the env V3 region of the provirus from this child revealed infection with multiple viral variants with a predominance of R5-type over X4-type sequences. These findings show that CCR5 usage of a viral isolate is not a discriminating risk factor for vertical transmission. Furthermore, X4 viruses can be transmitted to the newborn, although less frequently. In particular, we document the transmission of multiple viral variants with different coreceptor usage in a Delta32 CCR5 heterozygous child, and demonstrate that the heterozygous genotype per se does not contribute to the restriction of R5-type virus spread.
[Measles pathogenic surveillance from 2005 to 2007 in Guangdong Province].
Liu, Leng; Zheng, Huan-ying; Guo, Xue; Zhu, Jian-qiong; Ji, Yi-xin; Xu, Wen-bo
2008-12-01
To develop pathogenic surveillance on measles and to effectively isolate measles virus. To know the genetic characterizations and molecular epidemiology of wildtype measles viruses from 2005 to 2007 in Guangdong Province, and provide the scientific basis for measles control and eradication. Vero/Slam cell line were used, measles viruses were isolated from throat swabs or urine specimens collected from uspected measles patients in outbreaks and sporadic patients. A 450 nucleotides fragment of the C-terminal of the nucleoprotein (N) gene was amplified and by RT-PCR and subjected to sequence and phylogenetic analysis using Bio-Edit software. 82 wild-type measels virus were obtained from 377 throat swabs and urine specimens from 2005 to 2007 in Guangdong Province measles lab. The measles isolation rate was 23.58% in 2005, 17.11% in 2006, 39.13% in 2007. The succeed rate of virus isolation is related to the quality of specimens collected and the days after rash occurrence. We have grasped the technicalability of measles virus isolation and confirm action, and got higher isolation ratio. The wild-type measles virus isolated from Guangdong Province is of H1 genotype from 2005 to 2007, which is the same as the dominant genotype circulation.
An investigation of virulence factors of Legionella pneumophila environmental isolates.
Arslan-Aydoğdu, Elif Özlem; Kimiran, Ayten
Nine Legionella pneumophila strains isolated from cooling towers and a standard strain (L. pneumophila serogroup 1, ATCC 33152, Philadelphia 1) were analyzed and compared in terms of motility, flagella structure, ability to form biofilms, enzymatic activities (hemolysin, nucleases, protease, phospholipase A, phospholipase C, acid phosphatase, alkaline phosphatase and lipase), hemagglutination capabilities, and pathogenicity in various host cells (Acanthamoeba castellanii ATCC 30234, mouse peritoneal macrophages and human peripheral monocytes). All the isolates of bacteria appeared to be motile and polar-flagellated and possessed the type-IV fimbria. Upon the evaluation of virulence factors, isolate 4 was found to be the most pathogenic strain, while 6 out of the 9 isolates (the isolates 1, 2, 3, 4, 5, and 7) were more virulent than the ATCC 33152 strain. The different bacterial strains exhibited differences in properties such as adhesion, penetration and reproduction in the hosts, and preferred host type. To our knowledge, this is the first study to compare the virulence of environmental L. pneumophila strains isolated in Turkey, and it provides important information relevant for understanding the epidemiology of L. pneumophila. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brachvogel, Bent; Pausch, Friederike; Farlie, Peter
2007-07-15
Pericytes are closely associated with endothelial cells, contribute to vascular stability and represent a potential source of mesenchymal progenitor cells. Using the specifically expressed annexin A5-LacZ fusion gene (Anxa5-LacZ), it became possible to isolate perivascular cells (PVC) from mouse tissues. These cells proliferate and can be cultured without undergoing senescence for multiple passages. PVC display phenotypic characteristics of pericytes, as they express pericyte-specific markers (NG2-proteoglycan, desmin, {alpha}SMA, PDGFR-{beta}). They also express stem cell marker Sca-1, whereas endothelial (PECAM), hematopoietic (CD45) or myeloid (F4/80, CD11b) lineage markers are not detectable. These characteristics are in common with the pericyte-like cell line 10T1/2.more » PVC also display a phagocytoic activity higher than 10T1/2 cells. During coculture with endothelial cells both cell types stimulate angiogenic processes indicated by an increased expression of PECAM in endothelial cells and specific deposition of basement membrane proteins. PVC show a significantly increased induction of endothelial specific PECAM expression compared to 10T1/2 cells. Accordingly, in vivo grafts of PVC aggregates onto chorioallantoic membranes of quail embryos recruit endothelial cells, get highly vascularized and deposit basement membrane components. These data demonstrate that isolated Anxa5-LacZ{sup +} PVC from mouse meninges retain their capacity for differentiation to pericyte-like cells and contribute to angiogenic processes.« less
Bier, Nadja; Bechlars, Silke; Diescher, Susanne; Klein, Florian; Hauk, Gerhard; Duty, Oliver; Strauch, Eckhard
2013-01-01
The genetic diversity of Vibrio vulnificus isolates from clinical and environmental sources originating from the Baltic Sea region was evaluated by multilocus sequence typing (MLST), and possible relationships between MLST clusters, potential genotypic and phenotypic traits associated with pathogenicity, and source of isolation were investigated. The studied traits included genotyping of polymorphic loci (16S rRNA, vcg, and pilF), presence/absence of potential virulence genes, including nanA, nab, and genes of pathogenicity regions, metabolic features, hemolytic activity, resistance to human serum, and cytotoxicity to human intestinal cells. MLST generated 35 (27 new) sequence types and divided the 53 isolates (including four reference strains) into two main clusters, with cluster I containing biotype 1 and 2 isolates of mainly environmental origin and cluster II containing biotype 1 isolates of mainly clinical origin. Cluster II isolates were further subdivided into two branches. Branch IIB included isolates from recent cases of wound infections that were acquired at the German Baltic Sea coastline between 2010 and 2011 and isolates from seawater samples of the same regions isolated between 1994 and 2010. Comparing the MLST data with the results of genotyping and phenotyping showed that strains of MLST cluster II possess a number of additional pathogenicity-associated traits compared to cluster I strains. Rapid microbiological methods such as matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry combined with typing of selected virulence-associated traits (e.g., serum resistance, mannitol fermentation, nanA, and pathogenicity region XII) could be used for risk assessment purposes regarding V. vulnificus strains isolated from the Baltic Sea region. PMID:23542621
[Chemistry and biosynthesis of prenylflavonoids].
Nomura, T
2001-07-01
Many isoprenylated flavonoids have been isolated from mulberry trees and related plants (Moraceae). Among them, kuwanons G (13) and H (14) were the first isolated active substances exhibiting a hypotensive effect from the Japanese Morus root bark. These compounds are considered to be formed through an enzymatic Diels-Alder reaction of a chalcone (15) and dehydro-kuwanon C (16) or its equivalent. Since that time, about forty kinds of Diels-Alder type adducts structurally similar to that of 13 have been isolated from the moraceous plants. Some strains of Morus alba as well as M. bombycis callus tissues have a high productivity of mulberry Diels-Alder type adducts, such as chalcomoracin (26) and kuwanon J (28). The biosynthesis of the mulberry Diels-Alder type adducts has been studied with the aid of the cell strain. Chalcomoracin (26) and kuwanon J (28) were proved to be enzymatic Diels-Alder type reaction products by the administration experiment with O-methylchalcone derivatives. Furthermore, for the isoprenoid biosynthesis of prenylflavonoids in Morus alba callus tissues, a novel way through the junction of glycolysis and pentose-phosphate cycle was proposed. The crude enzyme fraction catalyzing the Morus Diels-Alder type reaction could be isolated. Studies of phenolic constituents of licorice (Glycyrrhiza species) were carried out. On the course of the structure determination of the phenolic constituents of licorice, two new NMR structure determination methods for prenylflavonoids were found. Furthermore, the prenylphenols isolated from licorice were summarized according to the origin of the materials.
Nephrotoxicity testing in vitro--what we know and what we need to know.
Pfaller, W; Gstraunthaler, G
1998-01-01
The kidney is affected by many chemicals. Some of the chemicals may even contribute to end-stage renal disease and thus contribute considerably to health care costs. Because of the large functional reserve of the kidney, which masks signs of dysfunction, early diagnosis of renal disease is often difficult. Although numerous studies aimed at understanding the mechanisms underlying chemicals and drugs that target various renal cell types have delivered enough understanding for a reasonable risk assessment, there is still an urgent need to better understand the mechanisms leading to renal cell injury and organ dysfunction. The increasing use of in vitro techniques using isolated renal cells, nephron fragments, or cell cultures derived from specific renal cell types has improved our insight into the molecular mechanisms involved in nephrotoxicity. A short overview is given on the various in vitro systems currently used to clarify mechanistic aspects leading to sublethal or lethal injury of the functionally most important nephron epithelial cells derived from various species. Whereas freshly isolated cells and nephron fragments appear to represent a sufficient basis to study acute effects (hours) of nephrotoxins, e.g., on cell metabolism, primary cultures of these cells are more appropriate to study long-term effects. In contrast to isolated cells and fragments, however, primary cultures tend to first lose several of their in vivo metabolic properties during culture, and second to have only a limited life span (days to weeks). Moreover, establishing such primary cultures is a time-consuming and laborious procedure. For that reason many studies have been carried out on renal cell lines, which are easy to cultivate in large quantities and which have an unlimited life span. Unfortunately, none of the lines display a state of differentiation comparable to that of freshly isolated cells or their primary cultures. Most often they lack expression of key functions (e.g., gluconeogenesis or organic anion transport) of their in vivo correspondents. Therefore, the use of cell lines for assessment of nephrotoxic mechanisms will be limited to those functions the lines express. Upcoming molecular biology approaches such as the transduction of immortalizing genes into primary cultures and the utilization of cells from transgenic animals may in the near future result in the availability of highly differentiated renal cells with markedly extended life spans and near in vivo characteristics that may facilitate the use of renal cell culture for routine screening of nephrotoxins. Images Figure 1 Figure 2 PMID:9599703
Pugia, Michael; Magbanua, Mark Jesus M; Park, John W
2017-01-01
Isolation by size using a filter membrane offers an antigen-independent method for capturing rare cells present in blood of cancer patients. Multiple cell types, including circulating tumor cells (CTCs), captured on the filter membrane can be simultaneously identified via immunocytochemistry (ICC) analysis of specific cellular biomarkers. Here, we describe an automated microfluidic filtration method combined with a liquid handling system for sequential ICC assays to detect and enumerate non-hematologic rare cells in blood.
GM, Cooper; EL, Lensie; JJ, Cray; MR, Bykowski; GE, DeCesare; MA, Smalley; MP, Mooney; PG, Campbell; JE, Losee
2010-01-01
Background Reports have identified cells capable of osteogenic differentiation in bone marrow, muscle, and adipose tissues, but there are few direct comparisons of these different cell-types. Also, few have investigated the potential connection between a tissue-specific pathology and cells derived from seemingly unrelated tissues. Here, we compare cells isolated from wild-type rabbits or rabbits with nonsyndromic craniosynostosis, defined as the premature fusion of one or more of the cranial sutures. Methods Cells were derived from bone marrow, adipose, and muscle of 10 day-old wild-type rabbits (WT; n=17) or from age-matched rabbits with familial nonsyndromic craniosynostosis (CS; n=18). Cells were stimulated with bone morphogenetic protein 4 (BMP4) and alkaline phosphatase expression and cell proliferation were assessed. Results In WT rabbits, cells derived from muscle had more alkaline phosphatase activity than cells derived from either adipose or bone marrow. The cells derived from CS rabbit bone marrow and muscle were significantly more osteogenic than WT. Adipose-derived cells demonstrated no significant differences. While muscle-derived cells were most osteogenic in WT rabbits, bone marrow-derived cells were most osteogenic in CS rabbits. Conclusions Results suggest that cells from different tissues have different potentials for differentiation. Furthermore, cells derived from rabbits with craniosynostosis were different from wild-type derived cells. Interestingly, cells derived from the craniosynostotic rabbits were not uniformly more responsive compared with wild-type cells, suggesting that specific tissue-derived cells may react differently in individuals with craniosynostosis. PMID:20871482
Influence of E. coli endotoxin on ACTH induced adrenal cell steroidogenesis.
Garcia, R; Viloria, M D; Municio, A M
1985-03-01
The effect of endotoxin (lipopolysaccharide from E. coli) on isolated adrenocortical cells was examined. Lipopolysaccharide decreased the ACTH-induced steroidogenesis. This effect was shown by all corticotropin concentrations studied, and the longer the incubation time, the higher the effect produced. The rate of decrease of ACTH-induced steroidogenesis was dependent on the concentration of lipopolysaccharide in the medium. Binding of [125I]ACTH to adrenocortical cells was modified by lipopolysaccharide; this modification was related to a decrease of the ACTH-induced steroidogenesis. This effect supports the hypothesis of a direct interaction between lipopolysaccharide and the cell membrane with a concomitant distortion of the cell surface affecting the ACTH receptor sites of their environment. [14C]Lipopolysaccharide binds to isolated adrenocortical cells. Binding specificity was investigated by competitive experiments in the presence of various types of endotoxins, polypeptide hormones and proteins. Unlabelled lipopolysaccharide from the same bacterial strain and isolated under identical conditions than the labelled lipopolysaccharide exerted the strongest inhibitory activity. Unlabelled lipopolysaccharide of various strains different from that originating the labelled lipopolysaccharide exerted the less displacement. It would imply a certain kind of specificity but the decrease in the binding of lipopolysaccharide produced by ACTH and glucagon suggests the existence of non-specific interactions between lipopolysaccharide and cell membrane.
Hola, Veronika; Peroutkova, Tereza; Ruzicka, Filip
2012-07-01
More than 40% of nosocomial infections are those of the urinary tract, most of these occurring in catheterized patients. Bacterial colonization of the urinary tract and catheters results not only in infection, but also various complications, such as blockage of catheters with crystalline deposits of bacterial origin, generation of gravels and pyelonephritis. The diversity of the biofilm microbial community increases with duration of catheter emplacement. One of the most important pathogens in this regard is Proteus mirabilis. The aims of this study were to identify and assess particular virulence factors present in catheter-associated urinary tract infection (CAUTI) isolates, their correlation and linkages: three types of motility (swarming, swimming and twitching), the ability to swarm over urinary catheters, biofilm production in two types of media, urease production and adherence of bacterial cells to various types of urinary tract catheters. We examined 102 CAUTI isolates and 50 isolates taken from stool samples of healthy people. Among the microorganisms isolated from urinary catheters, significant differences were found in biofilm-forming ability and the swarming motility. In comparison with the control group, the microorganisms isolated from urinary catheters showed a wider spectrum of virulence factors. The virulence factors (twitching motility, swimming motility, swarming over various types of catheters and biofilm formation) were also more intensively expressed. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Lelliottia aquatilis sp. nov., isolated from drinking water.
Kämpfer, Peter; Glaeser, Stefanie P; Packroff, Gabriele; Behringer, Katja; Exner, Martin; Chakraborty, Trinad; Schmithausen, Ricarda M; Doijad, Swapnil
2018-06-22
Five beige-pigmented, oxidase-negative bacterial isolates, 6331-17 T , 6332-17, 6333-17, 6334-17 and 9827-07, isolated either from a drinking water storage reservoir or drinking water in 2006 and 2017 in Germany, were examined in detail applying by a polyphasic taxonomic approach. Cells of the isolates were rod-shaped and Gram-stain-negative. Comparison of the 16S rRNA gene sequences of these five isolates showed highest sequence similarities to Lelliottia amnigena (99.98 %) and Lelliottia nimipressuralis (99.99 %). Multilocus sequence analyses based on concatenated partial rpoB, gyrB, infB and atpD sequences confirmed the clustering of these isolates with Lelliottia species, but also revealed a clear distinction to the closest related type strains. Analysis of the genome sequences of these isolates indicated >70 % in silico DNA-DNA hybridization and high average nucleotide identities between strains. Nevertheless, they showed only <70 and <95 % similarity to the type strains of these two Lelliottia species. The fatty acid profiles of these isolates were very similar and consisted of the major fatty acids C16:0, C17 : 0cyclo, C15 : 0iso 2-OH/C16 : 1ω7c and C18 : 1ω7c. In addition, physiological/biochemical tests revealed high phenotypic similarity to each other. These cumulative data indicate that these isolates represent a novel Lelliottia species, for which the name Lelliottia aquatilis sp. nov. is proposed, with strain 6331-17 T (=CCM 8846 T =CIP 111609 T =LMG 30560 T ) as the type strain.
Oxidative stress plays a role in high glucose-induced activation of pancreatic stellate cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ryu, Gyeong Ryul; Lee, Esder; Chun, Hyun-Ji
Highlights: •High glucose increased production of reactive oxygen species in cultured pancreatic stellate cells. •High glucose facilitated the activation of these cells. •Antioxidant treatment attenuated high glucose-induced activation of these cells. -- Abstract: The activation of pancreatic stellate cells (PSCs) is thought to be a potential mechanism underlying islet fibrosis, which may contribute to progressive β-cell failure in type 2 diabetes. Recently, we demonstrated that antioxidants reduced islet fibrosis in an animal model of type 2 diabetes. However, there is no in vitro study demonstrating that high glucose itself can induce oxidative stress in PSCs. Thus, PSCs were isolated andmore » cultured from Sprague Dawley rats, and treated with high glucose for 72 h. High glucose increased the production of reactive oxygen species. When treated with high glucose, freshly isolated PSCs exhibited myofibroblastic transformation. During early culture (passage 1), PSCs treated with high glucose contained an increased number of α-smooth muscle actin-positive cells. During late culture (passages 2–5), PSCs treated with high glucose exhibited increases in cell proliferation, the expression of fibronectin and connective tissue growth factor, release of interleukin-6, transforming growth factor-β and collagen, and cell migration. Finally, the treatment of PSCs with high glucose and antioxidants attenuated these changes. In conclusion, we demonstrated that high glucose increased oxidative stress in primary rat PSCs, thereby facilitating the activation of these cells, while antioxidant treatment attenuated high glucose-induced PSC activation.« less
Characteristics of Mitochondrial Transformation into Human Cells
Kesner, E. E.; Saada-Reich, A.; Lorberboum-Galski, H.
