Science.gov

Sample records for isolated wetland implications

  1. Are isolated wetlands isolated?

    USGS Publications Warehouse

    Smith, Loren M.; Euliss, Ned H.; Haukos, David A.

    2011-01-01

    While federal regulations during the past 10 years have treated isolated wetlands as unconnected to aquatic resources protected by the Clean Water Act, they provide critical ecosystem services to society that extend well beyond their wetland boundaries. The authors offer well-documented examples from the scientific literature on some of the ecosystem services provided by isolated wetlands to society and other ecosystems.

  2. Remarkable amphibian biomass and abundance in an isolated wetland: implications for wetland conservation.

    PubMed

    Gibbons, J Whitfield; Winne, Christopher T; Scott, David E; Willson, John D; Glaudas, Xavier; Andrews, Kimberly M; Todd, Brian D; Fedewa, Luke A; Wilkinson, Lucas; Tsaliagos, Ria N; Harper, Steven J; Greene, Judith L; Tuberville, Tracey D; Metts, Brian S; Dorcas, Michael E; Nestor, John P; Young, Cameron A; Akre, Tom; Reed, Robert N; Buhlmann, Kurt A; Norman, Jason; Croshaw, Dean A; Hagen, Cris; Rothermel, Betsie B

    2006-10-01

    Despite the continuing loss of wetland habitats and associated declines in amphibian populations, attempts to translate wetland losses into measurable losses to ecosystems have been lacking. We estimated the potential productivity from the amphibian community that would be compromised by the loss of a single isolated wetland that has been protected from most industrial, agricultural, and urban impacts for the past 54 years. We used a continuous drift fence at Ellenton Bay, a 10-ha freshwater wetland on the Savannah River Site, near Aiken, South Carolina (U.S.A.), to sample all amphibians for 1 year following a prolonged drought. Despite intensive agricultural use of the land surrounding Ellenton Bay prior to 1951, we documented 24 species and remarkably high numbers and biomass of juvenile amphibians (>360,000 individuals; >1,400 kg) produced during one breeding season. Anurans (17 species) were more abundant than salamanders (7 species), comprising 96.4% of individual captures. Most (95.9%) of the amphibian biomass came from 232095 individuals of a single species of anuran (southern leopard frog[Rana sphenocephala]). Our results revealed the resilience of an amphibian community to natural stressors and historical habitat alteration and the potential magnitude of biomass and energy transfer from isolated wetlands to surrounding terrestrial habitat. We attributed the postdrought success of amphibians to a combination of adult longevity (often >5 years), a reduction in predator abundance, and an abundance of larval food resources. Likewise, the increase of forest cover around Ellenton Bay from <20% in 1951 to >60% in 2001 probably contributed to the long-term persistence of amphibians at this site. Our findings provide an optimistic counterpoint to the issue of the global decline of biological diversity by demonstrating that conservation efforts can mitigate historical habitat degradation.

  3. Benthic diatom composition in wet and dry isolated forested wetlands: implications for monitoring and assessment

    EPA Science Inventory

    The development of bioindicators for wetlands, especially ephemerally hydrated depressional and isolated wetlands, can be problematic because of seasonal changes in hydrology and target organism biology. To determine if benthic diatoms could be used as a year-round biological ind...

  4. Benthic diatom composition in isolated forested wetlands subject to drying: implications for monitoring and assessment

    EPA Science Inventory

    The development of bioindicators for wetlands, especially ephemerally hydrated depressional and isolated wetlands, can be problematic because of seasonal hydrology and target organism biology. To determine if benthic diatoms could be used as a year-round biological indicator of w...

  5. Pore Water Circulation in Isolated Wetlands: Implications to Internal Nutrient Loading.

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Perkins, D. B.; Jawitz, J. W.

    2005-12-01

    The potential of wetland soils to accumulate and release pollutants including nutrients has been the motivation for numerous studies related to measuring the concentration, fate, and transport mechanisms of these substances in soils. While external nutrient loading from anthropogenic sources such as agricultural and cattle areas can be addressed through the implementation of Best Management Practices (BMPs), and interception strategies such as construction of storm-water treatment areas (STAs) in Florida, internal loading through shallow sediments has prevented the rapid improvement of water quality in numerous watersheds in South Florida, including the Lake Okeechobee drainage basin. The internal release of nutrients can occur via two different yet equally important mechanisms: advection and diffusion. These processes may mix the pore water not only within the sediment but also with the overlying water column over short periods of time (e.g., days or weeks). This provides sufficient time for diagenesis to alter the reactive chemical components of nutrients that may ultimately increase the nutrient fluxes to the overlying water column. The objectives of this research are to present a plausible and testable technique to collect pore water samples from saturated wetland soils, and to evaluate the importance of pore water circulation as a mechanism for mobilizing nutrients into the water column from within shallow sediments in isolated wetlands. Pore water sampling can be a difficult task to perform in low permeable wetland soils using standard sampling devices such as pore water equilibrators (peepers) and mechanical vises (Rheeburg squeezers). However, our attempt at using Multisamplers, which is in fact a multi-level piezometer capable of collecting up to ten pore water samples to a depth of 110 cm below the soil-water interface in a single deployment, proved to be a success. The ability to collect samples from multiple depths from a single location is an important

  6. Geographically isolated wetlands: Rethinking a misnomer

    USGS Publications Warehouse

    Mushet, David M.; Calhoun, Aram J. K.; Alexander, Laurie C.; Cohen, Matthew J.; DeKeyser, Edward S.; Fowler, Laurie G.; Lane, Charles R.; Lang, Megan W.; Rains, Mark C.; Walls, Susan

    2015-01-01

    We explore the category “geographically isolated wetlands” (GIWs; i.e., wetlands completely surrounded by uplands at the local scale) as used in the wetland sciences. As currently used, the GIW category (1) hampers scientific efforts by obscuring important hydrological and ecological differences among multiple wetland functional types, (2) aggregates wetlands in a manner not reflective of regulatory and management information needs, (3) implies wetlands so described are in some way “isolated,” an often incorrect implication, (4) is inconsistent with more broadly used and accepted concepts of “geographic isolation,” and (5) has injected unnecessary confusion into scientific investigations and discussions. Instead, we suggest other wetland classification systems offer more informative alternatives. For example, hydrogeomorphic (HGM) classes based on well-established scientific definitions account for wetland functional diversity thereby facilitating explorations into questions of connectivity without an a priori designation of “isolation.” Additionally, an HGM-type approach could be used in combination with terms reflective of current regulatory or policymaking needs. For those rare cases in which the condition of being surrounded by uplands is the relevant distinguishing characteristic, use of terminology that does not unnecessarily imply isolation (e.g., “upland embedded wetlands”) would help alleviate much confusion caused by the “geographically isolated wetlands” misnomer.

  7. Mapping hydrologic connectivity of geographically isolated wetlands

    NASA Astrophysics Data System (ADS)

    Ameli, Ali; Creed, Irena

    2016-04-01

    Geographically isolated wetlands (GIWs) are characterized as depressional landscape features completely surrounded by uplands. These small and typically circular landscape features represent a vast majority of wetlands in various landscapes in North America (98% of all wetlands in the Prairie Pothole Region). Geographical isolation, however, does not imply the hydrological isolation. Although geospatial data (e.g., aerial photos) suggested that GIWs lack a persistent surface water connection, the groundwater connection between GIWs and navigable downstream waters can be substantial with large fluxes at the regional scales. The surface/subsurface connections among GIWs and between GIWs and navigable waters are difficult to map and quantify. This is intimately tied to the fact that an efficient incorporation of these small geometric features and characterization of the mechanisms behind these connectivities are challenging within grid-based simulators. We used a physically-based grid-free groundwater-surface water interaction and surface flow routing schemes to map and assess the watershed-scale GIWs connectivity within an extensively studied watershed at the Canadian prairie pothole region with high density of GIWs. The results showed that there is a persistent subsurface connectivity among GIWs and between GIWs and navigable waters. Surface connection was rare and only occurred during extreme events. The results of this paper have significant implications for developing scientifically grounded environmental policy for protection of GIWs within North American Prairie.

  8. Hydrologic considerations in defining isolated wetlands

    USGS Publications Warehouse

    Winter, T.C.; LaBaugh, J.W.

    2003-01-01

    Wetlands that are not connected by streams to other surface-water bodies are considered to be isolated. Although the definition is based on surface-water connections to other water bodies, isolated wetlands commonly are integral parts of extensive ground-water flow systems, and isolated wetlands can spill over their surface divides into adjacent surface-water bodies during periods of abundant precipitation and high water levels. Thus, characteristics of ground-water flow and atmospheric-water flow affect the isolation of wetlands. In general, the degree that isolated wetlands are connected through the ground-water system to other surface-water bodies depends to a large extent on the rate that ground water moves and the rate that hydrologic stresses can be transmitted through the ground-water system. Water that seeps from an isolated wetland into a gravel aquifer can travel many kilometers through the ground-water system in one year. In contrast, water that seeps from an isolated wetland into a clayey or silty substrate may travel less than one meter in one year. For wetlands that can spill over their surface watersheds during periods of wet climate conditions, their isolation is related to the height to a spill elevation above normal wetland water level and the recurrence interval of various magnitudes of precipitation. The concepts presented in this paper indicate that the entire hydrologic system needs to be considered in establishing a definition of hydrologic isolation.

  9. ISOLATED WETLANDS AND THEIR FUNCTIONS: AN ECOLOGICAL PERSPECTIVE

    EPA Science Inventory

    The recent U.S. Supreme Court case of Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers (SWANCC) has had profound implications on the legal status of isolated wetlands. As a result of this decision, policymakers need ecological information on the definit...

  10. ISOLATED WETLANDS: STATE-OF-THE-SCIENCE AND FUTURE DIRECTIONS

    EPA Science Inventory

    The U.S. Supreme Court case of Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers (SWANCC) has had profound implications on the legal status of isolated wetlands. As a result of this decision, policymakers and regulators need information on the ecological...

  11. Geographically Isolated Wetlands: Why We Should Keep the Term

    EPA Science Inventory

    Use of the term "isolated wetlands" in the U.S. Supreme Court’s SWANCC decision created confusion, since it could imply functional isolation. In response, the term "geographically isolated wetlands" (GIWs) - wetlands surrounded by uplands - was introduced in 2003. A recent arti...

  12. Do geographically isolated wetlands influence landscape functions?

    PubMed

    Cohen, Matthew J; Creed, Irena F; Alexander, Laurie; Basu, Nandita B; Calhoun, Aram J K; Craft, Christopher; D'Amico, Ellen; DeKeyser, Edward; Fowler, Laurie; Golden, Heather E; Jawitz, James W; Kalla, Peter; Kirkman, L Katherine; Lane, Charles R; Lang, Megan; Leibowitz, Scott G; Lewis, David Bruce; Marton, John; McLaughlin, Daniel L; Mushet, David M; Raanan-Kiperwas, Hadas; Rains, Mark C; Smith, Lora; Walls, Susan C

    2016-02-23

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs.

  13. Do geographically isolated wetlands influence landscape functions?

    USGS Publications Warehouse

    Cohen, Matthew J.; Creed, Irena F.; Alexander, Laurie C.; Basu, Nandita; Calhoun, Aram J. K.; Craft, Christopher; D’Amico, Ellen; DeKeyser, Edward S.; Fowler, Laurie; Golden, Heather E.; Jawitz, James W.; Kalla, Peter; Kirkman, L. Katherine; Lane, Charles R.; Lang, Megan; Leibowitz, Scott G.; Lewis, David Bruce; Marton, John; McLaughlin, Daniel L.; Mushet, David M.; Raanan-Kiperwas, Hadas; Rains, Mark C.; Smith, Lora; Walls, Susan C.

    2015-01-01

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs.

  14. Isolated wetlands of the southeastern United States: abundance and expected condition

    EPA Science Inventory

    In the wake of two U.S. Supreme Court decisions that severely curtailed federal protection for isolated wetlands in the U.S. (i.e., those completely surrounded by uplands), the true extent of the wetlands impacted, and thus, the implications of the decisions, is unknown. Best pro...

  15. SPATIAL AND FUNCTIONAL CHARACTERIZATION OF ISOLATED WETLANDS

    EPA Science Inventory

    The USEPA is conducting isolated wetland (IW) research at locations around the USA to better understand the ecological importance and ecosystem services provided by IW and to develop methods to monitor and assess their condition. The first research component explores the use of r...

  16. Responses of Isolated Wetland Herpetofauna to Upland Forest Management

    SciTech Connect

    Russell, K.R.; Hanlin, H.G.; Wigley, T.B.; Guynn, D.C., Jr.

    2002-01-02

    Measurement of responses of herpetofauna at isolated wetlands in the Coastal Plain of South Carolina to disturbance of adjacent loblolly pine forest. Many species of isolated wetland herpetofauna in the Southeastern Coastal Plain may tolerate some disturbance in adjacent upland stands. Responses of isolated wetland herpetofauna to upland silviculture and the need for adjacent forested buffers likely depend on the specific landscape context in which the wetlands occur and composition of the resident herpetofaunal community.

  17. Geographically isolated wetlands: What we've learned since SWANCC

    EPA Science Inventory

    The 2001 SWANCC and 2006 Rapanos US Supreme Court decisions created a need for research on geographically isolated wetlands (GIWs). In 2003, a special issue on isolated wetlands was published in Wetlands. That issue contained fifteen papers that reviewed and summarized the lite...

  18. Do geographically isolated wetlands influence landscape functions?

    PubMed

    Cohen, Matthew J; Creed, Irena F; Alexander, Laurie; Basu, Nandita B; Calhoun, Aram J K; Craft, Christopher; D'Amico, Ellen; DeKeyser, Edward; Fowler, Laurie; Golden, Heather E; Jawitz, James W; Kalla, Peter; Kirkman, L Katherine; Lane, Charles R; Lang, Megan; Leibowitz, Scott G; Lewis, David Bruce; Marton, John; McLaughlin, Daniel L; Mushet, David M; Raanan-Kiperwas, Hadas; Rains, Mark C; Smith, Lora; Walls, Susan C

    2016-02-23

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs. PMID:26858425

  19. Do geographically isolated wetlands influence landscape functions?

    PubMed Central

    Cohen, Matthew J.; Creed, Irena F.; Alexander, Laurie; Basu, Nandita B.; Calhoun, Aram J. K.; Craft, Christopher; D’Amico, Ellen; DeKeyser, Edward; Fowler, Laurie; Golden, Heather E.; Jawitz, James W.; Kalla, Peter; Kirkman, L. Katherine; Lane, Charles R.; Lang, Megan; Leibowitz, Scott G.; Lewis, David Bruce; Marton, John; McLaughlin, Daniel L.; Mushet, David M.; Raanan-Kiperwas, Hadas; Rains, Mark C.; Smith, Lora; Walls, Susan C.

    2016-01-01

    Geographically isolated wetlands (GIWs), those surrounded by uplands, exchange materials, energy, and organisms with other elements in hydrological and habitat networks, contributing to landscape functions, such as flow generation, nutrient and sediment retention, and biodiversity support. GIWs constitute most of the wetlands in many North American landscapes, provide a disproportionately large fraction of wetland edges where many functions are enhanced, and form complexes with other water bodies to create spatial and temporal heterogeneity in the timing, flow paths, and magnitude of network connectivity. These attributes signal a critical role for GIWs in sustaining a portfolio of landscape functions, but legal protections remain weak despite preferential loss from many landscapes. GIWs lack persistent surface water connections, but this condition does not imply the absence of hydrological, biogeochemical, and biological exchanges with nearby and downstream waters. Although hydrological and biogeochemical connectivity is often episodic or slow (e.g., via groundwater), hydrologic continuity and limited evaporative solute enrichment suggest both flow generation and solute and sediment retention. Similarly, whereas biological connectivity usually requires overland dispersal, numerous organisms, including many rare or threatened species, use both GIWs and downstream waters at different times or life stages, suggesting that GIWs are critical elements of landscape habitat mosaics. Indeed, weaker hydrologic connectivity with downstream waters and constrained biological connectivity with other landscape elements are precisely what enhances some GIW functions and enables others. Based on analysis of wetland geography and synthesis of wetland functions, we argue that sustaining landscape functions requires conserving the entire continuum of wetland connectivity, including GIWs. PMID:26858425

  20. Strength in Numbers: Describing the Flooded Area of Isolated Wetlands

    USGS Publications Warehouse

    Lee, Terrie M.; Haag, Kim H.

    2006-01-01

    Thousands of isolated, freshwater wetlands are scattered across the karst1 landscape of central Florida. Most are small (less than 15 acres), shallow, marsh and cypress wetlands that flood and dry seasonally. Wetland health is threatened when wetland flooding patterns are altered either by human activities, such as land-use change and ground-water pumping, or by changes in climate. Yet the small sizes and vast numbers of isolated wetlands in Florida challenge our efforts to characterize them collectively as a statewide water resource. In the northern Tampa Bay area of west-central Florida alone, water levels are measured monthly in more than 400 wetlands by the Southwest Florida Water Management Distirct (SWFWMD). Many wetlands have over a decade of measurements. The usefulness of long-term monitoring of wetland water levels would greatly increase if it described not just the depth of water at a point in the wetland, but also the amount of the total wetland area that was flooded. Water levels can be used to estimate the flooded area of a wetland if the elevation contours of the wetland bottom are determined by bathymetric mapping. Despite the recognized importance of the flooded area to wetland vegetation, bathymetric maps are not available to describe the flooded areas of even a representative number of Florida's isolated wetlands. Information on the bathymetry of isolated wetlands is rare because it is labor intensive to collect the land-surface elevation data needed to create the maps. Five marshes and five cypress wetlands were studied by the U.S. Geological Survey (USGS) during 2000 to 2004 as part of a large interdisciplinary study of isolated wetlands in central Florida. The wetlands are located either in municipal well fields or on publicly owned lands (fig. 1). The 10 wetlands share similar geology and climate, but differ in their ground-water settings. All have historical water-level data and multiple vegetation surveys. A comprehensive report by Haag and

  1. Upland-wetland connectivity provides a significant nexus between isolated wetlands and downstream water bodies

    NASA Astrophysics Data System (ADS)

    Mclaughlin, D. L.; Kaplan, D. A.; Cohen, M. J.

    2013-12-01

    Recent rulings by the U.S. Supreme Court have limited federal protection over isolated wetlands, requiring documentation of a 'significant nexus' to a navigable water body to ensure federal jurisdiction. Despite geographic isolation, isolated wetlands influence the surficial aquifer dynamics that regulate baseflow to surface water systems. Due to differences in specific yield (Sy) between upland soils and inundated wetlands, responses of the upland water table to atmospheric fluxes (precipitation, P, and evapotranspiration, ET) are amplified relative to wetland water levels, leading to reversals in the hydraulic gradient between the two systems. As such, wetlands act as a water sink during wet cycles (via wetland exfiltration) and a source (via infiltration) during drier times, regulating both the surficial aquifer and its baseflow to downstream systems. To explore the importance of this wetland function at the landscape scale, we integrated models of soil moisture, upland water table, and wetland stage to simulate the hydrology of a low-relief, depressional landscape. We quantified the hydrologic buffering effect of wetlands by calculating the relative change in the standard deviation (SD) of water table elevation between model runs with and without wetlands. Using this model we explored the effects wetland area and spatial distribution over a range of climatic drivers (P and ET) and soil types. Increasing wetland cumulative area and/or density reduced water table variability relative to landscapes without wetlands, supporting the idea that wetlands stabilize regional hydrologic variation, but also increased mean water table depth because of sustained high ET rates in wetlands during dry periods. Maintaining high cumulative wetland area, but with fewer wetlands, markedly reduced the effect of wetland area, highlighting the importance of small, distributed wetlands on water table regulation. Simulating a range of climate scenarios suggested that the capacity of

  2. USGS research on Florida's isolated freshwater wetlands

    USGS Publications Warehouse

    Torres, Arturo E.; Haag, Kim H.; Lee, Terrie M.; Metz, Patricia A.

    2011-01-01

    The U.S. Geological Survey (USGS) has studied wetland hydrology and its effects on wetland health and ecology in Florida since the 1990s. USGS wetland studies in Florida and other parts of the Nation provide resource managers with tools to assess current conditions and regional trends in wetland resources. Wetland hydrologists in the USGS Florida Water Science Center (FLWSC) have completed a number of interdisciplinary studies assessing the hydrology, ecology, and water quality of wetlands. These studies have expanded the understanding of wetland hydrology, ecology, and related processes including: (1) the effects of cyclical changes in rainfall and the influence of evapotranspiration; (2) surface-water flow, infiltration, groundwater movement, and groundwater and surfacewater interactions; (3) the effects of water quality and soil type; (4) the unique biogeochemical components of wetlands required to maintain ecosystem functions; (5) the effects of land use and other human activities; (6) the influences of algae, plants, and invertebrates on environmental processes; and (7) the effects of seasonal variations in animal communities that inhabit or visit Florida wetlands and how wetland function responds to changes in the plant community.

  3. Identification of Putative Geographically Isolated Wetlands of the Conterminous United States

    EPA Science Inventory

    Geographically isolated wetlands (GIWs) are unique landscape features, defined as wetlands completely surrounded by uplands. Densely occurring in certain parts of the North America, GIWs include wetland types such as Prairie Potholes, Delmarva Ponds, West Coast or California Vern...

  4. Sequestration of carbon and phosphorus in subtropical grazed historically isolated wetlands

    NASA Astrophysics Data System (ADS)

    Mitchell, J. D.; Jawitz, J. W.

    2009-12-01

    Hydrologic restoration of ditched and drained wetlands within the 12000 km2 Lake Okeechobee basin (LOB), FL is expected to promote carbon (C) accretion and phosphorus (P) retention. The majority of P loading to Lake Okeechobee is attributed to historical pasture fertilization and continued high density cattle activity which perpetuate elevated P transport to the lake from dairies and cow/calf operations. Isolated wetlands which dominate the LOB landscape have been historically ditched to increase pasture area for grazing. Current best management practices intended to reduce P transport to the lake include the option of fencing wetlands in cattle pastures to prevent cattle access. The objective of this study was to develop a predictive model of the dynamics of wetland biomass, soil accretion, C and P. The coupled effects of grazing intensity, highly transient water level, and seasonality were incorporated. The model was conditioned based on approximately three years of monitoring data from four isolated wetlands in the LOB. Drought-induced declining water table resulted in decreased wetland plant biomass in both grazed and ungrazed simulations but reduction was more severe in the grazed simulations. High intensity grazing during flooded conditions resulted in declines in wetland plant biomass due to disconnection between leaves and the air column. Standing biomass and C and P storage in vegetation increased with the exclusion of grazing in these wetlands. Although vegetation nutrient storage is short term, biomass turnover supports accretion of soil and associated C and P. Predicted implications for C and P sequestration at the watershed scale and reduction of P load to the lake are directly related to the wetland area that can be excluded from grazing.

  5. A significant nexus: Geographically isolated wetlands influence landscape hydrology

    NASA Astrophysics Data System (ADS)

    McLaughlin, Daniel L.; Kaplan, David A.; Cohen, Matthew J.

    2014-09-01

    Recent U.S. Supreme Court rulings have limited federal protections for geographically isolated wetlands (GIWs) except where a "significant nexus" to a navigable water body is demonstrated. Geographic isolation does not imply GIWs are hydrologically disconnected; indeed, wetland-groundwater interactions may yield important controls on regional hydrology. Differences in specific yield (Sy) between uplands and inundated GIWs drive differences in water level responses to precipitation and evapotranspiration, leading to frequent reversals in hydraulic gradients that cause GIWs to act as both groundwater sinks and sources. These reversals are predicted to buffer surficial aquifer dynamics and thus base flow delivery, a process we refer to as landscape hydrologic capacitance. To test this hypothesis, we connected models of soil moisture, upland water table, and wetland stage to simulate hydrology of a low-relief landscape with GIWs, and explored the influences of total wetland area, individual wetland size, climate, and soil texture on water table and base flow variation. Increasing total wetland area and decreasing individual wetland size substantially decreased water table and base flow variation (e.g., reducing base flow standard deviation by as much as 50%). GIWs also decreased the frequency of extremely high and low water tables and base flow deliveries. For the same total wetland area, landscapes with fewer (i.e., larger) wetlands exhibited markedly lower hydrologic capacitance than those with more (i.e., smaller) wetlands, highlighting the importance of small GIWs to regional hydrology. Our results suggest that GIWs buffer dynamics of the surficial aquifer and stream base flow, providing an indirect but significant nexus to the regional hydrologic system.

  6. Do Geographically Isolated Wetlands Influence Landscape Functions?

    EPA Science Inventory

    Landscape functions such as flow generation, nutrient and sediment retention, and biodiversity support depend on the exchange of solutes, particles, energy, and organisms between elements in hydrological and habitat networks. Wetlands are important network elements, providing hyd...

  7. Spatial modeling of potential hydrologic connectivity among isolated wetlands and jurisdictional surface waters for the Dougherty Plain in southwestern Georgia

    NASA Astrophysics Data System (ADS)

    Deemy, J. B.; Hepinstall-Cymerman, J.; Kirkman, L.; Rasmussen, T. C.

    2012-12-01

    monitoring wetlands to other hydrographic features. Nearly one fifth of the approximately 200 predicted wetlands on site were connected to other hydrographic features by potential drainages. Preliminary soil assessments within the potential drainages connecting wetlands to surface waters indicate the presence of redoximorphic characters and hydric soils in more than half of those sampled. Potential flow paths are further used to determine optimal hydrologic monitoring sites during high water events for temporal components of biological, chemical and hydrologic connectivity. These data may have important implications for quantifying ecosystem services provided by geographically isolated wetlands in southwestern Georgia.

  8. The extent and expected condition of isolated wetlands in the southeastern and mid-Atlantic states, USA

    EPA Science Inventory

    In the wake of two United States (US) Supreme Court decisions in the past decade, federal protection for isolated wetlands (i.e., those completely surrounded by uplands) has been severely curtailed. However, the extent of the resource impacted and thus the implications for the c...

  9. Phosphorus Retention and Storage by Isolated Wetlands in the Lake Ocheechobee Basin, Florida

    NASA Astrophysics Data System (ADS)

    Tkaczyk, M.; Jawitz, J.

    2003-04-01

    Wetlands are one of the most promising technologies for use in controlling nutrients from agricultural operations. Their effectiveness, however, depends on the retention capacity of the wetland, contaminant load and the desired effluent quality. The purpose of this study is to evaluate the use of isolated wetlands for attenuation of phosphorus (P) export from the basin. Small isolated wetlands comprise 16.6 % of the landscape in Lake Okeechobee basin, located in south-central Florida. The lake provides flood protection, water supply for agricultural and urban areas, and it is a critical habitat for wildlife. Excessive phosphorus loading causes algal blooms and detrimental changes in biological communities of Lake Okeechobee and the Everglades ecosystem. The land use in the Okeechobee basin is primarily dairy farms and cow-calf operations. Studies conducted within the past two decades have implicated these land uses as a prominent source of the P loading from manure, fertilizers and runoff. Due to poor retention by sandy soils, much of the P is ultimately exported downstream through the Taylor Creek-Nubbin Slough and Kissimmee River to Lake Okeechobee. Despite numerous efforts to reduce P loading from these watersheds, continued improvements are necessary to further reduce nutrients runoff. This research is a multi-year effort to optimize the P removal and assimilation capacity of on-farm treatment wetlands thorough hydrologic manipulation to describe long-term P retention by wetlands. Field data collection is ongoing at four ranch sites selected for this project. Initially, hypothetical case simulations will be evaluated using several modeling methodologies: one-dimensional mass balance based input-output analysis, two-dimensional variably saturated water flow and solute transport model, and three-dimensional analysis at the watershed scale.

  10. An improved representation of geographically isolated wetlands in a watershed-scale hydrologic model

    EPA Science Inventory

    Geographically isolated wetlands (GIWs), defined as wetlands surrounded by uplands, provide an array of ecosystem goods and services. Within the United States, federal regulatory protections for GIWs are contingent, in part, on the quantification of their singular or aggregate ef...

  11. Watershed-scale effects of isolated wetlands on downstream hydrology: modeling approaches

    EPA Science Inventory

    Geographically isolated wetlands (GIWs) are depressional features on an eroding landscape that are entirely surrounded by uplands. These wetlands are purported to provide an array of ecological and watershed values and functions, including increasing biodiversity, modifying water...

  12. Modeling the effects of isolated wetlands on downstream hydrology at the watershed scale

    EPA Science Inventory

    Geographically-isolated wetlands, wetlands completely surrounded by uplands (e.g., prairie potholes, vernal pools and cypress domes), are depressional landscape features. They provide numerous ecological functions including biogeochemical cycling and water storage and recharge an...

  13. Mapping of Geographically Isolated Wetlands of Western Siberia Using High Resolution Space Images

    NASA Astrophysics Data System (ADS)

    Dyukarev, E.; Pologova, N.; Dyukarev, A.; Lane, C.; Autrey, B. C.

    2014-12-01

    Using the remote sensing data for integrated study of natural objects is actual for investigation of difficult to access areas of West Siberia. The research of this study focuses on determining the extent and spectral signatures of isolated wetlands within Ob-Tom Interfluve area using Landsat and Quickbird space images. High-resolution space images were carefully examined and wetlands were manually delineated. Wetlands have clear visible signs at the high resolution space images. 567 wetlands were recognized as isolated wetlands with the area about 10 000 ha (of 2.5% of the study area). Isolated wetlands with area less 2 ha are the most frequent. Half of the total amount of wetlands has area less than 6.4 ha. The largest isolated wetland occupies 797 ha, and only 5% have area more than 50 ha. The Landsat 7 ETM+ data were used for analysis of vegetation structure and spectral characteristics of wetlands. The masked isolated wetlands image was classified into 12 land cover classes using ISODATA unsupervised classification. The attribution of unsupervised classification results allowed us to clearly recognize 7 types of wetlands: tall, low and sparse ryams (Pine-Shrub-Sphagnum community), open wetlands with shrub, moss or sedge cover, and open water objects. Analysis of spectral profiles for all classes has shown that Landsat spectral bands 4 and 5 have higher variability. These bands allow to separate wetland classed definitely. Accuracy assessment of isolated wetland map shows a good agreement with expert field data. The work was supported by grants ISTC № 4079.

  14. A LANDSCAPE ECOLOGY APPROACH TO IDENTIFYING ECOLOGICAL VULNERABILITY IN GEOGRAPHICALLY ISOLATED WETLANDS

    EPA Science Inventory

    U.S. EPA 's Office of Research and Development is using a landscape approach to assess the ecological/hydrologic functions of geographically isolated wetlands in the mid-western, southern, and western regions of the United States. Geographically isolated wetlands are considered t...

  15. Mapping isolated wetlands in a Karst landscape: GIS and remote sensing methods

    EPA Science Inventory

    Isolated wetlands occur in many areas of the United States, and although they are relatively common, they are a resource not yet thoroughly understood by the scientific community. Isolated wetlands have received increased attention recently, due to the 2001 Solid Waste Agency of ...

  16. Ecological Processes of Isolated Wetlands: Ecosystem Services and the Significant Nexus (Invited)

    NASA Astrophysics Data System (ADS)

    Lengler, U.; De Lucia, M.; Kuehn, M.

    2011-12-01

    Geographically isolated wetlands occur throughout the US and are characterized by a wetland system completely surrounded by uplands. Examples include prairie potholes, woodland seasonal (i.e., vernal) pools, cypress domes, playas, and other such systems. Decisions by the US Supreme Court in 2001 and 2006 have affected the jurisdictional status of geographically isolated wetlands such that those failing to have a demonstrable 'significant nexus' to navigable waters may have no federal protection under the Clean Water Act. These systems are typically small and, as such, may be under-counted in assessments of area and abundance. Areal extent is a portion of the information required to characterize the functions associated with geographically isolated wetlands and understanding both site-specific and larger-scale processes are also required to better quantify those functions. In addition, quantifying anthropogenic effects on system processing informs our understanding of the contributions and the connectivity of geographically isolated wetlands to other waters. This presentation focuses on both efforts to quantify the contribution of geographically isolated wetlands to system-scale processes, focusing on nutrient assimilation and hydrologic storage, as well as concurrent research to identify their locations at multiple scales. Findings from this research may help elucidate the link between geographically isolated wetlands and other systems, and may inform discussions on ecosystem services provided by geographically isolated wetlands.

  17. Ecological Processes of Isolated Wetlands: Ecosystem Services and the Significant Nexus (Invited)

    NASA Astrophysics Data System (ADS)

    Lane, C.; Autrey, B.; D'Amico, E.

    2013-12-01

    Geographically isolated wetlands occur throughout the US and are characterized by a wetland system completely surrounded by uplands. Examples include prairie potholes, woodland seasonal (i.e., vernal) pools, cypress domes, playas, and other such systems. Decisions by the US Supreme Court in 2001 and 2006 have affected the jurisdictional status of geographically isolated wetlands such that those failing to have a demonstrable 'significant nexus' to navigable waters may have no federal protection under the Clean Water Act. These systems are typically small and, as such, may be under-counted in assessments of area and abundance. Areal extent is a portion of the information required to characterize the functions associated with geographically isolated wetlands and understanding both site-specific and larger-scale processes are also required to better quantify those functions. In addition, quantifying anthropogenic effects on system processing informs our understanding of the contributions and the connectivity of geographically isolated wetlands to other waters. This presentation focuses on both efforts to quantify the contribution of geographically isolated wetlands to system-scale processes, focusing on nutrient assimilation and hydrologic storage, as well as concurrent research to identify their locations at multiple scales. Findings from this research may help elucidate the link between geographically isolated wetlands and other systems, and may inform discussions on ecosystem services provided by geographically isolated wetlands.

  18. New species of Eunotia from small isolated wetlands in Florida

    EPA Science Inventory

    Diatom species composition of small wetlands is diverse and unique due to a plethora of spatial and temporal variables. Diatoms from small wetlands can contribute greatly to better understanding microbial biodiversity, distribution, dispersal and populations.

  19. EXTENT, PROPERTIES, AND LANDSCAPE SETTING OF GEOGRAPHICALLY ISOLATED WETLANDS IN URBAN SOUTHERN NEW ENGLAND WATERSHEDS

    EPA Science Inventory

    We assessed the extent and characteristics of geographically isolated wetlands (i.e., wetlands completely surrounded by upland) in a series of drainage basins in the urban northeast U.S. We employed a random sampling design that stratifies study sites according to their degree o...

  20. Geographically Isolated Wetlands and Catchment Hydrology: A Modified Model Analyses

    NASA Astrophysics Data System (ADS)

    Evenson, G.; Golden, H. E.; Lane, C.; D'Amico, E.

    2014-12-01

    Geographically isolated wetlands (GIWs), typically defined as depressional wetlands surrounded by uplands, support an array of hydrological and ecological processes. However, key research questions concerning the hydrological connectivity of GIWs and their impacts on downgradient surface waters remain unanswered. This is particularly important for regulation and management of these systems. For example, in the past decade United States Supreme Court decisions suggest that GIWs can be afforded protection if significant connectivity exists between these waters and traditional navigable waters. Here we developed a simulation procedure to quantify the effects of various spatial distributions of GIWs across the landscape on the downgradient hydrograph using a refined version of the Soil and Water Assessment Tool (SWAT), a catchment-scale hydrological simulation model. We modified the SWAT FORTRAN source code and employed an alternative hydrologic response unit (HRU) definition to facilitate an improved representation of GIW hydrologic processes and connectivity relationships to other surface waters, and to quantify their downgradient hydrological effects. We applied the modified SWAT model to an ~ 202 km2 catchment in the Coastal Plain of North Carolina, USA, exhibiting a substantial population of mapped GIWs. Results from our series of GIW distribution scenarios suggest that: (1) Our representation of GIWs within SWAT conforms to field-based characterizations of regional GIWs in most respects; (2) GIWs exhibit substantial seasonally-dependent effects upon downgradient base flow; (3) GIWs mitigate peak flows, particularly following high rainfall events; and (4) The presence of GIWs on the landscape impacts the catchment water balance (e.g., by increasing groundwater outflows). Our outcomes support the hypothesis that GIWs have an important catchment-scale effect on downgradient streamflow.

  1. Evaluating the aggregate effect of geographical isolated wetlands and associated spatial and size distributions on downstream hydrologic flows

    EPA Science Inventory

    Geographically isolated wetlands (GIW), defined as depressional wetlands completely surrounded by uplands, support an array of ecological processes. A solid scientific understanding of the hydrologic effects of GIWs upon downstream waterways is important for legal and policy-mak...

  2. After the deluge: Establishing rates of geographically isolated wetland loss within the prairie pothole region

    NASA Astrophysics Data System (ADS)

    Serran, J.; Creed, I. F.

    2014-12-01

    Geographically isolated wetlands (GIWs) from the prairie pothole region of North America are particularly vulnerable to loss and increasing urban, agricultural, and natural resource development pressures continue to place these wetlands at risk. Although small in area and low in surface hydrologic connectivity, GIWs provide important functions such as flood control and water purification and their loss has been recognized as a contributing factor to the eutrophication of Lake Winnipeg. Within Canada, GIW loss can be attributed to the lack of high-resolution wetland inventories and the lack of information about historic wetland loss rates. In this study, we tested an approach to estimate GIW loss by improving their detection and delineation. To initialize our work, a high-resolution wetland inventory was created using a novel approach that fuses LiDAR data (probability of wetland) with aerial photographs (to distinguish open water and wet meadow) for the Beaverhill watershed, a major tributary of the North Saskatchewan watershed. Our wetland mapping results validated our ability to detect wetlands on the landscape. Secondly, we applied a power law area-frequency function to an aerial photograph time series spanning the watershed's natural climate variation range (1960 to present) to estimate historic wetland loss, with historic wetland loss determined via a break in slope in the power law function. Our analysis revealed ongoing loss of small GIWs in the watershed, despite the implementation of wetland policy measures to mitigate this loss. This ongoing GIW loss is particularly detrimental as it is concomitant with a loss in the important associated ecosystem functions of these GIWs, which has serious repercussions for downstream waters. Overall, our findings support a shift in wetland policies from area to function assessments that provide governments with tools to manage the potential consequences of wetland loss in terms of increased flooding and pollution of

  3. Sphingobacterium paludis sp. nov., isolated from wetland soil.

    PubMed

    Feng, Hao; Zeng, Yanhua; Huang, Yili

    2014-10-01

    A novel Gram-stain-negative bacteria, designated S37(T), was isolated from soil of the Xixi wetland, Zhejiang province, China. Cells of strain S37(T) were aerobic, non-motile rods. Growth occurred at 10-37 °C (optimum, 25 °C), pH 5.0-9.7 (optimum, pH 7.5) and with 0-6% (w/v) NaCl (optimum, 0.5%). Based on 16S rRNA gene sequence analysis, strain S37(T) was found to be a member of the genus Sphingobacterium and shared highest similarity with Sphingobacterium composti 4M24(T) (95.78%). The major fatty acids were summed feature 3 (iso-C15:0 2-OH and/or C16:1ω7c), iso-C15:0 and iso-C17:0 3-OH, and the DNA G+C content was 43.8 mol%. The predominant respiratory quinone was MK-7. Based on its phenotypic and chemotaxonomic characteristics and phylogenetic data, strain S37(T) represents a novel species of the genus Sphingobacterium, for which the name Sphingobacterium paludis sp. nov. (type strain S37(T) = CGMCC 1.12801(T) = NBRC 110386(T)) is proposed. PMID:25048213

  4. Geographically Isolated Wetlands are Part of the Hydrological Landscape

    EPA Science Inventory

    A recent report by the U.S. Environmental Protection Agency concluded that all wetlands located on floodplains and/or within riparian areas have significant chemical, physical, and/or biological connections with downgradient WOUS. The report concludes that other wetlands – includ...

  5. Flavobacterium palustre sp. nov., isolated from wetland soil.

    PubMed

    Feng, Hao; Zeng, Yanhua; Huang, Yili

    2015-03-01

    A Gram-staining-negative, non-motile, yellow-coloured, rod-shaped bacterium, designated S44(T), was isolated from bankside soil of Xixi wetland, located in Zhejiang province, China. Growth of strain S44(T) was observed at 6-37 °C (optimum, 28 °C) and at pH 6.0-9.0 (optimum, 7.0). No growth occurred in the presence of >2 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain S44(T) represented a member of the genus Flavobacterium, showing the highest sequence similarities to the sequences from Flavobacterium succinicans DSM 4002(T) (96.9 %), Flavobacterium reichenbachii WB 3.2-61(T) (96.6 %) and Flavobacterium glycines NCBI 105008(T) (96.5 %). The G+C content of the genomic DNA was 33.6 mol%. The predominant cellular fatty acids were C15 : 0, iso-C15 : 0, anteiso-C15 : 0 and summed feature 3 (comprising C16 : 1ω7c and/or iso-C15 : 0 2-OH), and the major respiratory quinone was menaquinone 6 (MK-6). The major polar lipids were phosphatidylethanolamine, two unknown aminolipids, two unknown aminophospholipids and four unknown polar lipids. On the basis of the phenotypic and genotypic data, it is proposed that the isolate S44(T) be classified as representing a novel species of the genus Flavobacterium, for which the name Flavobacterium palustre sp. nov. is proposed. The type strain is S44(T) ( = CGMCC 1.12811(T) = NBRC 110389(T)). PMID:25563922

  6. Water source to four U.S. wetlands: Implications for wetland management

    USGS Publications Warehouse

    Winter, T.C.; Rosenberry, D.O.; Buso, D.C.; Merk, D.A.

    2001-01-01

    Results of long-term field studies of wetlands in four different hydrogeologic and climatic settings in the United States indicate that each has considerably different sources of water, which affects their response to climate variability and land-use practices. A fen wetland in New Hampshire is supplied almost entirely by ground water that originates as seepage from Mirror Lake; therefore, stream discharge from the fen closely follows the pattern of Mirror Lake stage fluctuations. A fen wetland in northern Minnesota is supplied largely by discharge from a regional ground-water flow system that has its recharge area 1 to 2 km to the east. Because of the size of this wetland's ground-water watershed, stream discharge from the fen has little variability. A prairie-pothole wetland in North Dakota receives more than 90 percent of its water from precipitation and loses more than 90 percent of its water to evapotranspiration, resulting in highly variable seasonal and annual water levels. A wetland in the sandhills of Nebraska lies in a regional ground-water flow field that extends for tens of kilometers and that contains numerous lakes and wetlands. The wetland receives water that moves through the ground-water system from the upgradient lakes and from ground water in local flow systems that are recharged between the lakes. The difference in sources of water to these wetlands implies that they would require different techniques to protect their water supply and water quality.

  7. Seasonal dynamics and habitat specificity of mosquitoes in an English wetland: implications for UK wetland management and restoration.

    PubMed

    Medlock, Jolyon M; Vaux, Alexander G C

    2015-06-01

    We engaged in field studies of native mosquitoes in a Cambridgeshire Fen, investigating a) the habitat specificity and seasonal dynamics of our native fauna in an intensively managed wetland, b) the impact of water-level and ditch management, and c) their colonization of an arable reversion to flooded grassland wetland expansion project. Studies from April to October, 2010 collected 14,000 adult mosquitoes (15 species) over 292 trap-nights and ∼4,000 pre-imaginal mosquitoes (11 species). Open floodwater species (Aedes caspius and Aedes cinereus, 43.3%) and wet woodland species (Aedes cantans/annulipes and Aedes rusticus, 32.4%) dominated, highlighting the major impact of seasonal water-level management on mosquito populations in an intensively managed wetland. In permanent habitats, managing marginal ditch vegetation and ditch drying significantly affect densities of pre-imaginal anophelines and culicines, respectively. This study presents the first UK field evidence of the implications of wetland expansion through arable reversion on mosquito colonization. Understanding the heterogeneity of mosquito diversity, phenology, and abundance in intensively managed UK wetlands will be crucial to mitigating nuisance and vector species through habitat management and biocidal control. PMID:26047189

  8. Seasonal dynamics and habitat specificity of mosquitoes in an English wetland: implications for UK wetland management and restoration.

    PubMed

    Medlock, Jolyon M; Vaux, Alexander G C

    2015-06-01

    We engaged in field studies of native mosquitoes in a Cambridgeshire Fen, investigating a) the habitat specificity and seasonal dynamics of our native fauna in an intensively managed wetland, b) the impact of water-level and ditch management, and c) their colonization of an arable reversion to flooded grassland wetland expansion project. Studies from April to October, 2010 collected 14,000 adult mosquitoes (15 species) over 292 trap-nights and ∼4,000 pre-imaginal mosquitoes (11 species). Open floodwater species (Aedes caspius and Aedes cinereus, 43.3%) and wet woodland species (Aedes cantans/annulipes and Aedes rusticus, 32.4%) dominated, highlighting the major impact of seasonal water-level management on mosquito populations in an intensively managed wetland. In permanent habitats, managing marginal ditch vegetation and ditch drying significantly affect densities of pre-imaginal anophelines and culicines, respectively. This study presents the first UK field evidence of the implications of wetland expansion through arable reversion on mosquito colonization. Understanding the heterogeneity of mosquito diversity, phenology, and abundance in intensively managed UK wetlands will be crucial to mitigating nuisance and vector species through habitat management and biocidal control.

  9. Kaistia terrae sp. nov., isolated from a wetland in Korea.

    PubMed

    Kim, Soo-Jin; Weon, Hang-Yeon; Kim, Yi-Seul; Anandham, Rangasamy; Yoo, Seung-Hee; Park, In-Cheol; Kwon, Soon-Wo

    2010-04-01

    An ivory-coloured bacterium, designated strain 5YN7-3(T), was isolated from a wetland, Yongneup, Korea. Cells of the strain were aerobic, Gram-stain-negative, non-motile and short rods. 16S rRNA gene sequence analysis demonstrated that strain 5YN7-3(T) belongs to the order Rhizobiales of the class Alphaproteobacteria and is closely related to Kaistia soli 5YN9-8(T) (97.8 %), Kaistia granuli Ko04(T) (97.6 %) and Kaistia adipata Chj404(T) (97.4 %). Strain 5YN7-3(T) showed DNA-DNA hybridization values of 28, 22 and 35 % with K. granuli Ko04(T), K. soli 5YN9-8(T) and K. adipata Chj404(T), respectively. The major fatty acids were C(18 : 1)omega7c (51.2 %), C(19 : 0) cyclo omega8c (25.0 %), C(18 : 0) (12.9 %) and C(16 : 0) (10.8 %) (>10 % of total fatty acids). Ubiquinone-10 was the major isoprenoid quinone and the DNA G+C content was 66.5 mol%. The phenotypic characteristics in combination with 16S rRNA gene sequence analysis and DNA-DNA hybridization data clearly define strain 5YN7-3(T) as a novel species of the genus Kaistia, for which the name Kaistia terrae sp. nov. is proposed. The type strain is 5YN7-3(T) (=KACC 12910(T) =DSM 21341(T)).

  10. Sphingomonas hengshuiensis sp. nov., isolated from lake wetland.

    PubMed

    Wei, Shuzhen; Wang, Tingting; Liu, Hongliang; Zhang, Caifeng; Guo, Jiping; Wang, Qian; Liang, Kuijing; Zhang, Zhiqiang

    2015-12-01

    A polyphasic taxonomic study was undertaken to establish the status of a novel bacterium, designated strain WHSC-8T, which was isolated from soil of Hengshui Lake Wetland Reserve in Hebei province, northern China. Colonies of this strain were yellow and cells were rod-shaped, polar-flagellated and obligately aerobic, exhibiting negative Gram reaction. The strain was able to grow at 0-1 % (w/v) NaCl, pH 5-10 and 20-35 °C, with optimal growth occurring at pH 7.0 and 28 °C without NaCl. Chemotaxonomic data revealed that strain WHSC-8T possesses ubiquinone Q-10 as the predominant respiratory quinone, C18 : 1ω7c, C16 : 0 and summed feature 3 (C16 : 1ω7c and/or iso-C15 : 0 2-OH) as the major fatty acids, and sym-homospermidine as the major polyamine. Sphingomonadaceae-specific sphingoglycolipid was detected in the polar lipid patterns. The G+C content of the genomic DNA was 68.7 mol%. All of the above characters corroborated the assignment of the novel strain to the genus Sphingomonas. Strain WHSC-8T shared less than 97.0 % 16S rRNA gene sequence similarity with the type strains of other species of the genus Sphingomonas, except for Sphingomonas asaccharolytica DSM 10564T (97.5 %). The low DNA-DNA relatedness value and distinct phenotypic and chemotaxonomic characteristics distinguished strain WHSC-8T from closely related species of the genus Sphingomonas. Therefore, strain WHSC-8T represents a novel species of the genus Sphingomonas, for which the name Sphingomonas hengshuiensis sp. nov. is proposed. The type strain is WHSC-8T ( = KCTC 42455T = CCTCC AB 2015265T). PMID:26410379

  11. A Hydraulic Nexus between Geographically Isolated Wetlands and Downstream Water Bodies

    NASA Astrophysics Data System (ADS)

    Mclaughlin, D. L.; Kaplan, D. A.; Cohen, M. J.

    2014-12-01

    Geographic isolation does not imply hydrological isolation; indeed, local groundwater exchange between geographically isolated wetlands (GIWs) and surrounding uplands may yield important controls on regional hydrology. Differences in specific yield (Sy) between aquifers and inundated GIWs drive differences in water level responses to atmospheric fluxes, leading to frequent reversals in hydraulic gradients that cause GIWs to act as both groundwater sinks and sources. When distributed across the landscape, these reversals in local groundwater fluxes are predicted to collectively buffer the surficial aquifer and its regulation of baseflow delivery, a process we refer to as landscape hydrologic capacitance. To test this hypothesis, we integrated models of daily soil moisture, upland water table, and wetland stage dynamics to simulate hydrology of a low-relief landscape with GIWs. Simulations explored the influences of cumulative wetland area, individual wetland size, climate, and soil texture on water table and baseflow variation. Increasing cumulative wetland area and decreasing individual wetland size reduced water table variation and the frequency of extremely shallow and deep water tables. This buffering effect extended to baseflow deliveries, decreasing the standard deviation of daily baseflow by as much as 50%. For the same total wetland area, landscapes with fewer (i.e., larger) wetlands exhibited markedly lower hydrologic capacitance than those with more (i.e., smaller) wetlands, highlighting the important role of small GIWs in regulating regional hydrology. Recent U.S. Supreme Court rulings have limited federal protections for GIWs except where a "significant nexus" to a navigable water body is demonstrated. Our results suggest that GIWs regulate downstream baseflow, even where water in GIWs may never physically reach downstream systems, providing a significant "hydraulic" nexus to distant water bodies.

  12. Agricultural Encroachment: Implications for Carbon Sequestration in Tropical African Wetlands

    NASA Astrophysics Data System (ADS)

    Jones, M. B.; Saunders, M.; Kansiime, F.

    2013-12-01

    Tropical wetlands have been shown to exhibit high rates of net primary productivity and may therefore play an important role in global climate change mitigation through carbon assimilation and sequestration. Many permanently flooded areas of tropical East Africa are dominated by the highly productive C4 emergent macrophyte sedge, Cyperus papyrus L. (papyrus). However, increasing population densities around wetland margins in East Africa are reducing the extent of papyrus coverage due to the planting of subsistence crops such as Cocoyam (Colocasia esculenta). We have assessed the impact of this land use change on the carbon cycle in theis wetland environment. Eddy covariance techniques were used, on a campaign basis, to measure fluxes of carbon dioxide over both papyrus and cocoyam dominated wetlands located on the Ugandan shore of Lake Victoria. The integration of flux data over the annual cycle shows that papyrus wetlands have the potential to act as a sink for significant amounts of carbon, in the region of 10 t C ha-1 yr-1. The cocoyam vegetation was found to assimilate ~7 t C ha-1 yr-1 but when carbon exports from crop biomass removal were taken into account these wetlands represent a significant net loss of carbon of similar magnitude. The development of sustainable wetland management strategies are therefore required in order to promote the dual wetland function of crop production and the mitigation of greenhouse gas emissions especially under future climate change scenarios.

  13. Wetlands.

    ERIC Educational Resources Information Center

    Nelson, Patricia L.

    1986-01-01

    Suggests studying New York's wetlands, both in the classroom and in the field, to illustrate ecological concepts of diversity, succession, and adaptation and to learn about their importance in controlling flooding, erosion, and pollution. (NEC)

  14. Implications of agricultural encroachment on the carbon and greenhouse gas dynamics in tropical African wetlands.

    NASA Astrophysics Data System (ADS)

    Saunders, Matthew; Kansiime, Frank; Jones, Michael

    2015-04-01

    the production and emission of methane (CH4), and plant-facilitated emissions of up to 32 mg CH4 m-2 h-1 were measured from mature papyrus plants grown in a constructed wetland, suggesting that these wetlands may make a significant contribution to regional methane emissions. The conversion of the papyrus wetlands to agricultural land use has significant implications for the carbon budgets of these systems, as the decomposition of detrital material in addition to the carbon exported in the crop biomass resulted in a net loss of carbon of ~10 t C ha-1 yr-1. The development of sustainable wetland management strategies are therefore required to maintain and enhance the services provided by these ecosystems especially under increasing population pressures and future climatic scenarios.

  15. Hydraulic characteristics of a constructed wetland: Implications for pollutant removal

    NASA Astrophysics Data System (ADS)

    Wachniew, P.; Czuprynski, P.; Maloszewski, P.; Ozimek, T.

    2003-04-01

    Constructed wetlands are built in order to treat wastewaters of various origin with some degree of control over purification processes. Treatment wetlands improve water quality through removal of suspended solids, organics, nitrogen, phosphorus, pathogens (bacteria, parasites, viruses) and metals. Transformation and removal of pollutants from wastewaters occur via numerous interrelated physical, chemical and biological processes. The efficiency of soluble pollutants removal is related to the degree of contact between wastewaters and the reactive surfaces. Therefore knowledge of hydraulic phenomena is crucial in studies of wetland functioning. A subsurface flow wetland in Nowa Slupia, Poland was studied in order to find out relationships between hydraulic phenomena and wetland performance. The wetland consists of three parallel gravel beds overgrown by common reed with a total surface area of 6400 sq m, total active volume of around 900 cubic m and the average loading of around 4 l/s. Three tracer tests with bromide and tritium accompanied by observations of water quality, plant distribution and biomass were performed in summer and winter conditions. Tracer breakthrough curves obtained from tracer tests were used to identify sub-systems within the wetland and to infer their hydraulic properties (water residence times, active volumes, dispersive characteristics). Three reed beds receive different wastewater loadings and show different water residence times and dispersive characteristics. Wastewater flow occurs partly via surface overflow with apparent stagnant zones and preferential flow pathways. These flow patterns are reflected in complex structure of breakthrough curves. Inhomogenous wastewater distribution within the wetland is due to operation practices and clogging of the gravel beds with refractory organic matter. Observations of effluent water quality, plant distribution and biomass reflect these apparent inhomogenities in wastewater flow patterns. This work

  16. Spatial and functional characterization, identification and assessment of isolated wetlands in Alachua County, Florida, USA - GIS and remote sensing techniques

    EPA Science Inventory

    In this study, Geographic Information Systems (GIS) and remote sensing mapping techniques were developed to identify the locations of isolated wetlands in Alachua County, FL, a 2510 sq km area in north-central Florida with diverse geology and numerous isolated wetlands. The resul...

  17. Importance of Small Isolated Wetlands for Herpetofaunal Diversity in Managed, Young Growth Forests in the Coastal Plain of South Carolina

    SciTech Connect

    Russell, K.R.; Guynn, D.C., Jr.; Hanlin, H.G.

    2002-03-27

    Assessment and comparison of richness, abundance and difference of herpetofauna at five small isolated wetlands located within a commercial forest landscape in the South Carolina Coastal Plain. Data indicates small isolated wetlands are focal points of herpetofaunal richness and abundance in managed coastal plain forest and contribute more to regional biodiversity than is implied by their small size or ephemeral hydrology.

  18. Calculating the ecosystem service of water storage in isolated wetlands using LiDAR in north central Florida, USA (presentation)

    EPA Science Inventory

    This study used remotely-sensed Light Detection and Ranging (LiDAR) data to estimate potential water storage capacity of isolated wetlands in north central Florida. The data were used to calculate the water storage potential of >8500 polygons identified as isolated wetlands. We f...

  19. Calculating the ecosystem service of water storage in isolated wetlands using LIDAR in north central Florida, USA

    EPA Science Inventory

    This study used remotely-sensed Light Detection and Ranging (LiDAR) data to estimate potential water storage capacity of isolated wetlands in north central Florida. The data were used to calculate the water storage potential of >8500 polygons identified as isolated wetlands. We ...

  20. Implications of hydrologic variability on the succession of plants in Great Lakes wetlands

    USGS Publications Warehouse

    Wilcox, Douglas A.

    2004-01-01

    Primary succession of plant communities directed toward a climax is not a typical occurrence in wetlands because these ecological systems are inherently dependent on hydrology, and temporal hydrologic variability often causes reversals or setbacks in succession. Wetlands of the Great Lakes provide good examples for demonstrating the implications of hydrology in driving successional processes and for illustrating potential misinterpretations of apparent successional sequences. Most Great Lakes coastal wetlands follow cyclic patterns in which emergent communities are reduced in area or eliminated by high lake levels and then regenerated from the seed bank during low lake levels. Thus, succession never proceeds for long. Wetlands also develop in ridge and swale terrains in many large embayments of the Great Lakes. These formations contain sequences of wetlands of similar origin but different age that can be several thousand years old, with older wetlands always further from the lake. Analyses of plant communities across a sequence of wetlands at the south end of Lake Michigan showed an apparent successional pattern from submersed to floating to emergent plants as water depth decreased with wetland age. However, paleoecological analyses showed that the observed vegetation changes were driven largely by disturbances associated with increased human settlement in the area. Climate-induced hydrologic changes were also shown to have greater effects on plant-community change than autogenic processes. Other terms, such as zonation, maturation, fluctuations, continuum concept, functional guilds, centrifugal organization, pulse stability, and hump-back models provide additional means of describing organization and changes in vegetation; some of them overlap with succession in describing vegetation processes in Great Lakes wetlands, but each must be used in the proper context with regard to short- and long-term hydrologic variability.

  1. Satellite remote sensing of isolated wetlands using object-oriented classification of LANDSAT-7 data

    EPA Science Inventory

    There has been an increasing interest in characterizing and mapping isolated depressional wetlands due to a 2001 U.S. Supreme Court decision that effectively removed their protected status. Our objective was to determine the utility of satellite remote sensing to accurately map ...

  2. Ambient ex-situ Denitrification in Isolated Wetlands of Ohio, North Carolina, and Florida

    EPA Science Inventory

    Isolated wetlands are completely surrounded by uplands and typically do not warrant federal protection under the Clean Water Act. Nevertheless they can be found at high densities in certain parts of the US and Canada (e.g., Prairie Pothole Region, Southern and Middle Atlantic Co...

  3. Ambient ex-situ denitrification in isolated wetlands of Ohio, North Carolina and Florida

    EPA Science Inventory

    Isolated wetlands are completely surrounded by uplands and typically do not warrant federal protection under the Clean Water Act. Nevertheless they can be found at high densities in certain parts of the US and Canada (e.g., Prairie Pothole Region, Southern and Middle Atlantic Coa...

  4. Hydrologic connectivity between geographically isolated wetlands and surface water systems: A review of select modeling methods

    EPA Science Inventory

    Rulings in 2001 and 2006 by the United States Supreme Court concerning the protection of Geographically Isolated Wetlands (GIWs) unveiled a critical area of research: quantifying the extent of potential hydrologic connectivity of GIWs to navigable waters and their effects at a va...

  5. DIATOMS AS INDICATORS OF ISOLATED HERBACEOUS WETLAND CONDITION IN FLORIDA, USA

    EPA Science Inventory

    Benthic, epiphytic, and phytoplanktonic diatoms, as well as soil and water physical-chemical parameters, were sampled from 70 small (~1 ha) isolated depressional herbaceous wetlands located along a gradient of human disturbance in peninsular Florida to: 1) compare assemblage str...

  6. Wildlife health implications of sewage disposal in wetlands

    USGS Publications Warehouse

    Friend, M.; Godfrey, P.J.; Kaynor, E.R.; Pelczarski, S.

    1985-01-01

    Wildlife health concerns associated with disposal of sewage effluent in wetlands are of three primary types: (1) introduction of pathogens, (2) introduction of pollutants that adversely impact on host body defense mechanisms, and (3) changes in the physical and chemical properties of wetlands that favor the development and maintenance of disease problems. Unlike the situation with human health concerns, introduction of pathogens is not the major concern regarding wildlife health. Instead, the focus of attention needs to be directed at environmental changes likely to take place as a result of effluent discharges into different types of wetlands. Unless these changes are adequately addressed from a disease perspective, marshes utilized for sewage disposal could become disease incubators and wildlife death traps. This result would be unfortunate because the backlash would likely negate the potentially beneficial aspects of the use of sewage wastewater for the creation of new wetlands and have a severe impact on progress being made towards evaluation of the compatibility of wildlife and sewage effluents.

  7. Heavy metal resistant endophytic fungi isolated from Nypa fruticans in Kuching Wetland National Park

    NASA Astrophysics Data System (ADS)

    Choo, Jenny; Sabri, Nuraini Binti Mohd; Tan, Daniel; Mujahid, Aazani; Müller, Moritz

    2015-06-01

    Heavy metal pollution is an environmental issue globally and the aim of this study was to isolate endophytic fungi from mangrove wetlands of Sarawak to assess and test their ability to grow in the presence of various heavy metals (copper (Cu), zinc (Zn), lead (Pb), and chromium (Cr)). Samples of Nypa fruticans were collected from Kuching Wetland National Park (KWNP) for subsequent endophyte isolation. Ninety-three (93) isolates were obtained and assessed and the most resistant isolates (growing at concentrations up to 1000 ppm) were identified using fungal primers ITS 1 and ITS 4. All of the endophytic fungi were identified to be closely related to Pestalotiopsis sp. and this is to our knowledge the first study reporting the ability of Pestalotiopsis sp. to grow at high concentrations of copper, lead, zinc and chromium. Our results highlight the potential of using endophytic fungi for the treatment of heavy metal pollution, for example as biosorbents.

  8. Emission of greenhouse gases from geographically isolated wetlands of Western Siberia

    NASA Astrophysics Data System (ADS)

    Golovatskaya, E.; Dyukarev, E.; Veretennikova, E.

    2014-12-01

    Wetlands are integral components of landscapes with specific nutrient dynamics and carbon sequestration potentials, which frequently differ, based on hydroperiod and seasonal hydropattern, as well as the constituent concentration of inputs, site-specific storages and vegetation structures. Human modifications have the potential to significantly alter controls on carbon dynamics. This study focused on determining carbon emissions (CO2 and CH4) from geographically isolated peatlands within the Ob-Tom River Interfluve area of Western Siberia affected by water diversion for municipal use by the city of Tomsk, Russia. Two oligotrophic wetlands within the study area were selected for site-specific CO2 studies, the Timiryazevskoe (16 ha) and Kirsanovskoe wetlands (29 ha), both affected by the Tomsk water intake (177 water wells 250 000 m3 water daily). Measurements of СО2 and CH4 emissions from peat surfaces were carried out bi-monthly in growing periods from 2008-2013 in two dominate vegetation zones, pine- shrub-sphagnum phytocenosis (ryam) and sedge-sphagnum fens. СО2 emissions were measured using OPTOGAS-500.4 infrared gas analyzer and dark chamber. Methane emissions were measured using static chamber method. Air samples were collected by syringes and analyzed at gas chromatograph Shimadzu-GC14B. Observations were accompanied by measurement of air temperature and humidity, surface temperature, peat temperature at various depths and the water table level. CО2 emission over the vegetative growing period had clearly pronounced seasonal dynamics with maximum values in the middle of the growing season (mid-July) and minimum values in spring and autumn. The average total flux over the studied period is 123±55 gС/m2 at sedge-sphagnum fen of Kirsanovskoe wetland and 323±66 gС/m2 at fen of Timiryazevskoe wetland. Total СО2 flux for the snow-free period at ryam sites of Timiryazevskoe and Kirsanovskoe wetlands is 238±84 and 260±47 gС/m2 accordingly. Methane

  9. Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands.

    PubMed

    Dedysh, S N; Panikov, N S; Liesack, W; Grosskopf, R; Zhou, J; Tiedje, J M

    1998-10-01

    Acidic northern wetlands are an important source of methane, one of the gases that contributes to global warming. Methane oxidation in the surface of these acidic wetlands can reduce the methane flux to the atmosphere up to 90 percent. Here the isolation of three methanotrophic microorganisms from three boreal forest sites is reported. They are moderately acidophilic organisms and have a soluble methane monooxygenase. In contrast to the known groups of methanotrophs, 16S ribosomal DNA sequence analysis shows that they are affiliated with the acidophilic heterotrophic bacterium Beijerinckia indica subsp. indica.

  10. Isolation of acidophilic methane-oxidizing bacteria from northern peat wetlands.

    PubMed

    Dedysh, S N; Panikov, N S; Liesack, W; Grosskopf, R; Zhou, J; Tiedje, J M

    1998-10-01

    Acidic northern wetlands are an important source of methane, one of the gases that contributes to global warming. Methane oxidation in the surface of these acidic wetlands can reduce the methane flux to the atmosphere up to 90 percent. Here the isolation of three methanotrophic microorganisms from three boreal forest sites is reported. They are moderately acidophilic organisms and have a soluble methane monooxygenase. In contrast to the known groups of methanotrophs, 16S ribosomal DNA sequence analysis shows that they are affiliated with the acidophilic heterotrophic bacterium Beijerinckia indica subsp. indica. PMID:9765151

  11. Antibiotic resistance patterns of coliforms isolated from six protected wetlands in the southeast of Spain.

    PubMed

    Gómez, M A; Gonzalez-López, J; Calvo, C

    2000-01-01

    Coliforms and thermotolerant coliforms were isolated from six protected lakes in the Antequera area of Spain in order to assess the sanitary quality of these wetlands. The thermotolerant coliform group consisted of several bacterial genera with a wide spectrum of antibiotic resistance. Resistance among Escherichia coli strains was correlated with the origin of the sample and three homogeneous groups of wetlands were distinguished. One of them, which corresponded to wetlands where faecal indicators were indigenous, exhibited no correlation between these bacteria and faecal pollution. Non-coli strains showed a similar range of antibiotic susceptibility for this group. In the other two groups a faecal pollution was detected and antibiotic resistance for E. coli strains established the origin of pollution. PMID:11501423

  12. Biotransformation of chlorpyrifos in riparian wetlands in agricultural watersheds: implications for wetland management.

    PubMed

    Karpuzcu, M Ekrem; Sedlak, David L; Stringfellow, William T

    2013-01-15

    Biodegradation of the organophosphate insecticide chlorpyrifos (O,O-diethyl O-(3,5,6-trichloropyridin-2-yl) phosphorothioate) in sediments from wetlands and agricultural drains in San Joaquin Valley, CA was investigated. Sediments were collected monthly, spiked with chlorpyrifos, and rates of chlorpyrifos degradation were measured using a standardized aerobic biodegradation assay. Phosphoesterase enzyme activities were measured and phosphotriesterase activity was related to observed biodegradation kinetics. First-order biodegradation rates varied between 0.02 and 0.69 day(-1), after accounting for abiotic losses. The average rate of abiotic chlorpyrifos hydrolysis was 0.02 d(-1) at pH 7.2 and 30 °C. Sediments from the site exhibiting the highest chlorpyrifos degradation capacity were incubated under anaerobic conditions to assess the effect of redox conditions on degradation rates. Half-lives were 5 and 92 days under aerobic and anaerobic conditions, respectively. There was a consistent decrease in observed biodegradation rates at one site due to permanently flooded conditions prevailing during one sampling year. These results suggest that wetland management strategies such as allowing a wet-dry cycle could enhance degradation rates. There was significant correlation between phosphotriesterase (PTE) activity and the chlorpyrifos biotransformation rates, with this relationship varying among sites. PTE activities may be useful as an indicator of biodegradation potential with reference to the previously established site-specific correlations.

  13. Freshwater Wetland Habitat Loss and Fragmentation: Implications for Aquatic Biodiversity Conservation

    NASA Astrophysics Data System (ADS)

    Wolaver, B. D.; Pierre, J. P.; Labay, B. J.; Ryberg, W. A.; Hibbits, T. J.; Prestridge, H. L.

    2015-12-01

    Anthropogenic land use changes have caused widespread wetland loss and fragmentation. This trend has important implications for aquatic biota conservation, including the semi-aquatic Western Chicken Turtle (Deirochelys reticularia miaria). This species inhabits seasonally inundated, ephemeral water bodies and adjacent uplands in the southeastern U.S. However, wetland conversion to agriculture and urbanization is thought to cause the species' decline, particularly in Texas, which includes the westernmost part of its range. Because the species moves only a few kilometers between wetlands, it particularly sensitive to habitat loss and fragmentation. Thus, as part of the only state-funded species research program, this study provides the U.S. Fish and Wildlife Service (FWS) with scientific data to determine if the species warrants protection under the Endangered Species Act (ESA). We use a species distribution model to map potentially suitable habitat for most of East Texas. We evaluate landscape-scale anthropogenic activities in this region which may be contributing to the species' decline. We identify areas of urbanization, agricultural expansion, forestry, and resulting wetland loss. We find that between 2001 and 2011 approximately 80 km2 of wetlands were lost in potentially suitable habitat, including the urbanizing Houston area. We use spatial geostatistics to quantify wetland habitat fragmentation. We also introduce the Habitat Alteration Index (HAI), which calculates total landscape alteration and mean probability of occurrence to identify high-quality habitat most at risk of recent anthropogenic alteration. Population surveys by biologists are targeting these areas and future management actions may focus on mitigating anthropogenic activities there. While this study focuses on D. r. miaria, this approach can evaluate wetland habitat of other aquatic organisms.

  14. Stimulating a Great Lakes coastal wetland seed bank using portable cofferdams: implications for habitat rehabilitation

    USGS Publications Warehouse

    Kowalski, K.P.; Wilcox, D.A.; Wiley, M.J.

    2009-01-01

    Coastal wetland seed banks exposed by low lake levels or through management actions fuel the reestablishment of emergent plant assemblages (i.e., wetland habitat) critical to Great Lakes aquatic biota. This project explored the effectiveness of using portable, water-filled cofferdams as a management tool to promote the natural growth of emergent vegetation from the seed bank in a Lake Erie coastal wetland. A series of dams stretching approximately 450??m was installed temporarily to isolate hydrologically a 10-ha corner of the Crane Creek wetland complex from Lake Erie. The test area was dewatered in 2004 to mimic a low-water year, and vegetation sampling characterized the wetland seed bank response at low, middle, and high elevations in areas open to and protected from bird and mammal herbivory. The nearly two-month drawdown stimulated a rapid seed-bank-driven response by 45 plant taxa. Herbivory had little effect on plant species richness, regardless of the location along an elevation gradient. Inundation contributed to the replacement of immature emergent plant species with submersed aquatic species after the dams failed and were removed prematurely. This study revealed a number of important issues that must be considered for effective long-term implementation of portable cofferdam technology to stimulate wetland seed banks, including duration of dewatering, product size, source of clean water, replacement of damaged dams, and regular maintenance. This technology is a potentially important tool in the arsenal used by resource managers seeking to rehabilitate the functions and values of Great Lakes coastal wetland habitats.

  15. ISOLATED WETLANDS: STATE-OF-THE-SCIENCE AND FUTURE DIRECTIONS

    EPA Science Inventory

    In Solid Waste Agency of Northern Cook County v. U.S. Army Corps of Engineers (SWANCC), the U.S. Supreme Court held that isolated, intrastate, non-navigable waters could not be protected under the Clean Water Act based solely on their use by migratory birds. The SWANCC decision ...

  16. Bathymetry and vegetation in isolated marsh and cypress wetlands in the northern Tampa Bay Area, 2000-2004

    USGS Publications Warehouse

    Haag, Kim H.; Lee, Terrie M.; Herndon, Donald C.

    2005-01-01

    Wetland bathymetry and vegetation mapping are two commonly used lines of evidence for assessing the hydrologic and ecologic status of expansive coastal and riverine wetlands. For small isolated freshwater wetlands, however, bathymetric data coupled with vegetation assessments are generally scarce, despite the prevalence of isolated wetlands in many regions of the United States and the recognized importance of topography as a control on inundation patterns and vegetation distribution. In the northern Tampa Bay area of west-central Florida, bathymetry was mapped and vegetation was assessed in five marsh and five cypress wetlands. These 10 isolated wetlands were grouped into three categories based on the effects of ground-water withdrawals from regional municipal well fields: natural (no effect), impaired (drier than natural), and augmented (wetlands with artificially augmented water levels). Delineation of the wetland perimeter was a critical component for estimating wetland-surface area and stored water volume. The wetland perimeter was delineated by the presence of Serenoa repens (the 'palmetto fringe') at 9 of the 10 sites. At the 10th site, where the palmetto fringe was absent, hydric-soils indicators were used to delineate the perimeter. Bathymetric data were collected using one or more techniques, depending on the physical characteristics of each wetland. Wetland stage was measured hourly using continuous stage recorders. Wetland vegetation was assessed semiannually for 2 1/2 years in fixed plots located at three distinct elevations. Vegetation assessments were used to determine the community composition and the relative abundance of obligate, facultative wet, and facultative species at each elevation. Bathymetry maps were generated, and stage-area and stage-volume relations were developed for all 10 wetlands. Bathymetric data sets containing a high density of data points collected at frequent and regular spatial intervals provided the most useful stage

  17. Spatiotemporal patterns of wetland occurrence in the prairie pothole region of eastern South Dakota

    USGS Publications Warehouse

    Kahara, S.N.; Mockler, R.M.; Higgins, K.F.; Chipps, S.R.; Johnson, R.R.

    2009-01-01

    We evaluated changes in wetland abundance, size, and classification between average (19791986) and above-average (19951999) precipitation periods for two physiographic regions in eastern South Dakota. Temporal shifts in wetland numbers, area, and class varied by topographic location. In high wetland density areas (> 8 wetlands/100 ha), our data suggests that larger, semipermanent wetlands expanded and absorbed nearby wetland basins into their margins, resulting in a net "loss" or disappearance of temporary and seasonal wetlands in above-average water condition years. "Losses" described here are not deemed permanent as in cases of draining or filling, and wetlands may re-form when water conditions return to normal. Nevertheless, temporary disappearance of smaller more isolated wetlands may have implications for breeding waterfowl and other fauna. Percent change of semipermanent basin numbers was positively correlated with wetland density, whereas the opposite was true for seasonal wetlands. Loss of temporary wetlands was correlated with wetland aggregation within the sample area. However, in low wetland density areas, the number and size of seasonal and temporary wetlands generally increased following above-average precipitation. We suggest that wetlands' spatial arrangement be considered along with traditional wetland quantification techniques to better account for shifts in wetland habitat in dry versus wet years. ?? 2009 The Society of Wetland Scientists.

  18. Characterization of Pasteurella multocida isolates from wetland ecosystems during 1996 to 1999

    USGS Publications Warehouse

    Samuel, M.D.; Shadduck, D.J.; Goldberg, D.R.; Wilson, M.A.; Joly, D.O.; Lehr, M.A.

    2003-01-01

    We cultured 126 Pasteurella multocida isolates, 92 from water and 34 from sediment samples collected from wetlands in the Pacific and Central flyways of the United States between 1996 and 1999. Most (121) of the isolates were P. multocida serotype 1, but serotypes 3, 3/4, 10, and 11 were also found. Many (82) of the isolates were further characterized by DNA fingerprinting procedures and tested in Pekin ducks for virulence. Almost all the serotype 1 isolates we tested caused mortality in Pekin ducks. Serotype 1 isolates varied in virulence, but the most consistent pattern was higher mortality in male ducks than in females. We found no evidence that isolates found in sediment vs. water, between Pacific and Central flyways, or during El Nino years had consistently different virulence. We also found a number of non-serotype 1 isolates that were avirulent in Pekin ducks. Isolates had DNA fingerprint profiles similar to those found in birds that died during avian cholera outbreaks.

  19. Characterization of Thermotolerant Chitinases Encoded by a Brevibacillus laterosporus Strain Isolated from a Suburban Wetland

    PubMed Central

    Liu, Pulin; Cheng, Deyong; Miao, Lihong

    2015-01-01

    To isolate and characterize chitinases that can be applied with practical advantages, 57 isolates of chitin-degrading bacteria were isolated from the soil of a suburban wetland. 16S rRNA gene analysis revealed that the majority of these strains belonged to two genera, Paenibacillus and Brevibacillus. Taking thermostability into account, the chitinases (ChiA and ChiC) of a B. laterosporus strain were studied further. Ni-NTA affinity-purified ChiA and ChiC were optimally active at pH 7.0 and 6.0, respectively, and showed high temperature stability up to 55 °C. Kinetic analysis revealed that ChiC has a lower affinity and stronger catalytic activity toward colloidal chitin than ChiA. With their stability in a broad temperature range, ChiA and ChiC can be utilized for the industrial bioconversion of chitin wastes into biologically active products. PMID:26690223

  20. Terrestrial distribution of pond-breeding salamanders around an isolated wetland.

    PubMed

    Scott, David E; Komoroski, Mark J; Croshaw, Dean A; Dixon, Philip M

    2013-11-01

    Terrestrial habitats surrounding isolated wetlands are a critical resource for many pond-breeding amphibian species, yet few studies have examined the terrestrial distribution of post-metamorphic juveniles and adults. We used an encircling drift fence at a breeding pond in conjunction with partial fences at 90, 172, and 332 m from the wetland to estimate the terrestrial distribution of adult marbled salamanders (Ambystoma opacum; four breeding seasons) and mole salamanders (A. talpoideum; two seasons), as well as the dispersion of newly metamorphosed A. opacum (one summer). For newly metamorphosed A. opacum, 79% emigrated < 90 m from the wetland, and 8% moved beyond 172 m; movement distance was unrelated to body size. Distribution of adult A. opacum varied among years, with an average of 28% (range 23-31%) occurring beyond 172 m in all years. Averaged across two years, 51% of adult A. talpoideum occurred beyond 172 m. Lognormal models provided a good fit to both the juvenile and adult ambystomatid distributions, and parameters differed between age classes, sexes, species, and years within species. For adult A. opacum a buffer radius of 300 m or 340 m, depending on the year, is estimated to include 95% of adults; for A. talpoideum the estimate is 464 m or 501 m. A reanalysis of distribution data for seven ambystomatid species shows that a previous estimate of a 164-m radius to protect 95% of a population underestimates the needed buffer radius by 185 m. Because our study wetland requires a nearly 500 m wide radius to protect 95% of its ambystomatid adults, preservation of similar communities may require much more surrounding terrestrial habitat than previously thought. PMID:24400505

  1. Enhanced detection of wetland-stream connectivity using lidar:Implications for improved wetland conservation and management

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The importance of wetland–stream connectivity has been heightened due to the current dependence of wetland regulatory status on this connectivity, although the importance of wetland function to adjacent stream health has been and will continue to be substantial regardless of government policies and ...

  2. Implications of discontinuous elevation gradients on fragmentation and restoration in patterned wetlands

    USGS Publications Warehouse

    Zweig, Christa L.; Reichert, Brian E.; Kitchens, Wiley M.

    2011-01-01

    Large wetlands around the world face the possibility of degradation, not only from complete conversion, but also from subtle changes in their structure and function. While fragmentation and isolation of wetlands within heterogeneous landscapes has received much attention, the disruption of spatial patterns/processes within large wetland systems and the resulting fragmentation of community components are less well documented. A greater understanding of pattern/process relationships and landscape gradients, and what occurs when they are altered, could help avoid undesirable consequences of restoration actions. The objective of this study is to determine the amount of fragmentation of sawgrass ridges due to artificial impoundment of water and how that may be differentially affected by spatial position relative to north and south levees. We also introduce groundbreaking evidence of landscape-level discontinuous elevation gradients within WCA3AS by comparing generalized linear and generalized additive models. These relatively abrupt breaks in elevation may have non-linear effects on hydrology and vegetation communities and would be crucial in restoration considerations. Modeling suggests there are abrupt breaks in elevation as a function of northing (Y-coordinate). Fragmentation indices indicate that fragmentation is a function of elevation and easting (X-coordinate), and that fragmentation has increased from 1988-2002. When landscapes change and the changes are compounded by non-linear landscape variables that are described herein, the maintenance processes change with them, creating a degraded feedback loop that alters the system's response to structuring variables and diminishes our ability to predict the effects of restoration projects or climate change. Only when these landscape variables and linkages are clearly defined can we predict the response to potential perturbations and apply the knowledge to other landscape-level wetland systems in need of future

  3. Isolation and characterization of methane utilizing bacteria from wetland paddy ecosystem.

    PubMed

    Jhala, Y K; Vyas, R V; Shelat, H N; Patel, H K; Patel, H K; Patel, K T

    2014-06-01

    Methylotrophic bacteria which are known to utilize C1 compounds including methane. Research during past few decades increased the interest in finding out novel genera of methane degrading bacteria to efficiently utilize methane to decrease global warming effect. Moreover, evaluation of certain known plant growth promoting strains for their methane degrading potential may open up a new direction for multiple utility of such cultures. In this study, efficient methylotrophic cultures were isolated from wetland paddy fields of Gujarat. From the overall morphological, biochemical and molecular characterization studies, the isolates were identified and designated as Bacillus aerius AAU M 8; Rhizobium sp. AAU M 10; B. subtilis AAU M 14; Paenibacillus illinoisensis AAU M 17 and B. megaterium AAU M 29. Gene specific PCR analysis of the isolates, P. illinoisensis, B. aerius, Rhizobium sp. and B. subtilis showed presence of pmoA gene encoding α subunit particulate methane monooxygenase cluster. B. megaterium, P. illinoisensis, Rhizobium sp. and Methylobacterium extrorquens showed presence of mmoX gene encoding α subunit of the hydroxylase component of the soluble methane monooxygenase cluster. P. illinoisensis and Rhizobium sp. showed presence mxaF gene encoding α subunit region of methanol dehydrogenase gene cluster showing that both isolates are efficient utilizers of methane. To the best of our knowledge, this is the first time report showing presence of methane degradation enzymes and genes within the known PGPB group of organisms from wet land paddy agro-ecosystem, which is considered as one of the leading methane producer.

  4. Multi-temporal sub-pixel landsat ETM+ classification of isolated wetlands in Cuyahoga County, Ohio, USA

    EPA Science Inventory

    The goal of this project was to determine the utility of subpixel processing of multi-temporal Landsat Enhanced Thematic Mapper Plus (ETM+) data for the detection of isolated wetlands greater than 0.50 acres in Cuyahoga County, located in the Erie Drift Plains ecoregion of northe...

  5. Variance in water chemistry parameters in isolated wetlands of Florida, USA, and relationships with macroinvertebrate and diatom community structure

    EPA Science Inventory

    Eighty small isolated wetlands throughout Florida were sampled in 2005 to explore within-site variability of water chemistry parameters and relate water chemistry to macroinvertebrate and diatom community structure. Three samples or measures of water were collected within each si...

  6. Phosphorus mass balance and internal load in an impacted subtropical isolated wetland subject to transient hydrologic conditions

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Jawitz, J. W.; Min, J.

    2009-12-01

    Internal loading is a critical component of the phosphorus (P) budget of aquatic systems, and can control the trophic conditions. While diffusion is generally considered the dominant process controlling internal P load to the water column, advection due to water table fluctuations resulting from episodic flooding and drying cycles can be a significant component of the P budget of depressional wetlands. Within the drainage basin of Lake Okeechobee, Florida, P is exported annually to the lake from impacted isolated wetlands located on beef farming facilities via ditches and canals. The objective of this study was to evaluate the role of diffusive and advective fluxes in relation to the total P loads entering and exiting one of these isolated wetlands. Diffusive fluxes were calculated from depth-variable pore water concentrations measured using multilevel samplers and pore water equilibrators. Advective fluxes were estimated based on groundwater fluctuations calculated within a hydrologic-budget framework. Results from an eleven-month monitoring period (May 2005-March 2006) indicated that the diffusive flux of soluble reactive P (SRP) was 0.42 ± 0.24 mg m-2 d-1 and occurred for 230 days out of 335. In comparison, the advective flux occurred over a shorter duration of just 21 days, yet generated a greater flux controlled by the concentrations of shallow pore water and the velocity of the ground water moving upwards into the wetland water column. The highest advective flux of SRP was estimated at 27.4 mg m-2 d-1. Based on these fluxes the corresponding P load to the wetland via internal modes was estimated at 5.2 kg and 0.93 kg from diffusion and advection respectively, representing a significant fraction of the total P load entering the wetland water column. Plant colonization during dry periods in P enriched soils is also a significant mechanism for P release from the soil at the time of flooding, however, this component to the wetland P budget was not evaluated as

  7. Carbon dioxide and methane emissions from an artificially drained coastal wetland during a flood: Implications for wetland global warming potential

    NASA Astrophysics Data System (ADS)

    Gatland, J. R.; Santos, I. R.; Maher, D. T.; Duncan, T. M.; Erler, D. V.

    2014-08-01

    Floods frequently produce deoxygenation and acidification in waters of artificially drained coastal acid sulfate soil (CASS) wetlands. These conditions are ideal for carbon dioxide and methane production. We investigated CO2 and CH4 dynamics and quantified carbon loss within an artificially drained CASS wetland during and after a flood. We separated the system into wetland soils (inundated soil during flood and exposed soil during post flood period), drain water, and creek water and performed measurements of free CO2 ([CO2*]), CH4, dissolved inorganic and organic carbon (DIC and DOC), stable carbon isotopes, and radon (222Rn: natural tracer for groundwater discharge) to determine aquatic carbon loss pathways. [CO2*] and CH4 values in the creek reached 721 and 81 μM, respectively, 2 weeks following a flood during a severe deoxygenation phase (dissolved oxygen ~ 0% saturation). CO2 and CH4 emissions from the floodplain to the atmosphere were 17-fold and 170-fold higher during the flooded period compared to the post-flood period, respectively. CO2 emissions accounted for about 90% of total floodplain mass carbon losses during both the flooded and post-flood periods. Assuming a 20 and 100 year global warming potential (GWP) for CH4 of 105 and 27 CO2-equivalents, CH4 emission contributed to 85% and 60% of total floodplain CO2-equivalent emissions, respectively. Stable carbon isotopes (δ13C in dissolved CO2 and CH4) and 222Rn indicated that carbon dynamics within the creek were more likely driven by drainage of surface floodwaters from the CASS wetland rather than groundwater seepage. This study demonstrated that >90% of CO2 and CH4 emissions from the wetland system occurred during the flood period and that the inundated wetland was responsible for ~95% of CO2-equivalent emissions over the floodplain.

  8. Isolation of Sphaerotilus-Leptothrix strains from iron bacteria communities in Tierra del Fuego wetlands.

    PubMed

    Schmidt, Bertram; Sánchez, Leandro A; Fretschner, Till; Kreps, Gastón; Ferrero, Marcela A; Siñeriz, Faustino; Szewzyk, Ulrich

    2014-11-01

    Sheath-forming iron- and manganese-depositing bacteria belonging to the Sphaerotilus-Leptothrix group (SLG) are widespread in natural and artificial water systems. Known requirements for their growth include the presence of organic substrates and molecular oxygen. High concentrations of reduced iron or manganese, although not necessary for most species, make their growth a noticeable phenomenon. Such microbial communities have been studied mostly in the Northern Hemisphere. Here, we present descriptions of diverse ochre-depositing microbial communities in Tierra del Fuego, Argentina, using a combined approach of microscopical examination, clone library construction and cultivation focused on SLG bacteria. To date, only few SLG type strains are available. The present work increases the number and diversity of cultivated SLG bacteria by obtaining isolates from biofilms and sediment samples of wetlands in Tierra del Fuego. Thirty isolates were selected based on morphological features such as sheath formation and iron/manganese deposition. Five operational taxonomic units (OTUs) were deduced. Sequencing of 16S rRNA genes showed that one OTU is identical to the Leptothrix mobilis Feox-1(T) -sequence while the four remaining OTUs show similarity values related to previously described type strains. Similarity values ranged from 96.5% to 98.8%, indicating possible new species and subspecies. PMID:25098830

  9. Isolation of Sphaerotilus-Leptothrix strains from iron bacteria communities in Tierra del Fuego wetlands.

    PubMed

    Schmidt, Bertram; Sánchez, Leandro A; Fretschner, Till; Kreps, Gastón; Ferrero, Marcela A; Siñeriz, Faustino; Szewzyk, Ulrich

    2014-11-01

    Sheath-forming iron- and manganese-depositing bacteria belonging to the Sphaerotilus-Leptothrix group (SLG) are widespread in natural and artificial water systems. Known requirements for their growth include the presence of organic substrates and molecular oxygen. High concentrations of reduced iron or manganese, although not necessary for most species, make their growth a noticeable phenomenon. Such microbial communities have been studied mostly in the Northern Hemisphere. Here, we present descriptions of diverse ochre-depositing microbial communities in Tierra del Fuego, Argentina, using a combined approach of microscopical examination, clone library construction and cultivation focused on SLG bacteria. To date, only few SLG type strains are available. The present work increases the number and diversity of cultivated SLG bacteria by obtaining isolates from biofilms and sediment samples of wetlands in Tierra del Fuego. Thirty isolates were selected based on morphological features such as sheath formation and iron/manganese deposition. Five operational taxonomic units (OTUs) were deduced. Sequencing of 16S rRNA genes showed that one OTU is identical to the Leptothrix mobilis Feox-1(T) -sequence while the four remaining OTUs show similarity values related to previously described type strains. Similarity values ranged from 96.5% to 98.8%, indicating possible new species and subspecies.

  10. Quantifying groundwater discharge through fringing wetlands to estuaries: Seasonal variability, methods comparison, and implications for wetland-estuary exchange

    USGS Publications Warehouse

    Tobias, C.R.; Harvey, J.W.; Anderson, I.C.

    2001-01-01

    Because groundwater discharge along coastal shorelines is often concentrated in zones inhabited by fringing wetlands, accurately estimating discharge is essential for understanding its effect on the function and maintenance of these ecosystems. Most previous estimates of groundwater discharge to coastal wetlands have been temporally limited and have used only a single approach to estimate discharge. Furthermore, groundwater input has not been considered as a major mechanism controlling pore-water flushing. We estimated seasonally varying groundwater discharge into a fringing estuarine wetland using three independent methods (Darcy's Law, salt balance, and Br- tracer). Seasonal patterns of discharge predicted by both Darcy's Law and the salt balance yielded similar seasonal patterns with discharge maxima and minima in spring and early fall, respectively. They differed, however, in the estimated magnitude of discharge by two- to fourfold in spring and by 10-fold in fall. Darcy estimates of mean discharge ranged between -8.0 and 80 L m-2 d-1, whereas the salt balance predicted groundwater discharge of 0.6 to 22 L m-2 d-1. Results from the Br- tracer experiment estimated discharge at 16 L m-2 d-t, or nearly equal to the salt balance estimate at that time. Based upon the tracer test, pore-water conductivity profiles, and error estimates for the Darcy and salt balance approaches, we concluded that the salt balance provided a more certain estimate of groundwater discharge at high flow (spring). In contrast, the Darcy method provided a more reliable estimate during low flow (fall). Groundwater flushing of pore water in the spring exported solutes to the estuary at rates similar to tidally driven surface exchange seen in previous studies. Based on pore-water turnover times, the groundwater-driven flux of dissolved organic carbon (DOC), dissolved organic nitrogen (DON), and NH4+ to the estuary was 11.9, 1.6, and 1.3 g C or g N m-2 wetland for the 90 d encompassing peak

  11. Effects of Upland Forest Management on Small Isolated Wetland Herptofauna in the Coastal Plain of South Carolina

    SciTech Connect

    Russell, K.R.

    2000-08-01

    Forest management practices were compared in five isolated wetlands. These isolated wetlands support a large number of reptiles and amphibians in the forest landscape. However, the effect of adjacent conditions on juvenile and adult mortality was unknown. Several treatments were applied around each bay. The latter included harvesting, harvesting plus site preparation, and a control or intact forest cover. The richness of the communities were similar at the five sites; however, significant differences were observed and associated with upland conditions prior to harvest. No differences in the richness abundance or diversity were detected among treatments. Short term decreases in the abundance of turtles and snakes were noted, but not after 1.5 years.

  12. Mapping of West Siberian taiga wetland complexes using Landsat imagery: implications for methane emissions

    NASA Astrophysics Data System (ADS)

    Evgenievna Terentieva, Irina; Vladimirovich Glagolev, Mikhail; Dmitrievna Lapshina, Elena; Faritovich Sabrekov, Alexandr; Maksyutov, Shamil

    2016-08-01

    High-latitude wetlands are important for understanding climate change risks because these environments sink carbon dioxide and emit methane. However, fine-scale heterogeneity of wetland landscapes poses a serious challenge when generating regional-scale estimates of greenhouse gas fluxes from point observations. In order to reduce uncertainties at the regional scale, we mapped wetlands and water bodies in the taiga zone of The West Siberia Lowland (WSL) on a scene-by-scene basis using a supervised classification of Landsat imagery. Training data consist of high-resolution images and extensive field data collected at 28 test areas. The classification scheme aims at supporting methane inventory applications and includes seven wetland ecosystem types comprising nine wetland complexes distinguishable at the Landsat resolution. To merge typologies, mean relative areas of wetland ecosystems within each wetland complex type were estimated using high-resolution images. Accuracy assessment based on 1082 validation polygons of 10 × 10 pixel size indicated an overall map accuracy of 79 %. The total area of the WSL wetlands and water bodies was estimated to be 52.4 Mha or 4-12 % of the global wetland area. Ridge-hollow complexes prevail in WSL's taiga zone accounting for 33 % of the total wetland area, followed by pine bogs or "ryams" (23 %), ridge-hollow-lake complexes (16 %), open fens (8 %), palsa complexes (7 %), open bogs (5 %), patterned fens (4 %), and swamps (4 %). Various oligotrophic environments are dominant among wetland ecosystems, while poor fens cover only 14 % of the area. Because of the significant change in the wetland ecosystem coverage in comparison to previous studies, a considerable reevaluation of the total CH4 emissions from the entire region is expected. A new Landsat-based map of WSL's taiga wetlands provides a benchmark for validation of coarse-resolution global land cover products and wetland data sets in high latitudes.

  13. Historical wetlands in Oregon's Willamette Valley: Implications for restoration of winter waterbird habitat

    USGS Publications Warehouse

    Taft, Oriane W.; Haig, Susan M.

    2003-01-01

    Before agricultural expansion in the 19th century, river valleys of North America supported expanses of wetland habitat. In restoring these landscapes, it is important to understand their historical condition and biological function. Synthesizing historical primary accounts (from explorers, travelers, settlers, and farmers) with contemporary knowledge of these wetland systems, we developed a profile of the wetlands and their use by nonbreeding waterbirds (e.g., waterfowl, wading birds, and shorebirds) within the Willamette Valley, Oregon, ca. 1840. We found evidence for three types of wetlands used by non-breeding waterbirds in fall, winter, and spring: emergent wetlands, riverine wetlands, and wetland prairie. The most extensive wetland type was wetland prairie, which functioned as fall/winter habitat for waterbirds, but only while native Kalapuyans managed the region with fire. Since the mid-1800s, four species, in particular, have decreased their use of the Willamette Valley: trumpeter swan (Cygnus buccinator), snow goose (Chen caerulescens), sandhill crane (Grus canadensis), and long-billed curlew (Numenius americanus). Information suggests that ca. 1840, waterbirds and their habitats were more abundant in the Willamette Valley than today. Restoration of the Willamette Valley landscape is warranted, and today's agricultural wetlandsa??former wetland prairiea??hold highest restoration potential.

  14. Characterization of an H4N2 avian influenza virus isolated from domestic duck in Dongting Lake wetland in 2009.

    PubMed

    Zhang, Hongbo; Chen, Quanjiao; Chen, Ze

    2012-02-01

    In January 2009, an H4N2 subtype of avian influenza virus [A/duck/Hunan/8-19/2009 (H4N2)] was isolated from domestic ducks in Dongting Lake wetland. The whole genome of the virus was sequenced and the results indicated that multiple gene segments of the virus had a high homology with viruses isolated from wild waterfowl, which indicated that the virus was probably transmitted from wild waterfowl to domestic ducks. Phylogenetic analysis revealed that the each gene belonged to the Eurasian lineage of avian influenza viruses, but genetic reassortment occurs between viruses of different subtypes.

  15. Assessment of environmental DNA for detecting presence of imperiled aquatic amphibian species in isolated wetlands

    USGS Publications Warehouse

    Mckee, Anna; Calhoun, Daniel L.; Barichivich, William J.; Spear, Stephen F.; Goldberg, Caren S.; Glenn, Travis C

    2015-01-01

    Environmental DNA (eDNA) is an emerging tool that allows low-impact sampling for aquatic species by isolating DNA from water samples and screening for DNA sequences specific to species of interest. However, researchers have not tested this method in naturally acidic wetlands that provide breeding habitat for a number of imperiled species, including the frosted salamander (Ambystoma cingulatum), reticulated flatwoods salamanders (Ambystoma bishopi), striped newt (Notophthalmus perstriatus), and gopher frog (Lithobates capito). Our objectives for this study were to develop and optimize eDNA survey protocols and assays to complement and enhance capture-based survey methods for these amphibian species. We collected three or more water samples, dipnetted or trapped larval and adult amphibians, and conducted visual encounter surveys for egg masses for target species at 40 sites on 12 different longleaf pine (Pinus palustris) tracts. We used quantitative PCRs to screen eDNA from each site for target species presence. We detected flatwoods salamanders at three sites with eDNA but did not detect them during physical surveys. Based on the sample location we assumed these eDNA detections to indicate the presence of frosted flatwoods salamanders. We did not detect reticulated flatwoods salamanders. We detected striped newts with physical and eDNA surveys at two wetlands. We detected gopher frogs at 12 sites total, three with eDNA alone, two with physical surveys alone, and seven with physical and eDNA surveys. We detected our target species with eDNA at 9 of 11 sites where they were present as indicated from traditional surveys and at six sites where they were not detected with traditional surveys. It was, however, critical to use at least three water samples per site for eDNA. Our results demonstrate eDNA surveys can be a useful complement to traditional survey methods for detecting imperiled pond-breeding amphibians. Environmental DNA may be particularly useful in situations

  16. The role of protected area wetlands in waterfowl habitat conservation: implications for protected area network design

    USGS Publications Warehouse

    Beatty, William S.; Kesler, Dylan C.; Webb, Elisabeth B.; Raedeke, Andrew H.; Naylor, Luke W.; Humburg, Dale D.

    2014-01-01

    The principal goal of protected area networks is biodiversity preservation, but efficacy of such networks is directly linked to animal movement within and outside area boundaries. We examined wetland selection patterns of mallards (Anas platyrhynchos) during non-breeding periods from 2010 to 2012 to evaluate the utility of protected areas to migratory waterfowl in North America. We tracked 33 adult females using global positioning system (GPS) satellite transmitters and implemented a use-availability resource selection design to examine mallard use of wetlands under varying degrees of protection. Specifically, we examined effects of proximities to National Wildlife Refuges, private land, state wildlife management areas, Wetland Reserve Program easements (WRP), and waterfowl sanctuaries on mallard wetland selection. In addition, we included landscape-level variables that measured areas of sanctuary and WRP within the surrounding landscape of each used and available wetland. We developed 8 wetland selection models according to season (autumn migration, winter, spring migration), hunting season (present, absent), and time period (diurnal, nocturnal). Model averaged parameter estimates indicated wetland selection patterns varied across seasons and time periods, but ducks consistently selected wetlands with greater areas of sanctuary and WRP in the surrounding landscape. Consequently, WRP has the potential to supplement protected area networks in the midcontinent region. Additionally, seasonal variation in wetland selection patterns indicated considering the effects of habitat management and anthropogenic disturbances on migratory waterfowl during the non-breeding period is essential in designing protected area networks.

  17. Juvenile salmonid use of freshwater emergent wetlands in the floodplain and its implications for conservation management

    USGS Publications Warehouse

    Henning, J.A.; Gresswell, R.E.; Fleming, I.A.

    2006-01-01

    A recent trend of enhancing freshwater emergent wetlands for waterfowl and other wildlife has raised concern about the effects of such measures on juvenile salmonids. We undertook this study to quantify the degree and extent of juvenile Pacific salmon Oncorhynchus spp. utilization of enhanced and unenhanced emergent wetlands within the floodplain of the lower Chehalis River, Washington, and to determine the fate of the salmon using them. Enhanced emergent wetlands contained water control structures that provided an outlet for fish emigration and a longer hydroperiod for rearing than unenhanced wetlands. Age-0 and age-1 coho salmon O. kisutch were the most common salmonid at all sites, enhanced wetlands having significantly higher age-1 abundance than unenhanced wetlands that were a similar distance from the main-stem river. Yearling coho salmon benefited from rearing in two enhanced wetland habitats, where their specific growth rate and minimum estimates of survival (1.43%/d by weight and 30%; 1.37%/d and 57%) were comparable to those in other side-channel rearing studies. Dissolved oxygen concentrations decreased in emergent wetlands throughout the season and approached the limits lethal to juvenile salmon by May or June each year. Emigration patterns suggested that age-0 and age-1 coho salmon emigrated as habitat conditions declined. This observation was further supported by the results of an experimental release of coho salmon. Survival of fish utilizing emergent wetlands was dependent on movement to the river before water quality decreased or stranding occurred from wetland desiccation. Thus, our results suggest that enhancing freshwater wetlands via water control structures can benefit juvenile salmonids, at least in the short term, by providing conditions for greater growth, survival, and emigration. ?? Copyright by the American Fisheries Society 2006.

  18. Hydrology or floristics? Mapping and classification of wetlands in Victoria, Australia, and implications for conservation planning.

    PubMed

    Robertson, Hugh A; Fitzsimons, James A

    2004-10-01

    A national approach to the conservation of biodiversity in Australia's freshwater ecosystems is a high priority. This requires a consistent and comprehensive system for the classification, inventory, and assessment of wetland ecosystems. This paper, using the State of Victoria as a case study, compares two classification systems that are commonly utilized to delineate and map wetlands--one based on hydrology (Victorian Wetland Database [VWD]) and one based on indigenous vegetation types and other natural features (Ecological Vegetation Classes [EVC]). We evaluated the extent of EVC mapping of wetlands relative to the VWD classification system using a number of datasets within a geographical information system. There were significant differences in the coverage of extant EVCs across bioregions, different-sized wetlands, and VWD wetland types. Resultant depletion levels were markedly different when examined using the two systems, with depletion levels, and therefore perceived conservation status, of EVCs being significantly higher. Although there is little doubt that many wetland ecosystems in Victoria are in fact threatened, the extent of this threat cannot accurately be determined by relying on the EVC mapping as it currently stands. The study highlighted the significant impact wetland classification methods have in determining the conservation status of freshwater ecosystems.

  19. Simplified Volume-Area-Depth Method for Estimating Water Storage of Isolated Prairie Wetlands

    NASA Astrophysics Data System (ADS)

    Minke, A. G.; Westbrook, C. J.; van der Kamp, G.

    2009-05-01

    There are millions of wetlands in shallow depressions on the North American prairies but the quantity of water stored in these depressions remains poorly understood. Hayashi and van der Kamp (2000) used the relationship between volume (V), area (A) and depth (h) to develop an equation for estimating wetland storage. We tested the robustness of their full and simplified V-A-h methods to accurately estimate volume for the range of wetland shapes occurring across the Prairie Pothole Region. These results were contrasted with two commonly implemented V-A regression equations to determine which method estimates volume most accurately. We used detailed topographic data for 27 wetlands in Smith Creek and St. Denis watersheds, Saskatchewan that ranged in surface area and basin shape. The full V-A-h method was found to accurately estimate storage (errors <3%) across wetlands of various shapes, and is therefore suitable for calculating water storage in the variety of wetland surface shapes found in the prairies. Both V-A equations performed poorly, with volume underestimated by an average of 15% and 50% Analysis of the simplified V-A-h method showed that volume errors of <10% can be achieved if the basin and shape coefficients are derived properly. This would involve measuring depth and area twice, with sufficient time between measurements that the natural fluctuations in water storage are reflected. Practically, wetland area and depth should be measured in spring, following snowmelt when water levels are near the peak, and also in late summer prior to water depths dropping below 10 cm. These guidelines for applying the simplified V-A-h method will allow for accurate volume estimations when detailed topographic data are not available. Since the V-A equations were outperformed by the full and simplified V-A-h methods, we conclude that wetland depth and basin morphology should be considered when estimating volume. This will improve storage estimations of natural and human

  20. Epilithonimonas xixisoli sp. nov., isolated from wetland bank-side soil.

    PubMed

    Feng, Hao; Zeng, Yanhua; Huang, Yili

    2014-12-01

    A novel Gram-staining-negative, non-motile and rod-shaped bacterial strain containing flexirubin-type pigments, designated S31(T), was isolated from bank-side soil of the Xixi wetland in Zhejiang province, China. Growth occurred at 10-37 °C (optimum, 32 °C), pH 6-8 (optimum, pH 7) and with 0-2 % (w/v) NaCl (optimum, 1 %). Strain S31(T) shared highest 16S rRNA gene sequence similarities with Epilithonimonas lactis H1(T) (96.2 %) and Chryseobacterium molle DW3(T) (96.4 %). Phylogenetic analysis suggested that strain S31(T) was a member of the genus Epilithonimonas. The dominant respiratory quinone was MK-6 and the DNA G+C content was 33.3 mol%. The major fatty acids were iso-C15 : 0, summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1ω7c) and anteiso-C15 : 0. The major polar lipids of strain S31(T) were phosphatidylethanolamine, three unidentified aminolipids and four unidentified polar lipids. Based on its phenotypic and chemotaxonomic characteristics and phylogenetic data, strain S31(T) represents a novel species of the genus Epilithonimonas, for which the name Epilithonimonas xixisoli sp. nov. (type strain S31(T) = CGMCC 1.12802(T) = NBRC 110387(T)) is proposed. PMID:25256707

  1. Diffusion of Nutrients in an Isolated Wetland Resulting From Shallow Pore Water Gradients Affected by Antecedent Soil Conditions.

    NASA Astrophysics Data System (ADS)

    Bhadha, J. H.; Jawitz, J. W.; Dunne, E. J.; Perkins, D. B.

    2007-05-01

    Historically sequestered nutrients in wetland soils may be gradually released to the water column through the process commonly referred to as internal loading. The watershed for Lake Okeechobee, FL (USA) is heavily agricultural and excess nutrients in this area are drained to the Lake by ditches and canals. Formerly isolated, wetlands in this area have also been extensively ditched and drained. In this study, diffusive fluxes of nutrients were calculated using Fick's First Law from shallow pore water gradients, and later compared to fluxes measured by an incubated laboratory experiment on 10-cm intact soil cores from the same sites. Three intact soil cores from a wetland located on an operational beef farm were used to measure total phosphorus (TP), along with soil properties such as porosity, bulk density, and pH. Simultaneously, pore water concentrations of total organic carbon (TOC), total Kjeldahl nitrogen (TKN), and soluble reactive phosphorus (SRP) were also measured at the same three sites for a period of twelve months, and compared to surface water concentrations during flooded periods. A strong correlation between concentration gradients in pore water SRP and those observed in soil TP, suggests that shallow pore water concentrations reflect antecedent soil conditions. If this is true, then fluxes associated with diffusion and advection could greatly affect the total ground water fluxes across the soil-water interface. Fickian diffusive fluxes, estimated six times over a twelve month sampling period, were found to vary between 7-38 mg.m-2.d-1 for TOC, 1-18 mg.m-2.d-1 for TKN, and 0.04-0.86 mg.m-2.d-1 for SRP. While factors such as wetland stage and hydroperiod may have affected the fluxes, it is ultimately the concentration gradients across the soil-water interface that drives diffusive fluxes.

  2. Patterns in Habitat and Fish Assemblages within Great Lakes Coastal Wetlands and Implications for Sampling Design

    EPA Science Inventory

    Discerning fish - habitat associations at a variety of spatial scales is relevant to evaluating stressor responses and assessment protocols in Great Lakes coastal wetlands. NMDS ordination of electrofishing catch-per-effort data identified an overriding influence of geography an...

  3. [Book review] Wetland birds: Habitat resources and conservation implications, by Milton W. Weller

    USGS Publications Warehouse

    Erwin, R.M.

    1999-01-01

    Milton Weller's love of wetlands and their inhabitants comes through in this book, and he continues a leadership role in a world of field ecologists where fewer and fewer are really experiencing the wet and wild.

  4. Potential pathogens, antimicrobial patterns and genotypic diversity of Escherichia coli isolates in constructed wetlands treating swine wastewater.

    PubMed

    Ibekwe, A M; Murinda, Shelton E; DebRoy, Chitrita; Reddy, Gudigopura B

    2016-02-01

    Escherichia coli populations originating from swine houses through constructed wetlands were analyzed for potential pathogens, antimicrobial susceptibility patterns, and genotypic diversity. Escherichia coli isolates (n = 493) were screened for the presence of the following virulence genes: stx1, stx2 and eae (Shiga toxin-producing E. coli [STEC]), heat-labile enterotoxin (LT) genes and heat stable toxin STa and STb (enterotoxigenic E. coli (ETEC), cytotoxin necrotizing factors 1 and 2 (cnf1 and cnf2 [necrotoxigenic E. coli- NTEC]), as well as O and H antigens, and the presence of the antibiotic resistance genes blaTEM, blaSHV, blaCMY-2, tet A, tet B, tet C, mph(A), aadA, StrA/B, sul1, sul2 and sul3. The commensal strains were further screened for 16 antimicrobials and characterized by BOX AIR-1 PCR for unique genotypes. The highest antibiotic resistance prevalence was for tetracycline, followed by erythromycin, ampicillin, streptomycin, sulfisoxazole and kanamycin. Our data showed that most of the isolates had high distribution of single or multidrug-resistant (MDR) genotypes. Therefore, the occurrence of MDR E. coli in the wetland is a matter of great concern due to possible transfer of resistance genes from nonpathogenic to pathogenic strains or vice versa in the environment.

  5. Potential pathogens, antimicrobial patterns and genotypic diversity of Escherichia coli isolates in constructed wetlands treating swine wastewater.

    PubMed

    Ibekwe, A M; Murinda, Shelton E; DebRoy, Chitrita; Reddy, Gudigopura B

    2016-02-01

    Escherichia coli populations originating from swine houses through constructed wetlands were analyzed for potential pathogens, antimicrobial susceptibility patterns, and genotypic diversity. Escherichia coli isolates (n = 493) were screened for the presence of the following virulence genes: stx1, stx2 and eae (Shiga toxin-producing E. coli [STEC]), heat-labile enterotoxin (LT) genes and heat stable toxin STa and STb (enterotoxigenic E. coli (ETEC), cytotoxin necrotizing factors 1 and 2 (cnf1 and cnf2 [necrotoxigenic E. coli- NTEC]), as well as O and H antigens, and the presence of the antibiotic resistance genes blaTEM, blaSHV, blaCMY-2, tet A, tet B, tet C, mph(A), aadA, StrA/B, sul1, sul2 and sul3. The commensal strains were further screened for 16 antimicrobials and characterized by BOX AIR-1 PCR for unique genotypes. The highest antibiotic resistance prevalence was for tetracycline, followed by erythromycin, ampicillin, streptomycin, sulfisoxazole and kanamycin. Our data showed that most of the isolates had high distribution of single or multidrug-resistant (MDR) genotypes. Therefore, the occurrence of MDR E. coli in the wetland is a matter of great concern due to possible transfer of resistance genes from nonpathogenic to pathogenic strains or vice versa in the environment. PMID:26839381

  6. Temporal and spatial variability in water quality of wetlands in the Minneapolis/St. Paul, MN metropolitan area: Implications for monitoring strategies and designs.

    PubMed

    Detenbeck, N E; Taylor, D L; Lima, A; Hagley, C

    1996-03-01

    Temporal and spatial variability in wetland water-quality variables were examined for twenty-one wetlands in the Minneapolis/St. Paul metropolitan area and eighteen wetlands in adjacent Wright County. Wetland water quality was significantly affected by contact with the sediment (surface water vs. groundwater), season, degree of hydrologic isolation, wetland class, and predominant land-use in the surrounding watershed (p<0.05). Between years, only nitrate and particulate nitrogen concentrations varied significantly in Wright County wetland surface waters. For eight water-quality variables, the power of a paired before-and-after comparison design was greater than the power of a completely randomized design. The reverse was true for four other water-quality variables. The power of statistical tests for different classes of water-quality variables could be ranked according to the predominant factors influencing these: climate factors>edaphic factors>detritivory>land-use factors>biotic-redox or other multiple factors.For two wetlands sampled intensively, soluble reactive phosphate and total dissolved phosphorus were the most spatially variable (c.v.=76-249%), while temperature, color, dissolved organic carbon, and DO were least variable (c.v.=6-43%). Geostatistical analyses demonstrated that the average distance across which water-quality variables were spatially correlated (variogram range) was 61-112% of the mean radius of each wetland. Within the shallower of the two wetlands, nitrogen speciation was explained as a function of dissolved oxygen, while deeper marsh water-quality variables were explained as a function of water depth or distance from the wetland edge. Compositing water-quality samples produced unbiased estimates of individual sample means for all water quality variables examined except for ammonium. PMID:24198069

  7. Dry down impacts on apple snail (Pomacea paludosa) demography: Implications for wetland water management

    USGS Publications Warehouse

    Darby, P.C.; Bennetts, R.E.; Percival, H.F.

    2008-01-01

    Florida apple snails (Pomacea paludosa Say) are prey for several wetland-dependent predators, most notably for the endangered Florida snail kite (Rostrhamus sociabilis Vieillot). Management concerns for kites have been raised regarding the impacts of wetland dry downs on snails, but little data exists to validate these concerns. We simulated drying events in experimental tanks, where we observed that snail survival patterns, regardless of hydrology, were driven by a post-reproductive die off. In contrast to earlier reports of little to no dry down tolerance, we found that 70% of pre-reproductive adult-sized snails survived a 12-week dry down. Smaller size classes of snails exhibited significantly lower survival rates (< 50% after eight weeks dry). Field surveys showed that 77% of egg production occurs in April-June. Our hydrologic analyses of six peninsular Florida wetlands showed that most dry downs overlapped a portion of the peak snail breeding season, and 70% of dry downs were ??? 12 weeks in duration. Dry down timing can affect recruitment by truncating annual egg production and stranding juveniles. Dry down survival rates and seasonal patterns of egg cluster production helped define a range of hydrologic conditions that support robust apple snail populations, and illustrate why multiple characteristics of dry down events should be considered in developing target hydrologic regimes for wetland fauna. ?? 2008, The Society of Wetland Scientists.

  8. Biotic wetland connectivity—supporting a new approach for wetland policy

    NASA Astrophysics Data System (ADS)

    Amezaga, J. M.; Santamaría, L.; Green, A. J.

    2002-06-01

    Wetlands are key habitats connected physically and socially with processes occurring over a much wider territory. The biotic connection through dispersal mechanisms among wetlands is of primary importance to wetland management and policies. However, traditional wetland conservation approaches are based on the preservation of isolated sites considered to be of special importance (typically owing to their importance for concentrations of migratory waterbirds). Research linking local species richness and bird migration suggests that the effect of wetland loss on regional diversity might be much larger than what would be expected from direct habitat loss. Since the biotic connection among wetlands serviced by waterbirds appears to be more efficient within a limited range, the distribution of wetlands in space is a key aspect determining wetland connectedness even in the absence of direct hydrologic links. Protected areas should thus be defined with regard to waterfowl movements and waterbird migration as functional processes contributing to aquatic species migration and local species richness. This calls for a regional approach to wetland management within a continental context. This paper aims at defining an operational view of the dispersion function of wetlands and its implication for conservation policies. For this purpose, we examined the conservation policies of the Ramsar Convention (the international treaty that protects wetlands) and the European Union (as an example of relevant continental level policy-making) from the viewpoint of bird-mediated dispersal of aquatic organisms. We propose nine specific avenues for the inclusion of bird-mediated dispersal in the policy documents examined. Non-governmental organisations and other organisations working in waterbird conservation should also recognise the importance of their policies for aquatic biodiversity at broader levels and avoid compartmentalising their conservation activities.

  9. Nitrogen transformations in a wetland receiving lagoon effluent: sequential model and implications for water reuse.

    PubMed

    Gerke, S; Baker, L A; Xu, Y

    2001-11-01

    Constructed wetlands could be components of low-tech systems to treat and reuse wastewater in arid region. A key function of the wetland would be to provide additional N removal. To improve design criteria, a sequential model of nitrogen transformations (organic N --> ammonium: ammonium --> nitrate: nitrate --> nitrogen gas) was successfully calibrated and verified for a wetland in Kingman, Arizona. A sequential model has the ability to "recognize" species of nitrogen in the influent and predict species of nitrogen in the effluent. Model scenarios show that increasing nitrification rates in the summer and denitrification rates in the winter would improve nitrogen removal efficiencies. Several lines of evidence suggest that wintertime denitrification may be limited by carbon supply. Winter carbon supply could be augmented by routing a portion of the water through channels planted with dryland vegetation.

  10. River and Wetland Food Webs in Australia's Wet-Dry Tropics: General Principles and Implications for Management.

    NASA Astrophysics Data System (ADS)

    Douglas, M. M.; Bunn, S. E.; Davies, P. M.

    2005-05-01

    The tropical rivers of northern Australia are internationally recognised for their high ecological and cultural values. They have largely unmodified flow regimes and are comparatively free of the impacts associated with intensive land use. However, there is growing demand for agricultural development and existing pressures, such as weeds and feral animals, threaten their ecological integrity. Using the international literature to provide a conceptual framework and drawing on limited published and unpublished data on rivers in northern Australia, we have derived five general principles about food webs and related ecosystem processes that both characterise tropical rivers of northern Australia and have important implications for their management. These are: (1) Seasonal hydrology is a strong driver of ecosystem processes and food web structure; (2) Hydrological connectivity is largely intact and underpins important terrestrial-aquatic food web subsidies; (3) River and wetland food webs are strongly dependent on algal production; (4) A few common macroconsumers species have a strong influence on benthic food webs; (5) Omnivory is widespread and food chains are short. These principles have implications for the management and protection of tropical rivers and wetlands of northern Australia and provide a framework for the formation of testable hypotheses in future research programs.

  11. Changes in wetland sediment elevation following major storms: implications for estimating trends in relative sea-level rise

    USGS Publications Warehouse

    Cahoon, D.R.

    2003-01-01

    Hurricanes can be important agents of geomorphic change in coastal marshes and mangrove forests. Hurricanes can cause large-scale redistribution of sediments within the coastal environment resulting in sedimentation, erosion, disruption of vegetated substrates, or some combination of these processes in coastal wetlands. It has been proposed that such sediment pulsing events are important at maintaining wetland sediment elevations in sediment-poor settings with high rates of relative sea-level rise, such as the Mississippi River Delta. But do these pulsing events result in a net gain in sediment elevation even when substantial amounts of sediment are deposited? Clearly sediment erosion and scour would result in a loss of elevation. But will a substantial sediment deposit on poorly consolidated sediments always result in a net gain in elevation? If the wetland vegetation is killed by wind, tidal surge, or the introduction of saline water, will there be a collapse of sediment elevation in the absence of root production and ongoing decomposition of root matter? During the past decade several wetlands where my colleagues and I have monitored sedimentation and elevation change have been struck by one to several hurricanes. This paper describes the range of sediment elevation responses to hurricane strikes, the suggested mechanisms driving those responses, the implications for estimating long-term trends in relative sea-level rise, and future research needs for improving our understanding of the role that major storms play in wetland sediment elevation dynamics. For many wetlands the change in sediment elevation was directly proportional to the amount of sediment deposited by the storm. But surprisingly, there was a loss of elevation in some wetlands with substantial sediment deposits. In these wetlands, the impact of the storm was either direct (sedimentation and compaction) or indirect (vegetation death), and the effect on sediment elevation was either permanent or

  12. Spatiotemporal dynamics of prairie wetland networks: power-law scaling and implications for conservation planning.

    PubMed

    Wright, Christopher K

    2010-07-01

    Although habitat networks show promise for conservation planning at regional scales, their spatiotemporal dynamics have not been well studied, especially in climate-sensitive landscapes. Here I use satellite remote sensing to compile wetland habitat networks from the Prairie Pothole Region (PPR) of North America. An ensemble of networks assembled across a hydrologic gradient from deluge to drought and a range of representative dispersal distances exhibits power-law scaling of important topological parameters. Prairie wetland networks are "meso-worlds" with mean topological distance increasing faster with network size than small-world networks, but slower than a regular lattice (or "large world"). This scaling implies rapid dispersal through wetland networks without some of the risks associated with "small worlds" (e.g., extremely rapid propagation of disease or disturbance). Retrospective analysis of wetland networks establishes a climatic envelope for landscape connectivity in the PPR, where I show that a changing climate might severely impact metapopulation viability and restrict long-distance dispersal and range shifts. More generally, this study demonstrates an efficient approach to conservation planning at a level of abstraction addressing key drivers of the global biodiversity crisis: habitat fragmentation and climatic change.

  13. Hydrogen isotope variability in prairie wetland systems: implications for studies of migratory connectivity.

    PubMed

    Bortolotti, Lauren E; Clark, Robert G; Wassenaar, Leonard I

    2013-01-01

    Hydrogen isotopes (delta2H) are often used to infer the origins of migratory animals based on the strong correlation between deuterium content of tissues and long-term patterns of precipitation. However, the extreme flood and drought dynamics of surface waters in prairie wetland systems could mask these expected correlations. We investigated H isotopic variability in an aquatic food web associated with Tree Swallows (Tachycineta bicolor) that rely heavily on wetland-derived aerial insects for food. We evaluated isotopic turnover and incorporation of environmental water into tissue, processes that could affect H isotopic composition. Wetland water and aquatic invertebrates showed intra- and interannual H isotopic variation mainly related to evaporation and the amount and timing of precipitation. Snails showed rapid turnover of tissue deuterium and a large contribution of environmental water to their tissues. Swallow feather deuterium (delta2Hf) was variable but did not clearly follow changes in any of the food web compartments measured. Instead, isotopic variability may have been driven by shifts in the type or relative amounts of grey consumed and types of wetlands used. Nevertheless, despite relatively high variance in delta2Hf, the majority of birds fell within the predicted range of delta2Hf for the study area, revealing that significant trophic averaging occurred. However, both (presumed) diet shifts and variable hydrological conditions have the potential to greatly increase variance that must be considered when assigning origins of migratory animals based on delta2H.

  14. Degradation of Bacterial Quorum Sensing Signaling Molecules by the Microscopic Yeast Trichosporon loubieri Isolated from Tropical Wetland Waters

    PubMed Central

    Wong, Cheng-Siang; Koh, Chong-Lek; Sam, Choon-Kook; Chen, Jian Woon; Chong, Yee Meng; Yin, Wai-Fong; Chan, Kok-Gan

    2013-01-01

    Proteobacteria produce N-acylhomoserine lactones as signaling molecules, which will bind to their cognate receptor and activate quorum sensing-mediated phenotypes in a population-dependent manner. Although quorum sensing signaling molecules can be degraded by bacteria or fungi, there is no reported work on the degradation of such molecules by basidiomycetous yeast. By using a minimal growth medium containing N-3-oxohexanoylhomoserine lactone as the sole source of carbon, a wetland water sample from Malaysia was enriched for microbial strains that can degrade N-acylhomoserine lactones, and consequently, a basidiomycetous yeast strain WW1C was isolated. Morphological phenotype and molecular analyses confirmed that WW1C was a strain of Trichosporon loubieri. We showed that WW1C degraded AHLs with N-acyl side chains ranging from 4 to 10 carbons in length, with or without oxo group substitutions at the C3 position. Re-lactonisation bioassays revealed that WW1C degraded AHLs via a lactonase activity. To the best of our knowledge, this is the first report of degradation of N-acyl-homoserine lactones and utilization of N-3-oxohexanoylhomoserine as carbon and nitrogen source for growth by basidiomycetous yeast from tropical wetland water; and the degradation of bacterial quorum sensing molecules by an eukaryotic yeast. PMID:24072030

  15. Fish assemblages, connectivity, and habitat rehabilitation in a diked Great Lakes coastal wetland complex

    USGS Publications Warehouse

    Kowalski, Kurt P.; Wiley, Michael J.; Wilcox, Douglas A.

    2014-01-01

    Fish and plant assemblages in the highly modified Crane Creek coastal wetland complex of Lake Erie were sampled to characterize their spatial and seasonal patterns and to examine the implications of the hydrologic connection of diked wetland units to Lake Erie. Fyke netting captured 52 species and an abundance of fish in the Lake Erie–connected wetlands, but fewer than half of those species and much lower numbers and total masses of fish were captured in diked wetland units. Although all wetland units were immediately adjacent to Lake Erie, there were also pronounced differences in water quality and wetland vegetation between the hydrologically isolated and lake-connected wetlands. Large seasonal variations in fish assemblage composition and biomass were observed in connected wetland units but not in disconnected units. Reestablishment of hydrologic connectivity in diked wetland units would allow coastal Lake Erie fish to use these vegetated habitats seasonally, although connectivity does appear to pose some risks, such as the expansion of invasive plants and localized reductions in water quality. Periodic isolation and drawdown of the diked units could still be used to mimic intermediate levels of disturbance and manage invasive wetland vegetation.

  16. Rapid changes in small fish mercury concentrations in estuarine wetlands: Implications for wildlife risk and monitoring programs

    USGS Publications Warehouse

    Eagles-Smith, C. A.; Ackerman, J.T.

    2009-01-01

    Small fish are commonly used to assess mercury (Hg) risk to wildlife and monitor Hg in wetlands. However, limited research has evaluated short-term Hg variability in small fish, which can have important implications for monitoring programs and risk assessment. We conducted a time-series study of Hg concentrations in two small fish species representing benthic (longjaw mudsuckers [Gillichthys mirabilis]) and pelagic (threespine sticklebacks [Gasterosteus aculeatus]) food-webs within three wetland habitats in San Francisco Bay Estuary. We simultaneously monitored prey deliveries, nest initiation, and chick hatching dates of breeding Forster's terns (Sterna forsteri), the most abundant nesting piscivore in the region. Mudsuckers and sticklebacks were the predominant prey fish, comprising 36% and 25% of tern diet, and Hg concentrations averaged (geometric mean ?? SE, ??g/g dw) 0.44 ?? 0.01 and 0.68 ?? 0.03, respectively. Fish Hg concentrations varied substantially over time following a quadratic form in both species, increasing 40% between March and May then decreasing 40% between May and July. Importantly, Forster's terns initiated 68% of nests and 31% of chicks hatched during the period of peak Hg concentrations in prey fish. These results illustrate the importance of short-term temporal variation in small fish Hg concentrations for both Hg monitoring programs and assessing wildlife risk.

  17. Isotopic composition of methane released from wetlands: Implications for the increase in atmospheric methane

    SciTech Connect

    Quay, P.D.; King, S.L.; Lansdown, J.M.; Wilbur, D.O. )

    1988-12-01

    Measurements of the delta-C{sup 13} of methane released from tropical, temperate, and arctic wetland sites are reported. The mean delta C{sup 13} values (relative to PDB carbonate standard) for peat bogs and Alaskan tundra are {minus}53 + or{minus}8, {minus}66 + or{minus}5 and {minus}64 + or{minus}5{per thousand}, respectively. These measurements combined with methane flux estimates yield a flux-weighted global average delta-C{sup 13} value of {minus}59 + or{minus}6{per thousand} for methane released from wetlands, a major natural methane source. The agreement between the measured delta-C{sup 13} for methane emitted from wetlands and the calculated steady state value of approximately {minus}6{per thousand} for the delta-C{sup 13} of preindustrial methane sources suggests that methane was predominantly produced biogenically in the preindustrial era. The industrial era time rate of change of the delta-C{sup 13} of the global methane flux is calculated from estimates of the growth rate of the major anthropogenically derived methane sources and the C{sup 13} composition of these sources, and compared to the measured change in the delta-C{sup 13} of methane during the last 300 years. Based on these results, it is estimated that 13 + or{minus}8% of the current global methane flux is derived abiogenically from natural gas and biomass burning, whereas the remainder is derived biogenically primarily from wetlands, rice paddies, and livestock. 40 refs., 5 figs., 2 tabs.

  18. A new ranavirus isolated from Pseudacris clarkii tadpoles in playa wetlands in the southern High Plains, Texas.

    PubMed

    Torrence, Shannon M; Green, D Earl; Benson, Catherine J; Ip, Hon S; Smith, Loren M; McMurry, Scott T

    2010-06-01

    Mass die-offs of amphibian populations pose a challenging problem for conservation biologists. Ranaviruses often cause systemic infections in amphibians and, in North America, are especially virulent and lethal to larvae and metamorphs. In this paper we describe a novel ranavirus isolate as well as the first recorded occurrence of ranavirus in the southern High Plains of Texas and in associated populations of the spotted chorus frog Pseudacris clarkii. The breeding sites were playas, that is, wetlands that fill via isolated thunderstorms that can occur infrequently; thus, not every playa has water or breeding amphibians annually. We did not detect ranavirus in sympatric anurans, but other reports document ranaviruses in Pseudacris spp. elsewhere. The occurrence of multiple isolates of ranavirus in a number of Pseudacris species suggests that this genus of frogs is highly susceptible to ranaviruses and may experience exceptionally high mortality rates from infection. Thus, the virus may contribute to substantial seasonal population declines and low seasonal recruitment, with negative impacts on populations of breeding adults in successive years. PMID:20848879

  19. A new ranavirus isolated from Pseudacris clarkii tadpoles in playa wetlands in the southern High Plains, Texas.

    PubMed

    Torrence, Shannon M; Green, D Earl; Benson, Catherine J; Ip, Hon S; Smith, Loren M; McMurry, Scott T

    2010-06-01

    Mass die-offs of amphibian populations pose a challenging problem for conservation biologists. Ranaviruses often cause systemic infections in amphibians and, in North America, are especially virulent and lethal to larvae and metamorphs. In this paper we describe a novel ranavirus isolate as well as the first recorded occurrence of ranavirus in the southern High Plains of Texas and in associated populations of the spotted chorus frog Pseudacris clarkii. The breeding sites were playas, that is, wetlands that fill via isolated thunderstorms that can occur infrequently; thus, not every playa has water or breeding amphibians annually. We did not detect ranavirus in sympatric anurans, but other reports document ranaviruses in Pseudacris spp. elsewhere. The occurrence of multiple isolates of ranavirus in a number of Pseudacris species suggests that this genus of frogs is highly susceptible to ranaviruses and may experience exceptionally high mortality rates from infection. Thus, the virus may contribute to substantial seasonal population declines and low seasonal recruitment, with negative impacts on populations of breeding adults in successive years.

  20. Mechanical resistance properties of gravel used in subsurface flow constructed wetlands: implications for clogging.

    PubMed

    Pedescoll, Anna; Passos, Fabiana; Alba, Elisenda; García, Joan; Puigagut, Jaume

    2011-01-01

    Gravel constitutes the filter medium in subsurface flow constructed wetlands (SSF CWs) and its porosity and hydraulic conductivity decrease over time (clogging), limiting the lifespan of the systems. Using gravel of poor quality accelerates clogging in wetlands. In this study, gravel samples from six different wetland systems were compared with regards to their mineral composition and mechanical resistance properties. Results showed that both mineralogy and texture are related to mechanical resistance. Accordingly, gravel with high content of quartz (> 80%) showed a lower percentage of broken particles (0.18-1.03%) than those with lower content of quartz (2.42-4.56% media broken). Although granite is formed by high durability minerals, its non-uniform texture results in a lower resistance to abrasion (ca. 10% less resistance than calcareous gravel). Therefore, it is recommended to use gravels composed mainly of quartz or, when it is not available, limestone gravels (rounded and uniform) are recommended instead. The resistance to abrasion (LAA test) seems to be a good indicator to determine the mechanical properties of gravels used in CWs. It is recommended to use gravels with LAA below 30% in order to avoid a rapid clogging due to gravel crumbling and subsequent mineral solids accumulation.

  1. Mercury Geochemistry in a Wetland and its Implications for In-Situ Remediation

    SciTech Connect

    Kaplan, D.I.

    2002-03-28

    The objective of this study was to characterize the nature of Hg sorption on a wetland sediment with the intent of providing guidance for the selection of an appropriate in-situ remediation strategy. Total Hg concentrations in the sediments were as high as 10-mg/kg, whereas associated pore water Hg concentrations were below detection, less than 0.010-mg/L. Sediment Hg was not in an exchangeable form, and less than 8 percent of it was associated with organic matter. The remainder of the Hg was strongly associated with Fe-oxides and/or with a precipitated phase, presumably a sulfide. Sediment Hg concentrations were significantly correlated (r = 0.94) to Fe-oxide concentrations. Thermodynamic calculations based on field Eh/pH measurements and laboratory results suggest that under present field conditions meta-cinnabar (HgS) would not be stable due to the relatively low pH (approximately 4.2) and sulfate concentrations (0.14-mM) and high Eh levels at the study site. However, these calculations indicate that meta-cinnabar may have formed when the Hg first entered the wetland at elevated concentrations (approximately 5-mg/L). Given the ecologically sensitive nature of the wetland and the fact that the Hg is strongly bound to the sediment, it was concluded that a monitored natural attenuation approach for site remediation may be appropriate.

  2. Implications of climate change for wetland-dependent birds in the Prairie Pothole Region

    USGS Publications Warehouse

    Steen, Valerie; Skagen, Susan; Melcher, Cynthia P.

    2016-01-01

    The habitats and food resources required to support breeding and migrant birds dependent on North American prairie wetlands are threatened by impending climate change. The North American Prairie Pothole Region (PPR) hosts nearly 120 species of wetland-dependent birds representing 21 families. Strategic management requires knowledge of avian habitat requirements and assessment of species most vulnerable to future threats. We applied bioclimatic species distribution models (SDMs) to project range changes of 29 wetland-dependent bird species using ensemble modeling techniques, a large number of General Circulation Models (GCMs), and hydrological climate covariates. For the U.S. PPR, mean projected range change, expressed as a proportion of currently occupied range, was −0.31 (± 0.22 SD; range − 0.75 to 0.16), and all but two species were projected to lose habitat. Species associated with deeper water were expected to experience smaller negative impacts of climate change. The magnitude of climate change impacts was somewhat lower in this study than earlier efforts most likely due to use of different focal species, varying methodologies, different modeling decisions, or alternative GCMs. Quantification of the projected species-specific impacts of climate change using species distribution modeling offers valuable information for vulnerability assessments within the conservation planning process.

  3. Mangrove expansion in the Gulf of Mexico with climate change: Implications for wetland health and resistance to rising sea levels

    NASA Astrophysics Data System (ADS)

    Comeaux, Rebecca S.; Allison, Mead A.; Bianchi, Thomas S.