2016-01-01
Mitochondria can be incorporated into mammalian cells by simple co-incubation of isolated mitochondria with cells, without the need of transfection reagents or any other type of intervention. This phenomenon was termed mitochondrial transformation, and although it was discovered in 1982, currently little is known regarding its mechanism(s). Here we demonstrate that mitochondria can be transformed into recipient cells very quickly, and co-localize with endogenous mitochondria. The isolated mitochondria interact directly with cells, which engulf the mitochondria with cellular extensions in a way, which may suggest the involvement of macropinocytosis or macropinocytosis-like mechanisms in mitochondrial transformation. Indeed, macropinocytosis inhibitors but not clathrin-mediated endocytosis inhibition-treatments, blocks mitochondria transformation. The integrity of the mitochondrial outer membrane and its proteins is essential for the transformation of the mitochondria into cells; cells can distinguish mitochondria from similar particles and transform only intact mitochondria. Mitochondrial transformation is blocked in the presence of the heparan sulfate molecules pentosan polysulfate and heparin, which indicate crucial involvement of cellular heparan sulfate proteoglycans in the mitochondrial transformation process. PMID:27184109
Kang, Chang-Won; Kim, Nan-Hee; Jung, Huyn Ah; Choi, Hyung-Wook; Kang, Min-Jae; Choi, Jae-Sue; Kim, Gun-Do
2016-04-01
This study is the first report of the antitumor activities of desmethylanhydroicaritin (DMAI) isolated from Sophora flavescens on U87MG cells. Human glioblastoma is one of the most aggressive malignant type of brain tumors and highly diffuses to around normal brain tissues. DMAI showed anti-proliferation effects on U87MG cells at the concentration of 30μM, however did not affect to HEK-293 cells. DMAI induced anti-proliferation effects via ERK/MAPK, PI3K/Akt/mTOR signal pathway and G2/M phase cell cycle arrest. DMAI led to morphological change and inhibition of filapodia formation through regulation of Rac 1 and Cdc 42. In addition, migration and invasion of U87MG cells were inhibited by DMAI via down-regulation of matrix metalloproteinase (MMP) -2 and MMP -9 expressions and activities. Our results suggest that DMAI has a potential as a therapeutic agent against glioblastoma cells. Copyright © 2016 Elsevier B.V. All rights reserved.
Induction of Skin-Derived Precursor Cells from Human Induced Pluripotent Stem Cells.
Sugiyama-Nakagiri, Yoriko; Fujimura, Tsutomu; Moriwaki, Shigeru
2016-01-01
The generation of full thickness human skin from dissociated cells is an attractive approach not only for treating skin diseases, but also for treating many systemic disorders. However, it is currently not possible to obtain an unlimited number of skin dermal cells. The goal of this study was to develop a procedure to produce skin dermal stem cells from induced pluripotent stem cells (iPSCs). Skin-derived precursor cells (SKPs) were isolated as adult dermal precursors that could differentiate into both neural and mesodermal progenies and could reconstitute the dermis. Thus, we attempted to generate SKPs from iPSCs that could reconstitute the skin dermis. Human iPSCs were initially cultured with recombinant noggin and SB431542, an inhibitor of activin/nodal and TGFβ signaling, to induce neural crest progenitor cells. Those cells were then treated with SKP medium that included CHIR99021, a WNT signal activator. The induction efficacy from neural crest progenitor cells to SKPs was more than 97%. No other modifiers tested were able to induce those cells. Those human iPSC-derived SKPs (hiPSC-SKPs) showed a similar gene expression signature to SKPs isolated from human skin dermis. Human iPSC-SKPs differentiated into neural and mesodermal progenies, including adipocytes, skeletogenic cell types and Schwann cells. Moreover, they could be induced to follicular type keratinization when co-cultured with human epidermal keratinocytes. We here provide a new efficient protocol to create human skin dermal stem cells from hiPSCs that could contribute to the treatment of various skin disorders.
Phan, Minh Giang; Phan, Tong Son; Matsunami, Katsuyoshi; Otsuka, Hideaki
2006-04-01
From the aerial parts of Scoparia dulcis L. (Scrophulariaceae) grown in Vietnam, four scopadulane-type diterpenoids (4-7), of which 7 is new and was given the trivial name scopadulcic acid C, together with nine known compounds were isolated. Their structures were elucidated by spectroscopic analyses. The absolute configurations of 4-7 were ascertained by applying the modified Mosher's method to iso-dulcinol (6). The isolation of the lignans nirtetralin and niranthin for the first time from S. dulcis is also of chemotaxonomic interest. The cytotoxic activity in KB cells, inhibitory effect on LPS/IFNgamma-induced NO production, inhibition of multidrug resistance (MDR), and antibacterial and antifungal activities of the scopadulane-type diterpenoids 4-7 were examined in this study.
Wang, Kaicheng; Lu, Chengping
2007-01-01
A total of 36 streptococcal strains, including seven S. equi ssp.zooepidemicus, two S. suis type 1 (SS1), 24 SS2, two SS9, and one SS7, were tested for glyceraldehyde-3-phosphate dehydrogenase gene (gapdh). Except from non-virulent SS2 strain T1 5, all strains harboured gapdh. The gapdh of Chinese Sichuan SS2 isolate ZY05719 and Jiangsu SS2 isolate HA9801 were sequenced and then compared with published sequences in the GenBank. The comparison revealed a 99.9 % and 99.8 % similarity of ZY05719 and HA9801, respectively, with the published sequence. Adherence assay data demonstrated a significant ((p<0.05)) reduction in adhesion of SS2 in HEp-2 cells pre-incubated with purified GAPDH compared to non pre-incubated controls, suggesting the GAPDH mediates SS2 bacterial adhesion to host cells.
Sorjamaa, Anna; Kangasniemi, Marika; Sutinen, Meeri; Salo, Tuula; Liakka, Annikki; Lehenkari, Petri; Tapanainen, Juha S.; Vuolteenaho, Olli; Chen, Joseph C.; Lehtonen, Siri; Piltonen, Terhi T.
2017-01-01
Objective Intrinsic inflammatory characteristics play a pivotal role in stem cell recruitment and homing through migration where the subsequent change in niche has been shown to alter these characteristics. The bone marrow mesenchymal stem cells (bmMSCs) have been demonstrated to migrate to the endometrium contributing to the stem cell reservoir and regeneration of endometrial tissue. Thus, the aim of the present study was to compare the inflammation-driven migration and cytokine secretion profile of human bmMSCs to endometrial mesenchymal stem cells (eMSCs) and endometrial fibroblasts (eSFs). Materials and methods The bmMSCs were isolated from bone marrow aspirates through culturing, whereas eMSCs and eSFs were FACS-isolated. All cell types were tested for their surface marker, proliferation profiles and migration properties towards serum and inflammatory attractants. The cytokine/chemokine secretion profile of 35 targets was analysed in each cell type at basal level along with lipopolysaccharide (LPS)-induced state. Results Both stem cell types, bmMSCs and eMSCs, presented with similar stem cell surface marker profiles as well as possessed high proliferation and migration potential compared to eSFs. In multiplex assays, the secretion of 16 cytokine targets was detected and LPS stimulation expanded the cytokine secretion pattern by triggering the secretion of several targets. The bmMSCs exhibited higher cytokine secretion of vascular endothelial growth factor (VEGF)-A, stromal cell-derived factor-1 alpha (SDF)-1α, interleukin-1 receptor antagonist (IL-1RA), IL-6, interferon-gamma inducible protein (IP)-10, monocyte chemoattractant protein (MCP)-1, macrophage inflammatory protein (MIP)1α and RANTES compared to eMSCs and/or eSFs after stimulation with LPS. The basal IL-8 secretion was higher in both endometrial cell types compared to bmMSCs. Conclusion Our results highlight that similar to bmMSCs, the eMSCs possess high migration activity while the differentiation process towards stromal fibroblasts seemed to result in loss of stem cell surface markers, minimal migration activity and a subtler cytokine profile likely contributing to normal endometrial function. PMID:28419140
Menstrual Blood as a Potential Source of Endometrial Derived CD3+ T Cells
Sabbaj, Steffanie; Hel, Zdenek; Richter, Holly E.; Mestecky, Jiri; Goepfert, Paul A.
2011-01-01
Studies of T cell-mediated immunity in the human female genital tract have been problematic due to difficulties associated with the collection of mucosal samples. Consequently, most studies rely on biopsies from the lower female genital tract or remnant tissue from hysterectomies. Availability of samples from healthy women is limited, as most studies are carried out in women with underlying pathologies. Menstruation is the cyclical sloughing off of endometrial tissue, and thus it should be a source of endometrial cells without the need for a biopsy. We isolated and phenotyped T cells from menstrual and peripheral blood and from endometrial biopsy-derived tissue from healthy women to determine the types of T cells present in this compartment. Our data demonstrated that T cells isolated from menstrual blood are a heterogeneous population of cells with markers reminiscent of blood and mucosal cells as well as unique phenotypes not represented in either compartment. T cells isolated from menstrual blood expressed increased levels of HLA-DR, αEβ7 and CXCR4 and reduced levels of CD62L relative to peripheral blood. Menstrual blood CD4+ T cells were enriched for cells expressing both CCR7 and CD45RA, markers identifying naïve T cells and were functional as determined by antigen-specific intracellular cytokine production assays. These data may open new avenues of investigation for cell mediated immune studies involving the female reproductive tract without the need for biopsies. PMID:22174921
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jakubowski, Piotr; Calvete, Juan J.; Eble, Johannes A.
Snake venom antagonists of α2β1 integrin have been identified as members of a C-lectin type family of proteins (CLP). In the present study, we characterized three new CLPs isolated from Echis sochureki venom, which interact with this integrin. These proteins were purified using a combination of gel filtration, ion exchange chromatography and reverse phase HPLC. Sochicetin-A and sochicetin-B potently inhibited adhesion of cells expressing α2β1 integrin and binding of isolated α2β1 ectodomain to collagen I, as well as bound to recombinant GST-α2A domain in ELISA, whereas activity of sochicetin-C in these assays was approximately two orders of magnitude lower. Structurally,more » sochicetin-B and sochicetin-C are typical heterodimeric αβ CLPs, whereas sochicetin-A exhibits a trimer of its subunits (αβ){sub 3} in the quaternary structure. Immobilized sochicetins supported adhesion of glioma cell lines, LN18 and LBC3, whereas in a soluble form they partially inhibited adhesion of these cells to collagen I. Glioma cells spread very poorly on sochicetin-A, showing no cytoskeleton rearrangement typical for adhesion to collagen I or fibronectin. Adhesion on CLP does not involve focal adhesion elements, such as vinculin. Sochicetin-A also inhibited collagen-induced platelet aggregation, similar to other CLPs' action on the blood coagulation system. - Highlights: • Isolation of three novel snake venom CLPs inhibiting α2β1 integrin • Reporting hexameric CLP, sochicetin-A with anti-collagen receptor activity • CLPs antagonize the interaction of glioma cells with collagen matrix. • Sochicetin-A does not support glioma cell spreading.« less
Role of HIV-2 envelope in Lv2-mediated restriction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reuter, Sandra; Kaumanns, Patrick; Buschhorn, Sabine B.
2005-02-05
We have characterized envelope protein pseudotyped HIV-2 particles derived from two HIV-2 isolates termed prCBL23 and CBL23 in order to define the role of the envelope protein for the Lv2-mediated restriction to infection. Previously, it has been described that the primary isolate prCBL23 is restricted to infection of several human cell types, whereas the T cell line adapted isolate CBL23 is not restricted in these cell types. Molecular cloning of the two isolates revealed that the env and the gag gene are responsible for the observed phenotype and that this restriction is mediated by Lv2, which is distinct from Ref1/Lv1more » (Schmitz, C., Marchant, D., Neil, S.J., Aubin, K., Reuter, S., Dittmar, M.T., McKnight, A., Kizhatil, K., Albritton, L.M., 2004. Lv2, a novel postentry restriction, is mediated by both capsid and envelope. J. Virol. 78 (4), 2006-2016). We generated pseudotyped viruses consisting of HIV-2 (ROD-A{delta}env-GFP, ROD-A{delta}env-RFP, or ROD-A{delta}env-REN) and the prCBL23 or CBL23 envelope proteins as well as chimeric proteins between these envelopes. We demonstrate that a single amino acid exchange at position 74 in the surface unit of CBL23-Env confers restriction to infection. This single point mutation causes tighter CD4 binding, resulting in a less efficient fusion into the cytosol of the restricted cell line. Prevention of endosome formation and prevention of endosome acidification enhance infectivity of the restricted particles for GHOST/X4 cells indicating a degradative lysosomal pathway as a cause for the reduced cytosolic entry. The described restriction to infection of the primary isolate prCBL23 is therefore largely caused by an entry defect. A remaining restriction to infection (19-fold) is preserved when endosomal acidification is prevented. This restriction to infection is also dependent on the presence of the point mutation at position 74 (G74E)« less
PNA lectin for purifying mouse acinar cells from the inflamed pancreas.
Xiao, Xiangwei; Fischbach, Shane; Fusco, Joseph; Zimmerman, Ray; Song, Zewen; Nebres, Philip; Ricks, David Matthew; Prasadan, Krishna; Shiota, Chiyo; Husain, Sohail Z; Gittes, George K
2016-02-17
Better methods for purifying human or mouse acinar cells without the need for genetic modification are needed. Such techniques would be advantageous for the specific study of certain mechanisms, such as acinar-to-beta-cell reprogramming and pancreatitis. Ulex Europaeus Agglutinin I (UEA-I) lectin has been used to label and isolate acinar cells from the pancreas. However, the purity of the UEA-I-positive cell fraction has not been fully evaluated. Here, we screened 20 widely used lectins for their binding specificity for major pancreatic cell types, and found that UEA-I and Peanut agglutinin (PNA) have a specific affinity for acinar cells in the mouse pancreas, with minimal affinity for other major pancreatic cell types including endocrine cells, duct cells and endothelial cells. Moreover, PNA-purified acinar cells were less contaminated with mesenchymal and inflammatory cells, compared to UEA-I purified acinar cells. Thus, UEA-I and PNA appear to be excellent lectins for pancreatic acinar cell purification. PNA may be a better choice in situations where mesenchymal cells or inflammatory cells are significantly increased in the pancreas, such as type 1 diabetes, pancreatitis and pancreatic cancer.
PNA lectin for purifying mouse acinar cells from the inflamed pancreas
Xiao, Xiangwei; Fischbach, Shane; Fusco, Joseph; Zimmerman, Ray; Song, Zewen; Nebres, Philip; Ricks, David Matthew; Prasadan, Krishna; Shiota, Chiyo; Husain, Sohail Z.; Gittes, George K.
2016-01-01
Better methods for purifying human or mouse acinar cells without the need for genetic modification are needed. Such techniques would be advantageous for the specific study of certain mechanisms, such as acinar-to-beta-cell reprogramming and pancreatitis. Ulex Europaeus Agglutinin I (UEA-I) lectin has been used to label and isolate acinar cells from the pancreas. However, the purity of the UEA-I-positive cell fraction has not been fully evaluated. Here, we screened 20 widely used lectins for their binding specificity for major pancreatic cell types, and found that UEA-I and Peanut agglutinin (PNA) have a specific affinity for acinar cells in the mouse pancreas, with minimal affinity for other major pancreatic cell types including endocrine cells, duct cells and endothelial cells. Moreover, PNA-purified acinar cells were less contaminated with mesenchymal and inflammatory cells, compared to UEA-I purified acinar cells. Thus, UEA-I and PNA appear to be excellent lectins for pancreatic acinar cell purification. PNA may be a better choice in situations where mesenchymal cells or inflammatory cells are significantly increased in the pancreas, such as type 1 diabetes, pancreatitis and pancreatic cancer. PMID:26884345
Mesenchymal Stem Cell Levels of Human Spinal Tissues.
Harris, Liam; Vangsness, C Thomas
2018-05-01
Systematic review. The aim of this study was to investigate, quantify, compare, and compile the various mesenchymal stem cell (MSC) tissue sources within human spinal tissues to act as a compendium for clinical and research application. Recent years have seen a dramatic increase in academic and clinical understanding of human MSCs. Previously limited to cells isolated from bone marrow, the past decade has illicited the characterization and isolation of human MSCs from adipose, bone marrow, synovium, muscle, periosteum, peripheral blood, umbilical cord, placenta, and numerous other tissues. As researchers explore practical applications of cells in these tissues, the absolute levels of MSCs in specific spinal tissue will be critical to guide future research. The PubMED, MEDLINE, EMBASE, and Cochrane databases were searched for articles relating to the harvest, characterization, isolation, and quantification of human MSCs from spinal tissues. Selected articles were examined for relevant data, categorized according to type of spinal tissue, and when possible, standardized to facilitate comparisons between sites. Human MSC levels varied widely between spinal tissues. Yields for intervertebral disc demonstrated roughly 5% of viable cells to be positive for MSC surface markers. Cartilage endplate cells yielded 18,500 to 61,875 cells/0.8 mm thick sample of cartilage end plate. Ligamentum flavum yielded 250,000 to 500,000 cells/g of tissue. Annulus fibrosus fluorescence activated cell sorting treatment found 29% of cells positive for MSC marker Stro-1. Nucleus pulposus yielded mean tissue samples of 40,584 to 234,137 MSCs per gram of tissue. Numerous tissues within and surrounding the spine represent a consistent and reliable source for the harvest and isolation of human MSCs. Among the tissues of the spine, the annulus fibrosus and ligamentum flavum each offer considerable levels of MSCs, and may prove comparable to that of bone marrow. 5.