    2012-01-01

    Black mangroves ( Avicennia spp.) are hypothesized to expand their latitudinal range with global climate change in the 21st century, induced by a reduction in the frequency and severity of coastal freezes, which are known to limit mangrove colony extent and individual tree size. The Gulf of Mexico is a prime candidate for population expansion to occur because it is located at the northward limit of black mangrove habitat. This may come at the expense of existing coastal saline wetlands that are dominantly Spartina spp. marsh grasses. The present study was conducted to focus on the implications of a marsh to mangrove transition in Gulf wetlands, specifically: (1) wetland resistance to accelerating eustatic sea level rise (ESLR) rates; (2) resistance to wave attack in large storms (increased cyclonic storm frequency/intensity is predicted with future climate warming); and (3) organic carbon sequestration and wetland soil geochemistry. Field sites of adjacent and inter-grown Avicennia germinans mangrove and Spartina marsh populations in similar geomorphological setting were selected in back-barrier areas near Port Aransas and Galveston, TX. Elevation surveys in the more mature Port Aransas site indicate mangrove vegetated areas are 4 cm higher in elevation than surrounding marsh on an average regional scale, and 1-2 cm higher at the individual mangrove scale. 210Pb and 137Cs accumulation rates and loss on ignition data indicate that mineral trapping is 4.1 times higher and sediment organics are 1.7 times lower in mangroves at Port Aransas. This additional mineral trapping does not differ in grain size character from marsh accumulation. Elevation change may also be effected by soil displacement of higher root volumes in mangrove cores. Port Aransas porosities are lower in mangrove rooted horizons, with a corresponding increase in sediment strength, suggesting mangrove intervals are more resistant to wave-induced erosion during storm events. Port Aransas mangroves

  4. Isolation and characterization of microsatellite loci for the endangered wetland plant Adenophora palustris (Campanulaceae)1

    PubMed Central

    Otake, Kuniaki; Kondo, Toshiaki; Watanabe, Sonoko; Masumoto, Ikuko; Iwahori, Katsumi; Isagi, Yuji

    2016-01-01

    Premise of the study: Adenophora palustris (Campanulaceae) is an endangered wetland plant species in Japan. Although it is widely distributed in East Asia, only six extant populations are known in Japan, with fewer than 1000 individuals in total. We developed 15 microsatellite markers for this species and confirmed their utility for the closely related species A. triphylla var. japonica. Methods and Results: Ten polymorphic loci were characterized for genetic variation within three populations of A. palustris. The number of alleles per locus ranged from four to 15, with an average of 9.3; the expected heterozygosity ranged from 0.48 to 0.89, with an average of 0.74. Nine loci were successfully amplified in A. triphylla var. japonica, and three of these loci showed polymorphism. Conclusions: These markers are useful for investigating genetic diversity and gene flow within and among remnant populations of A. palustris in Japan, and the results will provide crucial information for conservation. PMID:27672523

  5. Isolation and characterization of microsatellite loci for the endangered wetland plant Adenophora palustris (Campanulaceae)1

    PubMed Central

    Otake, Kuniaki; Kondo, Toshiaki; Watanabe, Sonoko; Masumoto, Ikuko; Iwahori, Katsumi; Isagi, Yuji

    2016-01-01

    Premise of the study: Adenophora palustris (Campanulaceae) is an endangered wetland plant species in Japan. Although it is widely distributed in East Asia, only six extant populations are known in Japan, with fewer than 1000 individuals in total. We developed 15 microsatellite markers for this species and confirmed their utility for the closely related species A. triphylla var. japonica. Methods and Results: Ten polymorphic loci were characterized for genetic variation within three populations of A. palustris. The number of alleles per locus ranged from four to 15, with an average of 9.3; the expected heterozygosity ranged from 0.48 to 0.89, with an average of 0.74. Nine loci were successfully amplified in A. triphylla var. japonica, and three of these loci showed polymorphism. Conclusions: These markers are useful for investigating genetic diversity and gene flow within and among remnant populations of A. palustris in Japan, and the results will provide crucial information for conservation.

  6. Nitrous Oxide (N2O) Production and Consumption after the Rewetting of Soils in Isolated Wetlands and Surrounding Pasture Upland

    NASA Astrophysics Data System (ADS)

    Hu, J.; Inglett, K.; Inglett, P.; Clark, M.; Reddy, R.

    2012-12-01

    Nitrous oxide (N2O) is one of the most potent greenhouse gases and the highest N2O emissions from pasture lands are always found after the rewetting of soils which is caused by events, such as rainfall and irrigation. The N2O emission peaks are attributed to denitrification because of the anaerobic condition in the soil created by rewetting and the accumulated substrates (nitrate and labile organic carbon) during the drying period. Therefore, the N2O emissions after rewetting represent the difference between N2O production and N2O consumption by denitrification. Isolated wetlands, which have no surface water connectivity with nearby water bodies, are common feature in many pasture ecosystems. They act as water and nutrient storage systems at landscape scale and have distinct biogeochemical features with the surrounding pasture uplands. An isolated wetland located in cow-grazing pasture was selected as our study site. Study area has been stratified into three zones according to the vegetative communities and basin morphology: wetland center zone (Center), transient edge zone (Edge) and pasture upland zone (Upland). Six transects extended from the center of wetland to surrounding pasture upland have been set up, in which 3 transects have been fenced aiming for excluding the cow and calf grazing. Soil samples (0-10 cm) were collected in each zone along each transects. Soil biogeochemical properties were characterized on soil subsamples. A laboratory incubation study was performed to quantify N2O production and consumption rates of the rewetted soils. Our results indicated that the N2O production process normally had a biphasic pattern, with a low production rates in 6 h after rewetting, followed by a faster production rate between 6 h to the time when accumulated N2O began to be consumed. In the first 6 h after rewetting, soils from Edge had the highest production rates because of the relative higher nitrate content. Nitrous oxide production rates were significantly

  7. Prey preferences of aquatic insects: potential implications for the regulation of wetland mosquitoes.

    PubMed

    Saha, N; Aditya, G; Saha, G K

    2014-03-01

    Wetlands are potential sites for mosquito breeding and are thus important in the context of public health. The use of chemical and microbial controls is constrained in wetlands in view of their potential impact on the diverse biota. Biological control using generalist aquatic insects can be effective, provided a preference for mosquito larvae is exhibited. The mosquito prey preferences of water bugs and larvae of odonate species were evaluated using chironomid larvae, fish fingerlings and tadpoles as alternative prey. Manly's selectivity (αi ) values with 95% confidence intervals (CIs) were estimated to judge prey preference patterns. Multivariate analysis of variance (manova) and standardized canonical coefficients were used to test the effects of density on prey selectivity. The αi values indicated a significant preference (P < 0.05) in all of the insect predators tested for mosquito larvae over the alternative prey as a density-dependent function. On a comparative scale, chironomid larvae had the highest impact as alternative prey. In a multiple-prey experiment, predators showed a similar pattern of preference for mosquito larvae over alternative prey, reflecting a significant (P < 0.05) niche overlap. The results suggest that, in a laboratory setting, these insect predators can effectively reduce mosquito density in the presence of multiple alternative prey.

  8. Prey preferences of aquatic insects: potential implications for the regulation of wetland mosquitoes.

    PubMed

    Saha, N; Aditya, G; Saha, G K

    2014-03-01

    Wetlands are potential sites for mosquito breeding and are thus important in the context of public health. The use of chemical and microbial controls is constrained in wetlands in view of their potential impact on the diverse biota. Biological control using generalist aquatic insects can be effective, provided a preference for mosquito larvae is exhibited. The mosquito prey preferences of water bugs and larvae of odonate species were evaluated using chironomid larvae, fish fingerlings and tadpoles as alternative prey. Manly's selectivity (αi ) values with 95% confidence intervals (CIs) were estimated to judge prey preference patterns. Multivariate analysis of variance (manova) and standardized canonical coefficients were used to test the effects of density on prey selectivity. The αi values indicated a significant preference (P < 0.05) in all of the insect predators tested for mosquito larvae over the alternative prey as a density-dependent function. On a comparative scale, chironomid larvae had the highest impact as alternative prey. In a multiple-prey experiment, predators showed a similar pattern of preference for mosquito larvae over alternative prey, reflecting a significant (P < 0.05) niche overlap. The results suggest that, in a laboratory setting, these insect predators can effectively reduce mosquito density in the presence of multiple alternative prey. PMID:23437887

  9. A Conceptual Model for Evaluating Hydrologic Connectivity in Geographically Isolated Wetlands

    EPA Science Inventory

    Knowledge about hydrologic connectivity between aquatic resources is critical to understanding and managing watershed hydrology and to the legal status of those resources. In particular, information is needed on the hydrologic connectivity and effects of geographically isolated ...

  10. Seed germination of cirsium arvense and Lepidium latifolium: Implications for management of montane wetlands

    USGS Publications Warehouse

    Laubhan, M.K.; Shaffer, T.L.

    2006-01-01

    Cirsium arvense and Lepidium latifolium are species that can aggressively invade wetland margins and potentially reduce biodiversity and alter ecosystem function. Although expansion of these species primarily occurs via rhizomatous growth, seeds are thought to be important in initial establishment. We conducted this study to investigate differences in seed germination of C. arvense and L. latifolium in montane wetlands of Colorado and Wyoming, USA. We used germination chambers to simulate environmental conditions (photoperiod, day/night temperature) during three periods of the growing season at each site and evaluated seed germination in relation to three soil moisture levels and two soil depths. A combination of shallow (<1 cm) seed burial and wet conditions resulted in the greatest germination probability of C. arvense (x = 63.0%), 95% CI = 41.2-80.5%), whereas deep (2-3 cm) seed burial and saturated moisture conditions resulted in almost no germination (x?? = 0.3%, 95% CI = 0.1-1.3%). The maximum germination probability of 44.0% (CI = 28.1-61.4%) for L. latifolium also occurred in the shallow burial and wet treatment; however, only effects of seed burial were significant (P < 0.05). The estimated mean germination probability of deeply buried seeds was <1.0% (CI = 0.3-1.4%) compared to 32% (CI = 19.7-47.9%) for shallowly buried seeds. Our results suggest that each species has the ability to germinate at similar rates throughout the growing season and across a large portion of the moisture gradient. This suggests that management actions, including water-level manipulations, at any time during the growing season may stimulate germination. Although burial of seed to depths of 2-3 cm reduced the germination potential of both species, the use of mechanical implements may be problematic in established stands because new plants of both species easily sprout from root buds. Further, disturbance resulting from such actions diminishes the density and vigor of other plants

  11. The utility of state parks as a conservation tool for isolated and ephemeral wetlands: A case study from the southern Blue Ridge

    NASA Astrophysics Data System (ADS)

    Howard, J. H.; Baldwin, R.; Pitt, A. L.; Baldwin, E. D.

    2013-12-01

    were deeper on average than park pools. We found significant differences in total taxonomic richness, invertebrate tolerance values and wetland depth between park and non-park wetlands. We relied heavily on local ecological knowledge (LEK) for identification and information on wetlands within parks. Furthermore, state parks played a vital role in the development of this project and our study was enriched as a result of utilizing state park personnel and their LEK. We were also able to interact with the public during our site visits and this two-way dialogue between scientists and the general public was useful for educating citizens about the importance of isolated/ephemeral wetlands and helped us better understand public perceptions of wetlands. State parks provided a number of study sites, various personnel who were knowledgeable about the locations and dynamics of wetlands and an a priori framework for conservation at the local scale which can help bolster conservation efforts at larger scales. We posit that state parks are an under-utilized but extremely important resource for filling the gaps in conservation.

  12. Occurrence of resistance to antibiotics, UV-B, and arsenic in bacteria isolated from extreme environments in high-altitude (above 4400 m) Andean wetlands.

    PubMed

    Dib, Julián; Motok, Jessica; Zenoff, Verónica Fernández; Ordoñez, Omar; Farías, María Eugenia

    2008-05-01

    High-altitude Andean wetlands are pristine environments with extreme conditions such as high UV radiation, high heavy metal content (mainly arsenic), high salinity, and oligotrophy. In this paper, the UV-B resistance and tolerance to arsenic of phylogenetically characterized bacteria (Actinobacteria [six isolates], Firmicutes [four isolates], and gamma-Proteobacteria [three isolates]) isolated from Laguna Vilama (4400-m altitude) and Laguna Azul (4560 m) were determined. In addition, given that multiple antibiotic resistances were also determined, a relationship between antibiotic resistances as a consequence of mutagenic ability or in relation to metal resistance is proposed. High UV-B resistances were found, since after 30 min (0.7 KJ m(-2)) and 60 min (1.4 KJ m(-2)) of irradiation, most of the studied bacteria did not show a decreased survival; what is more, many of them had an improved survival with the increased doses. Augmentations in mutagenesis rates were observed after UV-B irradiation in only 4 of the 13 tested isolates. Arsenite tolerance was also established in 8 of the 13 tested strains: Staphylococcus saprophyticus A3 and Micrococcus sp. A7, which were able to grow in media containing up to 10 mM As(III). Finally, predominance of antibiotic resistances (azithromycin, erythromycin, clarithromycin, roxithromycin, streptomycin, chloramphenicol, gentamycin, kanamycin, tetracycline, and ampicillin) was found, in all the isolated strains from both wetlands, with unexpectedly high minimal inhibitory concentrations (MICs; >2 mg mL(-1)) for macrolides. These results demonstrate that in extreme environments like high-altitude wetlands there is a correlation of multiresistances to UV-B radiation and arsenic, and that antibiotic resistances are also widespread in these pristine environments, where antibiotic selective pressure is supposed to be absent. PMID:18330637

  13. Accumulation of impact markers in desert wetlands and implications for the Younger Dryas impact hypothesis

    PubMed Central

    Pigati, Jeffrey S.; Latorre, Claudio; Rech, Jason A.; Betancourt, Julio L.; Martínez, Katherine E.; Budahn, James R.

    2012-01-01

    The Younger Dryas impact hypothesis contends that an extraterrestrial object exploded over North America at 12.9 ka, initiating the Younger Dryas cold event, the extinction of many North American megafauna, and the demise of the Clovis archeological culture. Although the exact nature and location of the proposed impact or explosion remain unclear, alleged evidence for the fallout comes from multiple sites across North America and a site in Belgium. At 6 of the 10 original sites (excluding the Carolina Bays), elevated concentrations of various “impact markers” were found in association with black mats that date to the onset of the Younger Dryas. Black mats are common features in paleowetland deposits and typically represent shallow marsh environments. In this study, we investigated black mats ranging in age from approximately 6 to more than 40 ka in the southwestern United States and the Atacama Desert of northern Chile. At 10 of 13 sites, we found elevated concentrations of iridium in bulk and magnetic sediments, magnetic spherules, and/or titanomagnetite grains within or at the base of black mats, regardless of their age or location, suggesting that elevated concentrations of these markers arise from processes common to wetland systems, and not a catastrophic extraterrestrial impact event. PMID:22529347

  14. Accumulation of impact markers in desert wetlands and implications for the Younger Dryas impact hypothesis.

    PubMed

    Pigati, Jeffrey S; Latorre, Claudio; Rech, Jason A; Betancourt, Julio L; Martínez, Katherine E; Budahn, James R

    2012-05-01

    The Younger Dryas impact hypothesis contends that an extraterrestrial object exploded over North America at 12.9 ka, initiating the Younger Dryas cold event, the extinction of many North American megafauna, and the demise of the Clovis archeological culture. Although the exact nature and location of the proposed impact or explosion remain unclear, alleged evidence for the fallout comes from multiple sites across North America and a site in Belgium. At 6 of the 10 original sites (excluding the Carolina Bays), elevated concentrations of various "impact markers" were found in association with black mats that date to the onset of the Younger Dryas. Black mats are common features in paleowetland deposits and typically represent shallow marsh environments. In this study, we investigated black mats ranging in age from approximately 6 to more than 40 ka in the southwestern United States and the Atacama Desert of northern Chile. At 10 of 13 sites, we found elevated concentrations of iridium in bulk and magnetic sediments, magnetic spherules, and/or titanomagnetite grains within or at the base of black mats, regardless of their age or location, suggesting that elevated concentrations of these markers arise from processes common to wetland systems, and not a catastrophic extraterrestrial impact event.

  15. Environmental impacts and regulatory policy implications of spray disposal of dredged material in Louisiana wetlands

    USGS Publications Warehouse

    Cahoon, D.R.; Cowan, J.H.

    1988-01-01

    The capabilities of a new wetland dredging technology were assessed along with associated newly developed state and federal regulatory policies to determine if policy expectations realistically match the technological achievement. Current regulatory practices require amelioration of spoil bank impacts upon abandonment of an oil/gas well, but this may not occur for many years or decades, if at all. Recently, a dreding method (high-pressure spray spoil disposal) was developed that does not create a spoil bank in the traditional sense. Its potential for reducing environmental impacts was recognized immediately by regulatory agencies for whom minimizing spoil bank impacts is a major concern. The use of high-pressure spray disposal as a suitable alternative to traditional dreding technology has been adopted as policy even though its value as a management tool has never been tested or verified. A qualitative evaluation at two spoil disposal sites in saline marsh indicates that high-pressure spray disposal may indeed have great potential to minimize impacts, but most of this potential remains unverified. Also, some aspects of current regulatory policy may be based on unrealistic expectations as to the ability of this new technology to minimize or eliminate spoil bank impacts.

  16. Accumulation of impact markers in desert wetlands and implications for the Younger Dryas impact hypothesis

    USGS Publications Warehouse

    Pigati, Jeffrey S.; Latorre, Claudio; Rech, Jason A.; Betancourt, Julio L.; Martinez, Katherine E.; Budahn, James R.

    2012-01-01

    The Younger Dryas impact hypothesis contends that an extraterrestrial object exploded over North America at 12.9 ka, initiating the Younger Dryas cold event, the extinction of many North American megafauna, and the demise of the Clovis archeological culture. Although the exact nature and location of the proposed impact or explosion remain unclear, alleged evidence for the fallout comes from multiple sites across North America and a site in Belgium. At 6 of the 10 original sites (excluding the Carolina Bays), elevated concentrations of various "impact markers" were found in association with black mats that date to the onset of the Younger Dryas. Black mats are common features in paleowetland deposits and typically represent shallow marsh environments. In this study, we investigated black mats ranging in age from approximately 6 to more than 40 ka in the southwestern United States and the Atacama Desert of northern Chile. At 10 of 13 sites, we found elevated concentrations of iridium in bulk and magnetic sediments, magnetic spherules, and/or titanomagnetite grains within or at the base of black mats, regardless of their age or location, suggesting that elevated concentrations of these markers arise from processes common to wetland systems, and not a catastrophic extraterrestrial impact event.

  17. Accumulation of impact markers in desert wetlands and implications for the Younger Dryas impact hypothesis.

    PubMed

    Pigati, Jeffrey S; Latorre, Claudio; Rech, Jason A; Betancourt, Julio L; Martínez, Katherine E; Budahn, James R

    2012-05-01

    The Younger Dryas impact hypothesis contends that an extraterrestrial object exploded over North America at 12.9 ka, initiating the Younger Dryas cold event, the extinction of many North American megafauna, and the demise of the Clovis archeological culture. Although the exact nature and location of the proposed impact or explosion remain unclear, alleged evidence for the fallout comes from multiple sites across North America and a site in Belgium. At 6 of the 10 original sites (excluding the Carolina Bays), elevated concentrations of various "impact markers" were found in association with black mats that date to the onset of the Younger Dryas. Black mats are common features in paleowetland deposits and typically represent shallow marsh environments. In this study, we investigated black mats ranging in age from approximately 6 to more than 40 ka in the southwestern United States and the Atacama Desert of northern Chile. At 10 of 13 sites, we found elevated concentrations of iridium in bulk and magnetic sediments, magnetic spherules, and/or titanomagnetite grains within or at the base of black mats, regardless of their age or location, suggesting that elevated concentrations of these markers arise from processes common to wetland systems, and not a catastrophic extraterrestrial impact event. PMID:22529347

  18. Plant growth under salinity and inundation stress: implications for sea-level rise on tidal wetland function

    EPA Science Inventory

    Climate change and sea-level rise (SLR) may increase salinity or inundation duration for tidal wetland organisms. To test the effects of these stressors on wetland productivity, we transplanted seedlings of seven common plant species to polyhaline, mesohaline and oligohaline tida...

  19. Isolation and characterization of hexavalent chromium-reducing rhizospheric bacteria from a wetland.

    PubMed

    Mauricio Gutiérrez, Amparo; Peña Cabriales, Juan José; Maldonado Vega, María

    2010-01-01

    Scirpus americanus Pers. occurs naturally in "San Germán," a pond that serves as a receptor of industrial wastewater in Guanajuato, México. This plant accumulates metals mainly in the root: concentrations (mg/kg) of Cr, As, Cd and Se were 970, 49, 41, and 85 respectively. Analysis of rhizosphere samples indicated bacterial population of 10(8) cfu g(-1) in media with 0.2 mM Cr(VI) and 10 mM sodium gluconate. Thirteen isolates were obtained and phylogenetic analyses (16S rRNA) indicated they corresponded to genera of Agrobacterium, Arthrobacter, Microbacterium, Curtobacterium, Rhodococcus, Xanthomonas and Pseudomonas. Cr(VI) reduction was evaluated using the diphenyl carbazide method. The isolates accomplished 5-40% (20 microM) of reduction in assays of resting cell and tolerated 0.5-5.0 mM Cr(VI). Eight strains used nitrate and thirteen used iron and chromium as electron acceptors to grow under anaerobic conditions. Cr(VI) reduction by five strains occurred at pH values (7-9) and NaCl concentrations (0.5-1.0 M) in basal medium. A mixed culture of strains (S17 and S28) reached a chromium removal of 100% at 0.2 mM Cr(VI) initial concentration. Aerobically, this consortium was capable of 93.8% Cr(VI) reduction of 81 microg L(-1) Cr(VI) of the industrial effluent, indicating their possible use in environmental cleanup. PMID:20734910

  20. Two science communities and coastal wetlands policy

    SciTech Connect

    LeVine, J.B.

    1984-01-01

    This study compares the attitudes of academic and government wetlands scientists about wetlands science and policy. Analysis of one thousand seven hundred responses to Delphi-type questions posed to twenty California scientists on a wide range of issues about California coastal wetlands found significant differences between academic and government scientists about wetlands definitions, threats to wetlands, wetlands policies, wetlands health, and wetlands mitigation strategies. These differences were consistent with descriptive models of political sociology developed by D. Price and C.P. Snow and with normative models of the philosophy of science developed in the renaissance by F. Bacon and R. Descartes. Characteristics, preferences, and personality attributes consistent with group functions and roles have been described in these models. These findings have serious implications for policy. When academic and government wetlands scientists act as advisors to the major parties in land use conflicts, basic differences in perspective have contributed to costly contention over the future use of wetlands.

  1. A multi-year comparison of IPCI scores for prairie pothole wetlands: implications of temporal and spatial variation

    USGS Publications Warehouse

    Euliss, Ned H.; Mushet, David M.

    2011-01-01

    In the prairie pothole region of North America, development of Indices of Biotic Integrity (IBIs) to detect anthropogenic impacts on wetlands has been hampered by naturally dynamic inter-annual climate fluctuations. Of multiple efforts to develop IBIs for prairie pothole wetlands, only one, the Index of Plant Community Integrity (IPCI), has reported success. We evaluated the IPCI and its ability to distinguish between natural and anthropogenic variation using plant community data collected from 16 wetlands over a 4-year-period. We found that under constant anthropogenic influence, IPCI metric scores and condition ratings varied annually in response to environmental variation driven primarily by natural climate variation. Artificially forcing wetlands that occur along continuous hydrologic gradients into a limited number of discrete classes (e.g., temporary, seasonal, and semipermanent) further confounded the utility of IPCI metrics. Because IPCI scores vary significantly due to natural climate dynamics as well as human impacts, methodology must be developed that adequately partitions natural and anthropogenically induced variation along continuous hydrologic gradients. Until such methodology is developed, the use of the IPCI to evaluate prairie pothole wetlands creates potential formisdirected corrective or regulatory actions, impairment of natural wetland functional processes, and erosion of public confidence in the wetland sciences.

  2. A multi-year comparison of IPCI scores for prairie pothole wetlands: implications of temporal and spatial variation

    USGS Publications Warehouse

    Euliss, Ned H.; Mushet, David M.

    2011-01-01

    In the prairie pothole region of North America, development of Indices of Biotic Integrity (IBIs) to detect anthropogenic impacts on wetlands has been hampered by naturally dynamic inter-annual climate fluctuations. Of multiple efforts to develop IBIs for prairie pothole wetlands, only one, the Index of Plant Community Integrity (IPCI), has reported success. We evaluated the IPCI and its ability to distinguish between natural and anthropogenic variation using plant community data collected from 16 wetlands over a 4-year-period. We found that under constant anthropogenic influence, IPCI metric scores and condition ratings varied annually in response to environmental variation driven primarily by natural climate variation. Artificially forcing wetlands that occur along continuous hydrologic gradients into a limited number of discrete classes (e.g., temporary, seasonal, and semi-permanent) further confounded the utility of IPCI metrics. Because IPCI scores vary significantly due to natural climate dynamics as well as human impacts, methodology must be developed that adequately partitions natural and anthropogenically induced variation along continuous hydrologic gradients. Until such methodology is developed, the use of the IPCI to evaluate prairie pothole wetlands creates potential for misdirected corrective or regulatory actions, impairment of natural wetland functional processes, and erosion of public confidence in the wetland sciences.

  3. Wetlands postcard

    USGS Publications Warehouse

    Ball, Lianne C.

    2016-05-25

    Research conducted by scientists at the U.S. Geological Survey provides reliable scientific information for the management of wetlands ranging from small freshwater alpine lakes in the Western United States to coastal wetlands of the Great Lakes and salt marshes along the Southeastern coast. Learn more about USGS wetlands research at: http://www.usgs.gov/ecosystems/environments/wetlands.html.

  4. Hindcasting Historical Breeding Conditions for an Endangered Salamander in Ephemeral Wetlands of the Southeastern USA: Implications of Climate Change.

    PubMed

    Chandler, Houston C; Rypel, Andrew L; Jiao, Yan; Haas, Carola A; Gorman, Thomas A

    2016-01-01

    The hydroperiod of ephemeral wetlands is often the most important characteristic determining amphibian breeding success, especially for species with long development times. In mesic and wet pine flatwoods of the southeastern United States, ephemeral wetlands were a common landscape feature. Reticulated flatwoods salamanders (Ambystoma bishopi), a federally endangered species, depend exclusively on ephemeral wetlands and require at least 11 weeks to successfully metamorphose into terrestrial adults. We empirically modeled hydroperiod of 17 A. bishopi breeding wetlands by combining downscaled historical climate-model data with a recent 9-year record (2006-2014) of observed water levels. Empirical models were subsequently used to reconstruct wetland hydrologic conditions from 1896-2014 using the downscaled historical climate datasets. Reconstructed hydroperiods for the 17 wetlands were highly variable through time but were frequently unfavorable for A. bishopi reproduction (e.g., only 61% of years, using a conservative estimate of development time [12 weeks], were conducive to larval development and metamorphosis). Using change-point analysis, we identified significant shifts in average hydroperiod over the last century in all 17 wetlands. Mean hydroperiods were shorter in recent years than at any other point since 1896, and thus less suitable for A. bishopi reproduction. We suggest that climate change will continue to impact the reproductive success of flatwoods salamanders and other ephemeral wetland breeders by reducing the number of years these wetlands have suitable hydroperiods. Consequently, we emphasize the importance of conservation and management for mitigating other forms of habitat degradation, especially maintenance of high quality breeding sites where reproduction can occur during appropriate environmental conditions.

  5. Hindcasting Historical Breeding Conditions for an Endangered Salamander in Ephemeral Wetlands of the Southeastern USA: Implications of Climate Change

    PubMed Central

    Chandler, Houston C.; Rypel, Andrew L.; Jiao, Yan; Haas, Carola A.; Gorman, Thomas A.

    2016-01-01

    The hydroperiod of ephemeral wetlands is often the most important characteristic determining amphibian breeding success, especially for species with long development times. In mesic and wet pine flatwoods of the southeastern United States, ephemeral wetlands were a common landscape feature. Reticulated flatwoods salamanders (Ambystoma bishopi), a federally endangered species, depend exclusively on ephemeral wetlands and require at least 11 weeks to successfully metamorphose into terrestrial adults. We empirically modeled hydroperiod of 17 A. bishopi breeding wetlands by combining downscaled historical climate-model data with a recent 9-year record (2006–2014) of observed water levels. Empirical models were subsequently used to reconstruct wetland hydrologic conditions from 1896–2014 using the downscaled historical climate datasets. Reconstructed hydroperiods for the 17 wetlands were highly variable through time but were frequently unfavorable for A. bishopi reproduction (e.g., only 61% of years, using a conservative estimate of development time [12 weeks], were conducive to larval development and metamorphosis). Using change-point analysis, we identified significant shifts in average hydroperiod over the last century in all 17 wetlands. Mean hydroperiods were shorter in recent years than at any other point since 1896, and thus less suitable for A. bishopi reproduction. We suggest that climate change will continue to impact the reproductive success of flatwoods salamanders and other ephemeral wetland breeders by reducing the number of years these wetlands have suitable hydroperiods. Consequently, we emphasize the importance of conservation and management for mitigating other forms of habitat degradation, especially maintenance of high quality breeding sites where reproduction can occur during appropriate environmental conditions. PMID:26910245

  6. Hindcasting Historical Breeding Conditions for an Endangered Salamander in Ephemeral Wetlands of the Southeastern USA: Implications of Climate Change.

    PubMed

    Chandler, Houston C; Rypel, Andrew L; Jiao, Yan; Haas, Carola A; Gorman, Thomas A

    2016-01-01

    The hydroperiod of ephemeral wetlands is often the most important characteristic determining amphibian breeding success, especially for species with long development times. In mesic and wet pine flatwoods of the southeastern United States, ephemeral wetlands were a common landscape feature. Reticulated flatwoods salamanders (Ambystoma bishopi), a federally endangered species, depend exclusively on ephemeral wetlands and require at least 11 weeks to successfully metamorphose into terrestrial adults. We empirically modeled hydroperiod of 17 A. bishopi breeding wetlands by combining downscaled historical climate-model data with a recent 9-year record (2006-2014) of observed water levels. Empirical models were subsequently used to reconstruct wetland hydrologic conditions from 1896-2014 using the downscaled historical climate datasets. Reconstructed hydroperiods for the 17 wetlands were highly variable through time but were frequently unfavorable for A. bishopi reproduction (e.g., only 61% of years, using a conservative estimate of development time [12 weeks], were conducive to larval development and metamorphosis). Using change-point analysis, we identified significant shifts in average hydroperiod over the last century in all 17 wetlands. Mean hydroperiods were shorter in recent years than at any other point since 1896, and thus less suitable for A. bishopi reproduction. We suggest that climate change will continue to impact the reproductive success of flatwoods salamanders and other ephemeral wetland breeders by reducing the number of years these wetlands have suitable hydroperiods. Consequently, we emphasize the importance of conservation and management for mitigating other forms of habitat degradation, especially maintenance of high quality breeding sites where reproduction can occur during appropriate environmental conditions. PMID:26910245

  7. AMPHIBIAN OCCURRENCE AND AQUATIC INVADERS IN A CHANGING LANDSCAPE: IMPLICATIONS FOR WETLAND MITIGATION IN THE WILLAMETTE VALLEY, OREGON, USA

    EPA Science Inventory

    Despite concern about the conservation status of amphibians in western North America, few field studies have documented occurrence patterns of amphibians relative to potential stressors. We surveyed wetland fauna in Oregon Willamette Valley and used an information theoretic appro...

  8. Social isolation among Latino workers in rural North Carolina: exposure and health implications.

    PubMed

    Mora, Dana C; Grzywacz, Joseph G; Anderson, Andrea M; Chen, Haiying; Arcury, Thomas A; Marín, Antonio J; Quandt, Sara A

    2014-10-01

    Immigrant Latinos frequently experience social isolation in their receiving communities. This paper investigates the prevalence of social isolation among immigrant workers in a new settlement area and delineates the association between social isolation and physical and mental health outcomes. Interviews were conducted in Spanish with immigrant Latino manual workers (N = 743) in western North Carolina. The CES-D and the SF-12 questionnaires assessed health outcomes. A social isolation scale was used to assess degree of social isolation. Nearly 1 in 5 workers (19.5 %) reported the highest level of social isolation. Social isolation was associated with higher depressive symptoms and poorer physical and mental health, related to quality of life. Social isolation is a common experience among immigrant Latinos that may have negative implications for physical and mental health. Community outreach efforts to minimize experiences of isolation may be useful in protecting immigrant physical and mental health.

  9. Colonization of a newly constructed urban wetland by mosquitoes in England: implications for nuisance and vector species.

    PubMed

    Medlock, Jolyon M; Vaux, Alexander G C

    2014-12-01

    Urban wetlands are being created in the UK as part of sustainable urban drainage strategies, to create wetland habitats lost during development, to provide a habitat for protected species, and to increase the public's access to 'blue-space' for the improvement of health and well-being. Sewage treatment reedbeds are also being incorporated into newly constructed wetlands to offer an alternative approach to dealing with sewage. This field study aims to provide the first UK evidence of how such newly constructed aquatic habitats are colonized by mosquitoes. A number of new aquatic habitats were surveyed for immature mosquitoes every fortnight over the first two years following wetland construction. The majority of mosquitoes collected were Culex sp. and were significantly associated with the sewage treatment reedbed system, particularly following storm events and sewage inflow. Other more natural aquatic habitats that were subject to cycles of drying and re-wetting contributed the majority of the remaining mosquitoes colonizing. Colonization of permanent habitats was slow, particularly where fluctuations in water levels inhibited emergent vegetation growth. It is recommended that during the planning process for newly constructed wetlands consideration is given on a case-by-case basis to the impact of mosquitoes, either as a cause of nuisance or as potential vectors. Although ornithophagic Culex dominated in this wetland, their potential role as enzootic West Nile virus vectors should not be overlooked. PMID:25424253

  10. Colonization of a newly constructed urban wetland by mosquitoes in England: implications for nuisance and vector species.

    PubMed

    Medlock, Jolyon M; Vaux, Alexander G C

    2014-12-01

    Urban wetlands are being created in the UK as part of sustainable urban drainage strategies, to create wetland habitats lost during development, to provide a habitat for protected species, and to increase the public's access to 'blue-space' for the improvement of health and well-being. Sewage treatment reedbeds are also being incorporated into newly constructed wetlands to offer an alternative approach to dealing with sewage. This field study aims to provide the first UK evidence of how such newly constructed aquatic habitats are colonized by mosquitoes. A number of new aquatic habitats were surveyed for immature mosquitoes every fortnight over the first two years following wetland construction. The majority of mosquitoes collected were Culex sp. and were significantly associated with the sewage treatment reedbed system, particularly following storm events and sewage inflow. Other more natural aquatic habitats that were subject to cycles of drying and re-wetting contributed the majority of the remaining mosquitoes colonizing. Colonization of permanent habitats was slow, particularly where fluctuations in water levels inhibited emergent vegetation growth. It is recommended that during the planning process for newly constructed wetlands consideration is given on a case-by-case basis to the impact of mosquitoes, either as a cause of nuisance or as potential vectors. Although ornithophagic Culex dominated in this wetland, their potential role as enzootic West Nile virus vectors should not be overlooked.

  11. The concentrations of five heavy metals in components of an economically important urban coastal wetland in Ghana: public health and phytoremediation implications.

    PubMed

    Gbogbo, Francis; Otoo, Samuel D

    2015-10-01

    Sakumo II is an urban wetland and a receptacle for domestic and industrial wastes from two cities in Ghana. It however supports viable populations of fish and crabs, is cultivated for food crops and grazed by farm animals. Components of the wetland can therefore accumulate pollutants, but the public health and phytoremediation implications of this are yet to be evaluated. We analysed Cd, As, Hg, Cu and Pb in the lagoon water, sediment, green algae, eight species of aquatic macrophytes, seven species of arthropods and one species of fish. The concentrations of Pb were generally below detection limit whilst Cu was detected only in the lagoon water and Pheropsophus vertialis. Cadmium ranged from 21 ± 4 ppb in algae to 69 ± 12 ppb in Typha domingensis and was generally higher than As and Hg. The highest concentration of As was 11.7 ± 2.1 ppb in Pistia stratiotes whilst Hg was highest in lagoon water (4 ± 2 ppb). The Cd concentrations generally, and Hg concentrations in macrophytes, were higher than US EPA guidelines indicating the wetland's resources were unsafe for regular consumption. Among the emergent aquatic macrophytes, T. domingensis, Ludwigia sp. and Paspalum vaginatum, respectively, had the highest accumulation capacity for Cd, As and Hg, but the floating aquatic plant P. stratiotes appeared to be a better accumulator of Cd and As.

  12. Temperature effects in treatment wetlands.

    PubMed

    Kadlec, R H; Reddy, K R

    2001-01-01

    Several biogeochemical processes that regulate the removal of nutrients in wetlands are affected by temperature, thus influencing the overall treatment efficiency. In this paper, the effects of temperature on carbon, nitrogen, and phosphorus cycling processes in treatment wetlands and their implications to water quality are discussed. Many environmental factors display annual cycles that mediate whole system performance. Water temperature is one of the important cyclic stimuli, but inlet flow rates and concentrations, and several features of the annual biogeochemical cycle, also can contribute to the observed patterns of nutrient and pollutant removal. Atmospheric influences, including rain, evapotranspiration, and water reaeration, also follow seasonal patterns. Processes regulating storages in wetlands are active throughout the year and can act as seasonal reservoirs of nutrients, carbon, and pollutants. Many individual wetland processes, such as microbially mediated reactions, are affected by temperature. Response was much greater to changes at the lower end of the temperature scale (< 15 degrees C) than at the optimal range (20 to 35 degrees C). Processes regulating organic matter decomposition are affected by temperature. Similarly, all nitrogen cycling reactions (mineralization, nitrification, and denitrification) are affected by temperature. The temperature coefficient (theta) varied from 1.05 to 1.37 for carbon and nitrogen cycling processes during isolated conditions. Phosphorus sorption reactions are least affected by temperature, with theta values of 1.03 to 1.12. Physical processes involved in the removal of particulate carbon, nitrogen, and phosphorus are not affected much by temperature. In contrast, observed wetland removals may have different temperature dependence. Design models are oversimplified because of limitations of data for calibration. The result of complex system behavior and the simple model is the need to interpret whole ecosystem data

  13. Functional and Phylogenetic Relatedness in Temporary Wetland Invertebrates: Current Macroecological Patterns and Implications for Future Climatic Change Scenarios

    PubMed Central

    Ruhí, Albert; Boix, Dani; Gascón, Stéphanie; Sala, Jordi; Batzer, Darold P.

    2013-01-01

    In freshwater ecosystems, species compositions are known to be determined hierarchically by large to small‑scale environmental factors, based on the biological traits of the organisms. However, in ephemeral habitats this heuristic framework remains largely untested. Although temporary wetland faunas are constrained by a local filter (i.e., desiccation), we propose its magnitude may still depend on large-scale climate characteristics. If this is true, climate should be related to the degree of functional and taxonomic relatedness of invertebrate communities inhabiting seasonal wetlands. We tested this hypothesis in two ways. First, based on 52 biological traits for invertebrates, we conducted a case study to explore functional trends among temperate seasonal wetlands differing in the harshness (i.e., dryness) of their dry season. After finding evidence of trait filtering, we addressed whether it could be generalized across a broader climatic scale. To this end, a meta-analysis (225 seasonal wetlands spread across broad climatic categories: Arid, Temperate, and Cold) allowed us to identify whether an equivalent climate-dependent pattern of trait richness was consistent between the Nearctic and the Western Palearctic. Functional overlap of invertebrates increased from mild (i.e., Temperate) to harsher climates (i.e., Arid and Cold), and phylogenetic clustering (using taxonomy as a surrogate) was highest in Arid and lowest in Temperate wetlands. We show that, (i) as has been described in streams, higher relatedness than would be expected by chance is generally observed in seasonal wetland invertebrate communities; and (ii) this relatedness is not constant but climate-dependent, with the climate under which a given seasonal wetland is located determining the functional overlap and the phylogenetic clustering of the community. Finally, using a space-for-time substitution approach we suggest our results may anticipate how the invertebrate biodiversity embedded in these

  14. Functional and phylogenetic relatedness in temporary wetland invertebrates: current macroecological patterns and implications for future climatic change scenarios.

    PubMed

    Ruhí, Albert; Boix, Dani; Gascón, Stéphanie; Sala, Jordi; Batzer, Darold P

    2013-01-01

    In freshwater ecosystems, species compositions are known to be determined hierarchically by large to small‑scale environmental factors, based on the biological traits of the organisms. However, in ephemeral habitats this heuristic framework remains largely untested. Although temporary wetland faunas are constrained by a local filter (i.e., desiccation), we propose its magnitude may still depend on large-scale climate characteristics. If this is true, climate should be related to the degree of functional and taxonomic relatedness of invertebrate communities inhabiting seasonal wetlands. We tested this hypothesis in two ways. First, based on 52 biological traits for invertebrates, we conducted a case study to explore functional trends among temperate seasonal wetlands differing in the harshness (i.e., dryness) of their dry season. After finding evidence of trait filtering, we addressed whether it could be generalized across a broader climatic scale. To this end, a meta-analysis (225 seasonal wetlands spread across broad climatic categories: Arid, Temperate, and Cold) allowed us to identify whether an equivalent climate-dependent pattern of trait richness was consistent between the Nearctic and the Western Palearctic. Functional overlap of invertebrates increased from mild (i.e., Temperate) to harsher climates (i.e., Arid and Cold), and phylogenetic clustering (using taxonomy as a surrogate) was highest in Arid and lowest in Temperate wetlands. We show that, (i) as has been described in streams, higher relatedness than would be expected by chance is generally observed in seasonal wetland invertebrate communities; and (ii) this relatedness is not constant but climate-dependent, with the climate under which a given seasonal wetland is located determining the functional overlap and the phylogenetic clustering of the community. Finally, using a space-for-time substitution approach we suggest our results may anticipate how the invertebrate biodiversity embedded in these

  15. Amphibian occurrence and aquatic invaders in a changing landscape: Implications for wetland mitigation in the Willamette Valley, Oregon

    USGS Publications Warehouse

    Pearl, Christopher A.; Adams, Michael J.; Leuthold, N.; Bury, R. Bruce

    2005-01-01

    Despite concern about the conservation status of amphibians in western North America, few field studies have documented occurrence patterns of amphibians relative to potential stressors. We surveyed wetland fauna in Oregon's Willamette Valley and used an information theoretic approach (AIC) to rank the associations between native amphibian breeding occurrence and wetland characteristics, non-native aquatic predators, and landscape characteristics in a mixed urban-agricultural landscape. Best predictors varied among the five native amphibians and were generally consistent with life history differences. Pacific tree frog (Pseudacris regilla) and long-toed salamander (Ambystoma macrodactylum) occurrence was best predicted by the absence of non-native fish. Northern red-legged frog (Rana a. aurora) and northwestern salamander (Ambystoma gracile) were most strongly related to wetland vegetative characteristics. The occurrence of rough-skinned newts (Taricha granulosa), a migratory species that makes extensive use of terrestrial habitats, was best predicted by greater forest cover within 1 km. The absence of non-native fish was a strong predictor of occurrence for four of the five native species. In contrast, amphibians were not strongly related to native fish presence. We found little evidence supporting negative effects of the presence of breeding populations of bullfrog (Rana catesbeiana) on any native species. Only the two Ambystoma salamanders were associated with wetland permanence. Northwestern salamanders (which usually have a multi-year larval stage) were associated with permanent waters, while long-toed salamanders were associated with temporary wetlands. Although all the species make some use of upland habitats, only one (rough-skinned newt) was strongly associated with surrounding landscape conditions. Instead, our analysis suggests that within-wetland characteristics best predict amphibian occurrence in this region. We recommend that wetland preservation and

  16. Wetlands stewardship

    SciTech Connect

    Whelan, J.M.

    1992-04-01

    Wetlands have important ecological values and functions. It is estimated that 80 percent of the Nation's coastal fisheries are dependent on wetlands for spawning, nursery areas, and food sources. Both coastal and inland wetlands provide essential breeding, nesting, feeding, and predator escape habitats for millions of waterfowl, other birds, mammals, and reptiles. Well over one-third of the 564 plant and animal species listed as threatened or endangered in the United States utilize wetland habitats during some portion of their life cycle. Wetlands Stewardship is intended as a resource for everyone interested in wetlands protection.

  17. Influence of drought on salamander occupancy of isolated wetlands on the southeastern Coastal Plain of the United States

    USGS Publications Warehouse

    Walls, Susan C.; Barichivich, William J.; Brown, Mary E.; Scott, David E.; Hossack, Blake R.

    2013-01-01

    In the southeastern U.S., changes in temperature and precipitation over the last three decades have been the most dramatic in winter and spring seasons. Continuation of these trends could negatively impact pond-breeding amphibians, especially those that rely on winter and spring rains to fill seasonal wetlands, trigger breeding, and ensure reproductive success. From 2009 to 2012, we monitored Spring and Fall presence of aquatic stages (larval and paedomorphic, gilled adult) of a winter-breeding amphibian (the mole salamander, Ambystoma talpoideum) and used multi-season models to estimate occupancy, local colonization and extinction. Seasonal estimates of occupancy, corrected for imperfect detection, declined from 22.3 % of ponds in Spring 2009 to 9.9 % in Fall 2012. Our best supported model suggested that changes in occupancy were driven by increased rates of extinction that corresponded with drought-related drying of ponds. Based on uncertainty in climate change projections for the Southeast, we present a conceptual model of predicted changes in wetland hydroperiods across a landscape with projected decreases and increases in future precipitation. Such precipitation changes could alter wetland hydroperiods, facilitate extinctions of species adapted to short, intermediate or long hydroperiod environments and, ultimately, modify the composition of amphibian communities within freshwater wetland ecosystems.

  18. Rapid Stable Isotope Turnover of Larval Fish in a Lake Superior Coastal Wetland: Implications for Diet and Life History Studies

    EPA Science Inventory

    Trophic linkages of larval fish in Lake Superior coastal wetlands, rivers and embayments can be identified using naturally occurring differences in the stable isotope ratios of nitrogen (15N:14N, ?15N) and carbon (13C:12C, ?13C). We sampled pelagic fish larvae weekly during sprin...

  19. Variation of energy and carbon fluxes from a restored temperate freshwater wetland and implications for carbon market verification protocols

    USGS Publications Warehouse

    Anderson, Frank; Bergamaschi, Brian; Sturtevant, Cove; Knox, Sarah; Hastings, Lauren; Windham-Myers, Lisamarie; Detto, Matteo; Hestir, Erin L.; Drexler, Judith; Miller, Robin L.; Matthes, Jaclyn; Verfaillie, Joseph; Baldocchi, Dennis; Snyder, Richard L.; Fujii, Roger

    2016-01-01

    Temperate freshwater wetlands are among the most productive terrestrial ecosystems, stimulating interest in using restored wetlands as biological carbon sequestration projects for greenhouse gas reduction programs. In this study, we used the eddy covariance technique to measure surface energy carbon fluxes from a constructed, impounded freshwater wetland during two annual periods that were 8 years apart: 2002–2003 and 2010–2011. During 2010–2011, we measured methane (CH4) fluxes to quantify the annual atmospheric carbon mass balance and its concomitant influence on global warming potential (GWP). Peak growing season fluxes of latent heat and carbon dioxide (CO2) were greater in 2002–2003 compared to 2010–2011. In 2002, the daily net ecosystem exchange reached as low as −10.6 g C m−2 d−1, which was greater than 3 times the magnitude observed in 2010 (−2.9 g C m−2 d−1). CH4 fluxes during 2010–2011 were positive throughout the year and followed a strong seasonal pattern, ranging from 38.1 mg C m−2 d−1 in the winter to 375.9 mg C m−2 d−1 during the summer. The results of this study suggest that the wetland had reduced gross ecosystem productivity in 2010–2011, likely due to the increase in dead plant biomass (standing litter) that inhibited the generation of new vegetation growth. In 2010–2011, there was a net positive GWP (675.3 g C m−2 yr−1), and when these values are evaluated as a sustained flux, the wetland will not reach radiative balance even after 500 years.

  20. Variation of energy and carbon fluxes from a restored temperate freshwater wetland and implications for carbon market verification protocols

    NASA Astrophysics Data System (ADS)

    Anderson, Frank E.; Bergamaschi, Brian; Sturtevant, Cove; Knox, Sara; Hastings, Lauren; Windham-Myers, Lisamarie; Detto, Matteo; Hestir, Erin L.; Drexler, Judith; Miller, Robin L.; Matthes, Jaclyn Hatala; Verfaillie, Joseph; Baldocchi, Dennis; Snyder, Richard L.; Fujii, Roger

    2016-03-01

    Temperate freshwater wetlands are among the most productive terrestrial ecosystems, stimulating interest in using restored wetlands as biological carbon sequestration projects for greenhouse gas reduction programs. In this study, we used the eddy covariance technique to measure surface energy carbon fluxes from a constructed, impounded freshwater wetland during two annual periods that were 8 years apart: 2002-2003 and 2010-2011. During 2010-2011, we measured methane (CH4) fluxes to quantify the annual atmospheric carbon mass balance and its concomitant influence on global warming potential (GWP). Peak growing season fluxes of latent heat and carbon dioxide (CO2) were greater in 2002-2003 compared to 2010-2011. In 2002, the daily net ecosystem exchange reached as low as -10.6 g C m-2 d-1, which was greater than 3 times the magnitude observed in 2010 (-2.9 g C m-2 d-1). CH4 fluxes during 2010-2011 were positive throughout the year and followed a strong seasonal pattern, ranging from 38.1 mg C m-2 d-1 in the winter to 375.9 mg C m-2 d-1 during the summer. The results of this study suggest that the wetland had reduced gross ecosystem productivity in 2010-2011, likely due to the increase in dead plant biomass (standing litter) that inhibited the generation of new vegetation growth. In 2010-2011, there was a net positive GWP (675.3 g C m-2 yr-1), and when these values are evaluated as a sustained flux, the wetland will not reach radiative balance even after 500 years.

  1. Helicobacter pylori isolated from the domestic cat: public health implications.

    PubMed Central

    Handt, L K; Fox, J G; Dewhirst, F E; Fraser, G J; Paster, B J; Yan, L L; Rozmiarek, H; Rufo, R; Stalis, I H

    1994-01-01

    Helicobacter pylori has been directly linked with active chronic gastritis, peptic ulceration, and gastric adenocarcinoma in humans. Although a substantial portion of the human population is colonized with H. pylori, the patterns of transmission of the organism remain in doubt, and reservoir hosts have not been identified. This study documents the isolation of H. pylori from domestic cats obtained from a commercial vendor. The isolation of H. pylori from these cats was confirmed by morphologic and biochemical evaluations, fatty acid analysis, and 16S rRNA sequence analysis. H. pylori was cultured from 6 cats and organisms compatible in appearance with H. pylori were observed in 15 additional cats by histologic examination. In most animals, H. pylori was present in close proximity to mucosal epithelial cells or in mucus layers of the glandular or surface epithelium. Microscopically, H. pylori-infected cat stomachs contained a mild to severe diffuse lymphoplasmacytic infiltrate with small numbers of neutrophils and eosinophils in the subglandular and gastric mucosae. Lymphoid follicles were also noted, particularly in the antrum, and often displaced glandular mucosal tissue. Thus, the domestic cat may be a potential model for H. pylori disease in humans. Also, the isolation of H. pylori from domestic cats raises the possibility that the organism may be a zoonotic pathogen, with transmission occurring from cats to humans. Images PMID:8188360

  2. Biochemical pharmacology of isolated neuronal growth cones: implications for synaptogenesis.

    PubMed

    Lockerbie, R O

    1990-01-01

    The neuronal growth cone is critical to the establishment of neuronal polarity through its motile, pathfinding and target recognition properties exhibited during synaptogenesis. Subcellular fractionation procedures yielding milligram quantities of isolated growth cones has allowed for biochemical and pharmacological investigation of intrinsic growth cone components that are likely to be involved in regulation of growth cone function in neuronal development. These 'mapping' studies of growth cone components are prerequisites to elucidating the mechanisms by which extracellular factors influence the motility, adhesion and directed growth of the growth cone. For example, neurotransmitters and polypeptide growth factors which have been shown in other systems to modulate growth cone behavior are presumed to act through receptors on the growth cone, inducing second-messenger molecule formation and consequent modification and regulation of proteins effecting the response(s) of the growth cone (i.e. proteins involved in motility, adhesion and membrane turnover). In a relatively short period of time, work with the isolated growth cone preparation has identified, in independent studies, many of the elements involved in this proposed scheme of events, including transmitter receptors, second-messenger cascades, and second-messenger post-translational modifications. An obvious future goal will be to analyze in more detail the intracellular events, and the relationships between them, in the growth cone and how they transmit extracellular signals into responses such as motility and adhesivity which underly the growth cone's synaptogenic properties. It is to be expected that much of this information will come forth from experimentation with the isolated growth cone preparation.

  3. Nitrous oxide exchanges with the atmosphere of a constructed wetland treating wastewater. Parameters and implications for emission factors

    NASA Astrophysics Data System (ADS)

    Johansson, A. E.; Kasimir Klemedtsson, Å.; Klemedtsson, L.; Svensson, B. H.

    2003-07-01

    Static chamber measurements of N2O fluxes were taken during the 1998 and 1999 growth seasons in a Swedish constructed wetland receiving wastewater. The dominating plant species in different parts of the wetland were Lemna minor L., Typha latifolia L., Spirogyra sp. and Glyceria maxima (Hartm.) and Phalaris arundinacea (L.), respectively. There were large temporal and spatial variations in N2O fluxes, which ranged from consumption at -350 to emissions at 1791 μg N2O m-2 h-1. The largest positive flux occurred in October 1999 and the lowest in the middle of July 1999. The average N2O flux for the two years was 130 μg N2O m-2 h-1 (SD = 220). No significant differences in N2O fluxes were found between the years, even though the two growing seasons differed considerably with respect to both air temperature and precipitation. 15% of the fluxes were negative, showing a consumption of N2O. Consumption occurred on a few occasions at most measurement sites and ranged from 1-350 μg N2O m-2 h-1. 13-43% of the variation in N2O fluxes was explained by multiple linear regression analysis including principal components. Emission factors were calculated according to IPCC methods from the N2O fluxes in the constructed wetland. The calculated emission factors were always lower (0.02-0.27%) compared to the default factor provided by the IPCC (0.75%). Thus, direct application of the IPCC default factor may lead to overestimation of N2O fluxes from constructed wastewater-treating wetlands.

  4. Are wetlands the reservoir for avian cholera?

    USGS Publications Warehouse

    Samuel, M.D.; Shadduck, D.J.; Goldberg, D.R.

    2004-01-01

    Wetlands have long been suspected to be an important reservoir for Pasteurella multocida and therefore the likely source of avian cholera outbreaks. During the fall of 1995a??98 we collected sediment and water samples from 44 wetlands where avian cholera epizootics occurred the previous winter or spring. We attempted to isolate P. multocida in sediment and surface water samples from 10 locations distributed throughout each wetland. We were not able to isolate P. multocida from any of the 440 water and 440 sediment samples collected from these wetlands. In contrast, during other investigations of avian cholera we isolated P. multocida from 20 of 44 wetlands, including 7% of the water and 4.5% of the sediment samples collected during or shortly following epizootic events. Our results indicate that wetlands are an unlikely reservoir for the bacteria that causes avian cholera.

  5. Train-borne Measurements of Enhanced Wet Season Methane Emissions in Northern Australia - Implications for Australian Tropical Wetland Emissions

    NASA Astrophysics Data System (ADS)

    Deutscher, N. M.; Griffith, D. W.; Paton-Walsh, C.

    2008-12-01

    We present the first transect measurements of CH4, CO2, CO and N2O taken on the Ghan railway travelling on a N-S transect of the Australian continent between Adelaide (34.9°S, 138.6°E) and Darwin (12.5°S, 130.9°E). The Ghan crosses Australia from the mainly agricultural mid-latitude south through the arid interior to the wet-dry tropical savannah south of and around Darwin. In the 2008 wet season (February) we observed a significant latitudinal gradient of CH4 increasing towards the north. The same pattern was observed in the late 2008 wet season (March-April), with a smaller latitudinal gradient. These will be compared with a dry season transect, to be undertaken in September/October 2008. The Air Pollution Model (TAPM), a regional scale prognostic meteorological model, is used to estimate the surface methane source strength required to explain the observed latitudinal gradient in CH4 in the wet season, and investigate the source type. Fluxes from cattle and termites together contribute up to 25% of the enhancements seen, leaving wetlands as the major source of wet season methane in the Australian tropics. Wetlands are the largest natural source of methane to the atmosphere, and tropical wetlands are responsible for the majority of the interannual variation in methane source strength. We attempt to quantify the annual methane flux contributed by anaerobic organic breakdown due to wet- season flooding in tropical Northern Territory.

  6. Detection and Antimicrobial Resistance of Vibrio Isolates in Aquaculture Environments: Implications for Public Health.

    PubMed

    Igbinosa, Etinosa O

    2016-04-01

    The aim of this study was to evaluate the presence of Vibrio isolates recovered from four different fish pond facilities in Benin City, Nigeria, determine their antibiogram profiles, and evaluate the public health implications of these findings. Fish pond water samples were collected from four sampling sites between March and September 2014. A total of 56 samples were collected and screened for the isolation of Vibrio species using standard culture-based methods. Polymerase chain reaction (PCR) was used to confirm the identities of the Vibrio species using the genus-specific and species-specific primers. Vibrio species were detected at all the study sites at a concentration on the order of 10(3) and 10(6) CFU/100 ml. A total of 550 presumptive Vibrio isolates were subjected to PCR confirmation. Of these isolates, 334 isolates tested positive, giving an overall Vibrio prevalence rate of 60.7%. The speciation of the 334 Vibrio isolates from fish ponds yielded 32.63% Vibrio fluvialis, 20.65% Vibrio parahaemolyticus, 18.26% Vibrio vulnificus, and 28.44% other Vibrio species. In all, 167 confirmed Vibrio isolates were selected from a pool of 334 confirmed Vibrio isolates for antibiogram profiling. The susceptibility profiles of 20 antimicrobial agents on the isolates revealed a high level of resistance for AMP(R), ERY(R), NAL(R), SUL(R), TMP(R), SXT(R), TET(R), OTC(R), and CHL(R). The percentage of multiple drug resistance Vibrio isolates was 67.6%. The multiple antibiotic resistance index mean value of 0.365 for the Vibrio isolates found in this study indicated that the Vibrio isolates were exposed to high-risk sources of contamination when antibiotics were frequently used. The resistant Vibrio strains could be transmitted through the food chain to humans and therefore constitutes a risk to public health.

  7. Identification and genotyping of Giardia spp. and Cryptosporidium spp. isolates in aquatic birds in the Salburua wetlands, Álava, Northern Spain.

    PubMed

    Cano, Lourdes; de Lucio, Aida; Bailo, Begoña; Cardona, Guillermo A; Muadica, Aly Salimo Omar; Lobo, Luis; Carmena, David

    2016-05-15

    Aquatic birds are known to be suitable hosts for a number of avian-specific species and genotypes of the enteric protozoan parasites Giardia and Cryptosporidium. Waterbirds have also been reported as sporadic carriers of species of both pathogens from human or domestic animal origin via environmental contamination. Because aquatic birds can shed substantial amounts of infective Giardia and Cryptosporidium (oo)cysts to the environment including surface waters intended for human consumption, this situation may pose a potential risk of waterborne zoonotic disease. A total of 265 waterbird faecal samples were collected from May 2014 to June 2015 at Salburua (Álava), one of the most valued continental wetlands in northern Spain. The detection of Giardia oocyst and Cryptosporidium oocysts was carried out by direct fluorescence microscopy and molecular (PCR and sequence analysis) methods targeting the small subunit ribosomal RNA gene of the parasites. Typing of Giardia duodenalis isolates at the sub-assemblage level was based on the specific amplification and sequencing of a partial fragment of the glutamate dehydrogenase gene. Overall, Giardia cysts and Cryptosporidium oocysts were detected in 22 (8.3%) and 6 (2.3%), respectively, of the 265 faecal samples analysed. The two only Giardia isolates characterized (one novel, one known) were assigned to the sub-assemblage BIV of G. duodenalis, none of them previously reported in Spanish human isolates. This finding raises doubts about the actual origin of the infection and whether waterbirds may serve as potential source of infective Giardia cysts to humans via waterborne transmission or through direct contact. The six Cryptosporidium isolates obtained were characterized as avian genotype III (n=4), duck genotype b (n=1), and goose genotype Id (n=1), all considered avian-specific and therefore of negligible risk of zoonotic infection. PMID:27084487

  8. Freshwater Wetlands.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides descriptions about freshwater wetlands, such as marshes, swamps, and bogs. Contains three learning activities which deal with unusual wetland plants, the animals and plants in a typical marsh, and the effects of a draught on a swamp. Included are reproducible handouts and worksheets for two of the activities. (TW)

  9. Exploring Wetlands.

    ERIC Educational Resources Information Center

    Kerr, Elizabeth; Harrison, Gordon

    1996-01-01

    Presents a wetlands education model for secondary education students. Students monitor a wetland, participate in decision-making, and take actions to protect it. In a series of six steps, the model guides students through the process of defining a problem; envisioning solutions; evaluating appropriate solutions based on environmental, economic and…

  10. Rapid wetland expansion during European settlement and its implication for marsh survival under modern sediment delivery rates

    USGS Publications Warehouse

    Kirwan, Matthew L.; Murray, A. Brad; Donnelly, Jeffrey P.; Corbett, D. Reide

    2011-01-01

    Fluctuations in sea-level rise rates are thought to dominate the formation and evolution of coastal wetlands. Here we demonstrate a contrasting scenario in which land-use-related changes in sediment delivery rates drive the formation of expansive marshland, and vegetation feedbacks maintain their morphology despite recent sediment supply reduction. Stratigraphic analysis and radiocarbon dating in the Plum Island Estuary (Massachusetts, United States) suggest that salt marshes expanded rapidly during the eighteenth and nineteenth centuries due to increased rates of sediment delivery following deforestation associated with European settlement. Numerical modeling coupled with the stratigraphic observations suggests that existing marshland could survive, but not form under the low suspended sediment concentrations observed in the estuary today. These results suggest that many of the expansive marshes that characterize the modern North American coast are metastable relicts of high nineteenth century sediment delivery rates, and that recent observations of degradation may represent a slow return to pre-settlement marsh extent. In contrast to ecosystem management practices in which restoring pre-anthropogenic conditions is seen as a way to increase ecosystem services, our results suggest that widespread efforts to restore valuable coastal wetlands actually prevent some systems from returning to a natural state.

  11. [Sedimentological Implications of the change in the coverage of mangrove forest in Boca Zacate, Térraba-Sierpa National Wetlands, Costa Rica].

    PubMed

    Silva Benavides, Ana Margarita; Picado Barboza, Jorge; Mora Rodríguez, Fernando; González Gairaud, Carmen

    2015-09-01

    In the last sixty years many geomorphological changes have occurred in Costa Rica's Térraba-Sierpe National Wetlands. Changes in coastal geomorphology are generally associated with erosion or accretion of sediment, which has led to the removal of sections of mangrove forests or sediment banks colonized by mangroves. The aim of this study was to analyze sedimentation as a leading process in the dynamics of coastal morphology and its implications for mangrove forest cover in the Boca Zacate area of Térraba-Sierpe wetlands. The study was conducted in the sectors of Bocón, Brujo and Coco Island in Boca Zacate, from 2008 to 2013. The research was based on a multi-temporal analysis of coastal morphology using aerial photographs from the years 1948, 1960, 1974, 1978, 1984, 1992 and 2011. The following measurements were also performed: monthly sedimentation rate (g/cm2/day), and granulometric composition and content of chemical elements in the sediments of the study area. These last two measurements were performed once each in the dry and rainy seasons during the years of study. The results indicated that over the past 60 years, Boca Zacate has witnessed a process of sustained erosion; from 1948 through 2001, losing 10.6 % of its land and approximately 8.9 % of its forest cover. It has also experienced accretion in the area of Coco Island. The Brujo sector showed the highest sedimentation rate and the Camibar estuary, the lowest. The dominant type of sediment in all study sites was sand, followed by clay and silt. The most widespread chemical elements (mg/L) included magnesium, calcium and potassium; others, such as manganese, iron, aluminum, phosphorus, zinc and copper, were measured in smaller amounts. Transport, composition and quantity of sediment in Boca Zacate are crucial to the changes that have occurred on the coastal area of La Boca, where the presence of dead trees was evident. This geomorphological analysis holds great importance for future guidelines and

  12. [Sedimentological Implications of the change in the coverage of mangrove forest in Boca Zacate, Térraba-Sierpa National Wetlands, Costa Rica].

    PubMed

    Silva Benavides, Ana Margarita; Picado Barboza, Jorge; Mora Rodríguez, Fernando; González Gairaud, Carmen

    2015-09-01

    In the last sixty years many geomorphological changes have occurred in Costa Rica's Térraba-Sierpe National Wetlands. Changes in coastal geomorphology are generally associated with erosion or accretion of sediment, which has led to the removal of sections of mangrove forests or sediment banks colonized by mangroves. The aim of this study was to analyze sedimentation as a leading process in the dynamics of coastal morphology and its implications for mangrove forest cover in the Boca Zacate area of Térraba-Sierpe wetlands. The study was conducted in the sectors of Bocón, Brujo and Coco Island in Boca Zacate, from 2008 to 2013. The research was based on a multi-temporal analysis of coastal morphology using aerial photographs from the years 1948, 1960, 1974, 1978, 1984, 1992 and 2011. The following measurements were also performed: monthly sedimentation rate (g/cm2/day), and granulometric composition and content of chemical elements in the sediments of the study area. These last two measurements were performed once each in the dry and rainy seasons during the years of study. The results indicated that over the past 60 years, Boca Zacate has witnessed a process of sustained erosion; from 1948 through 2001, losing 10.6 % of its land and approximately 8.9 % of its forest cover. It has also experienced accretion in the area of Coco Island. The Brujo sector showed the highest sedimentation rate and the Camibar estuary, the lowest. The dominant type of sediment in all study sites was sand, followed by clay and silt. The most widespread chemical elements (mg/L) included magnesium, calcium and potassium; others, such as manganese, iron, aluminum, phosphorus, zinc and copper, were measured in smaller amounts. Transport, composition and quantity of sediment in Boca Zacate are crucial to the changes that have occurred on the coastal area of La Boca, where the presence of dead trees was evident. This geomorphological analysis holds great importance for future guidelines and

  13. Biomonitoring of metals in Ganga water at different ghats of Haridwar: implications of constructed wetland for sewage detoxification.

    PubMed

    Rai, U N; Prasad, D; Verma, S; Upadhyay, A K; Singh, N K

    2012-10-01

    An assessment of Ganga river water quality at different ghats of Haridwar, showed high TDS (782.15 mg L(-1)) and BOD (21.76 mg L(-1)) levels at the mixing points of sewage discharge channels and the water was found to be contaminated with appreciable amounts of toxic metals; Cu, Pb, Zn, Cr and Mn (0.178, 0.566, 0.199, 0.177 and 0.160 mg L(-1)). The Ganga water supported exuberant growth of algae and aquatic macrophytes in littoral zone of river, which accumulated appreciable amount of metals in their tissues. Results showed possibility of using metal accumulation potential of plants and algae for monitoring low level of metal contamination vis-a-vis their use in renovating sewage by treating into especially designed constructed wetland.

  14. Biomonitoring of metals in Ganga water at different ghats of Haridwar: implications of constructed wetland for sewage detoxification.

    PubMed

    Rai, U N; Prasad, D; Verma, S; Upadhyay, A K; Singh, N K

    2012-10-01

    An assessment of Ganga river water quality at different ghats of Haridwar, showed high TDS (782.15 mg L(-1)) and BOD (21.76 mg L(-1)) levels at the mixing points of sewage discharge channels and the water was found to be contaminated with appreciable amounts of toxic metals; Cu, Pb, Zn, Cr and Mn (0.178, 0.566, 0.199, 0.177 and 0.160 mg L(-1)). The Ganga water supported exuberant growth of algae and aquatic macrophytes in littoral zone of river, which accumulated appreciable amount of metals in their tissues. Results showed possibility of using metal accumulation potential of plants and algae for monitoring low level of metal contamination vis-a-vis their use in renovating sewage by treating into especially designed constructed wetland. PMID:22869393

  15. Hydraulic Geometry and Microtopography of Tidal Freshwater Forested Wetlands and Implications for Restoration, Columbia River, U.S.A.

    SciTech Connect

    Diefenderfer, Heida L.; Coleman, Andre M.; Borde, Amy B.; Sinks, Ian A.

    2008-01-01

    The hydrologic reconnection of tidal channels, riverine floodplains, and main stem channels are among responses by ecological restoration practitioners to the increasing fragmentation and land conversion occurring in coastal and riparian zones. Design standards and monitoring of such ecological restoration depend upon the characterization of reference sites that vary within and among regions. Few locales, such as the 235 km tidal portion of the Columbia River on the West Coast U.S.A., remain in which the reference conditions and restoration responses of tidal freshwater forested wetlands on temperate zone large river floodplains can be compared. This study developed hydraulic geometry relationships for Picea sitchensis (Sitka spruce) dominated tidal forests (swamps) in the vicinity of Grays Bay on the Columbia River some 37 km from the Pacific Coast using field surveys and Light Detection and Ranging (LiDAR) data. Scaling relationships between catchment area and the parameters of channel cross-sectional area at outlet and total channel length were comparable to tidally influenced systems of San Francisco Bay and the United Kingdom. Dike breaching, culvert replacement, and tide gate replacement all affected channel cross-sectional geometry through changes in the frequency of over-marsh flows. Radiocarbon dating of buried wood provided evidence of changes in sedimentation rates associated with diking, and restoration trajectories may be confounded by historical subsidence behind dikes rendering topographical relationships with water level incomparable to reference conditions. At the same time, buried wood is influencing the development of channel morphology toward characteristics resembling reference conditions. Ecological restoration goals and practices in tidal forested wetland regions of large river floodplains should reflect the interactions of these controlling factors.

  16. Uncoupling of the Pathway of Methanogenesis in Northern Wetlands: Connection to Vegetation, and Implications for Variability and Predictability.

    NASA Astrophysics Data System (ADS)

    Hines, M. E.; Duddleston, K. N.; Chanton, J. P.

    2006-12-01

    Typical methanogenic decomposition pathways include near terminal carbon intermediates that turn over rapidly with small pool sizes. However, incubation and field experiments demonstrated that these organic intermediates accumulate in northern wetlands due to the lack of consumption by methanogenic bacteria. Acetate is the major organic end product of decomposition rather than CH4, and methanogenesis can be insignificant. The ratio of CO2:acetate:CH4 varied with vegetation type, and habitats dominated by non-vascular plants (Sphagnum) produced more acetate-C than CO2 or CH4. This ratio correlated well with stable C isotope alpha values used to delineate the path of CH4 formation. We suggest that methanogenesis in general is inhibited in oligotrophic wetlands, but that the conversion of acetate to CH4 is more sensitive, which increases the importance of the conversion of H2/CO2 to CH4. The relative importance of CH4 as an end product increased greatly in sites containing even small populations of Carex compared to sites inhabited only by Sphagnum, suggesting that subtle vegetation changes expected to occur during warming could lead to changes in the path of methanogenesis, increasing production. In addition, depth profiles revealed an active surficial (0-7 cm) C cycle that is sensitive to hydrology that may also greatly affect variability of CH4 formation. Acetate production represented a terminal process and was a sink for a large portion of metabolized C whose ultimate fate was aerobic oxidation to CO2. C destined for CH4 is thus bypassed to CO2 and does not contribute to atmospheric CH4. However, the connection and sensitivity of the pathway of methanogenesis to even small vegetation changes suggests that pathways can be mapped, they vary greatly over small distances, and they can change drastically with relatively small temperature increases.

  17. Forested wetlands

    SciTech Connect

    Lugo, A.E.; Brinson, M.; Brown, S.

    1990-01-01

    Forested wetlands have important roles in global biogeochemical cycles, supporting freshwater and saltwater commercial fisheries, and in providing a place for wildlife of all kinds to flourish. Scientific attention towards these ecosystems has lagged with only a few comprehensive works on forested wetlands of the world. A major emphasis of this book is to develop unifying principles and data bases on the structure and function of forested wetlands, in order to stimulate scientific study of them. Wetlands are areas that are inundated or saturated by surface-water or ground-water, at such a frequency and duration that under natural conditions they support organisms adapted to poorly aerated and/or saturated soil. The strategy of classifying the conditions that control the structure and behavior of forested wetlands by assuming that the physiognomy and floristic composition of the system will reflect the total energy expenditure of the ecosystem; and the structural and functional characteristics of forested wetlands from different parts of the world are the major topics covered.

  18. Remote Sensing and Wetland Ecology: a South African Case Study

    PubMed Central

    De Roeck, Els R.; Verhoest, Niko E.C.; Miya, Mtemi H.; Lievens, Hans; Batelaan, Okke; Thomas, Abraham; Brendonck, Luc

    2008-01-01

    Remote sensing offers a cost efficient means for identifying and monitoring wetlands over a large area and at different moments in time. In this study, we aim at providing ecologically relevant information on characteristics of temporary and permanent isolated open water wetlands, obtained by standard techniques and relatively cheap imagery. The number, surface area, nearest distance, and dynamics of isolated temporary and permanent wetlands were determined for the Western Cape, South Africa. Open water bodies (wetlands) were mapped from seven Landsat images (acquired during 1987 – 2002) using supervised maximum likelihood classification. The number of wetlands fluctuated over time. Most wetlands were detected in the winter of 2000 and 2002, probably related to road constructions. Imagery acquired in summer contained fewer wetlands than in winter. Most wetlands identified from Landsat images were smaller than one hectare. The average distance to the nearest wetland was larger in summer. In comparison to temporary wetlands, fewer, but larger permanent wetlands were detected. In addition, classification of non-vegetated wetlands on an Envisat ASAR radar image (acquired in June 2005) was evaluated. The number of detected small wetlands was lower for radar imagery than optical imagery (acquired in June 2002), probably because of deterioration of the spatial information content due the extensive pre-processing requirements of the radar image. Both optical and radar classifications allow to assess wetland characteristics that potentially influence plant and animal metacommunity structure. Envisat imagery, however, was less suitable than Landsat imagery for the extraction of detailed ecological information, as only large wetlands can be detected. This study has indicated that ecologically relevant data can be generated for the larger wetlands through relatively cheap imagery and standard techniques, despite the relatively low resolution of Landsat and Envisat imagery

  19. What Makes a Wetland a Wetland?

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides descriptions of and activities about various kinds of wetlands. Contains seven learning activities ranging from creating wetland scenes with picture cutouts to actually exploring a wetland. Includes reproducible handouts and worksheets for several of the activities. (TW)

  20. Community structure of fishes inhabiting aquatic refuges in a threatened Karst wetland and its implications for ecosystem management

    USGS Publications Warehouse

    Kobza, Robert M.; Trexler, J.C.; Loftus, W.F.; Perry, S.A.

    2004-01-01

    We illustrate the importance of subsurface refuges for conservation of aquatic fauna with our studies of karstic wetlands in Everglades National Park, Florida, USA. Managers have proposed that water levels there should not fall more than 46 cm below ground level for more than 90 days annually. In four areas, 84% of solution holes were less than 46 cm deep and holes deeper than lm were rare (<3 km-2). Null-model analysis indicated no "structure" in the solution-hole fish communities early in the dry season, but that structure emerged as drying progressed. Native cyprinodontiforms were abundant in shallow solution holes that dry annually under current management, while predatory species (often non-native) tended to dominate deeper holes. Water quality was correlated with hole volume and with composition of late dry-season fish communities. Tremendous losses of fish biomass occurred when water levels fell below 46 cm from ground surface. Most native taxa were unlikely to survive in the deep refuges that held predatory non-native taxa. ?? 2003 Elsevier Ltd. All rights reserved.

  1. Biomarker signature in tropical wetland: lignin phenol vegetation index (LPVI) and its implications for reconstructing the paleoenvironment.

    PubMed

    Tareq, Shafi M; Tanaka, Noriyuki; Ohta, Keiichi

    2004-05-25

    Organic matter of a peat core (3.60 m, 7428 years BP) collected from Rawa Danau, west Java, Indonesia, was analyzed to evaluate the early diagenetic fates of lignin in a tropical wetland and to reconstruct past vegetation and climate changes. Vertical profiles of (Ad/Al)v, (Ad/Al)s, and lambda(8) show that the lignin composition is well preserved in a sub-aqueous environment under reducing conditions. The sedimentary terrigenous plant material at Rawa Danau is comprised predominantly of angiosperm wood. For this kind of tropical, diverse, and dynamic ecosystem, a new vegetation change index called lignin phenol vegetation index (LPVI): LPVI is defined using the lignin phenol composition. This index can sensitively detect terrestrial vegetation changes as well as environmental conditions forcing such changes. The LPVI of the Rawa Danau peat core provides better resolution than other lignin parameters used previously, and reveals four major vegetation change events since the mid-late Holocene. In comparison to other geochemical data (i.e. elemental carbon, isotopes, and hydrocarbons), the LPVI is more sensitive and is able to trace even minor vegetation and climate changes and thus could improve biogeochemical interpretations of peat records. PMID:15081699

  2. Intraspecific variation in growth of marsh macrophytes in response to salinity and soil type: Implications for wetland restoration

    USGS Publications Warehouse

    Howard, R.J.

    2010-01-01

    Genetic diversity within plant populations can influence plant community structure along environmental gradients. In wetland habitats, salinity and soil type are factors that can vary along gradients and therefore affect plant growth. To test for intraspecific growth variation in response to these factors, a greenhouse study was conducted using common plants that occur in northern Gulf of Mexico brackish and salt marshes. Individual plants of Distichlis spicata, Phragmites australis, Schoenoplectus californicus, and Schoenoplectus robustus were collected from several locations along the coast in Louisiana, USA. Plant identity, based on collection location, was used as a measure of intraspecific variability. Prepared soil mixtures were organic, silt, or clay, and salinity treatments were 0 or 18 psu. Significant intraspecific variation in stem number, total stem height, or biomass was found in all species. Within species, response to soil type varied, but increased salinity significantly decreased growth in all individuals. Findings indicate that inclusion of multiple genets within species is an important consideration for marsh restoration projects that include vegetation plantings. This strategy will facilitate establishment of plant communities that have the flexibility to adapt to changing environmental conditions and, therefore, are capable of persisting over time. ?? Coastal and Estuarine Research Federation 2009.

  3. Reduction of fecal indicator bacteria (FIB) in the Ballona Wetlands saltwater marsh (Los Angeles County, California, USA) with implications for restoration actions.

    PubMed

    Dorsey, John H; Carter, Patrick M; Bergquist, Sean; Sagarin, Rafe

    2010-08-01

    A benefit of wetland preservation and restoration is the ecosystem service of improving water quality, typically assessed based on bacterial loading. The Ballona Wetlands, a degraded salt marsh of approximately 100 ac located on the southern border of Marina Del Rey (Los Angeles County, California, USA) are currently the focus of publicly funded restoration planning. The wetlands receive tidal water, usually contaminated with fecal indicator bacteria (FIB: total and fecal coliforms, Escherichia coli, enterococci) from the adjacent Ballona Creek and Estuary. During the summer of 2007, two 24-h studies were conducted to determine FIB tidal dynamics within the wetland. Measurements of water flow and mean FIB concentrations (n = 3) were measured every 1.5 h to determine total FIB load estimates. FIB loading rates (MPN/s) were greatest during flood tides as water entered the wetlands, and then again during spring tide conditions when sediments were resuspended during swifter spring ebb flows. During daylight hours, the wetland acted as a sink for these bacteria as loads diminished, presumably by sunlight and other processes. Conversely, during late afternoon and night, the wetlands shifted to being a source as excess FIB departed on ebb flows. Therefore, the wetlands act as both a source and sink for FIB depending on tidal conditions and exposure to sunlight. Future restoration actions would result in a tradeoff - increased tidal channels offer a greater surface area for FIB inactivation, but also would result in a greater volume of FIB-contaminated resuspended sediments carried out of the wetlands on stronger ebb flows. As levels of FIB in Ballona Creek and Estuary diminish through recently established regulatory actions, the wetlands could shift into a greater sink for FIB.

  4. A landscape-scale assessment of above- and belowground primary production in coastal wetlands: Implications for climate change-induced community shifts

    USGS Publications Warehouse

    Stagg, Camille L.; Schoolmaster, Donald R.; Piazza, Sarai C.; Snedden, Gregg; Steyer, Gregory D.; Fischenich, Craig J; McComas, Robert W.

    2016-01-01

    Above- and belowground production in coastal wetlands are important contributors to carbon accumulation and ecosystem sustainability. As sea level rises, we can expect shifts to more salt-tolerant communities, which may alter these ecosystem functions and services. Although the direct influence of salinity on species-level primary production has been documented, we lack an understanding of the landscape-level response of coastal wetlands to increasing salinity. What are the indirect effects of sea-level rise, i.e., how does primary production vary across a landscape gradient of increasing salinity that incorporates changes in wetland type? This is the first study to measure both above- and belowground production in four wetland types that span an entire coastal gradient from fresh to saline wetlands. We hypothesized that increasing salinity would limit rates of primary production, and saline marshes would have lower rates of above- and belowground production than fresher marshes. However, along the Northern Gulf of Mexico Coast in Louisiana, USA, we found that aboveground production was highest in brackish marshes, compared with fresh, intermediate, and saline marshes, and belowground production was similar among all wetland types along the salinity gradient. Multiple regression analysis indicated that salinity was the only significant predictor of production, and its influence was dependent upon wetland type. We concluded that (1) salinity had a negative effect on production within wetland type, and this relationship was strongest in the fresh marsh (0–2 PSU) and (2) along the overall landscape gradient, production was maintained by mechanisms at the scale of wetland type, which were likely related to plant energetics. Regardless of wetland type, we found that belowground production was significantly greater than aboveground production. Additionally, inter-annual variation, associated with severe drought conditions, was observed exclusively for belowground

  5. Wetlands ecology

    NASA Technical Reports Server (NTRS)

    Anderson, R. R. (Principal Investigator); Carter, V. L.; Mcginness, J. W., Jr.

    1972-01-01

    The author has identified the following significant results. The ERTS imagery analyzed provides approximately 2/3 coverage of the test site. Analysis was made using visual methods, density slicing, and multispectral analysis. Preliminary conclusions reached are that most, if not all, of the investigation objectives can be met. Saline and near-saline wetlands can be delineated from ERTS-1 images as the wetland-upland boundaries and land-water interface are clearly defined. Major plant species or communities such as Spartina alterniflora (high and low vigor forms), Spartina patens/Distichlis spicata, and Juncus roemarianus can be discriminated and spoil disposal areas identified.

  6. Salininema proteolyticum gen. nov., sp. nov., a halophilic rare actinomycete isolated from wetland soil, and emended description of the family Glycomycetaceae.

    PubMed

    Nikou, Mahdi Moshtaghi; Ramezani, Mohaddaseh; Amoozegar, Mohammad Ali; Rasouli, Mehrnoush; Fazeli, Seyed Abolhassan Shahzadeh; Schumann, Peter; de la Haba, Rafael R; Ventosa, Antonio

    2015-10-01

    A Gram-stain-positive actinobacterial strain, Miq-4T, was isolated from soil around Meighan wetland in the centre of Iran. Strain Miq-4T was strictly aerobic, catalase- and oxidase-positive. The isolate grew in the presence of 3–15 % (w/v) NaCl, at 20–40 °C and pH 6.0–11.0. The optimum NaCl, temperature and pH for growth were 7.0 %, 30 °C and 7.0–8.5, respectively. The cell wall of strain Miq-4T contained meso-diaminopimelic acid as the diamino acid and glucose and ribose as the whole-cell sugars. The polar lipid pattern consisted of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol and phosphatidylinositol mannoside. Strain Miq-4T synthesized cellular fatty acids of anteiso- and iso-branched types, including anteiso-C17 : 0, anteiso- C15 : 0 and iso-C16 : 0, and the major respiratory quinone was MK-9(H4). The G+C content of the genomic DNA was 68.2 mol%. Phylogenetic analysis based on 16S rRNA gene sequences and characteristic patterns of 16S rRNA gene signature nucleotides revealed that strain Miq-4T belongs to the family Glycomycetaceae and showed the closest phylogenetic similarity with Haloglycomyces albus YIM 92370T (94.1 % 16S rRNA gene sequence similarity). On the basis of phylogenetic analysis and phenotypic and chemotaxonomic characteristics, strain Miq-4T represents a novel species of a new genus in the family Glycomycetaceae, for which the name Salininema proteoliyticum gen. nov., sp. nov. is proposed. The type strain of the type species is Miq-4T ( = IBRC-M 10908T = LMG 28391T). An emended description of the family Glycomycetaceae is also proposed in order to include features of the new genus. PMID:26219545

  7. Now You See Them, Now You Don't: Temporal Change in the Mode and Extent of Connected and Disconnected Boreal Wetlands and Implications for Streamflow Estimation

    NASA Astrophysics Data System (ADS)

    Welch, C.; Stadnyk, T. A.; Smith, A. A.

    2015-12-01

    In northern Boreal catchments the presence of a multitude of connected and disconnected wetland complexes is commonly believed to play a controlling role on the source and timing of streamflow, effective simulation of which is critical to flow forecasting in changing climates. A key factor in this control is the mode of connectivity between wetlands and downstream rivers, and temporal distribution thereof. The local Lower Nelson River basin, Manitoba, Canada, has an area of approximately 90,000 km2, of which 25% is estimated to be covered by wetlands. Assessment of a decade of aerial imagery indicates variation in the spatial extent of wetlands of up to 50% of the surface area of individual headwater basins on both an inter- and intra-annual basis. Aerial and ground reconnaissance of selected areas indicates that using generalised aerial-based reflectance imagery for land cover classification is hampered by the presence of a number of types of wetlands (treed, shrubby, grassed, open) and shallow groundwater in this flat landscape. The large, remote, catchment area renders detailed ground-truthing impractical. As an alternative, five headwater basins and the main stem of the river are gauged and monitored for stable isotopes of water. In this study linear regression is used to assess linkages between isotopic and wetland extent variation and dominant environmental variables. Mass balance modelling is used to assess the relative merits of a detailed re-analysis of wetland delineation using refined reflectance analysis, soil and isotopic data, and simply assigning wetland extent as a calibration variable. Results indicate that aerial imagery provides a useful tool to assess surface connectivity, but that explicit identification and representation of temporal variation in surface and subsurface connectivity is necessary to adequately estimate timing of streamflow in this flat, wetland-dominated catchment.

  8. Zambia Wetland

    Atmospheric Science Data Center

    2013-04-16

    ... these images is the prominent roundish shape of the Lukanga Swamp, another important wetland. The images along the left are natural ... plateau of the Kafue National Park, to the west of Lukanga Swamp, appears brighter in 2004 compared with 2003, which indicates weaker ...

  9. Coastal Wetlands.

    ERIC Educational Resources Information Center

    Area Cooperative Educational Services, New Haven, CT. Environmental Education Center.

    This material includes student guide sheets, reference materials, and tape script for the audio-tutorial unit on Inland Wetlands. A set of 35mm slides and an audio tape are used with the materials. The material is designed for use with Connecticut schools, but it can be adapted to other localities. The unit materials emphasize the structure,…

  10. Saltwater Wetlands.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Provides information about saltwater wetlands. Contains seven learning activities which deal with "making" a mud snail, plants and animals of mangroves, and the effects of tides on salt marshes. Included are reproducible handouts and worksheets for several of the activities. (TW)

  11. Inland Wetlands.

    ERIC Educational Resources Information Center

    Area Cooperative Educational Services, New Haven, CT. Environmental Education Center.

    This material includes student guide sheets, reference materials, and tape script for the audio-tutorial unit on Inland Wetlands. A set of 35mm slides and an audio tape are used with the material. The material is designed for use with Connecticut schools, but it can be adapted to other localities. The materials emphasize characteristics of inland…

  12. Amplified-fragment length polymorphism analysis of Propionibacterium isolates implicated in contamination of blood products.

    PubMed

    Mohammadi, T; Reesink, H W; Pietersz, R N I; Vandenbroucke-Grauls, C M J E; Savelkoul, P H M

    2005-11-01

    Propionibacterium acnes is implicated in most cases of bacterial contamination of platelet concentrates (PCs). To determine the source of contamination, amplified-fragment length polymorphism (AFLP) analysis was applied. This DNA fingerprinting technique was used to study the molecular relationship of 44 isolates derived from 22 PCs and 22 corresponding red blood cells concentrates (RBCs) from the same whole blood donations. The AFLP results together with sequencing analysis of the 1,200 bp of the 16S ribosomal RNA gene revealed the existence of three main groups: two groups (groups 2 and 3) (55%) consisted of isolates that did not originate from skin flora and another group (group 1) (45%) comprised bacteria belonging to the skin flora. This latter group showed complete homology with reference strains of P. acnes. Therefore these isolates can be considered as P. acnes strains. In contrast, contaminants from groups 2 and 3 were shown to be molecularly unrelated to the P. acnes found on the skin surface. The AFLP is reproducible and gave invaluable information about the nature of Propionibacteria contaminating PCs. To gain more insights into the source of contamination, this technique could be exploited in further studies to determine the molecular relationship of different bacteria commonly found in blood products.

  13. Chronic social isolation in the prairie vole induces endothelial dysfunction: implications for depression and cardiovascular disease

    PubMed Central

    Peuler, Jacob D.; Scotti, Melissa-Ann L.; Phelps, Laura E.; McNeal, Neal; Grippo, Angela J.

    2012-01-01

    knowledge this is the first demonstration of this phenomenon in an animal model of depression induced solely by social isolation. These findings have implications for understanding mechanisms involved in depression and cardiovascular disease. PMID:22469565

  14. Flooded area and plant zonation in isolated wetlands in well fields in the Northern Tampa Bay Region, Florida, following reductions in groundwater-withdrawal rates

    USGS Publications Warehouse

    Haag, Kim H.; Pfeiffer, William R.

    2012-01-01

    WAP scores and weighted average scores for wetland vegetation were generally consistent with the results of the flooded area analysis. The WAP scores and weighted average scores were higher overall and did not decline with time at four wetlands in well fields (W-33, W-56, Starkey N, and Starkey 108) during the years following reductions in groundwater-withdrawal rates. These four wetlands also had increases in the extent and duration of the flooded area during the post-reduction period. Scores for trees were more consistent than scores for shrubs and groundcover. WAP scores remained relatively low or generally declined at five well-field wetlands (Q-1, W-17, W-41, Starkey D, and Starkey E) during the years following reductions in groundwater-withdrawal rates, and weighted average scores either declined over time or remained low. These five wetlands either did not have an increase in the extent and duration of the flooded area, or if there was an increase, it was small.

  15. Genetic Evidence for Contrasting Wetland and Savannah Habitat Specializations in Different Populations of Lions (Panthera leo).

    PubMed

    Moore, Andy E; Cotterill, Fenton P D Woody; Winterbach, Christiaan W; Winterbach, Hanlie E K; Antunes, Agostinho; O'Brien, Stephen J

    2016-03-01

    South-central Africa is characterized by an archipelago of wetlands, which has evolved in time and space since at least the Miocene, providing refugia for animal species during Pleistocene arid episodes. Their importance for biodiversity in the region is reflected in the evolution of a variety of specialist mammal and bird species, adapted to exploit these wetland habitats. Populations of lions (Panthera leo) across south-central and east Africa have contrasting signatures of mitochondrial DNA haplotypes and biparental nuclear DNA in wetland and savannah habitats, respectively, pointing to the evolution of distinct habitat preferences. This explains the absence of genetic admixture of populations from the Kalahari savannah of southwest Botswana and the Okavango wetland of northern Botswana, despite separation by only 500 km. We postulate that ancestral lions were wetland specialists and that the savannah lions evolved from populations that were isolated during arid Pleistocene episodes. Expansion of grasslands and the resultant increase in herbivore populations during mesic Pleistocene climatic episodes provided the stimulus for the rapid population expansion and diversification of the highly successful savannah lion specialists. Our model has important implications for lion conservation.

  16. Genetic Evidence for Contrasting Wetland and Savannah Habitat Specializations in Different Populations of Lions (Panthera leo).

    PubMed

    Moore, Andy E; Cotterill, Fenton P D Woody; Winterbach, Christiaan W; Winterbach, Hanlie E K; Antunes, Agostinho; O'Brien, Stephen J

    2016-03-01

    South-central Africa is characterized by an archipelago of wetlands, which has evolved in time and space since at least the Miocene, providing refugia for animal species during Pleistocene arid episodes. Their importance for biodiversity in the region is reflected in the evolution of a variety of specialist mammal and bird species, adapted to exploit these wetland habitats. Populations of lions (Panthera leo) across south-central and east Africa have contrasting signatures of mitochondrial DNA haplotypes and biparental nuclear DNA in wetland and savannah habitats, respectively, pointing to the evolution of distinct habitat preferences. This explains the absence of genetic admixture of populations from the Kalahari savannah of southwest Botswana and the Okavango wetland of northern Botswana, despite separation by only 500 km. We postulate that ancestral lions were wetland specialists and that the savannah lions evolved from populations that were isolated during arid Pleistocene episodes. Expansion of grasslands and the resultant increase in herbivore populations during mesic Pleistocene climatic episodes provided the stimulus for the rapid population expansion and diversification of the highly successful savannah lion specialists. Our model has important implications for lion conservation. PMID:26695079

  17. Riparian Wetlands: Mapping

    EPA Science Inventory

    Riparian wetlands are critical systems that perform functions and provide services disproportionate to their extent in the landscape. Mapping wetlands allows for better planning, management, and modeling, but riparian wetlands present several challenges to effective mapping due t...

  18. Our Valuable Wetlands.

    ERIC Educational Resources Information Center

    Texley, Juliana

    1988-01-01

    Defines wetlands and lists several types of wetland habitat. Describes explorations that can be done with secondary school students including the baby boom, a food pyramid, and microenvironments. Includes a classroom poster with text on the variety of wetlands. (CW)

  19. Wetlands as Habitat in Urbanizing Landscapes: Patterns of Bird Abundance and Occupancy

    EPA Science Inventory

    As natural habitats become fewer in number and more fragmented through urbanization, functions and services provided by small isolated wetlands may become increasingly important in maintaining ecosystem processes. For example, wildlife habitat provided by wetlands in urban lands...

  20. Ecosystem level methane fluxes from tidal freshwater and brackish marshes of the Mississippi River Delta: Implications for coastal wetland carbon projects

    USGS Publications Warehouse

    Holm, Guerry O.; Perez, Brian C.; McWhorter, David E.; Krauss, Ken W.; Johnson, Darren J.; Raynie, Richard C.; Killebrew, Charles J.

    2016-01-01

    Sulfate from seawater inhibits methane production in tidal wetlands, and by extension, salinity has been used as a general predictor of methane emissions. With the need to reduce methane flux uncertainties from tidal wetlands, eddy covariance (EC) techniques provide an integrated methane budget. The goals of this study were to: 1) establish methane emissions from natural, freshwater and brackish wetlands in Louisiana based on EC; and 2) determine if EC estimates conform to a methane-salinity relationship derived from temperate tidal wetlands with chamber sampling. Annual estimates of methane emissions from this study were 62.3 g CH4/m2/yr and 13.8 g CH4/m2/yr for the freshwater and brackish (8–10 psu) sites, respectively. If it is assumed that long-term, annual soil carbon sequestration rates of natural marshes are ~200 g C/m2/yr (7.3 tCO2e/ha/yr), healthy brackish marshes could be expected to act as a net radiative sink, equivalent to less than one-half the soil carbon accumulation rate after subtracting methane emissions (4.1 tCO2e/ha/yr). Carbon sequestration rates would need case-by-case assessment, but the EC methane emissions estimates in this study conformed well to an existing salinity-methane model that should serve as a basis for establishing emission factors for wetland carbon offset projects.

  1. Quantifying Wetland Dynamics and Hydrologic Function with Landsat Thematic Mapper

    NASA Astrophysics Data System (ADS)

    Rover, J. A.; Wright, C.; Wylie, B. K.; Euliss, N. H.

    2007-12-01

    The Prairie Pothole Region (PPR) of North America spans the glaciated prairies from Alberta, Canada, to central Iowa. The region contains hundreds of thousands of wetlands that provide habitat for an estimated 50 to 80 percent of North America's waterfowl. The composition of species that use the PPR are a function of wetland water chemistry. The water chemistry is driven by wetland functional processes that determine hydrogeochemical interactions of surface water, ground water, and their connectivity to other wetlands. As wetlands cycle from drought to deluge, significant surface water fluctuations can alter water chemistry and hydroperiods, influencing the composition of wetland communities. We quantified these temporal water dynamics with Landsat TM and ETM+ imagery, spanning a 17-year period during a drought-deluge cycle. Using clustering techniques, we grouped wetlands based on their functional responses to climate and quantified the traits of each cluster. We found that wetlands receiving groundwater discharge respond very differently to climatic shifts than wetlands functioning as recharge basins. In addition, wetlands with closed basins are less dynamic than wetlands located in open basins. Accuracies of the initial classification ranged from 75 to 100 percent. This study offers the first insight into wetland dynamics at a regional scale with implications for modeling biogeochemistry and ecosystem services across the PPR. Although this method was developed in the Missouri Coteau and nearby drift plains of the PPR, we believe this technique is applicable to other regions.

  2. Assessing the cumulative effect of the weather variability on wetlands and the hydrological connection between wetlands and downstream waters

    NASA Astrophysics Data System (ADS)

    Yeo, I. Y.; Lang, M. W.; Lee, S.; Mccarty, G.; Peng, Y.; Huang, C.

    2014-12-01

    Wetlands are crucial ecosystem features that provide important ecological benefits to improve water quality and reduce the climate change impact. This ecosystem functioning of wetlands is largely dependent upon their hydrological characteristics and linkage to the downstream waters. However, the cumulative impacts of the climate on wetlands and the hydrological connection between wetlands and downstream waters have been rarely quantified at the landscape scale. This study reports findings from time series satellite observation that can illustrate the changes in extent of wetland inundation at a high spatial resolution (30-m) over the period 1985-2010. This remote sensing based observation provides crucial information to gain insights onto inter-annual variability of inundation dynamics, and we analyze this product with the drought indices, streamflows, the USFS NWI-hydrologic modifier. This study focuses on natural palustrine wetlands, densely distributed in the coastal plain of the Chesapeake Bay Watershed (CBW). We observe inundation patterns change in response to the weather variability, and it is proportionally related to the downstream flow discharge. While those wetlands with a longer hydro-period (i.e., permanently ponded wetlands during the growing season) show the strongest relationship with stream discharge (including baseflow, contributed from the shallow groundwater), inundation patterns of headwater/isolated wetlands are also strongly related to stream discharge. It shows the strong relationship between wetlands and downstream water regardless of geographic isolation and their mutual reliance on groundwater. The study provides the support for the conservation of wetlands through section 404 of the Clean Water Act.

  3. Stable isotopes as indicators of water and salinity sources in a southeast Australian coastal wetland: identifying relict marine water, and implications for future change

    NASA Astrophysics Data System (ADS)

    Currell, Matthew J.; Dahlhaus, Peter; , Hiroyuki, Ii

    2015-03-01

    The Lake Connewarre Complex is an internationally protected wetland in southeast Australia, undergoing increasing environmental change due to urbanisation. Stable isotopes of water (δ18O and δ2H) and other geochemical indicators were used to assess sources of water and salinity in the shallow groundwater and surface-water systems, and to better understand groundwater/surface-water interactions. While much of the shallow groundwater is saline (from 1.27 to 50.3 g/L TDS) with overlapping salinities across water groups, stable isotopes allow clear delineation of two distinct sources of water and salinity: marine water with δ18O between -1.4 and +1.3 ‰ and ion ratios characteristic of seawater; and meteoric water with δ18O between -6.1 and -3.6 ‰ containing cyclic salts, probably concentrated by plant transpiration. Groundwater bodies in shallow sediments beneath the wetlands have salinities and stable isotopic compositions intermediate between fresh wetland surface water and a marine water end-member. This marine-type water is likely relict seawater emplaced when the wetlands were connected to the estuary, prior to modern river regulation. Freshwater input to underlying groundwater is a recent consequence of this regulation. Future predicted changes such as increased stormwater inflow, will increase rates of freshwater leakage to shallow groundwater, favouring the proliferation of exotic reed species.

  4. Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: Implications for Conservation

    PubMed Central

    Sampath, Prasanna Venkatesh; Liao, Hua-Sheng; Curtis, Zachary Kristopher; Doran, Patrick J.; Herbert, Matthew E.; May, Christopher A.; Li, Shu-Guang

    2015-01-01

    The sources of water and corresponding delivery mechanisms to groundwater-fed fens are not well understood due to the multi-scale geo-morphologic variability of the glacial landscape in which they occur. This lack of understanding limits the ability to effectively conserve these systems and the ecosystem services they provide, including biodiversity and water provisioning. While fens tend to occur in clusters around regional groundwater mounds, Ives Road Fen in southern Michigan is an example of a geographically-isolated fen. In this paper, we apply a multi-scale groundwater modeling approach to understand the groundwater sources for Ives Road fen. We apply Transition Probability geo-statistics on more than 3000 well logs from a state-wide water well database to characterize the complex geology using conditional simulations. We subsequently implement a 3-dimensional reverse particle tracking to delineate groundwater contribution areas to the fen. The fen receives water from multiple sources: local recharge, regional recharge from an extensive till plain, a regional groundwater mound, and a nearby pond. The regional sources deliver water through a tortuous, 3-dimensional “pipeline” consisting of a confined aquifer lying beneath an extensive clay layer. Water in this pipeline reaches the fen by upwelling through openings in the clay layer. The pipeline connects the geographically-isolated fen to the same regional mound that provides water to other fen clusters in southern Michigan. The major implication of these findings is that fen conservation efforts must be expanded from focusing on individual fens and their immediate surroundings, to studying the much larger and inter-connected hydrologic network that sustains multiple fens. PMID:26452279

  5. DETECTION OF MOLECULAR GAS IN VOID GALAXIES: IMPLICATIONS FOR STAR FORMATION IN ISOLATED ENVIRONMENTS

    SciTech Connect

    Das, M.; Honey, M.; Saito, T.; Iono, D.; Ramya, S.

    2015-12-10

    We present the detection of molecular gas from galaxies located in nearby voids using the CO(1–0) line emission as a tracer. The observations were performed using the 45 m single dish radio telescope of the Nobeyama Radio Observatory. Void galaxies lie in the most underdense parts of our universe and a significant fraction of them are gas rich, late-type spiral galaxies. Although isolated, they have ongoing star formation but appear to be slowly evolving compared to galaxies in denser environments. Not much is known about their star formation properties or cold gas content. In this study, we searched for molecular gas in five void galaxies. The galaxies were selected based on their relatively high IRAS fluxes or Hα line luminosities, both of which signify ongoing star formation. All five galaxies appear to be isolated and two lie within the Bootes void. We detected CO(1–0) emission from four of the five galaxies in our sample and their molecular gas masses lie between 10{sup 8} and 10{sup 9} M{sub ⊙}. We conducted follow-up Hα imaging observations of three detected galaxies using the Himalayan Chandra Telescope and determined their star formation rates (SFRs) from their Hα fluxes. The SFR varies from 0.2 to 1 M{sub ⊙} yr{sup −1}; which is similar to that observed in local galaxies. Our study indicates that although void galaxies reside in underdense regions, their disks contain molecular gas and have SFRs similar to galaxies in denser environments. We discuss the implications of our results.

  6. Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: Implications for Conservation.

    PubMed

    Sampath, Prasanna Venkatesh; Liao, Hua-Sheng; Curtis, Zachary Kristopher; Doran, Patrick J; Herbert, Matthew E; May, Christopher A; Li, Shu-Guang

    2015-01-01

    The sources of water and corresponding delivery mechanisms to groundwater-fed fens are not well understood due to the multi-scale geo-morphologic variability of the glacial landscape in which they occur. This lack of understanding limits the ability to effectively conserve these systems and the ecosystem services they provide, including biodiversity and water provisioning. While fens tend to occur in clusters around regional groundwater mounds, Ives Road Fen in southern Michigan is an example of a geographically-isolated fen. In this paper, we apply a multi-scale groundwater modeling approach to understand the groundwater sources for Ives Road fen. We apply Transition Probability geo-statistics on more than 3000 well logs from a state-wide water well database to characterize the complex geology using conditional simulations. We subsequently implement a 3-dimensional reverse particle tracking to delineate groundwater contribution areas to the fen. The fen receives water from multiple sources: local recharge, regional recharge from an extensive till plain, a regional groundwater mound, and a nearby pond. The regional sources deliver water through a tortuous, 3-dimensional "pipeline" consisting of a confined aquifer lying beneath an extensive clay layer. Water in this pipeline reaches the fen by upwelling through openings in the clay layer. The pipeline connects the geographically-isolated fen to the same regional mound that provides water to other fen clusters in southern Michigan. The major implication of these findings is that fen conservation efforts must be expanded from focusing on individual fens and their immediate surroundings, to studying the much larger and inter-connected hydrologic network that sustains multiple fens. PMID:26452279

  7. Understanding the Groundwater Hydrology of a Geographically-Isolated Prairie Fen: Implications for Conservation.

    PubMed

    Sampath, Prasanna Venkatesh; Liao, Hua-Sheng; Curtis, Zachary Kristopher; Doran, Patrick J; Herbert, Matthew E; May, Christopher A; Li, Shu-Guang

    2015-01-01

    The sources of water and corresponding delivery mechanisms to groundwater-fed fens are not well understood due to the multi-scale geo-morphologic variability of the glacial landscape in which they occur. This lack of understanding limits the ability to effectively conserve these systems and the ecosystem services they provide, including biodiversity and water provisioning. While fens tend to occur in clusters around regional groundwater mounds, Ives Road Fen in southern Michigan is an example of a geographically-isolated fen. In this paper, we apply a multi-scale groundwater modeling approach to understand the groundwater sources for Ives Road fen. We apply Transition Probability geo-statistics on more than 3000 well logs from a state-wide water well database to characterize the complex geology using conditional simulations. We subsequently implement a 3-dimensional reverse particle tracking to delineate groundwater contribution areas to the fen. The fen receives water from multiple sources: local recharge, regional recharge from an extensive till plain, a regional groundwater mound, and a nearby pond. The regional sources deliver water through a tortuous, 3-dimensional "pipeline" consisting of a confined aquifer lying beneath an extensive clay layer. Water in this pipeline reaches the fen by upwelling through openings in the clay layer. The pipeline connects the geographically-isolated fen to the same regional mound that provides water to other fen clusters in southern Michigan. The major implication of these findings is that fen conservation efforts must be expanded from focusing on individual fens and their immediate surroundings, to studying the much larger and inter-connected hydrologic network that sustains multiple fens.

  8. Species Composition, Distribution and Habitat Types of Odonata in the iSimangaliso Wetland Park, KwaZulu-Natal, South Africa and the Associated Conservation Implications

    PubMed Central

    Hart, Lorinda A.; Bowker, Meyrick B.; Tarboton, Warwick; Downs, Colleen T.

    2014-01-01

    Maputaland–Pondoland–Albany, South Africa has been identified as a biodiversity hotspot and centre for endemism. Odonata make good indicators of freshwater ecosystem health. Consequently we compiled a list of Odonata species recorded to date in the iSimangaliso Wetland Park. We then detailed important species in terms of endemism, conservation status, and potential as indicator species. Finally, we compared Odonata assemblages of different sites sampled within the park to illustrate habitat importance. Species identified during two formal surveys and incidental observations made during the study period were combined with an existing database to compile an accurate and up to date species list for the iSimangaliso Wetland Park. Data from this study were then analyzed to determine which water bodies had the most similar species composition. The Dragonfly Biotic Index (DBI) value of each study area was also determined. We recorded 68 odonate species in the iSimangaliso Wetland Park, adding 13 species to the Ezemvelo KwaZulu-Natal Wildlife database for the area. This brings the total number of Odonata species for the iSimangaliso Wetland Park to 86. Eight species are red-listed, 12 are restricted in South Africa to the coastal plains of northern KwaZulu-Natal, and the remainder occurs widely across the southern African savanna. Analyses indicate that species odonate assemblages were most similar in water bodies with comparable habitats. iSimangaliso Wetland Park is identified as an important area for Odonata diversity and endemism, a trend also reflected by the DBI values. Shifts in the existing species assemblages would indicate changes within the ecosystem and thus this species account provides necessary baseline data for the area. Species Conservation efforts should thus target water bodies of varying habitat types to protect greater species diversity. PMID:24662948

  9. Species composition, distribution and habitat types of Odonata in the iSimangaliso Wetland Park, KwaZulu-Natal, South Africa and the associated conservation implications.

    PubMed

    Hart, Lorinda A; Bowker, Meyrick B; Tarboton, Warwick; Downs, Colleen T

    2014-01-01

    Maputaland-Pondoland-Albany, South Africa has been identified as a biodiversity hotspot and centre for endemism. Odonata make good indicators of freshwater ecosystem health. Consequently we compiled a list of Odonata species recorded to date in the iSimangaliso Wetland Park. We then detailed important species in terms of endemism, conservation status, and potential as indicator species. Finally, we compared Odonata assemblages of different sites sampled within the park to illustrate habitat importance. Species identified during two formal surveys and incidental observations made during the study period were combined with an existing database to compile an accurate and up to date species list for the iSimangaliso Wetland Park. Data from this study were then analyzed to determine which water bodies had the most similar species composition. The Dragonfly Biotic Index (DBI) value of each study area was also determined. We recorded 68 odonate species in the iSimangaliso Wetland Park, adding 13 species to the Ezemvelo KwaZulu-Natal Wildlife database for the area. This brings the total number of Odonata species for the iSimangaliso Wetland Park to 86. Eight species are red-listed, 12 are restricted in South Africa to the coastal plains of northern KwaZulu-Natal, and the remainder occurs widely across the southern African savanna. Analyses indicate that species odonate assemblages were most similar in water bodies with comparable habitats. iSimangaliso Wetland Park is identified as an important area for Odonata diversity and endemism, a trend also reflected by the DBI values. Shifts in the existing species assemblages would indicate changes within the ecosystem and thus this species account provides necessary baseline data for the area. Species Conservation efforts should thus target water bodies of varying habitat types to protect greater species diversity.

  10. Wonderful Wetlands: An Environmental Education Curriculum Guide for Wetlands.

    ERIC Educational Resources Information Center

    King County Parks Div., Redmond, WA.

    This curriculum guide was designed to give teachers, students, and society a better understanding of wetlands in the hope that they learn why wetlands should be valued and preserved. It explores what is meant by wetlands, functions and values of wetlands, wetland activities, and wetland offerings which benefit animal and plant life, recreation,…

  11. Hydrogeology of wetlands

    USGS Publications Warehouse

    Winter, T.C.; Llamas, M.R.

    1993-01-01

    A collection of 10 papers presented at the Hydrogeology of Wetlands Symposium, 28th International Geological Congress in Washington, DC, in July 1989. The purpose of the symposium was to assemble papers describing hydrogeologic studies of wetlands representative of different geographic regions, wetland types, and study approaches. The papers presented at the Symposium ranged geographically from wetlands in the Arctic to the Subtropics. Different wetland types included coastal, riverine, depressional glacial terrane, and dunal depressions. Different study approaches included regional syntheses, analyses of groundwater flow systems, wetland-river interaction, and geomorphology-vegetation interaction. -from Editors

  12. Hydrogeomorphic Classification of Wetlands on Mt. Desert Island, Maine, Including Hydrologic Susceptibility Factors for Wetlands in Acadia National Park

    USGS Publications Warehouse

    Nielsen, Martha G.

    2006-01-01

    Depressional (Open, Semiclosed, and Closed), 231 were Riverine (Upper Perennial and Nonperennial), 210 were Soil Flat (Mineral and Organic), 68 were Lacustrine Fringe, 51 were Tidal Fringe, 22 were Hilltop/Upper Hillslope, and another 35 were small open water bodies. Most small, isolated wetlands classified on the island are Slope wetlands. The least common, Hilltop/Upper Hillslope wetlands, only occur on a few hilltops and shoulders of hills and mountains. Large wetland complexes generally consist of groups of Depressional wetlands and Mineral Soil Flat or Organic Soil Flat wetlands, often with fringing Slope wetlands at their edges and Riverine wetlands near streams flowing through them. The two analyses of wetland hydrologic susceptibility on Mt. Desert Island were applied to 186 wetlands located partially or entirely within ANP. These analyses were conducted using individually mapped catchments for each wetland. The 186 wetlands were aggregated from the original 1,202 mapped wetland polygons on the basis of their HGM classes. Landscape-level hydrologic, geomorphic, and soil variables were defined for the catchments of the wetlands, and transformed into scaled scores from 0 to 10 for each variable. The variables included area of the wetland, area of the catchment, area of the wetland divided by the area of the catchment, the average topographic slope of the catchment, the amount of the catchment where bedrock crops out with no soil cover or excessively thin soil cover, the amount of storage (in lakes and wetlands) in the catchment, the topographic relief of the catchment, the amount of clay-rich soil in the catchment, the amount of manmade impervious surface, whether the wetland had a stream inflow, and whether the wetland had a hydraulic connection to a lake or estuary. These data were determined using a GIS and data layers mapped at a scale of 1:24,000 or larger. These landscape variables were combined in different ways for the two hydrologic susceptibility fact

  13. Replacing natural wetlands with stormwater management facilities: Biophysical and perceived social values.

    PubMed

    Rooney, R C; Foote, L; Krogman, N; Pattison, J K; Wilson, M J; Bayley, S E

    2015-04-15

    Urban expansion replaces wetlands of natural origin with artificial stormwater management facilities. The literature suggests that efforts to mimic natural wetlands in the design of stormwater facilities can expand the provision of ecosystem services. Policy developments seek to capitalize on these improvements, encouraging developers to build stormwater wetlands in place of stormwater ponds; however, few have compared the biophysical values and social perceptions of these created wetlands to those of the natural wetlands they are replacing. We compared four types of wetlands: natural references sites, natural wetlands impacted by agriculture, created stormwater wetlands, and created stormwater ponds. We anticipated that they would exhibit a gradient in biodiversity, ecological integrity, chemical and hydrologic stress. We further anticipated that perceived values would mirror measured biophysical values. We found higher biophysical values associated with wetlands of natural origin (both reference and agriculturally impacted). The biophysical values of stormwater wetlands and stormwater ponds were lower and indistinguishable from one another. The perceived wetland values assessed by the public differed from the observed biophysical values. This has important policy implications, as the public are not likely to perceive the loss of values associated with the replacement of natural wetlands with created stormwater management facilities. We conclude that 1) agriculturally impacted wetlands provide biophysical values equivalent to those of natural wetlands, meaning that land use alone is not a great predictor of wetland value; 2) stormwater wetlands are not a substantive improvement over stormwater ponds, relative to wetlands of natural origin; 3) stormwater wetlands are poor mimics of natural wetlands, likely due to fundamental distinctions in terms of basin morphology, temporal variation in hydrology, ground water connectivity, and landscape position; 4) these

  14. Characterizing wetland change at landscape scale in Jiangsu Province, China.

    PubMed

    Xu, Chi; Sheng, Sheng; Zhou, Wen; Cui, Lijuan; Liu, Maosong

    2011-08-01

    Human activities produced great impacts on wetlands worldwide. Taking Jiangsu Province, China, as a representative wetland region subject to extensive human activities, the aim of this study is to understand the conversion trajectory and spatial differentiation in wetland change from a multi-scale perspective. Based on multi-temporal Landsat images, it was found that the natural wetlands decreased by 11.2% from 1990 to 2006 in Jiangsu Province. Transition matrices showed that the conversion of natural wetlands to human-made wetlands (mostly aquaculture ponds) was the major form of natural wetland reduction, accounting for over 60% of the reduction. Percentage reduction and area reduc tion of natural wetlands were respectively quantified within different wetland cover zones using a moving window analysis. Average percentage reduction showed a decreasing tendency with increasing wetland cover. The high-cover and mid-cover zone presented the largest area reduction at the scales of 1-2 km and 4-8 km, respectively. Local hotspots of natural wetland reduction were mapped using the equal-interval and quantile classification schemes. The hotspots were mostly concentrated in the Lixiahe marshes and the coastal wetland areas. For the area reduction hotspots, the quantile classification presented larger area and more patches than the equal-interval classification; while an opposite result was shown for the percentage reduction hotspots. With respect to the discontinuous distribution of the natural wetlands, area reduction could be more appropriate to represent reduction hotspots than percentage reduction in the study area. These findings could have useful implications to wetland conservation.

  15. WETLAND INVENTORY USING REMOTELY SENSED LANDSAT DATA AND GEOGRAPHIC INFORMATION SYSTEMS (GIS)

    EPA Science Inventory

    Wetlands perform many functions on the landscape related to water quality and quantity, and provide habitat for myriad organisms. The identification of wetlands can be problematic, especially in areas with numerous isolated wetlands, in mixed landuse areas, or over large geograp...

  16. Nevada Test Site Wetlands Assessment

    SciTech Connect

    D. J. Hansen

    1997-05-01

    This report identifies 16 Nevada Test Site (NTS) natural water sources that may be classified by the U.S. Army Corps of Engineers (USACE) as jurisdictional wetlands and identifies eight water sources that may be classified as waters of the United States. These water sources are rare, localized habitats on the NTS that are important to regional wildlife and to isolated populations of water tolerant plants and aquatic organisms. No field investigations on the NTS have been conducted in the past to identify those natural water sources which would be protected as rare habitats and which may fall under regulatory authority of the Clean Water Act (CWA) of 1997. This report identifies and summarizes previous studies of NTS natural water sources, and identifies the current DOE management practices related to the protection of NTS wetlands. This report also presents management goals specific for NTS wetlands that incorporate the intent of existing wetlands legislation, the principles of ecosystem management, and the interests of regional land managers and other stakeholders.

  17. Genetic Variants in Isolated Ebstein Anomaly Implicated in Myocardial Development Pathways

    PubMed Central

    Druschel, Charlotte M.; Fan, Ruzong; Caggana, Michele; Brody, Lawrence C.; Mills, James L.

    2016-01-01

    Ebstein anomaly (EA) is a rare heart defect in which the tricuspid valve is malformed and displaced. The tricuspid valve abnormalities can lead to backflow of blood from the right ventricle to the right atrium, preventing proper circulation of blood to the lungs. Although the etiology of EA is largely unresolved, increased prevalence of EA in those with a family history of congenital heart disease suggests EA has a genetic component. Copy number variants (CNVs) are a major source of genetic variation and have been implicated in a range of congenital heart defect phenotypes. We performed a systematic, genome-wide search for CNVs in 47 isolated EA cases using genotyping microarrays. In addition, we used a custom HaloPlex panel to sequence three known EA genes and 47 candidate EA genes. We identified 35 candidate CNVs in 24 (51%) EA cases. Rare sequence variants in genes associated with cardiomyopathy were identified in 11 (23%) EA cases. Two CNVs near the transcriptional repressor HEY1, a member of the NOTCH signaling pathway, were identified in three unrelated cases. All other candidate CNVs were each identified in a single case. At least 11 of 35 candidate CNVs include genes involved in myocardial development or function, including multiple genes in the BMP signaling pathway. We identified enrichment of gene sets involved in histone modification and cardiomyocyte differentiation, supporting the involvement of the developing myocardium in the etiology of EA. Gene set enrichment analysis also identified ribosomal RNA processing, a potentially novel pathway of altered cardiac development in EA. Our results suggest an altered myocardial program may contribute to abnormal tricuspid valve development in EA. Future studies should investigate abnormal differentiation of cardiomyocytes as a potential etiological factor in EA. PMID:27788187

  18. Diversity of Endophytic Fungi Associated with the Roots of Four Aquatic Plants Inhabiting Two Wetlands in Korea.

    PubMed

    You, Young-Hyun; Park, Jong Myong; Park, Jong-Han; Kim, Jong-Guk

    2015-09-01

    A total of 4 aquatic plants, Eleocharis kuroguwai Ohwi, Hydrocharis dubia Backer, Salvinia natans All., and Zizania latifolia Turcz., were sampled from representative two wetlands of South Korea. A total of 38 endophytic fungal strains were isolated from aquatic plants native to the Daepyeong wetland, and 27 strains were isolated from the Jilnal wetland. The internal transcribed spacer regions of fungal isolates were sequenced and a phylogenetic analysis was performed. In addition, endophytic fungal diversity from each wetland and host plant species was deduced. A total of 25 fungal genera were purely isolated, and 16 fungal genera were isolated from each of the two wetlands. Commonly isolated genera from both wetlands were Aspergillus, Cladosporium, Clonostachys, Fusarium, Leptosphaeria, Penicillium, and Talaromyces. This study revealed that fungal diversity varied with environmental conditions and by host plant in representative two wetlands.

  19. Diversity of Endophytic Fungi Associated with the Roots of Four Aquatic Plants Inhabiting Two Wetlands in Korea

    PubMed Central

    You, Young-Hyun; Park, Jong Myong; Park, Jong-Han

    2015-01-01

    A total of 4 aquatic plants, Eleocharis kuroguwai Ohwi, Hydrocharis dubia Backer, Salvinia natans All., and Zizania latifolia Turcz., were sampled from representative two wetlands of South Korea. A total of 38 endophytic fungal strains were isolated from aquatic plants native to the Daepyeong wetland, and 27 strains were isolated from the Jilnal wetland. The internal transcribed spacer regions of fungal isolates were sequenced and a phylogenetic analysis was performed. In addition, endophytic fungal diversity from each wetland and host plant species was deduced. A total of 25 fungal genera were purely isolated, and 16 fungal genera were isolated from each of the two wetlands. Commonly isolated genera from both wetlands were Aspergillus, Cladosporium, Clonostachys, Fusarium, Leptosphaeria, Penicillium, and Talaromyces. This study revealed that fungal diversity varied with environmental conditions and by host plant in representative two wetlands. PMID:26539039

  20. Diversity of Endophytic Fungi Associated with the Roots of Four Aquatic Plants Inhabiting Two Wetlands in Korea.

    PubMed

    You, Young-Hyun; Park, Jong Myong; Park, Jong-Han; Kim, Jong-Guk

    2015-09-01

    A total of 4 aquatic plants, Eleocharis kuroguwai Ohwi, Hydrocharis dubia Backer, Salvinia natans All., and Zizania latifolia Turcz., were sampled from representative two wetlands of South Korea. A total of 38 endophytic fungal strains were isolated from aquatic plants native to the Daepyeong wetland, and 27 strains were isolated from the Jilnal wetland. The internal transcribed spacer regions of fungal isolates were sequenced and a phylogenetic analysis was performed. In addition, endophytic fungal diversity from each wetland and host plant species was deduced. A total of 25 fungal genera were purely isolated, and 16 fungal genera were isolated from each of the two wetlands. Commonly isolated genera from both wetlands were Aspergillus, Cladosporium, Clonostachys, Fusarium, Leptosphaeria, Penicillium, and Talaromyces. This study revealed that fungal diversity varied with environmental conditions and by host plant in representative two wetlands. PMID:26539039

  1. The land value impacts of wetland restoration.

    PubMed

    Kaza, Nikhil; BenDor, Todd K

    2013-09-30

    U.S. regulations require offsets for aquatic ecosystems damaged during land development, often through restoration of alternative resources. What effect does large-scale wetland and stream restoration have on surrounding land values? Restoration effects on real estate values have substantial implications for protecting resources, increasing tax base, and improving environmental policies. Our analysis focuses on the three-county Raleigh-Durham-Chapel Hill, North Carolina region, which has experienced rapid development and extensive aquatic ecological restoration (through the state's Ecosystem Enhancement Program [EEP]). Since restoration sites are not randomly distributed across space, we used a genetic algorithm to match parcels near restoration sites with comparable control parcels. Similar to propensity score analysis, this technique facilitates statistical comparison and isolates the effects of restoration sites on surrounding real estate values. Compared to parcels not proximate to any aquatic resources, we find that, 1) natural aquatic systems steadily and significantly increase parcel values up to 0.75 mi away, and 2) parcels <0.5 mi from EEP restoration sites have significantly lower sale prices, while 3) parcels >0.5 mi from EEP sites gain substantial amenity value. When we control for intervening water bodies (e.g. un-restored streams and wetlands), we find a similar inflection point whereby parcels <0.5 mi from EEP sites exhibit lower values, and sites 0.5-0.75 mi away exhibit increased values. Our work points to the need for higher public visibility of aquatic ecosystem restoration programs and increased public information about their value. PMID:23792789

  2. The land value impacts of wetland restoration.

    PubMed

    Kaza, Nikhil; BenDor, Todd K

    2013-09-30

    U.S. regulations require offsets for aquatic ecosystems damaged during land development, often through restoration of alternative resources. What effect does large-scale wetland and stream restoration have on surrounding land values? Restoration effects on real estate values have substantial implications for protecting resources, increasing tax base, and improving environmental policies. Our analysis focuses on the three-county Raleigh-Durham-Chapel Hill, North Carolina region, which has experienced rapid development and extensive aquatic ecological restoration (through the state's Ecosystem Enhancement Program [EEP]). Since restoration sites are not randomly distributed across space, we used a genetic algorithm to match parcels near restoration sites with comparable control parcels. Similar to propensity score analysis, this technique facilitates statistical comparison and isolates the effects of restoration sites on surrounding real estate values. Compared to parcels not proximate to any aquatic resources, we find that, 1) natural aquatic systems steadily and significantly increase parcel values up to 0.75 mi away, and 2) parcels <0.5 mi from EEP restoration sites have significantly lower sale prices, while 3) parcels >0.5 mi from EEP sites gain substantial amenity value. When we control for intervening water bodies (e.g. un-restored streams and wetlands), we find a similar inflection point whereby parcels <0.5 mi from EEP sites exhibit lower values, and sites 0.5-0.75 mi away exhibit increased values. Our work points to the need for higher public visibility of aquatic ecosystem restoration programs and increased public information about their value.

  3. Wetland Characteristics and Denitrification

    EPA Science Inventory

    This presentation serves as an initial summary of our wetland field work's watershed characteristics hydrologic characteristics, water quality measurements, and denitrification assays. We present our measurement results in the context of wetland type (Estuarine, Freshwater Mars...

  4. Sedimentation of prairie wetlands

    USGS Publications Warehouse

    Gleason, Robert A.; Euliss, Ned H.

    1998-01-01

    Many wetlands in the prairie pothole region are embedded within an agricultural landscape where they are subject to varying degrees of siltation. Cultivation of wetland catchment areas has exacerbated soil erosion; wetlands in agricultural fields receive more sediment from upland areas than wetlands in grassland landscapes and hence are subject to premature filling (i.e., they have shorter topographic lives). Associated impacts from increased turbidity, sediment deposition, and increased surface water input likely have impaired natural wetland functions. Although trapping of sediments by wetlands is often cited as a water quality benefit, sediment input from agricultural fields has potential to completely fill wetlands and shorten their effective life-span. Thus, the value placed on wetlands to trap sediments is in conflict with maximizing the effective topographic life of wetlands. Herein, we provide an overview of sedimentation, identify associated impacts on wetlands, and suggest remedial management strategies. We also highlight the need to evaluate the impact of agricultural practices on wetland functions from an interdisciplinary approach to facilitate development of best management practices that benefit both wetland and agricultural interests.

  5. Wetlands: An Interdisciplinary Exploration

    ERIC Educational Resources Information Center

    Czerniak, Charlene M.

    2004-01-01

    The topic of wetlands provides a rich context for curriculum integration. This unit contains seven activities that integrate environmental science with math, technology, social studies, language arts, and other disciplines. In this series, students will identify plants and animals found in wetlands, understand the function of wetlands through the…

  6. Wetlands, Wildlife, and People.

    ERIC Educational Resources Information Center

    Naturescope, 1986

    1986-01-01

    Discusses the problems created when wetlands are drained or altered by humans. Provides a brief case study of the Everglades as an example of the effects of human intervention. Presents four learning activities (along with reproducible worksheets) that deal with the benefits of wetlands, and some debated issues over wetlands. (TW)

  7. National Wetlands Inventory products

    USGS Publications Warehouse

    ,

    1998-01-01

    control. These predominantly wet areas, or wetlands as they are commonly called, now represent only about 5 percent of the land surface of the lower 48 States. Out of 221 million acres of wetlands that once existed in the conterminous United States, the U.S. Fish and Wildlife Service (FWS) estimates that only about 103.3 million acres remain. Each year, development, drainage, and agriculture eliminate another 290,000 acres-an area a little less than half the size of Rhode Island. From the 1950's to the 1970's, conversion of wetlands to farmland caused 87 percent of all wetland losses. The FWS has long recognized the importance of America's wetlands because they form breeding and wintering grounds for great numbers of migratory birds. In 1977, the FWS began the National Wetlands Inventory (NWI), a systematic effort to classify and map America's remaining wetlands.

  8. Freshwater Wetlands: A Citizen's Primer.

    ERIC Educational Resources Information Center

    Catskill Center for Conservation and Development, Inc., Hobart, NY.

    The purpose of this "primer" for the general public is to describe the general characteristics of wetlands and how wetland alteration adversely affects the well-being of humans. Particular emphasis is placed on wetlands in New York State and the northeast. Topics discussed include wetland values, destruction of wetlands, the costs of wetland…

  9. American Bullfrogs (Lithobates catesbeianus) Resist Infection by Multiple Isolates of Batrachochytrium dendrobatidis, Including One Implicated in Wild Mass Mortality.

    PubMed

    Eskew, Evan A; Worth, S Joy; Foley, Janet E; Todd, Brian D

    2015-09-01

    The emerging amphibian disease chytridiomycosis varies in severity depending on host species. Within species, disease susceptibility can also be influenced by pathogen variation and environmental factors. Here, we report on experimental exposures of American bullfrogs (Lithobates catesbeianus) to three different isolates of Batrachochytrium dendrobatidis (Bd), including one implicated in causing mass mortality of wild American bullfrogs. Exposed frogs showed low infection prevalence, relatively low infection load, and lack of clinical disease. Our results suggest that environmental cofactors are likely important contributors to Bd-associated American bullfrog mortality and that this species both resists and tolerates Bd infection. PMID:26065669

  10. American Bullfrogs (Lithobates catesbeianus) Resist Infection by Multiple Isolates of Batrachochytrium dendrobatidis, Including One Implicated in Wild Mass Mortality.

    PubMed

    Eskew, Evan A; Worth, S Joy; Foley, Janet E; Todd, Brian D

    2015-09-01

    The emerging amphibian disease chytridiomycosis varies in severity depending on host species. Within species, disease susceptibility can also be influenced by pathogen variation and environmental factors. Here, we report on experimental exposures of American bullfrogs (Lithobates catesbeianus) to three different isolates of Batrachochytrium dendrobatidis (Bd), including one implicated in causing mass mortality of wild American bullfrogs. Exposed frogs showed low infection prevalence, relatively low infection load, and lack of clinical disease. Our results suggest that environmental cofactors are likely important contributors to Bd-associated American bullfrog mortality and that this species both resists and tolerates Bd infection.

  11. Phenotypic variation amongst genotypically homogeneous Legionella pneumophila serogroup 1 isolates: implications for the investigation of outbreaks of Legionnaires' disease.

    PubMed Central

    Harrison, T. G.; Saunders, N. A.; Haththotuwa, A.; Hallas, G.; Birtles, R. J.; Taylor, A. G.

    1990-01-01

    One hundred and seventy-nine isolates of Legionella pneumophila serogroup 1, obtained from a site associated with an outbreak of Legionnaires' disease, were examined by monoclonal antibody subgrouping, restriction fragment length polymorphism typing, restriction endonuclease analysis and plasmid content. Nine distinct phenotypes were detected but at the genotypic level all strains were closely related. The data presented indicate that phenotypic variation of a single parent strain can occur within an environmental site. The implications of these findings are discussed in relation to the investigation of outbreaks of Legionnaires' disease. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:1969803

  12. Differences in flooding tolerance between species from two wetland habitats with contrasting hydrology: implications for vegetation development in future floodwater retention areas

    PubMed Central

    Banach, Katarzyna; Banach, Artur M.; Lamers, Leon P. M.; De Kroon, Hans; Bennicelli, Riccardo P.; Smits, Antoine J. M.; Visser, Eric J. W.

    2009-01-01

    Background and Aims Plants need different survival strategies in habitats differing in hydrological regimes. This probably has consequences for vegetation development when former floodplain areas that are currently confronted with soil flooding only, will be reconnected to the highly dynamical river bed. Such changes in river management are increasingly important, especially at locations where increased water retention can prevent flooding events in developed areas. It is therefore crucial to determine the responses of plant species from relatively low-dynamic wetlands to complete submergence, and to compare these with those of species from river forelands, in order to find out what the effects of such landscape-scale changes on vegetation would be. Methods To compare the species' tolerance to complete submergence and their acclimation patterns, a greenhouse experiment was designed with a selection of 19 species from two contrasting sites: permanently wet meadows in a former river foreland, and frequently submerged grasslands in a current river foreland. The plants were treated with short (3 weeks) and long (6 weeks) periods of complete submergence, to evaluate if survival, morphological responses, and changes in biomass differed between species of the two habitats. Key Results All tested species inhabiting river forelands were classified as tolerant to complete submergence, whereas species from wet meadows showed either relatively intolerant, intermediate or tolerant responses. Species from floodplains showed in all treatments stronger shoot elongation, as well as higher production of biomass of leaves, stems, fine roots and taproots, compared with meadow species. Conclusions There is a strong need for the creation of temporary water retention basins during high levels of river discharge. However, based on the data presented, it is concluded that such reconnection of former wetlands (currently serving as meadows) to the main river bed will strongly influence plant

  13. Detailed study of irrigation drainage in and near wildlife management areas, west-central Nevada, 1987-90; Part B, Effect on biota in Stillwater and Fernley Wildlife Management Areas and other nearby wetlands

    USGS Publications Warehouse

    Hallock, Robert J., (Edited By); Hallock, Linda L.

    1993-01-01

    A water-quality reconnaissance study during 1986-87 found high concentrations of several potentially toxic elements in water, bottom sediment, and biota in and near Stillwater Wildlife Management Area (WMA). This study prompted the U.S. Department of the Interior to initiate a more detailed study to determine the hydrogeochemical processes that control water quality in the Stillwater WMA, and other nearby wetlands, and the resulting effects on biota, especially migratory birds. Present wetland size is about 10% of historical size; the dissolved- solids load in the water in these now-isolated wetlands has increased only moderately, but the dissolved-solids concentration has increased more than seven-fold. Wetland vegetation has diminished and species composition in flow water has shifted to predominant salt-tolerant species in many areas. Decreased vegetative cover for nesting is implicated in declining waterfowl production. Decreases in numbers or virtual absence of several wildlife species are attributed to degraded water quality. Results of toxicity tests indicate that water in some drains and wetland areas is acutely toxic to some fish and invertebrates. Toxicity is attributed to the combined presence of arsenic, boron, lithium, and molybdenum. Biological pathways are involved in the transport of mercury and selenium from agricultural drains to wetlands. Hatch success of both artificially incubated and field-reared duck eggs was greater than/= 90 percent; no teratogenesis was observed. Mercury in muscle tissue of waterfowl harvested from Carson Lake in October 1987 exceeded the human health criterion six-fold.

  14. Draft Wetlands Rule Released

    NASA Astrophysics Data System (ADS)

    Zielinski, Sarah

    2006-04-01

    The U.S. Environmental Protection Agency (EPA) and the U.S. Army Corps of Engineers released on 28 March a draft of a new rule to guide compensatory mitigation for when wetlands are unavoidably lost due to development. However, whether the rule is successful in preventing a net loss in wetlands will depend largely on its implementation, according to two wetlands scientists who evaluated the issue for the U.S. National Research Council (NRC) in 2001. Under the federal Clean Water Act, developers who seek to build on wetlands must compensate for any wetlands loss if they are unable to avoid or minimize the loss. Such compensation is covered under the newly proposed compensatory mitigation rule. Benjamin Grumbles, EPA assistant administrator for water, called the rule an ``innovative new standard that will accelerate the pace of wetlands conservation and restoration.''

  15. Pipeline corridors through wetlands

    SciTech Connect

    Zimmerman, R.E.; Wilkey, P.L.; Isaacson, H.R.

    1992-12-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

  16. Pipeline corridors through wetlands

    SciTech Connect

    Zimmerman, R.E.; Wilkey, P.L. ); Isaacson, H.R. )

    1992-01-01

    This paper presents preliminary findings from six vegetational surveys of gas pipeline rights-of-way (ROW) through wetlands and quantifies the impacts of a 20-year-old pipeline ROW through a boreal forest wetland. Six sites of various ages were surveyed in ecosystems ranging from coastal marsh to forested wetland. At all sites except one, both the number and the percentage of wetland species on the Row approximated or exceeded those in the adjacent natural area. The boreal forest study showed that (1) adjacent natural wetland areas were not altered in type; (2) water sheet flow restriction had been reversed by nature; (3) no nonnative plant species invaded the natural area; (4) three-quarters of the ROW area was a wetland, and (5) the ROW increased diversity.