Selective isolation and noninvasive analysis of circulating cancer stem cells through Raman imaging.
Cho, Hyeon-Yeol; Hossain, Md Khaled; Lee, Jin-Ho; Han, Jiyou; Lee, Hun Joo; Kim, Kyeong-Jun; Kim, Jong-Hoon; Lee, Ki-Bum; Choi, Jeong-Woo
2018-04-15
Circulating cancer stem cells (CCSCs), a rare circulating tumor cell (CTC) type, recently arose as a useful resource for monitoring and characterizing both cancers and their metastatic derivatives. However, due to the scarcity of CCSCs among hematologic cells in the blood and the complexity of the phenotype confirmation process, CCSC research can be extremely challenging. Hence, we report a nanoparticle-mediated Raman imaging method for CCSC characterization which profiles CCSCs based on their surface marker expression phenotypes. We have developed an integrated combinatorial Raman-Active Nanoprobe (RAN) system combined with a microfluidic chip to successfully process complete blood samples. CCSCs and CTCs were detected (90% efficiency) and classified in accordance with their respective surface marker expression via completely distinct Raman signals of RANs. Selectively isolated CCSCs (93% accuracy) were employed for both in vitro and in vivo tumor phenotyping to identify the tumorigenicity of the CCSCs. We utilized our new method to predict metastasis by screening blood samples from xenograft models, showing that upon CCSC detection, all subjects exhibited liver metastasis. Having highly efficient detection and noninvasive isolation capabilities, we have demonstrated that our RAN-based Raman imaging method will be valuable for predicting cancer metastasis and relapse via CCSC detection. Moreover, the exclusion of peak overlapping in CCSC analysis with our Raman imaging method will allow to expand the RAN families for various cancer types, therefore, increasing therapeutic efficacy by providing detailed molecular features of tumor subtypes. Copyright © 2017 Elsevier B.V. All rights reserved.
Huber, R; Dyba, D; Huber, H; Burggraf, S; Rachel, R
1998-01-01
Recently, a new procedure was developed which allowed for the first time the isolation of a hyperthermophilic archaeum tracked by 165 rRNA analysis from a terrestrial hot solfataric spring ('Obsidian Pool', Yellowstone National Park, WY, USA). This novel isolate is characterized here. Cells are round cocci with a diameter of 0.2-0.8 micron, occurring singly, in pairs, short chains and in grape-like aggregates. The aggregates exhibit a weak bluish-green fluorescence under UV radiation at 420 nm. The new isolate is an anaerobic obligate heterotroph, using preferentially yeast extract for growth. The metabolic products include CO2, H2, acetate and isovalerate. Growth is observed between 65 and 90 degrees C (optimum: 85 degrees C), from pH 5.0 to 7.0 (optimum: 6.5) and up to 0.7% NaCl. The apparent activation energy for growth is about 149 kJ mol-1. Elemental sulfur or hydrogen inhibits growth. The core lipids consist mainly of acyclic and cyclic glycerol diphytanyl tetraethers. The cell envelope contains a cytoplasmic membrane covered by an amorphous layer of unknown composition; there is no evidence for a regularly arrayed surface-layer protein. The G + C content is 46 mol%. On the basis of 165 rRNA sequence comparisons in combination with morphological, physiological and biochemical properties, the isolate represents a new genus within the Desulfurococcaceae, which has been named Thermosphaera. The type species is Thermosphaera aggregans, the type strain is isolate M11TLT (= DSM 11486T).
Rashnonejad, Afrooz; Ercan, Gulinnaz; Gunduz, Cumhur; Akdemir, Ali; Tiftikcioglu, Yigit Ozer
2018-06-01
The differentiation potential of umbilical cord blood-derived mesenchymal stem cells (UCB-MSCs) into brown and white adipocytes in comparison to Adipose tissue derived MSCs (AD-MSCs) were investigated in order to characterize their potency for future cell therapies. MSCs were isolated from ten UCB samples and six liposuction materials. MSCs were differentiated into white and brown adipocytes after characterization by flow cytometry. Differentiated adipocytes were stained with Oil Red O and hematoxylin/eosin. The UCP1 protein levels in brown adipocytes were investigated by immunofluoresence and western blot analysis. Cells that expressed mesenchymal stem cells markers (CD34-, CD45-, CD90+ and CD105+) were successfully isolated from UCB and adipose tissue. Oil Red O staining demonstrated that white and brown adipocytes obtained from AD-MSCs showed 85 and 61% of red pixels, while it was 3 and 1.9%, respectively for white and brown adipocytes obtained from UCB-MSCs. Fluorescence microscopy analysis showed strong uncoupling protein 1 (UCP1) signaling in brown adipocytes, especially which were obtained from AD-MSCs. Quantification of UCP1 protein amount showed 4- and 10.64-fold increase in UCP1 contents of brown adipocytes derived from UCB-MSCs and AD-MSCs, respectively in comparison to undifferentiated MSCs (P < 0.004). UCB-MSCs showed only a little differentiation tendency into adipocytes means it is not an appropriate stem cell type to be differentiated into these cell types. In contrast, high differentiation efficiency of AD-MSCs into brown and white adipocytes make it appropriate stem cell type to use in future regenerative medicine of soft tissue disorders or fighting with obesity and its related disorders.
Wang, Xiao-Yang; Gao, Hui; Xie, Xiao-Jie; Jurhiin, Jirimubatu; Zhang, Mu-Zi-He; Zhou, Yan-Ping; Liu, Rui; Ning, Meng; Han, Jin; Tang, Hai-Feng
2018-02-23
Five previously undescribed triterpenoid saponins ( 1 - 5 ), along with eight known ones ( 6 - 13 ), were isolated from the whole plants of Anemone rivularis var. flore-minore . Their structures were clarified by extensive spectroscopic data and chemical evidence. For the first time, the lupane-type saponins ( 3 and 12 ) were reported from the Anemone genus. The anti-proliferative activity of all isolated saponins was evaluated on hepatic stellate cells (HSC-T6). Saponins 12 and 13 , which possess more monosaccharides than the others, displayed potent anti-proliferative activity, with IC 50 values of 18.21 and 15.56 μM, respectively.
Some failure modes and analysis techniques for terrestrial solar cell modules
NASA Technical Reports Server (NTRS)
Shumka, A.; Stern, K. H.
1978-01-01
Analysis data are presented on failed/defective silicon solar cell modules of various types and produced by different manufacturers. The failure mode (e.g., internal short and open circuits, output power degradation, isolation resistance degradation, etc.) are discussed in detail and in many cases related to the type of technology used in the manufacture of the modules; wherever applicable, appropriate corrective actions are recommended. Consideration is also given to some failure analysis techniques that are applicable to such modules, including X-ray radiography, capacitance measurement, cell shunt resistance measurement by the shadowing technique, steady-state illumination test station for module performance illumination, laser scanning techniques, and the SEM.
Dubey, Jitender P; Verma, Shiv Kumar; Villena, Isabelle; Aubert, Dominique; Geers, Régine; Su, Chunlei; Lee, Elise; Forde, Martin S; Krecek, Rosina C
2016-04-01
Little is currently known of clinical toxoplasmosis in humans and animals in the Caribbean. We investigated the prevalence of IgG and IgM antibodies in 437 pregnant women from 10 English speaking Caribbean countries. Overall, antibodies (IgG) to Toxoplasma gondii (modified agglutination test, MAT, cut-off 1:6) were found in 174 (39.8 %) of 437 human sera; specifically 12 of 38 from Antigua-Barbuda, 26 of 52 from Belize, 9 of 50 from Bermuda, 29 of 49 from Dominica, 18 of 49 from Grenada, 16 of 47 from Jamaica, 5 of 15 from Montserrat, 8 of 44 from St. Kitts/Nevis, 24 of 45 from St. Lucia, and 27 of 50 from St. Vincent/Grenadines were seropositive. All IgG-positive sera were tested for IgM antibodies using the immunocapture method; all sera were negative for IgM antibodies. Additionally, tissues and sera of 45 dogs from St. Kitts were examined for T. gondii infection. Antibodies (IgG, MAT, 1:≥25) were found in 19 (42.2 %) of 45 dogs. Muscle samples (tongue, leg) of 19 seropositive dogs were digested in pepsin, and homogenates were bioassayed in mice. Viable T. gondii were isolated from 6 dogs. T. gondii isolates were further propagated in cell culture. PCR-RFLP genotyping of cell culture derived tachyzoites using 10 genetic markers, SAG1, SAG2 (5' and 3' SAG2, and alt.SAG2) SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico revealed that 4 isolates were ToxoDB PCR-RFLP genotype #2, and 2 were new genotypes #264 and #265. Review of 22 viable T. gondii isolates from chickens, dogs, and cats from Grenada and St. Kitts revealed that 1 isolate was type II, 13 were type III, and 8 were atypical. Thus, type III strains were predominant. Overall, the study revealed high prevalence of T. gondii in the Caribbean islands.
A study on biological activity of marine fungi from different habitats in coastal regions.
Zhou, Songlin; Wang, Min; Feng, Qi; Lin, Yingying; Zhao, Huange
2016-01-01
In recent years, marine fungi have become an important source of active marine natural products. Former researches are limited in habitats selection of fungi with bioactive compounds. In this paper were to measure antibacterial and antitumor cell activity for secondary metabolites of marine fungi, which were isolated from different habitats in coastal regions. 195 strains of marine fungi were isolated and purified from three different habitats. They biologically active experiment results showed that fungi isolation from the mangrove habitats had stronger antibacterial activity than others, and the stains isolated from the estuarial habitats had the least antibacterial activity. However, the strains separated from beach habitats strongly inhibited tumor cell proliferation in vitro, and fungi of mangrove forest habitats had the weakest activity of inhibiting tumor. Meanwhile, 195 fungal strains belonged to 46 families, 84 genera, 142 species and also showed 137 different types of activity combinations by analyzing the inhibitory activity of the metabolites fungi for 4 strains of pathogenic bacteria and B-16 cells. The study investigated the biological activity of marine fungi isolated from different habitats in Haikou coastal regions. The results help us to understand bioactive metabolites of marine fungi from different habitats, and how to selected biological activity fungi from various marine habitats effectively.
Current methods for the isolation of extracellular vesicles.
Momen-Heravi, Fatemeh; Balaj, Leonora; Alian, Sara; Mantel, Pierre-Yves; Halleck, Allison E; Trachtenberg, Alexander J; Soria, Cesar E; Oquin, Shanice; Bonebreak, Christina M; Saracoglu, Elif; Skog, Johan; Kuo, Winston Patrick
2013-10-01
Extracellular vesicles (EVs), including microvesicles and exosomes, are nano- to micron-sized vesicles, which may deliver bioactive cargos that include lipids, growth factors and their receptors, proteases, signaling molecules, as well as mRNA and non-coding RNA, released from the cell of origin, to target cells. EVs are released by all cell types and likely induced by mechanisms involved in oncogenic transformation, environmental stimulation, cellular activation, oxidative stress, or death. Ongoing studies investigate the molecular mechanisms and mediators of EVs-based intercellular communication at physiological and oncogenic conditions with the hope of using this information as a possible source for explaining physiological processes in addition to using them as therapeutic targets and disease biomarkers in a variety of diseases. A major limitation in this evolving discipline is the hardship and the lack of standardization for already challenging techniques to isolate EVs. Technical advances have been accomplished in the field of isolation with improving knowledge and emerging novel technologies, including ultracentrifugation, microfluidics, magnetic beads and filtration-based isolation methods. In this review, we will discuss the latest advances in methods of isolation methods and production of clinical grade EVs as well as their advantages and disadvantages, and the justification for their support and the challenges that they encounter.
Totipotency, Pluripotency and Nuclear Reprogramming
NASA Astrophysics Data System (ADS)
Mitalipov, Shoukhrat; Wolf, Don
Mammalian development commences with the totipotent zygote which is capable of developing into all the specialized cells that make up the adult animal. As development unfolds, cells of the early embryo proliferate and differentiate into the first two lineages, the pluripotent inner cell mass and the trophectoderm. Pluripotent cells can be isolated, adapted and propagated indefinitely in vitro in an undifferentiated state as embryonic stem cells (ESCs). ESCs retain their ability to differentiate into cells representing the three major germ layers: endoderm, mesoderm or ectoderm or any of the 200+ cell types present in the adult body. Since many human diseases result from defects in a single cell type, pluripotent human ESCs represent an unlimited source of any cell or tissue type for replacement therapy thus providing a possible cure for many devastating conditions. Pluripotent cells resembling ESCs can also be derived experimentally by the nuclear reprogramming of somatic cells. Reprogrammed somatic cells may have an even more important role in cell replacement therapies since the patient's own somatic cells can be used for reprogramming thereby eliminating immune based rejection of transplanted cells. In this review, we summarize two major approaches to reprogramming: (1) somatic cell nuclear transfer and (2) direct reprogramming using genetic manipulations.
Fakri, F; Elarkam, A; Daouam, S; Tadlaoui, K; Fassi-Fihri, O; Richardson, C D; Elharrak, M
2016-02-01
Peste des Petits Ruminants virus (PPRV) is a member of the Morbillivirus subgroup of the family Paramyxoviridae, and is one of the most contagious diseases of small ruminants throughout Africa and the rest of the world. Different cell lines have previously been used to isolate PPRV but with limited success. Thus, to improve the isolation of Morbilliviruses, human, canine, and goat homologues of the lymphocyte receptor signaling lymphocyte activation molecule (SLAM) have been introduced into cells that can support virus replication. However, the amino acid sequence of SLAM varies between species, and often requires adaptation of a particular virus to different versions of the receptor. The protein sequence of Nectin-4 is highly conserved between different mammals, which eliminate the need for receptor adaptation by the virus. Cell lines expressing Nectin-4 have previously been used to propagate measles and canine distemper viruses. In this study, we compared infections in Vero cells expressing canine SLAM (VeroDogSLAM) to those in Vero cells expressing Nectin-4 (VeroNectin-4), following inoculations with wild-type strains of PPRV. Virus isolation using VeroNectin-4 cells was successful with 23% of swabbed samples obtained from live infected animals, and was 89% effective using post-mortem tissues of infected sheep. By contrast, only 4.5% efficiency was observed from swab samples and 67% efficiency was obtained in virus isolation from post-mortem tissues using VeroDogSLAM cells. The average incubation period for virus recovery from post-mortem tissues was 3.4 days using VeroNectin-4 cells, compared with 5.5 days when using VeroDogSLAM cells. The virus titers of PPRV obtained from VeroNectin-4 cells were also higher than those derived from VeroDogSLAM cells. A comparison of the growth kinetics for PPRV in the two cell lines confirmed the superiority of VeroNectin-4 cells for PPR diagnostic purposes and vaccine virus titration. Copyright © 2015 Elsevier B.V. All rights reserved.
Streptococcus mutans in a Wild, Sucrose-Eating Rat Population
Coykendall, Alan L.; Specht, Patricia A.; Samol, Harry H.
1974-01-01
Streptococcus mutans, an organism implicated in dental caries and not previously found outside of man and certain laboratory animals, was isolated from the mouths of wild rats which ate sugar cane. The strains isolated fermented mannitol and sorbitol, and failed to grow in 6.5% NaCl or at 45 C. They formed in vitro plaques on nichrome wires when grown in sucrose broth. They also stored intracellular polysaccharide which could be catabolized by washed, resting cells. Deoxyribonucleic acid-deoxyribonucleic acid reassociations revealed two genetic types. One type shared extensive deoxyribonucleic acid base sequences with S. mutans strains HS6 and OMZ61, two members of a genetic type found in man and laboratory hamsters. The other type seemed unrelated to any S. mutans genetic type previously encountered. It is concluded that the ecological triad of tooth-sucrose-S. mutans is not a phenomenon unique to man and experimental animals. Images PMID:4601769
Oliveira, Mariana N L; Hemerly, Jefferson P; Bastos, André U; Tamanaha, Rosana; Latini, Flavia R M; Camacho, Cléber P; Impellizzeri, Anelise; Maciel, Rui M B; Cerutti, Janete M
2011-09-01
We have previously described a p.G533C substitution in the rearranged during transfection (RET) oncogene in a large family with medullary thyroid carcinoma. Here, we explore the functional transforming potential of RET p.G533C mutation. Plasmids expressing RET mutants (p.G533C and p.C634Y) and RET wild type were stable transfected into a rat thyroid cell line (PCCL3). Biological and biochemical effects of RET p.G533C were investigated both in vitro and in vivo. Moreover, we report the first case of pheochromocytoma among the RET p.G533C-carriers in this Brazilian family and explore the RET mutational status in DNA isolated from pheochromocytoma. Ectopic expression of RET p.G533C and p.C634Y activates RET/MAPK/ERK pathway at similar levels and significantly increased cell proliferation, compared with RET wild type. We additionally show that p.G533C increased cell viability, anchorage-independent growth, and micronuclei formation while reducing apoptosis, hallmarks of the malignant phenotype. RET p.G533C down-regulates the expression of thyroid specific genes in PCCL3. Moreover, RET p.G533C-expressing cells were able to induce liver metastasis in nude mice. Finally, we described two novel RET variants (G548V and S556T) in the DNA isolated from pheochromocytoma while they were absent in the DNA isolated from blood. Our in vitro and in vivo analysis indicates that this mutation confers a malignant phenotype to PCCL3 cells. These findings, in association with the report of first case of pheochromocytoma in the Brazilian kindred, suggest that this noncysteine mutation may be more aggressive than was initially considered.