  17. AVIRIS spectra of California wetlands

    NASA Technical Reports Server (NTRS)

    Gross, Michael F.; Ustin, Susan L.; Klemas, Vytautas

    1988-01-01

    Spectral data gathered by the AVIRIS from wetlands in the Suisun Bay area of California on 13 October 1987 were analyzed. Spectra representing stands of numerous vegetation types (including Sesuvium verrucosum, Scirpus acutus and Scirpus californicus, Xanthium strumarium, Cynadon dactylon, and Distichlis spicata) and soil were isolated. Despite some defects in the data, it was possible to detect vegetation features such as differences in the location of the chlorophyll red absorption maximum. Also, differences in cover type spectra were evident in other spectral regions. It was not possible to determine if the observed features represent noise, variability in canopy architecture, or chemical constituents of leaves.

  18. Dental morphology and variation in theropod dinosaurs: implications for the taxonomic identification of isolated teeth.

    PubMed

    Smith, Joshua B; Vann, David R; Dodson, Peter

    2005-08-01

    Isolated theropod teeth are common Mesozoic fossils and would be an important data source for paleoecology biogeography if they could be reliably identified as having come from particular taxa. However, obtaining identifications is confounded by a paucity of easily identifiable characters. Here we discuss a quantitative methodology designed to provide defensible identifications of isolated teeth using Tyrannosaurus as a comparison taxon. We created a standard data set based as much as possible on teeth of known taxonomic affinity against which to compare isolated crowns. Tooth morphology was described using measured variables describing crown length, base length and width, and derived variables related to basal shape, squatness, mesial curve shape, apex location with respect to base, and denticle size. Crown curves were described by fitting the power function Y = a + bX(0.5) to coordinate data collected from lateral-view images of mesial curve profiles. The b value from these analyses provides a measure of curvature. Discriminant analyses compared isolated teeth of various taxonomic affinities against the standard. The analyses classified known Tyrannosaurus teeth with Tyrannosaurus and separated most teeth known not to be Tyrannosaurus from Tyrannosaurus. They had trouble correctly classifying teeth that were very similar to Tyrannosaurus and for which there were few data in the standard. However, the results indicate that expanding the standard should facilitate the identification of numerous types of isolated theropod teeth.

  19. Diverse Exopolysaccharide Producing Bacteria Isolated from Milled Sugarcane: Implications for Cane Spoilage and Sucrose Yield.

    PubMed

    Hector, Stanton; Willard, Kyle; Bauer, Rolene; Mulako, Inonge; Slabbert, Etienne; Kossmann, Jens; George, Gavin M

    2015-01-01

    Bacterial deterioration of sugarcane during harvesting and processing is correlated with significant loss of sucrose yield and the accumulation of bacterial polysaccharides. Dextran, a homoglucan produced by Leuconostoc mesenteroides, has been cited as the primary polysaccharide associated with sugarcane deterioration. A culture-based approach was used to isolate extracellular polysaccharide (EPS) producing bacterial strains from milled sugarcane stalks. Ribosomal RNA sequencing analysis grouped 25 isolates into 4 genera. This study identified 2 bacterial genera not previously associated with EPS production or sucrose degradation. All isolates produced polysaccharide when grown in the presence of sucrose. Monosaccharide analysis of purified polymers by Gas Chromatography revealed 17 EPSs consisting solely of glucose (homoglucans), while the remainder contained traces of mannose or fructose. Dextranase treatment of polysaccharides yielded full digestion profiles for only 11 extracts. Incomplete hydrolysis profiles of the remaining polysaccharides suggest the release of longer oligosaccharides which may interfere with sucrose crystal formation. PMID:26710215

  20. Diverse Exopolysaccharide Producing Bacteria Isolated from Milled Sugarcane: Implications for Cane Spoilage and Sucrose Yield

    PubMed Central

    Bauer, Rolene; Mulako, Inonge; Slabbert, Etienne; Kossmann, Jens; George, Gavin M

    2015-01-01

    Bacterial deterioration of sugarcane during harvesting and processing is correlated with significant loss of sucrose yield and the accumulation of bacterial polysaccharides. Dextran, a homoglucan produced by Leuconostoc mesenteroides, has been cited as the primary polysaccharide associated with sugarcane deterioration. A culture-based approach was used to isolate extracellular polysaccharide (EPS) producing bacterial strains from milled sugarcane stalks. Ribosomal RNA sequencing analysis grouped 25 isolates into 4 genera. This study identified 2 bacterial genera not previously associated with EPS production or sucrose degradation. All isolates produced polysaccharide when grown in the presence of sucrose. Monosaccharide analysis of purified polymers by Gas Chromatography revealed 17 EPSs consisting solely of glucose (homoglucans), while the remainder contained traces of mannose or fructose. Dextranase treatment of polysaccharides yielded full digestion profiles for only 11 extracts. Incomplete hydrolysis profiles of the remaining polysaccharides suggest the release of longer oligosaccharides which may interfere with sucrose crystal formation. PMID:26710215

  1. Effect of metals on a siderophore producing bacterial isolate and its implications on microbial assisted bioremediation of metal contaminated soils.

    PubMed

    Gaonkar, Teja; Bhosle, Saroj

    2013-11-01

    A bacterial isolate producing siderophore under iron limiting conditions, was isolated from mangroves of Goa. Based on morphological, biochemical, chemotaxonomical and 16S rDNA studies, the isolate was identified as Bacillus amyloliquefaciens NAR38.1. Preliminary characterization of the siderophore indicated it to be catecholate type with dihydroxy benzoate as the core component. Optimum siderophore production was observed at pH 7 in mineral salts medium (MSM) without any added iron with glucose as the carbon source. Addition of NaCl in the growth medium showed considerable decrease in siderophore production above 2% NaCl. Fe(+2) and Fe(+3) below 2 μM and 40 μM concentrations respectively, induced siderophore production, above which the production was repressed. Binding studies of the siderophore with Fe(+2) and Fe(+3) indicated its high affinity towards Fe(+3). The siderophore concentration in the extracellular medium was enhanced when MSM was amended with essential metals Zn, Co, Mo and Mn, however, decreased with Cu, while the concentration was reduced with abiotic metals As, Pb, Al and Cd. Significant increase in extracellular siderophore production was observed with Pb and Al at concentrations of 50 μM and above. The effect of metals on siderophore production was completely mitigated in presence of Fe. The results implicate effect of metals on the efficiency of siderophore production by bacteria for potential application in bioremediation of metal contaminated iron deficient soils especially in the microbial assisted phytoremediation processes.

  2. A FRAMEWORK FOR DEVELOPING A RAPID ASSESSMENT PROTCOL FOR SOUTHERN NEW ENGLAND SEASONALLY FLOODED POOLS TO ASSIST STATEWIDE WETLAND MONITORING PROGRAMS

    EPA Science Inventory

    Small isolated wetlands that are seasonally-flooded provide important hydrological, biological, and ecosystem functions that increasingly are being impacted by human development. In southern New England, these wetlands provide specialized breeding habitat for several invertebrat...

  3. Gas Research Institute wetland research program

    SciTech Connect

    Wilkey, P.L.; Zimmerman, R.E.; Isaacson, H.R.

    1992-12-01

    As part of three ongoing research projects, the Gas Research Institute (GRI) is studying the natural gas industry`s impacts on wetlands and how to manage operations so that impacts can be minimized or eliminated. The objective of the first project is to gain a better understanding of the causes and processes of wetland loss in the Louisiana deltaic plain and what role gas pipeline canals play in wetland loss. On the basis of information gathered from the first projects, management and mitigation implications for pipeline construction and maintenance will be evaluated. The objective of the second project is to assess the floral and faunal communities on existing rights-of-way (ROWs) that pass through numerous types of wetlands across the United States. The emphasis of the project is on pipelines that were installed within the past five years. The objective of the third project is to evaluate the administrative, jurisdictional, technical, and economic issues of wetland mitigation banking. This paper discusses these projects, their backgrounds, some of the results to date, and the deliverables.

  4. Gas Research Institute wetland research program

    SciTech Connect

    Wilkey, P.L.; Zimmerman, R.E. ); Isaacson, H.R. )

    1992-01-01

    As part of three ongoing research projects, the Gas Research Institute (GRI) is studying the natural gas industry's impacts on wetlands and how to manage operations so that impacts can be minimized or eliminated. The objective of the first project is to gain a better understanding of the causes and processes of wetland loss in the Louisiana deltaic plain and what role gas pipeline canals play in wetland loss. On the basis of information gathered from the first projects, management and mitigation implications for pipeline construction and maintenance will be evaluated. The objective of the second project is to assess the floral and faunal communities on existing rights-of-way (ROWs) that pass through numerous types of wetlands across the United States. The emphasis of the project is on pipelines that were installed within the past five years. The objective of the third project is to evaluate the administrative, jurisdictional, technical, and economic issues of wetland mitigation banking. This paper discusses these projects, their backgrounds, some of the results to date, and the deliverables.

  5. Simulated storm surge effects on freshwater coastal wetland soil porewater salinity and extractable ammonium levels: Implications for marsh recovery after storm surge

    NASA Astrophysics Data System (ADS)

    McKee, M.; White, J. R.; Putnam-Duhon, L. A.

    2016-11-01

    Coastal wetland systems experience both short-term changes in salinity, such as those caused by wind-driven tides and storm surge, and long-term shifts caused by sea level rise. Salinity increases associated with storm surge are known to have significant effects on soil porewater chemistry, but there is little research on the effect of flooding length on salt penetration depth into coastal marsh soils. A simulated storm surge was imposed on intact soil columns collected from a non-vegetated mudflat and a vegetated marsh site in the Wax Lake Delta, LA. Triplicate intact cores were continuously exposed to a 35 salinity water column (practical salinity scale) for 1, 2, and 4 weeks and destructively sampled in order to measure porewater salinity and extractable NH4sbnd N at two cm depth intervals. Salinity was significantly higher in the top 8 cm for both the marsh and mudflat cores after one week of flooding. After four weeks of flooding, salinity was significantly higher in marsh and mudflat cores compared to the control (no salinity) cores throughout the profile for both sites. Extractable ammonium levels increased significantly in the marsh cores throughout the experiment, but there was only a marginally (p < 0.1) significant increase seen in the mudflat cores. Results indicate that porewater salinity levels can become significantly elevated within a coastal marsh soil in just one week. This vertical intrusion of salt can potentially negatively impact macrophytes and associated microbial communities for significantly longer term post-storm surge.

  6. Comparative Hydrology, Water Quality, and Ecology of Selected Natural and Augmented Freshwater Wetlands in West-Central Florida

    USGS Publications Warehouse

    Lee, T.M.; Haag, K.H.; Metz, P.A.; Sacks, L.A.

    2009-01-01

    Comparing altered wetlands to natural wetlands in the same region improves the ability to interpret the gradual and cumulative effects of human development on freshwater wetlands. Hydrologic differences require explicit attention because they affect nearly all wetland functions and are an overriding influence on other comparisons involving wetland water quality and ecology. This study adopts several new approaches to quantify wetland hydrologic characteristics and then describes and compares the hydrology, water quality, and ecology of 10 isolated freshwater marsh and cypress wetlands in the mantled karst landscape of central Florida. Four of the wetlands are natural, and the other six have water levels indirectly lowered by ground-water withdrawals on municipally owned well fields. For several decades, the water levels in four of these altered wetlands have been raised by adding ground water in a mitigation process called augmentation. The two wetlands left unaugmented were impaired because their water levels were lowered. Multifaceted comparisons between the altered and natural wetlands are used to examine differences between marshes and cypress wetlands and to describe the effects of augmentation practices on the wetland ecosystems. In the karstic geologic setting, both natural and altered wetlands predominantly lost water to the surficial aquifer. Water leaking out of the wetlands created water-table mounds below the wetlands. The smallest mounds radiated only slightly beyond the vegetated area of the wetlands. The largest and steepest mounds occurred below two of the augmented wetlands. There, rapid leakage rates regenerated a largely absent surficial aquifer and mounds encompassed areas 7-8 times as large as the wetlands. Wetland leakage rates, estimated using a daily water-budget analysis applied over multiple years and normalized as inches per day, varied thirtyfold from the slowest leaking natural wetland to the fastest leaking augmented wetland. Leakage

  7. Wetlands and Web Pages.

    ERIC Educational Resources Information Center

    Tisone-Bartels, Dede

    1998-01-01

    Argues that the preservation of areas like the Shoreline Park (California) wetlands depends on educating students about the value of natural resources. Describes the creation of a Web page on the wetlands for third-grade students by seventh-grade art and ecology students. Outlines the technical process of developing a Web page. (DSK)

  8. Wetlands: Earth's Kidneys

    EPA Science Inventory

    Wetlands are unique, diverse, and productive habitats that emerge at the fringe of aquatic and upland land systems. The U.S. Environmental Protection Agency (EPA) defines wetlands as "areas that are regularly inundated by surface water or groundwater and characterized by a preva...

  9. Hydrology and Ecology of Freshwater Wetlands in Central Florida - A Primer

    USGS Publications Warehouse

    Haag, Kim H.; Lee, Terrie M.

    2010-01-01

    Freshwater wetlands are an integral part of central Florida, where thousands are distributed across the landscape. However, their relatively small size and vast numbers challenge efforts to characterize them collectively as a statewide water resource. Wetlands are a dominant landscape feature in Florida; in 1996, an estimated 11.4 million acres of wetlands occupied 29 percent of the area of the State. Wetlands represent a greater percentage of the land surface in Florida than in any other state in the conterminous United States. Statewide, 90 percent of the total wetland area is freshwater wetlands and 10 percent is coastal wetlands. About 55 percent of the freshwater wetlands in Florida are forested, 25 percent are marshes and emergent wetlands, 18 percent are scrub-shrub wetlands, and the remaining 2 percent are freshwater ponds. Freshwater wetlands are distributed differently in central Florida than in other parts of the State. In the panhandle and in northern Florida, there are fewer isolated wetlands than in the central and southern parts of the State, and few of those wetlands are affected by activities such as groundwater withdrawals. In southern Florida, the vast wetlands of the Everglades and the Big Cypress Swamp blanket the landscape and form contiguous shallow expanses of water, which often exhibit slow but continuous flow toward the southwestern coast. In contrast, the wetlands of central Florida are relatively small, numerous, mostly isolated, and widely distributed. In many places, wetlands are flanked by uplands, generating a mosaic of contrasting environments-unique wildlife habitat often adjacent to dense human development. As the population of central Florida increases, the number of residents living near wetlands also increases. Living in close proximity to wetlands provides many Floridians with an increased awareness of nature and an opportunity to examine the relationship between people and wetlands. Specifically, these residents can observe

  10. Remote sensing of wetlands

    NASA Technical Reports Server (NTRS)

    Roller, N. E. G.

    1977-01-01

    The concept of using remote sensing to inventory wetlands and the related topics of proper inventory design and data collection are discussed. The material presented shows that aerial photography is the form of remote sensing from which the greatest amount of wetlands information can be derived. For extensive, general-purpose wetlands inventories, however, the use of LANDSAT data may be more cost-effective. Airborne multispectral scanners and radar are, in the main, too expensive to use - unless the information that these sensors alone can gather remotely is absolutely required. Multistage sampling employing space and high altitude remote sensing data in the initial stages appears to be an efficient survey strategy for gathering non-point specific wetlands inventory data over large areas. The operational role of remote sensing insupplying inventory data for application to several typical wetlands management problems is illustrated by summary descriptions of past ERIM projects.

  11. Forested wetland habitat

    USGS Publications Warehouse

    Duberstein, Jamie A.; Krauss, Ken W.; Kennish, Michael J.

    2015-01-01

    A forested wetland (swamp) is a forest where soils are saturated or flooded for at least a portion of the growing season, and vegetation, dominated by trees, is adapted to tolerate flooded conditions. A tidal freshwater forested wetland is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity of soil porewater less than 0.5 g/l. It is known locally as tidal várzea in the Amazon delta, Brazil. A tidal saltwater forested wetland (mangrove forest) is a forested wetland that experiences frequent but short-term surface flooding via tidal action, with average salinity often exceeding 3 g/l and reaching levels that can exceed seawater. Mangrove ecosystems are composed of facultative halophytes that generally experience better growth at moderate salinity concentrations.

  12. Effects of Environmental Conditions on an Urban Wetland's Methane Fluxes

    NASA Astrophysics Data System (ADS)

    Naor Azrieli, L.; Morin, T. H.; Bohrer, G.; Schafer, K. V.; Brooker, M.; Mitsch, W. J.

    2013-12-01

    Methane emissions from wetlands are the largest natural source of uncertainty in the global methane (CH4) budget. Wetlands are highly productive ecosystems with a large carbon sequestration potential. While wetlands are a net sink for carbon dioxide, they also release methane, a potent greenhouse gas. To effectively develop wetland management techniques, it is important to properly calculate the carbon budget of wetlands by understand the driving factors of methane fluxes. We constructed an eddy flux covariance system in the Olentangy River Wetland Research Park, a series of created and restored wetland in Columbus Ohio. Through the use of high frequency open path infrared gas analyzer (IRGA) sensors, we have continuously monitored the methane fluxes associated with the wetland since May 2011. To account for the heterogeneous landscape surrounding the tower, a footprint analysis was used to isolate data originating from within the wetland. Continuous measurements of the meteorological and environmental conditions at the wetlands coinciding with the flux measurements allow the interactions between methane fluxes and the climate and ecological forcing to be studied. The wintertime daily cycle of methane peaks around midday indicating a typical diurnal pattern in cold months. In the summer, the peak shifts to earlier in the day and also includes a daily peak occurring at approximately 10 AM. We believe this peak is associated with the onset of photosynthesis in Typha latifolia flushing methane from the plant's air filled tissue. Correlations with methane fluxes include latent heat flux, soil temperature, and incoming radiation. The connection to radiation may be further evidence of plant activity as a driver of methane fluxes. Higher methane fluxes corresponding with higher soil temperature indicates that warmer days stimulate the methanogenic consortium. Further analysis will focus on separating the methane fluxes into emissions from different terrain types within

  13. Unprecedented Silver Resistance in Clinically Isolated Enterobacteriaceae: Major Implications for Burn and Wound Management

    PubMed Central

    Norton, Rhy; Austin, Cindy; Mitchell, Amber; Zank, Sara; Durham, Paul

    2015-01-01

    Increased utilization of inorganic silver as an adjunctive to many medical devices has raised concerns of emergent silver resistance in clinical bacteria. Although the molecular basis for silver resistance has been previously characterized, to date, significant phenotypic expression of these genes in clinical settings is yet to be observed. Here, we identified the first strains of clinical bacteria expressing silver resistance at a level that could significantly impact wound care and the use of silver-based dressings. Screening of 859 clinical isolates confirmed 31 harbored at least 1 silver resistance gene. Despite the presence of these genes, MIC testing revealed most of the bacteria displayed little or no increase in resistance to ionic silver (200 to 300 μM Ag+). However, 2 isolates (Klebsiella pneumonia and Enterobacter cloacae) were capable of robust growth at exceedingly high silver concentrations, with MIC values reaching 5,500 μM Ag+. DNA sequencing of these two strains revealed the presence of genes homologous to known genetic determinants of heavy metal resistance. Darkening of the bacteria's pigment was observed after exposure to high silver concentrations. Scanning electron microscopy images showed the presence of silver nanoparticles embedded in the extracellular polymeric substance of both isolates. This finding suggested that the isolates may neutralize ionic silver via reduction to elemental silver. Antimicrobial testing revealed both organisms to be completely resistant to many commercially available silver-impregnated burn and wound dressings. Taken together, these findings provide the first evidence of clinical bacteria capable of expressing silver resistance at levels that could significantly impact wound management. PMID:26014954

  14. Unprecedented Silver Resistance in Clinically Isolated Enterobacteriaceae: Major Implications for Burn and Wound Management.

    PubMed

    Finley, Phillip J; Norton, Rhy; Austin, Cindy; Mitchell, Amber; Zank, Sara; Durham, Paul

    2015-08-01

    Increased utilization of inorganic silver as an adjunctive to many medical devices has raised concerns of emergent silver resistance in clinical bacteria. Although the molecular basis for silver resistance has been previously characterized, to date, significant phenotypic expression of these genes in clinical settings is yet to be observed. Here, we identified the first strains of clinical bacteria expressing silver resistance at a level that could significantly impact wound care and the use of silver-based dressings. Screening of 859 clinical isolates confirmed 31 harbored at least 1 silver resistance gene. Despite the presence of these genes, MIC testing revealed most of the bacteria displayed little or no increase in resistance to ionic silver (200 to 300 μM Ag(+)). However, 2 isolates (Klebsiella pneumonia and Enterobacter cloacae) were capable of robust growth at exceedingly high silver concentrations, with MIC values reaching 5,500 μM Ag(+). DNA sequencing of these two strains revealed the presence of genes homologous to known genetic determinants of heavy metal resistance. Darkening of the bacteria's pigment was observed after exposure to high silver concentrations. Scanning electron microscopy images showed the presence of silver nanoparticles embedded in the extracellular polymeric substance of both isolates. This finding suggested that the isolates may neutralize ionic silver via reduction to elemental silver. Antimicrobial testing revealed both organisms to be completely resistant to many commercially available silver-impregnated burn and wound dressings. Taken together, these findings provide the first evidence of clinical bacteria capable of expressing silver resistance at levels that could significantly impact wound management.

  15. Use of seasonal freshwater wetlands by fishes in a temperate river floodplain

    USGS Publications Warehouse

    Henning, Julie A.; Gresswell, Robert E.; Fleming, Ian A.

    2007-01-01

    This study examined the use of freshwater wetland restoration and enhancement projects (i.e. non-estuarine wetlands subject to seasonal drying) by fish populations. To quantify fish use of freshwater emergent wetlands and assess the effect of wetland enhancement (i.e. addition of water control structures), two enhanced and two unenhanced emergent wetlands were compared, as well as two oxbow habitats within the Chehalis River floodplain. Eighteen fish species were captured using fyke nets and emigrant traps from January to the beginning of June, with the most abundant being three-spined stickleback Gasterosteus aculeatus and Olympic mudminnow Novumbra hubbsi. Coho salmon Oncorhynchus kisutch was the dominant salmonid at all sites. Enhanced wetlands, with their extended hydroperiods, had significantly higher abundances of yearling coho salmon than unenhanced wetlands. Both enhanced and unenhanced emergent wetlands yielded higher abundances of non-game native fishes than oxbow habitats. Oxbow habitats, however, were dominated by coho salmon. Fish survival in the wetland habitats was dependent on emigration to the river before dissolved oxygen concentrations decreased and wetlands became isolated and stranding occurred. This study suggests that wetland enhancement projects with an outlet to the river channel appear to provide fishes with important temporary habitats if they have the opportunity to leave the wetland as dissolved oxygen levels deteriorate.

  16. Molecular characterization of rabies virus isolates from Mexico: implications for transmission dynamics and human risk.

    PubMed

    De Mattos, C C; De Mattos, C A; Loza-Rubio, E; Aguilar-Setién, A; Orciari, L A; Smith, J S

    1999-10-01

    Twenty-eight samples from humans and domestic and wild animals collected in Mexico between 1990 and 1995 were characterized by using anti-nucleoprotein monoclonal antibodies and limited sequence analysis of the nucleoprotein gene. The variants of rabies viruses identified in these samples were compared with other isolates from Mexico and the rest of the Americas to establish epidemiologic links between cases and outbreaks and to increase the understanding of rabies epidemiology in the Western Hemisphere. Antigenic and genetic diversity was found in all samples from dogs and dog-related cases, suggesting a long-term endemic situation with multiple, independent cycles of virus transmission. Two isolates from bobcats were antigenically and genetically homologous to the rabies variant circulating in the Arizona gray fox population, indicating a wider distribution of this variant than previously reported. Rabies isolates from skunks were unrelated to any variant analyzed in this study and represent a previously unrecognized cycle of rabies transmission in skunks in Baja California Sur. Two antigenic and genetic variants co-circulating in southern and eastern Mexico were found in viruses obtained from cases epidemiologically related to vampire bats. These results serve as a baseline for the better understanding of the molecular epidemiology of rabies in Mexico. PMID:10548293

  17. HISTORIC WETLANDS OF PRUDENCE ISLAND

    EPA Science Inventory

    Ten wetland sites around Narragansett Bay, Rhode Island have been selected for a multidisciplinary study. These wetland sites are being studied to develop indicators of "wetland health." The study includes assessing the ecological conditions of the wetlands in the past, and the c...

  18. Conceptual hierarchical modeling to describe wetland plant community organization

    USGS Publications Warehouse

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  19. National Wetlands Inventory products

    USGS Publications Warehouse

    ,

    1999-01-01

    Marshes, swamps, ponds, and bogs are teeming biological nurseries for migratory birds, fish, and aquatic plants. They also provide natural flood and erosion control. These predominantly wet areas, or wetlands as they are commonly called, now represent only about 5 percent of the land surface of the lower 48 States. Out of 221 million acres of wetlands that once existed in the conterminous United States, the U.S. Fish and Wildlife Service (FWS) estimates that only about 103.3 million acres remain. Each year, development, drainage, and agriculture eliminate another 290,000 acres - an area a little less than half the size of Rhode Island. From the 1950's to the 1970's, conversion of wetlands to farmland caused 87 percent of all wetland losses. The FWS has long recognized the importance of America's wetlands because they form breeding and wintering grounds for great numbers of migratory birds. In 1977, the FWS began the National Wetlands Inventory (NWI), a systematic effort to classify and map America's remaining wetlands.

  20. Neotropical coastal wetlands

    USGS Publications Warehouse

    McKee, Karen L.; Batzer, Darold P.; Baldwin, Andrew H.

    2012-01-01

    The Neotropical region, which includes the tropical Americas, is one of the world's eight biogeographic zones. It contains some of the most diverse and unique wetlands in the world, some of which are still relatively undisturbed by humans. This chapter focuses on the northern segment of the Neotropics (south Florida, the Caribbean islands, Mexico, and Central America), an area that spans a latitudinal gradient from about 7 N to 29 N and 60 W to 112 W. Examples of coastal wetlands in this realm include the Everglades (Florida, USA), Ten Thousand Islands (Florida, USA), Laguna de Terminos (Mexico), Twin Cays (Belize), and Zapata Swamp (Cuba). Coastal wetlands are dominated by mangroves, which will be emphasized here, but also include freshwater swamps and marshes, saline marshes, and seagrass beds. The aim of this chapter is to provide a broad overview of Neotropical coastal wetlands of the North American continent, with an emphasis on mangroves, since this is the dominant vegetation type and because in-depth coverage of all wetland types is impossible here. Instead, the goal is to describe the environmental settings, plant and animal communities, key ecological controls, and some conservation concerns, with specific examples. Because this book deals with wetlands of North America, this chapter excludes coastal wetlands of South America. However, much of the information is applicable to mangrove, marsh, and seagrass communities of other tropicaI regions.

  1. Effects of isolation and confinement on humans-implications for manned space explorations.

    PubMed

    Pagel, J I; Choukèr, A

    2016-06-15

    Human psychology and physiology are significantly altered by isolation and confinement. In light of planned exploration class interplanetary missions, the related adverse effects on the human body need to be explored and defined as they have a large impact on a mission's success. Terrestrial space analogs offer an excellent controlled environment to study some of these stressors during a space mission in isolation without the complex environment of the International Space Station. Participants subjected to these space analog conditions can encounter typical symptoms ranging from neurocognitive changes, fatigue, misaligned circadian rhythm, sleep disorders, altered stress hormone levels, and immune modulatory changes. This review focuses on both the psychological and the physiological responses observed in participants of long-duration spaceflight analog studies, such as Mars500 or Antarctic winter-over. They provide important insight into similarities and differences encountered in each simulated setting. The identification of adverse effects from confinement allows not only the crew to better prepare for but also to design feasible countermeasures that will help support space travelers during exploration class missions in the future. PMID:26846554

  2. Effects of isolation and confinement on humans-implications for manned space explorations.

    PubMed

    Pagel, J I; Choukèr, A

    2016-06-15

    Human psychology and physiology are significantly altered by isolation and confinement. In light of planned exploration class interplanetary missions, the related adverse effects on the human body need to be explored and defined as they have a large impact on a mission's success. Terrestrial space analogs offer an excellent controlled environment to study some of these stressors during a space mission in isolation without the complex environment of the International Space Station. Participants subjected to these space analog conditions can encounter typical symptoms ranging from neurocognitive changes, fatigue, misaligned circadian rhythm, sleep disorders, altered stress hormone levels, and immune modulatory changes. This review focuses on both the psychological and the physiological responses observed in participants of long-duration spaceflight analog studies, such as Mars500 or Antarctic winter-over. They provide important insight into similarities and differences encountered in each simulated setting. The identification of adverse effects from confinement allows not only the crew to better prepare for but also to design feasible countermeasures that will help support space travelers during exploration class missions in the future.

  3. Genome-Wide Analysis of Oceanimonas sp. GK1 Isolated from Gavkhouni Wetland (Iran) Demonstrates Presence of Genes for Virulence and Pathogenicity

    PubMed Central

    Parsa Yeganeh, Laleh; Azarbaijani, Reza; Mousavi, Hossein; Shahzadeh Fazeli, Seyed Abolhassan; Amoozgar, Mohammad Ali; Salekdeh, Ghasem Hosseini

    2015-01-01

    Objective The bacterium Oceanimonas sp. (O. sp.) GK1 is a member of the Aeromonadaceae family and its genome represents several virulence genes involved in fish and human pathogenicity. In this original research study we aimed to identify and characterize the putative virulence factors and pathogenicity of this halotolerant marine bacterium using genome wide analysis. Materials and Methods The genome data of O. sp. GK1 was obtained from NCBI. Comparative genomic study was done using MetaCyc database. Results Whole genome data analysis of the O. sp. GK1 revealed that the bacterium possesses some important virulence genes (e.g. ZOT, RTX toxin, thermostable hemolysin, lateral flagella and type IV pili) which have been implicated in adhesion and biofilm formation and infection in some other pathogenic bacteria. Conclusion This is the first report of the putative pathogenicity of O. sp.GK1. The genome wide analysis of the bacterium demonstrates the presence of virulence genes causing infectious diseases in many warmand cold-blooded animals. PMID:26464816

  4. Persistence of Pasteurella multocida in wetlands following avian cholera outbreaks

    USGS Publications Warehouse

    Blanchong, Julie A.; Samuel, M.D.; Goldberg, D.R.; Shadduck, D.J.; Lehr, M.A.

    2006-01-01

    Avian cholera, caused by Pasteurella multocida, affects waterbirds across North America and occurs worldwide among various avian species. Once an epizootic begins, contamination of the wetland environment likely facilitates the transmission of P. multocida to susceptible birds. To evaluate the ability of P. multocida serotype-1, the most common serotype associated with avian cholera in waterfowl in western and central North America, to persist in wetlands and to identify environmental factors associated with its persistence, we collected water and sediment samples from 23 wetlands during winters and springs of 1996a??99. These samples were collected during avian cholera outbreaks and for up to 13 wk following initial sampling. We recovered P. multocida from six wetlands that were sampled following the initial outbreaks, but no P. multocida was isolated later than 7 wk after the initial outbreak sampling. We found no significant relationship between the probability of recovery of P. multocida during resampling and the abundance of the bacterium recovered during initial sampling, the substrate from which isolates were collected, isolate virulence, or water quality conditions previously suggested to be related to the abundance or survival of P. multocida. Our results indicate that wetlands are unlikely to serve as a long-term reservoir for P. multocida because the bacterium does not persist in wetlands for long time periods following avian cholera outbreaks.

  5. Filtering fens: mechanisms explaining phosphorus-limited hotspots of biodiversity in wetlands adjacent to heavily fertilized areas.

    PubMed

    Cusell, Casper; Kooijman, Annemieke; Fernandez, Filippo; van Wirdum, Geert; Geurts, Jeroen J M; van Loon, E Emiel; Kalbitz, Karsten; Lamers, Leon P M

    2014-05-15

    The conservation of biodiverse wetland vegetation, including that of rich fens, has a high priority at a global scale. Although P-eutrophication may strongly decrease biodiversity in rich fens, some well-developed habitats do still survive in highly fertilized regions due to nutrient filtering services of large wetlands. The occurrence of such nutrient gradients is well-known, but the biogeochemical mechanisms that determine these patterns are often unclear. We therefore analyzed chemical speciation and binding of relevant nutrients and minerals in surface waters, soils and plants along such gradients in the large Ramsar nature reserve Weerribben-Wieden in the Netherlands. P-availability was lowest in relatively isolated floating rich fens, where plant N:P ratios indicated P-limitation. P-limitation can persist here despite high P-concentrations in surface waters near the peripheral entry locations, because only a small part of the P-input reaches the more isolated waters and fens. This pattern in P-availability appears to be primarily due to precipitation of Fe-phosphates, which mainly occurs close to entry locations as indicated by decreasing concentrations of Fe- and Al-bound P in the sub-aquatic sediments along this gradient. A further decrease of P-availability is caused by biological sequestration, which occurs throughout the wetland as indicated by equal concentrations of organic P in all sub-aquatic sediments. Our results clearly show that the periphery of large wetlands does indeed act as an efficient P-filter, sustaining the necessary P-limitation in more isolated parts. However, this filtering function does harm the ecological quality of the peripheral parts of the reserve. The filtering mechanisms, such as precipitation of Fe-phosphates and biological uptake of P, are crucial for the conservation and restoration of biodiverse rich fens in wetlands that receive eutrophic water from their surroundings. This seems to implicate that biodiverse wetland

  6. Filtering fens: mechanisms explaining phosphorus-limited hotspots of biodiversity in wetlands adjacent to heavily fertilized areas.

    PubMed

    Cusell, Casper; Kooijman, Annemieke; Fernandez, Filippo; van Wirdum, Geert; Geurts, Jeroen J M; van Loon, E Emiel; Kalbitz, Karsten; Lamers, Leon P M

    2014-05-15

    The conservation of biodiverse wetland vegetation, including that of rich fens, has a high priority at a global scale. Although P-eutrophication may strongly decrease biodiversity in rich fens, some well-developed habitats do still survive in highly fertilized regions due to nutrient filtering services of large wetlands. The occurrence of such nutrient gradients is well-known, but the biogeochemical mechanisms that determine these patterns are often unclear. We therefore analyzed chemical speciation and binding of relevant nutrients and minerals in surface waters, soils and plants along such gradients in the large Ramsar nature reserve Weerribben-Wieden in the Netherlands. P-availability was lowest in relatively isolated floating rich fens, where plant N:P ratios indicated P-limitation. P-limitation can persist here despite high P-concentrations in surface waters near the peripheral entry locations, because only a small part of the P-input reaches the more isolated waters and fens. This pattern in P-availability appears to be primarily due to precipitation of Fe-phosphates, which mainly occurs close to entry locations as indicated by decreasing concentrations of Fe- and Al-bound P in the sub-aquatic sediments along this gradient. A further decrease of P-availability is caused by biological sequestration, which occurs throughout the wetland as indicated by equal concentrations of organic P in all sub-aquatic sediments. Our results clearly show that the periphery of large wetlands does indeed act as an efficient P-filter, sustaining the necessary P-limitation in more isolated parts. However, this filtering function does harm the ecological quality of the peripheral parts of the reserve. The filtering mechanisms, such as precipitation of Fe-phosphates and biological uptake of P, are crucial for the conservation and restoration of biodiverse rich fens in wetlands that receive eutrophic water from their surroundings. This seems to implicate that biodiverse wetland

  7. Complete degradation of dimethyl isophthalate requires the biochemical cooperation between Klebsiella oxytoca Sc and Methylobacterium mesophilicum Sr Isolated from Wetland sediment.

    PubMed

    Li, Jiaxi; Gu, Ji-Dong

    2007-07-15

    Two bacterial strains Klebsiella oxytoca Sc and Methylobacterium mesophilicum Sr were isolated and identified from enrichment cultures using dimethyl isophthalate (DMI) as the sole source of carbon and energy, and mangrove sediment as an inoculum. DMI was rapidly transformed by K. oxytoca Sc in the culture with formation of monomethyl isophthalate (MMI), which accumulated in the culture medium. M. mesophilicum Sr, incapable of utilizing DMI, showed high capability of degrading MMI to a transitory intermediate isophthalic acid (IPA), which was further mineralized by this strain. The biochemical pathway of DMI degradation by these two bacteria in a consortium was proposed: DMI to MMI by K. oxytoca Sc, MMI to IPA by M. mesophilicum Sr, and IPA by both K. oxytoca Sc and M. mesophilicum Sr based on the identified degradation intermediates. The consortium comprising K. oxytoca Sc and M. mesophilicum Sr was effective in mineralization of DMI. The results suggest that complete degradation of environmental pollutant DMI requires the biochemical cooperation between different microorganisms of the mangrove environment.

  8. Pre-Holocene Origin for the Coronopus navasii Disjunction: Conservation Implications from Its Long Isolation

    PubMed Central

    G. Fernández de Castro, Alejandro; Moreno-Saiz, Juan Carlos; Valcárcel, Virginia

    2016-01-01

    Integration of unexpected discoveries about charismatic species can disrupt their well-established recovery plans, particularly when this requires coordinate actions among the different governments responsible. The Critically Endangered Coronopus navasii (Brassicaceae) was considered a restricted endemism to a few Mediterranean temporary ponds in a high mountain range of Southeast Spain, until a new group of populations were discovered 500 km North in 2006. Ten years after this finding, its management has not been accommodated due to limited information of the new populations and administrative inertia. In this study, DNA sequences and species distribution models are used to analyse the origin of the C. navasii disjunction as a preliminary step to reassess its recovery plan. Molecular results placed the disjunction during Miocene-Pleistocene (6.30–0.49 Mya, plastid DNA; 1.45–0.03 Mya, ribosomal DNA), which discards a putative human-mediated origin. In fact, the haplotype network and the low gene flow estimated between disjunct areas suggest long-term isolation. Dispersal is the most likely explanation for the disjunction as interpreted from the highly fragmented distribution projected to the past. Particularly, a northward dispersal from Southeast is proposed since C. navasii haplotype network is connected to the sister-group through the southern haplotype. Although the reassessment of C. navasii conservation status is more optimistic under the new extent of occurrence, its long-term survival may be compromised due to the: (1) natural fragmentation and rarity of the species habitat, (2) genetic isolation between the two disjunct areas, and (3) northward shift of suitable areas under future climate change scenarios. Several ex-situ and in-situ conservation measures are proposed for integrating Central East Spanish populations into the on-going recovery plan, which still only contemplates Southeast populations and therefore does not preserve the genetic structure

  9. Detection and isolation of Listeria monocytogenes from food samples: implications of sublethal injury.

    PubMed

    Donnelly, Catherine W

    2002-01-01

    Detection of L. monocytogenes is often limited by the performance of the enrichment media used to support bacterial growth to detectable levels. Because Listeria may exist at extremely low levels in foods, sample enrichment protocols must amplify these low initial populations to detectable limits. Listeria may also exist in an injured state in food products as a result of processing treatments such as heating, freezing, exposure to acids, or exposure to sanitizing compounds. Selective agents in enrichment media normally used for recovery of Listeria may inhibit repair and detection of sublethally injured Listeria, which may go on to repair, grow, and regain pathogenicity. Simple modifications to existing regulatory protocols, such as those that use more than one enrichment broth, raise sensitivity of detection to 90%. This review shows the efficacy of repair/enrichment strategies, which increase sensitivity of detection to 97.5-98.8% compared with 65-70% by standard regulatory protocols. Ribotype analysis of isolates obtained from meat samples reveals a complex microbial ecology, with striking differences in both number and distribution of distinct genetic types of Listeria, depending upon whether samples are enriched in selective or repair/enrichment media. In studies on enrichment of dairy environmental samples in University of Vermont medium and Listeria repair broth (UVM and LRB), combining these 2 primary enrichment media into a single tube of Fraser broth for dual secondary enrichment yielded a significantly higher percentage (p < 0.05) of Listeria-positive samples than did use of either LRB or UVM alone. Refinement of conventional Listeria recovery methods should consider the importance of the enrichment step, the nutritional needs of specific genetic types, and the physiological condition of Listeria isolates in foods.

  10. Pre-Holocene Origin for the Coronopus navasii Disjunction: Conservation Implications from Its Long Isolation.

    PubMed

    Martín-Hernanz, Sara; G Fernández de Castro, Alejandro; Moreno-Saiz, Juan Carlos; Valcárcel, Virginia

    2016-01-01

    Integration of unexpected discoveries about charismatic species can disrupt their well-established recovery plans, particularly when this requires coordinate actions among the different governments responsible. The Critically Endangered Coronopus navasii (Brassicaceae) was considered a restricted endemism to a few Mediterranean temporary ponds in a high mountain range of Southeast Spain, until a new group of populations were discovered 500 km North in 2006. Ten years after this finding, its management has not been accommodated due to limited information of the new populations and administrative inertia. In this study, DNA sequences and species distribution models are used to analyse the origin of the C. navasii disjunction as a preliminary step to reassess its recovery plan. Molecular results placed the disjunction during Miocene-Pleistocene (6.30-0.49 Mya, plastid DNA; 1.45-0.03 Mya, ribosomal DNA), which discards a putative human-mediated origin. In fact, the haplotype network and the low gene flow estimated between disjunct areas suggest long-term isolation. Dispersal is the most likely explanation for the disjunction as interpreted from the highly fragmented distribution projected to the past. Particularly, a northward dispersal from Southeast is proposed since C. navasii haplotype network is connected to the sister-group through the southern haplotype. Although the reassessment of C. navasii conservation status is more optimistic under the new extent of occurrence, its long-term survival may be compromised due to the: (1) natural fragmentation and rarity of the species habitat, (2) genetic isolation between the two disjunct areas, and (3) northward shift of suitable areas under future climate change scenarios. Several ex-situ and in-situ conservation measures are proposed for integrating Central East Spanish populations into the on-going recovery plan, which still only contemplates Southeast populations and therefore does not preserve the genetic structure and

  11. Soil-Gas Identification of Environmental Factors Affecting CO2 Concentrations Beneath a Playa Wetland: Implications for Soil-Gas Monitoring at Carbon Storage Sites

    NASA Astrophysics Data System (ADS)

    Romanak, K.; Bennett, P.

    2009-12-01

    Strategies for identifying and interpreting the effects of environmental factors on near-surface CO2 concentrations are essential to developing accurate monitoring protocols at carbon storage sites. Based on the results of a three-year study of a natural analogue we present, 1) a method for using soil-gas to identify near-surface CO2 cycling, and 2) a framework for developing monitoring protocols and site evaluation for near-surface monitoring. Near-surface CO2 production, consumption, and re-distribution was observed in the vadose-zone of a highly CO2-reactive playa wetland in the Texas High Plains. Atmospheric conditions, organic and inorganic soil carbon, subsurface pressure, water flux, and surface and groundwater chemistry were compared to real-time background measurements of CO2, CH4, O2+Ar, and N2 from depths up to 45 feet. Carbon isotopes and spatially and temporally variable concentrations of CO2 ≤ 17%, CH4 ≤ 2%, and O2 from 21-0% indicate CO2 and CH4 are produced by microbes. Molar gas ratios of O2 and CO2 distinguish between oxidation of organic matter (CH2O + O2 → CO2 + H2O), CH4 oxidation (CH4 + 2O2 → CO2 + 2H2O), and potentially acetate fermentation (CH3COOH → CH4 + CO2). O2 consumption and distribution is regulated by water flux that supplies dissolved organics to microbes at depth and regulates oxygen supply by blocking vertical permeability and atmospheric gas exchange. A surface flux experiment indicates that when playa floors are dry, subsurface wetting fronts from rain events or previous ponding periods block vertical permeability resulting in surface flux measurements that do not represent subsurface conditions. Samples with CO2+O2 < 21% and N2 > 78% identify dissolution of CO2 and carbonate minerals into recharging groundwater resulting in loss of pore pressure and chemically-induced advection of atmosphere into pores. Inverse geochemical reaction modeling (PHREEQC) of playa surface water and perched groundwater in high PCO2 zones

  12. Wetlands: their use and regulation

    SciTech Connect

    Not Available

    1984-01-01

    Although destruction of United States wetlands has slowed, their continued conversion, especially in certain inland regions of the country, may pose adverse ecological effects over the next few decades. The Army Corps of Engineers' regulatory program (Section 404 of the Clean Water Act) protects most coastal wetlands, but provides no protection for 95% of the country's wetlands which remain inland. These inland, freshwater wetlands, converted for agricultural purposes, comprise 80% of the wetland losses over the past 30 years. This report outlines options for more effective federal management, such as the mapping and categorizing of wetlands to determine relative values. In effect, agencies can focus protection programs on higher-value wetlands, especially those threatened by agricultural conversion. The report also discusses the contradictory federal policies aimed at wetlands; for example, the tax code encourages the development and draining of wetlands at the same time that federal regulations discourage their destruction.

  13. Poly-extremotolerant bacterium isolated from reverse osmosis reject: an implication toward waste water management.

    PubMed

    Jain, D; Mishra, S K; Shrivastav, A; Rathod, M; Shethia, B D; Mishra, S; Jha, B

    2010-11-01

    We demonstrate the tolerance of bacterial strain SM2014 to various unsustainable conditions and suggest its implication in waste water management. Its sustainability to reverse osmosis pressure (2.1 MPa) during desalination, and survival percentage of 73 % under hyperbaric conditions (pressure tension of 3.1 MPa under absolute oxygen atmosphere) confirmed its pressure tolerance. The growth of this strain at pH 9 or 10 and at 60 °C alone or in combination revealed its unique physiology as poly-extremotolerant strain. As an adaptive mechanism, the ratio of saturated to unsaturated fatty acids changed with growth conditions. Under poly-extreme condition long chain saturated fatty acid (C₁₈:₀, C₁₆:₀, C₁₄:₀, C₁₂:₀) predominated at the expense of unsaturated fatty acids. The nucleotide BLAST of 16S rRNA gene sequence of strain SM2014 with the NCBI gene bank sequences showed its close identity to Bacillus licheniformis with a similarity match of 94 %. The secretion of industrially valuable enzymes proteinase, lipase and amylase under such harsh conditions further signified potential of this strain as a source of extremozymes. Its unique characteristics underscore its relevance in waste water management.

  14. Wetland functional health assessment using remote sensing and other techniques: Literature search and overview. Technical memo

    SciTech Connect

    Patience, N.; Klemas, V.

    1993-03-01

    Contents: introduction; remote sensing of wetland biomass and other wetland condition indicators; conceptual approaches in wetland assessment; wetland extent and type; landscape and wetland patterns; wetland biomass and productivity; wetland vegetation; wetland habitat quality; wetland hydrology; and conclusions and recommendations.

  15. Avian utilization of subsidence wetlands

    SciTech Connect

    Nawrot, J.R.; Conley, P.S.; Smout, C.L.

    1995-09-01

    Diverse and productive wetlands have resulted from coal mining in the midwest. The trend from surface to underground mining has increased the potential for subsidence. Planned subsidence of longwall mining areas provides increased opportunities for wetland habitat establishment. Planned subsidence over a 180 meter (590 foot) deep longwall mine in southern Illinois during 1984 to 1986 produced three subsidence wetlands totaling 15 hectares (38 acres). The resulting palustrine emergent wetlands enhanced habitat diversity within the surrounding palustrine forested unsubsided area. Habitat assessments and evaluations of avian utilization of the subsidence wetlands were conducted during February 1990 through October 1991. Avian utilization was greatest within the subsided wetlands. Fifty-three bird species representing seven foraging guilds utilized the subsidence wetlands. Wading/fishing, dabbling waterfowl, and insectivorous avian guilds dominated the subsidence wetlands. The subsidence wetlands represented ideal habitat for wood ducks and great blue herons which utilized snags adjacent to and within the wetlands for nesting (19 great blue heron nests produced 25 young). Dense cover and a rich supply of macroinvertebrates provide excellent brood habitat for wood ducks, while herpetofauna and ichthyofauna provided abundant forage in shallow water zones for great blue herons and other wetland wading birds. The diversity of game and non-game avifauna utilizing the subsidence areas demonstrated the unique value of these wetlands. Preplanned subsidence wetlands can help mitigate loss of wetland habitats in the midwest.

  16. Wetlands in changed landscapes: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands.

    PubMed

    Bird, Matthew S; Day, Jenny A

    2014-01-01

    Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated) occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology) are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis) indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m); although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%), relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%). The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m) buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality.

  17. Wetlands in Changed Landscapes: The Influence of Habitat Transformation on the Physico-Chemistry of Temporary Depression Wetlands

    PubMed Central

    Bird, Matthew S.; Day, Jenny A.

    2014-01-01

    Temporary wetlands dominate the wet season landscape of temperate, semi-arid and arid regions, yet, other than their direct loss to development and agriculture, little information exists on how remaining wetlands have been altered by anthropogenic conversion of surrounding landscapes. This study investigates relationships between the extent and type of habitat transformation around temporary wetlands and their water column physico-chemical characteristics. A set of 90 isolated depression wetlands (seasonally inundated) occurring on coastal plains of the south-western Cape mediterranean-climate region of South Africa was sampled during the winter/spring wet season of 2007. Wetlands were sampled across habitat transformation gradients according to the areal cover of agriculture, urban development and alien invasive vegetation within 100 and 500 m radii of each wetland edge. We hypothesized that the principal drivers of physico-chemical conditions in these wetlands (e.g. soil properties, basin morphology) are altered by habitat transformation. Multivariate multiple regression analyses (distance-based Redundancy Analysis) indicated significant associations between wetland physico-chemistry and habitat transformation (overall transformation within 100 and 500 m, alien vegetation cover within 100 and 500 m, urban cover within 100 m); although for significant regressions the amount of variation explained was very low (range: ∼2 to ∼5.5%), relative to that explained by purely spatio-temporal factors (range: ∼35.5 to ∼43%). The nature of the relationships between each type of transformation in the landscape and individual physico-chemical variables in wetlands were further explored with univariate multiple regressions. Results suggest that conservation of relatively narrow (∼100 m) buffer strips around temporary wetlands is likely to be effective in the maintenance of natural conditions in terms of physico-chemical water quality. PMID:24533161

  18. Coastal wetlands of Chesapeake Bay

    USGS Publications Warehouse

    Baldwin, Andrew H.; Kangas, Patrick J.; Megonigal, J. Patrick; Perry, Matthew C.; Whigham, Dennis F.; Batzer, Darold P.; Batzer, Darold P.; Baldwin, Andrew H.

    2012-01-01

    Wetlands are prominent landscapes throughout North America. The general characteristics of wetlands are controversial, thus there has not been a systematic assessment of different types of wetlands in different parts of North America, or a compendium of the threats to their conservation. Wetland Habitats of North America adopts a geographic and habitat approach, in which experts familiar with wetlands from across North America provide analyses and syntheses of their particular region of study. Addressing a broad audience of students, scientists, engineers, environmental managers, and policy makers, this book reviews recent, scientifically rigorous literature directly relevant to understanding, managing, protecting, and restoring wetland ecosystems of North America.

  19. [Research progress on wetland ecotourism].

    PubMed

    Wang, Li-Long; Lu, Lin

    2009-06-01

    Wetland is rich in biodiversity and cultural diversity, possessing higher tourism value and environmental education and community participation functions. Wetland ecotourism reflects the sustainable development of tourism economy and wetland protection, having received great concern from governments and scholars at home and abroad. This paper summarized the related theories and practices, discussed the research advances in wetland ecotourism from the aspects of significance, progress, contents, methods and results, and pointed out the important research fields in the future, aimed to accelerate the development of wetland ecotourism research and to provide reference about the resources exploitation, environment protection, and scientific administration of wetland and related scenic areas.

  20. Verification of causal relationships between Listeria monocytogenes isolates implicated in food-borne outbreaks of listeriosis by randomly amplified polymorphic DNA patterns.

    PubMed

    Czajka, J; Batt, C A

    1994-05-01

    Food and clinical isolates of Listeria monocytogenes recovered from four different outbreaks of listeriosis were analyzed by their PCR-based randomly amplified polymorphic DNA (RAPD) patterns to verify their causal relationships. The generation of DNA fingerprints by PCR-based RAPD analysis is a fast and sensitive method for the epidemiological tracking and identification of bacteria implicated in food poisoning outbreaks. The L. monocytogenes strains used in the study were obtained from the following four outbreaks: California, 1985, Mexican-style cheese; Canadian Maritime Provinces, 1981, coleslaw; Canada, 1989, brie cheese; and Canada, 1989, alfalfa tablets. RAPD profiles were generated by using random 10-mer primers for at least one food and one clinical isolate recovered from each outbreak. Identical profiles for 20 different primers were observed for each pair of food and clinical isolates from two of the four outbreaks. Isolates from the outbreak involving alfalfa tablets exhibited identical patterns for 19 primers; however, primer OPA-1 produced one additional 1.8-kb fragment, designated OPA-1-1.8, that was found in the food isolate but not in the corresponding clinical isolate. Hybridization analysis revealed that the absence of the OPA-1-1.8 polymorphic fragment in the clinical isolate was due to a deletion of at least 1.8 kb. Loss of the OPA-1-1.8 polymorphic fragment could not be induced by infective passage of the L. monocytogenes isolate from the alfalfa tablet through a mouse or by growth of this isolate under selective conditions. This suggests that the isolate recovered from the food was not identical to the isolate recovered from the patient. The ability to produce unique RAPD patterns allows for the discrimination between isolates even if they are of the same serotype and multilocus enzyme electrophoretic type.

  1. Ultrafast intramolecular exciton splitting dynamics in isolated low-band-gap polymers and their implications in photovoltaic materials design.

    PubMed

    Rolczynski, Brian S; Szarko, Jodi M; Son, Hae Jung; Liang, Yongye; Yu, Luping; Chen, Lin X

    2012-03-01

    Record-setting organic photovoltaic cells with PTB polymers have recently achieved ~8% power conversion efficiencies (PCE). A subset of these polymers, the PTBF series, has a common conjugated backbone with alternating thieno[3,4-b]thiophene and benzodithiophene moieties but differs by the number and position of pendant fluorine atoms attached to the backbone. These electron-withdrawing pendant fluorine atoms fine tune the energetics of the polymers and result in device PCE variations of 2-8%. Using near-IR, ultrafast optical transient absorption (TA) spectroscopy combined with steady-state electrochemical methods we were able to obtain TA signatures not only for the exciton and charge-separated states but also for an intramolecular ("pseudo") charge-transfer state in isolated PTBF polymers in solution, in the absence of the acceptor phenyl-C(61)-butyric acid methyl ester (PCBM) molecules. This led to the discovery of branched pathways for intramolecular, ultrafast exciton splitting to populate (a) the charge-separated states or (b) the intramolecular charge-transfer states on the subpicosecond time scale. Depending on the number and position of the fluorine pendant atoms, the charge-separation/transfer kinetics and their branching ratios vary according to the trend for the electron density distribution in favor of the local charge-separation direction. More importantly, a linear correlation is found between the branching ratio of intramolecular charge transfer and the charge separation of hole-electron pairs in isolated polymers versus the device fill factor and PCE. The origin of this correlation and its implications in materials design and device performance are discussed.

  2. Wetland InSAR

    NASA Astrophysics Data System (ADS)

    Wdowinski, S.; Kim, S.; Amelung, F.; Dixon, T.

    2006-12-01

    Wetlands are transition zones where the flow of water, the nutrient cycling, and the sun energy meet to produce a unique and very productive ecosystem. They provide critical habitat for a wide variety of plant and animal species, including the larval stages of many ocean fish. Wetlands also have a valuable economical importance, as they filter nutrients and pollutants from fresh water used by human and provide aquatic habitats for outdoor recreation, tourism, and fishing. Globally, many such regions are under severe environmental stress, mainly from urban development, pollution, and rising sea level. However, there is increasing recognition of the importance of these habitats, and mitigation and restoration activities have begun in a few regions. A key element in wetlands conservation, management, and restoration involves monitoring its hydrologic system, as the entire ecosystem depends on its water supply. Heretofore, hydrologic monitoring of wetlands are conducted by stage (water level) stations, which provide good temporal resolution, but suffer from poor spatial resolution, as stage station are typically distributed several, or even tens of kilometers, from one another. Wetland application of InSAR provides the needed high spatial resolution hydrological observations, complementing the high temporal resolution terrestrial observations. Although conventional wisdom suggests that interferometry does not work in vegetated areas, several studies have shown that both L- and C-band interferograms with short acquisition intervals (1-105 days) can maintain excellent coherence over wetlands. In this study we explore the usage of InSAR for detecting water level changes in various wetland environments around the world, including the Everglades (south Florida), Louisiana Coast (southern US), Chesapeake Bay (eastern US), Pantanal (Brazil), Okavango Delta (Botswana), and Lena Delta (Siberia). Our main study area is the Everglades wetland (south Florida), which is covered by

  3. Canadian wetland policy promotes conservation

    SciTech Connect

    Rubec, C.

    1992-11-01

    With the recent adoption of The Federal Policy on Wetland Conservation, the Government of Canada has firmly stated that wetland conservation will become a fundamental aspect of federal government decision-making in all federal government programs and institutions. The policy focuses on the sustainable, wise use of wetland areas on federal lands (about 29% of Canada`s wetland base) as well as wetlands, such as national parks, under direct federal authority. The federal government of Canada is promoting a nonregulatory, cooperative approach to achieve the following goals: Maintain the benefits derived from wetlands throughout Canada; Achieve no net loss of wetland functions on federal lands and waters; Enhance and rehabilitate wetlands in areas where the continuing loss or degradation of wetlands or their functions have reached critical levels; Recognize wetland functions in resource planning, management, and economic decision-making with regard to all federal programs, policies, and activities; Secure wetlands of significance to Canadians; and, Recognize sound, sustainable management practices in sectors such as forestry and agriculture that make a positive contribution to wetlands conservation while also achieving wise use of wetland resources.

  4. The Carolina Bay Restoration Project: Implementation and Management of a Wetland Mitigation Bank.

    SciTech Connect

    Barton, Christopher; DeSteven, Diane; Sharitz, Rebecca; Kilgo, John; Imm, Donald; Kolka, Randy; Blake, John, I.

    2003-01-01

    A wetlands Mitigation Bank was established at the Savannah River Site (SRS) in 1997 as a compensatory alternative for unavoidable wetland losses associated with future authorized construction and environmental restoration projects in SRS wetlands. The Bank was intended not only to hasten mitigation efforts with respect to regulatory requirements and implementation, but also to provide onsite and fully functional compensation of impacted wetland acreage prior to any impact. Restoration and enhancement of small isolated wetlands, as well as major bottomland wetland systems scattered throughout the nonindustrialized area of SRS were designated for inclusion in the Bank. Based on information and techniques gained from previous research efforts involving Carolina bay wetlands (DOE 1997), a project to restore degraded Carolina bays on SRS has been undertaken to serve as the initial ''deposit'' in The Bank. There are over 300 Carolina bays or bay-like depression wetlands on the SRS, of which an estimated two-thirds were ditched or disturbed prior to federal occupation of the Site (Kirkman et al., 1996). These isolated wetlands range from small ephemeral depressions to large permanent ponds of 10-50 hectares in size. They provide habitat to support a wide range of rare plant species, and many vertebrates (birds, amphibians, bats). Historical impacts to the Carolina bays at SRS were primarily associated with agricultural activities. Bays were often drained tilled and planted to crops. The consequence was a loss in the wetland hydrologic cycle, the native wetland vegetation, and associated wildlife. The purpose of this mitigation and research project is to restore the functions and vegetation typical of intact depression wetlands and, in doing so, to enhance habitat for wetland dependent wildlife on SRS.

  5. Association between wetland disturbance and biological attributes in floodplain wetlands

    USGS Publications Warehouse

    Chipps, S.R.; Hubbard, D.E.; Werlin, K.B.; Haugerud, N.J.; Powell, K.A.; Thompson, John; Johnson, T.

    2006-01-01

    We quantified the influence of agricultural activities on environmental and biological conditions of floodplain wetlands in the upper Missouri River basin. Seasonally-flooded wetlands were characterized as low impact (non-disturbed) or high impact (disturbed) based on local land use. Biological data collected from these wetlands were used to develop a wetland condition index (WCI). Fourteen additional wetlands were sampled to evaluate the general condition of seasonally-flooded floodplain wetlands. Structural and functional attributes of macrophyte, algae, and macroinvertebrate communities were tested as candidate metrics for assessing biotic responses. The WCI we developed used six biological metrics to discriminate between disturbed and non-disturbed wetlands: 1) biomass of Culicidae larvae, 2) abundance of Chironomidae larvae, 3) macroinvertebrate diversity, 4) total number of plant species, 5) the proportion of exotic plant species, and 6) total number of sensitive diatom species. Disturbed wetlands had less taxa richness and species diversity and more exotic and nuisance (e.g., mosquitoes) species. Environmental differences between low and high impact wetlands included measures of total potassium, total phosphorus, total nitrogen, alkalinity, conductance, and sediment phosphorus concentration. Canonical analyses showed that WCI scores were weakly correlated (P = 0.057) with environmental variables in randomly selected wetlands. In addition, mean WCI score for random wetlands was higher than that for high impact wetlands, implying that floodplain wetlands were less impacted by the types of agricultural activities affecting high impact sites. Inter-year sampling of some wetlands revealed that WCI metrics were correlated in 2000 and 2001, implying that biological metrics provided useful indicators of disturbance in floodplain wetlands. ?? 2006, The Society of Wetland Scientists.

  6. Isolation on the West Florida Shelf with implications for red tides and pollutant dispersal in the Gulf of Mexico

    PubMed Central

    Olascoaga, M. J.

    2011-01-01

    Analysis of year-long drifter trajectories and records of simulated surface Lagrangian Coherent Structures (LCSs) have suggested the presence of a resilient Cross-Shelf Transport Barrier (CSTB) on the West Florida Shelf (WFS). The CSTB was conjectured to provide a large degree of isolation, which is consequential for the fueling of red tides on the southern WFS by nutrients possibly released by rivers and canals directly on the region. Here this conjecture is thoroughly tested by identifying LCSs as well as performing tracer advection calculations based on seven-year-long records of surface and subsurface currents produced by a HYbrid-Coordinate Ocean Model (HYCOM) simulation of the Gulf of Mexico (GoM). The identified LCSs suggest that the CSTB extends downward in the water column. The tracer calculations suggest that, while the majority of the nutrients possibly released by rivers and canals directly on the southern WFS are retained within the region for long times, only a small fraction of the nutrients possibly released by rivers outside the WFS reach the southern WFS, mainly accompanying shoreward excursions of the CSTB. These results add importance to the role played by the CSTB in controlling red tide development on the WFS. Implications of the results for the dispersal of pollutants, such as oil, in the GoM are discussed. PMID:22287830

  7. Isolation on the West Florida Shelf with implications for red tides and pollutant dispersal in the Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Olascoaga, M. J.

    2010-12-01

    Analysis of year-long drifter trajectories and records of simulated surface Lagrangian Coherent Structures (LCSs) have suggested the presence of a resilient Cross-Shelf Transport Barrier (CSTB) on the West Florida Shelf (WFS). The CSTB was conjectured to provide a large degree of isolation, which is consequential for the fueling of red tides on the southern WFS by nutrients possibly released by rivers and canals directly on the region. Here this conjecture is thoroughly tested by identifying LCSs as well as performing tracer advection calculations based on seven-year-long records of surface and subsurface currents produced by a HYbrid-Coordinate Ocean Model (HYCOM) simulation of the Gulf of Mexico (GoM). The identified LCSs suggest that the CSTB extends downward in the water column. The tracer calculations suggest that, while the majority of the nutrients possibly released by rivers and canals directly on the southern WFS are retained within the region for long times, only a small fraction of the nutrients possibly released by rivers outside the WFS reach the southern WFS, mainly accompanying shoreward excursions of the CSTB. These results add importance to the role played by the CSTB in controlling red tide development on the WFS. Implications of the results for the dispersal of pollutants, such as oil, in the GoM are discussed.

  8. Isolation on the West Florida Shelf with implications for red tides and pollutant dispersal in the Gulf of Mexico.

    PubMed

    Olascoaga, M J

    2010-01-01

    Analysis of year-long drifter trajectories and records of simulated surface Lagrangian Coherent Structures (LCSs) have suggested the presence of a resilient Cross-Shelf Transport Barrier (CSTB) on the West Florida Shelf (WFS). The CSTB was conjectured to provide a large degree of isolation, which is consequential for the fueling of red tides on the southern WFS by nutrients possibly released by rivers and canals directly on the region. Here this conjecture is thoroughly tested by identifying LCSs as well as performing tracer advection calculations based on seven-year-long records of surface and subsurface currents produced by a HYbrid-Coordinate Ocean Model (HYCOM) simulation of the Gulf of Mexico (GoM). The identified LCSs suggest that the CSTB extends downward in the water column. The tracer calculations suggest that, while the majority of the nutrients possibly released by rivers and canals directly on the southern WFS are retained within the region for long times, only a small fraction of the nutrients possibly released by rivers outside the WFS reach the southern WFS, mainly accompanying shoreward excursions of the CSTB. These results add importance to the role played by the CSTB in controlling red tide development on the WFS. Implications of the results for the dispersal of pollutants, such as oil, in the GoM are discussed. PMID:22287830

  9. Hydrologic functions of prairie wetlands

    USGS Publications Warehouse

    LaBaugh, J.W.; Winter, T.C.; Rosenberry, D.O.

    1998-01-01

    Wetlands in the prairie known as potholes or sloughs represent an ever-changing mosaic of surface waters interacting with the atmosphere, groundwater, and each other in a variety of ways. Studies of groups of adjacent wetlands in different parts of the glaciated North American prairie have enabled some connections to be made between hydrologic processes, biological communities, and use of these wetlands by wetland-dependent wildlife. Understanding controls on variability in water levels, water volume, and salinity in these wetlands sets the stage for understanding controls on biological communities utilizing these wetlands. The role that natural variability in water and salinity plays in making these wetlands an important resource for waterfowl will provide an important context for those who are responsible for artificially altering the variability of water and salinity in prairie wetlands.

  10. North Atlantic Coastal Tidal Wetlands

    EPA Science Inventory

    The book chapter provides college instructors, researchers, graduate and advanced undergraduate students, and environmental consultants interested in wetlands with foundation information on the ecology and conservation concerns of North Atlantic coastal wetlands. The book c...

  11. Maintenance of variable responses for coping with wetland drying in freshwater turtles.

    PubMed

    Roe, John H; Georges, Arthur

    2008-02-01

    Aquatic animals inhabiting temporary wetlands must respond to habitat drying either by estivating or moving to other wetlands. Using radiotelemetry and capture mark recapture, we examined factors influencing the decisions made by individuals in a population of freshwater turtles (Chelodina longicollis) in response to wetland drying in southeastern Australia. Turtles exhibited both behaviors, either remaining quiescent in terrestrial habitats for variable lengths of time (terrestrial estivation) or moving to other wetlands. Both the proportion of individuals that estivated terrestrially and the time individuals spent in terrestrial habitats increased with decreasing wetland hydroperiod and increasing distance to the nearest permanent wetland, suggesting behavioral decisions are conditional or state dependent (i.e., plastic) and influenced by local and landscape factors. Variation in the strategy or tactic chosen also increased with increasing isolation from other wetlands, suggesting that individuals differentially weigh the costs and benefits of residing terrestrially vs. those of long-distance movement; movement to other wetlands was the near universal strategy chosen when only a short distance must be traveled to permanent wetlands. The quality of temporary wetlands relative to permanent wetlands at our study site varies considerably and unpredictably with annual rainfall and with it the cost-benefit ratio of each strategy or tactic. Residency in or near temporary wetlands is more successful during wet periods due to production benefits, but movement to permanent wetlands is more successful, or least costly, during dry periods due to survival and body condition benefits. This shifting balance may maintain diversity in response of turtles to the spatial and temporal pattern in wetland quality if their response is in part genetically determined. PMID:18409437

  12. Wetlands: The changing regulatory landscape

    SciTech Connect

    Glick, R.M. )

    1993-05-01

    Protection of wetlands became a national issue in 1988 when President George Bush pledged no net loss of wetlands in the US under his [open quotes]environmental presidency.[close quotes] As wetlands became a national issue, the job of protecting them became an obligation for many groups, including hydro-power developers. Now, when a site selected for development includes an area that may be classified as a wetland, the developer quickly discovers the importance of recognizing and protecting these natural habitats. Federal legislation severely limits development of wetland, and most states increase the restrictions with their own wetlands regulations. The difficulty of defining wetlands complicates federal and state enforcement. Land that appears to be dry may in fact be classified as a wetland. So, even if a site appears dry, potential hydro developers must confirm whether or not any jurisdictional wetlands are present. Regulated lands include much more than marshes and swamps. Further complicating the definition of wetlands, a recent court decision found that even artificially created wetlands, such as man-made ponds, may be subject to regulation. Hydro developers must be aware of current regulatory requirements before they consider development of any site that may contain wetlands. To be certain that a site is [open quotes]buildable[close quotes] from the standpoint of wetlands regulation, a developer must verify (with the help of state agencies) that the property does not contain any jurisdictional wetlands. If it does, the regulatory process before development becomes much more complicated. For the short term, uncertainty abounds and extreme caution is in order. Because the regulatory process has become so complex and an agreeable definition of wetlands so elusive, the trend among the Corps and collaborating agencies is to constrict nationwide permits in favor of narrowing the jurisdictional definition of wetlands.