Extracellular vesicles from human liver stem cells restore argininosuccinate synthase deficiency.
Herrera Sanchez, Maria Beatriz; Previdi, Sara; Bruno, Stefania; Fonsato, Valentina; Deregibus, Maria Chiara; Kholia, Sharad; Petrillo, Sara; Tolosano, Emanuela; Critelli, Rossana; Spada, Marco; Romagnoli, Renato; Salizzoni, Mauro; Tetta, Ciro; Camussi, Giovanni
2017-07-27
Argininosuccinate synthase (ASS)1 is a urea cycle enzyme that catalyzes the conversion of citrulline and aspartate to argininosuccinate. Mutations in the ASS1 gene cause citrullinemia type I, a rare autosomal recessive disorder characterized by neonatal hyperammonemia, elevated citrulline levels, and early neonatal death. Treatment for this disease is currently restricted to liver transplantation; however, due to limited organ availability, substitute therapies are required. Recently, extracellular vesicles (EVs) have been reported to act as intercellular transporters carrying genetic information responsible for cell reprogramming. In previous studies, we isolated a population of stem cell-like cells known as human liver stem cells (HLSCs) from healthy liver tissue. Moreover, EVs derived from HLSCs were reported to exhibit regenerative effects on the liver parenchyma in models of acute liver injury. The aim of this study was to evaluate whether EVs derived from normal HLSCs restored ASS1 enzymatic activity and urea production in hepatocytes differentiated from HLSCs derived from a patient with type I citrullinemia. HLSCs were isolated from the liver of a patient with type I citrullinemia (ASS1-HLSCs) and characterized by fluorescence-activated cell sorting (FACS), immunofluorescence, and DNA sequencing analysis. Furthermore, their differentiation capabilities in vitro were also assessed. Hepatocytes differentiated from ASS1-HLSCs were evaluated by the production of urea and ASS enzymatic activity. EVs derived from normal HLSCs were purified by differential ultracentrifugation followed by floating density gradient. The EV content was analyzed to identify the presence of ASS1 protein, mRNA, and ASS1 gene. In order to obtain ASS1-depleted EVs, a knockdown of the ASS1 gene in HLSCs was performed followed by EV isolation from these cells. Treating ASS1-HLSCs with EVs from HLSCs restored both ASS1 activity and urea production mainly through the transfer of ASS1 enzyme and mRNA. In fact, EVs from ASS1-knockdown HLSCs contained low amounts of ASS1 mRNA and protein, and were unable to restore urea production in hepatocytes differentiated from ASS1-HLSCs. Collectively, these results suggest that EVs derived from normal HLSCs may compensate the loss of ASS1 enzyme activity in hepatocytes differentiated from ASS1-HLSCs.
Efficient Isolation Protocol for B and T Lymphocytes from Human Palatine Tonsils
Assadian, Farzaneh; Sandström, Karl; Laurell, Göran; Svensson, Catharina; Akusjärvi, Göran; Punga, Tanel
2015-01-01
Tonsils form a part of the immune system providing the first line of defense against inhaled pathogens. Usually the term “tonsils” refers to the palatine tonsils situated at the lateral walls of the oral part of the pharynx. Surgically removed palatine tonsils provide a convenient accessible source of B and T lymphocytes to study the interplay between foreign pathogens and the host immune system. This video protocol describes the dissection and processing of surgically removed human palatine tonsils, followed by the isolation of the individual B and T cell populations from the same tissue sample. We present a method, which efficiently separates tonsillar B and T lymphocytes using an antibody-dependent affinity protocol. Further, we use the method to demonstrate that human adenovirus infects specifically the tonsillar T cell fraction. The established protocol is generally applicable to efficiently and rapidly isolate tonsillar B and T cell populations to study the role of different types of pathogens in tonsillar immune responses. PMID:26650582
Greening, David W; Xu, Rong; Ji, Hong; Tauro, Bow J; Simpson, Richard J
2015-01-01
Exosomes are 40-150 nm extracellular vesicles that are released from a multitude of cell types, and perform diverse cellular functions including intercellular communication, antigen presentation, and transfer of tumorigenic proteins, mRNA and miRNA. Exosomes are important regulators of the cellular niche, and their altered characteristics in many diseases, such as cancer, suggest their importance for diagnostic and therapeutic applications, and as drug delivery vehicles. Exosomes have been purified from biological fluids and in vitro cell cultures using a variety of strategies and techniques. In this chapter, we reveal the protocol and key insights into the isolation, purification and characterization of exosomes, distinct from shed microvesicles and apoptotic blebs. Using the colorectal cancer cell line LIM1863 as a cell model, a comprehensive evaluation of exosome isolation methods including ultracentrifugation (UC-Exos), OptiPrep™ density-based separation (DG-Exos), and immunoaffinity capture using anti-EpCAM-coated magnetic beads (IAC-Exos) were examined. All exosome isolation methodologies contained 40-150 nm vesicles based on electron microscopy, and positive for exosome markers (Alix, TSG101, HSP70) based on immunoblotting. This protocol employed a proteomic profiling approach to characterize the protein composition of exosomes, and label-free spectral counting to evaluate the effectiveness of each method in exosome isolation. Based on the number of MS/MS spectra identified for exosome markers and proteins associated with their biogenesis, trafficking, and release, IAC-Exos was shown to be the most effective method to isolate exosomes. However, the use of density-based separation (DG-Exos) provides significant advantages for exosome isolation when the use of immunoaffinity capture is limited (due to antibody availability and suitability of exosome markers).
Franco, Maribel; Seyfried, Nicholas T.; Brand, Andrea H.; Peng, Junmin; Mayor, Ugo
2011-01-01
Ubiquitination has essential roles in neuronal development and function. Ubiquitin proteomics studies on yeast and HeLa cells have proven very informative, but there still is a gap regarding neuronal tissue-specific ubiquitination. In an organism context, direct evidence for the ubiquitination of neuronal proteins is even scarcer. Here, we report a novel proteomics strategy based on the in vivo biotinylation of ubiquitin to isolate ubiquitin conjugates from the neurons of Drosophila melanogaster embryos. We confidently identified 48 neuronal ubiquitin substrates, none of which was yet known to be ubiquitinated. Earlier proteomics and biochemical studies in non-neuronal cell types had identified orthologs to some of those but not to others. The identification here of novel ubiquitin substrates, those with no known ubiquitinated ortholog, suggests that proteomics studies must be performed on neuronal cells to identify ubiquitination pathways not shared by other cell types. Importantly, several of those newly found neuronal ubiquitin substrates are key players in synaptogenesis. Mass spectrometry results were validated by Western blotting to confirm that those proteins are indeed ubiquitinated in the Drosophila embryonic nervous system and to elucidate whether they are mono- or polyubiquitinated. In addition to the ubiquitin substrates, we also identified the ubiquitin carriers that are active during synaptogenesis. Identifying endogenously ubiquitinated proteins in specific cell types, at specific developmental stages, and within the context of a living organism will allow understanding how the tissue-specific function of those proteins is regulated by the ubiquitin system. PMID:20861518
Meyers, T.R.; Sullivan, J.; Emmenegger, E.; Follett, J.; Short, S.; Batts, W.N.; Winton, J.R.
1992-01-01
Ulcerative slun tissues from 2 Pacific cod Gadus rnacrocephalus caught in Prince William Sound, Alaska, USA, were examined for virus by Fish Pathology staff within the F.R.E.D. Division of the Alaska Department of Fish and Game. Six days after inoculation of Epitheliorna papulosum cyprini (EPC) cells at 14"C, diffuse rounding and lifting of cells from the monolayers suggestive of cytopathlc effect became visible in the lower sample dilutions. Ultrastructural examinations of affected EPC cells showed rhabdovirus particles within cytoplasmic vacuoles and on the cell surface membranes. Virus isolates from both cod were subsequently confirmed as viral hemorrhagic septicemia virus (VHSV) by serum neutralizabon and immunoblot assay. This is the first VHSV isolated from Pacific cod, which represents a new host species for the virus. Histologically, cod skin ulcers appeared to be caused by a foreign-body-type inflammatory response to foci of protozoa resembling X cells that also had plasmodial stages. Whether the rhabdovirus was incidental to the slun lesion or played a role in its etiology remains to be determined. The possible relationship between thls virus and the recent occurrences of VHSV in anadromous salmoruds from Washington State, USA, is discussed.
Reynolds, Jessica L.; Mahajan, Supriya D.; Aalinkeel, Ravikunar; Nair, Bindukumar; Sykes, Donald E.; Agosto-Mujica, Arnadri; Hsiao, Chiu Bin; Schwartz, Stanley A.
2010-01-01
We used proteomic analyses to assess how drug abuse modulates immunologic responses to infections with the human immunodeficiency virus type 1 (HIV-1). Two dimensional (2D) difference gel electrophoresis was utilized to determine changes in the proteome of peripheral blood mononuclear cells (PBMC) isolated from HIV-1 positive donors that occurred after treatment with cocaine or methamphetamine. Both drugs differentially regulated the expression of several functional classes of proteins. We further isolated specific subpopulations of PBMC to determine which subpopulations were selectively affected by treatment with drugs of abuse. Monocytes, B cells and T cells were positively or negatively selected from PBMC isolated from HIV-1 positive donors. Our results demonstrate that cocaine and methamphetamine modulate gene expression primarily in monocytes and T cells, the primary targets of HIV-1 infection. Proteomic data were validated with quantitative, real-time PCR. These studies elucidate the molecular mechanisms underlying the effects of drugs of abuse on HIV-1 infections. Several functionally relevant classes of proteins were identified as potential mediators of HIV-1 pathogenesis and disease progression associated with drug abuse. PMID:19543960
Isolation of the synchronized A spermatogonia from adult vitamin A-deficient rat testes.
van Pelt, A M; Morena, A R; van Dissel-Emiliani, F M; Boitani, C; Gaemers, I C; de Rooij, D G; Stefanini, M
1996-08-01
A method for isolating A spermatogonia from the adult vitamin A-deficient (VAD) rat testis is described. After removal, the testes were decapsulated and tubules were dissected. An enzymatic digestion with collagenase, hyaluronidase, and trypsin was performed first to eliminate most of the interstitial cells. A second digestion with collagenase and hyaluronidase was performed to obtain a cell suspension with a high number of A spermatogonia. The cell suspension was further enriched with A spermatogonia by preplating on peanut agglutinin and separating on a discontinuous Percoll gradient. By this procedure, purification of the suspension to 70-90% A spermatogonia was obtained. In the seminiferous tubules of the VAD rats, only Sertoli cells, A spermatogonia, and some preleptotene spermatocytes are present. In our rats, the A spermatogonia are almost all arrested in the G1 phase of the cell cycle before the S phase of A1 spermatogonia, and presumably before their differentiation into A1 spermatogonia. After administration of vitamin A, spermatogenesis starts synchronously from these A spermatogonia. The isolation of these synchronized A spermatogonia opens ways to investigate the regulation of differentiation and proliferation of A spermatogonia and the biochemical characteristics of the subsequent types of A spermatogonia.
Flow cytometry on the stromal-vascular fraction of white adipose tissue.
Brake, Danett K; Smith, C Wayne
2008-01-01
Adipose tissue contains cell types other than adipocytes that may contribute to complications linked to obesity. For example, macrophages have been shown to infiltrate adipose tissue in response to a high-fat diet. Isolation of the stromal-vascular fraction of adipose tissue allows one to use flow cytometry to analyze cell surface markers on leukocytes. Here, we present a technical approach to identify subsets of leukocytes that differentially express cell surface markers.
Ebrahimnezhad, Salimeh; Amirghofran, Zahra; Karimi, Mohammad Hossein
2016-01-01
18α-Glycyrrhetinic acid (18α-GA), a bioactive component of Glycyrrhiza glabra, has been shown in vitro immunomodulatory effects on dendritic cells (DCs). The aim of the present study is to evaluate the in vivo effect of 18α-GA on DCs and T cell responses. 18α-GA was intraperitoneally administered to mice and splenic DCs were evaluated for expression of co-stimulatory molecules using flow cytometry. Isolated DCs were added to mixed lymphocyte reaction (MLR) and the proliferation of T cells was measured using BrdU assay. The level of IFN-γ in the MLR supernatant was determined by enzyme-linked immunosorbent assay. The in vivo effect of isolated DCs on antigen-specific delayed type hypersensitivity (DTH) response, and the number of regulatory T (Treg) cells in mice spleen by flow cytometry, were investigated. DCs isolated from 18α-GA-treated mice expressed lower levels of CD40 (p < 0.05) and MHC II (p < 0.01) compared to those of control group. In MLR assay isolated DCs decreased T cell proliferation to 83.54% ± 4.3% of control (p < 0.05). The level of IFN-γ in the MLR supernatant was declined to 25.2% ± 6.8% of control. In DTH test, DCs isolated from 18α-GA-treated mice significantly suppressed antigen-specific cell mediated immune response (3.3 ± 1 mm in test group versus 6.5 ± 1.2 mm in control group, ρ < 0.01). The percentage of Treg cells in spleen of 18α-GA-treated mice (6.37% ± 2.3%) was lower than that of control group (13.85% ± 0.4%, ρ < 0.05). In vivo administration of 18α-GA resulted in inhibition of DCs maturation and T cell-mediated responses, the effects that may candidate this compound for its possible benefits in immune-mediated diseases.
Lu, Yunlong; Wei, Liqin; Wang, Tai
2015-01-01
The development of sperm cells (SCs) from microspores involves a set of finely regulated molecular and cellular events and the coordination of these events. The mechanisms underlying these events and their interconnections remain a major challenge. Systems analysis of genome-wide molecular networks and functional modules with high-throughput "omics" approaches is crucial for understanding the mechanisms; however, this study is hindered because of the difficulty in isolating a large amount of cells of different types, especially generative cells (GCs), from the pollen. Here, we optimized the conditions of tomato pollen germination and pollen tube growth to allow for long-term growth of pollen tubes in vitro with SCs generated in the tube. Using this culture system, we developed methods for isolating GCs, SCs and vegetative cell nuclei (VN) from just-germinated tomato pollen grains and growing pollen tubes and their purification by Percoll density gradient centrifugation. The purity and viability of isolated GCs and SCs were confirmed by microscopy examination and fluorescein diacetate staining, respectively, and the integrity of VN was confirmed by propidium iodide staining. We could obtain about 1.5 million GCs and 2.0 million SCs each from 180 mg initiated pollen grains, and 10 million VN from 270 mg initiated pollen grains germinated in vitro in each experiment. These methods provide the necessary preconditions for systematic biology studies of SC development and differentiation in higher plants.
Kermani, Abbas Jafari; Fathi, Fardin; Mowla, Seyed Javad
2008-04-01
Stem cells are defined by two main characteristics: self-renewal capacity and commitment to multi-lineage differentiation. The cells have a great therapeutic potential in repopulating damaged tissues as well as being genetically manipulated and used in cell-based gene therapy. Umbilical cord vein is a readily available and inexpensive source of stem cells that are capable of generating various cell types. Despite the recent isolation of human umbilical cord vein mesenchymal stem cells (UVMSC), the self-renewal capacity and the potential clinical application of the cells are not well known. In the present study, we have successfully isolated and cultured human UVMSCs. Our data further revealed that the isolated cells express the self-renewal genes Oct-4, Nanog, ZFX, Bmi-1, and Nucleostemin; but not Zic-3, Hoxb-4, TCL-1, Tbx-3 and Esrrb. In addition, our immunocytochemistry results revealed the expression of SSEA-4, but not SSEA-3, TRA-1-60, and TRA-1-81 embryonic stem cell surface markers in the cells. Also, we were able to transfect the cells with a reporter, enhanced green fluorescent protein (EGFP), and a therapeutic human brain-derived neurotrophic factor (hBDNF) gene by means of electroporation and obtained a stable cell line, which could constantly express both transgenes. The latter data provide further evidence on the usefulness of umbilical cord vein mesenchymal stem cells as a readily available source of stem cells, which could be genetically manipulated and used in cell-based gene therapy applications.
Hjelle, B; Chaney, R
1992-02-01
Human T-cell leukemia-lymphoma virus type II (HTLV-II) has been isolated from patients with hairy cell leukemia (HCL). We previously described a population with longstanding endemic HTLV-II infection, and showed that there is no increased risk for HCL in the affected groups. We thus have direct evidence that the endemic form(s) of HTLV-II cause HCL infrequently, if at all. By comparison, there is reason to suspect that the viruses isolated from patients with HCL had an etiologic role in the disease in those patients. One way to reconcile these conflicting observations is to consider that isolates of HTLV-II might differ in oncogenic potential. To determine whether the structure of the putative oncogenic determinant of HTLV-II, tax2, might differ in the new isolates compared to the tax of the prototype HCL isolate, MO, four new functional tax cDNAs were cloned from new isolates. Sequence analysis showed only minor (0.9-2.0%) amino acid variation compared to the published sequence of MO tax2. Some codons were consistently different from published sequences of the MO virus, but in most cases, such variations were also found in each of two tax2 clones we isolated from the MO T-cell line. These variations rendered the new clones more similar to the tax1 of the pathogenic virus HTLV-I. Thus we find no evidence that pathologic determinants of HTLV-II can be assigned to the tax gene.
Staphylococcus muscae, a new species isolated from flies.
Hájek, V; Ludwig, W; Schleifer, K H; Springer, N; Zitzelsberger, W; Kroppenstedt, R M; Kocur, M
1992-01-01
A new coagulase-negative species of the genus Staphylococcus, Staphylococcus muscae, is described on the basis of the results of a study of four strains that were isolated from flies. 16S rRNA sequences of the type strains of S. muscae, Staphylococcus schleiferi, and Staphylococcus sciuri were determined and used, together with the corresponding sequences of Staphylococcus aureus and Staphylococcus epidermidis, for a comparative analysis. The new species is characterized taxonomically; this species is differentiated from the other novobiocin-susceptible staphylococci by its physiological and biochemical activities, cell wall composition, and levels of genetic relatedness. The type strain of this species is strain MB4 (= CCM 4175).
Identification and functional analysis of endothelial tip cell-enriched genes.
del Toro, Raquel; Prahst, Claudia; Mathivet, Thomas; Siegfried, Geraldine; Kaminker, Joshua S; Larrivee, Bruno; Breant, Christiane; Duarte, Antonio; Takakura, Nobuyuki; Fukamizu, Akiyoshi; Penninger, Josef; Eichmann, Anne
2010-11-11
Sprouting of developing blood vessels is mediated by specialized motile endothelial cells localized at the tips of growing capillaries. Following behind the tip cells, endothelial stalk cells form the capillary lumen and proliferate. Expression of the Notch ligand Delta-like-4 (Dll4) in tip cells suppresses tip cell fate in neighboring stalk cells via Notch signaling. In DLL4(+/-) mouse mutants, most retinal endothelial cells display morphologic features of tip cells. We hypothesized that these mouse mutants could be used to isolate tip cells and so to determine their genetic repertoire. Using transcriptome analysis of retinal endothelial cells isolated from DLL4(+/-) and wild-type mice, we identified 3 clusters of tip cell-enriched genes, encoding extracellular matrix degrading enzymes, basement membrane components, and secreted molecules. Secreted molecules endothelial-specific molecule 1, angiopoietin 2, and apelin bind to cognate receptors on endothelial stalk cells. Knockout mice and zebrafish morpholino knockdown of apelin showed delayed angiogenesis and reduced proliferation of stalk cells expressing the apelin receptor APJ. Thus, tip cells may regulate angiogenesis via matrix remodeling, production of basement membrane, and release of secreted molecules, some of which regulate stalk cell behavior.
Rapid Isolation of Viable Circulating Tumor Cells from Patient Blood Samples
Hughes, Andrew D.; Mattison, Jeff; Powderly, John D.; Greene, Bryan T.; King, Michael R.
2012-01-01
Circulating tumor cells (CTC) are cells that disseminate from a primary tumor throughout the circulatory system and that can ultimately form secondary tumors at distant sites. CTC count can be used to follow disease progression based on the correlation between CTC concentration in blood and disease severity1. As a treatment tool, CTC could be studied in the laboratory to develop personalized therapies. To this end, CTC isolation must cause no cellular damage, and contamination by other cell types, particularly leukocytes, must be avoided as much as possible2. Many of the current techniques, including the sole FDA-approved device for CTC enumeration, destroy CTC as part of the isolation process (for more information see Ref. 2). A microfluidic device to capture viable CTC is described, consisting of a surface functionalized with E-selectin glycoprotein in addition to antibodies against epithelial markers3. To enhance device performance a nanoparticle coating was applied consisting of halloysite nanotubes, an aluminosilicate nanoparticle harvested from clay4. The E-selectin molecules provide a means to capture fast moving CTC that are pumped through the device, lending an advantage over alternative microfluidic devices wherein longer processing times are necessary to provide target cells with sufficient time to interact with a surface. The antibodies to epithelial targets provide CTC-specificity to the device, as well as provide a readily adjustable parameter to tune isolation. Finally, the halloysite nanotube coating allows significantly enhanced isolation compared to other techniques by helping to capture fast moving cells, providing increased surface area for protein adsorption, and repelling contaminating leukocytes3,4. This device is produced by a straightforward technique using off-the-shelf materials, and has been successfully used to capture cancer cells from the blood of metastatic cancer patients. Captured cells are maintained for up to 15 days in culture following isolation, and these samples typically consist of >50% viable primary cancer cells from each patient. This device has been used to capture viable CTC from both diluted whole blood and buffy coat samples. Ultimately, we present a technique with functionality in a clinical setting to develop personalized cancer therapies. PMID:22733259
Chemistry and biosynthesis of isoprenylated flavonoids from Japanese mulberry tree
Nomura, Taro; Hano, Yoshio; Fukai, Toshio
2009-01-01
Many isoprenylated flavonoids have been isolated from Japanese mulberry tree (Moraceae). Among them, kuwanons G (1) and H (2) were the first isolated active substances exhibiting a hypotensive effect. These compounds are considered to be formed through an enzymatic Diels-Alder type reaction between an isoprenyl portion of an isoprenylphenol as the diene and an α, β-double bond of chalcone as the dienophile. The absolute configurations of these Diels-Alder type adducts were confirmed by three different methods. The stereochemistries of the adducts were consistent with those of ones in the Diels-Alder reaction involving exo- and endo-addition. Some strains of Morus alba callus tissues have a high productivity of mulberry Diels-Alder type adducts, such as chalcomoracin (3) and kuwanon J (4). The biosynthetic studies of the mulberry Diels-Alder type adducts have been carried out with the aid of the cell strain. Chalcomoracin (3) and kuwanon J (4) were proved to be enzymatic Diels-Alder type reaction products by the administration experiments with O-methylchalcone derivatives. Furthermore, for the isoprenoid biosynthesis of prenylflavonoids in Morus alba callus tissues by administration of [1,3-13C2]- and [2-13C]-glycerol, a novel way through the junction of glycolysis and pentose-phosphate cycle was proved. Two independent isoprenoid biosynthetic pathways, that for sterols and that for isoprenoidphenols, operate in the Morus alba cell cultures. The former is susceptible to compactin (ML-236) and the latter resists to compactin in the cell cultures, respectively. PMID:19907125
Wilhelm, Annika; Aldridge, Victoria; Haldar, Debashis; Naylor, Amy J; Weston, Christopher J; Hedegaard, Ditte; Garg, Abhilok; Fear, Janine; Reynolds, Gary M; Croft, Adam P; Henderson, Neil C; Buckley, Christopher D; Newsome, Philip N
2016-07-01
CD248 (endosialin) is a stromal cell marker expressed on fibroblasts and pericytes. During liver injury, myofibroblasts are the main source of fibrotic matrix. To determine the role of CD248 in the development of liver fibrosis in the rodent and human setting. CD248 expression was studied by immunostaining and quantitative PCR in both normal and diseased human and murine liver tissue and isolated hepatic stellate cells (HSCs). Hepatic fibrosis was induced in CD248(-/-) and wild-type controls with carbon tetrachloride (CCl4) treatment. Expression of CD248 was seen in normal liver of humans and mice but was significantly increased in liver injury using both immunostaining and gene expression assays. CD248 was co-expressed with a range of fibroblast/HSC markers including desmin, vimentin and α-smooth muscle actin (α-SMA) in murine and human liver sections. CD248 expression was restricted to isolated primary murine and human HSC. Collagen deposition and α-SMA expression, but not inflammation and neoangiogenesis, was reduced in CD248(-/-) mice compared with wild-type mice after CCl4 treatment. Isolated HSC from wild-type and CD248(-/-) mice expressed platelet-derived growth factor receptor α (PDGFR-α) and PDGFR-β at similar levels. As expected, PDGF-BB stimulation induced proliferation of wild-type HSC, whereas CD248(-/-) HSC did not demonstrate a proliferative response to PDGF-BB. Abrogated PDGF signalling in CD248(-/-) HSC was confirmed by significantly reduced c-fos expression in CD248(-/-) HSC compared with wild-type HSC. Our data show that deletion of CD248 reduces susceptibility to liver fibrosis via an effect on PDGF signalling, making it an attractive clinical target for the treatment of liver injury. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/
Erkizia, Itziar; Pino, Maria; Pou, Christian; Paredes, Roger; Clotet, Bonaventura; Martinez-Picado, Javier; Prado, Julia G.
2012-01-01
Background The use of in vitro models to unravel the phenotypic characteristics of circulating viral variants is key to understanding HIV-1 pathogenesis but limited by the availability of primary viral isolates from biological samples. However, overall in vivo genetic variability of HIV-1 within a subject may not be reflected in the viable viral population obtained after isolation. Although several studies have tried to determine whether viral populations expanded in vitro are representative of in vivo findings, the answer remains unclear due to the reduced number of clonal sequences analyzed or samples compared. In order to overcome previous experimental limitations, here we applied Deep Pyrosequencing (DPS) technology in combination with phenotypic experiments to analyze and compare with unprecedented detail the composition of viral isolates and in vivo quasispecies. Methodology/Principal Findings We amplified by DPS HIV-1 genomic regions covering gag, protease, integrase and env-V3 to characterize paired isolates from plasma and peripheral blood mononuclear cells and compare them with total plasma viral RNA in four recently HIV-1 infected subjects. Our study demonstrated the presence of unique haplotypes scattered between sample types with conservation of major variants. In addition, no differences in intra- and inter-population encoded protein variability were found between the different types of isolates or when these were compared to plasma viral RNA within subjects. Additionally, in vitro experiments demonstrated phenotypic similarities in terms of replicative capacity and co-receptor usage between viral isolates and plasma viral RNA. Conclusion This study is the first in-depth comparison and characterization of viral isolates from different sources and plasma circulating quasispecies using DPS in recently HIV-1 infected subjects. Our data supports the use of primary isolates regardless of their plasma or cellular origin to define genetic variability and biological traits of circulating HIV-1 quasispecies. PMID:22393441
Sangeetha, Kadapakkam Nandabalan; Sujatha, Sundaresan; Muthusamy, Velusamy Shanmuganathan; Anand, Singaravel; Shilpa, Kusampudi; Kumari, Posa Jyothi; Sarathkumar, Baskaran; Thiyagarajan, Gopal; Lakshmi, Baddireddi Subhadra
2017-01-01
Non-insulin dependent diabetes mellitus, also known as Type 2 diabetes is a polygenic disorder leading to abnormalities in the carbohydrate and lipid metabolism. The major contributors in the pathophysiology of type 2 diabetes (T2D) include resistance to insulin action, β cell dysfunction, an abnormality in glucose metabolism and storage, visceral obesity and to some extent inflammation and oxidative stress. Insulin resistance, along with a defect in insulin secretion by the pancreatic β cells is instrumental towards progression to hyperglycemia. Increased incidence of obesity is also a major contributing factor in the escalating rates of type 2 diabetes. Drug discovery efforts are therefore crucially dependent on identifying individual molecular targets and validating their relevance to human disease. The current review discusses bioactive compounds from medicinal plants offering enhanced therapeutic potential for the combined patho-physiology of diabetes and obesity. We have demonstrated that 3β-taraxerol a pentacyclic triterpenoid (14-taraxeren-3-ol) isolated from the ethyl acetate extract of Mangifera indica, chlorogenic acid isolated from the methanol extract of Cichorium intybus, methyl tetracosanoate from the methanol extract of Costus pictus and vitalboside A derived from methanolic extract of Syzygium cumini exhibited significant effects on insulin stimulated glucose uptake causing insulin sensitizing effects on 3T3L1 adipocytes (an in vitro model mimicking adipocytes). Whereas, (3β)-stigmast-5-en-3-ol isolated from Adathoda vasica and Aloe emodin isolated from Cassia fistula showed significant insulin mimetic effects favoring glucose uptake in L6 myotubes (an in vitro model mimicking skeletal muscle cells). These extracts and molecules showed glucose uptake through activation of PI3K, an important insulin signaling intermediate. Interestingly, cinnamic acid isolated from the hydro-alcohol extract of Cinnamomum cassia was found to activate glucose transport in L6 myotubes through the involvement of GLUT4 via the PI3K-independent pathway. However, the activation of glucose storage was effective in the presence of 3β-taraxerol and aloe emodin though inhibition of GSK3β activity. Therefore, the mechanism of improvement of glucose and lipid metabolism exhibited by the small molecules isolated from our lab is discussed. However, Obesity is a major risk factor for type-2 diabetes leading to destruction of insulin receptors causing insulin resistance. Identification of compounds with dual activity (anti-diabetic and antiadipogenic activity) is of current interest. The protein tyrosine phosphatase 1B (PTP1B) is an important negative regulator of the insulin and leptin-signaling pathway is of significance in target definition and discovery.
Innate immune system still works at diapause, a physiological state of dormancy in insects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nakamura, Akihiro; Miyado, Kenji, E-mail: kmiyado@nch.go.jp; Takezawa, Youki
Highlights: {yields} Two major types of cells are present in the body fluid isolated from the thoracic region of a diapausing pupa. {yields} Phagocytosis and encapsulation by these cells were observed when latex beads as foreign targets were microinjected into a pupa. {yields} Such behavior by these cells was still observed even when pupae were continuously chilled at 4 {sup o}C. {yields} Innate cellular reactions can work in diapausing insects in a dormant state. -- Abstract: Diapause is most often observed in insects and is a physiologically dormant state different from other types of dormancy, such as hibernation. It allowsmore » insects to survive in harsh environments or extend longevity. In general, larval, pupal, or adult non-diapausing insects possess an innate immune system preventing the invasion of microorganisms into their bodies; however, it is unclear whether this system works under the dormant condition of diapause. We here report the occurrence of innate cellular reactions during diapause using pupae of a giant silkmoth, Samia cynthia pryeri. Scanning electron microscopic analysis demonstrated the presence of two major types of cells in the body fluid isolated from the thoracic region of a pupa. Phagocytosis and encapsulation, characteristics of innate cellular reactions, by these cells were observed when latex beads as foreign targets were microinjected into the internal portion of a pupa. Such behavior by these cells was still observed even when pupae were continuously chilled at 4 {sup o}C. Our results indicate that innate cellular reactions can work in diapausing insects in a dormant state.« less
Virological study of a dengue type 1 epidemic at Rio de Janeiro.
Nogueira, R M; Schatzmayr, H G; Miagostovich, M P; Farias, M F; Farias Filho, J D
1988-01-01
A dengue outbreak started in March, 1986 in Rio de Janeiro and spread very rapidly to other parts of the country. The great majority of cases presented classical dengue fever but there was one fatal case, confirmed by virus isolation. Dengue type 1 strains were isolated from patients and vectors (Aedes aegypti) in the area by cultivation in A. albopictus C6/36 cell line. The cytopathic effect (CPE) was studied by electron microscopy. An IgM capture test (MAC-ELISA) was applied with clear and reproducible results for diagnosis and evaluation of virus circulation; IgM antibodies appeared soon after start of clinical disease, and persisted for about 90 days in most patients. The test was type-specific in about 50% of the patients but high levels of heterologous response for type 3 were observed. An overall isolation rate of 46.8% (813 virus strains out of 1734 specimens) was recorded. The IgM test increased the number of confirmed cases to 58.2% (1479 out of 2451 suspected cases). The importance of laboratory diagnosis in all regions where the vectors are present is emphasized.
Isolation and characterization of EG-like cells from Chinese swamp buffalo (Bubalus bubalis).
Huang, Ben; Xie, Ti-San; Shi, De-Shun; Li, Tong; Wang, Xiao-Li; Mo, Yi; Wang, Zhi-Qiang; Li, Meng-Mei
2007-10-01
There have been few studies done on the isolation and characterization of Chinese swamp buffalo embryonic germ cells (EG cells). Here, we first report on EG-like cells isolated from Chinese swamp buffalo fetuses. The results showed the cells grew in large, multilayered colonies, which were densely packed with an obvious border resembling mouse embryonic stem cells (ES cells) and EG cells. The buffalo EG-like cells expressed AP, SSEA-1, SSEA-3, SSEA-4 and OCT-4. By RT-PCR, we found that undifferentiated swamp buffalo EG-like cells expressed the OCT-4, NANOG, SOX2, FOXD3, GP130, STAT3, and HEB gene mRNA, but not Fgf4. When these cells were cultured for more than 2weeks without passage, they could differentiate into several types of cells including fibroblast-like, neuron-like, smooth muscle-like, and epithelial-like cells. Some cells formed simple embryoid bodies (EBs) and cystic EBs by suspension culture. By RT-PCR, we found cystic EBs expressed FOXD3, GP130, STAT3 and HEB gene mRNA, but not OCT-4, NANOG, and SOX2 gene mRNA, which could be detected in undifferentiated buffalo EG-like cells. At the same time, the expression of KERATIN-14 (Endoderm), GATA4, ACTA2 (Mesoderm) and TUBB3 (Ectoderm) gene mRNA were also detected in cystic EBs. The results suggested that these cells were capable of forming three germ layers in in vitro differentiation. The expression of OCT-4, NANOG and SOX2 might be essential for Chinese swamp buffalo EG-like cells in a pluripotent state. During the isolation and culture of Chinese swamp buffalo EG-like cells, we found the fetuses that were at 30-80days post-coitus were more efficient than others; and the mechanical method was better than trypsin digestion. The maximal passage of the mechanical method was eight, but the trypsin digestion was just three passages. So it seemed like that the buffalo EG-like cells were sensitive to trypsin. In summary, we were the first to isolate and characterize Chinese swamp buffalo EG-like cells that had morphology and characterization similar to those of established EG/EG-like cells in mouse and human.