  13. Reducing sedimentation of depressional wetlands in agricultural landscapes

    USGS Publications Warehouse

    Skagen, S.K.; Melcher, C.P.; Haukos, D.A.

    2008-01-01

    Depressional wetlands in agricultural landscapes are easily degraded by sediments and contaminants accumulated from their watersheds. Several best management practices can reduce transport of sediments into wetlands, including the establishment of vegetative buffers. We summarize the sources, transport dynamics, and effect of sediments, nutrients, and contaminants that threaten wetlands and the current knowledge of design and usefulness of grass buffers for protecting isolated wetlands. Buffer effectiveness is dependent on several factors, including vegetation structure, buffer width, attributes of the surrounding watershed (i.e., area, vegetative cover, slope and topography, soil type and structure, soil moisture, amount of herbicides and pesticides applied), and intensity and duration of rain events. To reduce dissolved contaminants from runoff, the water must infiltrate the soil where microbes or other processes can break down or sequester contaminants. But increasing infiltration also diminishes total water volume entering a wetland, which presents threats to wetland hydrology in semi-arid regions. Buffer effectiveness may be enhanced significantly by implementing other best management practices (e.g., conservation tillage, balancing input with nutrient requirements for livestock and crops, precision application of chemicals) in the surrounding watershed to diminish soil erosion and associated contaminant runoff. Buffers require regular maintenance to remove sediment build-up and replace damaged or over-mature vegetation. Further research is needed to establish guidelines for effective buffer width and structure, and such efforts should entail a coordinated, regional, multi-scale, multidisciplinary approach to evaluate buffer effectiveness and impacts. Direct measures in "real-world" systems and field validations of buffer-effectiveness models are crucial next steps in evaluating how grass buffers will impact the abiotic and biotic variables attributes that

  14. Developing a New Wetland Habitat

    ERIC Educational Resources Information Center

    Bernard, Rosalie

    2006-01-01

    This article features a project at Ohio's Miami Valley Career Technology Center (MVCTC) which has made a real difference in the wetland environment on campus. The goals of the wetland project were to replace a poorly functioning tile system and develop two wetland areas for local and migratory wildlife. The environmental/natural resources students…

  15. Wetlands: water, wildlife, plants, & people

    USGS Publications Warehouse

    Vandas, Stephen; Farrar, Frank

    1996-01-01

    Wetlands are part of all our lives. They can generally be described as transitional areas between land and deepwater habitats. There are many different kinds of wetlands, and they can be found in many different habitat types, from forests to deserts; some are maintained by saltwater, others by freshwater. This poster shows general types of diverse wetlands and demonstrates how people and wetlands can benefit by living together. The diversity of plants and animals is shown in cartooned pictures. As with plants and animals, there are many different common names for the various wetland types. The common names used on this poster were used by the U.S. Fish and Wildlife Service in the publication "Wetlands-Status and Trends in the Conterminous United States, Mid-1970's to Mid-1980's." Estuarine wetland types--salt marshes and mangrove swamps--are labeled in red letters. The estuary is where ocean saltwater and river freshwater mix. The estuary is labeled in orange letters. The inland wetland types-inland marshes and wet meadows, forested wetlands, and shrub wetlands-are labeled in yellow. Other wetlands are present in rivers, lakes, and reservoirs. The water bodies associated with these wetlands are labeled in black. The poster is folded into 8.5" x 11" panels; front and back panels can easily be photocopied.

  16. Reclaiming water with wetlands

    SciTech Connect

    Crother, C.M. )

    1994-07-01

    This article describes how officials in Riverside County, Calif. are using constructed wetlands as part of their water-resources-management program, while creating a wildlife-habitat and public-recreation area in the process. As part of its strategy, Eastern Municipal Water District (EMWD), along with the US Bureau of Reclamation (BuRec), is investigating the use of multipurpose constructed wetlands for wastewater treatment, reclaimed-water reuse, environmental enhancement, wildlife-habitat creation, and public education and recreation. EMWD is evaluating the use of wetlands to treat nitrate-contaminated ground water, recharge ground-water basins, concentrate desalination unit brines and treat storm-water runoff. By incorporating reclaimed water into its water-resources-management program, EMWD will have the flexibility to provide water of different qualities throughout the district and save potable water for potable uses.

  17. Factors that influence the hydrologic recovery of wetlands in the Northern Tampa Bay area, Florida

    USGS Publications Warehouse

    Metz, P.A.

    2011-01-01

    Although of less importance than the other three factors, a low-lying topographical position benefited the hydrologic condition of several of the study wetlands (S-68 Cypress and W-12 Cypress) both before and after the reductions in groundwater withdrawals. Compared to wetlands in a higher topographical position, those in a lower position had longer hydroperiods because of their greater ability to receive more runoff from higher elevation wetlands and to establish surface-water connections to other isolated wetlands and surface-water bodies through low-lying surface-water channels during wet conditions. In addition, wetlands in low-lying areas benefited from groundwater inflow when groundwater levels were higher than wetland water levels.

  18. Issues and approaches in assessing cumulative impacts on waterbird habitat in wetlands

    NASA Astrophysics Data System (ADS)

    Weller, Milton W.

    1988-09-01

    Wetlands are attractive to vertebrates because of their abundant nutrient resources and habitat diversity. Because they are conspicuous, vertebrates commonly are used as indicators of changes in wetlands produced by environmental impacts. Such impacts take place at the landscape level where extensive areas are lost; at the wetland complex level where some (usually small) units of a closely spaced group of wetlands are drained or modified; or at the level of the individual wetland through modification or fragmentation that impacts its habitat value. Vertebrates utilize habitats differently according to age, sex, geographic location, and season, and habitat evaluations based on isolated observations can be biased. Current wetland evaluation systems incorporate wildlife habitat as a major feature, and the habitat evaluation procedure focuses only on habitat. Several approaches for estimating bird habitat losses are derived from population curves based on natural and experimentally induced population fluctuations. Additional research needs and experimental approaches are identified for addressing cumulative impacts on wildlife habitat values.

  19. Geographically Isolated Wetlands Research Workshop Summary

    EPA Science Inventory

    During the week of November 18–21, 2013, a team of research scientists from federal, academic, and non-profit research institutions across North America met at the Joseph W. Jones Ecological Research Center in Newton, Georgia to articulate the state of the science, identify...

  20. Wetland and water supply

    USGS Publications Warehouse

    Baker, John Augustus

    1960-01-01

    The Geological Survey has received numerous inquiries about the effects of proposed changes in the wetland environment. The nature of the inquiries suggests a general confusion in the public mind as to wetland values and an increasing concern by the public with the need for facts as a basis for sound decisions when public action is required. Perhaps the largest gap in our knowledge is in regard to the role played by the wetland in the natural water scheme. Specialists in such fields as agriculture and conservation have studied the wetland in relation to its special uses and values for farming and as a habitat for fish and wildlife. However, except as studied incidentally by these specialists, the role of the wetland with respect to water has been largely neglected. This facet of the wetland problem is of direct concern to the Geological Survey. We commonly speak of water in terms of its place in the hydrologic environment---as, for example, surface water or ground water. These terms imply that water can be neatly pigeonholed. With respect to the wetland environment nothing can be further from the truth. In fact, one objective of this discussion is to demonstrate that for the wetland environment surface water, ground water, and soil water cannot be separated realistically, but are closely interrelated and must be studied together. It should be noted that this statement holds true for the hydrologic environment in general, and that the wetland environment is by no means unique in this respect. Our second and principal objective is to identify some of the problems that must be studied in order to clarify the role of the wetland in relation to water supply. We have chosen to approach these objectives by briefly describing one area for which we have some information, and by using this example to point out some of the problems that need study. First, however, let us define what we, as geohydrologists, mean by wetland and briefly consider wetland classifications. For our

  1. Wetlands for Wastewater Treatment.

    PubMed

    Jiang, Yi; Martinez-Guerra, Edith; Gnaneswar Gude, Veera; Magbanua, Benjamin; Truax, Dennis D; Martin, James L

    2016-10-01

    An update on the current research and development of the treatment technologies, which utilize natural processes or passive components in wastewater treatment, is provided in this paper. The main focus is on wetland systems and their applications in wastewater treatment (as an advanced treatment unit or decentralized system), nutrient and pollutant removal (metals, industrial and emerging pollutants including pharmaceutical compounds). A summary of studies involving the effects of vegetation, wetland design and modeling, hybrid and innovative systems, storm water treatment and pathogen removal is also included. PMID:27620086

  2. Ensuring Disaster Risk Reduction via Sustainable Wetland Development

    NASA Astrophysics Data System (ADS)

    Lyon, S. W.; Lindborg, R.; Nyström, S.; Silengo, M.; Tumbo, M.; Koutsouris, A. J.

    2015-12-01

    Wetland ecosystems around the world are increasingly being targeted as land use development 'hotspots' under growing concerns of climate variability and food security. Anthropogenic encroachment on natural wetland ecosystems can have direct consequences locally through loss of biodiversity and regionally through increased disaster risks associated with, for example, flooding. We consider two regionally-relevant wetland ecosystems in eastern Africa, namely Zambia's Lukanga Swamps and Tanzania's Kilombero Valley, experiencing varying trajectories of development under climatic variations. These regions have been targeted for inclusive, multi-stakeholder initiatives that aim at developing agricultural potential through combinations of large and small scale irrigation schemes. Through our data-driven analysis we highlight the potential for shifts in hydrologic regime of each wetland ecosystem which can have significant regional impacts on disaster risks. In the case of the Lukanga Swamps, wetlands maintain water table fluctuations that help mitigate water cycling with implications for the downstream flooding impact of annual rains. With regards to Kilombero Valley, understanding seasonal changes in hydrological processes and storages provides the cornerstone for managing future water resource impacts/feedbacks under different scenarios of land management. This work emphasizes the need to tailor strategies towards sustainable uses of wetlands that reduce disaster risks regionally while contributing to improved community health and wellbeing. It remains an open (and fundamental) question of how to best define management recommendations and activities that not only achieve climate resiliency but also are acceptable for stakeholders without compromising the balance between ecosystem service supply and biodiversity conservation.

  3. Wetland versus open water evaporation: An analysis and literature review

    NASA Astrophysics Data System (ADS)

    Mohamed, Y. A.; Bastiaanssen, W. G. M.; Savenije, H. H. G.; van den Hurk, B. J. J. M.; Finlayson, C. M.

    Is the total evaporation from a wetland surface (including: open water evaporation, plant transpiration and wet/dry soil evaporation) similar, lower, or higher than evaporation from an open water surface under the same climatic conditions? This question has been the subject of long debate; the literature does not show a consensus. In this paper we contribute to the discussion in two steps. First, we analyse the evaporation from a wetland with emergent vegetation (Ea) versus open water evaporation (Ew) by applying the Penman-Monteith equation to identical climate input data, but with different biophysical characteristics of each surface. Second, we assess the variability of measured Ea/Ew through a literature review of selected wetlands around the globe. We demonstrate that the ratio Ea/Ew is site-specific, and a function of the biophysical properties of the wetland surface, which can also undergo temporal variability depending on local hydro-climate conditions. Second, we demonstrate that the Penman-Monteith model provides a suitable basis to interpret Ea/Ew variations. This implies that the assumption of wetland evaporation to behave similar to open water bodies is not correct. This has significant implications for the total water consumption and water allocation to wetlands in river basin management.

  4. Hurricane storm surge and amphibian communities in coastal wetlands of northwestern Florida

    USGS Publications Warehouse

    Gunzburger, M.S.; Hughes, W.B.; Barichivich, W.J.; Staiger, J.S.

    2010-01-01

    Isolated wetlands in the Southeastern United States are dynamic habitats subject to fluctuating environmental conditions. Wetlands located near marine environments are subject to alterations in water chemistry due to storm surge during hurricanes. The objective of our study was to evaluate the effect of storm surge overwash on wetland amphibian communities. Thirty-two wetlands in northwestern Florida were sampled over a 45-month period to assess amphibian species richness and water chemistry. During this study, seven wetlands were overwashed by storm surge from Hurricane Dennis which made landfall 10 July 2005 in the Florida panhandle. This event allowed us to evaluate the effect of storm surge overwash on water chemistry and amphibian communities of the wetlands. Specific conductance across all wetlands was low pre-storm (<100 ??S/cm), but increased post-storm at the overwashed wetlands (x?? = 7,613 ??S/cm). Increased specific conductance was strongly correlated with increases in chloride concentrations. Amphibian species richness showed no correlation with specific conductance. One month post-storm we observed slightly fewer species in overwashed compared with non-overwashed wetlands, but this trend did not continue in 2006. More species were detected across all wetlands pre-storm, but there was no difference between overwashed and non-overwashed wetlands when considering all amphibian species or adult anurans and larval anurans separately. Amphibian species richness did not appear to be correlated with pH or presence of fish although the amphibian community composition differed between wetlands with and without fish. Our results suggest that amphibian communities in wetlands in the southeastern United States adjacent to marine habitats are resistant to the effects of storm surge overwash. ?? 2010 Springer Science+Business Media B.V.

  5. Wading into Wetlands.

    ERIC Educational Resources Information Center

    Braus, Judy, Ed.

    1986-01-01

    Ranger Rick's NatureScope is a creative education series dedicated to inspiring in children an understanding and appreciation of the natural world while developing the skills they will need to make responsible decisions about the environment. The topic of this issue is "Wading into Wetlands." Contents are organized into the following sections: (1)…

  6. A Wetland Camp for Upland Teachers.

    ERIC Educational Resources Information Center

    Soniat, Lyle; Duggan, Suzanne

    1995-01-01

    Discusses a workshop to provide an opportunity for north Louisiana teachers to learn firsthand about Louisiana's coastal wetlands. The multidisciplinary sessions focused on coastal wetland ecosystems, covering wetland productivity, the functions and value of wetlands, current wetland issues, water quality, botany, geology, fisheries management,…

  7. 7 CFR 12.33 - Use of wetland and converted wetland.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false Use of wetland and converted wetland. 12.33 Section 12.33 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation § 12.33 Use of wetland and converted wetland. (a) The provisions of § 12.32(b)(2)...

  8. 7 CFR 12.33 - Use of wetland and converted wetland.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false Use of wetland and converted wetland. 12.33 Section 12.33 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation § 12.33 Use of wetland and converted wetland. (a) The provisions of § 12.32(b)(2)...

  9. 7 CFR 12.33 - Use of wetland and converted wetland.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false Use of wetland and converted wetland. 12.33 Section 12.33 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation § 12.33 Use of wetland and converted wetland. (a) The provisions of § 12.32(b)(2)...

  10. 7 CFR 12.33 - Use of wetland and converted wetland.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false Use of wetland and converted wetland. 12.33 Section 12.33 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation § 12.33 Use of wetland and converted wetland. (a) The provisions of § 12.32(b)(2)...

  11. Phosphorus Dynamic in Wetlands

    NASA Astrophysics Data System (ADS)

    Pant, H. K.

    2010-12-01

    The projected greater warming at higher/northern latitudes in the coming decades due to global climatic changes can mineralize substantial amount of the organic matter and supply massive amount of phosphorus (P) to the water column, and cause the collapse of freshwater wetlands. Thus, the rates and duration of organic matter accumulations/decompositions under rising global temperatures are critical determinants of how a freshwater wetland functions as an ecological unit within a landscape. Phosphorus is a limiting nutrient and a primary controller of eutrophication. Once the external P loads are curtailed, internal P regeneration, resulting from decompositions of detritus and soil/sediment organic matter determine the productivity, as well as the water quality of a wetland. Thus, global rise in temperature not only causes hydro-climatic fluctuations but can also change the composition of aquatic/semi-aquatic communities, in turn, could lead to adverse effect on human food chain to collapse of the ecosystem. While P enrichment may lead to immediate algal blooms in wetlands/aquatic systems, decreased in P input from external sources may not be able to stop the blooms for a considerable period of time depending on the P loading from within. The extent of P mineralization under changing conditions, enzymatic hydrolysis, and estimation of different P pools using 31P NMR in sediments and the water columns showed that the stability and bioavailability of P can greatly be influenced by rise in temperature and fluctuations in water level, thus, are crucial in determining the fate of the freshwater wetlands.

  12. Importance of Macrophyte Quality in Determining Life-History Traits of the Apple Snails Pomacea canaliculata: Implications for Bottom-Up Management of an Invasive Herbivorous Pest in Constructed Wetlands

    PubMed Central

    Yam, Rita S. W.; Fan, Yen-Tzu; Wang, Tzu-Ting

    2016-01-01

    Pomacea canaliculata (Ampullariidae) has extensively invaded most Asian constructed wetlands and its massive herbivory of macrophytes has become a major cause of ecosystem dysfunctioning of these restored habitats. We conducted non-choice laboratory feeding experiments of P. canaliculata using five common macrophyte species in constructed wetlands including Ipomoea aquatica, Commelina communis, Nymphoides coreana, Acorus calamus and Phragmites australis. Effects of macrophytes on snail feeding, growth and fecundity responses were evaluated. Results indicated that P. canaliculata reared on Ipomoea had the highest feeding and growth rates with highest reproductive output, but all individuals fed with Phragmites showed lowest feeding rates and little growth with poorest reproductive output. Plant N and P contents were important for enhancing palatability, supporting growth and offspring quantity of P. canaliculata, whilst toughness, cellulose and phenolics had critically deterrent effects on various life-history traits. Although snail offspring quality was generally consistent regardless of maternal feeding conditions, the reduced growth and offspring quantity of the poorly-fed snails in constructed wetlands dominated by the less-palatable macrophytes could limit the invasive success of P. canaliculata. Effective bottom-up control of P. canaliculata in constructed wetlands should involve selective planting strategy using macrophytes with low nutrient and high toughness, cellulose and phenolic contents. PMID:26927135

  13. Importance of Macrophyte Quality in Determining Life-History Traits of the Apple Snails Pomacea canaliculata: Implications for Bottom-Up Management of an Invasive Herbivorous Pest in Constructed Wetlands.

    PubMed

    Yam, Rita S W; Fan, Yen-Tzu; Wang, Tzu-Ting

    2016-02-24

    Pomacea canaliculata (Ampullariidae) has extensively invaded most Asian constructed wetlands and its massive herbivory of macrophytes has become a major cause of ecosystem dysfunctioning of these restored habitats. We conducted non-choice laboratory feeding experiments of P. canaliculata using five common macrophyte species in constructed wetlands including Ipomoea aquatica, Commelina communis, Nymphoides coreana, Acorus calamus and Phragmites australis. Effects of macrophytes on snail feeding, growth and fecundity responses were evaluated. Results indicated that P. canaliculata reared on Ipomoea had the highest feeding and growth rates with highest reproductive output, but all individuals fed with Phragmites showed lowest feeding rates and little growth with poorest reproductive output. Plant N and P contents were important for enhancing palatability, supporting growth and offspring quantity of P. canaliculata, whilst toughness, cellulose and phenolics had critically deterrent effects on various life-history traits. Although snail offspring quality was generally consistent regardless of maternal feeding conditions, the reduced growth and offspring quantity of the poorly-fed snails in constructed wetlands dominated by the less-palatable macrophytes could limit the invasive success of P. canaliculata. Effective bottom-up control of P. canaliculata in constructed wetlands should involve selective planting strategy using macrophytes with low nutrient and high toughness, cellulose and phenolic contents.

  14. Gas exchange in wetlands: Controls and remote sensing

    NASA Technical Reports Server (NTRS)

    Hines, Mark E.

    1992-01-01

    This project was directed toward the quantification of fluxes of gaseous biogenic sulfur compounds from freshwater wetlands. These compounds (primarily hydrogen sulfide (H2S), dimethyl sulfide (DMS), and carbonyl sulfide (OCS)) have been implicated in the regulation of planetary albedo by the formation of microscopic atmospheric aerosols when they oxidize, and the further role of these aerosols as cloud condensation nuclei (CCN). The role of continental sources and sinks for these compounds is poorly understood. The present study was undertaken to quantify the source and sink strength of high latitude wetlands, and to delineate factors that regulate this flux.

  15. Hydrological management for improving nutrient assimilative capacity in plant-dominated wetlands: A modelling approach.

    PubMed

    Xu, Zhihao; Yang, Zhifeng; Yin, Xinan; Cai, Yanpeng; Sun, Tao

    2016-07-15

    Wetland eutrophication is a global environmental problem. Besides reducing pollutant emissions, improving nutrient assimilative capacity in wetlands is also significant for preventing eutrophication. Hydrological management can improve nutrient assimilative capacity in wetlands through physical effects on the dilution capacity of water body and ecological effects on wetland nutrient cycles. The ecological effects are significant while were rarely considered in previous research. This study focused on the ecological effects of hydrological management on two crucial nutrient removal processes, plant uptake and biological denitrification, in plant-dominated wetlands. A dual-objective optimization model for hydrological management was developed to improve wetland nitrogen and phosphorus assimilative capacities, using upstream reservoir release as water regulating measure. The model considered the interactions between ecological processes and hydrological cycles in wetlands, and their joint effects on nutrient assimilative capacity. Baiyangdian Wetland, the largest freshwater wetland in northern China, was chosen as a case study. The results found that the annual total assimilative capacity of nitrogen (phosphorus) was 4754 (493) t under the optimal scheme for upstream reservoir operation. The capacity of nutrient removal during the summer season accounted for over 80% of the annual total removal capacity. It was interesting to find that the relationship between water inflow and nutrient assimilative capacity in a plant-dominated wetland satisfied a dose-response relationship commonly describing the response of an organism to an external stressor in the medical field. It illustrates that a plant-dominated wetland shows similar characteristics to an organism. This study offers a useful tool and some fresh implications for future management of wetland eutrophication prevention. PMID:27085151

  16. Ebullitive methane emissions from oxygenated wetland streams.

    PubMed

    Crawford, John T; Stanley, Emily H; Spawn, Seth A; Finlay, Jacques C; Loken, Luke C; Striegl, Robert G

    2014-11-01

    Stream and river carbon dioxide emissions are an important component of the global carbon cycle. Methane emissions from streams could also contribute to regional or global greenhouse gas cycling, but there are relatively few data regarding stream and river methane emissions. Furthermore, the available data do not typically include the ebullitive (bubble-mediated) pathway, instead focusing on emission of dissolved methane by diffusion or convection. Here, we show the importance of ebullitive methane emissions from small streams in the regional greenhouse gas balance of a lake and wetland-dominated landscape in temperate North America and identify the origin of the methane emitted from these well-oxygenated streams. Stream methane flux densities from this landscape tended to exceed those of nearby wetland diffusive fluxes as well as average global wetland ebullitive fluxes. Total stream ebullitive methane flux at the regional scale (103 Mg C yr(-1) ; over 6400 km(2) ) was of the same magnitude as diffusive methane flux previously documented at the same scale. Organic-rich stream sediments had the highest rates of bubble release and higher enrichment of methane in bubbles, but glacial sand sediments also exhibited high bubble emissions relative to other studied environments. Our results from a database of groundwater chemistry support the hypothesis that methane in bubbles is produced in anoxic near-stream sediment porewaters, and not in deeper, oxygenated groundwaters. Methane interacts with other key elemental cycles such as nitrogen, oxygen, and sulfur, which has implications for ecosystem changes such as drought and increased nutrient loading. Our results support the contention that streams, particularly those draining wetland landscapes of the northern hemisphere, are an important component of the global methane cycle.

  17. Mitigation bank promotes research on restoring Coastal Plain depression wetlands (South Carolina).

    SciTech Connect

    Barton, Christopher D.; DeSteven, Diane; Kilgo, John C.

    2004-12-31

    Barton, Christopher, D., Diane DeSteven and John C. Kilgo. 2004. Mitigation bank promotes research on restoring Coastal Plain depression wetlands (South Carolina). Ecol. Rest. 22(4):291-292. Abstract: Carolina bays and smaller depression wetlands support diverse plant communities and provide critical habitat for semi-aquatic fauna throughout the Coastal Plain region of the southeastern United States. Historically, many depression wetlands were altered or destroyed by surface ditching, drainage, and agricultural or silviculture uses. These important habitats are now at further risk of alteration and loss following a U.S. Supreme Court decision in 2001 restricting federal regulation of isolated wetlands. Thus, there is increased attention towards protecting intact sites and developing methods to restore others. The U.S. Department of Energy's (DOE) 312-mi2 (800-km2) Savannah River Site (SRS) in west-central South Carolina includes about 350 Carolina bays and bay-like wetland depressions, of which about two-thirds were degraded or destroyed prior to federal acquisition of the land. Although some of the altered wetlands have recovered naturally, others still have active active drainage ditches and contain successional forests typical of drained sites. In 1997, DOE established a wetland mitigation bank to compensate for unavoidable wetland impacts on the SRS. This effort provided an opportunity fir a systematic research program to investigate wetland restoration techniques and ecological responses. Consequently, research and management staffs from the USDA Forest Service, Westinghouse Savannah River Corporation, the Savannah River Technology Center, the Savannah River Ecology Laboratory (SREL) and several universities developed a collaborative project to restore degraded depression wetlands on the SRS. The mitigation project seeks cost-effective methods to restore the hydrology and vegetation typical of natural depression wetlands, and so enhance habitats for wetland

  18. Restoration of Ailing Wetlands

    PubMed Central

    Schmitz, Oswald J.

    2012-01-01

    It is widely held that humankind's destructive tendencies when exploiting natural resources leads to irreparable harm to the environment. Yet, this thinking runs counter to evidence that many ecological systems damaged by severe natural environmental disturbances (e.g., hurricanes) can restore themselves via processes of natural recovery. The emerging field of restoration ecology is capitalizing on the natural restorative tendencies of ecological systems to build a science of repairing the harm inflicted by humans on natural environment. Evidence for this, for example, comes from a new meta-analysis of 124 studies that synthesizes recovery of impacted wetlands worldwide. While it may take up to two human generations to see full recovery, there is promise, given human will, to restore many damaged wetlands worldwide. PMID:22291573

  19. Restoration of ailing wetlands.

    PubMed

    Schmitz, Oswald J

    2012-01-01

    It is widely held that humankind's destructive tendencies when exploiting natural resources leads to irreparable harm to the environment. Yet, this thinking runs counter to evidence that many ecological systems damaged by severe natural environmental disturbances (e.g., hurricanes) can restore themselves via processes of natural recovery. The emerging field of restoration ecology is capitalizing on the natural restorative tendencies of ecological systems to build a science of repairing the harm inflicted by humans on natural environment. Evidence for this, for example, comes from a new meta-analysis of 124 studies that synthesizes recovery of impacted wetlands worldwide. While it may take up to two human generations to see full recovery, there is promise, given human will, to restore many damaged wetlands worldwide.

  20. AIS-2 spectra of California wetland vegetation

    NASA Technical Reports Server (NTRS)

    Gross, Michael F.; Ustin, Susan L.; Klemas, Vytautas

    1987-01-01

    Spectral data gathered by Airborne Imaging Spectrometers-2 from wetlands were analyzed. Spectra representing stands of green Salicornia virginica, green Sesuvium verrucosum, senescing Distichlis spicata, a mixture of senescing Scirpus acutus and Scirpus californicus, senescing Scirpus paludosus, senescent S. paludosus, mowed senescent S. paludosus, and soil were isolated. No difference among narrowband spectral reflectance of the cover types was apparent between 0.8 to 1.6 micron. There were, however, broadband differences in brightness. These differences were sufficient to permit a fairly accurate decomposition of the image into its major cover type components using a procedure that assumes an additive linear mixture of surface spectra.

  1. Management of wetlands for wildlife

    USGS Publications Warehouse

    Matthew J. Gray,; Heath M. Hagy,; J. Andrew Nyman,; Stafford, Joshua D.

    2013-01-01

    Wetlands are highly productive ecosystems that provide habitat for a diversity of wildlife species and afford various ecosystem services. Managing wetlands effectively requires an understanding of basic ecosystem processes, animal and plant life history strategies, and principles of wildlife management. Management techniques that are used differ depending on target species, coastal versus interior wetlands, and available infrastructure, resources, and management objectives. Ideally, wetlands are managed as a complex, with many successional stages and hydroperiods represented in close proximity. Managing wetland wildlife typically involves manipulating water levels and vegetation in the wetland, and providing an upland buffer. Commonly, levees and water control structures are used to manipulate wetland hydrology in combination with other management techniques (e.g., disking, burning, herbicide application) to create desired plant and wildlife responses. In the United States, several conservation programs are available to assist landowners in developing wetland management infrastructure on their property. Managing wetlands to increase habitat quality for wildlife is critical, considering this ecosystem is one of the most imperiled in the world.

  2. Freshwater wetlands and wildlife

    SciTech Connect

    Sharitz, R.R.; Gibbons, J.W.

    1989-01-01

    This volume is a product of the Freshwater Wetlands and Wildlife symposium held in Charleston, South Carolina, on March 24--27, 1986 and contains 94 papers. The stimulus for the symposium came from our interest in augmenting the findings of the long-term research programs on freshwater wetlands and wildlife that have been carried out on the US Department of Energy's Savannah River Site in South Carolina. The symposium provided a forum on an international scale for the exchange of data about freshwater ecosystems: their functions, uses, and their future. The papers in this volume address issues related to natural, man-managed, and degraded ecosystems. The volume is divided into two sections. The first section deals with the functions and values of wetlands, including their use as habitat for plants and animals, their role in trophic dynamics, and their basic processes. The second section treats the subject of their status and management, including techniques for assessing their value, laws for protecting them, and plans for properly managing them. Individual papers will be indexed and entered separately on the energy data base.

  3. Isolation of Bacteria Whose Growth Is Dependent on High Levels of CO2 and Implications of Their Potential Diversity▿ †

    PubMed Central

    Ueda, Kenji; Tagami, Yudai; Kamihara, Yuka; Shiratori, Hatsumi; Takano, Hideaki; Beppu, Teruhiko

    2008-01-01

    Although some bacteria require an atmosphere with high CO2 levels for their growth, CO2 is not generally supplied to conventional screening cultures. Here, we isolated 84 bacterial strains exhibiting high-CO2 dependence. Their phylogenetic affiliations imply that high-CO2 culture has potential as an effective method to isolate unknown microorganisms. PMID:18487395

  4. Implication of lateral genetic transfer in the emergence of Aeromonas hydrophila isolates of epidemic outbreaks in channel catfish.

    PubMed

    Hossain, Mohammad J; Waldbieser, Geoffrey C; Sun, Dawei; Capps, Nancy K; Hemstreet, William B; Carlisle, Kristen; Griffin, Matt J; Khoo, Lester; Goodwin, Andrew E; Sonstegard, Tad S; Schroeder, Steven; Hayden, Karl; Newton, Joseph C; Terhune, Jeffery S; Liles, Mark R

    2013-01-01

    To investigate the molecular basis of the emergence of Aeromonas hydrophila responsible for an epidemic outbreak of motile aeromonad septicemia of catfish in the Southeastern United States, we sequenced 11 A. hydrophila isolates that includes five reference and six recent epidemic isolates. Comparative genomics revealed that recent epidemic A. hydrophila isolates are highly clonal, whereas reference isolates are greatly diverse. We identified 55 epidemic-associated genetic regions with 313 predicted genes that are present in epidemic isolates but absent from reference isolates and 35% of these regions are located within genomic islands, suggesting their acquisition through lateral gene transfer. The epidemic-associated regions encode predicted prophage elements, pathogenicity islands, metabolic islands, fitness islands and genes of unknown functions, and 34 of the genes encoded in these regions were predicted as virulence factors. We found two pilus biogenesis gene clusters encoded within predicted pathogenicity islands. A functional metabolic island that encodes a complete pathway for myo-inositol catabolism was evident by the ability of epidemic A. hydrophila isolates to use myo-inositol as a sole carbon source. Testing of A. hydrophila field isolates found a consistent correlation between myo-inositol utilization as a sole carbon source and the presence of an epidemic-specific genetic marker. All epidemic isolates and one reference isolate shared a novel O-antigen cluster. Altogether we identified four different O-antigen biosynthesis gene clusters within the 11 sequenced A. hydrophila genomes. Our study reveals new insights into the evolutionary changes that have resulted in the emergence of recent epidemic A. hydrophila strains.

  5. EPA METHODS FOR EVALUATING WETLAND CONDITION, WETLANDS CLASSIFICATION

    EPA Science Inventory

    In 1999, the U.S. Environmental Protection Agency (EPA) began work on this series of reports entitled Methods for Evaluating Wetland Condition. The purpose of these reports is to help States and Tribes develop methods to evaluate 1) the overall ecological condition of wetlands us...

  6. Association Between Wetland Disturbance and Biological Attributes in Floodplain Wetlands

    EPA Science Inventory

    Our study explored the relationship between agricultural related disturbance and variation in wetland biota. Our results are intended to provide resource managers with information and tools to asess the condition of floodplain wetlands and make better decisions in terms of their...

  7. Space-based detection of wetlands' surface water level changes from L-band SAR interferometry

    USGS Publications Warehouse

    Wdowinski, S.; Kim, S.-W.; Amelung, F.; Dixon, T.H.; Miralles-Wilhelm, F.; Sonenshein, R.

    2008-01-01

    Interferometric processing of JERS-1 L-band Synthetic Aperture Radar (SAR) data acquired over south Florida during 1993-1996 reveals detectable surface changes in the Everglades wetlands. Although our study is limited to south Florida it has implication for other large-scale wetlands, because south Florida wetlands have diverse vegetation types and both managed and natural flow environments. Our analysis reveals that interferometric coherence level is sensitive to wetland vegetation type and to the interferogram time span. Interferograms with time spans less than six months maintain phase observations for all wetland types, allowing characterization of water level changes in different wetland environments. The most noticeable changes occur between the managed and the natural flow wetlands. In the managed wetlands, fringes are organized, follow patterns related to some of the managed water control structures and have high fringe-rate. In the natural flow areas, fringes are irregular and have a low fringe-rate. The high fringe rate in managed areas reflects dynamic water topography caused by high flow rate due to gate operation. Although this organized fringe pattern is not characteristic of most large-scale wetlands, the high level of water level change enables accurate estimation of the wetland InSAR technique, which lies in the range of 5-10??cm. The irregular and low rate fringe pattern in the natural flow area reflects uninterrupted flow that diffuses water efficiently and evenly. Most of the interferograms in the natural flow area show an elongated fringe located along the transitional zone between salt- and fresh-water wetlands, reflecting water level changes due to ocean tides. ?? 2007 Elsevier Inc. All rights reserved.

  8. Controls on wetland loss during large magnitude storms: a case study in Breton Sound, LA

    NASA Astrophysics Data System (ADS)

    Howes, N. C.; Hughes, Z. J.; Fitzgerald, D.; Georgiou, I. Y.; Kulp, M. A.; Miner, M. D.; Smith, J. M.; Barras, J. A.

    2010-12-01

    In 2005, the storm surge and wave field associated with Hurricanes Katrina and Rita eroded 527 km^2 of wetlands within the Louisiana coastal plain. Low salinity wetlands were preferentially eroded, while higher salinity wetlands remained largely intact and unchanged. Field studies were undertaken in Breton Sound, Louisiana, where both the low and high salinity wetlands experienced very similar hydrodynamic conditions during Hurricane Katrina. This site provides a natural case to study the causes of the observed land loss patterns. We observe geotechnical differences between soil profiles in high and low salinity wetlands, as controlled by vegetation, and which result in differential erosion. Low salinity wetlands contain a weak zone at a depth of ~30 cm below the marsh surface; this coincides with the base of rooting and has shear strengths as low as 500-1450 Pa. High salinity wetlands display deeper rooting, have no identifiable weak zone, and shear strengths exceed 4500 Pa throughout the upper soil profile. Results from a model (STWAVE-ADCIRC) are used to establish the hydrodynamic conditions during Hurricane Katrina (storm surge, wave height, and wave period). We calculate the potential shear stresses exerted by waves, accounting for the interaction between the oscillatory flow and the vegetation. Calculated shear stresses were in the range 425-3600 Pa, values sufficient to cause widespread erosion of the low salinity wetlands, but not the high salinity wetlands, corresponding with the observed patterns of land loss. A conceptual model is developed to illustrate the influence of rooting type and depth on the strength profile of wetlands soils and their susceptibility to erosion during large magnitude storms. These findings have implications for wetland restoration schemes involving freshwater diversions.

  9. A cryopreservation method for Pasteurella multocida from wetland samples

    USGS Publications Warehouse

    Moore, Melody K.; Shadduck, D.J.; Goldberg, D.R.; Samuel, M.D.

    1998-01-01

    A cryopreservation method and improved isolation techniques for detection of Pasteurella multocida from wetland samples were developed. Wetland water samples were collected in the field, diluted in dimethyl sulfoxide (DMSO, final concentration 10%), and frozen at -180 C in a liquid nitrogen vapor shipper. Frozen samples were transported to the laboratory where they were subsequently thawed and processed in Pasteurella multocida selective broth (PMSB) to isolate P. multocida. This method allowed for consistent isolation of 2 to 18 organisms/ml from water seeded with known concentrations of P. multocida. The method compared favorably with the standard mouse inoculation method and allowed for preservation of the samples until they could be processed in the laboratory.

  10. Processes contributing to resilience of coastal wetlands to sea-level rise

    USGS Publications Warehouse

    Stagg, Camille L.; Krauss, Ken W.; Cahoon, Donald R.; Cormier, Nicole; Conner, William H.; Swarzenski, Christopher M.

    2016-01-01

    The objectives of this study were to identify processes that contribute to resilience of coastal wetlands subject to rising sea levels and to determine whether the relative contribution of these processes varies across different wetland community types. We assessed the resilience of wetlands to sea-level rise along a transitional gradient from tidal freshwater forested wetland (TFFW) to marsh by measuring processes controlling wetland elevation. We found that, over 5 years of measurement, TFFWs were resilient, although some marginally, and oligohaline marshes exhibited robust resilience to sea-level rise. We identified fundamental differences in how resilience is maintained across wetland community types, which have important implications for management activities that aim to restore or conserve resilient systems. We showed that the relative importance of surface and subsurface processes in controlling wetland surface elevation change differed between TFFWs and oligohaline marshes. The marshes had significantly higher rates of surface accretion than the TFFWs, and in the marshes, surface accretion was the primary contributor to elevation change. In contrast, elevation change in TFFWs was more heavily influenced by subsurface processes, such as root zone expansion or compaction, which played an important role in determining resilience of TFFWs to rising sea level. When root zone contributions were removed statistically from comparisons between relative sea-level rise and surface elevation change, sites that previously had elevation rate deficits showed a surplus. Therefore, assessments of wetland resilience that do not include subsurface processes will likely misjudge vulnerability to sea-level rise.

  11. Critical Questions in Wetland Science

    EPA Science Inventory

    Wetlands are transitional between terrestrial and aquatic environments. As such, they perform important ecological functions (e.g., nutrient cycling, flood abatement) providing a variety of ecosystem services on which humans rely. Wetlands are also one of the world’s most e...

  12. Phenotypic and genotypic characterisation of Blastocystis hominis isolates implicates subtype 3 as a subtype with pathogenic potential.

    PubMed

    Tan, T C; Suresh, K G; Smith, H V

    2008-12-01

    Despite frequent reports on the presence of Blastocystis hominis in human intestinal tract, its pathogenicity remains a matter of intense debate. These discrepancies may be due to the varying pathogenic potential or virulence of the isolates studied. The present study represents the first to investigate both phenotypic and genotypic characteristics of B. hominis obtained from symptomatic and asymptomatic individuals. Symptomatic isolates had a significantly greater size range and lower growth rate in Jones' medium than asymptomatic isolates. The parasite cells of symptomatic isolates exhibited rougher surface topography and greater binding affinity to Canavalia ensiformis (ConA) and Helix pomatia (HPA). The present study also identifies further phenotypic characteristics, which aided in differentiating the pathogenic forms from the non-pathogenic forms of B. hominis. Blastocystis subtype 3 was found to be correlated well with the disease. PMID:18795333

  13. Wetland indicators. A guide to wetland identification, delineation, classification, and mapping

    SciTech Connect

    Tiner, R.W.

    1999-07-01

    Understand the current concept of wetland and methods for identifying, describing, classifying, and delineating wetlands with ``Wetland Indicators'' capturing the current state of science's role in wetland recognition and mapping. Environmental scientists and others involved with wetland regulations can strengthen their knowledge about wetlands, and the use of various indicators, to support their decisions on difficult wetland determinations. professor Tiner primarily focuses on plants, soils, and other signs of wetland hydrology in the soil, or on the surface of wetlands in his discussion of the book.

  14. Potentially hypervirulent Clostridium difficile PCR ribotype 078 lineage isolates in pigs and possible implications for humans in Taiwan.

    PubMed

    Wu, Ying-Chen; Lee, Jen-Jie; Tsai, Bo-Yang; Liu, Yi-Fen; Chen, Chih-Ming; Tien, Ni; Tsai, Pei-Jane; Chen, Ter-Hsin

    2016-02-01

    Clostridium difficile is a human and animal pathogen. Recently, the incidence of community-acquired C. difficile infection has increased, and many studies have indicated that C. difficile might be food-borne. The correlation between C. difficile infection in humans and in animals has been a topic of debate. The objective of this study was to determine the genetic relatedness of C. difficile from human and pigs in Taiwan. We investigated the molecular epidemiology of C. difficile in healthy humans and pigs from 2011 to 2015. The isolation rate of C. difficile from pigs in 13 commercial farms was 49% (100/204), and a high proportion of hypervirulent (C. difficile carrying tcdA, tcdB, and cdtA/B genes and a 39-bp deletion in the tcdC gene) ribotype 078 lineage isolates (90%, 90/100; including 078, 126, 127, and 066-like isolates) were identified. In addition, the C. difficile ribotype 127 isolates from pigs typically exhibited moxifloxacin resistance (37/43; 86%). In healthy humans, the isolation rate was 4.3% (3/69), and all healthy human isolates were non-toxigenic. In particular, we compared the porcine isolates with two patient strains (ribotype 127) obtained from two hospitals in central Taiwan. The multilocus variable number tandem repeat analysis revealed a high genetic relatedness between ribotype 127 from patients and pigs. This study indicated that isolates of the ribotype 078 lineage, and especially ribotype 127, were widely distributed in pig farms and showed a high frequency of moxifloxacin resistance. The closely related ribotype 127 from patients and pigs may have had a common origin or low diversity. In conclusion, C. difficile ribotype 127 is a noteworthy pathogen in pigs and poses a potential public health threat.

  15. ANNUAL WATER BUDGETS FOR A FORESTED SINKHOLE WETLAND

    SciTech Connect

    Hill, Dr. Andrew Jason; Neary, Vincent S

    2012-01-01

    Annual water budgets spanning two years, 2004 and 2005, are constructed for a sinkhole wetland in the Tennessee Highland Rim following conversion of 13 % of its watershed to impervious surfaces. The effect of watershed development on the hydrology of the study wetland was significant. Surface runoff was the dominant input, with a contribution of 61.4 % of the total. An average of 18.9 % of gross precipitation was intercepted by the canopy and evaporated. Seepage from the surface water body to the local groundwater system accounted for 83.1 % of the total outflow. Deep recharge varied from 43.2 % (2004) to 12.1 % (2005) of total outflow. Overall, evapotranspiration accounted for 72.4 % of the total losses, with an average of 65.7 % lost from soil profile storage. The annual water budgets indicate that deep recharge is a significant hydrologic function performed by isolated sinkhole wetlands, or karst pans, on the Tennessee Highland Rim. Continued hydrologic monitoring of sinkhole wetlands are needed to evaluate hydrologic function and response to anthropogenic impacts. The regression technique developed to estimate surface runoff entering the wetland is shown to provide reasonable annual runoff estimates, but further testing is needed.

  16. Virulence Factors of Streptococcus pneumoniae. Comparison between African and French Invasive Isolates and Implication for Future Vaccines

    PubMed Central

    Blumental, Sophie; Granger-Farbos, Alexandra; Moïsi, Jennifer C.; Soullié, Bruno; Leroy, Philippe; Njanpop-Lafourcade, Berthe-Marie; Yaro, Seydou; Nacro, Boubacar; Hallin, Marie; Koeck, Jean-Louis

    2015-01-01

    Background Many surface proteins thought to promote Streptocococcus pneumoniae virulence have recently been discovered and are currently being considered as future vaccine targets. We assessed the prevalence of 16 virulence genes among 435 S. pneumoniae invasive isolates from France and the “African meningitis belt” region, with particular focus on serotype 1 (Sp1), to compare their geographical distribution, assess their association with site of infection and evaluate their potential interest as new vaccine candidates. Methods Detection by PCR of pspA (+families), pspC (+pspC.4), pavA, lytA, phtA,B,D,E, nanA,B,C, rrgA (Pilus-1), sipA (Pilus-2), pcpA and psrp was performed on all isolates, as well as antibiotic resistance testing and MLVA typing (+MLST on 54 representative strains). Determination of ply alleles was performed by sequencing (Sp1 isolates). Results MLVA and virulence genes profiles segregated Sp1 isolates into 2 groups that followed continent distribution. The ply allele 5 and most of the genes that were variable (nanC, Pilus-2, psrp, pcpA, phtD) were present in the French Sp1 isolates (PMEN clone Sweden1-28, ST306) but absent from the African ones. Whereas all African Sp1 isolates clustered into a single MLST CC (CC217), MLVA distinguished two CCs that followed temporal evolution. Pilus-2 and psrp were more prevalent in bacteraemic pneumonia yielded isolates and phtB in meningitis-related isolates. Considering vaccine candidates, phtD was less prevalent than anticipated (50%) and pcpA varied importantly between France and Africa (98% versus 34%). Pilus-1 was carried by 7-11% of isolates and associated with β-lactams resistance. Conclusions Most virulence genes were carried by the European ST306 clone but were lacking on Sp1 isolates circulating in the African meningitis belt, where a more serious pattern of infection is observed. While virulence proteins are now considered as vaccine targets, the geographical differences in their prevalence

  17. Climate change and intertidal wetlands.

    PubMed

    Ross, Pauline M; Adam, Paul

    2013-01-01

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670

  18. Climate change and intertidal wetlands.

    PubMed

    Ross, Pauline M; Adam, Paul

    2013-03-19

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause-the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the "squeeze" experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change.

  19. Climate Change and Intertidal Wetlands

    PubMed Central

    Ross, Pauline M.; Adam, Paul

    2013-01-01

    Intertidal wetlands are recognised for the provision of a range of valued ecosystem services. The two major categories of intertidal wetlands discussed in this contribution are saltmarshes and mangrove forests. Intertidal wetlands are under threat from a range of anthropogenic causes, some site-specific, others acting globally. Globally acting factors include climate change and its driving cause—the increasing atmospheric concentrations of greenhouse gases. One direct consequence of climate change will be global sea level rise due to thermal expansion of the oceans, and, in the longer term, the melting of ice caps and glaciers. The relative sea level rise experienced at any one locality will be affected by a range of factors, as will the response of intertidal wetlands to the change in sea level. If relative sea level is rising and sedimentation within intertidal wetlands does not keep pace, then there will be loss of intertidal wetlands from the seaward edge, with survival of the ecosystems only possible if they can retreat inland. When retreat is not possible, the wetland area will decline in response to the “squeeze” experienced. Any changes to intertidal wetland vegetation, as a consequence of climate change, will have flow on effects to biota, while changes to biota will affect intertidal vegetation. Wetland biota may respond to climate change by shifting in distribution and abundance landward, evolving or becoming extinct. In addition, impacts from ocean acidification and warming are predicted to affect the fertilisation, larval development, growth and survival of intertidal wetland biota including macroinvertebrates, such as molluscs and crabs, and vertebrates such as fish and potentially birds. The capacity of organisms to move and adapt will depend on their life history characteristics, phenotypic plasticity, genetic variability, inheritability of adaptive characteristics, and the predicted rates of environmental change. PMID:24832670

  20. Applied wetlands science and technology. 2. edition

    SciTech Connect

    Kent, D.M.

    1999-01-01

    The book provides the fundamentals for defining and regulating wetlands, as well as identifying and delineating wetlands. Functions and values, ecological assessments, and minimization of impacts to wetlands are covered as is background information on wetland enhancement, restoration, creation, and monitoring.

  1. Wetlands: Water, Wildlife, Plants, and People.

    ERIC Educational Resources Information Center

    Vandas, Steve

    1992-01-01

    Describes wetlands and explains their importance to man and ecology. Delineates the role of water in wetlands. Describes how wetlands are classified: estuarine, riverine, lacustrine, palustrine, and marine. Accompanying article is a large, color poster on wetlands. Describes an activity where metaphors are used to explore the functions of…

  2. Hydrology of Mid-Atlantic Freshwater Wetlands

    EPA Science Inventory

    Hydrology is a key variable in the structure and function of a wetland; it is a primary determinant of wetland type, and it drives many of the functions a wetland performs and in turn the services it provides. However, wetland hydrology has been understudied. Efforts by Riparia s...

  3. Pathogenicity of a Microsporidium Isolate from the Diamondback Moth against Noctuid Moths:Characterization and Implications for Microbiological Pest Management

    PubMed Central

    Ghani, Idris Abd; Dieng, Hamady; Abu Hassan, Zainal Abidin; Ramli, Norazsida; Kermani, Nadia; Satho, Tomomitsu; Ahmad, Hamdan; Abang, Fatimah Bt; Fukumitsu, Yuki; Ahmad, Abu Hassan

    2013-01-01

    Background Due to problems with chemical control, there is increasing interest in the use of microsporidia for control of lepidopteran pests. However, there have been few studies to evaluate the susceptibility of exotic species to microsporidia from indigenous Lepidoptera. Methodology/Principal Findings We investigated some biological characteristics of the microsporidian parasite isolated from wild Plutella xylostella (PX) and evaluated its pathogenicity on the laboratory responses of sympatric invasive and resident noctuid moths. There were significant differences in spore size and morphology between PX and Spodoptera litura (SL) isolates. Spores of PX isolate were ovocylindrical, while those of SL were oval. PX spores were 1.05 times longer than those of SL, which in turn were 1.49 times wider than those of the PX. The timing of infection peaks was much shorter in SL and resulted in earlier larval death. There were no noticeable differences in amplicon size (two DNA fragments were each about 1200 base pairs in length). Phylogenetic analysis revealed that the small subunit (SSU) rRNA gene sequences of the two isolates shared a clade with Nosema/Vairimorpha sequences. The absence of octospores in infected spodopteran tissues suggested that PX and SL spores are closely related to Nosema plutellae and N. bombycis, respectively. Both SL and S. exigua (SE) exhibited susceptibility to the PX isolate infection, but showed different infection patterns. Tissular infection was more diverse in the former and resulted in much greater spore production and larval mortality. Microsporidium-infected larvae pupated among both infected and control larvae, but adult emergence occurred only in the second group. Conclusion/Significance The PX isolate infection prevented completion of development of most leafworm and beet armyworm larvae. The ability of the microsporidian isolate to severely infect and kill larvae of both native and introduced spodopterans makes it a valuable

  4. Factors influencing wetland use by Canada geese

    USGS Publications Warehouse

    Naugle, D.E.; Gleason, J.S.; Jenks, J.A.; Higgins, K.F.; Mammenga, P.W.; Nusser, S.M.

    1997-01-01

    Seasonal and semi-permanent wetlands in eastern South Dakota were surveyed in 1995 and 1996 to identify habitat characteristics influencing wetland use by Canada geese (Branta canadensis maxima). Position of a wetland within the landscape and its area were important landscape-scale features influencing wetland use by geese. Our delineation of potential Canada goose habitat using a wetland geographic information system indicated that distribution and area of semi-permanent wetlands likely limit Canada goose occurrence in regions outside the Prairie Coteau. Periodicity in hydrologic cycles within landscapes also may influence goose use of wetlands in eastern South Dakota.

  5. Capripox disease in Ethiopia: Genetic differences between field isolates and vaccine strain, and implications for vaccination failure.

    PubMed

    Gelaye, Esayas; Belay, Alebachew; Ayelet, Gelagay; Jenberie, Shiferaw; Yami, Martha; Loitsch, Angelika; Tuppurainen, Eeva; Grabherr, Reingard; Diallo, Adama; Lamien, Charles Euloge

    2015-07-01

    Sheeppox virus (SPPV), goatpox virus (GTPV) and lumpy skin disease virus (LSDV) of the genus Capripoxvirus (CaPV) cause capripox disease in sheep, goats and cattle, respectively. These viruses are not strictly host-specific and their geographical distribution is complex. In Ethiopia, where sheep, goats and cattle are all affected, a live attenuated vaccine strain (KS1-O180) is used for immunization of both small ruminants and cattle. Although occurrences of the disease in vaccinated cattle are frequently reported, information on the circulating isolates and their relation to the vaccine strain in use are still missing. The present study addressed the parameters associated with vaccination failure in Ethiopia. Retrospective outbreak data were compiled and isolates collected from thirteen outbreaks in small ruminants and cattle at various geographical locations and years were analyzed and compared to the vaccine strain. Isolates of GTPV and LSDV genotypes were responsible for the capripox outbreaks in small ruminants and cattle, respectively, while SPPV was absent. Pathogenic isolates collected from vaccinated cattle were identical to those from the non-vaccinated ones. The vaccine strain, genetically distinct from the outbreak isolates, was not responsible for these outbreaks. This study shows capripox to be highly significant in Ethiopia due to low performance of the local vaccine and insufficient vaccination coverage. The development of new, more efficient vaccine strains, a GTPV strain for small ruminants and a LSDV for cattle, is needed to promote the acceptance by farmers, thus contribute to better control of CaPVs in Ethiopia.

  6. Genetic diversity of Aspergillus species isolated from onychomycosis and Aspergillus hongkongensis sp. nov., with implications to antifungal susceptibility testing.

    PubMed

    Tsang, Chi-Ching; Hui, Teresa W S; Lee, Kim-Chung; Chen, Jonathan H K; Ngan, Antonio H Y; Tam, Emily W T; Chan, Jasper F W; Wu, Andrea L; Cheung, Mei; Tse, Brian P H; Wu, Alan K L; Lai, Christopher K C; Tsang, Dominic N C; Que, Tak-Lun; Lam, Ching-Wan; Yuen, Kwok-Yung; Lau, Susanna K P; Woo, Patrick C Y

    2016-02-01

    Thirteen Aspergillus isolates recovered from nails of 13 patients (fingernails, n=2; toenails, n=11) with onychomycosis were characterized. Twelve strains were identified by multilocus sequencing as Aspergillus spp. (Aspergillus sydowii [n=4], Aspergillus welwitschiae [n=3], Aspergillus terreus [n=2], Aspergillus flavus [n=1], Aspergillus tubingensis [n=1], and Aspergillus unguis [n=1]). Isolates of A. terreus, A. flavus, and A. unguis were also identifiable by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The 13th isolate (HKU49(T)) possessed unique morphological characteristics different from other Aspergillus spp. Molecular characterization also unambiguously showed that HKU49(T) was distinct from other Aspergillus spp. We propose the novel species Aspergillus hongkongensis to describe this previously unknown fungus. Antifungal susceptibility testing showed most Aspergillus isolates had low MICs against itraconazole and voriconazole, but all Aspergillus isolates had high MICs against fluconazole. A diverse spectrum of Aspergillus species is associated with onychomycosis. Itraconazole and voriconazole are probably better drug options for Aspergillus onychomycosis.

  7. [Wetland protection and Oncomelania hupensis control].

    PubMed

    Huang, Yi-xin

    2013-10-01

    The wetland is the unique ecosystem that is formed by the interaction between water and land on the earth surface. At present, the wetland ecology and wetland protection is becoming a more and more attention. Oncomelania hupensis is also a wetland creature that is the only snail host for spreading schistosomiasis japonica. The chemical drugs and environmental modification are usually used to the snail control in the schistosomiasis prevention and control. These control measures have different degrees of influence on wetland ecology. In order to meet the requirements of wetland protection, and to strengthen the research of the snail control appropriate technologies on wetland, this paper expounds the influence of different types of wetlands on Oncomelania and the influence of the snail control on wetland ecology. This paper also discusses the countermeasures of snail control of wetlands.

  8. Use of Wetland Habitats by Selected Nongame Water Birds in Maine

    USGS Publications Warehouse

    Gibbs, J.P.; Longcore, J.R.; McAuley, D.G.; Ringelman, J.K.

    1991-01-01

    We examined the use of 87 palustrine and lacustrine wetlands by nongame water birds in central and eastern Maine using 3,527 h of observation (1,501 visits) made during April-August, 1977-85. Wetlands used by 15 species of water birds were distinguished from those not used, according to 20 habitat features. The species were the common loon (Gavia immer) , pied-billed grebe (Podilymbus podiceps), double-crested cormorant (Phalacrocorax auritus), American bittern (Botaurus lentiginosus), great blue heron (Ardea herodias), green-backed heron (Butorides striatus), osprey (Pandion haliaetus), bald eagle (Haliaeetus leucocephalus), northern harrier (Circus cyaneus), Virgima rail (Rallus limicola), sora (Porzana carolina), spotted sandpiper (Actitis macularia), common snipe (Gallinago gallinago), herring gull (Larus argentatus), and belted kingfisher (Ceryle alcyon). Predictive models of habitat use were developed for each species. Water birds were classified by similarity of habitats used, and species use was contrasted by wetland type. Smaller, isolated wetlands were used by fewer (P 66%) or open (<33%) wetlands. Low pH typified wetlands used by large-bodied piscivores (common loon, cormorant, osprey). Other water birds were associated with more densely vegetated, chemically buffered wetlands. Habitat features associated with wetland use by each waterbird species are reported, as are numerical responses of waterbird populations to wetland features and estimates of annual variation in habitat occupancy. Lacustrine wetlands supported a distinct, low diversity community of water birds, including most fish-eating species. Waterbird diversity at forested palustrine wetlands was intermediate between lacustrine communities and more species-rich assemblages at palustrine emergent and scrub-shrub wetlands. Regional variation in wetland characteristics and water bird use was associated with surficial geology, soils, and management practices. Management for nongame water birds in

  9. The inhibition of Clostridium botulinum type C by other bacteria in wetland sediments

    USGS Publications Warehouse

    Sandler, Renee J.; Rocke, Tonie E.; Yuill, Thomas M.

    1998-01-01

    Bacteria with inhibitory activity against Clostridium botulinum type C were isolated from 32% of sediment samples (n = 1600) collected from 10 marshes in a northern California wetland over a 12 mo period. Aerobic and anaerobic bacteria with inhibitory activity were isolated from 12% and 23% of the samples, respectively. Bacteria with inhibitory activity were isolated from all 10 study sites and throughout the year. This study demonstrates that bacteria with inhibitory activity against C. botulinum type C occur naturally in wetland sediments.

  10. Ultrastructural characteristics and molecular identification of Entamoeba suis isolated from pigs with hemorrhagic colitis: implications for pathogenicity.

    PubMed

    Matsubayashi, Makoto; Suzuta, Fumiko; Terayama, Yoshimi; Shimojo, Kengo; Yui, Takeshi; Haritani, Makoto; Shibahara, Tomoyuki

    2014-08-01

    Protozoan parasites of the genus Entamoeba infect many classes of vertebrates and are primarily classified based on morphological criteria. To date, only a few species have been proven to cause disease. Here, we examined the pathology of infected pigs with hemorrhage and detected Entamoeba parasites. Isolates were characterized genetically and ultrastructurally to identify the species. Histopathologically, bleeding and thrombus formation were seen only in the large intestine mucosa, where a large number of trophozoites or some Entamoeba cysts were observed around breakdowns in the lamina propria. No screw-shaped bacteria were detected in the lesions, and no pathogenic bacteria such as Brachyspira spp. were detected in fecal cultures. Interestingly, electron microscopy revealed that the parasites possessed mitochondrial organelles, unlike other Entamoeba spp. The isolates were identified as Entamoeba suis by PCR analysis and sequencing of the small subunit ribosomal RNA (SSU rRNA) gene. In phylogenetic analyses based on the actin gene, the E. suis isolate formed a cluster with Entamoeba histolytica and Entamoeba invadens, as well as with other parasites of the Amoebidae. Whether the pathogenicity of the E. suis isolate is affected by the severity of infection or host health status remains unclear; however, our results suggest that E. suis could cause or exacerbate clinical symptoms such as hemorrhagic colitis or diarrhea.

  11. Spore-forming halophilic bacteria isolated from Arctic terrains: Implications for long-range transportation of microorganisms

    NASA Astrophysics Data System (ADS)

    Yukimura, Kise; Nakai, Ryosuke; Kohshima, Shiro; Uetake, Jun; Kanda, Hiroshi; Naganuma, Takeshi

    2009-11-01

    Organisms living in the Arctic terrains such as Greenland have to deal with low temperature conditions. The mechanisms by which bacteria resist to low temperature are largely unknown; however, a well-known survival strategy of the microorganisms inhabiting the Arctic is spore forming. Moreover, halophilic bacteria are often resistant to various stresses. We have attempted isolation of spore-forming halophilic bacteria from Arctic terrains. We isolated 10 strains of spore-forming halophilic bacteria from the samples collected from a glacial moraine in Qaanaaq, Greenland in July 2007. Identification based on 16S rRNA gene sequence similarities showed that the isolates were closely related to the Oceanobacillus, Ornithinibacillus, Virgibacillus, Gracilibacillus, and Bacillus genera. In addition, the 16S rRNA sequences of some isolates were extremely similar to those of strains from the desert sand in China (100% identity, near full length), the source of the so-called “yellow dust.” Previous research indicated that yellow dust had been transported to Greenland by the wind. Our research implies the long-range transportation of these microorganisms to locations such as the Arctic.

  12. Effects of climate on numbers of northern prairie wetlands

    USGS Publications Warehouse

    Larson, Diane L.

    1995-01-01

    The amount of water held in individual wetland basins depends not only on local climate patterns but also on groundwater flow regime, soil permeability, and basin size. Most wetland basins in the northern prairies hold water in some years and are dry in others. To assess the potential effect of climate change on the number of wetland basins holding water in a given year, one must first determine how much of the variability in number of wet basins is accounted for by climatic variables. I used multiple linear regression to examine the relationship between climate variables and percentage of wet basins throughout the Prairie Pothole Region of Canada and the United States. The region was divided into three areas: parkland, Canadian grassland, and United States grassland (i.e., North Dakota and South Dakota). The models - which included variables for spring and fall temperature, yearly precipitation, the previous year's count of wet basins, and for grassland areas, the previous fall precipitation - accounted for 63 to 65% of the variation in the number of wet basins. I then explored the sensitivities of the models to changes in temperature and precipitation, as might be associated with increased greenhouse gas concentrations. Parkland wetlands are shown to be much more vulnerable to increased temperatures than are wetlands in either Canadian or United States grasslands. Sensitivity to increased precipitation did not vary geographically. These results have implications for waterfowl and other wildlife populations that depend on availability of wetlands in the parklands for breeding or during periods of drought in the southern grasslands.

  13. Methane Fluxes from Subtropical Wetlands

    NASA Astrophysics Data System (ADS)

    DeLucia, N.; Gomez-Casanovas, N.; Bernacchi, C.

    2013-12-01

    It is well documented that green house gas concentrations have risen at unequivocal rates since the industrial revolution but the disparity between anthropogenic sources and natural sources is uncertain. Wetlands are one example of a natural ecosystem that can be a substantial source or sink for methane (CH4) depending on climate conditions. Due to strict anaerobic conditions required for CH4-generating microorganisms, natural wetlands are one of the main sources for biogenic CH4. Although wetlands occupy less than 5% of total land surface area, they contribute approximately 20% of total CH4 emissions to the atmosphere. The processes regulating CH4 emissions are sensitive to land use and management practices of areas surrounding wetlands. Variation in adjacent vegetation or grazing intensity by livestock can, for example, alter CH4 fluxes from wetland soils by altering nutrient balance, carbon inputs and hydrology. Therefore, understanding how these changes will affect wetland source strength is essential to understand the impact of wetland management practices on the global climate system. In this study we quantify wetland methane fluxes from subtropical wetlands on a working cattle ranch in central Florida near Okeechobee Lake (27o10'52.04'N, 81o21'8.56'W). To determine differences in CH4 fluxes associated with land use and management, a replicated (n = 4) full factorial experiment was designed for wetlands where the surrounding vegetation was (1) grazed or un-grazed and (2) composed of native vegetation or improved pasture. Net exchange of CH4 and CO2 between the land surface and the atmosphere were sampled with a LICOR Li-7700 open path CH4 analyzer and Li-7500A open path CO2/H20 analyzer mounted in a 1-m3 static gas-exchange chamber. Our results showed and verified that CH4 emissions from subtropical wetlands were larger when high soil moisture was coupled with high temperatures. The presence of cattle only amplified these results. These results help quantify

  14. Measuring the CCN and IN ability of bacterial isolates: implications for the southeastern United States and Puerto Rico

    NASA Astrophysics Data System (ADS)

    Purdue, S.; Waters, S.; Konstantinidis, K.; Nenes, A.; DeLeon-Rodriguez, N.

    2015-12-01

    Ice nucleation is an important process in the climate system as it influences global precipitation processes, and can affect the vertical distribution of clouds with effects that both cool and warm the atmosphere. Of the pathways to ice nucleation, immersion mode, which occurs when ice nuclei (IN) particles are surrounded by an aqueous phase that subsequently freezes, dominates primary ice production in mixed-phase clouds. A simple but effective method to study immersion freezing is to utilize a droplet freezing assay (DFA) that consists of an aluminum plate, precisely cooled by a continuous flow of an ethylene glycol-water mixture. Using such a system we study the immersion IN characteristics of bacterial isolates (for temperatures ranging from -15oC to 0oC) isolated from rainwater and air collected in Atlanta, GA and Puerto Rico, over storms throughout the year. Despite their relatively large size and the presence of hydrophilic groups on the outer membranes of many bacteria, it is unclear if bacteria possess an inherent ability to nucleate an aqueous phase (a requirement for immersion freezing) for the wide range of supersaturations found in clouds. For this, we measure the cloud condensation nucleation (CCN) activity of each isolate (over the 0.05% to 0.6% supersaturation range) using a Continuous Flow Streamwise Thermal Gradient CCN Counter. Initial results have shown certain isolates to be very efficient CCN, allowing them to form droplets even for the very low supersaturations found in radiation fogs. In combination, these experiments provide insight into the potential dual-ability of some bacteria, isolated from the southeastern United States and Puerto Rico, to act as both efficient CCN and IN.

  15. Small and Large-scale Drivers of Denitrification Patterns in "Accidental" Urban Wetlands in Phoenix, Arizona

    NASA Astrophysics Data System (ADS)

    Suchy, A. K.; Palta, M. M.; Childers, D. L.; Stromberg, J. C.