Unraveling Cell Processes: Interference Imaging Interwoven with Data Analysis
Brazhe, A. R.; Pavlov, A. N.; Erokhova, L. A.; Yusipovich, A. I.; Maksimov, G. V.; Mosekilde, E.; Sosnovtseva, O. V.
2006-01-01
The paper presents results on the application of interference microscopy and wavelet-analysis for cell visualization and studies of cell dynamics. We demonstrate that interference imaging of erythrocytes can reveal reorganization of the cytoskeleton and inhomogenity in the distribution of hemoglobin, and that interference imaging of neurons can show intracellular compartmentalization and submembrane structures. We investigate temporal and spatial variations of the refractive index for different cell types: isolated neurons, mast cells and erythrocytes. We show that the refractive dynamical properties differ from cell type to cell type and depend on the cellular compartment. Our results suggest that low frequency variations (0.1–0.6 Hz) result from plasma membrane processes and that higher frequency variations (20–26 Hz) are related to the movement of vesicles. Using double-wavelet analysis, we study the modulation of the 1 Hz rhythm in neurons and reveal its changes under depolarization and hyperpolarization of the plasma membrane. We conclude that interference microscopy combined with wavelet analysis is a useful technique for non-invasive cell studies, cell visualization, and investigation of plasma membrane properties. PMID:19669463
In vitro generation of type-II pneumocytes can be initiated in human CD34(+) stem cells.
Srikanth, Lokanathan; Venkatesh, Katari; Sunitha, Manne Mudhu; Kumar, Pasupuleti Santhosh; Chandrasekhar, Chodimella; Vengamma, Bhuma; Sarma, Potukuchi Venkata Gurunadha Krishna
2016-02-01
Human CD34(+) stem cells differentiated into type-II pneumocytes in Dulbecco's modified Eagle medium (DMEM) having hydrocortisone, insulin, fibroblast growth factor (FGF), epidermal growth factor (EGF) and bovine serum albumin (BSA), expressing surfactant proteins-B (SP-B) and C (SP-C), alkaline phosphatase (ALP) and lysozyme. FACS-enumerated pure CD34(+) cells, isolated from human peripheral blood, were cultured in DMEM and showed positive reaction with anti-human CD34 monoclonal antibodies in immunocytochemistry. These cells were cultured in DMEM having hydrocortisone, insulin, FGF, EGF and BSA (HIFEB-D) medium having an air-liquid interface. They differentiated into type-II pneumocytes with expression of SP-B and SP-C genes and disappearance of CD34 expression as assessed using real-time PCR. In reverse transcription-PCR amplicons showed 208 and 907 bp confirming SP-B and SP-C expressions. These cells expressed ALP with an activity of 1.05 ± 0.09 mM ml(-1) min(-1) and lysozyme that killed E. coli. The successful differentiation of human CD34(+) stem cells into type-II pneumocytes, and transplantation of such cells obtained from the patient's stem cell could be the futuristic approach to regenerate diseased lung alveoli.
Kozuka, Takuyo; Aoki, Yukimasa; Nakagawa, Keiichi; Ohtomo, Kuni; Yoshikawa, Hiroyuki; Matsumoto, Koji; Yoshiike, Kunito
2000-01-01
Expression of human papillomavirus 16 (HPV‐16) oncogenes is markedly higher in cervical cancer cells than in precancerous cells, and the elevated expression is believed to be required for the malignant phenotypes. We compared cancer cell lines CaSki (with 200 to 400 copies of HPV‐16 DNA per cell) and SiHa (with one to two copies of HPV‐16 DNA per cell) for the E7 expression in cells and the enhancer‐promoter activity of the isolated viral long control region (LCR). Although these parameters per cell were 10‐fold higher in CaSki than in SiHa, the levels of the E7 mRNA and protein per HPV DNA copy were 10‐ to 20‐fold higher in SiHa than in CaSki. Characterization of the isolated LCRs showed that, whereas the LCR from CaSki resembled the prototype in structure and activity, the LCR from SiHa, with a deletion of 38 base pairs, enhanced transcription from P97 as assayed by using a plasmid capable of expressing luciferase. The upregulation appeared to be due to removal of one of the silencer YY1‐binding sites. Furthermore, we isolated and characterized LCRs from 51 cervical cancer patients’ biopsies. Among them, one with a deletion including YY1‐binding sites and the other with a substitution in a YY1‐motif were found to enhance the transcription. These findings suggest that mutation affecting YY1‐motifs in the LCR is one of the mechanisms enhancing the viral oncogene expression in the course of progression of cancer cells. PMID:10760685
Brückner, S; Tautenhahn, H-M; Winkler, S; Stock, P; Jonas, S; Dollinger, M; Christ, B
2013-06-01
Mesenchymal stem cells (MSC) isolated from bone marrow and differentiated into hepatocyte-like cells have increasingly gained attention for clinical cell therapy of liver diseases because of their high regenerative capacity. They are available from bone marrow aspirates of the os coxae after puncture of the crista iliaca or from bone marrow "surgical waste" gained from amputations or knee and hip operations. Thus, the aim of the study was to demonstrate whether these pBM-MSC (porcine bone marrow-derived mesenchymal stem cells) displayed mesenchymal features and hepatocyte differentiation potential. MSC were isolated either from crista iliaca punctures or after sampling and collagenase digestion of bone marrow from the os femoris. Mesenchymal features were assessed by flow cytometry for specific surface antigens and their ability to differentiate into at least 3 lineages. Functional properties, such as urea or glycogen synthesis and cytochrome P450 activity, as well as the cell morphology were examined during hepatocyte differentiation. pBM-MSC from both sources lacked the hematopoietic markers CD14 and CD45 but expressed the typical mesenchymal markers CD44, CD29, CD90, and CD105. Both cell types could differentiate into adipocyte, osteocyte, and hepatocyte lineages. After hepatocyte differentiation, CD105 expression decreased significantly and cells changed morphology from fibroblastoid into polygonal, displaying significantly increased glycogen storage, urea synthesis, and cytochrome activity. pBM-MSC from various sources were identical in respect to their mesenchymal features and their hepatocyte differentiation potential. Hence, long bones might be a particularly useful resource to isolate bone marrow mesenchymal stem cells for transplantation. Copyright © 2013 Elsevier Inc. All rights reserved.
Single cell transcriptome profiling of developing chick retinal cells.
Laboissonniere, Lauren A; Martin, Gregory M; Goetz, Jillian J; Bi, Ran; Pope, Brock; Weinand, Kallie; Ellson, Laura; Fru, Diane; Lee, Miranda; Wester, Andrea K; Liu, Peng; Trimarchi, Jeffrey M
2017-08-15
The vertebrate retina is a specialized photosensitive tissue comprised of six neuronal and one glial cell types, each of which develops in prescribed proportions at overlapping timepoints from a common progenitor pool. While each of these cells has a specific function contributing to proper vision in the mature animal, their differential representation in the retina as well as the presence of distinctive cellular subtypes makes identifying the transcriptomic signatures that lead to each retinal cell's fate determination and development challenging. We have analyzed transcriptomes from individual cells isolated from the chick retina throughout retinogenesis. While we focused our efforts on the retinal ganglion cells, our transcriptomes of developing chick cells also contained representation from multiple retinal cell types, including photoreceptors and interneurons at different stages of development. Most interesting was the identification of transcriptomes from individual mixed lineage progenitor cells in the chick as these cells offer a window into the cell fate decision-making process. Taken together, these data sets will enable us to uncover the most critical genes acting in the steps of cell fate determination and early differentiation of various retinal cell types. © 2017 Wiley Periodicals, Inc.
Fontana, F; Rapone, C; Bregola, G; Aversa, R; de Meo, A; Signorini, G; Sergio, M; Ferrarini, A; Lanzellotto, R; Medoro, G; Giorgini, G; Manaresi, N; Berti, A
2017-07-01
Latest genotyping technologies allow to achieve a reliable genetic profile for the offender identification even from extremely minute biological evidence. The ultimate challenge occurs when genetic profiles need to be retrieved from a mixture, which is composed of biological material from two or more individuals. In this case, DNA profiling will often result in a complex genetic profile, which is then subject matter for statistical analysis. In principle, when more individuals contribute to a mixture with different biological fluids, their single genetic profiles can be obtained by separating the distinct cell types (e.g. epithelial cells, blood cells, sperm), prior to genotyping. Different approaches have been investigated for this purpose, such as fluorescent-activated cell sorting (FACS) or laser capture microdissection (LCM), but currently none of these methods can guarantee the complete separation of different type of cells present in a mixture. In other fields of application, such as oncology, DEPArray™ technology, an image-based, microfluidic digital sorter, has been widely proven to enable the separation of pure cells, with single-cell precision. This study investigates the applicability of DEPArray™ technology to forensic samples analysis, focusing on the resolution of the forensic mixture problem. For the first time, we report here the development of an application-specific DEPArray™ workflow enabling the detection and recovery of pure homogeneous cell pools from simulated blood/saliva and semen/saliva mixtures, providing full genetic match with genetic profiles of corresponding donors. In addition, we assess the performance of standard forensic methods for DNA quantitation and genotyping on low-count, DEPArray™-isolated cells, showing that pure, almost complete profiles can be obtained from as few as ten haploid cells. Finally, we explore the applicability in real casework samples, demonstrating that the described approach provides complete separation of cells with outstanding precision. In all examined cases, DEPArray™ technology proves to be a groundbreaking technology for the resolution of forensic biological mixtures, through the precise isolation of pure cells for an incontrovertible attribution of the obtained genetic profiles. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Graham, J. C.; Leathart, J. B. S.; Keegan, S. J.; Pearson, J.; Bint, A.; Gally, D. L.
2001-01-01
Escherichia coli isolates from patients with bacteriuria of pregnancy were compared by PCR with isolates from patients with community-acquired cystitis for the presence of established virulence determinants. The strains from patients with bacteriuria of pregnancy were less likely to carry genes for P-family, S-family, and F1C adhesins, cytotoxic necrotizing factor 1, and aerobactin, but virtually all of the strains carried the genes for type 1 fimbriae. Standard mannose-sensitive agglutination of yeast cells showed that only 15 of 42 bacteriuria strains (36%) expressed type 1 fimbriae compared with 32 of 42 strains from community-acquired symptomatic infections (76%) (P < 0.01). This difference was confirmed by analysis of all isolates for an allele of the type 1 fimbrial regulatory region (fim switch), which negates type 1 fimbrial expression by preventing the fim switch from being inverted to the on phase. This allele, fimS49, was found in 8 of 47 bacteriuria strains from pregnant women (17.0%) compared with 2 of 60 strains isolated from patients with cystitis (3.3%) (P < 0.05). Determination of the phase switch orientation in vivo by analysis of freshly collected infected urine from patients with bacteriuria showed that the fim switch was detectable in the off orientation in 17 of 23 urine samples analyzed (74%). These data indicate that type 1 fimbriae are not necessary to maintain the majority of E. coli bacteriurias in pregnant women since there appears to be selection against their expression in this particular group. This is in contrast to the considered role of this adhesin in community-acquired symptomatic infections. The lack of type 1 fimbria expression is likely to contribute to the asymptomatic nature of bacteriuria in pregnant women, although approximately one-third of the bacteriuria isolates do possess key virulence determinants. If left untreated, this subset of isolates pose the greatest threat to the health of the mother and unborn child. PMID:11159970
Qiu, Liuming; Wang, Pei; Liao, Ge; Zeng, Yanbo; Cai, Caihong; Kong, Fandong; Guo, Zhikai; Proksch, Peter; Dai, Haofu; Mei, Wenli
2018-03-28
Four new eudesmane-type sesquiterpenoids, penicieudesmol A-D ( 1 - 4 ), were isolated from the fermentation broth of the mangrove-derived endophytic fungus Penicillium sp. J-54. Their structures were determined by spectroscopic methods, the in situ dimolybdenum CD method, and modified Mosher's method. The bioassays results showed that 2 exhibited weak cytotoxicity against K-562 cells.
A Winsor Type I surfactant/alcohol mixture was used as an in situ flushing agent to solubilize a muticomponent nonaqueous phase liquid (NAPL) as a single-phase microemulsion (SPME) in a hydraulically isolated test cell at Hill Air Force Base (AFB), Utah. The surfactant (polyoxye...
A Minimally Invasive Method for Retrieving Single Adherent Cells of Different Types from Cultures
Zeng, Jia; Mohammadreza, Aida; Gao, Weimin; Merza, Saeed; Smith, Dean; Kelbauskas, Laimonas; Meldrum, Deirdre R.
2014-01-01
The field of single-cell analysis has gained a significant momentum over the last decade. Separation and isolation of individual cells is an indispensable step in almost all currently available single-cell analysis technologies. However, stress levels introduced by such manipulations remain largely unstudied. We present a method for minimally invasive retrieval of selected individual adherent cells of different types from cell cultures. The method is based on a combination of mechanical (shear flow) force and biochemical (trypsin digestion) treatment. We quantified alterations in the transcription levels of stress response genes in individual cells exposed to varying levels of shear flow and trypsinization. We report optimal temperature, RNA preservation reagents, shear force and trypsinization conditions necessary to minimize changes in the stress-related gene expression levels. The method and experimental findings are broadly applicable and can be used by a broad research community working in the field of single cell analysis. PMID:24957932
Orabi, Mohamed A A; Taniguchi, Shoko; Sakagami, Hiroshi; Yoshimura, Morio; Yoshida, Takashi; Hatano, Tsutomu
2013-05-24
Three new ellagitannin monomers, nilotinins M5-M7 (1-3), a dimer, nilotinin D10 (4), and a trimer, nilotinin T1 (5), together with three known dimers, hirtellin D (7) and tamarixinins B (8) and C (9), and a trimer, hirtellin T2 (6), were isolated from Tamarix nilotica dried leaves. The structures of the tannins were elucidated by intensive spectroscopic methods and chemical conversions into known tannins. The new trimer (5) is a unique macrocyclic type whose monomeric units are linked together by an isodehydrodigalloyl and two dehydrodigalloyl moieties. Additionally, dimeric and trimeric macrocyclic-type tannins isolated from T. nilotica in this study were assessed for possible cytotoxic activity against four human tumor cell lines. Tumor-selective cytotoxicities of the tested compounds were higher than those of synthetic and natural potent cytotoxic compounds, including polyphenols, and comparable with those of 5-fluorouracil and melphalan.
Kim, Han Hyuk; Kim, Dong Hee; Oh, Myeong Hwan; Park, Kwang Jun; Heo, Jun Hyeok; Lee, Min Won
2015-01-01
The aim of this study was to investigate the effect of Quercus mongolica (QM) which induce anti-photoaging process of skin in vitro. Bioassay-guided isolation of 80 % Me2CO extract of the leaves of QM led to the isolation and identification of six known phenolic compounds: pedunculagin (1), (-)-epigallocatechin (2), (+)-catechin (3), quercetin 3-O-(6″-O-galloyl)-β-D-glucopyranoside (4), kaempferol-3-O-β-D-glucopyranoside-7-O-α-L-rhamnopyranoside (5) and kaempferol 3-O-(6″-galloyl)-β-D-glucopyranoside (6). The effects of compounds 1-6 on expression of matrix metalloproteinase-1 (MMP-1) and type-I procollagen were further evaluated. Among them, compound 1 showed potent inhibitory effect on MMP-1 and the increased type-I procollagen synthesis in ultraviolet B-induced human fibroblast. These results suggest that pedunculagin, an ellagitannin, is a potential candidate for the prevention and treatment of skin aging.
Simon, Jeremy M.; Giresi, Paul G.; Davis, Ian J.; Lieb, Jason D.
2013-01-01
Eviction or destabilization of nucleosomes from chromatin is a hallmark of functional regulatory elements of the eukaryotic genome. Historically identified by nuclease hypersensitivity, these regulatory elements are typically bound by transcription factors or other regulatory proteins. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) is an alternative approach to identify these genomic regions and has proven successful in a multitude of eukaryotic cell and tissue types. Cells or dissociated tissues are crosslinked briefly with formaldehyde, lysed, and sonicated. Sheared chromatin is subjected to phenol-chloroform extraction and the isolated DNA, typically encompassing 1–3% of the human genome, is purified. We provide guidelines for quantitative analysis by PCR, microarrays, or next-generation sequencing. Regulatory elements enriched by FAIRE display high concordance with those identified by nuclease hypersensitivity or ChIP, and the entire procedure can be completed in three days. FAIRE exhibits low technical variability, which allows its use in large-scale studies of chromatin from normal or diseased tissues. PMID:22262007
Isolation of Precursor Cells from Waste Solid Fat Tissue
NASA Technical Reports Server (NTRS)
Byerly, Diane; Sognier, Marguerite A.
2009-01-01
A process for isolating tissue-specific progenitor cells exploits solid fat tissue obtained as waste from such elective surgical procedures as abdominoplasties (tummy tucks) and breast reductions. Until now, a painful and risky process of aspiration of bone marrow has been used to obtain a limited number of tissue- specific progenitor cells. The present process yields more tissue-specific progenitor cells and involves much less pain and risk for the patient. This process includes separation of fat from skin, mincing of the fat into small pieces, and forcing a fat saline mixture through a sieve. The mixture is then digested with collagenase type I in an incubator. After centrifugation tissue-specific progenitor cells are recovered and placed in a tissue-culture medium in flasks or Petri dishes. The tissue-specific progenitor cells can be used for such purposes as (1) generating three-dimensional tissue equivalent models for studying bone loss and muscle atrophy (among other deficiencies) and, ultimately, (2) generating replacements for tissues lost by the fat donor because of injury or disease.
NASA Astrophysics Data System (ADS)
McGuire, Michael J.; Gray, Bethany Powell; Li, Shunzi; Cupka, Dorothy; Byers, Lauren Averett; Wu, Lei; Rezaie, Shaghayegh; Liu, Ying-Horng; Pattisapu, Naveen; Issac, James; Oyama, Tsukasa; Diao, Lixia; Heymach, John V.; Xie, Xian-Jin; Minna, John D.; Brown, Kathlynn C.
2014-03-01
Tumor targeting ligands are emerging components in cancer therapies. Widespread use of targeted therapies and molecular imaging is dependent on increasing the number of high affinity, tumor-specific ligands. Towards this goal, we biopanned three phage-displayed peptide libraries on a series of well-defined human non-small cell lung cancer (NSCLC) cell lines, isolating 11 novel peptides. The peptides show distinct binding profiles across 40 NSCLC cell lines and do not bind normal bronchial epithelial cell lines. Binding of specific peptides correlates with onco-genotypes and activation of particular pathways, such as EGFR signaling, suggesting the peptides may serve as surrogate markers. Multimerization of the peptides results in cell binding affinities between 0.0071-40 nM. The peptides home to tumors in vivo and bind to patient tumor samples. This is the first comprehensive biopanning for isolation of high affinity peptidic ligands for a single cancer type and expands the diversity of NSCLC targeting ligands.
McGuire, Michael J.; Gray, Bethany Powell; Li, Shunzi; Cupka, Dorothy; Byers, Lauren Averett; Wu, Lei; Rezaie, Shaghayegh; Liu, Ying-Horng; Pattisapu, Naveen; Issac, James; Oyama, Tsukasa; Diao, Lixia; Heymach, John V.; Xie, Xian-Jin; Minna, John D.; Brown, Kathlynn C.
2014-01-01
Tumor targeting ligands are emerging components in cancer therapies. Widespread use of targeted therapies and molecular imaging is dependent on increasing the number of high affinity, tumor-specific ligands. Towards this goal, we biopanned three phage-displayed peptide libraries on a series of well-defined human non-small cell lung cancer (NSCLC) cell lines, isolating 11 novel peptides. The peptides show distinct binding profiles across 40 NSCLC cell lines and do not bind normal bronchial epithelial cell lines. Binding of specific peptides correlates with onco-genotypes and activation of particular pathways, such as EGFR signaling, suggesting the peptides may serve as surrogate markers. Multimerization of the peptides results in cell binding affinities between 0.0071–40 nM. The peptides home to tumors in vivo and bind to patient tumor samples. This is the first comprehensive biopanning for isolation of high affinity peptidic ligands for a single cancer type and expands the diversity of NSCLC targeting ligands. PMID:24670678
Virgibacillus halophilus sp. nov., spore-forming bacteria isolated from soil in Japan.
An, Sun-Young; Asahara, Mika; Goto, Keiichi; Kasai, Hiroaki; Yokota, Akira
2007-07-01
Two Gram-positive, round-spore-forming, rod-shaped, halophilic bacterial strains, 5B73C(T) and 5B133E, were isolated from field soil in Kakegawa, Shizuoka, Japan, and were characterized taxonomically using a polyphasic approach. These two strains were found to comprise strictly aerobic, motile rods that formed subterminal endospores. Phylogenetic analyses based on 16S rRNA gene sequences showed that strains 5B73C(T) and 5B133E are phylogenetically affiliated to the genus Virgibacillus, exhibiting sequence similarities of 94.1-96.4 % with respect to the type strains of Virgibacillus species. The DNA G+C contents of strains 5B73C(T) and 5B133E were 42.6 and 42.3 mol%, respectively. The cell-wall peptidoglycan type (meso-diaminopimelic acid), the major cellular fatty acids (anteiso-C(15 : 0), iso-C(15 : 0), anteiso-C(17 : 0) and iso-C(16 : 0)) and the quinone type (MK-7) of the isolates support their affiliation to the genus Virgibacillus. On the basis of their genotypic and phenotypic characteristics, the isolates represent a novel species of the genus Virgibacillus, for which the name Virgibacillus halophilus sp. nov. is proposed. The type strain is 5B73C(T) (=IAM 15308(T)=KCTC 13935(T)).
Effect of cholesterol depletion on exocytosis of alveolar type II cells.
Chintagari, Narendranath Reddy; Jin, Nili; Wang, Pengcheng; Narasaraju, Telugu Akula; Chen, Jiwang; Liu, Lin
2006-06-01
Alveolar epithelial type II cells secrete lung surfactant via exocytosis. Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) are implicated in this process. Lipid rafts, the cholesterol- and sphingolipid-rich microdomains, may offer a platform for protein organization on the cell membrane. We tested the hypothesis that lipid rafts organize exocytotic proteins in type II cells and are essential for the fusion of lamellar bodies, the secretory granules of type II cells, with the plasma membrane. The lipid rafts, isolated from type II cells using 1% Triton X-100 and a sucrose gradient centrifugation, contained the lipid raft markers, flotillin-1 and -2, whereas they excluded the nonraft marker, Na+-K+ ATPase. SNAP-23, syntaxin 2, and VAMP-2 were enriched in lipid rafts. When type II cells were depleted of cholesterol, the association of SNAREs with the lipid rafts was disrupted and the formation of fusion pore was inhibited. Furthermore, the cholesterol-depleted plasma membrane had less ability to fuse with lamellar bodies, a process mediated by annexin A2. The secretagogue-stimulated secretion of lung surfactant from type II cells was also reduced by methyl-beta-cyclodextrin. When the raft-associated cell surface protein, CD44, was cross-linked using anti-CD44 antibodies, the CD44 clusters were observed. Syntaxin 2, SNAP-23, and annexin A2 co-localized with the CD44 clusters, which were cholesterol dependent. Our results suggested that lipid rafts may form a functional platform for surfactant secretion in alveolar type II cells, and raft integrity was essential for the fusion between lamellar bodies with the plasma membrane.
Lentendu, Guillaume; Hübschmann, Thomas; Müller, Susann; Dunker, Susanne; Buscot, François; Wilhelm, Christian
2013-12-01
Eukaryotic unicellular organisms are an important part of the soil microbial community, but they are often neglected in soil functional microbial diversity analysis, principally due to the absence of specific investigation methods in the special soil environment. In this study we used a method based on high-density centrifugation to specifically isolate intact algal and yeast cells, with the aim to analyze them with flow cytometry and sort them for further molecular analysis such as deep sequencing. Recovery efficiency was tested at low abundance levels that fit those in natural environments (10(4) to 10(6) cells per g soil). Five algae and five yeast morphospecies isolated from soil were used for the testing. Recovery efficiency was between 1.5 to 43.16% and 2 to 30.2%, respectively, and was dependent on soil type for three of the algae. Control treatments without soil showed that the majority of cells were lost due to the method itself (58% and 55.8% respectively). However, the cell extraction technique did not much compromise cell vitality because a fluorescein di-acetate assay indicated high viability percentages (73.3% and 97.2% of cells, respectively). The low abundant algae and yeast morphospecies recovered from soil were cytometrically analyzed and sorted. Following, their DNA was isolated and amplified using specific primers. The developed workflow enables isolation and enrichment of intact autotrophic and heterotrophic soil unicellular eukaryotes from natural environments for subsequent application of deep sequencing technologies. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Kwak, Minsuk; Kim, Dong-Joo; Lee, Mi-Ri; Wu, Yu; Han, Lin; Lee, Sang-Kwon; Fan, Rong
2014-05-01
Despite the presence of the blood-brain barrier (BBB) that restricts the entry of immune cells and mediators into the central nervous system (CNS), a small number of peripheral leukocytes can traverse the BBB and infiltrate into the CNS. The cerebrospinal fluid (CSF) is one of the major routes through which trafficking leukocytes migrate into the CNS. Therefore, the number of leukocytes and their phenotypic compositions in the CSF may represent important sources to investigate immune-to-brain interactions or diagnose and monitor neurodegenerative diseases. Due to the paucity of trafficking leucocytes in the CSF, a technology capable of efficient isolation, enumeration, and molecular typing of these cells in the clinical settings has not been achieved. In this study, we report on a biofunctionalized silicon nanowire array chip for highly efficient capture and multiplexed phenotyping of rare trafficking leukocytes in small quantities (50 microliters) of clinical CSF specimens collected from neurodegenerative disease patients. The antibody coated 3D nanostructured materials exhibited vastly improved rare cell capture efficiency due to high-affinity binding and enhanced cell-substrate interactions. Moreover, our platform creates multiple cell capture interfaces, each of which can selectively isolate specific leukocyte phenotypes. A comparison with the traditional immunophenotyping using flow cytometry demonstrated that our novel silicon nanowire-based rare cell analysis platform can perform rapid detection and simultaneous molecular characterization of heterogeneous immune cells. Multiplexed molecular typing of rare leukocytes in CSF samples collected from Alzheimer's disease patients revealed the elevation of white blood cell counts and significant alterations in the distribution of major leukocyte phenotypes. Our technology represents a practical tool for potentially diagnosing and monitoring the pathogenesis of neurodegenerative diseases by allowing an effective hematological analysis of the CSF from patients.Despite the presence of the blood-brain barrier (BBB) that restricts the entry of immune cells and mediators into the central nervous system (CNS), a small number of peripheral leukocytes can traverse the BBB and infiltrate into the CNS. The cerebrospinal fluid (CSF) is one of the major routes through which trafficking leukocytes migrate into the CNS. Therefore, the number of leukocytes and their phenotypic compositions in the CSF may represent important sources to investigate immune-to-brain interactions or diagnose and monitor neurodegenerative diseases. Due to the paucity of trafficking leucocytes in the CSF, a technology capable of efficient isolation, enumeration, and molecular typing of these cells in the clinical settings has not been achieved. In this study, we report on a biofunctionalized silicon nanowire array chip for highly efficient capture and multiplexed phenotyping of rare trafficking leukocytes in small quantities (50 microliters) of clinical CSF specimens collected from neurodegenerative disease patients. The antibody coated 3D nanostructured materials exhibited vastly improved rare cell capture efficiency due to high-affinity binding and enhanced cell-substrate interactions. Moreover, our platform creates multiple cell capture interfaces, each of which can selectively isolate specific leukocyte phenotypes. A comparison with the traditional immunophenotyping using flow cytometry demonstrated that our novel silicon nanowire-based rare cell analysis platform can perform rapid detection and simultaneous molecular characterization of heterogeneous immune cells. Multiplexed molecular typing of rare leukocytes in CSF samples collected from Alzheimer's disease patients revealed the elevation of white blood cell counts and significant alterations in the distribution of major leukocyte phenotypes. Our technology represents a practical tool for potentially diagnosing and monitoring the pathogenesis of neurodegenerative diseases by allowing an effective hematological analysis of the CSF from patients. Electronic supplementary information (ESI) available: Additional data are available in the supplementary tables and supplementary figures. See DOI: 10.1039/c3nr06465d
Sustained and transient calcium currents in horizontal cells of the white bass retina.
Sullivan, J M; Lasater, E M
1992-01-01
Calcium currents were recorded from cultured horizontal cells (HCs) isolated from adult white bass retinas, using the whole-cell patch-clamp technique. Ca2+ currents were enhanced using 10 mM extracellular Ca2+, while Na+ and K+ currents were pharmacologically suppressed. Two components of the Ca2+ current, one transient, the other sustained, were found. The large transient component of the Ca2+ current, which has not been seen before in HCs, is similar, but not identical, to the T-type Ca2+ current described previously in a variety of preparations. The sustained component of the Ca2+ current is similar, but not identical, to the L-type current described in other preparations. FTX, a factor isolated from the venom of the funnel-web spider, Agelenopsis aperta, preferentially and irreversibly blocks the sustained component of the Ca2+ current at very dilute concentrations. The sustained component of the Ca2+ current inactivates slowly, over the course of 15-60 s, in some HCs. This inactivation of the sustained Ca2+ current, when present, is primarily voltage dependent rather than Ca2+ dependent.
Sustained and transient calcium currents in horizontal cells of the white bass retina
1992-01-01
Calcium currents were recorded from cultured horizontal cells (HCs) isolated from adult white bass retinas, using the whole-cell patch- clamp technique. Ca2+ currents were enhanced using 10 mM extracellular Ca2+, while Na+ and K+ currents were pharmacologically suppressed. Two components of the Ca2+ current, one transient, the other sustained, were found. The large transient component of the Ca2+ current, which has not been seen before in HCs, is similar, but not identical, to the T-type Ca2+ current described previously in a variety of preparations. The sustained component of the Ca2+ current is similar, but not identical, to the L-type current described in other preparations. FTX, a factor isolated from the venom of the funnel-web spider, Agelenopsis aperta, preferentially and irreversibly blocks the sustained component of the Ca2+ current at very dilute concentrations. The sustained component of the Ca2+ current inactivates slowly, over the course of 15- 60 s, in some HCs. This inactivation of the sustained Ca2+ current, when present, is primarily voltage dependent rather than Ca2+ dependent. PMID:1371309
Weng, Daihui; Lei, Yingfeng; Dong, Yangchao; Han, Peijun; Ye, Chuantao; Yang, Jing; Wang, Yuan; Yin, Wen
2015-12-01
To construct the plasmid expressing the fusion protein of Dengue virus type 2 (DENV2) nonstructural protein 3 (NS3) with affinity tag, and isolate the cellular proteins interacting with NS3 protein using tandem affinity purification (TAP) assay. Primers for amplifying NS3 gene were designed according to the sequence of DENV2 genome and chemically synthesized. The NS3 fragments, after amplified by PCR with DENV2 cDNA as template, were digested and cloned into the mammalian eukaryotic expression vector pCI-SF with the tandem affinity tag (FLAG-StrepII). The recombinant pCI-NS3-SF was transiently transformed by Lipofectamine(TM) 2000 into HEK293T cells, and the expression of the fusion protein was confirmed by Western blotting. Cellular proteins that interacted with NS3 were isolated and purified by TAP assay. The eukaryotic expression vector expressing NS3 protein was successfully constructed. The host proteins interacting with NS3 protein were isolated by TAP system. TAP is an efficient method to isolate the cellular proteins interacting with DENV2 NS3.
Larsen, Erik Hviid
2011-07-01
In 1937, August Krogh discovered a powerful active Cl(-) uptake mechanism in frog skin. After WWII, Hans Ussing continued the studies on the isolated skin and discovered the passive nature of the chloride uptake. The review concludes that the two modes of transport are associated with a minority cell type denoted as the γ-type mitochondria-rich (MR) cell, which is highly specialized for epithelial Cl(-) uptake whether the frog is in the pond of low [NaCl] or the skin is isolated and studied by Ussing chamber technique. One type of apical Cl(-) channels of the γ-MR cell is activated by binding of Cl(-) to an external binding site and by membrane depolarization. This results in a tight coupling of the uptake of Na(+) by principal cells and Cl(-) by MR cells. Another type of Cl(-) channels (probably CFTR) is involved in isotonic fluid uptake. It is suggested that the Cl(-) channels serve passive uptake of Cl(-) from the thin epidermal film of fluid produced by mucosal glands. The hypothesis is evaluated by discussing the turnover of water and ions of the epidermal surface fluid under terrestrial conditions. The apical Cl(-) channels close when the electrodiffusion force is outwardly directed as it is when the animal is in the pond. With the passive fluxes eliminated, the Cl(-) flux is governed by active transport and evidence is discussed that this is brought about by an exchange of cellular HCO(3) (-) with Cl(-) of the outside bath driven by an apical H(+) V-ATPase. © 2011 The Author. Acta Physiologica © 2011 Scandinavian Physiological Society.
Recruited brain tumor-derived mesenchymal stem cells contribute to brain tumor progression.
Behnan, Jinan; Isakson, Pauline; Joel, Mrinal; Cilio, Corrado; Langmoen, Iver A; Vik-Mo, Einar O; Badn, Wiaam
2014-05-01
The identity of the cells that contribute to brain tumor structure and progression remains unclear. Mesenchymal stem cells (MSCs) have recently been isolated from normal mouse brain. Here, we report the infiltration of MSC-like cells into the GL261 murine glioma model. These brain tumor-derived mesenchymal stem cells (BT-MSCs) are defined with the phenotype (Lin-Sca-1+CD9+CD44+CD166+/-) and have multipotent differentiation capacity. We show that the infiltration of BT-MSCs correlates to tumor progression; furthermore, BT-MSCs increased the proliferation rate of GL261 cells in vitro. For the first time, we report that the majority of GL261 cells expressed mesenchymal phenotype under both adherent and sphere culture conditions in vitro and that the non-MSC population is nontumorigenic in vivo. Although the GL261 cell line expressed mesenchymal phenotype markers in vitro, most BT-MSCs are recruited cells from host origin in both wild-type GL261 inoculated into green fluorescent protein (GFP)-transgenic mice and GL261-GFP cells inoculated into wild-type mice. We show the expression of chemokine receptors CXCR4 and CXCR6 on different recruited cell populations. In vivo, the GL261 cells change marker profile and acquire a phenotype that is more similar to cells growing in sphere culture conditions. Finally, we identify a BT-MSC population in human glioblastoma that is CD44+CD9+CD166+ both in freshly isolated and culture-expanded cells. Our data indicate that cells with MSC-like phenotype infiltrate into the tumor stroma and play an important role in tumor cell growth in vitro and in vivo. Thus, we suggest that targeting BT-MSCs could be a possible strategy for treating glioblastoma patients. © 2013 AlphaMed Press.