    2014-12-01

    Understanding spatial and temporal patterns of microbial conversion of nitrate (NO3-) to nitrogen (N) gas (denitrification) is important for predicting permanent losses of reactive N from systems. In many landscapes, wetlands serve as hotpots of denitrification by providing optimal condition for denitrifiers (sub-oxic, carbon-rich sediments). Much research on denitrification has occurred in non-urban or highly managed urban wetlands. However, in urban landscapes N-rich stormwater is often discharged into areas not designed or managed to reduce N loads. "Accidental" wetlands forming at these outfalls may have the capacity to remove NO3-; however, these "accidental" urban wetlands can contain novel soils and vegetation, and are subject to unique hydrologic conditions that could create spatial and temporal patterns of denitrification that differ from those predicted in non-urban counterparts. We performed denitrification enzyme assays (measuring denitrification potential, or DP) on soil samples taken from nine wetlands forming at storm drain outfalls in Phoenix, AZ. The wetlands ranged from perennially flooded, to intermittently flooded (~9 months/year), to ephemerally flooded (2-3 weeks/year). To assess spatial variation in carbon availability to denitrifiers, samples were taken from 3-4 dominant vegetation patch types within each wetland. To assess temporal variation in DP, samples were taken across three seasons differing in rainfall pattern. We found small- and large-scale spatiotemporal patterns in DP that have important implications for management of urban wetlands for stormwater quality. DP varied among plant patches and was typically highest in patches of Ludwigia peploides, indicating that plant species type may mediate within-wetland variations in carbon availability, and therefore NO3- removal capacity. We found a range of responses in DP among wetlands to season, which appeared to be driven in part by flood regime: DP in perennially-flooded wetlands was

  16. Isolated Follicles Enriched for Centroblasts and Lacking t(14;18)/BCL2 in Lymphoid Tissue: Diagnostic and Clinical Implications

    PubMed Central

    Gratzinger, Dita; Jones, Carol D.; Zehnder, James L.; Bangs, Charles D.; Cherry, Athena; Warnke, Roger A.; Natkunam, Yasodha

    2016-01-01

    We sought to address the significance of isolated follicles that exhibit atypical morphologic features that may be mistaken for lymphoma in a background of reactive lymphoid tissue. Seven cases that demonstrated centroblast-predominant isolated follicles and absent BCL2 staining in otherwise-normal lymph nodes were studied. Four of seven cases showed clonal B-cell proliferations amid a polyclonal B cell background; all cases lacked the IGH-BCL2 translocation and BCL2 protein expression. Although three patients had invasive breast carcinoma at other sites, none were associated with systemic lymphoma up to 44 months after diagnosis. The immunoarchitectural features of these highly unusual cases raise the question of whether a predominance of centroblasts and/or absence of BCL2 expression could represent a precursor lesion or atypical reactive phenomenon. Differentiating such cases from follicular lymphoma or another mimic is critical, lest patients with indolent proliferations be exposed to unnecessarily aggressive treatment. PMID:26991267

  17. A comparison of group A streptococcal serotypes isolated from the upper respiratory tract in the USA and Thailand: implications.

    PubMed Central

    Kaplan, E. L.; Johnson, D. R.; Nanthapisud, P.; Sirilertpanrana, S.; Chumdermpadetsuk, S.

    1992-01-01

    Characterization of group A beta-haemolytic streptococci in upper respiratory tract isolates from the USA and Thailand revealed that whereas 80% of the U.S. isolates could be M or opacity factor (OF) typed, less than 20% of the Thai isolates could be characterized with the available typing sera (P less than 0.001). There was also a statistically significant difference observed in the percentage of strains that could be characterized by the T-agglutination pattern (93% in the USA vs 61% in Thailand, P less than 0.001). Even among the identifiable strains, marked differences in the distribution of the recovered serotypes were noted between the two countries. These results show that there are a significant number of as yet unidentified group A streptococcal strains in parts of the world where streptococcal infections and their sequelae are important public health problems. They further imply that such findings must be taken into consideration in the future when designing possible streptococcal vaccines for worldwide use. PMID:1394774

  18. Quantitative genetic inheritance of morphological divergence in a lake-stream stickleback ecotype pair: implications for reproductive isolation.

    PubMed

    Berner, D; Kaeuffer, R; Grandchamp, A-C; Raeymaekers, J A M; Räsänen, K; Hendry, A P

    2011-09-01

    Ecological selection against hybrids between populations occupying different habitats might be an important component of reproductive isolation during the initial stages of speciation. The strength and directionality of this barrier to gene flow depends on the genetic architecture underlying divergence in ecologically relevant phenotypes. We here present line cross analyses of inheritance for two key foraging-related morphological traits involved in adaptive divergence between stickleback ecotypes residing parapatrically in lake and stream habitats within the Misty Lake watershed (Vancouver Island, Canada). One main finding is the striking genetic dominance of the lake phenotype for body depth. Selection associated with this phenotype against first- and later-generation hybrids should therefore be asymmetric, hindering introgression from the lake to the stream population but not vice versa. Another main finding is that divergence in gill raker number is inherited additively and should therefore contribute symmetrically to reproductive isolation. Our study suggests that traits involved in adaptation might contribute to reproductive isolation qualitatively differently, depending on their mode of inheritance. PMID:21649765

  19. ENGINEERING BULLETIN: CONSTRUCTED WETLANDS TREATMENT

    EPA Science Inventory

    Constructed wetlands have been demonstrated effective in removing organic, metal, and nutrient elements including nitrogen and phosphorus from municipal wastewaters, mine drainage, industrial effluents, and agricultural runoff. The technology is waste stream-specific, requiring...

  20. REMOTE SENSING AND GIS WETLANDS

    EPA Science Inventory

    Learn how photographs and computer sensor generated images can illustrate conditions of hydrology, extent, change over time, and impact of events such as hurricanes and tornados. Other topics include: information storage and modeling, and evaluation of wetlands for managing reso...

  1. [Effects of Arbuscular Mycorrhizal Fungi on the Growth of Reeds in Wetland Soils with Different Salt Content].

    PubMed

    Guo, Jiang-yuan; Guo, Wei; Bi, Na; Fu, Rui-ying; Zhao, Wen-jing; Zhao, Ren-xin; Wang, Li-xin

    2015-04-01

    A greenhouse pot experiment was conducted to investigate the effects of arbuscular mycorrhizal (AM) fungi Claroideoglomus etunicatum (CE), Rhizophagus intraradices (RI), Funneliformis mosseae (FM) and Glomus versiforme (GV) on AM colonization rate, biomass, mineral nutrient uptake, C: N: P ratios and Na and Cl- concentrations of reeds (Phragmites australis) grown in saline and non-saline wetland soils. The aim was to provide a technical basis for the ecological revegetation and salinity restoration of wetland ecosystem. The results indicated that symbiotic associations were successfully established between the four isolates and reeds grown in the two types of wetland soils. The average AM colonization rates ranged from 2.5% to 38%. The mean root colonization rate of CE was significantly higher than those of the other three isolates. There were no significant differences in root colonization rates between saline and non-saline wetland soils. The biomass and nutrient contents of reeds grown in non-saline wetland soils were significantly higher than those grown in saline wetland soils. However, Na+ and Cl- concentrations of reeds grown in non-saline wetland soils were significantly lower than those grown in saline wetland soils. In non-saline wetland soils, inoculation with GV significantly increased the shoot dry weight and the shoot N, P, K, Ca and Mg contents of reeds. Inoculation with GV and RI significantly improved the root P and K contents of reeds. Inoculation with the four AM fungi significantly reduced the shoot N: P ratios. Inoculation with FM and GV significantly reduced the root C : N and C : P ratios. Inoculation with the four AM fungi significantly reduced the shoot Cl- concentrations. Inoculation with RI significantly reduced the shoot Na+ concentrations. In saline wetland soils, inoculation with AM fungi had no significant effect on the biomass, mineral nutrient uptake and Na+ and Cl- concentrations of reeds. The results demonstrated that the four AM

  2. Distribution of Bexsero® Antigen Sequence Types (BASTs) in invasive meningococcal disease isolates: Implications for immunisation.

    PubMed

    Brehony, Carina; Rodrigues, Charlene M C; Borrow, Ray; Smith, Andrew; Cunney, Robert; Moxon, E Richard; Maiden, Martin C J

    2016-09-01

    Serogroup B is the only major disease-associated capsular group of Neisseria meningitidis for which no protein-polysaccharide conjugate vaccine is available. This has led to the development of multi-component protein-based vaccines that target serogroup B invasive meningococcal disease (IMD), including Bexsero®, which was implemented for UK infants in 2015, and Trumenba®. Given the diversity of meningococcal protein antigens, post-implementation surveillance of IMD isolates, including characterisation of vaccine antigens, is essential for assessing the effectiveness of such vaccines. Whole genome sequencing (WGS), as realised in the Meningitis Research Foundation Meningococcus Genome Library (MRF-MGL), provides a rapid, comprehensive, and cost-effective approach to this. To facilitate the surveillance of the antigen targets included in Bexsero® (fHbp, PorA, NHBA and NadA) for protective immunity, a Bexsero® Antigen Sequence Type (BAST) scheme, based on deduced peptide sequence variants, was implemented in the PubMLST.org/neisseria database, which includes the MRF-MGL and other isolate collections. This scheme enabled the characterisation of vaccine antigen variants and here the invasive meningococci isolated in Great Britain and Ireland in the epidemiological years 2010/11 to 2013/14 are analysed. Many unique BASTs (647) were present, but nine of these accounted for 39% (775/1966) of isolates, with some temporal and geographic differences in BAST distribution. BASTs were strongly associated with other characteristics, such as serogroup and clonal complex (cc), and a significant increase in BAST-2 was associated with increased prevalence of serogroup W clonal complex 11 meningococci. Potential coverage was assessed by the examination of the antigen peptide sequences present in the vaccine and epidemiological dataset. There were 22.8-30.8% exact peptide matches to Bexsero® components and predicted coverage of 66.1%, based on genotype-phenotype modelling for 63

  3. Ecohydraulics and Estuarine Wetland Rehabilitation

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. F.; Howe, A.; Saintilan, N.; Spencer, J.

    2004-12-01

    The hydraulics or water flow in wetlands is known to be a key factor influencing ecosystem development in estuarine wetland environments. The relationship is indirect, with the hydraulics of wetlands influencing a host of factors including soil salinity, waterlogging, sediment transport, sediment chemistry, vegetation dispersal and growth and nutrient availability and cycling. The relationship is also not one way, with the hydraulics of wetlands being influenced by plant and animal activity. Understanding these complex interactions is fundamental for the adequate management of estuarine wetlands. Listed as a Wetland of International Importance under the 1971 Ramsar Convention, the Hunter River estuary is regarded as the most significant site for migratory shorebirds in New South Wales, Australia. Over the past 20 years, the number of migratory shorebirds in the estuary has sharply declined from 8,000 to 4,000 approx. Alteration of bird habitat is believed to be one of the reasons for this alarming trend. In 2004 we started a three-year program to investigate the links between hydraulics, sediment, benthic invertebrates, vegetation and migratory shorebird habitat in the estuary. During the first year we have focused on a highly disturbed part of the Hunter estuary wetlands located on Ash Island. The area is one of the major roosting sites in the estuary and is characterized by a complex hydraulic regime due to a restricted tidal interchange with the Hunter River and the presence of infrastructure for the maintenance of power lines (i.e., roads, bridges, culverts). Salt marshes, mudflat and mangroves are the dominant vegetation types. The monitoring program includes measurements of water levels, salinity, discharge, velocity, turbulence, sediment transport and deposition, plant species and density, soil composition and benthic invertebrates coordinated with observations of bird habitat utilization on a number of locations throughout the wetland and for different flow

  4. Study of natural wetlands associated with acid mine drainage. Final research report Jul 87-Dec 90

    SciTech Connect

    Stark, L.R.

    1990-12-01

    Thirty-five natural wetlands impacted by acid mine drainage (mostly in western PA) were surveyed for abiotic and biotic parameters in relation to water quality. Using treatment efficiency and area-adjusted mass retention as wetland performance indices, correlation analyses and multiple regression techniques were employed to evaluate the influence of the wetland parameters on the mitigation of pH, Fe, Mn, and Al. Elevation of pH was correlated with large, broad, low-flow wetlands with shallow, non-channelized surface water, inlet alkalinity, and dense populations of vascular plants and bryophytes. Moderate and high iron concentrations interfered with the mitigation of pH. High Fe treatment efficiencies were correlated to low flows, large areas, broad shapes, non-channelized flows, exposed locations, a diverse and dense vegetative cover, and inlet alkalinity. Large wetlands having lush vascular plant cover and receiving alkaline waters low in total iron concentrations were implicated in significant Mn treatment. Outlet Fe concentrations were usually in compliance in wetlands that significantly lowered Mn concentrations. Algae tolerate manganese but probably do not play an active role in its elimination. Reliable indices of wetland performance include area-adjusted mass retention (for pH) and treatment efficiency (for metals).

  5. Landscape characteristics of a stream and wetland mitigation banking program.

    PubMed

    BenDor, Todd; Sholtes, Joel; Doyle, Martin W

    2009-12-01

    In the United States, stream restoration is an increasing part of environmental and land management programs, particularly under the auspices of compensatory mitigation regulations. Markets and regulations surrounding stream mitigation are beginning to mirror those of the well-established wetland mitigation industry. Recent studies have shown that wetland mitigation programs commonly shift wetlands across space from urban to rural areas, thereby changing the functional characteristics and benefits of wetlands in the landscape. However, it is not yet known if stream mitigation mirrors this behavior, and if so, what effects this may have on landscape-scale ecological and hydrological processes. This project addresses three primary research questions. (1) What are the spatial relationships between stream and wetland impact and compensation sites as a result of regulations requiring stream and wetland mitigation in the State of North Carolina? (2) How do stream impacts come about due to the actions of different types of developers, and how do the characteristics of impacts sites compare with compensation sites? (3) To what extent does stream compensation relocate high-quality streams within the river network, and how does this affect localized (intrawatershed) loss or gain of aquatic resources? Using geospatial data collected from the North Carolina Division of Water Quality and the Army Corps of Engineers' Wilmington District, we analyzed the behavior of the North Carolina Ecosystem Enhancement Program in providing stream and wetland mitigation for the State of North Carolina. Our results suggest that this program provides mitigation (1) in different ways for different types of permittees; (2) at great distances (both Euclidean and within the stream network) from original impacts; (3) in significantly different places than impacts within watersheds; and (4) in many cases, in different watersheds from original impacts. Our analysis also reveals problems with regulator

  6. Landscape characteristics of a stream and wetland mitigation banking program.

    PubMed

    BenDor, Todd; Sholtes, Joel; Doyle, Martin W

    2009-12-01

    In the United States, stream restoration is an increasing part of environmental and land management programs, particularly under the auspices of compensatory mitigation regulations. Markets and regulations surrounding stream mitigation are beginning to mirror those of the well-established wetland mitigation industry. Recent studies have shown that wetland mitigation programs commonly shift wetlands across space from urban to rural areas, thereby changing the functional characteristics and benefits of wetlands in the landscape. However, it is not yet known if stream mitigation mirrors this behavior, and if so, what effects this may have on landscape-scale ecological and hydrological processes. This project addresses three primary research questions. (1) What are the spatial relationships between stream and wetland impact and compensation sites as a result of regulations requiring stream and wetland mitigation in the State of North Carolina? (2) How do stream impacts come about due to the actions of different types of developers, and how do the characteristics of impacts sites compare with compensation sites? (3) To what extent does stream compensation relocate high-quality streams within the river network, and how does this affect localized (intrawatershed) loss or gain of aquatic resources? Using geospatial data collected from the North Carolina Division of Water Quality and the Army Corps of Engineers' Wilmington District, we analyzed the behavior of the North Carolina Ecosystem Enhancement Program in providing stream and wetland mitigation for the State of North Carolina. Our results suggest that this program provides mitigation (1) in different ways for different types of permittees; (2) at great distances (both Euclidean and within the stream network) from original impacts; (3) in significantly different places than impacts within watersheds; and (4) in many cases, in different watersheds from original impacts. Our analysis also reveals problems with regulator

  7. Exploring fecal indicator bacteria in a constructed stormwater wetland.

    PubMed

    Hathaway, J M; Hunt, W F; Graves, A K; Bass, K L; Caldwell, A

    2011-01-01

    Microbial pollution in surface waters is a concern throughout the world, with both public health and economic implications. One contributing source to such pollution is stormwater runoff, often treated using various types of stormwater control measures. However, relatively little is known regarding microbe sequestration in constructed stormwater wetlands (CSWs), one type of commonly installed stormwater control measure. In this study, indicator bacteria concentrations in both the water and sediment of a CSW were evaluated at multiple locations. Results suggested that fecal coliform concentrations in stormwater runoff decrease through the system, with relatively consistent concentrations noted throughout the second half of the wetland. This potentially indicates a baseline concentration of fecal coliform is present due to internal processes such as animal activity and microbial persistence. However, wetland sediments showed little E. coli present during most sampling events, with minimal patterns existing with respect to sediment sampling location. CSW designs should promote optimization of hydraulic retention time and minimization of stormwater velocities to promote sedimentation and degradation of microbes by way of wetland treatment functions.

  8. Airport expansion requires major wetlands mitigation project

    SciTech Connect

    Erickson, B.M.

    1994-01-01

    This article describes the steps taken to mitigate the impact to existing wetlands by creating new wetlands in an airport expansion project. The project addressed maintaining suitable amounts of wetlands to accommodate peak waterfowl populations, moving of high voltage power transmission towers, and maintaining agricultural and hunting interests. This project involved recreating of open water areas, marsh habitat, mud flat habitat, saline meadow habitat, maintaining two existing wetlands in the area of the new wetlands without disturbing them, and improving upland habitat surrounding the new wetlands.

  9. Rapid identification and antibiotic susceptibility testing of Salmonella enterica serovar Typhi isolated from blood: implications for therapy.

    PubMed

    Saha, S K; Darmstadt, G L; Baqui, A H; Hanif, M; Ruhulamin, M; Santosham, M; Nagatake, T; Black, R E

    2001-10-01

    The turnaround time (TAT) for Salmonella enterica serovar Typhi identification and reporting of the antibiotic susceptibility profile was determined for 391 cases of typhoid fever, using the lysis direct plating or lysis centrifugation method of blood culture along with rapid antimicrobial susceptibility testing. The TAT was more rapid (TAT for 90% of the patients [TAT(90)] = 30 h; TAT(100) isolates were identical to those determined by overnight conventional testing. Preliminary assessment of the impact of the reduced TAT on physician practices revealed that initial empirical therapy was prescribed at the time of presentation in most cases (87 of 108 [81%]) despite awareness that the final report would be available on the following day. Patients treated empirically with first-line antibiotics and shown subsequently to be infected with a multidrug-resistant strain benefited most (8 cases), since therapy was changed appropriately on the following day. In an additional 21 cases, therapy with an appropriate antibiotic was initiated after culture results were available. Thus, in approximately one-fourth (29 of 108 [27%]) of the cases, a change in management to an agent active for treatment of the isolate was made after receipt of the test results. However, in no case was therapy changed from a second-line to a first-line agent, even if the isolate was reported on the day after presentation to be sensitive to first-line therapy (33 cases). Ways in which to utilize rapid-TAT result reporting in order to positively influence physicians' prescribing in Bangladesh are the subject of ongoing research.

  10. The continued emergence of hantaviruses: isolation of a Seoul virus implicated in human disease, United Kingdom, October 2012.

    PubMed

    Jameson, L J; Logue, C H; Atkinson, B; Baker, N; Galbraith, S E; Carroll, M W; Brooks, T; Hewson, R

    2013-01-03

    Following a suspected case of hantavirus in a patientsuffering from acute kidney injury, rodents fromthe patient’s property in Yorkshire and the Humber,United Kingdom (UK) were screened for hantaviruses.Hantavirus RNA was detected via RT-PCR in two Rattusnorvegicus. Complete sequencing and phylogeneticanalysis established the virus as a Seoul hantavirus,which we have provisionally designated as strainHumber. This is the first hantavirus isolated from wildrodents in the UK and confirms the presence of a pathogenicSeoul virus in Europe.

  11. Competition among thiols and inorganic sulfides and polysulfides for Hg and MeHg in wetland soils and sediments under suboxic conditions: Illumination of controversies and implications for MeHg net production

    NASA Astrophysics Data System (ADS)

    Skyllberg, Ulf

    2008-12-01

    Current research focus in mercury biogeochemistry is on the net production and accumulation of methyl mercury (MeHg) in organisms. The activity of iron- and sulfate-reducing bacteria (FeRB and SRB) has been identified as important for MeHg production. There are indications of a passive uptake of neutral Hg-sulfides by SRB, as well as of a facilitated bacterial uptake of Hg complexed by small organic molecules. In order to understand these processes, the chemical speciation of Hg and MeHg, and most important, the competition among organic thiols and inorganic sulfides and polysulfides, needs to be clarified under suboxic conditions (nM to low μM range of total sulfide concentrations) in wetland soils and sediments. In this paper the chemical speciation of Hg and MeHg is modeled at pH 4.0 and 7.0 in a conceptual wetland soil/sediment with typical concentrations of thiols, sulfides, Hg, and MeHg. Effects of precipitated HgS(s), the formation of Hg-polysulfides, and the size of the controversial stability constant for the formation of HOHgSH0 (aq) are emphasized. The outcome of the modeling is discussed in light of chosen stability constants for Hg complexes with thiols, sulfides, and polysulfides. It is concluded that organic thiols are competitive with inorganic sulfides in the approximate total sulfide concentration range 0-1 μm. It is also concluded that increases in absolute aqueous concentrations of MeHg, or the molar ratio of dissolved MeHg/Hg, are not appropriate as indirect measures of MeHg net production, unless changes and differences in solubility of MeHg and Hg are corrected for.

  12. Isotopic Fractionation of Selenium Oxyanions in Wetlands

    NASA Astrophysics Data System (ADS)

    Clark, S. K.; Johnson, T. M.

    2004-05-01

    As oxic surface waters pass through aquatic macrophytes and over anoxic sediments in wetlands and lakes, the dissolved Se load often decreases; and, Se isotope ratio measurements can provide information about the mechanisms involved. Previous work on microbially induced isotopic fractionation of Se oxyanions under nearly natural conditions using wetland sediments shows consistent Se isotopic shifts during reduction of Se(VI) and Se(IV) to insoluble Se(0). However, previous isotopic studies of total dissolved selenium in wetlands found little to no isotopic shift as dissolved selenium concentrations decreased. This suggests that plant/algal uptake, followed by deposition and degradation, is the primary route of Se transfer into sediments. However, it is possible that the effective isotopic fractionation between Se in the surface water and Se deposited into sediments is somehow much less than the fractionation induced by the reduction reaction, or that cycling of organically bound Se is involved. In this study, we report Se isotope data for Se(VI), Se(IV) and total dissolved Se, Se(T), in surface waters from three wetland/lake sites: Sweitzer Lake, CO; 33-Mile Reservoir, WY; and, a small pond adjacent to Benton Lake, MT. We isolated Se(IV) via hydride generation, and Se(VI) via ion exchange. Se(T), including any organic components, was also analyzed. Isotope analysis was performed on an Isoprobe MC-ICPMS, using a method modified from that of Rouxel et al. (2002). We used the 82Se + 74Se double spike approach, and spiked samples before species separation. Our results for all three locations indicate similar trends in concentration changes and isotopic shifts between the inflow and outflow waters. Se(T) concentrations decrease by 45-70%, and Se(VI) concentrations decrease by 60-90%, whereas Se(IV) concentrations increase by 60-150%. Concomitant 80Se/76Se shifts are +0.5-0.8‰ for Se(T); -0.1-0.5‰ for Se(VI); and +0.4-6.5‰ for Se(IV). These data provide greater

  13. First implication of STRA6 mutations in isolated anophthalmia, microphthalmia, and coloboma: a new dimension to the STRA6 phenotype.

    PubMed

    Casey, Jillian; Kawaguchi, Riki; Morrissey, Maria; Sun, Hui; McGettigan, Paul; Nielsen, Jens E; Conroy, Judith; Regan, Regina; Kenny, Elaine; Cormican, Paul; Morris, Derek W; Tormey, Peter; Chróinín, Muireann Ní; Kennedy, Breandan N; Lynch, SallyAnn; Green, Andrew; Ennis, Sean

    2011-12-01

    Microphthalmia, anophthalmia, and coloboma (MAC) are structural congenital eye malformations that cause a significant proportion of childhood visual impairments. Several disease genes have been identified but do not account for all MAC cases, suggesting that additional risk loci exist. We used single nucleotide polymorphism (SNP) homozygosity mapping (HM) and targeted next-generation sequencing to identify the causative mutation for autosomal recessive isolated colobomatous microanophthalmia (MCOPCB) in a consanguineous Irish Traveller family. We identified a double-nucleotide polymorphism (g.1157G>A and g.1156G>A; p.G304K) in STRA6 that was homozygous in all of the MCOPCB patients. The STRA6 p.G304K mutation was subsequently detected in additional MCOPCB patients, including one individual with Matthew-Wood syndrome (MWS; MCOPS9). STRA6 encodes a transmembrane receptor involved in vitamin A uptake, a process essential to eye development and growth. We have shown that the G304K mutant STRA6 protein is mislocalized and has severely reduced vitamin A uptake activity. Furthermore, we reproduced the MCOPCB phenotype in a zebrafish disease model by inhibiting retinoic acid (RA) synthesis, suggesting that diminished RA levels account for the eye malformations in STRA6 p.G304K patients. The current study demonstrates that STRA6 mutations can cause isolated eye malformations in addition to the congenital anomalies observed in MWS.

  14. Genotypic characterization and species identification of Fasciola spp. with implications regarding the isolates infecting goats in Vietnam.

    PubMed

    Nguyen, Thanh Giang Thi; Van De, Nguyen; Vercruysse, Jozef; Dorny, Pierre; Le, Thanh Hoa

    2009-12-01

    Ribosomal RNA sequences (361 or 362bp) of the second internal transcribed spacer 2 (ITS-2) and a portion of mitochondrial cox1 (423bp) for Fasciola spp. obtained from specimens collected in indigenous and hybrid goats and sheep in Vietnam were characterized for genotypic status and hybridization/introgression. Alignment of 48 ITS-2 sequences (also those from goats and sheep in this study) indicates that F. gigantica and F. hepatica differ typically from each other at seven sites whereas one of these is a distinguishing deletion (T) at the 327th position in F. gigantica relative to F. hepatica. The isolates from the mountainous goats in the North of Vietnam (Yen Bai province) showed the ITS-2 composition relatively identical to that of F. hepatica. The ITS-2 sequences from populations of Fasciola isolates in goats had probably experienced introgression/hybridization as reported previously in other ruminants and humans. All Vietnamese goat-of-origin specimens had high pairwise percentage of mitochondrial cox1 sequences to F. gigantica (97-100%), and very low identity to F. hepatica (91-93%), suggesting their maternal linkage to be traced to F. gigantica. The presence of hybrid and/or introgressed populations of liver flukes bearing genetic material from both F. hepatica and F. gigantica in the goats/sheep in Vietnam, regardless of indigenous or imported hosts, appears to be the first demonstration from a tropical country. PMID:19733565

  15. Our nation's wetlands (video). Audio-Visual

    SciTech Connect

    Not Available

    1990-01-01

    The Department of the Interior is custodian of approximately 500 million acres of federally owned land and has an important role to play in the management of wetlands. To contribute to the President's goal of no net loss of America's remaining wetlands, the Department of the Interior has initiated a 3-point program consisting of wetlands protection, restoration, and research: Wetlands Protection--Reduce wetlands losses on federally owned lands and encourage state and private landholders to practice wetlands conservation; Wetlands Restoration--Increase wetlands gains through the restoration and creation of wetlands on both public and private lands; Wetlands Research--Provide a foundation of scientific knowledge to guide future actions and decisions about wetlands. The audiovisual is a slide/tape-to-video transfer illustrating the various ways Interior bureaus are working to preserve our Nation's wetlands. The tape features an introduction by Secretary Manuel Lujan on the importance of wetlands and recognizing the benefit of such programs as the North American Waterfowl Management Program.

  16. Methylmercury Bioaccumulation in Rice and Wetland Biota: employing integrated indices of processes that drive methylmercury risk

    NASA Astrophysics Data System (ADS)

    Eagles-Smith, C.; Ackerman, J.; Windham-Myers, L.; Fleck, J.

    2013-12-01

    concentrations increased across rice fields from inlets to outlets indicating that in situ processes enhanced MeHg production rice fields, whereas concentrations decreased from inlets to outlets in managed wetlands. Finally, our preliminary results suggest organic carbon associated with rice plants was an important contributor to fish Hg concentrations, whereas plants in managed wetlands were not strongly linked to fish Hg concentrations. Our preliminary findings suggest that there are strong linkages between biogeochemical processes inherent in rice wetlands and MeHg cycling and bioaccumulation, which are further described in a companion presentation by Windham-Myers (this session). These results have important implications for managing MeHg risk in areas with extensive rice agriculture.

  17. Michigan Wetlands: Yours To Protect. A Citizen's Guide to Local Involvement in Wetland Protection. Second Edition.

    ERIC Educational Resources Information Center

    Cwikiel, Wilfred

    This guidebook is designed to assist concerned Michigan citizens, local governments, conservation organizations, landowners, and others in their efforts to initiate wetlands protection activities. Chapter 1 focuses on wetland functions, values, losses, and the urgent need to protect wetland resources. Chapter 2 discusses wetland identification and…

  18. Survey of the bp/tee genes from clinical group A streptococcus isolates in New Zealand - implications for vaccine development.

    PubMed

    Steemson, John D; Moreland, Nicole J; Williamson, Deborah; Morgan, Julie; Carter, Philip E; Proft, Thomas

    2014-12-01

    Group A streptococcus (GAS) is responsible for a wide range of diseases ranging from superficial infections, such as pharyngitis and impetigo, to life-threatening diseases, such as toxic shock syndrome and acute rheumatic fever (ARF). GAS pili are hair-like extensions protruding from the cell surface and consist of highly immunogenic structural proteins: the backbone pilin (BP) and one or two accessory pilins (AP1 and AP2). The protease-resistant BP builds the pilus shaft and has been recognized as the T-antigen, which forms the basis of a major serological typing scheme that is often used as a supplement to M typing. A previous sequence analysis of the bp gene (tee gene) in 39 GAS isolates revealed 15 different bp/tee types. In this study, we sequenced the bp/tee gene from 100 GAS isolates obtained from patients with pharyngitis, ARF or invasive disease in New Zealand. We found 20 new bp/tee alleles and four new bp/tee types/subtypes. No association between bp/tee type and clinical outcome was observed. We confirmed earlier reports that the emm type and tee type are associated strongly, but we also found exceptions, where multiple tee types could be found in certain M/emm type strains, such as M/emm89. We also reported, for the first time, the existence of a chimeric bp/tee allele, which was assigned into a new subclade (bp/tee3.1). A strong sequence conservation of the bp/tee gene was observed within the individual bp/tee types/subtypes (>97 % sequence identity), as well as between historical and contemporary New Zealand and international GAS strains. This temporal and geographical sequence stability provided further evidence for the potential use of the BP/T-antigen as a vaccine target. PMID:25190737

  19. Laser Induced Emission Spectroscopy of Cold and Isolated Neutral PAHs and PANH: Implications for the red rectangle emission

    NASA Astrophysics Data System (ADS)

    Bejaoui, Salma; Salama, Farid; Sciamma O'Brien, Ella

    2016-06-01

    Blue luminescence (BL) in the emission spectra of the red rectangle centered on the bright star HD44179 is recently reported by Vijh et al [1]. This results is consistent with the broad band polarization measurements obtained in 1980 by Schmidt et al. Both experimental and theoretical studies support that BL emission could be attributed the luminescence of Polycyclic Aromatic Hydrocarbon (PAH) excited with ultraviolet light from the center of the star [4 and reference therein]. The abundance on N to C in the interstellar medium suggest also that nitrogen substituted PAH (PANH) are likely abundant in the interstellar medium [3]. They exhibit similar features as PAHs and could contribute to the unidentified spectral bands. Comparing the BL to laboratory spectra obtained on similar environment is crucial for the identification of interstellar molecules. We present in this works the absorption and the laser induced emission spectra of several isolated and cold PAHs and PANHs. Laser induced emission was performed first to PAHs and PANHs isolated in Argon matrix at 10 K. Then, measurements are performed with the supersonic jet technique of the COSmIC laboratory facility at NASA Ames. We focus, here, on the emission spectra (fluorescence and (or) phosphorescence) of these molecules and we discuss their contributions to the blue luminescence emission in the Red Rectangle nebula.[1] Vijh,U.P., Witt. A.N. & Gordon,K.D, APJ, 606, L69 (2004)[2] Schmidt, G. D., Cohen, M. & Margon, B., ApJ, 239L.133S (1980)[3] Spitzer, L., Physical Processes in the Interstellar Medium (New York Wiley-Interscience) (1978)[4] Salama, F., Galazutdinov, G. A., Kre lowski, J., Allamandola, L. J., & Musaev, F. A. ApJ, 526,(1999)

  20. [Wetland landscape ecological classification: research progress].

    PubMed

    Cao, Yu; Mo, Li-jiang; Li, Yan; Zhang, Wen-mei

    2009-12-01

    Wetland landscape ecological classification, as a basis for the studies of wetland landscape ecology, directly affects the precision and effectiveness of wetland-related research. Based on the history, current status, and latest progress in the studies on the theories, indicators, and methods of wetland landscape classification, some scientific wetland classification systems, e.g., NWI, Ramsar, and HGM, were introduced and discussed in this paper. It was suggested that a comprehensive classification method based on HGM and on the integral consideration of wetlands spatial structure, ecological function, ecological process, topography, soil, vegetation, hydrology, and human disturbance intensity should be the major future direction in this research field. Furthermore, the integration of 3S technologies, quantitative mathematics, landscape modeling, knowledge engineering, and artificial intelligence to enhance the automatization and precision of wetland landscape ecological classification would be the key issues and difficult topics in the studies of wetland landscape ecological classification.

  1. Quantifying The Water Quality Services Of Wetlands

    EPA Science Inventory

    Wetlands are well recognized for their potential for providing a wide range of important ecological services including their ability to provide water quality protection. Watershed-scale water quality trading could create market driven incentives to restore and construct wetlands...

  2. Dissolved organic carbon and nitrogen of the seasonal wetlands in piedmont ecoregion, South Carolina

    NASA Astrophysics Data System (ADS)

    Yu, X.; Chow, A. T.; Howard, J. H.; Baldwin, R.

    2013-12-01

    Small, shallow seasonal wetlands occur in many landscapes, including natural,forested and urbanized watersheds. Although this type of wetland typically lacks a large water surface area and also dries up for part of the year, it still plays an important role in the entrapment of organic carbon and nutrients and, due to their wide distribution, determining the water quality draining from watersheds. In order to explain the temporal, spatial and compositional variation of water quality of seasonal wetlands, we collected water quality data from forty seasonal wetlands in the lower Blue Ridge and upper Piedmont ecoregions, upstream of the Savannah River during the wet season of February- March, 2011. Results indicated that the water connectivity and surrounding land-use were two key factors controlling the variations of the dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) in seasonal wetlands. In the sites without obvious anthropogenic influences, the DOC and TDN can be transported downstream via connections with ground or/and surface water. As a result, the geographically isolated wetlands were more effective as a tank for retaining DOCs and nutrients than the connected wetlands. However, this phenomenon can be reversed by the effects of human activity. The connected wetlands in the more urbanized areas showed significantly higher concentrations of DOC and TDN as compared to natural areas. The optical parameters derived from UV and fluorescence also confirmed significant portions of protein-like fractions originating from anthropogenic activities such as sewage, agriculture and pasture. The temporal variations of C/N ratios for all the studied wetlands indicated a clear declining trend with the time, demonstrating the decomposition of soil and leaf litter by microbial activity in the wetlands. Results of this study demonstrated that the water quality of seasonal wetlands had direct and close association with the surrounding environment, and it is

  3. Non-migratory breeding by isolated green sea turtles (Chelonia mydas) in the Indian Ocean: biological and conservation implications.

    PubMed

    Whiting, Scott D; Murray, Wendy; Macrae, Ismail; Thorn, Robert; Chongkin, Mohammad; Koch, Andrea U

    2008-04-01

    Green sea turtles (Chelonia mydas) are renowned for their long-distance migrations but have less fame for short-distance migrations or non-migratory behavior. We present satellite telemetric evidence from Cocos (Keeling) Islands, Indian Ocean for the first predominantly non-migratory green sea turtle (C. mydas) population. The mean migration distance from the nesting beach to the foraging grounds was 35.5 km with a maximum mean transit time of 3.4 days. The behavior of this population has major implications for our general understanding of green turtle behavior and their life cycle and for conservation. Firstly, these results indicate a level of juvenile or adult non-breeding homing behavior from the open ocean to foraging grounds adjacent to their natal nesting beach. Secondly, a non-migratory breeding phase reduces the consumption of reproductive energy utilized, potentially resulting in higher fecundity for this population. Thirdly, the close proximity of the nesting and foraging habitats allows for uniformity in management and conservation strategies rarely possible for wide-ranging green turtle populations. PMID:18046497

  4. Non-migratory breeding by isolated green sea turtles (Chelonia mydas) in the Indian Ocean: biological and conservation implications.

    PubMed

    Whiting, Scott D; Murray, Wendy; Macrae, Ismail; Thorn, Robert; Chongkin, Mohammad; Koch, Andrea U

    2008-04-01

    Green sea turtles (Chelonia mydas) are renowned for their long-distance migrations but have less fame for short-distance migrations or non-migratory behavior. We present satellite telemetric evidence from Cocos (Keeling) Islands, Indian Ocean for the first predominantly non-migratory green sea turtle (C. mydas) population. The mean migration distance from the nesting beach to the foraging grounds was 35.5 km with a maximum mean transit time of 3.4 days. The behavior of this population has major implications for our general understanding of green turtle behavior and their life cycle and for conservation. Firstly, these results indicate a level of juvenile or adult non-breeding homing behavior from the open ocean to foraging grounds adjacent to their natal nesting beach. Secondly, a non-migratory breeding phase reduces the consumption of reproductive energy utilized, potentially resulting in higher fecundity for this population. Thirdly, the close proximity of the nesting and foraging habitats allows for uniformity in management and conservation strategies rarely possible for wide-ranging green turtle populations.

  5. Non-migratory breeding by isolated green sea turtles ( Chelonia mydas) in the Indian Ocean: biological and conservation implications

    NASA Astrophysics Data System (ADS)

    Whiting, Scott D.; Murray, Wendy; Macrae, Ismail; Thorn, Robert; Chongkin, Mohammad; Koch, Andrea U.

    2008-04-01

    Green sea turtles ( Chelonia mydas) are renowned for their long-distance migrations but have less fame for short-distance migrations or non-migratory behavior. We present satellite telemetric evidence from Cocos (Keeling) Islands, Indian Ocean for the first predominantly non-migratory green sea turtle ( C. mydas) population. The mean migration distance from the nesting beach to the foraging grounds was 35.5 km with a maximum mean transit time of 3.4 days. The behavior of this population has major implications for our general understanding of green turtle behavior and their life cycle and for conservation. Firstly, these results indicate a level of juvenile or adult non-breeding homing behavior from the open ocean to foraging grounds adjacent to their natal nesting beach. Secondly, a non-migratory breeding phase reduces the consumption of reproductive energy utilized, potentially resulting in higher fecundity for this population. Thirdly, the close proximity of the nesting and foraging habitats allows for uniformity in management and conservation strategies rarely possible for wide-ranging green turtle populations.

  6. The contribution of reserves and anthropogenic habitat for functional connectivity and resilience of ephemeral wetland networks

    NASA Astrophysics Data System (ADS)

    Allen, C. R.; Uden, D.; Angeler, D.; Hellman, M.

    2015-12-01

    Functional connectivity of reserves and other suitable habitat patches is crucial for persistence of spatially structured populations, and therefore for resilience. To maintain or increase connectivity at spatial scales larger than individual patches, conservation actions may focus on creating and maintaining reserves or influencing management actions taken on non-reserves. We assess functional connectivity of isolated wetlands within an intensively managed agricultural matrix. Using a graph-theoretic approach, we assessed the functional connectivity and spatial distribution of wetlands in the Rainwater Basins, Nebraska, U.S.A. at four assumed anuran dispersal distances. We compare the contemporary wetlands landscape to the historical landscape and putative future landscapes and evaluate the importance of individual and aggregated reserve and non-reserve wetlands for maintaining connectivity. Connectivity was greatest in the historical landscape, where wetlands were also the most densely distributed. The construction of irrigation reuse pits for water storage has substantially increased connectivity in the current landscape, but because their distribution is more uniform than historical wetlands, larger and longer-dispersing species may be favored over smaller, shorter-dispersing species. Because of their relatively low number, wetland reserves did not affect connectivity as greatly as non-reserve wetlands or irrigation reuse pits; however, they provide the highest-quality anuran habitat. Future levels of connectivity in the region will be directly impacted by the planned removal of irrigation reuse pits, and on non-reserve wetlands. Multi-scale spatial and temporal assessments of the effects of landuse change and conservation actions on landscape connectivity may be used to direct and prioritize conservation actions, and should also be useful for reserve network and landscape resilience assessments.

  7. Using hydrogeology to site wetland compensation

    USGS Publications Warehouse

    Miller, Michael V.; Fucciolo, Christine S.; Miner, James J.

    1998-01-01

    The Illinois State Geological Survey has designed an initial site evaluation (ISE) procedure to rapidly separate candidate sites that have favorable hydrogeologic characteristics for wetland restoration or creation from sites where success is doubtful or difficult. ISE aims to focus compensation efforts on sites where former wetland hydrology can be restored or where the hydrogeology of wetlands in similar landscape positions can be reproduced.

  8. 40 CFR 257.9 - Wetlands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... (b) For purposes of this section, wetlands means those areas that are defined in 40 CFR 232.2(r). ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Wetlands. 257.9 Section 257.9... Location Restrictions § 257.9 Wetlands. (a) Owners or operators of new units and lateral expansions...

  9. 40 CFR 257.9 - Wetlands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    .... (b) For purposes of this section, wetlands means those areas that are defined in 40 CFR 232.2(r). ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Wetlands. 257.9 Section 257.9... Location Restrictions § 257.9 Wetlands. (a) Owners or operators of new units and lateral expansions...

  10. North Dakota Wetlands Discovery Guide. Photocopy Booklet.

    ERIC Educational Resources Information Center

    Dietz, Nancy J., Ed.; And Others

    This booklet contains games and activities that can be photocopied for classroom use. Activities include Wetland Terminology, Putting on the Map, Erosional Forces, Water in...Water out, Who Lives Here?, Wetlands in Disguise, Dichotomous Plant Game, Algae Survey, Conducting an Algal Survey, Water Quality Indicators Guide, Farming Wetlands, Wetlands…

  11. Microbial Community Structure in Lake and Wetland Sediments from a High Arctic Polar Desert Revealed by Targeted Transcriptomics

    PubMed Central

    Stoeva, Magdalena K.; Aris-Brosou, Stéphane; Chételat, John; Hintelmann, Holger; Pelletier, Philip; Poulain, Alexandre J.

    2014-01-01

    While microbial communities play a key role in the geochemical cycling of nutrients and contaminants in anaerobic freshwater sediments, their structure and activity in polar desert ecosystems are still poorly understood, both across heterogeneous freshwater environments such as lakes and wetlands, and across sediment depths. To address this question, we performed targeted environmental transcriptomics analyses and characterized microbial diversity across three depths from sediment cores collected in a lake and a wetland, located on Cornwallis Island, NU, Canada. Microbial communities were characterized based on 16S rRNA and two functional gene transcripts: mcrA, involved in archaeal methane cycling and glnA, a bacterial housekeeping gene implicated in nitrogen metabolism. We show that methane cycling and overall bacterial metabolic activity are the highest at the surface of lake sediments but deeper within wetland sediments. Bacterial communities are highly diverse and structured as a function of both environment and depth, being more diverse in the wetland and near the surface. Archaea are mostly methanogens, structured by environment and more diverse in the wetland. McrA transcript analyses show that active methane cycling in the lake and wetland corresponds to distinct communities with a higher potential for methane cycling in the wetland. Methanosarcina spp., Methanosaeta spp. and a group of uncultured Archaea are the dominant methanogens in the wetland while Methanoregula spp. predominate in the lake. PMID:24594936

  12. Landscape context mediates influence of local food abundance on wetland use by wintering shorebirds in an agricultural valley

    USGS Publications Warehouse

    Taft, Oriane W.; Haig, Susan M.

    2006-01-01

    While it is widely understood that local abundance of benthic invertebrates can greatly influence the distribution and abundance of wetland birds, no studies have examined if wetland landscape context can mediate this relationship. We studied the influence of wetland food abundance and landscape context on use of agricultural wetlands by wintering dunlin (Calidris alpina) and killdeer (Charadrius vociferus) in the Willamette Valley of Oregon, USA, over two winters (1999a??2000, 2000a??2001) of differing rainfall and subsequent habitat distribution. We monitored bird use (frequency of occurrence and abundance) at a sample of wetlands differing in local food abundance (density and biomass) and landscape context [adjacent shorebird habitat (defined as ha of wet habitat with less than 50% vegetative cover and within a 2-km radius) and nearest neighbor distance]. We evaluated predictive models for bird use using linear regression and the Cp criterion to select the most parsimonious model. During the dry winter (2000a??2001), dunlin exhibited greater use of sites with higher invertebrate density and biomass but also with more adjacent shorebird habitat and closest to a wetland neighbor. However, neither landscape context nor food abundance were important predictors of dunlin use during the wet winter (1999a??2000). Use of sites by killdeer was unrelated to either local food abundance or landscape context measures during both winters. Our findings contribute to a growing recognition of the importance of landscape structure to wetland birds and highlight a number of implications for the spatial planning and enhancement of wetlands using a landscape approach.

  13. Isolation and characterization of a new class of acidic glycans implicated in sea urchin embryonal cell adhesion.

    PubMed

    Papakonstantinou, E; Misevic, G N

    1993-10-01

    Three major glycan fractions of 580 kDa (g580), 150 kDa (g150), and 2 kDa (g2) were isolated and purified from Lytechinus pictus sea urchin embryos at the mesenchyme blastula stage by gel filtration and high pressure liquid chromatography. Chemical analysis, by gas chromatography, revealed that g580 is highly sulfated and rich in N-acetylglucosamine, N-acetylgalactosamine, glucuronic acid, and fucose. The g150 fraction is less acidic than g580 and contains high amounts of amino sugars, xylose, and mannose. The g2 fraction is neutral, rich in N-acetylglucosamine, mannose, and galactose. The g580 and g150 fractions are resistant to glycosaminoglycan-degrading enzymes, indicating that they are distinct from the glycosaminoglycans. The g580 fraction resembles, with respect to chemical composition, a previously characterized 200 kDa sponge adhesion glycan (g200). The binding of the monoclonal antibody Block 2, which recognizes a repetitive epitope on g200, as well as of the anti-g580 polyclonal antibodies to both g580 and g200 indicated that these two glycans share similar antigenic determinants. The Fab fragments of the Block 2 antibody, which previously have been shown to inhibit cell adhesion in sponges, also blocked the reaggregation of dissociated sea urchin mesenchyme blastula cells. These results indicate that g580 carries a carbohydrate epitope, similar to the sponge adhesion epitope of g200, which is involved in sea urchin embryonal cell adhesion.

  14. Methane emissions from canopy wetlands

    NASA Astrophysics Data System (ADS)

    Martinson, G. O.; Conrad, R.

    2012-12-01

    Ground wetlands are the main natural source of methane but they fail to explain the observed amounts of methane over tropical forests. Bromeliad tanks are discrete habitats for aquatic organisms and up to several thousand of bromeliad individuals per hectare of tropical forest create a unique canopy wetland ecosystem in neotropical forests. Recently, we have discovered that canopy wetlands inhabit methanogenic archaea, emit substantial amounts of methane and may help to explain the high amounts of methane over neotropical forests. However, the pathway of methane formation and potential methane production in canopy wetlands of different tropical forest ecosystems have not yet been studied. In this study, we investigated the stable carbon isotope fractionation, methanogenic pathway and potential methane production of bromeliad tanks along an elevation gradient in neotropical forests for the first time. We sampled the bromeliad tank-substrate of 3 tank bromeliads per functional type and elevation (1000 m, 2000 m and 3000 m above the sea level). We distinguished three functional types of tank bromeliads, based on plant architecture and ecological niche preference. Functional type I-tank bromeliads are concentrated in the understory and on the ground. Functional type II and type III are concentrated in the mid and overstory. We conducted tank-substrate incubation experiments and measured CH4, CO2, 13CH4 and 13CO2 at regular time intervals during the incubation period. The methane production potential of bromeliad tanks correlated positively with tank-substrate carbon concentration and decreased with increasing canopy height and increasing elevation. The dominant pathway of methane formation in bromeliad tanks was hydrogenotrophic methanogenesis (>50%) and this dominance increased with increasing canopy height and increasing elevation. Our results provide novel insights into the pathway of methane formation in neotropical canopy wetlands and suggest that canopy height is

  15. Comparative internal kinematics of the H II regions in interacting and isolated galaxies: implications for massive star formation modes

    NASA Astrophysics Data System (ADS)

    Zaragoza-Cardiel, Javier; Beckman, John E.; Font, Joan; García-Lorenzo, Begoña; Camps-Fariña, Artemi; Fathi, Kambiz; James, Philip A.; Erroz-Ferrer, Santiago; Barrera-Ballesteros, Jorge; Cisternas, Mauricio

    2015-08-01

    We have observed 12 interacting galaxy pairs using the Fabry-Perot interferometer GH αFaS (Galaxy H α Fabry-Perot system) on the 4.2-m William Herschel Telescope at the Observatorio del Roque de los Muchachos, La Palma. We present here the Hα surface brightness, velocity and velocity dispersion maps for the 10 systems we have not previously observed using this technique, as well as the physical properties (sizes, Hα luminosities and velocity dispersion) of 1259 H II regions from the full sample. We also derive the physical properties of 1054 H II regions in a sample of 28 isolated galaxies observed with the same instrument in order to compare the two populations of H II regions. We find a population of the brightest H II regions for which the scaling relations, for example the relation between the Hα luminosity and the radius, are clearly distinct from the relations for the regions of lower luminosity. The regions in this bright population are more frequent in the interacting galaxies. We find that the turbulence, and also the star formation rate (SFR), are enhanced in the H II regions in the interacting galaxies. We have also extracted the Hα equivalent widths for the H II regions of both samples, and we have found that the distribution of H II region ages coincides for the two samples of galaxies. We suggest that the SFR enhancement is brought about by gas flows induced by the interactions, which give rise to gravitationally bound gas clouds which grow further by accretion from the flowing gas, producing conditions favourable to star formation.

  16. Isolation and characterization of Cr(VI) reducing Cellulomonas spp. from subsurface soils: implications for long-term chromate reduction.

    PubMed

    Viamajala, Sridhar; Smith, William A; Sani, Rajesh K; Apel, William A; Petersen, James N; Neal, Andrew L; Roberto, F F; Newby, D T; Peyton, Brent M

    2007-02-01

    Microbial enrichments from Cr(VI) contaminated and uncontaminated US Department of Energy Hanford Site sediments produced Cr(VI) reducing consortia when grown in the presence of Cr(VI) with acetate, D-xylose or glycerol as a carbon and energy source. Eight of the nine isolates from the consortia were Gram positive and four of these were identified by 16S rRNA sequence homology and membrane fatty acid composition as belonging to the genus Cellulomonas. Two strains, ES6 and WS01, were further examined for their ability to reduce Cr(VI) under growth and non-growth conditions. During fermentative growth on D-xylose, ES6 and WS01 decreased aqueous Cr(VI) concentrations from 0.04 mM Cr(VI) to below the detection limit (0.002 mM Cr(VI)) in less than three days and retained their ability to reduce Cr(VI) even after four months of incubation. Washed ES6 and WS01 cells also reduced Cr(VI) under non-growth conditions for over four months, both with and without the presence of an exogenous electron donor. K-edge XANES spectroscopy confirmed the reduction of Cr(VI) to Cr(III). The ability to reduce Cr(VI) after growth had stopped and in the absence of an external electron donor, suggests that stimulation of these types of organisms may lead to effective long-term, in situ passive reactive barriers for Cr(VI) removal. Our results indicate that Cr(VI) reduction by indigenous Cellulomonas spp. may be a potential method of in situ bioremediation of Cr(VI) contaminated sediment and groundwater.

  17. Isolation and characterization of Cr(VI) reducing Cellulomonas spp. from subsurface soils: Implications for long-term chromate reduction

    SciTech Connect

    S. Viamajala; W. Smith; R. Sani; W. Apel; J. Petersen; A. Neal; F. Roberto; D. Newby; B. Peyton

    2007-02-01

    Microbial enrichments from Cr(VI) contaminated and uncontaminated US Department of Energy Hanford Site sediments produced Cr(VI) reducing consortia when grown in the presence of Cr(VI) with acetate, D-xylose or glycerol as a carbon and energy source. Eight of the nine isolates from the consortia were Gram positive and four of these were identified by 16S rRNA sequence homology and membrane fatty acid composition as belonging to the genus Cellulomonas. Two strains, ES6 and WS01, were further examined for their ability to reduce Cr(VI) under growth and non-growth conditions. During fermentative growth on D-xylose, ES6 and WS01 decreased aqueous Cr(VI) concentrations from 0.04 mM Cr(VI) to below the detection limit (0.002 mM Cr(VI)) in less than three days and retained their ability to reduce Cr(VI) even after four months of incubation. Washed ES6 and WS01 cells also reduced Cr(VI) under non-growth conditions for over four months, both with and without the presence of an exogenous electron donor. K-edge XANES spectroscopy confirmed the reduction of Cr(VI) to Cr(III). The ability to reduce Cr(VI) after growth had stopped and in the absence of an external electron donor, suggests that stimulation of these types of organisms may lead to effective long-term, in situ passive reactive barriers for Cr(VI) removal. Our results indicate that Cr(VI) reduction by indigenous Cellulomonas spp. may be a potential method of in situ bioremediation of Cr(VI) contaminated sediment and groundwater.

  18. Malignant potential of cells isolated from lymph node or brain metastases of melanoma patients and implications for prognosis.

    PubMed

    Zhang, R D; Price, J E; Schackert, G; Itoh, K; Fidler, I J

    1991-04-15

    We studied the correlation between the formation of brain metastasis and the malignant growth potential of seven human melanoma cell lines, isolated from lymph node metastases (A375-SM, TXM-1, DM-4) or from brain metastases (TXM-13, TXM-18, TXM-34, TXM-40), and the potential of three variants of the mouse K-1735 melanoma. Growth rates in different concentrations of fetal bovine serum and colony-forming efficiency in semisolid agarose were measured, and the tumorigenicity and metastatic ability were determined in nude mice (for the human melanoma cell lines) or in C3H/HeN mice (for the K-1735 variants). The ability to form brain metastasis was tested by injection of cells into the carotid artery. A high colony-forming efficiency in agarose, especially at concentrations of agarose greater than 0.6%, corresponded with high tumor take rates, rapid tumor growth rates, and metastatic colonization of the lungs of the recipient mice. For the human melanomas, the lymph node metastasis-derived cells were more tumorigenic and metastatic than the brain metastasis-derived cells. In the K-1735 mouse melanoma, the tumorigenic and metastatic behavior of the cells after i.v. and s.c. injection corresponded with growth in agarose cultures. However, for growth in the brain after intracarotid injection, the different melanoma cell lines showed similar frequencies of tumor take, regardless of tumorigenicity in other sites of the recipient mice, although mice given injections of brain metastasis-derived cells survived longer than mice given injections of lymph node metastasis (human melanoma) or lung metastasis (K-1735 M-2)-derived cell lines. The results from the human and mouse melanoma cell lines show that the brain metastasis-derived cell lines were not more malignant than the lymph node or lung metastasis-derived cells. These data imply that the production of brain metastasis is not always the final stage of a metastatic cascade. PMID:1826230

  19. Isolated CyaA-RTX subdomain from Bordetella pertussis: Structural and functional implications for its interaction with target erythrocyte membranes.

    PubMed

    Pandit, Riyaz Ahmad; Meetum, Kanungsuk; Suvarnapunya, Kittipong; Katzenmeier, Gerd; Chaicumpa, Wanpen; Angsuthanasombat, Chanan

    2015-10-01

    The 126-kDa Bordetella pertussis CyaA-hemolysin (CyaA-Hly) was previously expressed in Escherichia coli as a soluble precursor that can be acylated to retain hemolytic activity. Here, we investigated structural and functional characteristics of a ∼100-kDa isolated RTX (Repeat-in-ToXin) subdomain (CyaA-RTX) of CyaA-Hly. Initially, we succeeded in producing a large amount with high purity of the His-tagged CyaA-RTX fragment and in establishing the interaction of acylated CyaA-Hly with sheep red blood cell (sRBC) membranes by immuno-localization. Following pre-incubation of sRBCs with non-acylated CyaA-Hly or with the CyaA-RTX fragment that itself produces no hemolytic activity, there was a dramatic decrease in CyaA-Hly-induced hemolysis. When CyaA-RTX was pre-incubated with anti-CyaA-RTX antisera, the capability of CyaA-RTX to neutralize the hemolytic activity of CyaA-Hly was greatly decreased. A homology-based model of the 100-kDa CyaA-RTX subdomain revealed a loop structure in Linker II sharing sequence similarity to human WW domains. Sequence alignment of Linker II with the human WW-domain family revealed highly conserved aromatic residues important for protein-protein interactions. Altogether, our present study demonstrates that the recombinant CyaA-RTX subdomain retains its functionality with respect to binding to target erythrocyte membranes and the WW-homologous region in Linker II conceivably serves as a functional segment required for receptor-binding activity.

  20. Understanding Broadscale Drivers of Coastal Wetland Extent

    NASA Astrophysics Data System (ADS)

    Braswell, A. E.; Heffernan, J. B.

    2014-12-01

    Coastal wetlands provide valuable ecosystem services, but are threatened by sea level rise, anthropogenic disturbance, and changing sediment supply. Watershed characteristics, such as watershed area and upland land use, can mediate suspended sediment concentration; while estuarine characteristics, such as fetch, can determine the wave energy and erosion in a coastal area. These combined effects are mediated by local biogeomorphic feedbacks within wetlands to determine wetland extent. There has been little empirical or theoretical study of how broad-scale features of estuaries and watersheds influence wetland formation, persistence, and loss. As such, we cannot predict how wetland extent and resilience to sea level rise will respond to land use change and other human alterations. In this study, we ask, what factors control the broad-scale distribution of coastal wetlands? We examined relationships between coastal wetland extent and watershed/estuarine characteristics at multiple scales along the Eastern and Gulf coasts of the United States. Using existing GIS resources, we delineated the absolute and relative extents of coastal wetlands, and generated watershed and estuarine characteristics to serve as proxies of sediment input, the estuarine energy environment, and local wetland alteration. We found that present coastal wetland distributions reflect interactions across a wide range of spatial scales, ranging from local biogeomorphic processes, to estuarine-scale morphology that governs hydrodynamics, and to past and present watershed processes that influence sediment delivery. Coastal wetland extent scales with estuary size to the half power and the residuals reflect a bimodal distribution. The wetland extent distribution also displays multiple clusters, possibly signaling that local feedbacks drive wetland extent at some scales. When the results are broken up by region, this pattern is stronger in Northeastern United States. Using continental-scale variation in

  1. Integrated wetlands for food production.

    PubMed

    Chen, Ray Zhuangrui; Wong, Ming-Hung

    2016-07-01

    The widespread use of compound pelleted feeds and chemical fertilizers in modern food production contribute to a vast amount of residual nutrients into the production system and adjacent ecosystem are major factors causing eutrophication. Furthermore, the extensive development and application of chemical compounds (such as chemical pesticides, disinfectants and hormones used in enhancing productivity) in food production process are hazardous to the ecosystems, as well as human health. These unsustainable food production patterns cannot sustain human living in the long run. Wetlands are perceived as self-decontamination ecosystems with high productivities. This review gives an overview about wetlands which are being integrated with food production processes, focusing on aquaculture. PMID:27131797

  2. Radioiodine concentrated in a wetland.

    PubMed

    Kaplan, Daniel I; Zhang, Saijin; Roberts, Kimberly A; Schwehr, Kathy; Xu, Chen; Creeley, Danielle; Ho, Yi-Fang; Li, Hsiu-Ping; Yeager, Chris M; Santschi, Peter H

    2014-05-01

    Most subsurface environmental radioactivity contamination is expected to eventually resurface in riparian zones, or wetlands. There are a number of extremely sharp biogeochemical interfaces in wetlands that could alter radionuclide speciation and promote accumulation. The objective of this study was to determine if a wetland concentrated (129)I emanating from a former waste disposal basin located on the Savannah River Site (SRS) in South Carolina, USA. Additionally, studies were conducted to evaluate the role of sediment organic matter in immobilizing the radioiodine. Groundwater samples were collected along a 0.7-km transect away from the seepage basin and in the downstream wetlands. The samples were analyzed for (129)I speciation (iodide (I(-)), iodate (IO3(-)), and organo-I). Groundwater (129)I concentrations in many locations in the wetlands (as high as 59.9 Bq L(-1)(129)I) were greatly elevated with respect to the source term (5.9 Bq L(-1)(129)I). (129)I concentration profiles in sediment cores were closely correlated to organic matter concentrations (r(2) = 0.992; n = 5). While the sediment organic matter promoted the uptake of (129)I to the wetland sediment, it also promoted the formation of a soluble organic fraction: 74% of the wetland groundwater (129)I could pass through a 1 kDa (<1 nm) membrane and only 26% of the (129)I was colloidal. Of that fraction that could pass through a 1 kDa membrane, 39% of the (129)I was organo-I. Therefore, while wetlands may be highly effective at immobilizing aqueous (129)I, they may also promote the formation of a low-molecular-weight organic species that does not partition to sediments. This study provides a rare example of radioactivity concentrations increasing rather than decreasing as it migrates from a point source and brings into question assumptions in risk models regarding continuous dilution of released contaminants.

  3. Realizing ecosystem services: wetland hydrologic function along a gradient of ecosystem condition.

    PubMed

    McLaughlin, Daniel L; Cohen, Matthew J

    2013-10-01

    Wetlands provide numerous ecosystem services, from habitat provision to pollutant removal, floodwater storage, and microclimate regulation. Delivery of particular services relies on specific ecological functions, and thus to varying degree on wetland ecological condition, commonly quantified as departure from minimally impacted reference sites. Condition assessments are widely adopted as regulatory indicators of ecosystem function, and for some services (e.g., habitat) links between condition and function are often direct. For others, however, links are more tenuous, and using condition alone to enumerate ecosystem value (e.g., for compensatory mitigation) may underestimate important services. Hydrologic function affects many services cited in support of wetland protection both directly (floodwater retention, microclimate regulation) and indirectly (biogeochemical cycling, pollutant removal). We investigated links between condition and hydrologic function to test the hypothesis, embedded in regulatory assessment of wetland value, that condition predicts function. Condition was assessed using rapid and intensive approaches, including Florida's official wetland assessment tool, in 11 isolated forested wetlands in north Florida (USA) spanning a land use intensity gradient. Hydrologic function was assessed using hydrologic regime (mean, variance, and rates of change of water depth), and measurements of groundwater exchange and evapotranspiration (ET). Despite a wide range in condition, no systematic variation in hydrologic regime was observed; indeed reference sites spanned the full range of variation. In contrast, ET was affected by land use, with higher rates in intensive (agriculture and urban) landscapes in response to higher leaf area. ET determines latent heat exchange, which regulates microclimate, a valuable service in urban heat islands. Higher ET also indicates higher productivity and thus carbon cycling. Groundwater exchange regularly reversed flow direction

  4. Cold climate wetlands: design and performance.

    PubMed

    Wallace, S; Parkin, G; Cross, C

    2001-01-01

    Constructed wetlands are gaining widespread use as a simple, low cost means of wastewater treatment. Introduction of constructed wetlands technology into the northern United States has been limited by the ability of conventional wetland systems to operate without freezing during the winter. A design approach using subsurface-flow constructed wetlands covered with an insulating mulch layer has been demonstrated to prevent freezing. However, introduction of a mulch layer will affect oxygen transfer rates, pollutant removal performance, and plant establishment. These factors must be addressed for successful application of constructed wetlands technology in cold climates.

  5. Monitoring wetlands change using LANDSAT data

    NASA Technical Reports Server (NTRS)

    Hardin, D. L.

    1981-01-01

    A wetlands monitoring study was initiated as part of Delaware's LANDSAT applications demonstration project. Classifications of digital data are conducted in an effort to determine the location and acreage of wetlands loss or gain, species conversion, and application for the inventory and typing of freshwater wetlands. A multi-seasonal approach is employed to compare data from two different years. Unsupervised classifications were conducted for two of the four dates examined. Initial results indicate the multi-seasonal approach allows much better separation of wetland types for both tidal and non-tidal wetlands than either season alone. Change detection is possible but generally misses the small acreages now impacted by man.

  6. Wetland mitigation banking for the petroleum industry

    SciTech Connect

    Crookshank, S.L.

    1996-08-01

    Wetland policies aimed at achieving a no-overall-net-loss goal are likely to increase the cost of petroleum operations conducted in wetlands. This paper argues that wetland mitigation banking is the key to minimizing the costs associated with these wetland policies. Noting the limited opportunities for banking by the petroleum industry currently, the paper examines how wetland mitigation banking regulations should be structured in order to make banking a viable option for industry. It argues that the Army Corps of Engineers should allow banks with proper safety mechanisms in place to sell credits before mitigation projects are completed.

  7. Strategic Environmental Assessment Framework for Landscape-Based, Temporal Analysis of Wetland Change in Urban Environments

    NASA Astrophysics Data System (ADS)

    Sizo, Anton; Noble, Bram F.; Bell, Scott

    2016-03-01

    This paper presents and demonstrates a spatial framework for the application of strategic environmental assessment (SEA) in the context of change analysis for urban wetland environments. The proposed framework is focused on two key stages of the SEA process: scoping and environmental baseline assessment. These stages are arguably the most information-intense phases of SEA and have a significant effect on the quality of the SEA results. The study aims to meet the needs for proactive frameworks to assess and protect wetland habitat and services more efficiently, toward the goal of advancing more intelligent urban planning and development design. The proposed framework, adopting geographic information system and remote sensing tools and applications, supports the temporal evaluation of wetland change and sustainability assessment based on landscape indicator analysis. The framework was applied to a rapidly developing urban environment in the City of Saskatoon, Saskatchewan, Canada, analyzing wetland change and land-use pressures from 1985 to 2011. The SEA spatial scale was rescaled from administrative urban planning units to an ecologically meaningful area. Landscape change assessed was based on a suite of indicators that were subsequently rolled up into a single, multi-dimensional, and easy to understand and communicate index to examine the implications of land-use change for wetland sustainability. The results show that despite the recent extremely wet period in the Canadian prairie region, land-use change contributed to increasing threats to wetland sustainability.

  8. Strategic Environmental Assessment Framework for Landscape-Based, Temporal Analysis of Wetland Change in Urban Environments.

    PubMed

    Sizo, Anton; Noble, Bram F; Bell, Scott

    2016-03-01

    This paper presents and demonstrates a spatial framework for the application of strategic environmental assessment (SEA) in the context of change analysis for urban wetland environments. The proposed framework is focused on two key stages of the SEA process: scoping and environmental baseline assessment. These stages are arguably the most information-intense phases of SEA and have a significant effect on the quality of the SEA results. The study aims to meet the needs for proactive frameworks to assess and protect wetland habitat and services more efficiently, toward the goal of advancing more intelligent urban planning and development design. The proposed framework, adopting geographic information system and remote sensing tools and applications, supports the temporal evaluation of wetland change and sustainability assessment based on landscape indicator analysis. The framework was applied to a rapidly developing urban environment in the City of Saskatoon, Saskatchewan, Canada, analyzing wetland change and land-use pressures from 1985 to 2011. The SEA spatial scale was rescaled from administrative urban planning units to an ecologically meaningful area. Landscape change assessed was based on a suite of indicators that were subsequently rolled up into a single, multi-dimensional, and easy to understand and communicate index to examine the implications of land-use change for wetland sustainability. The results show that despite the recent extremely wet period in the Canadian prairie region, land-use change contributed to increasing threats to wetland sustainability.

  9. Strategic Environmental Assessment Framework for Landscape-Based, Temporal Analysis of Wetland Change in Urban Environments.