Isolation and culture of adult mouse vestibular nucleus neurons
Him, Aydın; Altuntaş, Serap; Öztürk, Gürkan; Erdoğan, Ender; Cengiz, Nureddin
2017-12-19
Background/aim: Isolated cell cultures are widely used to study neuronal properties due to their advantages. Although embryonic animals are preferred for culturing, their morphological or electrophysiological properties may not reflect adult neurons, which may be important in neurodegenerative diseases. This paper aims to develop a method for preparing isolated cell cultures of medial vestibular nucleus (MVN) from adult mice and describe its morphological and electrophysiological properties.Materials and methods: Vestibular nucleus neurons were mechanically and enzymatically isolated and cultured using a defined medium with known growth factors. Cell survival was measured with propidium iodide, and electrophysiological properties were investigated with current-clamp recording.Results: Vestibular neurons grew neurites in cultures, gaining adult-like morphological properties, and stayed viable for 3 days in culture. Adding bovine calf serum, nerve growth factor, or insulin-like growth factor into the culture medium enhanced neuronal viability. Current-clamp recording of the cultured neurons revealed tonic and phasic-type neurons with similar input resistance, resting membrane potential, action potential amplitude, and duration. Conclusion: Vestibular neurons from adult mice can be cultured, and regenerate axons in a medium containing appropriate growth factors. Culturing adult vestibular neurons provides a new method to study age-related pathologies of the vestibular system.
Babu, Ellappan; Ananth, Sudha; Veeranan-Karmegam, Rajalakshmi; Coothankandaswamy, Veena; Smith, Sylvia B.; Boettger, Thomas; Ganapathy, Vadivel
2011-01-01
Purpose. To evaluate the role of SLC5A8 in the transport of 2-oxothiazolidine-4-carboxylate (OTC) and to determine whether OTC augments glutathione production in RPE cells, thereby providing protection against oxidative stress. Methods. SLC5A8-mediated transport of OTC was monitored in Xenopus laevis oocytes by electrophysiological means. Saturation kinetics, Na+-activation kinetics, and inhibition by ibuprofen were analyzed by monitoring OTC-induced currents as a measure of transport activity. Oxidative stress was induced in ARPE-19 cells and primary RPE cells isolated from wild type and Slc5a8-/- mouse retinas using H2O2, and the effects of OTC on cell death and intracellular glutathione concentration were examined. Results. Heterologous expression of human SLC5A8 in X. laevis oocytes induced Na+-dependent inward currents in the presence of OTC under voltage-clamp conditions. The transport of OTC via SLC5A8 was saturable, with a Kt of 104 ± 3 μM. The Na+-activation kinetics was sigmoidal with a Hill coefficient of 1.9 ± 0.1, suggesting involvement of two Na+ in the activation process. Ibuprofen, a blocker of SLC5A8, inhibited SLC5A8-mediated OTC transport; the concentration necessary for half-maximal inhibition was 17 ± 1 μM. OTC increased glutathione levels and protected ARPE-19 and primary RPE cells isolated from wild type mouse retinas from H2O2-induced cell death. These effects were abolished in primary RPE isolated from Slc5a8-/- mouse retinas. Conclusions. OTC is a transportable substrate for SLC5A8. OTC augments glutathione production in RPE cells, thereby protecting them from oxidative damage. Transport via SLC5A8 is obligatory for this process. PMID:21508099
Method for isolating chromosomal DNA in preparation for hybridization in suspension
Lucas, Joe N.
2000-01-01
A method is provided for detecting nucleic acid sequence aberrations using two immobilization steps. According to the method, a nucleic acid sequence aberration is detected by detecting nucleic acid sequences having both a first nucleic acid sequence type (e.g., from a first chromosome) and a second nucleic acid sequence type (e.g., from a second chromosome), the presence of the first and the second nucleic acid sequence type on the same nucleic acid sequence indicating the presence of a nucleic acid sequence aberration. In the method, immobilization of a first hybridization probe is used to isolate a first set of nucleic acids in the sample which contain the first nucleic acid sequence type. Immobilization of a second hybridization probe is then used to isolate a second set of nucleic acids from within the first set of nucleic acids which contain the second nucleic acid sequence type. The second set of nucleic acids are then detected, their presence indicating the presence of a nucleic acid sequence aberration. Chromosomal DNA in a sample containing cell debris is prepared for hybridization in suspension by treating the mixture with RNase. The treated DNA can also be fixed prior to hybridization.
Shim, J W; Elder, S H
2006-11-01
The goal of this study was to demonstrate whether cyclically imposed hydrostatic pressure, compressive in nature, could induce fibrocartilaginous metaplasia in a purely tendinous cell source in vitro. The effect of short-duration cyclic hydrostatic pressure on tendon fibroblasts (tenocytes) expanded from rat Achilles tendon was studied. Total RNA was isolated either immediately after loading or 24 h later. The mRNA expression of tendon and cartilage specific markers - Collagen types I and II, Sox9, and Aggrecan was quantified by real-time reverse transcription polymerase chain reaction over multiple biological samples (n=6). For immediately isolated RNA samples, there were statistically significant increases in mRNA expression of Aggrecan and Collagen type II, while Collagen type I significantly decreased. Noticeably, for RNA samples isolated 24 h later, there were further increases in mRNA expression of Aggrecan and Collagen type II, whereas Collagen type I increased roughly three-fold relative to the non-loaded control. These findings support the hypothesis that cyclic hydrostatic pressurization can induce fibrocartilaginous metaplasia in tenocytes by upregulation of cartilaginous gene expression. Also, it was demonstrated that changes in mRNA expression as a result of single 2 h pressurization persist even up to 24 h.
Liljeqvist, Jan-Ake; Trybala, Edward; Hoebeke, Johan; Svennerholm, Bo; Bergström, Tomas
2002-01-01
Glycoprotein G-2 (gG-2) of herpes simplex virus type 2 (HSV-2) is cleaved to a secreted amino-terminal portion (sgG-2) and to a cell-associated carboxy-terminal portion which is further O-glycosylated to constitute the mature gG-2 (mgG-2). In contrast to mgG-2, which is known to elicit a type-specific antibody response in the human host, information on the immunogenic properties of sgG-2 is lacking. Here the sgG-2 protein was purified on a heparin column and used for production of monoclonal antibodies (mAbs). Four anti-sgG-2 mAbs were mapped using a Pepscan technique and identified linear epitopes which localized to the carboxy-terminal part of the protein. One additional anti-sgG-2 mAb, recognizing a non-linear epitope, was reactive to three discrete peptide stretches where the most carboxy-terminally located stretch was constituted by the amino acids (320)RRAL(323). Although sgG-2 is rapidly secreted into the cell-culture medium after infection, the anti-sgG-2 mAbs identified substantial amounts of sgG-2 in the cytoplasm of HSV-2-infected cells. All of the anti-sgG-2 mAbs were HSV-2 specific showing no cross-reactivity to HSV-1 antigen or to HSV-1-infected cells. Similarly, sera from 50 HSV-2 isolation positive patients were all reactive to sgG-2 in an enzyme immunoassay whilst no reactivity was seen in 25 sera from HSV-1 isolation positive patients or in 25 serum samples from HSV-negative patients suggesting that sgG-2 is a novel antigen potentially suitable for type-discriminating serodiagnosis.
AKAP150 mediates TRPV1 sensitivity to phosphatidylinositol-4, 5-bisphosphate
Jeske, Nathaniel A.; Por, Elaine D.; Belugin, Sergei; Chaudhury, Sraboni; Berg, Kelly A.; Akopian, Armen N.; Henry, Michael A.; Gomez, Ruben
2011-01-01
A-kinase anchoring protein 150 (AKAP150) is a scaffolding protein that controls protein kinase A- and C-mediated phosphorylation of the transient receptor potential family V type 1 (TRPV1), dictating receptor response to nociceptive stimuli. The phospholipid phosphatidylinositol-4,5-bisphosphate (PIP2) anchors AKAP150 to the plasma membrane in naïve conditions, and also affects TRPV1 activity. In the present study, we sought to determine whether the effects of PIP2 on TRPV1 are mediated through AKAP150. In trigeminal neurons and CHO cells, the manipulation of cellular PIP2 led to significant changes in the association of AKAP150 and TRPV1. Following PIP2 degradation, increased TRPV1:AKAP150 co-immunoprecipitation was observed, resulting in increased receptor response to capsaicin treatment. Phospholipase C activation in neurons isolated from AKAP150−/− animals indicated that PIP2 -mediated inhibition of TRPV1 in the whole cell environment requires expression of the scaffolding protein. Furthermore, the addition of PIP2 to neurons isolated from AKAP150 wild-type mice reduced PKA-sensitization of TRPV1 compared to isolated neurons from AKAP150−/− mice. These findings suggest that PIP2 degradation increases AKAP150 association with TRPV1 in the whole cell environment, leading to sensitization of the receptor to nociceptive stimuli. PMID:21653872
Tzeng, Huei-Ping; Fan, Jinping; Vallejo, Jesus G.; Dong, Jian Wen; Chen, Xiongwen; Houser, Steven R.; Mann, Douglas L.
2013-01-01
HMGB1 released from necrotic cells or macrophages functions as a late inflammatory mediator, and has been shown to induce cardiovascular collapse during sepsis. Thus far, however, the effect(s) of HMGB1 in the heart are not known. We determined the effects of HMGB1 on isolated feline cardiac myocytes by measuring sarcomere shortening in contracting cardiac myocytes, intracellular Ca2+ transients using fluo-3, and L-type calcium currents using whole cell perforate configuration of the patch clamp technique. Treatment of isolated myocytes with HMGB1 (100 ng/ml) resulted in a 70% decrease in sarcomere shortening and a 50% decrease in the height of the peak Ca++ transient within 5 min (p <0.01). The immediate negative inotropic effects HMGB1 on cell contractility and calcium homeostasis were partially reversible upon washout of HMGB1. A significant inhibition of the inward L-type calcium currents also was documented by the patch clamp technique. HMGB1 induced the PKCε translocation and a PKC inhibitor significantly attenuated the negative inotropic effects of HMGB1. These studies show for the first time that HMGB1 impairs sarcomere shortening by decreasing calcium availability in cardiac myocytes through modulating membrane calcium influx, and suggest that HMGB1 maybe act as a novel myocardial depressant factor during cardiac injury. PMID:18223193
Fucosylation is a common glycosylation type in pancreatic cancer stem cell-like phenotypes.
Terao, Naoko; Takamatsu, Shinji; Minehira, Tomomi; Sobajima, Tomoaki; Nakayama, Kotarosumitomo; Kamada, Yoshihiro; Miyoshi, Eiji
2015-04-07
To evaluate/isolate cancer stem cells (CSCs) from tissue or cell lines according to various definitions and cell surface markers. Lectin microarray analysis was conducted on CSC-like fractions of the human pancreatic cancer cell line Panc1 by establishing anti-cancer drug-resistant cells. Changes in glycan structure of CSC-like cells were also investigated in sphere-forming cells as well as in CSC fractions obtained from overexpression of CD24 and CD44. Several types of fucosylation were increased under these conditions, and the expression of fucosylation regulatory genes such as fucosyltransferases, GDP-fucose synthetic enzymes, and GDP-fucose transporters were dramatically enhanced in CSC-like cells. These changes were significant in gemcitabine-resistant cells and sphere cells of a human pancreatic cancer cell line, Panc1. However, downregulation of cellular fucosylation by knockdown of the GDP-fucose transporter did not alter gemcitabine resistance, indicating that increased cellular fucosylation is a result of CSC-like transformation. Fucosylation might be a biomarker of CSC-like cells in pancreatic cancer.
Isolation and characterization of a c-type lysozyme from the nurse shark.
Hinds Vaughan, Nichole; Smith, Sylvia L
2013-12-01
Lysozyme is a ubiquitous antibacterial enzyme that occurs in numerous invertebrate and vertebrate species. Three forms have been described c-type, g-type and i-type which differ in primary structure. Shark lysozyme has not been characterized; here we report on the isolation and characterization of lysozyme from unstimulated shark (Ginglymostoma cirratum) leukocytes and provide amino acid sequence data across the highly conserved active site of the molecule identifying it to be a c-type lysozyme. A leukocyte lysate was applied either (a) to the first of two sequential DE-52 cellulose columns or alternatively, (b) to a DEAE-Sepharose column. Lysozyme activity in lysate and active fractions was identified by zones of lysis of Micrococcus lysodeikticus cell walls on lysoplates and zones of growth inhibition in agar diffusion assays using Planococcus citreus as the target organism. SDS-PAGE analysis revealed a 14 kDa protein which was identified as lysozyme by mass spectroscopic analysis of peptides, reactivity against anti-HEWL antibodies on a Western blot, hydrolysis of M. lysodeikticus cell walls, and inhibition of growth of P. citreus on AU-gel blots in which the area of growth inhibition correlated to a 14 kDa protein. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lactococcus petauri sp. nov., isolated from an abscess of a sugar glider
Goodman, Laura B.; Lawton, Marie R.; Franklin-Guild, Rebecca J.; Anderson, Renee R.; Schaan, Lynn; Thachil, Anil J.; Wiedmann, Martin; Miller, Claire B.; Alcaine, Samuel D.; Kovac, Jasna
2017-01-01
A strain of lactic acid bacteria, designated 159469T, isolated from a facial abscess in a sugar glider, was characterized genetically and phenotypically. Cells of the strain were Gram-stain-positive, coccoid and catalase-negative. Morphological, physiological and phylogenetic data indicated that the isolate belongs to the genus Lactococcus. Strain 159469T was closely related to Lactococcus garvieae ATCC 43921T, showing 95.86 and 98.08 % sequence similarity in 16S rRNA gene and rpoB gene sequences, respectively. Furthermore, a pairwise average nucleotide identity blast (ANIb) value of 93.54 % and in silico DNA–DNA hybridization value of 50.7 % were determined for the genome of strain 159469T, when compared with the genome of the type strain of Lactococcus garvieae. Based on the data presented here, the isolate represents a novel species of the genus Lactococcus, for which the name Lactococcus petauri sp. nov. is proposed. The type strain is 159469T (=LMG 30040T=DSM 104842T). PMID:28945531
Lactococcus petauri sp. nov., isolated from an abscess of a sugar glider.
Goodman, Laura B; Lawton, Marie R; Franklin-Guild, Rebecca J; Anderson, Renee R; Schaan, Lynn; Thachil, Anil J; Wiedmann, Martin; Miller, Claire B; Alcaine, Samuel D; Kovac, Jasna
2017-11-01
A strain of lactic acid bacteria, designated 159469 T , isolated from a facial abscess in a sugar glider, was characterized genetically and phenotypically. Cells of the strain were Gram-stain-positive, coccoid and catalase-negative. Morphological, physiological and phylogenetic data indicated that the isolate belongs to the genus Lactococcus. Strain 159469 T was closely related to Lactococcus garvieae ATCC 43921 T , showing 95.86 and 98.08 % sequence similarity in 16S rRNA gene and rpoB gene sequences, respectively. Furthermore, a pairwise average nucleotide identity blast (ANIb) value of 93.54 % and in silico DNA-DNA hybridization value of 50.7 % were determined for the genome of strain 159469 T , when compared with the genome of the type strain of Lactococcus garvieae. Based on the data presented here, the isolate represents a novel species of the genus Lactococcus, for which the name Lactococcus petauri sp. nov. is proposed. The type strain is 159469 T (=LMG 30040 T =DSM 104842 T ).
Zhang, Leyi; Li, Yi; Wang, Xin; Shangguan, Zhihui; Zhou, Haijian; Wu, Yuejin; Wang, Lianghuai; Ren, Hongyu; Hu, Yun; Lin, Meifen; Qin, Tian
2017-02-24
Natural and engineered water systems are the main sources of Legionnaires' disease. It is essential from a public health perspective to survey water environments for the existence of Legionella . To analyze the main serogroups, genotypes and pathogenicity of the pathogen, a stratified sampling method was adopted to collect water samples randomly from shower water, cooling tower water, and local public hot springs in Wenzhou, China. Suspected strains were isolated from concentrated water samples. Serum agglutination assay and real-time PCR (Polymerase chain reaction) were used to identify L. pneumophila . Sequence-based typing (SBT) and pulsed-field gel electrophoresis (PFGE) were used to elucidate the genetic polymorphisms in the collected isolates. The intracellular growth ability of the isolates was determined through their interaction with J774 cells and plating them onto BCYE (Buffered Charcoal Yeast Extract) agar plates. Overall, 25.56% (46/180) of water samples were Legionella -positive; fifty-two strains were isolated and two kinds of serogroups were co-detected from six water samples from 2015 to 2016. Bacterial concentrations ranged from 20 CFU/100 mL to 10,720 CFU/100 mL. In detail, the Legionella -positive rates of shower water, cooling tower water and hot springs water were 15.45%, 13.33%, and 62.5%, respectively. The main serogroups were LP1 (30.69%) and LP3 (28.85%) and all strains carried the dot gene. Among them, 52 isolates and another 10 former isolates were analyzed by PFGE. Nineteen distinct patterns were observed in 52 strains isolated from 2015 to 2016 with three patterns being observed in 10 strains isolated from 2009 to 2014. Seventy-three strains containing 52 from this study and 21 former isolates were selected for SBT analysis and divided into 25 different sequence types in 4 main clonal groups belonging to 4 homomorphic types. Ten strains were chosen to show their abilities to grow and multiply in J744 cells. Taken together, our results demonstrate a high prevalence and genetic polymorphism of Legionella in Wenzhou's environmental water system. The investigated environmental water sources pose a potential threat to the public where intervention could help to prevent the occurrence of Legionnaires' disease.