    PubMed

    Sizo, Anton; Noble, Bram F; Bell, Scott

    2016-03-01

    This paper presents and demonstrates a spatial framework for the application of strategic environmental assessment (SEA) in the context of change analysis for urban wetland environments. The proposed framework is focused on two key stages of the SEA process: scoping and environmental baseline assessment. These stages are arguably the most information-intense phases of SEA and have a significant effect on the quality of the SEA results. The study aims to meet the needs for proactive frameworks to assess and protect wetland habitat and services more efficiently, toward the goal of advancing more intelligent urban planning and development design. The proposed framework, adopting geographic information system and remote sensing tools and applications, supports the temporal evaluation of wetland change and sustainability assessment based on landscape indicator analysis. The framework was applied to a rapidly developing urban environment in the City of Saskatoon, Saskatchewan, Canada, analyzing wetland change and land-use pressures from 1985 to 2011. The SEA spatial scale was rescaled from administrative urban planning units to an ecologically meaningful area. Landscape change assessed was based on a suite of indicators that were subsequently rolled up into a single, multi-dimensional, and easy to understand and communicate index to examine the implications of land-use change for wetland sustainability. The results show that despite the recent extremely wet period in the Canadian prairie region, land-use change contributed to increasing threats to wetland sustainability. PMID:26645076

  10. Ecosystem services: developing sustainable management paradigms based on wetland functions and processes

    USGS Publications Warehouse

    Euliss, Ned H.; Mushet, David M.; Smith, Loren M.; Conner, William H.; Burkett, Virginia R.; Wilcox, Douglas A.; Hester, Mark W.; Zheng, Haochi

    2013-01-01

    findings. In comparison to older and more traditional scientific disciplines, the wetland sciences may be better equipped to tackle today’s complex problems. Since its emergence as a scientific discipline, the study of wetlands has frequently required interdisciplinary and integrated approaches. This interdisciplinary/integrated approach is largely the result of the fact that wetlands cannot be studied in isolation of upland areas that contribute surface and subsurface water, solutes, sediments, and nutrients into wetland basins. However, challenges still remain in thoroughly integrating the wetland sciences with scientific disciplines involved in upland studies, especially those involved with agriculture, development, and other land-conversion activities that influence wetland hydrology, chemistry, and sedimentation. One way to facilitate this integration is to develop an understanding of how human activities affect wetland ecosystem services, especially the trade-offs and synergisms that occur when land-use changes are made. Used in this context, an understanding of the real costs of managing for a particular ecosystem service or groups of services can be determined and quantified in terms of reduced delivery of other services and in overall sustainability of the wetland and the landscapes that support them. In this chapter, we discuss some of the more salient aspects of a few common wetland types to give the reader some background on the diversity of functions that wetlands perform and the specific ecosystem services they provide to society. Wetlands are among the most complex ecosystems on the planet, and it is often difficult to communicate to a diverse public all of the positive services wetlands provide to mankind. Our goal is to help the reader develop an understanding that management options can be approached as societal choices where decisions can be made within a spatial and temporal context to identify trade-offs, synergies, and effects on long

  11. Montane wetland water chemistry, Uinta Mountains, Utah

    NASA Astrophysics Data System (ADS)

    Severson, K. S.; Matyjasik, M.; Ford, R. L.; Hernandez, M. W.; Welsh, S. B.; Summers, S.; Bartholomew, L. M.

    2009-12-01

    part of the watershed, gradually changing to bicarbonate in the lower part of the watershed. The creek water also show a relatively small increase in total dissolved solids from 10 mg/L in the upper basin to 18 mg/L in the lower basin. Dissolved oxygen, potassium, and chlorides also decrease along the creek flow path, while calcium and sulfates increase. Values of pH fluctuate more along the length of the channel as the creek receives water discharging from the wetlands. An interesting geomorphic characteristic of these montane wetlands is a distinctive compartmentalization by a system of peaty flarks and strings, typically oriented perpendicular to the direction of surface-water flow. Water samples collected from piezometers contain much higher concentrations of all ions compared to surface-water samples from the flarks. It is believed that deeper portions of the peat work as highly isolated flow cells, storing water for an extended period of time, resulting in locally increased ionic concentrations. Future work will attempt to clarify and test this hypothesis.

  12. Factors affecting coastal wetland loss and restoration

    USGS Publications Warehouse

    Cahoon, D.R.; Phillips, S.W.

    2007-01-01

    Opening paragraph: Tidal and nontidal wetlands in the Chesapeake Bay watershed provide vital hydrologic, water-quality, and ecological functions. Situated at the interface of land and water, these valuable habitats are vulnerable to alteration and loss by human activities including direct conversion to non-wetland habitat by dredge-and-fill activities from land development, and to the effects of excessive nutrients, altered hydrology and runoff, contaminants, prescribed fire management, and invasive species. Processes such as sea-level rise and climate change also impact wetlands. Although local, State, and Federal regulations provide for protection of wetland resources, the conversion and loss of wetland habitats continue in the Bay watershed. Given the critical values of wetlands, the Chesapeake 2000 Agreement has a goal to achieve a net gain in wetlands by restoring 25,000 acres of tidal and nontidal wetlands by 2010. The USGS has synthesized findings on three topics: (1) sea-level rise and wetland loss, (2) wetland restoration, and (3) factors affecting wetland diversity.

  13. Electroacoustic Comparison of Hearing Aid Output of Phonemes in Running Speech versus Isolation: Implications for Aided Cortical Auditory Evoked Potentials Testing

    PubMed Central

    Easwar, Vijayalakshmi; Purcell, David W.; Scollie, Susan D.

    2012-01-01

    Background. Functioning of nonlinear hearing aids varies with characteristics of input stimuli. In the past decade, aided speech evoked cortical auditory evoked potentials (CAEPs) have been proposed for validation of hearing aid fittings. However, unlike in running speech, phonemes presented as stimuli during CAEP testing are preceded by silent intervals of over one second. Hence, the present study aimed to compare if hearing aids process phonemes similarly in running speech and in CAEP testing contexts. Method. A sample of ten hearing aids was used. Overall phoneme level and phoneme onset level of eight phonemes in both contexts were compared at three input levels representing conversational speech levels. Results. Differences of over 3 dB between the two contexts were noted in one-fourth of the observations measuring overall phoneme levels and in one-third of the observations measuring phoneme onset level. In a majority of these differences, output levels of phonemes were higher in the running speech context. These differences varied across hearing aids. Conclusion. Lower output levels in the isolation context may have implications for calibration and estimation of audibility based on CAEPs. The variability across hearing aids observed could make it challenging to predict differences on an individual basis. PMID:23316236

  14. Evaluation of Lactococcus lactis Isolates from Nondairy Sources with Potential Dairy Applications Reveals Extensive Phenotype-Genotype Disparity and Implications for a Revised Species

    PubMed Central

    Cavanagh, Daniel; Casey, Aidan; Altermann, Eric; Cotter, Paul D.; Fitzgerald, Gerald F.

    2015-01-01

    Lactococcus lactis is predominantly associated with dairy fermentations, but evidence suggests that the domesticated organism originated from a plant niche. L. lactis possesses an unusual taxonomic structure whereby strain phenotypes and genotypes often do not correlate, which in turn has led to confusion in L. lactis classification. A bank of L. lactis strains was isolated from various nondairy niches (grass, vegetables, and bovine rumen) and was further characterized on the basis of key technological traits, including growth in milk and key enzyme activities. Phenotypic analysis revealed all strains from nondairy sources to possess an L. lactis subsp. lactis phenotype (lactis phenotype); however, seven of these strains possessed an L. lactis subsp. cremoris genotype (cremoris genotype), determined by two separate PCR assays. Multilocus sequence typing (MLST) showed that strains with lactis and cremoris genotypes clustered together regardless of habitat, but it highlighted the increased diversity that exists among “wild” strains. Calculation of average nucleotide identity (ANI) and tetranucleotide frequency correlation coefficients (TETRA), using the JSpecies software tool, revealed that L. lactis subsp. cremoris and L. lactis subsp. lactis differ in ANI values by ∼14%, below the threshold set for species circumscription. Further analysis of strain TIFN3 and strains from nonindustrial backgrounds revealed TETRA values of <0.99 in addition to ANI values of <95%, implicating that these two groups are separate species. These findings suggest the requirement for a revision of L. lactis taxonomy. PMID:25841018

  15. Remote Sensing of Global Wetland Dynamics

    NASA Technical Reports Server (NTRS)

    Matthews, Elaine; Prigent, Catherine; Birkett, Charon; Coe, Mike; Hasen, James E. (Technical Monitor)

    2000-01-01

    Although natural wetlands only cover about 4% of the earth's ice-free land surface, they are the world's largest methane (CH4) source and the only one dominated by climate. In addition, wetlands affect climate by modulating temperatures and heat fluxes, storing water, increasing evaporation, and altering the seasonality of runoff and river discharge to the oceans. Current CH4 emissions from wetlands are relatively well understood but the sensitivity of wetlands and their emissions to climate variations remains the largest uncertainty in the global CH4 cycle and could strongly influence predictions of future climate. Therefore, characterizing climate-sensitive processes prevailing in the world's wetlands is crucial to understanding and predicting physical and biogeochemical responses of wetlands to interannual and longer-term climate variations. Recent research has resulted in the first generation of models to predict methane emissions from wetlands but the models must still be applied to static data on wetland distributions. Moreover, no models currently exist to realistically predict the distribution and dynamics of wetlands themselves for the current, or any other, climate. The dominant obstacle to modeling wetland dynamics has been lack of remote sensing techniques and data useful for characterizing quantitatively the seasonal and interannual variations of wetlands. We report on initial remote sensing studies undertaken to validate a global hydrological model linking rivers, takes and wetlands. Using a combination of SSM/I microwave and TOPEX Poseidon altimetry data sets, we developed and applied techniques to quantify inundation extent and duration for several large wetlands in tropical Africa and South America. Our initial results indicate that seasonally-inundated wetlands can be well characterized over large spatial scales and at monthly time scales using these remote sensing data. The results also confirm that currently available remote sensing products can

  16. The Call of the Wetlands.

    ERIC Educational Resources Information Center

    Stewart, Patrick

    1998-01-01

    Frogwatch is a volunteer monitoring program developed in response to worldwide concern about declining populations of amphibians. Outlines a frog-monitoring program and a wetland study to be conducted alone or together. Explains the basics, including choosing a frog, introducing the topic, mapping, recordkeeping, equipment, survey procedures, and…

  17. Environmental Education in Wetland Ecosystems

    ERIC Educational Resources Information Center

    Papapanagou, Eirini; Tiniakou, Argyro; Georgiadis, Theodoros

    2005-01-01

    An educational package based on the Messolongi wetland area and designed to develop environmental awareness amongst Greek secondary students is described. The package includes a book and a pedagogical guide for the teacher, as well as a hypermedia application/CD-ROM and worksheets for the student. The entire educational package combines recent…

  18. The National Wetland Condition Assessment

    EPA Science Inventory

    The first National Wetland Condition Assessment (NWCA) was conducted in 2011 by the US Environmental Protection Agency (USEPA). Vegetation, algae, soil, water chemistry,and hydrologic data were collected at each of 1138 sites across the contiguous US. Ecological condition was ass...

  19. Relationships between Spatial Metrics and Plant Diversity in Constructed Freshwater Wetlands.

    PubMed

    Brandt, Erika C; Petersen, John E; Grossman, Jake J; Allen, George A; Benzing, David H

    2015-01-01

    The diversity of plant species and their distribution in space are both thought to have important effects on the function of wetland ecosystems. However, knowledge of the relationships between plant species and spatial diversity remains incomplete. In this study, we investigated relationships between spatial pattern and plant species diversity over a five year period following the initial restoration of experimental wetland ecosystems. In 2003, six identical and hydrologically-isolated 0.18 ha wetland "cells" were constructed in former farmland in northeast Ohio. The systems were subjected to planting treatments that resulted in different levels of vascular plant species diversity among cells. Plant species diversity was assessed through annual inventories. Plant spatial pattern was assessed by digitizing low-altitude aerial photographs taken at the same time as the inventories. Diversity metrics derived from the inventories were significantly related to certain spatial metrics derived from the photographs, including cover type diversity and contagion. We found that wetlands with high cover type diversity harbor higher plant species diversity than wetlands with fewer types of patches. We also found significant relationships between plant species diversity and spatial patterning of patch types, but the direction of the effect differed depending on the diversity metric used. Links between diversity and spatial pattern observed in this study suggest that high-resolution aerial imagery may provide wetland scientists with a useful tool for assessing plant diversity. PMID:26296205

  20. Relationships between Spatial Metrics and Plant Diversity in Constructed Freshwater Wetlands

    PubMed Central

    Grossman, Jake J.; Allen, George A.; Benzing, David H.

    2015-01-01

    The diversity of plant species and their distribution in space are both thought to have important effects on the function of wetland ecosystems. However, knowledge of the relationships between plant species and spatial diversity remains incomplete. In this study, we investigated relationships between spatial pattern and plant species diversity over a five year period following the initial restoration of experimental wetland ecosystems. In 2003, six identical and hydrologically-isolated 0.18 ha wetland “cells” were constructed in former farmland in northeast Ohio. The systems were subjected to planting treatments that resulted in different levels of vascular plant species diversity among cells. Plant species diversity was assessed through annual inventories. Plant spatial pattern was assessed by digitizing low-altitude aerial photographs taken at the same time as the inventories. Diversity metrics derived from the inventories were significantly related to certain spatial metrics derived from the photographs, including cover type diversity and contagion. We found that wetlands with high cover type diversity harbor higher plant species diversity than wetlands with fewer types of patches. We also found significant relationships between plant species diversity and spatial patterning of patch types, but the direction of the effect differed depending on the diversity metric used. Links between diversity and spatial pattern observed in this study suggest that high-resolution aerial imagery may provide wetland scientists with a useful tool for assessing plant diversity. PMID:26296205

  1. Draft Genome Sequence of a Bacillus Bacterium from the Atacama Desert Wetlands Metagenome

    PubMed Central

    Vilo, Claudia; Galetovic, Alexandra; Araya, Jorge E.; Dong, Qunfeng

    2015-01-01

    We report here the draft genome sequence of a Bacillus bacterium isolated from the microflora of Nostoc colonies grown at the Andean wetlands in northern Chile. We consider this genome sequence to be a molecular tool for exploring microbial relationships and adaptation strategies to the prevailing extreme conditions at the Atacama Desert. PMID:26294639

  2. Impacts of natural wetland degradation on dissolved carbon dynamics in the Sanjiang Plain, Northeastern China

    NASA Astrophysics Data System (ADS)

    Song, C. C.; Wang, L. L.; Guo, Y. D.; Song, Y. Y.; Yang, G. S.; Li, Y. C.

    2011-02-01

    study might have important implications that the impact of building of artificial ditches on dissolved carbon of waters more fully reflected in increases of dissolved carbon resulting from wetland degradation rather than increases in the artificial ditch itself.

  3. 77 FR 63326 - Huron Wetland Management District, Madison Wetland Management District, and Sand Lake Wetland...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-16

    ... this process through a notice in the Federal Register (73 FR 53439, September 16, 2008). We released... in the Federal Register (76 FR 65525, October 21, 2011). Huron Wetland Management District was...-consumptive uses, such as bird watching and wildlife photography, accounting for less than eight...

  4. The National Wetland Condition Assessment: National Data on Wetland Quality to Inform and Improve Wetlands Protection

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA), in collaboration with states, tribes, the US Fish and Wildlife Service (US FWS), and other federal partners will conduct the first-ever National Wetland Condition Assessment (NWCA) in 2011. The NWCA is designed to build on the succ...

  5. Influence of summer water-level variability on St. Lawrence River-wetland fish assemblages

    USGS Publications Warehouse

    McKenna, J.E.; Barkley, J.L.; Johnson, J.H.

    2008-01-01

    Water-level and associated variability are substantial influences on wetland and shallow aquatic communities. The Akwesasne Wetland Complex is an extensive St. Lawrence River system affected by water regulation. The responses of fish assemblages to short-term summer water-level variation were examined throughout this section of the St. Lawrence River and its tributaries. An influence of water-level variability was detected on abundance of three common species [bluntnose minnow (Pimephales notatus), rock bass (Amboplites rupestris), and white sucker (Catastomus commersonii)] and explained 30-44% of variation. This influence has implications for water regulation and natural resource management, and a larger scope evaluation may reveal more extensive effects.

  6. Mg(2+) differentially regulates two modes of mitochondrial Ca(2+) uptake in isolated cardiac mitochondria: implications for mitochondrial Ca(2+) sequestration.

    PubMed

    Blomeyer, Christoph A; Bazil, Jason N; Stowe, David F; Dash, Ranjan K; Camara, Amadou K S

    2016-06-01

    The manner in which mitochondria take up and store Ca(2+) remains highly debated. Recent experimental and computational evidence has suggested the presence of at least two modes of Ca(2+) uptake and a complex Ca(2+) sequestration mechanism in mitochondria. But how Mg(2+) regulates these different modes of Ca(2+) uptake as well as mitochondrial Ca(2+) sequestration is not known. In this study, we investigated two different ways by which mitochondria take up and sequester Ca(2+) by using two different protocols. Isolated guinea pig cardiac mitochondria were exposed to varying concentrations of CaCl2 in the presence or absence of MgCl2. In the first protocol, A, CaCl2 was added to the respiration buffer containing isolated mitochondria, whereas in the second protocol, B, mitochondria were added to the respiration buffer with CaCl2 already present. Protocol A resulted first in a fast transitory uptake followed by a slow gradual uptake. In contrast, protocol B only revealed a slow and gradual Ca(2+) uptake, which was approximately 40 % of the slow uptake rate observed in protocol A. These two types of Ca(2+) uptake modes were differentially modulated by extra-matrix Mg(2+). That is, Mg(2+) markedly inhibited the slow mode of Ca(2+) uptake in both protocols in a concentration-dependent manner, but not the fast mode of uptake exhibited in protocol A. Mg(2+) also inhibited Na(+)-dependent Ca(2+) extrusion. The general Ca(2+) binding properties of the mitochondrial Ca(2+) sequestration system were reaffirmed and shown to be independent of the mode of Ca(2+) uptake, i.e. through the fast or slow mode of uptake. In addition, extra-matrix Mg(2+) hindered Ca(2+) sequestration. Our results indicate that mitochondria exhibit different modes of Ca(2+) uptake depending on the nature of exposure to extra-matrix Ca(2+), which are differentially sensitive to Mg(2+). The implications of these findings in cardiomyocytes are discussed.

  7. CONSTRUCTED WETLANDS FOR TREATMENT OF HEAVY METALS IN URBAN STORMWATER RUNOFF: CHEMICAL SPECIATION OF WETLAND SEDIMENTS

    EPA Science Inventory

    Heavy metals in urban stormwater runoff are primarily removed by sedimentation in stormwater best management practices (BMPs) such as constructed wetlands. Heavy metals accumulated in wetland sediments may be potentially toxic to benthic invertebrates and aquatic microorganisms, ...

  8. Heterogeneity in a Suburban River Network: Understanding the Impact of Fluvial Wetlands on Dissolved Oxygen and Metabolism in Headwater Streams

    NASA Astrophysics Data System (ADS)

    Cain, J. S.; Wollheim, W. M.; Sheehan, K.; Lightbody, A.

    2014-12-01

    Low dissolved oxygen content in rivers threatens fish populations, aquatic organisms, and the health of entire ecosystems. River systems with high fluvial wetland abundance and organic matter, may result in high metabolism that in conjunction with low re-aeration rates, lead to low oxygen conditions. Increasing abundance of beaver ponds in many areas may exacerbate this phenomenon. This research aims to understand the impact of fluvial wetlands, including beaver ponds, on dissolved oxygen (D.O.) and metabolism throughout the headwaters of the Ipswich R. watershed, MA, USA. In several fluvial wetland dominated systems, we measured diel D.O. and metabolism in the upstream inflow, the surface water transient storage zones of fluvial wetland sidepools, and at the outflow to understand how the wetlands modify dissolved oxygen. D.O. was also measured longitudinally along entire surface water flow paths (x-y km long) to determine how low levels of D.O. propagate downstream. Nutrient samples were also collected to understand how their behavior was related to D.O. behavior. Results show that D.O. in fluvial wetlands has large swings with periods of very low D.O. at night. D.O. swings were also seen in downstream outflow, though lagged and somewhat attenuated. Flow conditions affect the level of inundation and the subsequent effects of fluvial wetlands on main channel D.O.. Understanding the D.O. behavior throughout river systems has important implications for the ability of river systems to remove anthropogenic nitrogen.

  9. 75 FR 68378 - Meeting Announcement: North American Wetlands Conservation Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... Fish and Wildlife Service Meeting Announcement: North American Wetlands Conservation Council AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The North American Wetlands Conservation Council (Council) will meet to select North American Wetlands Conservation Act (NAWCA)...

  10. 76 FR 31626 - Meeting Announcement; North American Wetlands Conservation Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-01

    ... Fish and Wildlife Service Meeting Announcement; North American Wetlands Conservation Council AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The North American Wetlands Conservation Council (Council) will meet to select North American Wetlands Conservation Act (NAWCA)...

  11. 77 FR 71820 - Meeting Announcement: North American Wetlands Conservation Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-04

    ... Fish and Wildlife Service Meeting Announcement: North American Wetlands Conservation Council AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The North American Wetlands Conservation Council (Council) will meet to select North American Wetlands Conservation Act (NAWCA)...

  12. 78 FR 71637 - Meeting Announcement: North American Wetlands Conservation Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-29

    ... Fish and Wildlife Service Meeting Announcement: North American Wetlands Conservation Council AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The North American Wetlands Conservation Council (Council) will meet to select North American Wetlands Conservation Act (NAWCA)...

  13. 77 FR 39252 - Meeting Announcement: North American Wetlands Conservation Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-02

    ... Fish and Wildlife Service Meeting Announcement: North American Wetlands Conservation Council AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meetings. SUMMARY: The North American Wetlands Conservation Council (Council) will meet to select North American Wetlands Conservation Act (NAWCA)...

  14. 76 FR 69278 - Meeting Announcement: North American Wetlands Conservation Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... Fish and Wildlife Service Meeting Announcement: North American Wetlands Conservation Council AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The North American Wetlands Conservation Council will meet to select North American Wetlands Conservation Act grant proposals...

  15. 78 FR 11220 - Meeting Announcement: North American Wetlands Conservation Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-15

    ... Fish and Wildlife Service Meeting Announcement: North American Wetlands Conservation Council AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The North American Wetlands Conservation Council (Council) will meet to select North American Wetlands Conservation Act (NAWCA)...

  16. 75 FR 34479 - Meeting Announcement: North American Wetlands Conservation Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... Fish and Wildlife Service Meeting Announcement: North American Wetlands Conservation Council AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice of meeting. SUMMARY: The North American Wetlands Conservation Council (Council) will meet to select North American Wetlands Conservation Act (NAWCA)...

  17. Forested wetlands constructed for mitigation of destroyed natural wetlands

    USGS Publications Warehouse

    Perry, M.C.; Pugh, S.B.; Deller, A.S.

    1995-01-01

    Forested wetlands constructed for mitigation were evaluated at six sites in Maryland to determine the success of these areas for providing suitable wildlife habitat. Natural forested wetlands were used as reference sites. Initial mortality of planted woody shrubs and trees was high (avg. 55%) and mostly attributed to excessive moisture. The number of woody seedlings from natural regeneration was inversely proportional to the amount of grass cover on the site, which was planted for erosion control. The number of volunteer woody seedlings was also inversely proportional to the distance from adjacent natural forests. Preliminary data indicate that cost does not support use of transplants and that enhancement of soil with organic supplements, followed by widespread and heavy seeding of woody plants would be more efficient and effective. Wildlife use of areas measured by avian surveys and trapping of mammals, reptiles, and amphibians showed that in general wildlife species were more representative of open grassland areas than forested habitats. Natural succession of the sites probably will take at least 20-30 years before typical values and functions of forested wetlands are obtained.

  18. SLOSS or Not? Factoring Wetland Size Into Decisions for Wetland Conservation, Enhancement, Restoration, and Creation

    EPA Science Inventory

    Mitigation or replacement of several small impacted wetlands or sites with fewer large wetlands can occur deliberately through the application of functional assessment methods (e.g., Adamus 1997) or coincidentally as the result of market-based mechanisms for wetland mitigation ba...

  19. Characteristic community structure of Florida's subtropical wetlands: the Florida wetland condition index

    EPA Science Inventory

    Depending upon the classification scheme applied, there are between 10 and 45 different wetland types in Florida. Land use and land cover change has a marked effect on wetland condition, and different wetland types are affected differentially depending on many abiotic and biotic ...

  20. Hydrogeomorphic classification for Great Lakes coastal wetlands

    USGS Publications Warehouse

    Albert, Dennis A.; Wilcox, Douglas A.; Ingram, Joel W.; Thompson, Todd A.

    2005-01-01

    A hydrogeomorphic classification scheme for Great Lakes coastal wetlands is presented. The classification is hierarchical and first divides the wetlands into three broad hydrogeomorphic systems, lacustrine, riverine, and barrier-protected, each with unique hydrologic flow characteristics and residence time. These systems are further subdivided into finer geomorphic types based on physical features and shoreline processes. Each hydrogeomorphic wetland type has associated plant and animal communities and specific physical attributes related to sediment type, wave energy, water quality, and hydrology.

  1. Microbial Characteristics of Native Aquatic Species of Savannah River Wetlands

    SciTech Connect

    McKinsey, P.C.

    2000-12-12

    In 1974 the Savannah River Site (SRS) was established as a National Environmental Research Park (NERP) in the United States. NERP provided locations for long-term ecological research investigation. Many of the ecological studies that have been conducted in the past mainly focused on the macroscopic view. The Savannah River Site contains wetlands that are home to many diverse organisms. We conducted a preliminary survey of microbial habitats in order to explore the biodiversity of species-specific symbionts. Bacterial surveys included viable counts, direct counts, isolation, identification, and metabolic profiles.

  2. What are wetlands A historical overview

    SciTech Connect

    Toliver, J. )

    1993-05-01

    Forested wetlands are highly productive, diverse, and dynamic natural environments, with their greatest value as buffers and filters between urban and agricultural development and the most vital life support resource-water. Wetland losses in the continental US are 53% since the 18th century. The author presents an historic overview of US government policies about wetlands, summarizing the Clean Water Act and detailing the problems of identifying and delineating a wetland. An overview of the current literature definitions and debate is included. 15 refs.

  3. Predicting coastal flooding and wetland loss

    USGS Publications Warehouse

    Doyle, Thomas W.

    1997-01-01

    The southeastern coastal region encompasses vast areas of wetland habitat important to wildlife and other economically valuable natural resources. Located on the interface between sea and land, these wetland habitats are affected by both sea-level rise and hurricanes, and possibly by hydroperiod associated with regional climatic shifts. Increased sea level is expected to accompany global warming because of higher sea temperatures and ice melt. To help determine the effects of sea-level rise on these wetlands, USGS scientists created computer models of coastal flooding and wetland loss.

  4. Simplified method for wetland habitat assessment

    NASA Astrophysics Data System (ADS)

    Cable, Ted T.; Brack, Virgil; Holmes, Virgil R.

    1989-03-01

    This article presents a wetland habitat assessment technique (HAT) using birds as indicators of habitat quality. The technique is quick, simple, inexpensive, and lends itself to screening large numbers of wetlands. HAT can provide input to more extensive evaluation techniques. Measures of species diversity and rarity are used to assess the quality of the wetland. By applying the notion of ecologically optimum size, the technique addresses the issue of economic efficiency. Results of field testing HAT on 11 tidally influenced wetlands are presented to illustrate HAT's utility. Application of HAT in a variety of situations is discussed.

  5. Effect of sorption and desorption-resistance on biodegradation of chlorobenzene in two wetland soils.

    PubMed

    Lee, Sangjin; Pardue, J H; Moe, W M; Kim, D J

    2009-01-15

    Bioavailability of chlorobenzenes (CBs) in soils to microbial populations has implications for remediation of waste sites with long histories of contamination. Bioavailability of CB was assessed using mineralization assays for two types of wetland soils with contrasting properties. The rate and extent of CB mineralization were greater than predicted by mathematical models which assume instantaneous desorption followed by biodegradation. The freshly added CB was degraded with initial mineralization rates (IMRs) of 0.14microgL(-1)h(-1) and 1.92microgL(-1)h(-1) for marsh soil and wetland soil respectively. These values indicate that CB-degrading bacteria had an access to the sorbed CB. Mineralization assays were also performed for wetland soils after the CB was aged for 1, 7 and 31 days. The results revealed that even a desorption-resistant part of the sorbed CB was degraded although the degradation occurred at lower rates and to a lesser extent.

  6. Macrophyte species distribution, indices of biotic integrity and sampling intensity in isolated Florida marshes

    EPA Science Inventory

    This study tested macrophyte condition metrics calculated after decreasing the effort and area of sampling by 33% to 66%, as tested in 74 emergent isolated wetlands. Four belted transects from wetland edge to center were established and rooted macrophytes were identified. The eff...

  7. Breeding Bird Use of Isolated Wetalnds Alolng a Gradient of Ubanization in the Northeast US

    EPA Science Inventory

    As natural habitats become fewer in number and more fragmented as a result of urbanization, ecosystem services provided by small isolated wetlands may become increasingly important. For example, wildlife habitat provided by wetlands in urban landscapes may help support both we...

  8. North American Wetlands and Mosquito Control

    PubMed Central

    Rey, Jorge R.; Walton, William E.; Wolfe, Roger J.; Connelly, Roxanne; O’Connell, Sheila M.; Berg, Joe; Sakolsky-Hoopes, Gabrielle E.; Laderman, Aimlee D.

    2012-01-01

    Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems. Mosquito control in wetlands is a complex issue influenced by numerous factors, including many hard to quantify elements such as human perceptions, cultural predispositions, and political climate. In spite of considerable progress during the last decades, habitat protection and environmentally sound habitat management still remain inextricably tied to politics and economics. Furthermore, the connections are often complex, and occur at several levels, ranging from local businesses and politicians, to national governments and multinational institutions. Education is the key to lasting wetlands conservation. Integrated mosquito abatement strategies incorporate many approaches and practicable options, as described herein, and need to be well-defined, effective, and ecologically and economically sound for the wetland type and for the mosquito species of concern. The approach will certainly differ in response to disease outbreaks caused by mosquito-vectored pathogens versus quality of life issues caused by nuisance-biting mosquitoes. In this contribution, we provide an overview of the ecological setting and context for mosquito control in wetlands, present pertinent information on wetlands mosquitoes, review the mosquito abatement options available for current wetlands managers and mosquito control professionals, and outline some necessary considerations when devising mosquito control strategies. Although the emphasis is on North American wetlands, most of the material is applicable to wetlands everywhere. PMID:23222252

  9. Conservation and protection of Georgia's freshwater wetlands

    SciTech Connect

    Turner, M.J.J.

    1989-01-01

    Georgia's freshwater wetlands are a valuable natural resource. Despite this fact, they are vanishing at an alarming rate. One objective of the research presented in this dissertation was to try to determine why freshwater wetlands have been so little esteemed historically that their destruction has until lately drawn little attention. In addition, it was hoped that this research would lead to conclusions about the extent of Georgia's freshwater wetlands and the status of their conservation and protection. A further goal of the study was to generate ideas about how better to protect this resource, and to examine policy issues that must be addressed in association with the problem. Interest in freshwater wetlands is part of a continuum of interests and events associated with environmental awareness that has its roots in the late 1800's and early 1900's. An understanding of the history of the environmental movement and the maturation of environmental philosophy provides needed background against which the issues associated with preservation of freshwater wetlands must be viewed. The first two chapters are thus devoted to an exploration of the history of environmental awareness and activism. In the third chapter, historical material about freshwater wetlands in the, US is presented. The final section is dedicated to a discussion of freshwater wetlands in Georgia. Georgia's boundaries encompass five physiographic provinces. Freshwater wetlands are found in all of these regions, but the type of wetland varies among them. In the northern part of the state, freshwater wetlands are scarce, but in the southern half of the state they are so common as to be considered a dominant feature of the landscape. Among the threats to Georgia's wetlands are urban development, agricultural conversion, impoundment, and pollution.

  10. North American wetlands and mosquito control.

    PubMed

    Rey, Jorge R; Walton, William E; Wolfe, Roger J; Connelly, C Roxanne; O'Connell, Sheila M; Berg, Joe; Sakolsky-Hoopes, Gabrielle E; Laderman, Aimlee D

    2012-12-10

    Wetlands are valuable habitats that provide important social, economic, and ecological services such as flood control, water quality improvement, carbon sequestration, pollutant removal, and primary/secondary production export to terrestrial and aquatic food chains. There is disagreement about the need for mosquito control in wetlands and about the techniques utilized for mosquito abatement and their impacts upon wetlands ecosystems. Mosquito control in wetlands is a complex issue influenced by numerous factors, including many hard to quantify elements such as human perceptions, cultural predispositions, and political climate. In spite of considerable progress during the last decades, habitat protection and environmentally sound habitat management still remain inextricably tied to politics and economics. Furthermore, the connections are often complex, and occur at several levels, ranging from local businesses and politicians, to national governments and multinational institutions. Education is the key to lasting wetlands conservation. Integrated mosquito abatement strategies incorporate many approaches and practicable options, as described herein, and need to be well-defined, effective, and ecologically and economically sound for the wetland type and for the mosquito species of concern. The approach will certainly differ in response to disease outbreaks caused by mosquito-vectored pathogens versus quality of life issues caused by nuisance-biting mosquitoes. In this contribution, we provide an overview of the ecological setting and context for mosquito control in wetlands, present pertinent information on wetlands mosquitoes, review the mosquito abatement options available for current wetlands managers and mosquito control professionals, and outline some necessary considerations when devising mosquito control strategies. Although the emphasis is on North American wetlands, most of the material is applicable to wetlands everywhere.

  11. The carbon balance of North American wetlands

    USGS Publications Warehouse

    Bridgham, S.D.; Megonigal, J.P.; Keller, J.K.; Bliss, N.B.; Trettin, C.

    2006-01-01

    We examine the carbon balance of North American wetlands by reviewing and synthesizing the published literature and soil databases. North American wetlands contain about 220 Pg C, most of which is in peat. They are a small to moderate carbon sink of about 49 Tg C yr-1, although the uncertainty around this estimate is greater than 100%, with the largest unknown being the role of carbon sequestration by sedimentation in freshwater mineral-soil wetlands. We estimate that North American wetlands emit 9 Tg methane (CH 4) yr-1; however, the uncertainty of this estimate is also greater than 100%. With the exception of estuarine wetlands, CH4 emissions from wetlands may largely offset any positive benefits of carbon sequestration in soils and plants in terms of climate forcing. Historically, the destruction of wetlands through land-use changes has had the largest effects on the carbon fluxes and consequent radiative forcing of North American wetlands. The primary effects have been a reduction in their ability to sequester carbon (a small to moderate increase in radiative forcing), oxidation of their soil carbon reserves upon drainage (a small increase in radiative forcing), and reduction in CH4 emissions (a small to large decrease in radiative forcing). It is uncertain how global changes will affect the carbon pools and fluxes of North American wetlands. We will not be able to predict accurately the role of wetlands as potential positive or negative feedbacks to anthropogenic global change without knowing the integrative effects of changes in temperature, precipitation, atmospheric carbon dioxide concentrations, and atmospheric deposition of nitrogen and sulfur on the carbon balance of North American wetlands

  12. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots

    SciTech Connect

    Li, Dien; Kaplan, Daniel I.; Chang, Hyun-Shik; Seaman, John C.; Jaffé, Peter R.; Koster van Groos, Paul; Scheckel, Kirk G.; Segre, Carlo U.; Chen, Ning; Jiang, De-Tong; Newville, Matthew; Lanzirotti, Antonio

    2015-03-03

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6–5.8) conditions using U L₃-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U–C bond distance at ~2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulating the SRS wetland processes, U immobilization on roots was two orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was re-oxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.

  13. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots.

    PubMed

    Li, Dien; Kaplan, Daniel I; Chang, Hyun-Shik; Seaman, John C; Jaffé, Peter R; Koster van Groos, Paul; Scheckel, Kirk G; Segre, Carlo U; Chen, Ning; Jiang, De-Tong; Newville, Matthew; Lanzirotti, Antonio

    2015-03-01

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6-5.8) conditions using U L3-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U-C bond distance at ∼2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulating the SRS wetland processes, U immobilization on roots was 2 orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was reoxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.

  14. Spectroscopic evidence of uranium immobilization in acidic wetlands by natural organic matter and plant roots

    DOE PAGESBeta

    Li, Dien; Kaplan, Daniel I.; Chang, Hyun-Shik; Seaman, John C.; Jaffé, Peter R.; Koster van Groos, Paul; Scheckel, Kirk G.; Segre, Carlo U.; Chen, Ning; Jiang, De-Tong; et al

    2015-03-03

    Biogeochemistry of uranium in wetlands plays important roles in U immobilization in storage ponds of U mining and processing facilities but has not been well understood. The objective of this work was to study molecular mechanisms responsible for high U retention by Savannah River Site (SRS) wetland sediments under varying redox and acidic (pH = 2.6–5.8) conditions using U L₃-edge X-ray absorption spectroscopy. Uranium in the SRS wetland sediments existed primarily as U(VI) bonded as a bidentate to carboxylic sites (U–C bond distance at ~2.88 Å), rather than phenolic or other sites of natural organic matter (NOM). In microcosms simulatingmore » the SRS wetland processes, U immobilization on roots was two orders of magnitude higher than on the adjacent brown or more distant white sands in which U was U(VI). Uranium on the roots were both U(IV) and U(VI), which were bonded as a bidentate to carbon, but the U(VI) may also form a U phosphate mineral. After 140 days of air exposure, all U(IV) was re-oxidized to U(VI) but remained as a bidentate bonding to carbon. This study demonstrated NOM and plant roots can highly immobilize U(VI) in the SRS acidic sediments, which has significant implication for the long-term stewardship of U-contaminated wetlands.« less

  15. Unique Organic Matter and Microbial Properties in the Rhizosphere of a Wetland Soil.

    PubMed

    Kaplan, Daniel I; Xu, Chen; Huang, Shan; Lin, Youmin; Tolić, Nikola; Roscioli-Johnson, Kristyn M; Santschi, Peter H; Jaffé, Peter R

    2016-04-19

    Wetlands attenuate the migration of many contaminants through a wide range of biogeochemical reactions. Recent research has shown that the rhizosphere, the zone near plant roots, in wetlands is especially effective at promoting contaminant attenuation. The objective of this study was to compare the soil organic matter (OM) composition and microbial communities of a rhizosphere soil (primarily an oxidized environment) to that of the bulk wetland soil (primarily a reduced environment). The rhizosphere had elevated C, N, Mn, and Fe concentrations and total bacteria, including Anaeromyxobacter, counts (as identified by qPCR). Furthermore, the rhizosphere contained several organic molecules that were not identified in the nonrhizosphere soil (54% of the >2200 ESI-FTICR-MS identified compounds). The rhizosphere OM molecules generally had (1) greater overall molecular weights, (2) less aromaticity, (3) more carboxylate and N-containing COO functional groups, and (4) a greater hydrophilic character. These latter two OM properties typically promote metal binding. This study showed for the first time that not only the amount but also the molecular characteristics of OM in the rhizosphere may in part be responsible for the enhanced immobilization of contaminants in wetlands. These finding have implications on the stewardship and long-term management of contaminated wetlands.

  16. Methane and carbon dioxide dynamics in wetland mesocosms: effects of hydrology and soils.

    PubMed

    Altor, Anne E; Mitsch, William J

    2008-07-01

    Methane and carbon dioxide fluxes in created and restored wetlands, and the influence of hydrology and soils on these fluxes, have not been extensively documented. Minimizing methane fluxes while maximizing productivity is a relevant goal for wetland restoration and creation projects. In this study we used replicated wetland mesocosms to investigate relationships between contrasting hydrologic and soil conditions, and methane and carbon dioxide fluxes in emergent marsh systems. Hydrologic treatments consisted of an intermittent flooding regime vs. continuously inundated conditions, and soil treatments utilized hydric vs. non-hydric soils. Diurnal patterns of methane flux were examined to shed light on the relationship between emergent macrophytes and methane emissions for comparison with vegetation-methane relationships reported from natural wetlands. Microbially available organic carbon content was significantly greater in hydric soils than nonhydric soils, despite similar organic matter contents in the contrasting soil types. Mesocosms with hydric soils exhibited the greatest rates of methane flux regardless of hydrology, but intermittent inundation of hydric soils produced significantly lower methane fluxes than continuous inundatation of hydric soils. Methane fluxes were not affected significantly by hydrologic regime in mesocosms containing non-hydric soils. There were no diurnal differences in methane flux, and carbon dioxide and methane fluxes were not significantly correlated. The highest rates of CO2 uptake occurred in the continuously inundated treatment with non-hydric soils, and there were no significant differences in nighttime respiration rates between the treatments. Implications for hydrologic design of created and restored wetlands are discussed.

  17. Evaluation of impacts on wetlands: do NEPA analyses integrate wetland protection requirements

    SciTech Connect

    Reed, R.M.; Salk, M.S.; Webb, J.W.

    1991-01-01

    The impacts of federal projects on wetlands should be included in documents prepared to comply with the National Environmental Policy Act (NEPA). NEPA assessments of impacts on wetlands are often related to requirements of other laws, regulations, and executive orders, such as permitting requirements under Section 404 of the Clean Water Act and those contained in Executive Order 11990, Protection of Wetlands. This paper reviews recent NEPA environmental impact statements that contained assessments of impacts on wetlands or that involved projects likely to affect wetlands. It covers documents prepared by several federal agencies, including the Army Corps of Engineers, Department of Energy, Federal Highway Administration, Soil Conservation Service, and Tennessee Valley Authority. The extent and depth of analyses of wetlands issues was found to be highly variable, both within and among agencies. Most analyses did not provide adequate geographical or ecological context for assessing project impacts and addressing cumulative effects. Indirect impacts on wetlands were generally ignored. Frequently agencies did not identify federal and state requirements for wetlands protection. NEPA analyses of wetlands impacts could integrate wetlands protection requirements more successfully by identifying those requirements in a national, regional, and local context. Wetlands protection goals, including no net loss, would be more effectively met if both direct and indirect impacts were addressed and measures were included to ensure that proposed mitigation is implemented successfully. 7 refs., 1 tab.

  18. East African wetland-catchment data base for sustainable wetland management

    NASA Astrophysics Data System (ADS)

    Leemhuis, Constanze; Amler, Esther; Diekkrüger, Bernd; Gabiri, Geofrey; Näschen, Kristian

    2016-10-01

    Wetlands cover an area of approx. 18 Mio ha in the East African countries of Kenya, Rwanda, Uganda and Tanzania, with still a relative small share being used for food production. Current upland agricultural use intensification in these countries due to demographic growth, climate change and globalization effects are leading to an over-exploitation of the resource base, followed by an intensification of agricultural wetland use. We aim on translating, transferring and upscaling knowledge on experimental test-site wetland properties, small-scale hydrological processes, and water related ecosystem services under different types of management from local to national scale. This information gained at the experimental wetland/catchment scale will be embedded as reference data within an East African wetland-catchment data base including catchment physical properties and a regional wetland inventory serving as a base for policy advice and the development of sustainable wetland management strategies.

  19. Macroinvertebrate abundance, water chemistry, and wetland characteristics affect use of wetlands by avian species in Maine

    USGS Publications Warehouse

    Longcore, J.R.; McAuley, D.G.; Pendelton, G.W.; Bennatti, C.R.; Mingo, T.M.; Stromborg, K.L.

    2006-01-01

    Our objective was to determine use by avian species (e.g., piscivores, marsh birds, waterfowl, selected passerines) of 29 wetlands in areas with low ( 5.51. All years combined use of wetlands by broods was greater on wetlands with pH ??? 5.51 (77.4%) in contract to wetlands with pH > 5.51 that supported 21.8% of the broods. High mean brood density was associated with mean number of Insecta per wetland. For lentic wetlands created by beaver, those habitats contained vegetative structure and nutrients necessary to provide cover to support invertebrate populations that are prey of omnivore and insectivore species. The fishless status of a few wetlands may have affected use by some waterfowl species and obligate piscivores. ?? Springer 2006.

  20. Culiseta subochrea as a bioindicator of metal contamination in Shadegan International Wetland, Iran (Diptera: Culicidae).

    PubMed

    Nasirian, Hassan; Vazirianzadeh, Babak; Taghi Sadeghi, Sayyed Mohammad; Nazmara, Shahrokh

    2014-01-01

    The quantity of some trace metals of mosquito larvae in Shadegan International Wetland from Iran was evaluated. Water, waterbed sediment, and mosquito larvae samplings were carried out from an urban site in the east of the wetland, using standard methods in December 2011. The identified Culiseta subochrea (Edwards) and Aedes caspius s.l. (Pallas) larvae, water, and waterbed sediment samples were analyzed for As, Cd, Co, Cr, Cu, Fe, Hg, Mn, Pb, and Zn trace metals using standard preparation and isolation procedure. Result showed that the waterbed sediment and Cu. subochrea larvae are polluted with all trace metals investigated except As and Hg. The trace metals bioaccumulated in the Cu. subochrea larvae range from 31.78 at the lowest level for Cr to 3822.7 at the highest level for Cd. In a conclusion, this is the first report confirmed that Cu. subochrea likely used as a bioindicator to trace metal pollution in marine ecosystems in the world, especially wetlands.

  1. Projected wetland densities under climate change: Habitat loss but little geographic shift in conservation strategy

    USGS Publications Warehouse

    Sofaer, Helen; Skagen, Susan; Barsugli, Joseph J.; Rashford, Benjamin S.; Reese, Gordon; Hoeting, Jennifer A.; Wood, Andrew W.; Noon, Barry R.

    2016-01-01

    Climate change poses major challenges for conservation and management because it alters the area, quality, and spatial distribution of habitat for natural populations. To assess species’ vulnerability to climate change and target ongoing conservation investments, researchers and managers often consider the effects of projected changes in climate and land use on future habitat availability and quality and the uncertainty associated with these projections. Here, we draw on tools from hydrology and climate science to project the impact of climate change on the density of wetlands in the Prairie Pothole Region of the USA, a critical area for breeding waterfowl and other wetland-dependent species. We evaluate the potential for a trade-off in the value of conservation investments under current and future climatic conditions and consider the joint effects of climate and land use. We use an integrated set of hydrological and climatological projections that provide physically based measures of water balance under historical and projected future climatic conditions. In addition, we use historical projections derived from ten general circulation models (GCMs) as a baseline from which to assess climate change impacts, rather than historical climate data. This method isolates the impact of greenhouse gas emissions and ensures that modeling errors are incorporated into the baseline rather than attributed to climate change. Our work shows that, on average, densities of wetlands (here defined as wetland basins holding water) are projected to decline across the U.S. Prairie Pothole Region, but that GCMs differ in both the magnitude and the direction of projected impacts. However, we found little evidence for a shift in the locations expected to provide the highest wetland densities under current vs. projected climatic conditions. This result was robust to the inclusion of projected changes in land use under climate change. We suggest that targeting conservation towards wetland

  2. Wetlands as energy-dissipating systems.

    PubMed

    Pokorný, Jan; Květ, Jan; Rejšková, Alžběta; Brom, Jakub

    2010-12-01

    Since wetlands are ecosystems that have an ample supply of water, they play an important role in the energy budgets of their respective landscapes due to their capacity to shift energy fluxes in favor of latent heat. Rates of evapotranspiration in wetlands are commonly as high as 6-15 mm day⁻¹, testifying to the large amount of energy that is dissipated through this process. Emergent or semi-emergent wetland macrophytes substantially influence the solar energy distribution due to their high capacity for transpiration. Wetland ecosystems in eutrophic habitats show a high primary production of biomass because of the highly efficient use of solar energy in photosynthesis. In wetlands associated with the slow decomposition of dead organic matter, such as oligotrophic marshes or fens and bogs, the accumulation of biomass is also high, in spite of the rather low primary production of biomass. Most of the energy exchange in water-saturated wetlands is, however, linked with heat balance, whereby the largest proportion of the incoming energy is dissipated during the process of evapotranspiration. An example is shown of energy fluxes during the course of a day in the wetland ecosystem of Mokré Louky (Wet Meadows) near Třeboň. The negative consequences of the loss of wetlands for the local and regional climate are discussed.

  3. 40 CFR 230.41 - Wetlands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. (2... margin between wetland and open water can best be established by specialists familiar with the local.... The landward margin of wetlands also can best be identified by specialists familiar with the...

  4. 40 CFR 230.41 - Wetlands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. (2... margin between wetland and open water can best be established by specialists familiar with the local.... The landward margin of wetlands also can best be identified by specialists familiar with the...

  5. 40 CFR 230.41 - Wetlands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... circumstances do support, a prevalence of vegetation typically adapted for life in saturated soil conditions. (2... margin between wetland and open water can best be established by specialists familiar with the local.... The landward margin of wetlands also can best be identified by specialists familiar with the...

  6. 40 CFR 258.12 - Wetlands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... means those areas that are defined in 40 CFR 232.2(r). ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Wetlands. 258.12 Section 258.12... SOLID WASTE LANDFILLS Location Restrictions § 258.12 Wetlands. (a) New MSWLF units and...

  7. 40 CFR 258.12 - Wetlands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... means those areas that are defined in 40 CFR 232.2(r). ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Wetlands. 258.12 Section 258.12... SOLID WASTE LANDFILLS Location Restrictions § 258.12 Wetlands. (a) New MSWLF units and...

  8. Wetland classification on the Alaskan North Slope

    NASA Technical Reports Server (NTRS)

    Morrow, J. W.; Carter, V.

    1979-01-01

    An interactive supervised wetland classification was performed on Landsat digital data for three sites on the North Slope of Alaska. Color-coded classification maps identifying 10 wetland subcategories were produced. Field observations, topographic maps, and aerial photographs were employed as collateral data in classifying and verifying the Landsat information.

  9. 76 FR 777 - National Wetland Plant List

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... Provisions of the Food Security Act. Other applications of the list include wetland restoration... taxonomy, nomenclature, distribution, and ecology of wetland flora in the U.S. In 1987, the SCS (through a... the FWS database on the NWPL, and links to botanical literature and plant ecology information...

  10. Do interactions of land use and climate affect productivity of waterbirds and prairie-pothole wetlands?

    USGS Publications Warehouse

    Anteau, Michael J.

    2012-01-01

    Availability of aquatic invertebrates on migration and breeding areas influences recruitment of ducks and shorebirds. In wetlands of Prairie Pothole Region (PPR), aquatic invertebrate production primarily is driven by interannual fluctuations of water levels in response to wet-dry cycles in climate. However, this understanding comes from studying basins that are minimally impacted by agricultural landscape modifications. In the past 100–150 years, a large proportion of wetlands within the PPR have been altered; often water was drained from smaller to larger wetlands at lower elevations creating consolidated, interconnected basins. Here I present a case study and I hypothesize that large basins receiving inflow from consolidation drainage have reduced water-level fluctuations in response to climate cycles than those in undrained landscapes, resulting in relatively stable wetlands that have lower densities of invertebrate forage for ducks and shorebirds and also less foraging habitat, especially for shorebirds. Furthermore, stable water-levels and interconnected basins may favor introduced or invasive species (e.g., cattail [Typha spp.] or fish) because native communities "evolved" in a dynamic and isolated system. Accordingly, understanding interactions between water-level fluctuations and landscape modifications is a prerequisite step to modeling effects of climate change on wetland hydrology and productivity and concomitant recruitment of waterbirds.

  11. Mined land wetlands as breeding grounds for the giant Canada goose

    SciTech Connect

    Klimstra, W.D.; Thornburg, D.

    1982-12-01

    In Illinois wetlands resulting from surface mining have long been recognized as a valuable resource. A once presumed extinct race of Canada goose, rediscovered 20 years ago, has been successfully re-introduced in several areas within its former breeding range. One such population has been established in a three-county area of west-central Illinois that provides an extensive acreage of a variety of wetlands that are the consequence of over 40 years of surface mining. Following the release of 425 Giant Canada Geese (Branta canadensis maxima) during a 5-year period (1967-71), a population of over 3000 birds now represents the local flock prior to the nesting season. Study of 242 nest sites suggest these wetlands afford high-quality habitat with those with islands being the preferred. The 5.7 mean clutch size and the near 75% nest success are among the highest recorded. Insular nest sites, because of isolation from predators, are over 2 times more productive than those on the perimeter of waters. The tame grasses and legumes of pastures and meadows, the principal reclamation practice where these wetlands occur, yield adequate nesting materials and cover for nesting and brood rearing. This re-established resource has been made possible only because of wetlands created by mining where extensive prime agricultural lands prevail. Management policies and techniques are identified and discussed.

  12. ERTS-1 investigation of wetlands ecology

    NASA Technical Reports Server (NTRS)

    Anderson, R. R. (Principal Investigator); Carter, V.; Mcginness, J.

    1975-01-01

    The author has identified the following significant results. Data from aircraft can be used for large scale mapping where detailed information is necessary, whereas Landsat-1 data are useful for rapid mapping of gross wetland boundaries and vegetative composition and assessment of seasonal change plant community composition such as high and low growth forms of Spartina alterniflora, Juncus roemarianus, and Spartina cynosuroides. Spoil disposal and wetland ditching activities may also be defined. Wetland interpretation is affected by tidal stage; drainage patterns are more easily detected at periods of low water. Species discrimination is easier at periods of high water during the growing season; upper wetland boundaries in fresh water tidal marshes are more easily delineated during the winter months when marsh vegetation is largely dead or dormant. Fresh water discharges from coastal streams may be inferred from the species composition of contiguous wetlands.

  13. Artificial wetlands and water quality improvement.

    PubMed

    Shutes, R B

    2001-05-01

    This paper illustrates the role of plants to assist the treatment of water pollution in man-made wetlands in tropical and temperate climates. It also considers the potential for environmental education of these wetland systems. The management and natural treatment of pollution is described in the Mai Po Marshes, Hong Kong and a wetland in London which is also an important site for birds. The design of the Putrajaya Lake and Wetland system in Malaysia is compared with a constructed wetland and lake for the treatment of urban surface runoff in a new residential development in the United Kingdom. The benefits of these natural systems are discussed in the context of the global trend for introducing sustainable methods of environmental management and low cost pollution treatment systems.

  14. Wetlands mapping with spot multispectral scanner data

    SciTech Connect

    Mackey, H.E. Jr. ); Jensen, J.R. . Dept. of Geography)

    1989-01-01

    Government facilities such as the US Department of Energy's Savannah River Plant (SRP) near Aiken, South Carolina, often use remote sensing data to assist in environmental management. Airborne multispectral scanner (MSS) data have been acquired at SRP since 1981. Various types of remote sensing data have been used to map and characterize wetlands. Regional Landsat MSS and TM satellite data have been used for wetlands mapping by various government agencies and private organizations. Furthermore, SPOT MSS data are becoming available and provide opportunities for increased spacial resolution and temporal coverage for wetlands mapping. This paper summarizes the initial results from using five dates of SPOT MSS data from April through October, 1987, as a means to monitor seasonal wetland changes in freshwater wetlands of the SRP. 11 refs., 4 figs.

  15. Reconstruction of Anacostia wetlands: success?

    USGS Publications Warehouse

    Hammerschlag, R.S.; Perry, M.C.

    2002-01-01

    Historically, the tidal Anacostia River in Washington, D.C. had been an extensive system of freshwater tidal marshes replete with a full array of wetland vegetation dominated by wild rice. The local Nacochtank Indians had found the abundant fish and wildlife sufficient to sustain their daily lives. White man's intrusion upon the landscape gradually brought about deterioration of the natural (and associated cultural) system. Total demise followed mid-20th century dredge and fill channelization, which was conducted from the confluence of the Anacostia with the Potomac near the heart of Washington, D.C. to the terminus of the tidal regime at Bladensburg, Maryland. The National Park Service (NPS) became the manager for much of the land along the Anacostia, particularly the eastern bank. As part of its planning effort, the NPS envisioned returning portions of the Anacostia under its control to a natural system as a vignette. The concept was based on bringing back as comprehensive a collection of vegetation and wildlife as possible through the reestablishment of tidal marshes at Kenilworth and Kingman. The resultant wetlands were to be made accessible to the public both logistically and through a well designed interpretative program. In fact, this vision has been realized due to an impressive cooperative effort among a number of Federal and local agencies and organizations. In 1993, 32 acres of freshwater tidal marsh were reconstructed at Kenilworth. Based upon the 5-year monitoring program that has been in place since reconstruction, several generalizations may be made concerning the degree of success of the marsh reconstruction. Water quality in the marsh system and nearby tidal waters has not been noticeably improved. The poor quality may be clue to the overwhelmingly high loads (e.g., sediment, nutrients, etc.) brought in on the twice daily tidal cycle from the Anacostia and to the relatively small volume of water which actually interacts with the emergent marsh

  16. Wetland reclamation by accelerating succession

    SciTech Connect

    Rushton, B.T.

    1988-01-01

    This research analyzed mechanisms and processes for accelerating natural succession in order to restore soils and forests on clay setting areas left from phosphate mining in central Florida. Field measurements of succession on unreclaimed clay ponds showed wet sites dominated by dense stands of small shrubby willows even after 60 years with succession arrested because of a shortage of seeds for later stage trees. For drier sites an orderly procession of pioneer wetland trees colonized when wetland seed sources were within 20 meters. The first woody species were willows, myrtles, and baccharis followed in 5 to 10 years by red maple and elm. Oaks colonized slightly drier elevations. Hackberry, cherry, and sweetgum were also found. Experiments in which 3000 seedlings of 11 species were planted in six clay settling areas demonstrated succession can be accelerated. After the first growing season, results suggest that mixed swamp vegetation typical of floodplains may be the most suitable forested wetland community for settling pond reclamation. Percent survival was best for Carolina ash, American elm, and red maple. Some alluvial floodplain species were intermediate in success with 74% survival for baldcypress, 61% for sweetgum, and 61% for laurel oak. Trees from bayheads had the least survival with 52% for swampbay and 41% for loblolly bay. Poorest survival for all species planted (39%) was swamp tupelo. Floodplain species which required fairly dry conditions had poor survival, i.e., southern magnolia (53%) and cabbage palm (43%). Planted tree seedlings were more cost effective than placing seeds on the ground and covering them with litter. A simulation model with hydrologic regimes and outside seeding was used to summarize the operation of the successional system. Simulation that suggested trends for a longer time period than those observed in the field trials are yet to be confirmed.

  17. Is wetland mitigation successful in Southern California?

    NASA Astrophysics Data System (ADS)

    Cummings, D. L.; Rademacher, L. K.

    2004-12-01

    Wetlands perform many vital functions within their landscape position; they provide unique habitats for a variety of flora and fauna and they act as treatment systems for upstream natural and anthropogenic waste. California has lost an estimated 91% of its wetlands. Despite the 1989 "No Net Loss" policy and mitigation requirements by the regulatory agencies, the implemented mitigation may not be offsetting wetlands losses. The "No Net Loss" policy is likely failing for numerous reasons related to processes in the wetlands themselves and the policies governing their recovery. Of particular interest is whether these mitigation sites are performing essential wetlands functions. Specific questions include: 1) Are hydric soil conditions forming in mitigation sites; and, 2) are the water quality-related chemical transformations that occur in natural wetlands observed in mitigation sites. This study focuses on success (or lack of success) in wetlands mitigation sites in Southern California. Soil and water quality investigations were conducted in wetland mitigation sites deemed to be successful by vegetation standards. Observations of the Standard National Resource Conservation Service field indicators of reducing conditions were made to determine whether hydric soil conditions have developed in the five or more years since the implementation of mitigation plans. In addition, water quality measurements were performed at the inlet and outlet of these mitigation sites to determine whether these sites perform similar water quality transformations to natural wetlands within the same ecosystem. Water quality measurements included nutrient, trace metal, and carbon species measurements. A wetland location with minimal anthropogenic changes and similar hydrologic and vegetative features was used as a control site. All sites selected for study are within a similar ecosystem, in the interior San Diego and western Riverside Counties, in Southern California.

  18. Wetland Microbial Community Response to Restoration

    NASA Astrophysics Data System (ADS)

    Theroux, S.; Hartman, W.; Tringe, S. G.

    2015-12-01

    Wetland restoration has been proposed as a potential long-term carbon storage solution, with a goal of engineering geochemical dynamics to accelerate peat accretion and encourage greenhouse gas (GHG) sequestration. However, wetland microbial community composition and metabolic rates are poorly understood and their predicted response to wetland restoration is a veritable unknown. In an effort to better understand the underlying factors that shape the balance of carbon flux in wetland soils, we targeted the microbial communities along a salinity gradient ranging from freshwater tidal marshes to hypersaline ponds in the San Francisco Bay-Delta region. Using 16S rRNA gene sequencing and shotgun metagenomics, coupled with greenhouse gas measurements, we sampled sixteen sites capturing a range in salinity and restoration status. Seawater delivers sulfate to wetland ecosystems, encouraging sulfate reduction and discouraging methane production. As expected, we observed the highest rates of methane production in the freshwater wetlands. Recently restored wetlands had significantly higher rates of methane production compared to their historic counterparts that could be attributed to variations in trace metal and organic carbon content in younger wetlands. In contrast, our sequencing results revealed an almost immediate return of the indigenous microbial communities following seasonal flooding and full tidal restoration in saline and hypersaline wetlands and managed ponds. Notably, we found elevated methane production rates in hypersaline ponds, the result of methylotrophic methane production confirmed by sequence data and lab incubations. Our study links belowground microbial communities and their aboveground greenhouse gas production and highlights the inherent complexity in predicting wetland microbial response in the face of both natural and unnatural disturbances.

  19. The Constructed Wetland Association UK database of constructed wetland systems.

    PubMed

    Cooper, P

    2007-01-01

    There are now more than 1,000 constructed wetland systems (CWs) in the UK. The first UK CW database was constructed by Water Research Centre (WRc) and Severn Trent Water Ltd to accompany a book on the design and performance of these systems. In that database, constructed by Gareth Job et al., only 154 beds were listed, most of which were tertiary sewage treatment sites in Severn Trent Water. The Constructed Wetland Association (CWA) was formed in 2000 as a UK water industry body in response to problems caused by unscrupulous constructors. A group of experienced, reputable designers and constructors formed the CWA to bring together best UK practice in order to counteract this problem. The group contains major water companies, designers, constructors, academics, plant growers and operators. They decided that one of the best ways of countering the problem was to assemble a database of design and performance from well-designed systems. After negotiation the CWA group took over responsibility for the database from WRc. The CWA has produced eight updates of the database which now contains information from more than 900 beds. It contains examples of the different variants of CWs in use in the UK. Most of these sites treat sewage/domestic wastewater but the database also includes examples of systems for the treatment of minewater, sludge, landfill leachate, industrial effluents, surface runoff and road runoff. Particular treatment applications are illustrated by case studies which are summary articles describing design, construction and performance. PMID:17802831

  20. Modeling natural wetlands: A new global framework built on wetland observations

    NASA Astrophysics Data System (ADS)

    Matthews, E.; Romanski, J.; Olefeldt, D.

    2015-12-01

    Natural wetlands are the world's largest methane (CH4) source, and their distribution and CH4 fluxes are sensitive to interannual and longer-term climate variations. Wetland distributions used in wetland-CH4 models diverge widely, and these geographic differences contribute substantially to large variations in magnitude, seasonality and distribution of modeled methane fluxes. Modeling wetland type and distribution—closely tied to simulating CH4 emissions—is a high priority, particularly for studies of wetlands and CH4 dynamics under past and future climates. Methane-wetland models either prescribe or simulate methane-producing areas (aka wetlands) and both approaches result in predictable over- and under-estimates. 1) Monthly satellite-derived inundation data include flooded areas that are not wetlands (e.g., lakes, reservoirs, and rivers), and do not identify non-flooded wetlands. 2) Models simulating methane-producing areas overwhelmingly rely on modeled soil moisture, systematically over-estimating total global area, with regional over- and under-estimates, while schemes to model soil-moisture typically cannot account for positive water tables (i.e., flooding). Interestingly, while these distinct hydrological approaches to identify wetlands are complementary, merging them does not provide critical data needed to model wetlands for methane studies. We present a new integrated framework for modeling wetlands, and ultimately their methane emissions, that exploits the extensive body of data and information on wetlands. The foundation of the approach is an existing global gridded data set comprising all and only wetlands, including vegetation information. This data set is augmented with data inter alia on climate, inundation dynamics, soil type and soil carbon, permafrost, active-layer depth, growth form, and species composition. We investigate this enhanced wetland data set to identify which variables best explain occurrence and characteristics of observed

  1. On leadership and success in professional wetland science

    EPA Science Inventory

    The Society of Wetland Scientists and the wetland profession are fortunate to have an abundance of leaders. These leaders respond to the needs of the Society for guidance and direction. They also consistently advance wetland science and improve the quality of wetland management...

  2. 7 CFR 12.30 - NRCS responsibilities regarding wetlands.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 1 2013-01-01 2013-01-01 false NRCS responsibilities regarding wetlands. 12.30 Section 12.30 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation § 12.30 NRCS responsibilities regarding wetlands. (a) Technical...

  3. 7 CFR 1467.9 - Wetlands Reserve Enhancement Program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Wetlands Reserve Enhancement Program. 1467.9 Section... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS WETLANDS RESERVE PROGRAM § 1467.9 Wetlands Reserve Enhancement Program. (a) Wetlands Reserve Enhancement Program (WREP). (1)...

  4. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2014-10-01 2014-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  5. 7 CFR 12.30 - NRCS responsibilities regarding wetlands.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 1 2011-01-01 2011-01-01 false NRCS responsibilities regarding wetlands. 12.30 Section 12.30 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation § 12.30 NRCS responsibilities regarding wetlands. (a) Technical...

  6. 7 CFR 1467.9 - Wetlands Reserve Enhancement Program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Wetlands Reserve Enhancement Program. 1467.9 Section... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS WETLANDS RESERVE PROGRAM § 1467.9 Wetlands Reserve Enhancement Program. (a) Wetlands Reserve Enhancement Program (WREP). (1)...

  7. 7 CFR 1467.9 - Wetlands Reserve Enhancement Program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Wetlands Reserve Enhancement Program. 1467.9 Section... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS WETLANDS RESERVE PROGRAM § 1467.9 Wetlands Reserve Enhancement Program. (a) Wetlands Reserve Enhancement Program (WREP). (1)...

  8. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2010-10-01 2010-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  9. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2013-10-01 2013-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  10. 7 CFR 1410.10 - Restoration of wetlands.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Restoration of wetlands. 1410.10 Section 1410.10... Restoration of wetlands. (a) An owner or operator who entered into a CRP contract on land that is suitable for restoration to wetlands or that was restored to wetlands while under such contract, may, if approved by...

  11. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2011-10-01 2011-10-01 false Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  12. 7 CFR 1410.10 - Restoration of wetlands.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Restoration of wetlands. 1410.10 Section 1410.10... Restoration of wetlands. (a) An owner or operator who entered into a CRP contract on land that is suitable for restoration to wetlands or that was restored to wetlands while under such contract, may, if approved by...

  13. 7 CFR 1467.9 - Wetlands Reserve Enhancement Program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Wetlands Reserve Enhancement Program. 1467.9 Section... CORPORATION, DEPARTMENT OF AGRICULTURE LOANS, PURCHASES, AND OTHER OPERATIONS WETLANDS RESERVE PROGRAM § 1467.9 Wetlands Reserve Enhancement Program. (a) Wetlands Reserve Enhancement Program (WREP). (1)...

  14. 7 CFR 12.30 - NRCS responsibilities regarding wetlands.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 1 2012-01-01 2012-01-01 false NRCS responsibilities regarding wetlands. 12.30 Section 12.30 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation § 12.30 NRCS responsibilities regarding wetlands. (a) Technical...

  15. 7 CFR 12.30 - NRCS responsibilities regarding wetlands.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 1 2014-01-01 2014-01-01 false NRCS responsibilities regarding wetlands. 12.30 Section 12.30 Agriculture Office of the Secretary of Agriculture HIGHLY ERODIBLE LAND AND WETLAND CONSERVATION Wetland Conservation § 12.30 NRCS responsibilities regarding wetlands. (a) Technical...

  16. 44 CFR 10.14 - Flood plains and wetlands.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Executive Order 11988, Flood Plain Management, and Executive Order 11990, Protection of Wetlands (44 CFR... 44 Emergency Management and Assistance 1 2012-10-01 2011-10-01 true Flood plains and wetlands. 10... Flood plains and wetlands. For any action taken by FEMA in a flood plain or wetland, the provisions...

  17. 7 CFR 1410.10 - Restoration of wetlands.